
Institut für Visualisierung und Interaktive Systeme
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Studienarbeit Nr. 2326

Entwicklung eines
objektorientierten Frameworks für

Simultane Lokalisierung und
Kartierung

Zhen Peng

Studiengang: Informatik

Prüfer: Prof. Dr. Thomas Ertl

Betreuer: Dipl.-Inf. Bernhard Schmitz,
Dipl.-Inf. Bernhard Kleiner

begonnen am: 09. März 2011

beendet am: 16. Dezember 2011

CR-Klassifikation: C.3, D.2.2, J.7

Inhaltsverzeichnis

1. Einleitung 7
1.1. Aufgabenstellung . 8

1.2. Überblick über die Arbeit . 9

2. SLAM 11
2.1. Klassifikation . 11

2.1.1. EKF-basiertes SLAM . 11

2.1.2. Wahrscheinlichkeits-basiertes SLAM . 12

2.1.3. Partikelfilter-basiertes SLAM . 12

2.1.4. SEIF-basiertes SLAM . 12

2.1.5. Klassifikation anhand Kartentypen . 12

2.2. Unsicherheit . 13

2.2.1. Repräsentation . 13

2.3. Beispiel . 14

2.4. Charakteristik des SLAM-Algorithmus . 15

2.4.1. Konvergenz . 15

2.4.2. Konsistenz . 15

2.4.3. Rechenaufwand . 16

3. Sensorfusion 17
3.1. Sensoren . 17

3.1.1. Interne Sensoren . 17

3.1.2. Externe Sensoren . 18

GPS . 18

Laserentfernungsmesser . 18

Millimeterwellen-Radar . 19

Sonar-Sensor . 19

Stereo-Vision-System . 20

3.2. Architektur . 20

3.2.1. Parallele Fusion . 21

3.2.2. Sequentielle Fusion . 21

3.2.3. Mischformen . 22

3.3. Filter . 22

3.3.1. Linearer Kalman-Filter . 23

3.3.2. Erweiterter Kalman-Filter . 25

3

4. Karten 27
4.1. Kartenrepräsentation . 27

4.1.1. Rasterkarten . 27

4.1.2. Feature-Karten . 27

4.1.3. Topologische Karten . 29

4.1.4. Vergleich . 29

4.2. Unsicherheit in Karte . 30

4.3. Szenengraph . 30

5. Implementierung 31
5.1. Architektur . 31

5.2. CMake-configure . 32

5.3. Filter . 32

5.3.1. BFL . 33

5.3.2. Filter-Generator . 33

5.3.3. Modell . 33

Model-Generator . 34

5.4. Karte . 34

5.4.1. OSG . 34

5.4.2. Klasse ”map” . 34

5.4.3. Erweiterung . 35

5.5. Demo-Programme . 37

5.5.1. Generator-Test . 37

5.5.2. Map-Test . 37

5.5.3. Thread-Test . 37

5.5.4. OpenCV-Test . 38

6. Diskussion 41
6.1. Zusammenfassung . 41

6.2. Ausblick . 42

A. Installation 43
A.1. CMake . 43

A.2. BFL . 43

A.3. OSG . 44

A.4. OpenCV . 44

A.5. Systempfad . 44

A.6. CMake-Konfiguration . 44

A.7. IDE . 45

Literaturverzeichnis 47

4

Abbildungsverzeichnis

1.1. Zwei Navigationssysteme. 8

2.1. Ein einfaches zweidimensionales Beispiel für das SLAM-Problem und die
räumliche Unsicherheit. Quelle: [SSC86] . 16

3.1. Parallele Fusion . 21

3.2. Sequentielle Fusion . 22

3.3. Kombination aus paralleler und sequentieller Sensorfusion 23

3.4. Der laufende Zyklus eines diskreten Kalman-Filters. Quelle:[WB06] 25

4.1. Eine exemplarische 2D-Rasterkarte. Quelle: [Thr01] 28

4.2. Eine exemplarische Feature-Karte. Quelle: [HS08] 28

4.3. Eine exemplarische topologische Karte. Quelle: [KB91] 29

5.1. Blockschaltbild eines SLAM-Systems . 32

5.2. Das UML-Diagramm für Klassen bezüglich der Karte 36

5.3. Das visualisierte Ergebnis des Map-Tests . 37

5.4. Das visualisierte Ergebnis des Thread-Tests . 38

5.5. Das visualisierte Ergebnis des OpenCV-Tests . 39

5

1. Einleitung

Das Projekt Assistenz für sensorisch Behinderte an der Universität Stuttgart (ASBUS) entwickelt
ein Assistenzsystem, um Studierende mit Sehbehinderungen bei der Navigation im
Universitätsgelände zu unterstützen. Das Navigationssystem ist mit GPS, RFID-Reader
und einer Inertialen Messeinheit (IMU) ausgestattet (Abbildung 1.1). Die Inertiale Messeinheit
(IMU) ist einer der am häufigsten verwendeten Sensortypen. Ein typisches IMU-System
besteht aus drei Beschleunigungs- sowie drei Drehratensensoren, und misst damit die
Beschleunigung sowie die Rotation eines Körpers relativ zu einem Bezugssystem. In diesem
Navigationssystem wird ein Näherungsverfahren verwendet, um die Geschwindigkeit
der Benutzer durch die Messwerte der Beschleunigungssensoren und durch die zwei
Walking-Parameter zu berechnen [Kom06] . Wegen den unterschiedlichen Laufgewohnheiten
und Körperlängen sind diese Parameter für jede Person sehr verschieden. Um genaue
Walking-Parameter zu erhalten, müssen zahlreiche, wiederholte experimentelle Untersu-
chungen im Voraus durchgeführt werden. Falls der Benutzer gewechselt wird, müssen die
Walking-Parameter erneut festgestellt und dann die alten Werte im Navigationssystem durch
die neuen ersetzt werden, um eine fehlerhafte Schätzung der Geschwindigkeit zu vermeiden.
Wenn dieser Algorithmus zur Erfassung der Bewegungsinformation des Benutzers durch
Sensorfusionsverfahren ersetzt wird, erhöhen sich sowohl die Benutzerfreundlichkeit
als auch die Genauigkeit des Navigationssystems erheblich. Für die Sensorfusion im
Bereich der Fußgänger-Navigationssysteme wurde eine Menge an Forschungsarbeiten
veröffentlicht, beispielsweise unter Anwendung von IMU-Sensoren [RAK09] , Fusion von IMU
und RFID-Signal [RGHR10] , von GPS [AHWOW04] und von Partikel-Filtern [CN03, WKAR06] . Daher
ist ein Umstieg auf Sensorfusionsverfahren notwendig.

In derselben Zeit forscht das Fraunhofer Institut IPA auf dem Gebiet der Navigation mit
low-cost Sensoren und erreichte in der Vergangenheit schon große Fortschritte im Bereich
der Sensorik und Sensorfusion. Rosenberg stellte eine Methode für die Zustandsschätzung
eines mit IMU ausgestatteten Fahrzeuges (die Abbildung 1.1) mittels Bayes-Filtern vor [Ros06] ,
welche eine kurzzeitige Genauigkeit im Zentimeterbereich zulassen. Basierend auf dieser Ar-
beit wurden weitere Navigationssysteme entwickelt [Kle08] , welche mittels einer Kombination
von IMU und optischen Sensoren, wie z.B. Kameras, das Umfeld dreidimensional erfassen
und somit eine Beobachtung der eigenen Bewegung zulassen. Mittels Sensordatenfusion
werden die Raumwinkel und die Position eines Systems ohne Bezug auf äußere Referenzen
ermittelt. Die Technologie der inertialen und optischen Bewegungserfassung wird in einem
Simultaneous Localization and Mapping (SLAM) -Algorithmus kombiniert. Dieser erlaubt es,
Umgebungs- und Bewegungserfassung gleichzeitig auszuführen.

7

1. Einleitung

(a) Das Navigationssystem im ASBUS-Projekt.

(b) Das mit IMU ausgestattete Fahrzeug in [Ros06] .

Abbildung 1.1.: Zwei Navigationssysteme.

1.1. Aufgabenstellung

Die Zielsetzung der vorliegenden Arbeit bestand darin, ein universelles C++ Software-
Framework als Basis für die Entwicklung von SLAM-Applikationen zu entwickeln. Das Fra-
mework beschränkt sich nicht auf spezifische Probleme, sondern versucht, ein SLAM-System
zu modularisieren und stellt einige gängige Sensorfusions-Verfahren zur Verfügung, um die
spätere Entwicklung einer SLAM-Applikation zu erleichtern. Ein weiterer Schwerpunkt ist
die Einbeziehung und Erstellung von Karten in das Software-Framework. Außerdem soll die
Erweiterbarkeit besonders berücksichtigt werden.

8

1.2. Überblick über die Arbeit

1.2. Überblick über die Arbeit

Kapitel 2 beschreibt das SLAM-Problem und stellt die Charakteristik sowie die Klassifikation
der SLAM-Verfahren vor.

Kapitel 3 widmet sich der Sensorfusion von verschiedenen Sensoren.

Kapitel 4 erläutert die Grundlagen von Karten in SLAM-Applikationen.

Kapitel 5 beschreibt, wie das SLAM-Framework implementiert wurde.

Kapitel 6 schließt die Arbeit mit der Diskussion zur Anwendung des Frameworks ab und
bietet einen Ausblick auf weiterführende Entwicklungen und Möglichkeiten.

9

2. SLAM

Lokalisierung und Kartenerstellung für Anwendungen von mobilen Navigationssystemen
sind aktuelle Forschungsthemen. Für die Erstellung einer Umgebungsmodellierung
mithilfe von präziser Positionierung oder die Lokalisierung mittels einer vorhanden
Umgebungskarte existiert bereits eine Reihe von praktischen Lösungen. Allerdings kann ein
Navigationssystem in vielen Umgebungen nicht mit dem Global-Positioning-System (GPS)
lokalisiert werden, die Erstellung einer Karte des Arbeitsumfelds im Voraus ist ebenfalls oft
sehr schwierig oder gar unmöglich. In diesem Fall muss ein Navigationssystem in einer
völlig unbekannten Umgebung eine Karte erstellen und gleichzeitig mit der generierten
Karte sich selbst positionieren und navigieren. Dies wird SLAM-Problem (Simultaneous
Localization and Mapping) genannt.

Eine wegweisender Beitrag auf dem Forschungsgebiet der SLAM-Probleme ist die Arbeit
von Randall Smith und Peter Cheeseman über die Abschätzung der räumlichen Unsicher-
heit in der Robotik [SC86, SSC86] . SLAM-Systeme wurden dann in verschiedenen Umgebun-
gen angewandt, wie zum Beispiel Indoor- [LDW91, CMNT98] , Unterwasser- [LF99, WND+

00] und
Outdoor-Umgebungen [GNW00, JG00] .

2.1. Klassifikation

Nach den unterschiedlichen theoretischen Grundlagen können SLAM-Algorithmen wie folgt
charakterisiert werden.

2.1.1. EKF-basiertes SLAM

Der Extended Kalman Filter (EKF) ist eines der am häufigsten verwendeten SLAM-Verfahren
zur Lösung von Schätzproblemen in nichtlinearen Systemen. Die Position des Navigati-
onssystems wird in 2D-Koordinaten gespeichert. Das System wird in zwei nichtlineare
Modelle unterteilt: das System-Modell und das Mess-Modell. Bewegungsinformationen
werden durch die beiden Modelle mithilfe eines erweiterten Kalman-Filter rekursiv ermit-
telt. Für gewöhnlich gibt es zwei getrennte Schritte: die Schätzung und die Aktualisierung
[LF99, GNW00] .

11

2. SLAM

2.1.2. Wahrscheinlichkeits-basiertes SLAM

Das Problem der Unsicherheit bei der Lokalisierung mit einer Wahrscheinlichkeitsfunktion
zu lösen, erscheint sowohl intuitiv als auch vernünftig. Das populärste dieser Verfahren wird
als Maximum-Likelihood-Estimation (MLE) bezeichnet. Ein sehr effizienter Algorithmus für
MLE ist der sogenannte Baum-Welch (auch α− β)-Algorithmus [TBF98] . Dieser Algorithmus
umfasst zwei Schritte: E-Step (Erwartung) und M-Step (Maximierung).

2.1.3. Partikelfilter-basiertes SLAM

Ein SLAM-Verfahren mit Partikel-Filter wird auch als Monte-Carlo-Lokalisierung bezeichnet
[DFBT99] [YM02] . Die Grundidee ist, die unbekannte Wahrscheinlichkeitsdichte über den Zu-
standsraum zu schätzen, indem eine Menge an Partikeln zufällig eingesetzt werden. Jedem
einzelnen Partikel wird nun mittels des stochastischen Modells der Systemdynamik eine
oder mehrere Lösungskurven zugeordnet. Wenn die aus dieser Lösungskurve abgeleiteten
Vorhersagen mit den tatsächlichen Messwerten übereinstimmen, erhöht sich das Gewicht
der Partikel. Am Ende ergibt sich eine verbesserte Schätzung der Wahrscheinlichkeitsdichte
im Zustandsraum.

2.1.4. SEIF-basiertes SLAM

Der Informationsfilter ist eine andere mathematische Beschreibung des Kalman-Filters,
welcher bei den gleichen Eingangsdaten und gleichen Modellen das gleiche Ergebnis liefert.
Der Sparse Extended Information Filter (SEIF) wurde von Sebastian Thrun und anderen
vorgeschlagen [TKG+

02], als Verbesserung des EKF-Algorithmus. Statt der Kovarianzmatrix
wird eine räumliche Informationsmatrix verwendet, um die innere Beziehung zwischen
räumliche Informationen zu repräsentieren. Die Karte wird durch lokale, Web-ähnliche
Netzwerke von Merkmalen dargestellt. Bei der Aktualisierung der Informationsmatrix
werden nur benachbarte Merkmale betrachtet, dadurch kann die sie in einer konstanten Zeit
ausgeführt werden, unabhängig von der Anzahl der Merkmale in der Karte.

2.1.5. Klassifikation anhand Kartentypen

Außerdem können SLAM-Verfahren nach unterschiedlichen Kartenrepräsentationen unter-
teilt werden: Grid-basiertes SLAM [Elf87], Feature-basiertes SLAM [GNW00, JG00, TKG+

02, HS08]und
Topologie-basiertes SLAM [CN01]. Die Einstufung der Karten wird in Kapitel 4 im Detail
vorgestellt.

12

2.2. Unsicherheit

2.2. Unsicherheit

Wegen der Leistungseinschränkung der Sensoren und den Störungen in der Betriebsumge-
bung ist eine exakte Selbstlokalisierung anhand der ungenauen wahrgenommen Information
schwer zu erreichen. In der Vergangenheit konnten sehr genaue Ergebnisse durch spezifische
Methoden wie Feinmechanik[Kra04], sehr präzise Sensoren oder den Einsatz von Betriebs-
und Kalibrier-Punkten erhalten werden. Dadurch wird die Berechnung der Unsicherheit ver-
mieden, weil die Ergebnisse bereits genau genug sind, die Kosten sind allerdings sehr hoch
und in manchen Applikationen lohnen sie sich nicht. Ein Alternative besteht darin, mehrere
kostengünstigen Sensoren mit niedrigerer Auflösung zu verwenden und die gemessenen
Informationen (einschließlich der Unsicherheit) aus allen Quellen durch Sensorfusionsverfah-
ren zu kombinieren. Um eine genügende Genauigkeit der Positionsschätzung zu erreichen,
wird die Berechnung der Unsicherheit sehr wichtig.

2.2.1. Repräsentation

Die räumliche Unsicherheit in Navigationsanwendungen wird typischerweise durch die
numerischen Min-Max-Grenzen für die Fehler dargestellt[Tay76]. Eine probabilistische Darstel-
lung der Positionsunsicherheit wurde später am mobilen Roboter HILARE verwendet [CL85].
Smith, Self und Cheeseman stellten die Unsicherheit jedes Grads an Freiheit in der räumli-
chen Beziehungen explizit dar [SSC86]. Diese Methode ist eine der am häufigsten verwendeten
Darstellungen der räumlichen Unsicherheit, sie wird nun im Detail vorgestellt.

Eine räumliche Beziehung wird durch einen Vektor der räumlichen Variablen x repräsentiert.
Ein exemplarischer Systemzustandsvektor besteht aus drei Variablen: seine Koordinaten x
und y in einem zweidimensionalen kartesischen Bezugssystem sowie die Rotation φ um die
z-Achse. Die drei Variablen beschreiben die Lage des Navigationssystems. Im Allgemeinen
könnte ein Systemzustandsvektor beliebig viele räumliche Variablen enthalten:

x =


x1

x2
...

xn


Eine räumliche Unsicherheit kann durch eine Wahrscheinlichkeitsverteilung über die räumli-
chen Variablen dargestellt werden:

P(x) = f (x)dx

Die Wahrscheinlichkeitsverteilung der Unsicherheit könnte beliebig sein. Die meisten Mess-
geräte bieten nur einen nominellen Wert der gemessenen Variable, detaillierte Kenntnisse

13

2. SLAM

über die Wahrscheinlichkeitsverteilung sind oft nicht explizit angegeben, der mittlere Fehler
kann aber durch die Spezifikation des Sensors individuell geschätzt werden. Daher wird
eine räumliche Unsicherheit durch den Mittelwert x̂ und die Kovarianz C(x) modelliert:

x̂ , E(x)
x̃ , x− x̂

C(x) , E(x̃x̃τ)

wobei E die Erwartungsfunktion und x̃ die Abweichung vom Mittelwert ist.

Diese Modellierung wird dann in einem Filter verwendet um die Position des Navigati-
onssystems zu bestimmen. Im Abschnitt 3.3 wird dies im Detail diskutiert. In manchen
Applikationen ist es notwendig die Unsicherheit des Systems zu visualisieren. Durch den
Mittelwert und die Kovarianz kann ein konzentrisches Ellipsoid gezeichnet werden [Nah76].
Das Ellipsoid stellt die Normalverteilung der Unsicherheit dar. Es ist wichtig zu betonen,dass
die wirkliche Wahrscheinlichkeitsverteilung der Unsicherheit beliebig sein könnte. Nur wenn
die Kontur einer bestimmten Unsicherheit gezeichnet werden muss, wird die Normalver-
teilung verwendet. Bei der Entwicklung des SLAM-Frameworks wurde dies berücksichtigt,
jede Unsicherheit kann als ein Ellipsoid in einer 3D-Karte visualisiert werden.

2.3. Beispiel

Nun wird ein einfaches zweidimensionales Beispiel nach [SSC86] diskutiert um das SLAM-
Problem und die räumliche Unsicherheit im System zu erklären. In diesem Beispiel führt
das Navigationssystem die folgende Sequenz von Aktionen aus:

• Das Navigationssystem liegt in Startposition.

• Es misst den Abstand zum Objekt #1.

• Es bewegt sich.

• Es entdeckt ein neues Objekt #2 und misst den Abstand zu #2.

• Es misst das Objekt #1 vom neuen Standort aus.

• Die räumliche Beziehung zwischen Navigationssystem, Objekt #1 sowie Objekt #2 wird
bestimmt.

Abbildung 2.1(a) zeigt die räumlichen Unsicherheiten in Weltreferenzkoordinaten sowie in
Systemreferenzkoordinaten nach den ersten drei Aktionen. Zwei Unsicherheiten werden
hier gezeichnet: die Lage des Objekts #1 und der Standort des Navigationssystems. Das
Navigationssystem liegt zunächst in der Startposition, die in der Welt-Karte als Referenz-
standort (ohne Unsicherheit) markiert wird, dann misst das Objekt #1, zeichnet die Position

14

2.4. Charakteristik des SLAM-Algorithmus

des Objekts #1 auf und bewegt sich einige Meter weiter. Nachdem das System sich bewegt,
ändern sich die räumlichen Unsicherheiten. Die Unsicherheit der Lage des Objekts #1 in
System-Karte vergrößert sich wegen der Unsicherheit der Bewegung des Navigationssystems.

Nach der Bewegung des Navigationssystems wird das Objekt #2 von diesem neuen Standort
aus entdeckt (Abbildung 2.1(b)). Das Navigationssystem misst und zeichnet die Entfernung
zwischen den beiden auf. Weil das Objekt #2 und das Objekt #1 unabhängig voneinander
sind, verändert sich die Unsicherheit der Lage des Objekts #1 nicht.

Danach versucht das Navigationssystem das Objekt #1 wieder zu finden, misst den Abstand
zum Objekt #1 (Abbildung 2.1(c)). Diese neue Messung korrigiert die alte Positionsinfor-
mation des Objekts #1. Nach der Berechnung verringert sich die Unsicherheit der Lage des
Objekts #1. Die Unsicherheit der Lage des Objekts #2 verändert sich nicht.

Das Ergebnis nach allen 6 Aktionen wird in der Abbildung 2.1(d) gezeigt. Durch Vergleich
mit der Abbildung 2.1(a) wird erkannt, dass nach der zweiten Messung die Unsicherheit
des Objekts #1 sich deutlich verringert, d.h. die Schätzung der räumlichem Beziehung wird
zunehmend genauer.

2.4. Charakteristik des SLAM-Algorithmus

Der SLAM-Algorithmus wird im Folgenden anhand dreier Kriterien diskutiert: Konvergenz
der Zustandsschätzung, Konsistenz des Schätzungsprozesses und Rechenaufwand bei der
Aktualisierung der Zustandskovarianzmatrix.

2.4.1. Konvergenz

Während sich die Anzahl der Beobachtungen erhöht, wird die Unsicherheit der Karte lang-
sam in einem begrenzten Umfang reduziert. Während sich die Abweichung verringert, wird
die Schätzung des Systemzustands zunehmend genauer. Die Positionsbeziehung zwischen
den in der Karte gespeicherten (Umgebungs-) Features verändert sich am Ende fast nicht
mehr. Somit ist die Genauigkeit der Karte nur abhängig von der Genauigkeit der ersten
Beobachtungsposition.

2.4.2. Konsistenz

Um die Übereinstimmung der Schätzungen zu erhalten, ist die Aktualisierung der Zu-
standskovarianzmatrix notwendig. Die Zustandsschätzung basiert auf der Beobachtung der
Umgebung, die Abweichung dieser Schätzung ist daher verknüpft mit der Abweichung der
generierten Karte. Um auch ohne die absolute Positionsinformation zu vermeiden, dass die

15

2. SLAM

(a) Das Navigationssystem entdeckt das Objekt
#1 und bewegt sich.

(b) Ein neues Objekt #2 wird entdeckt.

(c) Das Objekt #1 wird wieder gemessen. (d) Das Navigationssystem, das Objekt #1 und
das Objekt #2 werden lokalisiert werden

Abbildung 2.1.: Ein einfaches zweidimensionales Beispiel für das SLAM-Problem und die
räumliche Unsicherheit. Quelle: [SSC86]

Abweichung der Karte immer größer wird, muss die Konsistenz der Zustandsschätzung
gewährleistet sein.

2.4.3. Rechenaufwand

Eine wichtige Einschränkung für den SLAM-Algorithmus in der Large-Scale-Umgebung ist
der große Rechenaufwand bei der Aktualisierung der Zustandskovarianzmatrix. Für ein mo-
biles Navigationssystem ist die Rechenleistungsfähigkeit des verwendeten Mikroprozessors
begrenzt. Mit zehntausenden Features ist eine Aktualisierung der Zustandskovarianzmatrix
schwierig durchzuführen. Eine Lösung zur effektiveren Berechnung muss noch gefunden
werden.

16

3. Sensorfusion

Die traditionelle Signalerfassung wird oft durch einen einzigen Sensor vorgenommen,
selbst beim Einsatz mehrerer (verschiedenartiger) Sensoren sind sämtliche Sensoren meist
unabhängig voneinander. Aber in vielen Fällen müssen mehrere Signale aus verschiedenen
Quellen gleichzeitig verarbeitet werden, um dadurch eine oder mehrere bestimmte Informa-
tionen zu errechnen, die direkt mittels Sensoren sehr schwierig oder unmöglich messbar
sind. Multi-Sensoren sind zwar in der Lage, mehrere Signale zu erfassen, liefern allerdings
teilweise auch redundante oder sogar widersprüchliche Informationen. Eine effektive und
vernünftige Fusion der Signale aus mehreren verschiedenen Sensoren ist daher notwendig,
um nur die mit der Umgebung konsistenten Ergebnisse zu erhalten. ”Sensorfusion”stellt
die Multi-Level-Verarbeitung der Multi-Sensor-Daten dar, d.h. Information aus mehreren
Sensoren oder anderen Datenquellen werden kombiniert oder fusioniert, um eine bessere
Schätzung zu erhalten.

In den letzten Jahren wurden die theoretische Grundlagen und Methoden der Sensorfusion
erheblich verbessert. Die Sensorfusion bringt einige bedeutende Vorteile mit sich: gute Fehler-
toleranz, hohe Genauigkeit, schnelle Verarbeitungsgeschwindigkeit, gute Komplementarität
und große Informationsmenge.

3.1. Sensoren

In SLAM-System können Sensoren üblicherweise in zwei Kategorien unterteilt werden:
interne Sensoren und externe Sensoren.

3.1.1. Interne Sensoren

Interne Sensoren nehmen die Bewegungsinformationen des Navigationssystems oder den
Zustand der Komponenten innerhalb des Navigationssystem wahr. Sie sind unverzichtbar
zur Regelung des Gesamtsystems. Die am häufigsten verwendeten inneren Sensoren sind
Gyroskope, Beschleunigungsmesser und Odometer.

Gyroskope messen die Drehraten, Beschleunigungssensoren stellen die Beschleunigungen
fest und Odometer erfassen die Anzahl der Radumdrehungen und berechnen damit die

17

3. Sensorfusion

zurückgelegten Distanzen. Die interne Sensoren schätzen die Lageposition des Navigati-
onssystems in der Regel mithilfe der Bewegungsmodelle des Systems ab. Weil im Laufe
der Zeit die Driftfehler von solchen Sensoren stetig größer werden, können sie nicht für die
langfristige Positionierung eingesetzt werden. Diese Messprozesse können mit sehr hohen
Abtastfrequenzen stattfinden und hängen nicht von den Umgebungsmerkmalen ab.

3.1.2. Externe Sensoren

Externe Sensoren werden verwendet, um den externen Zustand des Navigationssystems zu
bestimmen. Sie ermöglichen dem Navigationssystem, die Arbeitsobjekte und Arbeitsumge-
bung zu erkennen und sich je nach Situation und Bedingung anzupassen. Damit werden die
Anpassungsfähigkeit und die Intelligenz des Systems verbessert.

GPS

Der bekannteste externe Sensor ist das Global-Positioning-System (GPS). Es ist ein globales
Navigationssatellitensystem zur Positionsbestimmung und Zeitmessung. Durch die bekann-
ten Positionen von mindesten 3 GPS-Satelliten wird die aktuelle Standortinformation des
GPS-Empfänger schnell berechnet. Die Genauigkeit lässt sich durch Differenzmethoden auf
Werte im Zentimeterbereich steigern.

Vorteile:
Das GPS-System deckt 98% der Welt ab. Mit der Weltkarte kann das Navigationssystem
schnell lokalisiert werden. Im Vergleich zu der relativen Lokalisierung mit anderen externen
Sensoren ist solche absolute Lokalisierung in manchen Applikationen vorteilhaft.

Nachteile:
Die GPS-Lokalisierung kann nur in den Outdoor-Umgebungen verwendet werden, in ei-
nem Gebäude sind Signale kaum zu empfangen, der Anwendungsbereich wird damit
beschränkt.

Laserentfernungsmesser

Laserentfernungsmesser (Laser rangefinder) erhalten die Zielentfernung durch Einsatz von
Laserimpulsen. Entfernungsmessung beruht in der Regel auf der Time of Flight(TOF)- oder
der Phasenverschiebungs- (Phase-Shift)-Technik. Bei der TOF-basierten Entfernungsmessung
werden der Zeitpunkt zum Senden eines kurzes Laserpulses sowie der Zeitpunkt zum Emp-
fangen des zurückkehrenden Laserpulses erfasst und aus der Länge des Zeitintervalls der
zurückgelegte Weg bestimmt. Beim Phasenverschiebungsverfahren ergibt sich die Entfernung
durch den Vergleich der Phasenverschiebung zwischen ausgesandtem und empfangenem
Laserpuls [HKP90, BJP93].

18

3.1. Sensoren

Vorteile:
Der Messvorgang eines Laserentfernungsmessers ist schnell und das Ergebnis ist präzise. Im
Vergleich zum Sonar-Sensor hat der Laserentfernungsmesser eine höhere Winkelauflösung.
Der Laserstrahl ist schmal und der messbare Abstand ist deutlich länger als bei Sonar-
Sensoren.

Nachteile:
Der Preis eines Laserentfernungsmessers ist vergleichsweise hoch, und aufgrund möglicher
Spiegelreflexionen und diffusem Licht wird die Messung von den Materialeigenschaften der
Oberfläche des Zielobjektes beeinflusst.

Millimeterwellen-Radar

Millimeterwellen-Radar-Geräte (millimeter wave radar, MMWR) messen die Entfernung zum
Zielobjekt durch Senden und Empfangen von elektromagnetischen Wellen. Die Größe
der Radar-Antenne hängt von der verwendeten Frequenz ab. Je höher die Frequenz ist,
desto kleiner ist die Antenne. Meist werden kurze Pulse von elektromagnetischen Wellen
verwendet.

Vorteile:
Millimeterwellen-Radar kann unter allen Wetterbedingungen verwendet werden. Der mess-
bare Abstand ist groß und die Messung ist präzise.

Nachteile:
Ein Millimeterwellen-Radar ist vergleichsweise teuer und das Gerät ist meist größer als die
anderen Sensoren. Unter den gleichen Wetterbedingungen verfällt das Signal schneller als
beim Laserentfernungsmesser.

Sonar-Sensor

Sonar-Systeme werden bei der Navigation oft als Hauptsensoren verwendet [KK94, HK00] . Die
bekannte Ausbreitungsgeschwindigkeit des Ultraschalls ist die Grundlage der Ultraschall-
Entfernungsmessung. Der von dem Ultraschallschwinger generierte Schallimpuls breitet sich
durch die Luft in Richtung des Zielobjektes aus, nach der Reflexion am Ziel wird das Echo-
Signal empfangen. Durch die Zeitdauer T und die bekannte Ausbreitungsgeschwindigkeit
V des Ultraschalls in Luft kann der Abstand L zwischen dem Sensor und dem Zielobjekt
berechnet werden: L = V ∗ T/2.

19

3. Sensorfusion

Vorteile:
Sonar-Sensoren sind im Vergleich zum Laserentfernungsmesser und zum Millimeterwellen-
Radar kostengünstiger, und verfügen trotzdem über große Erfassungsbereiche.

Nachteile:
Die geringe Winkelauflösung und das unpräzise Messergebnis von Sonar-Sensoren sind
nachteilig. Je nach Umgebungsbedingungen ist es außerdem möglich, falsche oder doppelte
Echo-Signale zu empfangen.

Stereo-Vision-System

Ein Stereo-Vision-System erhält die Tiefeninformation eines Objekts mit Hilfe einer ein-
zelnen (mobilen Kamera mit verschieden Betrachtungswinkeln) oder mehreren Kameras.
Die Qualität der gewonnenen Tiefkarte hängt von der Kalibrierung der Kamera und des
Lichtverhältnisses ab. Solche visuellen Sensoren wurden bereits in Navigationssystemen,
insbesondere bei Robotern, z.B. in [TK95] und [MJ97] eingesetzt.

Vorteile:
Ein Stereo-Vision-System liefert ausgeprägte und reiche visuelle Informationen über die
Umgebung, welche die andere Sensoren schwierig oder unmöglich erfassen können.

Nachteile:
Die Menge der Verarbeitungsdaten ist relativ groß, ebenso ist die Lichtsituation relevant
für Bildverarbeitung, unter Einfluss einer schlechten Beleuchtung können fehlerhafte
Messergebnisse erhalten werden.

Im Allgemeinen ist die Zuverlässigkeit eines einzelnen Sensors schlechter als die Kombina-
tion von mehreren Sensoren. Bei der Auswahl der Sensoren sollten sowohl Vor- als auch
Nachteile der einzelnen Sensoren in Betracht gezogen werden.

3.2. Architektur

Die Architektur der Sensorfusion stellt die logische und formale Kombination der Daten aus
verschieden Sensoren dar. Waltz und Llinas [WL90] beschreiben eine Reihe von Architekturen,
von denen im Folgenden die parallele und die sequentielle Architektur genauer beschrieben
werden.

20

3.2. Architektur

3.2.1. Parallele Fusion

Bei der parallelen Fusion werden alle Messwerte gleichzeitig in einem Schritt verarbeitet.
Die Abbildung 3.1 stellt eine parallele Architektur dar. Die parallele Fusion hat niedrige
Komplexität und ermöglicht somit die Anwendung auch auf schwach leistungsfähigen
Systemen. Die Synchronisierung und Verfügbarkeit aller Sensoren wird aber vorausgesetzt.

Abbildung 3.1.: Parallele Fusion

3.2.2. Sequentielle Fusion

Bei der sequentiellen Fusion werden Sensordaten in mehreren Schritten verarbeitet. Die
Messwerte von einigen Sensoren werden zuerst in einem Schritt fusioniert, daraus erhaltene
Ergebnisse werden dann mit weiteren Messwerten kombiniert und im nächsten Schritt erneut
fusioniert usw., bis schließlich alle Sensordaten verarbeitet und die Zielergebnisse erhalten
wurden. Die Abbildung 3.2 stellt eine sequentielle Architektur dar. Ein erheblicher Vorteil
dieser Architektur ist, dass die Synchronisierung aller Sensoren nicht erforderlich ist. So
wird ermöglicht, dass die niedrigen Fusionsschichten bei geringer Komplexität mit hohen
Signal- und Zyklusraten arbeiten können, während die höheren Fusionsschichten, die in der
Regel höhere Komplexität aufweisen, bei geringeren Geschwindigkeiten arbeiten. Hierdurch

21

3. Sensorfusion

kann die Integration von Sensoren verschiedener Signalraten deutlich vereinfacht werden
[Ros06].

Abbildung 3.2.: Sequentielle Fusion

3.2.3. Mischformen

Basierend auf der parallelen und sequentiellen Fusion ergeben sich verschiedene Mischfor-
men, die beide Konzepte vereinen. Die Abbildung 3.3 stellt eine exemplarische Architektur
dar. Diese Modularisierung bringt große Freiheit, ein Modul einzeln einzustellen und
anzupassen. Beim Austauschen oder Verändern eines Sensors muss nicht das Gesamtsystem,
sonder nur der entsprechende Funktionsblock abgeändert werden.

Aufgrund der objektorientierten Implementierung können alle drei obigen Fusionsarchitek-
turen mit dem in dieser Arbeit entwickelten SLAM-Framework realisiert werden.

3.3. Filter

Im Jahre 1960 wurde eine berühmte Arbeit von Kalman veröffentlicht [Kal60]. Diese Arbeit
beschreibt eine rekursive Methode zur Lösung eines linearen Filtering-Problems in diskreten
Daten. Das war der Prototyp des Kalman-Filters. Kurz gesagt, der Kalman-Filter besteht aus
einer Reihe von mathematischen Gleichungen, durch welche Kalman eine effektive Lösung
für das Problem der Schätzung des Systemzustandes fand. Ein Kalman-Filter kann nicht
nur den vergangenen und gegenwärtigen Zustand schätzen, sondern auch den zukünftigen
vorhersagen. Es spielt eine sehr wichtige Rolle im Bereich der autonomen Navigation [KB61]

[RB00]. Aufgrund der kontinuierlichen Weiterentwicklung, insbesondere nach Einführung des

22

3.3. Filter

Abbildung 3.3.: Kombination aus paralleler und sequentieller Sensorfusion

erweiterten Kalman-Filters zur Lösung von nichtlinearen Problemen, finden Kalman-Filter
in verschiedenen Bereich zunehmend mehr Anwendungen.

3.3.1. Linearer Kalman-Filter

Ein lineares System wird durch eine Systemgleichung und eine Messgleichung beschrieben
[WB06] :

xk = Axk−1 + Buk−1 + wk−1, x ∈ Rn

zk = Hxk + vk, z ∈ Rm

Das Systemrauschen w und das Messrauschen v sind stets unabhängig voneinander. Sie
folgen dabei einer Normalverteilung mit dem Mittelwert 0 und der Kovarianz Qk und Rk, in
üblicher Kurznotation:

p(wk) ∼ N(0, Qk)

p(vk) ∼ N(0, Rk)

Der Zustand des Systems ist durch x gekennzeichnet, der Eingang durch u und die
Übergänge zwischen zeitlich aufeinanderfolgenden Zuständen werden durch die Matrix A
beschrieben. Der Einfluss des Einganges u wirkt durch die Matrix B. Der Ausgang wird

23

3. Sensorfusion

durch z gekennzeichnet. Die Matrix H beschreibt die Beziehung zwischen Systemzustand
und Beobachtung.

Es gibt zwei sich wiederholende Arbeitsschritte im Kalman Filter:

1. Schritt: ”Kalman-Time-Update”

x̂k|k−1 = Ax̂k−1 + Buk−1

Pk|k−1 = APk−1Aτ + Qk−1

2. Schritt: ”Kalman-Measurement-Update”

Kk = Pk|k−1Hτ(HPk|k−1Hτ + R)−1

x̂k = x̂k|k−1 + Kk(zk − Hx̂k|k−1)

Pk = (I − Kk H)Pk|k−1

In der Phase der Prädiktion schätzt der Kalman-Filter den aktuellen Systemzustand anhand
des vorherigen Zustands. Beim zweiten Schritt des Filtervorgangs wird die Vorhersage
schließlich mit den neuen Informationen des aktuellen Messwerts korrigiert. Die zwei
Schritte werden wiederholend durchgeführt bis die gesuchte Schätzung geliefert wird. Die
Abbildung 3.4 zeigt die Struktur des Kalman-Filters.

Für den Kalman-Filter und die Matrizen Q und R, die die Intensität des Systemrauschens
und des Messrauchens angeben, gilt:

E[wk] = 0
E[wkwτ

k] = Qk

E[vk] = 0
E[vkvτ

k] = Rk

E[wkvk] = 0
P = E[(xk − x̂k)(xk − x̂k)

τ]

24

3.3. Filter

Abbildung 3.4.: Der laufende Zyklus eines diskreten Kalman-Filters. Quelle:[WB06]

3.3.2. Erweiterter Kalman-Filter

Lineare Kalman-Filter lösen lineare Probleme. In der realen Welt werden aber meist nicht-
lineare Systeme angetroffen. Für diese Anwendungen wurde der erweiterte Kalman-Filter
entwickelt. Wie in einem linearen Kalman-Filter wird angenommen, dass der Zustandsvektor
x ∈ Rn und der Ausgangsvektor z ∈ Rm sind, jedoch werden die Systemgleichung und
Messgleichung in nichtlineare Ausdrücke abgeändert:

xk = f (xk−1, uk−1, wk−1)

zk = h(xk, vk)

wobei wk und vk keine weißen Rauschsignale mehr sind. Das Rauschen ist schwierig durch
Messung zu erfassen. Wird das Rauschen zunächst ignoriert, ergeben sich die folgenden
Annäherungen:

x̃k = f (xk−1, uk−1, 0)
z̃k = h(xk, 0)

Somit können die beide Modelle umgeschrieben werden:

25

3. Sensorfusion

xk ≈ x̃k + A(xk−1 − x̂k−1) + Wwk−1

zk ≈ z̃k + H(xk − x̃k) + Vvk−1

wobei A, W, H, W Jacobi-Matrizen sind:

A[i,j] =
∂ f[i]
∂x[j]

(x̂k−1, uk−1, 0)

W[i,j] =
∂ f[i]
∂w[j]

(x̂k−1, uk−1, 0)

H[i,j] =
∂h[i]
∂x[j]

(x̃k, 0)

V[i,j] =
∂ f[i]
∂v[j]

(x̃k, 0)

Analog zum linearen Kalman-Filter existieren auch hier zwei Arbeitsschritte:

1. Schritt: ”Kalman-Time-Update”

x̂k|k−1 = f (xk−1 + uk, 0)
Pk|k−1 = FkPk−1Fτ

k + Qk

2. Schritt: ”Kalman-Measurement-Update”

Kk = Pk−1Hτ(HPk|k−1Hτ + R)−1

x̂k = x̂k|k−1 + Kk(zk − h(x̂k|k−1, 0))
Pk = (I − Kk H)Pk|k−1

Nun werden alle nichtlinearen Terme linearisiert, um den Kalman-Filter auf nichtlineare
Probleme angewenden zu können. Eine weitere Verbesserung der Zustandsschätzung kann
nach [HM04] erreicht werden, indem auf den Filter eine Vorwärts- Rückwärtsfilterung bzw.
Smoothing angewendet wird. In der vorliegenden Arbeit wird diese Methode nicht im Detail
erläutert.

26

4. Karten

Die Karte ist eine wichtiger Bestandteil eines SLAM-Systems. Durch Verarbeitung der
Informationen über die Umgebung aus den Sensoren wird die reale Welt modelliert und eine
oder mehrere Karten automatisch erstellt. Die resultierenden Karten werden dann wiederum
verwendet, um die Umgebung für die Wegplanung und Navigation darzustellen und die
Position in der Umgebung zu ermitteln.

4.1. Kartenrepräsentation

Je nach Darstellungsweise können Karten hauptsächlich in drei Kategorien unterteilt werden:
Rasterkarten [Elf90, Thr01] , Feature-Karten [CK92, LF99] sowie topologische Karten [BNRW99, KB91]

.

4.1.1. Rasterkarten

Der Begriff der Rasterkarte wurde zuerst von Elfes [Elf89] und Moravec [ME85] vorgeschlagen.

In einer 2D-Rasterkarte wird die Realwelt gleichmäßig in uniformen Rasterzellen abgebildet.
Jede Zelle speichert bestimmte Informationen über eine Position. Im einfachsten Fall wird
ein Wert von 0 bis 1 zugeordnet: 0 für frei und 1 für besetzt. Ein weiterer häufig benutzter
Wert ist die Wahrscheinlichkeit, dass diese Position belegt ist. Die Abbildung 4.1 stellt eine
exemplarische 2D-Rasterkarte dar. Für eine 3D-Umgebung werden zusätzlich entweder die
Höheninformation notiert, oder aber direkt 3D-Raster verwendet.

4.1.2. Feature-Karten

Eine Feature-Karte beschreibt die Umgebung als eine Reihe von Features. Durch Verarbeitung
der Sensordaten werden Features wie Punkte, Linien und Flächen detektiert und dann in
der Karte gespeichert. Zum Erhalten der visuellen Information über die Umgebung werden
normalerweise ein oder mehrere Kameras verwendet, um mithilfe von Bildverarbeitungspro-
zessen Features zu finden. Außerdem werden oft Laserentfernungsmesser eingesetzt, um
in Punktwolken mithilfe der Regressionsanalyse Features zu finden. Für eine strukturierte
Umgebung ist die Verwendung einer Feature-Karte vorteilhaft. Zum Beispiel können für

27

4. Karten

Abbildung 4.1.: Eine exemplarische 2D-Rasterkarte. Quelle: [Thr01]

eine Indoor-Umgebung die Innenwände als Linien und die Ecken als Punkte in der Karte
gespeichert werden. Die Abbildung 4.2 stellt eine exemplarische Feature-Karte dar.

Abbildung 4.2.: Eine exemplarische Feature-Karte. Quelle: [HS08]

28

4.1. Kartenrepräsentation

4.1.3. Topologische Karten

Eine topologischen Karte betrachtet nur die topologische Information der Umgebung. Sie
ist in der Regel in Form eines Graphen dargestellt. Die Knoten des Graphen bezeichnen
bestimmte Orte, die Kanten dazwischen bezeichnen die Pfadinformation zwischen beiden
Orten. Die Abbildung 4.3 stellt eine exemplarische topologische Karte dar. Für eine struktu-
rierte Umgebung ist die topologische Karte sehr effektiv. Jedoch ist in einer unstrukturierten
Umgebung die Identifizierung eines Standortes komplex, da in diesen Fall die topologischen
Informationen allein nicht für Lokalisierung und Navigation ausreichen [KW94] .

Abbildung 4.3.: Eine exemplarische topologische Karte. Quelle: [KB91]

4.1.4. Vergleich

Rasterkarten sind robust und leicht zu implementieren, allerdings nicht gut skalierbar.
Die Rasterstruktur benötigt ziemlich viel Speicherplatz, der Umfang der Karte ist daher
begrenzt.

Feature-Karten sind robust und kompakt. Sie stellen eine große Anforderung an den nötigen
Datenverarbeitungsprozesse und eignen sich nicht für eine zu komplexe Umgebung.

Topologie-Karten hängen nur von den bestimmten Orten in der Umgebung ab, sie sind
ebenfalls kompakt und effektiv. Aber wie Feature-Karten eignen sie sich nur für eine
strukturierte Umgebung.

Um eine bessere Modellierung der Umgebung zu erreichen, können gemischte Darstellungen
eingesetzt werden [SD98] [Thr98] .

29

4. Karten

4.2. Unsicherheit in Karte

Wie in dem Abschnitt 2.2 diskutiert wird, ist die Berechnung der Unsicherheit im
SLAM-Problem sehr wichtig. Beim Implementieren der Karte in SLAM-Framework wurde
berücksichtigt, wie die Information über Unsicherheit in der Karte zu speichern und zu
repräsentieren.

Am üblichsten besitzen die gemessene Punkte die Positionsunsicherheit. Obwohl die
Rasterkarte intuitiv und leicht zu implementieren ist, kann sie die Positionsunsicherheit
nicht direkt speichern. In einer Rasterkarte ist die Position jeder Zelle bestimmt, die
gespeicherte Wahrscheinlichkeitsfunktion in einer Zelle zeigt die Wahrscheinlichkeit, dass
diese Position als Hindernis belegt ist. Aus diesem Grund ist die Rasterkarte nicht geeignet
für das implementierte SLAM-Framework.

In einer Karten-basierten SLAM-Applikation wird nicht nur die Positionsunsicherheit eines
Punktes sondern auch die Unsicherheit der Lage eines Objekts häufig diskutiert. Für ein
3D-Objekt kann die Unsicherheit der Lage in verschiedene Freiheitsgrade unterteilt werden.
Grundlegende Unsicherheiten sind die Unsicherheit der Rotation, die Unsicherheit der Trans-
lation sowie die Unsicherheit der Skalierung. Die topologische Karte kennt kein Konzept für
Objekte in der Umgebung, während dies in einer Feature-Karte leicht realisiert werden kann.
Daher wurde für die Entwicklung des SLAM-Frameworks eine Feature-Karte verwendet.

4.3. Szenengraph

Um diese Anforderung an die Darstellung der Unsicherheit der Lage in verschiedenen
Freiheitsgraden zu erfüllen wurde hier ein Szenengraph verwendet.

Ein Szenengraph ist eine objektorientierte Datenstruktur, mit der die logische und die
räumliche Anordnung der darzustellenden zwei- oder dreidimensionalen Szene beschrieben
wird. Er wird häufig bei der Entwicklung computergrafischer Anwendungen eingesetzt.

Im Szenengraph kann ein Knoten viele Kinder aber oft nur einen einzigen Mutterknoten
haben. Ein Effekt am Mutterknoten wirkt automatisch an alle untergeordneten Knoten. Jeder
Knoten des Szenengraphen hat üblicherweise eine Transformationsmatrix um die Operatio-
nen (Translation, Rotation, Spiegelung, Skalierung und Scherung) in einer effizienten Weise
zu realisieren. Die entsprechende Unsicherheit kann dabei im gleichen Knoten gespeichert
werden. Diese hierarchische Modellierung vereinfacht den Aufbau und das Manipulieren
einer Szene deutlich. Man muss nicht jedes Einzelteil eines Objektes einzeln transformieren,
sondern transformiert einfach die Gesamtheit aller Einzelteile. Aus diesen Gründen wurde
im implementierten SLAM-Framework ein Szenengraph verwendet. Die Implementierung
und Erweiterung werden im Abschnitt 5.4 vorgestellt.

30

5. Implementierung

5.1. Architektur

Die modulare Architektur erhöht die Erweiterbarkeit des SLAM-Frameworks. Mit den
gewonnenen Erkenntnissen aus Kapitel 2 wird das implementierte SLAM-Frameworks in 5

Module unterteilt:

Sensoren sammeln die Information über das Navigationssystem und die Umgebung.

Modelle beschreiben die Systemgleichung und Messgleichung.

Filter schätzt und korrigiert den Systemzustand.

Karte speichert die Information über die Umgebung.

SLAM-Kern steuert alle Module.

Die Abbildung 5.1 zeigt die Architektur des implementierten SLAM-Frameworks.

Aufgrund der Vielfalt der Sensoren und der individuellen Hardware-Treiber der einzelnen
Sensoren wurde das Sensor-Modul bisher noch nicht implementiert. Im Framework existiert
keine Basisklasse, die alle benötigten Grundfunktionen der Sensoren definiert. In den
Demo-Programmen wird das Eingeben der Sensordaten durch Simulation realisiert.

Für unterschiedliche Probleme muss der SLAM-Kern entsprechend angepasst werden. Es
gibt keine einheitliche Vorlage. Dieser Teil wird erst implementiert, wenn eine praktische
SLAM-Anwendung basierend auf diesem SLAM-Framework zu entwickeln ist.

Alle andere drei übrigen Module wurden jedoch im SLAM-Framework implementiert.

31

5. Implementierung

Abbildung 5.1.: Blockschaltbild eines SLAM-Systems

5.2. CMake-configure

Für ein Framework ist die Cross-Plattform-Tauglichkeit eine grundlegende und wichtige
Eigenschaft. Bei dieser Entwicklung wurde die Software ”CMake” eingesetzt. CMake ist
ein quelloffenes, plattformunabhängiges Build-System. Mit CMake wird die Make-Datei für
das entsprechenden Betriebssystem automatisch generiert. Die Datei CMakeLists.txt und
alle *.cmake-Dateien unter dem Verzeichnis ”config” dienen zur Konfiguration des CMake-
Systems. Bisher wurde das SLAM-Framework bereits unter Linux und Windows getestet, es
funktioniert reibungslos auf beiden Plattformen. Eine detaillierte Installationsanleitung für
das SLAM-Framework wird als Anhang A beigefügt.

5.3. Filter

Im Filter-Modul sollen alle Filter zur Sensorfusion zur Verfügung gestellt werden, beispiels-
weise die Kalmanfilter, die im Kapitel 3 vorgestellt werden. Filter dienen zur Schätzung und
Korrektur des Systemzustands. Dies wurde durch den Einsatz der externen Bibliothek BFL
realisiert.

32

5.3. Filter

5.3.1. BFL

Bayesian Filtering Library (BFL) is eine quelloffene C++-Bibliothek und bietet eine große Palette
an Filtern. Diese verarbeiten Daten rekursiv und ihr Schätzalgorithmus basiert auf der Bayes-
Regel, wie beispielsweise beim (erweiterten) Kalman-Filter und Partikel-Filter. In BFL stehen
mehr als 10 Bayes-Filter zur Verfügung, alle Filter sind aus einer Basisklasse abgeleitet und
nutzen einheitliche Schnittstellen bei der Aktualisierung des Systemzustands.

5.3.2. Filter-Generator

Wegen der hohen Komplexität der Schnittstellen wird die BFL-Bibliothek nicht direkt,
sonder über einen Wrapper im SLAM-Framework verwendet. Eine wichtige Klasse im Ver-
zeichnis ”src\filter” ist der Filter-Generator. Diese Klasse beinhaltet nur die Create**Filter()-
Funktionen, dient zur Zentralverwaltung aller Filter und bietet dem Benutzer einen Überblick,
welche Filter zur Verfügung stehen.

5.3.3. Modell

Wie in dem Abschnitt 3.3 diskutiert wird, wird ein Navigationssystem durch eine System-
gleichung und eine Messgleichung beschrieben. Insgesamt wurden im implementierten
SLAM-Framework fünf verschiedenen Systemmodelle definiert, zwei davon sind lineare
Modelle und andere drei sind nichtlinear:

xk = Axk−1 + Buk−1 + wk−1, p(wk) ∼ N(0, Qk)

xk = Axk−1 + Buk−1 + wk−1, w beliebig
xk = f (xk−1, uk−1) + wk−1, p(wk) ∼ N(0, Qk)

xk = f (xk−1, uk−1) + wk−1, w beliebig
xk = f (xk−1, uk−1, wk−1), w beliebig

Analog existieren fünf Messmodelle:

zk = Hxk + vk, p(vk) ∼ N(0, Rk)

zk = Hxk + vk, v beliebig
zk = h(xk) + vk, p(vk) ∼ N(0, Rk)

zk = h(xk) + vk, v beliebig
zk = h(xk, vk), v beliebig

33

5. Implementierung

Model-Generator

Unter dem Verzeichnis ”src\model” steht weiterhin ein Model-Generator zur Verfügung.
Analog zum Filter-Generator enthält er nur die Create**Model()-Funktionen und dient zur
Zentralverwaltung aller System- und Mess-Modelle.

5.4. Karte

Wie in dem Abschnitt 4.2 diskutiert wird, wurde eine Feature-Karte mithilfe der externen
Bibliothek OSG im SLAM-Framework realisiert.

5.4.1. OSG

OpenSceneGraph (OSG) ist ein quelloffenes Szenengraphsystem. Es findet in Flugzeugsi-
mulation, Spielen, virtueller Realität sowie wissenschaftlicher Visualisierung Anwendung.
OSG basiert auf dem Konzept des Szenengraphen und bietet ein objektorientiertes Grafik-
Framework, basierend auf der OpenGL-Bibliothek. OSG kann unter verschiedenen Betriebs-
systemen eingesetzt werden. Das SLAM-Framework verwendet einen Teil von OSG, um die
Umgebungsinformation in einem Szenengraph zu speichern.

5.4.2. Klasse ”map”

Die Klasse ”map” ist die Hauptklasse in diesem Modul. Alle Operationen im Zusammenhang
mit der Handhabung der Karte wurden in dieser Klasse implementiert, wie z.B.
das Einfügen von Objekten in die Karte:
registerPoint() - einen Punkt in die Karte einfügen;
registerLine() - eine Linie in die Karte einfügen;
registerPolygon() - ein Polygon in die Karte einfügen;
...

das Auffinden von Objekten in der Karte:
getObjectList() - alle Objekte in der Karte zurückgeben
findObjectById() - das Objekt mit dem spezifischen Name finden.
findObjectByName() - das Objekt mit dem spezifischen ID finden.
getNumberOfObjects() - Objekte zählen
...

Import und Export zu Datendateien:
readRootFromFile() und exportMapToFile()
...

34

5.4. Karte

5.4.3. Erweiterung

Wie in dem Abschnitt 4.2 diskutiert wird, sollen zwei Type von Unsicherheiten in der Karte
implementiert werden: die Positionsunsicherheit eines Punktes sowie die Unsicherheit der
Lage eines Objekts. In OSG wird die Unsicherheit überhaupt nicht berücksichtigt. Die Klassen
müssen erweitert werden. Um die Positionsunsicherheit eines Punktes zu speichern wird
eine Klasse SLAM::Vec3Extended von der Klasse osg::Vec3 abgeleitet, Unsicherheiten der drei
Koordinaten x, y, z werden getrennt gespeichert. Um die Unsicherheit der Lage eines Objekts
darzustellen wird eine neue Klasse SLAM::TransformUncertrainty implementiert. In dieser
Klasse werden Unsicherheiten der Transformationen - Rotation, Translation sowie Skalierung
gespeichert. Dies wird durch ein UML-Diagramm (Abbildung 5.2) veranschaulicht.

35

5.
Im

plem
entierung

+getRootNode() : Group_ptr

+setRootNode(ein root : Group_ptr) : SLAM::ReturnFlagSet

+getObjectList(ein index : unsigned int) : ObjectList

+findObjectById(ein id : string) : Geode_ptr

+findObjectByName(ein id : string) : ObjectList

+getNumberOfObjects() : int

+group(ein objectList : ObjectList, ein groupName : string) : osg::MatrixTransform

+registerPoints(ein p1 : osg::Vec3) : Geode_ptr

+registerLines(ein p1 : osg::Vec3, ein p2 : osg::Vec3) : Geode_ptr

+registerLines(ein p1 : osg::Vec3, ein p2 : osg::Vec3, ein transformMatrix : osg::Matrix) : Geode_ptr

+registerTriangles(ein p1 : osg::Vec3, ein p2 : osg::Vec3, ein p3 : osg::Vec3) : Geode_ptr

+registerTriangles(ein p1 : osg::Vec3, ein p2 : osg::Vec3, ein p3 : osg::Vec3, ein transformMatrix : osg::Matrix) : Geode_ptr

+registerQuads(ein p1 : osg::Vec3, ein p2 : osg::Vec3, ein p3 : osg::Vec3, ein p4 : osg::Vec3) : Geode_ptr

+registerQuads(ein p1 : osg::Vec3, ein p2 : osg::Vec3, ein p3 : osg::Vec3, ein p4 : osg::Vec3, ein transformMatrix : osg::Matrix) : Geode_ptr

+registerRectangle(ein x_length : float, ein y_length : float, ein transformMatrix : osg::Matrix) : Geode_ptr

+registerPolygon(ein vertices : *osg::Vec3Array) : Geode_ptr

+registerPolygon(ein vertices : *osg::Vec3Array, ein transformMatrix : osg::Matrix) : Geode_ptr

+displayVertexUncertainty() : SLAM::ReturnFlagSet

+hideVertexUncertainty() : SLAM::ReturnFlagSet

#_root : Group_ptr

SLAM::Map

osg::Group

osg::Transform

+...()

+addDrewable(ein drawable : *osg::Drawable)

+setStateSet(ein stateSet : *osg::StateSet)

+...()

osg::Geode osg::Node

osg::MatrixTransform

osg::Geometry

+getRotationPdf() : SLAM::PdfVector3

+setRotationPdf(ein pdf_vector : SLAM::PdfVector3) : SLAM::ReturnFlagSet

+getTranslationPdf() : SLAM::PdfVector3

+setTranslationPdf(ein pdf_vector : SLAM::PdfVector3) : SLAM::ReturnFlagSet

+getScalingPdf() : SLAM::PdfVector3

+setScalingPdf(ein pdf_vector : SLAM::PdfVector3) : SLAM::ReturnFlagSet

#_rotation_pdf : SLAM::PdfVector3

#_translation_pdf : SLAM::PdfVector3

#_scaling_pdf : SLAM::PdfVector3

SLAM::TransformUncertrainty

Grün : neue Klasse

Schwarz : vorhande Klasse

«struct»

SLAM::ReturnFlagSet

{Dokumentation = enum Enum

{ SUCCESSFUL,

FAILED_NULL_POINTER,

FAILED_OTHER,

Noof}}

osg::Vec3Array

osg::Vec3+getVertexPdf() : SLAM::PdfType

+setVertexPdf(ein pdf : SLAM::PdfType*) : SLAM::ReturnFlagSet

+getCovariance_x() : SLAM::ValueType

+getCovariance_y() : SLAM::ValueType

+getCovariance_z() : SLAM::ValueType

+setCovariance(ein covariance_x : SLAM::ValueType, ein covariance_y : SLAM::ValueType, ein covariance_z : SLAM::ValueType) : SLAM::ReturnFlagSet

+setCovariance_x(ein covariance_x : SLAM::ValueType) : SLAM::ReturnFlagSet

+setCovariance_y(ein covariance_y : SLAM::ValueType) : SLAM::ReturnFlagSet

+setCovariance_z(ein covariance_z : SLAM::ValueType) : SLAM::ReturnFlagSet

+getProbability(ein vec3 : osg::Vec3) : SLAM::ValueType

+getProbability(ein x : SLAM::ValueType, ein y : SLAM::ValueType, ein z : SLAM::ValueType) : SLAM::ValueType

+createUncertaityNode() : MatrixTransform_ptr

-_pdf_vector : SLAM::PdfVector3

SLAM::Vec3Extended

typedef osg::ref_ptr<osg::Group> Group_ptr;

typedef osg::ref_ptr<osg::Geode> Geode_ptr;

typedef osg::ref_ptr<osg::MatrixTransform> MatrixTransform_ptr;

typedef std::list<Geode_ptr> ObjectList;

Abbildung 5.2.: Das UML-Diagramm für Klassen bezüglich der Karte

3
6

5.5. Demo-Programme

5.5. Demo-Programme

Um zu demonstrieren, wie das Framework funktioniert, wurden vier Demo-Programme als
Beispiele implementiert.

5.5.1. Generator-Test

Diese Demo zeigt, wie die Modelle und Filter durch die beiden Generatoren angelegt
werden. Der Code basiert auf einem ursprünglichen Beispiel aus der BFL-Bibliothek. In
diesem Beispiel wird ein mit einem Ultraschall-Sensor ausgestatteter, autonomer mobiler
Roboter simuliert. Der Ultraschall-Sensor misst die Entfernung zu einer Wand. Mithilfe eines
Kalman-Filters wird die Position des Roboters ermittelt.

5.5.2. Map-Test

Diese Demo veranschaulicht, wie eine Karte benutzt wird. Eine leere Karte wird zuerst
angelegt, dann werden Punkte, Linien, Dreiecke, Rechtecke sowie Polygone nacheinander
in die Karte eingefügt. Zuletzt wird die Karte durch einen Viewer visualisiert (Abbildung
5.3).

Abbildung 5.3.: Das visualisierte Ergebnis des Map-Tests

5.5.3. Thread-Test

In praktischen Anwendungen sollen Sensoren, Filter und Karten als unabhängige Threads
gleichzeitig ausgeführt werden. Daher wird ein Multi-Thread-Modus benötigt. Diese Demo
realisiert das Multi-Threading mithilfe der Openthreads-Bibliothek. Im Hauptprogramm

37

5. Implementierung

laufen zwei Threads gleichzeitig nebeneinander, einer für die simulierten Sensordatenströme,
ein für den Viewer. Es wird angenommen, dass die Kamera einen Würfel erkennt. Jede
Sekunde wird der Karte eine Kante hinzugefügt, bis alle 12 Kanten des Würfels in der Karte
liegen. Anschließend werden sie gemeinsam gruppiert und dann als ein ganzes Objekt in
der Karte bewegt und rotiert (Abbildung 5.4).

(a) Kanten werden nacheinander in die
Karte eingetragen.

(b) Alle 12 Kanten werden gemeinsam
gruppiert.

(c) Der Würfel wird bewegt und rotiert.

Abbildung 5.4.: Das visualisierte Ergebnis des Thread-Tests

5.5.4. OpenCV-Test

OpenCV ist eine freie C++-Bibliothek mit Algorithmen für die Bildverarbeitung und ma-
schinelles Sehen. Diese Demo zeigt eine Anwendungsmöglichkeit mit visuellen Sensoren.
Ein Testbild wird in das Hauptprogramm eingelesen, durch Bildverarbeitung in OpenCV

38

5.5. Demo-Programme

werden alle robusten Features im Bild detektiert und dann in die Karte eingetragen. Hier
sind die Features die Eckpunkte. Schließlich wird durch den Viewer das Ergebnis visualisiert
(Abbildung 5.5).

(a) Das originale Bild.

(b) In der Karte gespeicherte Features.

Abbildung 5.5.: Das visualisierte Ergebnis des OpenCV-Tests

39

6. Diskussion

6.1. Zusammenfassung

Das Simultaneous Localization and Mapping (SLAM) Problem ist ein heißes Forschungsthema
im Bereich Navigationssysteme. SLAM-Systeme wurden in verschiedenen Umgebungen
angewandt, wie zum Beispiel Indoor- [LDW91, CMNT98] , Unterwasser- [LF99, WND+

00] und
Outdoor-Umgebungen [GNW00, JG00] . Aktuelle Navigationssysteme werden oft mit mehreren
Sensoren ausgestattet, die meist kostengünstig sind und ungenaue Messwerte zurückgeben.
Wegen der Leistungseinschränkungen der Sensoren und Störungen in der Betriebsumgebung
ist eine exakte Lokalisierung anhand der ungenauen wahrgenommen Informationen schwer
zu erreichen.

Durch den Ansatz von Sensorfusionsverfahren kann die Unsicherheit des Systems effizient
berechnet und damit eine genügende Genauigkeit der Schätzung der Position erhalten
werden. Das beliebteste Sensorfusionsverfahren ist der Kalman-Filter, der den Systemzustand
rekursiv schätzt und mit den Messwerten aus Sensoren korrigiert. Durch die Linearisierung
aller nichtlinearen Terme kann ein erweiterter Kalman-Filter nichtlineare Probleme lösen.

Die Karte ist eine wichtiger Bestandteil eines SLAM-Systems. Je nach Darstellungsweise
können Karten hauptsächlich in drei Kategorien unterteilt werden: Rasterkarten [Elf90, Thr01] ,
Feature-Karten [CK92, LF99] sowie topologische Karten [BNRW99, KB91] . Nach Berücksichtigung
der räumlichen Unsicherheit im SLAM-System wurde im SLAM-Framework eine Feature-
Karte implementiert.

Das implementierte SLAM-Framework wird in 5 Module unterteilt: Sensoren, Modelle, Filter,
Karte sowie SLAM-Kern. Drei quelloffene C++-Bibliotheken wurden bei der Entwicklung
verwendet: Bayesian Filtering Library (BFL) für das Filter-Modul, OpenSceneGraph (OSG) für
das Karte-Modul und OpenCV für ein Demo-Programm. Mit dem in dieser Arbeit implemen-
tierten SLAM-Framework kann eine SLAM-Applikation schnell entwickelt werden.

41

6. Diskussion

6.2. Ausblick

Weiterführende Arbeiten könnten das in dieser Arbeit implementierte SLAM-Framework
ergänzen und erweitern.

Die Implementierung einer Basisklasse für Sensoren ist notwendig, um die Grundfunktionen
eines Sensors einheitlich zu definieren.

Im SLAM-Framework funktionieren bisher nur lineare Kalman-Filter und erweiterte
Kalman-Filter. In der BFL-Bibliothek stehen jedoch mehr als zehn Bayes-Filters zur
Verfügung, inklusive Partikel-Filter. Die BFL-Bibliothek wird im SLAM-Framework somit
noch nicht vollständig ausgenutzt.

Das in [Ros06] beschriebene kontinuierliche Systemmodell kann nicht im diskreten EKF
verwendet werden. Um diese Problem zu lösen, kann entweder der Algorithmus von EKF in
der BFL-Bibliothek modifiziert werden, oder das kontinuierliche EKF neu implementiert
werden.

Neben dem Bayes-Filter gibt es noch zahlreiche andere Sensorfusionsverfahren, wie z.B.
Informations-Filter, Fuzzy-Methoden, Neuronale Netze usw. Aufgrund der Zeitbeschrän-
kung wurden bei der Entwicklung des Frameworks nur Bayes-Filter betrachtet. Die anderen
Sensorfusionsverfahren könnten in Zukunft auch im SLAM-Framework hinzugefügt werden.

Im Abschnitt 4.1 wurden drei Kartentypen vorgestellt. Neben den Feature-Karten werden
auch häufig Rasterkarten in SLAM-System verwendet. Das Framework könnte später um
diesen Kartentyp erweitert werden.

42

A. Installation

Das SLAM-Frawework verwendet die Software ’CMake’ als Build-System und drei quelleof-
fene c++-Bibliotheken: Bayesian Filtering Library (BFL) für das Filter-Modul, OpenSceneGraph
(OSG) für das Karten-Modul und OpenCV für ein Demo-Programm.

A.1. CMake

CMake als Build-System muss zuerst installiert werden. Es kann von der Homepage von
CMake1 heruntergeladen werden.

A.2. BFL

Die BFL-Bibliothek verwendet ein andere quelloffene Bibliothek ’Boost’. Die Boost-Bibliothek
muss vor Installation der BFL-Bibliothek zur Verfügung gestellt werden.

1. Lade Source-Code der Boost-Bibliothek2 herunter.

2. Füge den Pfad von dem BOOST-Source-Code-Verzeichnis in den System-
Umgebungsvariablen unter dem ’Path’-Eintrag hinzu.

3. Lade Source-Code von der BFL-Bibliothek (Version 0.8.0)3 herunter.

4. Kompiliere und installiere die BFL-Bibliothek (siehe 4). Die Fehlermeldung von ’CppU-
nit’ kann ignoriert werden, weil die Testprogramme der BFL-Bibliothek nicht ausgeführt
werden müssen.

1http://www.cmake.org/cmake/resources/software.html
2http://www.boost.org/users/download
3http://www.orocos.org/bfl/source
4http://people.mech.kuleuven.be/~tdelaet/bfl-doc/installation-guide

43

http://www.cmake.org/cmake/resources/software.html
http://www.boost.org/users/download
http://www.orocos.org/bfl/source
http://people.mech.kuleuven.be/~tdelaet/bfl-doc/installation-guide

A. Installation

A.3. OSG

1. Lade Source-Code der OSG-Bibliothek5 herunter, oder checke das SVN-Repository6

aus.

2. Kompiliere und installiere die OSG-Bibliothek (siehe 7). Alle abhängigen Bibliothek
(’dependencies’) müssen auch heruntergeladen werden. Bei der CMake-Konfiguration
unter ’ACTUAL-3RDPARTY-DIR’ muss der entsprechende Pfad eingegeben werden.

3. Teste den OSGViewer, um zu prüfen, ob die OSG-Bibliothek richtig installiert ist.

A.4. OpenCV

1. Installiere die OpenCV-Bibliothek (siehe 8).

2. Das SLAM-Framework verwendet die OpenCV 2.3.0 . Falls die Version der installierten
OpenCV-Bibliothek nicht 2.3.0. ist, muss die Datei ’FindOpenCV.cmake’ (unter SLAM-
Framework/config) abgeändert werden: alle Nummern ’230’ durch entsprechende
Versionsnummer ersetzen.

A.5. Systempfad

Füge den Pfad der BFL-Installation, der OSG-Installation-Verzeichnis sowie der OpenCV-
Installation in System-Umgebungsvariable unter dem ’Path’-Eintrag hinzu.

A.6. CMake-Konfiguration

1. Starte die Software ’CMake’.

2. Wähle bei ’Source Code’ das Root-Verzeichnis (nicht ’/src’ !) des SLAM-Frameworks
aus.

3. Trage bei ’Binaries’ den Pfad ’SLAM-Framework-Verzeichnis/build’ ein.

4. Klicke den Button ’Configure’. Wähle die spezifische IDE und Compiler aus dann
klicke den Button ’finish’.

5http://www.openscenegraph.org/projects/osg/wiki/Downloads/CurrentRelease
6http://www.openscenegraph.org/projects/osg/wiki/Downloads/SVN
7http://www.openscenegraph.org/projects/osg/wiki/Support/GettingStarted
8http://opencv.willowgarage.com/wiki/InstallGuide

44

http://www.openscenegraph.org/projects/osg/wiki/Downloads/CurrentRelease
http://www.openscenegraph.org/projects/osg/wiki/Downloads/SVN
http://www.openscenegraph.org/projects/osg/wiki/Support/GettingStarted
http://opencv.willowgarage.com/wiki/InstallGuide

A.7. IDE

5. Prüfe nach, ob BOOST-, BFL-, OSG- und OpenCV-Bibliothek richtig gefunden werden.
Falls eine oder mehrere Bibliotheken nicht gefunden werden, entweder manuell eintra-
gen oder Systempfad nachprüfen, dann CMake-GUI erneut starten. Falls der Pfad von
allen Bibliotheken richtig angezeigt wird, klicke noch einmal den Button ’Configure’
und dann den Button ’Generate’.

6. Beende CMake-GUI, nachdem die Projekt-Datei generiert wurde.

A.7. IDE

1. Öffne das Projekt durch der Projektdatei ’SLAM-Framework-Verzeichnis/build/SLAM-
Framework.*’ (Die Endung * ist unterschiedlich für unterschiedliche IDE)

2. Compiliere das SLAM-Framework.

3. Compiliere und starte die Demo-Prgramme ’test-generator’ ’test-map’ ’test-thread’
und ’test-opencv’. Die OSG-Bibliothek und die BFL-Bibliothek sind dynamische Bi-
bliotheken. Für eine dynamische Bibliothek muss die entsprechende *.dll Datei unter
’/build/examples/test-verzeichnis’ mit kopiert werden, damit sie beim Testen richtig
funktioniert. Die Abhägigkeiten der Demo-Programme und Bibliotheken sind wie
folgt:

• test-generator : BFL

• test-map : OSG, OSGViewer, OSGGA, OSGDB, OSGUtil, OSGText und Open-
Threads (von OSG)

• test-thread : OSG, OSGViewer, OSGGA, OSGDB, OSGUtil, OSGText und Open-
Threads (von OSG)

• test-opencv : OpenCV-core, OSG, OSGViewer, OSGGA, OSGDB, OSGUtil, OSGText
und OpenThreads (von OSG)

45

Literaturverzeichnis

[AHWOW04] G. Abwerzger, B. Hofmann-Wellenhof, B. Ott, E. Wasle. GPS/SBAS and
Additional Sensor Integration for Pedestrian Applications in Difficult Envi-
ronments. Proceedings of the 17th International Technical Meeting of the Satellite
Division of The Institute of Navigation, pp. 766–774, 2004. (Zitiert auf Seite 7)

[BJP93] M. Buchberger, K.-W. Jörg, E. von Puttkamer. Laserradar and sonar based
world modeling and motion control for fast obstacle avoidance of the autono-
mous mobile robot MOBOT-IV. Proceedings of the IEEE International Conference
on Robotics and Automation, 1:534–540, 1993. (Zitiert auf Seite 18)

[BNRW99] T. Bailey, E. M. Nebot, J. K. Rosenblatt, H. F. D. Whyte. Robust Distinctive
Place Recognition for Topological Maps. Proceedings of the IEEE International
Conference on Field and Service Robotics, pp. 347–352, 1999. (Zitiert auf den
Seiten 27 und 41)

[CK92] K. Chong, L. Kleeman. Mobile robot map building from an advanced sonar
array and accurate demetry. IEEE Journal of Robotics Research, 11(4):286–298,
1992. (Zitiert auf den Seiten 27 und 41)

[CL85] R. Chatila, J.-P. Laumond. Position Referencing and Consistent World Mode-
ling for Mobile Robots. Proceedings of International Conference on Robotics and
Automation, pp. 138–145, 1985. (Zitiert auf Seite 13)

[CMNT98] J. A. Castellanos, J. M. Martinez, J. Neira, J. D. Tardos. Simultaneous map
building and localization for mobile robots: a multisensor fusion approach.
Proceedings of the IEEE International Conference on Robotics and Automation,
2:1244–1249, 1998. (Zitiert auf den Seiten 11 und 41)

[CN01] H. Choset, K. Nagatani. Topological simultaneous localization and map-
ping (SLAM): toward exact localization without explicit localization. IEEE
Transactions onRobotics and Automation, 17:125–137, 2001. (Zitiert auf Seite 12)

[CN03] S. Ceranka, M. Niedzwiecki. Application of Particle Filtering in Navigation
System for Blind. Proceedings of the Seventh International Symposium on Signal
Processing and Its Applications, 2:495–498, 2003. (Zitiert auf Seite 7)

[DFBT99] F. Dellaert, D. Fox, W. Burgard, S. Thrun. Monte Carlo Localization for Mobile
Robots. IEEE International Conference on Robotics and Automation (ICRA99),
2:1322–1329, 1999. (Zitiert auf Seite 12)

47

Literaturverzeichnis

[Elf87] A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal of
Robotics and Automation, 3(3):249–265, 1987. (Zitiert auf Seite 12)

[Elf89] A. Elfes. Occupancy Grids: A probabilistics framework for robot perception and
navigation. Ph.D. thesis, Carnegie Mellon University, 1989. (Zitiert auf Seite 27)

[Elf90] A. Elfes. Occupancy Grids: A Stochastic Spatial Representation for Active
Robot Perception. Proceeings of the Sixth Conference on Uncertainy in Artificial
Intelligence, pp. 136–146, 1990. (Zitiert auf den Seiten 27 und 41)

[GNW00] J. Guivant, E. Nebot, H. D. Whyte. Simultaneous Localization and Map
Building Using Natural features in Outdoor Environments. Proceedings of the
IEEE International Conference on Intelligent Autonomous Systems, pp. 316–321,
2000. (Zitiert auf den Seiten 11, 12 und 41)

[HK00] A. Heale, L. Kleeman. Laser-radar based mapping and navigation for an
autonomous mobile robot. Proceedings of the IEEE International Conference on
Intelligent Robots and Systems, 2:948–952, 2000. (Zitiert auf Seite 19)

[HKP90] P. Hoppen, T. Knieriemen, E. von Puttkamer. Laser-radar based mapping
and navigation for an autonomous mobile robot. Proceedings of the IEEE
International Conference on Robotics and Automation, 2:948–953, 1990. (Zitiert auf
Seite 18)

[HM04] C. Hide, T. Moore. Low Cost Sensors, High Quality Integration. Proceedings
of NAV04, Location and Timing Applications, pp. 40.1–4.10, 2004. (Zitiert auf
Seite 26)

[HS08] S.-Y. Hwang, J.-B. Song. Upward Monocular Camera based SLAM Using
Corner and Door Features. Preoceedings of the 17th IFAC World Congress, pp.
1663–1668, 2008. (Zitiert auf den Seiten 5, 12 und 28)

[JG00] S. B. Jose Guivant, Eduardo Nebot. Localization and map building using laser
range sensors in outdoor applications. Journal of Robotic Systems, 17:565–583,
2000. (Zitiert auf den Seiten 11, 12 und 41)

[Kal60] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME – Journal of Basic Engineering, 82:35–45, 1960. (Zitiert
auf Seite 22)

[KB61] R. E. Kalman, R. S. Bucy. New results in linear filtering and prediction theory.
Transactions of the ASME - Journal of Basic Engineering, 83:95–107, 1961. (Zitiert
auf Seite 22)

[KB91] B. Kuipers, Y.-T. Byun. A Robot Exploration and Mapping Strategy Based
on a Semantic Hierarchy of Spatial Representations. Journal of Robotics and
Autonomous Systems, 8:47–63, 1991. (Zitiert auf den Seiten 5, 27, 29 und 41)

[KK94] L. Kleeman, R. Kuc. An Optimal Sonar Array for Target Localization and
Classification. IEEE International Conference on Robotics and Automation, 4:3130–
3135, 1994. (Zitiert auf Seite 19)

48

Literaturverzeichnis

[Kle08] B. Kleiner. Generierung von Stützinformationen aus optischen Systemen für inertiale
Navigationssysteme. Master’s thesis, Technische Universität Dresden, 2008.
(Zitiert auf Seite 7)

[Kom06] S. Kombrink. Master’s thesis, Universität Stuttgart, 2006. (Zitiert auf Seite 7)

[Kra04] W. Krause. Konstruktionselemente der Feinmechanik. München: Hanser, 2004.
(Zitiert auf Seite 13)

[KW94] D. Kortenkamp, T. Weymouth. Topological mapping for mobile robots using
a combination of sonar and vision sensing. Proceedings of the Twelfth National
Conference on Artifical Intelligence, pp. 979–984, 1994. (Zitiert auf Seite 29)

[LDW91] J. J. Leonard, H. F. Durrant-Whyte. Simultaneous map building and localizati-
on for an autonomous mobile robot. Proceedings of the IEEE/RSJ International
Workshop on Intelligent Robots and Systems, p. 1442–1447, 1991. (Zitiert auf den
Seiten 11 und 41)

[LF99] J. J. Leonard, H. J. S. Feder. A Computationally Efficient Method for Large-
Scale Concurrent Mapping and Localization. Proceedings of the Ninth Internatio-
nal Symposium on Robotics Research, 1:316–321, 1999. (Zitiert auf den Seiten 11,
27 und 41)

[ME85] H. Moravec, A. Elfes. High resolution maps from wide angle sonar. Proceedings
of International Conference on Robotics and Automation, pp. 116–121, 1985. (Zitiert
auf Seite 27)

[MJ97] D. Murray, C. Jennings. Stereo vision based mapping and navigation for
mobile robots. Proceedings of International Conference on Robotics and Automation,
2:1694–1699, 1997. (Zitiert auf Seite 20)

[Nah76] N. E. Nahi. Estimation Theory and Applications. New York: R.E. Krieger., 1976.
(Zitiert auf Seite 14)

[RAK09] P. Robertson, M. Angermann, B. Krach. Simultaneous Localization and Map-
ping for Pedestrians using only Foot-Mounted Inertial Sensors. In Ubicomp
2009. 2009. (Zitiert auf Seite 7)

[RB00] S. I. Roumeliotis, G. A. Bekey. Bayesian estimation and Kalman filtering: A
unified framework for Mobile Robot Localization. Proceedings of International
Conference on Robotics and Automation, pp. 2985–2992, 2000. (Zitiert auf Seite 22)

[RGHR10] A. R. J. Ruiz, F. S. Granja, J. C. P. Honorato, J. I. G. Rosas. Pedestrian
Indoor Navigation by aiding a foot-mounted IMU with RFID signal Strength
Measurement. 2010 International Conference on Indoor Positioning and Indoor
Navigation (IPIN), pp. 1–7, 2010. (Zitiert auf Seite 7)

[Ros06] H. von Rosenberg. Sensorfusion zur Navigation eines Fahrzeugs mit low-cost
Inertialsensorik. Master’s thesis, Universität Stuttgart, 2006. (Zitiert auf den
Seiten 7, 8, 22 und 42)

49

Literaturverzeichnis

[SC86] R. C. Smith, P. Cheeseman. On the Representation and Estimation of Spatial
Uncertainty. The International Journal of Robotics Research, 5(4):56–68, 1986.
(Zitiert auf Seite 11)

[SD98] S. Simhon, G. Dudek. A Global Topological Map Formed by Local Metric
Maps. Proceedings of IEEE International Conference on Intelligent Robotics and
Systems, pp. 1708–1717, 1998. (Zitiert auf Seite 29)

[SSC86] R. C. Smith, M. Self, P. Cheeseman. Estimating Uncertain Spatial Relationships
in Robotics. Proceedings of the Second Annual Conference on Uncertainty in
Artificial Intelligence, p. 435–461, 1986. (Zitiert auf den Seiten 5, 11, 13, 14

und 16)

[Tay76] R. Taylor. A Synthesis of Manipulator Control Programs from Task-Level
Specifications. AIM-282, 1976. Stanford University Artificial Intelligence
Laboratory. (Zitiert auf Seite 13)

[TBF98] S. Thrun, W. Burgard, D. Fox. A Probabilistic Approach to Concurrent
Mapping and Localization for Mobile Robots. Machine Lerning, 31(1-3):29–53,
1998. (Zitiert auf Seite 12)

[Thr98] S. Thrun. Learning Metric-Topological Maps for Indoor Mobile Robot Nativa-
tion. Artificial Intelligence, 99(1):21–71, 1998. (Zitiert auf Seite 29)

[Thr01] S. Thrun. Learning Occupancy Grids with Forward Models. In Proceedings of
IEEE International Conference on Intelligent Robotics and Systems, pp. 1676–1681.
2001. (Zitiert auf den Seiten 5, 27, 28 und 41)

[TK95] C. Taylor, D. Kriegman. Vision-Based Motion Planning and Exploration
Algorithms for Mobile Robots. In Workshop on the Algorithmic Foundations of
Robotics, volume 14, pp. 417–426. 1995. (Zitiert auf Seite 20)

[TKG+
02] S. Thrun, D. Koller, Z. Ghahramani, H. Durrant-Whyte, A. Y. Ng. Simulta-

neous Mapping and Localization With Sparse Extended Information Filters.
In Proceedings of the Fifth International Workshop on Algorithmic Foundations of
Robotics, volume 23, pp. 693–716. Nice, France, 2002. (Zitiert auf Seite 12)

[WB06] G. Welch, G. Bishop. An Introduction to the Kalman Filter. Technical report,
University of North Carolina at Chapel Hill, 2006. (Zitiert auf den Seiten 5, 23

und 25)

[WKAR06] K. Wendlandt, M. Khider, M. Angermann, P. Robertson. Continuous location
and direction estimation with multiple sensors using particle filtering. In
IEEE International Conference on Multisensor Fusion and Integration for Intelligent
Systems, pp. 92–97. 2006. (Zitiert auf Seite 7)

[WL90] E. Waltz, J. Llinas. Multisensor Data Fusion. Artech House, Inc. Norwood, MA,
USE, 1990. (Zitiert auf Seite 20)

50

Literaturverzeichnis

[WND+
00] S. B. Williams, P. Newman, G. Dissanayake, J. Rosenblatt, H. Durrant-whyte.

A decoupled, distributed AUV control architecture. In Proceedings of 31st
International Symposium on Robotics, volume 1, pp. 246–251. 2000. (Zitiert auf
den Seiten 11 und 41)

[YM02] D. Yuen, B. A. MacDonald. A comparison between extended Kalman filtering
and sequential Mente Carlo techniques for simultaneous localisation and map
building. In Proceeings of Australian Conference on Robotics and Automation, pp.
335–340. 2002. (Zitiert auf Seite 12)

51

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Zhen Peng)

	1 Einleitung
	1.1 Aufgabenstellung
	1.2 Überblick über die Arbeit

	2 SLAM
	2.1 Klassifikation
	2.1.1 EKF-basiertes SLAM
	2.1.2 Wahrscheinlichkeits-basiertes SLAM
	2.1.3 Partikelfilter-basiertes SLAM
	2.1.4 SEIF-basiertes SLAM
	2.1.5 Klassifikation anhand Kartentypen

	2.2 Unsicherheit
	2.2.1 Repräsentation

	2.3 Beispiel
	2.4 Charakteristik des SLAM-Algorithmus
	2.4.1 Konvergenz
	2.4.2 Konsistenz
	2.4.3 Rechenaufwand

	3 Sensorfusion
	3.1 Sensoren
	3.1.1 Interne Sensoren
	3.1.2 Externe Sensoren
	GPS
	Laserentfernungsmesser
	Millimeterwellen-Radar
	Sonar-Sensor
	Stereo-Vision-System

	3.2 Architektur
	3.2.1 Parallele Fusion
	3.2.2 Sequentielle Fusion
	3.2.3 Mischformen

	3.3 Filter
	3.3.1 Linearer Kalman-Filter
	3.3.2 Erweiterter Kalman-Filter

	4 Karten
	4.1 Kartenrepräsentation
	4.1.1 Rasterkarten
	4.1.2 Feature-Karten
	4.1.3 Topologische Karten
	4.1.4 Vergleich

	4.2 Unsicherheit in Karte
	4.3 Szenengraph

	5 Implementierung
	5.1 Architektur
	5.2 CMake-configure
	5.3 Filter
	5.3.1 BFL
	5.3.2 Filter-Generator
	5.3.3 Modell
	Model-Generator

	5.4 Karte
	5.4.1 OSG
	5.4.2 Klasse ''map''
	5.4.3 Erweiterung

	5.5 Demo-Programme
	5.5.1 Generator-Test
	5.5.2 Map-Test
	5.5.3 Thread-Test
	5.5.4 OpenCV-Test

	6 Diskussion
	6.1 Zusammenfassung
	6.2 Ausblick

	A Installation
	A.1 CMake
	A.2 BFL
	A.3 OSG
	A.4 OpenCV
	A.5 Systempfad
	A.6 CMake-Konfiguration
	A.7 IDE

	Literaturverzeichnis

