
Studienarbeit Nr. 2312

Visualisierung von Kartenobjekten
mit GeoTools

Andreas Paul

Studiengang:

Prüfer:

begonnen am:

beendet am:

CR-Klassifikation:

Betreuer:

Informatik

Prof. Dr. Kurt Rothermel

Pavel Skvorzov

01.12.2010

02.06.2011

C.2.4, H.3.5

Institut für Verteilte und Parallele Systeme

Universität Stuttgart
Universitätsstraße 38
D - 70569 Stuttgart

Abteilung Verteilte Systeme

Zusammenfassung

�Location-based-Services� (LBS) sind Dienste, die Positionsinformationen mobiler Ge-

räte verarbeiten. Da Benutzer ihre Position preisgeben müssen, um einen Service nut-

zen zu können, werden verschiedene Algorithmen entwickelt, welche den Aufenthaltsort

verschleiern um die Privatsphäre zu schützen. Gleichzeitig soll aber auch eine für den

Service ausreichende Genauigkeit der Position geboten werden. Da jeder Benutzer für un-

terschiedliche Orte andere Aufenthaltswahrscheinlichkeiten hat, spielt auch die konkrete

Umgebung eine Rolle, welche für die Verschleierung beachtet werden muss. In dieser Ar-

beit soll eine Anwendung entwickelt werden, welche Wahrscheinlichkeitsabschätzungen

für Objekte (Features) einer Karte gra�sch darstellt. Dazu wird die GeoTools-Bibliothek

genauer betrachtet und deren Möglichkeiten analysiert. Basierend auf GeoTools wird eine

Anwendung entwickelt, welche als Eingabe entsprechend der Verschleierungspräferenzen

die Aufenthaltswahrscheinlichkeiten des Benutzers bekommt und diese gra�sch darstellt.

Inhaltsverzeichnis

Abbildungsverzeichnis 4

Tabellenverzeichnis 5

1 Einführung 7

1.1 Motivation . 7

1.2 Aufgabestellung . 7

1.3 Szenarien . 8

2 Grundlagen und verwandte Arbeiten 9

2.1 Kartenanalyse für Positionsverschleierung 9

2.2 Dateiformate . 15

2.2.1 Geography Markup Language (GML) 15

2.2.2 OpenStreetmap (OSM) . 15

2.2.3 Shape�le . 16

2.2.4 Beispiele . 17

2.3 Analyse . 19

3 Konzepte 21

3.1 Systemmodell . 21

3.2 Anwendung für das Position Sharing Verfahren 22

3.3 Überlappende Features . 24

3.4 Darstellung . 25

4 Implementierung 26

4.1 Verwendete GeoTools Klassen . 26

4.2 Klassendokumentation . 28

3

5 Evaluation 35

5.1 Anwendungsbeschreibung . 35

5.1.1 Shape�le/Layer ö�nen . 35

5.1.2 Layer aktivieren/deaktivieren . 36

5.1.3 Filter . 36

5.1.4 Import von Attributen . 38

5.2 Darstellungsergebnisse . 39

6 Zusammenfassung 45

Literaturverzeichnis 46

4

Abbildungsverzeichnis

1.1 Beispiel für gra�sche Visualisierung von Features. 8

2.1 Architektur aus [7] . 9

2.2 Ergebnisse aus [7] . 10

2.3 Beispiel einer sensitiven Region aus [5]. H1 und H2 stellen Krankenhäuser

und L einen See dar. 11

2.4 Beispiel für eine verschleierte Karte aus [5] 12

2.5 Verschleierte Regionen = lila, sensitive Features = rot [5] 13

3.1 Featurebasierte Karte, eingefärbt anhand von Wahrscheinlichkeiten . . . 23

3.2 Zwei sich überlappende Features . 24

4.1 UML-Klassendiagramm der wichtigsten Klassen 29

5.1 Styledialog . 35

5.2 Beispiel für die Darstellung von Features mit Filter 36

5.3 Darstellung überlappender Features . 40

5.4 normale Kartendarstellung . 41

5.5 True/False-Darstellung für Autos . 42

5.6 True/False-Darstellung für Fuÿgänger . 43

5.7 Wahrscheinlichkeitsverteilung unterschiedlicher Personen 44

5

Tabellenverzeichnis

2.1 Geometriearten in Shape�les . 17

2.2 Beispiele für Attribute in Kartendaten des U.S. Census Bureau 18

2.3 Beispiele für Attribute in Kartenmaterial von geofabrik.de 19

2.4 Vergleich der Datenformate . 20

3.1 Mögliche Objekttypen und Anwendung 22

5.1 Mögliche Filter . 36

6

1 Einführung

1.1 Motivation

Mit der fortschreitenden Verbreitung von mobilen Endgeräten mit GPS-Empfänger, wie

z.B. Smartphones, gewinnen auch Dienste wie z.B. Restaurant- oder Friend�nder, welche

die Positionsinformationen der Clients nutzen, eine gröÿere Bedeutung. Dabei möchte

aber nicht jeder Benutzer, dass jeder Service dessen genaue Position erfährt, es muss also

irgendeine Art von Verschleierung durchgeführt werden. Im Gegenzug darf aber durch

die Positionsverschleierung die Dienstqualtität nicht zu stark eingeschränkt werden, da

der Dienst sonst seine Aufgabe nicht mehr erfüllen kann. Eine einfache Randomisierung

der Positionsinformationen unabhängig von der Karte ist jedoch nicht ausreichend, da

jeder Benutzer des mobilen Gerätes sich in verschiedenen Gebieten mit unterschiedlicher

Wahrscheinlichkeit aufhält. Hierfür gibt es mehrere Forschungsansätze für Algorithmen,

welche eine Verschleierung von Positionsinformationen durchführen.

in dieser Arbeit soll eine Anwendung erstellt werden, welche Aufenthaltswahrschein-

lichkeiten eines Benutzers in einer Karte darstellt, um Verschleierungsalgorithmen zu

visualisieren und überprüfen.

1.2 Aufgabestellung

Die Hauptaufgabe dieser Arbeit ist es Geodaten zu lesen und abhängig von ihren ge-

gebenen Wahrscheinlichkeitsabschätzungen zu visualisieren. Die Wahrscheinlichkeitsab-

schätzungen für verschiedene Kartenobjekte und Attribute werden als vorde�nierte Ein-

gabewerte angenommen. Dies beinhaltet die folgenden Arbeitsschritte:

• Untersuchung der GeoTools Bibliothek

• gra�sche Visualisierung einer Karte im Shape�le-Format

7

• Erstellen eines Modells für die Repräsentation von feature-abhängigen Wahrschein-

lichkeiten

• gra�sche Visualisierung der feature-abhängigen Wahrscheinlichkeitsverteilung

Abbildung 1.1: Beispiel für gra�sche Visualisierung von Features.

1.3 Szenarien

Die in dieser Arbeit erstellte Anwendung soll die Möglichkeit bieten, Karten bzw. deren

Objekte anhand ihrer Eigenschaften unterschiedlich einzufärben. Dies kann entweder ei-

ne einfache Unterscheidung von Objektarten wie Gebäuden oder Straÿen sein, oder auch

anhand von komplexen Eigenschaften wie Aufenthaltswahrscheinlichkeiten von Personen

in verschiedenen Gebäuden oder Plätzen. mit diesem Werkzeug ist z.B. eine gra�sche

Darstellung von kartenbasierten Positionsverschleierungsalogrithmen möglich. Insbeson-

dere sollen sich Aufenthaltswahrscheinlichkeiten für verschiedene Benutzertypen auf un-

terschiedlichen Karten visualisieren lassen.

8

2 Grundlagen und verwandte

Arbeiten

2.1 Kartenanalyse für Positionsverschleierung

Protecting Privacy in Continuous Location-Tracking Applications

Die Autoren von [7] vergleichen drei einfache Algorithmen, mit denen die Anzahl sen-

sitiver Positionsupdates, aus denen ein potenzieller Angreifer auf die Position schlieÿen

kann, verringert werden kann. Die Autoren gehen von einer Architektur, wie in Abbil-

dung 2.1 dargestellt, aus. Der Benutzer bzw. dessen mobiles Endgerät (Data Subject)

sendet regelmäÿig seine aktuelle Position an einen Locationbroker. Dieser Locationbro-

ker wird z.B. vom Netzbetreiber zur Verfügung gestellt zu dem der Benutzer aufgrund

längerer Geschäftsbeziehungen gröÿeres Vertrauen hat, als zu einem beliebigen anderen

Dienst.

Abbildung 2.1: Architektur aus [7]

Der Locationbroker verwaltet die

Datenschutzeinstellungen des Be-

nutzers und leitet über den Noti-

�cation Manager nur die Updates

an den Service Provider weiter,

die den Vorgaben des Benutzers

entsprechen. Die Datenschutzein-

stellungen eines Nutzers bestehen

aus Angaben, wie stark er seine

Position für verschiedene Gebiete

verbergen will. Be�ndet sich der

Benutzer in einem Gebiet, das er

als unemp�ndlich einstuft leitet

9

der Noti�cation Manager alle Nachrichten an den Serviceprovider weiter um die Positi-

onsgenaugkeit und damit die Servicequalität zu erhöhen. Interessant sind die sensitiven

(emp�ndlichen) Gebiete. Durch verschiedene Algorithmen soll durch Unterdrückung von

Positionsupdates die Unsicherheit eines �Angreifers� bezüglich der Position möglichst

groÿ gehalten werden.

• Der Base-Algorithmus ist die einfachste Version. Hier werden nur Locationupda-

tes an den Serviceprovider weitergeleitet, die auÿerhalb von sensitiven Gebieten

erfolgen.

• Beim Bounded-rate Algorithmus wird zusätzlich darauf geachtet, dass die Upda-

tefrequenz einen vorde�nierten Schwellenwert nicht überschreitet. Wird der Schwellen-

wert niedrig gewählt, so ist es durch die gröÿere zurückgelegte Strecke zwischen

zwei Updates z.B. unwahrscheinlicher, dass ein Update direkt an einer Grenze zu

einem sensitiven Gebiet passiert.

• Zuletzt gibt der k-area-Algorithmus Updates nur weiter, wenn nicht ersichtlich

ist, welches der letzten k sensitiven Gebiete besucht wurde.

Abbildung 2.2: Ergebnisse aus [7]

Zum Testen verwendeten die Autoren

ein Stadtgebiet, in dem die Gebäude

sensitive Gebiete und die Straÿen un-

sensitive Gebiete sind. Es wurde ein ein-

facher automatisierter Angreifer simu-

liert, der bei fehlenden Updates die Po-

sition zwischen zwei Updates linear in-

terpoliert und den Benutzer in dem sen-

sitiven Gebiet vermutet, das am nächs-

ten zur Mitte der Interpolationslinie

ist. Der Angreifer hat sonst keine In-

formationen über die überwachten Ob-

jekte. In Gra�k 2.2 werden die vom

Angreifer erkannten Gebiete den veröf-

fentlichten Locationupdates in unsensi-

tiven Gebieten gegenübergestellt. Beim

10

Base-Algorithmus kann der Angreifer nahezu jedes sensitive Gebiet, das ein User betritt,

erkennen. Bei der Bounded-Rate Version wird mit geringerer Updatefrequenz auch die

Tre�errate geringer, allerdings auch die Genauigkeit in nichtsensitiven Gebieten. Das

beste Ergebnis liefert die k-area Variante. Hier werden in nichtsensitiven über 90% aller

Updates verö�entlicht, der Angreifer kann aber weniger als 40% der sensitiven Gebiete

erkennen.

Dieser Ansatz versucht die Position eher zeitlich als räumlich zu verschleiern. Dies hat

den Nachteil, dass ein Angreifer merkt, wenn sich der Benutzer gerade in einem sensi-

tiven Gebiet be�ndet, da in diesem Fall die Positionsupdates ausbleiben bzw. weniger

werden.

Protecting location privacy against spatial inferences: the PROBE approach

In [5] wird ein Ansatz vorgestellt, um eine Position auf Basis des geometrischen Kontexts

und der Eigenschaften der Privatsphäre des Users zu verschleiern.

Abbildung 2.3: Beispiel einer

sensitiven Region aus [5]. H1 und

H2 stellen Krankenhäuser und L

einen See dar.

Der Benutzer de�niert ein �privacy pro�le�, das angibt wie

sensitiv bestimmte Features(Kartenobjekte) für ihn sind.

Dieses besteht aus einem Schwellenwert v = T (ft) für je-

des Feature ft.

Ein wichtiger Teil der Arbeit besteht daran eine Sensiti-

vitätsmetrik zu de�nieren. Die Sensitivität eines Gebietes

de�niert, wie emp�ndlich dieses Gebiet für die Privatsphäre

eines Benutzers ist. Die Sensitivität P (r) =
∫
r
pdf sagt über

die �probability density function� (pdf) (also eine Funktion

die für einen Punkt die Aufenthaltswahrscheinlichkeit an-

gibt) aus, wie wahrscheinlich der Benutzer sich im Gebiet r

aufhält. Die �probability density function� ist für jeden Be-

nutzer einzigartig und de�niert sich über persönliche Merk-

male wie Beruf oder Hobbies. So hat beispielsweise ein Arzt für ein Krankenhaus eine

höhere Aufenthaltswahrscheinlichkeit als ein Büroangestellter. Formel 2.1 de�niert die

Sensitivität einer Region r bezüglich eines Featuretyps ft. Cov(ft) ist die Fläche, die

von Featuretyp ft abgedeckt wird. Die Sensitivität einer Region r bezüglich eines Fea-

turetyps ft de�niert sich durch die Aufenthaltswahrscheinlichkeit des Benutzers in der

Region, die durch diesen Featuretyp innerhalb der Region r abgedeckt wird bezogen auf

11

Abbildung 2.4: Beispiel für eine verschleierte Karte aus [5]

die allgemeine Aufenthaltswahrscheinlichkeit der Region.

Die Sensitivität einer Region r abhängig vom Featuretyp ft ist de�niert durch:

Psens(ft, r) =


∫
Cov(ft)∩r pdf∫

r pdf
wenn

∫
r
pdf 6= 0

0 sonst
(2.1)

Das Verfahren ist ein zweistu�ger Ansatz mit einer O�ine- und einer Onlinephase. In der

O�inephase wird im Voraus eine verschleierte Karte anhand der Privatsphäre berech-

net, in der sich überlappungsfreie, verschleierte Orte (obfuscated Locations) be�nden.

Diese werden in der Onlinephase nur noch aus der Karte abgefragt und an den Location

Based Service (LBS) gesendet.

Die zu berechnende Karte wird mit einem Gitter aufgeteilt und die einzelnen Zellen wer-

den nach dem Muster einer Hilbertkurve durchgegangen. Für jede Zelle (deckt Region r

ab), deren Sensitivität P (ft, r) für ein Feature ft den Schwellenwert T (ft) überschrei-

tet, wird die verschleierte Location dieser Zellen Schritt für Schritt auf die Nachbarzellen

ausgeweitet (entlang der Hilbertkurve), bis der Schwellenwert eingehalten wird.

12

Abbildung 2.5: Verschleierte Regionen =

lila, sensitive Features = rot [5]

So entstehen gröÿere Gebiete (obfuscated Lo-

cations), die durch Intervalle auf der Hil-

bertkurve de�niert sind. Die Position eines

Users kann einfach auf eine Zelle der Kar-

te gemappt werden. Die so erstellten Gebiete

(in Abbildung 2.4 oder 2.5 blau dargestellt)

dienen als Lookup (e�zient implementierbar

als Quadtree) für die Zellen. Wird eine Zelle

von einer verschleierten Position überdeckt, so

wird als Position das Gebiet durch ein entsprechendes Intervall der Hilbertkurve preis-

gegeben. Ansonsten wird die einzelne Zelle (kleinstmögliches Intervall) verö�entlicht.

In diesem Ansatz wird, im Gegensatz zum vorherigen, nicht die Anzahl der Positionsup-

dates über die Zeit beschränkt, sondern die Gröÿe des möglichen Aufenthaltsgebietes in

sensitiven Gebieten wird verändert. In diesem Fall hat das den Nachteil, dass komplexe

Vorberechnungen nötig sind und aufgrund des Overlays mit einer Hilbertkurve ein be-

grenztes Gebiet erforderlich ist. Zudem muss der Nutzer einem Locationserver vollkom-

men vertrauen und kann nicht für verschiedene Dienste unterschiedliche Genauigkeiten

festlegen.

Landscape-aware location-privacy protection in location-based services

Die Autoren von [4] schlagen einen sehr allgemeingültigen Ansatz vor und behandeln da-

bei sehr ausführlich und formal die Möglichkeiten, wie und unter welchen Bedingungen

ein Angri� auf die verschleierte Position erfolgreich ist. Die Architektur, die hier zugrun-

de gelegt wird, sieht ähnlich aus wie beim in [7] beschriebenen Ansatz. Es gibt einen

Benutzer A mit einem mobilen Gerät und einen Agenten B, der Positionsangaben des

Benutzers verschleiert und an eine dritte Partei C wie z.B. einen LBS weitergibt. Dabei

ist der Agent gegenüber dem LBS fair, d.h. er versorgt den LBS nicht mit falschen, son-

dern nur mit ungenauen Positionsinformationen. Diese sind entweder Kreise mit Radius

R oder Quadrate mit Kantenlänge 2R je nach Koordinatensystem und Metrik. Für neu-

trale Landschaften (der Benutzer ist überall mit gleicher Wahrscheinlichkeit anzutre�en)

reicht es die hinteren Stellen der echten Koordinaten abzuschneiden. Der Benutzter gibt

gegenüber dem Agenten eine Wahrscheinlichkeit pSLA/Aan, mit welcher er durch einen

zufälligen Angri� unentdeckt bleiben will. Davon hängt die zu wählende Gröÿe R der

13

verschleierten Positionsinformation, die der Agent wählen muss, ab.

Es gilt folgende Gleichung zu erfüllen:

Pr(A and C within r) =

∫
S

dt Pr(A at t|B)×
∫

Ω(t,r)

dz Pr(C at z|A atz) ≤ pSLA/A

(2.2)

Wobei Pr(A and C within r) die Wahrscheinlichkeit ist, dass C die Position von A mit

einem Abstand kleiner r tri�t. S ist der gesamte Koordinatenraum und Ω(t,r) ist eine

Umgebung um Punkt t mir Radius r. t ist die Position von A und z die Postion an der

C versucht A zu �nden.

In dieser Arbeit präsentieren die Autoren viele Grundlagen für die Positionsverschleie-

rung anhand probabilistischer Konzepte. Sie berücksichtigen unter anderem Messunge-

nauigkeiten, verschiedene Koordinatensysteme sowie neutrale und nicht-neutrale Umge-

bungen.

14

2.2 Dateiformate

Im Bereich der Geoanwendungen haben sich verschiedene Datenformate etabliert. Hier

sollen drei Formate näher betrachtet werden.

2.2.1 Geography Markup Language (GML)

GML ist ein auf XML aufbauendes Format, das vom Open Geospatial Consortium de�-

niert wird, um Geodaten zu beschreiben [1]. Es soll ein o�enes, herstellerunabhängiges

Format zur Speicherung und Übertragung von Geodaten sein. Es unterstützt Pro�le

mit eingeschränkter Funktionalität, damit Anwendungen nicht zwingend den gesamten

Umfang unterstützen müssen. Es unterstützt verschiedene Primitive, wie z.B. Features,

Geometrien, Topologien, Koordinaten-Referenzsystem oder Styling Rules. Es unterschei-

det zwischen Features und geometrischen Objekten. Ein Feature ist ein physikalisches

Objekt wie z.B. eine Straÿe, ein Gebäude oder auch ein Ort. Es kann, muss aber nicht,

durch ein oder mehrere geometrische Objekte beschrieben werden. Die wichtigsten geo-

metrischen Objekte sind Punkte, LineStrings und Polygone. Es gibt aber auch weitere

Objekte wie z.B. Curves. Punkte sind durch ein Tupel de�niert. Ein LineString ist eine

Kurve, die durch mehrere Punkte de�niert ist, zwischen denen die Kurve linear inter-

poliert wird. Polygone sind de�niert durch äuÿere und innere Ringe. Ein Ring kann wie

ein LineString de�niert werden, dessen Anfang und Ende gleich sind und somit eine ge-

schlossene Kette bilden. Äuÿere Ringe de�nieren die äuÿere Begrenzung eines Polygons,

innere Ringe de�nieren �Löcher� in der Fläche eines Polygons.

GML bietet auch die De�nition von Application Schemata. Schemata dienen zur De-

�nition von Objekttypen. So können für verschiedene Anwendungen unterschiedliche

Objekttypen de�niert werden.

2.2.2 OpenStreetmap (OSM)

OpenStreetMap ist ein Projekt, welches, für jeden frei nutzbare, Geodaten sammelt und

ähnlich wie Wikipedia, von der Community lebt. Für OpenStreetMap gibt es nicht nur

ein Datenformat, sondern unterschiedliche Formate und Datenbanken für die Speiche-

rung und Abfrage der Daten über eine API. Je nach Anwendungsgebiet gibt es verschie-

dene auf XML basierende Formate und einige Binärformate. Jedoch sind die geome-

trischen Objekte in allen Formaten die gleichen. Mögliche Objekte sind Punkte, Ways,

15

Closed Ways und Relationen. Ways entsprechen etwa den LineStrings bei GML und Clo-

sed Ways den Polygonen bei GML. Relationen sind Gruppierungen von andere Objekten.

Dies kann eine Einfache Zusammenfassung von z.B. Polygonen sein um beispielsweise

geographisch nicht zusammenhängende Flächen zu einer logischen Fläche zusammenzu-

fügen. Jedes Objekt kann mit Tags versehen werden. Ein Tag ist ein key/value-Paar.

Prinzipiell sind beliebige Schlüssel und Werte bei Tags möglich, jedoch sind von der

Community für die meisten möglichen Kartenobjekte sinnvolle Schlüssel de�niert.

2.2.3 Shape�le

Shape�les [2] ist ein von ESRI Inc. (Environmental Systems Research Institute) entwi-

ckeltes Dateiformat für Geodaten. Es hat sich zu einem Quasi-Standard entwickelt und

wird von einer Vielzahl an Programmen unterstützt. Entsprechend �nden sich viele frei

verfügbare Kartendaten im Shape�le Format. Gegenüber GML sind beim Shape�lefor-

mat die Daten über mehrere Dateien verteilt. Shape�les ermöglichen es geometrische

Objekte (Features) mit dazugehörigen Attributen in Form von Key/Value-Paaren zu

speichern.

Die Dateien einer Shape�lesammlung sind:

• .shp - enthält die Geometriedaten

• .dbf - enthält Attribute zu den Geometriedaten in Form von key/value-Paaren

• .shx - verknüpft Attribute aus der .dbf-Datei mit den Geometriedaten aus der

.shp-Datei.

• .shp.xml (optional) - Metadaten im XML-Format

• .prj (optional) - spezi�ziert das Koordinatensystem

In Shape�les sind 3 grundlegende Geometriearten möglich, die auf einer Ebene liegen.

Durch weitere Eigenschaften lassen sich diese 3 Grundtypen um je 3 weitere Typen er-

weitern. Eine Erweiterung sind Multimengen. Z.B. kann ein Multipointobjekt mehrere

Punkte enthalten, wird aber nur als ein Objekt behandelt. Eine weitere Möglichkeit

sind Measured Shapetypes. Hier wird zusätzlich zu jedem Punkt zusätzlich zu den Ko-

ordinaten X und Y ein Wert M zugeordnet. Dieser kann für irgendwelche Werte wie

beispielsweise eine Höhenangabe von Gebäuden genutzt werden. Eine zusätzliche Er-

weiterung ergibt sich durch eine zusätzliche Z-Koordinate, also De�nition der Objekte

16

Geometrieart Beschreibung

Point de�niert einen Punkt durch eine X- und eine Y-Koordinate

PolyLine de�niert eine Linie mit mehreren Abschnitten, die durch jeweils zwei

Punkte gegeben sind. zusätzlich wird eine Bounding-Box (minX,minY,

maxX, maxY) angegeben innerhalb welcher sich die Polyline be�ndet.

Polygon de�niert ein Polygon. Basiert auf den gleichen Angaben wie eine Po-

lyLine, aber bildet mehrere geschlossene sich nicht überschneidende

Ketten (Ringe). Die Reihenfolge der Punkte gegen den Uhrzeigersinn

de�niert hierbei Löcher (Inner Ring) innerhlab eines anderen Rings

(Outer Ring).

Multi-... de�niert Multimengen einer der 3 Grundgeometrien. Es sind keine

gemischten Multimengen möglich.

...Z Wie vorhergehende Geometrien mit zusätzlicher Z-Koordinate

...M Measured Shapetypes. Wie vorhergehende Typen mit einem zusätzli-

chen Wert.

Multipatch Bildet eine Fläche aus mehreren Teil�ächen. Teil�ächen bestehen aus

Triangle Strips, Triangle Fans oder Ringen

Tabelle 2.1: Geometriearten in Shape�les

im Raum statt auf einer Ebene. Eine weitere Geometrieart ist der Multipatch, der eine

Fläche aus mehreren Teil�ächen bildet. Im Unterschied zu Polygonen können die Teil-

�ächen hier auch durch �Triangle Strips� oder �Triangle Fans� beschrieben werden. Dies

sind Flächen die durch nebeneinander oder im Kreis liegende Dreiecke gebildet werden.

Shape�les haben in ihrer aktuellen De�nition einen Nachteil, dass sie nur eine Art

von Geometriedaten enthalten können. So besteht eine Karte in der mehrere verschie-

dene Geometriearten vorkommen aus mehreren Shape�les. Zusätzlich werden die Daten

gleicher Geometriearten nach semantischen Eigenschaften getrennt in verschiedene Sha-

pe�les gespeichert.

2.2.4 Beispiele

Es gibt eine Vielzahl von Kartenmaterial in Form von Shape�les. Hier sollen einige

Beispiele gezeigt werden.

17

Datensatz Inhalt Shapetyp Attribute Attributwerte Beispiele

All Edges
Alle als Linien

darstellbare

Objekte

Polyline
FULLNAMEGreen Lane

ROADFLG 1/0 de�niert jeweils ob

eine Linie eine Straÿe,

Bahnstrecke, Fluss/

Kanal oder Pipeline ist

RAILFLG

HYDROFLG

OLFLG

Urbanized Areas besiedelte Gebiete MultipolygonNAME00 Orlando,FL

Military Instal-

lations

Militärgelände MultipolygonFULLNAMENaval Air Station Jack-

sonville

American

Indian/ Alaska

Native/ Native

Hawaiian Area

Reservate für

Ureinwohner

MultipolygonNAME Miccosukee

NAMELSADMiccosukee Reservation

Tabelle 2.2: Beispiele für Attribute in Kartendaten des U.S. Census Bureau

U.S. Census Bureau

Die U.S. Census Behörde bietet diverse Kartendaten der USA an. die mit statischtischen

Daten verknüpft werden können. Die Daten sind gebündelt eines Staates oder Countys

verfügbar.

Es sind unter anderem die in Tabelle 2.2 Datensätze verfügbar. Ein Datensatz wird von

einer Shape�le repräsentiert. Die Datensätze auf statische Zwecke ausgerichtet. So sind

Straÿen als Linien modelliert und enthalten Attribute wie beispielsweise die Range der

Hausnummern die sich Links und Rechts an einem Abschnitt be�nden. An �ächigen

Modellierungen gibt es hauptsächlich Verwaltungsbezirke oder Stadtgebiete, aber keine

genaueren Modellierungen von Häusern oder genauere Typisierung wie z.B. Kranken-

häuser.

geofabrik.de

geofabrik.de bietet Daten des OSM-Projektes in Form von Shape�les an. Es gibt Dateien
von verschiedenen Regionen. Gesamte Kontinente, Länder oder nur einzelne Bundeslän-
der in einer Dateisammlung. Die Qualität des Kartenmaterials ist stark abhängig von
der Region, da sie von den freiwilligen Leistungen der Openstreemapsautoren abhängig
sind. So sind Ballungszentren in Deutschland recht gut abgebildet, ländliche Gebiete und

18

andere Länder mit kleinerer Community sind nur sehr grob oder garnicht vorhanden. Die
einzelnen Gebiete sind in verschiedene Pakete (.zip-Datei) aufgeteilt. Ein Paket enthält
die in Tabelle 2.3 dargestellten Datensätze, die jeweils in einer Shape�le enthalten sind.

Datensatz Inhalt Shapetyp Attribut Attributwerte Beispiele

buildings Gebäude Multipolygon
name Hauptbahnhof

type station, hospital

natural natürliche Gebiete Multipolygon
name Schlosspark

type park, water

places Orte Point
name Stuttgart

type suburb, village, ...

points Interressante Orte Point
name Autobahnkreuz Ulm/

Elchingen

type station, motorway-

junction, bus_stop,

restaurant

Railways Eisenbahnstrecken Polyline name U-Bahnline U1

roads Straÿen Polyline

name Tübinger Straÿe

type secondary, ..

oneway 1/0

bridge 1/0

maxspeed 50

waterways Flüsse, Wasserstraÿen Polyline
name Rhein, Panamakanal

type river, stream, canal

Tabelle 2.3: Beispiele für Attribute in Kartenmaterial von geofabrik.de

2.3 Analyse

Für die Speicherung von Geodaten bieten die XML-basierten Formate (OSM und GML)

etwas mehr Möglichkeiten als Shape�les. Da sie auf XML basieren, sind sie auch von

Menschen lesbar, benötigen aber mehr Speicherplatz als das binäre Shape�leformat. Die

grundlegenden Featuretypen wie Punkte, Linien und Polygone sowie die Gruppierung

gleicher Basistypen beherrschen alle drei Formate. Das OSM-Format bietet zusätzlich

19

SHP OSM GML

Binärformat XML-/Binärformat XML-Format

Objekttypen

Point Node Point

PolyLine Way LineString

Polygon Closed Way Polygon

Attribute Tags Properties

Tabelle 2.4: Vergleich der Datenformate

z.B. Relationen, mit denen Features unterschiedlicher Art zu einem neuen Feature grup-

piert werden können. Das GML-Format kann zusätzlich mit komplexeren Typen wie

Curves aufwarten, die komplexere Linientypen als die lineare Interpolation zwischen

zwei Punkten bieten.

Die GeoTools Bibliothek bietet Funktionen zum Auslesen und Speichern von GML-

Dateien und Shape�les.

Bei den frei verfügbaren Datensätzen im Shape�leformat stechen die Daten des U.S.

Census Bureau und von OpenStreetMap hervor, wobei hier die OSM-Daten eine gröÿere

Bandbreite an unterschiedlichen Featuretypen bieten. Während sich die Daten des U.S.

Census Bureau hauptsächlich auf gröÿere Flächen, wie Regierungsbezirke, sowie Straÿen

von in Form von Linien beschränkt, enthalten die OSM-Daten auch Flächen in kleinerem

Maÿstab, wie z.B. Gebäude oder Parks. Straÿen sind hier jedoch auch hier nur als Linien

modelliert. Für die Darstellung von featurebezogenen Aufenthaltswahrscheinlichkeiten

bieten die OSM-Daten recht gute Möglichkeiten. Jedoch sind hier auf der Negativseite

die nicht immer �ächendeckend vorhandenen Daten aufzuführen.

20

3 Konzepte

3.1 Systemmodell

Zur Wiederholung wird nochmal auf den Begri� des Features eingegangen, wie er hier

verwendet wird, um ggf. unterschiedliche Bedeutungen aus den vorgestellten Arbeiten

und Dateiformaten auszuschlieÿen. Ein Feature ist ein geometrisches Objekt einer Karte,

das die Objekte, welche die Karte darstellt, geometrisch modelliert. Jedes Feature hat

Attribute, um die Eigenschaften des Objektes zu beschreiben. Im Allgemeinen kann ein

Attribut jedes beliebige Objekt sein. In Verbindung mit Shape�les und der hier darge-

stellten Anwendung, reichen für Attribute auch nicht komplexe Attribute (Integer, Float

und String).

Als Basis haben wir einen Benutzer eines Location-Based-Service, der sich im Bereich

einer featurebasierten Karte bewegt. Zu dieser Karte gibt es verschiedene Informationen

über den Benutzungsgrad. Dies können z.B. allgemeine statistische Informationen sein,

wie z.B. Autos pro Stunde auf einer Straÿe. Weitere mögliche Informationen können auf

einen Benutzer bezogene Eigenschaften sein, wie sein Bewegungspro�l oder Präferen-

zen für die Verschleierung seiner Position. Alle diese Eigenschaften werden pro Feature

de�niert. In einem ersten Schritt sollen diese Informationen für einen Benutzer in einer

einfachen Art dargestellt werden können. Die Karte soll eine einfache �True/False�-Karte

sein, die angibt, welche Gebiete für den Benutzer sensitiv (true) sind und welche nicht

(false). Sensitive Gebiete können im einfachen Fall solche sein, in denen der Benutzer

prinzipiell lokalisiert werden kann. Für einen Fuÿgänger wären dies z.B. Gebäude oder

Gehwege. Beispiele für Gebiete, in denen er nicht lokalisiert werden kann, sind Autobah-

nen oder Seen.

Allgemein ist ein Gebiet für einen Benutzer sensitiv, wenn er nicht möchte, dass Dritte

erfahren, wenn er sich in diesem Gebiet aufhält. Gebiete können auch auch unterschied-

lich sensitiv sein, was meistens von der Aufenthaltswahrscheinlichkeit in verschiedenen

Gebieten abhängt. Deshalb wird in einem zweiten Schritt die Darstellung dahingehend

21

erweitert, dass Features, entsprechend der Aufenthaltswahrscheinlichkeit des Benutzers,

mit verschiedenen Farbabstufungen eingefärbt werden können.

Objekttypen

Die in 2.2 betrachteten Dateiformate können zwar mit einer Vielzahl von Objekttypen

umgehen, für die Visualisierung und Auswertung von Aufenthaltswahrscheinlichkeiten

von Kartenobjekten eignen sich jedoch nicht alle. Da Linien und Punkte im Gegensatz zu

Polygonen keine Fläche haben, sind sie nicht geeignet um Aufenthaltswahrscheinlichkei-

ten darzustellen, da jedes Objekt, an dem sich jemand aufhalten kann, eine Fläche hat.

Meistens werden Straÿen als reine Linien modelliert, da sie oft nur zur Routenplanung

verwendet werden. Wenn relativ kleine Gebiete, wie z.B. ein Stadtgebiet, betrachtet

werden, sollten Straÿen auch als Polygone modelliert sein, da hier die Breite auch ins

Gewicht fallen kann. Mit Polygonen können alle Objekte, die aus der Vogelperspektive

betrachtet eine Fläche bilden, modelliert werden

Objekttyp Verwendung

Point weniger geeignet zur Modellierung von Objekten.

Line Straÿen bei kleinen Maÿstäben

Polygon Gebäude, reale Flächen (Parks, Straÿen, Plätze), logische Flächen (Re-

gierungsbezirke, Naturschutzgebiete)

Tabelle 3.1: Mögliche Objekttypen und Anwendung

3.2 Anwendung für das Position Sharing Verfahren

Diese Anwendung ist in Verbindung mit dem Position Sharing Verfahren [6] entstan-

den. Dieses Verfahren erzeugt verschleierte Positionsinformationen mit unterschiedlicher

Genauigkeit für verschiedene Location-Server. Die Positionsangabe (Share) besteht aus

einem Kreis um einen Punkt, in dem sich der User be�nden kann. Da unterschiedliche

positionsbasierte Dienste unterschiedlich genaue Positionsangaben benötigen um ihre

Dienstqualität zu erfüllen, aber der User nicht allen Diensten das gleiche Vertrauen

entgegenbringt, müssen unterschiedliche Dienste mit unterschiedlich genauen Positions-

informationen versorgt werden. Dies erfolgt durch die Erzeugung von mehreren Shares,

22

die ineinander enthalten sind. Ein Share ist de�niert durch einen Richtungsvektor der

den Mittelpunkt relativ zum Mittelpunkt des nächstgröÿeren Shares angibt. Der Mittel-

punkt des ersten Shares ist absolut angegeben. Die Shares werden an unterschiedliche

Locationserver geschickt, auf die dann die Dienste zugreifen können. Abhängig von ihrer

Vertrauenswürdigkeit bekommen sie Zugri� auf unterschiedlich viele Shares aus denen sie

eine genauere Position errechnen können. Der entwickelte Algorithmus läuft erst mal oh-

ne Beachtung der Karteninformationen und damit der Aufenthaltswahrscheinlichkeiten

des Benutzers ab. Für eine Erweiterung soll eine Visualisierung der verschleierten Re-

gionen (Shares) auf einer featurebasierten Karte, eingefärbt in Abhängigkeit von Wahr-

scheinlichkeitswerten, ähnlich Abbildung 3.1 entstehen.

Abbildung 3.1: Featurebasierte Karte, eingefärbt anhand von Wahrscheinlichkeiten

Normalisierung

Es kann immer nur ein begrenztes Gebiet betrachtet werden bzw. es ist meistens nur ein

bestimmtes Gebiet interessant. Typischerweise wird oft ein relativ abgeschlossenes Ge-

biet, wie z.B. eine Stadt, betrachtet. Dies ist beispielsweise der Fall, wenn ein Benutzer

in einem Stadtteil wohnt und in einem anderen arbeitet. So bewegt er sich gröÿtenteils

innerhalb der Stadtgrenzen. Um sinnvolle Ergebnisse zu erhalten, sollten die Aufent-

haltswahrscheinlichkeiten des Users auf das betrachtete Gebiet R normalisiert werden.

Das heiÿt, die Aufenthaltswahrscheinlichkeiten müssen so angepasst werden, dass die

23

Wahrscheinlichkeit P für das gesamte betrachtete Gebiet P (R) = 1 ist. Dies kann er-

reicht werden indem Die Wahrscheinklichkeitswerte P aller Features x einer Region

normalisiert werden:

∀x ∈ R :P (x)norm =
P (x)∫

y∈R P (y)
(3.1)

3.3 Überlappende Features

Je nach Modellierungsart kann es überlappende Features geben. Der Ansatz aus [5] geht

beispielsweise von überschneidungsfreien Features aus. Dabei muss z.B. für ein Haus,

das in einem Park steht, die Fläche des Parks ein Loch an der Stelle des Hauses haben.

Das macht zwar die Modellierung einfacher, hat aber einige Einschränkungen. Es gibt

zwei grundlegende Verwendungsmöglichkeiten für sich überlappende Features:

Zum einen die Einbeziehung der Höhe. So kann bei überschneidungsfreien Features bei

Gebäuden nur eine Aussage über das gesamte Gebäude getro�en werden, aber nicht für

einzelne Stockwerke.

Abbildung 3.2: Zwei sich überlappende Features

Zum anderen konnten Features nicht

nur real vorhandene Objekte abbil-

den, sondern auch organisatorische,

Verwaltungs- oder logische Struktu-

ren. So kann sich beispielsweise ein

Haus gleichzeitig in einem Natur-

schutzgebiet und einem Landkreis

be�nden.

Je nach dargestellten Daten muss

die Gesamtinformation von überlap-

penden Features unterschiedlich be-

handelt werden. Bei für die Features

absoluten Werten, wie beispielswei-

se Autos pro Stunde auf einer Stra-

ÿe, lassen sich die Werte für eine Brücke, die über eine andere Straÿe führt, einfach

addieren. Werden Aufenthaltswahrscheinlichkeiten dargestellt, dürfen die Wahrschein-

lichkeiten zweier Features nicht einfach addiert werden, sondern müssen nach Formel 3.3

24

berechnet werden. Hierbei sind p(x) · (1−p(y)) bzw. p(y) · (1−p(x)) die Wahrscheinlich-

keiten, dass x ohne y bzw. y ohne x auftritt. p(x)· (y) ist die Wahrscheinlichkeit, dass

beide auftreten. Addiert ergeben diese die Gesamtwahrscheinlichkeit. Wahrscheinlichkeit

in einem Punkt für überlappende Features:

p(x ∪ y) = p(x) · (1− p(y)) + p(y) · (1− p(x)) + p(x) · p(y) (3.2)

= p(x) + p(y)− 2 · p(x)p(y) (3.3)

3.4 Darstellung

Für die Erzeugung der Darstellung gibt es verschiedene Möglichkeiten: Zum einen ist

es möglich einen einfachen �Pixel-Renderer� zu implementieren, der die Daten des an-

zuzeigenden Kartenausschnitts aus den vorgegebenen Datenstrukturen der GeoTools

Bibliothek Pixel für Pixel ausliest. Dies hat den Vorteil, dass für jeden Punkt gleich alle

Features an dieser Stelle direkt ausgewertet werden können und so z.B. die Überlappung

von Features einfach berücksichtigt werden kann.

Der Renderer der GeoTools Bibliothek hat den Vorteil, dass er schon mit den Datenstruk-

turen der GeoTools Bibliothek zusammenarbeitet und ohne gröÿere Arbeit schon viele

Möglichkeiten unterstützt. So können Featurequellen zwischengespeichert und indiziert

werden, um die Darstellung zu beschleunigen. Die Darstellung von sich überlappenden

Features ist hier etwas komplizierter, da der Renderer jedes Featureobjekt für sich be-

trachtet. Der Renderer von GeoTools bietet ein fertiges Panel zum Einbinden in eine

Java-Swing-Anwendung inklusive Steuerelemente wie z.B. für Zoom.

25

4 Implementierung

Dieses Kapitel beschreibt einige der verwendeten GeoTools Klassen und im Abschnitt

4.2 die Klassen und die wichtigsten Methoden der implementierten Anwendung.

4.1 Verwendete GeoTools Klassen

In diesem Abschnitt sollen die wichtigsten der verwendeten Klassen der GeoTools Bi-

blothek beschrieben werden.

org.geotools.swing.JMapPane

Diese Klasse bietet ein Panel zum Anzeigen von Karten mit GeoTools innerhalb einer

Java-Swing-Anwendung. Die Kartendaten erhält das Panel in Form eines MapContexts.

org.geotools.map.MapContext

Dies ist eine Klasse, welche den Inhalt einer Karte speichert. Dazu gehören zum einen

mehrere Layer, die jeweils aus einer FeatureSource oder FeatureCollection ihre Daten

beziehen. Zum anderen gehört zu einem MapContext auch die Angabe eines Koordi-

natenreferenzsytems (CoordinateReferenceSystem), das angibt wie die Koordinaten der

Features de�niert sind. Weiterhin enthält diese Klasse auch die Angabe der Area of In-

terest, also des Ausschnitts der Karte, der betrachtet wird.

Konkret wird die Subklasse org.geotools.map.DefaultMapContext verwendet, da sie nicht

angegebene aber benötigte Werte selber errechnet. Dazu zählen z.B. die äuÿeren Abmes-

sungen der Karte.

org.geotools.swing.action.PanAction/ZoomInAction/ZoomOutAction

Diese drei Klassen stellen Aktionen zur Verfügung, die in Verbindung mit einem JButton

Zoom- und Verschiebefunktionen der Karte eines JMapPane bieten.

26

org.geotools.styling.Style

Eine Instanz der Style-Klasse kann zusammen mit den Kartendaten an einen MapCon-

text übergeben werden und de�niert, wie diese Daten dargestellt werden. Für jeden

Layer eines MapContext ist ein eigener Style möglich.

Die De�nition der Darstellung selber geschieht über eine Liste von Regeln (org.geotools.styling.Rule),

welche es ermöglichen Features nach verschiedenen Kriterien auszuwählen und zu gestal-

ten. Die Features, die von keiner Regel betro�en sind, werden durch eine Defaultregel

dargestellt.

org.geotools.styling.Rule

Diese Klasse de�niert eine Regel, wie eine Auswahl von Features dargestellt wird. Sie

beinhaltet einen Filter, der de�niert auf welche Features die Regel angewendet wird. Die

Gestaltung der Features übernimmt ein Symbolizer, welcher es z.B. ermöglicht für Linien

(sowohl Linien als Feature, als auch Linien als Umrandung von Polygonen) Stil, Dicke

oder Farbe zu verändern. Genauso lassen sich auch bei Polygonen die Eigenschaften der

Fläche in Farbe oder Transparenz verändern.

org.opengis.�lter.Filter

Dies stellt ein Interface für Filterklassen dar. Die implementierenden Klassen von Geo-

Tools bieten eine Vielzahl an Möglichkeiten, Features in verschiedenen Anwendungsfällen

z.B. aus einer FeatureCollection zu selektieren. Es existieren verschiedene Gruppen von

Filtern:

• logische Filter: Logische Filter sind die einzigen Filter, die andere Filter enthalten
können. Mit ihnen können andere Filter logisch verknüpft werden.

• geometrische Filter: Diese Filtergruppe kann auf geometrischer Ebene Opera-

tionen wie Überlappung, Schnitt oder Beinhaltung geometrischer Objekte durch-

führen

• Attribut Filter: Filter dieser Gruppe können die Attribute von Features mitein-

ander oder mit festen Werten vergleichen.

27

org.geotools.data.FeatureSource

Diese Klasse stellt eine einheitliche Schnittstelle zum Zugri� auf eine Featurequelle dar.

Dies kann eine einfache Datei über FileDataStore oder auch eine Datenbank wie PostGIS.

Diese Klasse bietet nur die Möglichkeit Daten zu lesen.

org.geotools.data.FileDataStore

Diese Klasse stellt ein Interface zu einer �physikalischen� Quelle von Features, wie z.B.

eine Shape�le dar. Um auf die Features selber zuzugreifen bietet diese Klasse verschie-

dene Methoden zur Erzeugung eine FeatureSource-Instanz oder FeatureWriter-Instanz,

die auch für Schreibzugri� genutzt werden kann.

org.opengis.feature.Feature

Dies stellt ein geographisches Objekt dar, das aus geographischen und nicht geographi-

schen Eigenschaften besteht.

org.opengis.feature.simple.SimpleFeature

SimpleFeatures sind einfacher zu handhabende Features, allerdings mit Einschränkun-

gen. Eine FeatureSource, die eine Schnittstelle zu einer Shape�le herstellt, liefert nur

SimpleFeatures, da diese ausreichend sind um Features einer Shape�le zu beschreiben.

Ein SimpleFeature ist in seinen Attributen eingeschränkt. Attribute können keine kom-

plexen Datentypen sein. Attribute können nur einfach vorkommen und sind in ihrer

Reihenfolge geordnet.

4.2 Klassendokumentation

Im Folgenden werden die erstellten Klassen und die wichtigsten ihrer Methoden doku-

mentiert.

MapviewerFrame

Diese Klasse stellt das Hauptfenster der Anwendung dar. Von hier aus werden alle Dia-

loge und Aktionen ausgelöst. Sie erstellt den Groÿteil aller gra�schen Elemente der

Anwendungsober�äche und verknüpft diese mit den zugehörigen Funktionen und der

28

Abbildung 4.1: UML-Klassendiagramm der wichtigsten Klassen

DataStore-Klasse. Neben den Variablen für die Fenstergestaltung (GUI) hat diese Klas-

se nur zwei Variablen: Zum einen eine Instanz der DataStore-Klasse und zum anderen

die AreaofInterest, ein Rechteck, das den gerade betrachteten Kartenausschnitt de�niert.

Unter den Variablen, die für die Fenstergestaltung zuständig sind ist noch eine Instanz

von org.geotools.swing.JMapPane interessant. Sie stellt die eigentliche Karte dar.

Die wichtigsten Methoden dieser Klasse sind:

• void pushAreaofInterest() : Speichert den aktuellen angezeigten Kartenabschnitt

in einer Variable ab. Wird beim Aktualisieren der MapContexts benötigt, da die

Ansicht wieder auf die ursprüngliche zurückgesetzt wird.

29

• void popAreaofInterest() : Setzt den gespeicherten Kartenabschnitt auf den

Mapcontext zurück.

• void repaint() : Zeichnet das Fenster und alle Kindelemente, insbesondere das

Kartenpanel neu.

• void re�llFileListPanel() : Aktualisiert die Liste der o�enen Dateien mit den

Daten aus dem DataStore.

• void re�llFilterListPanel() : Aktualisiert die Liste der vorhandenen Filter mit

den Daten aus dem DataStore.

Dazu kommen noch weitere Methoden, welche zum Auslösen der verschiedenen Funk-

tionen und als Callback der einzelnen Dialoge dienen.

DataStore

Die DataStore-Klasse stellt einen Datenspeicher für die Kartendaten dar. Hauptbestand-

teile sind der MapContext, eine Liste der geö�neten Dateien und eine Liste mit Filtern.

Der MapContext enthält die aktuell aktiven Layer und Filter und dient der Hauptan-

wendung um die Karte darzustellen.

Die Liste der geö�neten Dateien ist als Hashmap mit den Dateinamen als Indices im-

plementiert. Die hier abgelegten Elemente sind DataStore.Layer-Objekte, welche alle zu

einer Datei zugeordneten Daten enthalten.

• HashMap<String, Layer> layers : Enthält Objekte vom Typ DataStore.Layer die

mit dem Dateinamen, der die Daten für den Layer liefert indiziert wird.

• MapContext map : Die MapContext-Instanz welche die aktuellen Daten, die an-

gezeigt werden sollen, enthält.

• ArrayList<FilterAbstract> �lters : Eine Liste von FilterAbstract-Objekten, die in

der Anwendung aktiv sind.

Methoden:

• boolean addFile(File �le) : Fügt eine weitere Datei als neuen Layer hinzu.

• void disableLayer(String �lename) : Deaktiviert einen Layer/Datei.

30

• void enableLayer(String �lename) : Aktiviert einen Layer/Datei.

• void disableFilter(String name) : Deaktiviert einen Filter

• void enableFilter(String name) : Aktiviert einen Filter.

• void re�llMapContext() : Aktualisiert den MapContext mit den aktuell akti-

vierten Filtern und Layern. Zuerst werden alle Layer des MapContexts entfernt.

Dann wird für jeden einzelen Layer, der in der HashMap �layers� gespeichert ist

überprüft ob dieser aktiv (Layer.show ==true) ist. Wenn ja wird dieser zusammen

mit dem Style, der von buildStyleFromFilters() erzeugt wird, dem MapContext

hinzugefügt.

• File toSLDFile(File �le) : Speichert einen Style in einer .sld Datei

• Style createFromSLD(File sld) : Lädt einen Style aus einer .sld Datei

• void addFilterEquals(String attr, String value , Color color) : Fügt einen

neuen Vergleichs�lter hinzu.

• void addFilter(FilterAbstract �lter) : Fügt einen neuen Filter hinzu

• Style buildStyleFromFilters(DataStore.Layer layer) : Erzeugt für einen Layer

einen Style aus den aktivierten Filtern. Wird von re�llMapContext() verwendet.

• Rule createRule(Color color�ll, Color colorstroke, FeatureSource fs) :

Erzeugt eine Rule-Objekt mit den Farben �color�ll� als Flächenfüllfarbe und co-

lorstroke als Linienfarbe für den Featuretyp, der in FeatureSource fs gegeben ist.

• void createshadingsteps(String attr, �oat min, �oat max, int steps) :

Erzeugt mehrere Filter, die eine anhand eines Attributwertes eine Farbabstufung

erzeugen und legt diese in der �lters-Variable ab.

DataStore.Layer

Die Layer Klasse innerhalb des Datastores dient nur der Gruppierung aller Variablen/

Objekte die logisch zu einer Datei gehören. Deshalb sind alle Variablen mit public Zugri�

und es gibt keine weiteren Getter- und Setter-Methoden.

• File �le : Der Filehandle zur geö�neten Datei

31

• FeatureSource featureSource : Das FeatureSource-Objekt zur geö�neten Datei.

• FileDataStore store : Das FileDataStore-Objekt zur geö�neten Datei.

• boolean show : De�niert ob dieser Layer angezeigt wird oder deaktivert ist.

• Style defaultstyle : Enthält den Style aus der dem Layer zugeordneten Datei, der

standardmäÿig verwendet wird.

• Style style : Enthält den auf den Layer angepasst Style, der durch Filter de�niert

wird.

FilterAbstract

Die Idee dieser Klasse ist es, Filter der GeoTools Bibliothek mit einer Farbe zu verknüp-

fen, in welcher Features, auf die der entsprechende Filter zutri�t, eingefärbt werden. Für

jeden Filtertyp wird von dieser Klasse abgeleitet und eine eigenständige Klasse erstellt.

In der Basisimplementierung wird auf komplexere Gestaltungsmöglichkeiten verzichtet.

Es ist lediglich möglich eine Farbe zu de�nieren, in der alle Aspekte der Featuretypen

eingefärbt werden. Dies ist hier auch in den meisten Fällen ausreichend.

• void disable() : Aktiviert Filter

• void enable() : Deaktiviert Filter

• String getName() : Gibt eine Kurzbezeichnung des Filters zurück, welche auch

die Filtereigenschaften enthalten sollte.

• boolean equals(String name) : Vergleicht ob der übergebene String mit getNa-

me() übereinstimmt.

• void setColor(Color color) : Setzt die Farbe des Filters. In dieser Farbe werden

die für Features,die den Eigenschaften des Filters entsprechen, eingefärbt.

• Color getColor() : Gibt die Farbe des Filters zurück.

• Rule getRule(FeatureSource fs) : Erzeugt passend zum FeatureTyp der ange-

gebenen Featuresource ein Rule-Objekt.

Es gibt drei Implementierungen dieser Klasse:

32

• FilterEquals : Dieser Filter de�niert einen Attributnamen und einen dazugehö-

rigen Wert. Er tri�t auf alle Features zu, die dieses Attribut mit diesem Wert

enthalten.

• FilterBetween : Dieser Filter de�niert statt einem genauen Wert einen Wertebe-

reich auf den ein Attribut eines Features überprüft wird.

• FilterWrapper : Diese Implementierung hat keine konkrete Filterfunktion, son-

dern dient nur als Wrapper für beliebige GeoTools-Filter um in der FilterImport-

Klasse beliebige Filter angeben zu können.

FilterImport

Diese Klasse dient als Schnittstelle zu Dateien, die Filterobjekte welche die FilterAbstract-

Klasse implementieren. Sie dient einerseits dazu die Filterliste, die sich in der Anwendung

erstellen lässt, zu speichern und wieder aufzurufen. Zusätzlich dient sie als Importschnitt-

stelle, um fremde Daten in die Anwendung zu importieren. In der Datei selber lassen

sich alle von GeoTools verfügbaren Filter erstellen, auch wenn es dafür keine konkre-

te Implementierung der FilterAbstract-Klasse gibt. In der Datei werden die Filter im

XML-Format gespeichert. Eine genauere Beschreibung des Dateiformats �ndet sich in

Kapitel 5.1.3.

• boolean open(File �le) : Ö�net eine Datei.

• ArrayList<FilterAbstract> importFilters() : Gibt eine Liste von Filterobjekten,

die in der geö�neten Datei enthalten sind zurück

• void exportFilters(ArrayList<FilterAbstract> �lterList) : Speichert eine

Liste von Filterobjekten

AttributeImport

Diese Klasse dient dem Import von zusätzlichen Attributen zu vorhandenen Features. Die

übergebene Datei im XML-Format ist in zwei Abschnitte gegliedert: Der erste Abschnitt

enthält die die Attributnamen und die Datentypen der Attribute. Der zweite Abschnitt

besteht aus einer Liste von Datensätzen, die jeweils aus einem Filter und Attributen mit

entsprechenden Werten bestehen. Der Filter bestimmt Bedingungen, unter denen einem

33

Feature die dazu angegebenen Attribute und Werte zugewiesen werden. Eine genauere

Beschreibung des Dateiformats �ndet sich in Kapitel 5.1.4.

• boolean importFile() : Ö�net eine Datei mit Attributen.

• void setToFeatureSource(FeatureSource fs) : Fügt die Attribute der angege-

ben FeatureSource hinzu.

34

5 Evaluation

5.1 Anwendungsbeschreibung

5.1.1 Shape�le/Layer ö�nen

Die Anwendung kann gleichzeitig mehrere Layer, die jeweils einer Shape�le entsprechen

anzeigen.

Abbildung 5.1: Styledialog

Wird eine Datei geö�net, so wird

überprüft ob im gleichen Verzeichnis

eine Datei mit dem gleichen Namen

und der Erweiterung .sld vorhanden

ist. Ist diese Datei vorhanden und ent-

hält eine gültige Stylebeschreibung, so

wird dieser Style verwendet um den

Layer darzustellen. Ist keine .sld-Datei

vorhanden, wird ein Dialogfenster ge-

ö�net in dem die Anzeigeeinstellungen

für den Layer de�niert werden kön-

nen. Hier lassen sich, je nachdem wel-

cher Featuretyp in der Datei gespei-

chert ist, verschiedene Eigenschaften

ändern. Abbildung 5.1 zeigt die Einstellmöglichkeiten für einen Polygonlayer. Es las-

sen sich Linien für die Umrandung sowie die Füllfarbe der Fläche verändern. Optional

kann ein Attributsfeld als Text mit eingeblendet werden. Beim Featuretyp �Linie� fehlen

die Optionen für die Füll�äche.

35

Filter Funktion Beispiel

Equals Überprüft ein Attribut auf einen genauen Wert type = station

Between Feature liegt zwischen zwei Werten 0.1 < probability < 0.2

Tabelle 5.1: Mögliche Filter

5.1.2 Layer aktivieren/deaktivieren

Geö�nete Layer können, nachdem sie einmal geö�net wurden, auch einzeln für die An-

zeige deaktiviert werden, bleiben aber in ihren Einstellungen erhalten.

5.1.3 Filter

In der Anwendung lassen sich Kombinationen aus Filtern und Farbzuweisungen (hier

kurz Filter genannt) erstellen, mit denen Features anhand ihrer Eigenschaften automa-

tisch eingefärbt werden können. Tri�t ein Filter auf ein Feature zu, so wird dieses in

der dem Filter zugeordneten Farbe gefärbt. Die Features können anhand ihrer Attribute

durch Anwendung der Filter in Tabelle 5.1 gefärbt werden.

(a) inaktiv (b) aktiv

Abbildung 5.2: Beispiel für die Darstellung von Features mit Filter

36

Filter Import/Export

Unter dem Menüpunkt �Filter� gibt es die Möglichkeit die erstellten Filter in eine Datei

zu exportieren oder aus einer Datei zu importieren. So können erstellte Filterkon�gu-

rationen gespeichert und wieder geladen werden. Es können auch Daten aus anderen

Quellen importiert werden, indem man sie in das Datenformat überführt.

Das Dateiformat besteht aus einfachen XML. Eine Übersicht über alle möglichen Fil-

ter, die GeoTools zur Verfügung stellt �ndet sich unter http://docs.geotools.org/la-

test/javadocs/org/opengis/�lter/Filter.html und unter http://schemas.opengis.net/�l-

ter/1.0.0/�lter.xsd �ndet sich das entsprechende XML-Schema für die XML-Repräsentation

der Filter. Exemplarisch sind im Beispielcode 5.1 zwei Filter dargestellt. Das Wurzelele-

ment besteht aus einem Filter-Tag. Darin können beliebig viele Style-Blöcke enthalten

sein, die alle jeweils einen Filter sowie ein Color-Tag und ein optionales Alpha-Tag bein-

halten. Das Color-Tag de�niert über seine Attribute �r�,�g�,�b� (rot-, grün-, blau-Anteil)

in welcher Farbe ein Feature, auf das der zugeordnete Filter zutri�t, eingefärbt wird. Gül-

tige Werte für die Attribute sind ganze Zahlen von 0 bis 255 und de�nieren zu welchem

Anteil die jeweilige Grundfarbe ein�ieÿt. Das Alpha-Tag de�niert eine Alphatranspa-

renz. Ein Wert von 1 ist untransparent und ein Wert von 0 stellt volle Transparenz dar.

Gültig sind hier Float-Werte von 0.0 bis 1.0 . Ist kein Alpha-Tag angegeben, so wird der

Defaultwert 1.0 (keine Transparenz) genommen.

Listing 5.1: Beispiel für eine XML-Datei mit Filtern

<F i l t e r>

<Sty l e>

<PropertyIsEqualTo>

<PropertyName>type</PropertyName>

<L i t e r a l>water</ L i t e r a l>

</PropertyIsEqualTo>

<Color r="204" g="51" b="0" />

<Alpha value=" 0 .5 ">

</ Sty l e>

<Sty l e>

<PropertyIsBetween>

<LowerBoundary>

<L i t e r a l>0 .0</ L i t e r a l>

</LowerBoundary>

<UpperBoundary>

37

<L i t e r a l>1 .0</ L i t e r a l>

</UpperBoundary>

</PropertyIsBetween>

<Color r="204" g="51" b="0" />

<Alpha value=" 0 .5 ">

</ Sty l e>

.

</ F i l t e r>

Wahrscheinlichkeiten

Diese Filter dienen auch als Grundlage zur unterschiedlichen Einfärbung von Features

mit unterschiedlichen Wahrscheinlichkeiten. Dafür gibt es zwei verschiedene Möglichkei-

ten: Über den Menüpunkt �Filter -> Shading� lassen sich automatisiert mehrere Filter

erstellen. Unter Angabe eines Attributnamens, einem minimalen und einem maximalen

Wert, einer Schrittweite sowie zwei Farbwerten erstellt diese Funktion eine Bandbrei-

te von Filtern, die jeweils ein Intervall, entsprechend der Schrittweite, zwischen den

beiden Werten abdecken und Features auf die dieser Filter zutri�t ein entsprechendes

Farbintervall zuordnen. Hierfür müssen die entsprechenden Werte als Attribute in der

darzustellenden Shape�le enthalten sein. Alternativ können die Werte schon vorher auf

entsprechende Farben abgebildet werden und mit einem Filter den entsprechenden Fea-

tures über eine eindeutige Id eines Features zugeordnet werden.

5.1.4 Import von Attributen

Eine wichtige Eigenschaft der Anwendung ist die Zuweisung von Aufenthaltswahrschein-

lichkeiten für Features. Diese können entweder direkt in der Shape�le gegeben sein oder

über eine XML-Datei importiert werden. Eine XML-Datei für den Import besteht aus

zwei Sektionen: Aus der De�nition der zu importierenden Datentypen und den Daten sel-

ber. Die oberste Ebene bildet das Wurzelelement �<Properties>...</Properties>�. Die-

ses enthält den De�nitionsabschnitt für die Variablentypen und die Werte der Variablen

für bestimmte Features. Der De�nitionsbereich enthält für alle zu importierenden At-

tribute ein <Attribute> Tag, welches mit dem Attribut �key� den Namen des Attributs

de�niert und dem Attribut � `type� den Typ. Mögliche Typen sind �Double�, �Integer�

oder �String�. Die Werte selber sind innerhalb der �<set>...</set>�-Umgebung de�niert.

38

Sie enthält zwei Arten von Tags: Innerhalb des <Filter> Tags wird de�niert, welchen

Features die Werte zugewiesen werden. Das <Attrib> Tag enthält die Werte. Wie beim

Import der Filtereinstellungen kann auf alle Filter von GeoTools zurückgegri�en werden.

Listing 5.2: Beispiel einer XML-Datei für den Import von Attributen

<Prope r t i e s>

<De f i n i t i o n>

<Attr ibute key=" p r obab i l i t y " type="Double" />

<Attr ibute key="name" type=" St r ing " />

. . .

</ De f i n i t i o n>

<se t>

<F i l t e r>

<PropertyIsEqualTo>

<property>type</property>

<l i t e r a l>t ra in_s ta t i on</ l i t e r a l>

</PropertyIsEqualTo>

</ F i l t e r>

<Attr ib key=" p r obab i l i t y " value=" 0 .33 " />

<Attr ib key="name" value="Bahnhof" />

. . .

</ s e t>

<se t >

. . .

</ s e t>

. . .

</ Prope r t i e s>

5.2 Darstellungsergebnisse

Überlappende Features

Die Darstellung überlappender Features gliedert sich in zwei Fälle. Die Darstellung von

absoluten Werten und die Darstellung von Wahrscheinlichkeiten. Für den ersten Fall

können Features statt einer Farbabstufung der volle Farbwert zugewiesen und die Va-

rianz der Farbe, abhängig vom Wert, durch Alphatransparenz realisiert werden. Dabei

39

muss darauf geachtet werden, dass die Transparenz entsprechend der überlappenden Fea-

tures, die zusammen den gröÿten Wert ergeben, skaliert wird. In Abbildung 5.3 wird ein

Gebäude dargestellt, bei dem die zwei senkrechten Gebäudeteile über einem Keller ge-

baut sind. In dieser Karte könnte z.B. die Personendichte (Personen pro m2) dargestellt

werden. In den sich überlappenden Teilen herrscht somit eine höhere Personendichte, da

dort auch mehrere Stockwerke existieren. Da hier die Transparenzwerte der einzelnen

Features addiert werden, ist dies kein Problem.

Abbildung 5.3: Darstellung überlappen-

der Features

Werden jedoch Wahrscheinlichkeiten darge-

stellt funktioniert nach Formel 3.3 dieser

Ansatz nicht mehr. Da der Renderer der

GeoTools-Bibliothek jedes Feature für sich

und ohne Bezug zu seiner Umgebung darstellt,

müssen die Daten anderweitig aufbereitet wer-

den.

Eine mögliche Lösung wäre die Schnitt�äche

der sich überlappenden Features zu ermitt-

len, daraus entsprechende Features zu erstel-

len und die entsprechenden Werte nach For-

mel 3.3 zuzuweisen und diese in einem zusätz-

lichen Layer darzustellen. Dies muss entweder

in einem Vorverarbeitungsschritt oder nur bei

relativ kleinen Kartenausschnitten mit wenigen Features erfolgen, da im schlechtesten

Fall jedes Feature mit jedem anderen verglichen werden muss, was einen erheblichen

Rechenaufwand darstellt.

Klassische Darstellung

Abbildung 5.4 zeigt einen mit der Anwendung, auf Daten von OpenStreetMap basierend,

erstellten Kartenausschnitt der Stadt Heilbronn. Dieser entspricht, stark vereinfacht,

der üblichen Darstellung von Kartenmaterial wie beispielsweise in Google Maps. Die

unterschiedlichen Einfärbungen sind durch Anwendung von Filtern entstanden. Zum

Beispiel überprüft ein Filter das Attribut �type� auf den Wert �riverbank�, also einen

Fluss und färbt Features, welche dem Filter entsprechen, blau ein. Entsprechend werden

40

Abbildung 5.4: normale Kartendarstellung

Parks grün eingefärbt. In diesem Beispiel existiert noch ein Museum in türkis sowie eine

Polizeistation in orange.

True/False Darstellung

Die True/False Darstellung in den Abbildungen 5.5 und 5.6 stellen dar, an welchen

Orten Benutzer prinzipiell anzutre�en sind. Es wird in beiden Abbildungen der gleiche

Ausschnitt wie in Abbildung 5.4 gezeigt. In beiden Fällen steht eine rote Färbung für

�false�, also Orte an denen der entsprechende Benutzer nicht anzutre�en ist und grün für

�true� und damit Orte die ein Benutzer erreichen kann. Sowohl das Benutzerpro�l für

einen Fuÿgänger als auch einen Autofahrer erwartet den Benutzer logischerweise nicht

in oder auf dem Fluss. Ein Fuÿgänger kann prinzipiell auf der Straÿe und in Gebäuden

aufgefunden werden. Autofahrer hingegen sind in Gebäuden nicht zu erwarten.

41

Abbildung 5.5: True/False-Darstellung für Autos

Darstellungen von Wahrscheinlichkeitsverteilungen

Abbildung 5.7 zeigt die Wahrscheinlichkeitsverteilung verschiedener �ktiver Personen

für das gleiche Gebiet. Es handelt sich hier um eine Karte der Gebäude des Campus der

Universität Stuttgart. Je dunkler die Einfärbung ist, desto höher ist für dieses Gebäude

die Aufenthaltswahrscheinlichkeit des Benutzers. Man kann gut die Unterschiede im

Verhalten erkennen. Der Mitarbeiter (Abb. 5.7(a)) der Universität hält sich die meiste

Zeit in seinem Büro in dem Gebäude unten rechts auf. Einige weitere Gebäude auf dem

Campus sind auch etwas dunkler gefärbt, da der Mitarbeiter dort auch Vorlesungen

hält, oder in die Mensa geht. Der Student hingegen (Abb. 5.7(b)) verbringt die meiste

Zeit auf dem Campus in unterschiedlichen Hörsälen. Bei ihm ist deshalb kein Gebäude

erkennbar, in dem er sich gröÿtenteils aufhält. Zur Verdeutlichung ist jeweils ein Kreis

42

Abbildung 5.6: True/False-Darstellung für Fuÿgänger

eingezeichnet, der eine verschleierte Position darstellen soll. Im Fall des Mitarbeiters ist

es doch sehr wahrscheinlich, dass er sich innerhalb des Kreises ganz rechts aufhält. Im

Fall des Studenten ist es nicht so klar, wo er sich aufhält.

43

(a) Mitarbeiter

(b) Student

Abbildung 5.7: Wahrscheinlichkeitsverteilung unterschiedlicher Personen

44

6 Zusammenfassung

Durch die Verbreitung von GPS-Empfängern und günstigen Datentarifen für mobile Ge-

räte, drängen immer mehr Location Based Services auf den Markt. Da nicht jeder seine

genauen Positionsinformationen preisgeben, aber trotzdem solche Dienste nutzen möch-

te, werden Möglichkeiten entwickelt, um Positionen zu verschleiern. Dabei spielen die

Eigenschaften eines Benutzers eine wichtige Rolle. Dazu zählen beispielsweise die Be-

wegungspro�le und damit die Aufenthaltswahrscheinlichkeiten an verschiedenen Orten

sowie die Präferenzen der Verschleierung.

Die hier entwickelte Anwendung bietet eine Möglichkeit diese Eigenschaften in Karten

zu visualisieren. Mit Hilfe von Filtern bieten sich viele Möglichkeiten Kartenobjekte

einzufärben und verschiedene Daten gra�sch darzustellen.

45

Literaturverzeichnis

[1] Geography markup language. http://www.opengeospatial.org/standards/gml.

[2] Esri shape�le technical description. http://www.esri.com/library/whitepapers/

pdfs/shapefile.pdf, 1998.

[3] Abbildungen 1.1, 3.1, 5.2, 5.3, 5.4, 5.5, 5.6 und 5.7 sind mit Kartendaten von

Openstreetmap entstanden. (c) 'OpenStreetMap' und Mitwirkende, CC-BY-SA.

http://www.openstreetmap.org/, 2011.

[4] Claudio Agostino Ardagna, Marco Cremonini, and Gabriele Gianini. Landscape-

aware location-privacy protection in location-based services. Journal of Systems

Architecture, 55(4):243 � 254, 2009. Secure Service-Oriented Architectures (Special

Issue on Secure SOA).

[5] Maria Luisa Damiani, Elisa Bertino, and Claudio Silvestri. Protecting location pri-

vacy against spatial inferences:the probe approach, 2009.

[6] Frank Dürr, Pavel Skvortsov, and Kurt Rothermel. Position Sharing for Locati-

on Privacy in Non-trusted Systems. In Proceedings of the 9th IEEE International

Conference on Pervasive Computing and Communications (PerCom 2011), pages

189�196, Seattle, USA, März 2011. IEEE Computer Society.

[7] Marco Gruteser and Xuan Liu. Protecting privacy in continuous location-tracking

applications. IEEE Security and Privacy, 2:28�34, 2004.

46

http://www.opengeospatial.org/standards/gml
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.openstreetmap.org/

Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen Quellen

benutzt zu haben.

Stuttgart, 31.05.2011

Andreas Paul:

	Abbildungsverzeichnis
	Tabellenverzeichnis
	1 Einführung
	1.1 Motivation
	1.2 Aufgabestellung
	1.3 Szenarien

	2 Grundlagen und verwandte Arbeiten
	2.1 Kartenanalyse für Positionsverschleierung
	2.2 Dateiformate
	2.2.1 Geography Markup Language (GML)
	2.2.2 OpenStreetmap (OSM)
	2.2.3 Shapefile
	2.2.4 Beispiele

	2.3 Analyse

	3 Konzepte
	3.1 Systemmodell
	3.2 Anwendung für das Position Sharing Verfahren
	3.3 Überlappende Features
	3.4 Darstellung

	4 Implementierung
	4.1 Verwendete GeoTools Klassen
	4.2 Klassendokumentation

	5 Evaluation
	5.1 Anwendungsbeschreibung
	5.1.1 Shapefile/Layer öffnen
	5.1.2 Layer aktivieren/deaktivieren
	5.1.3 Filter
	5.1.4 Import von Attributen

	5.2 Darstellungsergebnisse

	6 Zusammenfassung
	Literaturverzeichnis

