* Institut fiir Architektur von Anwendungssystemen (IAAS) M

Universitat Stuttgart
Universitatsstral3e 38
D - 70569 Stuttgart

Studienarbeit Nr. 2316

Abstract Business
Process Monitoring

Sumadi Lie
Studiengang: Informatik
Prufer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. David Schumm
begonnen am: 21.12.2010
beendet am: 22.06.2011

CR-Klassifikation: C.2.4,D.2.2,H.4.1,H.5.2,H.5.3

Abstract

Business process monitoring provides the means to monitor the executing activities
of process instance and it allows checking the resulting state of each activity. This
information provides users knowledge about which activities have successfully been
performed and which ones need to be fixed by an administrator or technical
operator. However, modeling and executing of business processes are carried out
on different levels of abstraction, i.e., the process model that is designed on high-
level by the business users might not be directly executed, but it needs to be either
decomposed into several small additional steps or translated into low-level
executable codes for example Business Process Execution Language (BPEL) by the
technical users, so that the process engine can understand how to execute the
business processes. In the end the business users who are interested in viewing the
resulting business process instance can only have a low-level view, i.e., the status of

the high-level view is unknown.

In this student thesis business processes based on the language BPEL will be used
in the low-level view, while the high-level process model is proposed and realized as
Chevron-like processes (used in Microsoft PowerPoint). The Chevron process model
might be defined by tagging some useful information such as name and picture to
each activity to reflect the business purposes, and also small indicator for the activity
status.

The problem described above can be dealt with the assistance of process views
[Schumm?2] and state propagation patterns [Schumma3]. Process views allow given
process model to be customized, e.g., by removing a particular activity or by
augmenting additional information to activities which can be wused during
visualization. In business process monitoring, process views enable the mapping
between activities on different levels of abstraction and they also visualize the

current state of running activity instances.

State propagation patterns [Schumm3] define how states of low-level view can be

projected into the high-level view. The resulting states of activities from the BPEL

business process should be propagated back into the activities of Chevron process.
Some basic patterns will be presented and each of them contributes a solution to a
particular case. At the end an example scenario is introduced and a test of the

projection from low-level model into high-level model will be conducted.

Table of Contents

Y 0] = od F PP PPTRP 2

R o1 (0T B Tox (o] o F TP UPP 6
00 R 1V [0 11 V7= (o o PP 6
R - L PP 7
1.3 SHrUCIUIE OFf WOTK ... et e et e e e e e e e e 7

A = T] (o O o] g [of=T o £ PP 9
2.1 BUSINESS Process MONITOMINGcoveiriii e e e e e e e e e aa e 9
2.2 PrOCESS VIBWS ...ttt ettt et e e e e e e e e e e e e e e 11
2.3 State Propagation Patterns for Business Process Monitoring 12

3 Technologies and ArchiteCturesccccoevciiiiiiiiiii i e 2214

3.1 Extensible Markup Language (XML)ocoi it e e e e e 14
3.2 Java APIS fOr XML ParSEIScccuii ittt e e e e e e e e 15
3.2.1 Document Object Model (DOM)uuiiiiiiiiiaiiiiiieeee e 16
3.2.2 Streaming APIS for XIML (StAX) ..ovveeieiiieiiee et 16

3.3 Scalable Vector GraphiCs (SVG)......ovii i e e e e, 17
Bid BPEL ot 18
341 ACHVILY IN BPEL ...vniiiice it et 19
3.4.2 BPEL EVENt MOGEoiviiiiiie e e e 20
3.4.3 BPEL EXIENSIONS ...covu ittt it et et e et et et e e e e e 21
4 Motivating EXampleo 22
4.1 MOtIVatiNg SCENAKIO ...ttt e e e e e e e e e e e e e 22
4.2 Example of BPEL as LOW-leVel VIEWccoooiiiiiiiiiieeeeeee e 24
4.3 Example of Chevron Process as High-level View..............cccccocniiiinnee, 26
4.4 The Mapping between BPEL and Chevron Processcccccocveeeeniniiiiiiinnn 28
5 Concepts and ArchiteCIUIec.oi i e e 30
0 B O 0T [T o £ 7 PSPPI 30
S5.1.1 BPEL STAES ... 30
5.1.2 CREVION STALESeiiiiiiiieiieaie ettt e e e e e e e e e e 31
5.1.3 Chevron Process Model Definitioncccvveeriiiieeininieieee e 32
5.1.2 The Mapping DefiNitionccccuuiieiiiiiiieieee e 33

5.2 ATCRILECIUNE.eeiiiie e 34
5.2.1 The main Building BIOCKSoooviiiiiiiiiie e 34

5.2.2 FUNCLIONS Of JAVA PIrOCESSOI ...eveiiiieieiete e e et e e e et r e e eeaaneeens 35

6 Implementation of State Propagationccciiiiiiiiiiiins i, 36
6.1 SVG TeMPIALESoeee ettt e e et e e e e e et e e 36
6.2 BPEL Extension for Stateful BPELcceuviiiiiiiiiieiiiiece e 38
6.3 XML-Scheme and XML-DOCUMENLSoviuiiiniieiiiiitie et e eeee e 38

6.3.1 XML Schema and XML Document for Chevron Process Model............ 39
6.3.2 XML Schema and XML Document for State Projection............cccccc....... 42

6.4 Projection of Low-level to High-level View of Process Models 46
6.4.1 Read Stateful BPELccoocuiiiiiieiiiie e 46
6.4.2 Read the Mapping SEtScueiiiiiiiiiiiiiie e a7
6.4.3 Read the Propagation RUIESiiiiiiiiiiiiiiiiieieee e 49
6.4.4 Execute the State Propagationcccceeeeeeiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeee 50
6.4.5 Generate Stateful CheVIONccoiiiiiiiiiiii e 51
6.4.6 Generate SVG Representationooovvvvveieiieiiiiiiiieii e 51
A =1 11T RPN 53
7.1 Example of State Mapping SEetScccoviiiiiiiiiiiie s 53
7.2 Stateful Chevron and SVG Representation.............cccuveeieeiiieneeniniiiiiieeee e 54

8 Conclusion and OULIOOKoiiuiii i e e 5 8
REIEIENCES. ...t e 59
ETKIAIUNG o e e 63

1. Introduction

1.1. Motivation

Business process is a vital guideline for a company or an organization to
successfully run its business. Each business part is reflected as activities and they
are connected by a connector to show their dependencies (process model). For an
example the activities of the process model of a book publisher could be book
ordering, book availability checking, book delivery, etc. They must be well-ordered so

that the process model as a whole can be understood and executed properly.

In order to ensure that the process model is carried out correctly there should be a
mechanism to check the current state of the activities. Herein, business process
monitoring comes into play because it is not easy to track each activity as neither the
process model is typically simple, nor small. The status of each activity is contained
in a database, called audit trail. By augmenting this information into activities it is
possible for a monitoring tool to provide functionality which allows the users to

visually inspect the current state of running process instance.

The Business Process Execution Language (BPEL) allows business process
designer to design a process model, execute it in a process engine, and monitor the
resulting status. It means that the process model that is being executed and
monitored is identical. However, this is not always the case. The high-level process
model that is designed with business in mind needs to be refined or translated into a
low-level format which is understood by the process engine, and the resulting model

structure is somehow quite different to the original one.

For example it is possible for a business user to design its own, high-level process
model using for instance the Decidr (http://www.decidr.eu) platform. The process
model is described in the Decidr Workflow Definition Language (DWDL). Before the
process is executed the high-level DWDL will be translated into BPEL format based
on the pre-defined mapping rules. For an instance the activity “book delivery” in high-
level will be mapped into a sequence of BPEL activities, invoke and receive activity.
Invoke means the books are ready to be sent to the customer and after successfully

being delivered, a notification is received by the receive activity. However, all states

related to “book delivery” are visible only on the BPEL activities. The business user
who designed the process model also wants to monitor the activity status, but it is
not available on the high-level view because it has not been propagated back to the

origin.

1.2. Task

The purpose of this student thesis is to implement the state propagation approach
[Schumm3] to support monitoring a given business process instance based on BPEL
[4] in a higher level language. For such language, in this thesis we use the abstract
process language “Chevron”. For this task, an XML-based serialization format and
an SVG-based visualization for the Chevron process language have to be defined.
Furthermore, a rule language for state propagation has to be developed for defining
projections of execution states from BPEL to Chevron. A prototype to perform such

projections is being developed as a proof of concept.

1.3. Structure of Work

Chapter 2 introduces the basic concept of business process monitoring, process

views and state propagation patterns.

Chapter 3 summarizes the technologies used in this work. They include Extensible
Markup Language (XML), Java APIs for XML Parsers, Scalable Vector Graphics
(SVG), and Business Process Execution Language (BPEL).

Chapter 4 introduces an example scenario including a low-level process model
based on BPEL and Chevron process model. Chapter 4 also explains how they are

related to each other.
Chapter 5 shows the architecture which bounds the technologies and the state
propagation patterns together to produce a SVG-based visualization for the Chevron

process instance.

Chapter 6 discusses the architecture of the prototype.

Chapter 7 examines the implementation of this architecture.

Chapter 8 concludes the work and gives outlook how this work could be further
extended.

2. Basic Concepts

2.1. Business Process Monitoring

Business process monitoring is a general term for techniques that provide
information about the status of a process instance [Freund]. A process instance
represents a single executing process model. The process instance that is being
monitored can be either still running or already completed. Besides each status
activity of the process instance can also be observed so the administrator has

complete knowledge about the execution progress.

Either process or activity instance follows a life-cycle whenever the execution takes
place. In the Workflow Management Coalition Specification (WfMC) for Application
Programming Language the status of process and activity instances is presented as
a nested state [WAPI]. In the context of this student thesis only activity state will be

considered. The details of the states are described in the following table.

State Description

Open The activity instance is active.

open.running Indicate that the activity instance is executing.

open.notRunning The activity instance has not been started yet.

open.suspended The activity instance might be temporarily suspended.

Closed Indicate that the instance has been completed.

closed.aborted The activity instance has been aborted. (stop the activity if
it is possible)

closed.terminated The activity instance has been terminated. (stop the
activity when it is completed)

closed.completed The activity instance has completed normally.

Table 2.1 States of activity instance [WAPI]

The Audit trail is a database which records the state changes for process instances,
activity instances, and work items. It plays an important role in business process
monitoring [zurMuehlen]. For recovery purposes this database keeps the states of

process and activity instances. If the system crashed, the last known status of the

instances can be retrieved and the execution can also be resumed. Moreover,
because of the precious information contained in audit trail, process evaluation can

be carried out more effectively and accurately.

The users who can take benefits from the business process monitoring are classified

into three groups [zurMuehlen]:

1) Workflow participants
The participants perform their jobs based on the work list created for them, i.e.,
they can choose a task from the list and work on it. By using the monitoring tool
they can evaluate the history of a process instance. For example they can see
the pending tasks or identify their colleagues who encounter a difficulty from a
particular task.

2) Workflow administrators and process managers
They can evaluate the overall performance of the process engine and provide the
result to either technical or organizational level. Using this monitoring information
they might also balance the workload to other departments or participants by
reassigning the tasks to them.

3) Workflow customers
Normally, customers interact with the system via a process invocation interface.
Once it is invoked the process instance will be created and some functionality like
current state monitoring and even state manipulation are possible. An example is
a customer who buys goods from the online store can take a look of its current

orders status.

According to [zurMuehlen], process monitoring can be divided into two categories:
technical and organizational process monitoring. The technical process monitoring is
used to observe the system response time and workload. It also gives the
administrator and process manager information about the number of active
participants, pending activities, faulted activities, etc. If the process instance is
executed on business partner, the details of an internal process model are usually
hidden or abstracted. This is on one side to give freedom to modify the internal
business details and on another side the company that owns the process model
does not want to expose its internal business processes. For instance, one coarse-

grained activity will appear instead of some fine-granular ones and in this case the

10

organizational process monitoring allows the business partner to monitor only that

activity.

2.2. Process Views

One particular business process might contain hundreds of activities and the effort to
maintain the complex business process becomes even harder. In addition, most of
the users only want to view some particular activities instead of the whole process,
i.e., the business process can be personalized based on user interests [Bobrik]
because presenting all activities to them would not make much sense. With help of
process viewing patterns [Schumm?2] it is possible to transform a given business
process in order to decrease the complexity of the original business process and
also presents the users a better view experience in terms of abstracting the internal

process details [Polyvyanyy].

Herein the basic process viewing patterns in [Schummz2] that are related to business
process monitoring will be briefly presented. Omission pattern shows a removal of
activities and the related connectors, i.e., information can be filtered. Aggregation
combines some activities into one coarse-grained activity (summarizing information)
and alteration makes it possible to change a property of an activity or connector. The
properties could be a name, identifier, transition condition or status related to the
activity. Theme pattern also plays its part by determining which information should
be explicitly visible. Augmentation pattern with runtime information describes the
augmentation of information e.g. monitoring information (current state, workload) to
the process. All of these patterns can be used together to assist and solve different
task with different complexity. For instance runtime information might augment the
process with the monitoring information and then present it to users using the theme
pattern. By applying process view patterns to original process model may produce a
structurally different resulting process model. For this thesis, the augmentation with
runtime information is of fundamental importance as it is a basic prerequisite for

state propagation.

11

2.3. State Propagation Patterns for Business Process Mon itoring

The concept of process viewing patterns plays a fundamental role for the state

propagation patterns. Process views in business process monitoring describe the

projection of activities of low-level to high-level view, and based on this projection

state propagation patterns define a way how information, i.e., the status of running

activity instances for monitoring purposes, should be mapped onto elements at

different levels of abstraction.

Following are some basic state propagation patterns as described in [Schumm3] that

will be used in this work.

1)

2)

Direct state propagation pattern

This pattern describes a one-to-one mapping of the low-level to high-level view
i.e. a status of one activity on the low-level will be propagated to exactly one
activity on the high-level view. The status of the low-level is exactly the same one
as on high-level (See figure 2.1). For an example the completed assign activity of
BPEL will be presented on the activity of the Chevron process with state

completed.

—

Figure 2.1 Direct state propagation

State alteration pattern

Before mapping the state of low-level to high-level view the corresponding state
needs to be adapted. This is because the states set from the low-level may be
different from the states set from high-level. As for another case the state of low-
level has different semantic compared to the one on high-level view (See figure
2.2). Example: a faulted process should not be presented as a fault on high-level
view. It should be adapted to the state sets from the high-level e.g. as a running

process.

12

—

Figure 2.2 State alteration

3) State combination pattern
As the name already implied the state combination pattern aggregates the states
from activities of the low-level and propagates it to one single activity on high-
level view. The combination can be carried out from consecutive directly
connected low-level activities, but it is not necessary, it can be combined from
arbitrary low-level activities (See figure 2.3). Example: the sequence of invoke
and receive of BPEL activities represents one activity on the high-level view. The
states from invoke and receive will be combined before the mapping takes place.

T e | ey

Figure 2.3 State combination

13

3. Technologies
3.1. Extensible Markup Language (XML)

XML was originally designed to transport and store data [w3s1] so it is mainly used
to describe information rather than display information. XML is standardized as data
representation by The World Wide Web Consortium (W3C). XML Document and

XML Schema will be briefly presented in the following sub-chapters.

3.1.1. XML Document

Below is a simple XML document (Listing 3.1). XML document is structured
hierarchically and has the form of a tree. It starts with the root element (“book”
element in the example) and branches until the leaves (the *“title” and “price”
element). The relationship between elements can also be described as parent —
children and sibling. Book element is parent of title and price element, and title and
price element are sibling. An element in XML has a start and end tag, and can
contain text or other elements. An element might also have additional information
which is described by an attribute, e.g., “id” on the “title” element. The following XML
document is also well-formed [w3org] because it begins with the XML declaration
<?xml version ="1.1"?>, it has exactly one root element, and the elements are

nested properly.

Listing 3.1 A Simple XML Document

<?xm version = "1.1"?>

<book>
<title id ="1">Introduction to XM.</title>
<price>49.99</price>

</ book>

3.1.2. XML Schema

XML documents that have been created must follow a set of rules regarding the
structure. It will be difficult to process an XML document which does not have a legal
building block as we expected. XML Schema Definition (XSD) is used to describe the
structure of an XML document and to validate the data correctness. It defines which

elements and attributes can appear on the document, which elements are child

14

elements and how they are being ordered, default value for the elements and

attributes. XML Schema has the root element <schema>.

XSD defines two types of elements that can be used in XML document, namely the
simple element and the complex element.
1) XSD simple element
A simple element can contain only text (integer, string, boolean, etc.), and it
cannot contain any other elements or attributes. The simple elements definition

for previous example is described in Listing 3.2.

Listing 3.2 An Example of Simple Element Definition

<xs: el ement nane="title" type="xs:string"/>
<xs: el ement nane="price" type="xs:decimal"/>
<xs:attribute name="id" type="xs:integer"/>

2) XSD complex element
A complex element can contain other elements and/or attributes. From previous
example in Listing 3.1 the element “book” is a complex element because it
contains two other elements i.e. the “title” element and the “price” element. The

schema definition is as followed (Listing 3.3):

Listing 3.3 An Example of Complex Element Definition

<xs: el ement nane="book" >
<xs: conpl exType>
<XS:sequence>
<xs:element name="title" type="xs:string"/>
<xs: el ement nane="price" type="xs:deciml"/>
</ xs: sequence>
<xs:attribute nane="id" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >

3.2. Java APIs for XML Parsers

An XML parser is needed to read XML document and provides an application with
contents of the document so that the related data can be extracted and processed.
There are varieties of parser that can be employed, and the Java Programming
Language offers the Java APIs for reading XML documents like Document Object
Model (DOM) and Streaming APIs for XML (StAX).

15

3.2.1. Document Object Model (DOM)

DOM is a high-level parsing API which interprets the XML document in a tree-like
structure and it allows for random access. Before any data is fetched into the
application an XML document will be entirely parsed and created as objects, and
these objects are then kept in the memory. If the XML document is very large a lot of
memory will be consumed.

DOM specification defines a set of objects and by using the objects a program can
access the information in the XML document and also modify or update it if
necessary. So the main benefits of DOM are its ease of use [Griffith] and it allows

data modification.

The specification of DOM in Java is implemented as the package org.w3c.dom. The
package provides interface for the DOM. The interfaces are nodes in the DOM parse
tree. Some interface definitions that are relevant to this student thesis are listed in

Table 3.1. The complete list of the interface definitions can be found in [oraclel].

Name Description

Document This interface represents the entire XML document.

Element Element interface represents an XML element.

Node The Node interface is the primary data-type for the entire
DOM.

NodelList An ordered list of nodes that is accessible via index.

Text This interface represents the textual content of XML
element or attribute.

Table 3.1 The org.w3c.dom package [oraclel]

3.2.2. Streaming APIs for XML (StAX)

StAX is a bi-directional API for reading and writing XML. It is often referred as pull
parsing i.e. users only get or pull XML information when it explicitly requests for it.
So, pull parsing allows users to have full control of the application. One drawback of
StAX is there is no Create, Read, Update, Delete (CRUD) capabilities [JAXP].

The cursor API of StAX is a cursor that can walk through the entire XML document.

The cursor can point to one thing at a time and always moves forward, never

16

backward. It has two interfaces, namely XMLStreamReader for reading from and

XMLStreamWriter for writing to an XML document.

An XML document is broken down into a set of events and the cursor API will iterate
through these events. Events are for example START ELEMENT, END ELEMENT,
ATTRIBUTE that indicates the start element, end element, and attribute of XML
document, respectively. The cursor API uses the iterator hasNext() and next() to
iterate through the events. The hasNext iterator will return true if there is an event to
process, while the next iterator moves the cursor one step forward to the next event
[JWSPT].

When the XMLStreamReader is first created, the current event is START
DOCUMENT and XMLStreamReader.next method moves the cursor to the next
event. Other common used methods in XMLStreamReader are getLocalName()
which return local name of the current event, and getElementText() that reads the

textual content of an element.

The interface XMLStreamWriter specifies how to write an XML document, but it does
not validate the input against the well-formed XML. The methods
writeStartDocument, writeStartElement, writeAttribute are commonly used to
compose an XML document. The complete methods summary for
XMLStreamReader and XMLStreamWriter can be found in [oracle2] and [oracle3],

respectively.

3.3. Scalable Vector Graphics (SVG)

SVG defines 2D-vector graphics in XML format. The language is simple and intuitive
for example the use of ellipse and polygon make the language easier to learn.
Because it is an XML-based language, it can be generated and parsed using
standard XML tools, e.g., DOM. It is an open standard and a W3C recommendation.
SVG offers some advantages over other image formats such as JPEG and GIF.
SVG files can be read and modified using a large range of tools like notepad. An
SVG file size is smaller and more compressible than JPEG and GIF formats. SVG
images are scalable, i.e., the images can be printed in high quality at any resolution

and they can be zoomed without losing the image quality [w3s2].

17

SVG has specified predefined shape elements that can be directly used. The shapes
are:

* Rectangle, it is defined using the <rect> tag.

» Circle, it is defined using the <circle> tag.

» Ellipse, it is defined using the <ellipse> tag.

* Line, it is defined using the <line> tag.

* Polyline, it is defined using the <polyline> tag.

» Polygon, it is defined using the <polygon> tag.

» Path, it is defined using the <path> tag.

Listing 3.4 shows a simple drawing of a rectangle. The x and y attributes describe
the position of the rectangle, and width and height attributes specifies the width and

height of the rectangle. The rectangle is red and has a text written on it.

Listing 3.4 An Example of Drawing Simple Rectangle

<svg wi dt h="100% hei ght="100% version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<rect x="20" y="20" wi dth="400" hei ght="200" style="fill:red"/>

<text x="25" y="100" font-size="15" style="fill:black">Sinple
Rect angl e</ t ext >
</ svg>

3.4. Business Process Execution Language (BPEL)

BPEL was originated from the combination of graph-based language Web Service
Flow Language (WSFL) from IBM [ibm] and calculus-based language XML Business
Process Language (XLANG) from Microsoft [microsoft]. The first version of BPEL
was known as BPEL4WS and on 2007 the second version WS-BPEL was released
and standardized by OASIS.

BPEL is an XML-based language for describing the behavior of a business
processes between Web Services and as Web Services, i.e., it recursively
aggregates the Web Services. BPEL can be classified into abstract and executable
processes. Abstract processes are not intended to be executed and they might

represent the internal operational details. The executable processes define the

18

process execution and interaction between Web Services in a consistent way in

heterogeneous environments [oasis].

3.4.1. Activities in BPEL

BPEL activities describe the process logic, i.e., the functional implementations of a
business task will be executed on each activity. There are two classes of BPEL
activities [oasis]: basic and structured activities. The basic activity describes the
basic task of the business logic. The structured activity specifies the control-flow
logic. They contain a set of basic or structured activities. Each activity can have an
optional attribute name so that the activity can be identified by parser. The lists of
basic and structured activities are summarized into Table 3.2 and Table 3.3,

respectively.

Activity Name Description

<invoke> It allows the business process to invoke Web services offered

by business partners.

<receive> It allows the business process to wait until a matching

message is arrived and then it completes..

<reply> It sends a reply message after it received a message from a

corresponding <receive> activity.

<assign> It updates values of variables with new data.

<throw> It generates a fault from inside the business process.
<empty> It represents the “no-op” in business process.

<wait> It waits until a certain period of time has been reached.
<rethrow> It re-throws the fault that was originally caught by the

immediately enclosing fault handler.

<exit> It ends the business process instance.

<compensate> It starts compensation on all inner scopes that have already
completed successfully, in default order.

<compensateScope> It starts compensation on a specified inner scope that has
already completed successfully.

<validate> It validates the values of variables against their associated
XML and WSDL data definition

<extensionActivity> It allows the extension of new activity type.

Table 3.2 List of BPEL basic activities [oasis]

19

<sequence> It defines activities that are sequentially performed.

<if> It is used to select exactly one activity from a set of activities.
<while> A loop of child activity if the given condition is true.
<repeatUntil> A loop of child activity until the condition evaluates to true.
<pick> It waits for one of several possible messages to arrive or for a

time-out to occur.

<flow> It allows one or more activities to be performed concurrently.

<forEach> A loop of child scope activity of N+1 times where N is the
difference between <finalCounterValue> and

<startCounterValue>.

<scope> It defines nested activity which has transactional semantic.

Table 3.3 List of BPEL structured activities [oasi S]

3.4.2.BPEL Event Model

BPEL event model [KKS+] specifies events related to the life-cycle of processes,
activities, scopes, loops, and links. It is independent of any BPEL processor
implementation. Events are produced by a processor and are used to determine the
state transitions (from one state to another) of the artifacts specified above. In the

context of the student thesis only the event model for activity will be presented.

The life-cycle of activity event is applicable for all BPEL activities, including the
scopes and loop as activities. Following are the activity events definition [KKS+]:
» Activity Ready
This event is fired when an activity is ready to execute.
» Activity_Executing
This event is fired when an activity begins to execute. For example <receive>
activity is executing when it starts waiting for a message to arrive not when it
receives a message.
» Activity_Executed
This event is fired when the execution of an activity has finished, but it needs to

wait for a signal from external source before completing the activity.

20

» Activity_Complete
This event is fireed when the activity is completed and received a signal from
external source.

» Activity Terminated
This event is fired when an activity is terminated because the process instance is
terminating.

» Activity Faulted
This event is fired when an activity is aborted because of a fault within the
activity.

3.4.3.BPEL Extension

Extensions in BPEL are desirable to introduce new concepts and capabilities that are
not available on BPEL standard. BPEL is designed to be extensible and the
extensions can range from new attributes to new elements. BPEL for Java (BPELJ)
[Blow] is one example of the extensions which combine BPEL with Java code so that
it is more convenient to program the BPEL process because functionalities written in

Java can be integrated into the processes.

BPEL specification [oasis] defines a general way how extensions are carried out
(see Listing 3.5). The <extension> element is used to describe the namespaces of
BPEL extension of elements or attributes. The mustUnderstand attribute indicates
whether the extension must be understood by the process engine or it may be
ignored. In [compas] some specific extensions such as element and activity

extensions are presented.

Listing 3.5 Formality of Element Extension [oasis]

<process ...>
<ext ensi ons>
<ext ensi on nanespace="anyURl " mnust Under st and="yes| no"/ >+
</ ext ensi ons>

</ process>

21

4. Motivating Example

In this chapter a simple example scenario will be introduced and used in the rest of
the student thesis. This example represents a business process of book ordering
which can appear in different levels of abstraction i.e. the low-level view and high-

level view, and the mapping between them to show their relationship is required.

4.1. Motivating Scenario

A business process of book ordering represents every business task (activity) that is
related to book ordering from the book publisher. In this case the business process
should at least be able to deal with three fundamental activities i.e. ordering,
checking book stock, and book shipment. The sequence flow might be started when
an order for books has been received. The flow can then continue checking the
warehouse whether the ordered book exemplars are still in stock and it is ended
when a shipment notification that indicates the book has been delivered to the

customer is received.

How much details are available on the design and implementation of the business

process depends strongly on the designer of the business process, available

services, and the business itself. In the following there are two possible scenarios

which depict how a business process is designed in terms of different levels of

abstraction:

1) Business process is designed on high-level.
In this sense the business process is designed by the business consultants.
Normally the resulting process model is more or less straightforward. Some
particular activity may have sub-activities to represent more details about
business tasks. If the process model needs to be automatically executed in a
process engine some structural transformation are required from the high-level
business view to low-level implementation view. This transformation is then done

by the technical users, so-called “IT refinement” (see Figure 4.1).

22

pr

Figure 4.1. Transformation from high-level to low-l evel View

2) Business process is designed on low-level.
The BPEL language allows business processes to be designed and executed in a
low-level, though directly executable view. However, the structure of a process
model is more complex and more difficult to understand. Another example is
when a company wants to provide limited process transparency to the customer.
In this case the company on one hand does not want to expose its private
business logic, and on the other hand a customer only needs information that is
relevant to track her book ordering. Thus, she also does not want see any detail
implementations. That is why a transformation (with help of process views) is also

needed from low-level to high-level view (see Figure 4.2).

— MY

Figure 4.2. Transformation from low-level to high-l evel View

23

In either ways of design and implementation the states of the activities on high-
level view are the main concern. In the context of this student thesis the status
from executed activities needs to be retrieved and propagated back to business
users. So the goal is to visualize the state of activities for monitoring purposes,
though on high level process models. On the next sub-chapters, i.e., Sub-chapter
4.2 and 4.3, an example of the process model book ordering in BPEL and

Chevron process are presented, respectively.

4.2. Example of BPEL as Low-level View

In this section, the business process for book ordering will be derived. The three
main business tasks: book ordering, book availability checking, and book shipment
should be analyzed so that the semantic translation into BPEL activities can be

performed properly and understood by the process engine.

Listing 4.1 describes the BPEL activities as the translation result from book ordering.
Book ordering will be interpreted into two BPEL activities, namely <receive> and
<invoke> activities. The <receive> activity waits until it receives an order from a
customer and it is followed by <invoke> activity to take care of the administrative

details.

Listing 4.1 BPEL Activities Translation from Book Ordering

<bpws: receive createl nstance="yes" nanme="recei ve Order"
operation="initiate" partnerLink="client"
port Type="tns: Orderi ng- Process" vari abl e="input"/>

<bpws: i nvoke name="prepare Order Processing"/>

Book availability checking is realized into a structured <flow> activity wherein all
availability checking related activities are carried out. The first child activity of <flow>
is the prepare Availability Check activity and it is represented by the <assign>
construct. It provides information e.g. how many copies of a book are ordered.
Based on this value check Availability is invoked via <invoke>. If the book exemplars

are still available the <flow> activity is finished, otherwise the <sequence> activity of

24

book printing will be executed. Below is the BPEL code snippet for book availability
checking (Listing 4.2).

Listing 4.2 BPEL Activities Translation from Book Checking

<bpws: f | ow name="Fl ow'>
<bpws: | i nks>
<bpws: | i nk nane="Ilink1l"/>
<bpws: | i nk nane="Iink2"/>
</ bpws: | i nks>
<bpws: i nvoke name="check Availability">
<bpws:t arget s>
<bpws:target |inkName="1ink1"/>
</ bpws:targets>
<bpws: sour ces>
<bpws: source |inkName="1ink2"/>
</ bpws: sour ces>
</ bpws: i nvoke>
<bpws: assi gn nanme="prepare Availability Check"
val i dat e="no" >
<bpws: sour ces>
<bpws: source |inkName="1ink1"/>
</ bpws: sour ces>
</ bpws: assi gn>
<bpws:if nane="if Product Avail able">
<bpws:t arget s>
<bpws:target |inkName="1ink2"/>
</ bpws:targets>
<bpws: enpty nane="do Not hi ng"/>
<bpws: el se>
<bpws: sequence nane="Sequence" >
<bpws: assi gn name="Prepare Production"
val i dat e="no"/ >
<bpws: i nvoke name="|nvoke Production Process"/>
<bpws:receive name="wait for conpletion of production"/>
</ bpws: sequence>
</ bpws: el se>
</ bpws:if>
</ bpws: f | ow>

After book availability checking has been performed the control flow will continue to
the book shipment. It begins with an <assign> activity to prepare all shipping details.
A shipping service is then invoked by <invoke> activity and <receive> activity waits
for a notification to denote that the book has been delivered. Then the system
records this notification as an archive. The whole process instance is ended after

<reply> activity has sent a reply message to the receive order activity.

25

Listing 4.3 BPEL Activities Translation from Book Shipment

<bpws: assi gn name="prepare Shipping" validate="no"/>
<bpws: i nvoke name="shi ppi ng"/>
<bpws: recei ve nane="shi ppi ng conpl etion notice"/>
<bpws: assi gn nanme="prepare order |og" validate="no"/>
<bpws: reply nane="order conpletion"/>

The process model realized as BPEL is shown in Figure 4.3.

= main

Book Ordering \ @] receive Order
& prepare Order Processing

& prepare Availability Check

fUS
& check Availability
4 oo
@ if Product Available L Book Availability
=))
Check
if Product Available Else
do Nothing = Sequence

& Prepare Production
& Invoke Production Process

@ | wait for completion of production

= prepare Shipping

& shipping

A 4

Book Shipment

@ | shipping completion notice

prepare order log

4| order completion

®
Figure 4.3 BPEL Process Model for Book Ordering
4.3. Example of Chevron Process as High-level View
The simple book purchasing order will now be designed in business in mind. In the

high-level view Chevron-like processes will be adopted because it shows a simple

and straightforward representation for interpreting and understanding the business

26

tasks. On the Chevron process it is possible to visualize the process by augmenting

text description and icon to depict a particular business task.

The three basic business tasks book ordering, book availability check and book

shipment will be examined again in order to produce the Chevron process model.

Table 4.1 describes the translation, while the complete Chevron is presented in

Figure 4.4.

Main Task

Book Ordering

Chevron Translation
Book Ordering (No modification

is needed).

Chevron Process

Book Availability
Check

New activity: Printing will be
created and it has sub-activities:
check availability, production,
and check product which take
care of every detall

implementation of Printing.

Book Shipment

Book Shipment (No modification

is needed)

Table 4.1 Business Tasks Mapping to Chevron Process

27

Figure 4.4 Chevron Process Model for Book Ordering

4.4. The Mapping between BPEL and Chevron Process

The process models in form of BPEL and Chevron were already depicted in the last
sub-chapters. Now the mapping from BPEL to Chevron is required. This mapping is
not only to indicate the semantic relationship between them but also to obtain the
states of BPEL activities and augment the states to already mapped Chevron

process elements.

There are some approaches that can be adopted to perform the mapping. The most
straightforward way is directly plotting one BPEL activity to exactly one Chevron
activity. The process view patterns for instance the aggregation (e.g. shipping and
shipping completion notice to book shipment) and omission pattern (e.g. omission of
prepare order log activity) could also be employed. Because the mapping is from a
detailed to an abstract process model the relationship between the activities is either
one-to-one or many-to-one. In addition to the approaches described above the
semantic similarity between the activities of both process models is very helpful to
perform a proper mapping. The mapping between BPEL activities to Chevron

activities is defined on Table 4.2 and presented in Figure 4.5.

The second activity (Printing) of Chevron model is not mapped by any BPEL
activities. The mapping is rather made to its sub-activities i.e. Check Availability,
Production, Check Product.

28

BPEL Activities Chevron Activity

receive Order

prepare Order Processing

Book Ordering

check Availability

Check Availability

Prepare Production
Invoke Production Process

wait for completion of production

Production

Flow

Check Product

shipping
shipping completion notice

Book Shipment

Table 4.2 The Mapping between BPEL Activities to Ch

Z main

& | receive Order

& prepare Order Processing

= prepare Availability Check

S
& check Availability

evron Activity

if Product Available Else

do Nothing 2 Sequence

R Tt \
0 if Product Available i
: 25

Prepare Production

> 20

& Invoke Production Process

@] wait for completion of production

= —

& prepare Shipping

& shipping

@ | shipping completion notice

& prepare order log

45| order completion

@®

Figure 4.5 The Presentation of the Mapping between

— A

BPEL Activities and Chevron Activities

29

5. Concepts and Architecture
5.1. Concepts

In this section, the concepts related to Chevron process model as a high-level
representation will be defined. These concepts include the BPEL and Chevron

states, and technical definitions of the Chevron process and the activities mapping.

5.1.1. BPEL States

BPEL activities presented in chapter 4.2 are stateless i.e. the activities have no
status information attached. These states are prerequisite for the states of Chevron
activities i.e. BPEL states are required so that the state propagation patterns can be

used to map the states to Chevron activities.

Based on the states of activity instance described in [WAPI] the states of BPEL

activities in this work can be deduced. The BPEL states are defined in Table 5.1.

BPEL States Description

No Status The activity has not started yet or there is no

information provided.

Active The activity is still executing.
Completed The activity has successfully completed.
Suspended The activity can be temporarily suspended and

started again later.

Failed The activity is faulted and it will stop.

Terminated The activity is terminated by user and it will stop after

the execution has completed.

Table 5.1 States of BPEL activity

Figure 5.1 shows the state transition of the BPEL activities. The state transition is
defined based on BPEL events [KKS+]. When an activity instance is first instantiated
it has no status because it has not started. If the activity starts executing it is in active
state and can go to one of four states: completed, suspended, terminated or failed. A

suspended activity can be resumed and go to active state again or can be

30

terminated by the user. In the end of its execution the activity instance will go to the

completed state.

Sl T
T

Figure 5.1 State Transition of BPEL activities

5.1.2. Chevron States

Because Chevron process model is intended for business audiences the Chevron
states are not as detail as in the BPEL. The states like terminated or failed will be
neglected because it describes technical related information and are interesting only
for the administrator. The Chevron states are also concluded from activity states
described in [WAPI] and BPEL events [KKS+]. The resulting states are presented

(see Table 5.2) and the state transition is presented in Figure 5.2.

Chevron States Description ‘
Outstanding This state is equivalent to No Status state of BPEL
activity i.e. the activity has not yet started or no

information state is provided.

Running The activity is still executing.

Completed The activity has successfully completed.

Table 5.2 States of Chevron Activity

31

Figure 5.2 State Transition of Chevron Activity

5.1.3. Chevron Process Model Definition

After a short illustration of Chevron process model example in sub-chapter 4.3 the
technical definition of the process model will be covered in this section. A Chevron
activity is regarded as a regular activity. The activity might contain sub-activities to
reflect the refinement of the corresponding parent activity. The parent activity is
referred as a complex activity, and the sub-activities are just other regular activities.
Moreover the activity might also contain a number of properties (see Table 5.3). The
activities of Chevron process model is read from left to right and the children of
complex activity are read from top to bottom. The technical definitions of the Chevron

activities are illustrated in Figure 5.3.

Chevron Properties ‘ Description

Activity ID It is used to identify the activity
Activity Caption It reflects the business task.
Activity Status It describes the current state or behavior of

corresponding activity.

Activity Icon for the status It is used to visualize the activity status.

Activity Icon for the caption It is used to visualize the business task.

Activity Color It is used to draw the activity in particular color.
Activity Documentation It gives a short description of corresponding
activity.

Table 5.3 Properties of Chevron Activity

32

Activity Documentation:
It appears when the cursor is pointing
to a particular activity.

Left-to-right

Activity Caption Activity Icon for Caption

Activity Icon for Status

Top-to-bottom

Figure 5.3 Properties Presentation of Chevron Activ ities

5.1.4. The Mapping Definition

In this section the mapping between BPEL activities to Chevron activities will be

formally defined and it is described as follows:

1)

2)

3)

The BPEL and Chevron activities are referred to as source activities and target
activities, respectively. Each activity of the source and target has an identifier and
a value that allows defining which source activity shall be mapped to which target
activity.

Before the state propagation can take place a set of different state mappings
needs to be defined. The mapping set comprises the state propagation patterns
in [schumm3]. Each mapping is actually represented by one of the state
propagation patterns and variants of one particular pattern can be defined to
describe under which conditions the source activities should be mapped to target
activities. For an example, the alteration pattern can defined into two variants that
describe different conditions for a state alteration.

Based on the two conditions above the propagation rules can now be carried out
by specifying the source activity, target activity and state mapping set. The
collection of propagation rules is called the state projection.

33

5.2. Architecture

In the following section (sub-chapter 5.2.1) an architecture for the state projection is
introduced. It shows how each element is connected to the Java processor and
which output the processor produces. In the next sub-chapter 5.2.2 the functions that

make up the processor will be examined.

5.2.1. The main Building Blocks

The architecture shown in Figure 5.4 represents building blocks of all related files for
state projection purpose. Java Programming Language as the core of this
architecture will take the stateful BPEL process, the stateless Chevron model, and
the mapping set and propagation rule files as inputs. These artifacts will be
processed by the Java program to produce a corresponding stateful Chevron
process model. At the same time an SVG representation of the corresponding
Chevron will also be generated based on the SVG template which describes the

graphical rendering of a Chevron process.

Stateful BPEL Mapping Set and Stateless
L] rya

illa [o] PP-CPIP Gy
hd CIICVIUII

Processor SVG Template

Stateful

Chevron SVG Output

Figure 5.4 Architecture of the State Projection

Following are the descriptions of each building block:
1) Stateful BPEL: a BPEL file which contains the status of each BPEL activity (see
sub-chapter 6.2).

34

2) Mapping set and the propagation rules: an XML document which implements the
formal mapping definition (see sub-chapter 6.3.2).

3) Stateless Chevron: an XML document for Chevron process model but the status
of the activities is still unknown (see sub-chapter 6.3.1).

4) SVG template: an SVG file that represents and visualizes one activity of Chevron
process model, but it does not contain any properties related to Chevron activity
(see sub-chapter 6.1).

5) Stateful Chevron: an XML document for Chevron process model whose states of
the activities is already defined as results from the mapping implementation.

6) SVG output: it produces the SVG file from the stateful Chevron.

5.2.2. Functions of the Java Processor

The Java processor contains a collection of Java functions whose goal is to produce
an XML file of stateful Chevron and an SVG representation of the corresponding
Chevron process model. There are six functions inside the processor and they are
executed sequentially (see Figure 5.5) i.e. it begins from reading stateful BPEL file
and ends after generating the SVG file. The detail implementation of each function is

explained in sub-chapters 6.3.

v

Read Stateful
BPEL

¢ Stateful BPEL

Mapping Set and Stateless
Propagation Rule Chevron

Read the I /
Mapping Sets \ Java
& / Processor ~~ SVG Template

Read the J'
Propagation Rules
Stateful SVG Output

¢ Chevron

Execute the State
Propagation

v

Generate Stateful
Chevron

Generate SVG
Representation

Java Processor

Figure 5.5 Functions of Java Processor

35

6. Implementation of State Propagation

This chapter deals with all implementation details. In first sub-chapter an SVG
template will be proposed. In sub-chapter 6.2 the BPEL will be extended to support
the stateful BPEL. Furthermore, the XML Scheme of Chevron process model and
state projection will be discussed so that a valid XML document for each of them can
be generated. In the last sub-chapter the Java processor takes the SVG template
and the XML documents for creating SVG representation based on the stateful

Chevron process model.

6.1. SVG Template

SVG template is an SVG file that represents an activity of Chevron process model.
The purpose of using the template is to generate a number of Chevron activities
effectively based on the corresponding template. The template declares a base
position in the coordinate system and it can be manipulated by introducing a running

variable whose value will be multiplied by a counter value for every new activity.

There are two templates defined: one for a regular activity and another one for the
child activity. The regular activity has characteristics of bigger dimension and
horizontally ordered, while the child activity is smaller and vertically ordered. Some
placeholders for both templates are needed in order to augment the properties of the

activity such as the activity caption, status, color, and so on.

Listing 6.1 SVG Template for Regular Activity

<l-- definition of Chevron Activity using Polygon -->
<pol ygon poi nt s="X+40, 80 X+240, 80 X+280, 120 X+240, 160 X+40, 160 X+80, 120"
style="fill:url (#COLOR); stroke: #STROKE_COLOR; stroke-w dt h: 2"/ >

<I-- definition of activity caption -->

<text x=" X+160" y="130" style="fill:black"
font-fam | y="Franklin Gothic Heavy"
font-size="20">CAPTI ON</ t ext >

<l-- definition of activity status and icon -->

<i mage x="X+210" y="55" w dt h="40" hei ght="40"
xlink: href =" STATUS"/ >

<i mage x="X+85" y="90" wi dth="55" hei ght="65"
xlink: href="1CON'/ >

36

Listing 6.1 above shows an SVG template for regular activity. The activity is best
drawn by using <polygon> shape element because it allows drawing a close shape
by defining a set of connected straight line elements [w3org2]. Because this activity
always moves forward, it is only necessary to manipulate the x coordinate by
summing the “X” variable with x value of base position. This method is also valid for

the text and images definition. All variables are highlighted with red color.

The element <polygon> allows color to be defined by using the fill property which
refers to variable COLOR for defining a certain color. The color used in this thesis is
gradient color. Gradient enables a smooth transition from one color to another color

[w3s3]. Listing 6.2 below presents a gradient color of aqua to blue.

Listing 6.2 Gradient Color for Chevron Process Model

<def s>
<linearG adient id="aqua_blue" x1="0% y1="0% x2="0% y2="120% >
<stop offset="0% style="stop-color:#00ffff;stop-opacity:1"/>
<stop offset="100% style="stop-col or:#0000ff; stop-opacity:1"/>
</linear G adi ent >
</ def s>

Listing 6.3 SVG Template for Child Activity

<!-- definition of Chevron Activity using Polygon -->
<pol ygon poi nts="X, Y+185 X, Y+185 X, Y+215 X, Y+245 X, Y+245 X, Y+215"
style="fill:url (#COLOR); stroke: #STROKE_COLOR; st roke-w dt h: 2"/ >

<l-- definition of activity caption -->

<text x=" X" y=" Y+130" style="fill:black"
font-fam | y="Franklin Gothic Heavy"
font-size="20">CAPTI ON</ t ext >

<!-- definition of activity status and icon -->

<i mage x="X" y=" Y+165" wi dth="40" hei ght="40"
xlink: href =" STATUS"/ >

<image x="X"' y=" Y+195" w dt h="55" hei ght =" 65"
xlink: href="1CON"/ >

The template definition for child activity is more or less similar to the regular activity
definition, but it needs more consideration in terms of position manipulation. The
child elements do not only move vertically but also moves forward implicitly because
they follow the position of their parent. In this case all values of x coordinate of
corresponding parent activity must be retrieved, and based on these values the y

37

coordinate can be calculated by summing the “Y” variable with the default value of

base position to reflect the vertical movement (see Listing 6.3).

6.2. BPEL Extension for Stateful BPEL

This chapter shows how the BPEL file of book ordering is extended for the activity
status (see Listing 6.4). The extension is first of all done by a declaration of new
namespace with “state” as the prefix. Then the extension formality takes place by
specifying the value of mustUnderstand attribute to “no”. In the end the activity status

can be defined by using the element <state:activityStatus> (see Listing 6.5).

Listing 6.4 BPEL Extension for Activity Status

<bpws: process exitOnStandardFaul t="yes" nanme="Ordering-Process”
suppr essJoi nFai | ure="yes"
t ar get Nanespace="http://iaas. orderingProcess. cont
xm ns: bpws=http://docs. oasi s-open. or g/ wsbhpel / 2. 0/ process/ execut abl e
xm ns:tns="http://iaas.orderingProcess. cont
xm ns: state="http://iaas. orderingProcess. coni states">

<l-- definition of the states extension-->
<ext ensi ons>
<extensi on nanmespace=http://iaas. orderingProcess. coni states
nmust Under st and="no"/ >
</ ext ensi ons>

</ process>

Listing 6.5 Example of Activity Status

<bpws:invoke nanme="prepare Order Processing">
<l-- activity status of prepare Order Processing -->
<state:activityStatus>Conpl eted</state:activityStatus>
</ bpws: i nvoke>

<bpws: reply nane="order conpletion">
<l-- status of check order conpletion -->
<state:activityStatus>No Status</state:activityStatus>
</ bpws: reply>

6.3. XML Scheme and XML Documents
In sub-chapter 6.3.1 the XML Schema for validating the XML document of Chevron

process model are discussed, while in next sub-chapter the schema and the

corresponding XML document for state projection are also explained.

38

6.3.1. XML Schema and XML Document for Chevron Proc ess Model

First, an example of XML Schema for the Chevron process model will be proposed
and discussed. The schema is used to define the structure of the Chevron process
model based on the model definition proposed in sub-chapter 5.1.3.

The complete schema definition is listed in Listing 6.6. The schema allows only two
types of activity elements to be declared, namely <Activity> and <complexActivity>.
Both elements are defined as complex type elements because each of them has
corresponding status: <activityStatus> and <complexActivityStatus>, and also
properties, e.g., activity id, caption, etc. The schema definition also defines the order
of each element, for example <complexActivityStatus> element must proceed before
the child <activity> element, but the <Activity> and <complexActivity> elements can
appear in any order. The states in Chevron process model is pre-defined based on
the Chevron states in sub-chapter 5.1.2. They are Outstanding, Running,
Completed, and also an empty string. The empty string is intended to represent the
stateless information of an activity. If status of all activities is not declared, the

Chevron process model is stateless.

Listing 6.6 XML Schema Definition for Chevron Process Model

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schenma"
el enent For nDef aul t ="qual i fi ed" attributeFornDefaul t="unqualified">
<l-- definition of sinpleActivity status -->
<xs:el ement nane="activityStatus">
<xs:si npl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="Qutstandi ng"/>
<xs:enuneration val ue="Runni ng"/ >
<xs:enuneration val ue="Conpl eted"/ >
<xs:enuneration value=""/>
</xs:restriction>
</ xs: si npl eType>
</ xs: el enent >
<!-- definition of conplexActivity status -->
<xs: el enent name="conpl exActivityStatus">
<xs:sinpl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="Qut standi ng"/>
<xs:enuneration val ue="Runni ng"/ >
<xs:enuneration val ue="Conpl eted"/ >
<xs:enuneration val ue=""/>
</xs:restriction>
</ xs: si npl eType>
</ xs: el enent >
<!-- definition of attributes of chevron process nodel -->
<xs:attribute nane="processMdel Nane" type="xs:string"/>
<xs:attribute nane="pid" type="xs:string"/>
<xs:attribute nane="piid" type="xs:string"/>
<xs:attribute nane="processMdel Version" type="xs:long"/>

39

<xs:attribute nanme="processMdel Docunentation" type="xs:string"/>
<!-- definition of attributes of activities -->
<xs:attribute name="activityNane" type="xs:string"/>
<xs:attribute name="activityl D' type="xs:string"/>
<xs:attribute name="activityCaption" type="xs:string"/>
<xs:attribute name="activityDocunmentation" type="xs:string"/>
<xs:attribute name="activitylconForCaption" type="xs:anyURl"/>
<xs:attribute name="activityl conFor Conpl exActivity" type="xs:anyURl "/>
<xs:attribute name="activityColor" type="xs:string"/>
<l-- definition of chevron process nodel -->
<xs: el ement nane="chevronProcessMdel " type="cPM'/>
<xs:conpl exType nanme="cPM >
<xs: choi ce maxCccur s="unbounded" >
<xs:element ref="Activity" maxCccur s="unbounded"/ >
<xs: el ement ref="conpl exActivity"
m nCccurs="0" nmaxCccur s="unbounded"/ >
</ xs: choi ce>
<xs:attribute ref="processMdel Nane" use="required"/>
<xs:attribute ref="pid" use="required"/>
<xs:attribute ref="piid" use="required"/>
<xs:attribute ref="processMdel Version" use="required"/>
<xs:attribute ref="processMdel Docunentati on" use="required"/>
</ xs: conpl exType>
<!-- definition of conplex activity -->
<xs: el ement nanme="conpl exActivity">
<xs: conpl exType>
<XS:sequence>
<xs:element ref="conpl exActivityStatus"/>
<xs:element ref="Activity" maxCccur s="unbounded"/ >
</ xs: sequence>
<xs:attribute ref="activityNane"/>
<xs:attribute ref="activityl D' use="required"/>
<xs:attribute ref="activityCaption" use="required"/>
<xs:attribute ref="activityDocunentation" use="required"/>
<xs:attribute ref="activitylconForCaption" use="required"/>
<xs:attribute ref="activityColor" use="required"/>
</ xs: conpl exType>
</ xs: el enent >
<l-- definition of sinple activity -->
<xs:el ement nane="Activity">
<xs: conpl exType>
<XS:sequence>
<xs:elenment ref="activityStatus"/>
</ xs: sequence>
<xs:attribute ref="activityNane"/>
<xs:attribute ref="activityl D' use="required"/>
<xs:attribute ref="activityCaption" use="required"/>
<xs:attribute ref="activityDocunentation" use="required"/>
<xs:attribute ref="activitylconForCaption" use="required"/>
<xs:attribute ref="activityColor" use="required"/>
</ xs: conpl exType>
</ xs: el enent >
</ xs: schema>

Listing 6.7 An example of XML Document for stateless Chevron Process Model

<chevronProcessModel processhdel Version="1" piid="15" pid="15.1"
processMbdel Docunent at i on="docunent ati on"
pr ocesshMbdel Nane="Book Ordering"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schene- i nst ance"
xsi: noNanespaceSchemalLocati on="chev_rev_st at el ess. xsd" >

<Activity activityCol or="aqua_bl ue"
activityl conFor Capti on="order. png"
activityDocunent ati on="ordering"

40

activityCaption="Book Ordering" activitylD="1">
<activityStatus></activityStatus>
</ Activity>

<conpl exActivity activityCol or="aqua_bl ue"
activityl conFor Capti on="product. png"
activityDocunment ati on="producti on"
activityCaption="Printing" activitylD="2">
<conpl exActi vi t ySt at us></ conpl exActi vi t ySt at us>
<Activity activityCol or="aqua_bl ue"
activityl conFor Capti on="check. png"
activityDocument ati on="checki ng book avail ability"
activityCaption="Check Availability" activitylD="2.1">
<activityStatus></activityStatus>
</Activity>
<Activity activityCol or="aqua_bl ue"
activityl conFor Capti on="produce. png"
activi tyDocunent ati on="produci ng"
activityCaption="Production" activitylD="2.2">
<activityStatus></activityStatus>
</ Activity>
<Activity activityCol or="aqua_bl ue"
activityl conFor Capti on="product. png"
activi tyDocunent ati on="checki ng product"”
activityCaption="Check Product" activitylD="2.3">
<activityStatus></activityStatus>
</ Activity>
</ conpl exActivity>

<Activity activityCol or="aqua_bl ue"
activityl conFor Capti on="del i ver. png"
activityDocunent ati on="delivery"
activityCaption="Book Shipment" activitylD="3">
<activityStatus></activityStatus>
</ Activity>
</ chevr onPr ocessMdel >

An example of XML document based on the XML Schema in Listing 6.6 is listed
above (see Listing 6.7). The XML document represents a stateless Chevron process
model and this is the document that refers to the stateless Chevron file described in
sub-chapter 5.2.1.

The Chevron process model contains two regular activities and one complex activity,
and the complex activity contains yet another three regular activities. The process
model has a process version, process id, process instance id, process name that
associated to it. While a Chevron activity contains properties (see Table 5.3) such as

activity id, caption, icon, color, documentation, and also a status as an element.

41

6.3.2. XML Schema and XML Document for State Projec tion

The XML Schema and XML document for state projection are the implementation of
the formal mapping definition (see sub-chapter 5.1.4). The schema for state
projection is divided into two parts: the statePropagationSets, i.e., the mapping sets,
and the statePropagationRules which specify the source, target activities, and the
state mapping set being used. Both parts are defined loosely-coupled to each other.

The schema is presented in Listing 6.8.

The statePropagationSets might contain one or more state mapping sets. Each state
set must have a set name as an identifier so that it is clear which state set is being
utilized. One state set contains one or more conditions and each condition must
specify one source state and one target state. The source state represents a list of
possible states from source activities, i.e., the BPEL states, while target state is the
result state, i.e., either in Outstanding, Running, or Completed state. The <else>
element is used if all conditions are not met, and it has a pre-defined state of
Outstanding.

The statePropagationRules can contain one or more state propagation rules. Every
state propagation rule must be identified by a name and it defines the source
activities, one target activity, and one state mapping set. Each activity has an
identifier and value. These attributes describe which source activity shall be mapped

to which target activity.

Listing 6.8 XML Schema Definition for State Projection

<xs:schema xm ns: xs="http://ww.w3. or g/ 2001/ XM_Schema"

el ement For nDef aul t ="qual i fi ed" attributeFornDefaul t="unqualified">
<l-- attributes definition -->
<xs:attribute nane="name" type="xs:string"/>
<xs:attribute nane="identifier" type="xs:string"/>
<xs:attribute nane="val ue" type="xs:string"/>
<xs:attribute name="pattern" type="xs:string"/>
<I-- lowlevel activity status definition-->
<xs:sinmpleType name="|ow| evel ActivityStatus">

<xs:list itemlype="xs:string"/>

</ xs:si npl eType>

<l-- containState el ement definition -->
<xs: el enent nanme="containState" type="stateList"/>
<I-- lowlevel activity states as a list -->

<xs:sinpl eType nanme="stateList">

<xs:restriction base="IlowI evel ActivityStatus"/>
</ xs:si npl eType>
<xs:el enent name="target State" >

42

<xs:si nmpl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="CQut standi ng"/ >
<xs:enuneration val ue="Runni ng"/>
<xs:enuneration val ue="Conpl eted"/ >
</xs:restriction>
</ xs: si npl eType>
</ xs: el enent >

<l-- all StateEqual element definition -->
<xs:el enent nanme="al | St at esEqual " type="xs:string"/>
<!-- element definition -->

<xs:el enent nanme="el se">
<xs:si nmpl eType>
<xs:restriction base="xs:string">
<xs:enuneration val ue="CQutstandi ng"/ >
</xs:restriction>
</ xs: si npl eType>
</ xs: el enent >
<l-- definition of rule elenment -->
<xs:el enent nanme="condition">
<xs: conpl exType>
<XS:sequence>
<xs: choi ce>
<xs:el enent ref="containState"/>
<xs:el enment ref="all Stat esEqual "/>
</ xs: choi ce>
<xs:elenent ref="targetState"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<!-- definition of the statePropagati onSet -->
<xs: el enent nanme="st at ePr opagati onSet ">
<xs: conpl exType>
<Xs:sequence>
<xs:el enent ref="condition" maxCccurs="unbounded"/ >
<xs:elenent ref="else" m nOccurs="1" naxCOccurs="1"/>
</ xs: sequence>
<xs:attribute ref="name" use="required"/>
</ xs: conpl exType>
</ xs: el enent >
<l-- definition of the statePropagati onSets -->
<xs:el enent nanme="st at ePropagati onSet s" >
<xs: conpl exType>
<Xs:sequence>
<xs:el enent ref="statePropagationSet" maxCccurs="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<!-- definition of the activities -->
<xs:el enent name="activity">
<xs: conpl exType>
<xs:attribute ref="identifier" use="required"/>
<xs:attribute ref="value" use="required"/>
</ xs: conpl exType>
</ xs: el enent >
<l-- definition of the fromActivities -->
<xs:el enent name="fromActivities">
<xs: conpl exType>
<XS:sequence>
<xs:elenment ref="activity" maxCccurs="unbounded"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<I-- definition of the toActivity -->

43

<xs:el ement name="toActivity">
<xs: conpl exType>
<Xs:sequence>
<xs:elenent ref="activity"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<!-- definition of the stateSet -->
<xs:el enent name="stateSet">
<xs: conpl exType>
<xs:attribute ref="pattern" use="required"/>
</ xs: conpl exType>
</ xs: el enent >
<I-- definition of the statePropagati onRule -->
<xs:el enent nanme="st at ePropagati onRul e" >
<xs: conpl exType>
<XS:sequence>
<xs:elenent ref="fromActivities"/>
<xs:elenment ref="toActivity"/>
<xs:elenent ref="stateSet"/>
</ Xs: sequence>
<xs:attribute ref="nanme" use="required"/>
</ xs: conpl exType>
</ xs: el enent >
<l-- definition of the statePropagati onRules -->
<xs: el enent nanme="st at ePropagati onRul es">
<xs: conpl exType>
<Xs:sequence>
<xs:el enent ref="statePropagati onRul e" maxCccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<!-- definition of state Projection -->
<xs: el enent nane="stateProjection" type="sP"/>
<xs:conpl exType name="sP">
<Xs:sequence>
<xs:el enent ref="statePropagati onSets"/>
<xs: el enent ref="statePropagationRul es"/>
</ Xs: sequence>
</ xs: conpl exType>
</ xs: schema>

Following shows an example of the XML document for the scenario of Book
Ordering. This document contains three state mapping sets: combination-1,
alteration-1, and alteration-2. The definition of each mapping set will be discussed in
chapter 7. <containState> and <allStatesEqual> elements are variants of source
state. The <containState> means the corresponding activity is on one of the
specified states, while <allStatesEqual> is a special source state that describes the

source activities are on the same state.

The statePropagationRules are a list of mappings between source and target
activities. The source activities and target activity are represented by the

<fromActivities> and <toActivity> elements, respectively. Because of the mapping

44

relationship many-to-one or one-to-one <fromActivities> might have one or more
activities. The element <stateSet> specifies which state mapping set will be
employed. For an instance, the source activity with identifier “name” and value
“prepare Order Processing” shall be mapped onto target activity with identifier “id”
and value “1”. The source state is propagated to target state by using the pattern

“alteration-1".

Listing 6.9 An Example of XML Document for the State Projection

<stat eProjection xmns:xsi="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : noNanespaceSchemalLocat i on="rul es_schema. xsd" >
<st at ePr opagat i onSet s>
<st at ePropagati onSet nanme="conbi nation-1">
<condi ti on>
<cont al nSt at e>Act i ve; Fai | ed; Suspended; Ter m nat ed</ cont ai nSt at e>
<t arget St at e>Runni ng</t ar get St at e>
</ condi ti on>
<condi ti on>
<al | St at esEqual >Conpl et ed</ al | St at esEqual >
<t arget St at e>Conpl et ed</ t ar get St at e>
</ condi ti on>
<el se>Qut st andi ng</ el se>
</ st at ePr opagat i onSet >
<st at ePropagati onSet nane="al teration-1">
<condi ti on>
<cont ai nSt at e>Act i ve; Suspended; Fai | ed</ cont ai nSt at e>
<t arget St at e>Runni ng</t ar get St at e>
</ condi ti on>
<condi ti on>
<cont ai nSt at e>Conpl et ed; Ter m nat ed</ cont ai nSt at e>
<t arget St at e>Conpl et ed</ t ar get St at e>
</ condi ti on>
<condi ti on>
<cont ali nSt at e>No St at us</ cont ai nSt at e>
<t arget St at e>Qut st andi ng</t ar get St at e>
</ condi ti on>
<el se>Qut st andi ng</ el se>
</ st at ePr opagat i onSet >
<st at ePropagati onSet nane="al teration-2">
<condi ti on>
<cont al nSt at e>Conpl et ed</ cont ai nSt at e>
<t arget St at e>Conpl et ed</t ar get St at e>
</ condi ti on>
<el se>Qut st andi ng</ el se>
</ st at ePr opagat i onSet >
</ st at ePr opagat i onSet s>
<st at ePropagat i onRul es>
<stat ePropagati onRul e nane="COrderi ng">
<fromActivities>
<activity identifier="name"
val ue="prepare Order Processing"/>
</fromActivities>
<t oActivity>
<activity identifier="id" value="1"/>
</toActivity>
<stateSet pattern="alteration-1"/>
</ st at ePr opagat i onRul e>
<stat ePropagati onRul e nane="Check availability">
<fromActivities>
<activity identifier="nane"

45

val ue="check Availability"/>
</[fromActivities>
<t oActivity>
<activity identifier="id" value="2.1"/>
</toActivity>
<stateSet pattern="alteration-1"/>
</ st at ePr opagat i onRul e>
<stat ePropagati onRul e nane="Produce" >
<fromActivities>
<activity identifier="nane"
val ue="Prepare Production"/>
<activity identifier="nane"
val ue="1nvoke Production Process"/>
<activity identifier="nane"
val ue="wait for conpletion of production"/>
</[fromActivities>
<t oActivity>
<activity identifier="id" value="2.2"/>
</toActivity>
<stat eSet pattern="conbi nati on-1"/>
</ st at ePr opagat i onRul e>
<st at ePr opagat i onRul e name="Check Product">
<fromActivities>
<activity identifier="nane" val ue="Fl ow'/ >
</fromActivities>
<t oActivity>
<activity identifier="id" value="2.3"/>
</toActivity>
<stateSet pattern="alteration-2"/>
</ st at ePr opagat i onRul e>
<stat ePropagati onRul e nane="Shi ppi ng Conpl eti on">
<fromActivities>
<activity identifier="nane"
val ue="shi ppi ng"/ >
<activity identifier="name"
val ue="shi ppi ng conpl etion notice"/>
</fromActivities>
<t oActivity>
<activity identifier="id" value="3"/>
</toActivity>
<stat eSet pattern="conbi nation-1"/>
</ st at ePr opagat i onRul e>
</ st at ePr opagat i onRul es>
</ st at eProj ecti on>

6.4. Projection of Low-level to High-level View of Process Models

After examining all input files, i.e., stateful BPEL, stateless Chevron, mapping set
and propagation rule, and SVG template, the Java functions of the Java processor
described in sub-chapter 5.2.2 will be discussed. There are six functions and each of

them will be presented in the following sub-chapters.

6.4.1. Read Stateful BPEL
The following code works as follows. First, the value of the eventBPEL will be copied
into bpelElement and bpelSubElement, so both have the same event value. The

value of bpelSubElement is tested against the activityStatus. If it is not the

46

activityStatus element, the parser will continue iterating until it finds the activityStatus
element, and if it finds one then the activity name, value, and state of bpelElement
will copied into an array listt The BPEL information will be stored in
listBPELandStates.

Listing 6.10 Java Code Snippet for Reading the Stateful BPEL

whi | e(par ser For BPEL. hasNext ())

event BPEL = par ser For BPEL. next () ;
i f(event BPEL == XM_StreanmConst ants. START_ELEMENT)

{
bpel El ement = par ser For BPEL. get Narre() . get Local Part ();
bpel SubEl ement = par ser For BPEL. get Nane() . get Local Part () ;
bpel Attri but eNane = parser For BPEL. get Attri but eVal ue(0);
i f(!(bpel SubEl enent . equal s("activityStatus")))
{
whi | e(par ser For BPEL. hasNext ())
{
event BPEL = par ser For BPEL. next () ;
i f(event BPEL == XML_Str eanConst ant s. START_ELEMENT)
bpel SubEl enent = parser For BPEL. get Nane() . get Local Part ();
i f (bpel SubEl ement . equal s("activityStatus"))
bpel SubEl enent = parser For BPEL. get Nane() . get Local Part ();
bpel St at us = par ser For BPEL. get El ement Text () ;
//adding BPEL activity name | BPEL attribute name | State
/le.qg. i nvoke | recei ve order | Conpleted
| i st BPELandSt at es. add(new ArrayList<String>());
| i st BPELandSt at es. get (r owBPEL) . add(bpel El enent) ;
| i st BPELandSt at es. get (r owBPEL) . add(bpel Attri but eNane) ;
| i st BPELandSt at es. get (r owBPEL) . add(bpel St at us) ;
r owBPEL++;
br eak;
}
el se
{
bpel El emrent = bpel SubEl erment ;
bpel Attri but eNane = par ser For BPEL. get Attri but eVal ue(0);
}
}
}
}
}

6.4.2. Read the Mapping Sets

This function fetches all the state mapping sets (see Listing 6.11). The parser will
move forward until it meets a start element whose local name is
statePropagationSet. The parser will return each condition with its corresponding
source state (containState or allStatesEqual), and the targetState defined by the
mapping set. The parser stops processing a particular mapping set until it

encounters else element which means that is the end of construct of one particular

47

mapping set. The parser then processes another statePropagationSet, if any. The

output of this function is stored in propagationSets.

Listing 6.11 Java Code Snippet for Reading the Mapping Sets

V\hl | e(par ser For Sets. hasNext ())

event Sets = parser ForSets. next();
i f(eventSets == XM.StreanConst ant s. START_ELEMENT)

i f(event Sets == XM.St reanConst ants. START_ELEMENT &&

{

par ser For Set s. get Local Nane() . equal s(" st at ePropagati onSet"))

rowCondition = 0O;

conditionSets = new Arraylist<ArrayList<String>>();
condi tionSets. add(new ArrayList<String>());
propagati onSets. add(new ArraylLi st<ArraylList<String>>());
String setNaneg;

set Name = parserFor Sets. get AttributeVal ue(0);

condi tionSet s. get (rowCondi tion).add("set Nane");
condi tionSets. get (rowCondi ti on).add(set Nane) ;
rowCondi t i on++;

condi tionSets. add(new ArrayLi st<String>());

whi | e(par ser For Set s. hasNext ())

event Sets = parserForSets. next();
i f(eventSets == XM.StreanConst ants. START_ELEMENT | |
event Sets == XM.StreanConst ant s. END_ELEMENT)

i f(event Sets == XM.StreanConstants. START_ELEMENT &&
par ser For Set s. get Local Nane() . equal s("condition"))

whi | e(par ser For Set s. hasNext ())
event Sets = parser For Sets. next();
i f(event Sets == XM.St reantConst ants. START_ELEMENT | |
event Sets == XM.StreanConst ant s. END_ELEMENT)
{

i f(eventSets == XM.StreanConstants. START_ELEMENT &&
par ser For Set s. get Local Nane() . equal s("contai nState"))
{

String containState;
contai nState = parserFor Sets. get El enent Text ();
condi ti onSets. get (rowCondi ti on).add(contai nState);

}

el se if(eventSets == XM.StreanConst ants. START_ELEMENT &&
par ser For Set s. get Local Nane() . equal s("target State"))

{

String targetState;
target State = parserFor Sets. get El ement Text () ;
condi ti onSet s. get (rowCondi ti on). add(target State);

el se i f(eventSets == XM.StreanConst ants. START _ELEMENT &&

{

par ser For Set s. get Local Nane() . equal s("al | St at esEqual "))

String all StatesEqual ;
al | St at esEqual = parser For Set s. get El ement Text () ;
condi ti onSets. get (rowCondi ti on).add(all StatesEqual);

}

el se if(eventSets == XM.StreanConstants. END_ELEMENT &&
par ser For Set s. get Local Nane() . equal s("condition"))

{

rowCondi ti on++;

condi tionSets.add(new ArrayLi st<String>());
br eak;
}
}
}

}
el se if(eventSets == XM.StreanConst ants. START_ELEMVENT &&
par ser For Set s. get Local Nane() . equal s("el se"))

{
String el seCondition;
el seCondi ti on = parser For Sets. get El enment Text () ;
condi tionSets. get (rowCondi ti on). add("el se");
condi ti onSets. get (rowCondi ti on). add(el seCondition);
pr opagati onSet s. get (r owPr opagat i on) . addAl | (condi ti onSets);
r owPr opagat i on++;
br eak;
}

6.4.3. Read the Propagation Rules

This function retrieves all information about the source activities, target activity, and
the state set (see Listing 6.12). The parser move forward until it meets a start
element statePropagationRule. The eventMapping will be checked whether it is a
start element whose local name is fromActivities, toActivity, or stateSet. For an
instance if the parser encounters fromActivities element, the parser will return all
activities the element has until it the value of the eventMapping is an end element
and the local part equals to fromActivities. It applies also to the toActivities. Once the
parser returns stateSet element together with its property, the parser will stop
processing the corresponding propagation rule, and starts processing another

propagation rule, if any. The propagation result is kept in mappingList.

Listing 6.12 Java Code Snippet for Reading the Propagation Rules

whi | e(par ser For Mappi ng. hasNext ())

event Mappi ng = parser For Mappi ng. next ();
i f (event Mappi ng == XM.StreanConst ants. START_ELEVENT &&

par ser For Mappi ng. get Local Nanme() . equal s("st at ePropagati onRul €"))
{

nmappi ngli st. add(new ArrayLi st<String>());
whi | e(par ser For Mappi ng. hasNext ())

event Mappi ng = par ser For Mappi ng. next ();
i f (event Mappi ng == XM.StreantConst ant s. START_ELEMENT)

i f (par ser For Mappi ng. get Local Nane() . equal s("fromActivities"))
{

fromActivities = new ArrayList<String>();
whi | e(par ser For Mappi ng. hasNext ())
{

event Mappi ng = par ser For Mappi ng. next () ;

i f (event Mappi ng == XM.StreanConst ants. START_ELEMENT &&
par ser For Mappi ng. get Local Nane() . equal s("activity"))

{

49

String activityNaneg;
activityName = parser For Mappi ng. get Attri buteVal ue(1);
fromActivities.add(activityNane);

}
el se if(event Mappi ng == XM.StreanConst ants. END_ELEVENT &&

par ser For Mappi ng. get Local Nane() . equal s("fromActivities"))
{

mappi ngLi st . get (rowLi st). addAl | (fromActivities);
br eak;

}

el se if(parser For Mappi ng. get Local Nane() . equal s("toActivity"))
whi | e(par ser For Mappi ng. hasNext ())

event Mappi ng = par ser For Mappi ng. next () ;

i f (event Mappi ng == XM.StreanConst ants. START_ELEMENT &&
par ser For Mappi ng. get Local Nanme() . equal s("activity"))

{

String activityNane;
activityNanme = parser For Mappi ng. get Attri buteVval ue(1);
mappi ngLi st. get (rowkLi st) . add(0, acti vityNane);

}
el se if(event Mappi ng == XM.StreanConst ants. END_ELEVENT &&
par ser For Mappi ng. get Local Narme() . equal s("toActivity"))
br eak;

}

el se if(parserFor Mappi ng. get Local Nane() . equal s("stateSet"))

String stateSet sNang;

st at eSet sName = par ser For Mappi ng. get Attri but eVal ue(0);
mappi ngLi st. get (rowkLi st). add(0, st at eSet sNane) ;

br eak;

}
y o
rowLi st ++;
}
}

6.4.4. Execute the State Propagation

By processing the output lists from the previous functions the states for Chevron
activities can be mapped. For each state set in the mappingList the state of source
activities will be fetched and kept into a temporary list. If all source states from
corresponding source activities have been collected, the source states will be
transform by applying the corresponding state set, and the result is stored in list of
result state. The resulting state then added to a list of Chevron process (see Listing
6.13).

Listing 6.13 Pseudo Code for the Propagation Rules Execution

| nput :

Li st propagati onSets
Li st mappi ngLi st

Li st |istBPELandSt at es

50

Cut put :
Li st toStates

FOR each stateSet in mappingLi st
FOR each fromActivities in stateSet
tnp-statelist += read state of fromActivities in |istBPELandSt at es
NEXT
END FOR
resultState = apply propagationsSet that is referenced in mappi ngLi st
add (resultState, to) to toStates
NEXT
END FOR

6.4.5. Generate Stateful Chevron

The listing below describes how states as a result from state projection can be
augmented into Chevron activities. Each activity in stateless Chevron will be verified
with the activity in the toStates list. The activity status of the qualified activity will be

augmented with the state in toStates.

Listing 6.14 Pseudo Code for Generating Stateful Chevron

| nput :
t oSt at es
st at el essChevron

Cut put :
st at ef ul Chevron

FOR each activity in statel essChevron
IF the ID of activity in statel essChevron =
the ID activity in toStates THEN
get the state fromtoStates
augment the state fromtoStates to statel essChevron
END | F
NEXT
END FOR

6.4.6. Generate SVG Representation

The following pseudo code shows how the Java function generates the stateful
Chevron into an SVG-based visualization. The function will check whether the
activity is a regular or is a complex activity. If it is a regular activity then fetch all
attributes for corresponding activity and supply the SVG template for regular activity
with the attributes. If it is a complex activity then perform the same task as a regular
activity but with some additional task to define the child elements. So each child in
the complex element will be retrieved including its properties, and for each child

implements the SVG template for child activity.

51

Listing 6.15 Pseudo Code for Generating SVG Representation

| nput :
st at ef ul Chevron

Cut put :
SVGRepr esent ati on

IF activity is a regular activity THEN
get all attributes of the activity including its status
apply svg tenplate for regular activity
ELSE | F activity is a conplex activity THEN
get all attributes of the conplex activity including its status
apply svg tenplate for regular activity
FOR each child activity in conmplex activity
get all attributes of the activity including its status
apply svg tenplate for child activity
NEXT
END FOR
END | F

52

7. Testing

In the previous chapter the implementation of concepts and architecture has been
discussed. In this chapter the stateful Chevron and SVG-based visualization for the
corresponding Chevron process model will be generated by using the state mapping
sets described in sub-chapter 6.3.2. The first sub-chapter will briefly describe the
state mapping sets definition. In the last sub-chapter the output files will be

presented.

7.1. Example of State Mapping Sets

There are three state mapping sets declared in sub-chapter 6.3.2: combination-1,
alteration-1, and alteration-2. The state set of combination-1 is a variant and
implementation of state combination pattern [schumm3], while alteration-1 and

alteration-2 are a variant and implementation of state alteration pattern [schumma3].

The state set combination-1 has two conditions. The conditions can be understood
like a decision-making statement in Java program e.g. if-else statement. Therefore,
the first condition will be checked whether the source states of the source activities
are on the list of states (Active, Failed, Suspended, Terminated). If this is the case,
then the resulting target state is Running. The second condition specifies whether all
source states of the source activities equals to Completed. If this is also the case,
the Completed state will be propagated to the target activity. If all conditions are not

met then the target state is Outstanding.

State set alteration-1 contains three conditions. The first condition defines the state
mapping from either Active, Suspended, or Failed to Running state. The second
condition maps state Completed or Terminated to Completed. The last condition
associates state No Status to Outstanding. If all conditions are not met the target

state is Outstanding.
State set alteration-2 has only one condition which checks whether the source state

is Completed. If it is the case the resulting state is also Completed. If it is not the

case the resulting state is Outstanding. This kind of state mapping is adopted to

53

verify the activities states of BPEL structured activity. In this test case the alteration-2

is applied to <flow> activity.

7.2. Stateful Chevron and SVG Representation

The Java processor takes all input files and generates two output files (see Figure
5.4). In this section each output generated from each function in the Java processor
until the XML-based stateful Chevron and SVG-based visualization are produced,

will be presented.

1) Reading the stateful BPEL file
First result is the list of BPEL activities, name, and corresponding status from
reading the stateful BPEL file. Because there are 60 activities in the file, only the
activities related to the test case are presented. The list will be shown in Table
7.1.

BPEL Activity Activity Name Status ‘
invoke prepare Order Processing Completed
flow Flow Active
invoke check Availabilty Active

assign Prepare Production Completed
invoke Invoke Production Process Completed
receive wait for completion of production Completed
invoke shipping Active
receive shipping completion notice No Status

Table 7.1 Result from Reading the Stateful BPEL fil e

2) Reading the mapping sets
The result of reading the state mapping sets are presented in Table 7.2, Table
7.3, Table 7.4. The tables are read from left to right, e.g. the set name is

combination-1, source state Completed and target state Completed, and so on.

54

setName

combination-1

Active;Failed;Suspended;Terminated Running

Completed Completed

Else

Oustanding

Table 7.2 State Set for Combination-1

setName alteration-1
Active;Failed;Suspended Running
Completed;Terminated Completed
No Status Outstanding
Else Oustanding

Table 7.3 State Set for Alteration-1

setName alteration-2
Completed Completed
Else Oustanding

Table 7.4 State Set for Alteration-2

3) Reading the propagation rules

Below is the output table (Table 7.5) from the third function of Java processor.

The information obtained here are the state set being used, and the identifier

values of target activity and source activities.

State Set Target Source Activities

Activity
alteration-1 1 prepare Order Processing
alteration-1 2.1 check Availability
combination-1 2.2 Prepare Production

Invoke for Production Process

wait for completion notice

alteration-2

2.3 Flow

55

combination-1 3 shipping

shipping completion notice

Table 7.5 Result from Reading the Propagation Rules

4) Executing the state propagation
The resulting states from low-level to high-level view are already propagated (see
Table 7.6).

Target Result State

Activity

1 Completed
2.1 Running

2.2 Completed
2.3 Outstanding
3 Outstanding

Table 7.6 Result from Executing the State Propagati on

5) Generate Stateful Chevron
Based on the result states above an XML-based file for the Stateful Chevron can
be generated (see Listing 7.1 and compare to Listing 6.7). The status of complex
activity is derived from the states of sub-activities, and in this case the state is

Running.

Listing 7.1 The XML Document for Stateful Chevron Process Model

<chevronProcessModel processhdel Version="1" piid="15" pid="15.1"
processMdel Docunent at i on="docunent ati on"
pr ocessMbdel Nane="Book Ordering"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schene- i nst ance"
xsi : noNamespaceSchemalLocati on="chev_rev_st at el ess. xsd">

<Activity activityCol or="aqua_bl ue"
activityl conFor Capti on="order. png"
activityDocunent ati on="ordering"
activityCaption="Book Ordering" activitylD="1">
<activityStatus>Conpl eted</activityStatus>
</ Activity>

<conpl exActivity activityCol or="aqua_bl ue"

56

activityl conFor Capti on="product. png"
activityDocunent ati on="production"
activityCaption="Printing" activitylD="2">
<conpl exAct i vi t ySt at us>Runni ng</ conpl exActi vi tySt at us>
<Activity activityCol or="aqua_bl ue"
activityl conFor Capti on="check. png"
activityDocunent ati on="checki ng book avail ability"
activityCaption="Check Availability" activitylD="2.1">
<activityStatus>Runni ng</activityStatus>
</ Activity>
<Activity activityCol or="aqua_bl ue"
activityl conFor Capti on="produce. png"
activityDocument ati on="pr oduci ng"
activityCaption="Production" activitylD="2.2">
<activityStatus>Conpl eted</activityStatus>
</ Activity>
<Activity activityCol or="aqua_bl ue"
activityl conFor Capti on="product. png"
activityDocument ati on="checki ng product"
activityCaption="Check Product" activitylD="2.3">
<activityStatus>Qutstandi ng</activityStatus>
</ Activity>
</ conpl exActi vity>

<Activity activityCol or="aqua_bl ue"
activityl conFor Capti on="del i ver. png"
activityDocument ati on="del i very"
activityCapti on="Book Shipment" activitylD="3">
<activityStatus>Qutstandi ng</activityStatus>
</ Activity>
</ chevr onPr ocessMdel >

6) Generate SVG representation

Based on the stateful Chevron process model it is now possible to generate the

SVG-based visualization (see Figure 7.1).

Figure 7.1. SVG Representation of the Stateful Chev ron

57

8. Conclusion and Outlook

A business process describes a well-defined structure how the business is done.
However, modeling and executing the business process are performed on different
level of abstractions. For an instance, the business process which is designed in
high-level business view by the business consultants needs to be refined into an
executable construct by the technical operator in the low-level executable view, so
that it can be understood and executed by the process engine. Hence, information
about current status of the activity instances is only available in low-level view. For
monitoring purposes the executing states of the activities should be propagated back

to the business users because they are also interested in such information.

In this thesis a prototype to perform such state propagations has been developed.
The prototype takes the low-level executable code, in this case based on the BPEL
language, and extracts it to obtain all information related to monitoring purposes.
Based on state mapping sets the projection from low-level to a high-level view can
be carried out and an SVG-based visualization for high-level view, i.e., the Chevron

language is being generated.

The prototype can be reused by exporting it as a Java library, so that it can be
utilized by any business monitoring tools. The developed prototype supports only
basic implementations of state propagation patterns [schumma3], and it can be further
extended to fully support all the patterns. Moreover, to provide business users a
better view experience the Chevron process model can also be extended in terms of
the activity properties (activity color, type of font, etc.). For example, the business

users could customize the process model by specifying a particular color palette.

58

References

[Blow]
M. Blow, Y. Goland, M. Kloppmann, F. Leymann, G. Pfau, D. Roller and M. Rowley:
BPELJ: BPEL for Java, White Paper, 2004,

http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/wsbpelj/ws-bpel;.pdf

[Bobrik]

Ralph Bobrik, Thomas Bauer, Manfred Reichert:

Personalized and Configurable Visualizations of Business Processes

Proceedings of the 7" International Conference on Electronic Commerce and Web
Technologies

(EC-Web), Springer, 2006

[compas]

COMPAS:

BPEL Extensions for Compliant Services
22 December 2009

[Decidr]
http://www.decidr.eu

[Freund]

J. Freund, K. Gotzer:

Vom Geschéftsprozess zum Workflow - Ein Leitfaden fiir die Praxis
Carl Hanser, 2008

[Griffith]

Arthur Griffith:

Java, XML, and JAXP
Wiley Computer Publishing

[ibm]

IBM:

Web Services Flow Language Version 1.0 (WSFL 1.0)
2001

http://xml.coverpages.org/wsfl.html

59

[JAXP]
Java API for XML Processing (JAXP) Tutorial
http://java.sun.com/webservices/reference/tutorials/jaxp/html/stax.html

Sun Microsystems, July 2008

[JWSPT]

Java Web Services Performance Team:
Streaming APIs for XML Parsers — White Paper
Sun Microsystems, August 2005

[Karastoyanova]
Karastoyanova, D.; Khalaf, R.; Schroth, R.; Paluszek, M.; Leymann, F.:
BPEL Event Model

Institut fir Architektur von Anwendungssystemen, Universitat Stuttgart, 2006

[Leymann]

Frank Leymann, Dieter Roller:

Production Workflow: Concepts and Techniques
Prentice Hall, 1999

[microsoft]

Microsoft:

XML Business Process Language (XLANG)
2001

http://xml.coverpages.org/xlang.html

[oasis]

OASIS:

Web Services Business Process Execution Language Version 2.0
OASIS Standard, 11 April 2007

[oraclel]
Oracle:
Oracle on DOM package summary

http://download.oracle.com/javase/1.5.0/docs/api/org/w3c/dom/package-summary.html

[oracle?]

60

Oracle:

Oracle on Interface XMLStreamReader
http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/docs/1.5/api/javax
/xml/stream/XMLStreamReader.html

[oracle3]

Oracle:

Oracle on Interface XMLStreamWriter
http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/docs/1.5/api/javax
/xml/stream/XMLStreamWriter.html

[Polyvyanyy]
A. Polyvyanny, S. Smirnov, M. Weske:

Process Model Abstraction: A Slider Approach
Proceeding of the 12" IEEE Enterprise Distributed Object Conference (EDOC)
IEEE Computer Society, 2008

[Schumm1]

David Schumm, Gregor Latuske, Frank Leymann:

A Prototype for View-based Monitoring of BPEL Processes
March 2011

[Schumm?2]

David Schumm, Frank Leymann, Alexander Streule:
Process Viewing Patterns

October 2010

[Schumm3]
David Schumm, Gregor Latuske, Frank Leymann, Ralph Mietzner, Thorsten Scheibler
State Propagation for Business Process Monitoring on Different Levels of Abstraction
June 2011

[w3org]

W3C:

W3C on well-formed XML.
http://www.w3.0rg/TR/2006/REC-xmI11-20060816/#dt-wellformed

61

[w3s1]
W3School:
W3School for Basic XML

http://www.w3schools.com/xml/xml_whatis.asp

[w3s2]
W3School:
W3School on Basic SVG

http://www.w3schools.com/svg/svg_intro.asp

[WAPI]
Workflow Management Application Programming Interface (Interface 2 & 3) Specification.
Document Number WFMC-TC-1009. Version 2.0e.

Workflow Management Coalition, Winchester 1998

[zurMuehlen]

Michael zur Muehlen:

Workflow-based Process Controlling: Foundation, Design, and Application of Workflow-
driven Process Information System

Logos Verlag Berlin, 2002

62

Erklarung

Hiermit versichere ich, diese Arbeit selbststandig verfasst und nur die angegebenen Quellen

benutzt zu haben.

Stuttgart, 21.06.2011

(Sumadi Lie)

63

