Institut fir Verteilte und Parallele Systeme

Abteilung Verteilte Systeme

Universitat Stuttgart
UniversitatsstraBe 38
D - 70569 Stuttgart

Studienarbeit Nr. 2312

Visualisierung von Kartenobjekten
mit GeoTools

Andreas Paul

Studiengang: Informatik

Prufer: Prof. Dr. Kurt Rothermel
Betreuer: Pavel Skvorzov
begonnen am: 01.12.2010

beendet am: 02.06.2011

CR-Klassifikation: C.2.4, H.3.5

Zusammenfassung

“Location-based-Services” (LBS) sind Dienste, die Positionsinformationen mobiler Ge-
rite verarbeiten. Da Benutzer ihre Position preisgeben miissen, um einen Service nut-
zen zu konnen, werden verschiedene Algorithmen entwickelt, welche den Aufenthaltsort
verschleiern um die Privatsphéire zu schiitzen. Gleichzeitig soll aber auch eine fiir den
Service ausreichende Genauigkeit der Position geboten werden. Da jeder Benutzer fiir un-
terschiedliche Orte andere Aufenthaltswahrscheinlichkeiten hat, spielt auch die konkrete
Umgebung eine Rolle, welche fiir die Verschleierung beachtet werden muss. In dieser Ar-
beit soll eine Anwendung entwickelt werden, welche Wahrscheinlichkeitsabschidtzungen
fiir Objekte (Features) einer Karte grafisch darstellt. Dazu wird die GeoTools-Bibliothek
genauer betrachtet und deren Mdoglichkeiten analysiert. Basierend auf GeoTools wird eine
Anwendung entwickelt, welche als Eingabe entsprechend der Verschleierungspréferenzen

die Aufenthaltswahrscheinlichkeiten des Benutzers bekommt und diese grafisch darstellt.

Inhaltsverzeichnis

Abbildungsverzeichnis
Tabellenverzeichnis

1 Einfiihrung

1.1 Motivation
1.2 Aufgabestellung
1.3 Szenarien

2 Grundlagen und verwandte Arbeiten

2.1 Kartenanalyse fiir Positionsverschleierung
2.2 Dateiformate
2.2.1 Geography Markup Language (GML)
2.2.2 OpenStreetmap (OSM) oL
2.2.3 Shapefileo
2.2.4 Beispiele
2.3 Analyse
3 Konzepte
3.1 Systemmodello
3.2 Anwendung fiir das Position Sharing Verfahren.
3.3 Uberlappende Features
3.4 Darstellung

4 Implementierung
4.1 Verwendete GeoTools Klassen

4.2 Klassendokumentation

o =1 =1 =~

15
15
15
16
17
19

21
21
22
24
25

5 Evaluation

5.1 Anwendungsbeschreibungo oo
5.1.1 Shapefile/Layer 6ffnen Lo

5.1.2 Layer aktivieren/deaktivieren

5.1.3 Filter.

5.1.4 Import von Attributen L.

5.2 Darstellungsergebnisse
6 Zusammenfassung

Literaturverzeichnis

35
35
35
36
36
38
39

45

46

Abbildungsverzeichnis

1.1

2.1
2.2
2.3

2.4
2.5

3.1
3.2

4.1

5.1
5.2
5.3
5.4
2.9
5.6
5.7

Beispiel fiir grafische Visualisierung von Features. 8
Architektur aus [7] 9
Ergebnisse aus [7] 10
Beispiel einer sensitiven Region aus [5]. H1 und H2 stellen Krankenhéuser

und L einen Seedar. oo 11
Beispiel fiir eine verschleierte Karte aus [5] 12
Verschleierte Regionen = lila, sensitive Features = rot [5] 13
Featurebasierte Karte, eingefarbt anhand von Wahrscheinlichkeiten . . . 23
Zweil sich tiberlappende Features 24
UML-Klassendiagramm der wichtigsten Klassen 29
Styledialog 35
Beispiel fiir die Darstellung von Features mit Filter 36
Darstellung iiberlappender Features 40
normale Kartendarstellung o000 41
True/False-Darstellung fiir Autos 42
True/False-Darstellung fiir Fufgénger 43
Wahrscheinlichkeitsverteilung unterschiedlicher Personen 44

Tabellenverzeichnis

2.1
2.2
2.3
2.4

3.1

5.1

Geometriearten in Shapefiles L. 17
Beispiele fiir Attribute in Kartendaten des U.S. Census Bureau 18
Beispiele fiir Attribute in Kartenmaterial von geofabrik.de 19
Vergleich der Datenformate 20
Mogliche Objekttypen und Anwendung 22
Mogliche Filter 36

1 Einfihrung

1.1 Motivation

Mit der fortschreitenden Verbreitung von mobilen Endgeridten mit GPS-Empfinger, wie
z.B. Smartphones, gewinnen auch Dienste wie z.B. Restaurant- oder Friendfinder, welche
die Positionsinformationen der Clients nutzen, eine grofsere Bedeutung. Dabei mochte
aber nicht jeder Benutzer, dass jeder Service dessen genaue Position erfahrt, es muss also
irgendeine Art von Verschleierung durchgefiihrt werden. Im Gegenzug darf aber durch
die Positionsverschleierung die Dienstqualtitat nicht zu stark eingeschrinkt werden, da
der Dienst sonst seine Aufgabe nicht mehr erfiillen kann. Eine einfache Randomisierung
der Positionsinformationen unabhéngig von der Karte ist jedoch nicht ausreichend, da
jeder Benutzer des mobilen Gerites sich in verschiedenen Gebieten mit unterschiedlicher
Wahrscheinlichkeit aufhélt. Hierfiir gibt es mehrere Forschungsansétze fiir Algorithmen,
welche eine Verschleierung von Positionsinformationen durchfiihren.

in dieser Arbeit soll eine Anwendung erstellt werden, welche Aufenthaltswahrschein-
lichkeiten eines Benutzers in einer Karte darstellt, um Verschleierungsalgorithmen zu

visualisieren und iiberpriifen.

1.2 Aufgabestellung

Die Hauptaufgabe dieser Arbeit ist es Geodaten zu lesen und abhéngig von ihren ge-
gebenen Wahrscheinlichkeitsabschédtzungen zu visualisieren. Die Wahrscheinlichkeitsab-
schiatzungen fiir verschiedene Kartenobjekte und Attribute werden als vordefinierte Fin-

gabewerte angenommen. Dies beinhaltet die folgenden Arbeitsschritte:
e Untersuchung der GeoTools Bibliothek

e grafische Visualisierung einer Karte im Shapefile-Format

e Erstellen eines Modells fiir die Reprisentation von feature-abhingigen Wahrschein-
lichkeiten

e grafische Visualisierung der feature-abhidngigen Wahrscheinlichkeitsverteilung

~

4

y

~

Abbildung 1.1: Beispiel fiir grafische Visualisierung von Features.

1.3 Szenarien

Die in dieser Arbeit erstellte Anwendung soll die Moéglichkeit bieten, Karten bzw. deren
Objekte anhand ihrer FEigenschaften unterschiedlich einzufirben. Dies kann entweder ei-
ne einfache Unterscheidung von Objektarten wie Gebduden oder Strafen sein, oder auch
anhand von komplexen Eigenschaften wie Aufenthaltswahrscheinlichkeiten von Personen
in verschiedenen Gebduden oder Plitzen. mit diesem Werkzeug ist z.B. eine grafische
Darstellung von kartenbasierten Positionsverschleierungsalogrithmen moglich. Insbeson-
dere sollen sich Aufenthaltswahrscheinlichkeiten fiir verschiedene Benutzertypen auf un-

terschiedlichen Karten visualisieren lassen.

2 Grundlagen und verwandte

Arbeiten

2.1 Kartenanalyse fiir Positionsverschleierung

Protecting Privacy in Continuous Location-Tracking Applications

Die Autoren von [7] vergleichen drei einfache Algorithmen, mit denen die Anzahl sen-

sitiver Positionsupdates, aus denen ein potenzieller Angreifer auf die Position schliefsen

kann, verringert werden kann. Die Autoren gehen von einer Architektur, wie in Abbil-

dung 2.1 dargestellt, aus. Der Benutzer bzw. dessen mobiles Endgeriat (Data Subject)

sendet regelmélig seine aktuelle Position an einen Locationbroker. Dieser Locationbro-

ker wird z.B. vom Netzbetreiber zur Verfiigung gestellt zu dem der Benutzer aufgrund

langerer Geschiftsbeziehungen groferes Vertrauen hat, als zu einem beliebigen anderen

Dienst.

Der Locationbroker verwaltet die
Datenschutzeinstellungen des Be-
nutzers und leitet iiber den Noti-
fication Manager nur die Updates
an den Service Provider weiter,
die den Vorgaben des Benutzers
entsprechen. Die Datenschutzein-
stellungen eines Nutzers bestehen
aus Angaben, wie stark er seine
Position fiir verschiedene Gebiete
verbergen will. Befindet sich der
Benutzer in einem Gebiet, das er

als unempfindlich einstuft leitet

Granted location

/ ”'.-__-"‘h-,
B
Data sensitivity Loc_;a_tlfi_n
users analysis Sensitivities)
(se(»(;ice | Notification 1
providers manager | Privacy Y —
. ~—
check Pohc_y Privacy
matching olicies
Location (_Policies
Data updates _ Privacy manager /
subjects

Location broker

Abbildung 2.1: Architektur aus [7]

der Notification Manager alle Nachrichten an den Serviceprovider weiter um die Positi-
onsgenaugkeit und damit die Servicequalitit zu erhohen. Interessant sind die sensitiven
(empfindlichen) Gebiete. Durch verschiedene Algorithmen soll durch Unterdriickung von
Positionsupdates die Unsicherheit eines “Angreifers” beziiglich der Position moglichst

grofs gehalten werden.

e Der Base-Algorithmus ist die einfachste Version. Hier werden nur Locationupda-
tes an den Serviceprovider weitergeleitet, die auferhalb von sensitiven Gebieten

erfolgen.

e Beim Bounded-rate Algorithmus wird zusétzlich darauf geachtet, dass die Upda-
tefrequenz einen vordefinierten Schwellenwert nicht {iberschreitet. Wird der Schwellen-
wert niedrig gewahlt, so ist es durch die grokere zuriickgelegte Strecke zwischen
zwei Updates z.B. unwahrscheinlicher, dass ein Update direkt an einer Grenze zu

einem sensitiven Gebiet passiert.

e Zuletzt gibt der k-area-Algorithmus Updates nur weiter, wenn nicht ersichtlich

ist, welches der letzten k sensitiven Gebiete besucht wurde.

Zum Testen verwendeten die Autoren
ein Stadtgebiet, in dem die Gebiude

sensitive Gebiete und die Straken un- B Vulnerable areas

B Visible points

sensitive Gebiete sind. Es wurde ein ein-
facher automatisierter Angreifer simu-
liert, der bei fehlenden Updates die Po-
sition zwischen zwei Updates linear in-
terpoliert und den Benutzer in dem sen-
sitiven Gebiet vermutet, das am néchs-
ten zur Mitte der Interpolationslinie

ist. Der Angreifer hat sonst keine In-

formationen iiber die iiberwachten Ob- 5 N Y e 2
(€ Rat€ pat® 4N N

jekte. In Grafik 2.2 werden die vom A g i \5 i
A ifi kannten Gebiete d Of-
HBTCLICE CIRATITEL TxCDICLE Cell Vero Abbildung 2.2: Ergebnisse aus [7]
fentlichten Locationupdates in unsensi-

tiven Gebieten gegeniibergestellt. Beim

10

Base-Algorithmus kann der Angreifer nahezu jedes sensitive Gebiet, das ein User betritt,
erkennen. Bei der Bounded-Rate Version wird mit geringerer Updatefrequenz auch die
Trefferrate geringer, allerdings auch die Genauigkeit in nichtsensitiven Gebieten. Das
beste Ergebnis liefert die k-area Variante. Hier werden in nichtsensitiven iiber 90% aller
Updates veroffentlicht, der Angreifer kann aber weniger als 40% der sensitiven Gebiete
erkennen.

Dieser Ansatz versucht die Position eher zeitlich als rdumlich zu verschleiern. Dies hat
den Nachteil, dass ein Angreifer merkt, wenn sich der Benutzer gerade in einem sensi-
tiven Gebiet befindet, da in diesem Fall die Positionsupdates ausbleiben bzw. weniger

werden.

Protecting location privacy against spatial inferences: the PROBE approach

In [5] wird ein Ansatz vorgestellt, um eine Position auf Basis des geometrischen Kontexts
und der Eigenschaften der Privatsphére des Users zu verschleiern.
Der Benutzer definiert ein “privacy profile”, das angibt wie
sensitiv bestimmte Features(Kartenobjekte) fiir ihn sind.

Dieses besteht aus einem Schwellenwert v = T'(ft) fiir je-

1

1

1 ¢ 1

' L
des Feature ft. 1 r)L ;;:

1 y L
Ein wichtiger Teil der Arbeit besteht daran eine Sensiti- ' L L!
vitdtsmetrik zu definieren. Die Sensitivitit eines Gebietes ‘. .‘\.. ..f:/ .
definiert, wie empfindlich dieses Gebiet fiir die Privatsphéire

eines Benutzers ist. Die Sensitivitit P(r) = [pdf sagt iiber
Abbildung 2.3: Beispiel einer

sensitiven Region aus [5]. H1 und
H2 stellen Krankenhéuser und L

die “probability density function” (pdf) (also eine Funktion
die fiir einen Punkt die Aufenthaltswahrscheinlichkeit an-
gibt) aus, wie wahrscheinlich der Benutzer sich im Gebiet r
aufhilt. Die “probability density function” ist fiir jeden Be- einen See dar.

nutzer einzigartig und definiert sich iiber persénliche Merk-

male wie Beruf oder Hobbies. So hat beispielsweise ein Arzt fiir ein Krankenhaus eine
hohere Aufenthaltswahrscheinlichkeit als ein Biiroangestellter. Formel 2.1 definiert die
Sensitivitdt einer Region r beziiglich eines Featuretyps ft. Cov(ft) ist die Fldche, die
von Featuretyp ft abgedeckt wird. Die Sensitivitiat einer Region r beziiglich eines Fea-
turetyps ft definiert sich durch die Aufenthaltswahrscheinlichkeit des Benutzers in der

Region, die durch diesen Featuretyp innerhalb der Region r abgedeckt wird bezogen auf

11

R S . L
b T P
£ mm View] i atellite
TR T
1 ™ T ‘| - = LT
i i
et aEEE P ﬁJ M T i o Er EHe
b o i] L Qy} i ; N
=E y
pec H 7
i H 7 L ..%_,__ 7 r] TRy
| T ARSI SEE ré EEER L SRR R 4,(5}2(I 7 ZZE;Z
s 7 ruEmE.. 3 L m=r] Frpsr s A I o 7 i
o = < e i y H o & NP
ni o 110 Al Iy 5 A 7@ r s
e - 1 I == T TIT AT - -
Fal =] R am { a 5
E rim s 1] ; = a-_zﬁ‘- - %] {%
b L i Ll TdMF: 1
E I T) =] o R T
T i) i mr ST
H M ENw AR it £ Biinm
EE = | i . vl EFEE
H HEmma unm 7 ‘E.ﬁpgﬂ o
s T ma rimr
L= il o
i | T i 7 i
I i1 | i 1
8 - 7
| I |l
E== 1 T
= i R I 18
SEEH, |48 == 5 = : w8 i
:fEd I A B H 5 Y /
NN . LT mEmE Ty I | T I | R T
F H Pl O a
= NN NN AR . N R M
TN 134 1 S SR e
I 7 KT I ET ¥ = g
rl = EEEE AR B
A] b3 = L
Hlii it]
%, BEP H ”i 4 in==ay
¥ M
A TE Rl v i
PR B, TN
i I 5 1
! AT iy
i 1 A5
1 IR IR A
T KTy FEns A
vl 5 el
i = - ~Hale Sl
5 : i] T i
| 1 H
1 T FoH
1
7 i i =
4| i]
i BV it
- :
N
" 11 il Fitan
T4 Tt 1 7
T i vils
= = \l A Al il |
8o ANERTAEE, SAR i HEEN= LR N INE R
i K 1% 9.7 A TTRESTT
KENTTTN T The == A T Kl

Abbildung 2.4: Beispiel fiir eine verschleierte Karte aus [5]

die allgemeine Aufenthaltswahrscheinlichkeit der Region.
Die Sensitivitit einer Region r abhingig vom Featuretyp ft ist definiert durch:

fCov(ft)r"lrpdf
—F 5 wenn d 0
PsenS(ft;'r) fry fT‘pdf frp f7é

0 sonst

(2.1)

Das Verfahren ist ein zweistufiger Ansatz mit einer Offline- und einer Onlinephase. In der
Offlinephase wird im Voraus eine verschleierte Karte anhand der Privatsphére berech-
net, in der sich iiberlappungsfreie, verschleierte Orte (obfuscated Locations) befinden.
Diese werden in der Onlinephase nur noch aus der Karte abgefragt und an den Location
Based Service (LBS) gesendet.

Die zu berechnende Karte wird mit einem Gitter aufgeteilt und die einzelnen Zellen wer-
den nach dem Muster einer Hilbertkurve durchgegangen. Fiir jede Zelle (deckt Region r
ab), deren Sensitivitdt P(ft,r) fiir ein Feature ft den Schwellenwert T'(ft) iiberschrei-
tet, wird die verschleierte Location dieser Zellen Schritt fiir Schritt auf die Nachbarzellen

ausgeweitet (entlang der Hilbertkurve), bis der Schwellenwert eingehalten wird.

12

So entstehen grofere Gebiete (obfuscated Lo-

cations), die durch Intervalle auf der Hil-

bertkurve definiert sind. Die Position eines

Users kann einfach auf eine Zelle der Kar-

te gemappt werden. Die so erstellten Gebiete
(in Abbildung 2.4 oder 2.5 blau dargestellt)
dienen als Lookup (effizient implementierbar
als Quadtree) fiir die Zellen. Wird eine Zelle

von einer verschleierten Position iiberdeckt, so

Abbildung 2.5: Verschleierte Regionen =

lila, sensitive Features = rot [5]

wird als Position das Gebiet durch ein entsprechendes Intervall der Hilbertkurve preis-
gegeben. Ansonsten wird die einzelne Zelle (kleinstmogliches Intervall) verdffentlicht.

In diesem Ansatz wird, im Gegensatz zum vorherigen, nicht die Anzahl der Positionsup-
dates iiber die Zeit beschrankt, sondern die Grofe des moglichen Aufenthaltsgebietes in
sensitiven Gebieten wird verdndert. In diesem Fall hat das den Nachteil, dass komplexe
Vorberechnungen nétig sind und aufgrund des Overlays mit einer Hilbertkurve ein be-
grenztes Gebiet erforderlich ist. Zudem muss der Nutzer einem Locationserver vollkom-
men vertrauen und kann nicht fiir verschiedene Dienste unterschiedliche Genauigkeiten

festlegen.

Landscape-aware location-privacy protection in location-based services

Die Autoren von [4] schlagen einen sehr allgemeingiiltigen Ansatz vor und behandeln da-
bei sehr ausfiihrlich und formal die Mdoglichkeiten, wie und unter welchen Bedingungen
ein Angriff auf die verschleierte Position erfolgreich ist. Die Architektur, die hier zugrun-
de gelegt wird, sieht &hnlich aus wie beim in [7] beschriebenen Ansatz. Es gibt einen
Benutzer A mit einem mobilen Gerét und einen Agenten B, der Positionsangaben des
Benutzers verschleiert und an eine dritte Partei C' wie z.B. einen LBS weitergibt. Dabei
ist der Agent gegeniiber dem LBS fair, d.h. er versorgt den LLBS nicht mit falschen, son-
dern nur mit ungenauen Positionsinformationen. Diese sind entweder Kreise mit Radius
R oder Quadrate mit Kantenldnge 2R je nach Koordinatensystem und Metrik. Fiir neu-
trale Landschaften (der Benutzer ist iiberall mit gleicher Wahrscheinlichkeit anzutreffen)
reicht es die hinteren Stellen der echten Koordinaten abzuschneiden. Der Benutzter gibt
gegeniiber dem Agenten eine Wahrscheinlichkeit pgra/4an, mit welcher er durch einen

zufilligen Angriff unentdeckt bleiben will. Davon hingt die zu wihlende Grofe R der

13

verschleierten Positionsinformation, die der Agent wihlen muss, ab.

Es gilt folgende Gleichung zu erfiillen:

Pr(A and C within r) = /

dt Pr(A at t|B) x / dz Pr(C at 2|A atz) < psiasa
S

Qt,r)
(2.2)

Wobei Pr(A and C within r) die Wahrscheinlichkeit ist, dass C die Position von A mit
einem Abstand kleiner r trifft. S ist der gesamte Koordinatenraum und €,y ist eine
Umgebung um Punkt ¢ mir Radius r. ¢ ist die Position von A und z die Postion an der
C versucht A zu finden.

In dieser Arbeit présentieren die Autoren viele Grundlagen fiir die Positionsverschleie-
rung anhand probabilistischer Konzepte. Sie beriicksichtigen unter anderem Messunge-
nauigkeiten, verschiedene Koordinatensysteme sowie neutrale und nicht-neutrale Umge-

bungen.

14

2.2 Dateiformate

Im Bereich der Geoanwendungen haben sich verschiedene Datenformate etabliert. Hier

sollen drei Formate ndher betrachtet werden.

2.2.1 Geography Markup Language (GML)

GML ist ein auf XML aufbauendes Format, das vom Open Geospatial Consortium defi-
niert wird, um Geodaten zu beschreiben [1]. Es soll ein offenes, herstellerunabhéngiges
Format zur Speicherung und Ubertragung von Geodaten sein. Es unterstiitzt Profile
mit eingeschrinkter Funktionalitdt, damit Anwendungen nicht zwingend den gesamten
Umfang unterstiitzen miissen. Es unterstiitzt verschiedene Primitive, wie z.B. Features,
Geometrien, Topologien, Koordinaten-Referenzsystem oder Styling Rules. Es unterschei-
det zwischen Features und geometrischen Objekten. Ein Feature ist ein physikalisches
Objekt wie z.B. eine Strafe, ein Gebdude oder auch ein Ort. Es kann, muss aber nicht,
durch ein oder mehrere geometrische Objekte beschrieben werden. Die wichtigsten geo-
metrischen Objekte sind Punkte, LineStrings und Polygone. Es gibt aber auch weitere
Objekte wie z.B. Curves. Punkte sind durch ein Tupel definiert. Ein LineString ist eine
Kurve, die durch mehrere Punkte definiert ist, zwischen denen die Kurve linear inter-
poliert wird. Polygone sind definiert durch &ufere und innere Ringe. Ein Ring kann wie
ein LineString definiert werden, dessen Anfang und Ende gleich sind und somit eine ge-
schlossene Kette bilden. Aufere Ringe definieren die dufkere Begrenzung eines Polygons,
innere Ringe definieren “Locher” in der Fliche eines Polygons.

GML bietet auch die Definition von Application Schemata. Schemata dienen zur De-
finition von Objekttypen. So kénnen fiir verschiedene Anwendungen unterschiedliche

Objekttypen definiert werden.

2.2.2 OpenStreetmap (OSM)

OpenStreetMap ist ein Projekt, welches, fiir jeden frei nutzbare, Geodaten sammelt und
dhnlich wie Wikipedia, von der Community lebt. Fiir OpenStreetMap gibt es nicht nur
ein Datenformat, sondern unterschiedliche Formate und Datenbanken fiir die Speiche-
rung und Abfrage der Daten iiber eine API. Je nach Anwendungsgebiet gibt es verschie-
dene auf XML basierende Formate und einige Bindrformate. Jedoch sind die geome-

trischen Objekte in allen Formaten die gleichen. Mogliche Objekte sind Punkte, Ways,

15

Closed Ways und Relationen. Ways entsprechen etwa den LineStrings bei GML und Clo-
sed Ways den Polygonen bei GML. Relationen sind Gruppierungen von andere Objekten.
Dies kann eine Einfache Zusammenfassung von z.B. Polygonen sein um beispielsweise
geographisch nicht zusammenhéngende Flichen zu einer logischen Fliche zusammenzu-
fiigen. Jedes Objekt kann mit Tags versehen werden. Ein Tag ist ein key/value-Paar.
Prinzipiell sind beliebige Schliissel und Werte bei Tags moglich, jedoch sind von der

Community fiir die meisten moglichen Kartenobjekte sinnvolle Schliissel definiert.

2.2.3 Shapefile

Shapefiles [2] ist ein von ESRI Inc. (Environmental Systems Research Institute) entwi-
ckeltes Dateiformat fiir Geodaten. Es hat sich zu einem Quasi-Standard entwickelt und
wird von einer Vielzahl an Programmen unterstiitzt. Entsprechend finden sich viele frei
verfiighare Kartendaten im Shapefile Format. Gegeniiber GML sind beim Shapefilefor-
mat die Daten i{iber mehrere Dateien verteilt. Shapefiles ermdglichen es geometrische
Objekte (Features) mit dazugehorigen Attributen in Form von Key/Value-Paaren zu
speichern.

Die Dateien einer Shapefilesammlung sind:

e .shp - enthilt die Geometriedaten
e .dbf - enthilt Attribute zu den Geometriedaten in Form von key/value-Paaren

e .shx - verkniipft Attribute aus der .dbf-Datei mit den Geometriedaten aus der

.shp-Datei.
e .shp.xml (optional) - Metadaten im XML-Format

e .prj (optional) - spezifiziert das Koordinatensystem

In Shapefiles sind 3 grundlegende Geometriearten moglich, die auf einer Ebene liegen.
Durch weitere Eigenschaften lassen sich diese 3 Grundtypen um je 3 weitere Typen er-
weitern. Eine Erweiterung sind Multimengen. Z.B. kann ein Multipointobjekt mehrere
Punkte enthalten, wird aber nur als ein Objekt behandelt. Eine weitere Moglichkeit
sind Measured Shapetypes. Hier wird zusidtzlich zu jedem Punkt zusétzlich zu den Ko-
ordinaten X und Y ein Wert M zugeordnet. Dieser kann fiir irgendwelche Werte wie
beispielsweise eine Hohenangabe von Gebduden genutzt werden. Eine zusédtzliche Er-

weiterung ergibt sich durch eine zuséitzliche Z-Koordinate, also Definition der Objekte

16

Geometrieart Beschreibung

Point definiert einen Punkt durch eine X- und eine Y-Koordinate

PolyLine definiert eine Linie mit mehreren Abschnitten, die durch jeweils zwei
Punkte gegeben sind. zusétzlich wird eine Bounding-Box (minX,minY,

maxX, maxY) angegeben innerhalb welcher sich die Polyline befindet.

Polygon definiert ein Polygon. Basiert auf den gleichen Angaben wie eine Po-
lyLine, aber bildet mehrere geschlossene sich nicht {iberschneidende
Ketten (Ringe). Die Reihenfolge der Punkte gegen den Uhrzeigersinn
definiert hierbei Locher (Inner Ring) innerhlab eines anderen Rings
(Outer Ring).

Multi-... definiert Multimengen einer der 3 Grundgeometrien. Es sind keine

gemischten Multimengen mdoglich.

W/ Wie vorhergehende Geometrien mit zusétzlicher Z-Koordinate

.M Measured Shapetypes. Wie vorhergehende Typen mit einem zusétzli-
chen Wert.

Multipatch Bildet eine Fliche aus mehreren Teilflachen. Teilflichen bestehen aus

Triangle Strips, Triangle Fans oder Ringen

Tabelle 2.1: Geometriearten in Shapefiles

im Raum statt auf einer Ebene. Eine weitere Geometrieart ist der Multipatch, der eine
Flache aus mehreren Teilflichen bildet. Im Unterschied zu Polygonen koénnen die Teil-
flichen hier auch durch “Triangle Strips” oder “ITriangle Fans” beschrieben werden. Dies
sind Flachen die durch nebeneinander oder im Kreis liegende Dreiecke gebildet werden.

Shapefiles haben in ihrer aktuellen Definition einen Nachteil, dass sie nur eine Art
von Geometriedaten enthalten kénnen. So besteht eine Karte in der mehrere verschie-
dene Geometriearten vorkommen aus mehreren Shapefiles. Zusétzlich werden die Daten
gleicher Geometriearten nach semantischen Eigenschaften getrennt in verschiedene Sha-

pefiles gespeichert.

2.2.4 Beispiele

Es gibt eine Vielzahl von Kartenmaterial in Form von Shapefiles. Hier sollen einige

Beispiele gezeigt werden.

17

Datensatz Inhalt Shapetyp Attribute Attributwerte Beispiele

Alle als Linien FULLNAME Green Lane

All Edges Polyline L
darstellbare ROADFLG 1/0 definiert jeweils ob
Objekte RAILFLG eine Linie eine Strafse,

HYDROFLGBahnstrecke, Fluss/
OLFLG Kanal oder Pipeline ist

Urbanized Areas besiedelte Gebiete MultipolygonNAMEOO Orlando,FL

Military Instal- Militdrgelande MultipolygonFULLNAME Naval Air Station Jack-

lations sonville
American MultipolygonNAME Miccosukee
) Reservate fiir . .
Indian/ Alaska . NAMELSAD Miccosukee Reservation
Ureinwohner

Native/ Native

Hawaiian Area

Tabelle 2.2: Beispiele fiir Attribute in Kartendaten des U.S. Census Bureau

U.S. Census Bureau

Die U.S. Census Behorde bietet diverse Kartendaten der USA an. die mit statischtischen
Daten verkniipft werden konnen. Die Daten sind gebiindelt eines Staates oder Countys
verfiigbar.

Es sind unter anderem die in Tabelle 2.2 Datenséatze verfiighar. Ein Datensatz wird von
einer Shapefile reprisentiert. Die Datenséitze auf statische Zwecke ausgerichtet. So sind
Straken als Linien modelliert und enthalten Attribute wie beispielsweise die Range der
Hausnummern die sich Links und Rechts an einem Abschnitt befinden. An flachigen
Modellierungen gibt es hauptséichlich Verwaltungsbezirke oder Stadtgebiete, aber keine
genaueren Modellierungen von Héusern oder genauere Typisierung wie z.B. Kranken-

hiuser.

geofabrik.de

geofabrik.de bietet Daten des OSM-Projektes in Form von Shapefiles an. Es gibt Dateien
von verschiedenen Regionen. Gesamte Kontinente, Lander oder nur einzelne Bundeslén-
der in einer Dateisammlung. Die Qualitit des Kartenmaterials ist stark abhingig von
der Region, da sie von den freiwilligen Leistungen der Openstreemapsautoren abhingig
sind. So sind Ballungszentren in Deutschland recht gut abgebildet, landliche Gebiete und

18

andere Lander mit kleinerer Community sind nur sehr grob oder garnicht vorhanden. Die
einzelnen Gebiete sind in verschiedene Pakete (.zip-Datei) aufgeteilt. Ein Paket enthélt
die in Tabelle 2.3 dargestellten Datensétze, die jeweils in einer Shapefile enthalten sind.

Datensatz Inhalt Shapetyp Attribut Attributwerte Beispiele
o . i name Hauptbahnhof
buildings Gebdude Multipolygon))
type station, hospital
L i) name Schlosspark
natural natiirliche Gebiete Multipolygon
type park, water
. name Stuttgart
places Orte Point)
type suburb, village, ...
.) name Autobahnkreuz Ulm/
points Interressante Orte Point)
Elchingen
type station, motorway-
junction, bus_stop,
restaurant
Railways Eisenbahnstrecken Polyline name U-Bahnline Ul
name Tiibinger Strafe
type secondary, ..
roads Strafsen Polyline oneway 1/0
bridge 1/0
maxspeed 50
) name Rhein, Panamakanal
waterways Fliisse, Wasserstraften Polyline]
type river, stream, canal

Tabelle 2.3: Beispiele fiir Attribute in Kartenmaterial von geofabrik.de

2.3 Analyse

Fiir die Speicherung von Geodaten bieten die XML-basierten Formate (OSM und GML)

etwas mehr Moglichkeiten als Shapefiles. Da sie auf XML basieren, sind sie auch von

Menschen lesbar, benotigen aber mehr Speicherplatz als das bindre Shapefileformat. Die

grundlegenden Featuretypen wie Punkte, Linien und Polygone sowie die Gruppierung

gleicher Basistypen beherrschen alle drei Formate. Das OSM-Format bietet zusétzlich

19

SHP OSM GML
Bindrformat XML-/Bindrformat XML-Format

Objekttypen

Point Node Point
PolyLine Way LineString
Polygon Closed Way Polygon
Attribute Tags Properties

Tabelle 2.4: Vergleich der Datenformate

z.B. Relationen, mit denen Features unterschiedlicher Art zu einem neuen Feature grup-
piert werden konnen. Das GML-Format kann zusétzlich mit komplexeren Typen wie
Curves aufwarten, die komplexere Linientypen als die lineare Interpolation zwischen
zwei Punkten bieten.

Die GeoTools Bibliothek bietet Funktionen zum Auslesen und Speichern von GML-
Dateien und Shapefiles.

Bei den frei verfligharen Datensitzen im Shapefileformat stechen die Daten des U.S.
Census Bureau und von OpenStreetMap hervor, wobei hier die OSM-Daten eine grofere
Bandbreite an unterschiedlichen Featuretypen bieten. Wahrend sich die Daten des U.S.
Census Bureau hauptséchlich auf groflere Flachen, wie Regierungsbezirke, sowie Strafen
von in Form von Linien beschrinkt, enthalten die OSM-Daten auch Fliachen in kleinerem
Malfsstab, wie z.B. Gebdude oder Parks. Straften sind hier jedoch auch hier nur als Linien
modelliert. Fiir die Darstellung von featurebezogenen Aufenthaltswahrscheinlichkeiten
bieten die OSM-Daten recht gute Moglichkeiten. Jedoch sind hier auf der Negativseite

die nicht immer flichendeckend vorhandenen Daten aufzufiihren.

20

3 Konzepte

3.1 Systemmodell

Zur Wiederholung wird nochmal auf den Begriff des Features eingegangen, wie er hier
verwendet wird, um ggf. unterschiedliche Bedeutungen aus den vorgestellten Arbeiten
und Dateiformaten auszuschliefen. Ein Feature ist ein geometrisches Objekt einer Karte,
das die Objekte, welche die Karte darstellt, geometrisch modelliert. Jedes Feature hat
Attribute, um die Eigenschaften des Objektes zu beschreiben. Im Allgemeinen kann ein
Attribut jedes beliebige Objekt sein. In Verbindung mit Shapefiles und der hier darge-
stellten Anwendung, reichen fiir Attribute auch nicht komplexe Attribute (Integer, Float
und String).

Als Basis haben wir einen Benutzer eines Location-Based-Service, der sich im Bereich
einer featurebasierten Karte bewegt. Zu dieser Karte gibt es verschiedene Informationen
iiber den Benutzungsgrad. Dies konnen z.B. allgemeine statistische Informationen sein,
wie z.B. Autos pro Stunde auf einer Strake. Weitere mogliche Informationen kénnen auf
einen Benutzer bezogene Eigenschaften sein, wie sein Bewegungsprofil oder Praferen-
zen fiir die Verschleierung seiner Position. Alle diese Eigenschaften werden pro Feature
definiert. In einem ersten Schritt sollen diese Informationen fiir einen Benutzer in einer
einfachen Art dargestellt werden kénnen. Die Karte soll eine einfache “True/False”™Karte
sein, die angibt, welche Gebiete fiir den Benutzer sensitiv (true) sind und welche nicht
(false). Sensitive Gebiete konnen im einfachen Fall solche sein, in denen der Benutzer
prinzipiell lokalisiert werden kann. Fiir einen Fukgénger wiren dies z.B. Geb&dude oder
Gehwege. Beispiele fiir Gebiete, in denen er nicht lokalisiert werden kann, sind Autobah-
nen oder Seen.

Allgemein ist ein Gebiet fiir einen Benutzer sensitiv, wenn er nicht mochte, dass Dritte
erfahren, wenn er sich in diesem Gebiet aufhilt. Gebiete konnen auch auch unterschied-
lich sensitiv sein, was meistens von der Aufenthaltswahrscheinlichkeit in verschiedenen

Gebieten abhéngt. Deshalb wird in einem zweiten Schritt die Darstellung dahingehend

21

erweitert, dass Features, entsprechend der Aufenthaltswahrscheinlichkeit des Benutzers,

mit verschiedenen Farbabstufungen eingefirbt werden kénnen.

Objekttypen

Die in 2.2 betrachteten Dateiformate konnen zwar mit einer Vielzahl von Objekttypen
umgehen, fiir die Visualisierung und Auswertung von Aufenthaltswahrscheinlichkeiten
von Kartenobjekten eignen sich jedoch nicht alle. Da Linien und Punkte im GGegensatz zu
Polygonen keine Fliache haben, sind sie nicht geeignet um Aufenthaltswahrscheinlichkei-
ten darzustellen, da jedes Objekt, an dem sich jemand aufhalten kann, eine Fliche hat.
Meistens werden Strafen als reine Linien modelliert, da sie oft nur zur Routenplanung
verwendet werden. Wenn relativ kleine Gebiete, wie z.B. ein Stadtgebiet, betrachtet
werden, sollten Strafen auch als Polygone modelliert sein, da hier die Breite auch ins
Gewicht fallen kann. Mit Polygonen konnen alle Objekte, die aus der Vogelperspektive

betrachtet eine Flache bilden, modelliert werden

Objekttyp Verwendung

Point weniger geeignet zur Modellierung von Objekten.
Line Strafsen bei kleinen Mafstiaben
Polygon Gebéude, reale Fliachen (Parks, Straken, Plitze), logische Flichen (Re-

gierungsbezirke, Naturschutzgebiete)

Tabelle 3.1: Mogliche Objekttypen und Anwendung

3.2 Anwendung fiir das Position Sharing Verfahren

Diese Anwendung ist in Verbindung mit dem Position Sharing Verfahren [6] entstan-
den. Dieses Verfahren erzeugt verschleierte Positionsinformationen mit unterschiedlicher
Genauigkeit fiir verschiedene Location-Server. Die Positionsangabe (Share) besteht aus
einem Kreis um einen Punkt, in dem sich der User befinden kann. Da unterschiedliche
positionsbasierte Dienste unterschiedlich genaue Positionsangaben bendtigen um ihre
Dienstqualitit zu erfiillen, aber der User nicht allen Diensten das gleiche Vertrauen
entgegenbringt, miissen unterschiedliche Dienste mit unterschiedlich genauen Positions-

informationen versorgt werden. Dies erfolgt durch die Erzeugung von mehreren Shares,

22

die ineinander enthalten sind. Ein Share ist definiert durch einen Richtungsvektor der
den Mittelpunkt relativ zum Mittelpunkt des nichstgroferen Shares angibt. Der Mittel-
punkt des ersten Shares ist absolut angegeben. Die Shares werden an unterschiedliche
Locationserver geschickt, auf die dann die Dienste zugreifen konnen. Abhéngig von ihrer
Vertrauenswiirdigkeit bekommen sie Zugriff auf unterschiedlich viele Shares aus denen sie
eine genauere Position errechnen kénnen. Der entwickelte Algorithmus lauft erst mal oh-
ne Beachtung der Karteninformationen und damit der Aufenthaltswahrscheinlichkeiten
des Benutzers ab. Fiir eine Erweiterung soll eine Visualisierung der verschleierten Re-
gionen (Shares) auf einer featurebasierten Karte, eingefirbt in Abhéngigkeit von Wahr-

scheinlichkeitswerten, dhnlich Abbildung 3.1 entstehen.

Abbildung 3.1: Featurebasierte Karte, eingefarbt anhand von Wahrscheinlichkeiten

Normalisierung

Es kann immer nur ein begrenztes Gebiet betrachtet werden bzw. es ist meistens nur ein
bestimmtes Gebiet interessant. Typischerweise wird oft ein relativ abgeschlossenes Ge-
biet, wie z.B. eine Stadt, betrachtet. Dies ist beispielsweise der Fall, wenn ein Benutzer
in einem Stadtteil wohnt und in einem anderen arbeitet. So bewegt er sich grofstenteils
innerhalb der Stadtgrenzen. Um sinnvolle Ergebnisse zu erhalten, sollten die Aufent-
haltswahrscheinlichkeiten des Users auf das betrachtete Gebiet R normalisiert werden.

Das heifst, die Aufenthaltswahrscheinlichkeiten miissen so angepasst werden, dass die

23

Wahrscheinlichkeit P fiir das gesamte betrachtete Gebiet P(R) = 1 ist. Dies kann er-
reicht werden indem Die Wahrscheinklichkeitswerte P aller Features x einer Region

normalisiert werden:

Vo € R :P(2)norm = (3.1)

3.3 Uberlappende Features

Je nach Modellierungsart kann es iiberlappende Features geben. Der Ansatz aus [5] geht
beispielsweise von iiberschneidungsfreien Features aus. Dabei muss z.B. fiir ein Haus,
das in einem Park steht, die Fliche des Parks ein Loch an der Stelle des Hauses haben.
Das macht zwar die Modellierung einfacher, hat aber einige Einschrinkungen. Es gibt
zwei grundlegende Verwendungsmoglichkeiten fiir sich iiberlappende Features:

Zum einen die Einbeziehung der Hohe. So kann bei iiberschneidungsfreien Features bei
Gebduden nur eine Aussage iiber das gesamte Gebédude getroffen werden, aber nicht fiir

einzelne Stockwerke.

Zum anderen konnten Features nicht

nur real vorhandene Objekte abbil-

den, sondern auch organisatorische,

Verwaltungs- oder logische Struktu-

ren. So kann sich beispielsweise ein

Haus gleichzeitig in einem Natur- _
schutzgebiet und einem Landkreis

befinden.

Je nach dargestellten Daten muss
die Gesamtinformation von iiberlap-
penden Features unterschiedlich be-
handelt werden. Bei fiir die Features
absoluten Werten, wie beispielswei- Abbildung 3.2: Zwei sich iiberlappende Features
se Autos pro Stunde auf einer Stra-

fse, lassen sich die Werte fiir eine Briicke, die iiber eine andere Strafe fiihrt, einfach
addieren. Werden Aufenthaltswahrscheinlichkeiten dargestellt, diirfen die Wahrschein-

lichkeiten zweier Features nicht einfach addiert werden, sondern miissen nach Formel 3.3

24

berechnet werden. Hierbei sind p(x)- (1 —p(y)) bzw. p(y) - (1 —p(z)) die Wahrscheinlich-
keiten, dass x ohne y bzw. y ohne x auftritt. p(x)- (y) ist die Wahrscheinlichkeit, dass
beide auftreten. Addiert ergeben diese die Gesamtwahrscheinlichkeit. Wahrscheinlichkeit

in einem Punkt fiir iiberlappende Features:

pxUy) =p(x) - (1—-py)) +ply) - (1—plx))+plz) - ply) (3.2)
=p(x) +p(y) — 2 p(z)p(y) (3.3)

3.4 Darstellung

Fiir die Erzeugung der Darstellung gibt es verschiedene Moglichkeiten: Zum einen ist
es moglich einen einfachen “Pixel-Renderer” zu implementieren, der die Daten des an-
zuzeigenden Kartenausschnitts aus den vorgegebenen Datenstrukturen der GeoTools
Bibliothek Pixel fiir Pixel ausliest. Dies hat den Vorteil, dass fiir jeden Punkt gleich alle
Features an dieser Stelle direkt ausgewertet werden kénnen und so z.B. die Uberlappung
von Features einfach beriicksichtigt werden kann.

Der Renderer der GeoTools Bibliothek hat den Vorteil, dass er schon mit den Datenstruk-
turen der GeoTools Bibliothek zusammenarbeitet und ohne gréfsere Arbeit schon viele
Moglichkeiten unterstiitzt. So konnen Featurequellen zwischengespeichert und indiziert
werden, um die Darstellung zu beschleunigen. Die Darstellung von sich iiberlappenden
Features ist hier etwas komplizierter, da der Renderer jedes Featureobjekt fiir sich be-
trachtet. Der Renderer von GeoTools bietet ein fertiges Panel zum Einbinden in eine

Java-Swing-Anwendung inklusive Steuerelemente wie z.B. fiir Zoom.

25

4 Implementierung

Dieses Kapitel beschreibt einige der verwendeten GeoTools Klassen und im Abschnitt

4.2 die Klassen und die wichtigsten Methoden der implementierten Anwendung.

4.1 Verwendete GeoTools Klassen

In diesem Abschnitt sollen die wichtigsten der verwendeten Klassen der GeoTools Bi-
blothek beschrieben werden.

org.geotools.swing.JMapPane

Diese Klasse bietet ein Panel zum Anzeigen von Karten mit GeoTools innerhalb einer

Java-Swing-Anwendung. Die Kartendaten erhilt das Panel in Form eines MapContexts.

org.geotools.map.MapContext

Dies ist eine Klasse, welche den Inhalt einer Karte speichert. Dazu gehdren zum einen
mehrere Layer, die jeweils aus einer FeatureSource oder FeatureCollection ihre Daten
beziehen. Zum anderen gehért zu einem MapContext auch die Angabe eines Koordi-
natenreferenzsytems (CoordinateReferenceSystem), das angibt wie die Koordinaten der
Features definiert sind. Weiterhin enthélt diese Klasse auch die Angabe der Area of In-
terest, also des Ausschnitts der Karte, der betrachtet wird.

Konkret wird die Subklasse org.geotools.map.Default MapContext verwendet, da sie nicht
angegebene aber bendtigte Werte selber errechnet. Dazu zéhlen z.B. die duferen Abmes-

sungen der Karte.

org.geotools.swing.action.PanAction/ZoomlnAction/ZoomOutAction

Diese drei Klassen stellen Aktionen zur Verfiigung, die in Verbindung mit einem JButton

Zoom- und Verschiebefunktionen der Karte eines JMapPane bieten.

26

org.geotools.styling.Style

Eine Instanz der Style-Klasse kann zusammen mit den Kartendaten an einen MapCon-

text libergeben werden und definiert, wie diese Daten dargestellt werden. Fiir jeden

Layer eines MapContext ist ein eigener Style moglich.

Die Definition der Darstellung selber geschieht iiber eine Liste von Regeln (org.geotools.styling.Rule),
welche es ermoglichen Features nach verschiedenen Kriterien auszuwahlen und zu gestal-

ten. Die Features, die von keiner Regel betroffen sind, werden durch eine Defaultregel

dargestellt.

org.geotools.styling.Rule

Diese Klasse definiert eine Regel, wie eine Auswahl von Features dargestellt wird. Sie
beinhaltet einen Filter, der definiert auf welche Features die Regel angewendet wird. Die
Gestaltung der Features iibernimmt ein Symbolizer, welcher es z.B. ermoglicht fiir Linien
(sowohl Linien als Feature, als auch Linien als Umrandung von Polygonen) Stil, Dicke
oder Farbe zu verédndern. Genauso lassen sich auch bei Polygonen die Eigenschaften der

Flache in Farbe oder Transparenz verdndern.

org.opengis.filter.Filter

Dies stellt ein Interface fiir Filterklassen dar. Die implementierenden Klassen von Geo-
Tools bieten eine Vielzahl an Moglichkeiten, Features in verschiedenen Anwendungsfallen
7.B. aus einer FeatureCollection zu selektieren. Es existieren verschiedene Gruppen von
Filtern:

e logische Filter: Logische Filter sind die einzigen Filter, die andere Filter enthalten

kénnen. Mit ihnen konnen andere Filter logisch verkniipft werden.

e geometrische Filter: Diese Filtergruppe kann auf geometrischer Ebene Opera-
tionen wie Uberlappung, Schnitt oder Beinhaltung geometrischer Objekte durch-

fiihren

e Attribut Filter: Filter dieser Gruppe kénnen die Attribute von Features mitein-

ander oder mit festen Werten vergleichen.

27

org.geotools.data.FeatureSource

Diese Klasse stellt eine einheitliche Schnittstelle zum Zugriff auf eine Featurequelle dar.
Dies kann eine einfache Datei iiber FileDataStore oder auch eine Datenbank wie PostGIS.

Diese Klasse bietet nur die Moglichkeit Daten zu lesen.

org.geotools.data.FileDataStore

Diese Klasse stellt ein Interface zu einer “physikalischen” Quelle von Features, wie z.B.
eine Shapefile dar. Um auf die Features selber zuzugreifen bietet diese Klasse verschie-
dene Methoden zur Erzeugung eine FeatureSource-Instanz oder FeatureWriter-Instanz,

die auch fiir Schreibzugriff genutzt werden kann.

org.opengis.feature.Feature

Dies stellt ein geographisches Objekt dar, das aus geographischen und nicht geographi-
schen Eigenschaften besteht.

org.opengis.feature.simple.SimpleFeature

SimpleFeatures sind einfacher zu handhabende Features, allerdings mit Einschrankun-
gen. Eine FeatureSource, die eine Schnittstelle zu einer Shapefile herstellt, liefert nur
SimpleFeatures, da diese ausreichend sind um Features einer Shapefile zu beschreiben.
Ein SimpleFeature ist in seinen Attributen eingeschrinkt. Attribute kénnen keine kom-
plexen Datentypen sein. Attribute kénnen nur einfach vorkommen und sind in ihrer

Reihenfolge geordnet.

4.2 Klassendokumentation

Im Folgenden werden die erstellten Klassen und die wichtigsten ihrer Methoden doku-
mentiert.
MapviewerFrame

Diese Klasse stellt das Hauptfenster der Anwendung dar. Von hier aus werden alle Dia-
loge und Aktionen ausgeltst. Sie erstellt den Grofteil aller grafischen Elemente der

Anwendungsoberfliche und verkniipft diese mit den zugehorigen Funktionen und der

28

MapWiewerFrame Datastore
stare : DataStore layers : HashMap<5tring, Layers>
areoofinterest . ReferencedEnvelope map : MapContext
mappanel : [MapPane 1 filters . ArrayList<FilterAbstract=
refillFileListPanel() : void ~ store [@ddFile(file : File) : boolean
refillFilterListPanel() : void disableLayer{filename : 5tring) : wvoid
repaint() : void enablelLayer(filename : 3tring) : wvoid
pushareaofinterest() : void disableFilter{name ; String) : void
popAreaofinterest() ; void enableFilter{name : String) : void
refillMapCorntext() : void
toSLDFile(file : File) : File
createFromSLD{sld : File) ; Style
addFilter(filter : FilterAbstract) : void
1
filters
0 *
0, .*
Fiftterdbstract

layers

disable(} : void

enable() : void

getRule(fs FeatureSource) ' Rule
getharme() : String

eavalsfname : String) © boolean
getrilter() . Filter

getColor() : Color

setColor{color : Color) @ woid
getAlphal) © float

setiAlphalalpha @ float) @ woid

Layer

file : File

featureSource ; FeatureSource
store : FileDataStore

show @ boolean

style : Style

defaultstyle : Style

Abbildung 4.1: UML-Klassendiagramm der wichtigsten Klassen

DataStore-Klasse. Neben den Variablen fiir die Fenstergestaltung (GUT) hat diese Klas-
se nur zwei Variablen: Zum einen eine Instanz der DataStore-Klasse und zum anderen
die Areaoflnterest, ein Rechteck, das den gerade betrachteten Kartenausschnitt definiert.
Unter den Variablen, die fiir die Fenstergestaltung zustédndig sind ist noch eine Instanz
von org.geotools.swing.JMapPane interessant. Sie stellt die eigentliche Karte dar.

Die wichtigsten Methoden dieser Klasse sind:

e void pushAreaofInterest() : Speichert den aktuellen angezeigten Kartenabschnitt
in einer Variable ab. Wird beim Aktualisieren der MapContexts bendtigt, da die

Ansicht wieder auf die urspriingliche zuriickgesetzt wird.

29

e void popAreaofInterest() : Setzt den gespeicherten Kartenabschnitt auf den

Mapcontext zuriick.

e void repaint() : Zeichnet das Fenster und alle Kindelemente, insbesondere das

Kartenpanel neu.

e void refillFileListPanel() : Aktualisiert die Liste der offenen Dateien mit den

Daten aus dem DataStore.

e void refillFilterListPanel() : Aktualisiert die Liste der vorhandenen Filter mit

den Daten aus dem DataStore.

Dazu kommen noch weitere Methoden, welche zum Auslésen der verschiedenen Funk-

tionen und als Callback der einzelnen Dialoge dienen.

DataStore

Die DataStore-Klasse stellt einen Datenspeicher fiir die Kartendaten dar. Hauptbestand-
teile sind der MapContext, eine Liste der geoffneten Dateien und eine Liste mit Filtern.
Der MapContext enthélt die aktuell aktiven Layer und Filter und dient der Hauptan-
wendung um die Karte darzustellen.

Die Liste der gedffneten Dateien ist als Hashmap mit den Dateinamen als Indices im-
plementiert. Die hier abgelegten Elemente sind DataStore.Layer-Objekte, welche alle zu

einer Datei zugeordneten Daten enthalten.

e HashMap<String, Layer> layers : Enthilt Objekte vom Typ DataStore.Layer die

mit dem Dateinamen, der die Daten fiir den Layer liefert indiziert wird.

e MapContext map : Die MapContext-Instanz welche die aktuellen Daten, die an-

gezeigt werden sollen, enthélt.

e ArrayList<FilterAbstract> filters : Eine Liste von FilterAbstract-Objekten, die in

der Anwendung aktiv sind.

Methoden:
e boolean addFile(File file) : Fiigt eine weitere Datei als neuen Layer hinzu.

e void disableLayer(String filename) : Deaktiviert einen Layer/Datei.

30

e void enableLayer(String filename) : Aktiviert einen Layer/Datei.
e void disableFilter(String name) : Deaktiviert einen Filter
e void enableFilter(String name) : Aktiviert einen Filter.

e void refillMapContext() : Aktualisiert den MapContext mit den aktuell akti-
vierten Filtern und Layern. Zuerst werden alle Layer des MapContexts entfernt.
Dann wird fiir jeden einzelen Layer, der in der HashMap “layers” gespeichert ist
tiberpriift ob dieser aktiv (Layer.show —==true) ist. Wenn ja wird dieser zusammen
mit dem Style, der von buildStyleFromFilters() erzeugt wird, dem MapContext
hinzugefiigt.

e File toSLDFile(File file) : Speichert einen Style in einer .sld Datei
e Style createFromSLD(File sld) : Ladt einen Style aus einer .sld Datei

e void addFilterEquals(String attr, String value , Color color) : Fiigt einen

neuen Vergleichsfilter hinzu.
e void addFilter(Filter Abstract filter) : Fiigt einen neuen Filter hinzu

e Style buildStyleFromFilters(DataStore.Layer layer) : Erzeugt fiir einen Layer

einen Style aus den aktivierten Filtern. Wird von refillMapContext() verwendet.

e Rule createRule(Color colorfill, Color colorstroke, FeatureSource fs) :
Erzeugt eine Rule-Objekt mit den Farben “colorfill” als Flichenfiillfarbe und co-

lorstroke als Linienfarbe fiir den Featuretyp, der in FeatureSource fs gegeben ist.

e void createshadingsteps(String attr, float min, float max, int steps) :
Erzeugt mehrere Filter, die eine anhand eines Attributwertes eine Farbabstufung
erzeugen und legt diese in der filters-Variable ab.

DataStore.Layer

Die Layer Klasse innerhalb des Datastores dient nur der Gruppierung aller Variablen/
Objekte die logisch zu einer Datei gehoren. Deshalb sind alle Variablen mit public Zugrift
und es gibt keine weiteren Getter- und Setter-Methoden.

e File file : Der Filehandle zur geoffneten Datei

31

e FeatureSource featureSource : Das FeatureSource-Objekt zur gedffneten Datei.
e FileDataStore store : Das FileDataStore-Objekt zur gedffneten Datei.
e boolean show : Definiert ob dieser Layer angezeigt wird oder deaktivert ist.

e Style defaultstyle : Enthilt den Style aus der dem Layer zugeordneten Datei, der

standardmafig verwendet wird.
e Style style : Enthilt den auf den Layer angepasst Style, der durch Filter definiert
wird.
FilterAbstract

Die Idee dieser Klasse ist es, Filter der GeoTools Bibliothek mit einer Farbe zu verkniip-
fen, in welcher Features, auf die der entsprechende Filter zutrifft, eingefarbt werden. Fiir
jeden Filtertyp wird von dieser Klasse abgeleitet und eine eigenstindige Klasse erstellt.
In der Basisimplementierung wird auf komplexere Gestaltungsmoglichkeiten verzichtet.
Es ist lediglich moglich eine Farbe zu definieren, in der alle Aspekte der Featuretypen

eingefirbt werden. Dies ist hier auch in den meisten Féllen ausreichend.

e void disable() : Aktiviert Filter
e void enable() : Deaktiviert Filter

e String getName() : Gibt eine Kurzbezeichnung des Filters zuriick, welche auch

die Filtereigenschaften enthalten sollte.

e boolean equals(String name) : Vergleicht ob der iibergebene String mit getNa-

me() {ibereinstimmt.

e void setColor(Color color) : Setzt die Farbe des Filters. In dieser Farbe werden

die fiir Features,die den Eigenschaften des Filters entsprechen, eingefirbt.
e Color getColor() : Gibt die Farbe des Filters zuriick.

e Rule getRule(FeatureSource fs) : Erzeugt passend zum FeatureTyp der ange-

gebenen Featuresource ein Rule-Objekt.

Es gibt drei Implementierungen dieser Klasse:

32

e FilterEquals : Dieser Filter definiert einen Attributnamen und einen dazugeho-
rigen Wert. Er trifft auf alle Features zu, die dieses Attribut mit diesem Wert

enthalten.

e FilterBetween : Dieser Filter definiert statt einem genauen Wert einen Wertebe-

reich auf den ein Attribut eines Features iiberpriift wird.

e FilterWrapper : Diese Implementierung hat keine konkrete Filterfunktion, son-
dern dient nur als Wrapper fiir beliebige GeoTools-Filter um in der FilterImport-

Klasse beliebige Filter angeben zu konnen.

Filterlmport

Diese Klasse dient als Schnittstelle zu Dateien, die Filterobjekte welche die Filter Abstract-
Klasse implementieren. Sie dient einerseits dazu die Filterliste, die sich in der Anwendung
erstellen ldsst, zu speichern und wieder aufzurufen. Zusétzlich dient sie als Importschnitt-
stelle, um fremde Daten in die Anwendung zu importieren. In der Datei selber lassen
sich alle von GeoTools verfiigharen Filter erstellen, auch wenn es dafiir keine konkre-
te Implementierung der FilterAbstract-Klasse gibt. In der Datei werden die Filter im
XML-Format gespeichert. Eine genauere Beschreibung des Dateiformats findet sich in
Kapitel 5.1.3.

e boolean open(File file) : Offnet eine Datei.

e ArrayList<FilterAbstract> importFilters() : Gibt eine Liste von Filterobjekten,

die in der geoffneten Datei enthalten sind zuriick

e void exportFilters(ArrayList<FilterAbstract>> filterList) : Speichert eine
Liste von Filterobjekten

Attributelmport

Diese Klasse dient dem Import von zusétzlichen Attributen zu vorhandenen Features. Die
iibergebene Datei im XML-Format ist in zwei Abschnitte gegliedert: Der erste Abschnitt
enthilt die die Attributnamen und die Datentypen der Attribute. Der zweite Abschnitt
besteht aus einer Liste von Datensétzen, die jeweils aus einem Filter und Attributen mit

entsprechenden Werten bestehen. Der Filter bestimmt Bedingungen, unter denen einem

33

Feature die dazu angegebenen Attribute und Werte zugewiesen werden. Eine genauere

Beschreibung des Dateiformats findet sich in Kapitel 5.1.4.

e boolean importFile() : Offnet eine Datei mit Attributen.

e void setToFeatureSource(FeatureSource fs) : Fiigt die Attribute der angege-

ben FeatureSource hinzu.

34

5 Evaluation

5.1 Anwendungsbeschreibung

5.1.1 Shapefile/Layer 6ffnen

Die Anwendung kann gleichzeitig mehrere Layer, die jeweils einer Shapefile entsprechen

anzeigen.

Wird eine Datei gedffnet, so wird

tiberpriift ob im gleichen Verzeichnis 21 = SR ¥ &

Feature type

eine Datei mit dem gleichen Namen .
buildings (polygon)

und der Erweiterung .sld vorhanden Line

.)) Color... width [1
ist. Ist diese Datei vorhanden und ent- = :

Fill

hélt eine giiltige Stylebeschreibung, so . % opadty T 1?0

wird dieser Style verwendet um den .
oint

Layer darzustellen. Ist keine .sld-Datei size |: Symbol

Labels

[Field

vorhanden, wird ein Dialogfenster ge-
offnet in dem die Anzeigeeinstellungen

fiir den Layer definiert werden kon-

| Annlv || Cancel |

nen. Hier lassen sich, je nachdem wel-
cher Featuretyp in der Datei gespei- Abbildung 5.1: Styledialog

chert ist, verschiedene Eigenschaften

andern. Abbildung 5.1 zeigt die Einstellmoglichkeiten fiir einen Polygonlayer. Es las-
sen sich Linien fiir die Umrandung sowie die Fiillfarbe der Fliche verdndern. Optional
kann ein Attributsfeld als Text mit eingeblendet werden. Beim Featuretyp “Linie” fehlen

die Optionen fiir die Fiillflache.

35

Filter Funktion

Beispiel

Equals

Between Feature liegt zwischen zwei Werten

Uberpriift ein Attribut auf einen genauen Wert type = station

0.1 < probability < 0.2

Tabelle 5.1: Mogliche Filter

5.1.2 Layer aktivieren/deaktivieren

Geobffnete Layer konnen, nachdem sie einmal getffnet wurden, auch einzeln fiir die An-

zeige deaktiviert werden, bleiben aber in ihren Einstellungen erhalten.

5.1.3 Filter

In der Anwendung lassen sich Kombinationen aus Filtern und Farbzuweisungen (hier

kurz Filter genannt) erstellen, mit denen Features anhand ihrer Eigenschaften automa-

tisch eingefiarbt werden konnen. Trifft ein Filter auf ein Feature zu, so wird dieses in

der dem Filter zugeordneten Farbe gefdrbt. Die Features konnen anhand ihrer Attribute

durch Anwendung der Filter in Tabelle 5.1 gefiarbt werden.

=

File Properties Filter

\d
S
ok

.,
xof 4
%o W oy
5o T &
"
BN
‘;9 Rl

(a) inaktiv

Feature Info:

File Properties Filter

-

mapuiewer

[Files [Filters | |

Filt:

Feature Info:

Abbildung 5.2: Beispiel fiir die Darstellung von Features mit Filter

Filter Import/Export

Unter dem Meniipunkt “Filter” gibt es die Moglichkeit die erstellten Filter in eine Datei
zu exportieren oder aus einer Datei zu importieren. So kdnnen erstellte Filterkonfigu-
rationen gespeichert und wieder geladen werden. Es konnen auch Daten aus anderen
Quellen importiert werden, indem man sie in das Datenformat iiberfiihrt.

Das Dateiformat besteht aus einfachen XML. Eine Ubersicht iiber alle méglichen Fil-
ter, die GeoTools zur Verfiigung stellt findet sich unter http://docs.geotools.org/la-
test/javadocs/org/opengis/filter /Filter.html und unter http://schemas.opengis.net/fil-
ter/1.0.0/filter.xsd findet sich das entsprechende XML-Schema fiir die XML-Repriisentation
der Filter. Exemplarisch sind im Beispielcode 5.1 zwei Filter dargestellt. Das Wurzelele-
ment besteht aus einem Filter-Tag. Darin kdnnen beliebig viele Style-Blécke enthalten
sein, die alle jeweils einen Filter sowie ein Color-Tag und ein optionales Alpha-Tag bein-
halten. Das Color-Tag definiert iiber seine Attribute “r”“g”,“b” (rot-, griin-, blau-Anteil)
in welcher Farbe ein Feature, auf das der zugeordnete Filter zutrifft, eingefirbt wird. Giil-
tige Werte fiir die Attribute sind ganze Zahlen von 0 bis 255 und definieren zu welchem
Anteil die jeweilige Grundfarbe einfliekt. Das Alpha-Tag definiert eine Alphatranspa-
renz. Ein Wert von 1 ist untransparent und ein Wert von 0 stellt volle Transparenz dar.
Giiltig sind hier Float-Werte von 0.0 bis 1.0 . Ist kein Alpha-Tag angegeben, so wird der

Defaultwert 1.0 (keine Transparenz) genommen.

Listing 5.1: Beispiel fiir eine XML-Datei mit Filtern

<Filter>
<Style>
<PropertylsEqualTo>
<PropertyName>type</PropertyName>
<Literal>water</Literal>
</PropertylsEqualTo>
<Color r="204" g="51" b="0" />
<Alpha value="0.5">
</Style>
<Style>
<PropertylsBetween>
<LowerBoundary>

<Literal>0.0</Literal>
</LowerBoundary>
<UpperBoundary>

37

<Literal>1.0</Literal>
</UpperBoundary>
</PropertylsBetween>
<Color r="204" g="51" b="0" />
<Alpha value="0.5">
</Style>

</Filter>

Wahrscheinlichkeiten

Diese Filter dienen auch als Grundlage zur unterschiedlichen Einfirbung von Features
mit unterschiedlichen Wahrscheinlichkeiten. Dafiir gibt es zwei verschiedene Moglichkei-
ten: Uber den Meniipunkt “Filter -> Shading” lassen sich automatisiert mehrere Filter
erstellen. Unter Angabe eines Attributnamens, einem minimalen und einem maximalen
Wert, einer Schrittweite sowie zwei Farbwerten erstellt diese Funktion eine Bandbrei-
te von Filtern, die jeweils ein Intervall, entsprechend der Schrittweite, zwischen den
beiden Werten abdecken und Features auf die dieser Filter zutrifft ein entsprechendes
Farbintervall zuordnen. Hierfiir miissen die entsprechenden Werte als Attribute in der
darzustellenden Shapefile enthalten sein. Alternativ konnen die Werte schon vorher auf
entsprechende Farben abgebildet werden und mit einem Filter den entsprechenden Fea-

tures iiber eine eindeutige Id eines Features zugeordnet werden.

5.1.4 Import von Attributen

Eine wichtige Eigenschaft der Anwendung ist die Zuweisung von Aufenthaltswahrschein-
lichkeiten fiir Features. Diese konnen entweder direkt in der Shapefile gegeben sein oder
iiber eine XML-Datei importiert werden. Eine XML-Datei fiir den Import besteht aus
zwei Sektionen: Aus der Definition der zu importierenden Datentypen und den Daten sel-
ber. Die oberste Ebene bildet das Wurzelelement “<Properties>...< /Properties>". Die-
ses enthélt den Definitionsabschnitt fiir die Variablentypen und die Werte der Variablen
fiir bestimmte Features. Der Definitionsbereich enthélt fiir alle zu importierenden At-
tribute ein <Attribute> Tag, welches mit dem Attribut “key” den Namen des Attributs
definiert und dem Attribut “‘type” den Typ. Mogliche Typen sind “Double”; “Integer”
oder “String”. Die Werte selber sind innerhalb der “<set>...< /set>"-Umgebung definiert.

38

Sie enthélt zwei Arten von Tags: Innerhalb des <Filter> Tags wird definiert, welchen
Features die Werte zugewiesen werden. Das <Attrib> Tag enthilt die Werte. Wie beim

Import der Filtereinstellungen kann auf alle Filter von GeoTools zuriickgegriffen werden.

Listing 5.2: Beispiel einer XML-Datei fiir den Import von Attributen

<Properties>
<Definition>
<Attribute key="probability" type="Double" />
<Attribute key="name" type="String" />

</Definition>

<set>
<Filter>
<PropertylsEqualTo>
<property>type</property>
<literal>train_ station</literal>
</PropertylsEqualTo>
</Filter>
<Attrib key="probability" value="0.33" />
<Attrib key="name" value="Bahnhof" />
</set>
<set >
</set>

</Properties>

5.2 Darstellungsergebnisse

Uberlappende Features

Die Darstellung iiberlappender Features gliedert sich in zwei Félle. Die Darstellung von
absoluten Werten und die Darstellung von Wahrscheinlichkeiten. Fiir den ersten Fall
konnen Features statt einer Farbabstufung der volle Farbwert zugewiesen und die Va-

rianz der Farbe, abhidngig vom Wert, durch Alphatransparenz realisiert werden. Dabei

39

muss darauf geachtet werden, dass die Transparenz entsprechend der iiberlappenden Fea-
tures, die zusammen den groften Wert ergeben, skaliert wird. In Abbildung 5.3 wird ein
Gebdude dargestellt, bei dem die zwei senkrechten Gebdudeteile iiber einem Keller ge-
baut sind. In dieser Karte konnte z.B. die Personendichte (Personen pro m?) dargestellt
werden. In den sich iiberlappenden Teilen herrscht somit eine héhere Personendichte, da
dort auch mehrere Stockwerke existieren. Da hier die Transparenzwerte der einzelnen

Features addiert werden, ist dies kein Problem.

Werden jedoch Wahrscheinlichkeiten darge-

stellt funktioniert nach Formel 3.3 dieser m Ck—\b —

Ansatz nicht mehr. Da der Renderer der
GeoTools-Bibliothek jedes Feature fiir sich D:,
und ohne Bezug zu seiner Umgebung darstellt, [
miissen die Daten anderweitig aufbereitet wer-
den.

Oy

Eine mogliche Lésung wire die Schnittflache

. .. . =

der sich {iberlappenden Features zu ermitt- e <
B

len, daraus entsprechende Features zu erstel- ;" S i 2.

len und die entsprechenden Werte nach For- . 3
i . . Abbildung 5.3: Darstellung tiberlappen-
mel 3.3 zuzuweisen und diese in einem zusitz-
)) der Features
lichen Layer darzustellen. Dies muss entweder
in einem Vorverarbeitungsschritt oder nur bei
relativ kleinen Kartenausschnitten mit wenigen Features erfolgen, da im schlechtesten
Fall jedes Feature mit jedem anderen verglichen werden muss, was einen erheblichen

Rechenaufwand darstellt.

Klassische Darstellung

Abbildung 5.4 zeigt einen mit der Anwendung, auf Daten von OpenStreetMap basierend,
erstellten Kartenausschnitt der Stadt Heilbronn. Dieser entspricht, stark vereinfacht,
der iiblichen Darstellung von Kartenmaterial wie beispielsweise in Google Maps. Die
unterschiedlichen Einfarbungen sind durch Anwendung von Filtern entstanden. Zum
Beispiel iiberpriift ein Filter das Attribut “type” auf den Wert “riverbank”, also einen

Fluss und farbt Features, welche dem Filter entsprechen, blau ein. Entsprechend werden

40

=

f
| —
(R4

e
'.' -:-;“ -l."= I T
; ﬁ[ﬁ 1‘.'=:._:;5"rii

Abbildung 5.4: normale Kartendarstellung

Parks griin eingefiarbt. In diesem Beispiel existiert noch ein Museum in tiirkis sowie eine

Polizeistation in orange.

True/False Darstellung

Die True/False Darstellung in den Abbildungen 5.5 und 5.6 stellen dar, an welchen
Orten Benutzer prinzipiell anzutreffen sind. Es wird in beiden Abbildungen der gleiche
Ausschnitt wie in Abbildung 5.4 gezeigt. In beiden Féllen steht eine rote Farbung fiir
“false”, also Orte an denen der entsprechende Benutzer nicht anzutreffen ist und griin fiir
“true” und damit Orte die ein Benutzer erreichen kann. Sowohl das Benutzerprofil fiir
einen Fufsgdnger als auch einen Autofahrer erwartet den Benutzer logischerweise nicht
in oder auf dem Fluss. Ein Fufsginger kann prinzipiell auf der Strafe und in Gebduden

aufgefunden werden. Autofahrer hingegen sind in Gebduden nicht zu erwarten.

41

LI

N
%
g

N2 = =
o> o N arrets. L
[T miy/feoeus [] 1 1]
T e E N ise, e T
f) , L
- —__ ;-_;.tm /o, TE e = .‘
Abbildung 5.5: True/False-Darstellung fiir Autos

Darstellungen von Wahrscheinlichkeitsverteilungen

Abbildung 5.7 zeigt die Wahrscheinlichkeitsverteilung verschiedener fiktiver Personen
fiir das gleiche Gebiet. Es handelt sich hier um eine Karte der Gebdude des Campus der
Universitat Stuttgart. Je dunkler die Einfarbung ist, desto héher ist fiir dieses Gebaude
die Aufenthaltswahrscheinlichkeit des Benutzers. Man kann gut die Unterschiede im
Verhalten erkennen. Der Mitarbeiter (Abb. 5.7(a)) der Universitét hélt sich die meiste
Zeit in seinem Biiro in dem Gebdude unten rechts auf. Einige weitere Gebdude auf dem
Campus sind auch etwas dunkler gefiarbt, da der Mitarbeiter dort auch Vorlesungen
hélt, oder in die Mensa geht. Der Student hingegen (Abb. 5.7(b)) verbringt die meiste
Zeit auf dem Campus in unterschiedlichen Ho6rsélen. Bei ihm ist deshalb kein Gebéude

erkennbar, in dem er sich groftenteils aufhilt. Zur Verdeutlichung ist jeweils ein Kreis

42

Fi
4 l
P
2
K

\.:1%-'— _..;m

=l

Abbildung 5.6: True/False-Darstellung fiir Fufsginger
eingezeichnet, der eine verschleierte Position darstellen soll. Im Fall des Mitarbeiters ist

es doch sehr wahrscheinlich, dass er sich innerhalb des Kreises ganz rechts aufhilt. Im

Fall des Studenten ist es nicht so klar, wo er sich aufhélt.

43

(a) Mitarbeiter

(b) Student

Abbildung 5.7: Wahrscheinlichkeitsverteilung unterschiedlicher Personen

44

6 Zusammentassung

Durch die Verbreitung von GPS-Empfangern und giinstigen Datentarifen fiir mobile Ge-
rite, dringen immer mehr Location Based Services auf den Markt. Da nicht jeder seine
genauen Positionsinformationen preisgeben, aber trotzdem solche Dienste nutzen mdch-
te, werden Moglichkeiten entwickelt, um Positionen zu verschleiern. Dabei spielen die
Eigenschaften eines Benutzers eine wichtige Rolle. Dazu zéhlen beispielsweise die Be-
wegungsprofile und damit die Aufenthaltswahrscheinlichkeiten an verschiedenen Orten
sowie die Priferenzen der Verschleierung.

Die hier entwickelte Anwendung bietet eine Moglichkeit diese Eigenschaften in Karten
zu visualisieren. Mit Hilfe von Filtern bieten sich viele Moglichkeiten Kartenobjekte

einzufarben und verschiedene Daten grafisch darzustellen.

45

Literaturverzeichnis

1]
2]

3]

4]

[5]

(6]

7l

Geography markup language. http://www.opengeospatial.org/standards/gml.

Esri shapefile technical description. http://www.esri.com/library/whitepapers/
pdfs/shapefile.pdf, 1998.

Abbildungen 1.1, 3.1, 5.2, 5.3, 5.4, 5.5, 5.6 und 5.7 sind mit Kartendaten von
Openstreetmap entstanden. (c) 'OpenStreetMap’ und Mitwirkende, CC-BY-SA.
http://www.openstreetmap.org/, 2011.

Claudio Agostino Ardagna, Marco Cremonini, and Gabriele Gianini. Landscape-

aware location-privacy protection in location-based services. Journal of Systems

Architecture, 55(4):243 — 254, 2009. Secure Service-Oriented Architectures (Special

Issue on Secure SOA).

Maria Luisa Damiani, Elisa Bertino, and Claudio Silvestri. Protecting location pri-

vacy against spatial inferences:the probe approach, 2009.

Frank Diirr, Pavel Skvortsov, and Kurt Rothermel. Position Sharing for Locati-

on Privacy in Non-trusted Systems. In Proceedings of the 9th IEEE International

Conference on Pervasive Computing and Communications (PerCom 2011), pages

189-196, Seattle, USA, Mérz 2011. IEEE Computer Society.

Marco Gruteser and Xuan Liu. Protecting privacy in continuous location-tracking
applications. IEEE Security and Privacy, 2:28-34, 2004.

46

http://www.opengeospatial.org/standards/gml
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.openstreetmap.org/

Erklarung

Hiermit versichere ich, diese Arbeit selbststindig verfasst und nur die angegebenen Quellen
benutzt zu haben.

Andreas Paul:

Stuttgart, 31.05.2011

	Abbildungsverzeichnis
	Tabellenverzeichnis
	1 Einführung
	1.1 Motivation
	1.2 Aufgabestellung
	1.3 Szenarien

	2 Grundlagen und verwandte Arbeiten
	2.1 Kartenanalyse für Positionsverschleierung
	2.2 Dateiformate
	2.2.1 Geography Markup Language (GML)
	2.2.2 OpenStreetmap (OSM)
	2.2.3 Shapefile
	2.2.4 Beispiele

	2.3 Analyse

	3 Konzepte
	3.1 Systemmodell
	3.2 Anwendung für das Position Sharing Verfahren
	3.3 Überlappende Features
	3.4 Darstellung

	4 Implementierung
	4.1 Verwendete GeoTools Klassen
	4.2 Klassendokumentation

	5 Evaluation
	5.1 Anwendungsbeschreibung
	5.1.1 Shapefile/Layer öffnen
	5.1.2 Layer aktivieren/deaktivieren
	5.1.3 Filter
	5.1.4 Import von Attributen

	5.2 Darstellungsergebnisse

	6 Zusammenfassung
	Literaturverzeichnis

