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1 Einleitung

Systeme zur Erkennung von Aktivitidten bieten viele Anwendungsmoglichkeiten, beispiels-
weise im Gesundheitswesen zur Uberwachung von Patienten oder Navigation innerhalb von
Gebduden. Beschleunigungssensoren werden haufig fiir diese Aufgabe verwendet, da die
entsprechenden Sensormodule heute klein, preiswert und weit verfiigbar sind. Viele Mobil-
telefone sind heute mit entsprechenden Sensormodulen ausgestattet und bieten aufSerdem
oft weitere Sensoren, wie Magnetfeldsensoren, Gyroskope und GPS. Sie haben zudem eine
ausreichend hohe Rechenleistung, um die Erkennung direkt auf dem Gerét durchzufiihren.
Die Verwendung dieser Hardware bietet sich also an.

Bisherige Arbeiten

Zur Bewegungserkennung mit Beschleunigungssensoren existieren bereits zahlreiche Ar-
beiten. Viele verwenden spezielle Hardware und Befestigungssysteme, wie zum Beispiel
mehrere am Korper verteilte Beschleunigungssensoren [2] [24]. Andere setzen zwar nur
einen Sensor ein, der aber zwingend an einer bestimmten Position am Korper befestigt
werden muss und die eigentliche Erkennung auf einem zusétzlichen Gerit, z.B. einem PC
durchfiihrt [6] [8] [15].

Najafi et al. [15] haben ein System zur Aktivitidten-Erkennung fiir dltere Menschen entwickelt.
Es wird ein auf der Brust befestigtes Sensormodul, bestehend aus einem Beschleunigungs-
sensor und einem Gyroskop genutzt. Die Daten werden auf einem zusétzlichen Gerét aufge-
zeichnet und die Erkennung spéater am Computer durchgefiihrt. Es werden die Aktivitaten
Stehen, Liegen, Sitzen und Gehen, sowie Ubergéingen zwischen diesen erkannt. Dazu wird eine
Wavelet Transformation und ein komplexes, von Hand erstelltes Zustandsiibergangsmodell
verwendet, mit dessen Hilfe Erkennungsraten von iiber 9go% erreicht werden.

Karantonis et. al. [8] verwenden ein Modul befestigt an einem Gurt, der um die Hiifte getra-
gen wird. Das Modul enthélt einen 3-achsen Beschleunigungssensor und einen Mikrocon-
troller fiir die Weiterverarbeitung. Aufgrund der begrenzten Leistung des Mikrocontrollers
wird ein Zeitraum von einer Sekunde betrachtet und wie in [15] ein per Hand erstelltes
Zustandsiibergangsmodell genutzt. Die untersuchten Aktivitaten sind Stehen, Gehen, Rennen,
Hinfallen und Liegen in verschiedenen Positionen. Fiir die Erkennung von periodischen
Aktivitiaten, wie Gehen, Rennen werden die Koeffizienten der Fouriertransformierten des
Beschleunigungsverlaufs herangezogen. Fiir die Erkennung von Hinfallen und Liegen werden
dagegen Schwellenwerte fiir die Beschleunigung und den Neigungswinkel des Gerites
verwendet. Damit werden Erkennungsraten von durchschnittlich 9go% erreicht.



1 Einleitung

In [6] wurd ein einzelnes, in der vorderen Hosentasche getragenes Sensormodul zur Daten-
akquisition verwendet, welches Beschleunigungsdaten mit Hilfe von Bluetooth an einen PC
tibertragt. Die betrachteten Aktivitaten Gehen, Stehen, Springen und Rennen wurden in Fenster
von etwa fiinf Sekunden Léange eingeteilt. Um die Abhangigkeit der Daten von der Position
des Beines zu reduzieren, wurde die Norm jedes Datenpunktes bestimmt. Aus jedem Fenster
wurden anschlieffend die Koeffizienten der diskreten Kosinustransformation bestimmt. Da
der Sensor mit einer Samplingrate von 100 Hz arbeitet erhilt man aus jedem der Fenster
512 Koeffizienten. Um die Dimensionalitdt der Daten zu reduzieren, wurde daher eine
Principal Component Analysis durchgefiihrt und die ersten 48 Koeffizienten als Merkmale
fiir die Klassifikation verwendet. Als Klassifikator werden Support Vektor Maschinen genutzt
und damit eine durchschnittliche Erkennungsrate von 97.51 % erreicht, wobei Springen am
schlechtesten abgeschnitten hat und haufig als Rennen klassifiziert wurde.

Olguin et al. [16] werden mehrere Beschleunigungssensoren, die an Handgelenk, Hiifte
und Brustkorb angebracht werden. Dabei werden verschiedene Konfiguration getestet, z.B.
je ein Sensor ein Hiifte und Handgelenk oder ein Sensor an jeder der drei Postionen. Es
wurden Daten fiir die Aktivitdten Sitzen, Rennen, Kauern, Gehen, Stehen, Krabbeln, Liegen
und Handbewegungen (im Stehen) gesammelt. Die Daten wurden anschliefsend in Zeitraume
von einer Sekunde eingeteilt. Anschlieflend werden Mittelwert und Standardabweichung
aus den Zeitrdumen bestimmt und als Merkmale fiir Hidden Markov Modelle (HMM)
verwendet. Mit Hilfe von je einem Sensor an Handgelenk, Hiifte und Brustkorb wurde eine
durchschnittliche Erkennungsrate von 92.13% erreicht. Bei Nutzung eines einzelnen Sensors
wurde eine Erkennungsrate von durchschnittlich 62.45% erreicht, wobei Rennen hier mit
iiber 90% sehr gut abschnitt.

Die bisher beschriebenen Arbeiten haben alle spezielle Sensormodule verwendet. Sie sind
an sich zwar preiswert, aber fiir die Weiterverarbeitung der Sensordaten auf zusitzliche
Hardware angewiesen. Zudem sind solche System unbequem und fiir den tdglichen Ge-
brauch daher weniger gut geeignet. Hier bieten sich Mobiltelefone an, da sie ohnehin meist
mitgefiihrt werden und kaum behindern. Arbeiten, die Mobiltelefone verwenden sind jedoch
selten und die Forschung in diesem Bereich noch nicht sehr fortgeschritten.

In [4] wird ein externer Sensor verwendet, der dhnlich einer Armbanduhr um das Handge-
lenk getragen wird. Die Verarbeitung der Sensordaten wird jedoch auf einem Smartphone
durchgefiihrt. Es werden die Aktivitaten Ruhezustand, Tippen, Gestikulieren, Gehen, Rennen
und Fahrrad fahren {iber Zeitraume von 2 Sekunden untersucht. Als Merkmal wird die
Intensitdt der Beschleunigung verwendet. Als Klassifikatoren werden Entscheidungsbaume
und Neuronale Netze verwendet, wobei letztere in der Praxis bessere Ergebnisse lieferten.
Mit den Neuronalen Netzen werden Erkennungsraten von 82% erreicht.

Reddy et al. [22] verwenden ein Mobiltelefon zur Bestimmung der Fortbewegungsweise
(Stillstand, Rennen, Gehen, Fahrrad fahren und Motorisiert) des Benutzers. Das Gerét enthalt
einen Beschleunigungssensor, sowie einen GPS Empfanger, die beide zur Erkennung ver-
wendet werden. Es werden Beschleunigungsverldufe iiber einem Fenster von einer Sekunde
betrachtet. Aus dem Fenster wurde unter anderem der Mittelwert, Standardabweichung
und die Energie extrahiert. Da allein mit den Beschleunigungsdaten kaum Unterschiede
zwischen den beiden Aktivitaten Stillstand und Motorisiert ausgemacht werden konnen, wird
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der GPS Empfanger zur Unterscheidung der beiden Aktivitdten zur Hilfe genommen. Die
Arbeit testet verschiedene Klassifikatoren und die besten Ergebnisse liefert ein zweistufiges
Verfahren bestehend aus einem Entscheidungsbaum und Hidden Markov Modellen, welche
als Eingaben die Ausgabewahrscheinlichkeiten des Entscheidungsbaums verwendet. Als
Merkmale fiir die Entscheidungsbdume dienen Varianz, Energie und Summe der Fourier-
koeffizienten, aufserdem die Geschwindigkeit, die mit Hilfe des GPS Empfangers bestimmt
wird. In dieser Arbeit werden Erkennungsraten von 98% erreicht.

In [25] kommt ein Mobiltelefon zum Einsatz, welches mit einem Beschleunigungssensor
ausgestattet ist. Die untersuchten Aktivitdaten sind Sitzen, Stehen, Gehen, Rennen, Fahrrad
fahren und Auto fahren. Fiir jede Aktivitit wurde ein Fenster von 10 Sekunden betrach-
tet. Die Besonderheit an dieser Arbeit ist, dass eine Transformation der Sensordaten auf
ein Korperfestes Koordinatensystem durchgefiihrt wird. Andere Arbeiten verwenden statt
einer Transformation lediglich die Norm der Beschleunigungsvektors, wodurch Richtungs-
informationen verloren gehen. Aus den 10 Sekunden Fenstern werden folgende Merkmale
extrahiert: Mittelwert, Standardabweichung, Anzahl der Nulldurchgéinge, 75% Perzentile
und Quartilabstand. Diese werden schliefilich einem Entscheidungsbaum tibergeben und
damit Erkennungsraten von durchschnittlich 9o% erreicht.

Kwapisz et al. [11] verwenden ebenfalls den Beschleunigungssensor eines Mobiltelefons um
die Aktivitaten Gehen, Laufen, Sitzen, Stehen, Treppen hinaufsteigen und Treppen hinuntersteigen
zu erkennen. Aus Zeitraumen von 10 Sekunden werden unter anderem Mittelwert, Stan-
dardabweichung und Abstand zwischen den Spitzen verwendet. Anschliefsend werden die
Merkmale mit Hilfe von Entscheidungsbdumen, Logistischer Regression und Neuronalen
Netzen klassifiziert, wobei die Neuronalen Netze mit durchschnittlich 91.70% die beste
Gesamterkennungsrate aufweisen. Treppen hinaufsteigen und Treppen hinuntersteigen weisen
dabei mit 55%, bzw. 61.5% die schlechteste Erkennungsraten auf, alle anderen Aktivitdten
liegen tiber 9o0%.

Ziele

In den meisten Arbeiten, die einzelne Sensoren verwenden wurden recht lange Zeitfenster
verwendet, meistens 10 Sekunden oder 5 Sekunden. In dieser Arbeit soll untersucht werden
wie genau sich eine Wahl von kiirzeren Zeitfenstern auswirkt und bis zu welcher Fenster-
grofle noch gute Erkennungsraten erreicht werden konnen. Aufierdem wurden bisher kaum
betrachtete Aktivitaten untersucht: Treppen hochsteigen, Treppen hinuntersteigen, Aufzug fahren
und Rolltreppe fahren.

Es werden zwei Klassifikationsverfahren gegentibergestellt: Entscheidungsbdaume und Hid-
den Markov Modelle. Entscheidungsbdume wurden in den vorhergehenden Arbeiten haufig
verwendet, da sie gute Erkennungsraten bei wenig Rechenaufwand bieten. Da sich die ver-
wendete Hardware und Datenséatze natiirlich von anderen Arbeiten unterscheiden, wurden
hier Entscheidungsbdume als Referenzimplementierung gewdhlt, um eine bessere Vergleich-
barkeit zu gewihrleisten. Hidden Markov Modelle wurden nur in einige wenigen Arbeiten
zur Klassifikation von Bewegungen verwendet. Da hier beide Verfahren auf dem selben
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1 Einleitung

Datensatz getestet werden, lassen sich die Ergebnisse direkt vergleichen. Weiterhin wird das
untersuchte Zeitfenster fiir die Hidden Markov Modelle nochmals in Intervalle eingeteilt.
Dieses Verfahren wurde bereits in [5] angewendet, allerdings wurden nur méfiige Erken-
nungsraten von maximal 78% erreicht. Bisher wurde kaum untersucht welche Einteilung
sich als am Besten erweist, deshalb werden verschiedene Verfahren auf ihre Erkennungsraten
hin untersucht.

Gliederung

Diese Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Technische Grundlagen bietet eine Ubersicht die verwendete Hardware, insbe-
sondere die Eigenschaften und der Zugriff auf die Sensoren wird erldutert. AufSerdem
wird kurz auf die Entwicklungsumgebungen eingegangen, unter denen die Software
zur Datenakquisition und Klassifikation entwickelt wurde.

Kapitel 3 — Datenakquisition widmet sich den in dieser Arbeit betrachteten Aktivitdten, den
gesammelten Daten, sowie der fiir die Datenakquisition entwickelten Software.

Kapitel 4 — Datenaufbereitung geht auf die Aufbereitung der Daten ein. Hier wird auf die
Einteilung der gesammelten Daten in Fenster und auch auf die verwendete Koordina-
tentransformation eingegangen.

Kapitel 5 — Entscheidungsbdume geht auf eines der verwendeten Klassifikationsverfahren
ein, den Entscheidungsbdume. Diese dienen in dieser Arbeit als Basis, um die Erken-
nungsrate der in Kapitel 6 betrachteten Hidden Markov Modelle besser bewerten zu
kénnen und mit anderen Arbeiten zu vergleichen.

Kapitel 6 — Hidden Markov Modelle behandelt schliefflich Grundlagen und Klassifikationser-
gebnisse der Hidden Markov Modelle. Es werden verschiedene Eingaben fiir die HMM
betrachtet und miteinander verglichen.

Kapitel 7 — Diskussion bewertet und vergleicht die beiden verwendeten Klassifikationsver-
fahren.
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2 Technische Grundlagen

2.1 Hardware

Zur Datenaufnahme wurde das Smartphone T-Mobile G1 (auch als HTC Dream vermarktet)
verwendet. In Tabelle 2.1 sind die technischen Details des Gerétes aufgelistet [7].

Im Gerit ist ein Sensorchip vom Typ Asahi Kasei AK8976A verbaut. Er bietet einen 3-Achsen
Beschleunigungssensor, einen 3-Achsen Magnetfeldsensor, sowie einen Temperatursensor

[9]-

2.1.1 Beschleunigungssensor

Ein Beschleunigungssensor misst die Abweichung der aktuellen Beschleunigung von der
Beschleunigung im Freien Fall. Das bedeutet, dass ein Beschleunigungssensor der sich im

Freien Fall befindet stets eine Beschleunigung von 0 gemessen wird, obwohl die Erdbeschleu-

nigung auf ihn einwirkt. Wird der Sensor dagegen auf flach einem Tisch platziert, gibt er

eine Beschleunigung von 1,0 G * nach oben an (siehe Abbildung 2.1)

Prozessor

Qualcomm®MSM7201A™, 528 MHz

Betriebssystem

Android™ (Version 1.6)

Speicher

192 MB RAM
256 MB ROM
Erweiterbar durch Speicherkarte

Schnittstellen

Bluetooth 2.0
IEEE 802.11 b/g WLAN
Mini USB Anschluss

Sensoren

3-Achsen Beschleunigungssensor
3-Achsen Magnetfeldsensor
Temperatursensor

Sonstiges

GPS-Empfanger

Tabelle 2.1: T-Mobile G1 Technische Daten

'Gravitation, bzw. Erdbeschleunigung (in SI Einheiten 9.81 m/ s2)

13



2 Technische Grundlagen

Beschleunigungssensoren existieren in verschiedenen Bauarten. Der im T-Mobile G1 einge-
setzte Sensor ist ein piezoresistiver Sensor [9]. Er macht sich den sogenannten piezoresistiven
Effekt > zu Nutze. Damit kann die Wirkung der Beschleunigung auf eine Masse in eine
Widerstandsdnderung umgesetzt werden, welche sich anschlieflend messen lasst.

2.1.2 Magnetfeldsensor

Es steht ein Magnetfeldsensor zur Verfiigung, der die Stirke des Magnetfeldes auf den
drei Achsen in Millitesla liefert. Die Android API stellt Funktionen zur Verfligung, um
aus Magnetfeld- und Beschleunigungsdaten eine Rotationsmatrix zu berechnen, die die
Gerédtekoordinaten auf Weltkoordinaten transformiert. Die Weltkoordinaten entsprechen:

x-Achse Richtung Norden
y-Achse Richtung Westen
z-Achse Richtung Himmel

Dies funktioniert allerdings nur, solange das Gerét im Stillstand ist. Die Transformation der
Beschleunigung auf Weltkoordinaten ist mit dem von der Android API zur Verfiigung gestellt
Verfahren nicht moglich, denn die Beschleunigung wird stets auf (0,0, |a|) tranformiert,
wobei |a| die Norm des Beschleunigungsvektors ist [17].

2.2 Android

Auf dem T-Mobile Gz1 ist das Betriebssystem Android installiert. Als Sprache fiir die Ent-
wicklung von Anwendungen fiir Android dient Java. Es werden zahlreiche Entwicklungs-
werkzeuge zur Verfiigung gestellt, darunter Emulatoren und ein Plugin fiir die integrierte
Entwicklungsumgebung Eclipse. Daher wurde die Anwendung zur Datenakquisition voll-
standig unter Eclipse entwickelt.

2.2.1 Sensoren Schnittstelle

Die Kommunikation mit den Sensoren erfolgt ereignisorientiert. Die Android API bietet dazu
eine Klasse SensorManager an. Nachdem ein Objekt der Klasse instanziiert und mit seiner
Hilfe die Anwendung als Listener registriert wurde, liefert das Betriebssystem Sensorwerte
an die Anwendung. Diese bestehen aus einem Zeitstempel, sowie den eigentlichen Werten.

Sobald das Gerit in den Standby Modus wechselt und das Display abschaltet, werden keine
Sensordaten mehr geliefert. Das Umschalten in den Standby Modus ldsst sich mit Hilfe eines
sogenannten Wakelocks verhindern, welches die Android API anbietet. Der Nachteil daran ist
jedoch, dass das Display weiter auf Benutzereingaben reagiert. Dies schrankt die moglichen
Positionen des Gerédtes am Korper ein, da versehentlich Benutzereingaben ausgeldst werden

*Widerstandsénderung eines elektrischen Leiters unter Druck oder Zug
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2.2 Android

Abbildung 2.1: Das Sensorkoordinatensystem ist abhdngig von der Lage des Displays. x-
Achse und y-Achse entsprechen den jeweiligen Display Seiten und die
z-Achse zeigt gen Himmel, falls das Gerat flach auf dem Boden liegt.

konnten. Aufierdem verkiirzt sich die Laufzeit des Gerits durch das aktivierte Display und
den damit verbundenen erhohten Stromverbrauch.

Allerdings lasst sich trotz des aktivierten Display eine Laufzeit von iiber einer Stunde
erreichen, was fiir diese Arbeit ausreichend ist. Mit voranschreitender Entwicklung wird es
auf irgendeine Art moglich sein, die Sensordaten auch bei abgeschalteten Display auszulesen.
Die Einschrankungen fiir diese Arbeit sind also vernachldssigbar und werden fiir zukiinftige
Entwicklungen voraussichtlich nicht mehr gegeben sein.

2.2.2 Sensorkoordinatensystem

Das Sensorkoordinatensystem ist abhéngig von der Ausrichtung des Displays. Im Portrdtmo-
dus entspricht die x-Achse der kurzen Displayseite, die y-Achse der langen Displayseite. Im
Landschaftsmodus entspricht die x-Achse der langen Seite, die y-Achse der kurzen Seite.
Die z-Achse ist stets orthogonal zu x und y-Achse und zeigt in Richtung Himmel, falls das
Gerit flach auf dem Boden liegt [17].

Durch Drehung des Gerites wird zwischen den beiden Displaymodi gewechselt. Dabei
andert sich aber zugleich das Koordinatensystem. Um dies zu vermeiden wird der auto-
matische Wechsel des Displaymodus deaktiviert. Das Display befindet sich somit standig
im Portratmodus. Das verwendete Sensorkoordinatensystem ist in Abbildung 2.1 nochmals
dargestellt.

2.2.3 Samplingrate

Die Samplingrate ldsst sich mit Hilfe der in Tabelle 2.2 angegebenen Konstanten beeinflussen.
Eine genaue Festlegung der Samplingrate ist jedoch nicht moglich, denn die Konstanten
legen lediglich den Mindestabstand zwischen je 2 aufeinanderfolgenden Sensorwerten fest,
die Werte konnen jedoch auch mit grofSerem Abstand geliefert werden.
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2 Technische Grundlagen

Name Mindestabstand in Millisekunden
SENSOR_DELAY_NORMAL 200
SENSOR_DELAY_UI 60
SENSOR_DELAY_GAME 20
SENSOR_DELAY_FASTEST o

Tabelle 2.2: SENSOR_DELAY_ * Konstanten

Genutzt wird die schnellste verfiigbare Samplingrate SENSOR_DELAY_FASTEST. Sie setzt
den Mindestabstand auf o Sekunden, das bedeutet die Sensorwerte werden so schnell
geliefert, wie moglich. Kurz nach dem Start der Sensoraufnahme pendelt sich der Abstand
jedoch auf 20 Millisekunden ein [18]. Nur selten gibt es leichte Schwankungen von einer
Millisekunde. Daher kann von einer konstanten Samplingrate von 50 Hz ausgegangen
werden.

2.3 Matlab

Zur Implementierung der Weiterverarbeitung und Klassifikation der Sensordaten wurde
Matlab verwendet. Matlab ermoglicht eine schnelle Entwicklung aufgrund der zahlreichen
bereits existierenden Funktionen, wodurch das Testen verschiedener Verfahren erleichtert
wird. Dies stellt natiirlich keine grofle Herausforderung dar. Die Implementierung kann auch
direkt auf dem Gerit erfolgen und die Erkennung kann vollstindig portiert werden. Die
Implementierung auf dem Gerédt nimmt jedoch ein Vielfaches der Zeit in Anspruch, weshalb
matlab gewdhlt wurde.

2.3.1 Entscheidungsbaume

Fiir die Entscheidungsbdaume wurde die Statistics Toolbox von Matlab verwendet. Sie ist
in der Lage Klassifikations- und Regressionsbaume mit Hilfe des CART Algorithmus und
verschiedener Teilungskriterien zu erstellen. In 5 wird genauer auf das verwendete Verfahren
eingegangen.

2.3.2 HMM Toolbox

Zum Trainieren und Testen der verschiedenen Hidden Markov Modelle wurde die HMM
Toolbox fiir Matlab verwendet [14]. Sie ist frei verfiigbar und steht unter der MIT Lizenz zur
Verfiigung. Die Toolbox erlaubt das Trainieren von Hidden Markov Modellen mit Gaufischen
Mischungen mit Hilfe dem EM Algorithmus. In 6 wird genauer auf das verwendete Verfahren
eingegangen.
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3 Datenakquisition

3.1 Software

Zur Aufnahme der Daten wurde eine Anwendung fiir das G1 entwickelt, die es ermoglicht
Beschleunigungsdaten iiber einen beliebig gewéhlten Zeitraum aufzunehmen. Der Benutzer
kann die Datenakquisition manuell starten und wieder stoppen. Die Dauer der Aufnahme
kann also vom Benutzer gewahlt werden, und wird nur durch den vorhandenen Speicher
begrenzt. Die Daten werden auf der Speicherkarte des Gerites abgelegt und konnen von
dort aus zur Weiterverarbeitung auf einen PC {ibertragen werden. Natiirlich kann die
Weiterverarbeitung auch direkt auf dem Smartphone stattfinden, in dieser Arbeit wurde sie
jedoch auf dem PC durchgefiihrt.

Die Anwendung speichert die Sensordaten als Textdatei. Fiir jedes Sensorereignis wird der
Zeitstempel (Die Zeit seit dem Beginn der Aufzeichnung in Millisekunden), sowie die drei
Elemente des Beschleunigungsvektors gespeichert. Es stehen verschiedene vorgefertigte
Aktivitaten zur Auswahl, fiir die automatisch ein Dateiname und ein Header erzeugt wird.
Alternativ lassen sich diese auch manuell bearbeiten. Der Header enthélt den Gerdtenamen,
den Namen der Aktivitit, sowie das Datum und die Uhrzeit der Aufnahmebeginns. Optional
kann der Benutzer einen Kommentar eingeben. Dieser wurde genutzt, um die Gerateposition
oder den genauen Ort der Aufnahme zu speichern. Abbildung 3.1 zeigt den Aufbau einer
Datei.

3.2 Gerateposition

Das Gerit wird in einer der vorderen Hosentaschen getragen, da Mobiltelefone haufig an
dieser Position getragen werden. Aufgrund der in Kapitel 2 genannten Einschrankungen
kann das Gerét nicht mit dem Display in Richtung Oberschenkel getragen werden, denn
durch die stindigen Beriithrungen mit dem Bein werden Benutzereingaben ausgelost, die die
Datenaufnahme stoppen koénnten.

Das schrankt die moglichen Positionen pro Hosentasche auf zwei ein. Damit sind insgesamt
die vier Positionen nutzbar, die in Abbildung 3.2 gezeigt werden. Untersucht wurden
jedoch nur zwei Positionen in der rechten Hosentasche (Abbildung 3.2a und 3.2b). Die
Untersuchung weiterer Positionen macht auch das Sammeln zusitzlicher Daten notwendig,
was den Zeitrahmen dieser Arbeit sprengen wiirde. Es wurden jedoch auch einige Datensétze
in den anderen beiden Positionen gesammelt, um die Koordinatentransformation (Abschnitt
4.4) zu testen.
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3 Datenakquisition

Device: T-Mobile G1 Header mit Gerdatenamen,
walk Name der Aktivitat,
2010-12-15 13:44 Aufnahmebeginn,

Position A, contains passage downhill & uphillj und optionalem Kommentar
#

89 -2.6014864 4.903325 7.5865335 )

128 -2.6014864 5.1212506 7.5865335

149 -2.6014864 5.012288 7.5865335 Datenblock. Jede Zeile

169 -2.6559677 5.066769 7.5320525 enthalt einen Zeitstempel
189 -2.7104492 5.1212506 7.4230895 * (Vergangene Zeit seit

210 -2.7649305 5.1212506 7.3141265 Aufnahmegebinn) gefolgt von
230 -2.819412 5.1212506 7.205164 den drei Komponenten des
250 -2.7649305 5.2302136 7.096201 Beschleunigungsvektors
270 -2.7649305 5.339176 7.04172

291 -2.7104492 5.611583 6.8237944

310 -2.547005 6.033814 6.66035

330 -2.6014864 6.033814 6.7148314 J

Abbildung 3.1: Aufbau einer durch die Anwendung erzeugten Datei. Die Abbildung zeigt
den Header der Datei und den Beginn des Datenblocks.

Bedingt durch die Wahl der Position wird nicht nur die Vorwirtsbeschleunigung und die
Gravitation, sondern auch die Beinbewegung des Benutzers durch den Sensor registriert. Die
Erkennung kann deshalb nicht auf Sensordaten angewendet werden, die in einer anderen
Position aufgenommen wurden, beispielsweise falls sich das Geridt in einem Rucksack
befindet.

3.3 Aktivitaten

Die gesammelten Aktivititen werden aufgeteilt in periodische Aktivititen, d.h. Aktivitdten
die eine gewisse Periodizitdt aufweisen, wie z.B. Gehen und statischen Aktivititen bei denen
sich der Benutzer selbst kaum bewegt, wie z.B. Rolltreppe fahren. Die Aktivitdten wurden
auf dem Universitdtsgeldnde, d.h. unter realen Bedingungen, von einer einzigen Person
gesammelt.

Statischen Aktivitaten:

Aufzug fahren Das Sammeln der Daten fiir die Aktivitdt Aufzug fahren ist problematisch,
denn moderne Aufziige verursachen kaum Vibrationen oder Schwankungen, wodurch
sich Aufzug fahren kaum von Stehen unterscheiden lasst. Je nach Aufzug sind selbst

18



3.3 Aktivitaten

(a) Rechtes Bein, unten (b) Rechtes Bein, oben

(c) Linkes Bein, unten (d) Linkes Bein, oben

Abbildung 3.2: Gerétepositionen in den Hosentaschen mit zugehorigen Sensorkoordinaten-
systemen
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3 Datenakquisition

Beschleunigungs- und Bremsphasen kaum in den Beschleunigungsverldufen zu erken-
nen.

Rolltreppe fahren Rolltreppendaten wurden zwar an verschiedenen Rolltreppen gesammelt,
leider stammen alle von dem gleichen Hersteller, so dass kaum Unterschiede in den
Beschleunigungsverldufen existieren. Ein leichtes Riitteln ist dennoch zu beobachten
und wie in Kapitel 5 und 6 gezeigt wird es reicht aus, um die Aktivitdt von Ruhezustand
und Aufzug fahren zu unterscheiden.

Ruhezustand In der Aktivitdt Ruhezustand werden die Aktivititen Sitzen und Stehen zusam-
mengefasst. Sie unterscheiden sich nur durch eine Drehung (der Drehung der Beins),
dieser Unterschied verschwindet bei der spéteren Aufbereitung der Daten (Kapitel 4).

Periodische Aktivitaten:

Rennen Wie aus Abbildung 3.6 ersichtlich unterscheidet sich Rennen deutlich von den
tibrigen Aktivitaten. Frequenz und Amplitude des Beschleunigungsverlaufs tiberstei-
gen die der iibrigen Aktivitdten deutlich. In Kapitel 5 und 6 wird gezeigt, dass die
Erkennungsraten fiir Rennen entsprechend hoch sind.

Treppen hinuntersteigen und Treppen hinaufsteigen Fiir die beiden Aktivitdten Treppen hin-
aufsteigen und Treppen hinuntersteigen wurden Daten von fiinf verschiedenen Treppen
aufgenommen. Es wurde darauf geachtet Datensédtze von Treppen unterschiedlicher
Steigung zu sammeln. Die Beschleunigungsverldufe fiir flache Treppen, d.h. Treppen
mit niedriger Steigung, dhneln dabei den Verldufen fiir Gehen. Je nach Art der Treppe
sind langere Gehphasen zwischen dem eigentlichen Treppendaten vorhanden. Diese
werden bei der Aufbereitung entfernt.

Gehen ist von allen Aktivititen die am starksten periodische, d.h. die einzelnen Perioden
gleichen sich stark und lassen sich in den Beschleunigungsverldufen stets gut erkennen.
Die Daten wurden an Stellen mit verschiedenen Untergriinden (Asphalt, Schnee,
Gras), sowie unterschiedlichen Steigungen gesammelt. Da die Daten unter realen
Bedingungen gesammelt wurden, mussten auch Hindernisse umgangen, d.h. die
Richtung gedndert werden, was zusatzlich Varianz in den Datensatz bringt. Gravierende
Unterschiede in den Beschleunigungsverldufen bestehen jedoch nicht.

Einige typische Beschleunigungsverldufe sind in Abbildung 3.3-3.9 aufgezeigt. Zur besseren
Vergleichbarkeit wurde fiir alle Aktivitdten die Position A (Abbildung 3.2a) ausgewdhlt.
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3.3 Aktivitaten

Beschleunigung

_1 O 1 1 1 1 1
50 100 150 200 250
Sample

Abbildung 3.3: Beschleunigungsverlauf von Aufzug fahren, 256 Datenpunkte, 5 Sekunden.
Erkennbar ist ein leichtes "Riitteln", sowie die Bremsphase des Aufzugs
zwischen 150-225

Beschleunigung

-10 1 1 1 1 1
50 100 150 200 250
Sample

Abbildung 3.4: Beschleunigungsverlauf von Rolltreppe fahren, 256 Datenpunkte, 5 Sekunden.
Gut erkennbar ist das "Riitteln"der Rolltreppe auf der Y-Achse
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3 Datenakquisition
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Abbildung 3.5: Beschleunigungsverlauf von Ruhezustand, 256 Datenpunkte, 5 Sekunden. In
Ruhezustand wurden Stehen und Sitzen zusammengefasst. Hier ist Stehen

abgebildet.
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Abbildung 3.6: Beschleunigungsverlauf von Rennen, 256 Datenpunkte, 5 Sekunden. Hohe
Amplitude und Frequenz im Vergleich zu den iibrigen Aktivitdten
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3.3 Aktivitaten
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Abbildung 3.7: Beschleunigungsverlauf von Treppen hinuntersteigen, 256 Datenpunkte, 5
Sekunden. Diese Aktivitit neigt starker zu Unregelmifligkeiten, d.h. sie ist
weniger periodisch als z.B. Treppe hinaufsteigen oder Gehen
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Abbildung 3.8: Beschleunigungsverlauf von Treppen hinaufsteigen, 256 Datenpunkte, 5 Sekun-
den
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3 Datenakquisition
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Abbildung 3.9: Beschleunigungsverlauf von Gehen, 256 Datenpunkte, 5 Sekunden
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4 Datenaufbereitung

4.1 Generierung zusammenhangender Datensatze

Die gesammelten Rohdaten liegen als zahlreiche Einzeldateien vor. Um die Weiterverar-
beitung zu vereinfachen wurden die Daten per Hand zusammengefiigt, so dass fiir jede
der Aktivitdten ein einziger durchgiangiger Datensatz vorliegt. Aus den daraus entstande-
nen durchgangigen Datensdtzen konnen anschliefSend beliebige Fenstergrofien generiert
werden.

Da der Benutzer das Gerit beim Starten und Beenden der Datenakquisition in der Hand halt,
miissen ein Stiick am Anfang und am Ende einer Datei entfernt werden. AufSerdem werden
die Spriinge zwischen den einzelnen Beschleunigungsverldufen manuell entfernt, indem
Datenpunkte geloscht werden, bis die Daten nahtlos zusammenhéangen. Das ist moglich,
da die Periodizitdt der Daten ausreichend hoch ist. Zudem miissen Fragmente fremder
Aktivitaten entfernt werden. Insbesondere Treppen steigen erfordert eine zeitaufwandige
Aufbereitung, aufgrund der vielen dazwischenliegenden Gehphasen.

Die nach der manuellen Aufbereitung nutzbaren Datensitze sind in Tabelle 4.1 aufgelistet.

4.2 Glattung

Eine Gldttung der Daten gestaltet sich schwierig. Nur fiir periodische Aktivititen, wie Gehen
oder Rennen wire ein Glattung moglich. Wiirde man jedoch die Aktivitat Rolltreppe oder
Aufzug fahren fahren glatten, so waren sie kaum noch von Ruhezustand zu unterscheiden. Da

’ Aktivitat Anzahl Samples | = Minuten
Aufzug fahren 47408 15.8
Rolltreppe fahren 26130 8.7
Ruhezustand 42903 14.3
Rennen 45882 15.3
Treppen hinuntersteigen 43560 14.5
Treppen hochsteigen 63409 21.1
Gehen 155464 51.8

Tabelle 4.1: Anzahl der Daten nach manueller Aufbereitung
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4 Datenaufbereitung

Fenstergrofle (Samples) ‘ Zeitraum (Sekunden) ‘

32 0.64
64 1.28
128 2.56
256 5.12
512 10.24

Tabelle 4.2: Verwendete Fenstergrofsen. Samples entsprechen den angegeben Zeitraumen

bereits eine leichte Gldttung die Unterscheidung stark erschwert, wurde auf eine Glattung
komplett verzichtet.

4.3 Einteilung in Fenster

Um Trainings- und Testdatensitze zu gewinnen, werden die zusammenhédngenden Rohdaten
wieder in Fenster aufgeteilt. Diese Fenster werden zur Merkmalsextraktion genutzt oder
direkt zum Trainieren des Klassifikators verwendet. In fritheren Arbeiten haben sich Fenster
mit 50% Uberlappung als vorteilhaft erwiesen. Es wurden verschiedene Fenstergroen
generiert. Da unter anderem die Koeffizienten der Fouriertransformation als Merkmale
genutzt werden, wurden stets Fenstergroflen zu Basis zwei verwendet. In Tabelle 4.2 werden
die verwendeten Fenstergrofien aufgefiihrt.

Nach der Generierung, wurde eine zufillige Permutation der Fenster erzeugt, dies ist
insbesondere fiir die Aktivitaten Treppen hinaufsteigen und Treppen hinuntersteigen wichtig, da
Daten von verschiedenen Treppen gesammelt wurden und es vermieden werden soll die
Klassifikatoren versehentlich nur auf einer Treppenart zu trainieren.

L Fenster i
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Abbildung 4.1: Die Daten werden in Fenster fester Grole mit 50% Uberlappung eingeteilt.

Die Nutzung langerer Fenster erhoht die Erkennungsrate, hat jedoch den Nachteil einer
trageren Reaktion: Wechselt die Aktivitdt des Benutzers, beispielsweise von Gehen zu Treppen
hinaufsteigen, so wird das Fenster erst als Treppen hinaufsteigen klassifiziert, sobald ein ausrei-
chend grofier Anteil der Daten im Fenster die entsprechende Aktivitdt darstellt. Aufserdem
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4.4 Koordinatentransformation

werden kurze Abschnitte anderer Aktivitdten verschluckt, wie zum Beispiel wenige Stufen
Treppen hinaufsteigen eingebettet in Gehen.

4.4 Koordinatentransformation

Aufgrund der Position des Gerits in der Hosentasche, ist das Sensorkoordinatensystem
(Abbildung 4.2) durch die Beinbewegung standigen Schwankungen ausgesetzt.

Um unabhéngig von der Position des Gerits vergleichbare Sensordaten zu erhalten, ist
es notwendig sie in ein Korperfestes Koordinatensystem zu transformieren. Eine andere
Moglichkeit ist die Norm des Beschleunigungsvektors zu verwenden. Dabei gehen jedoch
samtliche Richtungsinformationen verloren.

4.4.1 Exakte Transformation

Eine exakte Transformation, in das in Abbildung 4.2a dargestellte Koordinatensystem wére
wiinschenswert, ist mit den vorhandenen Sensoren aber nicht moglich. Fiir eine exakte
Transformation wire Kenntnis iiber die genauen Drehwinkel erforderlich, diese Winkel
aus den Daten des Beschleunigungssensors zu gewinnen ist jedoch nur moglich, solange
ausschliefllich die Gravitation auf den Sensor einwirkt. Wirkt eine weitere, d.h. vom Benutzer
erzeugte Beschleunigung auf das Geridt ein, kann man nicht zwischen dieser und der
Gravitation unterscheiden. Das Verfahren ldsst sich also nur im Stillstand anwenden und
ist damit fiir diese Arbeit nicht geeignet. Es muss stattdessen auf eine ndherungsweise
Transformation zuriickgegriffen werden.

Mit dem Aufkommen von Gyroskopen in Smartphones kann diese Einschrankung jedoch
umgangen werden. Es kann eingesetzt werden, um die exakten Drehwinkel zu erhalten, mit
deren Hilfe sich die Beschleunigungsdaten dann transformieren lassen. Leider stand fiir diese
Arbeit kein Smartphone mit Gyroskop zur Verfiigung, die ersten Gerdte mit integriertem
Gyroskop kamen erst gegen Ende dieser Arbeit auf den Markt.

4.4.2 Naherungsweise Transformation

Die ndherungsweise Transformation, bzw. Projektion der Beschleunigungsdaten erfolgt
mit dem in [13] vorgeschlagenen Verfahren. Dabei wird ein Beschleunigungsvektor zerlegt
in eine vertikale Komponente parallel- und eine horizontale Komponente orthogonal zur
Gravitation.

Die Grundidee besteht darin, die Gravitation mit Hilfe des Mittelwertes abzuschitzen. Dies
ist moglich, da die Gravitation konstant ist, die Beschleunigung durch die Bewegungen des
Benutzers aber schwankt. Um eine gute Abschiatzung der Gravitation zu erhalten, muss das
Zeitfenster tiber dem der Mittelwert gebildet wird jedoch ausreichend lang sein [13].

27



4 Datenaufbereitung

Fiir die vorliegenden Aktivitdten hat sich eine Fenstergrofie von 64 Samples (etwa eine
Sekunde) als noch ausreichend erwiesen. Bei einer Fenstergrofie von 32 treten bereits Schwan-
kungen auf, d.h. die mit Hilfe des Mittelwerts abgeschitzte Gravitation schwankt von Fenster
zu Fenster.

Es wird zunéchst der Mittelwert 77 = (my, m,, m,) der Beschleunigung @(t) = (ax, ay, a,) fur
jede Achse, iiber das gewihlte Zeitfenster [t1,t,] der Lange n gebildet:

1 &
ﬁi:—*ZE(t)

=

Dieser Mittelwertvektor 7 weist in Richtung der Gravitation, d.h. der vertikalen Achse
(Abbildung 4.2b) AnschliefSend ldsst sich die vertikale Komponente 7, der Beschleunigung
bestimmen, indem die einzelnen Datenpunkte @ auf 7 projiziert werden:

~ a-my
Ay = | = | *m
m-m

Die horizontale Komponente 7, erhdlt man mittels:

iy =d — iy
Die einzelnen Komponenten der horizontalen Beschleunigung lassen sich nicht unterscheiden.

Es ist nur bekannt, dass sich / in der Ebene orthogonal zum abgeschétzten Gravitationsvektor
m befindet [13].

Dies resultiert im in Abbildung 4.2b dargestellten Koordinatensystem. Die Ergebnisse der
Transformation mit zugehorigen Rohdaten sind in Abbildung 4.3 dargestellt, zur leichteren
Vergleichbarkeit wurde in allen 4 Positionen die Aktivitdt Gehen ausgewdahlt. Wie an den
Ergebnissen zu erkennen ist, tiberfiihrt die Transformation die Daten in ein einheitliches
Koordinatensystem.

4.5 Zyklen Erkennung

Ein Zyklus entspricht eine Periode im Beschleunigungsverlauf. Bei der Aktivitidt Gehen
wiéren dies beispielsweise zwei Schritte. Die Erkennung von Zyklen wird auf zwei Arten
eingesetzt.

Erzeugung eines zusétzlichen Fensters Mit Hilfe der Zyklen soll zusitzlich zu den in 4.3
generierten Fenstern ein weiteres erzeugt werden. Da sich die Zyklen alle dhneln, reicht
die Betrachtung eines Zyklus. Durch die Wahl des neuesten Zyklus kann aufserdem
die Reaktionsgeschwindigkeit des System verbessert werden.

Unterteilung des Fensters Das Fenster wird fiir das Training der Hidden Markov Modelle
in Intervalle eingeteilt. Zusétzlich zu festen Intervallgrofien, soll das Fenster auch
abhéngig von den gefundenen Zyklen eingeteilt werden. Auf die verwendeten Unter-
teilungen wird in Kapitel 6 noch einmal genauer eingegangen.
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4.5 Zyklen Erkennung

(@ (b)

Abbildung 4.2: (a)“Ideales” korperfestes Koordinatensystem, mit den vorliegenden Sensoren
nicht verfligbar. Stattdessen wird das durch Abschdtzen der Gravitation
enstandene Koordinatensystem (b) verwendet

4.5.1 Vorverarbeitung

Um die Zyklen in einem Fenster zu bestimmen muss zundchst die Periodenldnge des
Beschleunigungsverlaufs abgeschétzt werden. Um die Abschidtzung zu verbessern ist eine
Vorverarbeitung notwendig. Dazu wird auf Methoden zuriickgegriffen, die auch in der
Herzschlagerkennung [12] und der Rhythmus Erkennung bei Musik angewendet werden
[19].

Zunichst wird der Beschleunigungsverlauf geglattet. Anschlieflend wird das Ergebnis qua-
driert und ein gleitender Mittelwertfilter darauf angewandt, d.h. erneut geglittet. Diese Art
der Vorverarbeitung hat sich bewidhrt und verbessert auch fiir Beschleunigungsverldufe die
Abschitzung der Periodenldnge.

29



4 Datenaufbereitung
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Abbildung 4.3: Ergebnisse der Koordinatentransformation am Beispiel Gehen. Jede Zeile
entspricht einer Position aus Abbildung 3.2. Die Beschleunigungsverldufe
in der linken Spalte sind im korperfesten Koordinatensystem und gleichen
sich unabhéngig von der Position des Gerétes

30



4.5 Zyklen Erkennung

4.5.2 Abschatzen der Periodenlange

Um die Periodenldnge abzuschitzen wird die Autokorrelationsfunktion verwendet. Sei
X1 ...Xx, eine Folge von Werten. Dann ist die Autokorrelationsfunktion gegeben durch:

n—k

akf(k) = ) (x* xt4x)

t=1

Nach der Vorverarbeitung, werden die Maxima M; = (m?, mly ) der Autokorrelationsfunktion
bestimmt und anschliefend sortiert M = {M; ... Mn\mly < m]y ,i < j} Die Differenz p =
|my — m,_,| zwischen den beiden grofiten Maxima liefert die gewtinschte Abschatzung der
Periodenlénge. Die Periodenldnge wird sowohl fiir die vertikale, als auch die horizontale
Beschleunigung bestimmt. Experimente haben gezeigt, dass die Verwendung des grofseren
der beiden Werte die besten Ergebnisse liefert.

4.5.3 Einteilung nach Zyklen

1

Abbildung 4.4: Suche nach lokalen Maxima zur Unterscheidung der Zyklen. Zunachst
wird das globale Maximum M; im Intervall [0, p] gesucht, wobei p die
abgeschitzte Periodenldnge ist. Ausgehend von diesem wird die Position
des ndchsten Maximums abgeschétzt und um diesen Bereich das néichste
globale Maximum berechnet.

Nachdem die Periodenldnge p nun bekannt ist, wird der Beschleunigungsverlauf in Abschnit-
te eingeteilt. Jeder Abschnitt entspricht einem Zyklus. Fiir die Einteilung werden markante
Stellen in den Beschleunigungsverldufen bendtigt. Dafiir eignen sich die lokale Maxima, da
sie in allen periodischen Aktivitdten stark ausgepragt sind. Zundchst wird das Maximum
M; = (x1,y1) innerhalb [0, p] gesucht. Dies ist der Startpunkt des ersten Zyklus. Ausgehend
von diesem wird am vermuteten Startpunkt des zweiten Zyklus [y1 +3/4* p,y1 +5/4 * p|,
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4 Datenaufbereitung

nach dem ndchsten Maximum M, gesucht. Dies wird wiederholt, bis der vermutete néchste
Startpunkt zu weit aufierhalb des Fensters liegt (Abbildung 4.4).

Die gefundenen Maxima werden schliefSlich zur Einteilung der Zyklen verwendet. Werden
im Fenster keine Maxima gefunden oder entspricht die Periodenldnge dem ganzen Intervall,
so wird das ganze Fenster als Zyklus verwendet. Dies ist bei allen nicht-periodischen
Aktivitdten - wie zum Beispiel Ruhezustand - der Fall.

4.6 Merkmale

Um die Anzahl der zur Klassifikation verwendeten Eigenschaften zu verringern, werden
Merkmale aus den Beschleunigungsdaten extrahiert. Sei X = {¥j,...,X,} die Menge der
Beschleunigungsdaten. Jedes ¥; = (x”,x?) entspricht dabei einem Datenpunkt bestehend
aus der horizontalen Komponente x; und vertikalen Komponente x,. Folgende Merkmale
wurden jeweils fiir beide Komponenten verwendet:

Mittelwert:

Standardabweichung: Standardabweichung o = v/s2 aus Stichprobenvarianz s>

i1

Fouriertransformation: Koeffizienten X der diskreten Fouriertransformation einer Folge
(x0, .-+, Xn)
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5 Entscheidungsbaume

5.1 Grundlagen

Entscheidungsbdume werden zur Klassifikation und zum Data Mining eingesetzt. Jeder
Knoten eines Baums entspricht dabei einer Entscheidungsregel und jedes Blatt entspricht
einer Klasse. Ein grofser Vorteil ist, dass sie die zur Klassifikation verwendeten Merkmale
anschaulich darstellen.

5.1.1 CART Algorithmus

Der CART Algorithmus (Classifcation and Regression Trees) ist ein iiberwachtes Lernverfah-
ren zur Generierung von Entscheidungsbdumen. Das Verfahren wurde 1984 von L. Breiman
veroffentlicht [3].

Begonnen bei der Wurzel - die zunéchst die gesamte Menge enthilt - wird an jedem Knoten
die Menge der Daten in zwei Klassen eingeteilt, wodurch zwei neue Knoten entstehen.
Aufgrund der Einteilung in zwei Klassen nur Bindrbdume erzeugt werden. Fiir die eigentli-
che Teilung wird dasjenige Attribut ausgewdhlt, welches die optimale Aufteilung in zwei
Teilmengen, hinsichtlich eines Teilungskriteriums liefert.

Da bei einer Teilung stets nur der aktuelle Knoten betrachtet wird, zdhlt das Verfahren zur
Klasse der greedy Algorithmen. Es platziert Attribute umso hoher im Entscheidungsbaum,
je besser sie die Datenmenge unterteilen.

5.1.2 Teilungskriterium

Als Teilungskriterium wird der Gini Index (oder Gini Koeffizient) verwendet. Er wird als
Mas fiir die Ungleichheit oder Unreinheit einer Menge von Daten genutzt. Es seien die
Klassen | =1, ..., k gegeben und p; die relative Haufigkeit der Elemente in der Menge, die
zu Klasse j gehoren. Dann ist der Gini Index gegeben durch:

k
gizl—Zp]Z

Der Gini Index wird minimal, falls jedes Element einer Menge zu der selben Klasse gehort.
Umgekehrt wird der Gini Index maximal, falls jedes Element zu einer eigenen Klasse
gehort.

33



5 Entscheidungsbdume

An jedem Knoten soll die Aufteilung zwei moglichst homogene Mengen erzeugen. Dies
geschieht, indem die Differenz A zwischen der Unreinheit des Elternknotens und der
Unreinheit der Kindknoten maximiert:

A = gi(t) —n, * Qi(t,) — ny = gi(t)

Wobei gilt:

Qi(f) = Gini Index des Elternknotens

Qi(#;) = Gini Index des linken Kindknotens

Qi(t,) = Gini Index des rechten Kindknotens

n; = Anzahl der Elemente im linken Kindknoten
ny = Anzahl der Elemente im rechten Kindknoten

5.2 Merkmalsextraktion

Um die Anzahl der zur Klassifikation verwendeten Eigenschaften zu verringern, werden
Merkmale aus den Beschleunigungsdaten extrahiert. Sei X = {¥y,...,X,} eine Menge von
Beschleunigungsdaten, mit X; = (xj, x,). Folgende Merkmale wurden jeweils fiir die hori-
zontale Komponente x; und die vertikale Komponente x, eines Datenpunkts berechnet:

Mittelwert:

2

1 n
2
§° = P —
e R MC)
i=1
Fouriertransformation: Koeffizienten 1 der diskreten Fouriertransformation einer Folge
(Yor -+, Yn)
A 1 = —2rixik
= ES e n
A Z Y

Die Merkmale fiir den Entscheidungsbaum werden iiber dem gesamten Zeitfenster extrahiert.
Die Zyklenerkennung wird genutzt um ein zusétzliches Fenster zu erzeugen. Dazu wurden
aus den bestehenden Fenstern der Grofse 256 Samples die Zyklen bestimmt und aus dem
neuesten Zyklus das neue Fenster erzeugt, dessen Liange schwankt und abhéangig von der
Lange des Zyklus ist.
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5.3 10-fold Cross Validation

Jeweils fiir die horizontale und vertikale Komponente der Beschleunigung. Dadurch ergeben
sich bei einer Fenstergrofie von n ein Merkmalsvektor der Dimension 2 * (2 + n):

— h h ~h AN A A
o= (u,u, o, a9, 0 b, 0n)

Der Entscheidungsbaum erhilt also mehr Merkmale, als die Daten eigentlich lang sind. Der
CART Algorithmus (Abschnitt 5.1.1) wird diejenigen Merkmale auswihlen, die die Daten
am besten unterteilen, d.h. es werden nicht alle Merkmale auch verwendet.

5.3 10-fold Cross Validation

Die Ergebnisse de Erkennungsraten der Entscheidungsbaume wurden mit Hilfe von 10-fold
cross validation gepriift. Fiir jede Fenstergrofie wurde der Datensatz aufgeteilt in zehn
Datensédtze. Anschlieffend wurden die Entscheidungsbdume auf neun dieser Datensétze
trainiert und mit dem verbleibenden zehnten Datensatz getestet. Dieser Vorgang wurde
zehn mal wiederholt, jedes mal mit einem anderen der zehn Datensitze als Testdatensatz.
Der Durchschnitt der Erkennungsraten aus den zehn Durchldufen wird schlieflich als
Endergebnis verwendet. 10-fold cross validation vermindert den Einfluss

5.4 Ergebnisse

Entscheidungsbaume bieten, wie in anderen Untersuchungen zuvor [25] [4], auch hier gute
Erkennungsraten und erreichen fiir grofSe Fenster Erkennungsraten von 93%. Die Einteilung
in periodische und statische Aktivititen spiegelt sich auch in der Struktur des Baums wieder:
Rennen wird im Entscheidungsbaum meist sofort an der Wurzel zu einem Blatt, danach
verzweigt sich der Baum in je einen Unterbaum fiir statische Aktivitdten und periodische
Aktivitaten.

Die periodischen Aktivitdten Rennen, Treppen hochsteigen, Treppen hinuntersteigen und Gehen
wiesen eine im Durchschnitt 10% hohere Erkennungsrate als die statischen Aktivitdten
textitAufzug fahren, Rolltreppe fahren und Ruhezustand auf. Insbesondere Rennen weist eine
sehr hohe Erkennungsrate auf. Im Gegensatz dazu kommt es zwischen Ruhezustand und
Aufzug fahren haufig zu Fehlklassifikationen, wodurch fiir Ruhezustand die Erkennungsrate
bei einer Fenstergrofie von 32 auf 39% absinkt. Die Tiefe der Baiume variiert zwischen g fiir
Fenstergrofse 512 und Tiefe 41 fiir Fenstergrofien 32. Tabelle 5.1 zeigt die Erkennungsraten
der einzelnen Aktivititen in Abhdngigkeit von der gewéhlten Fenstergrofle.

Die Bestimmung des neuesten Zyklus aus einem Zeitfenster von 256 Samples fiihrt zu einer
Gesamterkennungsrate von 9o.21%. Fiir periodische Aktivitdten betrdgt sie 95.45% und
bringt damit eine Steigerung gegeniiber der Erkennungsrate von 93.69% fiir ein Fenster der
festen Grofse 64 Samples. Fiir statische Aktivitdten betrdgt die Erkennungsrate 83.20%. Da bei
statischen Aktivitdten keine Zyklen existieren, wird das Verfahren zur Zyklenerkennung das
gesamte Fenster als Zyklus verwenden, d.h. 256 Samples. Deshalb wird in diesem Fall auch
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5 Entscheidungsbdume

Fenstergrofle

32 \ 64 \ 128 \ 256 \ 512 \ Neu

Aufzug 82.63 | 83.25 | 82.75 | 82.00 | 89.00 | 81.00
Rolltreppe 90.00 | 88.50 | 88.00 | 85.00 | 90.00 | 84.40

f§ Ruhezustand | 39.33 | 75.75 | 81.50 | 89.50 | 94.00 | 84.30
;E Rennen 99.46 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
< | Treppe Runter | 85.50 | 97.38 | 95.00 | 97.00 | 99.00 | 97.60
Treppe Hoch | 83.25 | 80.13 | 95.50 | 94.50 | 98.00 | 91.40
Gehen 84.08 | 97.25 | 94.50 | 92.00 | 96.00 | 92.80
Gesamt ‘82.29‘ 88.75 ‘ 91.04 ‘ 91.43 ‘ 93.71 ‘ 90.21 ‘

Tabelle 5.1: Erkennungsraten fiir Entscheidungsbaume, geordnet nach Fenstergrofie. “Neu”
steht fiir den Neuesten Zyklus, der aus einem Fenster der Grofie 256 bestimmt
wurde. Rennen weist die besten Erkennungsraten auf, Aufzug fahren und Ruhezu-

stand die niedrigsten.

mit der festen Fenstergrofie von 256 Samples verglichen, welches eine hohere Erkennungsrate
(85.75%) aufweist. Dies liegt wahrscheinlich an den zusétzlichen Fehlern, die das Verfahren

zur Zyklenerkennung verursacht.
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6 Hidden Markov Modelle

6.1 Grundlagen

Hidden Markov Modelle werden unter anderem in der Spracherkennung, fiir Spamfilter
und der Gestenerkennung eingesetzt. Mit Hilfe von Hidden Markov Modellen ist es mog-
lich den zeitlichen Zusammenhang der Daten, bzw. des zugrundeliegenden Systems zu
berticksichtigen [21].

Ein Hidden Markov Modell wird definiert als Quintupel A = {S,A,Y,B, 7} mit
S={s1,---,sn} Menge der (verborgenen) Zustinde
A = {a;j} Zustandsiibergangsmatrix,
a;j = Wahrscheinlichkeit von Zustand s; nach Zustand s; zu wechseln
Y ={y1,---,yn} Menge der Emissionen (Beobachtungen)

B = {b;} Matrix der Emisionswahrscheinlichkeiten,
bij = Wahrscheinlichkeit im Zustand s; die Beobachtung y; zu machen
= {m} Menge der Startwahrscheinlichkeiten

71; = Wahrscheinlichkeit das s; Startzustand ist

Ein Hidden Markov Modell ist ein stochastisches Modell, welches durch zwei stochastische
Prozesse ' beschrieben werden kann. Der erste Prozess gegeben durch S und A entspricht

Abbildung 6.1: Beispiel fiir den Aufbau eines HMM mit zwei versteckten Zustdnden s;,
Beobachtungen y;, Emissionswahrscheinlichkeiten b; und Ubergangswahr-
scheinlichkeiten a;

*eine Folge von Zufallsvariablen X = {Xy, -+, X}
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6 Hidden Markov Modelle

Y1 Y2 N Y6

Abbildung 6.2: HMM erster Ordnung mit sechs Zustanden und Gaufischen Mischungen.
Wird verwendet fiir die Klassifikation mit Rohdaten.

einer Markow-Kette, deren Zustinde nicht sichtbar, d.h. versteckt sind. Der zweite Prozess
entspricht einer Folge von Beobachtungen.

Fiir jede der sieben Klassen, d.h. Aktivitdten cy, - - - , c7 ist ein Datensatz mit Beobachtungen
O° = {of,---,05} gegeben. Fiir jede der Aktivititen wird ein HMM Ay, - - - , A7 trainiert.
Diese HMM werden dann als Klassifikator verwendet, indem jedem HMM die Beobachtung
o tibergeben wird, die klassifiziert werden soll. Die Beobachtung gehort dann zu derjenigen
Klasse, dessen zugehoriges HMM die grofste Wahrscheinlichkeit liefert.

An dieser Stelle soll nicht weiter auf Hidden Markov Modelle eingegangen werden, da dies
den Umfang dieser Arbeit sprengen wiirde. Fiir einen umfassenden Uberblick sei auf [21]
verwiesen.

6.2 Rohdaten

In diesem Abschnitt wird die Klassifikation mit Rohdaten behandelt. Die Beschleunigungs-
daten werden dabei direkt den Hidden Markov Modellen iibergeben. Zum Testen der
Erkennungsraten wurde, wie bei den Entscheidungsbdaumen 10-fold cross validation einge-
setzt. Dies vermindert auch den Einfluss der Zufallsinitialisierung der HMM.

6.2.1 Struktur

Fiir die Klassifikation mit Rohdaten erwies sich ein HMM erster Ordnung mit sechs Zu-
stinden und einer Mischung aus drei Gaufiverteilungen (Abbildung 6.2) als am Besten.
Weder die Erhohung der Anzahl der Zustdnde, noch die Erhohung der Ordnung fiihrte zu
signifikant besseren Erkennungsraten.
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6.3 Einteilung in Intervalle

Fenstergrofle
32 \ 64 \128\ 256 \ 512 \Neu

Aufzug 35.75 | 52.50 | 58.00 | 66.50 | 78.00 | 59.50
Rolltreppe 52.63 | 60.38 | 79.50 | 90.50 | 93.00 | 89.00
Ruhezustand | 27.13 | 38.75 | 42.00 | 48.50 | 60.00 | 52.50
Rennen 89.75 | 98.12 | 99.50 | 100.00 | 100.00 | 96.00
Treppe runter | 63.75 | 85.55 | 91.00 | 94.50 | 98.00 | 83.50
Treppe hoch | 70.19 | 96.50 | 99.50 | 100.00 | 100.00 | 91.50
Gehen 76.06 | 96.58 | 98.75 | 99.50 | 100.00 | 97.89

Gesamt \ 59.00 \ 75.46 \ 81.18 \ 85.55 \ 89.00 \ 81.41 ‘

Aktivitat

Tabelle 6.1: Erkennungsraten fiir HMM mit Rohdaten, geordnet nach Fenstergrofie. “Neu”
steht fiir den Neuesten Zyklus, der aus einem Fenster der Grofie 256 bestimmt
wurde. Gute Erkennungsraten fiir periodische Aktivitdten, insbesondere Rennen
und Treppe hinuntersteigen. Statische Aktivitaten weisen schlechte Erkennungs-
raten auf, Ruhezustand wird oft als Aufzug fahren erkannt. Die Erkennung des
neuesten Zyklus bringt leider keine Verbesserung.

6.2.2 Erkennungsraten

HMM mit Rohdaten erreichen gute Erkennungsraten bei periodischen Aktivitdten, wie
Treppen hochsteigen, Treppen hinuntersteigen, Gehen und insbesondere Rennen. Sie haben je-
doch Schwierigkeiten bei statischen Aktivitiaten, wie Aufzug fahren, Rolltreppe fahren und
Ruhezustand. Insbesondere zwischen Aufzug fahren und Ruhezustand kommt es zu Fehlklassi-
fikationen, aufgrund der Ahnlichkeit der beiden Aktivititen, daher wird fiir Ruhezustand
maximal eine Erkennungsrate von 60% erreicht. Die Gesamt-Erkennungsrate wird von
den statischen Aktivitdten stark in Mitleidenschaft gezogen. Sie reicht von 59% bei einer
Fenstergrofie von 32 Samples (etwa 0.5 Sekunden) bis zu 89% bei einer Fenstergrofie von
512 (etwa 10 Sekunden). Eine Fenstergrofie von 32 ist also fiir eine gute Erkennung nicht
ausreichend, da selbst die periodischen Aktivititen bei dieser Fenstergrofie eine schlechte
Erkennungsraten aufweisen. Tabelle 6.1 zeigt die Erkennungsraten fiir jede einzelne Aktivitit,
abhéngig von der Fenstergrofle.

Die Erkennung des neuesten Zyklus bringt leider keine verbesserten Erkennungsraten.
Die Wahl eines Fensters mit einer festen Grofie von 64 Samples bringt bessere Ergebnisse
fiir periodische Aktivitdten. Eine feste Fenstergrofie von 256 Samples bringt bei statischen
Aktivitdten die besseren Erkennungsraten.

6.3 Einteilung in Intervalle

In diesem Abschnitt werden die betrachteten Fenster aus Abschnitt 4.3 in Intervalle eingeteilt
und anschliefsend Merkmale aus ihnen extrahiert. Diese werden anschliefSend den Hidden

39



6 Hidden Markov Modelle
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Abbildung 6.3: Weitere Einteilung der Fenster in Intervalle. (a) Einteilung des Fensters
in Intervalle fester Grofle. (b) Bestimmung der Zyklen und anschliefSend
Einteilung jedes Zyklus in Intervalle fester Grofie. (¢) Verwendung des
neuesten Zyklus und Unterteilung in Intervalle fester Grofie.

Markov Modellen iibergeben. Zum Testen der Erkennungsrate wurde auch hier 10-fold cross
validation eingesetzt.

6.3.1 Merkmalsextraktion

Vor der Merkmalsextraktion werden die in Abschnitt 4.3 erzeugten Fenstern, nochmals
in Intervalle aufgeteilt. Dabei hat sich eine 50%-ige Uberlappung der Intervalle in vorhe-
rigen Arbeiten als vorteilhaft erwiesen [22] [5]. Zusédtzlich zu der in bisherigen Arbeiten
betrachteten festen Unterteilung werden weitere Moglichkeiten untersucht:

Unterteilung in feste Intervalle Das Zeitfenster wird in m feste Intervalle mit 50% Uberlap-
pung eingeteilt. In Abbildung 6.3a ist eine mogliche Unterteilung mit m = 5 dargestellt.
Aufgrund der 50%-igen Uberlappung ist die Intervallanzahl stets ungerade. Die Anzahl
der getesten Aufteilungen schwankt je nach Fenstergrofse, da bei immer feinerer Un-
terteilung der Rechenaufwand rasch ansteigt, bis schliefllich mehr Merkmale erzeugt
werden, als Datenpunkte im Fenster vorhanden sind.

Zyklenerkennung und Unterteilung aller Zyklen Aus dem Zeitfenster werden zunéchst alle
Zyklen extrahiert. Jeder der Zyklen wird anschlieend in m Intervalle mit 50% Uber-
lappung eingeteilt. Abbildung 6.3b zeigt eine mogliche Unterteilung des Fensters in
seine vier Zyklen und anschliefende Unterteilung der Zyklen in m = 3 Intervalle.
Das Verfahren zu Zyklenerkennung arbeitet ab einer Fenstergrofie von 256 Samples
am Besten, daher wird hierfiir eine Fenstergrofse von 256 verwendet. Kleinere Fenster
fiihren hdufig zu Fehlern in der Abschédtzung der Periodenldnge, wiahrend langere
Fenster keine signifikante Verbesserung mehr bringen.

Zyklenerkennung und Unterteilung des neuesten Zyklus Aus einem Zeitfenster werden
zwar alle Zyklen extrahiert, jedoch wird nur der neueste Zyklus weiterverwendet.
Er wird ebenfalls in m Intervalle unterteilt. Abbildung 6.3c zeigt eine mogliche Un-
terteilung mit m = 3. Auch hier wird eine Fenstergrofie von 256 Samples verwendet.
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6.3 Einteilung in Intervalle

Y, Y, Y,

Abbildung 6.4: HMM erster Ordnung mit drei Zustdnden. Wird verwendet fiir die Klassifi-
kation mit Intervallen

Durch die Verwendung des neuesten Zyklus soll die Reaktionsgeschwindigkeit des
Verfahrens verbessert werden, bei einer gleichzeitigen Erhohung der Erkennungsraten
im Vergleich zur Verwendung von Fenster der Lange 64 Samples.

Aus jedem dieser Intervalle werden folgende Features generiert (jeweils fiir die horizontale
und vertikale Komponente der Beschleunigung):

o Mittelwert
e Standardabweichung

e Die 8 ersten Koeffizienten der Fourier Transformation

Auf die verwendeten Merkmale wurde bereits zuvor in Abschnitt 5.2 genauer eingegangen,
daher soll dies hier nicht nochmals wiederholt werden. Fiir jedes Intervall erhdlt man einen
Merkmalsvektor, bzw. Beobachtung der Dimension 20:

h h h

o= (p",u, 0" 00 &1, . 28 27, ..29)
Fiir ein Fenster, welches in n Intervalle unterteilt wird erh&lt man eine Folge von Beobach-
tungen:

6.3.2 Struktur

Verschiedene Strukturen fiir die HMM wurden getestet und ein Modell erster Ordnung mit
drei Zustidnden hat sich fiir die Klassifikation mit Hilfe von Merkmale, die aus Intervallen
gewonnen werden, als am Besten erwiesen. Eine Erhohung der Anzahl der Zustinde,
der Ordnung und die Nutzung von gaufischen Mischungen brachte keine signifikante
Verbesserung der Erkennungsraten.
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Abbildung 6.5: Erkennungsraten fiir HMM nach Anzahl der Intervalle, in die ein Fenster
unterteilt wird. Betrachtet werden Fenster der Grofe 128, 256 und 512.
Eine feinere Unterteilung der Fenster hat eine grofsere Auswirkung auf die
Erkennungsrate, als die Wahl grofierer Fenster.

6.3.3 Erkennungsraten

Wie schon bei den Entscheidungsbdumen und der Verwendung von Rohdaten fiir die HMM
weisen auch hier die periodischen Aktivititen eine hohere Erkennungsrate als die statischen
Aktivitdten auf. Die meisten Fehlklassifikationen treten zwischen Ruhezustand und Aufzug fah-
ren auf, allerdings weit weniger als bei Verwendung von Rohdaten. Dennoch beeinflusst die
schlechtere Erkennungsrate der statischen Aktivitidten die Gesamterkennungsrate negativ.

Die Nutzung einer feineren Aufteilung des Fensters verbessert die Erkennungsraten er-
heblich. Wie in Abbildung 6.5 dargestellt, wirkt sich die Wahl einer feineren Aufteilung
des Fensters meist sogar stiarker aus, als die Wahl einer grofieren Fensters. Eine Steigerung
der Intervallanzahl von 13 auf 15 bringt eine Steigerung von durchschnittlich etwa 4%,
wahrend die Wahl grofierer Fenster bei einer gleich bleibender Intervallanzahl von 13 keine
Verbesserung bringt. Im Gegenteil, mit einer Fenstergrofie von 256 (etwa 5 Sekunden) lassen
sich bessere Erkennungsraten erzielen, als mit einer Fenstergrofie von 512 (10 Sekunden).

Bei einem Fenster der Grofle 512 Samples, unterteilt in 15 Intervalle der Lange 64 Samples
(etwa 1 Sekunde) betrdgt die Gesamterkennungsrate beispielsweise 92.71 %. Bei einem Fenster
der Grofle 256 Samples (etwa 5 Sekunden), unterteilt in 15 Intervalle der Lange 32 Samples
(etwa 0.5 Sekunden) betrdgt die Erkennungsrate 92.85 %. Trotz des kiirzeren Fensters und
wird also die gleiche Erkennungsrate erreicht, indem die Intervalle feiner gewahlt wurden.
Allgemein ldsst sich sagen, dass eine Fenstergrofse von 256 die besten Erkennungsraten
liefert, unabhédngig von der Anzahl der zur Aufteilung verwendeten Intervalle.
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6.3 Einteilung in Intervalle

Anzahl Intervalle
5 |5 [ 71 o [ mn ] 15 ] 15
512 - 76.00 | 85.14 | 85.71 | 88.43 | 87.00 | 92.71
3 256 - 83.42 | 86.98 | 88.33 | 90.14 | 88.49 | 92.85
:go 128 - 83.82 | 82.71 | 87.86 | 87.93 | 88.39 | 90.48
3 64 79.25 | 86.21 | 87.50 - - - -
% 32 60.61 | 72.96 | 80.83 - - - -
F= Alle Zyklen aus 256 73.57 | 75.71 - - - - -
Neuester Zyklus aus 256 | 67.61 | 72.00 | 70.71 - - - -

Tabelle 6.2: Verwendete Aufteilungen der Fenster in Intervalle und resultierende Erken-
nungsraten. Die hochste Erkennungsrate wird bei einem Fenster der Grofse 256
erreicht, welches in 15 Intervalle aufgeteilt wird. Erkennbar ist auch, dass die
Nutzung der Zyklenerkennung keine Verbesserung mit sich bringt, sondern die
Erkennungsrate verschlechtert. Die Zyklen wurden aus einem Fenster der Grofse

256 bestimmt.

Anzahl Intervalle (Intervallldnge)

5(85) | 7(64) [ 9(51) | 11 (42) | 13 (36) | 15 (32)

Aufzug 82.50 | 82.00 | 78.50 | 78.00 80.00 83.50
Rolltreppe 70.50 | 80.50 | 90.50 | 91.00 87.00 91.00
f:§ Ruhezustand | 53.50 | 63.00 | 67.00 | 75.00 | 70.50 | 83.00
§ Rennen 93.00 | 95.00 | 94.50 | 96.50 93.00 99.00
< | Treppe Runter | 90.50 | 97.00 | 93.00 | 94.00 93.50 96.50
Treppe Hoch | 95.55 | 93.50 | 98.00 | 98.00 97.00 98.00
Gehen 98.42 | 97.89 | 96.84 | 98.50 | 98.42 | 98.95

’ Gesamt \ 83.42 \ 86.98 \ 88.33 \ 90.14 \ 88.49 \ 92.85 ‘

Tabelle 6.3: Erkennungsraten fiir HMM nach Anzahl der Intervalle, Fenstergrofie

: 256 Samp-

les / 5 Sekunden. Erkennungsrate steigt durch eine feinere Aufteilung des
Fensters an. Periodische Aktivititen weisen durchweg gute Erkennungsraten
von {iber 90% auf. Statische Aktivitidten etwas schlechtere, insbesondere Aufzug
fahren und Ruhezustand
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6 Hidden Markov Modelle

Anzahl Intervalle Anzahl Intervalle

3(16) | 5(14) 3(16) [ 5(14) [ 7(8)

Aufzug 45.00 80.00 Aufzug 59.00 | 73.00 | 65.50
Rolltreppe 70.00 65.00 Rolltreppe 39.50 | 49.50 | 56.50

f:§ Ruhezustand | 15.00 15.00 § Ruhezustand | 49.50 | 48.50 | 41.50
§ Rennen 95.75 90.00 E, Rennen 81.50 | 79.00 | 86.50
< | Treppe Runter | 100.00 | 100.00 < | Treppe Runter | 73.50 | 79.50 | 75.00
Treppe Hoch | 9o.00 90.75 Treppe Hoch | 79.50 | 81.00 | 81.00
Gehen 100.00 90.00 Gehen 91.50 | 93.50 | 92.50
Gesamt ‘ 73.57 ‘ 75.71 ‘ ’ Gesamt ‘ 67.61 ‘ 72.00 ‘ 70.71 ‘

(a) (b)

Tabelle 6.4: Erkennungsraten der HMM mit Zyklenerkennung. (a) Erkennungsrate bei Be-
stimmung aller Zyklen aus einem Fenster der Grofse 256 und anschliefSender
Unterteilung aller Zyklen. Gute Erkennungraten bei periodischen Aktivitdten,
insbesondere Treppen hinuntersteigen und Gehen. Allerdings extrem schlechte bei
Aufzug fahren und Ruhezustand. (b) Erkennungsrate bei Verwendung des neues-
ten Zyklus und anschlieffender Unterteilung. Erkennungsraten sind gegeniiber
einer festen Unterteilung durchweg unterlegen.

Die Bestimmung der Zyklen aus einem Fenster der Grofie 256 und die anschlieffende
Einteilung der Zyklen in Intervalle brachte leider nicht die erhofften Ergebnisse (Tabelle 6.2).
Priodischen Aktivititen, insbesondere Treppen hinuntersteigen und Gehen weisen zwar gute
Erkennungsraten auf, jedoch haben statische Aktivititen und besonders Ruhezustand extrem
schlechte Erkennungsraten (Tabelle 6.4a). Insgesamt ist es dem Verfahren mit Einteilung des
Fensters in feste Intervalle deutlich unterlegen und eine durchschnittlich 20% schlechtere
Gesamterkennungsrate.

Ahnlich verhilt es sich, wenn nur der neueste Zyklus aus dem Zeitfenster zur Erkennung
herangezogen wird (Tabelle 6.4b). Die Erkennungsrate fiir statische Aktivititen betragt
maximal 57%. Da statische Aktivitdten keine Zyklen erhalten wird das gesamte Fenster als
Zyklus betrachtet, deshalb muss hier mit einem Fenster der Grofse 256 verglichen werden,
welches in feste Anzahl Intervalle aufgeteilt wird. Dort wurden Erkennungsraten von 85%
erreicht, also iiber 30% mehr als mit Zyklenerkennung. Fiir periodische Aktivitaten wird
das Verfahren mit einer Fenstergrofle von 64 verglichen, da Gehen, Treppen hinaufsteigen und
Treppen hinuntersteigen alle eine Zyklenldnge von 50-70 Samples aufweisen. Doch auch hier
erwies sich eine Aufteilung in feste Intervalle als besser (Tabelle 6.2).
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7 Diskussion

In diesem Kapitel wird auf die Starken und Schwéachen der beiden Klassifikationsverfahren
eingegangen und die Auswirkung der Zyklenerkennung diskutiert. Anschlieffend werden
die Klassifikationsergebnisse von Entscheidungsbdumen mit den Ergebnissen der Hidden
Markov Modelle verglichen.

An dieser Stelle sei auf den Anhang dieser Arbeit verweisen, wo sich alle Konfusionsmatrizen
fiir die Hidden Markov Modelle und die Entscheidungsbdaume fidnen lassen - alle erstellt
mit 10-fold cross validation.

7.1 Entscheidungsbaume

Entscheidungsbdaume liefern bei der Verwendung von festen Fenstergrofien dhnlich hohe
Erkennungsrate, wie in [25] [11]. Die Erkennungsraten fiir Treppen hinaufsteigen und Treppen
hinuntersteigen konnen durch die Transformation auf ein korperfestes Koordinatensystem
(Abschnitt 4.4) mafgeblich verbessert werden. Ohne diese Transformation treten haufig
Fehlklassifikationen mit Gehen auf. Zuvor wurden nur Erkennungsraten von 55% bis 62%
erreicht (vgl. [11]), in dieser Arbeit konnten Erkennungsraten von iiber 9g0% erzielt werden.

Die Verwendung der Zyklenerkennung bringt eine Verbessung der Erkennungsrate, insbeson-
dere bei periodischen Aktivititen. Die Erkennungsraten mit Zyklenerkennung unterscheiden
sich fiir statische Aktivititen allerdings kaum von den Erkennungsraten mit einer festen
Fenstergrofle von 256 Samples. Dies war auch nicht anders zu erwarten, da der Beschleuni-
gungsverlauf bei statischen Aktivititen keine Zyklen enthélt und daher das ganze Fenster
als Zyklus aufgefasst wird.

7.2 Hidden Markow Modelle

Die Einteilung der Fenster in Intervalle und anschlieffende Extraktion von Merkmalen
aus diesen liefert deutlich bessere Ergebnisse, als die direkte Verwendung von Rohdaten.
Im Vergleich mit den periodischen Aktivititen sind die Erkennungsraten fiir statische
Aktivitaten Aufzug fahren, Rolltreppe fahren und Ruhezustand zwar durchweg schlechter,
allerdings schneiden sie im Vergleich zu HMM mit Rohdaten dennoch besser ab.

Die durch die Zyklenerkennung erhoffte Verbesserung der Erkennungsrate trat bei HMM
leider nicht ein. Im Gegenteil, die Erkennungsraten waren deutlich schlechter. Dies konnte
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7 Diskussion

daran liegen, dass die Unterteilung bei statischen Aktivititen zu grob ist. Denn diese
enthalten wie bereits gesagt keine Zyklen, es wird also das gesamten Fenster verwendet und
in nur wenige Intervalle unterteilt. Bei den periodischen Aktivitititen konnte die Unterteilung
ebenfalls nicht so fein gewahlt werden, wie bei einer festen Fenstergrofie, da Rennen einen
extrem kurzen Zyklus von 8 bis 10 Samples aufweist und sich daher schlecht unterteilen
lasst.

Da die Einteilung in fest Intervalle die besten Ergebnisse bietet soll nur dieses Verfahren mit
den Entscheidungsbdumen verglichen werden.

7.3 Vergleich der Verfahren

Fiir alle Klassifikationsverfahren gilt, dass Fehlklassifikationen fast ausschliefSlich zwischen
den einzelnen statischen (Aufzug fahren, Rolltreppe fahren, Ruhezustand) und dynamischen
Aktivitaten (Rennen, Treppen hochsteigen, Treppen hinuntersteigen, Gehen) auftreten, d.h. statische
Aktivitdten werden nur selten als periodische klassifiziert und umgekehrt.

Da aufierdem die Erkennungsraten fiir die statischen Aktivitaten durchweg schlechter sind,
als die der dynamischen Aktivitdten, werden hier beide getrennt betrachtet:

Statische Aktivitdten Die Erkennung von Rolltreppe fahren funktioniert fiir Entscheidungs-
baume und HMM mit Intervallen gut und bieten dhnliche Erkennungsraten. Fiir die
beiden tibrigen statischen Aktivitaten Aufzug fahren und Ruhezustand bieten Entschei-
dungsbaume die besseren Erkennungsraten. Aufgrund ihrer Ahnlichkeit schneiden sie
jedoch auch hier schlechter ab. Gut erkennbar sind lediglich die Beschleunigungs- und
Bremsphasen, wihrend das dazwischenliegenden Stehphasen auch als solche erkannt
werden, d.h. Stehen wird als Aufzug fahren klassifiziert und umgekehrt.

Periodische Aktivitdten Die Erkennungsraten fiir Rennen sind durchweg sehr gut, unter-
scheidet sich aber auch am deutlichsten von den restlichen Aktivitaten. Treppen hinun-
tersteigen hat unter den dynamischen Aktivitdten die niedrigsten Erkennungsraten, was
wohl in der Ahnlichkeit zu Gehen begriindet liegt. HMM bieten fiir die dynamische
Aktivitdten eine um etwa 2-3 % hohere Erkennungsrate im Vergleich zu Entscheidungs-
baumen.

Tabelle 7.1 stellt die Gesamterkennungsraten der Entscheidungsbaume den HMM gegentiber.
Fiir die HMM wurde fiir jede Fenstergrofie diejenige Intervalleinteilung ausgewdhlt, die
die besten Ergebnisse liefert. Fiir kiirzere Fenster ist die Erkennungsrate der HMM zwar
besser, allerdings leiden sie durch die schlechtere Klassifikationsergebnisse bei statischen
Aktivitdten. Fiir langere Fenster liegen die HMM mit den Entscheidungsbdumen gleichauf
und fiir eine Fenstergrofie von 256 Samples (etwa 5 Sekunden) tibertreffen die HMM die
Entscheidungsbdaume sogar, da das Problem der schlechteren Klassifikation der statischen
Aktivitdaten nicht mehr besteht (Tabelle 7.2).
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Abbildung 7.1: Vergleich der Erkennungsraten. Jeweils fiir periodische Aktivititen, Stati-
sche Aktivititen und Gesamterkennungsrate. Entscheidungsbdaume liefern
fiir statische Aktivitaten bessere Ergebnisse, HMM fiir periodsche Aktivi-
taten. Es sind nur HMM dagestellt, die mit Hilfe von Merkmalen aus der
Intervalleinteilung trainiert wurden.

Abbildung 7.1 bietet einen direkten Vergleich der Erkennungsraten der getesteten Verfahren.
Da die HMM mit Rohdaten deutlich schlechtere Erkennungsraten im Vergleich zu HMM mit
Intervallen bieten, werden sie in Abbildung 7.1 der Ubersicht halber nicht mehr aufgefiihrt.

Zusammenfassend lésst sich sagen, dass das Hidden Markov Modelle bessere Ergebnisse bei
dynamischen Aktivititen aufweisen, wiahrend Entscheidungsbdaume die besseren Ergebnisse
bei statischen Aktivitdten zeigen, insbesondere bei kiirzeren Fenstern.
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Fenstergrofle
32 \ 64 \ 128 \ 256 \ 512
S § Gesamt | 59.00 | 75.46 | 81.18 | 85.55 | 89.00
= ﬁ Periodisch | 74.94 | 94.18 | 97.19 | 98.50 | 99.50
T o | Statisch | 38.50 | 50.54 | 59.83 | 68.50 | 77.00
S % Gesamt | 80.83 | 87.5 | 90.48 | 92.85 | 92.71
2 & | Periodisch | 90.00 | 96.25 | 97.71 | 98.11 | 98.75
T £ | Statisch | 67.50 | 75.00 | 80.08 | 85.83 | 84.60
Gesamt 82.29 | 88.75 | 91.04 | 91.43 | 93.71
& Periodisch | 88.51 | 93.69 | 96.25 | 95.97 | 98.25
Statisch | 74.00 | 82.50 | 84.08 | 83.16 | 91.00

Tabelle 7.1: Vergleich der Erkennungsraten. Jeweils fiir periodische Aktivitdten, Statische
Aktivitdten und Gesamterkennungsrate. Die besten Erkennungsraten sind her-
vorgehoben. HMM trainiert mit Merkmalen aus Intervallen weisen bei einem
Fenster der Grofse 256 die besten Erkennungsraten auf. Bei den {ibrigen Fenster-
groflen sind die Entscheidungsbdume etwas besser. HMM mit Rohdaten sind
stets unterlegen.

Tabelle 7.2:
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Erkennungsrate
Aktivitat Entscheidungsbaum ‘ HMM
Aufzug fahren 82.00 83.50
Rolltreppe 85.00 91.00
Ruhezustand 89.50 83.00
Rennen 100.00 99.00
Treppe runter 97.00 96.50
Treppe hoch 94.50 98.00
Gehen 92.00 98.95
Gesamt 91.43 ‘ 92.85 ‘

Vergleich der Erkennungsraten von Entscheidungsbaum und HMM bei einer
Fenstergrofie von 256 Samples. Fiir das HMM wird das Fenster in 15 Inter-
valle aufgeteilt. Bei statischen Aktivitdten liegt das HMM gleichauf mit den
Entscheidungsbdumen und konnen sie insgesamt leicht iibertreffen.



8 Zusammenfassung und Ausblick

In dieser Arbeit wurden zwei Verfahren zur Erkennung von Bewegungen anhand von
Beschleunigungsdaten vorstellt. Zum einen die haufiger eingesetzten Entscheidungsbdume,
zum anderen Hidden Markov Modelle. Zur Datenakquisition wurde eine Anwendung auf
dem T-Mobile G1 entwickelt, deren Hilfe Daten gesammelt wurden. Es wurde eine Testsuite
in Matlab unter Zuhilfenahme der HMM-Toolbox [14] entwickelt und beide Verfahren mit
dem Datensatz getestet.

Dabei dienen die Entscheidungsbdume als Referenzimplemetierung, um eine bessere Ver-
gleichbarkeit der Ergebnisse mit anderen Arbeiten zu gewéhrleisten. Die Auswirkungen
der Wahl verschiedener Fenstergrofien, sowie deren Unterteilung wurden betrachtet. Zur
Unterteilung kamen verschiedene Verfahren zum Einsatz, darunter auch ein neuer Ansatz,
bei dem Zyklen im Beschleunigungsverlauf zur Hilfe genommen werden.

Es wurden einige, bisher kaum betrachtete Aktivitdten, wie Aufzug fahren, Rolltreppe fahren,
Treppen hinaufsteigen und Treppen hinuntersteigen untersucht und durchweg gute Erkennungs-
raten erreicht. Hidden Markov Modelle schneiden bei periodischen Aktivitdten besser ab,
sind jedoch bei statischen Aktivititen den Entscheidungsbdumen unterlegen. Insgesamt
werden dhnliche Erkennungsraten erreicht, wie in anderen Arbeiten zuvor.

Ausblick

Die Erkennungsrate der Aktivitat Aufzug fahren konnte mit Hilfe eines zustandsabhéngigen
Modells verbessert werden. Beispielsweise kann das Ruhezustand, bzw. Stehen der zwischen
einer Beschleunigungs- und einer Bremsphase des Aufzugs als Aufzug fahren erkannt werden.
Die Akquisition und Aufbereitung der Trainingsdaten fiir ein solches Modell nimmt jedoch
sehr viel Zeit in Anspruch, da weite Teile der gesammelten Daten schlecht verwendbar
sind. Beispielsweise entspricht die Zeit zwischen Offnen und Schlieflen der Aufzugtiiren
der Aktivitat Ruhezustand, bzw. Stehen und muss daher entfernt oder zumindest separat
betrachtet werden. Falls andere zusammengesetzte Aktivitidten betrachtet werden sollen,
muss jedoch fiir jede ein eigenes Modell verwendet werden. Ein allgemeinere Losung wére
hier wiinschenswert.

Hinsichtlich der Hidden Markov Modelle verbessert eine feinere Aufteilung der Zeitfenster in
Intervalle die Erkennungsrate erheblich. Die Nutzung einer noch feineren Intervalleinteilung,
als in dieser Arbeit konnte die Erkennungsraten weiter verbessern. Im Gegenzug muss
allerdings die Anzahl der verwendeten Merkmale pro Intervall reduziert werden, um den
Rechenaufwand in Grenzen zu halten.
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8 Zusammenfassung und Ausblick

In dieser Arbeit wurde als Sensorposition die vordere Hosentasche gewdhlt. Dies ist zwar eine
recht hdufige Position fiir das Tragen von Mobiltelefonen und die Erkennung ist weitgehend
unabhéngig von der genauen Position in der Hosentasche selbst, allerdings ist es dennoch
eine Einschrankung. Die Erkennung funktioniert namlich nicht, falls das Gerét beispielsweise
in einem Rucksack getragen wird. In Zukunft muss daher eine Losung fiir erarbeitet werden,
die eine weitgehende Unabhéngigkeit von der Position des Sensors ermoglicht.

Mit dem Aufkommen von Gyroskopen in Smartphone konnen die Erkennungsraten sicher
noch weiter verbessert werden. Durch die mit einem Gyroskop erreichbare, weitgehende
Unabhéngigkeit der Sensordaten von der Bewegung der Benutzers, konnen weitere Anwen-
dungsgebiete erschlossen werden, beispielsweise die Navigation innerhalb von Gebduden.
Dafiir miissen jedoch die Daten des Gyroskops mit den Daten des Beschleunigungssensors
fusioniert werden. Hierfiir bietet sich beispielsweise die Verwendung von Kalman Filtern
an.
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A Anhang

A.1 Weitere Konfusionsmatrizen

Dieser Abschnitt enthilt Konfusionsmatrizen der durchgefiihrten Tests. Fiir die Tests wurde
10-fold cross-validation verwendet und fiir jeden Test die Konfusionsmatrix berechnet.
Anschlieffend wurde die Summe fiir jeden Eintrag und daraus die relative Haufigkeit gebildet.
Die Aktivitaten Treppen hochsteigen und Treppen hinuntersteigen werden aus Platzgriinden mit
"Hoch” und "Runter” abgekiirzt.

A.1.1 Entscheidungsbaume

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug | 82.63 9.04 8.33 0 0 0 0
o Rolltr. 6.25 90 3.75 0 0 0 0
g Ruhez. | 52.21 8.33 39.33 0 0 0.13 0
.2 | Rennen o} 0 o} 99.46 0 0.17 0.38
;5 Runter 0 0 0 0.25 85.5 8.42 5.83
Hoch 0.04 0 0.04 0 7.46 | 83.25 | 9.21
Gehen 0 0 0 0.08 4.5 11.33 | 84.08

Tabelle A.1: Konfusionsmatrix fiir Entscheidungsbaum, Fenstergrofie 32

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug | 83.25 3.75 13 0 0 0 0
o Rolltr. 6.5 88.5 5 0 0 0 0
g Ruhez. 21.88 2.38 75.75 0 0 0 0
.2 | Rennen 0 0 0 100 0 0 0
; Runter 0 o] o] 0 96.38 1.5 2.13
Hoch 0 0 0 0 1.75 | 80.13 | 18.13
Gehen 0 0 0 0 0.5 2.25 | 97.25

Tabelle A.2: Konfusionsmatrix fiir Entscheidungsbaum, Fenstergrofie 64
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Tabelle A.5: Konfusionsmatrix fiir Entscheidungsbaum, Neuester Zyklus aus Fenstergrofse
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Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Hoch | Runter | Gehen

Aufzug 82 10 8 0 0 0 0
o Rolltr. 3 85 12 0 0 0 0
g Ruhez. 10 0.5 89.5 0 0 0 0
& | Rennen 0 0 0 100 0 0 0
§ Runter 0 0 0 0 97 1.5 1.5
Hoch 0 0 0 0 0 94.5 5.5
Gehen 0 o 0 0 0 8 92

Tabelle A.3: Konfusionsmatrix fiir Entscheidungsbaum, Fenstergrofie 256

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 89 4 7 0 0 0 0

< | Rolltr. 0 90 10 0 0 0 0

g?o Ruhez. 10 6 84 0 0 0 0

.2 | Rennen 0 0 0 100 0 0 0
—~

2 Runter 0 0 0 0 99 1 0

Hoch 0 0 0 0 1 98 1

Gehen 0 0 0 0 0 4 96

Tabelle A.4: Konfusionsmatrix fiir Entscheidungsbaum, Fenstergrofie 512

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 67 0 33 0 o} 0 0
o Rolltr. 0.5 99 0.5 0 0 0 0
g Ruhez. 14 0.5 85.5 0 0 0 0
.2 | Rennen 0 0 0 100 0 0 0
§ Runter 0 0 0 0 90.5 3.5 6
Hoch 0 0 0 0 2.5 96 1.5
Gehen 0 0 0 0 1.5 0 98.5
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A.1 Weitere Konfusionsmatrizen

A.1.2 HMM

Features aus Intervallen

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 70 6 24 0 0 0 0
o Rolltr. 1 57 41 0 1 0 0
g Ruhez. 5 40 53 0 2 0 0
.2 | Rennen 0 3 1 88 8 0 0
é Runter 0 10 2 0 88 0 0
Hoch 0 4 3 0 3 89 1
Gehen 0 2 3 0 5 3 87

Tabelle A.6: Konfusionsmatrix fiir HMM, Fenstergrofie 512, Features aus 5 Intervallen mit

mit 50 % Uberlappung, Struktur: 3 Zustédnde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 85 11 4 0 0 0 0
o Rolltr. 0 85 15 0 0 0 0
) Ruhez. 3 46 48 0 3 0 0
.2 | Rennen 0 3 0 96 0 1 0
§ Runter 0 6 0 0 94 0 o}
Hoch 0 6 1 0 91 0
Gehen 0 0 0 0 0 3 97

Tabelle A.7: Konfusionsmatrix fiir HMM, Fenstergrofie 512, Features aus 7 Intervallen mit

mit 50 % Uberlappung, Struktur: 3 Zustédnde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 87 4 9 0 0 0 0
o Rolltr. 0 74 26 0 0 0 0
o Ruhez. 1 33 66 0 0 0 0
.2 | Rennen 0 1 0 99 0 0 0
;5 Runter 0 1 1 0 98 0 0
Hoch 0 0 0 0 3 97 0
Gehen 0 0 0 0 0 2 98

Tabelle A.8: Konfusionsmatrix fiir HMM, Fenstergrofie 512, Features aus 11 Intervallen mit

mit 50 % Uberlappung, Struktur: 3 Zustinde, 1. Ordnung




A Anhang

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 90 6 4 0 0 0 0
o Rolltr. 1 72 27 0 0 0 0
o Ruhez. 2 29 69 0 0 0 0
& | Rennen 0 6 3 90 1 0 0
§ Runter 0 1 0 3 96 0 0
Hoch 0 0 1 0 4 95 0
Gehen 0 o 0 0 0 3 97

Tabelle A.9: Konfusionmatrix fiir HMM, Fenstergrofie: 512, Features aus 13 Intervallen mit

mit 50 % Uberlappung, Struktur: 3 Zustinde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 97 1 2 0 0 0 0
o Rolltr. 0 78 22 0 0 0 0
o Ruhez. 0 21 79 0 0 0 0
.2 | Rennen 0 0 0 100 0 0 0
§ Runter 0 0 1 0 99 0 0
Hoch 0 0 0 0 3 97 0
Gehen 0 0 0 0 0 1 99

Tabelle A.10: Konfusionmatrix fiir HMM, Fenstergrofie: 512, Features aus 15 Intervallen mit

mit 50 % Uberlappung, Struktur: 3 Zustédnde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 82.5 10.5 6 0 1 0 0

< | Rolltr. 2.5 70.5 24 0 3 0 0

g%o Ruhez. 9 34.5 53.5 0 3 0 0

.2 | Rennen 0 3.5 1 93 2.5 0 0
~

2 Runter 0 6.5 3 0 90.5 0 0

Hoch 0 0.5 1 0 3 95.5 0

Gehen 0 0 0 0 0.53 1.05 | 98.42

Tabelle A.11: Konfusionmatrix fiir HMM, Fenstergrofie: 256, Features aus 5 Intervallen mit
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mit 50 % Uberlappung, Struktur: 3 Zustinde, 1. Ordnung




A.1 Weitere Konfusionsmatrizen

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 82 9 8.5 0 0.5 0 0
o Rolltr. 1.5 80.5 18 0 0 0 0
3 Ruhez. 9 27.5 63 0 0.5 0 0
.2 | Rennen 0 1 1 95 3 0 0
<§ Runter 0 1 2 0 97 0 0
Hoch 0 2 2 0 2.5 93.5 0
Gehen 0 0.53 0 0 0.53 1.05 | 97.89

Tabelle A.12: Konfusionmatrix fiir HMM, Fenstergrofie: 256, Features aus 7 Intervallen mit
50 % Uberlappung, Struktur: 3 Zustinde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 78.5 8 13 0 0.5 0 0
o Rolltr. 2.5 90.5 7 0 0 0 0
g Ruhez. 8 19 67 0 0 0
.2 | Rennen 0 0 0.5 94.5 5 0 0
; Runter 0 1.5 5.5 0 93 0 0
Hoch 0 0 1 0 1 98 0
Gehen 0 0 0.53 0 2.11 0.53 | 96.84

Tabelle A.13: Konfusionmatrix fiir HMM, Fenstergrofe: 256, Features aus 9 Intervallen mit
50 % Uberlappung, Struktur: 3 Zustinde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 78 2.5 19.5 0 0 0 0
o Rolltr. 0.5 91 8.5 0 0 0 0
g Ruhez. 6 12.5 75 0 6.5 0 0
.2 | Rennen 0 o] 1.5 96.5 2 o] o]
;5 Runter 0 0.5 5.5 0 94 0 0
Hoch 0 0 0 0 2 98 0
Gehen 0 0 0 0 1 0.5 98.5

Tabelle A.14: Konfusionmatrix fiir HMM, Fenstergrofse: 256, Features aus 11 Intervallen mit
50 % Uberlappung, Struktur: 3 Zustinde, 1. Ordnung
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Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 80 6.5 13.5 0 0 0 0
o Rolltr. 1.5 87 11.5 0 0 0 0
o) Ruhez. 4.5 22.5 70.5 0 2.5 0 0
& | Rennen 0 1 2 93 4 0 0
§ Runter 0 5.5 1 0 93.5 0 0
Hoch 0 0 0.5 0 2.5 97 0
Gehen 0 0 0 0 0 1.58 | 98.42

Tabelle A.15: Konfusionmatrix fiir HMM, Fenstergrofse: 256, Features aus 13 Intervallen mit
50 % Uberlappung, Struktur: 3 Zustinde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 83.5 2.5 13.5 0 0.5 0 0
o Rolltr. 1.5 91 7 0 0.5 0 0
o Ruhez. 0.5 9 83 0 7.5 0 0
.2 | Rennen 0 0 1 99 0 0 0
§ Runter 0 2 1.5 0 96.5 0 0
Hoch 0 0.5 0 0 1.5 98 0
Gehen 0 0 0 0 0 1.05 | 98.95

Tabelle A.16: Konfusionmatrix fiir HMM, Fenstergrofie: 256, Features aus 15 Intervallen mit
50 % Uberlappung, Struktur: 3 Zustinde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug | 72.75 5.5 18.75 0 3 0 0
o Rolltr. 1.5 81.25 | 13.75 0 3.5 0 0
g Ruhez. 4 19 68.75 0 8.25 0 0
£ | Rennen 0 0.5 2.5 91 6 0 0
§ Runter 0.5 6 7.25 0 86.25 0 0
Hoch 0 0.75 2.25 0 5.75 91.25 0
Gehen 0.25 0.25 1.25 0 2.5 0.25 95.5

Tabelle A.17: Konfusionmatrix fiir HMM, Fenstergrofie: 128, Features aus 5 Intervallen mit
50 % Uberlappung, Struktur: 3 Zustinde, 1. Ordnung
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A.1 Weitere Konfusionsmatrizen

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 73 2 19 0 6 0 0
o Rolltr. 6 80 11 0 3 0 0
3 Ruhez. 13 14 61 0 12 0 0
.2 | Rennen 1 0 1 93 5 0 0
<§ Runter 3 4 10 0 83 0 0
Hoch 1 0 2 0 92 0
Gehen 0 0 0 1 2 97

Tabelle A.18: Konfusionmatrix fiir HMM, Fenstergrofie: 128, Features aus 7 Intervallen mit
50 % Uberlappung, Struktur: 3 Zustinde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Hoch | Runter | Gehen

Aufzug 75 0 25 0 0 0 0
o Rolltr. 5 70 20 0 5 0 0
g Ruhez. 5 0 95 0 0 0 0
.2 | Rennen 0 0 0 90 10 0 0
; Runter 5 0 10 0 85 0 0
Hoch 0 0 0 0 0 100 0
Gehen 0 0 0 0 0 0 100

Tabelle A.19: Konfusionmatrix fiir HMM, Fenstergrofle: 128, Features aus 9 Intervallen mit
50 % Uberlappung, Struktur: 3 Zustinde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Hoch | Runter | Gehen

Aufzug 71.5 4.5 24 0 0 0 0

< | Rolltr. 7 74 19 0 0 0 0

§o Ruhez. 12.5 6 81.5 0 0 0 0

.2 | Rennen 0 0 2 96 2 0 0
~

2 Runter 0 3 1 0 96 0 o

Hoch 0 0 0 0 0.5 99.5 0

Gehen 0 0.5 0 0 0 2.5 97

Tabelle A.2o0: Konfusionmatrix fiir HMM, Fenstergrofse: 128, Features aus 11 Intervallen mit

50 % Uberlappung, Struktur: 3 Zustinde, 1. Ordnung




A Anhang

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Hoch | Runter | Gehen

Aufzug 71.5 9.25 19 0 0.25 0 0
o Rolltr. 6.25 81.25 12.5 0 0 0 0
o Ruhez. 7 12.75 8o 0 0.25 0 0
& | Rennen 0.75 1.5 0.5 91.25 6 0 0
§ Runter 0 2 0.5 0 97.5 0 0
Hoch 0.25 0 0 0.25 99.5 0
Gehen 0.25 0 0 0 0 2 97.75

Tabelle A.21: Konfusionmatrix fiir HMM, Fenstergrofse: 128, Features aus 13 Intervallen mit
50 % Uberlappung, Struktur: 3 Zustinde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 77.5 5.5 17 0 0 0 0

o Rolltr. 7 86.5 6.5 0 0 0 0
o Ruhez. 12.5 9 78.5 0 0 0 0
.2 | Rennen 0.5 0.5 0 97 2 0 0
§ Runter 0.5 1.5 0 1.5 96.5 0 0
Hoch 0 0 0 0 0 100 0
Gehen 0.53 0 0 0 0 2.11 | 97.37

Tabelle A.22: Konfusionmatrix fiir HMM, Fenstergrofie: 128, Features aus 15 Intervallen mit
50 % Uberlappung, Struktur: 3 Zustinde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug | 70.63 6.25 17.5 0 5.25 0.38 0
,8 Rolltr. 5.38 69.13 21.13 0.13 4.25 0 0
g Ruhez. 9.63 17.38 | 64.13 0.13 8.5 0.25 0
£ | Rennen 1.13 1.5 4.75 89.38 3.25 o] o]
§ Runter 2.88 6.88 12.13 0.13 77.75 0.25 0
Hoch 1.75 1.25 4.25 0 3.5 89.25 0
Gehen 0.5 0.5 2.25 0 1.63 0.63 94.5

Tabelle A.23: Konfusionmatrix fiir HMM, Fenstergrofie: 64, Features aus 3 Intervallen mit 50
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% Uberlappung, Struktur: 3 Zustdnde, 1. Ordnung




A.1 Weitere Konfusionsmatrizen

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 72.5 7.25 19.5 0 0.75 0 0
o Rolltr. 3.5 74.75 | 20.25 0 1.5 0 0
) Ruhez. 8.88 1738 | 73.38 0 0.38 0 0
.2 | Rennen 0.13 0.63 2.25 96.13 0.88 0 0
<§ Runter 1 3.13 3.13 0 92.75 0 0
Hoch 0.75 0.25 0.5 0 1.25 97.25 0
Gehen 0.25 0.13 0.63 0 0.63 1.63 96.75

Tabelle A.24: Konfusionmatrix fiir HMM, Fenstergrofie: 64, Features aus 5 Intervallen mit 50

% Uberlappung, Struktur: 3 Zustinde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug | 74.84 5.11 20.05 0 0 0 0
o Rolltr. 2.41 77.59 20 0 0 0 0
o Ruhez. | 2243 0 77.57 0 0 0 0
.2 | Rennen 0 0 2.5 95 2.5 0 0
; Runter 2.5 0 5 0 92.5 0 0
Hoch 0 0 0 0 2.5 97.5 0
Gehen 0 0 0 0 0 2.5 97.5

Tabelle A.25: Konfusionmatrix fiir HMM, Fenstergrofe: 64, Features aus 7 Intervallen mit 50

% Uberlappung, Struktur: 3 Zustinde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug | 40.25 20.5 29 1 7.25 1.75 0.25
,g Rolltr. 19 45 22.25 4.5 8.75 0.5 0
o Ruhez. 22.75 22.25 | 49.25 1.25 4.25 0.25 0
.2 | Rennen 2.25 7.5 2.75 78.75 7.75 1 o]
;5 Runter 10 8.75 8.5 2 54.5 13.25 3
Hoch 2.75 2.25 2.25 1.25 7.5 80.5 3.5
Gehen 2.5 1 0.75 0 3.75 16 76

Tabelle A.26: Konfusionmatrix fiir HMM, Fenstergrofie: 32, Features aus 3 Intervallen mit 50

% Uberlappung, Struktur: 3 Zustdnde, 1. Ordnung




A Anhang

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug | 49.75 21.5 22.25 0.5 4.5 1.5 0
o Rolltr. 18.75 69.5 9 0.5 2.25 0 0
28 Ruhez. 28.5 18.75 | 50.75 0.75 0.75 0.5 0
& | Rennen 1 1.75 1.25 89 6.5 0.25 0.25
§ Runter 4.5 7.5 0.75 2.5 76 5 3.75
Hoch 1.25 0.25 0 0 3 92.75 | 2.75
Gehen 0.5 0.25 0 0 3.25 13 83

Tabelle A.27: Konfusionmatrix fiir HMM, Fenstergrofie: 32, Features aus 5 Intervallen mit 50

% Uberlappung, Struktur: 3 Zustinde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Hoch | Runter | Gehen

Aufzug 65 2.5 30 0 2.5 0 0
o Rolltr. 10 82.5 7.5 0 0 0 0
o Ruhez. 45 0 55 0 0 0 0
.2 | Rennen 0 5 0 95 0 0 0
§ Runter 0 7.5 0 2.5 77.5 5 7.5
Hoch 0 0 0 0 7.5 92.5 0
Gehen 0 0 0 0 0 5 95

Tabelle A.28: Konfusionmatrix fiir HMM, Fenstergrofe: 32, Features aus 7 Intervallen mit 50

% Uberlappung, Struktur: 3 Zustinde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 59 14 16.5 0.5 5.5 4.5 0

< | Rolltr. 11.5 39.5 30.5 1.5 9 7.5 0.5

gg)o Ruhez. 15.5 27 49.5 0 6 2 0

£ | Rennen 2.5 5.5 2.5 81.5 7 1 o]
-

2 Runter 7 6.5 9 1.5 73.5 2.5 0

Hoch 3 6.5 4 0.5 6.5 79.5 0

Gehen 0.5 2.5 1.5 0 2 2 91.5

Tabelle A.29: Konfusionmatrix fiir HMM, Neuster Zyklus, Features aus 3 Intervallen mit 50
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% Uberlappung, Struktur: 3 Zustdnde, 1. Ordnung




A.1 Weitere Konfusionsmatrizen

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 73 8.5 13.5 0 4 1 0
— | Rolltr. 4.5 49.5 39.5 0 5 1.5 0
g)o Ruhez. 12 34.5 485 0 5 0 0
.2 | Rennen 2.5 2 79 14.5 1 0
<§ Runter 3 10.5 4.5 0.5 79.5 2 0
Hoch 2.5 4.5 2.5 0 9.5 81 0
Gehen 0.5 0.5 0 0 3 2.5 93.5

Tabelle A.30: Konfusionmatrix fiir HMM, Neuster Zyklus, Features aus 5 Intervallen mit 50

% Uberlappung, Struktur: 3 Zustinde, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 65.5 14.5 19 0 1 0 0
o Rolltr. 18 56.5 22.5 0 2.5 0.5 0
o Ruhez. 17 39 41.5 0 2.5 0 0
.2 | Rennen 0 4 0 86 10 0 0
; Runter 2.5 10.5 4.5 7.5 72 3 0
Hoch 4.5 5.5 2 0 7 81 0
Gehen 0.5 0.5 0.5 0 4.5 1.5 92.5

Tabelle A.31: Konfusionmatrix fiir HMM, Neuster Zyklus, Features aus 7 Intervallen mit 50

% Uberlappung, Struktur: 3 Zustinde, 1. Ordnung

Rohdaten
Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug | 35.75 21.13 16.63 5.13 10.81 8.5 2.06

o Rolltr. 14 52.63 18.69 5.69 7.12 1.13 0.75

g Ruhez. | 24.25 26.75 | 27.13 4.69 9.38 6.5 1.31

£ | Rennen 0.81 2.44 0.31 89.75 5.31 1.06 0.31

é Runter 7.5 7.38 2.94 4-44 63.75 | 10.94 | 3.06
Hoch 4.94 0.69 2.38 0.94 17 70.19 | 3.88

Gehen 1.63 0.5 0.75 3.13 5.38 12.56 | 76.06

Tabelle A.32: Konfusionmatrix fiir HMM, Fenstergrofe: 32, Rohdaten, Struktur: 6 Zustdnde,

Mischung aus 3 Gaufiverteilungen, 1. Ordnung




A Anhang

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug | 52.38 16.75 19.5 2.75 5.88 2.5 0.25
o Rolltr. 5.38 60.38 | 25.37 1.63 7 0.13 0.13
28 Ruhez. 19.13 28.88 | 38.75 3 6.63 3.38 0.25
& | Rennen 0.13 0.63 0.25 98.13 0.88 0 0
§ Runter 2.25 5.63 3.88 1 85.5 1.63 0.13
Hoch 0.38 0 0 0 2.5 96.5 0.63
Gehen 0 0 0 0 0.76 2.66 | 96.58

Tabelle A.33: Konfusionmatrix fiir HMM, Fenstergrofie: 64 (Korperkoordinaten), Rohdaten,

Struktur: 6 Zustande, Mischung aus 3 Gaufiverteilungen, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 58 18 12.75 1.5 6.5 3 0.25
o Rolltr. 2.75 79.5 11 0.75 5.75 0.25 0
g Ruhez. 13.5 33 42 1.25 6.5 3 0.75
.2 | Rennen 0 0 0 99.5 0.5 0 0
§ Runter 0 5 0.75 0.25 91 2.75 0.25
Hoch 0 0 0 0 0.5 99.5 0
Gehen 0 0 0 0 0 1.25 | 98.75

Tabelle A.34: Konfusionmatrix fiir HMM, Fenstergrofse: 128 (Korperkoordinaten), Rohdaten,

Struktur: 6 Zustande, Mischung aus 3 Gaufsverteilungen, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 66.5 12 6 2.5 7 5.5 0.5

< | Rolltr. 1.5 90.5 6 0 1 0.5 0.5

g%o Ruhez. 12 28.5 48.5 1 5 5 0

.2 | Rennen 0 0 0 100 0 0 0
~

2 Runter 0 3 1 0 94 2 0

Hoch 0 0 0 0 0 100 0

Gehen 0 0 0 0 0 0.5 99.5

Tabelle A.35: Konfusionmatrix fiir HMM, FenstergrofSe: 256 (Korperkoordinaten), Rohdaten,
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Struktur: 6 Zustiande, Mischung aus 3 Gaufiverteilungen, 1. Ordnung




A.1 Weitere Konfusionsmatrizen

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 78 2 10 0 5 5 0
o Rolltr. 0 93 6 0 1 0 0
) Ruhez. 1 25 60 1 7 5 1
.2 | Rennen 0 0 0 100 0 0 0
<§ Runter 0 2 0 0 98 0 0
Hoch 0 0 0 0 o 100 o
Gehen o 0 o 0 0 100

Tabelle A.36: Konfusionmatrix fiir HMM, Fenstergrofie: 512 (Korperkoordinaten), Rohdaten,
Struktur: 6 Zustande, Mischung aus 3 Gaufiverteilungen, 1. Ordnung

Vorhergesagt

Aufzug | Rolltr. | Ruhez. | Rennen | Runter | Hoch | Gehen

Aufzug 70 10 8 2 5 5 0
o Rolltr. 2.5 90.5 6 0 1 0 0
g Ruhez. 11 27.5 58.5 0 3 0 0
.2 | Rennen 0 0 0 97.5 2.5 0 0
; Runter 4.5 1 1.5 7 79.5 6.5 0
Hoch 5 0.5 0.5 0 4 90 0
Gehen 0.5 0 0 0 0.5 6.5 92.5

Tabelle A.37: Konfusionmatrix fiir HMM, Fenstergrofle: Neuester Zyklus aus 256 (Korperko-
ordinaten), Rohdaten, Struktur: 6 Zustande, Mischung aus 3 Gaufiverteilungen,
1. Ordnung

63






Literaturverzeichnis

[1]
[2]

(3]

(4]

(5]

6]

[7]

[8]

[11]

[12]

Practical Guide to Accelerometers. http://www.sensr.com/.

Ling Bao and Stephen S. Intille. Activity Recognition from User-Annotated Acceleration
Data. Pervasive Computing, pages 1—-17, 2004. (Zitiert auf Seite 9)

L. Breiman, J. H. Friedman, R. Olshen, and C. J. Stone. Classification and Regression Trees.
Chapman and Hall/CRC, 1984. (Zitiert auf Seite 33)

Norbert Gyorbir6, Akos Fabian, and Gergely Homanyi. An Activity Recognition Aystem
for Mobile Phones. Mobile Networks and Applications, 14:82—91, 2009. (Zitiert auf den
Seiten 10 und 35)

C.W. Han, SJ. Kang, and N.S. Kim. Implementation of HMM-Based Human Activity
Recognition Using Single Triaxial Accelerometer. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, 93(7):1379-1383, 2010. (Zitiert auf den
Seiten 12 und 40)

Zhenyu He and Lianwen Jin. Activity recognition from acceleration data based on
discrete consine transform and svm. In IEEE International Conference on Systems, Man
and Cybernetics, pages 5041-5044, 2009. (Zitiert auf den Seiten 9 und 10)

HTC Corporation. T-Mobile G1 Technical Specification. http://www.htc.com/us/
"-products/t-mobile-gl. (Zitiert auf Seite 13)

D.M. Karantonis, M.R. Narayanan, M. Mathie, N.H. Lovell, and B.G. Celler. Imple-
mentation of a Real-Time Human Movement Classifier Using a Triaxial Accelerometer
for Ambulatory Monitoring. IEEE Transactions on Information Technology in Biomedicine,
10(1):156-167, 2006. (Zitiert auf Seite 9)

Asahi Kasei. AK8976A, Product Anouncement, 2006. http://www.asahi-kasei.co.
jp/asahi/"-en/news/2005/e060322.html. (Zitiert auf den Seiten 13 und 14)

AM. Khan, Young-Koo Lee, S.Y. Lee, and Tae-Seong Kim. A Triaxial Accelerometer-
Based Physical-Activity Recognition via Augmented-Signal Features and a Hierarchical
Recognizer. IEEE Transactions on Information Technology in Biomedicine, 14(5):1166-1172,
2010.

Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. Activity Recognition Using
Cell Phone Accelerometers. SIGKDD Explorations Newsletter, 12:74-82, 2011. (Zitiert auf
den Seiten 11 und 45)

Thorsten Last, Chris Nugent, and Frank Owens. Multi-component Based Cross Cor-
relation Beat Detection in Electrocardiogram Analysis. BioMedical Engineering OnLine,
3(1):26, 2004. (Zitiert auf Seite 29)

65


http://www.sensr.com/
http://www.htc.com/us/"-products/t-mobile-g1
http://www.htc.com/us/"-products/t-mobile-g1
http://www.asahi-kasei.co.jp/asahi/"-en/news/2005/e060322.html
http://www.asahi-kasei.co.jp/asahi/"-en/news/2005/e060322.html

Literaturverzeichnis

[13] David Mizell. Using gravity to estimate accelerometer orientation. In Proceedings of the
IEEE International Symposium on Wearable Computers, pages 252—253, 2003. (Zitiert auf
den Seiten 27 und 28)

[14] Kevin Murphy. Hidden Markov Model (HMM) Toolbox for Matlab, 1998. http://www.
cs.ubc.ca/~murphyk/"-Software/HMM/hmm.html. (Zitiert auf den Seiten 16 und 49)

[15] B. Najafi, K. Aminian, A. Paraschiv-lonescu, F. Loew, C.J. Bula, and P. Robert. Am-
bulatory System for Human Motion Analysis Using a Kinematic Sensor: Monitoring
of Daily Physical Activity in the Elderly. IEEE Transactions on Biomedical Engineering,
50(6):711-723, 2003. (Zitiert auf Seite 9)

[16] Daniel Olguin Olguin and Alex Pentland. Human activity recognition: Accuracy across
common locations for wearable sensors. In Proceedings of the IEEE International Symposium
on Wearable Computers, ISWC 2006, pages 11-13, 2006. (Zitiert auf Seite 10)

[17] Open Handheld Alliance. Android Developer Guide, 2008. http://developer.android.
com. (Zitiert auf den Seiten 14 und 15)

[18] Open Handheld Alliance. Android Open Source Project, 2008. http://source.android.
com(AndroidQuellcode). (Zitiert auf Seite 16)

[19] Geoffroy Peeters. Time variable tempo detection and beat marking. (Zitiert auf Seite 29)

[20] S.J. Preece, J.Y. Goulermas, L.PJ. Kenney, and D. Howard. A Comparison of Feature
Extraction Methods for the Classification of Dynamic Activities From Accelerometer
Data. IEEE Transactions on Biomedical Engineering, 56(3):871-879, 2009.

[21] Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition. Proceedings of the IEEE, 77(2):257-286, 1989. (Zitiert auf den
Seiten 37 und 38)

[22] S. Reddy, J. Burke, D. Estrin, M. Hansen, and M. Srivastava. Determining transportation
mode on mobile phones. In Proceedings of the IEEE International Symposium on Wearable
Computers, pages 25-28, 2008. (Zitiert auf den Seiten 10 und 40)

[23] Dave Redell. Thinking about accelerometers, 1998. http://www.lunar.org/docs/
LUNARclips-v5/vbnl/Accelerometers.html.

[24] Ronit Slyper and Jessica K. Hodgins. Action Capture with Accelerometers. In Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ‘08, pages
193-199, 2008. (Zitiert auf Seite 9)

[25] Jun Yang. Toward physical activity diary: motion recognition using simple acceleration
features with mobile phones. In Proceedings of the 1st international workshop on Interactive
multimedia for consumer electronics, pages 1—10, 2009. (Zitiert auf den Seiten 11, 35 und 45)

Alle URLs wurden zuletzt am 24. Mai 2011 gepriift.

66


http://www.cs.ubc.ca/~murphyk/"-Software/HMM/hmm.html
http://www.cs.ubc.ca/~murphyk/"-Software/HMM/hmm.html
http://developer.android.com
http://developer.android.com
http://source.android.com (Android Quellcode)
http://source.android.com (Android Quellcode)
http://www.lunar.org/docs/LUNARclips-v5/v5n1/Accelerometers.html
http://www.lunar.org/docs/LUNARclips-v5/v5n1/Accelerometers.html

Erkldrung

Hiermit versichere ich, diese Arbeit selbstindig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Attila Gyorkos)



	1 Einleitung
	2 Technische Grundlagen
	2.1 Hardware
	2.1.1 Beschleunigungssensor
	2.1.2 Magnetfeldsensor

	2.2 Android
	2.2.1 Sensoren Schnittstelle
	2.2.2 Sensorkoordinatensystem
	2.2.3 Samplingrate

	2.3 Matlab
	2.3.1 Entscheidungsbäume
	2.3.2 HMM Toolbox


	3 Datenakquisition
	3.1 Software
	3.2 Geräteposition
	3.3 Aktivitäten

	4 Datenaufbereitung
	4.1 Generierung zusammenhängender Datensätze
	4.2 Glättung
	4.3 Einteilung in Fenster
	4.4 Koordinatentransformation
	4.4.1 Exakte Transformation
	4.4.2 Näherungsweise Transformation

	4.5 Zyklen Erkennung
	4.5.1 Vorverarbeitung
	4.5.2 Abschätzen der Periodenlänge
	4.5.3 Einteilung nach Zyklen

	4.6 Merkmale

	5 Entscheidungsbäume
	5.1 Grundlagen
	5.1.1 CART Algorithmus
	5.1.2 Teilungskriterium

	5.2 Merkmalsextraktion
	5.3 10-fold Cross Validation
	5.4 Ergebnisse

	6 Hidden Markov Modelle
	6.1 Grundlagen
	6.2 Rohdaten
	6.2.1 Struktur
	6.2.2 Erkennungsraten

	6.3 Einteilung in Intervalle
	6.3.1 Merkmalsextraktion
	6.3.2 Struktur
	6.3.3 Erkennungsraten


	7 Diskussion
	7.1 Entscheidungsbäume
	7.2 Hidden Markow Modelle
	7.3 Vergleich der Verfahren

	8 Zusammenfassung und Ausblick
	A Anhang
	A.1 Weitere Konfusionsmatrizen
	A.1.1 Entscheidungsbäume
	A.1.2 HMM



