
Institut für Architektur von Anwendungssystemen
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Studienarbeit Nr. 2331

Integration von Fragmento in eine
Rich Client Plattform

Dimitrios Dentsas

Studiengang: Informatik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: Dipl.-Inf. David Schumm

begonnen am: 28. April 2011

beendet am: 28. Oktober 2011

CR-Klassifikation: H.3.5, H.4.1, H.5.2

Inhaltsverzeichnis

1. Einleitung 7
1.1. Einführung . 7

1.2. Motivation und Aufgabenstellung . 7

1.3. Zusätzliche Anmerkungen . 8

1.4. Gliederung . 9

2. Hintergrund 11
2.1. Eclipse-Plugin-Entwicklung . 11

2.1.1. OSGi Framework . 12

2.1.2. Der Manifest-Editor . 14

2.1.3. Die Klasse Activator . 17

2.2. SWT und JFace . 18

2.2.1. SWT . 18

2.2.2. JFace . 18

2.3. Die Treeviewer und Wizard Komponenten für FragmentoRCP 18

2.3.1. JFace Treeviewer . 18

2.3.2. JFace Wizards . 19

2.4. Fragmento . 20

2.4.1. Konzeptionelle Architektur . 22

3. Architektur und Konzeption 27
3.1. Das MVC- und MVP-Architekturmuster . 27

3.1.1. Das MVC-Architekturmuster . 27

3.1.2. Das MVP-Architekturmuster . 29

3.2. Architektur . 29

3.2.1. Struktur des Modells . 31

3.2.2. Struktur der View . 34

3.2.3. Struktur des Presenters . 34

3.3. Architektur-Sichten . 37

3.3.1. Anwendungsfälle . 38

3.3.2. Verhaltens-Sicht . 43

4. Implementierung 49
4.1. Verwendete Technologien und Patterns . 49

4.1.1. Axis2 . 49

4.1.2. Loose Coupling . 49

4.1.3. Observer Pattern . 50

3

4.1.4. Reflection-Oriented Programming . 50

4.2. Strukturelle Sicht . 50

4.3. Implementierung des Modells . 52

4.3.1. JFace Treeviewer Models . 52

4.4. Implementierung des Presenters . 53

4.4.1. Realisierung des Observer Patterns . 53

4.4.2. FragmentService & Axis2 . 53

4.5. Implementierung der View . 54

4.5.1. Ereignissteuerung in der View . 54

4.5.2. FragmentoRCP Plugin Extensions . 56

4.6. Alternative Konzeption und Implementierung 57

5. Testdokumentation 59
5.1. Der Testplan . 59

5.1.1. Einführung . 59

5.1.2. Zu testende Komponenten . 59

5.1.3. Umgebung . 60

5.1.4. Vorgehen . 60

5.2. Die Testfälle . 60

5.3. Das Testprotokoll . 64

5.4. Der Abschlussbericht . 65

6. Zusammenfassung und Ausblick 67

A. Listings 69

B. Fragmento Web Service Interfaces 75

C. Graphische Benutzeroberfläche des FragmentoRCP Plugins 81

Literaturverzeichnis 87

4

Abbildungsverzeichnis

2.1. Abstrakter Aufbau des Eclipse RCP Gerüsts . 11

2.2. Aufbau des FragmentoRCP Plugins . 12

2.3. Exemplarisches Plugin-Manifest . 13

2.4. Der Manifest-Editor am Beispiel des FragmentoRCP Plugins 14

2.5. Die Abhängigkeitsbeziehung zwischen dem org.eclipse.ui.views Paket
und dem FragmentoRCP Plugin . 16

2.6. Beispiel eines Wizards . 20

2.7. Das konzeptionelle Modell der Artefakttypen 22

2.8. Die konzeptionelle Architektur von Fragmento 23

2.9. Darstellung des Modells der Artefakt-Versionsverwaltung 24

2.10. Relationen zwischen Artefakten . 24

3.1. Das MVC-Architekturmuster . 28

3.2. Gegenüberstellung des MVC-Architekturmusters mit seiner MVP Variante . . 30

3.3. Passive View und Supervising Controller . 30

3.4. Architektur des FragmentoRCP Plugins . 31

3.5. Listenstruktur der Treeviewer Modelle . 33

3.6. Die Ereignissteuerung und Komponentenregistrierung des Presenters 35

3.7. Der Aufbau der Operator Komponente . 37

3.8. Die Fragment Service Komponente . 38

3.9. Anwendungsfälle des FragmentoRCP Plugins 39

3.10. Das UML-Sequenzdiagramm der Treeviewer Initalisierung 46

3.11. Das UML-Sequenzdiagramm der JFace-Wizard-View-Komponente 47

4.1. Das annotierte UML-Klassendiagramm des FragmentoRCP Plugins 51

4.2. Das UML-Klassendiagramm der JFace Treeviewer Models 52

4.3. Die Fragment Service Komponente unter Anwendung von Axis2 54

4.4. das Interface fragmentorcppresenter.ifaces.IGuiModelPropertyChange.java 55

4.5. Die JFace Databinding Funktionsweise . 58

B.1. Das UML-Klassendiagramm der Klasse fragmentService.FragmentoAxis.java 80

C.1. Angabe einer Service URI und zusätzliche Optionen 81

C.2. Die Repository View mit aufgeklapptem Treeviewer 82

C.3. Wizard zur Erstellung neuer Artefakte . 83

C.4. Wizard zur Erstellung neuer Relationen . 84

C.5. Suche bestimmter Artefakte mit veränderbaren Suchkriterien 85

5

C.6. Suche bestimmter Relationen mit veränderbaren Suchkriterien 86

Tabellenverzeichnis

4.1. Die FragmentoRCP Extensions . 57

B.1. Die Fragmento Web Service Interfaces . 77

B.2. Die Fragmento Web Service Interfaces Parametertyp-Methoden 79

Verzeichnis der Listings

2.1. Ausschnitt der FragmentoRCP/plugin.xml und org.eclipse.ui/plugin.xml 17

3.1. Interface IModelAbstraction, welches von ModelAbstraction implementiert wird 32

3.2. Beispiel Setter-Methode mit einem firePropertyChange Aufruf 32

4.1. IGuiModelPropertyChange . 55

4.2. GuiModelPropertyChange_IWizardPage . 55

6

1. Einleitung

1.1. Einführung

Die Steigerung der Produktivität eines Unternehmens ist in der Wirtschaft von essentiel-
ler Bedeutung. Abläufe und Folgen von Produktionsschritten spielen bei der Erreichung
dieses Ziels eine Schlüsselrolle. Diese Begriffe sind eng verbunden mit dem Begriff des
Business Process Managements, kurz BPM. BPM befasst sich mit der Optimierung, Analyse
und Administration von Geschäftsprozessen. Aktivitäten als manuelle, oder auch automa-
tisierte Arbeitseinheiten, bilden die Grundlage dieses Ansatzes. Sie werden mit Hilfe von
BPM identifiziert, organisiert und verbessert. Ein möglichst reibungsloses Zusammenspiel
einzelner Geschäftsprozesse sorgt für einen effektiveren und effizienteren Ablauf einzelner
Produktionsschritte (vgl. [Wes07]).

Eine graphische Darstellung von Geschäftsprozessen kann durch die Spezifikationssprache
Business Process Modeling Notation1 erreicht werden. Sie modelliert Prozessmodelle auf der
konzeptionellen Ebene. Zur Realisierung von derartigen abstrakten Modellen in der logi-
schen Ebene spielt die Business Process Execution Language (BPEL) eine entscheidende Rolle.
Durch sie werden einzelne Aktivitäten, die Web Service Schnittstellen (vgl. [WCL+

05]) zur
Anwendungsintegration zur Verfügung stellen, zu einem Workflow (vgl. [LR00]) zusammen-
getragen.

Wie in den meisten Bereichen der Industrie, so ist auch vor allem für Geschäftsprozesse
das Prinzip der Wiedeverwendbarkeit von äußerster Wichtigkeit für die Produktivität eines
Unternehmens. Die Möglichkeit der Komposition und Substitution einzelner Prozessfrag-
mente unterschiedlicher Granularität zu einem Ganzen birgt enorme Vorteile. Sie ermöglicht
eine vereinfachte und beschleunigte Entwicklung prozessbasierter Applikationen. Es gibt
wenige Ansätze, die es ermöglichen Prozessbruchstücke, sogenannte Artefakte, organisiert
zur Verfügung zu stellen (vgl. [SKLS10]).

1.2. Motivation und Aufgabenstellung

Fragmento2 ist ein an der Universität Stuttgart entwickeltes Repository zur Verwaltung von
Prozessfragmenten. Es verfügt über einen Web Client, der jedoch keine Möglichkeit zur

1siehe http://www.bpmn.org/
2siehe http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/start.htm

7

http://www.bpmn.org/
http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/start.htm

1. Einleitung

Prozessmodellierung bietet. Durch die Bereitstellung diverser Web Service Interfaces, wird
die Anbindung von Fragmento an externe Applikationen ermöglicht.

Die Eclipse IDE3 bietet als weit verbreitete Entwicklungsumgebung mehrere Modellierungs-
erweiterungen an. Für Prozessmodellierungen eignet sich beispielsweise der Eclipse BPEL
Designer4.

Die Aufgabe dieser Studienarbeit ist der Entwurf und die Entwicklung des graphischen
Plugins FragmentoRCP zur Integration von Fragmento in die Rich Client Plattform Eclipse.
Die Anbindung findet über die erwähnten Web Service Schnittstellen statt.

Dieser Ansatz birgt enorme Vorteile, weil er den Zugang zu bewährten Modellierungswerk-
zeugen, wie den bereits erwähnten BPEL Designer, ermöglicht. Diese sind benutzerfreundlich
gestaltet und besitzen eine zum Teil große Community.

1.3. Zusätzliche Anmerkungen

Ein nicht unerheblicher Teil der verwendeten Literatur liegt ausschließlich im englischen
Originaltext vor. Für die Nutzung und Referenzierung solcher Texte verwendet der Verfasser
dieses Dokuments eigenhändig angefertigte Übersetzungen. Diese wurden nach bestem
Wissen und Gewissen vorgenommen.

Weil sich an diversen Stellen dieser Ausarbeitung die Nutzung direkter Zitate als nützlich
erwiesen hat, wird der jeweilige Sachverhalt, trotz Übersetzung, als direktes Zitat kenntlich
gemacht. Die Angabe des Zitats in der Ursprungssprache ist in der Fußnote derselben Seite
zu finden.

Anerkannte Technologien und Standards, aber auch bekannte Markennamen, werden stan-
dardmäßig durch die Angabe ihrer offiziellen Web-Präsenz in der Fußnote referenziert.

Neu eingeführte Begriffe und Schlüsselwörter werden vom restlichen Text durch eine kur-
sive Schriftauszeichnungsart hervorgehoben. Diese Maßnahme verbessert den Lesefluss
erheblich.

Schließlich ist anzumerken, dass sämtliche hier besprochenen Grundlagen und Hintergründe
keinen Anspruch auf Vollständigkeit erheben. Es sollen lediglich die Themen hervorgehoben
werden, die ausschlaggebend für das Verständnis der vorliegenden Aufgabe sind.

3siehe http://www.eclipse.org/
4siehe http://www.eclipse.org/bpel/

8

http://www.eclipse.org/
http://www.eclipse.org/bpel/

1.4. Gliederung

1.4. Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Hintergrund: Kapitel 2 befasst sich mit den wichtigsten Grundlagen der Eclipse
Rich Client Plattform. Es werden die nötigen Komponenten besprochen und vor allem
das Plugin-Konstrukt als leitendes Prinzip für die RCP-Entwicklung vorgestellt. Das
Kapitel schließt mit einem vertieften Einblick in das Fragmento Repository.

Kapitel 3 – Architektur und Konzeption: Mittelpunkt dieses Kapitels ist die Analyse und
kritische Beurteilung der Konzeptions- und Entwurfsphase des FragmentoRCP Plug-
ins. Die fundamentalen Entwurfsmuster sollen vorgestellt und im Hinblick auf die
tatsächliche Aufgabe dieser Studienarbeit angewandt werden.

Kapitel 4 – Implementierung: Die bisherigen theoretischen Erkenntnisse werden in diesem
Kapitel von ihrer praktischen Seite beleuchtet. Selektive Schlüsselkomponenten des
Plugins, mitsamt ihrer Implementierungswerkzeuge, werden analysiert. Schließlich
werden alternative Konzepte und Methoden zur Verwirklichung des Plugins ange-
schnitten.

Kapitel 5 – Testdokumentation: Die Kernbausteine der Benutzeroberfläche, als auch der
drunterliegenden Funktionskomponenten, werden einem umfangreichen Systemtest
unterzogen. Dieser Test entspricht dem ANSI/IEEE 829

5 Standard. Die Ergebnisse des
Testprotokolls werden in einem abschließenden Bericht erläutert.

Kapitel 6 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und
stellt Anknüpfungspunkte vor.

5http://standards.ieee.org/findstds/standard/829-1983.html

9

http://standards.ieee.org/findstds/standard/829-1983.html

2. Hintergrund

Dieses Kapitel liefert die benötigten Grundlagen dieser Studienarbeit. Es beschreibt die
grundlegende Softwareplattform OSGi und deren Implementierung Equinox. Darauf aufbau-
end widmet sich der nächste Abschnitt der Eclipse-Plugin-Entwicklung mitsamt aller für
dieses Projekt wichtigen Erweiterungspunkte. Ein Überblick über die wichtigsten SWT und
JFace Komponenten schafft eine Grundlage für die nächsten Kapitel. Diese Hintergrunddis-
kussion endet mit der Vorstellung des Fragmento Repositorys.

2.1. Eclipse-Plugin-Entwicklung

Ein zentraler Aspekt der Eclipse Rich Client Plattform, kurz Eclipse RCP, ist der Gedanke, dass
alle Anwendungen und alle Komponenten der IDE aus Plugins bestehen. Das Eclipse Gerüst
besteht aus einem minmal gehaltenen Framework, welches lediglich eine Ausführungsumge-
bung für Plugins bereitstellt (vgl. [Dau07, Seite 25]). Ein abstrakter Aufbau der Eclipse RCP
ist in Abbildung 2.1 zu sehen.

Die Komponenten OSGi und Equinox, sowie SWT und JFace werden hervorgehoben. Die
Semantik der Pfeile ist mit der aus den typischen Layering-Diagrammen bekannten «allowed

UI

JFaceEquinox

SWT
Standard

OSGi

Action Sets
Editors
Perspectives
Views
Workbench

Actions
Viewers
Wizards
Databinding

Widgets

Extensions
Applications

Products

Bundles
Services

Abbildung 2.1.: Abstrakter Aufbau des Eclipse RCP Gerüsts (eigene Bearbeitung nach
[MLA10, Seite 18])

11

2. Hintergrund

Plugin

Code

Execution
Specification

Extension
Specification

Abbildung 2.2.: Aufbau des FragmentoRCP Plugins (eigene Bearbeitung nach [MLA10, Seite
19])

to use» Relation gleichzusetzen. Die Komponenten OSGi und Equinox beispielsweise stehen
in einer solchen Relationen zueinander. Dies bedeutet, dass Equinox auf OSGi aufbaut und
auf dessen öffentliche Funktionalität zugreifen kann.

Der Aufbau eines Plugins wird durch das Paket FragmentoRCP in Abbildung 2.2 exem-
plarisch gezeigt. Jedes Plugin liegt als Java Archive (JAR) vor. Als solches enthält es stets
eine META-INF/MANIFEST.MF Datei. Zusätzlich enthalten Plugins eine plugin.xml Datei. Die
genauen Zusammenhänge werden in den folgenden Abschnitten erläutert.

2.1.1. OSGi Framework

Die OSGi Alliance1 entstand ungefähr zur selben Zeit wie das Eclipse Projekt. Ursprünglich
wollte man ein Java Service Modell zur Verfügung stellen, um eingebettete Geräte wie
Residential Gateways, oder Armaturenbrett-Computer zu entwickeln (vgl. [MLA10, Seite
21]).

Das Eclipse Plugin-Komponentenmodell basiert auf der Equinox Implementierung der
OSGi Framework R4.2 Spezifikation. Diese Spezifikation bietet einen Rahmen, in dem jede
Anwendung durch die Komposition und Ausführung sogenannter Bündel (engl. Bundles)
enwickelt wird. Ein enormer Vorteil der Bündelarchitektur ist das Hot Plugging, d.h. Bündel
können zur Laufzeit hinzugefügt und entfernt werden.

1http://osgi.org

12

http://osgi.org

2.1. Eclipse-Plugin-Entwicklung

Abbildung 2.3.: Exemplarisches Plugin-Manifest (eigene Bearbeitung nach [MLA10, Seite
21])

Eclipse operiert seit Version 3.0 auf dem OSGi-Standard. Jegliche Funktionalität wird in
Form von Plugins, welche äquivalent zu Bündeln sind, zur Verfügung gestellt (vgl. [Dau07,
Seite 26]).

Der Eclipse-Classloader

Wenn Plugins dynamisch zur Verfügung gestellt werden können, so ergibt sich schnell
ein Problem mit einem globalen Klassenlader (engl. Classloader), d.h. mit einem globalen
Klassenpfad. Dieses Hindernis umgeht Eclipse, indem es für jedes Plugin eine eigene
Klassenlader-Instanz erzeugt. Welche Abhängigkeiten zu anderen Plugins bestehen, wird
durch die Einsicht in das OSGi-Manifest META-INF/MANIFEST.MF deutlich (vgl [Dau07, Seite
27]). Diese Datei existiert in jedem Plugin und beschreibt weitere grundlegende Eigenschaften,
unter anderem den Namen, die Version und den Identifikator. Abbildung 2.3 zeigt den
Aufbau des Manifests des org.eclipse.ui Plugins.

Equinox

Wie schon in Abschnitt 2.1.1 erwähnt, basiert Equinox2 auf der Implementierung der OSGi
Framework R4.2 Spezifikation. In Eclipse stehen hierfür die Plugins org.eclipse.equinox.*
zur Verfügung (vgl [Dau07, Seite 26]). Eine wichtige Funktion von Equinox ist beispielsweise
die Möglichkeit Erweiterungspunkte zu definieren (siehe Abschnitt 2.1.2) (vgl. [MLA10, Seite
23]).

2http://www.eclipse.org/equinox/

13

http://www.eclipse.org/equinox/

2. Hintergrund

Abbildung 2.4.: Der Manifest-Editor am Beispiel des FragmentoRCP Plugins

2.1.2. Der Manifest-Editor

Der Manifest-Editor wird von Eclipse aus gestartet. Er ermöglicht eine übersichtliche Darstel-
lung der Inhalte der META-INF/MANIFEST.MF, plugin.xml und build.properties Manifest-
Dateien. Über insgesamt acht Karteikarten lassen sich die Manifest-Dateien auslesen und
manipulieren. Abbildung 2.4 zeigt den Manifest-Editor am Beispiel des FragmentoRCP
Plugins. Es folgt eine kurze Beschreibung aller Karteikarten und ihrer Aufgaben (vgl [Dau07,
Seite 33]).

Karteikarte: Overview

Im Unterbereich «General Information» lassen sich allgemeine Angaben wie ID, Version und
Name zum Plugin machen. Die beiden weiteren Unterbereiche «Testing» und «Exporting»
bilden die zentralen Komponenten dieser Karteikarte. Unter der «Testing» Rubrik kann eine
neue Eclipse IDE Instanz im Run oder Debug-Modus gestartet werden. Unter der «Exporting»
Rubrik kann der Zustand des Auslieferungsprodukts organisiert werden.

Alle hier vorgenommenen Einstellungen werden im OSGi-Manifest registriert.

14

2.1. Eclipse-Plugin-Entwicklung

Karteikarte: Dependencies

Alle benötigten Plugins, d.h. alle Abhängigkeiten der aktuellen Anwendung zu anderen
Plugins, werden in diesem Bereich hinzugefügt. Der Zugriff wird ausschließlich auf die
hier eingetragenen Plugins beschränkt. Es findet ebenfalls ein rekursiver Zugriff auf die
Pluginabhängigkeiten der eingetragenen Plugins statt usw.

Alle hier vorgenommenen Einstellungen werden im OSGi-Manifest registriert.

Karteikarte: Runtime

Der Unterbereich «Classpath» enthält alle Pakete (JAR-Archive), die im Klassenpfad der
Binärdateien des Plugins benötigt werden. Der Bereich «Exported Packages» bestimmt,
welche Pakete nach außen hin für andere Plugins sichtbar sein dürfen. Durch den möglichst
minimal gehaltenen Export von Paketen, lässt sich an dieser Stelle die Laufzeit des Plugins
optimieren, denn der Classloader muss dadurch weniger Pakete durchsuchen.

Die Rubrik «Package Visibility» bestimmt welche Pakete für welche Untermenge von Plugins
sichtbar sein dürfen.

Alle hier vorgenommenen Einstellungen werden im OSGi-Manifest registriert.

Karteikarte: Extensions

In diesem Bereich kann dem Plugin neue Funktionalität durch sogenannte Erweiterungspunk-
te hinzugefügt werden. Genauer gesagt, können Plugins, die in der Karteikarte «Dependen-
cies» angeführt werden, Funktionalität und Daten beisteuern. Typische Erweiterungspunkte
sind beispielsweise Views, Menüs und Commands.

Alle hier vorgenommenen Einstellungen werden im Plugin-Manifest registriert.

Karteikarte: Extension Points

Oft ist es erwünscht, dass Plugins die Funktionalität des eigenen Plugins erweitern kön-
nen. Derartige Erweiterungen bedürfen der Deklarierung eines Erweiterungspunkts (engl.
«Extension Point»).

Erweiterungspunkte werden durch folgende Angaben angelegt:

• Extension Point ID: Ein im Plugin eindeutiger Identifikator. Externe Plugins können
diesen Erweiterungspunkt, durch die Voranstellung der Plugin-ID an die Extension
Point-ID, referenzieren.

• Extension Point Name: Der Name des Erweiterungspunktes.

• Extension Point Schema: Das zum Erweiterungspunkt gehörende Schema.

15

2. Hintergrund

org.eclipse.ui.views

UI

Extension

FragmentoRCPcontributes

Abbildung 2.5.: Die Abhängigkeitsbeziehung zwischen dem org.eclipse.ui.views Paket
und dem FragmentoRCP Plugin (eigene Bearbeitung nach [MLA10, Seite
23])

Der genaue Zusammenhang von Extensions zu Extension Points wird im Unterabschnitt
Karteikarte: plugin.xml erläutert.

Alle hier vorgenommenen Einstellungen werden im Plugin-Manifest registriert

Karteikarte: MANIFEST.MF

Der Quelltext des OSGi-Manifests (siehe Abbildung 2.3).

Karteikarte: plugin.xml

Dies ist der Quelltext des Plugin-Manifests. Die Beziehungen zwischen «Extension» in einem
Plugin und den «Extension Points» in einem weiteren Plugin werden in der plugin.xml

festgehalten. Ein Beispiel aus dem FragmentoRCP Plugin ist im Listing 2.1 zu sehen. Das
org.eclipse.ui Paket stellt den Erweiterungspunkt org.eclipse.ui.views zur Verfügung
und das FragmentoRCP Plugin greift unter der «Extension» Rubrik darauf zu.

Es gibt eine Reihe von charakteristischen Eigenschaften dieser Extension zu Extension-Point
Beziehung, die den Kern der Philosophie des Extension-Registers ausmachen. Folgende
Charakteristika lassen sich herausfiltern:

• Das Extension zu Extension-Point Prinzip findet in Eclipse für fast alle Belange massi-
ven Einsatz.

• Dieser Erweiterungsmechansimus wird eingesetzt, um Funktionalität und Daten beizu-
steuern.

• Erweiterungen folgen einem deklarativen Paradigma, d.h. verbundene Plugins laden
ihre Inhalte nicht aktiv ein.

• Erweiterungen folgen dem «lazy» (deutsch: faul) Prinzip. Quellcode wird erst dann
geladen, wenn er auch gebraucht wird.

• Die Konsequenz oben genannter Eigenschaften ist eine gute Skalierbarkeit des Systems
(vgl. [MLA10, Seite 26]).

16

2.1. Eclipse-Plugin-Entwicklung

Listing 2.1 Ausschnitt der FragmentoRCP/plugin.xml und org.eclipse.ui/plugin.xml
org.eclipse.ui/plugin.xml

<extension-point id="views" name="%ExtPoint.views" schema="schema/views.exsd"/>

FragmentoRCP/plugin.xml

<extension

point="org.eclipse.ui.views">

<view

allowMultiple="false"

category="FragmentoRCP.FragmentoCategory"

class="fragmentorcp.views.RepositoryView"

icon="icons/favicon.ico"

id="FragmentoRCP.RepositoryView"

name="%view.name"

restorable="true">

</view>

<category

id="FragmentoRCP.FragmentoCategory"

name="%category.name">

</category>

</extension>

Karteikarten: Build und build.properties

Diese Rubriken entscheiden welche Komponenten des Plugins in den Build-Prozess
aufgenommen werden sollen. Alle hier vorgenommenen Einstellungen werden in der
build.properties Datei registriert.

2.1.3. Die Klasse Activator

Jedes Plugin, das in irgendeiner Weise mit der Benutzeroberfläche zusammen-
hängt, hat in der Regel eine Hauptklasse namens Activator, die die Klasse
org.eclipse.ui.plugin.AbstractUIPlugin erweitert. Wird das Plugin in den Ge-
samtkontext miteinbezogen, d.h. aktiviert, so wird genau eine neue Instanz der Activator
Klasse erzeugt (Singleton). Zur Verfügung stehen die Methoden getDefault(), die eben jene
Singleton-Instanz des Plugins zurückgibt und start() bzw. stop(), welche zum starten
und stoppen des Plugins gedacht sind (vgl. [Dau07, Seite 29]). Das ausführliche Listing der
Activator-Klasse wird im Listing A.2 aufgeführt.

17

2. Hintergrund

2.2. SWT und JFace

2.2.1. SWT

Das Standard Widget Toolkit3 (SWT) bildet die Basis für die GUI-Programmierung in Eclipse
RCP. Es wird treffend in [Dau07, Seite 133] charakterisiert. Dort heißt es: „Kernphilosophie
des SWT ist es, für die Komponenten der grafischen Benutzeroberfläche native Komponenten
des jeweiligen Windowing-Systems zu verwenden und nicht - wie bei Swing4 - diese
Komponenten in Java zu emulieren“. Aus diesem Grund passen sich SWT GUI-Komponenten
an die jeweilige Plattform an. Zugriffe auf die Widgets können aus diesem Grund effizient
stattfinden. SWT kontrolliert wichtige UI-Komponenten wie Schriftarten, Farben, Menüs
und Listen [MLA10].

Es ist hervorzuheben, dass SWT keineswegs an OSGi oder Equinox gebunden ist, oder davon
abhängt. Die SWT-Bibliotheken sind auch außerhalb der Eclipse-Umgebung einsetzbar.

2.2.2. JFace

SWT stellt die einzelnen Widgets des nativen Windowing-Systems zur Verfügung. JFace
hingegen ist ein UI-Toolkit, das sich die arbeitsweise von SWT zu Nutze macht und aus
dessen Widgets komplexere Gerüste aufbaut. SWT wird hierbei jedoch nicht verschleiert. Es
findet vielmehr eine simultane Nutzung beider Toolkits statt. Sowohl die JFace Implementie-
rung, als auch die API sind unabhängig vom jeweiligen Windowing-System. Das typische
Komponentenspektrum reicht von Schriftenregister und der Textunterstützung über Dialoge
und Databinding bis hin zu Wizards [MLA10].

2.3. Die Treeviewer und Wizard Komponenten für FragmentoRCP

Die hier genannten Komponenten bilden die Hauptbausteine bei der graphischen Umset-
zung des FragmentoRCP Plugins. Sie sollen im Folgenden in einzelnen Unterabschnitten
besprochen werden.

2.3.1. JFace Treeviewer

JFace Treeviewer5 werden an vielen Stellen in Eclipse verwendet. Es handelt sich um eine
manipulierbare Baumstruktur, die durch Modellobjekte gefüllt wird. Java stellt standard-
mäßig die Klasse org.eclipse.jface.viewers.TreeViewer zur Verfügung. Hauptsächlich
müssen folgende Aufgaben vom Treeviewer erledigt werden:

3http://www.eclipse.org/swt/
4http://download.oracle.com/javase/tutorial/uiswing/
5http://eclipse.org/articles/Article-TreeViewer/TreeViewerArticle.htm

18

http://www.eclipse.org/swt/
http://download.oracle.com/javase/tutorial/uiswing/
http://eclipse.org/articles/Article-TreeViewer/TreeViewerArticle.htm

2.3. Die Treeviewer und Wizard Komponenten für FragmentoRCP

• Alle relevanten Modellobjekte müssen graphisch repräsentiert werden können.

• Änderungen in diesen graphischen Repräsentanten werden registriert und weitergelei-
tet.

Für diese Zwecke existieren die Konstrukte Content Provider und Label Provider.

Content Provider

Die Modellobjekte, die den Inhalt des Treeviewers darstellen, müssen durch be-
stimmte Schnittstellen in UI-Objekte (die genannten graphischen Repräsentationen)
des Treeviewers transformiert werden. Der Content Provider wird durch die Klasse
org.eclipse.jface.viewers.ITreeContentProvider dargestellt. Er bietet entsprechende
Schnittstellen, die Baumstrukturen erkennen und die dahinterstehenden Objekte zurückge-
ben können.

Label Provider

Der Label Provider kann durch die Klasse org.eclipse.jface.viewers.StyledCellLabelProvider
instanziiert werden. Er bietet Methoden zur Verwaltung der visuellen Darstellung der
Modellobjekte. Charakteristisch hierfür ist beispielsweise der Beschreiungstext eines jeden
Baumelements, oder dessen zugehöriges Bildsymbol.

2.3.2. JFace Wizards

Wizards (vgl. [Dau07]) werden im Paket org.eclipse.jface.wizards verwaltet. Sie leiten
Anwender auf möglichst einfache Weise durch eine fest vorgegebene Anzahl an Arbeits-
schritten. Diese Hilfe wird durch eine Reihe von Dialogen verwirklicht. Alle Wizards müssen
das Interface IWizard implementieren, oder alternativ die abstrakte Klasse Wizard erweitern.
Abbildung 2.6 zeigt ein Beispiel des Wizard-Dialogs zum anlegen neuer Dateien in Eclipse.

WizardDialog

Die abstrakte Klasse WizardDialog bietet ein allgemeines Framework, in das eine Reihe von
Seiten eingefügt werden kann. Der instanziierte Wizard mitsamt den Seiten (auch Wizard-
Seiten genannt) wird dem WizardDialog im Konstruktor übergeben. Mittels create() und
open() lässt sich der WizardDialog schließlich erstellen und öffnen (siehe Listing A.4).

19

2. Hintergrund

Abbildung 2.6.: Beispiel eines Wizards

WizardPages

Die oben genannten Wizard-Seiten müssen das Interface IWizardPage implementieren,
oder alternativ die abstrakte Klasse WizardPage erweitern. Die Methoden setTitle() und
setDescription() setzen die jeweilige Überschrift und den Beschreibungstext der einzelnen
Wizard-Seiten fest. canFlipToNextPage() kontrolliert das Verhalten der Next-Taste und
isPageComplete() die Aktivierung der Next und Finish Tasten.

2.4. Fragmento

Fragmento (vgl. [SKLS10]) ist ein Repository zur Verwaltung von Prozessfragmenten, das
an der Universität Stuttgart entwickelt wurde und quelloffen unter der Apache 2 Lizenz6

verfügbar ist. Wie in der Einleitung schon erwähnt, dient das Fragmento Repository zur
Verwaltung von Prozessfragmenten. Ein Prozessfragment in unserem Sinne ist wie folgt be-
schrieben: „Ein Prozessfragment ist definiert als ein zusammenhängender Graph mit deutlich
gelockerten Vollständigkeits- und Konsistenzkriterien, im Vergleich zu einem ausführba-
ren Prozessgraphen. Ein Prozessfragment besteht aus Aktivitäten, Aktivitäts-Platzhaltern
(sogenannte Regionen) und Kontrollkanten, die die Kontrollabhängigkeiten unter ihnen

6siehe http://www.apache.org/licenses/LICENSE-2.0.html

20

http://www.apache.org/licenses/LICENSE-2.0.html

2.4. Fragmento

definieren.“7 [SKLS10, Seite 2]. Außerdem wird erwähnt: „Ein Prozessfragment ist nicht
notwendigerweise direkt ausführbar, es kann sogar teilweise undefiniert sein.“8 [SKLS10,
Seite 3].

Die zu verwaltenden Prozessfragmente (sogenannte Artefakte) können in folgende Kategori-
en unterteilt werden:

• Ein Prozess oder Prozessfragmentenmodel in Standard BPEL Form oder einer erweiter-
ten BPEL Version

• Ein WSDL Dokument

• Ein zum Prozess zugehöriger Deployment Descriptor

• WS-Policy Annotationen

• Eine View-Transformationsregel (für diese Arbeit nicht relevant)

• Zusätzliche Informationen für ein Prozess-Modellierungs-Werkzeug (z.B. graphische
Informationen wie X/Y Koordinaten von Aktivitäten in <flow> Konstrukten)

Die einzelnen Artefakttypen und ihre Beziehungen zueinander lassen sich aus ihrem Modell
in Abbildung 2.7 ablesen.

Die genannten Artefakttypen werden im Repository mit einem eindeutigen Identifikator ver-
sehen. Dieser Identifikator erlaubt die Markierung von Beziehungen (sogenannte Relationen)
zwischen einzelnen Artefakten. Artefakte bestehen aus:

• Eindeutiger Identifikator

• Metadaten (Name, Beschreibung, Schlüsselwörter etc.)

• Ein XML Dokument

• Ein Typ (WSDL, Fragmente etc.)

• Relationen zu anderen Artefakten

Relationen wiederum sind folgendermaßen aufgebaut:

• Ein Quellartefakt

• Ein Zielartefakt

• Ein Relationstyp (z.B. Annotationen)

• Ein Beschreibungstext

7original: „A process fragment is defined as a connected graph with significantly relaxed completeness and
consistency criteria compared to an executable process graph. A process fragment is made up of activities,
activity placeholders (so-called regions) and control edges that define control dependency among them. “

8original: „a process fragment is not necessarily directly executable and it may be partially undefined.“

21

2. Hintergrund

Abbildung 2.7.: Das konzeptionelle Modell der Artefakttypen (siehe [Fra])

2.4.1. Konzeptionelle Architektur

Die konzeptionelle Architektur von Fragmento ist in Abbildung 2.8 zu sehen. Der rote Kreis
markiert die Position, auf der das FragmentoRCP Plugin funktional anzusiedeln ist.

Darin ist der charakteristische Funktionsumfang des Repositorys ersichtlich. Es wird unter-
schieden zwischen Basisfunktionen und erweiterten Funktionen.

Basisfunktionen

Ein zentraler Aspekt der Basisfunktionalität ist die Versionierung der eingelagerten Artefakte.
Sobald ein neues Artefakt angelegt wird, generiert das Repository ein «Versioned Object».
Es handelt sich hierbei um einen Container, der alle Versionen des korrespondierenden
Artefakts enthält. Es ist möglich auf die «root version» (die erste Version) bzw. die «base
version» (die aktuellste Version) zuzugreifen. Die einzelnen Versionen werden durch ein
sogenanntes «Version Descriptor» Objekt dargestellt (siehe Abbildung 2.9).

Locks ist ein Sperrmechanismus, der ein Artefakt sperrt, sobald es aus dem Repository
ausgecheckt wurde. Dieses Prinzip verhindert die simultane Bearbeitung eines Artefakts
durch mehrere Parteien. Sobald ein Artefakt wieder eingecheckt wird, hebt sich die Sperre
automatisch auf.

22

2.4. Fragmento

Abbildung 2.8.: Die konzeptionelle Architektur von Fragmento (siehe [SKLS10, Seite 9])

Die Relationen definieren Beziehungen zwischen Artefakten. Sie enthalten die in Abschnitt
2.4 erwähnten Metadaten. Es ist zu beachten, dass Relationen zwischen «Version Descrip-
tor» Objekten statt «Versioned Object» Konstrukten bestehen (siehe Abbildung 2.10). Dies
ermöglicht Relationen zwischen einzelnen Versionen eines Artefakts.

Die eingebaute Suchfunktionalität stellt einen effizienten Suchmechanismus nach vordefinier-
ten Kategorien zur Verfügung. Für Artefakte existieren folgende Kategorien:

• Suche nach übereinstimmenden Textfragmenten in der Artefaktbeschreibung.

• Suche nach übereinstimmenden Inhaltsfragmenten (XML Dokument eines Artefakts).

• Suche nach allen neu angelegten Artefakten in vorgegebenem Zeitintervall.

• Suche nach bestimmtem Artefakttyp.

• Suche nach allen neu angelegten Artefakten in vorgegebenem Zeitintervall und be-
stimmtem Artefakttyp.

Für Relationen existieren folgende Kategorien:

• Suche nach übereinstimmenden Relationen mit vorgegebenem Quellartefakt.

• Suche nach übereinstimmenden Relationen mit vorgegebenem Zielartefakt.

• Suche nach allen neu angelegten Relationen in vorgegebenem Zeitintervall.

• Suche nach bestimmtem Relationsttyp.

23

2. Hintergrund

Versioned Object

Version Descriptor

XML
Element

XML
Metadata

Root
Version

Base
Version

Version History

Abbildung 2.9.: Darstellung des Modells der Artefakt-Versionsverwaltung (eigene Bearbei-
tung nach [Fra])

Version Descriptor

Version Descriptor

Version Descriptor

Versioned Object

Version Descriptor

Version Descriptor

Version Descriptor

Versioned Object

Abbildung 2.10.: Relationen zwischen Artefakten (eigene Bearbeitung nach [Fra])

24

2.4. Fragmento

• Suche nach allen neu angelegten Relationen in vorgegebenem Zeitintervall und be-
stimmtem Relationsttyp.

Erweiterte Funktionen

Fragmento bietet einige erweiterte Funktionen an. Für diese Studienarbeit ist vor allem die
Validierungsfunktion und die Möglichkeit Bündel abzurufen wichtig.

Bei der Validierungsfunktion handelt es sich um einen Syntax-Kontrollmechanismus, der ein
bestimmtes Format für eingelagerte und einzulagernde WSDL Dokumente voraussetzt und
garantiert. BPEL Prozesse müssen ebenfalls vorgegebenen Regeln genügen. Die Integration
von eigenen Prüfern ist möglich.

Ein Bündel beschreibt einen Prozess mit all seinen zusammenhängenden Relationen. In
Fragmento lassen sich solche Bündel einfach abrufen und archivieren.

25

3. Architektur und Konzeption

Dieses Kapitel beschreibt die Konzeptions- und Entwurfsphase des FragmentoRCP Plug-
ins. Es werden die zugrundeliegenden Entwurfsmuster vorgestellt, analysiert und auf die
vorliegende Aufgabe angewandt.

Eine Auswahl an Modellierungsdiagrammen und architektonischen Sichten werden präsen-
tiert und liefern eine umfangreiche Beschreibung des Plugins und seiner Bestandteile.

3.1. Das MVC- und MVP-Architekturmuster

Für ein tieferes Verständnis der Struktur des FragmentoRCP Plugins ist eine Hintergrund-
diskussion über allgemeinere Architekturen erforderlich. Die nächsten Abschnitte dienen
dem Einstieg in den Aufbau des Plugins. Sie befassen sich mit dem sogenannten Model View
Controller Architekturmuster und dessen Variante Model View Presenter.

3.1.1. Das MVC-Architekturmuster

Das Model View Controller Architekturmuster (MVC) (vgl. [Fow04b]) ist schon seit den
späten 1970er Jahren bekannt. Es wurde von Trygve Reenskaug für die Smalltalk Plattform
konzipiert und ist ein häufig verwendetes Konzept.

Im Vordergrund steht die Separierung von Software in die typischerweise drei isolierten
Einheiten Datenmodell (engl. model), Präsentation (engl. view) und Programmsteuerung
(engl. controller). Dieses Prinzip steigert die Modularität von Software und damit die
Separation of Concerns, kurz SoC.

• Datenmodell

Das Modell als Objekt repräsentiert die Daten des Software-Systems und deren Bezie-
hungen zueinander. Gegebenenfalls auch die Geschäftslogik. Es ist ganzheitlich von
den Belangen der Benutzeroberfläche abzugrenzen.

• Präsentation

Die Präsentation dient der Darstellung des Modells in der UI (User Interface), zumeist
handelt es sich um die GUI (Graphical User Interface).

27

3. Architektur und Konzeption

View

Renders the models
Requests updates from models
Sends user gestures to controller
Allows controller to select view

Controller

Defines application behavior
Maps user actions to model
updates
Selects view for response
One for each functionality

Model

Encapsulates application state
Responds to state queries
Exposes application
functionality
Notifies views of changes

State
 query

Change
Notification

State
Change

View Selection

User Gestures

Method Invocations

Events

Abbildung 3.1.: Das MVC-Architekturmuster (eigene Bearbeitung nach [Eck07])

• Programmsteuerung

Jegliche Änderungen der dargestellten Informationen werden nicht durch die Präsen-
tationskomponente vorgenommen, sondern von der Programmsteuerung. Benutzerein-
gaben werden delegiert und Zustände in den Modell- und Präsentationseinheiten
manipuliert.

In gewisser Hinsicht ist die Programmsteuerung hiermit ein Bindeglied zwischen Geschäfts-
logik und Präsentation. Abbildung 3.1 beschreibt das Zusammenspiel aller Komponenten.

Ein zentraler Gesichtspunkt des MVC-Musters ist die Abhängigkeitsbeziehung der Kompo-
nenten. Typischerweise ist die Präsentation direkt abhängig von dem Modell.

Durch Zustandsabfragen liefert das Modell Informationen an die Präsentationseinheit. Eine
umgekehrte Abhängigkeit muss in jedem Fall vermieden werden. Das Modell darf keine
Kenntnis über die Präsentation bzw. dessen Implementierung besitzen. Diese Forderung
garantiert die Austauschbarkeit und Integration von Benutzeroberflächen.

28

3.2. Architektur

3.1.2. Das MVP-Architekturmuster

Das Model View Presenter Architekturmuster (MVP) [Fow06] wurde durch IBM1 und vor-
nehmlich durch Taligent in den 1990er Jahren bekannt gemacht. Es handelt sich um ein
Derivat des in Abschnitt 3.1.1 beschriebenen MVC-Musters.

Der große Unterschied zum MVC-Muster besteht darin, dass alle Abhängigkeitsbeziehungen
zwischen der Programmsteuerung und der Ansicht beseitigt werden. Die Programmsteue-
rung übernimmt nun sämtliche Angelegenheiten der Datenübermittlung und Propagierung
zwischen den restlichen Komponenten. Sie wird zum sogenannten Präsentator (engl. presen-
ter). Abbildung 3.2 illustriert diesen Sachverhalt.

Es wird zwischen zwei Arten des MVP-Musters unterschieden: Supervising Controller und
Passive View (siehe Abbildung 3.3). Der Unterschied dieser Varianten ist oftmals subjektiv.
Sie werden in [San10] wie folgt definiert:

• Supervising Controller Die Ansicht kann für gewisse Teile der Darstellungslogik ver-
antwortlich sein. Es können beispielsweise Elemente für die Synchronisation zwischen
Ansicht und Modell enthalten sein2 .

• Passive View Alle UI Widgets (Die Steuerelemente der graphischen Benutzerober-
fläche) werden ausschließlich vom Präsentator verändert. Die Ansicht enthält keine
Darstellungslogik.

Vorteile ergeben sich durch eine Vereinfachung der Durchführung von Modultests im
Rahmen des TDD3. Ansichten können hiermit leichter durch Mock-Up Objekte ersetzt
werden.

3.2. Architektur

Das in dieser Studienarbeit entwickelte Plugin FragmentoRCP baut auf dem in Abschnitt 3.1.2
vorgestellten MVP-Architekturmuster auf. Im kontinuierlichen Spektrum der MVP Varianten
ist es auf der Seite des Supervising Controller anzusiedeln (Näheres dazu in Abschnitt 3.2.2).
Diese Architekturentscheidung hängt mit der guten Umsetzung der SoC zusammen. Es
findet eine hinreichende Komplexitätsreduktion der Planungs- und Implementierungsphase
des Projekts statt. Nachfolgende Analyse bezieht sich stets auf die konzeptionelle Architektur
des Plugins aus Abbildung 3.4.

1http://www.ibm.com/
2Bsp. JFace Data Binding
3Test Driven Development

29

http://www.ibm.com/

3. Architektur und Konzeption

View

Controller Model

Passes
calls to

Manipulates

Fire
events

User Interaction

View

Controller

Model

Passes
calls to

Manipulates

User Interaction

Fires
events

Updates

Model-View-Controller Model-View-Presenter

Abbildung 3.2.: Gegenüberstellung des MVC-Architekturmusters mit seiner MVP Variante
(eigene Bearbeitung nach http://www.devx.com/dotnet/Article/33695/

1954)

View Presenter

Model

M-V-P (Passive View) M-V-P (Supervising Controller)

View Presenter

Model

Interaction with the
model is handled
exclusively by the
presenter
The view is updated
exclusively by the
presenter

The view interacts
with the model for
simple data-binding
The view is updated by
the presenter and
through data-binding

Abbildung 3.3.: Passive View und Supervising Controller (eigene Bearbeitung nach http:

//msdn.microsoft.com/en-us/library/ff647543.aspx)

30

http://www.devx.com/dotnet/Article/33695/1954
http://www.devx.com/dotnet/Article/33695/1954
http://msdn.microsoft.com/en-us/library/ff647543.aspx
http://msdn.microsoft.com/en-us/library/ff647543.aspx

3.2. Architektur

P
R

E
S

E
N

T
E

R
M

O
D

E
L

Property Change Handler

JFace Wizard Models View Models

JFace Treeviewer Models
Property Change Handler

Search
Model

Create
Model

Option
Model

Repository View
Model

Artefact
Model

Relation
Model

Locks
&

History

Artefact/Relation
Categories

Fragment ServiceOperator

Model/View Registry

JFace Wizard View

Search
View

Create
View

Option
View

Main View

Repository View

JFace Treeviewer

V
IE

W

Abbildung 3.4.: Architektur des FragmentoRCP Plugins

3.2.1. Struktur des Modells

Das Modell ist in zwei separate, unabhängige Kategorien aufgeteilt. Auf der einen Seite
stehen die Modellkomponenten JFace Wizard Models und View Models, die für einen Großteil
der Daten und Interaktionen der Benutzeroberfläche zuständig sind und auf der anderen
Seite die JFace Treeviewer Models, deren Instanzen sowohl für den strukturellen als auch den
inhaltlichen Aufbau des Repository Baums dienen.

Erstere Komponente wird um einen Mechanismus, dem sogenannten Property Change Handler,
zur Erkennung und Propagierung von Änderungen einzelner Felder der Modellkomponen-
ten, erweitert.

31

3. Architektur und Konzeption

Listing 3.1 Interface IModelAbstraction, welches von ModelAbstraction implementiert wird

public interface IModelAbstraction {

public void addPropertyChangeListener(String,PropertyChangeListener);

public void addPropertyChangeListener(PropertyChangeListener);

public void removePropertyChangeListener(PropertyChangeListener);

protected void firePropertyChange(String, Object, Object);

}

Listing 3.2 Beispiel Setter-Methode mit einem firePropertyChange Aufruf
public void setValue(X newValue) {

propertyChangeSupport.firePropertyChange("key", this.oldValue,

this.oldValue = newValue);

}

Property Change Handler

Der Handler wird durch die Klasse java.beans.PropertyChangeSupport realisiert. Hierzu
werden alle nötigen Methoden in dem Interface IModelAbstraction deklariert (Listing 3.1).
Dieses Interface bietet die Möglichkeit Listener hinzuzufügen, zu entfernen und einzelne
Objektänderungen an entsprechende Stellen weiterzuleiten (vgl. Abschnitt 3.2.2). Die ein-
zelnen Modelle erben diese Eigenschaften von der abstrakten Klasse ModelAbstraction, die
besagtes Interface implementiert.

JFace Wizard Models

Die «JFace Wizard Models» Komponente besteht aus folgenden drei Modellen: Search Model,
Create Model und Option Model. Sie halten Daten für die Suche und das Erstellen neuer
Artefakte im Repository Baum, sowie für diverse Optionseinstellungen des Plugins.

Neben den kritischen Feldern für die Funktionalität speichern diese Modelle auch Zustände,
wie z.B. von klickbaren Widgets, durch diverse Triggervariablen.

In den entsprechenden Setter-Methoden der Modelle wird der Aufruf nach dem Schema
von Listing 3.2 getätigt. Der Parameter «key» wird bei einem manuellen Auslöser einer
Objektänderung als Identifikator benutzt.

View Models

Zur Zeit besteht diese Komponente aus einem einzigen Modell. Es ist das Modell für die
Hauptansicht der Benutzeroberfläche. Vorrangig werden hier Daten für Operationen des
JFace Treeviewers gehalten, die über die zur Verfügung gestellten Web Service Interfaces des
Repositorys ablaufen. Die wichtigsten unter ihnen sind checkInArtifact und checkOutArtifact
Vorgänge, deleteRelation, retrieveArtifactBundle und releaseLocks (siehe Anhang B). Sollten für

32

3.2. Architektur

<<Treeviewer>>
<<ROOT>>
Categories

<<Relation>>
Relations
Category

<<Artefacts>>
Artefact
Category

<<CONTAINER>>

Artefact
Category <<ANNOTATION>>

Artefact
Category

<<DEPLOYMENT>>
<<DESCRIPTOR>>

Artefact
Category

<<FRAGMENT>>

Artefact
Category

<<MODELLER>>
<<DATA>>

Artefact
Category

<<PROCESS>>

Artefact
Category

<<TRANSF.>>
<<RULE>>

Artefact
Category

<<WSDL>>

Artefact
Category

Artefact_1 Artefact_N

...<<CONTAINER>>

Relations
Category

<<WSDL>>
Relations
Category

...

Abbildung 3.5.: Listenstruktur der Treeviewer Modelle

zukünftige Anforderungen weitere sogenannte Views (vgl. org.eclipse.ui.part.ViewPart)
erforderlich sein, so sind deren Modelle hier einzufügen.

JFace Treeviewer Models

Die Wichtigkeit dieser Komponente wird deutlich, wenn man den JFace Treeviewer genauer
betrachtet. Unter anderem gibt es den sogenannten Content Provider, der die Struktur des
Treeviewers in Form einer Liste (vgl. java.util.List) entgegennimmt und mit ihr arbeitet.

Die Struktur dieser Liste wird, wie in Listing A.1 gezeigt, durch die Modelle Artefact Model,
Relation Model, sowie deren Oberkategorien Artefact Category und Relation Category definiert.
Eine entsprechende graphische Repräsentation liefert Abbildung 3.5. Artefact-Modelle und
Relation-Modelle sind stets die Blätter des Baums. Die nächsten zwei Baumebenen drüber
sind vom Typ Artefact Category bzw. Relation Category. Sie sind im Gegensatz zu den
Blättern von konstanter Größe. Eine genauere Diskussion über die vorgegebenen Kategorien
findet in Kapitel 2.4 statt.

Die übrigen zwei Modelle Locks und History halten, wie die Namen schon suggerieren, Daten
über die bei Auslesevorgängen von Artefakten errichteten Sperrobjekte und Objekte zu
Vorgängerversionen von Artefakten.

33

3. Architektur und Konzeption

3.2.2. Struktur der View

Die View regelt alle Vorgänge der direkten Interaktion des Benutzers mit dem System. Die
graphische Bereitstellung verschiedener Dialoge und Daten kann auf verschiedene Art und
Weise umgesetzt werden.

Die FragmentoRCP View gliedert sich in zwei Hauptbereiche: JFace Wizard View und Main
View.

Erstere Komponente befasst sich mit der Erstellung und Handhabung der Wizard Pages. Die
drei zentralen Wizard Pages Search View, Create View und Option View korrespondieren direkt
mit den in Unterabschnitt 3.2.1 vorgestellten Modellen.

Die Repository View fällt unter die Kategorie Main View. Es handelt sich um die zentrale View,
auf der die JFace Treeviewer Komponente aufsetzt. Wie schon erwähnt ist die realisierte MVP
Variante die des Supervising Controllers. Jede einzelne GUI-Komponente enthält Methoden
zur Ereignispropagierung über den Presenter und ist damit aktiv an der Darstellungslogik
beteiligt. Kapitel 4 geht im Detail darauf ein.

3.2.3. Struktur des Presenters

Der Presenter hat als Bindeglied zwischen View und Model eine besondere Aufgabe zu
erledigen (vgl Abschnitt 3.1.2). Er registriert und koordiniert auftretende Ereignisse und
reicht sie an die vorgesehenen Modelle und Ansichten weiter. Abbildung 3.6 zeigt ein
detaillierteres Architekturdiagramm, dass diesen Vorgang für unseren Fall beschreibt.

Die durchnummerierten zeitlichen Ablaufschritte werden im Diagramm grün hinterlegt. Sie
sind wie folgt zu interpretieren:

• Zeitschritt 1 Als erstes registrieren sich alle benötigten Modelle und Ansichten in der
Anlaufstelle Model / View Registry. Diese Anlaufstelle ist die zentrale Komponente des
Presenters. Jegliche Manipulation findet über sie statt. Durch diesen Schritt erlaubt sie
außerdem einen direkten Austausch zwischen allen registrierten Teilnehmern.

• Zeitschritt 2 Jedem teilnehmenden Modell aus Schritt 1 wird ein Listener hinzuge-
fügt, sodass alle Ereignisse bzw. Zustandsänderungen vom Property Change Handler
verarbeitet werden können (vgl Listing 3.1).

• Zeitschritt 3 Die Manipulation von Ansichten durch den Benutzer löst Zustandsän-
derungen aus, die an den Property Change Handler weitergereicht werden. Die Unter-
komponente setModelProperty leitet alle notwendigen Schritte, zur Propagierung der
Ereignisse an die adressierten Modelle, ein.

• Zeitschritt 4 Die Zustandsänderungen in den Modellen aus Schritt 3 werden durch
die Methoden firePropertyChange() (vgl Listing 3.1) und propertyChange() an die
adressierten Ansichten weitergeleitet.

34

3.2. Architektur

PRESENTER

Model / View Registry
Model_1

Model_1
Models

Model_1
Model_1
Views

add Models

propertyChange()
PropertyChangeEvent

firePropertyChange()
Property Change

Handler

Change Model PopertyChange Model Property setModelProperty()

Operator Fragment Service

add Views

PropertyChangeEvent

1 1

2

3
3

4 4

addPropertyChangeListener

Abbildung 3.6.: Die Ereignissteuerung und Komponentenregistrierung des Presenters

Jeder registrierte Teilnehmer besitzt Möglichkeiten um sich wieder abzumelden. Entspre-
chend werden bei einer solchen Abmeldung auch alle Listener der korrespondierenden
Modelle entfernt. Obiges Diagramm verzichtet aus Platzgründen auf die Darstellung dieser
Mechanismen.

Durch die beschriebenen Ablaufschritte, schafft der Presenter eine Umgebung, bei der alle
Objekte des Systems alle auftretenden Ereignisse und Datenänderungen, wenn gewünscht,
abgreifen können. Die Grundidee hierfür liefert der Artikel [Eck07].

Operator

Der Operator, auch Treeviewer Operator genannt, ist die Komponente des Presenters, die sich
mit der Manipulation, der Web Services Integration und der Serialisierung des Treeviewers

35

3. Architektur und Konzeption

beschäftigt. Zusätzlich regelt sie auch alle Informations- und Fehlerdialoge und Kontext-
Menüeinträge des Treeviewers. Das Diagramm in Abbildung 3.7 fasst diese Komponenten in
einzelnen Layern zusammen.

Die einzelnen Layer sind wie folgt definiert:

• Treeviewer CRUD Manipulation

Dieser Layer liefert das Fundament für alle späteren Manipulationen des Treeviewers.
Er definiert die CRUD (Create, Read, Update, Delete) Basisfunktionen. Es können
somit neue Artefakte und Relationen in den Treeviewer eingefügt, gelesen, aktualisiert
und wieder entfernt werden.

• Treeviewer Fragment Service Integration

Dieser Layer baut direkt auf den Funktionen des CRUD Manipulators auf. Sein Zweck
ist es die Fragmento Web Service Interfaces in den Treeviewer zu integrieren, damit
visuelle Änderungen des Treeviewers Service Anfragen an das Repository senden
können und umgekehrt.

Eine der Schwachstellen dieser Komponente ist, dass kein Concurrency Control vor-
gesehen ist. Die Datenintegrität kann bei einer simultanen Manipulation desselben
Repositorys nicht garantiert werden, denn diese Manipulation wird nicht in jedem
Fall im Treeviewer reflektiert. Ein Synchronisationsmechanismus, der Änderungen des
Repositorys durch ein Broadcast bekanntmacht, wäre notwendig.

• Treeviewer Serialization

Der Treeviewer lagert seine momentanen Inhalte aus und macht sie persistent. Dadurch
wird ein permanentes Laden der Repository Objekte mittels Web Services vermieden.
Ein Neustart der Eclipse IDE behält somit den letzten Zustand des Plugins bei. Dies
erfordert die Serialisierung der Treeviewer Liste mit all ihren Objekten.

• Error Displaying Manager

Nicht zugelassene, sowie möglicherweise inkonsistente Aktionen müssen einerseits
vermieden, andererseits aber auch mitgeteilt werden. Dies regelt der Error Displaying
Manager. Er stellt ein generisches Gerüst für Informations- und Fehlerdialoge bereit.

• Action Manager

Der Action Manager handhabt die Doppelklickerkennung auf dem Treeviewer und
die dadurch resultierenden Aktionen. Die wichtigste Aktion ist die Öffnung gültiger
Elementinhalte im Eclipse Workspace. Gültig ist ein Element in diesem Fall, falls es
sich um ein Artefakt im Sinne eines Blattelements aus Abbildung 3.5 handelt.

36

3.3. Architektur-Sichten

Operator

Treeviewer
Fragment Service

Integration

Treeviewer
Serialization

Treeviewer
CRUD

 Manipulation

Error
Displaying
Manager

Action
Manager

Abbildung 3.7.: Der Aufbau der Operator Komponente

Fragment Service

Eine der Schlüsselkomponenten des gesamten Systems ist die sogenannte Fragment Service
Komponente. Sie liefert unter anderem einen Client Stub um die Nutzung eines Web Services
(siehe Anhang B) zu ermöglichen. Die Kommunikation erfolgt über das Netzwerkprotokoll
SOAP mit HTTP Binding.

Abbildung 3.8 illustriert die genaue Rollenverteilung bei diesem Vorgang. Auf der linken
Seite befindet sich das FragmentoRCP Plugin. Sämtliche Bestandteile der Darstellungs- und
Geschäftslogik werden in der Komponente FragmentoRCP Core zusammengefasst. Der Frag-
ment Service dient, wie schon erwähnt, als Kommunikationseinheit zwischen FragmentoRCP
Core und der «Außenwelt».

3.3. Architektur-Sichten

Dieser Abschnitt betrachtet die Architektur des FragmentoRCP Plugins aus verschiedenen
Blickwinkeln. Diese sogenannten Sichten beschäftigen sich mit verschiedenen Aspekten der
Anwendung und vereinfachen deren Analyse. Speziell widmen sich die folgenden Sektionen
dem Verhalten des Plugins.

37

3. Architektur und Konzeption

FragmentoRCP

FragmentoRCP
Core

FragmentService <<SOAP>>
HTTP

<<SOAP>>
HTTP

Fragmento
Repository

Abbildung 3.8.: Die Fragment Service Komponente

3.3.1. Anwendungsfälle

In diesem Unterabschnitt werden die Anwendungsfälle des FragmentoRCP Plugins analysiert
und erklärt. Das Anwendungsfalldiagramm (engl. use case diagram) aus Abbildung 3.9 stellt
alle Nutzungsmöglichkeiten des Plugins dar. Wichtig ist hierbei die logische Unterscheidung
zwischen Plugin-spezifischer Erweiterungsfunktionalität (blau hinterlegte Anwendungsfälle)
und Repository-spezifischer Funktionalität (grün hinterlegte Anwendungsfälle).

Die Plugin-spezifischen Fälle beschreiben jegliche Funktionalität, die ausschließlich durch das
FragmentoRCP Plugin zur Verfügung gestellt wird. Diese kann graphische Hilfskomponenten
oder interne Einstellungen umfassen. Die Repository-spezifischen Fälle hingegen beschreiben
jene Aktionen, die direkten Gebrauch von der zur Verfügung gestellten Fragmento Web
Service API machen.

Die hier gewählte Notation für die Beschreibung der Anwendungsfälle wurde aus [Ans08]
entnommen.

Anwendungsfall 1: Optionen bearbeiten

Beschreibung: Der Akteur legt benutzerdefinierte Einstellungen für die Nutzung des
Plugins fest. Es kann die URI des Web Service Endpoints angegeben werden.
Außerdem wird der Pfad für ausgecheckte Artefakte angegeben und ob bei
eingecheckten Artefakten die Relationen beizubehalten sind.

Vorbedingung: Entweder wurden schon einmal Einstellungen für ein Repository
vorgenommen, oder der Optionsdialog wird erstmalig benutzt.

Nachbedingung: Pfadangaben und Einstellungen zu Relationen wurden getätigt,
Repositorys könnten ins Plugin geladen worden sein.

38

3.3. Architektur-Sichten

Benutzer

FragmentoRCP

Optionen bearbeiten

Neue Repository
Items erstellen

Repository Items
suchen

Treeviewer Element
löschen

Treeviewer auf-
und zuklappen

Lock releasen

Relation löschen

Relation
aktualisieren

Artefakt Bündel
laden

Artefakt Inhalt
öffnen

sonstige Optionen

Service Uri
eingeben/aktualisieren

Repository laden

Treeviewer
aktualisieren

Repository
aktualisieren

«extends»

«extends»

«extends»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

Artefakt ein- und
auschecken «uses»

Abbildung 3.9.: Anwendungsfälle des FragmentoRCP Plugins

39

3. Architektur und Konzeption

Regulärer Ablauf: Der Akteur testet eine eingegebene URI auf Korrektheit und Verfüg-
barkeit. Er lädt die Inhalte eines Repositorys in den Treeviewer. Er kann wahlweise
noch weitere Einstellungen zu Pfadangaben etc. machen (siehe Beschreibung).

Alternativer Ablauf: Der Akteur kann ausschließlich Einstellungen zum Pfad ausge-
checkter Artefakte etc. vornehmen (siehe Beschreibung).

Anwendungsfall 2: Neue Repository Items erstellen

Beschreibung: Der Akteur kann neue Artefakte bzw. Relationen erstellen.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen.

Nachbedingung: Das neu erzeugte Element wurde erfolgreich in den Treeviewer und
in das Repository aufgenommen.

Regulärer Ablauf: Es werden folgende Fragmento Web Service APIs aufgerufen (vgl.
Anhang B):

• createNewArtefact(String type, String desc, String payload)

• createNewRelation(String type, String desc, int fromId, int toId)

Fehler: Das angegebene Artefakt-Payload-Dokument entspricht keinem zugelassenen
Format.

Systemzustand im Falle eines Fehlers: Fehler wird abgefangen und der Vorgang
kann wiederholt werden.

Anwendungsfall 3: Repository Items suchen

Beschreibung: Der Akteur startet eine Suchanfrage für Artefakte oder Relationen
im Repository. Die Suche kann durch unterschiedliche Suchkriterien angepasst
werden. Der Suchvorgang läuft nicht lokal ab, sondern über Web Service Aufrufe.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen. Das Repository bleibt permanent verfügbar.

Nachbedingung: Der Treeviewer wird mit den Ergebnissen der Suchanfrage aktuali-
siert. Im Falle eines leeren Suchergebnisses wird der Akteur darüber informiert.

Regulärer Ablauf: Es werden folgende Fragmento Web Service APIs aufgerufen (vgl.
Anhang B):

• browseArtefactType(String type)

• browseArtefactDescription(String description)

• browseArtefactContent(String content)

• browseArtefactDate(Calendar from, Calendar to)

• browseArtefactDateType(Calendar from, Calendar to, String type)

40

3.3. Architektur-Sichten

• browseRelationType(String type)

• browseRelationSourceId(String source)

• browseRelationTargetId(String target)

• browseRelationDate(Calendar from, Calendar to)

• browseRelationDateType(Calendar from, Calendar to, String type)

Anwendungsfall 4: Treeviewer auf- und zuklappen

Beschreibung: Der Akteur kann die Erscheinung des Treeviewers durch auf- und
zuklappen beeinflußen.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen.

Nachbedingung: Der Treeviewer wurde auf- bzw. zugeklappt.

Regulärer Ablauf: Die Möglichkeit des auf- bzw. zuklappens wird durch entsprechen-
de Toolbar- und Kontextmenüs gegeben.

Anwendungsfall 5: Treeviewer Element löschen

Beschreibung: Der Akteur kann Elemente lokal aus dem Treeviewer entfernen. Dies
sind die Blätter des Baums aus Abbildung 3.5. Es wird ausschließlich die Listen-
struktur des Treeviewers manipuliert.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen.

Nachbedingung: Der Treeviewer wird nach dem Entfernen eines Artefakts aktuali-
siert.

Regulärer Ablauf: Das Löschen von Artefakten aus dem Treeviewer wird durch ent-
sprechende Toolbar- und Kontextmenüs gegeben.

Anwendungsfall 6: Artefakt Bündel laden

Beschreibung: Der Akteur kann Artefakt Bündel aus dem Repository laden, falls
diese vorhanden sind.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen.

Nachbedingung: Das angehängte Bündel wird in die Kategorie «Container» des
Treeviewers geladen.

Regulärer Ablauf: Das Kontextmenü des Treeviewers bietet für Artefakte die entspre-
chende Option an. Es werden folgende Fragmento Web Service APIs aufgerufen
(vgl. Anhang B):

• retrieveArtefactBundle()

41

3. Architektur und Konzeption

Anwendungsfall 7: Relation aktualisieren

Beschreibung: Der Akteur kann Relationen aktualisieren.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen.

Nachbedingung: Die Relation wird sowohl im Repository, als auch im Treeviewer
aktualisiert.

Regulärer Ablauf: Es werden folgende Fragmento Web Service APIs aufgerufen (vgl.
Anhang B):

• updateRelation(Relation relation, String type, String desc,int

fromId, int toId)

Anwendungsfall 8: Relation löschen

Beschreibung: Der Akteur kann Relationen aus dem Repository löschen.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen und die zu löschende Relation existiert zum Zeitpunkt des Lösch-
vorgangs noch im Repository.

Nachbedingung: Die Relation wird sowohl im Repository, als auch im Treeviewer
aktualisiert.

Regulärer Ablauf: Es werden folgende Fragmento Web Service APIs aufgerufen (vgl.
Anhang B):

• deleteSelected(boolean fromRepo)

Anwendungsfall 9: Artefakt ein- und auschecken

Beschreibung: Der Akteur hat die Möglichkeit Artefakte ein- und auszuchecken

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen. Bei Artefakten, die eingecheckt werden ist darauf zu achten, dass
ein aktives Dokument in der Eclipse Workbench geöffnet vorliegt und dass jenes
Artefakt zuvor ausgecheckt wurde. Bei Artefakten die ausgecheckt werden sollen
ist darauf zu achten, dass diese nicht zuvor ausgecheckt wurden.

Nachbedingung: Die Artefaktinhalte werden mit einem bevorzugten Editor geöffnet
und der Treeviewer wird aktualisiert. Das Repository setzt bzw. löst Sperren an
entsprechender Stelle.

Regulärer Ablauf: Es werden folgende Fragmento Web Service APIs aufgerufen (vgl.
Anhang B):

• checkinSelected(String payload)

• checkoutSelected()(String payload)

42

3.3. Architektur-Sichten

Anwendungsfall 10: Lock releasen

Beschreibung: Der Akteur kann die Sperre für ausgecheckte Artefakte aufheben.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen.

Nachbedingung: Die Sperre wurde sowohl lokal, als auch im jeweiligen Repository
aufgehoben

Regulärer Ablauf: Es werden folgende Fragmento Web Service APIs aufgerufen (vgl.
Anhang B):

• releaseLockSelected()

Anwendungsfall 11: Artefakt Inhalt öffnen

Beschreibung: Der Akteur öffnet die Artefaktinhalte (engl. payload) in der Eclipse
Workbench.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen. Das entsprechende Artefakt wurde daraufhin ausgecheckt oder
doppelgeklickt. Vorbedingung ist außerdem immer, dass das Artefakt noch im
Repository existiert.

Nachbedingung: Die Artefaktinhalte werden mit einem bevorzugten Editor geöffnet.

Regulärer Ablauf: Das Editor-Auswahlmenü wird über einen Doppelklick auf das
gewünschte Artefaktelement des Treeviews geöffnet.

• checkinSelected(String payload)

• checkoutSelected()(String payload)

3.3.2. Verhaltens-Sicht

Dieser Unterabschnitt beschreibt das Verhalten des Plugins aus verschiedenen Perspektiven.
Die Verhaltensanalyse beschränkt sich hierbei auf UML-Sequenzdiagramme. Aus Übersichts-
gründen werden Verhaltensmuster vornehmlich auf Ebenen betrachtet, die einer nicht zu
feinen Granularität entsprechen. Das FragmentoRCP Plugin lässt sich von mehreren Blick-
winkeln aus betrachten. Am interessantesten ist das Verhalten der Plugin-Initalisierung (in Ab-
schnitt 3.2.3 vorgestellt als Treeviewer Serialization) und der JFace-Wizard-View-Komponente.

43

3. Architektur und Konzeption

Das Verhalten der Plugin-Initalisierung

Die Plugin-Initialisierung wurde, seit Version 1.0.2 des FragmentoRCP Plugins, grundlegend
geändert. Die Neuerung umfasst einen Serialisierungsmechanismus für den Treeviewer,
der die Häufigkeit der Kommunikation mit dem Repository gering hält, indem er die
Bauminhalte lokal auslagert. Das Verhalten dieser Optimierung wird im Sequenzdiagramm
aus Abbildung 3.10 dargestellt.

Die Komponenten Activator, Presenter, RepositoryView, Treeviewer und Repository wurden
bereits eingeführt. LocalSystem beschreibt ein lokales und persistentes Speichermedium, das
Teil der drunterliegenden Plattform ist, auf dem das Plugin ausgeführt wird.

Bei der initialen Ausführung des Plugins wird das LocalSystem auf eine existierende Seria-
lisierungsdatei des Treeviewers hin überprüft. Wird diese gefunden, so muss sie lediglich
von der RepositoryView deserialisiert und aufgenommen werden. Der Vorgang erfolgt somit
lokal.

An dieser Stelle muss erwähnt werden, dass der Auslagerungsvorgang des Treeviewers
neben der Serialisierungsdatei des Treeviewers (hier Datei A) ein zusätzliches Dokument
umfasst, welches die Adresse des dazugehörigen Repositorys enthält (hier Datei B). Folgende
drei Bedingungen sind hierbei aussagenlogisch äquivalent:

• Datei A existiert.

• Datei B existiert.

• Die Inhalte aus A stammen aus dem Repository mit der Adresse aus B.

Wenn die Serialisierungsdatei nicht existiert, dann wird der else-Zweig des Diagramms betre-
ten. Hier instanziiert der Akteur (der Benutzer) ein OptionsView-Objekt und er hat dadurch
die Möglichkeit eine gültige Repository Service URI anzugeben, wenn dies nicht schon
getätigt wurde. Schließlich leitet die RepositoryView die Anforderung retrieveRepository

(deutsch: lade Repository) vom OptionsView-Objekt an den Presenter weiter, der wiederum
die benötigten Repository-Daten in den Treeviewer lädt.

Das Verhalten der JFace-Wizard-View-Komponente

Das Sequenzdiagramm der JFace-Wizard-View-Komponenten (siehe Abbildung 3.11) konzen-
triert sich auf das Verhalten des JFace Wizard Blocks aus der, in Abbildung 3.4 vorgestellten,
Architekturbeschreibung. Der Zweig mit der Bedingung «open OptionsView» ist deckuns-
gleich mit demjenigen im vorhergehenden Diagramm. Er wird jedoch aus Gründen der
Vollständigkeit nochmals aufgeführt.

Die Alternative «open CreateView» ist mit der Instanziierung eines CreateView-Objekts
verbunden. Der Benutzer hat schließlich die Möglichkeit über eben dieses Objekt Artefakte
oder Relationen zu erzeugen und einzulagern. Durch den Aufruf addNewItem() wird eine
Reihe von Propagierungsaufrufen erzeugt, die über den Presenter laufen. Dieser sorgt dafür,

44

3.3. Architektur-Sichten

dass die neuen Items zuerst in den Treeviewer übernommen und anschließend über Web
Service Aufrufe ins Repository ausgelagert werden.

Bei «open SearchView» wird, ähnlich wie oben, ein neues SearchView-Objekt durch den
Benutzer erschaffen. Die Suchanfrage läuft jedoch, anders als bisher, nicht zuerst über den
Treeviewer, sondern direkt über das Repository. Die gelieferten Suchergebnisse müssen erst
über den Presenter an den Treeviewer propagiert werden. Die Umkehrung der Anfrage-
reihenfolge wurde aus Konsistenzgründen gefällt. Eine lokale Suche über den Treeviewer
garantiert keine Vollständigkeit und Konsistenz der gelieferten Listen.

45

3.
A

rchitekturund
K

onzeption

Abbildung 3.10.: Das UML-Sequenzdiagramm der Treeviewer Initalisierung

4
6

3.3.
A

rchitektur-S
ichten

Abbildung 3.11.: Das UML-Sequenzdiagramm der JFace-Wizard-View-Komponente

4
7

4. Implementierung

Viele grundlegende Ideen und Konzepte aus Kapitel 2 und 3 werden in diesem Abschnitt
aufgegriffen und aus Sicht ihrer praktischen Verwirklichung betrachtet. Implementierungs-
entscheidungen, die gefällt wurden, aber auch alternative Herangehensweisen, werden
erwähnt und begründet. Die verwendeten Technologien und Architekturmuster werden
knapp zusammengefasst und ihre Rolle im Gesamtkontext hervorgehoben.

4.1. Verwendete Technologien und Patterns

4.1.1. Axis2

Bei Apache Axis 21 handelt es sich um eine Web Services / SOAP / WSDL engine, die in den
Programmiersprachen Java, sowie C vorliegt und unter der Apache-Lizenz 2.0 verfügbar ist.
Die Java Variante liegt aktuell in der Version 1.5.5 vor. Es handelt sich um die Nachfolgerversi-
on des Apache Axis SOAP stacks. Es wurden bislang die W3C Spezifikationen WS-Addressing,
WS-ReliableMessaging, WS-MetadataExchange, WS-Policy, WS-AtomicTransaction und WS-
Security realisiert.

Eines der umfangreichen Werkzeuge von Axis2 ist WSDL2Java, mit dem sich Java Stubs,
Skeletons und Datentypen aus WSDL Dateien erzeugen lassen können. Dies ist bekannt als
Top Down Ansatz der Web Service Entwicklung.

4.1.2. Loose Coupling

Loose Coupling (deutsch: lose Kopplung) bezeichnet ein Design Prinzip, bei dem eine mög-
lichst hohe isolierte Wiederverwendbarkeit der Systemkomponenten erreicht werden soll.
Die Annahmen, die Komponenten übereinander haben sollen möglichst gering gehalten
werden. Diese Herangehensweise ist vorteilhaft, weil sie die Wartbarkeit und Portierbarkeit
des Systems erheblich verbessern kann. Dem Gegenüber steht das Prinzip Tight Coupling
(deutsch: enge Kopplung), das zu hauptsächlich monolithischen Architekturen führt (vgl.
[GHJV94]).

1http://axis.apache.org/axis2/java/core/

49

http://axis.apache.org/axis2/java/core/

4. Implementierung

4.1.3. Observer Pattern

Das Observer-Pattern (vgl. [GHJV94]) beschreibt eine one-to-many Beziehung zwischen den
Objekten eines Software-Systems, bei dem Zustandsänderungen in einzelnen Objekten
unmittelbar in abhängigen Komponenten bekannt gemacht werden. Dieses Prinzip ist auch
bekannt unter dem Namen Publish-Subscribe.

Es gibt genau zwei Schlüsselrollen, die jedes Objekt einnehmen kann: subject (deutsch: Sub-
jekt) und observer (deutsch: Beobachter). Jedes Subjekt veröffentlicht hierbei Informationen,
die von registrierten Beobachtern aufgegriffen werden. Zum Zweck der losen Kopplung ist
es nicht zwingend notwendig, dass die Subjekte die Identität der Beobachter kennen.

4.1.4. Reflection-Oriented Programming

Reflective Computational Systems (deutsch: reflektive Rechensysteme) sind jene Systeme, die ihr
eigenes Verhalten beobachten und beeinflussen können. Es handelt sich also um Introspekti-
vität auf einer Meta-Ebene. Die Erfassung von Meta-Informationen, also Informationen über
das System selbst, können, ähnlich wie bei reaktiven Agenten im Bereich der künstlichen
Intelligenz, den weiteren Prozessablauf abändern.

Beim Reflection-Oriented Programming Paradigma ist es einem Rechensystem möglich um-
fangreiche Untersuchungen und Änderungen des eigenen Quellcodes vorzunehmen. Java
bietet für diesen Zweck die sogenannte Java Reflection API2. Es handet sich um die Bibliothek
java.lang.reflect.* [SF96]

4.2. Strukturelle Sicht

Die abstrakte Architektur des Plugins aus dem Vorgängerkapitel wird nun mithilfe von
UML-Klassendiagrammen konkretisiert. Abbildung 4.1 zeigt die vollständige Repräsentation
des Plugins durch ein solches Diagramm. Die farblich annotierten Trennfelder unterteilen das
Diagramm in seine konzeptionellen Bauteile, womit ein Vergleich mit dem Architekturmodell
aus Abbildung 3.4 gezogen werden kann. Das Plugin wurde für Eclipse 3.4 (Ganymede)
konzipiert und als Entwicklungssprache kam Java 6 zum Einsatz.

Die nächsten Abschnitte widmen sich einer genaueren Untersuchung der markierten Bereiche
des Diagramms.

2http://java.sun.com/developer/technicalArticles/ALT/Reflection/

50

http://java.sun.com/developer/technicalArticles/ALT/Reflection/

4.2.
S

trukturelle
S

icht
PRESENTER

MODEL

VIEW

PropertyChangeHandler

FragmentService

Operator

Model/View
Registry

JFace Wizard Model &
View Models

JFace Treeviewer
Models

JFace Wizard View

Main View

JFace Treeviewer

Abbildung 4.1.: Das annotierte UML-Klassendiagramm des FragmentoRCP Plugins5
1

4. Implementierung

Abbildung 4.2.: Das UML-Klassendiagramm der JFace Treeviewer Models

4.3. Implementierung des Modells

4.3.1. JFace Treeviewer Models

Die vollständige Listenstruktur des Treeviewers ist im Klassendiagramm aus Abbildung 4.2
ersichtlich. Für die semantische Beschreibung des Datenmodells wird auf das Listing A.1 im
Anhang verwiesen. Die Besonderheit bei der Implementierung ist die Notwendigkeit des In-
terfaces IPlaceHolder. Es handelt sich um ein leeres Interface, welches alle Komponenten der
Treeviewer Modelle implementieren. Diese Maßnahme abstrahiert von einem speziellen Da-
tentyp hinweg, denn die Treeviewer Liste vom Typ ArrayList<IPlaceHolder> muss das Hin-
zufügen mehrerer Datentypen erlauben, und zwar Relation, Artefact, RelationsCategory
und ArtefactCategory (vgl. Abbildung 3.5).

52

4.4. Implementierung des Presenters

4.4. Implementierung des Presenters

4.4.1. Realisierung des Observer Patterns

Es stellt sich heraus, dass die unmittelbare Propagierung von Zustandsänderungen zwischen
View und Model essentiell für die erfolgreiche Verwirklichung des Plugins ist. Die Realisie-
rung des Observer Patterns erfolgt in zwei Schritten, nämlich Publish und Subscribe. Es folgt
eine genauere Beschreibung.

Subscribe: Registrierung von Beobachtern

Die Registrierung von Beobachtern, also von Modellen oder View-
Komponenten erfolgt in Java über Listen. In unserem Fall über die Klasse
java.util.concurrent.CopyOnWriteArrayList. Die zwei Listen heißen registeredViews

und registeredModels.

Um neue Modelle bzw. Views hinzufügen oder entfernen zu können, stehen außerdem noch
die Methoden addModel und removeModel bzw. addView und removeView zur Verfügung.
Für die genaue Implementierung siehe Listing A.3.

Publish: Mechanismus zur Zustandsmanipulation

Der Publish Mechanismus wurde konzeptionell schon in Abschnitt 3.2.3 vorgestellt. Dieser
Abschnitt legt besonderes Augenmerk auf die setModelProperty(String propertyName,

Object newValue) Methode aus Listing A.3. Die View ruft diese Methode auf, wenn sie
Änderungen an Modellattributen vornehmen will. Der Parameter propertyName vom Typ
String beschreibt die Bezeichnung des jeweiligen Zielattributs. Der Parameter newValue vom
Typ Object ist der neue Wert, der dem Zielattribut zugewiesen werden soll.

setModelProperty wird mit Hilfe der Java Reflection API implementiert (siehe Listing A.3).
Die entsprechenden Vorteile liegen in einer vollständigen Abkopplung (siehe Loose Coupling)
aller Modellkomponenten. Die setter-Methoden müssen im Presenter nun nicht mehr explizit
aufgerufen werden, sondern sie werden indirekt mittels ihres propertyName Parameters
ermittelt.

4.4.2. FragmentService & Axis2

Die FragmentService Komponente aus Abbildung 3.8 wird nochmals aufgegriffen und
verfeinert. Wir erweitern die Darstellung in Abbildung 4.3.

Das WSDL2Java Werkzeug generiert die Klassen FragmentServiceStub.java und
FragmentServiceCallbackHandler.java mithilfe des Top Down Ansatzes. Das Fragmento
Repository stellt hierfür das interne WSDL-Service Dokument zur Verfügung.

53

4. Implementierung

FragmentoRCP

FragmentoRCP
Core

WSDL2Java

FragmentService

Fragmento
Axis

FragmentService
Axis Stub

FragmentService
Callback Handler

<<SOAP>>
HTTP

<<SOAP>>
HTTP Fragmento RepositoryInternet

Service
WSDL

Abbildung 4.3.: Die Fragment Service Komponente unter Anwendung von Axis2

Der Callback Handler ist eine abstrakte Klasse, die spezielle reaktionäre Methoden zum
Überschreiben bereitstellt. Reaktionäre Methoden sind Methoden, die im Anschluss an
fehlerlose oder fehlerhafte Web Service Aufrufe ausgeführt werden.

Obwohl die genannten Klassen zur Kommunikation völlig ausreichend sind, wurde aus Be-
quemlichkeitsgründen die zusätzliche Klasse FragmentoAxis.java entwickelt. Diese expan-
diert diverse Prozeduren, wie z.B. die browseArtefacts Prozedur, in mehrere übersichtliche
Methoden. Weitere Informationen hierzu bietet der Anhang B.

4.5. Implementierung der View

4.5.1. Ereignissteuerung in der View

Jede vom Presenter aufgerufene View muss die Methode modelPropertyChange(event)

implementieren. Die View-Komponenten unterscheiden sich hierbei erheblich vonein-
ander. Es werden neben der org.eclipse.ui.part.ViewPart Klasse für die Main
View auch noch die Klassen org.eclipse.jface.wizard.Wizard für Wizards und
org.eclipse.jface.wizard.WizardPage für WizardPages erweitert.

Zu diesem Zwecke wurde das Interface IGuiModelPropertyChange entworfen (siehe Listing
4.1). Aufgrund der Tatsache, dass in Java keine Mehrfachvererbung erlaubt wird, ist es nicht
möglich gleichzeitig IGuiModelPropertyChange und auch noch eine der drei Basisklassen aus
obigem Absatz zu erweitern. Deshalb erweitern die Views jeweils eine zusätzliche Klasse, die
wiederum IGuiModelPropertyChange implementiert und die jeweilige Basisklasse erweitert.
Abbildung 4.4 zeigt dies grafisch und Listing 4.2 liefert den zugehörigen Quellcode am
Beispiel der WizardPages Komponente.

54

4.5. Implementierung der View

Listing 4.1 IGuiModelPropertyChange

public interface IGuiModelPropertyChange {

/**

* Model property change is called with the most recent event fired and

* propagated through the Presenter object.

*

* @param event

* the event

*/

public void modelPropertyChange(final PropertyChangeEvent event);

}

Listing 4.2 GuiModelPropertyChange_IWizardPage

public abstract class GuiModelPropertyChange_IWizardPage extends WizardPage

implements IGuiModelPropertyChange {

/**

* Instantiates a new gui model property change_ i wizard page.

*

* @param pageName

* the page name

*/

protected GuiModelPropertyChange_IWizardPage(String pageName) {

super(pageName);

}

}

Abbildung 4.4.: das Interface fragmentorcppresenter.ifaces.IGuiModelPropertyChange.java

55

4. Implementierung

4.5.2. FragmentoRCP Plugin Extensions

Das FragmentoRCP Plugin nutzt mehrere Extensions (deutsch: Erweiterungspunkte). Das
Konzept der Extensions wurde im Abschnitt 2.1.2 vorgestellt. Tabelle 4.1 listet alle für dieses
Projekt wichtigen Extensions auf.

Extension Paket Beschreibung/Verwendung

org.eclipse.ui.views Hier wird die FragmentoRCP.RepositoryView

und eine zugehörige Category definiert. Die
Category gruppiert die View in Eclipse unter
Window→ ShowView→ Other.

org.eclipse.ui.menus Das toolbar- und popup-Menü wird hier, mitsamt
aller Strukturinformationen und Präferenzen,
deklariert. Das popup-Menü bezeichnet das Kon-
textmenü des Treeviewers.

org.eclipse.ui.commands Dieser Erweiterungspunkt definiert verschiede-
ne Commands (deutsch: Befehle), die bei der
Betätigung der toolbar- und popup-Menüeinträge
ausgeführt werden sollen. Es handelt sich hier
nur um abstrakte Repräsentationen des seman-
tischen Verhaltens der Befehle. Dies erlaubt
verschiedene Implementationen derselben Be-
fehlsstruktur.

56

4.6. Alternative Konzeption und Implementierung

org.eclipse.ui.handlers Die Handler bilden die eigentliche Implemen-
tation der abstrakten Befehlsstruktur der Com-
mands.

org.eclipse.ui.newWizards In newWizards werden die konkreten Wizard
und WizardPage Klassen deklariert.

org.eclipse.ui.services Die Services definieren Variablen, die vom Plu-
gin selbst manipuliert werden können und die
in den anderen Erweiterungspunkten, abgefragt
werden können. Somit ergibt sich ein globales
Variablensystem, welches in Bedingungsabfra-
gen eingesetzt werden kann. FragmentoRCP
nutzt dieses System, um die toolbar- und popup-
Menüs je nach Pluginzustand aktiveren bzw.
deaktivieren zu können.

org.eclipse.core.runtime.products Dieser Punkt befasst sich mit dem sogenannten
Product Branding. Es geht um die abschließende
Prägung des Software-Produkts. Typischerwei-
se besteht ein Branding aus der Abänderung
des Produkt-Icons, des Splash-Screens, des About-
Dialoges und vielem mehr.

Tabelle 4.1.: Die FragmentoRCP Extensions

4.6. Alternative Konzeption und Implementierung

Für fast alle Aspekte des FragmentoRCP Plugins lassen sich eine Reihe von alternativen
Konzepten anwenden, die zum Teil eine sehr breite Anwendung in der Praxis finden. Je
tiefgreifender die Änderungen, desto interessanter sind die Auswirkungen auf Faktoren wie
Performanz oder Overhead. Dieser Abschnitt stellt solche alternativen Herangehensweisen
an die Implementierung des Plugins vor.

JFace Databinding für die Ereignissteuerng in der View

Die aktuelle Ereignissteuerung hat den Nachteil, dass keine effiziente Validierung der über-
gebenen Objekte erfolgen kann. Solche Objekte und Werte werden bei Zustandsänderungen

57

4. Implementierung

View

IView

IObservableValue name

IObservableValue getName()

MockView

Presenter(PropertyChangeSupport)

DataBindingContext dbc

getName();

setName(String name)

private bind() {

//bind presenter to

//view

}

Abbildung 4.5.: Die JFace Databinding Funktionsweise (eigene Bearbeitung nach [Pau08])

weitergeleitet, ob sie nun im jeweiligen Kontext zugelassen sind oder nicht. Ein weiterer
Nachteil ist die Tatsache, dass Zustandsänderungen in der View explizit bekannt gemacht
werden müssen. Es erfolgt keine automatisierte unmittelbare Synchronisierung der View
mit dem Modell. Dies wurde durch die Methode setModelProperty(String propertyName,

Object newValue) ermöglicht.

Solche Anforderungen werden typischerweise durch JFace Databinding3 gelöst. Die Ba-
sis des JFace Databindings bilden die Observables. Diese sind abstrakte Objektkonstrukte,
die beispielsweise Änderungen von Werten, Listen, Mengen oder Mappings beobachten.
Sie unterstehen dem Observer Pattern. Für alle zu beobachtenden Komponenten werden
IObservableValue Variablen deklariert. Diese werden schließlich an die entsprechenden
Modellkomponenten gebunden. Die Bindung erfolgt z.B. im Presenter, indem zunächst die
IObservableValue Variablen mittels Dependency Injection (vgl. [Fow04a]) injiziert werden und
schließlich über eine entsprechende Methode (hier bind()) gebunden werden. Diese Metho-
de definiert zunächst einen DataBindingContext, der eine bindValue Option zur Verfügung
stellt. Abbildung 4.5 zeigt die Databinding Funktionsweise an einem Beispiel.

Optimierung der Presenterkomponenten

Die mittlere Laufzeit der setModelProperty Methode ist aufgrund der Reflection API höher
als notwendig. Wenn ein neuer Aufruf erfolgt, durchsucht der Presenter alle registrierten
Modelle nach der passenden setter-Methode. Diese wird bekanntlich exklusiv über ihren
Bezeichner ermittelt. Man könnte dies verbessern, indem man die Ereignissteuerung Kom-
ponentenbewusst entwickelt. Dies bedeutet, dass Zustandsänderungen in einer bestimmten
View eben genau das korrespondierende Modell aufrufen. Eine Verbesserung der Laufzeit in
diesem Sinne erfordert leider eine Aufopferung der völligen Abkopplung der Modelle vom
Presenter.

3http://wiki.eclipse.org/index.php/JFace_Data_Binding

58

http://wiki.eclipse.org/index.php/JFace_Data_Binding

5. Testdokumentation

Dieses Kapitel dokumentiert die Software-Tests des FragmentoRCP Plugins. Die Testdoku-
mentation folgt hierbei dem ANSI/IEEE 829

1 Standard. Es ist zu erwähnen, dass aufgrund
des relativ geringen Projektumfangs, nicht alle vom Standard definierten Testarten zur An-
wendung kommen. Die hier aufgelisteten Dokumente umfassen den Testplan, die Testfälle,
das Testprotokoll und den Abschlussbericht.

5.1. Der Testplan

5.1.1. Einführung

Dies ist der Testplan des FragmentoRCP Plugins. Er befasst sich unter anderem mit der
Granularität der Testfälle, der Beschreibung der Testumgebung, sowie der zu testenden Funk-
tionen und Komponenten. Es werden ausschließlich Systemtests durchgeführt. Dies bedeutet,
dass das Systemverhalten als Ganzes betrachtet wird, anstatt einzelner Funktionseinheiten
wie bei Modultests. Dieser Ansatz wird auch Black-Box-Testing genannt.

Der Testvorgang beruht auf der Version 1.0.5 des Plugins. Die genaue Deployment Version
lautet FragmentoRCP_1.0.5.201108121140.

5.1.2. Zu testende Komponenten

Die zu testenden Komponenten lassen sich in folgende drei Kategorien einteilen.

• GUI-basierte Tests: Hier werden ausschließlich Komponenten der Benutzeroberfläche
auf ihre Richtigkeit hin überprüft. Diese umfassen beispielsweise das Verhalten von
Buttons, Dialogen und Fehlermeldungen.

• Funktionstests: Diese Kategorie konzentriert sich hauptsächlich auf die Überprüfung
der implementierten Web Service Funktionalität.

• Konsistenztests: Es handelt sich hierbei um Synchronisierungstests, die das Verhalten
des Plugins im Falle einer künstlich induzierten Dateninkonsistenz (zu den Daten des
aktiven Repositorys) beschreiben.

1http://standards.ieee.org/findstds/standard/829-1983.html

59

http://standards.ieee.org/findstds/standard/829-1983.html

5. Testdokumentation

5.1.3. Umgebung

Alle Test wurden auf einem Intel R© CoreTM i5-760 Prozessor (8M Cache, 2.80 GHz) durchgeführt.
Das eingesetzte Motherboard Modell lautet ASUS P7P55D. Das Betriebssystem ist Ubuntu
10.04 LTS (Lucid Lynx) basierend auf dem Linux-Kernel v.2.6.32-28-generic. Die genaue Eclipse
Plattform liegt in Version 3.6.2 (Helios) vor und die eingesetzte virtuelle Maschine basiert auf
OpenJDK2 Java SE 6 Update 20. Das Plugin wurde für die Eclipse-Version 3.4 entworfen, es ist
jedoch erfolgreich bis zur Helios-Version auf Aufwärtskompatibilität getestet worden.

Die aktuelle Fragmento WAR Distribution wird auf einem vorkonfigurierten Tomcat Applica-
tion Server3 ausgeführt und die zur Verfügung stehenden Testfragmente stammen aus einer
am Institut erhältlichen Testsuite4 .

Der Tomcat Application Server lief im Testdurchlauf auf der lokal Maschine.

5.1.4. Vorgehen

Fast alle Testfälle setzen eine bestehende Verbindung zum Tomcat Application Server voraus,
um einen fehlerfreien Ablauf zu garantieren. Zur Messung der Fehlertoleranz des Systems,
muss diese Bedingung jedoch in speziellen Fällen gelockert werden.

5.2. Die Testfälle

Die Testfälle beschreiben exakt welche Funktionen zu testen sind, zusammen mit deren
Eingaben und erwarteten Ausgaben. Sollten besondere Bedingungen oder Abhängigkeiten
(andere Testfälle) erforderlich sein, so werden diese ebenfalls erwähnt.

Testfall ID: 1

Zu testende Funktion: Die Akzeptanz einer serviceURI wird überprüft.

Eingaben: Service WSDL URI des Fragmento Repositorys (localhost).

Soll-Ausgaben: URI wird zugelassen und der Button «Retrieve Repository» wird
aktiviert.

Umgebung: Aktive Verbindung zum Repository gegeben.

2http://openjdk.java.net/
3erhältlich auf Anfrage am Institut
4erhältlich unter http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/downloads/

Fragmento-initial-filling-soapui-project.zip

60

http://openjdk.java.net/
http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/downloads/Fragmento-initial-filling-soapui-project.zip
http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/downloads/Fragmento-initial-filling-soapui-project.zip

5.2. Die Testfälle

Testfall ID: 2

Zu testende Funktion: Die Akzeptanz einer serviceURI wird überprüft.

Eingaben: Service WSDL URI des Fragmento Repositorys (localhost).

Soll-Ausgaben: URI wird nicht zugelassen und der Button «Retrieve Repository» wird
deaktiviert.

Umgebung: Verbindung zum Repository ist nicht gegeben.

Testfall ID: 3

Zu testende Funktion: Korrekte Aktivierung/Deaktivierung der OptionsWizard GUI-
Elemente.

Eingaben: Betätigung des «Retrieve Repository» Buttons.

Soll-Ausgaben: Alle zusätzlichen Optionen werden zur Manipulation freigegeben
(aktiviert).

Umgebung: Verbindung zum Repository ist gegeben.

Testfall ID: 4

Zu testende Funktion: Korrekte Aktivierung/Deaktivierung der CreatNewItemWizard
GUI-Elemente.

Eingaben: Vollständige/Unvollständige Befüllung aller geforderten Artefakt- und
Relationsfelder.

Soll-Ausgaben: Die Buttons «Create Artefact» und «Create Relation» müssen entspre-
chend aktiviert/deaktiviert werden.

Testfall ID: 5

Zu testende Funktion: Korrekte Aktivierung/Deaktivierung der SearchItemWizard
GUI-Elemente.

Eingaben: Angabe des Suchtyps für Artefakte oder Relationen.

Soll-Ausgaben: Die korrespondierenden Suchfelder müssen entsprechend aktiviert/-
deaktiviert werden.

Testfall ID: 6

Zu testende Funktion: Korrekte Funktionalität und Aktivierung der toolbar Buttons.

Eingaben: Betätigung der einzelnen Buttons.

Soll-Ausgaben: Aktivierung der Buttons nach erfolgreichem Laden des Treeviewers.
Entsprechende Funktion wird ausgeführt.

Umgebung: Verbindung zum Repository ist gegeben.

61

5. Testdokumentation

Testfall ID: 7

Zu testende Funktion: Korrekter Aufruf und Einlagerung der Repository-Inhalte in
den Treeviewer.

Eingaben: Der Button «Retrieve Repository» wird betätigt.

Soll-Ausgaben: Treeviewer wird aufgebaut und der Inhalt wird dargestellt.

Umgebung: Verbindung zum Repository ist gegeben.

Testfall ID: 8

Zu testende Funktion: Korrekter Aufruf und Einlagerung der lokalen serialisierten
Treeviewer Inhalte.

Eingaben: Initialer Start der Eclipse Entwicklungsumgebung.

Soll-Ausgaben: Treeviewer wird aufgebaut und der Inhalt wird dargestellt.

Umgebung: Verbindung zum Repository ist gegeben.

Besonderheiten: Die lokalen serialisierten Dateien existieren.

Testfall ID: 9

Zu testende Funktion: Korrekter Aufruf und Einlagerung der Repository-Inhalte in
den Treeviewer.

Eingaben: Der Button «Retrieve Repository» wird betätigt.

Soll-Ausgaben: Treeviewer wird aufgebaut und der Inhalt wird dargestellt.

Umgebung: Verbindung zum Repository ist gegeben.

Testfall ID: 10

Zu testende Funktion: Überprüfung der Funktionalität der export-Pfade bzw. checkout-
Pfade.

Eingaben: Jeweils mehrere verschiedene Pfade einstellen und einen export bzw. checkout
durchführen.

Soll-Ausgaben: Angegebene Pfade müssen die entsprechenden Dokumente anlegen.

Umgebung: Verbindung zum Repository ist gegeben (für checkouts).

62

5.2. Die Testfälle

Testfall ID: 11

Zu testende Funktion: Überprüfung der Funktionalität der SearchItemWizard Kompo-
nente.

Eingaben: Suchvorgänge mit allen verfügbaren Suchtypen für Artefakte/Relationen
durchführen.

Soll-Ausgaben: Falsche Angaben oder leere Suchergebnisse sind abzufangen und
korrekte Suchanfragen werden im Treeviewer wiedergespiegelt.

Umgebung: Verbindung zum Repository ist gegeben.

Testfall ID: 12

Zu testende Funktion: Überprüfung der Funktionalität der CreatNewItemWizard Kom-
ponente.

Eingaben: Erstellung neuerArtefakte/Relationen ist durchführen, wobei alle alternati-
ven Möglichkeiten ausgeschöpft werden.

Soll-Ausgaben: Nicht zugelassene Angaben sind abzufangen und korrekte Durchfüh-
rungen werden im Treeviewer und im Repository wiedergespiegelt.

Umgebung: Verbindung zum Repository ist gegeben.

Testfall ID: 13

Zu testende Funktion: Überprüfung der Funktionalität des Kontextmenüs.

Eingaben: Ein bereits geladener Treeviewer.

Soll-Ausgaben: Nicht zugelassene Aktionen sind abzufangen und korrekte Durchfüh-
rungen werden im Treeviewer oder im Repository wiedergespiegelt.

Umgebung: Verbindung zum Repository ist gegeben.

Testfall ID: 14

Zu testende Funktion: Überprüfung des Verhaltens von Artefakten im Treeviewer.

Eingaben: Ein bereits geladener Treeviewer.

Soll-Ausgaben: Nicht zugelassene Aktionen sind abzufangen und korrekte Durchfüh-
rungen werden im Treeviewer oder im Repository wiedergespiegelt.

Umgebung: Verbindung zum Repository ist gegeben.

Besonderheiten: Die korrespondierenden Artefakte im Repository werden verändert
(checkin/checkout).

63

5. Testdokumentation

Testfall ID: 15

Zu testende Funktion: Überprüfung des Verhaltens von Relationen im Treeviewer.

Eingaben: Ein bereits geladener Treeviewer.

Soll-Ausgaben: Nicht zugelassene Aktionen sind abzufangen und korrekte Durchfüh-
rungen werden im Treeviewer oder im Repository wiedergespiegelt.

Umgebung: Verbindung zum Repository ist gegeben.

Besonderheiten: Die korrespondierenden Relationen im Repository werden verändert
(update/delete).

5.3. Das Testprotokoll

Das Testprotokoll verwaltet die Ergebnisse der eigentlichen Ausführung aller Testfälle.
Die Testfall ID wird zusammen mit einer kurzen Beschreibung der sichtbaren Ergebnisse
aufgelistet. Erfolgreiche Testabläufe werden durch den Präfix «Erfolgreiche Durchführung»
notiert. Teilweise fehlerbehaftete Testabläufe hingegen werden durch den Präfix «Teilweise
erfolgreiche Durchführung» markiert. Komplett beeinträchtigte Systemzustände erhalten
den Präfix «Fehlerhafte Durchführung».

Testfall ID 1: Erfolgreiche Durchführung. Es ist anzumerken, dass jede abweichende URL
nicht akzeptiert wurde.

Testfall ID 2: Erfolgreiche Durchführung. Jede eingegebene URL wurde nicht akzeptiert.

Testfall ID 3: Teilweise erfolgreiche Durchführung. Die Aktivierung der export-Path-GUI
Element erfolgt erst bei erneutem öffnen des OptionWizard Fensters.

Testfall ID 4: Teilweise erfolgreiche Durchführung. Die Reaktivierung der Buttons bei feh-
lerhaften Eingaben erfolgt erst bei kompletter Entfernung des fehlerhaften Strings.

Testfall ID 5: Erfolgreiche Durchführung

Testfall ID 6: Erfolgreiche Durchführung

Testfall ID 7: Erfolgreiche Durchführung

Testfall ID 8: Erfolgreiche Durchführung

Testfall ID 9: Erfolgreiche Durchführung

Testfall ID 10: Erfolgreiche Durchführung

Testfall ID 11: Erfolgreiche Durchführung.

Testfall ID 12: Erfolgreiche Durchführung

Testfall ID 13: Erfolgreiche Durchführung

64

5.4. Der Abschlussbericht

Testfall ID 14: Fehlerhafte Durchführung. Die Manipulation von Repository Items bei lau-
fendem Plugin Betrieb hat einen direkt Einfluss auf dessen Stabilität.

Testfall ID 15: Fehlerhafte Durchführung. Die Manipulation von Repository Items bei lau-
fendem Plugin Betrieb hat einen direkt Einfluss auf dessen Stabilität.

5.4. Der Abschlussbericht

Das Testprotokoll lässt den Schluss zu, dass sich das Plugin stabil verhält. Die kritischen
Komponenten erfüllen ihre Soll-Aufgaben, was ein Kriterium für die erfolgreiche Gesamtbe-
wertung darstellt. Die Fehler aus den Testfällen 3 und 4 sind allesamt von niedriger Priorität,
denn sie beeinflußen nicht den erfolgreichen Einsatz des Plugins. Die Ursache der Fehler
aus den Testfällen 14 und 15 wird im Abschnitt 3.2.3 erklärt. Das Plugin ist nicht für eine
Two-Way Synchronisation konzipiert, womit die Fehlerbehandlung obsolet wird.

Es ist außerdem zu beachten, dass das Plugin kein transaktionelles Verhalten aufweist. Vor
allem wurde nicht auf atomares Verhalten einzelner Funktionen geachtet. Im Fehlerfall kann
es beispielsweise vorkommen, dass getätigte Operationen auf dem Repository erst bei einem
Neustart des Plugins reflektiert werden.

65

6. Zusammenfassung und Ausblick

Die Notwendigkeit von mächtigen Softwarekomponenten zur Erreichung eines reibungslosen
Ablaufs kritischer Arbeitsschritte wird oftmals unterschätzt. Wirklich nützliche Komponenten
zeichnen sich dadurch aus, dass sie einen möglichst glatten Übergang von einem Unterneh-
mensprozess in den nächsten schaffen. Sie treten dadurch idealerweise in den Hintergrund,
sodass einzig der Geschäftsablauf wahrgenommen werden kann.

Fragmento als Bibliothek zur Einlagerung einer Vielzahl von Prozessfragmenten bedarf eines
Modellierungswerkzeugs zur eigentlichen, praktischen Verwendung besagter Fragmente.

In dieser Studienarbeit wurde das FragmentoRCP Plugin vorgestellt, mit dem Fragmento
in die Rich Client Plattform Eclipse integriert werden kann. Neben einer Hintergrunddis-
kussion und Motivation zur Notwendigkeit dieser Arbeit, wurde das Plugin von seiner
konzeptionellen, sowie praktischen Seite durchleuchtet. Die eingeführten Konzepte und
Entwurfsmuster liegen dem modularen Aufbau des Plugins zugrunde, wodurch dieses auf
einfache Art und Weise weiterentwickelt werden kann.

Zur Verwendung der eingelagerten Prozessfragmente als Modellierungskonstrukte, wird
FragmentoRCP zukünftig an eine erweiterte Version des Eclipse BPEL-Designers angebunden
werden.

67

A. Listings

Dieser Anhang beinhaltet wichtige Quellcode-Ausschnitte bzw. größere Listings, die für das
Verständnis des Aufbaus des Plugins wichtig sind.

Listing A.1: XML-Schema der Listenstruktur des Treeviewers
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="categories" minOccurs="1" maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="Artefacts" type="ArtefactCategoryListing"

minOccurs="1" maxOccurs="1" fixed="Artefacts"/>

<xs:element name="Relations"

type="RelationsCategoryListing"minOccurs="1" maxOccurs="1"

fixed="Relations"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name="RelationsCategoryListing">

<xs:sequence>

<xs:element name="ANNOTATION" type="ListRelation" fixed="ANNOTATION"

maxOccurs="1"/>

<xs:element name="CONTAINER" type="ListRelation" fixed="CONTAINER"

maxOccurs="1"/>

<xs:element name="WSDL" type="ListRelation" fixed="WSDL" maxOccurs="1"/>

<xs:element name="DEPLOYMENT" type="ListRelation" fixed="DEPLOYMENT"

maxOccurs="1"/>

<xs:element name="MODELLER_DATA" type="ListRelation" fixed="MODELLER_DATA"

maxOccurs="1"/>

<xs:element name="TRANSFORMATION" type="ListRelation" fixed="TRANSFORMATION"

maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ArtefactCategoryListing">

<xs:sequence>

<xs:element name="ANNOTATION" type="ListArtefact" fixed="ANNOTATION"

maxOccurs="1"/>

<xs:element name="CONTAINER" type="ListArtefact" fixed="CONTAINER"

maxOccurs="1"/>

<xs:element name="DEPLOYMENT_DESCRIPTOR" type="ListArtefact"

fixed="DEPLOYMENT_DESCRIPTOR" maxOccurs="1"/>

69

A. Listings

<xs:element name="FRAGMENT" type="ListArtefact" fixed="FRAGMENT"

maxOccurs="1"/>

<xs:element name="MODELLER_DATA" type="ListArtefact" fixed="MODELLER_DATA"

maxOccurs="1"/>

<xs:element name="PROCESS" type="ListArtefact" fixed="PROCESS" maxOccurs="1"/>

<xs:element name="TRANSFORMATION_RULE" type="ListArtefact"

fixed="TRANSFORMATION_RULE" maxOccurs="1"/>

<xs:element name="WSDL" type="ListArtefact" fixed="WSDL" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Relation">

<xs:sequence>

<xs:element name="relationID" type="xs:integer"/>

<xs:element name="relationType" type="RelationTypes"/>

<xs:element name="relationDescription" type="xs:string"/>

<xs:element name="fromID" type="xs:integer"/>

<xs:element name="fromID" type="xs:integer"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Artefact">

<xs:sequence>

<xs:element name="artefactID" type="xs:integer"/>

<xs:element name="artefactType" type="ArtefactTypes"/>

<xs:element name="artefactDescription" type="xs:string"/>

<xs:element name="checkedOut" type="xs:boolean"/>

<xs:element name="children" type="ListHistory"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ListArtefact">

<xs:sequence>

<xs:element name="child" type="Artefact" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ListRelation">

<xs:sequence>

<xs:element name="child" type="Relation" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ListHistory">

<xs:sequence>

<xs:element name="child" type="ArtefactHistoryBundle" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ArtefactHistoryBundle">

<xs:sequence>

<xs:element name="artefactID" type="xs:integer"/>

<xs:element name="artefactType" type="ArtefactTypes"/>

<xs:element name="artefactDescription" type="xs:string"/>

<xs:element name="checkedOut" type="xs:boolean"/>

70

</xs:sequence>

</xs:complexType>

<xs:simpleType name="RelationTypes">

<xs:restriction base="xs:string">

<xs:enumeration value="ANNOTATION"/>

<xs:enumeration value="CONTAINER"/>

<xs:enumeration value="WSDL"/>

<xs:enumeration value="DEPLOYMENT"/>

<xs:enumeration value="MODELLER_DATA"/>

<xs:enumeration value="TRANSFORMATION"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="ArtefactTypes">

<xs:restriction base="xs:string">

<xs:enumeration value="ANNOTATION"/>

<xs:enumeration value="CONTAINER"/>

<xs:enumeration value="DEPLOYMENT_DESCRIPTOR"/>

<xs:enumeration value="FRAGMENT"/>

<xs:enumeration value="MODELLER_DATA"/>

<xs:enumeration value="PROCESS"/>

<xs:enumeration value="TRANSFORMATION_RULE"/>

<xs:enumeration value="WSDL"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

Listing A.2: Java Klasse des Activators
import org.eclipse.ui.plugin.AbstractUIPlugin;

import org.osgi.framework.BundleContext;

/**

* The activator class controls the plug-in life cycle

*/

public class Activator extends AbstractUIPlugin {

// The plug-in ID

public static final String PLUGIN_ID = "FragmentoRCP"; //$NON-NLS-1$

// The shared instance

private static Activator plugin;

/**

* The constructor

*/

public Activator() {

}

/*

* (non-Javadoc)

71

A. Listings

*

* @see

* org.eclipse.ui.plugin.AbstractUIPlugin#start(org.osgi.framework.BundleContext

*)

*/

public void start(BundleContext context) throws Exception {

super.start(context);

plugin = this;

}

/*

* (non-Javadoc)

*

* @see

* org.eclipse.ui.plugin.AbstractUIPlugin#stop(org.osgi.framework.BundleContext

*)

*/

public void stop(BundleContext context) throws Exception {

plugin = null;

super.stop(context);

}

/**

* Returns the shared instance

*

* @return the shared instance

*/

public static Activator getDefault() {

return plugin;

}

}

Listing A.3: Java Klasse des abstrakten Presenters
package fragmentorcppresenter.presenter;

import java.beans.PropertyChangeEvent;

import java.beans.PropertyChangeListener;

import java.lang.reflect.Method;

import java.util.concurrent.CopyOnWriteArrayList;

import fragmentorcppresenter.ifaces.IGuiModelPropertyChange;

import fragmentorcppresenter.models.ModelAbstraction;

/**

* The Class PresenterAbstraction.

*

* @param <T> the generic type

* @author Dimitrios Dentsas

*/

public abstract class PresenterAbstraction<T extends IGuiModelPropertyChange> implements

PropertyChangeListener {

72

/** The registered views. */

private CopyOnWriteArrayList<T> registeredViews;

/** The registered models. */

private CopyOnWriteArrayList<ModelAbstraction> registeredModels;

/**

* Instantiates registered view and model lists.

*/

public PresenterAbstraction() {

registeredViews = new CopyOnWriteArrayList<T>();

registeredModels = new CopyOnWriteArrayList<ModelAbstraction>();

}

/**

* Adds the model to the registeredModels list.

*

* @param model the model

*/

public void addModel(ModelAbstraction model) {

registeredModels.add(model);

model.addPropertyChangeListener(this);

// System.out.println(model.getClass().getSimpleName() + " added");

}

/**

* Removes the model from registeredModels list.

*

* @param model the model

*/

public void removeModel(ModelAbstraction model) {

registeredModels.remove(model);

model.removePropertyChangeListener(this);

// System.out.println(model.getClass().getSimpleName() + " removed");

}

/**

* Adds the view to the registeredViews list.

*

* @param view the view

*/

public void addView(T view) {

registeredViews.add(view);

// System.out.println(view.getClass().getSimpleName() + " added");

}

/**

* Removes the view from the registeredViews list.

*

* @param view the view

*/

public void removeView(T view) {

registeredViews.remove(view);

// System.out.println(view.getClass().getSimpleName() + " removed");

73

A. Listings

}

/* (non-Javadoc)

* @see

java.beans.PropertyChangeListener#propertyChange(java.beans.PropertyChangeEvent)

*/

@Override

public void propertyChange(PropertyChangeEvent event) {

for (T view: registeredViews) {

view.modelPropertyChange(event);

}

}

/**

* Sets the model property.

*

* @param propertyName the property name

* @param newValue the new value

*/

public void setModelProperty(String propertyName, Object newValue) {

for (ModelAbstraction model: registeredModels) {

try {

Method[] names = model.getClass().getMethods();

for (int i = 0; i < names.length; i++) {

if

(names[i].getName().equals("set"+propertyName.substring(0,

1).toUpperCase() + propertyName.substring(1))) {

names[i].invoke(model, newValue);

break;

}

}

} catch (Exception ex) {

ex.printStackTrace();

}

}

}

}

Listing A.4: Quellcode-Ausschnitt der Nutzung einer WizardDialog-Instanz
CreateWizard wizard = new CreateWizard(pages);

WizardDialog dialog = new WizardDialog(HandlerUtil

.getActiveWorkbenchWindow(event).getShell(), wizard);

dialog.create();

dialog.open();

74

B. Fragmento Web Service Interfaces

Dieser Anhang enthält eine übersichtliche Auflistung der zur Verfügung gestellten Web
Service Interfaces des Fragmento Repositorys. Die Modellierung des FragmentoRCP Plugins
beinhaltet eine Implementierung der Service Interfaces in drei aufeinander aufbauenden
Stufen. Dies ist eine Modellierungsentscheidung, die aus Bequemlichkeitsgründen gefällt
wurde. Die hier gelisteten Methoden beziehen sich lediglich auf die, mittels Axis2, generierte
Stub-Klasse eu.compas_ict.www.fragmentservice.FragmentServiceStub.java. Diese Klas-
se repräsentiert die automatisierte Basisimplementierung (unterste Stufe) der genannten
clientseitigen dreistufigen Hierarchie.

Besonderes Augenmerk wird auf die Parameter der Interfaces gelegt, da durch diese die
charakteristischen Attribute der Web Services definiert werden.

Methodenname Methodenbeschreibung

createArtifact Die Methode legt ein neues Artefakt im Repository an.
Es gibt den Identifikator des entsprechenden «Version
Descriptor» Objekts zurück.

retrieveArtefact Eine bestimmte Artefaktversion wird durch diese Me-
thode abgerufen. Es wird kein «Checkout» ausge-
führt.

retrieveArtefactBundle Diese Methode gibt ein Artefakt, mitsamt seiner zu-
sammenhängenden Artefakte und Relationen, zu-
rück.

75

B. Fragmento Web Service Interfaces

retrieveArtefactHistory Eine Liste von «Version Descriptor» Identifikatoren
wird zurückgegeben. Diese Liste repräsentiert die
temporale Versionsentwicklung eines Artefakts.

checkOutArtefact Es wird ein konkretes Artefakt zurückgegeben und
gleichzeitig im Repository gesperrt. Eine weitere Be-
arbeitung ist somit vorübergehend nicht möglich.

checkInArtefact Eine neue Version eines konkreten Artefakts wird im
Repository angelegt. Zur Aufhebung der bestehen-
den Sperre muss der entsprechende Sperridentifikator
ebenfalls übergeben werden.

browseArtefacts Die Suchfunktionalität wird hier implementiert. Je
nach Suchkategorie wird einer Liste der zutreffen-
den «Artefact Descriptor» Objekte zurückgegeben.
Die Suchkategorien sind Artefakttypen, Erstellungsin-
tervall, Suche in der Artefaktbeschreibung und Suche
im Dokument.

retrieveArtefactLatestVersion Die aktuellste Version eines konkreten Artefakts
wird abgerufen. Für frühere Versionen wird auf
retrieveArtefact verwiesen.

browseLocks Eine Liste mit allen gesperrten Artefakten wird zu-
rückgegeben.

releaseLocks Eine bestimmte Sperre kann aufgehoben werden.

76

createRelation Eine Relation zwischen zwei Artefakten wird ange-
legt. Die Relation bezeichnet eine Zusammenhangs-
beziehung. Diese Methode kann auch zum Anlegen
von Annotationen genutzt werden.

retrieveRelation Die charakteristischen Beschreibungsattribute einer
Relation werden zurückgegeben.

browseRelations Die Suchfunktionalität für Relationen wird hier imple-
mentiert. Die Suchkategorien sind: ein Quellartefakt,
ein Zielartefakt, ein Relationstyp oder ein Erstellungsin-
tervall.

updateRelation Relationen können hiermit aktualisiert werden.

deleteRelation Relationen werden hiermit ganzheitlich aus dem Re-
pository gelöscht.

Tabelle B.1.: Die Fragmento Web Service Interfaces

Tabelle B.2 widmet sich den Parametern der Interfaces aus Tabelle B.1. Der Zusammenhang
bzw. die Zugehörigkeit der einzelnen Parameter zu den Interfaces muss nicht hergestellt
weden, da dies aus den Typbezeichnungen eindeutig hervorgeht. Vielmehr werden einzelne
wichtige Parameter-Komponenten und Methoden angeführt.

Parametertyp Parametertyp-Methoden

CreateArtefactRequestMessage setArtefact(type)

getArtefact().setDescription(String)

getArtefact().setExtraElement(OMElement)

77

B. Fragmento Web Service Interfaces

RetrieveArtefactRequestMessage setArtefactSelector(ArtefactSelectorType)

RetrieveArtefactBundleRequestMessage setArtefactId(long)

RetrieveArtefactHistoryRequestMessage setArtefactId(long)

CheckOutArtefactRequestMessage setArtefactId(long)

CheckInArtefactRequestMessage ArtefactType.setType(String)

ArtefactType.setDescription(String)

ArtefactType.setExtraElement(OMElement)

setArtefactId(long)

setKeepRelations(boolean)

setArtefact(ArtefactType)

setLockId(long)

BrowseArtefactsRequestMessage (BrowseArtefactSelectorType=B)
B.setType(String)

setBrowseArtefactSelector(B)

Retrieve...Message1 (ArtefactSelectorType=A)
A.setArtefactId(long)

setArtefactSelector(A)

BrowseLocksRequestMessage setRequest(String)

ReleaseLocksRequestMessage (LockDescriptorsType=L)
L.setLock(Lock_type0[])

setLockDescriptors(L)

78

CreateRelationRequestMessage (RelationType= R)
R.setDescription(String)

RelationType.setFrom(long)

RelationType.setTo(long)

R.setType(RelationTypeSchemaType)

setRelation(R)

RetrieveRelationRequestMessage setRelationId(long)

BrowseRelationsRequestMessage RelationSelectorType.setType(String)

setSelector(RelationSelectorType)

UpdateRelationRequestMessage (Relation_type1=R)
(RelationUpdateInformationType=RU)
Relation_type1.setDescription(String)

Relation_type1.setFrom(long)

Relation_type1.setTo(long)

R.setType(RelationTypeSchemaType)

RU.setRelationIdentifier(long)

RU.setRelation(Relation_type1)

setRelationUpdate(RU)

DeleteRelationRequestMessage setRelationId(long)

Tabelle B.2.: Die Fragmento Web Service Interfaces Parametertyp-Methoden

1RetrieveArtefactLatestVersionRequestMessage

79

B. Fragmento Web Service Interfaces

Abbildung B.1.: Das UML-Klassendiagramm der Klasse
fragmentService.FragmentoAxis.java

Die Implementierung der mittleren Hierarchiestufe wird durch die Klasse
fragmentService.FragmentoAxis.java realisiert. Abbildung B.1 zeigt das UML-
Klassendiagramm dieser Klasse.

80

C. Graphische Benutzeroberfläche des
FragmentoRCP Plugins

In diesem Anhang wird die graphische Umsetzung der Benutzeroberfläche des Fragmen-
toRCP Plugins gezeigt.

Abbildung C.1.: Angabe einer Service URI und zusätzliche Optionen

81

C. Graphische Benutzeroberfläche des FragmentoRCP Plugins

Abbildung C.2.: Die Repository View mit aufgeklapptem Treeviewer

82

Abbildung C.3.: Wizard zur Erstellung neuer Artefakte

83

C. Graphische Benutzeroberfläche des FragmentoRCP Plugins

Abbildung C.4.: Wizard zur Erstellung neuer Relationen

84

Abbildung C.5.: Suche bestimmter Artefakte mit veränderbaren Suchkriterien

85

C. Graphische Benutzeroberfläche des FragmentoRCP Plugins

Abbildung C.6.: Suche bestimmter Relationen mit veränderbaren Suchkriterien

86

Literaturverzeichnis

[Ans08] T. Anstett. Ein Repository für semantische Geschäftsprozesse. 2008. (Zitiert auf
Seite 38)

[Dau07] B. Daum. Rich-Client Entwicklung mit Eclipse 3.2, volume 2. dpunkt.verlag, 2007.
(Zitiert auf den Seiten 11, 13, 14, 17, 18 und 19)

[Eck07] R. Eckstein. Java SE Application Design With MVC. Oracle Technology
Network, 2007. URL http://www.oracle.com/technetwork/articles/javase/

index-142890.html. (Zitiert auf den Seiten 28 und 35)

[Fow04a] M. Fowler. Inversion of Control Containers and the Dependency Injection pattern.
2004. URL http://martinfowler.com/articles/injection.html. (Zitiert auf
Seite 58)

[Fow04b] M. Fowler. Patterns of enterprise application architecture, volume 6. Pearson Educa-
tion, 2004. (Zitiert auf Seite 27)

[Fow06] M. Fowler. GUI Architectures, 2006. URL http://martinfowler.com/eaaDev/

uiArchs.html. (Zitiert auf Seite 29)

[Fra] Fragmento: Process Fragment Library. URL http://www.iaas.uni-stuttgart.de/

forschung/projects/fragmento/downloads/Fragmento-documentation.pdf.
(Zitiert auf den Seiten 22 und 24)

[GHJV94] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994. (Zitiert auf den Seiten 49 und 50)

[LR00] F. Leymann, D. Roller. Production Workflow – Concepts and Techniques. PTR Prentice
Hall, 2000. (Zitiert auf Seite 7)

[MLA10] J. McAffer, J.-M. Lemieux, C. Aniszczyk. Eclipse Rich Client Platform. Addison-
Wesley, 2 edition, 2010. (Zitiert auf den Seiten 11, 12, 13, 16 und 18)

[Pau08] P. Paulin. Leveraging the Model-View- Presenter Pattern in Rich Client Appli-
cations. 2008. URL http://idisk.mac.com/pjpaulin-public/rcpquickstart/

mvp-and-rcp-ew2008.pdf. (Zitiert auf Seite 58)

[San10] S. Sanderson. Pro ASP.NET MVC 2 Framework, volume second. Apress, 2010.
(Zitiert auf Seite 29)

[SF96] J. M. Sobel, D. P. Friedman. An Introduction to Reflection-Oriented Programming,
1996. URL http://www.cs.indiana.edu/~jsobel/rop.html. (Zitiert auf Seite 50)

87

http://www.oracle.com/technetwork/articles/javase/index-142890.html
http://www.oracle.com/technetwork/articles/javase/index-142890.html
http://martinfowler.com/articles/injection.html
http://martinfowler.com/eaaDev/uiArchs.html
http://martinfowler.com/eaaDev/uiArchs.html
http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/downloads/Fragmento-documentation.pdf
http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/downloads/Fragmento-documentation.pdf
http://idisk.mac.com/pjpaulin-public/rcpquickstart/mvp-and-rcp-ew2008.pdf
http://idisk.mac.com/pjpaulin-public/rcpquickstart/mvp-and-rcp-ew2008.pdf
http://www.cs.indiana.edu/~jsobel/rop.html

Literaturverzeichnis

[SKLS10] D. Schumm, D. Karastoyanova, F. Leymann, S. Strauch. Fragmento: Advanced
Process Fragment Library. In Proceedings of the 19th International Conference on
Information Systems Development (ISD 2010), 25 August 2010, Prague, Czech Republic.
2010. (Zitiert auf den Seiten 7, 20, 21 und 23)

[WCL+
05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson. Web Services

Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More. Prentice Hall PTR, 2005. (Zitiert auf Seite 7)

[Wes07] M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer-Verlag, 2007. (Zitiert auf Seite 7)

Alle URLs wurden zuletzt am 29.06.2011 geprüft.

88

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

Deizisau, den 28. Oktober 2011

(Dimitrios Dentsas)

	1 Einleitung
	1.1 Einführung
	1.2 Motivation und Aufgabenstellung
	1.3 Zusätzliche Anmerkungen
	1.4 Gliederung

	2 Hintergrund
	2.1 Eclipse-Plugin-Entwicklung
	2.1.1 OSGi Framework
	2.1.2 Der Manifest-Editor
	2.1.3 Die Klasse Activator

	2.2 SWT und JFace
	2.2.1 SWT
	2.2.2 JFace

	2.3 Die Treeviewer und Wizard Komponenten für FragmentoRCP
	2.3.1 JFace Treeviewer
	2.3.2 JFace Wizards

	2.4 Fragmento
	2.4.1 Konzeptionelle Architektur

	3 Architektur und Konzeption
	3.1 Das MVC- und MVP-Architekturmuster
	3.1.1 Das MVC-Architekturmuster
	3.1.2 Das MVP-Architekturmuster

	3.2 Architektur
	3.2.1 Struktur des Modells
	3.2.2 Struktur der View
	3.2.3 Struktur des Presenters

	3.3 Architektur-Sichten
	3.3.1 Anwendungsfälle
	3.3.2 Verhaltens-Sicht

	4 Implementierung
	4.1 Verwendete Technologien und Patterns
	4.1.1 Axis2
	4.1.2 Loose Coupling
	4.1.3 Observer Pattern
	4.1.4 Reflection-Oriented Programming

	4.2 Strukturelle Sicht
	4.3 Implementierung des Modells
	4.3.1 JFace Treeviewer Models

	4.4 Implementierung des Presenters
	4.4.1 Realisierung des Observer Patterns
	4.4.2 FragmentService & Axis2

	4.5 Implementierung der View
	4.5.1 Ereignissteuerung in der View
	4.5.2 FragmentoRCP Plugin Extensions

	4.6 Alternative Konzeption und Implementierung

	5 Testdokumentation
	5.1 Der Testplan
	5.1.1 Einführung
	5.1.2 Zu testende Komponenten
	5.1.3 Umgebung
	5.1.4 Vorgehen

	5.2 Die Testfälle
	5.3 Das Testprotokoll
	5.4 Der Abschlussbericht

	6 Zusammenfassung und Ausblick
	A Listings
	B Fragmento Web Service Interfaces
	C Graphische Benutzeroberfläche des FragmentoRCP Plugins
	Literaturverzeichnis

