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1 Einleitung

Systeme zur Erkennung von Aktivitäten bieten viele Anwendungsmöglichkeiten, beispiels-
weise im Gesundheitswesen zur Überwachung von Patienten oder Navigation innerhalb von
Gebäuden. Beschleunigungssensoren werden häufig für diese Aufgabe verwendet, da die
entsprechenden Sensormodule heute klein, preiswert und weit verfügbar sind. Viele Mobil-
telefone sind heute mit entsprechenden Sensormodulen ausgestattet und bieten außerdem
oft weitere Sensoren, wie Magnetfeldsensoren, Gyroskope und GPS. Sie haben zudem eine
ausreichend hohe Rechenleistung, um die Erkennung direkt auf dem Gerät durchzuführen.
Die Verwendung dieser Hardware bietet sich also an.

Bisherige Arbeiten

Zur Bewegungserkennung mit Beschleunigungssensoren existieren bereits zahlreiche Ar-
beiten. Viele verwenden spezielle Hardware und Befestigungssysteme, wie zum Beispiel
mehrere am Körper verteilte Beschleunigungssensoren [2] [24]. Andere setzen zwar nur
einen Sensor ein, der aber zwingend an einer bestimmten Position am Körper befestigt
werden muss und die eigentliche Erkennung auf einem zusätzlichen Gerät, z.B. einem PC
durchführt [6] [8] [15].

Najafi et al. [15] haben ein System zur Aktivitäten-Erkennung für ältere Menschen entwickelt.
Es wird ein auf der Brust befestigtes Sensormodul, bestehend aus einem Beschleunigungs-
sensor und einem Gyroskop genutzt. Die Daten werden auf einem zusätzlichen Gerät aufge-
zeichnet und die Erkennung später am Computer durchgeführt. Es werden die Aktivitäten
Stehen, Liegen, Sitzen und Gehen, sowie Übergängen zwischen diesen erkannt. Dazu wird eine
Wavelet Transformation und ein komplexes, von Hand erstelltes Zustandsübergangsmodell
verwendet, mit dessen Hilfe Erkennungsraten von über 90% erreicht werden.

Karantonis et. al. [8] verwenden ein Modul befestigt an einem Gurt, der um die Hüfte getra-
gen wird. Das Modul enthält einen 3-achsen Beschleunigungssensor und einen Mikrocon-
troller für die Weiterverarbeitung. Aufgrund der begrenzten Leistung des Mikrocontrollers
wird ein Zeitraum von einer Sekunde betrachtet und wie in [15] ein per Hand erstelltes
Zustandsübergangsmodell genutzt. Die untersuchten Aktivitäten sind Stehen, Gehen, Rennen,
Hinfallen und Liegen in verschiedenen Positionen. Für die Erkennung von periodischen
Aktivitäten, wie Gehen, Rennen werden die Koeffizienten der Fouriertransformierten des
Beschleunigungsverlaufs herangezogen. Für die Erkennung von Hinfallen und Liegen werden
dagegen Schwellenwerte für die Beschleunigung und den Neigungswinkel des Gerätes
verwendet. Damit werden Erkennungsraten von durchschnittlich 90% erreicht.
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1 Einleitung

In [6] wurd ein einzelnes, in der vorderen Hosentasche getragenes Sensormodul zur Daten-
akquisition verwendet, welches Beschleunigungsdaten mit Hilfe von Bluetooth an einen PC
überträgt. Die betrachteten Aktivitäten Gehen, Stehen, Springen und Rennen wurden in Fenster
von etwa fünf Sekunden Länge eingeteilt. Um die Abhängigkeit der Daten von der Position
des Beines zu reduzieren, wurde die Norm jedes Datenpunktes bestimmt. Aus jedem Fenster
wurden anschließend die Koeffizienten der diskreten Kosinustransformation bestimmt. Da
der Sensor mit einer Samplingrate von 100 Hz arbeitet erhält man aus jedem der Fenster
512 Koeffizienten. Um die Dimensionalität der Daten zu reduzieren, wurde daher eine
Principal Component Analysis durchgeführt und die ersten 48 Koeffizienten als Merkmale
für die Klassifikation verwendet. Als Klassifikator werden Support Vektor Maschinen genutzt
und damit eine durchschnittliche Erkennungsrate von 97.51 % erreicht, wobei Springen am
schlechtesten abgeschnitten hat und häufig als Rennen klassifiziert wurde.

Olguín et al. [16] werden mehrere Beschleunigungssensoren, die an Handgelenk, Hüfte
und Brustkorb angebracht werden. Dabei werden verschiedene Konfiguration getestet, z.B.
je ein Sensor ein Hüfte und Handgelenk oder ein Sensor an jeder der drei Postionen. Es
wurden Daten für die Aktivitäten Sitzen, Rennen, Kauern, Gehen, Stehen, Krabbeln, Liegen
und Handbewegungen (im Stehen) gesammelt. Die Daten wurden anschließend in Zeiträume
von einer Sekunde eingeteilt. Anschließend werden Mittelwert und Standardabweichung
aus den Zeiträumen bestimmt und als Merkmale für Hidden Markov Modelle (HMM)
verwendet. Mit Hilfe von je einem Sensor an Handgelenk, Hüfte und Brustkorb wurde eine
durchschnittliche Erkennungsrate von 92.13% erreicht. Bei Nutzung eines einzelnen Sensors
wurde eine Erkennungsrate von durchschnittlich 62.45% erreicht, wobei Rennen hier mit
über 90% sehr gut abschnitt.

Die bisher beschriebenen Arbeiten haben alle spezielle Sensormodule verwendet. Sie sind
an sich zwar preiswert, aber für die Weiterverarbeitung der Sensordaten auf zusätzliche
Hardware angewiesen. Zudem sind solche System unbequem und für den täglichen Ge-
brauch daher weniger gut geeignet. Hier bieten sich Mobiltelefone an, da sie ohnehin meist
mitgeführt werden und kaum behindern. Arbeiten, die Mobiltelefone verwenden sind jedoch
selten und die Forschung in diesem Bereich noch nicht sehr fortgeschritten.

In [4] wird ein externer Sensor verwendet, der ähnlich einer Armbanduhr um das Handge-
lenk getragen wird. Die Verarbeitung der Sensordaten wird jedoch auf einem Smartphone
durchgeführt. Es werden die Aktivitäten Ruhezustand, Tippen, Gestikulieren, Gehen, Rennen
und Fahrrad fahren über Zeiträume von 2 Sekunden untersucht. Als Merkmal wird die
Intensität der Beschleunigung verwendet. Als Klassifikatoren werden Entscheidungsbäume
und Neuronale Netze verwendet, wobei letztere in der Praxis bessere Ergebnisse lieferten.
Mit den Neuronalen Netzen werden Erkennungsraten von 82% erreicht.

Reddy et al. [22] verwenden ein Mobiltelefon zur Bestimmung der Fortbewegungsweise
(Stillstand, Rennen, Gehen, Fahrrad fahren und Motorisiert) des Benutzers. Das Gerät enthält
einen Beschleunigungssensor, sowie einen GPS Empfänger, die beide zur Erkennung ver-
wendet werden. Es werden Beschleunigungsverläufe über einem Fenster von einer Sekunde
betrachtet. Aus dem Fenster wurde unter anderem der Mittelwert, Standardabweichung
und die Energie extrahiert. Da allein mit den Beschleunigungsdaten kaum Unterschiede
zwischen den beiden Aktivitäten Stillstand und Motorisiert ausgemacht werden können, wird
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der GPS Empfänger zur Unterscheidung der beiden Aktivitäten zur Hilfe genommen. Die
Arbeit testet verschiedene Klassifikatoren und die besten Ergebnisse liefert ein zweistufiges
Verfahren bestehend aus einem Entscheidungsbaum und Hidden Markov Modellen, welche
als Eingaben die Ausgabewahrscheinlichkeiten des Entscheidungsbaums verwendet. Als
Merkmale für die Entscheidungsbäume dienen Varianz, Energie und Summe der Fourier-
koeffizienten, außerdem die Geschwindigkeit, die mit Hilfe des GPS Empfängers bestimmt
wird. In dieser Arbeit werden Erkennungsraten von 98% erreicht.

In [25] kommt ein Mobiltelefon zum Einsatz, welches mit einem Beschleunigungssensor
ausgestattet ist. Die untersuchten Aktivitäten sind Sitzen, Stehen, Gehen, Rennen, Fahrrad
fahren und Auto fahren. Für jede Aktivität wurde ein Fenster von 10 Sekunden betrach-
tet. Die Besonderheit an dieser Arbeit ist, dass eine Transformation der Sensordaten auf
ein Körperfestes Koordinatensystem durchgeführt wird. Andere Arbeiten verwenden statt
einer Transformation lediglich die Norm der Beschleunigungsvektors, wodurch Richtungs-
informationen verloren gehen. Aus den 10 Sekunden Fenstern werden folgende Merkmale
extrahiert: Mittelwert, Standardabweichung, Anzahl der Nulldurchgänge, 75% Perzentile
und Quartilabstand. Diese werden schließlich einem Entscheidungsbaum übergeben und
damit Erkennungsraten von durchschnittlich 90% erreicht.

Kwapisz et al. [11] verwenden ebenfalls den Beschleunigungssensor eines Mobiltelefons um
die Aktivitäten Gehen, Laufen, Sitzen, Stehen, Treppen hinaufsteigen und Treppen hinuntersteigen
zu erkennen. Aus Zeiträumen von 10 Sekunden werden unter anderem Mittelwert, Stan-
dardabweichung und Abstand zwischen den Spitzen verwendet. Anschließend werden die
Merkmale mit Hilfe von Entscheidungsbäumen, Logistischer Regression und Neuronalen
Netzen klassifiziert, wobei die Neuronalen Netze mit durchschnittlich 91.70% die beste
Gesamterkennungsrate aufweisen. Treppen hinaufsteigen und Treppen hinuntersteigen weisen
dabei mit 55%, bzw. 61.5% die schlechteste Erkennungsraten auf, alle anderen Aktivitäten
liegen über 90%.

Ziele

In den meisten Arbeiten, die einzelne Sensoren verwenden wurden recht lange Zeitfenster
verwendet, meistens 10 Sekunden oder 5 Sekunden. In dieser Arbeit soll untersucht werden
wie genau sich eine Wahl von kürzeren Zeitfenstern auswirkt und bis zu welcher Fenster-
größe noch gute Erkennungsraten erreicht werden können. Außerdem wurden bisher kaum
betrachtete Aktivitäten untersucht: Treppen hochsteigen, Treppen hinuntersteigen, Aufzug fahren
und Rolltreppe fahren.

Es werden zwei Klassifikationsverfahren gegenübergestellt: Entscheidungsbäume und Hid-
den Markov Modelle. Entscheidungsbäume wurden in den vorhergehenden Arbeiten häufig
verwendet, da sie gute Erkennungsraten bei wenig Rechenaufwand bieten. Da sich die ver-
wendete Hardware und Datensätze natürlich von anderen Arbeiten unterscheiden, wurden
hier Entscheidungsbäume als Referenzimplementierung gewählt, um eine bessere Vergleich-
barkeit zu gewährleisten. Hidden Markov Modelle wurden nur in einige wenigen Arbeiten
zur Klassifikation von Bewegungen verwendet. Da hier beide Verfahren auf dem selben
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1 Einleitung

Datensatz getestet werden, lassen sich die Ergebnisse direkt vergleichen. Weiterhin wird das
untersuchte Zeitfenster für die Hidden Markov Modelle nochmals in Intervalle eingeteilt.
Dieses Verfahren wurde bereits in [5] angewendet, allerdings wurden nur mäßige Erken-
nungsraten von maximal 78% erreicht. Bisher wurde kaum untersucht welche Einteilung
sich als am Besten erweist, deshalb werden verschiedene Verfahren auf ihre Erkennungsraten
hin untersucht.

Gliederung

Diese Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Technische Grundlagen bietet eine Übersicht die verwendete Hardware, insbe-
sondere die Eigenschaften und der Zugriff auf die Sensoren wird erläutert. Außerdem
wird kurz auf die Entwicklungsumgebungen eingegangen, unter denen die Software
zur Datenakquisition und Klassifikation entwickelt wurde.

Kapitel 3 – Datenakquisition widmet sich den in dieser Arbeit betrachteten Aktivitäten, den
gesammelten Daten, sowie der für die Datenakquisition entwickelten Software.

Kapitel 4 – Datenaufbereitung geht auf die Aufbereitung der Daten ein. Hier wird auf die
Einteilung der gesammelten Daten in Fenster und auch auf die verwendete Koordina-
tentransformation eingegangen.

Kapitel 5 – Entscheidungsbäume geht auf eines der verwendeten Klassifikationsverfahren
ein, den Entscheidungsbäume. Diese dienen in dieser Arbeit als Basis, um die Erken-
nungsrate der in Kapitel 6 betrachteten Hidden Markov Modelle besser bewerten zu
können und mit anderen Arbeiten zu vergleichen.

Kapitel 6 – Hidden Markov Modelle behandelt schließlich Grundlagen und Klassifikationser-
gebnisse der Hidden Markov Modelle. Es werden verschiedene Eingaben für die HMM
betrachtet und miteinander verglichen.

Kapitel 7 – Diskussion bewertet und vergleicht die beiden verwendeten Klassifikationsver-
fahren.
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2 Technische Grundlagen

2.1 Hardware

Zur Datenaufnahme wurde das Smartphone T-Mobile G1 (auch als HTC Dream vermarktet)
verwendet. In Tabelle 2.1 sind die technischen Details des Gerätes aufgelistet [7].

Im Gerät ist ein Sensorchip vom Typ Asahi Kasei AK8976A verbaut. Er bietet einen 3-Achsen
Beschleunigungssensor, einen 3-Achsen Magnetfeldsensor, sowie einen Temperatursensor
[9].

2.1.1 Beschleunigungssensor

Ein Beschleunigungssensor misst die Abweichung der aktuellen Beschleunigung von der
Beschleunigung im Freien Fall. Das bedeutet, dass ein Beschleunigungssensor der sich im
Freien Fall befindet stets eine Beschleunigung von 0 gemessen wird, obwohl die Erdbeschleu-
nigung auf ihn einwirkt. Wird der Sensor dagegen auf flach einem Tisch platziert, gibt er
eine Beschleunigung von 1, 0 G 1 nach oben an (siehe Abbildung 2.1 )

Prozessor Qualcomm R©MSM7201ATM, 528 MHz
Betriebssystem AndroidTM(Version 1.6)
Speicher 192 MB RAM

256 MB ROM
Erweiterbar durch Speicherkarte

Schnittstellen Bluetooth 2.0
IEEE 802.11 b/g WLAN

Mini USB Anschluss
Sensoren 3-Achsen Beschleunigungssensor

3-Achsen Magnetfeldsensor
Temperatursensor

Sonstiges GPS-Empfänger

Tabelle 2.1: T-Mobile G1 Technische Daten

1Gravitation, bzw. Erdbeschleunigung (in SI Einheiten 9.81 m/s2)
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2 Technische Grundlagen

Beschleunigungssensoren existieren in verschiedenen Bauarten. Der im T-Mobile G1 einge-
setzte Sensor ist ein piezoresistiver Sensor [9]. Er macht sich den sogenannten piezoresistiven
Effekt 2 zu Nutze. Damit kann die Wirkung der Beschleunigung auf eine Masse in eine
Widerstandsänderung umgesetzt werden, welche sich anschließend messen lässt.

2.1.2 Magnetfeldsensor

Es steht ein Magnetfeldsensor zur Verfügung, der die Stärke des Magnetfeldes auf den
drei Achsen in Millitesla liefert. Die Android API stellt Funktionen zur Verfügung, um
aus Magnetfeld- und Beschleunigungsdaten eine Rotationsmatrix zu berechnen, die die
Gerätekoordinaten auf Weltkoordinaten transformiert. Die Weltkoordinaten entsprechen:

x-Achse Richtung Norden

y-Achse Richtung Westen

z-Achse Richtung Himmel

Dies funktioniert allerdings nur, solange das Gerät im Stillstand ist. Die Transformation der
Beschleunigung auf Weltkoordinaten ist mit dem von der Android API zur Verfügung gestellt
Verfahren nicht möglich, denn die Beschleunigung wird stets auf (0, 0, |a|) tranformiert,
wobei |a| die Norm des Beschleunigungsvektors ist [17].

2.2 Android

Auf dem T-Mobile G1 ist das Betriebssystem Android installiert. Als Sprache für die Ent-
wicklung von Anwendungen für Android dient Java. Es werden zahlreiche Entwicklungs-
werkzeuge zur Verfügung gestellt, darunter Emulatoren und ein Plugin für die integrierte
Entwicklungsumgebung Eclipse. Daher wurde die Anwendung zur Datenakquisition voll-
ständig unter Eclipse entwickelt.

2.2.1 Sensoren Schnittstelle

Die Kommunikation mit den Sensoren erfolgt ereignisorientiert. Die Android API bietet dazu
eine Klasse SensorManager an. Nachdem ein Objekt der Klasse instanziiert und mit seiner
Hilfe die Anwendung als Listener registriert wurde, liefert das Betriebssystem Sensorwerte
an die Anwendung. Diese bestehen aus einem Zeitstempel, sowie den eigentlichen Werten.

Sobald das Gerät in den Standby Modus wechselt und das Display abschaltet, werden keine
Sensordaten mehr geliefert. Das Umschalten in den Standby Modus lässt sich mit Hilfe eines
sogenannten Wakelocks verhindern, welches die Android API anbietet. Der Nachteil daran ist
jedoch, dass das Display weiter auf Benutzereingaben reagiert. Dies schränkt die möglichen
Positionen des Gerätes am Körper ein, da versehentlich Benutzereingaben ausgelöst werden

2Widerstandsänderung eines elektrischen Leiters unter Druck oder Zug
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2.2 Android

Abbildung 2.1: Das Sensorkoordinatensystem ist abhängig von der Lage des Displays. x-
Achse und y-Achse entsprechen den jeweiligen Display Seiten und die
z-Achse zeigt gen Himmel, falls das Gerät flach auf dem Boden liegt.

könnten. Außerdem verkürzt sich die Laufzeit des Geräts durch das aktivierte Display und
den damit verbundenen erhöhten Stromverbrauch.

Allerdings lässt sich trotz des aktivierten Display eine Laufzeit von über einer Stunde
erreichen, was für diese Arbeit ausreichend ist. Mit voranschreitender Entwicklung wird es
auf irgendeine Art möglich sein, die Sensordaten auch bei abgeschalteten Display auszulesen.
Die Einschränkungen für diese Arbeit sind also vernachlässigbar und werden für zukünftige
Entwicklungen voraussichtlich nicht mehr gegeben sein.

2.2.2 Sensorkoordinatensystem

Das Sensorkoordinatensystem ist abhängig von der Ausrichtung des Displays. Im Porträtmo-
dus entspricht die x-Achse der kurzen Displayseite, die y-Achse der langen Displayseite. Im
Landschaftsmodus entspricht die x-Achse der langen Seite, die y-Achse der kurzen Seite.
Die z-Achse ist stets orthogonal zu x und y-Achse und zeigt in Richtung Himmel, falls das
Gerät flach auf dem Boden liegt [17].

Durch Drehung des Gerätes wird zwischen den beiden Displaymodi gewechselt. Dabei
ändert sich aber zugleich das Koordinatensystem. Um dies zu vermeiden wird der auto-
matische Wechsel des Displaymodus deaktiviert. Das Display befindet sich somit ständig
im Porträtmodus. Das verwendete Sensorkoordinatensystem ist in Abbildung 2.1 nochmals
dargestellt.

2.2.3 Samplingrate

Die Samplingrate lässt sich mit Hilfe der in Tabelle 2.2 angegebenen Konstanten beeinflussen.
Eine genaue Festlegung der Samplingrate ist jedoch nicht möglich, denn die Konstanten
legen lediglich den Mindestabstand zwischen je 2 aufeinanderfolgenden Sensorwerten fest,
die Werte können jedoch auch mit größerem Abstand geliefert werden.
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2 Technische Grundlagen

Name Mindestabstand in Millisekunden

SENSOR_DELAY_NORMAL 200

SENSOR_DELAY_UI 60

SENSOR_DELAY_GAME 20

SENSOR_DELAY_FASTEST 0

Tabelle 2.2: SENSOR_DELAY_* Konstanten

Genutzt wird die schnellste verfügbare Samplingrate SENSOR_DELAY_FASTEST. Sie setzt
den Mindestabstand auf 0 Sekunden, das bedeutet die Sensorwerte werden so schnell
geliefert, wie möglich. Kurz nach dem Start der Sensoraufnahme pendelt sich der Abstand
jedoch auf 20 Millisekunden ein [18]. Nur selten gibt es leichte Schwankungen von einer
Millisekunde. Daher kann von einer konstanten Samplingrate von 50 Hz ausgegangen
werden.

2.3 Matlab

Zur Implementierung der Weiterverarbeitung und Klassifikation der Sensordaten wurde
Matlab verwendet. Matlab ermöglicht eine schnelle Entwicklung aufgrund der zahlreichen
bereits existierenden Funktionen, wodurch das Testen verschiedener Verfahren erleichtert
wird. Dies stellt natürlich keine große Herausforderung dar. Die Implementierung kann auch
direkt auf dem Gerät erfolgen und die Erkennung kann vollständig portiert werden. Die
Implementierung auf dem Gerät nimmt jedoch ein Vielfaches der Zeit in Anspruch, weshalb
matlab gewählt wurde.

2.3.1 Entscheidungsbäume

Für die Entscheidungsbäume wurde die Statistics Toolbox von Matlab verwendet. Sie ist
in der Lage Klassifikations- und Regressionsbäume mit Hilfe des CART Algorithmus und
verschiedener Teilungskriterien zu erstellen. In 5 wird genauer auf das verwendete Verfahren
eingegangen.

2.3.2 HMM Toolbox

Zum Trainieren und Testen der verschiedenen Hidden Markov Modelle wurde die HMM
Toolbox für Matlab verwendet [14]. Sie ist frei verfügbar und steht unter der MIT Lizenz zur
Verfügung. Die Toolbox erlaubt das Trainieren von Hidden Markov Modellen mit Gaußschen
Mischungen mit Hilfe dem EM Algorithmus. In 6 wird genauer auf das verwendete Verfahren
eingegangen.
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3 Datenakquisition

3.1 Software

Zur Aufnahme der Daten wurde eine Anwendung für das G1 entwickelt, die es ermöglicht
Beschleunigungsdaten über einen beliebig gewählten Zeitraum aufzunehmen. Der Benutzer
kann die Datenakquisition manuell starten und wieder stoppen. Die Dauer der Aufnahme
kann also vom Benutzer gewählt werden, und wird nur durch den vorhandenen Speicher
begrenzt. Die Daten werden auf der Speicherkarte des Gerätes abgelegt und können von
dort aus zur Weiterverarbeitung auf einen PC übertragen werden. Natürlich kann die
Weiterverarbeitung auch direkt auf dem Smartphone stattfinden, in dieser Arbeit wurde sie
jedoch auf dem PC durchgeführt.

Die Anwendung speichert die Sensordaten als Textdatei. Für jedes Sensorereignis wird der
Zeitstempel (Die Zeit seit dem Beginn der Aufzeichnung in Millisekunden), sowie die drei
Elemente des Beschleunigungsvektors gespeichert. Es stehen verschiedene vorgefertigte
Aktivitäten zur Auswahl, für die automatisch ein Dateiname und ein Header erzeugt wird.
Alternativ lassen sich diese auch manuell bearbeiten. Der Header enthält den Gerätenamen,
den Namen der Aktivität, sowie das Datum und die Uhrzeit der Aufnahmebeginns. Optional
kann der Benutzer einen Kommentar eingeben. Dieser wurde genutzt, um die Geräteposition
oder den genauen Ort der Aufnahme zu speichern. Abbildung 3.1 zeigt den Aufbau einer
Datei.

3.2 Geräteposition

Das Gerät wird in einer der vorderen Hosentaschen getragen, da Mobiltelefone häufig an
dieser Position getragen werden. Aufgrund der in Kapitel 2 genannten Einschränkungen
kann das Gerät nicht mit dem Display in Richtung Oberschenkel getragen werden, denn
durch die ständigen Berührungen mit dem Bein werden Benutzereingaben ausgelöst, die die
Datenaufnahme stoppen könnten.

Das schränkt die möglichen Positionen pro Hosentasche auf zwei ein. Damit sind insgesamt
die vier Positionen nutzbar, die in Abbildung 3.2 gezeigt werden. Untersucht wurden
jedoch nur zwei Positionen in der rechten Hosentasche (Abbildung 3.2a und 3.2b). Die
Untersuchung weiterer Positionen macht auch das Sammeln zusätzlicher Daten notwendig,
was den Zeitrahmen dieser Arbeit sprengen würde. Es wurden jedoch auch einige Datensätze
in den anderen beiden Positionen gesammelt, um die Koordinatentransformation (Abschnitt
4.4) zu testen.
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3 Datenakquisition

Device: T-Mobile G1
walk 
2010-12-15 13:44
Position A, contains passage downhill & uphill
#
89 -2.6014864 4.903325 7.5865335 
128 -2.6014864 5.1212506 7.5865335 
149 -2.6014864 5.012288 7.5865335 
169 -2.6559677 5.066769 7.5320525 
189 -2.7104492 5.1212506 7.4230895 
210 -2.7649305 5.1212506 7.3141265 
230 -2.819412 5.1212506 7.205164 
250 -2.7649305 5.2302136 7.096201 
270 -2.7649305 5.339176 7.04172 
291 -2.7104492 5.611583 6.8237944 
310 -2.547005 6.033814 6.66035 
330 -2.6014864 6.033814 6.7148314 

Header mit Gerätenamen,  
Name der Aktivität, 
Aufnahmebeginn,
und optionalem Kommentar

Datenblock. Jede Zeile 
enthält einen Zeitstempel 
(Vergangene Zeit seit
Aufnahmegebinn) gefolgt von 
den drei Komponenten des
Beschleunigungsvektors

Abbildung 3.1: Aufbau einer durch die Anwendung erzeugten Datei. Die Abbildung zeigt
den Header der Datei und den Beginn des Datenblocks.

Bedingt durch die Wahl der Position wird nicht nur die Vorwärtsbeschleunigung und die
Gravitation, sondern auch die Beinbewegung des Benutzers durch den Sensor registriert. Die
Erkennung kann deshalb nicht auf Sensordaten angewendet werden, die in einer anderen
Position aufgenommen wurden, beispielsweise falls sich das Gerät in einem Rucksack
befindet.

3.3 Aktivitäten

Die gesammelten Aktivitäten werden aufgeteilt in periodische Aktivitäten, d.h. Aktivitäten
die eine gewisse Periodizität aufweisen, wie z.B. Gehen und statischen Aktivitäten bei denen
sich der Benutzer selbst kaum bewegt, wie z.B. Rolltreppe fahren. Die Aktivitäten wurden
auf dem Universitätsgelände, d.h. unter realen Bedingungen, von einer einzigen Person
gesammelt.

Statischen Aktivitäten:

Aufzug fahren Das Sammeln der Daten für die Aktivität Aufzug fahren ist problematisch,
denn moderne Aufzüge verursachen kaum Vibrationen oder Schwankungen, wodurch
sich Aufzug fahren kaum von Stehen unterscheiden lässt. Je nach Aufzug sind selbst
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3.3 Aktivitäten

(a) Rechtes Bein, unten (b) Rechtes Bein, oben

(c) Linkes Bein, unten (d) Linkes Bein, oben

Abbildung 3.2: Gerätepositionen in den Hosentaschen mit zugehörigen Sensorkoordinaten-
systemen

19



3 Datenakquisition

Beschleunigungs- und Bremsphasen kaum in den Beschleunigungsverläufen zu erken-
nen.

Rolltreppe fahren Rolltreppendaten wurden zwar an verschiedenen Rolltreppen gesammelt,
leider stammen alle von dem gleichen Hersteller, so dass kaum Unterschiede in den
Beschleunigungsverläufen existieren. Ein leichtes Rütteln ist dennoch zu beobachten
und wie in Kapitel 5 und 6 gezeigt wird es reicht aus, um die Aktivität von Ruhezustand
und Aufzug fahren zu unterscheiden.

Ruhezustand In der Aktivität Ruhezustand werden die Aktivitäten Sitzen und Stehen zusam-
mengefasst. Sie unterscheiden sich nur durch eine Drehung (der Drehung der Beins),
dieser Unterschied verschwindet bei der späteren Aufbereitung der Daten (Kapitel 4).

Periodische Aktivitäten:

Rennen Wie aus Abbildung 3.6 ersichtlich unterscheidet sich Rennen deutlich von den
übrigen Aktivitäten. Frequenz und Amplitude des Beschleunigungsverlaufs überstei-
gen die der übrigen Aktivitäten deutlich. In Kapitel 5 und 6 wird gezeigt, dass die
Erkennungsraten für Rennen entsprechend hoch sind.

Treppen hinuntersteigen und Treppen hinaufsteigen Für die beiden Aktivitäten Treppen hin-
aufsteigen und Treppen hinuntersteigen wurden Daten von fünf verschiedenen Treppen
aufgenommen. Es wurde darauf geachtet Datensätze von Treppen unterschiedlicher
Steigung zu sammeln. Die Beschleunigungsverläufe für flache Treppen, d.h. Treppen
mit niedriger Steigung, ähneln dabei den Verläufen für Gehen. Je nach Art der Treppe
sind längere Gehphasen zwischen dem eigentlichen Treppendaten vorhanden. Diese
werden bei der Aufbereitung entfernt.

Gehen ist von allen Aktivitäten die am stärksten periodische, d.h. die einzelnen Perioden
gleichen sich stark und lassen sich in den Beschleunigungsverläufen stets gut erkennen.
Die Daten wurden an Stellen mit verschiedenen Untergründen (Asphalt, Schnee,
Gras), sowie unterschiedlichen Steigungen gesammelt. Da die Daten unter realen
Bedingungen gesammelt wurden, mussten auch Hindernisse umgangen, d.h. die
Richtung geändert werden, was zusätzlich Varianz in den Datensatz bringt. Gravierende
Unterschiede in den Beschleunigungsverläufen bestehen jedoch nicht.

Einige typische Beschleunigungsverläufe sind in Abbildung 3.3–3.9 aufgezeigt. Zur besseren
Vergleichbarkeit wurde für alle Aktivitäten die Position A (Abbildung 3.2a) ausgewählt.
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3.3 Aktivitäten
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Abbildung 3.3: Beschleunigungsverlauf von Aufzug fahren, 256 Datenpunkte, 5 Sekunden.
Erkennbar ist ein leichtes "Rütteln", sowie die Bremsphase des Aufzugs
zwischen 150-225
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Abbildung 3.4: Beschleunigungsverlauf von Rolltreppe fahren, 256 Datenpunkte, 5 Sekunden.
Gut erkennbar ist das "Rütteln"der Rolltreppe auf der Y-Achse
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3 Datenakquisition
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Abbildung 3.5: Beschleunigungsverlauf von Ruhezustand, 256 Datenpunkte, 5 Sekunden. In
Ruhezustand wurden Stehen und Sitzen zusammengefasst. Hier ist Stehen
abgebildet.
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Abbildung 3.6: Beschleunigungsverlauf von Rennen, 256 Datenpunkte, 5 Sekunden. Hohe
Amplitude und Frequenz im Vergleich zu den übrigen Aktivitäten
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3.3 Aktivitäten
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Abbildung 3.7: Beschleunigungsverlauf von Treppen hinuntersteigen, 256 Datenpunkte, 5

Sekunden. Diese Aktivität neigt stärker zu Unregelmäßigkeiten, d.h. sie ist
weniger periodisch als z.B. Treppe hinaufsteigen oder Gehen
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Abbildung 3.8: Beschleunigungsverlauf von Treppen hinaufsteigen, 256 Datenpunkte, 5 Sekun-
den
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Abbildung 3.9: Beschleunigungsverlauf von Gehen, 256 Datenpunkte, 5 Sekunden
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4 Datenaufbereitung

4.1 Generierung zusammenhängender Datensätze

Die gesammelten Rohdaten liegen als zahlreiche Einzeldateien vor. Um die Weiterverar-
beitung zu vereinfachen wurden die Daten per Hand zusammengefügt, so dass für jede
der Aktivitäten ein einziger durchgängiger Datensatz vorliegt. Aus den daraus entstande-
nen durchgängigen Datensätzen können anschließend beliebige Fenstergrößen generiert
werden.

Da der Benutzer das Gerät beim Starten und Beenden der Datenakquisition in der Hand hält,
müssen ein Stück am Anfang und am Ende einer Datei entfernt werden. Außerdem werden
die Sprünge zwischen den einzelnen Beschleunigungsverläufen manuell entfernt, indem
Datenpunkte gelöscht werden, bis die Daten nahtlos zusammenhängen. Das ist möglich,
da die Periodizität der Daten ausreichend hoch ist. Zudem müssen Fragmente fremder
Aktivitäten entfernt werden. Insbesondere Treppen steigen erfordert eine zeitaufwändige
Aufbereitung, aufgrund der vielen dazwischenliegenden Gehphasen.

Die nach der manuellen Aufbereitung nutzbaren Datensätze sind in Tabelle 4.1 aufgelistet.

4.2 Glättung

Eine Glättung der Daten gestaltet sich schwierig. Nur für periodische Aktivitäten, wie Gehen
oder Rennen wäre ein Glättung möglich. Würde man jedoch die Aktivität Rolltreppe oder
Aufzug fahren fahren glätten, so wären sie kaum noch von Ruhezustand zu unterscheiden. Da

Aktivität Anzahl Samples = Minuten

Aufzug fahren 47408 15.8
Rolltreppe fahren 26130 8.7
Ruhezustand 42903 14.3
Rennen 45882 15.3
Treppen hinuntersteigen 43560 14.5
Treppen hochsteigen 63409 21.1
Gehen 155464 51.8

Tabelle 4.1: Anzahl der Daten nach manueller Aufbereitung
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4 Datenaufbereitung

Fenstergröße (Samples) Zeitraum (Sekunden)

32 0.64

64 1.28

128 2.56

256 5.12

512 10.24

Tabelle 4.2: Verwendete Fenstergrößen. Samples entsprechen den angegeben Zeiträumen

bereits eine leichte Glättung die Unterscheidung stark erschwert, wurde auf eine Glättung
komplett verzichtet.

4.3 Einteilung in Fenster

Um Trainings- und Testdatensätze zu gewinnen, werden die zusammenhängenden Rohdaten
wieder in Fenster aufgeteilt. Diese Fenster werden zur Merkmalsextraktion genutzt oder
direkt zum Trainieren des Klassifikators verwendet. In früheren Arbeiten haben sich Fenster
mit 50% Überlappung als vorteilhaft erwiesen. Es wurden verschiedene Fenstergrößen
generiert. Da unter anderem die Koeffizienten der Fouriertransformation als Merkmale
genutzt werden, wurden stets Fenstergrößen zu Basis zwei verwendet. In Tabelle 4.2 werden
die verwendeten Fenstergrößen aufgeführt.

Nach der Generierung, wurde eine zufällige Permutation der Fenster erzeugt, dies ist
insbesondere für die Aktivitäten Treppen hinaufsteigen und Treppen hinuntersteigen wichtig, da
Daten von verschiedenen Treppen gesammelt wurden und es vermieden werden soll die
Klassifikatoren versehentlich nur auf einer Treppenart zu trainieren.

Fenster 1

Fenster 2

Fenster 3 Fenster 7

Fenster 4

Fenster 5

Fenster 6

Abbildung 4.1: Die Daten werden in Fenster fester Größe mit 50% Überlappung eingeteilt.

Die Nutzung längerer Fenster erhöht die Erkennungsrate, hat jedoch den Nachteil einer
trägeren Reaktion: Wechselt die Aktivität des Benutzers, beispielsweise von Gehen zu Treppen
hinaufsteigen, so wird das Fenster erst als Treppen hinaufsteigen klassifiziert, sobald ein ausrei-
chend großer Anteil der Daten im Fenster die entsprechende Aktivität darstellt. Außerdem
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4.4 Koordinatentransformation

werden kurze Abschnitte anderer Aktivitäten verschluckt, wie zum Beispiel wenige Stufen
Treppen hinaufsteigen eingebettet in Gehen.

4.4 Koordinatentransformation

Aufgrund der Position des Geräts in der Hosentasche, ist das Sensorkoordinatensystem
(Abbildung 4.2) durch die Beinbewegung ständigen Schwankungen ausgesetzt.
Um unabhängig von der Position des Geräts vergleichbare Sensordaten zu erhalten, ist
es notwendig sie in ein Körperfestes Koordinatensystem zu transformieren. Eine andere
Möglichkeit ist die Norm des Beschleunigungsvektors zu verwenden. Dabei gehen jedoch
sämtliche Richtungsinformationen verloren.

4.4.1 Exakte Transformation

Eine exakte Transformation, in das in Abbildung 4.2a dargestellte Koordinatensystem wäre
wünschenswert, ist mit den vorhandenen Sensoren aber nicht möglich. Für eine exakte
Transformation wäre Kenntnis über die genauen Drehwinkel erforderlich, diese Winkel
aus den Daten des Beschleunigungssensors zu gewinnen ist jedoch nur möglich, solange
ausschließlich die Gravitation auf den Sensor einwirkt. Wirkt eine weitere, d.h. vom Benutzer
erzeugte Beschleunigung auf das Gerät ein, kann man nicht zwischen dieser und der
Gravitation unterscheiden. Das Verfahren lässt sich also nur im Stillstand anwenden und
ist damit für diese Arbeit nicht geeignet. Es muss stattdessen auf eine näherungsweise
Transformation zurückgegriffen werden.

Mit dem Aufkommen von Gyroskopen in Smartphones kann diese Einschränkung jedoch
umgangen werden. Es kann eingesetzt werden, um die exakten Drehwinkel zu erhalten, mit
deren Hilfe sich die Beschleunigungsdaten dann transformieren lassen. Leider stand für diese
Arbeit kein Smartphone mit Gyroskop zur Verfügung, die ersten Geräte mit integriertem
Gyroskop kamen erst gegen Ende dieser Arbeit auf den Markt.

4.4.2 Näherungsweise Transformation

Die näherungsweise Transformation, bzw. Projektion der Beschleunigungsdaten erfolgt
mit dem in [13] vorgeschlagenen Verfahren. Dabei wird ein Beschleunigungsvektor zerlegt
in eine vertikale Komponente parallel- und eine horizontale Komponente orthogonal zur
Gravitation.

Die Grundidee besteht darin, die Gravitation mit Hilfe des Mittelwertes abzuschätzen. Dies
ist möglich, da die Gravitation konstant ist, die Beschleunigung durch die Bewegungen des
Benutzers aber schwankt. Um eine gute Abschätzung der Gravitation zu erhalten, muss das
Zeitfenster über dem der Mittelwert gebildet wird jedoch ausreichend lang sein [13].
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4 Datenaufbereitung

Für die vorliegenden Aktivitäten hat sich eine Fenstergröße von 64 Samples (etwa eine
Sekunde) als noch ausreichend erwiesen. Bei einer Fenstergröße von 32 treten bereits Schwan-
kungen auf, d.h. die mit Hilfe des Mittelwerts abgeschätzte Gravitation schwankt von Fenster
zu Fenster.

Es wird zunächst der Mittelwert ~m = (mx, my, mz) der Beschleunigung ~a(t) = (ax, ay, az) für
jede Achse, über das gewählte Zeitfenster [t1, tn] der Länge n gebildet:

~m =
1
n
∗

tn

∑
t=t1

~a(t)

Dieser Mittelwertvektor ~m weist in Richtung der Gravitation, d.h. der vertikalen Achse
(Abbildung 4.2b) Anschließend lässt sich die vertikale Komponente ~av der Beschleunigung
bestimmen, indem die einzelnen Datenpunkte ~a auf ~m projiziert werden:

~av =
(

~a · ~m
~m · ~m

)
∗ ~m

Die horizontale Komponente ~ah erhält man mittels:

~ah =~a−~av

Die einzelnen Komponenten der horizontalen Beschleunigung lassen sich nicht unterscheiden.
Es ist nur bekannt, dass sich~h in der Ebene orthogonal zum abgeschätzten Gravitationsvektor
~m befindet [13].

Dies resultiert im in Abbildung 4.2b dargestellten Koordinatensystem. Die Ergebnisse der
Transformation mit zugehörigen Rohdaten sind in Abbildung 4.3 dargestellt, zur leichteren
Vergleichbarkeit wurde in allen 4 Positionen die Aktivität Gehen ausgewählt. Wie an den
Ergebnissen zu erkennen ist, überführt die Transformation die Daten in ein einheitliches
Koordinatensystem.

4.5 Zyklen Erkennung

Ein Zyklus entspricht eine Periode im Beschleunigungsverlauf. Bei der Aktivität Gehen
wären dies beispielsweise zwei Schritte. Die Erkennung von Zyklen wird auf zwei Arten
eingesetzt.

Erzeugung eines zusätzlichen Fensters Mit Hilfe der Zyklen soll zusätzlich zu den in 4.3
generierten Fenstern ein weiteres erzeugt werden. Da sich die Zyklen alle ähneln, reicht
die Betrachtung eines Zyklus. Durch die Wahl des neuesten Zyklus kann außerdem
die Reaktionsgeschwindigkeit des System verbessert werden.

Unterteilung des Fensters Das Fenster wird für das Training der Hidden Markov Modelle
in Intervalle eingeteilt. Zusätzlich zu festen Intervallgrößen, soll das Fenster auch
abhängig von den gefundenen Zyklen eingeteilt werden. Auf die verwendeten Unter-
teilungen wird in Kapitel 6 noch einmal genauer eingegangen.
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4.5 Zyklen Erkennung

(a)

V

H

(b)

Abbildung 4.2: (a)“Ideales” körperfestes Koordinatensystem, mit den vorliegenden Sensoren
nicht verfügbar. Stattdessen wird das durch Abschätzen der Gravitation
enstandene Koordinatensystem (b) verwendet

4.5.1 Vorverarbeitung

Um die Zyklen in einem Fenster zu bestimmen muss zunächst die Periodenlänge des
Beschleunigungsverlaufs abgeschätzt werden. Um die Abschätzung zu verbessern ist eine
Vorverarbeitung notwendig. Dazu wird auf Methoden zurückgegriffen, die auch in der
Herzschlagerkennung [12] und der Rhythmus Erkennung bei Musik angewendet werden
[19].

Zunächst wird der Beschleunigungsverlauf geglättet. Anschließend wird das Ergebnis qua-
driert und ein gleitender Mittelwertfilter darauf angewandt, d.h. erneut geglättet. Diese Art
der Vorverarbeitung hat sich bewährt und verbessert auch für Beschleunigungsverläufe die
Abschätzung der Periodenlänge.
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(c) Rohdaten - Rechtes Bein, oben
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(d) Ergebnis - Rechtes Bein, oben
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(e) Rohdaten - Linkes Bein, unten
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(f) Ergebnis - Linkes Bein, unten
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(g) Rohdaten - Linkes Bein, oben
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(h) Ergebnis - Linkes Bein, oben

Abbildung 4.3: Ergebnisse der Koordinatentransformation am Beispiel Gehen. Jede Zeile
entspricht einer Position aus Abbildung 3.2. Die Beschleunigungsverläufe
in der linken Spalte sind im körperfesten Koordinatensystem und gleichen
sich unabhängig von der Position des Gerätes
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4.5 Zyklen Erkennung

4.5.2 Abschätzen der Periodenlänge

Um die Periodenlänge abzuschätzen wird die Autokorrelationsfunktion verwendet. Sei
x1 . . . xn eine Folge von Werten. Dann ist die Autokorrelationsfunktion gegeben durch:

ak f (k) =
n−k

∑
t=1

(xt ∗ xt+k)

Nach der Vorverarbeitung, werden die Maxima Mi = (mx
i , my

i ) der Autokorrelationsfunktion
bestimmt und anschließend sortiert M = {M1 . . . Mn|my

i < my
j , i < j} Die Differenz p =

|mx
n −mx

n−1| zwischen den beiden größten Maxima liefert die gewünschte Abschätzung der
Periodenlänge. Die Periodenlänge wird sowohl für die vertikale, als auch die horizontale
Beschleunigung bestimmt. Experimente haben gezeigt, dass die Verwendung des größeren
der beiden Werte die besten Ergebnisse liefert.

4.5.3 Einteilung nach Zyklen

M1

M2 3M
M4 M5

Abbildung 4.4: Suche nach lokalen Maxima zur Unterscheidung der Zyklen. Zunächst
wird das globale Maximum M1 im Intervall [0, p] gesucht, wobei p die
abgeschätzte Periodenlänge ist. Ausgehend von diesem wird die Position
des nächsten Maximums abgeschätzt und um diesen Bereich das nächste
globale Maximum berechnet.

Nachdem die Periodenlänge p nun bekannt ist, wird der Beschleunigungsverlauf in Abschnit-
te eingeteilt. Jeder Abschnitt entspricht einem Zyklus. Für die Einteilung werden markante
Stellen in den Beschleunigungsverläufen benötigt. Dafür eignen sich die lokale Maxima, da
sie in allen periodischen Aktivitäten stark ausgeprägt sind. Zunächst wird das Maximum
M1 = (x1, y1) innerhalb [0, p] gesucht. Dies ist der Startpunkt des ersten Zyklus. Ausgehend
von diesem wird am vermuteten Startpunkt des zweiten Zyklus [y1 + 3/4 ∗ p, y1 + 5/4 ∗ p],
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4 Datenaufbereitung

nach dem nächsten Maximum M2 gesucht. Dies wird wiederholt, bis der vermutete nächste
Startpunkt zu weit außerhalb des Fensters liegt (Abbildung 4.4).

Die gefundenen Maxima werden schließlich zur Einteilung der Zyklen verwendet. Werden
im Fenster keine Maxima gefunden oder entspricht die Periodenlänge dem ganzen Intervall,
so wird das ganze Fenster als Zyklus verwendet. Dies ist bei allen nicht-periodischen
Aktivitäten - wie zum Beispiel Ruhezustand - der Fall.

4.6 Merkmale

Um die Anzahl der zur Klassifikation verwendeten Eigenschaften zu verringern, werden
Merkmale aus den Beschleunigungsdaten extrahiert. Sei X = {~x1, . . . ,~xn} die Menge der
Beschleunigungsdaten. Jedes ~xi = (xh, xv) entspricht dabei einem Datenpunkt bestehend
aus der horizontalen Komponente xh und vertikalen Komponente xv. Folgende Merkmale
wurden jeweils für beide Komponenten verwendet:

Mittelwert:

µ =
1
n
∗

n

∑
i=1

xi

Standardabweichung: Standardabweichung σ =
√

s2 aus Stichprobenvarianz s2

s2 =
1

n− 1
∗

n

∑
i=1

(xi − µ)

Fouriertransformation: Koeffizienten x̂k der diskreten Fouriertransformation einer Folge
(x0, . . . , xn)

x̂k =
1

n− 1
∗

n−1

∑
j=0

e−2πi∗ jk
n xj
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5 Entscheidungsbäume

5.1 Grundlagen

Entscheidungsbäume werden zur Klassifikation und zum Data Mining eingesetzt. Jeder
Knoten eines Baums entspricht dabei einer Entscheidungsregel und jedes Blatt entspricht
einer Klasse. Ein großer Vorteil ist, dass sie die zur Klassifikation verwendeten Merkmale
anschaulich darstellen.

5.1.1 CART Algorithmus

Der CART Algorithmus (Classifcation and Regression Trees) ist ein überwachtes Lernverfah-
ren zur Generierung von Entscheidungsbäumen. Das Verfahren wurde 1984 von L. Breiman
veröffentlicht [3].

Begonnen bei der Wurzel - die zunächst die gesamte Menge enthält - wird an jedem Knoten
die Menge der Daten in zwei Klassen eingeteilt, wodurch zwei neue Knoten entstehen.
Aufgrund der Einteilung in zwei Klassen nur Binärbäume erzeugt werden. Für die eigentli-
che Teilung wird dasjenige Attribut ausgewählt, welches die optimale Aufteilung in zwei
Teilmengen, hinsichtlich eines Teilungskriteriums liefert.

Da bei einer Teilung stets nur der aktuelle Knoten betrachtet wird, zählt das Verfahren zur
Klasse der greedy Algorithmen. Es platziert Attribute umso höher im Entscheidungsbaum,
je besser sie die Datenmenge unterteilen.

5.1.2 Teilungskriterium

Als Teilungskriterium wird der Gini Index (oder Gini Koeffizient) verwendet. Er wird als
Maß für die Ungleichheit oder Unreinheit einer Menge von Daten genutzt. Es seien die
Klassen J = 1, ..., k gegeben und pj die relative Häufigkeit der Elemente in der Menge, die
zu Klasse j gehören. Dann ist der Gini Index gegeben durch:

gi = 1−
k

∑
j=1

p2
j

Der Gini Index wird minimal, falls jedes Element einer Menge zu der selben Klasse gehört.
Umgekehrt wird der Gini Index maximal, falls jedes Element zu einer eigenen Klasse
gehört.
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5 Entscheidungsbäume

An jedem Knoten soll die Aufteilung zwei möglichst homogene Mengen erzeugen. Dies
geschieht, indem die Differenz ∆ zwischen der Unreinheit des Elternknotens und der
Unreinheit der Kindknoten maximiert:

∆ = gi(t)− nr ∗ gi(tr)− nl ∗ gi(tl)

Wobei gilt:

gi(t) = Gini Index des Elternknotens
gi(tl) = Gini Index des linken Kindknotens
gi(tr) = Gini Index des rechten Kindknotens
nl = Anzahl der Elemente im linken Kindknoten
nr = Anzahl der Elemente im rechten Kindknoten

5.2 Merkmalsextraktion

Um die Anzahl der zur Klassifikation verwendeten Eigenschaften zu verringern, werden
Merkmale aus den Beschleunigungsdaten extrahiert. Sei X = {~x1, . . . ,~xn} eine Menge von
Beschleunigungsdaten, mit ~xi = (xh, xv). Folgende Merkmale wurden jeweils für die hori-
zontale Komponente xh und die vertikale Komponente xv eines Datenpunkts berechnet:

Mittelwert:

µ =
1
n
∗

n

∑
i=1

xi

Standardabweichung: Standardabweichung σ =
√

s2 aus Stichprobenvarianz s2

s2 =
1

n− 1
∗

n

∑
i=1

(xi − µ)

Fouriertransformation: Koeffizienten ŷk der diskreten Fouriertransformation einer Folge
(y0, . . . , yn)

ŷk =
1

n− 1
∗

n−1

∑
j=0

e−2πi∗ jk
n yj

Die Merkmale für den Entscheidungsbaum werden über dem gesamten Zeitfenster extrahiert.
Die Zyklenerkennung wird genutzt um ein zusätzliches Fenster zu erzeugen. Dazu wurden
aus den bestehenden Fenstern der Größe 256 Samples die Zyklen bestimmt und aus dem
neuesten Zyklus das neue Fenster erzeugt, dessen Länge schwankt und abhängig von der
Länge des Zyklus ist.
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Jeweils für die horizontale und vertikale Komponente der Beschleunigung. Dadurch ergeben
sich bei einer Fenstergröße von n ein Merkmalsvektor der Dimension 2 ∗ (2 + n):

~o = (µh, µv, σh, σv, ŷh
1, . . . , ŷh

n, ŷv
1, . . . , ŷv

n)

Der Entscheidungsbaum erhält also mehr Merkmale, als die Daten eigentlich lang sind. Der
CART Algorithmus (Abschnitt 5.1.1) wird diejenigen Merkmale auswählen, die die Daten
am besten unterteilen, d.h. es werden nicht alle Merkmale auch verwendet.

5.3 10-fold Cross Validation

Die Ergebnisse de Erkennungsraten der Entscheidungsbäume wurden mit Hilfe von 10-fold
cross validation geprüft. Für jede Fenstergröße wurde der Datensatz aufgeteilt in zehn
Datensätze. Anschließend wurden die Entscheidungsbäume auf neun dieser Datensätze
trainiert und mit dem verbleibenden zehnten Datensatz getestet. Dieser Vorgang wurde
zehn mal wiederholt, jedes mal mit einem anderen der zehn Datensätze als Testdatensatz.
Der Durchschnitt der Erkennungsraten aus den zehn Durchläufen wird schließlich als
Endergebnis verwendet. 10-fold cross validation vermindert den Einfluss

5.4 Ergebnisse

Entscheidungsbäume bieten, wie in anderen Untersuchungen zuvor [25] [4], auch hier gute
Erkennungsraten und erreichen für große Fenster Erkennungsraten von 93%. Die Einteilung
in periodische und statische Aktivitäten spiegelt sich auch in der Struktur des Baums wieder:
Rennen wird im Entscheidungsbaum meist sofort an der Wurzel zu einem Blatt, danach
verzweigt sich der Baum in je einen Unterbaum für statische Aktivitäten und periodische
Aktivitäten.

Die periodischen Aktivitäten Rennen, Treppen hochsteigen, Treppen hinuntersteigen und Gehen
wiesen eine im Durchschnitt 10% höhere Erkennungsrate als die statischen Aktivitäten
textitAufzug fahren, Rolltreppe fahren und Ruhezustand auf. Insbesondere Rennen weist eine
sehr hohe Erkennungsrate auf. Im Gegensatz dazu kommt es zwischen Ruhezustand und
Aufzug fahren häufig zu Fehlklassifikationen, wodurch für Ruhezustand die Erkennungsrate
bei einer Fenstergröße von 32 auf 39% absinkt. Die Tiefe der Bäume variiert zwischen 9 für
Fenstergröße 512 und Tiefe 41 für Fenstergrößen 32. Tabelle 5.1 zeigt die Erkennungsraten
der einzelnen Aktivitäten in Abhängigkeit von der gewählten Fenstergröße.

Die Bestimmung des neuesten Zyklus aus einem Zeitfenster von 256 Samples führt zu einer
Gesamterkennungsrate von 90.21%. Für periodische Aktivitäten beträgt sie 95.45% und
bringt damit eine Steigerung gegenüber der Erkennungsrate von 93.69% für ein Fenster der
festen Größe 64 Samples. Für statische Aktivitäten beträgt die Erkennungsrate 83.20%. Da bei
statischen Aktivitäten keine Zyklen existieren, wird das Verfahren zur Zyklenerkennung das
gesamte Fenster als Zyklus verwenden, d.h. 256 Samples. Deshalb wird in diesem Fall auch
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5 Entscheidungsbäume

Fenstergröße
32 64 128 256 512 Neu

A
kt

iv
it

ät
Aufzug 82.63 83.25 82.75 82.00 89.00 81.00

Rolltreppe 90.00 88.50 88.00 85.00 90.00 84.40

Ruhezustand 39.33 75.75 81.50 89.50 94.00 84.30

Rennen 99.46 100.00 100.00 100.00 100.00 100.00

Treppe Runter 85.50 97.38 95.00 97.00 99.00 97.60

Treppe Hoch 83.25 80.13 95.50 94.50 98.00 91.40

Gehen 84.08 97.25 94.50 92.00 96.00 92.80

Gesamt 82.29 88.75 91.04 91.43 93.71 90.21

Tabelle 5.1: Erkennungsraten für Entscheidungsbäume, geordnet nach Fenstergröße. “Neu”
steht für den Neuesten Zyklus, der aus einem Fenster der Größe 256 bestimmt
wurde. Rennen weist die besten Erkennungsraten auf, Aufzug fahren und Ruhezu-
stand die niedrigsten.

mit der festen Fenstergröße von 256 Samples verglichen, welches eine höhere Erkennungsrate
(85.75%) aufweist. Dies liegt wahrscheinlich an den zusätzlichen Fehlern, die das Verfahren
zur Zyklenerkennung verursacht.
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6 Hidden Markov Modelle

6.1 Grundlagen

Hidden Markov Modelle werden unter anderem in der Spracherkennung, für Spamfilter
und der Gestenerkennung eingesetzt. Mit Hilfe von Hidden Markov Modellen ist es mög-
lich den zeitlichen Zusammenhang der Daten, bzw. des zugrundeliegenden Systems zu
berücksichtigen [21].

Ein Hidden Markov Modell wird definiert als Quintupel λ = {S, A, Y, B, π} mit:
S = {s1, · · · , sn} Menge der (verborgenen) Zustände
A = {aij} Zustandsübergangsmatrix,

aij = Wahrscheinlichkeit von Zustand si nach Zustand sj zu wechseln
Y = {y1, · · · , yn} Menge der Emissionen (Beobachtungen)
B = {bij} Matrix der Emisionswahrscheinlichkeiten,

bij = Wahrscheinlichkeit im Zustand si die Beobachtung yj zu machen
π = {πi} Menge der Startwahrscheinlichkeiten

πi = Wahrscheinlichkeit das si Startzustand ist

Ein Hidden Markov Modell ist ein stochastisches Modell, welches durch zwei stochastische
Prozesse 1 beschrieben werden kann. Der erste Prozess gegeben durch S und A entspricht

S1 S2

Y Y1 2

a12
a21

a11

b11 b22

a22

b21 b12

Abbildung 6.1: Beispiel für den Aufbau eines HMM mit zwei versteckten Zuständen si,
Beobachtungen yi, Emissionswahrscheinlichkeiten bi und Übergangswahr-
scheinlichkeiten ai

1eine Folge von Zufallsvariablen X = {X1, · · · , Xn}
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S1 S2

Y1 Y2

S6

Y6

M6M2M1

Abbildung 6.2: HMM erster Ordnung mit sechs Zuständen und Gaußschen Mischungen.
Wird verwendet für die Klassifikation mit Rohdaten.

einer Markow-Kette, deren Zustände nicht sichtbar, d.h. versteckt sind. Der zweite Prozess
entspricht einer Folge von Beobachtungen.

Für jede der sieben Klassen, d.h. Aktivitäten c1, · · · , c7 ist ein Datensatz mit Beobachtungen
Oc = {oc

1, · · · , oc
n} gegeben. Für jede der Aktivitäten wird ein HMM λ1, · · · , λ7 trainiert.

Diese HMM werden dann als Klassifikator verwendet, indem jedem HMM die Beobachtung
o übergeben wird, die klassifiziert werden soll. Die Beobachtung gehört dann zu derjenigen
Klasse, dessen zugehöriges HMM die größte Wahrscheinlichkeit liefert.

An dieser Stelle soll nicht weiter auf Hidden Markov Modelle eingegangen werden, da dies
den Umfang dieser Arbeit sprengen würde. Für einen umfassenden Überblick sei auf [21]
verwiesen.

6.2 Rohdaten

In diesem Abschnitt wird die Klassifikation mit Rohdaten behandelt. Die Beschleunigungs-
daten werden dabei direkt den Hidden Markov Modellen übergeben. Zum Testen der
Erkennungsraten wurde, wie bei den Entscheidungsbäumen 10-fold cross validation einge-
setzt. Dies vermindert auch den Einfluss der Zufallsinitialisierung der HMM.

6.2.1 Struktur

Für die Klassifikation mit Rohdaten erwies sich ein HMM erster Ordnung mit sechs Zu-
ständen und einer Mischung aus drei Gaußverteilungen (Abbildung 6.2) als am Besten.
Weder die Erhöhung der Anzahl der Zustände, noch die Erhöhung der Ordnung führte zu
signifikant besseren Erkennungsraten.
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6.3 Einteilung in Intervalle

Fenstergröße
32 64 128 256 512 Neu

A
kt

iv
it

ät

Aufzug 35.75 52.50 58.00 66.50 78.00 59.50

Rolltreppe 52.63 60.38 79.50 90.50 93.00 89.00

Ruhezustand 27.13 38.75 42.00 48.50 60.00 52.50

Rennen 89.75 98.12 99.50 100.00 100.00 96.00

Treppe runter 63.75 85.55 91.00 94.50 98.00 83.50

Treppe hoch 70.19 96.50 99.50 100.00 100.00 91.50

Gehen 76.06 96.58 98.75 99.50 100.00 97.89

Gesamt 59.00 75.46 81.18 85.55 89.00 81.41

Tabelle 6.1: Erkennungsraten für HMM mit Rohdaten, geordnet nach Fenstergröße. “Neu”
steht für den Neuesten Zyklus, der aus einem Fenster der Größe 256 bestimmt
wurde. Gute Erkennungsraten für periodische Aktivitäten, insbesondere Rennen
und Treppe hinuntersteigen. Statische Aktivitäten weisen schlechte Erkennungs-
raten auf, Ruhezustand wird oft als Aufzug fahren erkannt. Die Erkennung des
neuesten Zyklus bringt leider keine Verbesserung.

6.2.2 Erkennungsraten

HMM mit Rohdaten erreichen gute Erkennungsraten bei periodischen Aktivitäten, wie
Treppen hochsteigen, Treppen hinuntersteigen, Gehen und insbesondere Rennen. Sie haben je-
doch Schwierigkeiten bei statischen Aktivitäten, wie Aufzug fahren, Rolltreppe fahren und
Ruhezustand. Insbesondere zwischen Aufzug fahren und Ruhezustand kommt es zu Fehlklassi-
fikationen, aufgrund der Ähnlichkeit der beiden Aktivitäten, daher wird für Ruhezustand
maximal eine Erkennungsrate von 60% erreicht. Die Gesamt-Erkennungsrate wird von
den statischen Aktivitäten stark in Mitleidenschaft gezogen. Sie reicht von 59% bei einer
Fenstergröße von 32 Samples (etwa 0.5 Sekunden) bis zu 89% bei einer Fenstergröße von
512 (etwa 10 Sekunden). Eine Fenstergröße von 32 ist also für eine gute Erkennung nicht
ausreichend, da selbst die periodischen Aktivitäten bei dieser Fenstergröße eine schlechte
Erkennungsraten aufweisen. Tabelle 6.1 zeigt die Erkennungsraten für jede einzelne Aktivität,
abhängig von der Fenstergröße.

Die Erkennung des neuesten Zyklus bringt leider keine verbesserten Erkennungsraten.
Die Wahl eines Fensters mit einer festen Größe von 64 Samples bringt bessere Ergebnisse
für periodische Aktivitäten. Eine feste Fenstergröße von 256 Samples bringt bei statischen
Aktivitäten die besseren Erkennungsraten.

6.3 Einteilung in Intervalle

In diesem Abschnitt werden die betrachteten Fenster aus Abschnitt 4.3 in Intervalle eingeteilt
und anschließend Merkmale aus ihnen extrahiert. Diese werden anschließend den Hidden
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6 Hidden Markov Modelle

(a) (b) (c)

Abbildung 6.3: Weitere Einteilung der Fenster in Intervalle. (a) Einteilung des Fensters
in Intervalle fester Größe. (b) Bestimmung der Zyklen und anschließend
Einteilung jedes Zyklus in Intervalle fester Größe. (c) Verwendung des
neuesten Zyklus und Unterteilung in Intervalle fester Größe.

Markov Modellen übergeben. Zum Testen der Erkennungsrate wurde auch hier 10-fold cross
validation eingesetzt.

6.3.1 Merkmalsextraktion

Vor der Merkmalsextraktion werden die in Abschnitt 4.3 erzeugten Fenstern, nochmals
in Intervalle aufgeteilt. Dabei hat sich eine 50%-ige Überlappung der Intervalle in vorhe-
rigen Arbeiten als vorteilhaft erwiesen [22] [5]. Zusätzlich zu der in bisherigen Arbeiten
betrachteten festen Unterteilung werden weitere Möglichkeiten untersucht:

Unterteilung in feste Intervalle Das Zeitfenster wird in m feste Intervalle mit 50% Überlap-
pung eingeteilt. In Abbildung 6.3a ist eine mögliche Unterteilung mit m = 5 dargestellt.
Aufgrund der 50%-igen Überlappung ist die Intervallanzahl stets ungerade. Die Anzahl
der getesten Aufteilungen schwankt je nach Fenstergröße, da bei immer feinerer Un-
terteilung der Rechenaufwand rasch ansteigt, bis schließlich mehr Merkmale erzeugt
werden, als Datenpunkte im Fenster vorhanden sind.

Zyklenerkennung und Unterteilung aller Zyklen Aus dem Zeitfenster werden zunächst alle
Zyklen extrahiert. Jeder der Zyklen wird anschließend in m Intervalle mit 50% Über-
lappung eingeteilt. Abbildung 6.3b zeigt eine mögliche Unterteilung des Fensters in
seine vier Zyklen und anschließende Unterteilung der Zyklen in m = 3 Intervalle.
Das Verfahren zu Zyklenerkennung arbeitet ab einer Fenstergröße von 256 Samples
am Besten, daher wird hierfür eine Fenstergröße von 256 verwendet. Kleinere Fenster
führen häufig zu Fehlern in der Abschätzung der Periodenlänge, während längere
Fenster keine signifikante Verbesserung mehr bringen.

Zyklenerkennung und Unterteilung des neuesten Zyklus Aus einem Zeitfenster werden
zwar alle Zyklen extrahiert, jedoch wird nur der neueste Zyklus weiterverwendet.
Er wird ebenfalls in m Intervalle unterteilt. Abbildung 6.3c zeigt eine mögliche Un-
terteilung mit m = 3. Auch hier wird eine Fenstergröße von 256 Samples verwendet.
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S1 S2 S3

Y Y Y1 2 3

Abbildung 6.4: HMM erster Ordnung mit drei Zuständen. Wird verwendet für die Klassifi-
kation mit Intervallen

Durch die Verwendung des neuesten Zyklus soll die Reaktionsgeschwindigkeit des
Verfahrens verbessert werden, bei einer gleichzeitigen Erhöhung der Erkennungsraten
im Vergleich zur Verwendung von Fenster der Länge 64 Samples.

Aus jedem dieser Intervalle werden folgende Features generiert (jeweils für die horizontale
und vertikale Komponente der Beschleunigung):

• Mittelwert

• Standardabweichung

• Die 8 ersten Koeffizienten der Fourier Transformation

Auf die verwendeten Merkmale wurde bereits zuvor in Abschnitt 5.2 genauer eingegangen,
daher soll dies hier nicht nochmals wiederholt werden. Für jedes Intervall erhält man einen
Merkmalsvektor, bzw. Beobachtung der Dimension 20:

~o = (µh, µv, σh, σv, x̂h
1 , ...x̂h

8 , x̂v
1, ...x̂v

8)

Für ein Fenster, welches in n Intervalle unterteilt wird erhält man eine Folge von Beobach-
tungen:

O = (~o1, . . . ,~on)

6.3.2 Struktur

Verschiedene Strukturen für die HMM wurden getestet und ein Modell erster Ordnung mit
drei Zuständen hat sich für die Klassifikation mit Hilfe von Merkmale, die aus Intervallen
gewonnen werden, als am Besten erwiesen. Eine Erhöhung der Anzahl der Zustände,
der Ordnung und die Nutzung von gaußschen Mischungen brachte keine signifikante
Verbesserung der Erkennungsraten.
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Abbildung 6.5: Erkennungsraten für HMM nach Anzahl der Intervalle, in die ein Fenster
unterteilt wird. Betrachtet werden Fenster der Größe 128, 256 und 512.
Eine feinere Unterteilung der Fenster hat eine größere Auswirkung auf die
Erkennungsrate, als die Wahl größerer Fenster.

6.3.3 Erkennungsraten

Wie schon bei den Entscheidungsbäumen und der Verwendung von Rohdaten für die HMM
weisen auch hier die periodischen Aktivitäten eine höhere Erkennungsrate als die statischen
Aktivitäten auf. Die meisten Fehlklassifikationen treten zwischen Ruhezustand und Aufzug fah-
ren auf, allerdings weit weniger als bei Verwendung von Rohdaten. Dennoch beeinflusst die
schlechtere Erkennungsrate der statischen Aktivitäten die Gesamterkennungsrate negativ.

Die Nutzung einer feineren Aufteilung des Fensters verbessert die Erkennungsraten er-
heblich. Wie in Abbildung 6.5 dargestellt, wirkt sich die Wahl einer feineren Aufteilung
des Fensters meist sogar stärker aus, als die Wahl einer größeren Fensters. Eine Steigerung
der Intervallanzahl von 13 auf 15 bringt eine Steigerung von durchschnittlich etwa 4%,
während die Wahl größerer Fenster bei einer gleich bleibender Intervallanzahl von 13 keine
Verbesserung bringt. Im Gegenteil, mit einer Fenstergröße von 256 (etwa 5 Sekunden) lassen
sich bessere Erkennungsraten erzielen, als mit einer Fenstergröße von 512 (10 Sekunden).

Bei einem Fenster der Größe 512 Samples, unterteilt in 15 Intervalle der Länge 64 Samples
(etwa 1 Sekunde) beträgt die Gesamterkennungsrate beispielsweise 92.71 %. Bei einem Fenster
der Größe 256 Samples (etwa 5 Sekunden), unterteilt in 15 Intervalle der Länge 32 Samples
(etwa 0.5 Sekunden) beträgt die Erkennungsrate 92.85 %. Trotz des kürzeren Fensters und
wird also die gleiche Erkennungsrate erreicht, indem die Intervalle feiner gewählt wurden.
Allgemein lässt sich sagen, dass eine Fenstergröße von 256 die besten Erkennungsraten
liefert, unabhängig von der Anzahl der zur Aufteilung verwendeten Intervalle.
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Anzahl Intervalle
3 5 7 9 11 13 15

Fe
ns

te
rg

rö
ße

512 - 76.00 85.14 85.71 88.43 87.00 92.71

256 - 83.42 86.98 88.33 90.14 88.49 92.85
128 - 83.82 82.71 87.86 87.93 88.39 90.48

64 79.25 86.21 87.50 - - - -
32 60.61 72.96 80.83 - - - -

Alle Zyklen aus 256 73.57 75.71 - - - - -
Neuester Zyklus aus 256 67.61 72.00 70.71 - - - -

Tabelle 6.2: Verwendete Aufteilungen der Fenster in Intervalle und resultierende Erken-
nungsraten. Die höchste Erkennungsrate wird bei einem Fenster der Größe 256

erreicht, welches in 15 Intervalle aufgeteilt wird. Erkennbar ist auch, dass die
Nutzung der Zyklenerkennung keine Verbesserung mit sich bringt, sondern die
Erkennungsrate verschlechtert. Die Zyklen wurden aus einem Fenster der Größe
256 bestimmt.

Anzahl Intervalle (Intervalllänge)
5 (85) 7 (64) 9 (51) 11 (42) 13 (36) 15 (32)

A
kt

iv
it

ät

Aufzug 82.50 82.00 78.50 78.00 80.00 83.50

Rolltreppe 70.50 80.50 90.50 91.00 87.00 91.00

Ruhezustand 53.50 63.00 67.00 75.00 70.50 83.00

Rennen 93.00 95.00 94.50 96.50 93.00 99.00

Treppe Runter 90.50 97.00 93.00 94.00 93.50 96.50

Treppe Hoch 95.55 93.50 98.00 98.00 97.00 98.00

Gehen 98.42 97.89 96.84 98.50 98.42 98.95

Gesamt 83.42 86.98 88.33 90.14 88.49 92.85

Tabelle 6.3: Erkennungsraten für HMM nach Anzahl der Intervalle, Fenstergröße: 256 Samp-
les / 5 Sekunden. Erkennungsrate steigt durch eine feinere Aufteilung des
Fensters an. Periodische Aktivitäten weisen durchweg gute Erkennungsraten
von über 90% auf. Statische Aktivitäten etwas schlechtere, insbesondere Aufzug
fahren und Ruhezustand
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6 Hidden Markov Modelle

Anzahl Intervalle
3 (16) 5 (14)

A
kt

iv
it

ät

Aufzug 45.00 80.00

Rolltreppe 70.00 65.00

Ruhezustand 15.00 15.00

Rennen 95.75 90.00

Treppe Runter 100.00 100.00

Treppe Hoch 90.00 90.75

Gehen 100.00 90.00

Gesamt 73.57 75.71

(a)

Anzahl Intervalle
3 (16) 5 (14) 7 (8)

A
kt

iv
it

ät

Aufzug 59.00 73.00 65.50

Rolltreppe 39.50 49.50 56.50

Ruhezustand 49.50 48.50 41.50

Rennen 81.50 79.00 86.50

Treppe Runter 73.50 79.50 75.00

Treppe Hoch 79.50 81.00 81.00

Gehen 91.50 93.50 92.50

Gesamt 67.61 72.00 70.71

(b)

Tabelle 6.4: Erkennungsraten der HMM mit Zyklenerkennung. (a) Erkennungsrate bei Be-
stimmung aller Zyklen aus einem Fenster der Größe 256 und anschließender
Unterteilung aller Zyklen. Gute Erkennungraten bei periodischen Aktivitäten,
insbesondere Treppen hinuntersteigen und Gehen. Allerdings extrem schlechte bei
Aufzug fahren und Ruhezustand. (b) Erkennungsrate bei Verwendung des neues-
ten Zyklus und anschließender Unterteilung. Erkennungsraten sind gegenüber
einer festen Unterteilung durchweg unterlegen.

Die Bestimmung der Zyklen aus einem Fenster der Größe 256 und die anschließende
Einteilung der Zyklen in Intervalle brachte leider nicht die erhofften Ergebnisse (Tabelle 6.2).
Priodischen Aktivitäten, insbesondere Treppen hinuntersteigen und Gehen weisen zwar gute
Erkennungsraten auf, jedoch haben statische Aktivitäten und besonders Ruhezustand extrem
schlechte Erkennungsraten (Tabelle 6.4a). Insgesamt ist es dem Verfahren mit Einteilung des
Fensters in feste Intervalle deutlich unterlegen und eine durchschnittlich 20% schlechtere
Gesamterkennungsrate.

Ähnlich verhält es sich, wenn nur der neueste Zyklus aus dem Zeitfenster zur Erkennung
herangezogen wird (Tabelle 6.4b). Die Erkennungsrate für statische Aktivitäten beträgt
maximal 57%. Da statische Aktivitäten keine Zyklen erhalten wird das gesamte Fenster als
Zyklus betrachtet, deshalb muss hier mit einem Fenster der Größe 256 verglichen werden,
welches in feste Anzahl Intervalle aufgeteilt wird. Dort wurden Erkennungsraten von 85%
erreicht, also über 30% mehr als mit Zyklenerkennung. Für periodische Aktivitäten wird
das Verfahren mit einer Fenstergröße von 64 verglichen, da Gehen, Treppen hinaufsteigen und
Treppen hinuntersteigen alle eine Zyklenlänge von 50-70 Samples aufweisen. Doch auch hier
erwies sich eine Aufteilung in feste Intervalle als besser (Tabelle 6.2).
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7 Diskussion

In diesem Kapitel wird auf die Stärken und Schwächen der beiden Klassifikationsverfahren
eingegangen und die Auswirkung der Zyklenerkennung diskutiert. Anschließend werden
die Klassifikationsergebnisse von Entscheidungsbäumen mit den Ergebnissen der Hidden
Markov Modelle verglichen.

An dieser Stelle sei auf den Anhang dieser Arbeit verweisen, wo sich alle Konfusionsmatrizen
für die Hidden Markov Modelle und die Entscheidungsbäume fidnen lassen - alle erstellt
mit 10-fold cross validation.

7.1 Entscheidungsbäume

Entscheidungsbäume liefern bei der Verwendung von festen Fenstergrößen ähnlich hohe
Erkennungsrate, wie in [25] [11]. Die Erkennungsraten für Treppen hinaufsteigen und Treppen
hinuntersteigen können durch die Transformation auf ein körperfestes Koordinatensystem
(Abschnitt 4.4) maßgeblich verbessert werden. Ohne diese Transformation treten häufig
Fehlklassifikationen mit Gehen auf. Zuvor wurden nur Erkennungsraten von 55% bis 62%
erreicht (vgl. [11]), in dieser Arbeit konnten Erkennungsraten von über 90% erzielt werden.

Die Verwendung der Zyklenerkennung bringt eine Verbessung der Erkennungsrate, insbeson-
dere bei periodischen Aktivitäten. Die Erkennungsraten mit Zyklenerkennung unterscheiden
sich für statische Aktivitäten allerdings kaum von den Erkennungsraten mit einer festen
Fenstergröße von 256 Samples. Dies war auch nicht anders zu erwarten, da der Beschleuni-
gungsverlauf bei statischen Aktivitäten keine Zyklen enthält und daher das ganze Fenster
als Zyklus aufgefasst wird.

7.2 Hidden Markow Modelle

Die Einteilung der Fenster in Intervalle und anschließende Extraktion von Merkmalen
aus diesen liefert deutlich bessere Ergebnisse, als die direkte Verwendung von Rohdaten.
Im Vergleich mit den periodischen Aktivitäten sind die Erkennungsraten für statische
Aktivitäten Aufzug fahren, Rolltreppe fahren und Ruhezustand zwar durchweg schlechter,
allerdings schneiden sie im Vergleich zu HMM mit Rohdaten dennoch besser ab.

Die durch die Zyklenerkennung erhoffte Verbesserung der Erkennungsrate trat bei HMM
leider nicht ein. Im Gegenteil, die Erkennungsraten waren deutlich schlechter. Dies könnte
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daran liegen, dass die Unterteilung bei statischen Aktivitäten zu grob ist. Denn diese
enthalten wie bereits gesagt keine Zyklen, es wird also das gesamten Fenster verwendet und
in nur wenige Intervalle unterteilt. Bei den periodischen Aktivititäten konnte die Unterteilung
ebenfalls nicht so fein gewählt werden, wie bei einer festen Fenstergröße, da Rennen einen
extrem kurzen Zyklus von 8 bis 10 Samples aufweist und sich daher schlecht unterteilen
lässt.

Da die Einteilung in fest Intervalle die besten Ergebnisse bietet soll nur dieses Verfahren mit
den Entscheidungsbäumen verglichen werden.

7.3 Vergleich der Verfahren

Für alle Klassifikationsverfahren gilt, dass Fehlklassifikationen fast ausschließlich zwischen
den einzelnen statischen (Aufzug fahren, Rolltreppe fahren, Ruhezustand) und dynamischen
Aktivitäten (Rennen, Treppen hochsteigen, Treppen hinuntersteigen, Gehen) auftreten, d.h. statische
Aktivitäten werden nur selten als periodische klassifiziert und umgekehrt.

Da außerdem die Erkennungsraten für die statischen Aktivitäten durchweg schlechter sind,
als die der dynamischen Aktivitäten, werden hier beide getrennt betrachtet:

Statische Aktivitäten Die Erkennung von Rolltreppe fahren funktioniert für Entscheidungs-
bäume und HMM mit Intervallen gut und bieten ähnliche Erkennungsraten. Für die
beiden übrigen statischen Aktivitäten Aufzug fahren und Ruhezustand bieten Entschei-
dungsbäume die besseren Erkennungsraten. Aufgrund ihrer Ähnlichkeit schneiden sie
jedoch auch hier schlechter ab. Gut erkennbar sind lediglich die Beschleunigungs- und
Bremsphasen, während das dazwischenliegenden Stehphasen auch als solche erkannt
werden, d.h. Stehen wird als Aufzug fahren klassifiziert und umgekehrt.

Periodische Aktivitäten Die Erkennungsraten für Rennen sind durchweg sehr gut, unter-
scheidet sich aber auch am deutlichsten von den restlichen Aktivitäten. Treppen hinun-
tersteigen hat unter den dynamischen Aktivitäten die niedrigsten Erkennungsraten, was
wohl in der Ähnlichkeit zu Gehen begründet liegt. HMM bieten für die dynamische
Aktivitäten eine um etwa 2-3 % höhere Erkennungsrate im Vergleich zu Entscheidungs-
bäumen.

Tabelle 7.1 stellt die Gesamterkennungsraten der Entscheidungsbäume den HMM gegenüber.
Für die HMM wurde für jede Fenstergröße diejenige Intervalleinteilung ausgewählt, die
die besten Ergebnisse liefert. Für kürzere Fenster ist die Erkennungsrate der HMM zwar
besser, allerdings leiden sie durch die schlechtere Klassifikationsergebnisse bei statischen
Aktivitäten. Für längere Fenster liegen die HMM mit den Entscheidungsbäumen gleichauf
und für eine Fenstergröße von 256 Samples (etwa 5 Sekunden) übertreffen die HMM die
Entscheidungsbäume sogar, da das Problem der schlechteren Klassifikation der statischen
Aktivitäten nicht mehr besteht (Tabelle 7.2).
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Fenstergröße

E
rk

en
nu

ng
sr

at
e

32 64 128 256 512
65

70

75

80

85

90

95

100

HMM (gesamt)

HMM (periodisch)

HMM (statisch)

EB (gesamt)

EB (periodisch)

EB (statisch)

Abbildung 7.1: Vergleich der Erkennungsraten. Jeweils für periodische Aktivitäten, Stati-
sche Aktivitäten und Gesamterkennungsrate. Entscheidungsbäume liefern
für statische Aktivitäten bessere Ergebnisse, HMM für periodsche Aktivi-
täten. Es sind nur HMM dagestellt, die mit Hilfe von Merkmalen aus der
Intervalleinteilung trainiert wurden.

Abbildung 7.1 bietet einen direkten Vergleich der Erkennungsraten der getesteten Verfahren.
Da die HMM mit Rohdaten deutlich schlechtere Erkennungsraten im Vergleich zu HMM mit
Intervallen bieten, werden sie in Abbildung 7.1 der Übersicht halber nicht mehr aufgeführt.

Zusammenfassend lässt sich sagen, dass das Hidden Markov Modelle bessere Ergebnisse bei
dynamischen Aktivitäten aufweisen, während Entscheidungsbäume die besseren Ergebnisse
bei statischen Aktivitäten zeigen, insbesondere bei kürzeren Fenstern.
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Fenstergröße
32 64 128 256 512

H
M

M

R
oh

da
te

n Gesamt 59.00 75.46 81.18 85.55 89.00

Periodisch 74.94 94.18 97.19 98.50 99.50

Statisch 38.50 50.54 59.83 68.50 77.00

H
M

M

In
te

rv
al

le Gesamt 80.83 87.5 90.48 92.85 92.71

Periodisch 90.00 96.25 97.71 98.11 98.75

Statisch 67.50 75.00 80.08 85.83 84.60

EB

Gesamt 82.29 88.75 91.04 91.43 93.71
Periodisch 88.51 93.69 96.25 95.97 98.25

Statisch 74.00 82.50 84.08 83.16 91.00

Tabelle 7.1: Vergleich der Erkennungsraten. Jeweils für periodische Aktivitäten, Statische
Aktivitäten und Gesamterkennungsrate. Die besten Erkennungsraten sind her-
vorgehoben. HMM trainiert mit Merkmalen aus Intervallen weisen bei einem
Fenster der Größe 256 die besten Erkennungsraten auf. Bei den übrigen Fenster-
größen sind die Entscheidungsbäume etwas besser. HMM mit Rohdaten sind
stets unterlegen.

Erkennungsrate
Aktivität Entscheidungsbaum HMM

Aufzug fahren 82.00 83.50

Rolltreppe 85.00 91.00

Ruhezustand 89.50 83.00

Rennen 100.00 99.00

Treppe runter 97.00 96.50

Treppe hoch 94.50 98.00

Gehen 92.00 98.95

Gesamt 91.43 92.85

Tabelle 7.2: Vergleich der Erkennungsraten von Entscheidungsbaum und HMM bei einer
Fenstergröße von 256 Samples. Für das HMM wird das Fenster in 15 Inter-
valle aufgeteilt. Bei statischen Aktivitäten liegt das HMM gleichauf mit den
Entscheidungsbäumen und können sie insgesamt leicht übertreffen.
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8 Zusammenfassung und Ausblick

In dieser Arbeit wurden zwei Verfahren zur Erkennung von Bewegungen anhand von
Beschleunigungsdaten vorstellt. Zum einen die häufiger eingesetzten Entscheidungsbäume,
zum anderen Hidden Markov Modelle. Zur Datenakquisition wurde eine Anwendung auf
dem T-Mobile G1 entwickelt, deren Hilfe Daten gesammelt wurden. Es wurde eine Testsuite
in Matlab unter Zuhilfenahme der HMM-Toolbox [14] entwickelt und beide Verfahren mit
dem Datensatz getestet.

Dabei dienen die Entscheidungsbäume als Referenzimplemetierung, um eine bessere Ver-
gleichbarkeit der Ergebnisse mit anderen Arbeiten zu gewährleisten. Die Auswirkungen
der Wahl verschiedener Fenstergrößen, sowie deren Unterteilung wurden betrachtet. Zur
Unterteilung kamen verschiedene Verfahren zum Einsatz, darunter auch ein neuer Ansatz,
bei dem Zyklen im Beschleunigungsverlauf zur Hilfe genommen werden.

Es wurden einige, bisher kaum betrachtete Aktivitäten, wie Aufzug fahren, Rolltreppe fahren,
Treppen hinaufsteigen und Treppen hinuntersteigen untersucht und durchweg gute Erkennungs-
raten erreicht. Hidden Markov Modelle schneiden bei periodischen Aktivitäten besser ab,
sind jedoch bei statischen Aktivitäten den Entscheidungsbäumen unterlegen. Insgesamt
werden ähnliche Erkennungsraten erreicht, wie in anderen Arbeiten zuvor.

Ausblick

Die Erkennungsrate der Aktivität Aufzug fahren könnte mit Hilfe eines zustandsabhängigen
Modells verbessert werden. Beispielsweise kann das Ruhezustand, bzw. Stehen der zwischen
einer Beschleunigungs- und einer Bremsphase des Aufzugs als Aufzug fahren erkannt werden.
Die Akquisition und Aufbereitung der Trainingsdaten für ein solches Modell nimmt jedoch
sehr viel Zeit in Anspruch, da weite Teile der gesammelten Daten schlecht verwendbar
sind. Beispielsweise entspricht die Zeit zwischen Öffnen und Schließen der Aufzugtüren
der Aktivität Ruhezustand, bzw. Stehen und muss daher entfernt oder zumindest separat
betrachtet werden. Falls andere zusammengesetzte Aktivitäten betrachtet werden sollen,
muss jedoch für jede ein eigenes Modell verwendet werden. Ein allgemeinere Lösung wäre
hier wünschenswert.

Hinsichtlich der Hidden Markov Modelle verbessert eine feinere Aufteilung der Zeitfenster in
Intervalle die Erkennungsrate erheblich. Die Nutzung einer noch feineren Intervalleinteilung,
als in dieser Arbeit könnte die Erkennungsraten weiter verbessern. Im Gegenzug muss
allerdings die Anzahl der verwendeten Merkmale pro Intervall reduziert werden, um den
Rechenaufwand in Grenzen zu halten.
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8 Zusammenfassung und Ausblick

In dieser Arbeit wurde als Sensorposition die vordere Hosentasche gewählt. Dies ist zwar eine
recht häufige Position für das Tragen von Mobiltelefonen und die Erkennung ist weitgehend
unabhängig von der genauen Position in der Hosentasche selbst, allerdings ist es dennoch
eine Einschränkung. Die Erkennung funktioniert nämlich nicht, falls das Gerät beispielsweise
in einem Rucksack getragen wird. In Zukunft muss daher eine Lösung für erarbeitet werden,
die eine weitgehende Unabhängigkeit von der Position des Sensors ermöglicht.

Mit dem Aufkommen von Gyroskopen in Smartphone können die Erkennungsraten sicher
noch weiter verbessert werden. Durch die mit einem Gyroskop erreichbare, weitgehende
Unabhängigkeit der Sensordaten von der Bewegung der Benutzers, können weitere Anwen-
dungsgebiete erschlossen werden, beispielsweise die Navigation innerhalb von Gebäuden.
Dafür müssen jedoch die Daten des Gyroskops mit den Daten des Beschleunigungssensors
fusioniert werden. Hierfür bietet sich beispielsweise die Verwendung von Kalman Filtern
an.
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A Anhang

A.1 Weitere Konfusionsmatrizen

Dieser Abschnitt enthält Konfusionsmatrizen der durchgeführten Tests. Für die Tests wurde
10-fold cross-validation verwendet und für jeden Test die Konfusionsmatrix berechnet.
Anschließend wurde die Summe für jeden Eintrag und daraus die relative Häufigkeit gebildet.
Die Aktivitäten Treppen hochsteigen und Treppen hinuntersteigen werden aus Platzgründen mit
"Hoch" und "Runter" abgekürzt.

A.1.1 Entscheidungsbäume

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 82.63 9.04 8.33 0 0 0 0

Rolltr. 6.25 90 3.75 0 0 0 0

Ruhez. 52.21 8.33 39.33 0 0 0.13 0

Rennen 0 0 0 99.46 0 0.17 0.38

Runter 0 0 0 0.25 85.5 8.42 5.83

Hoch 0.04 0 0.04 0 7.46 83.25 9.21

Gehen 0 0 0 0.08 4.5 11.33 84.08

Tabelle A.1: Konfusionsmatrix für Entscheidungsbaum, Fenstergröße 32

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 83.25 3.75 13 0 0 0 0

Rolltr. 6.5 88.5 5 0 0 0 0

Ruhez. 21.88 2.38 75.75 0 0 0 0

Rennen 0 0 0 100 0 0 0

Runter 0 0 0 0 96.38 1.5 2.13

Hoch 0 0 0 0 1.75 80.13 18.13

Gehen 0 0 0 0 0.5 2.25 97.25

Tabelle A.2: Konfusionsmatrix für Entscheidungsbaum, Fenstergröße 64
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Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Hoch Runter Gehen

Vo
rl

ie
ge

nd
Aufzug 82 10 8 0 0 0 0

Rolltr. 3 85 12 0 0 0 0

Ruhez. 10 0.5 89.5 0 0 0 0

Rennen 0 0 0 100 0 0 0

Runter 0 0 0 0 97 1.5 1.5
Hoch 0 0 0 0 0 94.5 5.5
Gehen 0 0 0 0 0 8 92

Tabelle A.3: Konfusionsmatrix für Entscheidungsbaum, Fenstergröße 256

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 89 4 7 0 0 0 0

Rolltr. 0 90 10 0 0 0 0

Ruhez. 10 6 84 0 0 0 0

Rennen 0 0 0 100 0 0 0

Runter 0 0 0 0 99 1 0

Hoch 0 0 0 0 1 98 1

Gehen 0 0 0 0 0 4 96

Tabelle A.4: Konfusionsmatrix für Entscheidungsbaum, Fenstergröße 512

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 67 0 33 0 0 0 0

Rolltr. 0.5 99 0.5 0 0 0 0

Ruhez. 14 0.5 85.5 0 0 0 0

Rennen 0 0 0 100 0 0 0

Runter 0 0 0 0 90.5 3.5 6

Hoch 0 0 0 0 2.5 96 1.5
Gehen 0 0 0 0 1.5 0 98.5

Tabelle A.5: Konfusionsmatrix für Entscheidungsbaum, Neuester Zyklus aus Fenstergröße
256
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A.1 Weitere Konfusionsmatrizen

A.1.2 HMM

Features aus Intervallen

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 70 6 24 0 0 0 0

Rolltr. 1 57 41 0 1 0 0

Ruhez. 5 40 53 0 2 0 0

Rennen 0 3 1 88 8 0 0

Runter 0 10 2 0 88 0 0

Hoch 0 4 3 0 3 89 1

Gehen 0 2 3 0 5 3 87

Tabelle A.6: Konfusionsmatrix für HMM, Fenstergröße 512, Features aus 5 Intervallen mit
mit 50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 85 11 4 0 0 0 0

Rolltr. 0 85 15 0 0 0 0

Ruhez. 3 46 48 0 3 0 0

Rennen 0 3 0 96 0 1 0

Runter 0 6 0 0 94 0 0

Hoch 0 6 1 0 2 91 0

Gehen 0 0 0 0 0 3 97

Tabelle A.7: Konfusionsmatrix für HMM, Fenstergröße 512, Features aus 7 Intervallen mit
mit 50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 87 4 9 0 0 0 0

Rolltr. 0 74 26 0 0 0 0

Ruhez. 1 33 66 0 0 0 0

Rennen 0 1 0 99 0 0 0

Runter 0 1 1 0 98 0 0

Hoch 0 0 0 0 3 97 0

Gehen 0 0 0 0 0 2 98

Tabelle A.8: Konfusionsmatrix für HMM, Fenstergröße 512, Features aus 11 Intervallen mit
mit 50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung
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Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd
Aufzug 90 6 4 0 0 0 0

Rolltr. 1 72 27 0 0 0 0

Ruhez. 2 29 69 0 0 0 0

Rennen 0 6 3 90 1 0 0

Runter 0 1 0 3 96 0 0

Hoch 0 0 1 0 4 95 0

Gehen 0 0 0 0 0 3 97

Tabelle A.9: Konfusionmatrix für HMM, Fenstergröße: 512, Features aus 13 Intervallen mit
mit 50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 97 1 2 0 0 0 0

Rolltr. 0 78 22 0 0 0 0

Ruhez. 0 21 79 0 0 0 0

Rennen 0 0 0 100 0 0 0

Runter 0 0 1 0 99 0 0

Hoch 0 0 0 0 3 97 0

Gehen 0 0 0 0 0 1 99

Tabelle A.10: Konfusionmatrix für HMM, Fenstergröße: 512, Features aus 15 Intervallen mit
mit 50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 82.5 10.5 6 0 1 0 0

Rolltr. 2.5 70.5 24 0 3 0 0

Ruhez. 9 34.5 53.5 0 3 0 0

Rennen 0 3.5 1 93 2.5 0 0

Runter 0 6.5 3 0 90.5 0 0

Hoch 0 0.5 1 0 3 95.5 0

Gehen 0 0 0 0 0.53 1.05 98.42

Tabelle A.11: Konfusionmatrix für HMM, Fenstergröße: 256, Features aus 5 Intervallen mit
mit 50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung
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A.1 Weitere Konfusionsmatrizen

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 82 9 8.5 0 0.5 0 0

Rolltr. 1.5 80.5 18 0 0 0 0

Ruhez. 9 27.5 63 0 0.5 0 0

Rennen 0 1 1 95 3 0 0

Runter 0 1 2 0 97 0 0

Hoch 0 2 2 0 2.5 93.5 0

Gehen 0 0.53 0 0 0.53 1.05 97.89

Tabelle A.12: Konfusionmatrix für HMM, Fenstergröße: 256, Features aus 7 Intervallen mit
50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 78.5 8 13 0 0.5 0 0

Rolltr. 2.5 90.5 7 0 0 0 0

Ruhez. 8 19 67 0 6 0 0

Rennen 0 0 0.5 94.5 5 0 0

Runter 0 1.5 5.5 0 93 0 0

Hoch 0 0 1 0 1 98 0

Gehen 0 0 0.53 0 2.11 0.53 96.84

Tabelle A.13: Konfusionmatrix für HMM, Fenstergröße: 256, Features aus 9 Intervallen mit
50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 78 2.5 19.5 0 0 0 0

Rolltr. 0.5 91 8.5 0 0 0 0

Ruhez. 6 12.5 75 0 6.5 0 0

Rennen 0 0 1.5 96.5 2 0 0

Runter 0 0.5 5.5 0 94 0 0

Hoch 0 0 0 0 2 98 0

Gehen 0 0 0 0 1 0.5 98.5

Tabelle A.14: Konfusionmatrix für HMM, Fenstergröße: 256, Features aus 11 Intervallen mit
50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung
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Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd
Aufzug 80 6.5 13.5 0 0 0 0

Rolltr. 1.5 87 11.5 0 0 0 0

Ruhez. 4.5 22.5 70.5 0 2.5 0 0

Rennen 0 1 2 93 4 0 0

Runter 0 5.5 1 0 93.5 0 0

Hoch 0 0 0.5 0 2.5 97 0

Gehen 0 0 0 0 0 1.58 98.42

Tabelle A.15: Konfusionmatrix für HMM, Fenstergröße: 256, Features aus 13 Intervallen mit
50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 83.5 2.5 13.5 0 0.5 0 0

Rolltr. 1.5 91 7 0 0.5 0 0

Ruhez. 0.5 9 83 0 7.5 0 0

Rennen 0 0 1 99 0 0 0

Runter 0 2 1.5 0 96.5 0 0

Hoch 0 0.5 0 0 1.5 98 0

Gehen 0 0 0 0 0 1.05 98.95

Tabelle A.16: Konfusionmatrix für HMM, Fenstergröße: 256, Features aus 15 Intervallen mit
50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 72.75 5.5 18.75 0 3 0 0

Rolltr. 1.5 81.25 13.75 0 3.5 0 0

Ruhez. 4 19 68.75 0 8.25 0 0

Rennen 0 0.5 2.5 91 6 0 0

Runter 0.5 6 7.25 0 86.25 0 0

Hoch 0 0.75 2.25 0 5.75 91.25 0

Gehen 0.25 0.25 1.25 0 2.5 0.25 95.5

Tabelle A.17: Konfusionmatrix für HMM, Fenstergröße: 128, Features aus 5 Intervallen mit
50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung
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A.1 Weitere Konfusionsmatrizen

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 73 2 19 0 6 0 0

Rolltr. 6 80 11 0 3 0 0

Ruhez. 13 14 61 0 12 0 0

Rennen 1 0 1 93 5 0 0

Runter 3 4 10 0 83 0 0

Hoch 1 0 2 0 5 92 0

Gehen 0 0 0 0 1 2 97

Tabelle A.18: Konfusionmatrix für HMM, Fenstergröße: 128, Features aus 7 Intervallen mit
50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Hoch Runter Gehen

Vo
rl

ie
ge

nd

Aufzug 75 0 25 0 0 0 0

Rolltr. 5 70 20 0 5 0 0

Ruhez. 5 0 95 0 0 0 0

Rennen 0 0 0 90 10 0 0

Runter 5 0 10 0 85 0 0

Hoch 0 0 0 0 0 100 0

Gehen 0 0 0 0 0 0 100

Tabelle A.19: Konfusionmatrix für HMM, Fenstergröße: 128, Features aus 9 Intervallen mit
50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Hoch Runter Gehen

Vo
rl

ie
ge

nd

Aufzug 71.5 4.5 24 0 0 0 0

Rolltr. 7 74 19 0 0 0 0

Ruhez. 12.5 6 81.5 0 0 0 0

Rennen 0 0 2 96 2 0 0

Runter 0 3 1 0 96 0 0

Hoch 0 0 0 0 0.5 99.5 0

Gehen 0 0.5 0 0 0 2.5 97

Tabelle A.20: Konfusionmatrix für HMM, Fenstergröße: 128, Features aus 11 Intervallen mit
50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung
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Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Hoch Runter Gehen

Vo
rl

ie
ge

nd
Aufzug 71.5 9.25 19 0 0.25 0 0

Rolltr. 6.25 81.25 12.5 0 0 0 0

Ruhez. 7 12.75 80 0 0.25 0 0

Rennen 0.75 1.5 0.5 91.25 6 0 0

Runter 0 2 0.5 0 97.5 0 0

Hoch 0.25 0 0 0 0.25 99.5 0

Gehen 0.25 0 0 0 0 2 97.75

Tabelle A.21: Konfusionmatrix für HMM, Fenstergröße: 128, Features aus 13 Intervallen mit
50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 77.5 5.5 17 0 0 0 0

Rolltr. 7 86.5 6.5 0 0 0 0

Ruhez. 12.5 9 78.5 0 0 0 0

Rennen 0.5 0.5 0 97 2 0 0

Runter 0.5 1.5 0 1.5 96.5 0 0

Hoch 0 0 0 0 0 100 0

Gehen 0.53 0 0 0 0 2.11 97.37

Tabelle A.22: Konfusionmatrix für HMM, Fenstergröße: 128, Features aus 15 Intervallen mit
50 % Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 70.63 6.25 17.5 0 5.25 0.38 0

Rolltr. 5.38 69.13 21.13 0.13 4.25 0 0

Ruhez. 9.63 17.38 64.13 0.13 8.5 0.25 0

Rennen 1.13 1.5 4.75 89.38 3.25 0 0

Runter 2.88 6.88 12.13 0.13 77.75 0.25 0

Hoch 1.75 1.25 4.25 0 3.5 89.25 0

Gehen 0.5 0.5 2.25 0 1.63 0.63 94.5

Tabelle A.23: Konfusionmatrix für HMM, Fenstergröße: 64, Features aus 3 Intervallen mit 50

% Überlappung, Struktur: 3 Zustände, 1. Ordnung
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A.1 Weitere Konfusionsmatrizen

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 72.5 7.25 19.5 0 0.75 0 0

Rolltr. 3.5 74.75 20.25 0 1.5 0 0

Ruhez. 8.88 17.38 73.38 0 0.38 0 0

Rennen 0.13 0.63 2.25 96.13 0.88 0 0

Runter 1 3.13 3.13 0 92.75 0 0

Hoch 0.75 0.25 0.5 0 1.25 97.25 0

Gehen 0.25 0.13 0.63 0 0.63 1.63 96.75

Tabelle A.24: Konfusionmatrix für HMM, Fenstergröße: 64, Features aus 5 Intervallen mit 50

% Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 74.84 5.11 20.05 0 0 0 0

Rolltr. 2.41 77.59 20 0 0 0 0

Ruhez. 22.43 0 77.57 0 0 0 0

Rennen 0 0 2.5 95 2.5 0 0

Runter 2.5 0 5 0 92.5 0 0

Hoch 0 0 0 0 2.5 97.5 0

Gehen 0 0 0 0 0 2.5 97.5

Tabelle A.25: Konfusionmatrix für HMM, Fenstergröße: 64, Features aus 7 Intervallen mit 50

% Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 40.25 20.5 29 1 7.25 1.75 0.25

Rolltr. 19 45 22.25 4.5 8.75 0.5 0

Ruhez. 22.75 22.25 49.25 1.25 4.25 0.25 0

Rennen 2.25 7.5 2.75 78.75 7.75 1 0

Runter 10 8.75 8.5 2 54.5 13.25 3

Hoch 2.75 2.25 2.25 1.25 7.5 80.5 3.5
Gehen 2.5 1 0.75 0 3.75 16 76

Tabelle A.26: Konfusionmatrix für HMM, Fenstergröße: 32, Features aus 3 Intervallen mit 50

% Überlappung, Struktur: 3 Zustände, 1. Ordnung
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Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd
Aufzug 49.75 21.5 22.25 0.5 4.5 1.5 0

Rolltr. 18.75 69.5 9 0.5 2.25 0 0

Ruhez. 28.5 18.75 50.75 0.75 0.75 0.5 0

Rennen 1 1.75 1.25 89 6.5 0.25 0.25

Runter 4.5 7.5 0.75 2.5 76 5 3.75

Hoch 1.25 0.25 0 0 3 92.75 2.75

Gehen 0.5 0.25 0 0 3.25 13 83

Tabelle A.27: Konfusionmatrix für HMM, Fenstergröße: 32, Features aus 5 Intervallen mit 50

% Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Hoch Runter Gehen

Vo
rl

ie
ge

nd

Aufzug 65 2.5 30 0 2.5 0 0

Rolltr. 10 82.5 7.5 0 0 0 0

Ruhez. 45 0 55 0 0 0 0

Rennen 0 5 0 95 0 0 0

Runter 0 7.5 0 2.5 77.5 5 7.5
Hoch 0 0 0 0 7.5 92.5 0

Gehen 0 0 0 0 0 5 95

Tabelle A.28: Konfusionmatrix für HMM, Fenstergröße: 32, Features aus 7 Intervallen mit 50

% Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 59 14 16.5 0.5 5.5 4.5 0

Rolltr. 11.5 39.5 30.5 1.5 9 7.5 0.5
Ruhez. 15.5 27 49.5 0 6 2 0

Rennen 2.5 5.5 2.5 81.5 7 1 0

Runter 7 6.5 9 1.5 73.5 2.5 0

Hoch 3 6.5 4 0.5 6.5 79.5 0

Gehen 0.5 2.5 1.5 0 2 2 91.5

Tabelle A.29: Konfusionmatrix für HMM, Neuster Zyklus, Features aus 3 Intervallen mit 50

% Überlappung, Struktur: 3 Zustände, 1. Ordnung

60



A.1 Weitere Konfusionsmatrizen

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 73 8.5 13.5 0 4 1 0

Rolltr. 4.5 49.5 39.5 0 5 1.5 0

Ruhez. 12 34.5 48.5 0 5 0 0

Rennen 1 2.5 2 79 14.5 1 0

Runter 3 10.5 4.5 0.5 79.5 2 0

Hoch 2.5 4.5 2.5 0 9.5 81 0

Gehen 0.5 0.5 0 0 3 2.5 93.5

Tabelle A.30: Konfusionmatrix für HMM, Neuster Zyklus, Features aus 5 Intervallen mit 50

% Überlappung, Struktur: 3 Zustände, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 65.5 14.5 19 0 1 0 0

Rolltr. 18 56.5 22.5 0 2.5 0.5 0

Ruhez. 17 39 41.5 0 2.5 0 0

Rennen 0 4 0 86 10 0 0

Runter 2.5 10.5 4.5 7.5 72 3 0

Hoch 4.5 5.5 2 0 7 81 0

Gehen 0.5 0.5 0.5 0 4.5 1.5 92.5

Tabelle A.31: Konfusionmatrix für HMM, Neuster Zyklus, Features aus 7 Intervallen mit 50

% Überlappung, Struktur: 3 Zustände, 1. Ordnung

Rohdaten

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 35.75 21.13 16.63 5.13 10.81 8.5 2.06

Rolltr. 14 52.63 18.69 5.69 7.12 1.13 0.75

Ruhez. 24.25 26.75 27.13 4.69 9.38 6.5 1.31

Rennen 0.81 2.44 0.31 89.75 5.31 1.06 0.31

Runter 7.5 7.38 2.94 4.44 63.75 10.94 3.06

Hoch 4.94 0.69 2.38 0.94 17 70.19 3.88

Gehen 1.63 0.5 0.75 3.13 5.38 12.56 76.06

Tabelle A.32: Konfusionmatrix für HMM, Fenstergröße: 32, Rohdaten, Struktur: 6 Zustände,
Mischung aus 3 Gaußverteilungen, 1. Ordnung
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Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd
Aufzug 52.38 16.75 19.5 2.75 5.88 2.5 0.25

Rolltr. 5.38 60.38 25.37 1.63 7 0.13 0.13

Ruhez. 19.13 28.88 38.75 3 6.63 3.38 0.25

Rennen 0.13 0.63 0.25 98.13 0.88 0 0

Runter 2.25 5.63 3.88 1 85.5 1.63 0.13

Hoch 0.38 0 0 0 2.5 96.5 0.63

Gehen 0 0 0 0 0.76 2.66 96.58

Tabelle A.33: Konfusionmatrix für HMM, Fenstergröße: 64 (Körperkoordinaten), Rohdaten,
Struktur: 6 Zustände, Mischung aus 3 Gaußverteilungen, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 58 18 12.75 1.5 6.5 3 0.25

Rolltr. 2.75 79.5 11 0.75 5.75 0.25 0

Ruhez. 13.5 33 42 1.25 6.5 3 0.75

Rennen 0 0 0 99.5 0.5 0 0

Runter 0 5 0.75 0.25 91 2.75 0.25

Hoch 0 0 0 0 0.5 99.5 0

Gehen 0 0 0 0 0 1.25 98.75

Tabelle A.34: Konfusionmatrix für HMM, Fenstergröße: 128 (Körperkoordinaten), Rohdaten,
Struktur: 6 Zustände, Mischung aus 3 Gaußverteilungen, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 66.5 12 6 2.5 7 5.5 0.5
Rolltr. 1.5 90.5 6 0 1 0.5 0.5
Ruhez. 12 28.5 48.5 1 5 5 0

Rennen 0 0 0 100 0 0 0

Runter 0 3 1 0 94 2 0

Hoch 0 0 0 0 0 100 0

Gehen 0 0 0 0 0 0.5 99.5

Tabelle A.35: Konfusionmatrix für HMM, Fenstergröße: 256 (Körperkoordinaten), Rohdaten,
Struktur: 6 Zustände, Mischung aus 3 Gaußverteilungen, 1. Ordnung
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A.1 Weitere Konfusionsmatrizen

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 78 2 10 0 5 5 0

Rolltr. 0 93 6 0 1 0 0

Ruhez. 1 25 60 1 7 5 1

Rennen 0 0 0 100 0 0 0

Runter 0 2 0 0 98 0 0

Hoch 0 0 0 0 0 100 0

Gehen 0 0 0 0 0 0 100

Tabelle A.36: Konfusionmatrix für HMM, Fenstergröße: 512 (Körperkoordinaten), Rohdaten,
Struktur: 6 Zustände, Mischung aus 3 Gaußverteilungen, 1. Ordnung

Vorhergesagt
Aufzug Rolltr. Ruhez. Rennen Runter Hoch Gehen

Vo
rl

ie
ge

nd

Aufzug 70 10 8 2 5 5 0

Rolltr. 2.5 90.5 6 0 1 0 0

Ruhez. 11 27.5 58.5 0 3 0 0

Rennen 0 0 0 97.5 2.5 0 0

Runter 4.5 1 1.5 7 79.5 6.5 0

Hoch 5 0.5 0.5 0 4 90 0

Gehen 0.5 0 0 0 0.5 6.5 92.5

Tabelle A.37: Konfusionmatrix für HMM, Fenstergröße: Neuester Zyklus aus 256 (Körperko-
ordinaten), Rohdaten, Struktur: 6 Zustände, Mischung aus 3 Gaußverteilungen,
1. Ordnung
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