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Abstract 

Today’s business processes tend to get more and more complex and can sometimes 

have hundreds of activities. Maintaining and monitoring these business processes can 

get hard for companies’ IT experts. Process views support those experts by providing 

user-defined views of a process. Complexity can be reduced by aggregating activities 

or leaving them out. It is also possible to highlight parts of a process that are more im-

portant than others. 

Business Process Illustrator is an open-source, web-based business process monitor-

ing tool, developed at the Institute of Architecture of Application Systems at the Univer-

sity of Stuttgart. This tool uses process views to simplify the monitoring of complex 

business processes. It has a built-in adapter for the Apache ODE process engine, but it 

can basically support any type of Workflow Management System. 

WSO2 Carbon is a modular open-source middleware platform which hosts a rich set of 

middleware components encompassing capabilities such as business process man-

agement and business activity monitoring. It is extensible and allows the installation of 

custom components through a technology called OSGi. WSO2 Business Process 

Server is a WSO2 Carbon-based product that executes business processes defined 

using the WS-BPEL standard. The WSO2 Process Server is powered by Apache ODE 

and therefore predestinated for the Business Process Illustrator to be integrated with 

WSO2 Carbon. 

The goal of this student thesis is to provide an open-source integration of the Business 

Process Illustrator with the WSO2 Carbon platform as an OSGi bundle and to establish 

a connection to the Business Process Server component. 
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1 Introduction 

1.1 Task of the Student Thesis 

The task of this student thesis is to integrate the open-source, web-based Business 

Process Illustrator with the WSO2 Carbon framework. This includes providing the Busi-

ness Process Illustrator as an OSGi bundle and establishing a connection to the Busi-

ness Process Server component. At the beginning of this work, it was considered to 

Implement Web service interfaces for integration with the Carbon platform. A more tho-

rough analysis has shown that a successful integration is not depending on those Web 

service interfaces. They are considered as a ―nice-to-have‖ feature that can be imple-

mented in a future release. 

1.2 Structure of the Document 

This document is divided into 7 chapters. 

Chapter 1 gives a short overview of the task and the structure of this student thesis. 

Chapter 2 covers the basics and gives an introduction on the used technologies. 

Chapter 3 describes the Business Process Illustrator (BPI) and gives a deeper insight 

in the underlying architecture. The chapter also focuses on the use of adapters and 

gives a first overview on the challenges that one has to consider before integrating the 

BPI with other applications. 

Chapter 4 focuses on the WSO2 Carbon framework and the WSO2 Business Process 

Server. It describes, how components can be developed to extend the framework and 

what the requirements are, that those components have to meet. 

Chapter 5 shows the architecture of the resulting OSGi-based BPI application as a 

high level view. The resulting solution, as well as the steps that have to be taken is 

described in this chapter. 

Chapter 6 highlights the implementation aspects. This is a low-level perspective on the 

application. 

Chapter 7 finally gives a short outlook and points out some possible improvements. 
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2 Technologies 

This chapter covers the basics and gives an introduction of the used technologies. This 

includes a short introduction to workflow management, the Business Process Execu-

tion Language (BPEL) and Process Views. The Business Process Illustrator uses a 

technology called Scalable Vector Graphics (SVG) to generate the graph of a moni-

tored process or instance. Another important technology is the Open Services Gateway 

initiative (OSGi) that is used by the WSO2 Carbon platform. The final section of this 

chapter introduces Maven – a tool that can be used to build a Java project and allows a 

project to be packaged as an OSGi bundle. 

2.1 Workflow Management 

The following is a collection of definitions of terms and terminologies that are used in 

context with workflow, and is based on the terminology and glossary defined by the 

Workflow Management Coalition (WfMC) [1]. 

2.1.1 Workflow 

Workflow is the structured controlling of processes or the automation of a business 

process, in whole or part [2]. It provides the possibility to conduct business processes 

by software where multiple collaborators are involved in a certain order. In the context 

of this student thesis, workflow refers to the technical implementation of a business 

process. 

2.1.2 Workflow Management System (WfMS) 

A Workflow Management System (WfMS) is a system to define, create and manage 

the execution of workflows by using software that runs on one or more workflow en-

gines. The software interprets the process definition and interacts with workflow partici-

pants. Where needed, it also invokes applications and IT tools. It also provides func-

tions to administrate and monitor the overall system as well as individual process in-

stances. 

2.1.3 Process Model 

To allow automated manipulation of a business process by the workflow management 

system, the business process is represented in a form called a process model. It con-

sists of one or more linked activities and their connections. The process model also 

holds some attributes that define when to start or terminate a process, as well as some 

information about the activities, e.g. who is participating, what data is needed and 

which application has to be invoked. 
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2.1.4 Process Instance 

A process instance is a representation of a single enactment of a process. It is created 

and managed by the workflow management system according to its process definition. 

Each instance has its own data associated and can be independently controlled by a 

workflow management system. It also has an internal state that indicates its progress 

towards completion. 

2.1.5 Process Engine 

The process engine provides the run time execution environment for a process in-

stance. It knows how to interpret the process definition and creates instances. These 

instances are managed by the process engine (e.g. starting, stopping, suspending and 

resuming of the instance). The engine navigates between activities and creates the 

work items to be processed. 

2.1.6 Deployment 

Deployment means to put a process model into production (i.e. make it ready for ex-

ecution). The corresponding model data is usually translated into a different format, 

e.g. the workflow management system does not directly support the metamodel of the 

imported model. Process instances of a process model can be created once it is dep-

loyed. If a new version of an already existing process model is deployed, all existing 

instances of the old version are run according to the process definition that was valid at 

the time of their instantiation. 

2.1.7 Execution Events and States 

The status of a process instance or an activity is maintained by workflow management 

systems as part of their workflow control data. A process instance follows a series of 

transitions between the various states during its execution. Table 1 and Table 2 show 

different states for activities and instances defined by the WfMC Reference Model [1]. 

Status Description 

Inactive The activity instance has been created but may not have been acti-

vated yet (there is no work item for that activity) 

Active One or more work items have been created and assigned for 

processing 

Suspended The activity instance is suspended and no further work items are 

started until it is resumed 

Completed The activity has completed and any post-completion system activi-

ties are running (e.g. audit logging) 

Table 1 – States of activities [1] 
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Status Description 

Initiated The process instance has been created, but may not yet be running 

Running The process instance has started execution and one or more activi-

ties may be started 

Active One or more activities are started and activity instances exist 

Suspended The process instance is suspended and no further activities are 

started until it is resumed 

Complete The process instance has completed and any post-completion sys-

tem activities are in progress (e.g. audit logging) 

Terminated The execution of the process has been stopped (abnormally) due to 

an error or user request 

Archived The process instance has been placed in an indefinite archive state 

but may be retrieved for process resumption (typically only sup-

ported for long-lived processes) 

Table 2 – States of a process instance [1] 

An event is an occurrence of a particular condition (external or internal) that causes the 

workflow management system to take one or more actions, e.g. the arrival of an email 

may cause the creation of an instance of a specific process model. An event has a trig-

ger (cause) and an associated action (response). The workflow management system 

can react directly to events, but they may also be monitored by an application that in-

itiates action (e.g. through API calls). 

2.1.8 Business Process Monitoring 

A workflow management system provides access to the actual state of each workflow. 

This is referred to as monitoring. The status is usually visualized so one can quickly 

identify how far the execution has progressed. Different people benefit from monitoring. 

Administrators can identify problems during a test phase, for example. Monitoring also 

allows to detect out-of-line situations and to react accordingly (e.g. staff can be re-

assigned when work piles up). Another user of monitoring is a client who wants to know 

the status of their order, for example. The Business Process Illustrator is a business 

process monitoring tool. 

2.1.9 Process Views 

Business process monitoring is used by different people, e.g. administrators, staff 

members and clients. All these people need different views or different amounts of in-

formation about the same process model, e.g. the management department needs only 

a quick overview while the IT department wants all details. Process views are usually 
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used to reduce complexity of a process model. Another usage of process views is in 

the integration of companies in insourcing or outsourcing scenarios. Sometimes a 

company needs to provide parts of its processes (private views) as process views 

(public views) for a business partner [3]. This ensures that the partner receives only the 

relevant data. The Business Process Illustrator can apply process views to process 

models. 

2.1.10 Business Process Execution Language (BPEL) 

BPEL is used to describe workflows as orchestration of Web Services. It is a recursive 

aggregation model that means: tasks in BPEL processes are Web Services and the 

process itself is a Web Service again. It is based on XML and originated from the Web 

Service Flow Language (WSFL) by IBM [4] and XML Business Process Language 

(XLANG) by Microsoft [5]. In 2002 the two companies released the first version under 

the name BPEL4WS [6]. The second version was released in 2007 under the name 

WS-BPEL [7] by the OASIS consortium that took over standardization. It supports pri-

marily automated business processes but BPEL4People [8] is an extension that allows 

the integration of people. 

BPEL distinguishes between executable and abstract process models. The latter can 

be seen as process views to hide internal details, for example. A BPEL model consists 

of different main building blocks like Partner Links, Variables, Correlation Sets, Han-

dlers and Activities (see [7] for a complete reference).  

2.2 Scalable Vector Graphics (SVG) 

Scalable Vector Graphics (SVG) is based on XML and serves as a description of 2-

dimensional vector-graphics, both static and dynamic [9]. It has been developed by the 

World Wide Web Consortium (W3C). As SVG images and their behavior are defined in 

XML files, they can be searched, indexed and scripted. Creation and editing of SVG 

files can be done with any text editor. Almost every modern browser supports SVG 

either natively or via additional plug-ins. 

2.2.1 Structure 

The structure of an SVG document is a tree structure of different elements and their 

attributes (see Listing 1). It starts with the xml-declaration and the document-type-

declaration like it is common with all XML files. The start-tag is the <svg>-tag that holds 

all sub elements. There are three different types of elements. 

 Vector graphics that are constructed out of graphical primitives like rectangles 

and circles 

 Raster graphics like bitmaps 

 Text of a specific font type and style 
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<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" 

     "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> 
  

<svg xmlns="http://www.w3.org/2000/svg" 

     xmlns:xlink="http://www.w3.org/1999/xlink" 

     xmlns:ev="http://www.w3.org/2001/xml-events" 

     version="1.1" baseProfile="full" 

     width="400mm" height="300mm"> 
  

<!--Content --> 
  

</svg> 

Listing 1 – Simple SVG document 

The corresponding xml-tags for those elements are <rect /> for rectangular areas, <cir-

cle /> and <ellipse /> for round objects, <image /> for bitmap images, <text /> for repre-

sentations of text and many others that can be found in [9]. The most powerful element 

in SVG is the <path /> element. It defines a list of arbitrary combinations of lines, el-

lipses, bézier curves with absolute or relative coordinates. Everything that can be 

drawn by one of the graphical objects can be drawn by the <path />-element, too. The 

other graphical objects are just for better usability. 

2.2.2 SVG in HTML pages 

SVG was developed for the World Wide Web. Most web browsers can display SVG 

without additional plug-ins. Adobe Systems developed a viewer for SVG that is used in 

different browsers on different platforms but the project is officially discontinued. Micro-

soft Internet Explorer supports SVG natively since version 9 (current version as of this 

writing). Other browsers like Opera, Safari, Google Chrome and Mozilla Firefox support 

SVG natively to a certain degree. 

There are different methods to embed SVG into HTML pages. SVG images can be 

included directly in XHTML pages using XML namespaces. Listing 2 shows the usage 

of SVG as inline code in an XHTML document. 

<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" 

     version="1.1"> 
     <circle cx="10" cy="10" r="10" /> 
</svg> 

Listing 2 – SVG inline code in an XHTML document 

There are also three different tags that can be used to embed SVG files into HTML 

pages. Listing 3 to Listing 5 show the usage of the <embed>-, <object>- and <iframe>-

tag. 
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<embed src="circle.svg" width="50" height="20" type="image/svg+xml" 

     pluginspage="http://www.adobe.com/svg/viewer/install/" /> 

Listing 3 – Usage of the <embed>-tag 

<object data="circle.svg" width="50" height="20" type="image/svg+xml" 

     codebase="http://www.adobe.com/svg/viewer/install/" /> 

Listing 4 – Usage of the <object>-tag 

<iframe src="circle.svg" width="50" height="20"> 
</iframe> 

Listing 5 – Usage of the <iframe>-tag 

The <embed>-tag is supported by all major browsers and is recommended by the 

Adobe SVG Viewer though it cannot be used in XHTML files. The <object>-tag is an 

HTML4 standard. It is supported by most new browsers but it does not allow scripting 

in contrast to the <embed>-tag. The <iframe>-tag works in most browsers. 

2.3 Open Services Gateway initiative (OSGi) 

OSGi is a dynamic module system for Java [10]. The problem today is that a lot of 

software development consists of adapting existing programs so that they may run in a 

different environment. This is because programs often use already developed building 

blocks that have become a standard. One example is the success of open software. 

The complexity of libraries makes the integration process very difficult and comes with 

a lot of problems. This is where OSGi supports the developer. Java provides the tech-

nology to run programs on different platforms. OSGi provides the technology to con-

struct applications from reusable and collaborative components. One benefit of the 

service platform is the possibility to install, update, start, stop and uninstall service ap-

plications (Bundles) both dynamically and controlled at run time. Those independent 

and modular bundles can run in parallel inside the same Java Virtual Machine (JVM) 

and they can be managed and updated throughout the whole lifecycle. Dependencies 

between bundles are automatically resolved and an intelligent version management is 

available. 

The origin of OSGi is in embedded systems and that is why it is often used in automo-

biles, mobile devices and building automation like assisted living and facility manage-

ment. A famous example of the usage of OSGi is the Eclipse IDE. Eclipse uses the 

Equinox OSGi framework and since version three of Eclipse, every plug-in is an OSGi 

bundle. As of this writing the current version of the OSGi specification is 4.3. 
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2.3.1 Classification 

Figure 1 shows a classification of layers of a typical OSGi architecture. In this context 

―server‖ usually means an embedded system, not necessarily an Enterprise Server or 

Desktop Client. 

 

Figure 1 – OSGi Layer (adapted from [11]) 

2.3.2 Framework 

An OSGi framework is an open, modular and scalable service delivery platform on a 

Java basis. It provides a standardized environment to applications (bundles). It is a 

component model with a service registry but the term ―service‖ means nothing more 

than an interface and is not to be mistaken for the term service in a Service Oriented 

Architecture (SOA), though OSGi can be used as a fundamental component model for 

a SOA. The OSGi Alliance specifies only the execution environment, the API and the 

test cases for third party OSGi implementations. A reference implementation of an 

OSGi framework is provided by the OSGi Alliance but it is not intended for productive 

use. Figure 2 shows the different layers of the framework. 
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Figure 2 – OSGi Service Gateway Architecture (adapted from [12]) 

Table 3 describes the different components of an OSGi framework and its respective 

function. 

Component Function 

Execution Environment The execution environment is specified in a way that it 

is executable under different Java platforms. Instead 

of requiring a specific Java version, it just defines the 

classes, interfaces and methods that have to be avail-

able  

Modules Layer The modules layer defines the class loading policies. 

Java usually has a single classpath that contains all 

classes and resources. This layer adds private classes 

for modules and controlled linking between them on 

top of Java [10]. It defines how bundles can import and 

export code. 

Life-Cycle Adds the possibility to manage the bundles at runtime 

by providing an API for installing, updating, starting, 

stopping and uninstalling bundles. Dependency me-

chanisms assure the correct operation of the environ-

ment. 

Services / Service Registry The service layer adds a service registry so that bun-

dles can be registered in the framework. In contrast to 

SOA OSGi does not directly address distributed sys-

tems. 
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Security Provides the possibility to restrict execution rights of 

bundles. It is based on Java and the Java 2 security 

model. 

Bundles Defines the smallest unit inside the OSGi framework. It 

consists of Java classes and the required resources 

and it holds a MANIFEST.MF file that defines the de-

pendencies with other bundles and the exported and 

imported packages. 

Table 3 – Different Components of an OSGi framework 

2.3.3 Bundles 

Bundles are JAR files that contain resources and classes. Dependencies between 

bundles can be managed by the OSGi framework. Classes in a bundle are not visible 

to other bundles by default. They have to be exported through the manifest file. The 

manifest is a special file that can contain information about the files packaged in a Java 

archive [13] and it resides inside the META-INF folder. Each archive can only have one 

manifest file. Entries in the manifest are in the form of ―header: value‖ pairs. The default 

manifest of a jar created by the Java Development Kit (JDK) version 1.2 is shown in 

Listing 6. 

Manifest-Version: 1.0 

Listing 6 – Default manifest of a jar created by the JDK 1.2 

There is no assumption about what information should be recorded in a manifest. The 

information recorded depends on the intended use of the JAR file. For example, if an 

application is bundled as a JAR file, it contains the header Main-Class: classname that 

tells the Java Virtual Machine where the entry point of the application is. The OSGi 

framework defines additional headers like Export-Package and Bundle-Classpath, for 

example. Listing 7 shows an example of a manifest of an OSGi bundle and Table 4 

describes the different headers. For a complete list of headers see [12]. 

Manifest-Version: 1.0 

Created-By: Apache Maven Bundle Plugin  

Bundle-ManifestVersion: 2 

Bundle-SymbolicName: org.example.helloworld 

Bundle-Name: helloworld  

Bundle-Version: 1.0.0  

Bundle-Activator: org.example.Activator  

Bundle-Description: A simple Bundle 

Import-Package: org.osgi.framework 

Export-Package: org.example.* 

Listing 7 – Example manifest of an OSGi bundle 
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Header-Name Description 

Manifest-Version This is required for all JAR file manifests and must be the 

first entry. 

Created-By Gives some information about the vendor or tool that 

generated this manifest. 

Bundle-ManifestVersion Defines that the bundle follows the rules of this specifica-

tion (1 for Release 3 bundles, 2 for Release 4 and later 

bundles) 

Bundle-SymbolicName This is a mandatory header that specifies a non-

localizable name for this bundle. Together with the Bun-

dle-Version it identifies a unique bundle. It should be 

based on the reverse domain name convention. 

Bundle-Version Defines the version of this bundle. 

Bundle-Activator Specifies the name of the class used to start and stop the 

bundle. See next chapter. 

Bundle-Description Defines a description of this bundle. 

Import-Package A coma-separated list of packages this bundle is depend-

ing on. The version of an imported package can be com-

mitted and packages can be selected as optional, mean-

ing the bundle can resolve without the package being 

available. 

Export-Package The Export-Package is similar to the Import-Package 

definition. A coma-separated list of package-names de-

fines the packages that are exported and hence made 

available for other bundles. 

Table 4 – Different manifest headers of an OSGi bundle 

2.3.4 Life Cycle 

The life cycle layer adds the mechanisms to dynamically install, update, start, stop and 

uninstall bundles. Figure 3 and Table 5 show the different bundle states and the order 

of their transitions. 
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Figure 3 – Bundle life cycle 

After installation the bundle tries to resolve all the required packages and enters the 

state RESOLVED if all packages are found. Once resolved the bundle can be started 

and is active as soon as its BundleActivator has finished its initialization. When it is 

active it can be stopped. The bundle enters the RESOLVED status again as soon as 

the stop method of the BundleActivator has returned. Of course it can be uninstalled 

when it is in the status INSTALLED or RESOLVED. 

Bundle State Description 

INSTALLED The bundle is successfully installed 

RESOLVED The classes that are needed by the bundle are availa-

ble. This means that the bundle is either ready to be 

started or it has stopped. 

STARTING The bundle is starting and the BundleActivator.start() 

method is called but has not yet returned. 

ACTIVE The bundle is active and running and the BundleActi-

vator.start() method has returned. 

STOPPING The bundle is stopping and the BundleActivator.stop() 

method is called but has not yet returned. 

UNINSTALLED The bundle has been uninstalled. 

Table 5 – Bundle states 

As described in the chapter before, the bundle can have a bundle activator. The bundle 

is activated by calling its bundle activator, if one exists. The BundleActivator-header 
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must be specified in the manifest by the developer. Listing 8 shows an example of a 

simple BundleActivator. 

package org.helloworld; 

  

import org.osgi.framework.BundleActivator; 

import org.osgi.framework.BundleContext; 

  

public class Activator implements BundleActivator { 

        private BundleContext context; 

  

        public void start(BundleContext context) throws Exception { 

                System.out.println("Hello World"); 

                this.context = context; 

        } 

  

        public void stop(BundleContext context) throws Exception { 

                System.out.println("Goodbye World"); 

                this.context = null; 

        } 

} 

Listing 8 – BundleActivator sample 

The Activator implements the BundleActivator interface that requires an implementation 

of the two methods start and stop. In this example the start-method simply prints out a 

text and saves the current BundleContext that was given as a parameter. The Bundle-

Context grants access to other methods so that the bundle can interact with the frame-

work e.g. subscribe to events published by the framework or receive a list of installed 

bundles. When the stop-method is called it simply prints out a text and sets the context 

to null. The two import declarations are needed for the BundleActivator interface and 

the BundleContext class. 

2.3.5 Services 

A service is a Plain Old Java Object (POJO) or a Plain Old Java Interface (POJI) that is 

registered in the service registry under an interface name. Registration is not persistent 

and exists only throughout runtime. Even during runtime services can register and un-

register and hence not be available anymore. The API provides three mechanisms 

called Service Listener, Service Tracker and Declarative Service to react to those 

changes. The OSGi framework also provides a lot of standard services like http-service 

that can be used by other bundles (see [10] for more standard services). 
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2.4 Maven 

Maven[14] is a build-management tool developed by the Apache Software Foundation 

that is based on Java. Especially Java programs can be created and managed with 

Maven. It is essentially a project management and comprehension tool [15] and pro-

vides a way to help with managing: 

 Builds 

 Documentation 

 Reporting 

 Dependencies 

 Software Configuration Management (SCM) 

 Releases 

 Distribution 

It is similar to Ant [16] but it is very useful for complex multi-projects, while Ant can be 

easier used in small projects. Maven tries to follow the idea of Convention over Confi-

guration, a software design paradigm that aims to minimize the decisions a developer 

has to make. This means a developer only has to write code if he deviates from a pre-

determined path, e.g. the tool expects a certain project folder structure. Deviating from 

this folder structure leads to additional configuration steps. 

2.4.1 Installation 

Maven can run on Java 1.4 but the latest stable Java Development Kit (JDK) should be 

installed1, which at the time of this writing is Java 6. The current installed version of 

Java can be determined by running java –version on the command line. 

% java -version 
Java version "1.6.0_24" 

Java(TM) SE Runtime Environment (build 1.6.0_24-b07) 

Java HotSpot(TM)Client VM (build 19.1-b02, mixed mode, sharing) 

Listing 9 – Determining the current Java version 

Maven can be downloaded2 from the project website. The current version as of this 

writing is 3.0.3. It can be installed on different operating systems like Mac OS X and 

Microsoft Windows. Installation steps are similar on all operating systems. They usually 

only differ in the installation location and environment variables. The following steps 

describe the procedure on Microsoft Windows (see [17] for instructions on different 

operating systems like Mac OS X, Linux and FreeBSD). Maven needs a correct setting 

in two environment variables: M2_HOME and PATH. Listing 10 shows how to set the 

environment variables in Microsoft Windows, assuming Maven is unpacked and in-

stalled under C:\Program Files\apache-maven-3.0.3. 

                                                
1
 http://www.oracle.com/technetwork/java/javase/downloads/index.html 

2
 http://maven.apache.org/download.html 
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C:\Users\krein > set M2_HOME=c:\Program Files\apache-maven-3.0.3 

C:\Users\krein > set PATH=%PATH%;%M2_HOME%\bin 

Listing 10 – Setting environment variables under Windows 

Once the configuration is completed the installation can be tested by running mvn –v 

on the command line (see Listing 11). 

$ mvn -v 

Apache Maven 3.0.2 (r1056850; 2011-01-09 01:58:10+0100) 

Java version: 1.6.0_23, vendor: Sun Microsystems Inc. 

Java home: C:\Programme\Java\jdk1.6.0_23\jre 

Default locale: de_DE, platform encoding: Cp1252 

OS name: "windows xp", version: "5.1", arch: "x86", family: "windows" 

Listing 11 – Testing the Maven installation 

If the mvn command is not found then the M2_HOME and PATH variables are not set 

properly. 

2.4.2 Repositories 

When Maven runs the first time, it creates a user-specific configuration file and a local 

repository. A repository holds build artifacts and dependencies of varying types. Maven 

distinguishes between local and remote repositories. The local repository serves as a 

cache for remote repositories and contains also the temporary build artifacts that are 

not yet released. When an artifact is not found in the local repository it is downloaded 

from a remote repository into the local one. The standard repository that is searched is 

http://repo1.maven.org/maven2 but other repositories can be defined, too. The local 

repository resides in the user’s home directory under ~/.m2/repository. 

2.4.3 Project Object Model (POM) 

The Project Object Model (POM) is the central concept of Maven. This is where the 

structure of a project is declared, builds are configured and projects are related to one 

another [17].A Maven project is defined by the presence of a pom.xml file. It is an XML 

representation of a Maven project and can be compared to a Makefile or a build.xml file 

in Ant. The majority of the POM deals with descriptions of where the source code is, 

where the resources are and what the packaging is. A build.xml in Ant will look different 

because it contains explicit instructions for tasks like compiling a set of Java classes. 

Although the Maven Ant plug-in allows including procedural customizations, developers 

usually will not have to deal with such procedural details. 

Though Maven’s default plug-ins are targeted at building JAR artifacts, the POM is not 

specific to building Java applications, e.g., it is possible to define a project that contains 

C# sources and produces a proprietary Microsoft binary [17]. 

http://repo1.maven.org/maven2
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<project xmlns="http://maven.apache.org/POM/4.0.0" 

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 

                      http://maven.apache.org/xsd/maven-4.0.0.xsd"> 
  <modelVersion>4.0.0</modelVersion> 

 

  <!-- The Basics --> 
  <groupId>...</groupId> 

  <artifactId>...</artifactId> 

  <version>...</version> 

  <packaging>...</packaging> 

  <dependencies>...</dependencies> 

  <parent>...</parent> 

  <dependencyManagement>...</dependencyManagement> 

  <modules>...</modules> 

  <properties>...</properties> 

 

  <!-- Build Settings --> 
  <build>...</build> 

  <reporting>...</reporting> 

 

  <!-- More Project Information --> 
  <name>...</name> 

  <description>...</description> 

  <url>...</url> 

  <inceptionYear>...</inceptionYear> 

  <licenses>...</licenses> 

  <organization>...</organization> 

  <developers>...</developers> 

  <contributors>...</contributors> 

 

  <!-- Environment Settings --> 
  <issueManagement>...</issueManagement> 

  <ciManagement>...</ciManagement> 

  <mailingLists>...</mailingLists> 

  <scm>...</scm> 

  <prerequisites>...</prerequisites> 

  <repositories>...</repositories> 

  <pluginRepositories>...</pluginRepositories> 

  <distributionManagement>...</distributionManagement> 

  <profiles>...</profiles> 

</project> 

Listing 12 – Example pom.xml [14] 

Listing 12 shows the elements directly under the POM’s project element. As a complete 

description of all elements would go beyond the scope of this student thesis, the follow-

ing is just a description of the elements needed to create a simple project, more pre-

cisely an OSGi bundle for the WSO2 Carbon Framework. 

Note: modelVersion is set to 4.0.0. This is the only version supported since version 2 of 

Maven. 
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The minimum fields in a pom.xml that are required by maven are groupId, artifactId and 

version. The groupId and version elements can be inherited from a parent project and 

do not need to be specified explicitly. Listing 13 shows a minimal pom.xml. 

<project xmlns="http://maven.apache.org/POM/4.0.0" 

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 

                      http://maven.apache.org/xsd/maven-4.0.0.xsd"> 
  <modelVersion>4.0.0</modelVersion> 

 

  <groupId>org.example</groupId> 

  <artifactId>example-app</artifactId> 

  <version>1.0</version> 

</project> 

Listing 13 – Minimum pom.xml required by Maven 

The three fields act like an address and are also referred to as the coordinates of the 

project. 

 groupId: This is often unique amongst an organization or a project, e.g. all core 

Maven artifacts have the groupId org.apache.maven. The use of the dot nota-

tion is recommended but not mandatory. Inside a repository the groupId acts 

like a Java package in an operating system, meaning dots are replaced by di-

rectory separators so that the org.example group in the example above can be 

found under the org/example folder inside the repository. 

 artifactId: The artifactId is basically the name of the project. Along with the 

groupId it identifies a project uniquely. The project in the example above would 

reside under org/example/example-app in the repository. 

 version: The artifactId and the groupId may identify a project uniquely but a 

project may evolve and come in different versions, hence each version has to 

be identifiable. In a repository, the example above could be found under 

org/example/example-app/1.0. 

 packaging: There is one more label that belongs to the address part, the pack-

aging. This is set to JAR per default so it does not have to be declared explicitly 

assuming that JAR is the desired packaging. Listing 14 shows how to declare 

the packaging as a WAR. 

<project xmlns="http://maven.apache.org/POM/4.0.0" 

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 

                      http://maven.apache.org/xsd/maven-4.0.0.xsd"> 
  ... 

  <packaging>war</packaging> 

  ... 

</project> 

Listing 14 – Specifying the packaging 
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2.4.4 Dependencies 

Maven allows relationships between projects through dependencies, inheritance and 

aggregation. It can manage both internal and external dependencies. External ones 

might be a library like Log4J. An internal one is illustrated by a web application depend-

ing on another application that can contain classes and objects. Listing 15 shows a 

sample usage of dependencies.  

<project xmlns="http://maven.apache.org/POM/4.0.0" 

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 

                      http://maven.apache.org/xsd/maven-4.0.0.xsd"> 
  ... 

  <dependencies> 
    <dependency> 
      <groupId>org.example</groupId> 

      <artifactId>another-example-app</artifactId> 

      <version>2.0</version> 

      <type>jar</type> 

      <scope>compile</scope> 

      <optional>true</optional> 

    </dependency> 
    ... 

  </dependencies> 
  ... 

</project> 

Listing 15 – Dependencies in a POM 

All dependency elements are grouped under the dependencies element. Maven down-

loads and links dependencies automatically and also brings in the transitive dependen-

cies, so developers only have to focus on direct dependencies. 

 groupId, artifactId, version: These elements have already been described in 

the previous chapter. Projects can only depend on Maven artifacts so that all 

dependencies are managed by Maven. When a project depends on another 

project that cannot be made available in a central repository (e.g. because its li-

cense does not allow it) then Maven provides a method to install the project into 

the local repository through a plugin as shown in Listing 16. 

mvn installl:install-file 

   -Dfile=example-app-non-maven.jar 

   -DgroupId=org.example 

   -DartifactId=example-app-non-maven 

   -Dversion=1 

   -Dpackaging=jar 

Listing 16 – Installation of non-Maven projects (adapted from [14]) 

To install the project, the plugin requires the coordinates for the project and automati-

cally generates a POM. 
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 type: This defines the packaging type. Examples are jar, war and bundle. It is 

possible to define new types through plugins. The type usually represents the 

file extension. 

 scope: There are five different scopes available that control which dependen-

cies are available in which classpath and which are included in an application. 

o compile: The default scope that is used if none is specified. Dependen-

cies are packaged and will be available in all classpaths. 

o provided: This indicates that the projects expects the JDK or a contain-

er to provide the dependency at runtime, e.g. a web application could 

need the Servlet API to compile the project but it would not be included 

in the WAR. The application server or servlet container would provide it. 

o runtime: This indicates that the dependency is not required to compile 

the project but it is needed at runtime, e.g. a JDBC API JAR is needed 

at compile time and the JDBC driver implementation only at runtime. 

o test: The dependency is not needed for the execution of the application 

but for compilation and execution phases of the tests. 

o system: This is similar to provided, except that a developer has to pro-

vide the JAR explicitly. The artifact is always available and not looked up 

in a repository. 

 optional: Lets other projects know that they do not require this dependency in 

order to work correctly when they use this project. 

Dependencies allow to exclude transitive dependencies, e.g. if a developer wants to 

replace the transitive dependency with another dependency that provides the same 

functionality. Listing 17 shows how to use exclusions in dependencies. 

<dependency> 
  <groupId>org.example</groupId> 

  <artifactId>example-app</artifactId> 

  <version>1.0</version> 

  <exclusions> 
    <exclusion> 
      <groupId>org.example</groupId> 

      <artifactId>example-app-dependency</artifactId> 

    </exclusion> 
</exclusions> 

Listing 17 – Using exclusions in dependencies 

2.4.5 Inheritance 

All POMs inherit from a so called ―Super POM‖ that defines standard configuration va-

riables (see [17] for a description of the complete Super POM). It can be compared to 

the Object class in a Java world, where all classes implicitly inherit from this super 

class. A project can also inherit from a parent POM (Listing 18). This is useful when 

large systems are built and developers do not want to repeat dependencies. When a 
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project specifies a parent it inherits all information from the parent. These settings can 

be overridden and new values can be added. When a POM inherits from a parent, it 

does not inherit directly from the super POM because the parent, or at least one of its 

―ancestors‖, already inherited from the super POM. 

<project xmlns="http://maven.apache.org/POM/4.0.0" 

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 

                      http://maven.apache.org/xsd/maven-4.0.0.xsd"> 
  <parent> 
    <groupId>org.example</groupId> 

    <artifactId>parent-app</artifactId> 

    <version>1.0</version> 

  </parent> 
  <artifactId>example-app</artifactId> 

  ... 

</project> 

Listing 18 – Specifying a parent 

As Listing 18 shows the project itself does not specify a groupId and a version. It speci-

fies only the artifactId. The groupId and version are inherited from the parent. The re-

sulting POM when merging the super POM, the parent POM and the current project 

POM is called the effective POM. Running mvn help:effective-pom on the command 

line inside a project would retrieve the effective POM. 

 

Figure 4 – POM Inheritance (adapted from [17]) 

Maven assumes that the parent POM is either available in the local repository or it is 

available in the parent directory of the current project. This default behavior can be 

overridden via the relativePath element if neither of the two is the location of the parent. 

Super POM

org.example.parent-app

org.example.example-app

Implicit inheritance 
from the super POM

Explicit inheritance 
from a parent
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2.4.6 Aggregation 

A project that contains modules is called a multi-module or aggregator project. The 

difference between inheriting from a parent and being managed by a multi-module 

project is in the parent project passing its values to its children, while a multi-module 

project just manages a group of other projects. Listing 19 shows an example project 

that uses modules. The projects packaging type has to be set to pom. 

<project xmlns="http://maven.apache.org/POM/4.0.0" 

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 

                      http://maven.apache.org/xsd/maven-4.0.0.xsd"> 
  <modelVersion>4.0.0</modelVersion> 

 

  <groupId>org.example</groupId> 

  <artifactId>example-app</artifactId> 

  <version>1.0</version> 

  <packaging>pom</packaging> 

 

  <modules> 
    <module>example-module-one</module> 

    <module>example-module-two</module> 

  </modules> 

</project> 

Listing 19 – A sample project that contains modules 

2.4.7 Build Lifecycle 

Another big part of the POM is the build section that defines the directory structure of 

the project and manages the plugins. 

Maven follows the central concept of build lifecycles, which define the process for build-

ing and distributing artifacts. The three built-in build lifecycles are default, clean and 

site. They handle the project’s deployment, cleaning and site documentation creation. 

A build lifecycle is made up by phases or stages. Some of the phases of the default 

lifecycle are described in Table 6 (see [14] for a complete reference). 

Phase Description 

Validate Check if the project is correct and all necessary information is 

available. 

Compile Compile the source code of the project. 

Test Test the source code. 

Package Package the code in its distributable format, e.g. a JAR or a 

WAR. 

Verify Verify that the package is valid and meets defined quality criteria. 
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Install Install the package into the local repository so that it can be used 

by other projects. 

Deploy The final package is copied to a remote repository for sharing. 

Table 6 – Some phases of the default lifecycle. 

To run the complete lifecycle, one would have to call mvn deploy on the command line 

inside the current project folder. This would execute all the different lifecycle phases in 

sequential order (plus the ones that are not shown here). If the project should only be 

packaged and neither installed nor deployed then one would only call mvn package on 

the command line. This would execute all the phases of the lifecycle till it finishes 

packaging. Later lifecycle phases are not executed. 

The clean lifecycle consists of the three phases pre-clean, clean and post-clean. It bas-

ically removes all the files created by the previous build. It is possible to run two life-

cycles in sequence, e.g. mvn clean install first runs the clean lifecycle and then the 

install lifecycle. 

2.4.8 Plug-ins and goals 

Plug-ins are libraries that implement specific goals. Goals are tasks that are finer than 

build phases and comparable to an Ant tasks. They are usually bound to a build phase, 

but they could be executed by direct invocation, e.g. mvn archetyp:generate calls the 

generate goal of the archetype plugin. All goals that belong to a certain lifecycle phase 

are called automatically during the execution of the lifecycle phase. Listing 20 shows 

an example of how to use plugins. 

<project xmlns="http://maven.apache.org/POM/4.0.0" 

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 

                      http://maven.apache.org/xsd/maven-4.0.0.xsd"> 
  <build> 
    ... 

    <plugins> 
      <plugin> 
        <groupId>...</groupId> 

        <artifactId>...</artifactId> 

        <version>...</version> 

        <configuration>...</configuration> 

        <executions>...</executions> 

      </plugin> 
    </plugins> 
  </build> 

</project> 

Listing 20 – Example of a plugin 
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The configuration section is specific to each plugin and specifies properties that the 

plugin expects. As plugins can have many goals, the execution section configures each 

goal of a plugin. There are many Maven plugins (see [18] for a list of available Maven 

plugins) but the important plugins for the task of this student thesis are the maven-

bundle-plugin, carbon-p2-plugin, maven-antrun-plugin and build-helper-maven-plugin. 

The maven-bundle-plugin allows one to create OSGi bundles. This is especially useful 

because it helps to create the OSGi specific headers in the manifest. The carbon-p2-

plugin is used to create features and repositories for carbon (see chapter 4.4 – Devel-

oping components and features). As the name implies the maven-antrun-plugin can run 

Ant tasks, in this case we need to run the WSDL2Java tool to create so called Stubs for 

the provided WSDL files of the Web services of the Apache ODE API. The last plugin is 

the build-helper-maven-plugin that can add the generated code of the WSDL2Java tool 

as source directories to the POM. The plugins are described in chapter 6 – Implemen-

tation. 
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3 Business Process Illustrator 

Business Process Illustrator (BPI) is a tool that has been developed in the course of a 

diploma thesis [3] written by Gregor Latuske in 2010 at the Institute of Architecture of 

Application Systems (IAAS) at the University of Stuttgart. BPI is a business process 

monitoring tool that lists all deployed process models and created process instances. 

As main feature the BPI provides the ability to apply process views to a monitored 

process model or instance. Figure 5 shows a screenshot of how the deployed process 

models and process instances of Apache ODE are listed in the BPI. 

 

Figure 5 – Screenshot of process models and process instances in BPI 

The list at the top shows the deployed process models, the one at the bottom shows 

running or past process instances. Both tables can be adjusted in a similar way, e.g. 

the number of models and instances respectively can be set in the top right corner in 

steps of 10, 20 and 50 rows per table and the tables can be refreshed and minimized 

here. There are also buttons for browsing through the pages at the bottom of the tables 

if the number of entries exceeds the allowed entries per page. Entries can be sorted by 

every column and some columns allow filtering. 
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The process models list shows the id, name, version, status and the number of in-

stances for each model. It is possible to filter the ids and names or to just show the 

entries with active or retired status. 

The process instances list shows the process model, id, status, start date and the date 

of last activity for each instance. Entries can be sorted by every column and filtered by 

process model and id. It is also possible to filter entries according to their status, i.e. all, 

active, suspended, completed, terminated, failed and error. 

The real benefit of the BPI is its ability to show process instances as a graph and to 

apply process views. Therefore, every entry in the process instances list has a button 

for showing its graph in either the same browser window or in a new browser tab. Fig-

ure 6 shows a graphical representation of a process instance and Figure 7 shows what 

the same graph can look like when process views are applied. 

 

Figure 6 – Graphical representation of a process instance 
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Figure 7 – Graph with applied process view. 

As seen in Figure 7, the receive and assign activities are left out, the end activity is 

highlighted and some of the information like start and end times are hidden which re-

sults in a more compact view, compared to the one seen in Figure 6. To allow those 

adjustments, the BPI supports the user with additional graphical controls which are 

positioned above the graph. Figure 8 shows those controls with the settings that re-

sulted in the earlier seen collapsed graph. 

 

Figure 8 – Graphical controls to adjust and apply process views 

The bar on top shows some information about the currently selected process instance. 

On the top right are again buttons for refreshing and minimizing the graph and a box for 

selecting the refreshing interval at which the graph is automatically refreshed. 

Each of the four boxes in the middle allows the user to highlight, respectively hide cer-

tain activities (right boxes) and activity types (left boxes). In this instance, the end activ-

ity is marked as highlighted while the assign1 and start activities are marked as hidden. 

To mark activities, the user can select an activity and use the add and remove buttons. 

Each box can be minimized or maximized by clicking the button in the top right corner 

of the box. 
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The two sliders on the bottom allow the user to automatically reduce the process 

graph. The number of steps, by which the graph can be reduced, depends on the com-

plexity of the process instance. For more details see [3] and [19]. 

3.1 Architecture 

The BPI is implemented as a 3-tier Rich Internet Application consisting of a client, a 

web server and a workflow management system. The great benefit of this architecture 

is its ability to be accessed from anywhere. All a client needs is a web browser that 

supports JavaScript and SVG. There’s no need to install any further software. Figure 9 

shows the underlying architecture of the BPI. 

 

Figure 9 – BPI Architecture [3] 

The 2nd tier consists of an application server hosting a Java web application. It consists 

of three components called BPI Frontend, BPI Service and BPI Service Adapter ODE. 

The BPI Service is the central component that calls the process data and events from 

the WfMS through a BPI Service Adapter and generates the graphs. The BPI Frontend 

presents the aggregated status information and graphs to the user. To retrieve the 

process data and events from the different WfMS, the BPI Service uses adapters. Each 

WfMS must have its own adapter. The BPI currently comes with an adapter for Apache 

ODE. 

The 3rd tier is the WfMS. Every WfMS, that has a Management API or a database that 

is accessible from the outside, should be able to be integrated with the BPI through an 

adapter that is written for that specific WfMS. The following chapters take a closer look 

at the three components, how they are implemented and what technologies they use. 

3.2 Implementation 

The different parts of the source code3 are split across different eclipse projects. Table 

7 shows the different projects and their role. 

 

                                                
3
 Source code is available under http://sourceforge.net/projects/bpi/ 
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Project Name Description 

Frontend Dynamic Web Project. Packaged as a Web Archive 

(WAR). Generates dynamic HTML pages. Imports the 

other projects. 

Libraries A library-only project. Organizes the vast amount of 

libraries into folders (e.g. the Apache ODE libraries). 

Model Holds the classes for the underlying generic data model. 

Service Provides an interface for the frontend component. Al-

lows changing the used adapter without the frontend 

knowing and without code changes. 

ServiceAdapterODE An adapter for Apache ODE. 

ServiceAdapterTest A test adapter mainly for developing purposes. No 

WfMS is needed. 

Tools Different tools to test the application and to deploy data 

models. 

Table 7 – Different projects of the BPI source code 

3.2.1 BPI Frontend 

The previous chapters already explained how the GUI works. The basic idea and the 

graphical representation of the BPI are based on SUN’s BPEL2SVG Generator [20]. It 

holds a table for process models and instances and a graphical representation for a 

selected process model as well. 

One goal of the development of the BPI was a userfriendly Graphical User Interface in 

terms of design and installation. The BPI runs inside a web browser so the user has no 

need to install any software. The only software needed is a browser of course that has 

JavaScript enabled, but most Operating Systems provide a browser. The generated 

HTML sites contain parts with SVG code. Most browsers support SVG, either natively 

or via plugins. 

In order to dynamically generate the HTML pages, the frontend is mainly built with 

JavaServer Faces (JSF) and Facelets with AJAX and some Managed Beans. Facelets 

provide a more ―pluggable‖ ViewHandler framework for JSF that is more designer 

friendly. The Facelets used are usual XHTML files which contain no Java code 

anymore compared to JavaServer Pages (JSP). The benefit of JSF is the possibility to 

reuse components through composite components. This is very useful, as the frontend 

has a lot of graphical components that have similar functionalities and hence similar 

designs. For example, every component e.g., the process model table or the process 

instance table, has the possiblity to be minimized. With JSF those parts have to be 
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programmed only once and can then be reused in every component that needs 

minimizing or maximizing functionality. 

This is one of the first requirements to the environment the BPI will be running inside – 

in this case, the WSO2 Carbon Framework. If the environment does not support JSFs, 

one option is to take the main funcionality of the BPI (the listing of process models and 

instances and the graphical representation of a process model) an pack them into a 

JSP file. Almost every component that is developed for the WSO2 Carbon Framework 

consists of JSP files. But as for now, there is no component developed by the WSO2 

Carbon team that already uses Facelets. 

The frontend uses JavaSript to automate the refreshing of the website and to display 

the sliders. Sliders are not supported for HTML versions below 5 so the frontend uses 

input fields as sliders and changes the presentation and behaviour through JavaScript. 

The website needs to be refreshed automatically because a polling mechanism is used 

for reading events from the WfMS. To prevent a complete reloading of the site each 

time the user minimizes or maximizes one of the tables or boxes the BPI uses a 

technology called Asynchronous JavaScript and XML (AJAX). AJAX can replace or 

reload parts of a site without completely reloading the site so the user gets the feeling 

that he is working with a desktop application rather than a website. 

The SVG code is not generated by JavaServer Faces but it is dynamically created by a 

Servlet and embedded inside the HTML code using the <object> tag, which allows to 

embed basically any content inside a HTML file. 

<object data="rect.svg" width="300" height="100" type="image/svg+xml" 

codebase="http://www.adobe.com/svg/viewer/install/" /> 

Listing 21 – Example usage of the <object>-tag 

Data that needs to be available for a whole session or for a request is stored in two 

Managed Beans. MainBean is a so called SessionBean that is available throughout the 

whole session and holds information about the current process models and instances 

and the current settings for the main window. SVGBean is a RequestBean and is 

connected to a request when the user wants to monitor a process instance in a 

separate window e.g. to monitor different instances at the same time. It holds 

information about the graph and the settings of the current window. 

The Java classes of the frontend, e.g. the ManagedBeans, are organized in the 

net.latuske.bpi.frontend package and subpackages. All the web-related files are stored 

under the WebContent folder. There is also a subfolder called resources that holds part 

of the XHTML files and all the Stylsheets, Scripts and Icons that are used for the 

design of the webpages. 

The frontend calls all the information and data it needs from an interface called 

BPIService. The next chapter explains how the BPIService works and why it is needed. 
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3.2.2 BPI Service 

The BPIService is the central part of the application. It calls the process models and 

process instances from the WfMS and generates the SVG graph. It provides a clear 

interface that can be used by the frontend. An instance of the BPIService is created 

through the use of the BPIServiceFactory. The benefit of the use of a factory pattern 

[21] is the possibility to choose the actual implementation at runtime. The BPI Service 

also contains the definition of the BPI Service Adapter Interface. 

The concrete implementation of the BPI Service Adapter is detected at runtime through 

the use of a properties file. It contains the name of the classes that implement the dif-

ferent interfaces. Thus the used WfMS can be changed by modifying the properties file, 

even at runtime. The loading of the classes is done through the class.forName() me-

thod as shown in Listing 22. 

public ProcessModelService<?> createService() throws BPIException { 

     try { 

          String cName = PropertiesUtil.getInstance().getProperty(SERVICE_NAME); 

          return (ProcessModelService<?>) Class.forName(cName).newInstance(); 

     } catch (Throwable t) { 

          throw new BPIException(t); 

     } 

} 

Listing 22 – Dynamic loading of the BPI Service Adapter [3] 

The first thing the BPI Service does is calling the process models from the WfMS 

through the BPI Service Adapter. At this point caching the process models can be very 

effective. Process models are not changed very often, so caching lifetime can be set 

very high. Afterwards the process instances are loaded, either all instances or just the 

ones belonging to a certain process model. This depends on the WfMS and the corres-

ponding adapter. Once the process models and instances are loaded, a component 

called BPEL Parser parses the process models and creates a DOM (Document Object 

Model). It is a structure that represents XML documents as trees that can be traversed 

recursively. The parser just loads activities and links at the moment. The process mod-

el class gets a reference to the root activity. 

Before the SVG graph is generated, the events of a selected process instance are 

called from the WfMS. Some workflow management systems like the Apache ODE do 

not provide those events via API’s. The service adapter for ODE that comes with the 

BPI operates directly on the database. This can be problematic if the WfMS forbids 

direct access to the database, e.g. the database that comes with ODE is not accessible 

and is replaced by a MySQL database.  

The WSO2 Business Process Server is based on ODE so this is another requirement 

for the integration process. As later chapters will show, the Business Process Server 

provides a different API than ODE where events are available through API calls rather 

than calling them from the database. 
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3.2.3 BPI Service Adapter (ODE) 

A BPI Service Adapter has to implement the three interfaces ProcessModelService, 

ProcessInstanceService and EventService. Apache ODE provides a management API 

that the ProcessModelService and ProcessInstanceService use to get the process 

models and instances. Listing 23 shows an example of an API call that returns a list of 

all process instances. The actual addresses of the Web Services are also stored in a 

properties file and retrieved at runtime. 

ServiceClientUtil client = new ServiceClientUtil(); 

OMElement root = client.buildMessage( 

     "listAllProcesses", new String[] {}, new String[] {}); 

OMElement result = client.send( 

     msg, "http://localhost:8080/ode/processes/ProcessManagement"); 

Listing 23 – Apache ODE Management API [3] 

The EventService accesses the database directly because there is no such functionali-

ty implemented in the API. The service establishes connectivity through the use of 

JDBC, a database interface for relational databases that is part of the Java Standard 

Edition. The name of the JDBC driver and the access data of the database are both 

stored in a properties file, so that any database that has a JDBC driver can be used. To 

change the database, the JAR of the JDBC driver has to be included in the classpath of 

the application and the properties file must be adapted accordingly. 

After connecting to the database all events belonging to a particular instance are 

loaded from the ODE_EVENT table. Every entry has a BLOB (Binary Large Object) 

that is de-serialized into a Java object. This object is an instance of ActivityEvent de-

fined by Apache ODE and can be used to create an ActivityExecEvent of the underly-

ing data model. 

This shows another requirement for the integration process. Though the Business 

Process Server is based on Apache ODE, it uses a different API. From this follows that 

a new BPI Service Adapter has to be written for the Business Process Server because 

the provided adapter for ODE does not work. 
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4 WSO2 Carbon 

WSO2 [22] is a company that was founded in 2005 by Sanjiva Weerawarana and Paul 

Fremantle, pioneers in XML and Web services technologies and standards as well as 

open source. They offer a complete SOA platform that is completely free and open 

source. The business model of the company is based on providing training, consultan-

cy and support for the software. 

In the beginning the company had developed different products like an Enterprise Ser-

vice Bus (ESB), Web Services Application Server (WSAS) and Business Process 

Server that all had some common code base and were used together by customers. 

When the code base changed, it had to be copied from the code base to all products, 

so the company had the idea to develop a component-based SOA platform. They 

called it the Carbon framework.  

4.1 Architecture 

The Carbon framework is a modular middleware based on Equinox and OSGi. Every-

thing in the Carbon framework is closely based on Apache technology, e.g. Apache 

Axis2, Apache ODE, Apache Tomcat and many others. It is completely build out of 

OSGi components. Developers like to call it ―Eclipse for Servers‖, referring to the pos-

sibility to reconfigure the framework, e.g. to install or uninstall features. The Carbon 

framework is split into a core section and a features section as shown in Figure 10. 

 

Figure 10 – WSO2 Carbon Framework Architecture [23] 
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The core consists of a set of common middleware components that are useful in any 

enterprise project, while additional components can be added to solve a specific enter-

prise scenario. It provides WSO2 middleware products with a consistent set of enter-

prise-class management, security, clustering, logging, statistics, tracing, throttling, 

caching, and other capabilities as well as a management UI framework [23]. The cen-

tral component is a solid and high performance SOA and Web services engine. When 

components are added, associated management components are automatically added 

to the UI. The framework supports a front-end and back-end separation so that every-

thing can be controlled through a remote WSO Carbon UI or through a Web services 

interface. 

When setting up an environment that is based on WSO2 Carbon, one could build the 

Carbon core, pick the components that are needed and integrate them into the Carbon 

build, having a customized product. Another way would be to choose one of the Car-

bon based products that reflect common middleware product categories like an ESB, 

WSAS or a Mashup Server and extend it with additional required functionality (illu-

strated by Figure 11). 

 

Figure 11 – Carbon-based products [23] 

4.2 Management Console 

One of the rich features of the Carbon framework is the management UI framework. 

Once WSO2 Carbon is installed and started, the management console is accessible 

from the URL https://localhost:9443/carbon. Pointing to this URL in a web browser will 

open a sign-in page. The default username is admin and the password is also admin. 

After login the management console presents a components menu on the left side 

where installed components can plug in their UI. Figure 12 shows the menu of the 

https://localhost:9443/carbon
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Business Process Server. The Business Process Server has a separate menu section 

called Business Processes that allows managing processes and instances as well as 

deploying new processes (see chapter 4.3.1 – Managing). 

 

Figure 12 – Management Console Components Menu 

Two important configuration options that are available in all Carbon products are the 

Users and Roles and the Features menu. 

4.2.1 User and role management 

The Users and Roles menu allows administrators to manage users and roles. The user 

store in Carbon can operate in two modes, ―Read/Write‖ mode and ―Read only‖ mode. 

In read/write mode one can add, modify and remove user accounts, reset passwords, 

manage roles of users and bulk import users from other user stores, while in read only 

mode it is only possible to view user accounts. Figure 13 and Figure 14 show how to 

manage users and roles. Users can also be imported from other user stores, e.g. from 

a relational database or a LDAP server. Carbon allows importing of comma separated 

lists (.csv files) or Excel sheets (.xls files). There are many visual LDAP tools available 

that support exporting to the .csv format. 
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Figure 13 – Managing users in WSO2 Carbon 

 

Figure 14 – Managing roles in WSO2 Carbon 

4.2.2 Feature management 

Another feature that comes with WSO2 Carbon is the feature manager facility that 

helps developers to customize Carbon. The possibility to install, update and uninstall 

features is called provisioning. This can be done manually by dropping bundles and 

configuration files into certain folders of the framework, but this method is not recom-

mended because it is error-prone. Components are depending on each other and find-

ing the exact set of components is difficult. To handle these issues the developers inte-

grated Equinox P2 with Carbon [23]. 

Equinox P2 [24] is a framework for provisioning Eclipse-based applications, but it can 

basically be used as a provisioning platform for any OSGi-based application. The inte-

gration of P2 into Carbon enables users to extend the framework by installing various 

features. The feature manager provides a GUI to perform these actions. Figure 15 

shows part of the feature management console. 
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Figure 15 – Managing features in WSO2 Carbon 

Carbon differentiates between repositories, features and components. A repository 

consists of one or more features and a feature can consist of one or more components 

(see chapter 4.4 – Developing components). 

Before installing a new feature one has to specify a repository that contains the feature. 

For example, the standard repository of all the features of the Carbon 3.1.0 release is 

http://dist.wso2.org/p2/carbon/releases/3.1.0/. Clicking the ―Find Features‖ button will 

list all the available features of a repository. The required features can then be selected 

and installed. 

Afterwards, Carbon shows the install details with the installation size. As some features 

may depend on others, Equinox P2 would automatically complain that an installation 

could not be performed, if a dependency is missing. Finally, the user has to accept the 

license agreements and installation will finish after a restart of the server. 

The feature will be added to the installed features list in the Installed Features section 

as illustrated by Figure 16. Of course each feature can also be uninstalled, but only if 

there is no other feature depending on it. Not only can a feature be uninstalled but the 

front-end/back-end separation (see chapter 4.4 – Developing components) allows one 

to install or uninstall just the front-end or back-end feature. The list allows filtering of 

components so that the front-end or back-end components are listed only. 

http://dist.wso2.org/p2/carbon/releases/3.1.0/
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Figure 16 – Managing installed features in WSO2 Carbon 

The last two sections of the feature management console are the Installation History 

and the Repository Management. The installation history shows the previous states of 

the framework and provides the possibility to revert the current configuration to a pre-

vious configuration. When a configuration is selected for an undo, the changes that the 

configuration will do are shown, e.g. the installed and uninstalled features. 

Note: Equinox P2 does not delete OSGi bundles when they are uninstalled, so the 

bundles will not have to be downloaded when they are selected for installation again. 

The repository management section lists the available repositories and allows one to 

add, remove, modify and disable repositories. One can either provide a URL to the 

repository or the path of the directory if the repository was downloaded to the local file 

system. 

4.3 WSO2 Business Process Server 

The WSO2 Business Process Server (BPS) is one of the Carbon-based products. It is 

open source and can execute business processes written following the WS-BPEL 

standard. Powered by Apache ODE the WSO2 BPS provides a web-based graphical 

console to deploy, manage and monitor business processes and process instances 

[25]. 

Apache ODE is one of the most popular BPEL engines, especially because it is open 

source. Running Apache ODE as a standalone server would make it impossible to use 

some functionalities and features provided by WSO2 Carbon, so they build their own 

Business Process Server by creating an Apache ODE integration layer. The integration 

process was straightforward because the Web services based transport in ODE is im-

plemented on top of Apache Axis2, as is the Carbon core [26]. 
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Through the component-based architecture of the carbon framework, BPEL support 

can be added to any Carbon-based product, e.g. one can add BPEL support to WSO2 

ESB. Figure 17 shows the Business Process Server in context with other products and 

technologies. 

 

Figure 17 – WSO2 Business Process Server [27] 

The latest addition to the Business Process Server is the multi-tenant capability. In ear-

ly 2010 the developer team added Human Task support with moderate success be-

cause of a lack of tooling and support from the underlying platform. Current develop-

ment is focusing on a multi-tenanted Human Task implementation with Eclipse-based 

tooling support [26]. 
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4.3.1 Managing the BPS 

The BPS already comes with a UI component to manage process models and in-

stances and to install new BPEL processes. All these features are available in the 

Business Processes category of the components menu on the left of the management 

console. When selecting the Processes menu item, the management console shows a 

list of the deployed process models with some additional information like deployment 

date. The Instances menu item shows a list of process instances, also with some addi-

tional information like id, status and start date. Both lists are comparable to the lists 

provided by the Business Process Illustrator. Figure 18 and Figure 19 show the lists of 

processes and instances. 

 

Figure 18 – Managing BPS processes 

 

Figure 19 – Managing BPS instances 

The managing component also provides more specifics to each process instance when 

pointing to the link in the Process ID column of either of the two lists in Figure 18 or 

Figure 19. The Process Information page shows a lot more information of a process 

model, e.g. a summary of the instances of the current selected process model. A chart 

on the right visualizes the number of instances in their different states, i.e. Active, 

Completed, Error, Failed, Suspended and Terminated. The page also shows the 

process definition and a graphical representation of the model (Figure 20 and Figure 

21). 
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Figure 20 - Process Information 

 

Figure 21 - Process visualization 

There is also the possibility to create instances of a process model by calling the TryIt 

service. The TryIt feature is one of the core components of Carbon and enables one to 

test Web services by generating a webpage with the required input fields. 
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4.3.2 Monitoring the BPS 

The Business Process Illustrator is a monitoring tool and the core of this student thesis 

is to connect the Business Process Illustrator to the Business Process Server. This 

requires understanding the provided mechanisms to monitor the Business Process 

Server. 

The Apache ODE Adapter of the Business Process Illustrator uses two Web services to 

get the process models and instances. To get the activity events, it accesses the un-

derlying database directly, because this functionality is not yet provided by the Web 

services. Apache ODE does not run as a standalone application inside the framework. 

It had to be adapted to be able to run inside Carbon. This also means that the provided 

API of the Apache ODE engine does not work anymore. 

The Business Process Server provides a different API to read the process models and 

instances. It even provides the possibility to get the activity events through the API, 

instead of accessing the database directly. All these functions are available through 

different Web services called process management and instance management. The 

usage of these services is explained in the implementation chapter. 

4.4 Developing components and features 

The previous chapters already explained how to manage features in WSO2 Carbon. 

This chapter focuses on component and feature development [28]. 

The concept of features in Carbon is very similar to the concept used in the Eclipse 

IDE. In Eclipse, a feature is a grouping of logically related plug-ins (bundles). They can 

be installed using the Update Manager. In Carbon, a feature can be thought of as an 

installable form of one or more logically related carbon components. They can be in-

stalled using the Feature Manger. 

Features are units that can be installed in any Carbon-based product and shared with 

others by packaging them as a repository (a repository can be compared to an update 

site in Eclipse). Features allow one to specify the requirements of the Carbon compo-

nent, e.g. dependencies to other features and bundles. 

A component is a set of OSGi bundles living in the Carbon framework. The best-

practices when developing components suggest a separation of front-end and back-

end component as illustrated by Figure 22. 

The development process is divided into three steps. 

1. Develop the front-end and back-end components 

2. Develop the corresponding features, i.e. front-end (UI) feature and back-end 

(Server) feature and a composite or aggregated feature that contains both fea-

tures. 

3. Install the feature into Carbon by developing a feature repository and installing it 

using the feature manager. 
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Figure 22 – Big Picture of Components and Features (adapted from [28]) 

Note: This is just a general guideline and depends on the Carbon component one de-

velops. It is possible to create components that just have a front-end or back-end com-

ponent. 

The figure illustrates the difference between front-end and back-end component. A 

client uses a browser to connect to the front-end component. The front-end component 

translates client requests into Web service calls to the back-end component. Of course 

a client could also call the Web services of the back-end component directly through a 

custom client. 

The bottom of the figure shows the aggregated feature installed in a repository. A fea-

ture can also be thought of as an installable form of a component, while the component 

is the functionality that is developed. 

Maven provides the plugins to create the components, features and repositories. The 

maven bundle plugin is used to create the components while the maven p2 feature 

plugin is used to create the features and the repository. The implementation chapter 

explains the usage of these plugins. 
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5 Integration Architecture 

The previous chapters have covered the different technologies and tools that are used 

for the integration process. The analysis of the Business Process Illustrator and the 

Business Process Server has already indicated some problems for the integration 

process. This chapter explains the problems and the resulting decisions that had to be 

made, and led to the integration architecture described in this chapter. 

5.1 Frontend – JavaServer Faces and Facelets 

One of the first problems when writing some test examples was the missing support of 

JavaServer Faces and Facelets in an OSGi environment. At the beginning of this writ-

ing, there was no working OSGi bundle of the Apache MyFaces implementation of Ja-

vaServer Faces. The complexity of the MyFaces implementation even caused Apache 

developers to question, if MyFaces is OSGi-fyable at all. The problem is that class 

loading in an OSGi environment is handled differently than in a standard Java envi-

ronment. Though there are some examples, where developers were able to get Java-

Server Faces running in an OSGi environment to a certain degree, they all had some 

code changes of the MyFaces implementation involving. 

As these changes were questionable, the decision was to create a prototype that does 

not contain any JavaServer Faces, but was made out of JavaServer Pages. Almost 

every UI component inside the Carbon framework is made out of JavaServer Pages 

and Servlets. This decision is also based on the fact that the core functionality of the 

Business Process Illustrator – the possibility to apply process views – is not affected by 

these changes. The graphical representation of a process is generated by Servlets and 

hence will also work inside the Carbon framework. The changes mainly affect the gen-

eration of the process model and instance lists. At the same time, the goal is to keep 

the current graphical design of the GUI of the Business Process Illustrator. 

5.2 BPI Service Adapter (BPS) 

The Business Process Adapter is based on Apache ODE, so the first impression was 

that the current service adapter of Apache ODE could possibly work for the Business 

Process Illustrator. A more thorough analysis showed that Apache ODE hat to be 

adapted in order to be integrated with the Carbon framework. These changes also in-

cluded discarding the old API of Apache ODE and creating a new one. This means that 

a new adapter has to be written for the new API. 

The API of the Business Process Server provides additional information about the 

process instances that the API of the Apache ODE did not provide. This means that 

activity events can be retrieved directly through the provided Web services of the API, 
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instead of a directly accessing the underlying database, hence making the adapter 

simpler than the one provided for Apache ODE. 

5.3 Code Changes 

The Business Process Server has a modular architecture. Modular meaning, the fron-

tend can be exchanged and still use the functionality provided by the BPI Service, or 

the used WfMS can be changed by using a different BPI service adapter. 

During the development of the BPI, this was considered very important, as the tool 

should be able to be used with other WfMS. The only developed and provided adapters 

are the ones for Apache ODE and a test adapter for developing purposes. Creating 

another adapter for the Business Process Server revealed some restrictions in the 

code that made it difficult to impossible to create an adapter for the Business Process 

Server. This concerns the Business Process Server, but other workflow management 

systems could work perfectly with the current version of the BPI. 

The current version of the BPI expects the process definition of a deployed process to 

be available via a URL. The BPEL file has to be parsed, in order to create an internal 

representation of a process model. When processes are deployed in Apache ODE, the 

BPEL file is accessible via a URL, and this assumption was made on other WfMS as 

well. The Business Process Server – and possibly many others – does not provide this 

URL. Of course, the process definition is available as a string-representation through 

calls to the API, but not the BPEL file itself via a URL. It became clear that the BPI 

cannot depend on the WfMS to provide the process definition as a BPEL file via a URL, 

though the process definition still must be available in some way, that the parser can 

parse it. 

Another problem is the loading of the properties file through a helper class in the cur-

rent version. The location of the file differs, depending on the current environment the 

BPI runs in. Different environments are already covered by the code but the OSGi envi-

ronment was not included. This is probably a similar problem to the class loader prob-

lem with the Apache MyFaces implementation. The new solution adds OSGi environ-

ment support to the code but other environments may not be covered by this approach. 

The changes in the BPI code only extend the functionality without affecting the BPI in 

its currently working environments. They can be thought of as bug fixes for a version 

update. 

5.4 Resulting Architecture 

The resulting integration architecture is shown in Figure 23. Newly developed compo-

nents and code adjustments are indicated by a yellow painting. The image shows the 

old architecture above the new architecture to compare the changes. 
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Figure 23 – Integration Architecture 

The BPS Frontend (compared to BPI Frontend) is the new frontend that is developed 

because the old one with the Facelets will not work. The same applies for the BPI Ser-

vice Adapter BPS (compared to BPI Service Adapter ODE) because the one for 

Apache ODE does not work anymore. In the bottom right corner of the BPI Service is a 

small yellow rectangle that indicates that there are some code changes in this compo-

nent. This is only a very small part of the BPI Service and will also be contained in the 

general BPI release. The BPI Feature illustrates that all the functionality has to be 

packaged as an OSGi bundle, more precisely a Carbon component (and a Carbon fea-

ture) that can be installed into the WSO2 Carbon framework. 

The blue parts of the image show the client side, the red parts illustrate the server side 

and the green parts show the workflow management systems. Note that the WfMS in 

the new architecture – the Business Process Server – is not a standalone application 

like Apache ODE in the old one, but it is contained as a feature in a WSO2 Carbon-

based product. 

Note: Business Process Server is a Carbon-based product, so when downloading the 

Business Process Server, one actually gets the Carbon framework plus the features 

that make up the Business Process Server. That is why the Business Process Server is 

illustrated as a feature inside the Carbon framework in the image above. 

There is also no database shown in the Business Process Server as all the information 

is directly available through the API. 

Management 

API

Apache ODE

Database

WSO2 Carbon based product

BPS Frontend BPI Service

BPI Feature

BPI Service 

Adapter BPS

Management 

API

Business 
Process 
Server

Browser

Client

Browser

Client

BPI Frontend BPI Service

Webserver

BPI Service 

Adapter ODE

Old Architecture

New Architecture

Newly developed components and code adjustments



6 Implementation 55 

6 Implementation 

The previous chapter explained the architecture of the integration process. This chap-

ter focuses on the implementation aspects, by describing which Java classes are 

created and what their functionality is, as well as the JavaServer Pages and the OSGi 

bundles that are created. 

6.1 Frontend 

Usually, developers would consider moving from a JavaServer Pages project to a Ja-

vaServer Faces project, but in the integration process of this student thesis, the oppo-

site is the case. The project is a JSF project and must be ported to a JSP project, or at 

least some basic functionality must be available in the OSGi version. If the graphical 

design of the current project is desired then there is a simple and obvious solution for 

small projects like the Business Process Illustrator: let the project with the JavaServer 

Faces run on a server and let it generate the main page (by issuing a client request). 

Looking at the code of the generated page, one can easily see that the page contains 

almost only HTML code. This is just a current static ―image‖ of the dynamic page on the 

server, e.g. the process model list in the Business Process Illustrator shows the first 10 

models when the page is initially opened (illustrated by Listing 24). 

<tbody> 
       <!-- First Entry --> 
       <tr class="hover light-orange"> 
               <td>1</td> 

               <td>Process Model 1</td> 

               <td>1.0</td> 

               <td><img 

                       src="./resources/icons/status/processModel/active.png" 

                       alt="Active" title="Active" /> 
               </td> 
               ... 

       </tr> 
       <!-- Second Entry --> 
       <tr class="hover light-orange"> 
               <td>2</td> 

               <td>Process Model 2</td> 

               <td>1.0</td> 

               <td><img 

                       src="./resources/icons/status/processModel/active.png" 

                       alt="Active" title="Active" /> 
               </td> 
               ... 

       </tr> 
       <!-- 8 more --> 
</tbody> 

Listing 24 – Static "image" of a dynamic page 
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This code can be transformed into a dynamic version. As the listing showed, every en-

try has the same structure. The idea is to take one entry, enclose it with a for loop that 

loops over all process models, and exchange all the static values with the ones re-

trieved dynamically by calling the WfMS. Listing 25 shows a dynamic version of the 

former static one. 

int i = 0; 

for (ProcessModel processModel : processModels) { 

      i++; 

      %> 

        <tbody> 
               <tr class="<%=(i%2==0?"hover white":"hover light-orange")%>"> 
                       <td><%=processModel.getPid()%></td> 
                       <td><%=processModel.getName()%></td> 
                       <td><%=processModel.getVersion()%></td> 
                       <td><img 

                               src="./resources/icons/status/processModel/active.png" 

                               alt="Active" title="Active" /> 
                       </td> 
                       ... 

               </tr> 
       </tbody> 
      <% 

} 

Listing 25 – Dynamic version of the code 

The code iterates over all process models and the id, name, version and all the other 

information of a process model are dynamically placed in the code. This approach is 

applied for the instance list and the settings for the graph as well. 

The generation of the SVG graph was originally done through the SVGServlet. The 

same applies for the new OSGi version of the frontend, but the servlet has to be 

adapted, because the original servlet uses the managed beans that are connected to 

the facelets. Adapting the code is simple. The process id and the instance id of the 

current selected instance are added as parameters to the request and the servlet gene-

rates the SVG code according to these parameters (see Listing 26). 

String pid = req.getParameter("pid"); 

String iid = req.getParameter("iid"); 

 

try { 

       BPIService service = new BPIServiceFactory().createService(); 

        

       if(!(iid == null || iid.isEmpty() || iid.equals("null"))) { 

               ProcessModel pModel = service.getProcessModel(pid); 

               ProcessInstance pInstance = pModel.getProcessInstance(iid); 

               return service.getSVG(pInstance, new Settings()); 

       } 

} catch(Exception e) { 

       e.printStackTrace(); 

} 

Listing 26 – Code changes in the SVGServlet 
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The servlet is included in the JSP page using the object tag as it was already used in 

the facelets. 

Before the service component can call the process models and process instances form 

the workflow management system (using the provided web services), it needs to be 

logged in. The user is usually already logged in to the management console because 

most features require administrative roles to work. The same applies for the developed 

feature in this student thesis. The feature will not be listed in the components menu 

(see chapter 4.2 – Management Console) unless the user is logged in. When the user 

logs in, a cookie is created and this cookie has to be passed on to all the calls that re-

quire administrative rights. The cookie is stored in a class called BPIUtil, so it is availa-

ble to the later described service adapter. Listing 27 shows the initialization of the JSP 

page. Once the cookie is saved, the service can call the process models. 

String iid = request.getParameter("iid"); 

String pid = request.getParameter("pid"); 

 

String cookie = 

       (String)session.getAttribute(ServerConstants.ADMIN_SERVICE_COOKIE); 

 

BPIUtil.setLogged(true); 

BPIUtil.setCookie(cookie); 

 

try { 

       BPIService service = new BPIServiceFactory().createService(); 

       Collection<ProcessModel> processModels = service.getProcessModels(); 

       ... 

} 

Listing 27 – Initialization of the JSP page 

The resulting JSP page is called index.jsp and is automatically opened when the fea-

ture is selected from the component menu. 

6.2 Service Adapter (BPS) 

An adapter for a workflow management system has to implement three different inter-

faces (see chapter 3.2.3 – BPI Service Adapter (ODE)). The three Java classes that 

implement the interfaces are called ProcessModelServiceImpl.java, ProcessInstance-

ServiceImpl.java and EventServiceImpl.java. They all use another Java class called 

BPIUtil.java that handles login and authentication. 

6.2.1 BPIUtil 

WSO2 Carbon provides a web service called AuthenticationAdmin that can be used to 

login into Carbon. The BPIUtil.java class uses this web service to handle cases where 

no login was made before. A login object that holds the username, password and re-

mote address is required by the web service. When a login attempt was successful, the 

web service creates a cookie that is stored in the BPIUtil class and used for later calls 
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to other web services, namely the ProcessManagement service and the ProcessIns-

tance service. The code for the web service call is placed inside the authenticate() me-

thod of the BPIUtil class as shown in Listing 28. 

public static boolean authenticate() throws AuthenticationExceptionException, 

RemoteException { 

       String serviceURL = backendServerURL + 

              AUTHENTICATION_ADMIN_SERVICE; 

       AuthenticationAdminStub stub = 

              new AuthenticationAdminStub(null, serviceURL); 

        
       /* Create a loginRequest */ 

       Login loginRequest = new Login(); 

       loginRequest.setUsername(USERNAME); 

       loginRequest.setPassword(PASSWORD); 

       loginRequest.setRemoteAddress(ADDRESS); 

        

       Options option = stub._getServiceClient().getOptions(); 

       option.setManageSession(true); 

        
       /* Call Web-Service */ 

       LoginResponse loginResponse = stub.login(loginRequest); 

        

       isLogged = loginResponse.get_return(); 

       if (isLogged) { 
               /* Save cookie */ 

               cookie = 

                     (String) stub._getServiceClient().getServiceContext().getProperty( 

                            HTTPConstants.COOKIE_STRING); 

       } 

        

       return isLogged; 

} 

Listing 28 – Authentication method of the BPIUtil class 

The AuthenticationAdminStub in the code listing is created by the maven-antrun-plugin 

(described in chapter 6.3 – UI Component). Once an instance of the stub is created, a 

login request is send to the service. If the login attempt was successful, the cookie is 

saved. Finally the status of the login attempt is returned. 

6.2.2 ProcessModelServiceImpl 

The ProcessModelServiceImpl class has almost nothing in common with the implemen-

tation provided for the Apache ODE. To call the process models from the workflow 

management system, the ProcessModelServiceImpl for the WSO2 BPS uses a stub 

that is also generated by the maven plugin from the provided WSDL files of the man-

agement API – in this case the process_mgt.wsdl. There are two functions of the web 

service that are of interest: getPaginatedProcessList() and getProcessInfo(). The get-

PaginatedProcessList method returns a list of all the processes, each of them contain-

ing limited process information, e.g. the version of a process model. To get all the in-

formation needed, one has to call the getProcessInfo() method that returns additional 
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information not available in the limited information type, e.g. the process definition. List-

ing 29 illustrates the usage of the two functions. 

try { 

       processList = getPaginatedProcessList("name}}* namespace=*", 

              "deployed name", 0); 

} catch (RemoteException e) { 

       e.printStackTrace(); 

} 

 

LimitedProcessInfoType[] processes = processList.getProcessInfo(); 

for (LimitedProcessInfoType process : processes) { 

        

       ProcessInfoType processInfo = null; 

       try{ 

               processInfo = getProcessInfo(process.getPid()); 

                

               ProcessModel processModel = new ProcessModel( 

                        process.getPid(), 

                        processInfo.getDefinitionInfo().getProcessName().toString(), 

                        process.getVersion(), 

                        mapToStatus(process.getStatus().getValue()), 

                        processInfo.getDefinitionInfo().getDefinition(). 

                                getExtraElement().toString()); 

                

               processModels.add(processModel); 

       } catch(Exception e) { 

               e.printStackTrace(); 

       } 

} 

Listing 29 – Calling the process models from the WfMS 

After retrieving the process list from the WfMS, each process model is saved into the 

internal process list of the BPI. This is done by looping over all process models and 

calling additional information for each process model from the WfMS. Before these 

calls can be made, the user must be authenticated, of course. 

6.2.3 ProcessInstanceServiceImpl 

The ProcessInstanceServiceImpl works almost exactly as the ProcessModelServi-

ceImpl, except the WSDL file is called instance_mgt.wsdl and the methods are called 

getPaginatedInstanceList() and getInstanceInfo(). One thing to note here is that the 

getPaginatedInstanceList already provides almost all the information needed. The only 

missing information is the date of last error. This means, that there has to be a web 

service call for every process instance to get this little piece of information. Considering 

the fact that there are usually way more process instances than models in a production 

environment, this could be a noticeable overhead. The BPI would definitely be one of 

the beneficiaries of a modified version of the getPaginatedInstanceList method that 

provides this information in the first place. 
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6.2.4 EventServiceImpl 

While the EventServiceImpl of the Apache ODE had to access the database directly, 

the EventServiceImpl for the WSO2 BPS adapter can use the provided API. The 

EventServiceImpl also uses the InstanceManagement web service that provides a 

function called getInstanceInfoWithEvents(). This method retrieves all activities and 

events of a provided process instance. Once all the activities are retrieved, a loop ite-

rates over the activity list and creates an internal object of the activity in the BPI as illu-

strated by Listing 30. 

InstanceInfoWithEventsType instance = getStub().getInstanceInfoWithEvents( 

       Long.valueOf(processInstance.getIid())); 

ActivityInfoWithEventsType[] activities = instance.getRootScope(). 

       getActivitiesWithEvents().getActivityInfoWithEvents(); 

 

for(ActivityInfoWithEventsType activity : activities) { 

       EventInfo[] eventInfos = activity.getActivityEventsList().getEventInfo(); 

       for(EventInfo info : eventInfos) { 

        

       ActivityStatusType status = null; 

        

       if(info.getName().toLowerCase().contains("activityenabledevent")){ 

               status = ActivityStatusType.ENABLED; 

       } else if(info.getName().toLowerCase().contains("activityexecstartevent")){ 

               status = ActivityStatusType.STARTED; 

       } else if(info.getName().toLowerCase().contains("activityexecendevent")){ 

               status = ActivityStatusType.COMPLETED; 

       } else if(info.getName().toLowerCase().contains("activityfailureevent")){ 

               status = ActivityStatusType.FAILURE; 

       } 

        
       /* 

        * Create an ActivityExecEvent and add it to the list of activities if the event 

        * was an ActivityEvent (status != null) 

        */ 

       if(status != null) { 

               ActivityExecEvent instanceEvent = new ActivityExecEvent( 

                       activity.getActivityInfo().getName(), 

                       mapToStatus(status), 

                       eventInfo.getTimestamp(), 

                       processInstance); 

               activityEvents.add(instanceEvent); 

       } 

       } 

} 

Listing 30 – Calling events from the WfMS 

The listing also shows the status mapping of external WSO2 BPS events to internal 

BPI events. 

Note: the two sets of activity states do not match perfectly, e.g. both BPI and WSO2 

BPS know the activity states ENABLED, STARTED, COMPLETED and FAILURE, but 
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the BPI knows the two additional states RECOVERY and SKIPPED, while the WSO2 

BPS knows the state DEAD, which has no representation in the BPI. 

6.3 UI Component 

The whole project has to be packaged as an OSGi bundle (Carbon component). This is 

achieved through the use of Maven (see chapter 2.4 – Maven) and the provided plu-

gins to package everything as a bundle. 

6.3.1 Project Setup 

The first thing to do is to set up a new Maven project by running the following command 

on the console. 

mvn archetype:generate 

-DgroupId=org.wso2.carbon.bpi 

-DartifactId=org.wso2.carbon.bpi.ui 

-DarchetypeArtifactId=maven-archetype-quickstart 

Listing 31 – Creating a new Maven project 

This will create a new project through the archetype plugin and the generate goal. The 

groupId of the plugin will be org.wso2.carbon.bpi and the artifactId will be 

org.wso2.carbon.bpi.ui. The archetypeArtifactId tells the plugin which project template 

to use, in this case a quick start project that already follows Maven’s suggested folder 

structure. There are two files created automatically, called App.java and AppTest.java. 

They can be deleted, because they are not of any use for our task. 

As development and coding is done in the Eclipse IDE, the project should be converted 

to an Eclipse project by running the command in Listing 32. This will create the Eclipse-

specific project files. 

mvn eclipse:eclipse 

Listing 32 – Converting the project to an Eclipse project. 

Note: Eclipse needs a plugin to be able to run Maven projects from the IDE. One of the 

plug-ins providing Maven integration for Eclipse is M2Eclipse [29]. 

Setting up the project also includes creating a resources folder that contains the web 

contents (i.e. the JSP files, images and style sheets), the WSDLs of the API, the prop-

erties file and a Carbon specific component.xml inside the META-INF folder. The pack-

aging of the project has to be set to bundle. 
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6.3.2 Component Configuration 

The Carbon framework provides a way to configure the behavior of a component inside 

the components menu through the component.xml file (illustrated by Listing 33) 

<component xmlns="http://products.wso2.org/carbon"> 
       <menus> 
               <menu> 
                       <id>bpi_menu</id> 

                       <i18n-key>bpi.menu</i18n-key> 

                       <i18n-bundle> 
                        org.wso2.carbon.bpi.ui.i18n.Resources 

                       </i18n-bundle> 
                       <parent-menu>bpel_menu</parent-menu> 

                       <link>../bpi/index.jsp</link> 

                       <region>region2</region> 

                       <order>50</order> 

                       <style-class>manage</style-class> 

                       <icon>../bpi/resources/icons/bpi.png</icon> 

                       <require-permission> 
                        /permission/protected/manage 

                       </require-permission> 
             </menu> 
       </menus> 
        

       <servlets> 
               <servlet id="SVG Servlet"> 
                       <servlet-name>SVG Servlet</servlet-name> 

                       <url-pattern>/carbon/bpi/svg</url-pattern> 

                       <display-name>SVG Servlet</display-name> 

                       <servlet-class> 

                        net.latuske.bpi.frontend.SVGServlet 

                       </servlet-class> 
               </servlet> 
       </servlets> 

</component> 

Listing 33 – component.xml 

The component will be added to the components menu when a menu tag is provided. A 

menu item needs different settings like an id, and icon or the link that is followed when 

the component was selected. There is also the possibility to specify the parent menu 

(here the bpel_menu). Another important setting is the require-permission setting. This 

specifies that only users with the given permission are allowed to access the compo-

nent. 

The BPI is a web application as is usually packaged as a WAR file with a WEB-INF 

folder that contains a web.xml. The web.xml can be used to specify the used servlets in 

an application. As OSGi bundles are packaged as JAR files, they usually do not know 

the web.xml file. Carbon allows specifying the servlets in the component.xml. Here, the 

only servlet needed is the SVG servlet. 
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6.3.3 Parent 

The parent POM of the project is set to org.wso2.carbon.carbon-parent-3.0.0. This 

bundle is not included in the standard Maven repository so an additional repository has 

to be specified as illustrated by Listing 34. The repository is the one provided by 

WSO2. 

... 

<parent> 
       <groupId>org.wso2.carbon</groupId> 

       <artifactId>carbon-parent</artifactId> 

       <version>3.0.0</version> 

</parent> 
... 

<repositories> 
       <repository> 
               <id>wso2.org</id> 

               <name>Mirror of http://dist.wso2.org/maven2/</name> 

               <url>http://dist.wso2.org/maven2/</url> 

               <layout>default</layout> 

       </repository> 
</repositories> 
... 

Listing 34 – Specifying a parent and a repository 

6.3.4 Dependencies 

The project basically only depends on two bundles. The org.wso2.carbon.ui bundle is 

needed because the bundle is a Carbon UI component. To be able to call the web ser-

vices, the project also depends on the org.apache.axis2.wso2.axis2 bundle. Listing 35 

illustrates the use of dependencies in the project’s POM. 

... 

</dependencies> 
       <dependency> 
               <groupId>org.wso2.carbon</groupId> 

               <artifactId>org.wso2.carbon.ui</artifactId> 

               <version>3.0.0</version> 

       </dependency> 
        

       <dependency> 
               <groupId>org.apache.axis2.wso2</groupId> 

               <artifactId>axis2</artifactId> 

               <version>1.6.0-wso2v1</version> 

       </dependency> 
</dependencies> 
... 

Listing 35 – Dependencies of the UI component 



6 Implementation 64 

6.3.5 Stubs Generation 

Before calling the web services, the stubs that actually produce the SOAP messages 

have to be created. The two plugins that support the creation of stubs are the maven-

antrun-plugin and the build-helper-maven-plugin. The usage of the maven-antrun-

plugin is showed in Listing 36. 

<plugin> 
       <groupId>org.apache.maven.plugins</groupId> 

       <artifactId>maven-antrun-plugin</artifactId> 

       <version>1.1</version> 

       <executions> 
               <execution> 
                       <id>source-code-generation</id> 

                       <phase>process-resources</phase> 

                       <goals> 
                               <goal>run</goal> 

                       </goals> 
                       <configuration> 
                               <tasks> 
                                       <!-- Tasks --> 
                               </tasks> 
                       </configuration> 
               </execution> 
       </executions> 
</plugin> 

Listing 36 – Maven-antrun-plugin 

The maven-antrun-plugin can be used to run basically any type of Ant task. In this ex-

ample, the plugin is used to call the WSDL2Java tool that creates the stubs. 

The execution section specifies the goal that should be executed (here the run goal). 

The phase specifies in which phase of the build lifecycle the goal should be run, in this 

case the process-resources phase. In the task section are three tasks contained – one 

for each of the three used web services (AuthenticationAdmin, ProcessManagement 

and InstanceManagement). Listing 37 shows an example of the generation of the Au-

thenticationAdmin stub. The same applies for the generation of the other web services. 

<java classname="org.apache.axis2.wsdl.WSDL2Java" fork="true"> 
       <arg 

            line="-uri src/main/resources/AuthenticationAdmin.wsdl -u -g 

            -sn AuthenticationAdmin 

            -o target/generated-code -p org.wso2.carbon.bpi.adapter 

            -ns2p 

                   http://authentication.services.core.carbon.wso2.org/xsd 

                          =org.wso2.carbon.bpi.adapter.types, 

                   http://authentication.services.core.carbon.wso2.org 

                          =org.wso2.carbon.bpi.adapter.types" /> 
       <classpath refid="maven.dependency.classpath" /> 
       <classpath refid="maven.compile.classpath" /> 
       <classpath refid="maven.runtime.classpath" /> 
</java> 

Listing 37 – Generating a stub 
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The classname specifies that the WSDL2Java tool should be run and the arg line spe-

cifies the arguments for the tool. The argument line contains references to the source 

WSDL file, the output folder of the task, the package name of the stub and the map-

pings of namespaces to packages. 

The generated files will be available in the target/generated-code folder. The build-

helper-maven-plugin allows one to add more source directories to the POM. In this 

case, the sources of the generated stubs should be added to the POM, as illustrated by 

Listing 38. 

<plugin> 
       <groupId>org.codehaus.mojo</groupId> 

       <artifactId>build-helper-maven-plugin</artifactId> 

       <executions> 
               <execution> 
                       <id>add-source</id> 

                       <phase>generate-sources</phase> 

                       <goals> 
                               <goal>add-source</goal> 

                       </goals> 
                       <configuration> 
                               <sources> 
                                       <source>target/generated-code/src</source> 

                               </sources> 
                       </configuration> 
               </execution> 
       </executions> 
</plugin> 

Listing 38 – Build-helper-maven-plugin 

Once the stubs are generated, the plugins will not have to be called again and can be 

commented. This can only be applied, if the project is run without the mvn clean com-

mand, because this will delete all the generated stubs. 

6.3.6 Bundle Creation 

Another very important plugin is the maven-bundle-plugin, which packages everything 

as an OSGi bundle. The plugin automatically sets all the required headers in the ma-

nifest according to the configuration of the plugin. Hence the developer does not have 

to deal directly with the creation of the manifest. Listing 39 shows the usage of the 

plug-in. The version of the plugin that is used is 1.4.0, although there are newer ver-

sions available already. These versions caused different problems, and developers at 

WSO2 use version 1.4.0 as well. 

The instructions section contains the settings that are used for the settings in the ma-

nifest. Bundle-SymbolicName receives the same value as the project’s artifactId. These 

project properties can be referenced using the $-Symbol, e.g. ${project.artifactId} re-

solves to the artifactId of the project. Export-Package and Import-Package specify the 

packages that are exported and imported by the bundle, e.g. the net.latuske.bpi.* and 
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the org.wso2.carbon.bpi.* package are exported. The DynamicImport-Package header 

takes care that not-specified import-packages are resolved at runtime. Carbon-

component is a Carbon specific header that tells the framework what kind of compo-

nent the bundle is. In this case, the component is a UIBundle. 

<plugin> 
       <groupId>org.apache.felix</groupId> 

       <artifactId>maven-bundle-plugin</artifactId> 

       <version>1.4.0</version> 

       <extensions>true</extensions> 

       <configuration> 
               <instructions> 
                       <Bundle-SymbolicName> 
                               ${project.artifactId} 

                       </Bundle-SymbolicName> 
                       <Export-Package> 
                               net.latuske.bpi.*, 

                               org.wso2.carbon.bpi.* 

                       </Export-Package> 
                       <Import-Package> 
                               !javax.xml.namespace, 

                               javax.xml.namespace;version="0.0.0", 

                               *;resolution:=optional, 

                       </Import-Package> 
                       <DynamicImport-Package>*</DynamicImport-Package> 

                       <Carbon-Component>UIBundle</Carbon-Component> 

               </instructions> 
       </configuration> 
</plugin> 

Listing 39 – Maven-bundle-plugin 

Building this project with Maven would create a file called org.wso2.carbon.bpi.ui-1.0-

SNAPSHOT.jar. This file can be copied to a folder called dropins inside the repository 

folder of the Carbon application and will be available as a component at the next restart 

of the server. It is recommended though to create a feature first and install the compo-

nent through the feature manager, as explained in the next chapter. 

Note: The component developed here is a front-end-only component without a back-

end component. 

6.4 Features 

The next step of the process is the creation of the features so that an installable form of 

the project is available. The plugin which is used for the creation of the features and the 

repository is the carbon-p2-plugin. The projects only consist of a POM and a properties 

file that contains license information. They are based on a sample application [28] 

where only the artifactIds and the groupIds have to be adapted. Listing 40 shows the 

POM of the UI feature. 
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<plugin> 
      <groupId>org.wso2.maven</groupId> 

      <artifactId>carbon-p2-plugin</artifactId> 

      <version>1.1</version> 

      <executions> 
             <execution> 
                    <id>p2-feature-generation</id> 

                    <phase>package</phase> 

                    <goals> 
                           <goal>p2-feature-gen</goal> 

                    </goals> 
                    <configuration> 
                           <id>org.wso2.carbon.bpi.ui</id> 

                           <propertiesFile>../feature.properties</propertiesFile> 

                           <adviceFile> 
                                 <properties> 
                                       <propertyDef> 

                                             org.wso2.carbon.p2.category.type:console 

                                       </propertyDef> 
                                       <propertyDef> 
                                             org.eclipse.equinox.p2.type.group:false 

                                       </propertyDef> 
                                 </properties> 
                           </adviceFile> 
                           <bundles> 
                                 <bundleDef> 

                                org.wso2.carbon.bpi:org.wso2.carbon.bpi.ui 

                                 </bundleDef> 
                           </bundles> 
                           <importFeatures> 
                                 <importFeatureDef> 
                                       org.wso2.carbon.core.ui:3.0.0 

                                 </importFeatureDef> 
                           </importFeatures> 
                    </configuration> 
             </execution> 
      </executions> 
</plugin> 

Listing 40 – UI feature POM 

The carbon-p2-plugin uses the p2-feature-gen goal to generate the feature. The pro-

pertiesFile tag allows one to specify a properties file that contains the license informa-

tion. Bundles holds the UI components that are included in the feature and importFea-

tures specifies the dependencies of the feature. In the properties section, the 

org.wso2.carbon.p2.category.type:console definition tells the plugin that this feature is 

a UI component (console) while a back-end component would have an 

org.wso2.carbon.p2.category.type:server definition. 

Usually, a Carbon component would consist of a front-end and back-end component 

and hence a front-end feature and a back-end feature. These two features are then 

packaged in an aggregated feature. As there is no back-end component in this case, 

there is also no back-end feature. But the aggregated feature still has to be created. It 

will then only contain the front-end feature. 
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The plugin and the goal for the aggregated feature creation are the same as for the UI 

feature. Listing 41 shows the configuration section of the plugin. The includedFeatures 

section allows one to specify the features that should be included – in this case the UI 

feature is the only one. 

<configuration> 
       <id>org.wso2.carbon.bpi</id> 

       <propertiesFile>../feature.properties</propertiesFile> 

       <importFeatures> 
               <importFeatureDef>org.wso2.carbon.core:3.0.0</importFeatureDef> 

       </importFeatures> 
       <includedFeatures> 
               <includedFeatureDef> 
                       org.wso2.carbon.bpi:org.wso2.carbon.bpi.ui.feature 

               </includedFeatureDef> 
       </includedFeatures> 
</configuration> 

Listing 41 – Part of the aggregated feature POM 

6.5 Repository 

The POM of the repository uses the same plugin as the features (carbon-p2-plugin) but 

with the p2-repo-gen goal that creates a repository. Listing 42 shows the execution part 

of the plugin. The important section is the featureArtifactDef section that allows one to 

include the features. 

<execution> 
       <id>2-p2-repo-generation</id> 

       <phase>package</phase> 

       <goals> 
               <goal>p2-repo-gen</goal> 

       </goals> 
       <configuration> 
               <p2AgentLocation>${basedir}/target/p2-agent</p2AgentLocation> 

               <metadataRepository>file:${basedir}/target/p2-repo</metadataRepository> 

               <artifactRepository>file:${basedir}/target/p2-repo</artifactRepository> 

               <publishArtifacts>true</publishArtifacts> 

               <publishArtifactRepository>true</publishArtifactRepository> 

               <featureArtifacts> 
                       <featureArtifactDef> 
                         org.wso2.carbon.bpi:org.wso2.carbon.bpi.ui.feature:1.0.0-SNAPSHOT 

                       </featureArtifactDef> 
               </featureArtifacts> 
       </configuration> 
</execution> 

Listing 42 – Part of the Repository POM 
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7 Discussion and Outlook 

OSGi has without any questions many advantages, but the integration process has 

also shown that developing components for an OSGi environment can be difficult. De-

velopers need a good understanding of the OSGi framework to be able to integrate 

their projects. The Business Process Illustrator is a relatively small project, yet some of 

the parts in the code could not be ported into the OSGi environment, at least not in 

reasonable time and effort. This concerns basically the frontend of the BPI which is 

made out of JavaServer Faces and Facelets. The problems with the JavaServer Faces 

– and the used Apache MyFaces implementation – affect all available OSGi frame-

works, not only the Equinox framework, which is the foundation of the WSO2 Carbon 

framework. The currently available solutions which bypass this problem usually involve 

code changes of the MyFaces implementation. Although first OSGi bundles are re-

leased by the development team, there is still a lack of well-documented examples. 

The missing support for JavaServer Faces does not affect the main feature of the BPI, 

which is the possibility to apply process views to monitored process instances and 

models. The graphs are generated by servlets and work without problems in an OSGi 

environment. The JavaServer Faces were replaced by JavaServer Pages without los-

ing much functionality of the BPI. 

The connection to the Business Process Server was not very difficult, as the manage-

ment API of the Business Process Server supports all the functionality, required by the 

BPI. The first assumption that the events will have to be retrieved directly from the un-

derlying database of the workflow management system was not confirmed. 

Connecting the Business Process Server to another workflow management system has 

also revealed some minor bugs in the BPI code. In addition, the code was partly built 

on assumptions about other workflow management systems that did not hold, e.g. the 

BPI expected the process definition (the BPEL file) to be available via a URL – as it is 

the case with the Apache ODE. The WSO2 BPS – and probably many other WfMS – 

does not provide the BPEL file via a URL. The code has been adapted to support 

WfMS that do not have this feature. Still, a workflow management system that does not 

provide a URL must provide the process definition in some other way, e.g. providing a 

method which returns the content of the BPEL file as a string. The BPI supports now 

both ways. 

An improvement of the current solution could be the separation of the component into a 

front-end and back-end component. WSO2 provides the framework for this separation 

and the BPI has a modular architecture that allows a separation of frontend and service 

as well. Providing the BPIService as a back-end component and hence as a web ser-

vice would definitely be a valuable improvement. 

Figure 24 shows a screenshot of the final application inside the WSO2 Carbon frame-

work. 
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Figure 24 – Screenshot of the application inside the WSO2 Carbon framework 

At the time of printing of this document, there is still a minor problem with the layout 

that will be fixed in the final release. 
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