
Fakultät Informatik, Elektrotechnik und Informationstechnik
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Studienarbeit Nr. 2352

Elastische Last-Balancierung in
einem Verteilten Semantischen

Cache Overlay

Anja Reuter

Studiengang: Informatik

Prüfer: Prof. Dr. Bernhard Mitschang

Betreuer: Dipl.-Inf. Carlos Lübbe

begonnen am: 24. Oktober 2011

beendet am: 24. April 2012

CR-Klassifikation: H.2.4, H.2.8

Inhaltsverzeichnis

1 Einleitung 7

2 Grundlagen des verteilten Cachings 9
2.1 Verteiltes Caching räumlicher Daten 9

3 Techniken zur elastischen Last-Balancierung 15
3.1 Topologie basierend auf einem Feder-Partikel-System 15

3.1.1 Vom physikalischen Modell zur Netzwerk-Topologie . 15

3.1.2 Entwurf der Topologie für ein Elastisches Cache Overlay 18

3.2 Modi für die Anfrageverarbeitung 21

3.2.1 Initiator Modus . 21

3.2.2 Modus Niedrigste Last 21

3.2.3 Kooperativer Modus . 22

3.3 Topologie basierend auf einer Delaunay-Triangulierung . . . 24

3.3.1 Schwerpunkt-Voronoi-Diagramm und Delauay-Triangulierung 24

3.3.2 Algorithmus zur Berechnung einer Schwerpunkt-
Voronoi-Delaunay-Triangulierung 26

3.3.3 Aufbau der Topologie des Cache Overlays 28

3.3.4 Hinzufügen neuer Knoten 29

3.3.5 Umsetzung der Lastadaptivität 31

3.3.6 Aktualisierung der Topologie des Overlays 33

4 Implementierung 35
4.1 Aufbau der Netzwerk-Topologie 36

4.1.1 Die Klasse SimpleTopol 36

4.1.2 Die Klasse VoroTopol 37

4.2 Protokolle . 39

4.2.1 LAOProtocol . 39

4.2.2 LAOLink . 41

3

4.2.3 CacheProtocol . 42

4.2.4 VoroProtocol . 42

4.2.5 VoroLink . 44

4.3 Nachrichten . 44

4.3.1 PartialQuery . 44

4.3.2 NewNodePoint . 45

4.3.3 MoveNodePoint . 45

5 Zusammenfassung und Ausblick 47

Literaturverzeichnis 49

4

Abbildungsverzeichnis

2.1 Elastische Last-Balancierung . 10

2.2 Gitterbasierter Cache . 11

3.1 Federkräfte im Feder-Partikel-System 16

3.2 Topologie SimpleTopol . 19

3.3 Topologie DiagonalTopol . 20

3.4 Schematische Darstellung des Modus Niedrigste Last 22

3.5 Schematische Darstellung des Modus Kooperativ 23

3.6 Voronoi-Diagramm und Delanay Triangulierung 25

3.7 Voronoi-Diagramm und Schwerpunkt-Voronoi-Diagramm . . 26

3.8 Hinzufügen eines neuen Knotens zum Netzwerk 30

4.1 Liste der positionierten Knoten 37

4.2 Festlegung der Nachbarschaftsbeziehungen 38

Tabellenverzeichnis

5.1 Zusammenfassung Eigenanteil 48

5

1 Einleitung

Die immer stärkere Verbreitung von Smartphones mit high-speed Internet-
zugang führt dazu, dass Informationen immer und von überall abrufbar
sind. Dies führt zu einer zunehmenden Popularität standortbezogener
Dienste.

Standortbezogene Dienste berücksichtigen den aktuellen Standort des Nut-
zers und bieten Informationen, die im Kontext zur räumlichen Region
stehen. Ein Beispiel wäre eine Umgebungssuche nach Restaurants, Tank-
stellen, oder Sehenswürdigkeiten, die über ein Smartphone abgeschickt
wird.

Mit zunehmender Popularität eines standortbezogenen Dienstes erhöhen
sich auch die Zugriffszahlen auf die Daten. Durch Großereignisse wie z.B.
Konzerte, Sportveranstaltungen oder Demonstrationen, bei denen viele
Menschen an einem Ort zusammentreffen, können zudem zeitlich und
räumlich begrenzte Anfrage-Hotspots entstehen.

Ein Cache-Overlay für räumliche Daten, dass einen effizienten Zugriff auf
die benötigten Daten bietet, kann die Last am Daten-Back-End reduzieren.
Um die in Anfrage-Hotspots anfallende Last in einem Netz aus Cache-
Knoten verteilen zu können, ist eine möglichst flexible Anpassung des
Cache-Overlays an die aktuell anliegende Anfragelast nötig [LRM12].

In dieser Arbeit wurde die elastische Last-Balancierung in dem verteilten
semantischen Cache Overlay DiSCO (Distributed Spatial Cache Overlay) aus
[LRM12] weiterentwickelt. Zunächst wurde ein bestehender Mechanismus
erweitert, der auf dem physikalischen Modell eines Feder-Partikel-Systems
beruht.

Für die Verarbeitung von Anfragen wurden außerdem zwei neue Modi
eingeführt, nach denen bestimmt wird, welche Knoten im Netzwerk an der

7

1 Einleitung

Beantwortung einer Anfrage beteiligt sind. So wird im Modus Niedrigste
Last die Auslastung der einzelnen Knoten berücksichtigt und im koopera-
tiven Modus erfolgt die Anfragebearbeitung unter Berücksichtigung des
Cache-Inhalts benachbarter Knoten.

Für das Hinzufügen neuer Knoten zum Netzwerk sind in der Feder-Partikel-
Topologie wie in [LRM12] beschrieben, besondere Maßnahmen zur Er-
haltung der Stabilität des Netzwerks nötig. Daher wurde ein neuer Me-
chanismus zur Last-Balancierung entwickelt, der auf dem Konzept einer
Schwerpunkt-Voronoi-Delaunay-Triangulierung beruht. In diesem Kontext
wurden auch Mechanismen zum Hinzufügen neuer Knoten zum Netzwerk,
sowie zur Aktualisierung der Topologie des Cache-Overlays entworfen.

Die Arbeit ist wie folgt strukturiert: In Kapitel 2 wird zunächst das zugrun-
deliegende System vorgestellt. Dann werden in Kapitel 3 die eingeführten
Mechanismen erläutert und in Kapitel 4 wird die Implementierung der
Mechanismen dargestellt. Das Kapitel 5 bietet eine Zusammenfassung der
Arbeit, sowie einen Überblick über den Eigenanteil an den vorgestellten
Komponenten.

8

2 Grundlagen des verteilten
Cachings

Als Anwendungsgebiet für das in dieser Arbeit beschriebene Cache-Overlay,
gelten standortbezogene Dienste, die auf ein Daten-Back-End mit geogra-
phischen Daten zugreifen.

Der Fokus im Bezug auf den Zugriff auf das Daten-Back-End liegt hier
beim lesenden Zugriff auf die Daten. Der schreibende Zugriff auf das
Daten-Back-End wird nicht näher betrachtet.

Es wird davon ausgegangen, dass die am Netzwerk beteiligten Rech-
ner/Knoten permanent online sind und eine ausreichende Bandbreite vor-
handen ist. Außerdem wird angenommen, dass die Übertragungslatenzen
zwischen den Rechnern in etwa gleich groß sind.

Die Clients (z.B. Smartphones) greifen wie in Abb. 2.1 skizziert auf das
Cache Overlay zu und das Overlay beantwortet die Anfragen und greift ggf.
auf die Daten aus dem Daten-Back-End zu.

2.1 Verteiltes Caching räumlicher Daten

Das verwendete Schema für das Caching von räumlichen Daten basiert auf
dem objekt-orientierten Datenmodell Nexus [NM04]. Ein Objekt wird dort
als eine Menge an Attributinstanzen definiert. Jede Attributinstanz ist ein
Tupel aus einem Attributnamen und -wert.

Wie in [LBC+
11] beschrieben werden die Anfragen auf der Basis dieses

Datenmodells, als Boolesche Ausdrücke über Prädikate formuliert. Ein
Prädikat wird dabei als AφC ausgedrückt, wobei A ein Attributname, C

9

2 Grundlagen des verteilten Cachings

clients

data
back-end

shifting load

cache
overlay

remaining
load

elastic load-balancing

hot spot

Elastische Last-Balancierung zur Anpassung an Hotspots [LRM12]

Abbildung 2.1: Elastische Last-Balancierung

eine Konstante und φ ein Vergleichsoperator ist. Die Vergleiche können auch
über räumliche Datenbereiche (within, intersects, etc.) formuliert sein.

Auf der Basis einer solchen Algebra wurde in [DFJ+96] ein Ansatz für einen
semantischen Cache vorgestellt, in welchem der Cache-Inhalt logisch mit
Hilfe eines Prädikates beschrieben wird.

Basierend auf dieser Beschreibung des Cache-Inhalts, kann jede gegebene
Anfrage in die folgenden zwei disjunkten Teile aufgespalten werden:

• die Probe Query beschreibt den Teil der Anfrage, der vollständig aus
den im Cache gespeicherten Objekten beantwortet werden kann.

• die Remainder Query ist das entsprechende Gegenstück und deckt den
Teil der Query ab, für den das Daten-Back-End angesprochen werden
muss.

Für die Verwendung im Cache Overlay wurde dieser Ansatz verwendet,
indem für die Beschreibung des Cache-Inhalts die ortsbezogene Eigenschaft
der Anfragen ausgenutzt wurde. Da mit standortbezogenen Daten gearbei-

10

2.1 Verteiltes Caching räumlicher Daten

[1,0] [2,0]

[0,1] [1,1] [2,1]

[0,2] [1,2] [2,2]

[0,0]

[2,2]

[1,1]

[2,1]

hash
map

occupied cells

0 6

6

remainder

query

Gitterbasierter Cache für räumliche Daten [LRM12]

Abbildung 2.2: Gitterbasierter Cache

tet wird, bietet sich diese Eigenschaft für die Beschreibung des Cache-Inhalts
an.

Der gewählte Ansatz zur Beschreibung basiert auf einem einheitlichen Gitter.
Jede Gitterzelle repräsentiert eine entsprechende räumliche Region und
Objekte die diese räumliche Region schneiden werden im Cache gespeichert.
Wenn ein Objekt die Grenze einer Zelle schneidet, kann es von mehreren
Zellen gecached werden.

Die Gitterzellen werden über Schlüssel identifiziert, welche die von der Zelle
abgedeckte räumliche Region wiederspiegeln. Von einem Cache-Knoten
besetzte Zellen, werden, wie in Abb. 2.2 gezeigt, nach ihrem Schlüssel in
einer Hash-Map gespeichert.

Für die Gitterzellen wird eine feste Länge verwendet, sodass für einen
gegebenen Schlüssel leicht die entsprechende räumliche Region berechnet
werden kann. So reicht die Gitterzelle [1,0] in Abb. 2.2 in der x-Dimension

11

2 Grundlagen des verteilten Cachings

von 2 bis 4 und in der y-Dimension von 0 bis 2. Entsprechend können für
eine gegebene räumliche Region alle Schlüssel der Zellen berechnet werden,
die diese Region schneiden.

Diese Eigenschaft wird auch für die Verarbeitung von Anfragen genutzt.
Der in Abb.2.2 dargestellte Anfragebereich schneidet vier Gitterzellen. Dar-
aus lassen sich entsprechend vier Schlüssel ableiten. Um die Anfrage zu
bearbeiten, prüft der Cache zunächst für jeden der vier Schlüssel, ob ein
entsprechender Eintrag in der Hash-Map vorhanden ist. Falls es einen Ein-
trag gibt, können die entsprechenden Objekte zum vorläufigen Ergebnis
hinzugefügt werden. Gibt es keinen Eintrag, so wird die Zelle zur Remainder
Query hinzugefügt.

Bezogen auf das Beispiel in Abb. 2.2 bedeutet dies, dass die Zellen [1,1]
und [2,1] zum vorläufigen Ergebnis hinzugefügt werden. Die Remainder
Query umfasst die beiden Zellen [1,0] und [2,0], sie wird somit definiert
als: R := extent intersects G[1,0]∨ extent intersects G[2,0], wobei G[x,y] für die
räumliche Region der Zelle [x,y] steht.

Die Remainder Query wird an das Daten-Back-End geschickt und die vom
Daten-Back-End zurückgesandten Objekte werden zu dem vorläufigen
Ergebnis hinzugefügt. Als letzter Schritt wird das vorläufige Ergebnis noch
mit der ursprünglichen Anfrage gefiltert, da durch die Größe des Gitters
evtl. mehr Objekte geladen wurden, als für die Beantwortung der Anfrage
nötig sind.

Ein verteilter semantischer Cache basierend auf den beschriebenen Kon-
zepten wird aus einem Netzwerk von N Knoten entworfen. Jeder Knoten
enthält eine Menge an gecacheten Objekten und eine Beschreibung des
Cache-Inhalts.

Die Knoten haben eine begrenzte Kapazität, dh. die maximale Anzahl an
Objekten im Cache ist begrenzt. Daher muss festgelegt werden, in welcher
Reihenfolge die im Cache enthaltenen Zellen ersetzt werden sollen, wenn
der Cache seine Kapazität erreicht hat und neue Daten geladen werden
müssen.

Als Ersetzungskriterium erhält jeder Knoten einen Cache-Fokus. Der Cache-
Fokus ist ein Punkt im Datenraum, der die Position des Knotens bestimmt.
Jeder Knoten ersetzt Zellen in seinem Cache nach ihrem Abstand zu seinem

12

2.1 Verteiltes Caching räumlicher Daten

Cache-Fokus. D.h. Zellen, die weit vom Cache-Fokus entfernt sind werden
bevorzugt durch neue Datenobjekte ersetzt.

Sind die Knoten über den Datenraum verteilt, wird somit der Datenraum
in Zonen aufgeteilt, die von den verschiedenen Knoten bevorzugt im Cache
gehalten werden. Die Cache-Zonen der einzelnen Knoten sind nicht disjunkt,
dh. ein Datenobjekt kann auch von mehreren Knoten gecached werden.

13

3 Techniken zur elastischen
Last-Balancierung

3.1 Topologie basierend auf einem
Feder-Partikel-System

Für den Entwurf des Netzwerks aus Cache-Knoten muss eine grundlegende
Topologie für das Cache Overlay gewählt werden. Die implementierte
Topologie in DiSCO basiert auf dem physikalischen Modell eines Feder-
Partikel-Systems.

Im Folgenden wird zunächst das zugrunde liegende physikalische Modell
vorgestellt. Dann wird die Umsetzung der physikalischen Vorlage in ei-
ne Struktur für die Topologie des semantischen Cache Overlays DiSCO
dargelegt.

3.1.1 Vom physikalischen Modell zur Netzwerk-Topologie

Ein Feder-Partikel-System besteht aus Partikeln, die durch Federn verbun-
den sind. Die Partikel können entweder frei beweglich oder fixiert sein.
D.h. ein fixierter Punkt behält seine Position bei, während ein unfixierter
Punkt beweglich ist und von den mit ihm verbundenen Federn in eine
andere Position geschoben oder gezogen werden kann. Durch die von den
Federn ausgeübten Kräfte werden die unfixierten Partikel in eine Position
gezwungen, die dem niedrigsten Energiezustand für das Gesamtsystem
entspricht (s. Abb. 3.1).

15

3 Techniken zur elastischen Last-Balancierung

Fixierter Partikel

Un�xierter Partikel

Feder

Abbildung 3.1: Federkräfte im Feder-Partikel-System

Wie in [LRM12] beschrieben, repräsentieren die Cache-Knoten im Cache
Overlay die Partikel im Feder-Partikel-System und die Verbindungen zwi-
schen benachbarten Knoten repräsentieren die Federn.

Wie in Kapitel 2 beschrieben, bestimmt der Cache-Fokus eines Knotens
die Region, deren Daten bevorzugt von dem Knoten gecached werden.
Außerdem bestimmt der Cache-Fokus die Position des Knotens in der
Topologie des Cache Overlays.

In Hotspot-Regionen sollte die Dichte der Knoten möglichst hoch sein, um
eine bessere Verteilung der Anfrage-Last zu ermöglichen (siehe auch Kapitel
3.2). Für eine optimale Verteilung der Knoten im Cache-Overlay müssen
daher die Parameter im Feder-Partikel-Modell so gewählt werden, dass
die Dichte der Knoten im Bereich von Hotspots hoch und in den anderen
Bereichen des Netzwerks niedriger ist.

Im physikalischen Modell ist s die Streckung der Feder und die Federkon-
stante k gibt die Stärke der Feder wieder. Nach Hooke’s Gesetz ist die
Federkraft F proportional zur Stärke und zur Streckung, also F = k · s.

Die Knoten im Cache Overlay sind durch Federn verbunden und die Stre-
ckung der Federn ist definiert als die Euklidische Distanz zwischen den
Positionen (dem Cache-Fokus) der beiden verbundenen Knoten. In Regio-
nen mit hoher Last werden die Federn zusammengedrückt um die Dichte
der Knoten zu erhöhen. Entsprechend werden die Federn in Regionen mit
niedriger Last entspannt.

16

3.1 Topologie basierend auf einem Feder-Partikel-System

Um diese Idee im Cache Overlay umzusetzen wurde die folgende Definition
einer angepassten Federkonstante verwendet [LRM12]:

Die Definition der Gravitationskraft G(n) eines Knotens ist so entworfen,
dass die Arbeitslast des Knotens und die Dichte der Daten an der Position
des Knotens berücksichtigt wird.

Die Dichte der Daten zu berücksichtigen ist wichtig, weil die Verteilung von
räumlichen Daten in der Regel sehr unregelmäßig ist. Da die Knoten nur
eine begrenzte Kapazität haben, kann ein Knoten mit einem Cache Fokus
in einer Region mit hoher Datendichte nur eine sehr kleine Region des Da-
tenraums abdecken. D.h. ein Knoten in Regionen mit geringer Datendichte
kann viele Zellen in seinem Gitter ausfüllen und ein Knoten in einer Region
mit hoher Datendichte nur wenige.

Daher wurde die Gravitationskraft eines Knotens definiert als:

G(N) = 1 + (ρ(N) · α + load(N) · (1− α)) · β

Wobei,

• ρ(N) die Dichte der gespeicherten Daten ist (definiert als Anzahl der
Objekte im Cache pro besetzter Zelle)

• load(N) die Arbeitslast des Knotens als Anfragen pro Sekunde be-
schreibt

• 0 ≤ α ≤ 1 ein Parameter ist, mit dem die Gewichtung der beiden
Aspekte der Last angepasst werden kann

• 0 ≤ β ≤ ∞ ein Parameter ist mit dem der Einfluss der Gravitationskraft
auf die Federkraft angepasst werden kann

Für eine Feder i zwischen einem Knoten N und seinen Nachbarn Ni, ist die
Federkonstante definiert als die Summe der Gravitationskräfte der beiden
Nachbarn: ki = G(N) + G(Ni).

Eine einzelne Feder i baut die Energie Ei =
1
2kis2

i auf. Dies führt zur Gesam-
tenergie ∑i Ei = ∑i

1
2kis2

i für das System. Das Minimum dieser Funktion
bestimmt den niedrigsten Energiezustand für das Gesamtsystem.

17

3 Techniken zur elastischen Last-Balancierung

Um den niedrigsten Energiezustand für das Gesamtsystem zu erreichen
wird in [LRM12] ein einfacher Ansatz verwendet, der verteilt ausgeführt
werden kann. Der Ansatz basiert auf der Idee, die Federn in jeder Iteration
etwas zu entspannen, indem jeder Partikel einen kleinen Schritt in Richtung
der Federkraft bewegt wird. Auf diese Weise werden die Federkräfte in je-
dem Schritt etwas reduziert und das System konvergiert gegen den stabilen
Zustand der niedrigsten Gesamtenergie.

Der Einfluss der verschiedenen Parameter in der Definition der Gravitati-
onskraft wurde in [LRM12] genauer untersucht.

3.1.2 Entwurf der Topologie für ein Elastisches Cache
Overlay

Die verwendeten Cache-Knoten im Netzwerk sollen ihre Position an die
Hotspots anpassen und sind daher im Feder-Partikel-Modell als unfixierte
Partikel modelliert.

Da sich ein System, welches nur aus unfixierten Punkten und Federn
besteht unweigerlich zu einem Punkt zusammenzieht, werden zusätzlich zu
den Cache-Knoten noch Fixierungspunkte benötigt, welche das Netzwerk
aufgespannt halten.

Zu diesem Zweck wurden an den Rändern des Netzwerkes fixierte Punkte
eingeführt. In den Routing-Tabellen der benachbarten Knoten werden dies
Punkte als spezielle Fixpunkte gelistet. Dies führt dazu, dass sich die Cache-
Knoten auch am Rande des Netzwerks bewegen können, ohne zu stark
nach innen gezogen zu werden.

Die in [LRM12] implementierte Topologie bestand zunächst nur aus einem
einfachen Gitter (s. Abb. 3.2).

Der erste Schritt zur Stabilisierung, der in dieser Arbeit realisiert wurde,
war die Einführung von Querverbindungen (s. Abb. 3.3). Durch die Quer-
verbindungen wirken sich Oszilationseffekte im Netz weniger stark aus
und das Netz wird stabiler.

18

3.1 Topologie basierend auf einem Feder-Partikel-System

Fixpunkt

Cache-Knoten

Feder

Abbildung 3.2: Topologie SimpleTopol

Beim Aufbau der Topologie werden zunächst die Knoten gleichmäßig in
Reihen positioniert. Dabei wird über der obersten und unter der untersten
Reihe von Knoten jeweils eine Reihe von Fixpunkten eingeführt. Zusätzlich
wird am Anfang und am Ende jeder Reihe von Knoten ein Fixpunkt ein-
gefügt. So entsteht ein Rechteck aus Knoten, welches an den Außenkanten
von Fixpunkten umgeben ist.

Die Festlegung der Nachbarschaftsbeziehungen erfolgt in einem Durchlauf
über die Knoten, sodass jeder Knoten mit den Knoten rechts und links von
ihm, sowie über und unter ihm und auch mit den Knoten diagonal vom
ihm verbunden wird.

19

3 Techniken zur elastischen Last-Balancierung

Fixpunkt

Cache-Knoten

Feder

Abbildung 3.3: Topologie DiagonalTopol

20

3.2 Modi für die Anfrageverarbeitung

3.2 Modi für die Anfrageverarbeitung

Als Bestandteil dieser Arbeit wurden für die Verarbeitung der Anfragen
im Netzwerk zwei neue Verarbeitungsmodi eingeführt. Im Folgenden wird
zunächst der in DiSCO implementierte Verarbeitungsmodus und dann die
zwei neu eingeführten Modi erläutert.

Beim Eingang einer Anfrage in das Netzwerk, wird die Query zunächst an
den Knoten weitergeleitet, dessen Cache-Fokus die geringste Entfernung zu
der Region der Query hat. Dieser Knoten wird im Folgenden als Initiator-
Knoten bezeichnet.

3.2.1 Initiator Modus

Im Initiator Modus werden die Anfragen von dem Knoten bearbeitet, dessen
Cache-Fokus am nähesten an der Anfrageregion liegt (Initiator-Knoten). Da
der Cache-Fokus die Region bestimmt, aus der bevorzugt Daten gecached
werden, ist die Wahrscheinlichkeit bei diesem Knoten am höchsten, dass er
die für die Anfrage relevanten Objekte bereits im Cache hat.

3.2.2 Modus Niedrigste Last

Im Modus Niedrigste Last verarbeitet der Initiator-Knoten die Anfrage
selbst, solange eine vorgegebene maximale Last an dem Knoten nicht über-
schritten wird. Wird die Maximallast überschritten, so wird die Anfrage
von dem Initiator-Knoten an denjenigen Nachbar-Knoten weitergereicht,
welcher die geringste Last hat (s. Abb. 3.4).

Dies führt dazu, dass sich in Regionen mit hoher Last Cluster aus Knoten
bilden. Die Last wird stärker zwischen den Knoten verteilt, was jedoch auch
dazu führt, dass sich die Hitrate etwas verschlechtert, da der Knoten mit
der geringsten Last nicht notwendigerweise die für die Anfrage relevanten
Objekte im Cache hat.

21

3 Techniken zur elastischen Last-Balancierung

1

2

3

2 1

0

1

2

1

2

3

2 1

0

1

2

1
Knoten mit Last 1

Verarbeitender
Knoten

Maximallast noch nicht erreicht Maximallast überschritten

Abbildung 3.4: Schematische Darstellung des Modus Niedrigste Last

3.2.3 Kooperativer Modus

Die Grundidee beim kooperativen Modus besteht darin, dass die Nachbar-
knoten evtl. relevante Objekte für Anfragen gecached haben könnten, wenn
die Anfrageregion groß ist und Teile der Anfrage näher am Cache-Fokus
eines Nachbarn als an dem des Initiator-Knotens liegen.

Der Initiator-Knoten überprüft zunächst den eingenen Cache. Wenn der
eigene Cache alle notwendigen Objekte zur Beantwortung der Anfrage
enthält ist die Verarbeitung abgeschlossen.

Enthält der eigene Cache nicht alle notwendigen Objekte, so werden die
Nachbarknoten für die Beantwortung der Anfrage hinzugezogen. Die Ver-
arbeitung erfolgt nach folgenden, in Abb. 3.5 schematisch dargestellten
Schritten:

Zunächst wird die Remainder Query nach folgendem Schema in Teilquerys
aufgesplittet: Die Remainder Query wird repräsentiert als eine Liste an
Schlüsseln zu Gitterzellen, die für die Anfragebeantwortung noch benötigt
werden. Diese Liste wird aufgesplittet, indem für jeden Nachbarknoten Ni
des Knotens eine Liste mit denjenigen Zellen angelegt wird, welche die
geringste Entfernung zum Cache-Fokus von Ni haben. An jeden Nachbarn,
dem auf diese Weise Zellen zugeordnet wurden, wird eine Teilanfrage mit
den entsprechenden Zellschlüsseln geschickt.

22

3.2 Modi für die Anfrageverarbeitung

passiver Knoten

aktiver Knoten

Knoten verschickt
Nachricht

Initiator-Knoten prüft
eigenen Cache

Initiator-Knoten sendet Nachricht
an evtl. betro�ene Nachbarn

Nachbar-Knoten prüfen
den eigenen Cache

Nachbar-Knoten senden
Antwort an Initiator-Knoten

Initiator-Knoten fügt
Teilantworten zusammen

Abbildung 3.5: Schematische Darstellung des Modus Kooperativ

Bekommt ein Knoten eine Teilanfrage, so überprüft der Knoten den eigenen
Cache auf die entsprechenden Zellen und schickt eine Anwort mit allen
im Cache enthaltenen Zellen aus der Teilanfrage an den Initiator-Knoten.
Der Initiator-Knoten sammelt die Antworten der Teilanfragen, bis von allen
betroffenen Nachbarn eine Antwort eingetroffen ist.

Zum Schluss werden die Teilantworten zusammengesetzt. Falls noch Zellen
für die Anfrageverarbeitung fehlen, wird eine Anfrage mit den fehlenden
Zellen an das Daten-Back-End gestellt.

23

3 Techniken zur elastischen Last-Balancierung

3.3 Topologie basierend auf einer
Delaunay-Triangulierung

Die Topologie basierend auf einer Delaunay-Triangulierung wurde im Rah-
men dieser Arbeit erstellt. Sie basiert auf dem Konzept eines Schwerpunkt-
Voronoi-Diagramms und der entsprechenden Delaunay-Triangulierung.

Voronoi Diagramme und Delaunay-Triangulierungen werden in einer Viel-
zahl von Anwendungen aus unterschiedlichen Forschungs- und Anwen-
dungsfeldern verwendet. Eine umfassende Darstellung wird in [OBSC00] ge-
geben, einige Anwendungsbeispiele für Schwerpunkt-Voronoi-Diagramme
werden in [DFG99] vorgestellt.

Im Folgenden wird zunächst das grundlegende Konzept eines Schwerpunkt-
Voronoi-Diagramms erläutert. Dann wird die Übertragung des vorgestellten
Konzepts auf die Netzwerk-Topologie dargestellt.

3.3.1 Schwerpunkt-Voronoi-Diagramm und
Delauay-Triangulierung

In diesem Kapitel wird zunächst eine allgemeine Definition eines Voronoi-
Diagramms und einer Delaunay-Triangulierung gegeben. Aufbauend
darauf wird dann das Konzept eines dichtebasierten Schwerpunkt-
Voronoidiagramms dargelegt.

Bezogen auf eine gegebene Menge von Punkten {zi}k
i=1 aus einer Domäne

Ω ⊂ RN, besteht die Voronoi Region Vi zu einem Punkt zi aus allen Punkten
in Ω, die näher an zi sind als an allen anderen Punkten in der Menge. Die
Menge der Voronoi Regionen {Vi}k

i=1 bildet eine Partition der Domäne Ω
und wird als Voronoi Diagramm von Ω bezeichnet. Die Punkte {zi}k

i=1
werden generierende Punkte oder Generatoren genannt. Die Delaunay-
Triangulierung der Punktemenge (s. Abb. 3.6) wird gebildet, indem diejeni-
gen generierenden Punkte miteinander verbunden werden, deren Voronoi-
Regionen aneinander angrenzen [DG02, Kle89, Aur91, OBSC00].

24

3.3 Topologie basierend auf einer Delaunay-Triangulierung

Delaunay-Triangulierung über einem Voronoi-Diagramm
(Voronoi-Diagramm in gepunkteten Linien) [Lae]

Abbildung 3.6: Voronoi-Diagramm und Delanay Triangulierung

Ein Schwerpunkt-Voronoi-Diagramm ist ein Voronoi-Diagramm, in dem die
generierenden Punkte jeweils im Schwerpunkt ihrer Voronoi Region liegen.
Mit einer gegebenen Dichtefunktion ρ(y) wird der Schwerpunkt z∗ einer
Region V definiert als:

(3.1) z∗ =
∫

V yρ(y)dy∫
V ρ(y)dy

Anhand einer gegebenen Punktemenge aus k Punkten z∗i, i = 1, ..., k aus der
Domänne Ω, können die entsprechenden Voronoi Regionen Vi, i = 1, ..., k
definiert werden und umgekehrt können anhand der Regionen Vi, i = 1, ..., k
die entsprechenden Schwerpunkte z∗i, i = 1, ..., k bestimmt werden.

Gegeben eine Menge an Punkten {zi}k
i=1 in der Domäne Ω und eine po-

sitive Dichtefunktion ρ definiert in Ω, wird ein Voronoi Diagramm als
Schwerpunkt-Voronoi-Diagramm bezeichnet, wenn

(3.2) zi = Z∗i , i = 1, ..., k

25

3 Techniken zur elastischen Last-Balancierung

Ein Voronoi-Diagramm eines Quadrats mit 10 zufällig gewählten
Punkten((a) (◦) Schwerpunkte, (·) Generatoren) und einem 10-Punkt

Schwerpunkt-Voronoi-Diagramm ((b) (·) Generatoren und Schwerpunkte)
[DG02].

Abbildung 3.7: Voronoi-Diagramm und Schwerpunkt-Voronoi-Diagramm

d.h. die generierenden Punkte zi sind die Schwerpunkte ihrer jeweili-
gen Voronoi Region. Die entsprechende Delaunay-Triangulierung wird
als Schwerpunkt-Voronoi-Delaunay-Triangulierung bezeichnet [DG02].

Das diese Eigenschaft nicht generell auf Voronoi-Diagramme mit zufällig
gewählten Punkten {zi}k

i=1 zutrifft zeigt die Abbildeng 3.7.

3.3.2 Algorithmus zur Berechnung einer
Schwerpunkt-Voronoi-Delaunay-Triangulierung

Die Algorithmen zur Ermittlung von Schwerpunkt-Voronoi-Delaunay-
Triangulierungen bestehen für gewöhnlich aus zwei Schritten:

1. Berechnung der generierenden Punkte für das Schwerpunkt-Voronoi-
Diagramm

2. Konstruktion der entsprechenden Delaunay-Triangulierung

26

3.3 Topologie basierend auf einer Delaunay-Triangulierung

Für die Konstruktion der Delaunay-Triangulierung können bereits vorhan-
dene Standardalgorithmen verwendet werden. Das Augenmerk richtet sich
daher auf die Berechnung der generierenden Punkte für das Schwerpunkt-
Voronoi-Diagramm.

Zur Berechnung der generierenden Punkte gibt es zum einen determinis-
tische und zum anderen wahrscheinlichkeitsbasierte Verfahren. In dieser
Arbeit wird zunächst eine wahrscheinlichkeitsbasierte K-Means Methode
von MacQueen [Mac67] vorgestellt. Die Beschreibung richtet sich dabei nach
[DG02], wo diese Methode zur Berechnung eines Schwerpunkt-Voronoi-
Diagramms verwendet wird.

Gegeben ist eine Menge Ω, eine positive ganze Zahl k, und eine wahr-
scheinlichkeitsbasierte Dichtefunktion ρ definiert auf Ω. Die Berechnung
der generierenden Punkte erfolgt nach dem folgenden Schema:

1. wähle eine Startmenge aus k Punkten {zi}k
i=1 in Ω und initialisiere

den Index ji = 1 für alle i = 1, ..., k

2. wähle ein zufälliges y ∈ Ω nach der wahrscheinlichkeitsbasierten
Dichtefunktion ρ(y)

3. finde den Punkt zn aus {zi}k
i=1 der am nähesten zu y liegt

4. setze den Punkt zn auf

zn =
jnzn + y
jn + 1

und jn = jn + 1

5. wenn die so veränderte Punktemenge ein vorgegebenes Konvergenz-
kriterium erfüllt, erstelle die entsprechende Delaunay-Triangulierung
und terminiere, ansonsten gehe zurück zum 2. Schritt.

Zentraler Gedanke des Algorithmus ist, dass die Punkte jeweils im Zen-
trum eines Clusters liegen. Das Cluster besteht aus Punkten, die nach der
wahrscheinlichkeitsbasierten Dichtefunktion gewählt werden. D.h. für Re-
gionen mit hoher Dichte werden viele Punkte erzeugt und für Regionen
mit geringer Dichte werden entsprechend weniger Punkte erzeugt.

27

3 Techniken zur elastischen Last-Balancierung

Die Cluster zu Beginn des Algorithmus bestehen aus einer Menge von k
zufällig gewählten Punkten, die jeweils einen Clusterschwerpunkt repräsen-
tieren.

Daraufhin werden nach und nach neue Punkte nach der wahrscheinlich-
keitsbasierten Dichtefunktion erzeugt. Für jeden erzeugten Punkt wird
zunächst das Cluster bestimmt zu dem er gehört. D.h. es wird der Punkt
gewählt der dem erzeugten Punkt am nächsten liegt.

Dann wird der neue Punkt zu dem Cluster hinzugefügt und der Schwer-
punkt des Clusters wird neu berechnet. Dabei wird der alte Schwerpunkt
entsprechend der Anzahl der bereits erfolgten Aktualisierungen ji gewich-
tet.

Dieses Vorgehen wird so lange wiederholt, bis ein vorgegebenes Konver-
genzkriterium erfüllt ist.

3.3.3 Aufbau der Topologie des Cache Overlays

Die Grundidee ist, dass das Netzwerk als Voronoi-/Delaunay-Diagramm
aufgebaut wird. Die Knoten sollen dabei die generierenden Punkte in einem
Voronoi-Diagramm sein.

Die Anfragebearbeitung wird in dem Knoten durchgeführt, dessen Cache-
Fokus die gerinste Entfernung zur Anfrageregion hat. D.h. der Knoten
erhält Anfragen, die in seiner Voronoi-Region liegen. Außerdem ersetzt
der Knoten vorrangig diejenigen Zellen in seinem Cache, welche weit von
seinem Cache-Fokus entfernt sind. Für ein Schwerpunkt-Voronoi-Diagramm
bedeutet dies, dass Zellen mit größerem Abstand zum Schwerpunkt der
Voronoi-Region vorrangig ersetzt werden.

Als Nachbarn eines Knotens N gelten die Knoten, deren Voronoi-Region
an die Region von N angrenzt. D.h. die Nachbarschaftsbeziehungen im
Netzwerk entsprechen der Delaunay-Triangulierung über die Knoten.

Zur Initialisierung der Netzwerktopologie werden zunächst alle Knoten
des Netzwerks positioniert. Als Anfangsposition wurde hier zunächst eine

28

3.3 Topologie basierend auf einer Delaunay-Triangulierung

gleichmäßige Verteilung gewählt, die der Verteilung aus der in Kapitel 3.1
beschriebenen Topologie entspricht.

Dann wird über die Knoten des gesamten Netzwerks eine Delaunay-
Triangulierung erstellt. Dafür wurde das Computational Geometry Paket
aus [Bar08] verwedet. Nach dieser Triangulierung werden die Nachbar-
schaftsbeziehungen unter den Knoten initialisiert. Auf diese Weise erhält
jeder Knoten im Netzwerk eine Routing-Tabelle mit den benachbarten
Knoten.

Da die weitere Verarbeitung im Netzwerk verteilt erfolgen soll, wird in
jedem Knoten eine eigene Triangulierung auf der Basis der in der Routing-
Tabelle enthaltenen Nachbarknoten erstellt. Die Vereinigung der Triangulie-
rungen in den einzelnen Konten entspricht der ursprünglichen Triangulie-
rung über das gesamte Netzwerk, da jeder Knoten seine Nachbarn zunächst
aus dieser Triangulierung erhalten hat.

3.3.4 Hinzufügen neuer Knoten

Beim Hinzufügen eines neuen Knotens zum Netzwerk, muss die Topologie
entsprechend angepasst werden. D.h. die benachbarten Knoten müssen den
neuen Knoten zu ihrer Triangulierung hinzufügen, ihre Routing-Tabelle
entsprechend anpassen und ggf. die Verbindung zu nicht mehr direkt
benachbarten Knoten entfernen.

Die Positionierung eines neuen Knotenpunktes erfolgt nach zufällig aus-
gewählten Koordinaten. Für das Hinzufügen dieses neuen Knotenpunktes
werden zunächst die folgenden, in Abb. 3.8 skizzierten Schritte, durchlaufen:

• Eine Nachricht mit der Position des neuen Knotens Nneu wird an
den Knoten Nnearest_neighbor im Netzwerk weitergeleitet, welche am
nähesten an der Position des neuen Knotens liegt.

• Der Knoten Nnearest_neighbor leitet die Nachricht mit der Position von
Nneu an seine Nachbarn weiter.

29

3 Techniken zur elastischen Last-Balancierung

passiver Knoten

aktiver Knoten

neuer Knoten

a b c

d e

g h

f

Knoten sendet
Nachricht

Abbildung 3.8: Hinzufügen eines neuen Knotens zum Netzwerk

• Der Knoten Nnearest_neighbor wird zu der Routing-Tabelle des Knotens
Nneuhinzugefügt. (Da Nnearest_neighbor von allen Knoten im Netzwerk
an nähesten an dem neuen Knoten liegt, muss es in der Triangulierung
eine Verbindung zwischen den beiden Knoten geben.)

• Der Knoten Nnearest_neighbor fügt den neuen Knoten zu seiner Triangu-
lierung hinzu, aktualisiert die Triangulierung und löst die Verbindung
zu allen Knoten, die nach der neuen Triangulierung keine direkten
Nachbarn von Nnearest_neighbor sind.

30

3.3 Topologie basierend auf einer Delaunay-Triangulierung

In jedem weiteren Knoten Ni, an welche die Nachricht weitergeleitet wird,
erfolgt die Verarbeitung der Nachricht nach folgendem Vorgehen:

• Zuerst wird die Liste der aktuellen Nachbarn von Ni gespeichert.

• Dann wird der Knoten Nneu zur Triangulierung von Ni hinzugefügt
und die Nachbarschaftsliste von Ni aktualisiert.

• Zuletzt werden die Nachbarschaftlisten vor und nach dem Update
verglichen und

– zu den Nachbarn, die in der alten, aber nicht in der neuen Liste
enthalten sind, wird die Verbindung gelöscht; außerdem wird die
Nachricht an sie weitergeleitet (damit sie die Verbindung ebenfalls
löschen)

– zu den Nachbarn, die in der neuen, aber nicht in der alten Liste
enthalten sind, wird eine Verbindung aufgebaut; außerdem leitet
der Knoten die Nachricht noch an seine Nachbarn weiter, falls
eine neue Verbindung aufgebaut wurde, da sich in diesem Fall
die Triangulierung der Nachbarknoten ebenfalls ändern könnte.

Die Topologie ist somit genau dann vollkommen aktualisiert, wenn die
Nachricht von keinem Knoten mehr weitergeleitet wird.

3.3.5 Umsetzung der Lastadaptivität

Der in Kapitel 3.3.2 beschriebene Algorithmus basiert auf einer Dichtefunkti-
on, die für den den gesamten Datenraum anwendbar ist. Durch die verteilte
Struktur des Cache Overlays lässt sich jedoch keine Dichtefunktion für das
gesamte Netzwerk angeben, sondern immer nur für jeweils eine Node unter
Berücksichtigung der Nachbarn.

Aus diesem Grund wurde der Algorithmus so angepasst, dass die Zufall-
spunkte nicht für das gesamte Netzwerk zentral erzeugt werden, sondern
dass jeder Knoten eigene Zufallspunkte erzeugt. D.h. die Clusterbildung
erfolgt nicht zentral, sondern jeder Knoten formt sein eigenes Cluster.

31

3 Techniken zur elastischen Last-Balancierung

Eine Dichtefunktion für einen Knoten N unter Berücksichtigung der Last
an den Nachbarknoten Ni kann z.B. wie folgt definiert werden:

(3.3) ρ(x, y) =
Last(N)

d(N, (x, y))
+ ∑

Last(Ni)

d(Ni, (x, y))

Dies entspricht einer Mittelung der Last an den Knoten, gewichtet nach der
Entfernung der Knoten zum betrachteten Punkt.

Eine weitere Schwierigkeit besteht in der Festlegung eines Konvergenzkri-
teriums. Die Dichtefunktion eines Knotens im Cache-Overlay richtet sich
nach der aktuellen Last an dem Knoten und seinen Nachbarn. Daher ändert
sich mit einer Laständerung auch die Berechnung der Dichte und somit die
Lage der Schwerpunkte für das Voronoi-Diagramm.

Die Verschiebung der Schwerpunkte bei einer Laständerung ist genau der
im Cache-Overlay erwünschte Effekt. Eine Konzentration von Schwerpunk-
ten in Regionen mit hoher Last entspricht einer Erhöhnung der Knoten-
dichte in Regionen mit hoher Last, da die Knoten des Netzwerks in den
Schwerpunkten liegen.

Die Konsequenz für den verwendeten Algorithmus besteht darin, dass
die Berechnung des Schwerpunkt-Voronoi-Diagramms nicht nach einem
Konvergenzkriterium abgeschlossen werden kann, sondern durchgängig
weitergeführt werden muss. Die Iteration über die Ermittlung des Cluster-
schwerpunktes wird daher permanent fortgesetzt.

Die Dichtefunktion bleibt bei konstanter Lastverteilung ebenfalls konstant.
D.h. die Clusterbildung anhand der dichtebasierten Zufallspunkte führt in
diesem Fall nur zu kleinen Verschiebungen des Clusterschwerpunktes.

Für die Anpassung der Knotenposition wird eine Mindestdistanz zwischen
altem und neuem Clusterschwerpunkt festgelegt, sodass die Position des
Knotens in diesem Fall nicht verändert wird. D.h. die Berechnung bleibt bei
einer zu kleinen Veränderung des Clusterschwerpunkts ohne Auswirkung
für die Knotenposition im Cache-Overlay.

Der angepasste K-Means Algorithmus für die Verwendung im Cache-
Overlay verläuft für jeden Knoten Ni mit der Position pi und der Dich-
tefunkton ρi im Overlay verteilt nach folgendem Schema:

32

3.3 Topologie basierend auf einer Delaunay-Triangulierung

1. wähle ein zufälliges y ∈ Ω nach der wahrscheinlichkeitsbasierten
Dichtefunktion ρi(y)

2. berechne den Punkt pneu als

pneu =
ji pi + y
ji + 1

3. wenn die Distanz zwischen pi und pneu größer der Mindestdistanz ist,
sezte pi = pneu und ji = ji + 1 und markiere den Knoten als bewegt

4. wenn ji < maxj, dann setze ji = ji + 1, sonst setze ji = 1

5. gehe zurück zu Schritt 1.

Auch im angepassten Algorithmus wird der alte Schwerpunkt entsprechend
der Anzahl der bereits erfolgten Aktualisierungen ji gewichtet. Da die
Interation jedoch unendlich fortgesetzt wird, würde ji auch unendlich groß
werden. Bei der Division durch ji + 1 würde im Verlauf somit unweigerlich
ein Unterlauf entstehen.

Um dies zu vermeiden wird ein Maximalwert für ji eingeführt und wie im
Schritt 4 beschrieben, wird ji = 1 gesetzt wenn der Maximalwert erreicht
wird. Bezogen auf die Clusterbildung bedeutet dies, dass ab dem Punkt,
an dem es die maximale Anzahl an Verschmelzungen gegeben hat, die
Clusterbildung von vorn beginnt.

Die unter Schritt 3 erwähnte Markierung des Knotens als bewegter Knoten
dient als Anhaltspunkt für die Aktualisierung der Nachbarschaftsbezie-
hungen (s. Kapitel 3.3.6). Verändert ein Knoten seine Position, so besteht
damit die Möglichkeit, dass die Verbindungen zu seinen Nachbarknoten
danach keine Delaunay-Triangulierung der Knoten mehr darstellt und die
Topologie aktualisiert werden muss.

3.3.6 Aktualisierung der Topologie des Overlays

Zur Aktualisierung der Nachbarschaftsbeziehungen zwischen den Knoten
des Netzwerks wird in regelmäßigem Abstand eine Aktualisierungsnach-
richt an einen zufällig ausgewählten Knoten gesendet.

33

3 Techniken zur elastischen Last-Balancierung

Erhält ein Knoten N eine Aktualisierungsnachricht, so prüft er zunächst, ob
er als bewegt markiert wurde. Ist der Knoten nicht als bewegt markiert, so
wird die Aktualisierungsnachricht von ihm ignoriert.

Wenn der Knoten N bewegt wurde, hat sich die Position des Knotens
geändert und es besteht die Möglichkeit, dass die Nachbarschaftsbeziehun-
gen des Knotens aktualisiert werden müssen, um wieder eine Delaunay-
Triangulierung zu erhalten.

Wie in Kapitel 3.3.3 beschrieben, enthält jeder Knoten eine eigene Triangu-
lierung über sich selbst und seine Nachbarknoten. Um festzustellen, ob eine
Aktualisierung nötig ist, führt der Knoten N zunächst eine Aktualisierung
der eigenen Triangulierung aus.

Dann wird überprüft, ob in der aktualisierten Triangulierung Knoten ent-
halten sind, die keine direkten Nachbarn von N sind. Falls dies der Fall ist,
so werden die Nachbarschaftsbeziehungen des Knotens aktualisiert.

Die Aktualsierung der Nachbarschaftsbeziehungen des Knotens erfolgt,
indem zunächst die Verbindung zu allen Nachbarn gelöst wird, mit Aus-
nahme des Nachbarn, der die geringste Entfernung zum Knoten N hat.

Dann wird an den verbliebenen Nachbarn eine Nachricht geschickt, die der
Nachricht entspricht, die beim Hinzufügen eines neuen Knotens zum Netz-
werk verschickt wird. Das weitere Vorgehen zur Erstellung der Verbindun-
gen zwischen Nachbarknoten entspricht dem in Kapitel 3.3.4 beschiebenen
Vorgehen beim Hinzufügen eines neuen Knotens zum Netzwerk.

34

4 Implementierung

In diesem Kapitel werden einige Bestandteile der Implementierung vor-
gestellt. Für die Simulation wurde der Peer-to-Peer Simulator PeerSim
[JMJV10] verwendet. In diesem Simulator können Peer-to-Peer Overlays
aus Knoten mit beliebigen Protokollen simuliert werden. Für die Simulation
des Cache Overlays wurde PeerSim entsprechend erweitert [LRM12].

Die Darstellung in diesem Kapitel beschränkt sich auf die Bestandteile
der Implementierung, die im Rahmen dieser Arbeit entstanden sind, oder
an denen Erweiterungen oder Anpassungen vorgenommen wurden. Zum
Verständnis der Funktionsweise werden zudem noch einige zentrale Kom-
ponenten beschrieben, die bereits vollständig implementiert waren.

Zu Beginn der Simulation wird zunächst die Topologie des Netzwerks
aufgebaut. Im Verlauf der Simulation erfolgt die Verarbeitung von Anfra-
gen und die Kommunikation innerhalb des Netzwerks über Protokolle in
den Knoten und über Nachrichten, die zwischen den Knoten verschickt
werden.

Durch eine entsprechende Konfigurationsdatei wird festgelegt, welche Klas-
se zum Aufbau des Netzwerks genutzt wird und welche Protokolle und
Nachrichten im Netzwerk verwendet werden.

Im Folgenden werden zunächst die Klassen zum Aufbau der Topologie
beschrieben. Danach werden die verwendeten Protokolle und anschließend
die Nachrichten für die verschiedenen Topologien erläutert.

35

4 Implementierung

4.1 Aufbau der Netzwerk-Topologie

Im Folgenden werden die beiden Klassen zur Initialisierung der Topologie
basierend auf einem Feder-Partikel-System (s. Kapitel 3.1) und der Topolo-
gie basierend auf einer Schwerpunkt-Voronoi-Delaunay-Triangulierung (s.
Kapitel 3.3) beschriebenen.

4.1.1 Die Klasse SimpleTopol

Die Klasse SimpleTopol dient zur Initialisierung der Topologie basierend
auf einem Feder-Partikel-System, welche in Kapitel 3.1 beschrieben wurde.
Zur Auswahl stehen dabei die Topologien SIMPLE und DIAGONAL. Der
verwendete Modus für die Topologie kann in der Konfiguationsdatei festge-
legt werden. Der Modus SIMPLE war bereits implementiert und die Klasse
wurde im Rahmen dieser Arbeit um den Modus DIAGONAL erweitert.

Zur Initialisierung der Topologie Diagonal wird zunächst eine Liste aus
Knotenpunkten erzeugt. Ein Knotenpunkt kann dabei entweder einen
Netzwerk-Knoten enthalten, oder als Knotenpunkt ohne Cache-Knoten
erzeugt werden.

Knotenpunkte ohne Cache-Knoten sind die in Kapitel 3.1.2 bereits erwähn-
ten Fixpunkte. Sie werden in den Routing-Tabellen der benachbarten Kno-
tenpunkte geführt um die Fixpunkte für das Feder-Partikel-Modell zu
simulieren. Da diese Knotenpunkte jedoch keine Cache-Knoten enthalten,
spielen sie für die Verarbeitung von Anfragen und für das Versenden von
Nachrichten im Netzwerk keine Rolle.

Die Knotenpunkte werden zeilenweise nach der gewünschten Overlay-
Struktur positioniert und in die Liste eingefügt. D.h. für ein Netzwerk
mit x Knoten in horizontaler und y Knoten in vertikaler Richtung wird
zunächst eine Reihe aus x + 2 Fixpunkten eingefügt. Dann wird y-mal
jeweils ein Fixpunkt, x Knotenpunkte mit Cache-Knoten und noch ein
Fixpunkt hinzugefügt. Zum Abschluss folgt noch eine Reihe aus x + 2
Fixpunkten (s. Abb.4.1)

36

4.1 Aufbau der Netzwerk-Topologie

Fixpunkt

Cache-Knoten

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Abbildung 4.1: Liste der positionierten Knoten

Die Initialisierung der Nachbarschaftsbeziehungen zwischen den Knoten
erfolgt in einem Durchlauf über die Liste der Knotenpunkte. Für jeden
Knotenpunkt mit einem Cache-Knoten werden die benachbarten Knoten
nach dem in Abb. 4.2 dargestellten Schema in die Routing Tabelle im
Protokoll LAOLink (s. Kapitel 4.2.2) übernommen.

4.1.2 Die Klasse VoroTopol

Die Klasse VoroTopol wurde im Rahmen dieser Arbeit erstellt. Sie dient
zur Initialisierung der Topologie basierend auf einer Schwerpunkt-Voronoi-
Delaunay-Triangulierung, welche in Kapitel 3.3 beschrieben wurde.

Ähnlich wie in der Klasse SimpleTopol, wird zunächst eine Liste aus Kno-
tenpunkten erstellt. Da für die Voronoi-Delaunay-Topologie jedoch keine
Fixpunkte nötig sind, werden nur Knotenpunkte erzeugt, die auch einen
Cache-Knoten enthalten.

Für die Positionierung der Knotenpunkte wurde zunächst das gleiche
Schema verwendet, nach dem die Knoten in der Feder-Partikel-Topologie

37

4 Implementierung

0 1 2

5 6 7

10 11 12

0 1 2

5 6 7

10 11 12

Linker und Rechter Nachbar
(mit Index i-1 und i+1)

Oberer und unterer Nachbar
(mit Index i-(x+2) und i+(x+2))

0 1 2

5 6 7

10 11 12

Nachbar oben links
(mit Index i-(x+3))

0 1 2

5 6 7

10 11 12

Nachbar oben rechts
(mit Index i-(x+1))

0 1 2

5 6 7

10 11 12

Nachbar unten links
(mit Index i+(x+1))

0 1 2

5 6 7

10 11 12

Nachbar unten rechts
(mit Index i+(x+3))

Fixierter Partikel Un�xierter PartikelFeder

Abbildung 4.2: Festlegung der Nachbarschaftsbeziehungen

angeordnet wurden. Prinzipiell können jedoch auch beliebige andere Start-
positionen implementiert werden.

Nachdem die Knotenpunkte positioniert wurden, wird eine Delaunay-
Triangulierung über die Knotenpositionen erstellt. Für die Triangulierung
wird das Computational Geometry Paket aus [Bar08] verwendet. Aus der Tri-
angulierung wird eine Liste der Segmente der Triangulierung entnommen.
Ein Segment besteht jeweils aus zwei Punkten, die in der Triangulierung
verbunden sind.

38

4.2 Protokolle

Anhand der Liste der Segmente werden die Nachbarschaftsbeziehungen
für das Netzwerk initialisiert, indem für jedes Segment beide Knoten den
jeweils anderen Knoten in ihre Routing-Tabelle im Protokoll VoroLink (s.
Kapitel 4.2.5) aufnehmen.

4.2 Protokolle

Die in diesem Kapitel erläuterten Protokolle liegen jeweils in den Knoten des
Netzwerks und dienen zur Verarbeitung der eingehenden Nachrichten und
zur Speicherung und Verwaltung von Informationen über den jeweiligen
Knoten. Die verschiedenen Protokolle können über den übergeordneten
Knoten und eine entsprechende Protokoll-ID angesprochen werden.

4.2.1 LAOProtocol

In dem Protokoll LAOProtocol werden die eingehenden Nachrichten eines
Netzwerk-Knotens verarbeitet. Es werden Anfragen bearbeitet, HeartBeat-
Nachrichten an die Nachbarn verschickt und die Position des Knotens
angepasst.

Die im Rahmen dieser Arbeit vorgenommenen Änderungen am Proto-
koll LAOProtocol beziehen sich auf die im Kapitel 3.2 beschriebenen neu
eingeführten Modi für die Verarbeitung von Anfragen.

Die eingehenden Anfragen werden in einer Route-Nachricht durch das
Netzwerk zu dem Knoten transportiert, dessen Cache-Fokus am nähesten
an der Anfrageregion liegt. D.h. eine Route-Nachricht wird im LAO-Protocol
verarbeitet, indem geprüft wird, ob einer der Nachbarknoten einen Cache-
Fokus hat, der näher an der Anfrageregion liegt als der Cache-Fokus des
eigenen Knotens. Ist dies der Fall, so wird die Route-Nachricht weitergeleitet.
Gibt es keinen Nachbarknoten, der näher an der Anfrageregion liegt, so
wird die Anfrage in dem in der Konfigurationsdatei vorgegebenen Modus
wie folgt verarbeitet:

39

4 Implementierung

Initiator Modus: Im Initiator Modus verarbeitet der Knoten die Anfrage
selbst, d.h. die Anfrage wird aus der Route-Nachricht extrahiert und im
CacheProtocol (s. Kapitel 4.2.3) verarbeitet.

Modus Niedrigste Last: Im Modus Niedrigste Last wird zunächst über das
CacheProtocol geprüft, ob die aktuelle Last an dem Knoten über einem in
der Konfigurationsdatei festgelegten Maximalwert liegt. Ist der Maximal-
wert noch nicht überschritten, so wird die Anfrage wie im Initiator Modus
vom Knoten selbst bearbeitet.

Wenn die Last am Knoten den Maximalwert überschritten hat, erfolgt
ein Durchlauf über die Nachbarknoten. Dabei wird der Nachbarknoten
ermittelt, an welchem die geringste Last anliegt. An diesen Knoten wird
dann die Anfrage zur Verarbeitung weitergeleitet.

Kooperativer Modus: Im kooperativen Modus wird die Anfrage von dem
Knoten zunächst im CacheProtocol (s. Kapitel 4.2.3) so weit verarbeitet, dass
ein vorläufiges Ergebnis gespeichert wird, welches folgende Komponenten
enthält:

• Eine Liste mit den Objekten aus dem Cache, auf welche die Anfrage
zutrifft

• Eine Liste mit den Schlüsseln der für die Anfrage relevanten Zellen,
die nicht im Cache enthalten sind

Die Liste mit den Zellschlüsseln aus dem vorläufigen Ergebnis der Anfrage
wird dann weiterverarbeitet, indem für jeden Nachbarknoten eine Liste
von Zellschlüsseln erzeugt wird. In einem Druchlauf über die Liste der
gesamten Zellschlüssel wird jeder Schlüssel zu der Liste des Nachbarns
hinzugefügt, dessen Cache-Fokus am nähesten an der Position der Zelle
liegt.

Dann wird gezählt, wieviele der Listen nicht leer sind, d.h. wieviele Nach-
barn eine Teilanfrage erhalten sollen. Die Anzahl der Nachbarn wird er-
mittelt, damit der zentrale Knoten die Anfragebearbeitung abschließen
kann, nachdem er von allen Nachbarknoten eine Antwort erhalten und die
Teilantworten zusammengeführt hat.

40

4.2 Protokolle

An alle Nachbarn, die eine Teilanfrage erhalten sollen, wird eine PartialQue-
ry Nachricht (s. Kapitel 4.3.1), mit der Anfrage, der Anzahl der Nachbarn,
sowie den noch fehlenden Zellschlüsseln gesendet.

Ein Knoten, der eine PartialQuery Nachricht erhält, in der noch kein Teiler-
gebnis gespeichert wurde, berechnet über das CacheProtocol seine Teilant-
wort, speichert sie in der PartialQuery Nachricht und schickt die Nachricht
zurück zum Sender der Nachricht.

Wenn ein Knoten eine PartialQuery Nachricht mit einem Teilergebnis erhält,
so wird das Teilergebnis zum vorläufigen Ergebnis der Anfrage im Cache-
Protocol hinzugefügt und der Zähler im vorläufigen Ergebnis hochgezählt
(s. Kapitel 4.2.3). Wenn der Zähler mit der in der PartialQuery Nachricht ge-
speicherten Anzahl an Nachbarn übereinstimmt, ist die Zusammenführung
der Teilergebnisse abgeschlossen.

Sind in dem vorläufigen Ergebnis alle Objekte zur Beantwortung der An-
frage enthalten, ist die Verarbeitung damit abgeschlossen und die Anfrage
konnte vollständig aus dem Cache-Overlay beantwortet werden. Wenn in
dem vorläufigen Ergebnis noch Zellen fehlen, wird eine Anfrage an das
Daten-Back-End geschickt und das Ergebnis aus dem Daten-Back-End wird
mit dem vorläufigen Ergebnis zum vollständigen Ergebnis zusammenge-
führt.

4.2.2 LAOLink

Das Protokoll LAOLink wurde in dieser Arbeit nicht verändert. Die Funk-
tionen des Protokolls werden im Folgenden dargestellt, um die Zusammen-
arbeit der verschiedenen Protokolle zu verdeutlichen. Zudem wurden im
Protokoll VoroLink (s. Kapitel 4.2.5) die Funktionen des Protokolls LAOLink
übernommen.

Die Funktion des Protokolls besteht in der Speicherung und Verwaltung
der Routing-Tabelle des Knotens. Das Protokoll bietet daher Funktionen
zum Hinzufügen und Entfernen von Nachbarknoten, zur Ausgabe einer
Liste der Nachbarknoten, sowie zur Ausgabe des Nachbarknotens mit der
gerinsten Entfernung zu einem gegebenen Punkt.

41

4 Implementierung

4.2.3 CacheProtocol

In dem Protokoll CacheProtocol wird der Cache eines Knotes verwaltet. Die
bereitgestellten Funktionen umfassen die Ausgabe der auf eine Anfrage
zutreffenden Zellen im Cache, das Anpassen des CacheFokus, sowie die
Ausgabe der Kapazität und der aktuellen Anfragelast des Cache.

Für die Umsetzung des kooperativen Verarbeitungsmodus (s. Kapitel 3.2.3,
4.2.1) wurde dem Protokoll eine Hash-Map für die Speicherung der Teiler-
gebnisse der Anfragen hinzugefügt.

Für die Speicherung und Zusammenführung der Teilergebnisse wird der
Datentyp QueryResult verwendet. Als Schlüssel für die Speicherung der
QueryResults in der Hash-Map wird der Hash-Code der Query verwen-
det.

In einem QueryResult werden die aus dem Cache gelesenen Objekte und die
für die Anfrage noch fehlenden Zellen, sowie der zentrale Knoten von dem
die Anfrage verarbeitet wird gespeichert. Zudem enthält das QueryResult
einen Counter, der hochgezählt wird, wenn das Ergebnis eines weiteren
Knotens zum Ergebnis hinzugefügt wird.

4.2.4 VoroProtocol

Das Protkoll VoroProtocol bietet für die Voronoi-Delaunay Topologie zu-
nächst einmal die gleichen Funktionen wie das Protokoll LAOProtocol für
die Feder-Partikel Topologie. Allerdings wurde für die Aktualisierung der
Knotenposition der in Kapitel 3.3.5 beschriebene Algorithmus implemen-
tiert, und es wurden entsprechende Funktionen für die Verarbeitung von
Nachrichten zur Aktualisierung des Overlays und zum Hinzufügen neuer
Knoten ergänzt.

Sowohl die Aktualisierung des Overlays als auch das Hinzufügen neu-
er Knoten wurde über einen Triggermechanismus implementiert, der
in bestimmten Zeitabständen den Versand von MoveNodePoint- und
NewNodePoint-Nachrichten anstößt. Die Zeitabstände können in der Kon-
figurationsdatei vorgegeben werden. Diese Vorgehen wurde nach dem

42

4.2 Protokolle

Vorbild des bereits implementierten Versand der Anfragen an das Netzwerk
gewählt

Zur Aktualisierung des Overlays wird eine MoveNodePoint-Nachricht
an einen zufällig ausgewählten Knoten gesendet. Ein Knoten, der eine
MoveNodePoint-Nachricht erhält und sich zuvor selbst als bewegt markiert
hat, bestimmt zunächst den Nachbarn, der am nähesten an der eigenen
Position liegt. Dann entfernt er alle anderen Nachbarn aus seiner Routing-
Tabelle und erstellt eine NewNodePoint-Nachricht mit seinem eigenen
Knotenpunkt als Attribut. Diese NewNodePoint-Nachricht wird an den
nähesten Nachbarn geschickt.

Für das Hinzufügen eines neuen Knotens werden zunächst Zufallskoor-
dinaten im Koordinatenraum des Netzwerks erzeugt. Dann wird eine
NewNodePoint-Nachricht erzeugt, die einen Knotenpunkt mit den Zu-
fallskoordinaten, aber noch ohne Cache-Knoten enthält. Diese Nachricht
wird in einer Route-Nachricht an einen zufällig ausgewählten Knoten ge-
schickt.

Wie im LAOProtocol wird die Route-Nachricht an den Knoten weitergeleitet,
der am nähesten an den Koordinaten liegt. Von diesem Knoten wird die
Nachricht aus der Route-Nachricht extrahiert und verarbeitet.

Bei der Verarbeitung der Nachricht wird ein neuer Cache-Knoten zum
Netzwerk hinzugefügt. Der verarbeitende Knoten trägt den neuen Knoten
in seiner Routing-Tabelle ein und in der Routing-Tabelle des neuen Knotens
wird der verabeitende Knoten eingetragen. Von diesem Punkt an ist der
neue Knoten ein Teil des Netzwerks. Der verarbeitende Knoten setzt die
Variable "first" in der NewNodePoint-Nachricht auf false und leitet die
Nachricht an seine Nachbarn weiter.

Erhält ein Knoten eine NewNodePoint-Nachricht, deren Variable "first" auf
false gesetzt wurde, so aktualisiert er wie in Kapitel 3.3.4 beschrieben seine
Routing-Tabelle und leitet die Nachricht ggf. an seine Nachbarn weiter.
Jeder Knoten, der den neuen Knoten zu seiner Routing-Tabelle hinzufügt,
wird auch zu der Routing-Tabelle des neuen Knotens hinzugefügt.

43

4 Implementierung

4.2.5 VoroLink

Das Protokoll VoroLink enthält die gleichen Funktionen und Komponenten
wie das Protokoll LAOLink und zudem noch eine Triangulierung über
die Nachbarknoten und Funktionen zur Aktualisierung und Ausgabe der
Triangulierung.

Da die Triangulierung mit dem Computational Geometry Paket aus [Bar08]
erzeugt wird, sind die Funktionen zur Aktualisierung und Ausgabe lediglich
Wrapper-Funktionen, die auf Funktionen aus dem Paket zugreifen.

4.3 Nachrichten

4.3.1 PartialQuery

Die Nachricht PartialQuery wird für die Anfrageverarbeitung im koope-
rativen Modus verwendet. Sie wird vom zentralen Knoten im Laufe der
Anfrageverarbeitung an die Nachbarknoten versandt und von den Nachbar-
knoten mit entsprechenden Teilergebnissen zurückgeschickt.

Eine PartialQuery Nachricht enthält die folgenden Komponenten:

• die Anfrage

• die Anzahl der Nachbarn, an die eine Teilanfrage der Ursprungsanfra-
ge geschickt wurde

• die Schlüssel der noch fehlenden Zellen

• das Ergebnis der Teilanfrage

44

4.3 Nachrichten

4.3.2 NewNodePoint

Die Nachricht NewNodePoint hat zwei Verwendungen. Zum einen wird
diese Nachricht verwendet, um neue Knotenpunkte zum Netzwerk hinzu-
zufügen und zum anderen wird bei der Aktualisierung der Nachbarschafts-
beziehungen ebenfalls eine NewNodePoint-Nachricht verwendet.

Eine NewNodePoint-Nachricht enthält einen Knotenpunkt. Wenn die Nach-
richt zum Hinzufügen eines neuen Knotenpunktes verwendet wird, enthält
der Knotenpunkt zunächst keinen Cache-Knoten. Dieser wird von dem
ersten Knoten, der die Nachricht verarbeitet zum Netzwerk hinzugefügt.

Wird die Nachricht zur Aktualisierung verwendet, dann entspricht der in
der Nachricht enthaltene Knotenpunkt dem Knoten, dessen Nachbarschafts-
beziehungen aktualisiert werden sollen.

4.3.3 MoveNodePoint

Die Nachricht MoveNodePoint wird zur Aktualisierung der Nachbarschafts-
beziehungen im Netzwerk verwendet. In einem in der Konfigurationsdatei
vorgegebenen Zeitintervall wird einem zufällig ausgewählten Knoten im
Netzwerk eine MoveNodePoint-Nachricht geschickt. Durch diese Nachricht
wird im Protokoll VoroProtocol die Aktualisierung der Nachbarschaftsbe-
ziehungen dieses Knotens angestoßen.

45

5 Zusammenfassung und Ausblick

Tabelle 5.1 bietet eine Übersicht über den Eigenanteil an den in dieser Arbeit
beschriebenen Komponenten.

Die in Kapitel 3.1 vorgestellte Topologie wurde in [LRM12] ausgewertet
und bietet eine schnelle Anpassung an sich veränderde Anfragehotspots,
ohne das die Topologie des Overlays aktualisiert werden muss. Für das
Hinzufügen neuer Knoten zum Netzwerk sind wie in [LRM12] beschrieben,
besondere Maßnahmen zur Erhaltung der Stabilität des Netzwerks nötig.

Für die in Kapitel 3.3 vorgestellte Topologie basierend auf einer
Schwerpunkt-Voronoi-Delaunay-Triangulierung sind Aktualisierungen der
Struktur des Cache-Overlays nötig. Dafür bietet diese Topologie im Ver-
gleich zur Feder-Partikel-Topologie jedoch eine größere Flexibilität in der
Positionierung der Knoten, sowie für das Hinzufügen neuer Knoten zum
Netzwerk.

In der Voronoi-Delaunay-Topologie kann die Initialisierung der Knoten-
positionen auch basierend auf Kriterien für prognostizierbare Hotspots
erfolgen. So kann zum Beispiel die Bevölkerungsdichte ein Kriterium für
die abzusehende Menge an Anfragen sein, da z.B. in Großstädten mit hoher
Bevölkerungsdichte auch mit einer größeren Anfragedichte zu rechnen ist
als in ländlichen Regionen.

Auch das Hinzufügen eines neuen Knotens ins Netzwerks könnte gezielt
in Hotspot-Regionen erfolgen, indem ein neuer Knoten zunächst an einen
Knoten mit hoher Last weitergeleitet und dann in der Nähe dieses Knotens
positioniert wird.

Die in Kapitel 3.3.5 beschriebene Dichtefunktion bietet ebenfalls noch Po-
tential zu einer besseren Anpassung des Netzwerks an Anfragehotspots.
Durch die Weiterentwicklung der noch recht einfach gehaltenen Funktion

47

5 Zusammenfassung und Ausblick

Komponente In dieser Arbeit erstellt

Klasse SimpleTopol Topologie Diagonal
Klasse VoroTopol Topologie Voronoi-Delaunay

Protokoll LAOProtocol Modus Niedrigste Last
Kooperativer Modus

Protokoll CacheProtocol
Hash-Map zur Speicherung der
Teilergebnisse von Anfragen
Datentyp QueryResult

Protokoll VoroProtocol

Implementierung des
K-Means Algorithmus
Aktualisierung des Overlays
Hinzufügen neuer Knoten

Protokoll VoroLink
Triangulierung über Nachbarknoten
Aktualisierung der Triangulierung
Anpassen der Routing-Tabelle
anhand der Triangulierung

Nachrichten
PartialQuery
NewNodePoint
MoveNodePoint

Tabelle 5.1: Zusammenfassung des Eigenanteils an den in dieser Arbeit
beschriebenen Komponenten

könnten die Anpassungsfähigkeit des Netzwerks und die Verteilung der
Last wahrscheinlich verbessert werden.

48

Literaturverzeichnis

[Aur91] F. Aurenhammer. Voronoi diagrams - a survey of a fundamental
geometric data structure. ACM Comput. Surv., 23(3):345–405,
1991. doi:10.1145/116873.116880. URL http://doi.acm.org/10.
1145/116873.116880. (Zitiert auf Seite 24)

[Bar08] M. Bartoletti. Computational Geometry Tutorial, 2000-2008. URL
http://cgtutorial.sourceforge.net/. (Zitiert auf den Seiten 29,
38 und 44)

[DFG99] Q. Du, V. Faber, M. Gunzburger. Centroidal Voronoi Tessellations:
Applications and Algorithms. SIAM Rev., 41(4):637–676, 1999. doi:
10.1137/S0036144599352836. URL http://dx.doi.org/10.1137/
S0036144599352836. (Zitiert auf Seite 24)

[DFJ+96] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, M. Tan. Seman-
tic Data Caching and Replacement, 1996. (Zitiert auf Seite 10)

[DG02] Q. Du, M. Gunzburger. Grid generation and optimization based
on centroidal Voronoi tessellations. Appl. Math. Comput., 133(2-
3):591–607, 2002. doi:10.1016/S0096-3003(01)00260-0. URL http:
//dx.doi.org/10.1016/S0096-3003(01)00260-0. (Zitiert auf den
Seiten 24, 26 und 27)

[JMJV10] M. Jelasity, A. Montresor, G. P. Jesi, S. Voulgaris. Peersim, 2010.
URL http://peersim.sourceforge.net/. (Zitiert auf Seite 35)

[Kle89] R. Klein. Concrete and Abstract Voronoi Diagrams, Band 400 von
Lecture Notes in Computer Science. Springer, 1989. (Zitiert auf
Seite 24)

49

http://doi.acm.org/10.1145/116873.116880
http://doi.acm.org/10.1145/116873.116880
http://cgtutorial.sourceforge.net/
http://dx.doi.org/10.1137/S0036144599352836
http://dx.doi.org/10.1137/S0036144599352836
http://dx.doi.org/10.1016/S0096-3003(01)00260-0
http://dx.doi.org/10.1016/S0096-3003(01)00260-0
http://peersim.sourceforge.net/

Literaturverzeichnis

[Lae] K. V. Laerhoven. Voronoi Diagrams and Delaunay Triangu-
lation. URL http://www.comp.lancs.ac.uk/~kristof/research/
notes/voronoi/. (Zitiert auf Seite 25)

[LBC+
11] C. Lübbe, A. Brodt, N. Cipriani, M. Grossandmann, B. Mitschang.

DiSCO: A Distributed Semantic Cache Overlay for Location-
Based Services. In Mobile Data Management (MDM), 2011 12th
IEEE International Conference on, Band 1, S. 17 –26. 2011. (Zitiert
auf Seite 9)

[LRM12] C. Lübbe, A. Reuter, B. Mitschang. Elastic Load-Balancing in a
Distributed Spatial Cache Overlay. In Proc. of the 13th International
Conference on Mobile Data Management (MDM). IEEE Computer
Society, Washington, DC, USA, 2012. To appear. (Zitiert auf den
Seiten 7, 8, 10, 11, 16, 17, 18, 35 und 47)

[Mac67] J. B. MacQueen. Some Methods for Classification and Analysis of
MultiVariate Observations. In L. M. L. Cam, J. Neyman, Heraus-
geber, Proc. of the fifth Berkeley Symposium on Mathematical Statistics
and Probability, Band 1, S. 281–297. University of California Press,
1967. (Zitiert auf Seite 27)

[NM04] D. Nicklas, B. Mitschang. On building location aware applications
using an open platform based on the Nexus Augmented World
Model. S. 303–313, 2004. (Zitiert auf Seite 9)

[OBSC00] A. Okabe, B. Boots, K. Sugihara, S. N. Chiu. Spatial tessellations:
Concepts and applications of Voronoi diagrams. Probability and
Statistics. Wiley, NYC, 2nd Auflage, 2000. 671 pages. (Zitiert auf
Seite 24)

50

http://www.comp.lancs.ac.uk/~kristof/research/notes/voronoi/
http://www.comp.lancs.ac.uk/~kristof/research/notes/voronoi/

Erklärung

Hiermit versichere ich, diese Arbeit
selbständig verfasst und nur die
angegebenen Quellen benutzt zu haben.

(Anja Reuter)

	1 Einleitung
	2 Grundlagen des verteilten Cachings
	2.1 Verteiltes Caching räumlicher Daten

	3 Techniken zur elastischen Last-Balancierung
	3.1 Topologie basierend auf einem Feder-Partikel-System
	3.1.1 Vom physikalischen Modell zur Netzwerk-Topologie
	3.1.2 Entwurf der Topologie für ein Elastisches Cache Overlay

	3.2 Modi für die Anfrageverarbeitung
	3.2.1 Initiator Modus
	3.2.2 Modus Niedrigste Last
	3.2.3 Kooperativer Modus

	3.3 Topologie basierend auf einer Delaunay-Triangulierung
	3.3.1 Schwerpunkt-Voronoi-Diagramm und Delauay-Triangulierung
	3.3.2 Algorithmus zur Berechnung einer Schwerpunkt-Voronoi-Delaunay-Triangulierung
	3.3.3 Aufbau der Topologie des Cache Overlays
	3.3.4 Hinzufügen neuer Knoten
	3.3.5 Umsetzung der Lastadaptivität
	3.3.6 Aktualisierung der Topologie des Overlays

	4 Implementierung
	4.1 Aufbau der Netzwerk-Topologie
	4.1.1 Die Klasse SimpleTopol
	4.1.2 Die Klasse VoroTopol

	4.2 Protokolle
	4.2.1 LAOProtocol
	4.2.2 LAOLink
	4.2.3 CacheProtocol
	4.2.4 VoroProtocol
	4.2.5 VoroLink

	4.3 Nachrichten
	4.3.1 PartialQuery
	4.3.2 NewNodePoint
	4.3.3 MoveNodePoint

	5 Zusammenfassung und Ausblick
	Literaturverzeichnis

