Institut flr Architektur von Anwendungssystemen
Universitat Stuttgart
Universitatsstral3e 38
D-70569 Stuttgart

Studienarbeit Nr. 2331

Integration von Fragmento in eine
Rich Client Plattform

Dimitrios Dentsas

Studiengang: Informatik

Prufer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. David Schumm
begonnen am: 28. April 2011

beendet am: 28. Oktober 2011

CR-Klassifikation: H.3.5, H.4.1, H.5.2

Inhaltsverzeichnis

1. Einleitung
1.1. Einfihrung L o
1.2. Motivation und Aufgabenstellung0 0.
1.3. Zusédtzliche Anmerkungen L L
1.4. Gliederung

2. Hintergrund
2.1. Eclipse-Plugin-Entwicklung,
2.1.1. OSGi Framework Lo
2.1.2. Der Manifest-Editor
2.1.3. DieKlasse Activator Lo oo
2.2, SWTund JFace e
221, SWT ..o
2.2.2. JFace e e e e e e
2.3. Die Treeviewer und Wizard Komponenten fiir FragmentoRCP
2.3.1. JFace Treeviewer oo oo
23.2. JFaceWizards L
24. Fragmento
2.4.1. Konzeptionelle Architektur

3. Architektur und Konzeption

3.1. Das MVC- und MVP-Architekturmuster
3.1.1. Das MVC-Architekturmuster
3.1.2. Das MVP-Architekturmuster

3.2. Architektur.
3.2.1. StrukturdesModells o
3.2.2. Strukturder View
3.2.3. Struktur des Presenters

3.3. Architektur-Sichten Lo oo
3.3.1. Anwendungsfélle L L L L
3.3.2. Verhaltens-Sicht L.

4. Implementierung

4.1. Verwendete Technologien und Patterns
4110 AXIS2 . . Lo e
4.1.2. LooseCoupling
4.1.3. Observer Pattern

o

4.1.4. Reflection-Oriented Programming
4.2. Strukturelle Sicht
4.3. Implementierung desModells
4.3.1. JFace Treeviewer Models
4.4. Implementierung des Presenters
4.4.1. Realisierung des Observer Patterns
4.4.2. PFragmentService & Axis2 Lo L
4.5. Implementierung der View 00 L.
4.5.1. Ereignissteuerunginder View,
4.5.2. FragmentoRCP Plugin Extensions
4.6. Alternative Konzeption und Implementierung

Testdokumentation

51. DerTestplan
5.1.1. Einfihrung o
5.1.2. Zu testende Komponenten,
513. Umgebung.
51.4. Vorgehen.

5.2. DieTestfdlle e

5.3. Das Testprotokoll

5.4. Der Abschlussbericht L

Zusammenfassung und Ausblick
Listings
Fragmento Web Service Interfaces

Graphische Benutzeroberflache des FragmentoRCP Plugins

Literaturverzeichnis

69

75

81

87

Abbildungsverzeichnis

2.1.
2.2.
2.3.
2.4.
2.5.

2.6.
2.7.
2.8.
2.9.
2.10.

3.1.
3.2.
3-3-
3.4
3-5-
3.6.
3-7

39
3.10.
3.11.

4.1.
4.2.
4.3.
4.4
4.5.

B.1.

Abstrakter Aufbau des Eclipse RCP Gertists 11
Aufbau des FragmentoRCP Plugins 12
Exemplarisches Plugin-Manifest 13
Der Manifest-Editor am Beispiel des FragmentoRCP Plugins 14
Die Abhéngigkeitsbeziehung zwischen dem org.eclipse.ui.views Paket

und dem FragmentoRCP Plugin 16
Beispiel eines Wizards o oL 20
Das konzeptionelle Modell der Artefakttypen 22
Die konzeptionelle Architektur von Fragmento 23
Darstellung des Modells der Artefakt-Versionsverwaltung 24
Relationen zwischen Artefakten 24
Das MVC-Architekturmuster 28
Gegentiberstellung des MVC-Architekturmusters mit seiner MVP Variante . . 30
Passive View und Supervising Controller 30
Architektur des FragmentoRCP Plugins 31
Listenstruktur der Treeviewer Modelle 33
Die Ereignissteuerung und Komponentenregistrierung des Presenters 35
Der Aufbau der Operator Komponente 37
Die Fragment Service Komponente 38
Anwendungsfille des FragmentoRCP Plugins 39
Das UML-Sequenzdiagramm der Treeviewer Initalisierung 46
Das UML-Sequenzdiagramm der JFace-Wizard-View-Komponente 47
Das annotierte UML-Klassendiagramm des FragmentoRCP Plugins 51
Das UML-Klassendiagramm der JFace Treeviewer Models 52
Die Fragment Service Komponente unter Anwendung von Axis2 54
das Interface fragmentorcppresenter.ifaces.IGuiModelPropertyChange.java 55
Die JFace Databinding Funktionsweise 58

Das UML-Klassendiagramm der Klasse fragmentService.FragmentoAxis.java 80

. Angabe einer Service URI und zusétzliche Optionen 81
. Die Repository View mit aufgeklapptem Treeviewer. 82
. Wizard zur Erstellung neuer Artefakte 83
. Wizard zur Erstellung neuer Relationen 84
. Suche bestimmter Artefakte mit veranderbaren Suchkriterien 85

C.6. Suche bestimmter Relationen mit veranderbaren Suchkriterien 86

Tabellenverzeichnis

4.1. Die FragmentoRCP Extensions 57
B.1. Die Fragmento Web Service Interfaces 77
B.2. Die Fragmento Web Service Interfaces Parametertyp-Methoden 79

Verzeichnis der Listings

3.1.
3.2.

4.1.
4.2.

. Ausschnitt der FragmentoRCP/plugin.xml und org.eclipse.ui/plugin.xml 17
Interface IModelAbstraction, welches von ModelAbstraction implementiert wird 32
Beispiel Setter-Methode mit einem firePropertyChange Aufruf 32
IGuiModelPropertyChange o 55
GuiModelPropertyChange_IWizardPage 55

1. Einleitung

1.1. Einfihrung

Die Steigerung der Produktivitidt eines Unternehmens ist in der Wirtschaft von essentiel-
ler Bedeutung. Abldufe und Folgen von Produktionsschritten spielen bei der Erreichung
dieses Ziels eine Schliisselrolle. Diese Begriffe sind eng verbunden mit dem Begriff des
Business Process Managements, kurz BPM. BPM befasst sich mit der Optimierung, Analyse
und Administration von Geschéftsprozessen. Aktivitdten als manuelle, oder auch automa-
tisierte Arbeitseinheiten, bilden die Grundlage dieses Ansatzes. Sie werden mit Hilfe von
BPM identifiziert, organisiert und verbessert. Ein moglichst reibungsloses Zusammenspiel
einzelner Geschiftsprozesse sorgt fiir einen effektiveren und effizienteren Ablauf einzelner
Produktionsschritte (vgl. [Weso7]).

Eine graphische Darstellung von Geschéftsprozessen kann durch die Spezifikationssprache
Business Process Modeling Notation® erreicht werden. Sie modelliert Prozessmodelle auf der
konzeptionellen Ebene. Zur Realisierung von derartigen abstrakten Modellen in der logi-
schen Ebene spielt die Business Process Execution Language (BPEL) eine entscheidende Rolle.
Durch sie werden einzelne Aktivitdten, die Web Service Schnittstellen (vgl. [WCL"o5]) zur
Anwendungsintegration zur Verfiigung stellen, zu einem Workflow (vgl. [LRoo]) zusammen-
getragen.

Wie in den meisten Bereichen der Industrie, so ist auch vor allem fiir Geschéftsprozesse
das Prinzip der Wiedeverwendbarkeit von dufserster Wichtigkeit fiir die Produktivitit eines
Unternehmens. Die Moglichkeit der Komposition und Substitution einzelner Prozessfrag-
mente unterschiedlicher Granularitdt zu einem Ganzen birgt enorme Vorteile. Sie ermdoglicht
eine vereinfachte und beschleunigte Entwicklung prozessbasierter Applikationen. Es gibt
wenige Ansdtze, die es ermoglichen Prozessbruchstiicke, sogenannte Artefakte, organisiert
zur Verfligung zu stellen (vgl. [SKLS10]).

1.2. Motivation und Aufgabenstellung

Fragmento® ist ein an der Universitdt Stuttgart entwickeltes Repository zur Verwaltung von
Prozessfragmenten. Es verfiigt {iber einen Web Client, der jedoch keine Moglichkeit zur

Isiehe http://www.bpmn.org/
2siehe http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/start.htm

http://www.bpmn.org/
http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/start.htm

1. Einleitung

Prozessmodellierung bietet. Durch die Bereitstellung diverser Web Service Interfaces, wird
die Anbindung von Fragmento an externe Applikationen ermoglicht.

Die Eclipse IDE3 bietet als weit verbreitete Entwicklungsumgebung mehrere Modellierungs-
erweiterungen an. Fiir Prozessmodellierungen eignet sich beispielsweise der Eclipse BPEL
Designer?.

Die Aufgabe dieser Studienarbeit ist der Entwurf und die Entwicklung des graphischen
Plugins FragmentoRCP zur Integration von Fragmento in die Rich Client Plattform Eclipse.
Die Anbindung findet iiber die erwdhnten Web Service Schnittstellen statt.

Dieser Ansatz birgt enorme Vorteile, weil er den Zugang zu bewidhrten Modellierungswerk-
zeugen, wie den bereits erwahnten BPEL Designer, ermoglicht. Diese sind benutzerfreundlich
gestaltet und besitzen eine zum Teil groffe Community.

1.3. Zusatzliche Anmerkungen

Ein nicht unerheblicher Teil der verwendeten Literatur liegt ausschliefSlich im englischen
Originaltext vor. Fiir die Nutzung und Referenzierung solcher Texte verwendet der Verfasser
dieses Dokuments eigenhéndig angefertigte Ubersetzungen. Diese wurden nach bestem
Wissen und Gewissen vorgenommen.

Weil sich an diversen Stellen dieser Ausarbeitung die Nutzung direkter Zitate als niitzlich
erwiesen hat, wird der jeweilige Sachverhalt, trotz Ubersetzung, als direktes Zitat kenntlich
gemacht. Die Angabe des Zitats in der Ursprungssprache ist in der Fufinote derselben Seite
zu finden.

Anerkannte Technologien und Standards, aber auch bekannte Markennamen, werden stan-
dardméfig durch die Angabe ihrer offiziellen Web-Prdsenz in der Fufsnote referenziert.

Neu eingefiihrte Begriffe und Schliisselworter werden vom restlichen Text durch eine kur-
sive Schriftauszeichnungsart hervorgehoben. Diese Mafinahme verbessert den Lesefluss
erheblich.

Schliefslich ist anzumerken, dass samtliche hier besprochenen Grundlagen und Hintergriinde
keinen Anspruch auf Vollstindigkeit erheben. Es sollen lediglich die Themen hervorgehoben
werden, die ausschlaggebend fiir das Verstdndnis der vorliegenden Aufgabe sind.

3siehe http://www.eclipse.org/
4siehe http://www.eclipse.org/bpel/

http://www.eclipse.org/
http://www.eclipse.org/bpel/

1.4. Gliederung

1.4. Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Hintergrund: Kapitel 2 befasst sich mit den wichtigsten Grundlagen der Eclipse
Rich Client Plattform. Es werden die nétigen Komponenten besprochen und vor allem
das Plugin-Konstrukt als leitendes Prinzip fiir die RCP-Entwicklung vorgestellt. Das
Kapitel schliefit mit einem vertieften Einblick in das Fragmento Repository.

Kapitel 3 — Architektur und Konzeption: Mittelpunkt dieses Kapitels ist die Analyse und
kritische Beurteilung der Konzeptions- und Entwurfsphase des FragmentoRCP Plug-
ins. Die fundamentalen Entwurfsmuster sollen vorgestellt und im Hinblick auf die
tatsdchliche Aufgabe dieser Studienarbeit angewandt werden.

Kapitel 4 — Implementierung: Die bisherigen theoretischen Erkenntnisse werden in diesem
Kapitel von ihrer praktischen Seite beleuchtet. Selektive Schliisselkomponenten des
Plugins, mitsamt ihrer Implementierungswerkzeuge, werden analysiert. Schliefilich
werden alternative Konzepte und Methoden zur Verwirklichung des Plugins ange-
schnitten.

Kapitel 5 — Testdokumentation: Die Kernbausteine der Benutzeroberfldche, als auch der
drunterliegenden Funktionskomponenten, werden einem umfangreichen Systemtest
unterzogen. Dieser Test entspricht dem ANSI/IEEE 8295 Standard. Die Ergebnisse des
Testprotokolls werden in einem abschliefSlenden Bericht erldutert.

Kapitel 6 — Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und
stellt Ankniipfungspunkte vor.

Shttp://standards.ieee.org/findstds/standard/829-1983.html

http://standards.ieee.org/findstds/standard/829-1983.html

2. Hintergrund

Dieses Kapitel liefert die benotigten Grundlagen dieser Studienarbeit. Es beschreibt die
grundlegende Softwareplattform OSGi und deren Implementierung Equinox. Darauf aufbau-
end widmet sich der nédchste Abschnitt der Eclipse-Plugin-Entwicklung mitsamt aller fiir
dieses Projekt wichtigen Erweiterungspunkte. Ein Uberblick iiber die wichtigsten SWT und
JFace Komponenten schafft eine Grundlage fiir die ndchsten Kapitel. Diese Hintergrunddis-
kussion endet mit der Vorstellung des Fragmento Repositorys.

2.1. Eclipse-Plugin-Entwicklung

Ein zentraler Aspekt der Eclipse Rich Client Plattform, kurz Eclipse RCP, ist der Gedanke, dass
alle Anwendungen und alle Komponenten der IDE aus Plugins bestehen. Das Eclipse Gertist
besteht aus einem minmal gehaltenen Framework, welches lediglich eine Ausfithrungsumge-
bung fiir Plugins bereitstellt (vgl. [Dauoy, Seite 25]). Ein abstrakter Aufbau der Eclipse RCP
ist in Abbildung 2.1 zu sehen.

Die Komponenten OSGi und Equinox, sowie SWT und JFace werden hervorgehoben. Die
Semantik der Pfeile ist mit der aus den typischen Layering-Diagrammen bekannten «allowed

Action Sets
Editors
Perspectives
p b . Views
Extensions y Workbench
icati = Ul) =
Applications |) \ \
Products /7 \ \ Actions
L 4

Viewers

/\ - ‘ y Wizards
~ Equinox | ~ JFace Databinding
Bundles '
1 |

Services \ i |
Standard

Abbildung 2.1.: Abstrakter Aufbau des Eclipse RCP Gertists (eigene Bearbeitung nach
[MLA10, Seite 18])

’ Widgets

11

2. Hintergrund

//—{Plugin

~ L FragmentoRCP
P =) Referenced Libraries

P =4 JRE System Library

P =i Plug-in Dependencies Code

P g#src

P doc

P Egicons

P @3 lib Execution

i EES META-INF Specification

g MANIFEST. MF

b E‘L' OSGHNF Extension

i7i build. properties Specification

4% plugin.xml

Abbildung 2.2.: Aufbau des FragmentoRCP Plugins (eigene Bearbeitung nach [MLA10, Seite
19])

to use» Relation gleichzusetzen. Die Komponenten OSGi und Equinox beispielsweise stehen
in einer solchen Relationen zueinander. Dies bedeutet, dass Equinox auf OSGi aufbaut und
auf dessen offentliche Funktionalitdt zugreifen kann.

Der Aufbau eines Plugins wird durch das Paket FragmentoRCP in Abbildung 2.2 exem-
plarisch gezeigt. Jedes Plugin liegt als Java Archive (JAR) vor. Als solches enthilt es stets
eine META-INF/MANIFEST.MF Datei. Zusitzlich enthalten Plugins eine plugin.xml Datei. Die
genauen Zusammenhdnge werden in den folgenden Abschnitten erldutert.

2.1.1. OSGi Framework

Die OSGi Alliance* entstand ungefdhr zur selben Zeit wie das Eclipse Projekt. Urspriinglich
wollte man ein Java Service Modell zur Verfiigung stellen, um eingebettete Gerdte wie
Residential Gateways, oder Armaturenbrett-Computer zu entwickeln (vgl. [MLA10, Seite

21]).

Das Eclipse Plugin-Komponentenmodell basiert auf der Equinox Implementierung der
OSGi Framework R4.2 Spezifikation. Diese Spezifikation bietet einen Rahmen, in dem jede
Anwendung durch die Komposition und Ausfithrung sogenannter Biindel (engl. Bundles)
enwickelt wird. Ein enormer Vorteil der Biindelarchitektur ist das Hot Plugging, d.h. Biindel
konnen zur Laufzeit hinzugefiigt und entfernt werden.

Thttp://osgi.org

12

http://osgi.org

2.1. Eclipse-Plugin-Entwicklung

Plug-in id and

Version
Bundle-SymbolicName: org.eclipse.uil

Plug-in Class
Bundle-Version: 3.5.0

Bundle-Activator: org.eclipse.uil.internal .UIPlugin
Require-Bundle:

org.eclipse.core.runtime, %Prerequisite ng_ins]
org.eclipse.swt;visibility:=reexport

org.eclipse.jface;Visibility:=reexport

Export-Package: org.eclipse.ui.internal Exported Code

Bundle-Name: Eclipse UI }

Abbildung 2.3.: Exemplarisches Plugin-Manifest (eigene Bearbeitung nach [MLA10, Seite
21])

Eclipse operiert seit Version 3.0 auf dem OSGi-Standard. Jegliche Funktionalitdt wird in
Form von Plugins, welche dquivalent zu Biindeln sind, zur Verfiigung gestellt (vgl. [Dauoy,
Seite 26]).

Der Eclipse-Classloader

Wenn Plugins dynamisch zur Verfligung gestellt werden konnen, so ergibt sich schnell
ein Problem mit einem globalen Klassenlader (engl. Classloader), d.h. mit einem globalen
Klassenpfad. Dieses Hindernis umgeht Eclipse, indem es fiir jedes Plugin eine eigene
Klassenlader-Instanz erzeugt. Welche Abhingigkeiten zu anderen Plugins bestehen, wird
durch die Einsicht in das OSGi-Manifest META-INF/MANIFEST.MF deutlich (vgl [Dauoy, Seite
27]). Diese Datei existiert in jedem Plugin und beschreibt weitere grundlegende Eigenschaften,
unter anderem den Namen, die Version und den Identifikator. Abbildung 2.3 zeigt den
Aufbau des Manifests des org.eclipse.ui Plugins.

Equinox

Wie schon in Abschnitt 2.1.1 erwdhnt, basiert Equinox® auf der Implementierung der OSGi
Framework R4.2 Spezifikation. In Eclipse stehen hierfiir die Plugins org.eclipse.equinox.*
zur Verfiigung (vgl [Dauoy, Seite 26]). Eine wichtige Funktion von Equinox ist beispielsweise
die Moglichkeit Erweiterungspunkte zu definieren (siehe Abschnitt 2.1.2) (vgl. [MLA10, Seite

23]).

2http://www.eclipse.org/equinox/

13

http://www.eclipse.org/equinox/

2. Hintergrund

General Information Plug-in Content
This section describes general information about this)
plug-in. The content of the plug-in is made up of two sections:

/ Dependencies: lists all the plug-ins required on this plug-n's classpath to compile and run.
Runtime: lists the libraries that make up this plug-n's runtime,

D

Version: 1.0.3.qualifier
Mame: %Bundle-Name Extension / Extension Point Content
Provider: %Bundlesendor .) . .
This plug-in may define extensions and extension points:
Flatform Fifter: # Extensions: declares contributions this plug-in makes to the platform.
Activator: fragmentorcp. Activator Browse. / Extension Points: declares new function points this plug-n adds to the platform,

Activate this plug-n when one of its classes is loaded

Testing
This plug-in is a singleton

Test this plug-in by launching a separate Eclipse application:
Execution Environments G Launch a RAP Application
Specify the minimum execution environments required to @ Launch an Eclipse application
run this plug-in. %5 Launch a RAP Application in Debug mode
=i JavaSE-1.6 Add. . #5 Launch an Eclipse application in Debug mode

Exporting
To package and export the plug-in:

1. Organize the plug-in using the Organize Manifests Wizard
2. Bxternalize the strings within the plug-in using the Externalize Strings Wizard
3. Specify what needs to be packaged in the deployable plug-in on the Build Configuration page

4. Export the plug-in in a format suitable for deployment using the Export Wizard

Overview | Dependencies Runtime Extensions| Extension Points | Build | MANIFEST.MF | plugin.xml| build.properties
Abbildung 2.4.: Der Manifest-Editor am Beispiel des FragmentoRCP Plugins

2.1.2. Der Manifest-Editor

Der Manifest-Editor wird von Eclipse aus gestartet. Er ermdoglicht eine tibersichtliche Darstel-
lung der Inhalte der META-INF/MANIFEST.MF, plugin.xml und build.properties Manifest-
Dateien. Uber insgesamt acht Karteikarten lassen sich die Manifest-Dateien auslesen und
manipulieren. Abbildung 2.4 zeigt den Manifest-Editor am Beispiel des FragmentoRCP
Plugins. Es folgt eine kurze Beschreibung aller Karteikarten und ihrer Aufgaben (vgl [Dauoy,
Seite 33]).

Karteikarte: Overview

Im Unterbereich «General Information» lassen sich allgemeine Angaben wie ID, Version und
Name zum Plugin machen. Die beiden weiteren Unterbereiche «Testing» und «Exporting»
bilden die zentralen Komponenten dieser Karteikarte. Unter der «Testing» Rubrik kann eine
neue Eclipse IDE Instanz im Run oder Debug-Modus gestartet werden. Unter der «Exporting»
Rubrik kann der Zustand des Auslieferungsprodukts organisiert werden.

Alle hier vorgenommenen Einstellungen werden im OSGi-Manifest registriert.

14

2.1. Eclipse-Plugin-Entwicklung

Karteikarte: Dependencies

Alle benotigten Plugins, d.h. alle Abhdngigkeiten der aktuellen Anwendung zu anderen
Plugins, werden in diesem Bereich hinzugefiigt. Der Zugriff wird ausschliefllich auf die
hier eingetragenen Plugins beschridnkt. Es findet ebenfalls ein rekursiver Zugriff auf die
Pluginabhéngigkeiten der eingetragenen Plugins statt usw.

Alle hier vorgenommenen Einstellungen werden im OSGi-Manifest registriert.

Karteikarte: Runtime

Der Unterbereich «Classpath» enthélt alle Pakete (JAR-Archive), die im Klassenpfad der
Bindrdateien des Plugins bendtigt werden. Der Bereich «Exported Packages» bestimmt,
welche Pakete nach auflen hin fiir andere Plugins sichtbar sein diirfen. Durch den moglichst
minimal gehaltenen Export von Paketen, ldsst sich an dieser Stelle die Laufzeit des Plugins
optimieren, denn der Classloader muss dadurch weniger Pakete durchsuchen.

Die Rubrik «Package Visibility» bestimmt welche Pakete fiir welche Untermenge von Plugins
sichtbar sein diirfen.

Alle hier vorgenommenen Einstellungen werden im OSGi-Manifest registriert.

Karteikarte: Extensions

In diesem Bereich kann dem Plugin neue Funktionalitdt durch sogenannte Erweiterungspunk-
te hinzugefiigt werden. Genauer gesagt, konnen Plugins, die in der Karteikarte «Dependen-
cies» angefiihrt werden, Funktionalitit und Daten beisteuern. Typische Erweiterungspunkte
sind beispielsweise Views, Meniis und Commands.

Alle hier vorgenommenen Einstellungen werden im Plugin-Manifest registriert.

Karteikarte: Extension Points

Oft ist es erwtinscht, dass Plugins die Funktionalitdt des eigenen Plugins erweitern kon-
nen. Derartige Erweiterungen bediirfen der Deklarierung eines Erweiterungspunkts (engl.
«Extension Point»).

Erweiterungspunkte werden durch folgende Angaben angelegt:

¢ Extension Point ID: Ein im Plugin eindeutiger Identifikator. Externe Plugins konnen
diesen Erweiterungspunkt, durch die Voranstellung der Plugin-ID an die Extension
Point-ID, referenzieren.

¢ Extension Point Name: Der Name des Erweiterungspunktes.

o Extension Point Schema: Das zum Erweiterungspunkt gehorende Schema.

15

2. Hintergrund

Ul
\ contribute: FELEEIE N\
{ ‘ org.eclipse.ui.views H‘) \ Extension \
\\\ - \\,\7\,/,/

Abbildung 2.5.: Die Abhdngigkeitsbeziehung zwischen dem org.eclipse.ui.views Paket
und dem FragmentoRCP Plugin (eigene Bearbeitung nach [MLA10, Seite

23])

Der genaue Zusammenhang von Extensions zu Extension Points wird im Unterabschnitt
Karteikarte: plugin.xml erlautert.

Alle hier vorgenommenen Einstellungen werden im Plugin-Manifest registriert

Karteikarte: MANIFEST.MF

Der Quelltext des OSGi-Manifests (siehe Abbildung 2.3).

Karteikarte: plugin.xml

Dies ist der Quelltext des Plugin-Manifests. Die Beziehungen zwischen «Extension» in einem
Plugin und den «Extension Points» in einem weiteren Plugin werden in der plugin.xml
festgehalten. Ein Beispiel aus dem FragmentoRCP Plugin ist im Listing 2.1 zu sehen. Das
org.eclipse.ui Paket stellt den Erweiterungspunkt org.eclipse.ui.views zur Verfiigung
und das FragmentoRCP Plugin greift unter der «Extension» Rubrik darauf zu.

Es gibt eine Reihe von charakteristischen Eigenschaften dieser Extension zu Extension-Point
Beziehung, die den Kern der Philosophie des Extension-Registers ausmachen. Folgende
Charakteristika lassen sich herausfiltern:

e Das Extension zu Extension-Point Prinzip findet in Eclipse fiir fast alle Belange massi-
ven Einsatz.

e Dieser Erweiterungsmechansimus wird eingesetzt, um Funktionalitdt und Daten beizu-
steuern.

e Erweiterungen folgen einem deklarativen Paradigma, d.h. verbundene Plugins laden
ihre Inhalte nicht aktiv ein.

e Erweiterungen folgen dem «lazy» (deutsch: faul) Prinzip. Quellcode wird erst dann
geladen, wenn er auch gebraucht wird.

¢ Die Konsequenz oben genannter Eigenschaften ist eine gute Skalierbarkeit des Systems
(vgl. [MLAT10, Seite 26]).

16

2.1. Eclipse-Plugin-Entwicklung

Listing 2.1 Ausschnitt der FragmentoRCP/plugin.xml und org.eclipse.ui/plugin.xml

org.eclipse.ui/plugin.xml
<extension-point id="views" name="),ExtPoint.views" schema="schema/views.exsd"/>

FragmentoRCP/plugin.xml
<extension
point="org.eclipse.ui.views">
<view
allowMultiple="false"
category="FragmentoRCP.FragmentoCategory"
class="fragmentorcp.views.RepositoryView"
icon="icons/favicon.ico"
id="FragmentoRCP.RepositoryView"
name="%view.name"
restorable="true">
</view>
<category
id="FragmentoRCP.FragmentoCategory"
name="Y,category.name">
</category>
</extension>

Karteikarten: Build und build.properties

Diese Rubriken entscheiden welche Komponenten des Plugins in den Build-Prozess
aufgenommen werden sollen. Alle hier vorgenommenen Einstellungen werden in der
build.properties Datei registriert.

2.1.3. Die Klasse Activator

Jedes Plugin, das in irgendeiner Weise mit der Benutzeroberfliche zusammen-
hingt, hat in der Regel eine Hauptklasse namens Activator, die die Klasse
org.eclipse.ui.plugin.AbstractUIPlugin erweitert. Wird das Plugin in den Ge-
samtkontext miteinbezogen, d.h. aktiviert, so wird genau eine neue Instanz der Activator
Klasse erzeugt (Singleton). Zur Verfiigung stehen die Methoden getDefault (), die eben jene
Singleton-Instanz des Plugins zuriickgibt und start () bzw. stop(), welche zum starten
und stoppen des Plugins gedacht sind (vgl. [Dauoy, Seite 29]). Das ausfiihrliche Listing der
Activator-Klasse wird im Listing A.2 aufgefiihrt.

17

2. Hintergrund

2.2. SWT und JFace

2.2.1. SWT

Das Standard Widget Toolkit3 (SWT) bildet die Basis fiir die GUI-Programmierung in Eclipse
RCP. Es wird treffend in [Dauoy, Seite 133] charakterisiert. Dort heif3t es: , Kernphilosophie
des SWT ist es, fiir die Komponenten der grafischen Benutzeroberflache native Komponenten
des jeweiligen Windowing-Systems zu verwenden und nicht - wie bei Swing* - diese
Komponenten in Java zu emulieren”. Aus diesem Grund passen sich SWT GUI-Komponenten
an die jeweilige Plattform an. Zugriffe auf die Widgets konnen aus diesem Grund effizient
stattfinden. SWT kontrolliert wichtige UI-Komponenten wie Schriftarten, Farben, Mentis
und Listen [MLA10].

Es ist hervorzuheben, dass SWT keineswegs an OSGi oder Equinox gebunden ist, oder davon
abhéngt. Die SWT-Bibliotheken sind auch aufierhalb der Eclipse-Umgebung einsetzbar.

2.2.2. JFace

SWT stellt die einzelnen Widgets des nativen Windowing-Systems zur Verfiigung. JFace
hingegen ist ein Ul-Toolkit, das sich die arbeitsweise von SWT zu Nutze macht und aus
dessen Widgets komplexere Geriiste aufbaut. SWT wird hierbei jedoch nicht verschleiert. Es
findet vielmehr eine simultane Nutzung beider Toolkits statt. Sowohl die JFace Implementie-
rung, als auch die API sind unabhéngig vom jeweiligen Windowing-System. Das typische
Komponentenspektrum reicht von Schriftenregister und der Textunterstiitzung tiber Dialoge
und Databinding bis hin zu Wizards [MLA10].

2.3. Die Treeviewer und Wizard Komponenten fir FragmentoRCP

Die hier genannten Komponenten bilden die Hauptbausteine bei der graphischen Umset-
zung des FragmentoRCP Plugins. Sie sollen im Folgenden in einzelnen Unterabschnitten
besprochen werden.

2.3.1. JFace Treeviewer

JFace Treeviewer> werden an vielen Stellen in Eclipse verwendet. Es handelt sich um eine
manipulierbare Baumstruktur, die durch Modellobjekte gefiillt wird. Java stellt standard-
maflig die Klasse org.eclipse.jface.viewers.TreeViewer zur Verfiigung. Hauptsachlich
miissen folgende Aufgaben vom Treeviewer erledigt werden:

Shttp://www.eclipse.org/swt/
4http://download.oracle.com/javase/tutorial/uiswing/
Shttp://eclipse.org/articles/Article-TreeViewer/TreeViewerArticle.htm

18

http://www.eclipse.org/swt/
http://download.oracle.com/javase/tutorial/uiswing/
http://eclipse.org/articles/Article-TreeViewer/TreeViewerArticle.htm

2.3. Die Treeviewer und Wizard Komponenten fir FragmentoRCP

o Alle relevanten Modellobjekte miissen graphisch repréasentiert werden konnen.

° Anderungen in diesen graphischen Reprdsentanten werden registriert und weitergelei-
tet.

Fiir diese Zwecke existieren die Konstrukte Content Provider und Label Provider.

Content Provider

Die Modellobjekte, die den Inhalt des Treeviewers darstellen, miissen durch be-
stimmte Schnittstellen in UI-Objekte (die genannten graphischen Reprédsentationen)
des Treeviewers transformiert werden. Der Content Provider wird durch die Klasse
org.eclipse.jface.viewers.ITreeContentProvider dargestellt. Er bietet entsprechende
Schnittstellen, die Baumstrukturen erkennen und die dahinterstehenden Objekte zuriickge-
ben koénnen.

Label Provider

Der Label Provider kann durch die Klasse org.eclipse.jface.viewers.StyledCellLabelProvider
instanziiert werden. Er bietet Methoden zur Verwaltung der visuellen Darstellung der
Modellobjekte. Charakteristisch hierfiir ist beispielsweise der Beschreiungstext eines jeden
Baumelements, oder dessen zugehoriges Bildsymbol.

2.3.2. JFace Wizards

Wizards (vgl. [Dauoy]) werden im Paket org.eclipse.jface.wizards verwaltet. Sie leiten
Anwender auf moglichst einfache Weise durch eine fest vorgegebene Anzahl an Arbeits-
schritten. Diese Hilfe wird durch eine Reihe von Dialogen verwirklicht. Alle Wizards miissen
das Interface IWizard implementieren, oder alternativ die abstrakte Klasse Wizard erweitern.
Abbildung 2.6 zeigt ein Beispiel des Wizard-Dialogs zum anlegen neuer Dateien in Eclipse.

WizardDialog

Die abstrakte Klasse WizardDialog bietet ein allgemeines Framework, in das eine Reihe von
Seiten eingefiigt werden kann. Der instanziierte Wizard mitsamt den Seiten (auch Wizard-
Seiten genannt) wird dem WizardDialog im Konstruktor tibergeben. Mittels create () und
open() ldsst sich der WizardDialog schliefilich erstellen und 6ffnen (siehe Listing A.4).

19

2. Hintergrund

= New =)

Select a wizard

Create a Java class

Wizards:

P = General
P = BPEL2.0
P = cvs
b = Eclipse Modeling Framework
=)ava
@ Annotation
=
& Enum
& Interface

Java Project
BlavaProect o

— S
'\,?,' Next = Cancel

Abbildung 2.6.: Beispiel eines Wizards

WizardPages

Die oben genannten Wizard-Seiten miissen das Interface IWizardPage implementieren,
oder alternativ die abstrakte Klasse WizardPage erweitern. Die Methoden setTitle() und
setDescription() setzen die jeweilige Uberschrift und den Beschreibungstext der einzelnen
Wizard-Seiten fest. canFlipToNextPage () kontrolliert das Verhalten der Next-Taste und
isPageComplete () die Aktivierung der Next und Finish Tasten.

2.4. Fragmento

Fragmento (vgl. [SKLS10]) ist ein Repository zur Verwaltung von Prozessfragmenten, das
an der Universitdt Stuttgart entwickelt wurde und quelloffen unter der Apache 2 Lizenz®
verfiigbar ist. Wie in der Einleitung schon erwihnt, dient das Fragmento Repository zur
Verwaltung von Prozessfragmenten. Ein Prozessfragment in unserem Sinne ist wie folgt be-
schrieben: , Ein Prozessfragment ist definiert als ein zusammenhéangender Graph mit deutlich
gelockerten Vollstandigkeits- und Konsistenzkriterien, im Vergleich zu einem ausfiihrba-
ren Prozessgraphen. Ein Prozessfragment besteht aus Aktivitaten, Aktivitdts-Platzhaltern
(sogenannte Regionen) und Kontrollkanten, die die Kontrollabhdngigkeiten unter ihnen

bsiehe http://www.apache.org/licenses/LICENSE-2.0.html

20

http://www.apache.org/licenses/LICENSE-2.0.html

2.4. Fragmento

definieren.”7 [SKLS10, Seite 2]. Aufierdem wird erwédhnt: ,Ein Prozessfragment ist nicht
notwendigerweise direkt ausfiihrbar, es kann sogar teilweise undefiniert sein.”8 [SKLS1o0,
Seite 3].

Die zu verwaltenden Prozessfragmente (sogenannte Artefakte) konnen in folgende Kategori-
en unterteilt werden:

e Ein Prozess oder Prozessfragmentenmodel in Standard BPEL Form oder einer erweiter-
ten BPEL Version

Ein WSDL Dokument

e Ein zum Prozess zugehoriger Deployment Descriptor

WS-Policy Annotationen

Eine View-Transformationsregel (fiir diese Arbeit nicht relevant)

Zusitzliche Informationen fiir ein Prozess-Modellierungs-Werkzeug (z.B. graphische
Informationen wie X/Y Koordinaten von Aktivititen in <flow> Konstrukten)

Die einzelnen Artefakttypen und ihre Beziehungen zueinander lassen sich aus ihrem Modell
in Abbildung 2.7 ablesen.

Die genannten Artefakttypen werden im Repository mit einem eindeutigen Identifikator ver-
sehen. Dieser Identifikator erlaubt die Markierung von Beziehungen (sogenannte Relationen)
zwischen einzelnen Artefakten. Artefakte bestehen aus:

e Eindeutiger Identifikator

Metadaten (Name, Beschreibung, Schliisselworter etc.)

Ein XML Dokument

Ein Typ (WSDL, Fragmente etc.)

e Relationen zu anderen Artefakten

Relationen wiederum sind folgendermafien aufgebaut:
e Ein Quellartefakt
e Ein Zielartefakt

e Ein Relationstyp (z.B. Annotationen)

e Ein Beschreibungstext

7original: , A process fragment is defined as a connected graph with significantly relaxed completeness and
consistency criteria compared to an executable process graph. A process fragment is made up of activities,
activity placeholders (so-called regions) and control edges that define control dependency among them. “

8original: ,,a process fragment is not necessarily directly executable and it may be partially undefined.”

21

2. Hintergrund

Annotation Document

WSDL * * |Process (-fragment) View Transformation Rules

Deployment Descriptor Modeller Information

Abbildung 2.7.: Das konzeptionelle Modell der Artefakttypen (siehe [Fra])

2.4.1. Konzeptionelle Architektur

Die konzeptionelle Architektur von Fragmento ist in Abbildung 2.8 zu sehen. Der rote Kreis
markiert die Position, auf der das FragmentoRCP Plugin funktional anzusiedeln ist.

Darin ist der charakteristische Funktionsumfang des Repositorys ersichtlich. Es wird unter-
schieden zwischen Basisfunktionen und erweiterten Funktionen.

Basisfunktionen

Ein zentraler Aspekt der Basisfunktionalitit ist die Versionierung der eingelagerten Artefakte.
Sobald ein neues Artefakt angelegt wird, generiert das Repository ein «Versioned Object».
Es handelt sich hierbei um einen Container, der alle Versionen des korrespondierenden
Artefakts enthélt. Es ist moglich auf die «root version» (die erste Version) bzw. die «base
version» (die aktuellste Version) zuzugreifen. Die einzelnen Versionen werden durch ein
sogenanntes «Version Descriptor» Objekt dargestellt (siehe Abbildung 2.9).

Locks ist ein Sperrmechanismus, der ein Artefakt sperrt, sobald es aus dem Repository
ausgecheckt wurde. Dieses Prinzip verhindert die simultane Bearbeitung eines Artefakts
durch mehrere Parteien. Sobald ein Artefakt wieder eingecheckt wird, hebt sich die Sperre
automatisch auf.

22

2.4. Fragmento

Web Client

¥ | FRAGMENT®

saoeualu| g9

seoeualU

Basic Functions

Locks

Relations

| Search |

i

| Custom Query
Validation

Viewing

| Transformation ‘

|
1
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

] Bundles

| Versions |

]

Database
et
(95,2

Abbildung 2.8.: Die konzeptionelle Architektur von Fragmento (siehe [SKLS10, Seite 9])

Die Relationen definieren Beziehungen zwischen Artefakten. Sie enthalten die in Abschnitt
2.4 erwdhnten Metadaten. Es ist zu beachten, dass Relationen zwischen «Version Descrip-
tor» Objekten statt «Versioned Object» Konstrukten bestehen (siehe Abbildung 2.10). Dies
ermoglicht Relationen zwischen einzelnen Versionen eines Artefakts.

Die eingebaute Suchfunktionalitiit stellt einen effizienten Suchmechanismus nach vordefinier-
ten Kategorien zur Verfiigung. Fiir Artefakte existieren folgende Kategorien:

e Suche nach iibereinstimmenden Textfragmenten in der Artefaktbeschreibung.

e Suche nach tibereinstimmenden Inhaltsfragmenten (XML Dokument eines Artefakts).

e Suche nach allen neu angelegten Artefakten in vorgegebenem Zeitintervall.

Suche nach bestimmtem Artefakttyp.

Fiir Relationen existieren folgende Kategorien:

e Suche nach iibereinstimmenden Relationen mit vorgegebenem Quellartefakt.

e Suche nach iibereinstimmenden Relationen mit vorgegebenem Zielartefakt.

e Suche nach allen neu angelegten Relationen in vorgegebenem Zeitintervall.

e Suche nach bestimmtem Relationsttyp.

Suche nach allen neu angelegten Artefakten in vorgegebenem Zeitintervall und be-
stimmtem Artefakttyp.

23

2. Hintergrund

Abbildung 2.9.: Darstellung des Modells der Artefakt-Versionsverwaltung (eigene Bearbei-
tung nach [Fra])

Abbildung 2.10.: Relationen zwischen Artefakten (eigene Bearbeitung nach [Fra])

24

2.4. Fragmento

e Suche nach allen neu angelegten Relationen in vorgegebenem Zeitintervall und be-
stimmtem Relationsttyp.

Erweiterte Funktionen

Fragmento bietet einige erweiterte Funktionen an. Fiir diese Studienarbeit ist vor allem die
Validierungsfunktion und die Moglichkeit Biindel abzurufen wichtig.

Bei der Validierungsfunktion handelt es sich um einen Syntax-Kontrollmechanismus, der ein
bestimmtes Format fiir eingelagerte und einzulagernde WSDL Dokumente voraussetzt und
garantiert. BPEL Prozesse miissen ebenfalls vorgegebenen Regeln gentigen. Die Integration
von eigenen Priifern ist moglich.

Ein Biindel beschreibt einen Prozess mit all seinen zusammenhidngenden Relationen. In
Fragmento lassen sich solche Biindel einfach abrufen und archivieren.

25

3. Architektur und Konzeption

Dieses Kapitel beschreibt die Konzeptions- und Entwurfsphase des FragmentoRCP Plug-
ins. Es werden die zugrundeliegenden Entwurfsmuster vorgestellt, analysiert und auf die
vorliegende Aufgabe angewandt.

Eine Auswahl an Modellierungsdiagrammen und architektonischen Sichten werden prasen-
tiert und liefern eine umfangreiche Beschreibung des Plugins und seiner Bestandteile.

3.1. Das MVC- und MVP-Architekturmuster

Fiir ein tieferes Verstandnis der Struktur des FragmentoRCP Plugins ist eine Hintergrund-
diskussion iiber allgemeinere Architekturen erforderlich. Die ndchsten Abschnitte dienen
dem Einstieg in den Aufbau des Plugins. Sie befassen sich mit dem sogenannten Model View
Controller Architekturmuster und dessen Variante Model View Presenter.

3.1.1. Das MVC-Architekturmuster

Das Model View Controller Architekturmuster (MVC) (vgl. [Fowogb]) ist schon seit den
spaten 1970er Jahren bekannt. Es wurde von Trygve Reenskaug fiir die Smalltalk Plattform
konzipiert und ist ein hdufig verwendetes Konzept.

Im Vordergrund steht die Separierung von Software in die typischerweise drei isolierten
Einheiten Datenmodell (engl. model), Prasentation (engl. view) und Programmsteuerung
(engl. controller). Dieses Prinzip steigert die Modularitidt von Software und damit die
Separation of Concerns, kurz SoC.

e Datenmodell

Das Modell als Objekt reprasentiert die Daten des Software-Systems und deren Bezie-
hungen zueinander. Gegebenenfalls auch die Geschiftslogik. Es ist ganzheitlich von
den Belangen der Benutzeroberfliche abzugrenzen.

e Prasentation

Die Priisentation dient der Darstellung des Modells in der UI (User Interface), zumeist
handelt es sich um die GUI (Graphical User Interface).

27

3. Architektur und Konzeption

State stat
ate
very | |
anen e Change
| Change
i | Notification

Abbildung 3.1.: Das MVC-Architekturmuster (eigene Bearbeitung nach [Eckoy])

V|ew Selection

User Gestures

_ Method Invocations

Events

e Programmsteuerung

Jegliche Anderungen der dargestellten Informationen werden nicht durch die Prasen-
tationskomponente vorgenommen, sondern von der Programmsteuerung. Benutzerein-
gaben werden delegiert und Zustiande in den Modell- und Prasentationseinheiten
manipuliert.

In gewisser Hinsicht ist die Programmsteuerung hiermit ein Bindeglied zwischen Geschifts-
logik und Présentation. Abbildung 3.1 beschreibt das Zusammenspiel aller Komponenten.

Ein zentraler Gesichtspunkt des MVC-Musters ist die Abhidngigkeitsbeziehung der Kompo-
nenten. Typischerweise ist die Prasentation direkt abhdngig von dem Modell.

Durch Zustandsabfragen liefert das Modell Informationen an die Prasentationseinheit. Eine
umgekehrte Abhdngigkeit muss in jedem Fall vermieden werden. Das Modell darf keine
Kenntnis tiber die Prasentation bzw. dessen Implementierung besitzen. Diese Forderung
garantiert die Austauschbarkeit und Integration von Benutzeroberfldchen.

28

3.2. Architektur

3.1.2. Das MVP-Architekturmuster

Das Model View Presenter Architekturmuster (MVP) [Fowo6] wurde durch IBM' und vor-
nehmlich durch Taligent in den 1990er Jahren bekannt gemacht. Es handelt sich um ein
Derivat des in Abschnitt 3.1.1 beschriebenen MVC-Musters.

Der grofle Unterschied zum MVC-Muster besteht darin, dass alle Abhédngigkeitsbeziehungen
zwischen der Programmsteuerung und der Ansicht beseitigt werden. Die Programmsteue-
rung tibernimmt nun sémtliche Angelegenheiten der Datentibermittlung und Propagierung
zwischen den restlichen Komponenten. Sie wird zum sogenannten Prasentator (engl. presen-
ter). Abbildung 3.2 illustriert diesen Sachverhalt.

Es wird zwischen zwei Arten des MVP-Musters unterschieden: Supervising Controller und
Passive View (siehe Abbildung 3.3). Der Unterschied dieser Varianten ist oftmals subjektiv.
Sie werden in [San1o] wie folgt definiert:

e Supervising Controller Die Ansicht kann fiir gewisse Teile der Darstellungslogik ver-
antwortlich sein. Es konnen beispielsweise Elemente fiir die Synchronisation zwischen
Ansicht und Modell enthalten sein® .

e Passive View Alle Ul Widgets (Die Steuerelemente der graphischen Benutzerober-
flache) werden ausschliefslich vom Prasentator verandert. Die Ansicht enthalt keine
Darstellungslogik.

Vorteile ergeben sich durch eine Vereinfachung der Durchfiihrung von Modultests im
Rahmen des TDD3. Ansichten konnen hiermit leichter durch Mock-Up Objekte ersetzt
werden.

3.2. Architektur

Das in dieser Studienarbeit entwickelte Plugin FragmentoRCP baut auf dem in Abschnitt 3.1.2
vorgestellten MVP-Architekturmuster auf. Im kontinuierlichen Spektrum der MVP Varianten
ist es auf der Seite des Supervising Controller anzusiedeln (Ndheres dazu in Abschnitt 3.2.2).
Diese Architekturentscheidung héngt mit der guten Umsetzung der SoC zusammen. Es
findet eine hinreichende Komplexitdtsreduktion der Planungs- und Implementierungsphase
des Projekts statt. Nachfolgende Analyse bezieht sich stets auf die konzeptionelle Architektur
des Plugins aus Abbildung 3.4.

http://www.ibm.com/
*Bsp. JFace Data Binding
3Test Driven Development

29

http://www.ibm.com/

3. Architektur und Konzeption

User Interaction

L !

Passes Fire
calls to events

Model-View-Controller

User Interaction

Passes
calls to

Updates

Fires
events

Manipulates

Model-View-Presenter

Abbildung 3.2.: Gegeniiberstellung des MVC-Architekturmusters mit seiner MVP Variante
(eigene Bearbeitung nach http://www.devx.com/dotnet/Article/33695/

1954)

M-V-P (Passive View)

o
—)

e Interaction with the
model is handled
exclusively by the
presenter

e The view is updated
exclusively by the
presenter

M-V-P (Supervising Controller)

lr\:\\ ‘{»\
The view interacts (. J

with the model for
simple data-binding
The view is updated by
the presenter and
through data-binding

Abbildung 3.3.: Passive View und Supervising Controller (eigene Bearbeitung nach http:
//msdn.microsoft.com/en-us/library/ff647543.aspx)

30

http://www.devx.com/dotnet/Article/33695/1954
http://www.devx.com/dotnet/Article/33695/1954
http://msdn.microsoft.com/en-us/library/ff647543.aspx
http://msdn.microsoft.com/en-us/library/ff647543.aspx

3.2. Architektur

E Search || Create || Option
S View View View
Repository View

-
~

o

L

—

Z

L

(9]

L

a4

o
P

—

Ll

o

S Repository View

Model

Abbildung 3.4.: Architektur des FragmentoRCP Plugins

3.2.1. Struktur des Modells

Das Modell ist in zwei separate, unabhédngige Kategorien aufgeteilt. Auf der einen Seite
stehen die Modellkomponenten JFace Wizard Models und View Models, die fiir einen Grofiteil
der Daten und Interaktionen der Benutzeroberfldche zustdndig sind und auf der anderen
Seite die JFace Treeviewer Models, deren Instanzen sowohl fiir den strukturellen als auch den
inhaltlichen Aufbau des Repository Baums dienen.

Erstere Komponente wird um einen Mechanismus, dem sogenannten Property Change Handler,
zur Erkennung und Propagierung von Anderungen einzelner Felder der Modellkomponen-
ten, erweitert.

31

3. Architektur und Konzeption

Listing 3.1 Interface IModelAbstraction, welches von ModelAbstraction implementiert wird

public interface IModelAbstraction {
public void addPropertyChangeListener(String,PropertyChangelistener);
public void addPropertyChangeListener (PropertyChangelListener);
public void removePropertyChangeListener (PropertyChangeListener) ;
protected void firePropertyChange (String, Object, Object);

Listing 3.2 Beispiel Setter-Methode mit einem firePropertyChange Aufruf

public void setValue(X newValue) {
propertyChangeSupport.firePropertyChange ("key", this.oldValue,
this.oldValue = newValue);

Property Change Handler

Der Handler wird durch die Klasse java.beans.PropertyChangeSupport realisiert. Hierzu
werden alle notigen Methoden in dem Interface IModelAbstraction deklariert (Listing 3.1).
Dieses Interface bietet die Moglichkeit Listener hinzuzufiigen, zu entfernen und einzelne
Objektanderungen an entsprechende Stellen weiterzuleiten (vgl. Abschnitt 3.2.2). Die ein-
zelnen Modelle erben diese Eigenschaften von der abstrakten Klasse ModelAbstraction, die
besagtes Interface implementiert.

JFace Wizard Models

Die «JFace Wizard Models» Komponente besteht aus folgenden drei Modellen: Search Model,
Create Model und Option Model. Sie halten Daten fiir die Suche und das Erstellen neuer
Artefakte im Repository Baum, sowie fiir diverse Optionseinstellungen des Plugins.

Neben den kritischen Feldern fiir die Funktionalitdt speichern diese Modelle auch Zustédnde,
wie z.B. von klickbaren Widgets, durch diverse Triggervariablen.

In den entsprechenden Setter-Methoden der Modelle wird der Aufruf nach dem Schema
von Listing 3.2 getétigt. Der Parameter «key» wird bei einem manuellen Ausloser einer
Objektanderung als Identifikator benutzt.

View Models

Zur Zeit besteht diese Komponente aus einem einzigen Modell. Es ist das Modell fiir die
Hauptansicht der Benutzeroberfldche. Vorrangig werden hier Daten fiir Operationen des
JFace Treeviewers gehalten, die tiber die zur Verfiigung gestellten Web Service Interfaces des
Repositorys ablaufen. Die wichtigsten unter ihnen sind checkInArtifact und checkOutArtifact
Vorginge, deleteRelation, retrieveArtifactBundle und releaseLocks (siehe Anhang B). Sollten fiir

32

3.2. Architektur

<<Treeviewer>>
<<ROOT>>
Categories

<<Artefacts>>
Artefact
Category

<<Relation>>
Relations
Category

<<WSDL>>
Artefact
Category

'<<CONTAINER>>'
Artefact
Category

<<TRANSF.>;
<<RULE>>

Artefact

<ANNOTATION>:
Artefact
Category

'<DEPLOYMENT>!
<<DESCRIPTOR>>

Artefact
Category

<<PROCESS>
Artefact

>>

Category

<<CONTAINER>>
Relations
Category

<<WSDL>>
Relations
Category

Abbildung 3.5.: Listenstruktur der Treeviewer Modelle

zukiinftige Anforderungen weitere sogenannte Views (vgl. org.eclipse.ui.part.ViewPart)
erforderlich sein, so sind deren Modelle hier einzufiigen.

JFace Treeviewer Models

Die Wichtigkeit dieser Komponente wird deutlich, wenn man den JFace Treeviewer genauer
betrachtet. Unter anderem gibt es den sogenannten Content Provider, der die Struktur des
Treeviewers in Form einer Liste (vgl. java.util.List) entgegennimmt und mit ihr arbeitet.

Die Struktur dieser Liste wird, wie in Listing A.1 gezeigt, durch die Modelle Artefact Model,
Relation Model, sowie deren Oberkategorien Artefact Category und Relation Category definiert.
Eine entsprechende graphische Reprasentation liefert Abbildung 3.5. Artefact-Modelle und
Relation-Modelle sind stets die Blédtter des Baums. Die ndchsten zwei Baumebenen driiber
sind vom Typ Artefact Category bzw. Relation Category. Sie sind im Gegensatz zu den
Blattern von konstanter Grof3e. Eine genauere Diskussion tiber die vorgegebenen Kategorien
findet in Kapitel 2.4 statt.

Die iibrigen zwei Modelle Locks und History halten, wie die Namen schon suggerieren, Daten
tiber die bei Auslesevorgdngen von Artefakten errichteten Sperrobjekte und Objekte zu
Vorgéangerversionen von Artefakten.

33

3. Architektur und Konzeption

3.2.2. Struktur der View

Die View regelt alle Vorgénge der direkten Interaktion des Benutzers mit dem System. Die
graphische Bereitstellung verschiedener Dialoge und Daten kann auf verschiedene Art und
Weise umgesetzt werden.

Die FragmentoRCP View gliedert sich in zwei Hauptbereiche: JFace Wizard View und Main
View.

Erstere Komponente befasst sich mit der Erstellung und Handhabung der Wizard Pages. Die
drei zentralen Wizard Pages Search View, Create View und Option View korrespondieren direkt
mit den in Unterabschnitt 3.2.1 vorgestellten Modellen.

Die Repository View fallt unter die Kategorie Main View. Es handelt sich um die zentrale View,
auf der die JFace Treeviewer Komponente aufsetzt. Wie schon erwihnt ist die realisierte MVP
Variante die des Supervising Controllers. Jede einzelne GUI-Komponente enthélt Methoden
zur Ereignispropagierung iiber den Presenter und ist damit aktiv an der Darstellungslogik
beteiligt. Kapitel 4 geht im Detail darauf ein.

3.2.3. Struktur des Presenters

Der Presenter hat als Bindeglied zwischen View und Model eine besondere Aufgabe zu
erledigen (vgl Abschnitt 3.1.2). Er registriert und koordiniert auftretende Ereignisse und
reicht sie an die vorgesehenen Modelle und Ansichten weiter. Abbildung 3.6 zeigt ein
detaillierteres Architekturdiagramm, dass diesen Vorgang fiir unseren Fall beschreibt.

Die durchnummerierten zeitlichen Ablaufschritte werden im Diagramm griin hinterlegt. Sie
sind wie folgt zu interpretieren:

o Zeitschritt 1 Als erstes registrieren sich alle benttigten Modelle und Ansichten in der
Anlaufstelle Model / View Registry. Diese Anlaufstelle ist die zentrale Komponente des
Presenters. Jegliche Manipulation findet iiber sie statt. Durch diesen Schritt erlaubt sie
auflerdem einen direkten Austausch zwischen allen registrierten Teilnehmern.

o Zeitschritt 2 Jedem teilnehmenden Modell aus Schritt 1 wird ein Listener hinzuge-
fligt, sodass alle Ereignisse bzw. Zustandsdnderungen vom Property Change Handler
verarbeitet werden konnen (vgl Listing 3.1).

e Zeitschritt 3 Die Manipulation von Ansichten durch den Benutzer 16st Zustandsan-
derungen aus, die an den Property Change Handler weitergereicht werden. Die Unter-
komponente setModel Property leitet alle notwendigen Schritte, zur Propagierung der
Ereignisse an die adressierten Modelle, ein.

e Zeitschritt 4 Die Zustandsdnderungen in den Modellen aus Schritt 3 werden durch
die Methoden firePropertyChange() (vgl Listing 3.1) und propertyChange() an die
adressierten Ansichten weitergeleitet.

34

3.2. Architektur

PRESENTER

Abbildung 3.6.: Die Ereignissteuerung und Komponentenregistrierung des Presenters

Jeder registrierte Teilnehmer besitzt Moglichkeiten um sich wieder abzumelden. Entspre-
chend werden bei einer solchen Abmeldung auch alle Listener der korrespondierenden
Modelle entfernt. Obiges Diagramm verzichtet aus Platzgriinden auf die Darstellung dieser
Mechanismen.

Durch die beschriebenen Ablaufschritte, schafft der Presenter eine Umgebung, bei der alle
Objekte des Systems alle auftretenden Ereignisse und Datendnderungen, wenn gewiinscht,
abgreifen konnen. Die Grundidee hierfiir liefert der Artikel [Ecko7].

Operator

Der Operator, auch Treeviewer Operator genannt, ist die Komponente des Presenters, die sich
mit der Manipulation, der Web Services Integration und der Serialisierung des Treeviewers

35

3. Architektur und Konzeption

beschiftigt. Zusatzlich regelt sie auch alle Informations- und Fehlerdialoge und Kontext-
Mentieintrdge des Treeviewers. Das Diagramm in Abbildung 3.7 fasst diese Komponenten in
einzelnen Layern zusammen.

Die einzelnen Layer sind wie folgt definiert:

36

e Treeviewer CRUD Manipulation

Dieser Layer liefert das Fundament fiir alle spateren Manipulationen des Treeviewers.
Er definiert die CRUD (Create, Read, Update, Delete) Basisfunktionen. Es konnen
somit neue Artefakte und Relationen in den Treeviewer eingefiigt, gelesen, aktualisiert
und wieder entfernt werden.

Treeviewer Fragment Service Integration

Dieser Layer baut direkt auf den Funktionen des CRUD Manipulators auf. Sein Zweck
ist es die Fragmento Web Service Interfaces in den Treeviewer zu integrieren, damit
visuelle Anderungen des Treeviewers Service Anfragen an das Repository senden
konnen und umgekehrt.

Eine der Schwachstellen dieser Komponente ist, dass kein Concurrency Control vor-
gesehen ist. Die Datenintegritdt kann bei einer simultanen Manipulation desselben
Repositorys nicht garantiert werden, denn diese Manipulation wird nicht in jedem
Fall im Treeviewer reflektiert. Ein Synchronisationsmechanismus, der Anderungen des
Repositorys durch ein Broadcast bekanntmacht, ware notwendig.

Treeviewer Serialization

Der Treeviewer lagert seine momentanen Inhalte aus und macht sie persistent. Dadurch
wird ein permanentes Laden der Repository Objekte mittels Web Services vermieden.
Ein Neustart der Eclipse IDE behdlt somit den letzten Zustand des Plugins bei. Dies
erfordert die Serialisierung der Treeviewer Liste mit all ihren Objekten.

Error Displaying Manager

Nicht zugelassene, sowie moglicherweise inkonsistente Aktionen miissen einerseits
vermieden, andererseits aber auch mitgeteilt werden. Dies regelt der Error Displaying
Manager. Er stellt ein generisches Gertist fiir Informations- und Fehlerdialoge bereit.

Action Manager

Der Action Manager handhabt die Doppelklickerkennung auf dem Treeviewer und
die dadurch resultierenden Aktionen. Die wichtigste Aktion ist die Offnung giiltiger
Elementinhalte im Eclipse Workspace. Giiltig ist ein Element in diesem Fall, falls es
sich um ein Artefakt im Sinne eines Blattelements aus Abbildung 3.5 handelt.

3.3. Architektur-Sichten

Operator

Abbildung 3.7.: Der Aufbau der Operator Komponente

Fragment Service

Eine der Schliisselkomponenten des gesamten Systems ist die sogenannte Fragment Service
Komponente. Sie liefert unter anderem einen Client Stub um die Nutzung eines Web Services
(siehe Anhang B) zu ermoglichen. Die Kommunikation erfolgt tiber das Netzwerkprotokoll
SOAP mit HTTP Binding.

Abbildung 3.8 illustriert die genaue Rollenverteilung bei diesem Vorgang. Auf der linken
Seite befindet sich das FragmentoRCP Plugin. Simtliche Bestandteile der Darstellungs- und
Geschiftslogik werden in der Komponente FragmentoRCP Core zusammengefasst. Der Frag-
ment Service dient, wie schon erwihnt, als Kommunikationseinheit zwischen FragmentoRCP
Core und der «Aufienwelt».

3.3. Architektur-Sichten

Dieser Abschnitt betrachtet die Architektur des FragmentoRCP Plugins aus verschiedenen
Blickwinkeln. Diese sogenannten Sichten beschéftigen sich mit verschiedenen Aspekten der
Anwendung und vereinfachen deren Analyse. Speziell widmen sich die folgenden Sektionen
dem Verhalten des Plugins.

37

3. Architektur und Konzeption

FragmentoRCP

L
FragmentoRCP .
8 FragmentSerwce <<SOAP>> <<SOAP>> Fragmento

| Core | J HIIE ‘ HTiE Repository

;—/

Abbildung 3.8.: Die Fragment Service Komponente

3.3.1. Anwendungsfalle

In diesem Unterabschnitt werden die Anwendungsfille des FragmentoRCP Plugins analysiert
und erkldrt. Das Anwendungsfalldiagramm (engl. use case diagram) aus Abbildung 3.9 stellt
alle Nutzungsmoglichkeiten des Plugins dar. Wichtig ist hierbei die logische Unterscheidung
zwischen Plugin-spezifischer Erweiterungsfunktionalitdt (blau hinterlegte Anwendungsfalle)
und Repository-spezifischer Funktionalitdt (griin hinterlegte Anwendungsfille).

Die Plugin-spezifischen Félle beschreiben jegliche Funktionalitét, die ausschlieflich durch das
FragmentoRCP Plugin zur Verfiigung gestellt wird. Diese kann graphische Hilfskomponenten
oder interne Einstellungen umfassen. Die Repository-spezifischen Fille hingegen beschreiben
jene Aktionen, die direkten Gebrauch von der zur Verfiigung gestellten Fragmento Web
Service API machen.

Die hier gewihlte Notation fiir die Beschreibung der Anwendungsfille wurde aus [Anso8]
entnommen.

Anwendungsfall 1: Optionen bearbeiten

Beschreibung: Der Akteur legt benutzerdefinierte Einstellungen fiir die Nutzung des
Plugins fest. Es kann die URI des Web Service Endpoints angegeben werden.
Auflerdem wird der Pfad fiir ausgecheckte Artefakte angegeben und ob bei
eingecheckten Artefakten die Relationen beizubehalten sind.

Vorbedingung: Entweder wurden schon einmal Einstellungen fiir ein Repository
vorgenommen, oder der Optionsdialog wird erstmalig benutzt.

Nachbedingung: Pfadangaben und Einstellungen zu Relationen wurden getétigt,
Repositorys kdnnten ins Plugin geladen worden sein.

38

3.3. Architektur-Sichten

FragmentoRCP
«extends»

A
\A

®extends»

eue Repository
Items erstellen

[>

Repository Items «extends»

suchen

«yses»

uses»

«uses»

D> 7

Luses»

Artefakt Biindel

«uses» \/
laden

Benutzer

Relation

aktualisiere

Relation I6schen «uses»
ses»

i use!
‘Artefakt ein- und
auschecken «uses»
«uses») Repository
\aktualisiere
«uses»

Abbildung 3.9.: Anwendungsfille des FragmentoRCP Plugins

39

3. Architektur und Konzeption

Regulérer Ablauf: Der Akteur testet eine eingegebene URI auf Korrektheit und Verfiig-
barkeit. Er ladt die Inhalte eines Repositorys in den Treeviewer. Er kann wahlweise
noch weitere Einstellungen zu Pfadangaben etc. machen (siehe Beschreibung).

Alternativer Ablauf: Der Akteur kann ausschliefSlich Einstellungen zum Pfad ausge-
checkter Artefakte etc. vornehmen (siehe Beschreibung).

Anwendungsfall 2: Neue Repository Items erstellen

Beschreibung: Der Akteur kann neue Artefakte bzw. Relationen erstellen.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen.

Nachbedingung: Das neu erzeugte Element wurde erfolgreich in den Treeviewer und
in das Repository aufgenommen.

Regulédrer Ablauf: Es werden folgende Fragmento Web Service APIs aufgerufen (vgl.
Anhang B):

e createNewArtefact(String type, String desc, String payload)
e createNewRelation(String type, String desc, int fromlId, int tolId)

Fehler: Das angegebene Artefakt-Payload-Dokument entspricht keinem zugelassenen
Format.

Systemzustand im Falle eines Fehlers: Fehler wird abgefangen und der Vorgang
kann wiederholt werden.

Anwendungsfall 3: Repository Items suchen

Beschreibung: Der Akteur startet eine Suchanfrage fiir Artefakte oder Relationen
im Repository. Die Suche kann durch unterschiedliche Suchkriterien angepasst
werden. Der Suchvorgang lauft nicht lokal ab, sondern iiber Web Service Aufrufe.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen. Das Repository bleibt permanent verfiigbar.

Nachbedingung: Der Treeviewer wird mit den Ergebnissen der Suchanfrage aktuali-
siert. Im Falle eines leeren Suchergebnisses wird der Akteur dariiber informiert.

Regulédrer Ablauf: Es werden folgende Fragmento Web Service APIs aufgerufen (vgl.
Anhang B):

e browseArtefactType(String type)

e browseArtefactDescription(String description)

browseArtefactContent (String content)

browseArtefactDate(Calendar from, Calendar to)

browseArtefactDateType(Calendar from, Calendar to, String type)

40

3.3. Architektur-Sichten

e browseRelationType(String type)

e browseRelationSourceId(String source)

e browseRelationTargetId(String target)

e browseRelationDate(Calendar from, Calendar to)

e browseRelationDateType(Calendar from, Calendar to, String type)

Anwendungsfall 4: Treeviewer auf- und zuklappen

Beschreibung: Der Akteur kann die Erscheinung des Treeviewers durch auf- und
zuklappen beeinflufien.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen.

Nachbedingung: Der Treeviewer wurde auf- bzw. zugeklappt.

Regulédrer Ablauf: Die Moglichkeit des auf- bzw. zuklappens wird durch entsprechen-
de Toolbar- und Kontextmeniis gegeben.

Anwendungsfall 5: Treeviewer Element 16schen

Beschreibung: Der Akteur kann Elemente lokal aus dem Treeviewer entfernen. Dies
sind die Bldtter des Baums aus Abbildung 3.5. Es wird ausschliefdlich die Listen-
struktur des Treeviewers manipuliert.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen.

Nachbedingung: Der Treeviewer wird nach dem Entfernen eines Artefakts aktuali-
siert.

Regulérer Ablauf: Das Loschen von Artefakten aus dem Treeviewer wird durch ent-
sprechende Toolbar- und Kontextmentis gegeben.

Anwendungsfall 6: Artefakt Biindel laden

Beschreibung: Der Akteur kann Artefakt Biindel aus dem Repository laden, falls
diese vorhanden sind.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen.

Nachbedingung: Das angehidngte Biindel wird in die Kategorie «Container» des
Treeviewers geladen.

Regulédrer Ablauf: Das Kontextmenii des Treeviewers bietet fiir Artefakte die entspre-
chende Option an. Es werden folgende Fragmento Web Service APIs aufgerufen
(vgl. Anhang B):

e retrieveArtefactBundle()

41

3. Architektur und Konzeption

Anwendungsfall 7: Relation aktualisieren

Beschreibung: Der Akteur kann Relationen aktualisieren.
Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen.

Nachbedingung: Die Relation wird sowohl im Repository, als auch im Treeviewer
aktualisiert.

Regulérer Ablauf: Es werden folgende Fragmento Web Service APIs aufgerufen (vgl.
Anhang B):

e updateRelation(Relation relation, String type, String desc,int
fromId, int toId)

Anwendungsfall 8: Relation 16schen

Beschreibung: Der Akteur kann Relationen aus dem Repository 16schen.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen und die zu loschende Relation existiert zum Zeitpunkt des Losch-

vorgangs noch im Repository.

Nachbedingung: Die Relation wird sowohl im Repository, als auch im Treeviewer
aktualisiert.

Regulédrer Ablauf: Es werden folgende Fragmento Web Service APIs aufgerufen (vgl.
Anhang B):

e deleteSelected(boolean fromRepo)

Anwendungsfall 9: Artefakt ein- und auschecken

Beschreibung: Der Akteur hat die Moglichkeit Artefakte ein- und auszuchecken

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen. Bei Artefakten, die eingecheckt werden ist darauf zu achten, dass
ein aktives Dokument in der Eclipse Workbench geoffnet vorliegt und dass jenes
Artefakt zuvor ausgecheckt wurde. Bei Artefakten die ausgecheckt werden sollen
ist darauf zu achten, dass diese nicht zuvor ausgecheckt wurden.

Nachbedingung: Die Artefaktinhalte werden mit einem bevorzugten Editor geoffnet
und der Treeviewer wird aktualisiert. Das Repository setzt bzw. 16st Sperren an

entsprechender Stelle.
Regulédrer Ablauf: Es werden folgende Fragmento Web Service APIs aufgerufen (vgl.
Anhang B):

e checkinSelected(String payload)

e checkoutSelected() (String payload)

42

3.3. Architektur-Sichten

Anwendungsfall 10: Lock releasen

Beschreibung: Der Akteur kann die Sperre fiir ausgecheckte Artefakte aufheben.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen.

Nachbedingung: Die Sperre wurde sowohl lokal, als auch im jeweiligen Repository
aufgehoben

Regulérer Ablauf: Es werden folgende Fragmento Web Service APIs aufgerufen (vgl.
Anhang B):

e releaselLockSelected()

Anwendungsfall 11: Artefakt Inhalt 6ffnen

Beschreibung: Der Akteur 6ffnet die Artefaktinhalte (engl. payload) in der Eclipse
Workbench.

Vorbedingung: Es wurden bereits die Inhalte eines aktiven Repositorys in den Tree-
viewer geladen. Das entsprechende Artefakt wurde daraufhin ausgecheckt oder
doppelgeklickt. Vorbedingung ist aufierdem immer, dass das Artefakt noch im
Repository existiert.

Nachbedingung: Die Artefaktinhalte werden mit einem bevorzugten Editor geoffnet.

Regulérer Ablauf: Das Editor-Auswahlmenti wird tiber einen Doppelklick auf das
gewiinschte Artefaktelement des Treeviews getffnet.

e checkinSelected(String payload)

e checkoutSelected() (String payload)

3.3.2. Verhaltens-Sicht

Dieser Unterabschnitt beschreibt das Verhalten des Plugins aus verschiedenen Perspektiven.
Die Verhaltensanalyse beschrénkt sich hierbei auf UML-Sequenzdiagramme. Aus Ubersichts-
griinden werden Verhaltensmuster vornehmlich auf Ebenen betrachtet, die einer nicht zu
feinen Granularitdt entsprechen. Das FragmentoRCP Plugin lédsst sich von mehreren Blick-
winkeln aus betrachten. Am interessantesten ist das Verhalten der Plugin-Initalisierung (in Ab-
schnitt 3.2.3 vorgestellt als Treeviewer Serialization) und der JFace-Wizard-View-Komponente.

43

3. Architektur und Konzeption

Das Verhalten der Plugin-Initalisierung

Die Plugin-Initialisierung wurde, seit Version 1.0.2 des FragmentoRCP Plugins, grundlegend
gedndert. Die Neuerung umfasst einen Serialisierungsmechanismus fiir den Treeviewer,
der die Haufigkeit der Kommunikation mit dem Repository gering hilt, indem er die
Bauminhalte lokal auslagert. Das Verhalten dieser Optimierung wird im Sequenzdiagramm
aus Abbildung 3.10 dargestellt.

Die Komponenten Activator, Presenter, RepositoryView, Treeviewer und Repository wurden
bereits eingefiihrt. LocalSystem beschreibt ein lokales und persistentes Speichermedium, das
Teil der drunterliegenden Plattform ist, auf dem das Plugin ausgefiihrt wird.

Bei der initialen Ausfithrung des Plugins wird das LocalSystem auf eine existierende Seria-
lisierungsdatei des Treeviewers hin tiberpriift. Wird diese gefunden, so muss sie lediglich
von der RepositoryView deserialisiert und aufgenommen werden. Der Vorgang erfolgt somit

lokal.

An dieser Stelle muss erwdhnt werden, dass der Auslagerungsvorgang des Treeviewers
neben der Serialisierungsdatei des Treeviewers (hier Datei A) ein zusétzliches Dokument
umfasst, welches die Adresse des dazugehorigen Repositorys enthélt (hier Datei B). Folgende
drei Bedingungen sind hierbei aussagenlogisch dquivalent:

e Datei A existiert.
e Datei B existiert.

e Die Inhalte aus A stammen aus dem Repository mit der Adresse aus B.

Wenn die Serialisierungsdatei nicht existiert, dann wird der else-Zweig des Diagramms betre-
ten. Hier instanziiert der Akteur (der Benutzer) ein OptionsView-Objekt und er hat dadurch
die Moglichkeit eine giiltige Repository Service URI anzugeben, wenn dies nicht schon
getatigt wurde. Schliefilich leitet die RepositoryView die Anforderung retrieveRepository
(deutsch: lade Repository) vom OptionsView-Objekt an den Presenter weiter, der wiederum
die benotigten Repository-Daten in den Treeviewer ladt.

Das Verhalten der JFace-Wizard-View-Komponente

Das Sequenzdiagramm der JFace-Wizard-View-Komponenten (siehe Abbildung 3.11) konzen-
triert sich auf das Verhalten des JFace Wizard Blocks aus der, in Abbildung 3.4 vorgestellten,
Architekturbeschreibung. Der Zweig mit der Bedingung «open OptionsView» ist deckuns-
gleich mit demjenigen im vorhergehenden Diagramm. Er wird jedoch aus Griinden der
Vollstandigkeit nochmals aufgefiihrt.

Die Alternative «open CreateView» ist mit der Instanziierung eines CreateView-Objekts
verbunden. Der Benutzer hat schliefilich die Moglichkeit iiber eben dieses Objekt Artefakte
oder Relationen zu erzeugen und einzulagern. Durch den Aufruf addNewItem() wird eine
Reihe von Propagierungsaufrufen erzeugt, die iiber den Presenter laufen. Dieser sorgt dafiir,

44

3.3. Architektur-Sichten

dass die neuen Items zuerst in den Treeviewer iibernommen und anschliefSend tiber Web
Service Aufrufe ins Repository ausgelagert werden.

Bei «open SearchView» wird, dhnlich wie oben, ein neues SearchView-Objekt durch den
Benutzer erschaffen. Die Suchanfrage lauft jedoch, anders als bisher, nicht zuerst iiber den
Treeviewer, sondern direkt tiber das Repository. Die gelieferten Suchergebnisse miissen erst
iiber den Presenter an den Treeviewer propagiert werden. Die Umkehrung der Anfrage-
reihenfolge wurde aus Konsistenzgriinden gefallt. Eine lokale Suche tiber den Treeviewer
garantiert keine Vollstandigkeit und Konsistenz der gelieferten Listen.

45

ot

sd FragmentoRCP Treeviewer initialization

new N RepositoryView |

’ Fragmento ” LocalSystem I

new) Treeviewer |

it J

o
|

[tree serial

ization exists]

>
)
serialized tree

]

N OptionsView I

[lisvalidURI(serviceURI)]

setServiceURI

retrieveRepository

retrieveRepository

r S

retrieveRepository

change options

Abbildung 3.10.: Das UML-Sequenzdiagramm der Treeviewer Initalisierung

uondazuoy| pun JNBUYIY "€

VA4

sd FragmentoRCP Wizard usage J

Presenter I

Repository\/iew” Treeviewer I ’ Fragmento ” LocalSystem |

Benutzer

[art]
[open OptionsView]

new N OptionsView I

[tisValidURI(serviceURI)]
¢ setServiceURI
L return

retrieveRepository

retrieveRepository
retrieveRepository

q
¢ SetTreelnput(repository tree)
Ujretu m

[open CreateView]

new N CreateView I

addNewltem()

createNewltem()

createNewltem()

[open SearchView]

new N SearchView I

browseRepo(searchCriteria)

browseRepo(searchCriteria)

displaySearchResults()

[Lreturn

Abbildung 3.11.: Das UML-Sequenzdiagramm der JFace-Wizard-View-Komponente

USIYDIS-ININRUYOIY '€°E

4. Implementierung

Viele grundlegende Ideen und Konzepte aus Kapitel 2 und 3 werden in diesem Abschnitt
aufgegriffen und aus Sicht ihrer praktischen Verwirklichung betrachtet. Implementierungs-
entscheidungen, die gefdllt wurden, aber auch alternative Herangehensweisen, werden
erwdhnt und begriindet. Die verwendeten Technologien und Architekturmuster werden
knapp zusammengefasst und ihre Rolle im Gesamtkontext hervorgehoben.

4.1. Verwendete Technologien und Patterns

4.1.1. Axis2

Bei Apache Axis 2* handelt es sich um eine Web Services / SOAP / WSDL engine, die in den
Programmiersprachen Java, sowie C vorliegt und unter der Apache-Lizenz 2.0 verfiigbar ist.
Die Java Variante liegt aktuell in der Version 1.5.5 vor. Es handelt sich um die Nachfolgerversi-
on des Apache Axis SOAP stacks. Es wurden bislang die W3C Spezifikationen WS-Addressing,
WS-ReliableMessaging, WS-MetadataExchange, WS-Policy, WS-AtomicTransaction und WS-
Security realisiert.

Eines der umfangreichen Werkzeuge von Axis2 ist WSDL2Java, mit dem sich Java Stubs,
Skeletons und Datentypen aus WSDL Dateien erzeugen lassen konnen. Dies ist bekannt als
Top Down Ansatz der Web Service Entwicklung.

4.1.2. Loose Coupling

Loose Coupling (deutsch: lose Kopplung) bezeichnet ein Design Prinzip, bei dem eine mdog-
lichst hohe isolierte Wiederverwendbarkeit der Systemkomponenten erreicht werden soll.
Die Annahmen, die Komponenten iibereinander haben sollen moglichst gering gehalten
werden. Diese Herangehensweise ist vorteilhaft, weil sie die Wartbarkeit und Portierbarkeit
des Systems erheblich verbessern kann. Dem Gegentiber steht das Prinzip Tight Coupling
(deutsch: enge Kopplung), das zu hauptsédchlich monolithischen Architekturen fiithrt (vgl.
[GHJVo4)).

Thttp://axis.apache.org/axis2/java/core/

49

http://axis.apache.org/axis2/java/core/

4. Implementierung

4.1.3. Observer Pattern

Das Observer-Pattern (vgl. [GHJV94]) beschreibt eine one-to-many Beziehung zwischen den
Objekten eines Software-Systems, bei dem Zustandsdnderungen in einzelnen Objekten
unmittelbar in abhdngigen Komponenten bekannt gemacht werden. Dieses Prinzip ist auch
bekannt unter dem Namen Publish-Subscribe.

Es gibt genau zwei Schliisselrollen, die jedes Objekt einnehmen kann: subject (deutsch: Sub-
jekt) und observer (deutsch: Beobachter). Jedes Subjekt veroffentlicht hierbei Informationen,
die von registrierten Beobachtern aufgegriffen werden. Zum Zweck der losen Kopplung ist
es nicht zwingend notwendig, dass die Subjekte die Identitdt der Beobachter kennen.

4.1.4. Reflection-Oriented Programming

Reflective Computational Systems (deutsch: reflektive Rechensysteme) sind jene Systeme, die ihr
eigenes Verhalten beobachten und beeinflussen kénnen. Es handelt sich also um Introspekti-
vitdt auf einer Meta-Ebene. Die Erfassung von Meta-Informationen, also Informationen tiber
das System selbst, konnen, dhnlich wie bei reaktiven Agenten im Bereich der kiinstlichen
Intelligenz, den weiteren Prozessablauf abandern.

Beim Reflection-Oriented Programming Paradigma ist es einem Rechensystem moglich um-
fangreiche Untersuchungen und Anderungen des eigenen Quellcodes vorzunehmen. Java
bietet fiir diesen Zweck die sogenannte Java Reflection API*>. Es handet sich um die Bibliothek
java.lang.reflect.* [SF96]

4.2. Strukturelle Sicht

Die abstrakte Architektur des Plugins aus dem Vorgiangerkapitel wird nun mithilfe von
UML-Klassendiagrammen konkretisiert. Abbildung 4.1 zeigt die vollstandige Reprasentation
des Plugins durch ein solches Diagramm. Die farblich annotierten Trennfelder unterteilen das
Diagramm in seine konzeptionellen Bauteile, womit ein Vergleich mit dem Architekturmodell
aus Abbildung 3.4 gezogen werden kann. Das Plugin wurde fiir Eclipse 3.4 (Ganymede)
konzipiert und als Entwicklungssprache kam Java 6 zum Einsatz.

Die nidchsten Abschnitte widmen sich einer genaueren Untersuchung der markierten Bereiche
des Diagramms.

*http://java.sun.com/developer/technicalArticles/ALT/Reflection/

50

http://java.sun.com/developer/technicalArticles/ALT/Reflection/

® view
@ MOoDEL
@ PRESENTER

JFace Treeviewer
Models

JFace Wizard Model &
View Models

Abbildung 4.1.: Das annotierte UML-Klassendiagramm des FragmentoRCP Plugins

18

WYIIS sjlvInPpnAs "¢’y

4. Implementierung

~categories

<<Java Class>>
(3 Lock

TMAME D CppIESe | 1M i f2pes oy |

o lackiD: int

o ariD: int

& LockD

@ setLockiD(int)void

@ getlockiDint

@ setAriD{intyvoid

epositary.IPlaceHolder>

aositery. IPlaceHolder>)void

o

<<Java Interface>>
HEgme vorcpprese v rmode b repos fory[<t e

<<Java Class=>
(3 Artefact
Tagme orcpprese v 1o repes ory

@ getAdibgrint [T

<<Java Class>>
(5 RelationsCategory<T>
TAaME VDIGEpTESE | L B fepos 1oy |

5 serialVesionUID: lang
o name: String

© sortint

o children: List<T>

_| & RerationsCategonn
....... "7 | @ getName(:String
@ setName(String)void
© getSonyint
© setSor(int:vaid
© getChildreng:List<T>

<<Java Class>>
(© Relation
fragme vbrepprese e rmodets repos iy

5 serialVersionUID: long

<<Java Class¥#

(3 ArtefactHistoryBundle -

% serialVersionUID: lang

o aefatd: int

o atefactDescription: Sting
o checkedOut: boolean

fragme KbIpprese Ve mock ks fepas iy
527 serialVersionUID: lang

o aefactD: int

o afefactDeseription: Sting

& Atefact)

@ getAnefactiDkint

@ setArtefactD{intivoid

@ getAnefactType():ArefactTypes

@ setArefactType(AtefactTypes)void
© getAnefactDescription(:String

© setArtefactDescription(Sting)void
© isCheckedOut:baolean

@ setCheckedOulbaolean)vaid

@ setChilden(List<fragmentercppresentermodels.re positary.
& getChildrengyLi

a checkedOut: beolean
_childen | & AtefactHistoryBundleQ)

A © getArefactiBint

@ setArefactiD(int)void

@ getArefactType(;ArtefactTypes

@ setArtefactType(AnsfactTypeskvoid
@ petArefactDescription(:Sting

@ setArtefactDescription(String)vaid
@ isCheckedOut(:boolean

models.iepository. ArtefactHistoryBundles

Yovoid @ boolean)void

-artefactType) 0.1

" o fromID: int

o relationiD: int

o relationDescription: Sting

a talD:int

& Relation()

© getRelationIDQ:int

@ setRelation|D{intivoid

@ getRelationTypel:RelationTypes

@ setRelation Type(Relation Typesivoid
& getRelationDescription():String

-1 o children: ListeT=

<<lava Class>
(® ArtefactCategory<T>
fagme ricpprese 1 nod . repos oy
5 serialVersionUID: lang

o name: Sting

o sortint

& AntefactCate gary()
© getNameQ:Sting

© setName(Sting)vaid
© getSorint

© setSor(intvaid

© getChildreng:List<T>

<<Java Enumeration>>
(3 RelationTypes
ragme nDrcpprese v Lmock s eps fory

refati
& setRelationDescription(Sting)void ’EN %f ANNOTATION: RelationTypes

@ getFromID(yint
@ setFromID(intyvoid
© getTalDO:int

@ setTolb{intivaid

<<Java Enumeration>>

3 ArtefactTypes

%ﬁa\
[

mosts b repos oy

% ANNOTATION: ArtefactTypes
% CONTAINER: ArtefactTypes

U FRAGMENT: ArtefactTypes
% MODELLER_DATA: AttefactTypes
% PROCESS: AttefactTypes

% DEPLOYMENT_DESCRIPTOR: ArtefactTypes

% TRANSFORMATION_RULE: AdefactT pes

% WSDL: ArtefactTypes
%o ENUMBVALUES: ArtefactTypes]

2° <clinit(rvoid
B AnefactTypes(String,int)

& valuesy ArtefactTypes])

[i}

% CONTAINER: RelationTypes

%F WSDL: RelationTypes

% DEPLOYMENT: Relation Types

%F MODELLER_DATA: RelationTypes
% TRANSFORMATION: RelationTypes
5 ENUMBVALUES: RelationTypes]]
&° <clinit=(ivaid

B RelationTypes(String.int)

@ values().RelationTypes]

& valueOfString):RelationTypes

Abbildung 4.2.: Das UML-Klassendiagramm der JFace Treeviewer Models

4.3. Implementierung des Modells

4.3.1. JFace Treeviewer Models

Die vollstandige Listenstruktur des Treeviewers ist im Klassendiagramm aus Abbildung 4.2
ersichtlich. Fiir die semantische Beschreibung des Datenmodells wird auf das Listing A.1 im
Anhang verwiesen. Die Besonderheit bei der Implementierung ist die Notwendigkeit des In-
terfaces IPlaceHolder. Es handelt sich um ein leeres Interface, welches alle Komponenten der
Treeviewer Modelle implementieren. Diese Mafinahme abstrahiert von einem speziellen Da-
tentyp hinweg, denn die Treeviewer Liste vom Typ ArrayList<IPlaceHolder> muss das Hin-
zufiigen mehrerer Datentypen erlauben, und zwar Relation, Artefact, RelationsCategory
und ArtefactCategory (vgl. Abbildung 3.5).

52

4.4. Implementierung des Presenters

4.4. Implementierung des Presenters

4.4.1. Realisierung des Observer Patterns

Es stellt sich heraus, dass die unmittelbare Propagierung von Zustandsanderungen zwischen
View und Model essentiell fiir die erfolgreiche Verwirklichung des Plugins ist. Die Realisie-
rung des Observer Patterns erfolgt in zwei Schritten, namlich Publish und Subscribe. Es folgt
eine genauere Beschreibung.

Subscribe: Registrierung von Beobachtern

Die Registrierung von Beobachtern, also von Modellen oder View-
Komponenten erfolgt in Java iiber Listen. In unserem Fall iiber die Klasse
java.util.concurrent.CopyOnWriteArrayList. Die zwei Listen heifSen registeredViews
und registeredModels.

Um neue Modelle bzw. Views hinzufiigen oder entfernen zu kénnen, stehen auflerdem noch
die Methoden addModel und removeModel bzw. addView und removeView zur Verfligung.
Fiir die genaue Implementierung siehe Listing A.3.

Publish: Mechanismus zur Zustandsmanipulation

Der Publish Mechanismus wurde konzeptionell schon in Abschnitt 3.2.3 vorgestellt. Dieser
Abschnitt legt besonderes Augenmerk auf die setModelProperty(String propertyName,
Object newValue) Methode aus Listing A.3. Die View ruft diese Methode auf, wenn sie
Anderungen an Modellattributen vornehmen will. Der Parameter propertyName vom Typ
String beschreibt die Bezeichnung des jeweiligen Zielattributs. Der Parameter newValue vom
Typ Object ist der neue Wert, der dem Zielattribut zugewiesen werden soll.

setModelProperty wird mit Hilfe der Java Reflection API implementiert (siehe Listing A.3).
Die entsprechenden Vorteile liegen in einer vollstindigen Abkopplung (siehe Loose Coupling)
aller Modellkomponenten. Die setter-Methoden miissen im Presenter nun nicht mehr explizit
aufgerufen werden, sondern sie werden indirekt mittels ihres propertyName Parameters
ermittelt.

4.4.2. FragmentService & Axis2
Die FragmentService Komponente aus Abbildung 3.8 wird nochmals aufgegriffen und
verfeinert. Wir erweitern die Darstellung in Abbildung 4.3.

Das WSDLz2Java Werkzeug generiert die Klassen FragmentServiceStub.java und
FragmentServiceCallbackHandler.java mithilfe des Top Down Ansatzes. Das Fragmento
Repository stellt hierfiir das interne WSDL-Service Dokument zur Verfiigung.

53

4. Implementierung

FragmentoRCP
FragmentService
\
=)
FragmentService
Callback Handler | \ \
FragmentoRCP <<SOAP>> <<SOAP>> .
Core F HTTP HTTP Fragmento Repository
Axis B
FragmentService
L Axis Stub
h ®
‘ /
/

Service —
¥ WSDL

Abbildung 4.3.: Die Fragment Service Komponente unter Anwendung von Axis2

Der Callback Handler ist eine abstrakte Klasse, die spezielle reaktiondre Methoden zum
Uberschreiben bereitstellt. Reaktionire Methoden sind Methoden, die im Anschluss an
fehlerlose oder fehlerhafte Web Service Aufrufe ausgefiihrt werden.

Obwohl die genannten Klassen zur Kommunikation vollig ausreichend sind, wurde aus Be-
quemlichkeitsgriinden die zusitzliche Klasse FragmentoAxis. java entwickelt. Diese expan-
diert diverse Prozeduren, wie z.B. die browseArtefacts Prozedur, in mehrere tibersichtliche
Methoden. Weitere Informationen hierzu bietet der Anhang B.

4.5. Implementierung der View

4.5.1. Ereignissteuerung in der View

Jede vom Presenter aufgerufene View muss die Methode modelPropertyChange (event)
implementieren. Die View-Komponenten unterscheiden sich hierbei erheblich vonein-
ander. Es werden neben der org.eclipse.ui.part.ViewPart Klasse fiir die Main
View auch noch die Klassen org.eclipse.jface.wizard.Wizard fiir Wizards und
org.eclipse.jface.wizard.WizardPage fiir WizardPages erweitert.

Zu diesem Zwecke wurde das Interface IGuiModelPropertyChange entworfen (siehe Listing
4.1). Aufgrund der Tatsache, dass in Java keine Mehrfachvererbung erlaubt wird, ist es nicht
moglich gleichzeitig IGuiModelPropertyChange und auch noch eine der drei Basisklassen aus
obigem Absatz zu erweitern. Deshalb erweitern die Views jeweils eine zusétzliche Klasse, die
wiederum IGuiModelPropertyChange implementiert und die jeweilige Basisklasse erweitert.
Abbildung 4.4 zeigt dies grafisch und Listing 4.2 liefert den zugehorigen Quellcode am
Beispiel der WizardPages Komponente.

54

4.5. Implementierung der View

Listing 4.1 IGuiModelPropertyChange

public interface IGuiModelPropertyChange {

/%%

* Model property change is called with the most recent event fired and
* propagated through the Presenter object.

*

* Q@param event

* the event

public void modelPropertyChange(final PropertyChangeEvent event);

Listing 4.2 GuiModelPropertyChange_IWizardPage

public abstract class GuiModelPropertyChange_IWizardPage extends WizardPage
implements IGuiModelPropertyChange {

/*%
* Instantiates a new gui model property change_ i wizard page.

* Q@param pageName
the page name
*/
protected GuiModelPropertyChange_IWizardPage (String pageName) {
super (pageName) ;
<<Java Interface=>
O IGuiModelPropertyChange
Tragme 'DCEpIEse VE [.IEEs
@ modelPropertyChange(FropertyChangeEvent)void
L I T
<<Java Class>> H e
(& GuiModelPropertyChange_Wizard = <edava Classs
fragme vorcpprese ver fiaces H (& GuiModelPropertyChange_WiewPart
& GuiModelPropertyChange_IWizard() fragme voropprese i 1 Haces
& modelPropertyChange (PropertyChange Event):void <<] :m 5> & GuiMadelPropertyChange_IViewPar()
ava Class .
@ GuilModelPropertyChange_WizardPage uq model PropertyChange (PropedyChangeE vent):void

TrEmE VDICpprese Ve L Haces
\,c GuiModelPropertyChange_IWizardPage(String)

T

Abbildung 4.4.: das Interface fragmentorcppresenter.ifaces.IGuiModelPropertyChange.java

55

4. Implementierung

4.5.2. FragmentoRCP Plugin Extensions

Das FragmentoRCP Plugin nutzt mehrere Extensions (deutsch: Erweiterungspunkte). Das
Konzept der Extensions wurde im Abschnitt 2.1.2 vorgestellt. Tabelle 4.1 listet alle fiir dieses
Projekt wichtigen Extensions auf.

Extension Paket Beschreibung/Verwendung

org.eclipse.ui.views Hier wird die FragmentoRCP.RepositoryView
und eine zugehorige Category definiert. Die
Category gruppiert die View in Eclipse unter
Window — ShowView — Other.

org.eclipse.ui.menus Das toolbar- und popup-Menii wird hier, mitsamt
aller Strukturinformationen und Préferenzen,
deklariert. Das popup-Menti bezeichnet das Kon-
textmenii des Treeviewers.

org.eclipse.ui.commands Dieser Erweiterungspunkt definiert verschiede-
ne Commands (deutsch: Befehle), die bei der
Betatigung der toolbar- und popup-Meniieintrage
ausgefiihrt werden sollen. Es handelt sich hier
nur um abstrakte Reprédsentationen des seman-
tischen Verhaltens der Befehle. Dies erlaubt
verschiedene Implementationen derselben Be-
fehlsstruktur.

56

4.6. Alternative Konzeption und Implementierung

org.eclipse.uil.handlers

org.eclipse.ui.newWizards

org.eclipse.ul.services

org.eclipse.core.runtime.products

Tabelle 4.1.: Die FragmentoRCP Extensions

Die Handler bilden die eigentliche Implemen-
tation der abstrakten Befehlsstruktur der Com-
mands.

In newWizards werden die konkreten Wizard
und WizardPage Klassen deklariert.

Die Services definieren Variablen, die vom Plu-
gin selbst manipuliert werden kénnen und die
in den anderen Erweiterungspunkten, abgefragt
werden konnen. Somit ergibt sich ein globales
Variablensystem, welches in Bedingungsabfra-
gen eingesetzt werden kann. FragmentoRCP
nutzt dieses System, um die toolbar- und popup-
Meniis je nach Pluginzustand aktiveren bzw.
deaktivieren zu kénnen.

Dieser Punkt befasst sich mit dem sogenannten
Product Branding. Es geht um die abschliefSende
Pragung des Software-Produkts. Typischerwei-
se besteht ein Branding aus der Abanderung
des Produkt-Icons, des Splash-Screens, des About-
Dialoges und vielem mehr.

4.6. Alternative Konzeption und Implementierung

Fiir fast alle Aspekte des FragmentoRCP Plugins lassen sich eine Reihe von alternativen
Konzepten anwenden, die zum Teil eine sehr breite Anwendung in der Praxis finden. Je
tiefgreifender die Anderungen, desto interessanter sind die Auswirkungen auf Faktoren wie
Performanz oder Overhead. Dieser Abschnitt stellt solche alternativen Herangehensweisen

an die Implementierung des Plugins vor.

JFace Databinding fiir die Ereignissteuerng in der View

Die aktuelle Ereignissteuerung hat den Nachteil, dass keine effiziente Validierung der {iber-
gebenen Objekte erfolgen kann. Solche Objekte und Werte werden bei Zustandsanderungen

57

4. Implementierung

Presenter(PropertyChangeSupport) IView
DataBindingContext dbc IObservableValue name

IObservableValue getName ()
getName () ;

setName (String name)

private bind() { \/////A \\\\;3

//bind presenter to

//view View MockView

Abbildung 4.5.: Die JFace Databinding Funktionsweise (eigene Bearbeitung nach [Pauo8])

weitergeleitet, ob sie nun im jeweiligen Kontext zugelassen sind oder nicht. Ein weiterer
Nachteil ist die Tatsache, dass Zustandsdanderungen in der View explizit bekannt gemacht
werden miissen. Es erfolgt keine automatisierte unmittelbare Synchronisierung der View
mit dem Modell. Dies wurde durch die Methode setModelProperty(String propertyName,
Object newValue) ermoglicht.

Solche Anforderungen werden typischerweise durch JFace Databinding3 gelost. Die Ba-
sis des JFace Databindings bilden die Observables. Diese sind abstrakte Objektkonstrukte,
die beispielsweise Anderungen von Werten, Listen, Mengen oder Mappings beobachten.
Sie unterstehen dem Observer Pattern. Fiir alle zu beobachtenden Komponenten werden
I0bservableValue Variablen deklariert. Diese werden schliefilich an die entsprechenden
Modellkomponenten gebunden. Die Bindung erfolgt z.B. im Presenter, indem zunéachst die
IObservableValue Variablen mittels Dependency Injection (vgl. [Fowoga]) injiziert werden und
schlieflich {iber eine entsprechende Methode (hier bind()) gebunden werden. Diese Metho-
de definiert zundchst einen DataBindingContext, der eine bindValue Option zur Verfiigung
stellt. Abbildung 4.5 zeigt die Databinding Funktionsweise an einem Beispiel.

Optimierung der Presenterkomponenten

Die mittlere Laufzeit der setModelProperty Methode ist aufgrund der Reflection API hoher
als notwendig. Wenn ein neuer Aufruf erfolgt, durchsucht der Presenter alle registrierten
Modelle nach der passenden setter-Methode. Diese wird bekanntlich exklusiv iiber ihren
Bezeichner ermittelt. Man konnte dies verbessern, indem man die Ereignissteuerung Kom-
ponentenbewusst entwickelt. Dies bedeutet, dass Zustandsdanderungen in einer bestimmten
View eben genau das korrespondierende Modell aufrufen. Eine Verbesserung der Laufzeit in
diesem Sinne erfordert leider eine Aufopferung der volligen Abkopplung der Modelle vom
Presenter.

Shttp://wiki.eclipse.org/index.php/JFace_Data_Binding

58

http://wiki.eclipse.org/index.php/JFace_Data_Binding

5. Testdokumentation

Dieses Kapitel dokumentiert die Software-Tests des FragmentoRCP Plugins. Die Testdoku-
mentation folgt hierbei dem ANSI/IEEE 829" Standard. Es ist zu erwdhnen, dass aufgrund
des relativ geringen Projektumfangs, nicht alle vom Standard definierten Testarten zur An-
wendung kommen. Die hier aufgelisteten Dokumente umfassen den Testplan, die Testfélle,
das Testprotokoll und den Abschlussbericht.

5.1. Der Testplan

5.1.1. Einfuhrung

Dies ist der Testplan des FragmentoRCP Plugins. Er befasst sich unter anderem mit der
Granularitat der Testfdlle, der Beschreibung der Testumgebung, sowie der zu testenden Funk-
tionen und Komponenten. Es werden ausschliefSlich Systemtests durchgefiihrt. Dies bedeutet,
dass das Systemverhalten als Ganzes betrachtet wird, anstatt einzelner Funktionseinheiten
wie bei Modultests. Dieser Ansatz wird auch Black-Box-Testing genannt.

Der Testvorgang beruht auf der Version 1.0.5 des Plugins. Die genaue Deployment Version
lautet FragmentoRCP_1.0.5.201108121140.

5.1.2. Zu testende Komponenten

Die zu testenden Komponenten lassen sich in folgende drei Kategorien einteilen.

e GUI-basierte Tests: Hier werden ausschliefslich Komponenten der Benutzeroberfliache
auf ihre Richtigkeit hin tiberpriift. Diese umfassen beispielsweise das Verhalten von
Buttons, Dialogen und Fehlermeldungen.

¢ Funktionstests: Diese Kategorie konzentriert sich hauptsachlich auf die Uberpriifung
der implementierten Web Service Funktionalitt.

¢ Konsistenztests: Es handelt sich hierbei um Synchronisierungstests, die das Verhalten
des Plugins im Falle einer kiinstlich induzierten Dateninkonsistenz (zu den Daten des
aktiven Repositorys) beschreiben.

Thttp://standards.ieee.org/findstds/standard/829-1983.html

59

http://standards.ieee.org/findstds/standard/829-1983.html

5. Testdokumentation

5.1.3. Umgebung

Alle Test wurden auf einem Intel® Core™ is-760 Prozessor (8M Cache, 2.80 GHz) durchgefiihrt.
Das eingesetzte Motherboard Modell lautet ASUS P7P55D. Das Betriebssystem ist Ubuntu
10.04 LTS (Lucid Lynx) basierend auf dem Linux-Kernel v.2.6.32-28-generic. Die genaue Eclipse
Plattform liegt in Version 3.6.2 (Helios) vor und die eingesetzte virtuelle Maschine basiert auf
Open]DK? Java SE 6 Update 20. Das Plugin wurde fiir die Eclipse-Version 3.4 entworfen, es ist
jedoch erfolgreich bis zur Helios-Version auf Aufwiartskompatibilitdt getestet worden.

Die aktuelle Fragmento WAR Distribution wird auf einem vorkonfigurierten Tomcat Applica-
tion Server3 ausgefiihrt und die zur Verfligung stehenden Testfragmente stammen aus einer
am Institut erhéltlichen Testsuite# .

Der Tomcat Application Server lief im Testdurchlauf auf der lokal Maschine.

5.1.4. Vorgehen

Fast alle Testfélle setzen eine bestehende Verbindung zum Tomcat Application Server voraus,
um einen fehlerfreien Ablauf zu garantieren. Zur Messung der Fehlertoleranz des Systems,
muss diese Bedingung jedoch in speziellen Féllen gelockert werden.

5.2. Die Testfalle

Die Testfille beschreiben exakt welche Funktionen zu testen sind, zusammen mit deren
Eingaben und erwarteten Ausgaben. Sollten besondere Bedingungen oder Abhidngigkeiten
(andere Testfélle) erforderlich sein, so werden diese ebenfalls erwahnt.

Testfall ID: 1
Zu testende Funktion: Die Akzeptanz einer servicellRI wird iiberpriift.
Eingaben: Service WSDL URI des Fragmento Repositorys (localhost).

Soll-Ausgaben: URI wird zugelassen und der Button «Retrieve Repository» wird
aktiviert.

Umgebung: Aktive Verbindung zum Repository gegeben.

2http://openjdk. java.net/

3erhdltlich auf Anfrage am Institut

4erhéltlich unter http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/downloads/
Fragmento-initial-filling-soapui-project.zip

60

http://openjdk.java.net/
http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/downloads/Fragmento-initial-filling-soapui-project.zip
http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/downloads/Fragmento-initial-filling-soapui-project.zip

5.2. Die Testfalle

Testfall ID: 2
Zu testende Funktion: Die Akzeptanz einer servicellRI wird tiberpriift.
Eingaben: Service WSDL URI des Fragmento Repositorys (localhost).

Soll-Ausgaben: URI wird nicht zugelassen und der Button «Retrieve Repository» wird
deaktiviert.

Umgebung: Verbindung zum Repository ist nicht gegeben.
Testfall ID: 3

Zu testende Funktion: Korrekte Aktivierung/Deaktivierung der OptionsWizard GUI-
Elemente.

Eingaben: Betdtigung des «Retrieve Repository» Buttons.

Soll-Ausgaben: Alle zusitzlichen Optionen werden zur Manipulation freigegeben
(aktiviert).

Umgebung: Verbindung zum Repository ist gegeben.
Testfall ID: 4

Zu testende Funktion: Korrekte Aktivierung/Deaktivierung der CreatNewltemWizard
GUI-Elemente.

Eingaben: Vollstindige/Unvollstindige Befiillung aller geforderten Artefakt- und
Relationsfelder.

Soll-Ausgaben: Die Buttons «Create Artefact» und «Create Relation» miissen entspre-
chend aktiviert/deaktiviert werden.

Testfall ID: 5

Zu testende Funktion: Korrekte Aktivierung/Deaktivierung der SearchltemWizard
GUI-Elemente.

Eingaben: Angabe des Suchtyps fiir Artefakte oder Relationen.

Soll-Ausgaben: Die korrespondierenden Suchfelder miissen entsprechend aktiviert/-
deaktiviert werden.

Testfall ID: 6
Zu testende Funktion: Korrekte Funktionalitdt und Aktivierung der toolbar Buttons.
Eingaben: Betidtigung der einzelnen Buttons.

Soll-Ausgaben: Aktivierung der Buttons nach erfolgreichem Laden des Treeviewers.
Entsprechende Funktion wird ausgefiihrt.

Umgebung: Verbindung zum Repository ist gegeben.

61

5. Testdokumentation

Testfall ID: 7

Zu testende Funktion: Korrekter Aufruf und Einlagerung der Repository-Inhalte in
den Treeviewer.

Eingaben: Der Button «Retrieve Repository» wird betitigt.
Soll-Ausgaben: Treeviewer wird aufgebaut und der Inhalt wird dargestellt.

Umgebung: Verbindung zum Repository ist gegeben.

Testfall ID: 8

Zu testende Funktion: Korrekter Aufruf und Einlagerung der lokalen serialisierten
Treeviewer Inhalte.

Eingaben: Initialer Start der Eclipse Entwicklungsumgebung.
Soll-Ausgaben: Treeviewer wird aufgebaut und der Inhalt wird dargestellt.
Umgebung: Verbindung zum Repository ist gegeben.

Besonderheiten: Die lokalen serialisierten Dateien existieren.

Testfall ID: 9

Zu testende Funktion: Korrekter Aufruf und Einlagerung der Repository-Inhalte in
den Treeviewer.

Eingaben: Der Button «Retrieve Repository» wird betatigt.
Soll-Ausgaben: Treeviewer wird aufgebaut und der Inhalt wird dargestellt.

Umgebung: Verbindung zum Repository ist gegeben.

Testfall ID: 10

Zu testende Funktion: Uberpriifung der Funktionalitit der export-Pfade bzw. checkout-
Pfade.

Eingaben: Jeweils mehrere verschiedene Pfade einstellen und einen export bzw. checkout
durchfiihren.

Soll-Ausgaben: Angegebene Pfade miissen die entsprechenden Dokumente anlegen.

Umgebung: Verbindung zum Repository ist gegeben (fiir checkouts).

62

5.2. Die Testfalle

Testfall ID: 11

Zu testende Funktion: Uberpriifung der Funktionalitit der SearchltemWizard Kompo-
nente.

Eingaben: Suchvorgiange mit allen verfiigbaren Suchtypen fiir Artefakte/Relationen
durchfiihren.

Soll-Ausgaben: Falsche Angaben oder leere Suchergebnisse sind abzufangen und
korrekte Suchanfragen werden im Treeviewer wiedergespiegelt.

Umgebung: Verbindung zum Repository ist gegeben.
Testfall ID: 12

Zu testende Funktion: Uberpriifung der Funktionalitat der CreatNewltemWizard Kom-
ponente.

Eingaben: Erstellung neuerArtefakte/Relationen ist durchfiihren, wobei alle alternati-
ven Moglichkeiten ausgeschopft werden.

Soll-Ausgaben: Nicht zugelassene Angaben sind abzufangen und korrekte Durchfiih-
rungen werden im Treeviewer und im Repository wiedergespiegelt.

Umgebung: Verbindung zum Repository ist gegeben.

Testfall ID: 13
Zu testende Funktion: Uberpriifung der Funktionalitit des Kontextmentis.
Eingaben: Ein bereits geladener Treeviewer.

Soll-Ausgaben: Nicht zugelassene Aktionen sind abzufangen und korrekte Durchfiih-
rungen werden im Treeviewer oder im Repository wiedergespiegelt.

Umgebung: Verbindung zum Repository ist gegeben.

Testfall ID: 14
Zu testende Funktion: Uberpriifung des Verhaltens von Artefakten im Treeviewer.
Eingaben: Ein bereits geladener Treeviewer.

Soll-Ausgaben: Nicht zugelassene Aktionen sind abzufangen und korrekte Durchfiih-
rungen werden im Treeviewer oder im Repository wiedergespiegelt.

Umgebung: Verbindung zum Repository ist gegeben.

Besonderheiten: Die korrespondierenden Artefakte im Repository werden verdndert
(checkin/checkout).

63

5. Testdokumentation

Testfall ID: 15
Zu testende Funktion: Uberprﬁfung des Verhaltens von Relationen im Treeviewer.
Eingaben: Ein bereits geladener Treeviewer.

Soll-Ausgaben: Nicht zugelassene Aktionen sind abzufangen und korrekte Durchfiih-
rungen werden im Treeviewer oder im Repository wiedergespiegelt.

Umgebung: Verbindung zum Repository ist gegeben.

Besonderheiten: Die korrespondierenden Relationen im Repository werden verdandert
(update/delete).

5.3. Das Testprotokoll

Das Testprotokoll verwaltet die Ergebnisse der eigentlichen Ausfiihrung aller Testfélle.
Die Testfall ID wird zusammen mit einer kurzen Beschreibung der sichtbaren Ergebnisse
aufgelistet. Erfolgreiche Testabldufe werden durch den Préfix «Erfolgreiche Durchfithrung»
notiert. Teilweise fehlerbehaftete Testabldufe hingegen werden durch den Prifix «Teilweise
erfolgreiche Durchfithrung» markiert. Komplett beeintrachtigte Systemzustande erhalten
den Prifix «Fehlerhafte Durchfithrung».

Testfall ID 1: Erfolgreiche Durchfiihrung. Es ist anzumerken, dass jede abweichende URL
nicht akzeptiert wurde.

Testfall ID 2: Erfolgreiche Durchfiihrung. Jede eingegebene URL wurde nicht akzeptiert.

Testfall ID 3: Teilweise erfolgreiche Durchfithrung. Die Aktivierung der export-Path-GUI
Element erfolgt erst bei erneutem 6ffnen des OptionWizard Fensters.

Testfall ID 4: Teilweise erfolgreiche Durchfiihrung. Die Reaktivierung der Buttons bei feh-
lerhaften Eingaben erfolgt erst bei kompletter Entfernung des fehlerhaften Strings.

Testfall ID 5: Erfolgreiche Durchfiihrung
Testfall ID 6: Erfolgreiche Durchfiihrung
Testfall ID 7: Erfolgreiche Durchfiihrung
Testfall ID 8: Erfolgreiche Durchfiihrung
Testfall ID 9: Erfolgreiche Durchfiihrung
Testfall ID 10: Erfolgreiche Durchfiihrung
Testfall ID 11: Erfolgreiche Durchfiihrung.
Testfall ID 12: Erfolgreiche Durchfiihrung
Testfall ID 13: Erfolgreiche Durchfiihrung

64

5.4. Der Abschlussbericht

Testfall ID 14: Fehlerhafte Durchfiihrung. Die Manipulation von Repository Items bei lau-
fendem Plugin Betrieb hat einen direkt Einfluss auf dessen Stabilitat.

Testfall ID 15: Fehlerhafte Durchfiihrung. Die Manipulation von Repository Items bei lau-
fendem Plugin Betrieb hat einen direkt Einfluss auf dessen Stabilitat.

5.4. Der Abschlussbericht

Das Testprotokoll ldsst den Schluss zu, dass sich das Plugin stabil verhilt. Die kritischen
Komponenten erfiillen ihre Soll-Aufgaben, was ein Kriterium fiir die erfolgreiche Gesamtbe-
wertung darstellt. Die Fehler aus den Testféllen 3 und 4 sind allesamt von niedriger Prioritat,
denn sie beeinfluflen nicht den erfolgreichen Einsatz des Plugins. Die Ursache der Fehler
aus den Testfdllen 14 und 15 wird im Abschnitt 3.2.3 erkldrt. Das Plugin ist nicht fiir eine
Two-Way Synchronisation konzipiert, womit die Fehlerbehandlung obsolet wird.

Es ist aufserdem zu beachten, dass das Plugin kein transaktionelles Verhalten aufweist. Vor
allem wurde nicht auf atomares Verhalten einzelner Funktionen geachtet. Im Fehlerfall kann
es beispielsweise vorkommen, dass getdtigte Operationen auf dem Repository erst bei einem
Neustart des Plugins reflektiert werden.

65

6. Zusammenfassung und Ausblick

Die Notwendigkeit von méchtigen Softwarekomponenten zur Erreichung eines reibungslosen
Ablaufs kritischer Arbeitsschritte wird oftmals unterschéatzt. Wirklich niitzliche Komponenten
zeichnen sich dadurch aus, dass sie einen moglichst glatten Ubergang von einem Unterneh-
mensprozess in den nichsten schaffen. Sie treten dadurch idealerweise in den Hintergrund,
sodass einzig der Geschiftsablauf wahrgenommen werden kann.

Fragmento als Bibliothek zur Einlagerung einer Vielzahl von Prozessfragmenten bedarf eines
Modellierungswerkzeugs zur eigentlichen, praktischen Verwendung besagter Fragmente.

In dieser Studienarbeit wurde das FragmentoRCP Plugin vorgestellt, mit dem Fragmento
in die Rich Client Plattform Eclipse integriert werden kann. Neben einer Hintergrunddis-
kussion und Motivation zur Notwendigkeit dieser Arbeit, wurde das Plugin von seiner
konzeptionellen, sowie praktischen Seite durchleuchtet. Die eingefiihrten Konzepte und
Entwurfsmuster liegen dem modularen Aufbau des Plugins zugrunde, wodurch dieses auf
einfache Art und Weise weiterentwickelt werden kann.

Zur Verwendung der eingelagerten Prozessfragmente als Modellierungskonstrukte, wird
FragmentoRCP zukiinftig an eine erweiterte Version des Eclipse BPEL-Designers angebunden
werden.

67

A. Listings

Dieser Anhang beinhaltet wichtige Quellcode-Ausschnitte bzw. grofiere Listings, die fiir das
Verstidndnis des Aufbaus des Plugins wichtig sind.

Listing A.1: XML-Schema der Listenstruktur des Treeviewers

<?xml version="1.0"7>
<xs:schema xmlns:xs="http://www.w3.o0rg/2001/XMLSchema">

<xs:element name="categories" minOccurs="1" maxOccurs="1">
<xs:complexType>
<Xs:sequence>
<xs:element name="Artefacts" type="ArtefactCategoryListing"
minOccurs="1" maxOccurs="1" fixed="Artefacts"/>
<xs:element name="Relations"
type="RelationsCategoryListing"minOccurs="1" maxOccurs="1"
fixed="Relations"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:complexType name="RelationsCategoryListing">
<xs:sequence>
<xs:element name="ANNOTATION" type="ListRelation" fixed="ANNOTATION"
max0Occurs="1"/>
<xs:element name="CONTAINER" type="ListRelation" fixed="CONTAINER"
max0Occurs="1"/>
<xs:element name="WSDL" type="ListRelation" fixed="WSDL" maxOccurs="1"/>
<xs:element name="DEPLOYMENT" type="ListRelation" fixed="DEPLOYMENT"
max0Occurs="1"/>
<xs:element name="MODELLER_DATA" type="ListRelation" fixed="MODELLER_DATA"
max0Occurs="1"/>
<xs:element name="TRANSFORMATION" type="ListRelation" fixed="TRANSFORMATION"
max0Occurs="1"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="ArtefactCategoryListing">
<xs:sequence>

<xs:element name="ANNOTATION" type="ListArtefact" fixed="ANNOTATION"
max0Occurs="1"/>

<xs:element name="CONTAINER" type="ListArtefact" fixed="CONTAINER"
max0Occurs="1"/>

<xs:element name="DEPLOYMENT_DESCRIPTOR" type="ListArtefact"
fixed="DEPLOYMENT_DESCRIPTOR" maxOccurs="1"/>

69

A. Listings

<xs:element name="FRAGMENT" type="ListArtefact" fixed="FRAGMENT"
maxOccurs="1"/>

<xs:element name="MODELLER_DATA" type="ListArtefact" fixed="MODELLER_DATA"
maxOccurs="1"/>

<xs:element name="PROCESS" type="ListArtefact" fixed="PROCESS" maxOccurs="1"/>

<xs:element name="TRANSFORMATION_RULE" type="ListArtefact"
fixed="TRANSFORMATION_RULE" maxOccurs="1"/>

<xs:element name="WSDL" type="ListArtefact" fixed="WSDL" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Relation">
<xs:sequence>

<xs:element name="relationID" type="xs:integer"/>
<xs:element name="relationType" type="RelationTypes"/>
<xs:element name="relationDescription" type="xs:string"/>
<xs:element name="fromID" type="xs:integer"/>
<xs:element name="fromID" type="xs:integer"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="Artefact">
<Xs:sequence>
<xs:element name="artefactID" type="xs:integer"/>
<xs:element name="artefactType" type="ArtefactTypes"/>
<xs:element name="artefactDescription" type="xs:string"/>
<xs:element name="checkedOut" type="xs:boolean"/>
<xs:element name="children" type="ListHistory"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="ListArtefact">
<Xs:sequence>
<xs:element name="child" type="Artefact" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="ListRelation">
<Xs:sequence>
<xs:element name="child" type="Relation" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="ListHistory">
<Xs:sequence>
<xs:element name="child" type="ArtefactHistoryBundle" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="ArtefactHistoryBundle">
<xs:sequence>
<xs:element name="artefactID" type="xs:integer"/>
<xs:element name="artefactType" type="ArtefactTypes"/>
<xs:element name="artefactDescription" type="xs:string"/>
<xs:element name="checkedOut" type="xs:boolean"/>

70

</xs:sequence>
</xs:complexType>

<xs:simpleType name="RelationTypes">

<xs:restriction base="xs:string">

<xs:enumeration value="ANNOTATION"/>
<xs:enumeration value="CONTAINER"/>
<xs:enumeration value="WSDL"/>
<xs:enumeration value="DEPLOYMENT"/>
<xs:enumeration value="MODELLER_DATA"/>
<xs:enumeration value="TRANSFORMATION"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="ArtefactTypes">

<xs:restriction base="xs:string">

<xs:enumeration value="ANNOTATION"/>
<xs:enumeration value="CONTAINER"/>
<xs:enumeration value="DEPLOYMENT_DESCRIPTOR"/>
<xs:enumeration value="FRAGMENT"/>
<xs:enumeration value="MODELLER_DATA"/>
<xs:enumeration value="PROCESS"/>
<xs:enumeration value="TRANSFORMATION_RULE"/>
<xs:enumeration value="WSDL"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

Listing A.2: Java Klasse des Activators

import org.eclipse.ui.plugin.AbstractUIPlugin;
import org.osgi.framework.BundleContext;

VAL
* The activator class controls the plug-in life cycle
*/

public class Activator extends AbstractUIPlugin {

// The plug-in ID
public static final String PLUGIN_ID = "FragmentoRCP"; //$NON-NLS-1$

// The shared instance
private static Activator plugin;

/*%
* The constructor
*/
public Activator() {
}

/%

* (non-Javadoc)

71

A. Listings

@see
org.eclipse.ui.plugin.AbstractUIPlugin#start (org.osgi.framework.BundleContext
)

* * * %

*/
public void start(BundleContext context) throws Exception {
super.start (context) ;
plugin = this;

(non-Javadoc)

org.eclipse.ui.plugin.AbstractUIPlugin#stop (org.osgi.framework.BundleContext
)
*/
public void stop(BundleContext context) throws Exception {
plugin = null;

*
*
* @see
*
*

super.stop (context) ;

/*%
* Returns the shared instance
*
* Qreturn the shared instance
*/
public static Activator getDefault() {
return plugin;

}

Listing A.3: Java Klasse des abstrakten Presenters

package fragmentorcppresenter.presenter;

import java.beans.PropertyChangeEvent;

import java.beans.PropertyChangelistener;

import java.lang.reflect.Method;

import java.util.concurrent.CopyOnWriteArrayList;

import fragmentorcppresenter.ifaces.IGuiModelPropertyChange;
import fragmentorcppresenter.models.ModelAbstraction;

/*%

* The Class PresenterAbstraction.

* @param <T> the generic type
* Qauthor Dimitrios Dentsas
*/
public abstract class PresenterAbstraction<T extends IGuiModelPropertyChange> implements
PropertyChangeListener {

72

//

//

//

//

/** The registered views. */
private CopyOnWriteArrayList<T> registeredViews;

/** The registered models. */
private CopyOnWriteArrayList<ModelAbstraction> registeredModels;

/%
* Instantiates registered view and model lists.
*/
public PresenterAbstraction() {
registeredViews = new CopyOnWriteArrayList<T>();
registeredModels = new CopyOnWriteArrayList<ModelAbstraction>();

VAL
* Adds the model to the registeredModels list.
*
* @param model the model
*/
public void addModel (ModelAbstraction model) {
registeredModels.add(model) ;
model .addPropertyChangeListener (this) ;
System.out.println(model.getClass () .getSimpleName() + " added");

/**
* Removes the model from registeredModels list.
*
* @param model the model
*/
public void removeModel (ModelAbstraction model) {
registeredModels.remove (model) ;
model .removePropertyChangelListener (this) ;
System.out.println(model.getClass().getSimpleName() + " removed");

/**
* Adds the view to the registeredViews list.
*
* @param view the view
*/
public void addView(T view) {
registeredViews.add(view) ;
System.out.println(view.getClass().getSimpleName() + " added");

/**
* Removes the view from the registeredViews list.
*
* @param view the view
*/
public void removeView (T view) {
registeredViews.remove (view) ;
System.out.println(view.getClass().getSimpleName() + " removed");

73

A. Listings

}
/* (non-Javadoc)
* @see
java.beans.PropertyChangeListener#propertyChange (java.beans.PropertyChangeEvent)
*/
@Q0verride
public void propertyChange (PropertyChangeEvent event) {
for (T view: registeredViews) {
view.modelPropertyChange (event) ;
}
}
VAL
* Sets the model property.
* @param propertyName the property name
* @param newValue the new value
*/
public void setModelProperty(String propertyName, Object newValue) {
for (ModelAbstraction model: registeredModels) {
try {
Method[] names = model.getClass().getMethods() ;
for (int i = 0; i < names.length; i++) {
if
(names [i] . getName () .equals ("set"+propertyName.substring
1) .toUpperCase() + propertyName.substring(1))) {
names[i] . invoke (model, newValue);
break;
}
}
} catch (Exception ex) {
ex.printStackTrace();
}
}
}

x (0,

Listing A.4: Quellcode-Ausschnitt der Nutzung einer WizardDialog-Instanz

CreateWizard wizard = new CreateWizard(pages) ;

WizardDialog dialog = new WizardDialog(HandlerUtil
.getActiveWorkbenchWindow (event) .getShell() , wizard);

dialog.create();

dialog.open() ;

74

B. Fragmento Web Service Interfaces

Dieser Anhang enthilt eine tibersichtliche Auflistung der zur Verfligung gestellten Web
Service Interfaces des Fragmento Repositorys. Die Modellierung des FragmentoRCP Plugins
beinhaltet eine Implementierung der Service Interfaces in drei aufeinander aufbauenden
Stufen. Dies ist eine Modellierungsentscheidung, die aus Bequemlichkeitsgriinden gefallt
wurde. Die hier gelisteten Methoden beziehen sich lediglich auf die, mittels Axis2, generierte
Stub-Klasse eu.compas_ict.www.fragmentservice.FragmentServiceStub. java. Diese Klas-
se reprasentiert die automatisierte Basisimplementierung (unterste Stufe) der genannten
clientseitigen dreistufigen Hierarchie.

Besonderes Augenmerk wird auf die Parameter der Interfaces gelegt, da durch diese die
charakteristischen Attribute der Web Services definiert werden.

Methodenname Methodenbeschreibung

createArtifact Die Methode legt ein neues Artefakt im Repository an.
Es gibt den Identifikator des entsprechenden «Version
Descriptor» Objekts zurtick.

retrieveArtefact Eine bestimmte Artefaktversion wird durch diese Me-
thode abgerufen. Es wird kein «Checkout» ausge-
fithrt.

retrieveArtefactBundle Diese Methode gibt ein Artefakt, mitsamt seiner zu-
sammenhdngenden Artefakte und Relationen, zu-
riick.

75

B. Fragmento Web Service Interfaces

retrieveArtefactHistory

checkOutArtefact

checkInArtefact

browseArtefacts

retrieveArtefactlLatestVersion

browseLocks

releaselocks

76

Eine Liste von «Version Descriptor» Identifikatoren
wird zuriickgegeben. Diese Liste reprasentiert die
temporale Versionsentwicklung eines Artefakts.

Es wird ein konkretes Artefakt zuriickgegeben und
gleichzeitig im Repository gesperrt. Eine weitere Be-
arbeitung ist somit voriibergehend nicht moglich.

Eine neue Version eines konkreten Artefakts wird im
Repository angelegt. Zur Authebung der bestehen-
den Sperre muss der entsprechende Sperridentifikator
ebenfalls {ibergeben werden.

Die Suchfunktionalitdt wird hier implementiert. Je
nach Suchkategorie wird einer Liste der zutreffen-
den «Artefact Descriptor» Objekte zuriickgegeben.
Die Suchkategorien sind Artefakttypen, Erstellungsin-
tervall, Suche in der Artefaktbeschreibung und Suche
im Dokument.

Die aktuellste Version eines konkreten Artefakts
wird abgerufen. Fiir frithere Versionen wird auf
retrieveArtefact verwiesen.

Eine Liste mit allen gesperrten Artefakten wird zu-
riickgegeben.

Eine bestimmte Sperre kann aufgehoben werden.

createRelation

retrieveRelation

browseRelations

updateRelation

deleteRelation

Eine Relation zwischen zwei Artefakten wird ange-
legt. Die Relation bezeichnet eine Zusammenhangs-
beziehung. Diese Methode kann auch zum Anlegen
von Annotationen genutzt werden.

Die charakteristischen Beschreibungsattribute einer
Relation werden zurtickgegeben.

Die Suchfunktionalitét fiir Relationen wird hier imple-
mentiert. Die Suchkategorien sind: ein Quellartefakt,
ein Zielartefakt, ein Relationstyp oder ein Erstellungsin-
tervall.

Relationen konnen hiermit aktualisiert werden.

Relationen werden hiermit ganzheitlich aus dem Re-
pository geloscht.

Tabelle B.1.: Die Fragmento Web Service Interfaces

Tabelle B.2 widmet sich den Parametern der Interfaces aus Tabelle B.1. Der Zusammenhang
bzw. die Zugehorigkeit der einzelnen Parameter zu den Interfaces muss nicht hergestellt
weden, da dies aus den Typbezeichnungen eindeutig hervorgeht. Vielmehr werden einzelne
wichtige Parameter-Komponenten und Methoden angefiihrt.

Parametertyp

Parametertyp-Methoden

CreateArtefactRequestMessage setArtefact(type)

getArtefact () .setDescription(String)
getArtefact () .setExtraElement (OMElement)

77

B. Fragmento Web Service Interfaces

RetrieveArtefactRequestlMessage setArtefactSelector (ArtefactSelectorType)

RetrieveArtefactBundleRequestMessage setArtefactId(long)

RetrieveArtefactHistoryRequestMessage setArtefactId(long)

CheckOutArtefactRequestMessage setArtefactId(long)

CheckInArtefactRequestMessage ArtefactType.setType(String)
ArtefactType.setDescription(String)
ArtefactType.setExtraElement (OMElement)
setArtefactId(long)
setKeepRelations(boolean)
setArtefact (ArtefactType)
setLockId(long)

BrowseArtefactsRequestMessage (BrowseArtefactSelectorType=B)
B.setType(String)
setBrowseArtefactSelector(B)

Retrieve...Message’ (ArtefactSelectorType=A)
A.setArtefactId(long)
setArtefactSelector (4)

BrowseLocksRequestMessage setRequest(String)

ReleaseLocksRequestMessage (LockDescriptorsType=L)
L.setLock(Lock_typeO[])
setLockDescriptors (L)

78

CreateRelationRequestlMessage

RetrieveRelationRequestlMessage

BrowseRelationsRequestMessage

UpdateRelationRequestMessage

DeleteRelationRequestMessage

(RelationType= R)
R.setDescription(String)
RelationType.setFrom(long)
RelationType.setTo(long)
R.setType(RelationTypeSchemaType)
setRelation(R)

setRelationId(long)

RelationSelectorType.setType (String)
setSelector(RelationSelectorType)

(Relation_typel=R)
(RelationUpdateInformationType=RU)
Relation_typel.setDescription(String)
Relation_typel.setFrom(long)
Relation_typel.setTo(long)
R.setType(RelationTypeSchemaType)
RU.setRelationIdentifier(long)
RU.setRelation(Relation_typel)
setRelationUpdate (RU)

setRelationId(long)

Tabelle B.z.: Die Fragmento Web Service Interfaces Parametertyp-Methoden

'RetrieveArtefactLatestVersionRequestMessage

B. Fragmento Web Service Interfaces

W
<<Java Class=>
G FragmentoAxis

fragmentServic

o serviceURI: String

& FragmentoAuxis()

getSenvicelURI():String

setServiceURI(String):void
createArtifact{String, String,String): CreateArtefactResponseiessage

retrieveArtifact{long): RetrieveArtefactResponseMessage

retrieveArtifactBundle(long): RetrieveArtefactBundlieResponsehMessage
retrieveArtifactHistory(long): RetrieveArtefactHistoryResponseMessage
checkoutArtifact(long): CheckOutArtefactResponseMessage
checkinArtifact({long,String,String String boolean): CheckinArteractResponseMessage
browseArtifact_byType(String).BrowseArtefactsResponseMessage
browseArtifact_byDate(Calendar,Calendar). BrowseArtefactsResponseMessage
browseArtifact_byContent{String).BrowseArtefactsResponseMessage
browseArtifact_byDescription(String):BrowseArtefactsResponseMessage
browseArtifact_byDate Type(Calendar,Calendar,String): BrowseArtefactsResponsehMessage
retrieveArtifactLatestVersion(long):RetrieveArtefactLatestVersionResponseMessage
browselLocks():BrowseLocksResponseMessage

releaseLocks(Lock_type0[]): ReleaseLocksResponseMessage

createRelation(String long long RelationTypeSchemaType): CreateRelationResponseMessage
retrieveRelation(long): RetrieveRelationResponseiessage
browseRelation_byType(String):BrowseRelationsResponseMessage
browseRelation_byDate(Calendar,Calendar).BrowseRelationsResponseMessage
browseRelation_bySourceld(long):BrowseRelationsResponseMessage
browseRelation_byTargetld(long):BrowseRelationsResponseMessage
browseRelation_byDate Type(Calendar,Calendar,String).BrowseRelationsResponseMessage
updateRelation(long,String long long RelationTypeSchemaType) UpdateRelationResponseMessage

20O OOOOTROOOROOTOROOROROODOR®

deleteRelation(long): DeleteRelationResponseMessage

Abbildung B.1.: Das UML-Klassendiagramm der

fragmentService.FragmentoAxis. java

Die Implementierung der mittleren Hierarchiestufe wird durch
fragmentService.FragmentoAxis.java realisiert. Abbildung B.1 zeigt
Klassendiagramm dieser Klasse.

8o

Klasse

die Klasse
das UML-

C. Graphische Benutzeroberflache des
FragmentoRCP Plugins

In diesem Anhang wird die graphische Umsetzung der Benutzeroberfliche des Fragmen-

toRCP Plugins gezeigt.

Fragmento Service Options
Please specify the repository service URI

Service URI
URL: l'[http:f.u’lot:alhost:8OBD;‘F{epositc:ryfser\.rit:esfFragmentSer\rice?\n\zrst:ll Apply
Options (for current repository)
[] keep relations for checked in artefacts
Choose directory for checking out artefacts
[ftmp l Browse
Choose directory for exporting items
[ftmp l Browse
Cancel Finish

Abbildung C.1.: Angabe einer Service URI und zusitzliche Optionen

81

C. Graphische Benutzeroberflache des FragmentoRCP Plugins

€) Repository View 2 = 0O
DO F R Q¥ A &
¥ (= ANNOTATION (20)

P @ (1D 3) WS-SecurityPolicy Usernam
@ (1D 10) WS-SecurityPolicy. Usernar
@ (ID 17) WS-SecurityPolicy Usernar
@ (ID 24) Ws-SecurityPolicy: Use of €
@ (I 31} Ws-SecurityPolicy: User Na
@ (ID 379) Ws-SecurityPolicy: Usern: —
@ (ID 386) W5-SecurityPolicy Usern:
@ (ID 393) W5-SecurityPolicy Usern:
@ (I 400) WS-SecurityPolicy: Use of
@ (ID 407) W5-SecurityPolicy: User N
@ (ID 558) WS-SecurityPolicy: Usern:
@ (I 565) W5-SecurityPolicy Usern:
@ (ID 572) W5-SecurityPolicy Usern:
@ (ID 579) Ws-SecurityPolicy Use of -
@ (I 586) WS-SecurityPolicy: User M
@ (ID 737) W5-SecurityPolicy Usern:
@ (ID 744) W5-SecurityPolicy. Usern:
@ (ID 751) WS-SecurityPolicy: Usern:
@ (ID 758) W5-SecurityPolicy: Use of
@ (ID 765) WS-SecurityPolicy: User M

A i v A v v v A A A A A A A A v

Abbildung C.2.: Die Repository View mit aufgeklapptem Treeviewer

82

Create new ltem

Please enter your personal information

Create Artefact | Create Relation

Ty

Type [Fragment

-Description

Description [Test|

~Content

[Browse for local artefact file

l [Browse ... l

l Create Arefact

l Cancel H

Einish

Abbildung C.3.: Wizard zur Erstellung neuer Artefakte

C. Graphische Benutzeroberflache des FragmentoRCP Plugins

Create new Iltem

Please enter your personal information

' Create Artefact | Create Relation

“Typ
Type [wsdl <
-Source/Target
Source Id [999 -thales.loanapproval 001 Artifacts. wsdl > l
Target Id [103?‘ - trusted-timestamp-in-standard-code. wsdl < l
-Description
Description lTest|

Create Relation

l Cancel H Einish

Abbildung C.4.: Wizard zur Erstellung neuer Relationen

Fragmento Search

Please specify the needed search parameters

Artefacts Search | Relations Search l

-~

Please specify the search type: [Search inthe Content o

-Search in the Description:

Search for contained String:

~Search in the Content

Search for contained String: [Test|

Search by Type

<»

Search for Type:

-Search by Date
Start Date of Creation: 9/10/2011

End Date of Creation: 9/10/2011

00 00

-Search by Date and Type

<

Search for Type:

Start Date of Creation: 9/10/2011

End Date of Creation: 9/10/2011

(0 00

[Cancel H Finish l

Abbildung C.5.: Suche bestimmter Artefakte mit verdanderbaren Suchkriterien

C. Graphische Benutzeroberflache des FragmentoRCP Plugins

Fragmento Search

Please specify the needed search parameters

Artefacts Search | Relations Search |

Please specify the search type: [Search by Date Z]
-Search by Type

Search for Type: S
Search by Source Id

Search for Source Id:
-Search by Target Id

Search for Target Id:

-Search by Dat

Start Date of Creation: 9/10/2011 %
End Date of Creation: 9/10/2011 %
-Search by Date and Type
Search for Type: | ¢
Start Date of Creation: 9/10/2011 %
End Date of Creation: 9/10/2011 %

[Cancel H Finish

Abbildung C.6.: Suche bestimmter Relationen mit verdnderbaren Suchkriterien

86

Literaturverzeichnis

[Anso8]

[Dauoy]

[Ecko7]

[Fowoga]

[Fowogb]

[Fowo6]

[Fra]

[GHJVo4]

[LRoo]

[MLA10]

[Pauo8]

[Sanio]

[SF96]

T. Anstett. Ein Repository fiir semantische Geschéftsprozesse. 2008. (Zitiert auf
Seite 38)

B. Daum. Rich-Client Entwicklung mit Eclipse 3.2, volume 2. dpunkt.verlag, 2007.
(Zitiert auf den Seiten 11, 13, 14, 17, 18 und 19)

R. Eckstein. Java SE Application Design With MVC. Oracle Technology
Network, 2007. URL http://www.oracle.com/technetwork/articles/javase/
index-142890.html. (Zitiert auf den Seiten 28 und 35)

M. Fowler. Inversion of Control Containers and the Dependency Injection pattern.
2004. URL http://martinfowler.com/articles/injection.html. (Zitiert auf
Seite 58)

M. Fowler. Patterns of enterprise application architecture, volume 6. Pearson Educa-
tion, 2004. (Zitiert auf Seite 27)

M. Fowler. GUI Architectures, 2006. URL http://martinfowler.com/eaaDev/
uiArchs.html. (Zitiert auf Seite 29)

Fragmento: Process Fragment Library. URL http://www.iaas.uni-stuttgart.de/
forschung/projects/fragmento/downloads/Fragmento-documentation.pdf.
(Zitiert auf den Seiten 22 und 24)

E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994. (Zitiert auf den Seiten 49 und 50)

E. Leymann, D. Roller. Production Workflow — Concepts and Techniques. PTR Prentice
Hall, 2000. (Zitiert auf Seite 7)

J. McAffer,].-M. Lemieux, C. Aniszczyk. Eclipse Rich Client Platform. Addison-
Wesley, 2 edition, 2010. (Zitiert auf den Seiten 11, 12, 13, 16 und 18)

P. Paulin. Leveraging the Model-View- Presenter Pattern in Rich Client Appli-
cations. 2008. URL http://idisk.mac.com/pjpaulin-public/rcpquickstart/
mvp-and-rcp-ew2008.pdf. (Zitiert auf Seite 58)

S. Sanderson. Pro ASPNET MVC 2 Framework, volume second. Apress, 2010.
(Zitiert auf Seite 29)

J. M. Sobel, D. P. Friedman. An Introduction to Reflection-Oriented Programming,
1996. URL http://www.cs.indiana.edu/~jsobel/rop.html. (Zitiert auf Seite 50)

http://www.oracle.com/technetwork/articles/javase/index-142890.html
http://www.oracle.com/technetwork/articles/javase/index-142890.html
http://martinfowler.com/articles/injection.html
http://martinfowler.com/eaaDev/uiArchs.html
http://martinfowler.com/eaaDev/uiArchs.html
http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/downloads/Fragmento-documentation.pdf
http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/downloads/Fragmento-documentation.pdf
http://idisk.mac.com/pjpaulin-public/rcpquickstart/mvp-and-rcp-ew2008.pdf
http://idisk.mac.com/pjpaulin-public/rcpquickstart/mvp-and-rcp-ew2008.pdf
http://www.cs.indiana.edu/~jsobel/rop.html

Literaturverzeichnis

[SKLS10] D.Schumm, D. Karastoyanova, F. Leymann, S. Strauch. Fragmento: Advanced
Process Fragment Library. In Proceedings of the 19th International Conference on
Information Systems Development (ISD 2010), 25 August 2010, Prague, Czech Republic.
2010. (Zitiert auf den Seiten 7, 20, 21 und 23)

[WCL"o5] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. E. Ferguson. Web Services
Yy Y &
Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More. Prentice Hall PTR, 2005. (Zitiert auf Seite 7)

[Wesoy] M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer-Verlag, 2007. (Zitiert auf Seite 7)

Alle URLs wurden zuletzt am 29.06.2011 gepriift.

88

Erkldrung

Hiermit versichere ich, diese Arbeit selbstindig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

Deizisau, den 28. Oktober 2011

(Dimitrios Dentsas)

	1 Einleitung
	1.1 Einführung
	1.2 Motivation und Aufgabenstellung
	1.3 Zusätzliche Anmerkungen
	1.4 Gliederung

	2 Hintergrund
	2.1 Eclipse-Plugin-Entwicklung
	2.1.1 OSGi Framework
	2.1.2 Der Manifest-Editor
	2.1.3 Die Klasse Activator

	2.2 SWT und JFace
	2.2.1 SWT
	2.2.2 JFace

	2.3 Die Treeviewer und Wizard Komponenten für FragmentoRCP
	2.3.1 JFace Treeviewer
	2.3.2 JFace Wizards

	2.4 Fragmento
	2.4.1 Konzeptionelle Architektur

	3 Architektur und Konzeption
	3.1 Das MVC- und MVP-Architekturmuster
	3.1.1 Das MVC-Architekturmuster
	3.1.2 Das MVP-Architekturmuster

	3.2 Architektur
	3.2.1 Struktur des Modells
	3.2.2 Struktur der View
	3.2.3 Struktur des Presenters

	3.3 Architektur-Sichten
	3.3.1 Anwendungsfälle
	3.3.2 Verhaltens-Sicht

	4 Implementierung
	4.1 Verwendete Technologien und Patterns
	4.1.1 Axis2
	4.1.2 Loose Coupling
	4.1.3 Observer Pattern
	4.1.4 Reflection-Oriented Programming

	4.2 Strukturelle Sicht
	4.3 Implementierung des Modells
	4.3.1 JFace Treeviewer Models

	4.4 Implementierung des Presenters
	4.4.1 Realisierung des Observer Patterns
	4.4.2 FragmentService & Axis2

	4.5 Implementierung der View
	4.5.1 Ereignissteuerung in der View
	4.5.2 FragmentoRCP Plugin Extensions

	4.6 Alternative Konzeption und Implementierung

	5 Testdokumentation
	5.1 Der Testplan
	5.1.1 Einführung
	5.1.2 Zu testende Komponenten
	5.1.3 Umgebung
	5.1.4 Vorgehen

	5.2 Die Testfälle
	5.3 Das Testprotokoll
	5.4 Der Abschlussbericht

	6 Zusammenfassung und Ausblick
	A Listings
	B Fragmento Web Service Interfaces
	C Graphische Benutzeroberfläche des FragmentoRCP Plugins
	Literaturverzeichnis

