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Abstract

Coronal holes are structures on the photosphere of the sun. They are in close relation to
so-called geomagnetic storms, which have the potential of harming electronic devices in space
and even on Earth. We present a method for extracting the coronal holes from magnetic
field data of the Sun in an adaptive refinement manner. In contrast to previous methods
our algorithm produces vector graphics representation instead of a texture which would show
coarsely approximated coronal holes only. It takes advantage of the fact that the magnetic
field of the Sun can be topologically divided into two parts which define the coronal hole
boundaries.
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1. Introduction

Overview

This thesis is structured in the following manner:

Chapter 1 – Introduction: A brief description of the method.

Chapter 2 – Related Work: Other works on this field.

Chapter 3 – Data Model: The used data model.

Chapter 4 – Extraction of Coronal Hole Boundaries: A detailed description of the
method.

Chapter 6 – Results: Runtime estimation, measurements and future works.

Chapter 5 – Implementation: Implementation details.

Chapter 7 – Algorithms: Pseudocode for the most important algorithms.

Chapter 8 – Conclusion: Conclusion

Before we start with the topic of this thesis, we will give a short description of the structure
of the Sun. Its radius rs (i.e., the radius of the photosphere) is around 6.96342 · 108m. The
Sun can be divided into 6 parts (see figure 1.1):

• Core: It lies in the center of the Sun and is its hottest part. Its temperature is roughly
15.7 · 106K and its diameter is considered to be 1

4 of the Sun’s radius rs. Most of the
energy produced by nuclear fusion of hydrogen nuclei to helium nuclei originates here.

• Radiative Zone: Inside this zone, energy is transported through radiation. The matter
however is still very dense, resulting in very slow transportation of energy. Gamma rays
emitted from the core take around 171000 years for crossing the radiative zone.

• Convective Zone: As opposed to the radiative zone, the convective zone transports
energy primary through the process of convection. Like air in the atmosphere of the
earth, the hot particles move away from the center of the Sun and the colder particles
fall back down.

• Photosphere: The photosphere is the first layer of the Sun’s atmosphere. Its name
comes from the fact that most of the light emitted by the Sun originates here. Its
temparature lies between 4500K and 6000K.
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1. Introduction

Figure 1.1.: The structure of the Sun.1

• Chromosphere: It is the second layer of the atmosphere of the Sun and its extension
is 2000 kilometer. It holds an interesting feature which is still not fully understood: in
contrast to the other parts of the Sun, the temparature rises from 4400K up to 25000K
with increasing distance from the photosphere. It is believed that this effect can be
explained by a phenomenon called magnetic reconnection [Cha07]: through the process
of induction, magnetic energy is transformed into currents, which collapse and produce
kinetic energy.

• Corona: The Sun’s corona is the structure which is of interest for us. It extends far into
the interplanetary space and is very hot. The average temparature is around 3 · 106K.
It is still unknown how the corona gets heated up, but it seems likely that the same
effect that is responsible for heating up the chromosphere is responsible for the rise in
temparature. Apart from the magnetic reconnection theory exists another theory called
wave heating theory [Alf47]: It states that the corona is heated up by different waves
originating from the Sun. See also [MZO+99] for a magnetohydrodynamic context of
this matter.
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Figure 1.2.: Texture based method for rendering the coronal holes.

Nowadays more and more electric and electronic devices exist, therefore one natural phe-
nomenon gains major importance: geomagnetic storms. They emerge from the Sun due to
massive coronal mass ejection and can harm electric circuits with their high energy particles.

The Sun has, like the Earth, an electromagnetic field due to the motion of conductive material
in its center. But this field is not static, it changes over time and is also not evenly distributed
over the whole corona, i.e., the atmosphere of the Sun. There are regions where the field is
particulary weak so that plasma can escape the corona. These areas, which are called coronal
holes, are characterized by so-called open field lines, meaning that a fieldline starting at such
a position on the Sun’s photosphere does transcend a specific radius rc, defined below.

A common approach is to starting fieldlines on the surface of the Sun and checking if they
cross this radius, one can obtain a texture that indicates where these holes are2. It is an
easy to implement method but has several drawbacks, which are all linked to the fact that
the surface is discretized in this approach. An interesting observation of coronal holes is that
they are seemingly not always contained areas, but seem to create corridors which link them
together. The motivation for using our method instead of the texture based method is to
visualize these structures.

1http://imagine.gsfc.nasa.gov/docs/science/know_l2/sun_parts.html
2http://www.predsci.com/hmi/home.php
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1. Introduction

This thesis presents a different approach by adaptively starting fieldlines on structures of the
corona rather than on the surface, which are also characterized by the magnetic field and
motivated by the so-called boundary switch curves [WTHS04]. In the next step the computed
boundaries of the coronal holes are refined further, until the resolution of the borders is
sufficient for revealing very thin features like passages between them.

For the methods used in this thesis, only the magnetic field data is needed. There is no need
for additional data like the current or vorticity of the plasma, since coronal holes are defined
as structures arising from the magnetic field.

The first step in extracting coronal holes is to define what exactly a coronal hole is. For this
thesis, the following definition is the basis:

Definition 1. Coronal holes are regions of low-density plasma on the Sun that have
magnetic fields that open freely into interplanetary space.3

Let B : R3 → R
3, (x, y, z) 7→ B(x, y, z) be the magnetic field. For determining if the magnetic

field is open at a respective point, one must integrate therefrom along the magnetic field.
This task is done by constructing so-called streamlines. A Streamline L(s) can be described

as an ordinary differential equation: dL(s)
ds

= B(L(s)), which states that at every point of the
streamline the tangent must be always parallel to the underlying field at the same position.

According to definition 1, the field must open freely into interplanetary space. The dual to
this statement is that all regions where streamlines originate and at some point and retract
to the Sun’s surface are regions which are not a part of a coronal hole.

Since the domain of the data is limited with respect to radius r, an arbitrary radius rc from
the origin of the Sun must be defined at which a streamline is considered to extend to free
space and hence open. Usually this radius is set to 2.5 times the radius of the Sun rs, e.g.,
rc = 2.5 · 6.96342 · 108m = 17.40855 · 108m.

Starting streamlines at the surface, and checking if the radius is overstepped, and marking
these seedpoints as parts of coronal holes, is the way coronal holes are usually extracted. But
since streamlines divide the field in a topological manner in parts where the flow is separated
from another, one can reverse this approach and start streamlines at specific points outside
the Sun and consider everything below these streamlines as contained areas where no plasma
escapes the Sun. Everything that is not encapsulated by these streamlines is a candidate for
an open field structure. The question that arises is how one can set the seedpoints so that all
regions, which are not part of this open field structure, are contained by these densely seeded
streamlines.

The first approach for doing this was to extract countour lines with Br = 0 at the radius rc
with Br being the radial component of the magnetic field B. But this approach had major

3https://www.cfa.harvard.edu/~scranmer/Preprints/eaaa_holes.pdf
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Figure 1.3.: Relation between coronal boundary lines and the isosurface at Br = 0.

flaws. One of them was the fact that not all of the streamlines which were started on these
contour lines were retracting to the Sun, i.e., either one end or both streamlines started at the
seed might extend away from the Sun, which yielded into the segmentation of these contour
lines: Only segments where all started streamlines retract to the Sun were considered to be
of importance (see figure 6.3). This, on the other hand, leaded to disrupted coronal hole
contours which had to be closed in some way. An approach was investigated to use critical
points in the magnetic field and start streamlines from there to fill the gaps, but turned out
to be futile.

To conquer this problem, the contour lines were replaced by a subset of isosurfaces: First,
the isosurfaces of Br = 0 were constructed. These isosurfaces were then reduced by the
condition that only parts of the isosurface where streamlines started in both forward and
reverse direction are retracing to the Sun are kept. All other parts of the isosurfaces are
dismissed. Hence, streamlines started from the remaining isosurface subsets will always retract
to the Sun. MCMF is the set consisting of all these lines.

We now define a set of streamlines, called coronal boundary lines (CBLs), which are illustrated
in figure 1.3.

Definition 2. Coronal boundary lines (CBLs) are the lines which divide the corona in two
distinct regions: A region which contains only closed field lines and a region which contains
only open field lines.
A line l is a CBL iff it is in ∂MCBL, the boundary of MCBL

Iff l /∈MCBL, at least one end of the streamline l will escape into the open space.
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1. Introduction

It might be tempting to replace the definition of enclosed points by the convex hull, but this
is not valid: A CBL is not necessarily convex. In fact, we observed that many CBLs are
not convex. In our case, about 50% of the CBLs were not convex. With the CBLs, it is
now possible to partition the magnetic field into two parts: A subset where the field lines are
contained, and another part where the field lines are open. The intersections of streamlines
belonging to a CBL with the sphere of the radius rs define a set of points which represents
the boundaries of the coronal holes. If connected correctly, these points should define curves
that provide a good representation of the coronal holes.

However, in our discretized approach the CBL consist only of streamlines started at the
vertices of the isosurface Br = 0, hence these line segments on the photosphere can become
too long. Additionaly, the extracted coronal hole boundaries tend to form sawtooth patterns
(figure 1.4) due to the fact that the mesh boundaries are very coarse and small changes of
the seeding point positions lead to major abberation. This effect gets worse with increasing
distance of the seeding points to the Sun. Because of this, there is a need to adaptively
refine the CBLs where the corresponding line segments on the Sun’s surface are too long.
A line segment is considered to be too long if its length exceeds the arc length ls of two
neighboring points of the original sampling grid at radius rs. The refinement is done by
simply subdividing the 3D cell which contains the CBL segment and applying the marching
cubes algorithm to these subdivided cells. The extracted isosurface needs to be trimmed
again in terms of retracting streamlines. This process is repeated until all line segments of
the coronal hole underrun ls.
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Figure 1.4.: Sawtooth pattern of the extracted coronal hole boundaries which is a result
from the coarse representation of the Br = 0 isosurface boundaries.
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2. Related Work

There have been only very few attempts to actually visualize the coronal holes. Especially in
terms of 3D visualization, there are no works available until now.

Machado et al. investigated flow visualization of the magnetic field in 3D, concentrating on
coronal loops and plasma convection [GFT+12]. Madjarska et al. worked on analyzing coronal
hole boundary evolution on small scales [MW09]. Cranmer described methods of measuring
the coronal holes and their physical properties [Cra09]. Scholl and Habbal automatically de-
tected and classified coronal holes by combining ultraviolet images and magnetograms [SH09].
Banerjee et al. witnessed propagation of MHD waves in coronal holes [BGT11]. Krieger and
Timothy identified coronal holes as sources of high velocity solar winds [KTR73]. [MC02].
Yang et al. analyzed how the magnetic field of the sun influences it’s atmosphere [YZJ+09].
Zhang et al. investigated changes of surface properties inside coronal holes during solar max-
ima [ZWS+03]. Hearn described differences between quiet regions of the corona and coronal
holes [Hea77].
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3. Data Model

3.1. MHD Data

This thesis operates solely on data files derived from the Helioseismic and Magnetic Imager
Solar Dynamics Observatory1. In this context, only the files which contain the Sun’s 3D
magnetic field are of interest.

These files are stored in a specific manner, namely the Hierarchical Data Format (HDF)2.
Currently, they are only available in version 4, and not in the new version 5.

There are three separate files for the magnetic field: bp*.hdf, bt*.hdf, and br*.hdf. These
contain the phi, theta and radial component of the magnetic field. Because it is numerically
advantageous for the simulation, the computed magnetic field is stored in a special way, a
staggered grid. Before any computation can take place, it has to be converted to a curvilinear
grid for our purpose.

3.2. Staggered Data to Curvilinear Grid

The staggered grid representation provided by the HDF files can be seen in figure 3.1. The
magnetic field data lies on the edges of the staggered grid, denoted as Bφ(�), Bθ(N) and
Br(�). In order to construct a curvilinear grid, interpolation is needed. In the case of the
magnetic field, simple linear interpolation along φ̂, θ̂ and r̂ is the method of choice.

See section 7.4 for the complete algorithm.

3.3. Physical and Computational Space

Since the sun can be seen as a giant spherical object, it is possible to express the transformation
from physical to computational space and vice versa analytically so there is no need for
algorithms like stencil walk to provide point location.

1http://www.predsci.com/hmi/home.php
2http://www.hdfgroup.org/
3http://www.predsci.com/mas/userguide/MAS-User-Guide.pdf
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3. Data Model

Figure 3.1.: The staggered grid representation as provided by the HDF files.
Bφ(�), Bθ(N) and Br(�) represent the corresponding components of the mag-
netic field.3

Given: A point ~pp in physical coordinates.
Find: The corresponding point ~pc in computational space.

The spherical coordinate system is defined as follow with ~pC representing a point in compu-
tational space and ~bC the magnetic vector in computational space, as provided by the MAS
simulations:

~pC =







r

θ

ϕ







~bC =







br
bθ
bϕ







Given φ, θ and r, obtaining a position in physical space requires the following functions ψ:
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3.3. Physical and Computational Space

ψx(ϕ, θ, r) = r · sin(θ) · cos(ϕ)

ψy(ϕ, θ, r) = r · sin(θ) · sin(ϕ) Ψ(ϕ, θ, r) =







ψx(ϕ, θ, r)

ψy(ϕ, θ, r)

ψz(ϕ, θ, r)







ψz(ϕ, θ, r) = r · cos(θ)

For the transformation of the magnetic field into the spherical coordinate system, one needs
the Jacobian of Ψ.

∇Ψ(ϕ, θ, r) =









∂ψx(ϕ,θ,r)
∂ϕ

∂ψx(r,θ,ϕ)
∂θ

∂ψx(ϕ,θ,r)
∂r

∂ψy(ϕ,θ,r)
∂ϕ

∂ψy(r,θ,ϕ)
∂θ

∂ψy(ϕ,θ,r)
∂r

∂ψz(ϕ,θ,r)
∂ϕ

∂ψz(r,θ,ϕ)
∂θ

∂ψz(ϕ,θ,r)
∂r









=







−r · sin(θ) · sin(ϕ) r · cos(θ) · cos(ϕ) sin(θ) · cos(ϕ)

r · sin(θ) · cos(ϕ) r · cos(θ) · sin(ϕ) sin(θ) · sin(ϕ)

0 −r · sin(θ) cos(θ)







(∇Ψ(ϕ, θ, r))−1 =









cos(θ) sin(θ) · sin(ϕ) cos(ϕ) · sin(θ)

− sin(θ)
r

cos(θ)·sin(ϕ)
r

cos(θ)·cos(ϕ)
r

0
cos(ϕ)· 1

sin(θ)

r
−

1
sin(θ)

·sin(ϕ)

r









Putting everything together leads to the following equations:

~pp = Ψ(~pcϕ , ~pcθ
, ~pcr) ~bp = ∇Ψ(~pcϕ, ~pcθ

, ~pcr ) ·~bc

Jacobian of a vector field V :

∇V (r, θ, ϕ) =









∂vx(r,θ,ϕ)
∂r

∂vx(r,θ,ϕ)
∂θ

∂vx(r,θ,ϕ)
∂ϕ

∂vy(r,θ,ϕ)
∂r

∂vy(r,θ,ϕ)
∂θ

∂vy(r,θ,ϕ)
∂ϕ

∂vz(r,θ,ϕ)
∂r

∂vz(r,θ,ϕ)
∂θ

∂vz(r,θ,ϕ)
∂ϕ









Central differences:

f ′(xi) =
f(xi+1)− f(xi−1)

2h
leads to

∇V (r, θ, ϕ) =







vx(r+1,θ,ϕ)−vx(r−1,θ,ϕ)
2h

vx(r,θ+1,ϕ)−vx(r,θ−1,ϕ)
2h

vx(r,θ,ϕ+1)−vx(r,θ,ϕ−1)
2h

vy(r+1,θ,ϕ)−vy(r−1,θ,ϕ)
2h

vy(r,θ+1,ϕ)−vy(r,θ−1,ϕ)
2h

vy(r,θ,ϕ+1)−vy(r,θ,ϕ−1)
2h

vz(r+1,θ,ϕ)−vz(r−1,θ,ϕ)
2h

vz(r,θ+1,ϕ)−vz(r,θ−1,ϕ)
2h

vz(r,θ,ϕ+1)−vz(r,θ,ϕ−1)
2h






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4. Extraction of Coronal Hole Boundaries

Our extraction of coronal hole boundaries is a multistage process. The first step is to create
an isosurface for Br = 0. This isosurface has to be trimmed in order to obtain seeding points
for the CBLs. The constructed CBLs are then intersected with a sphere of radius rp, and the
points resulting from this intersection are connected to produce the coronal hole boundary
representation. These are then further refined to give a better approximation of the coronal
hole boundaries.

4.1. Streamlines

Streamlines, also known as fieldlines, are used to visualize flow fields. They are characterized
by the property that, at every point of the streamline, their tangent must be equal to the
field direction at that point. Mathematically speaking, streamlines are first-order ordinary
differential equations of the form

dL(s)

ds
= B(L(s))

with L(s) being the streamline and the B being the vector field. This differential equation is,
in our case, numerically solved using Runge–Kutta scheme. The simplest Runge-Kutta scheme
is the Euler method, but a small step-size is a requirement for this method to work correctly
since it is a first-order integration scheme. It is often used for computations on GPUs since
many small steps are usually no problem here. But instead of using the Euler method, we
implemented the fourth-order Runge-Kutta method on the GPU to ease the tedious process
of choosing the right stepsize. See algorithm 7.1 for the pseudocode.

4.2. Isosurfaces

In order to generate the seedpoints for the streamlines, an isosurface is needed. There are
several approaches to get an isosurface, but the best known and mostly used one is of course the
marching cubes algorithm. The marching cubes algorithm visits every vertex of the dataset
and marks them according to their relation to the given isovalue. With this labeling it is
possible to construct a triangle mesh representation of the isosurfaces. See [LC87] for further
details.
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4. Extraction of Coronal Hole Boundaries

Figure 4.1.: Scheme of the generated data structures: The isosurface (light blue) at Br = 0
and the reduced isosurface (green). The streamlines are elements of MCBL. The
red line indicate the mesh boundaries

4.3. Rejecting Parts of the Isosurfaces

The isosurface alone is not sufficient for obtaining the seedpoints of the coronal holes. It
has to be reduced in a specific manner. For every vertex of the isosurface, a streamline is
started in forward and backward direction. If both streamlines terminate on the surface of
the sun, the vertex is not deleted. If not, the vertex and its adjacent triangles are removed.
What remains are triangles which are contained by the magnetic field (figure 4.2), i.e., any
streamline started from a vertex of this surface will hit the photosphere outside of a coronal
hole.

4.4. Mesh Boundary Extraction

Boundary extraction of the remaining meshes can be easily achieved by hash tables. We use
two hash maps, one that allows multiple key-value pairs, denoted as HA, and one which only
allows distinct key-value pair, HE, with the edges being both the key and the value. For every
triangle, its edges are inserted into HE if they are not in HA, otherwise, they are removed
from HE. After that, they are inserted into HA. HE then contains all edges which belong
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4.5. Creating the Coronal Hole Boundaries

Figure 4.2.: Isosurface rejection sampling. The isosurface (light blue) at Br = 0 and the
reduced isosurface (green).

only to one triangle, forming the required edges ei. These edges are then concatenated to the
boundary curves of the isosurface mesh parts.

4.5. Creating the Coronal Hole Boundaries

With these edges it is now possible to get the CBLs. For every vertex of each edge, two
streamlines are created. The first is created integrating in forward direction of B, the second
integrating backward. These streamlines, which are not the actual CBL, but get very close to
them, are then cut at the photosphere. This radius should not be too small since streamlines
tend to aberrate the closer they get to the Sun’s surface due to inaccuracies of the MAS
simulation close to the photosphere and because many critical points exist there. The cut
is done by simply walking along the streamlines and checking if the chosen radius rp, in our
case 1.2 · rs, is underrun. rp should be as near as possible to the photosphere of the sun, but
with the MHD data supplied, at least a radius of 1.2 · rs should be chosen, otherwise it might
not be possible to adaptively refine the coronal hole boundaries due to potential numerically
issues.

After the streamlines are cut, these cuts have to be connected. Since we start the streamlines
ordered along the boundaries, we can simply append the points in the same order to obtain
the polylines. These lines represent the first approximation of the coronal hole boundaries.
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4. Extraction of Coronal Hole Boundaries

Figure 4.3.: Mesh boundary extraction.

It has to be noted that since the streamlines of B basically converge as they approach the
comparably small photosphere, the distances between the obtained points is typically much
smaller than the edge lengths where the streamlines were started from. This was one of the
reasons for choosing the presented sampling approach. Furthermore, the structure of the B

field is much more complex close to the Sun, hence starting the streamlines at some distance
from the Sun provides a better sampling.

4.6. Adaptive Refinement

Some of the segments of the coronal hole boundaries are typically too long due to the diverg-
ing trajectories on B. This happens when a segment is, e.g., near a critical point and the
streamlines are repelled from there. A segment is considered to be too long if its length is
greater than the arc length defined by the resolution of the grid at the photosphere or a user
defined value. In our case, a segment should be not longer than

απr

180
=

360
max(grid.resolution(φ),grid.resolution(θ))π · 1

180
=

360
max(256,150)π · 1

180
≈ 0.024543693 = lmax

.

If a segment at the photpsphere is n times longer than lmax, with n > 1.0, then it is further
refined through new streamlines. Since the segment is n times too long, at least n−1 additional
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4.6. Adaptive Refinement

Figure 4.4.: Intersecting the CBLs with a sphere of radius rp = 1.2. The yellow lines repre-
sent the coronal boundary lines.

streamlines have to be created. These streamlines have to be started from the same edge as
the streamlines which belong to the segment which has to be refined. The corresponding
segment on the edge can be either lineary divided into n − 1 new segments, or even better
through subdividing the containing cell into 8n cells, performing marching cubes extraction
of the Br = 0 isosurface on the subdivided cells and repeating the process of removing parts
and detecting the boundaries. This new isosurface boundary defines new seeding points, and
the streamlines started from them provide a better approximation of the boundaries of the
coronal hole if intersected with a sphere of radius rp. The whole process is repeated until
no segment with length > lmax remains or no further progress with this method is possible.
This can happen due to numerically problems, e.g., if lmax becomes very small. Another
problem is that it might happen that the integration direction has to be changed for a specific
seeding point, since the tangent of the streamline at the isosurface boundary is very flat. This
is forcing us to always start two streamlines for every seeding point, with one streamline s1

being integrated forward, the other streamline s2 being integrated backward, and choosing
the right one for the new point on the coronal hole boundary. This is done by computing the
distances between the intersection points p1 and p2 of s1 and s2 with a sphere of radius rp, and
assessing the distances between the intersected points pl and pr of neighbouring streamlines

sl and sr and choosing the point p1 if
√

p2
l + p2

1 +
√

p2
r + p2

1 <
√

p2
l + p2

2 +
√

p2
r + p2

2, otherwise
point p2 is chosen.
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4. Extraction of Coronal Hole Boundaries

Figure 4.5.: Streamlines started from the mesh boundaries due to adaptive refinement.

Using this method, there might be false positives or negatives, but these did not occure with
our data. A better way for deciding which streamline is the right one is by integrating only
one step forward and backward and checking if the direction of these lines abruptly changes.
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4.6. Adaptive Refinement

Figure 4.6.: Comparison between original CBL intersections (magenta) and the refinement
of them (yellow).

Figure 4.7.: A candidate for a corridor between neighbouring coronal holes.
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5. Implementation

We make heavy use of templates in our program. Furthermore, we take advantage of new fea-
tures added in C++11 (ISO/IEC 14882:2011)1 , including default template arguments, range-
based for loops and variadic templates.

The following folders contain the code:

• misc/, containing all kind of useful generic classes like vectors

• ReadMAS/, providing functions for loading HDF files2

• HDFExtract/, a wrapper for ReadMAS

• Policies/, providing policiy classes

• Info/, for printing infos on the screen

• GPU/, containing the OpenCL streamtracer and

• CoronalHoles/, with the main program inside.

In order to minimize error-proneness and simplifying the task of adding new features to the
code, many design patterns and templated classes are provided.

We use VTK3 to visualize our data and to store it. At first we tried to use the streamtracer
provided by VTK, but this streamtracer was not able to make use of the p-space to c-space
conversion we used to accelerate the process of cell location. We also parallelized the stream-
tracer using pthreads, but it turned out that the grid had to be copied for every instance of
the streamtracer since concurrent access to one grid resulted in segfaulting of the program.
Furthermore, even with 8 instance of the streamtracer working in parallel, the reduction of
the isosurface took more than 12 hours before we aborted the operation. All this lead to the
need of a fast streamtracer, which was implemented using OpenCL. The streamtracer is only
able to operate in uniform grids, and all seeds have to be transformed before passing them to
the GPU.

All methods and classes are defined in a namespace, namely CoronalHoles

1http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
2Provided by Thomas Müller
3http://www.vtk.org/
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5. Implementation

5.1. Classes

ActorCreator implemented in misc/

Provides methods for creating a variety of different VTK actors.

Array implemented in misc/

Encapsulates a simple C array, but is also capable of shallow and
deep copying.

BitSet implemented in misc/

As the name implies, a simple bit set. Since the STL only provides
bit sets where the number of elements must be known at compile
time, this class was created.

Buffer implemented in misc/

Used to store earlier computed streamlines.

CheckPolicies implemented in Policies/

Class which enables the programmer to define different run-
time checks for different cases.

CLTracer implemented in GPU/

Provides OpenCL functionality.

CmdArgsParser implemented in misc/

Maps command line arguments to function calls.

CopyPolicies implemented in Policies/

Defines if an object is either deep copied or only a shallow
copy.

CPUBuffer implemented in GPU/

Simplifies the process of allocating memory on the CPU.

Cube implemented in misc/

Defines an arbitrary cube. The cubes vertices can contain both
position and scalars/vectors. There is also a version which is able
to share vertices with other cubes.

32



5.1. Classes

Edge implemented in misc/

A line with only two points. The order of the two points doesn’t
matter when two edges are compared. This is needed for edge
extraction of the poly objects.

Exception implemented in misc/

Contains all exceptions in use.

GeometryCreator implemented in misc/

Responsible for constructing the grid, e.g., the unstaggering of the
HDF data.

GPUBuffer implemented in GPU/

Simplifies the process of allocating memory on the GPU.

GridHolder implemented in misc/

Contains the grid and methods which simplify the usage of it.

Grid implemented in misc/

Stores regular grids.

Gui implemented in misc/

Interface between VTK, QT and the user.

HDFExtract implemented in HDFExtract/

Loads HDF files and access operators.

Info implemented in Info/

Contains code for an additional information window besides the
console.

InfoPrint implemented in Info/

Enables output on the console as well as in a separate QT window.

Interpolator implemented in misc/

Provides methods for linear, bilinear and trilinear interpolation.
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5. Implementation

LinearScaleUtility implemented in misc/

Simply provides functions for mapping values from one range to
another.

Line implemented in misc/

Contains a line, stored in a STL list for support of simple insertion
and deletion of points without invalidating existing iterators.

LogManager implemented in misc/

If one wants to write a logfile, this class provides the necessary
methods.

Matrix implemented in misc/

Generic class for matrices.

MemoryAllocator implemented in misc/

Simplifies dynamic memory allocation.

Mesh implemented in misc/

Triangle or Quad mesh. Supports edge extraction.

Options implemented in misc/

Contains the options needed by ActorCreator.

Print implemented in misc/

Provides different functions for printing text on the console.

Prototypes implemented in misc/

Contains prototypes of the classes.

Quad implemented in misc/

Similar to the Triangle class, just with four points instead of
three.

RenderWindow implemented in misc/

Class that holds references to all options and VTK actors. Also
responsible for user interaction.
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5.1. Classes

StreamTracer implemented in GPU/

Performs stream tracing on the GPU.

StructureCreator implemented in misc/

Responsible for a variety of tasks. Creates streamlines, cuts poly-
lines, adaptively refines structures, writes poly objects to files and
many more.

Surface implemented in misc/

A special case of a mesh. It’s a two-dimensional manifold in a
three-dimensional space.

Threader implemented in misc/

Provides a way to define threads using pthreads.

Timer implemented in misc/

Enables time measurement.

Triangle implemented in misc/

A plane defined by three points. Able to share vertices with other
triangles.

VarWrap implemented in misc/

Enables operations on C arrays which are well known from tex-
tures. Values outside the range of the array can be either lead to
an exception, the index can be wrapped or clamped.

Vector implemented in misc/

Generic class for vectors.

Vertex implemented in misc/

Contains position and scalar/vector values.

WrapPolicies implemented in Policies/

Defines the policies for the class VarWrap.
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6. Results

6.1. Runtime Estimation

Since cell location is a trivial task in our case with constant time (O(1)), our streamtracer
scales lineary in terms of the number of seeds |S| and propagation time p (O(|S| · p)).

Constructing the isosurface is linear in the number of cells |C| (O(|C|)).

The most expensive task is the reduction of the isosurfaces: Using marching cubes, a cell can
contain up to 5 triangles. Thus, an isosurface passing n cells can consist of n · 5 triangles.
Except for the boundaries of the isosurface, the triangles are sharing their vertices reducing
the total amount of vertices. In the end, the number of vertices of an isosurface lies in O(n).
Assuming we have |I| isosurfaces and exploiting the fact that no two isosurfaces can intersect,

the number of vertices of all isosurfaces is O(|I| · |C|
|I| ) = O(|C|). Since at every vertex, two

streamlines have to be started, and removal of triangles is logarithmic in time due to use of
hash maps, the complete task is in O(|C| · log(|C|))

Mesh boundary extraction is in O(log(|C|)) since the number of edges is limited by the number
of triangles, and the extraction of the boundaries is realized by utilizing hash maps. Insertion
as well as removal is logarithmic in time when using hash maps.

Computing the intersection of the streamlines with a sphere is linear in the length of the
streamlines, which is limited by the chosen propagation (O(p))

Adaptive refinement can also be expensive, but since only a few segments tend to be too
long this is not a big issue. Let llimit be the desired segment length on the photosphere.
Adaptive refinement scales lineary with the number of mesh boundaries |E|. The maximum
segment length which can occure in the dataset is determined by the diameter of the grid
representation d, so there have to be at least ⌈ d

llimit
⌉ − 1 new streamlines to be created and

intersected. In the worst case, no segment length reduction is achieved, so that after a fixed
limit lit of iterations over the segment (usually 50), the operation is terminated. This leads
to a runtime estimation of O(lit · log(|C|) · |S| · p · p) = O(log(|C|) · |S| · p2) = O(|C|).

This results in a total runtime of O(|C|) + O(log(|C|)) + O(p) + O(log(|C|) · |S| · p2) =
O(|C|+ log(|C|) + p+ log(|C|) · |S| · p2)
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6. Results

Summary

Structure Number of elements

Grid cells |C| = 256 · 150 · 200 = 7680000

Isosurface vertices O(|C|)

Isosurface triangles O(|C|)

Mesh Boundaries O(|I|)

Seeding points O(|I|)

Operation Runtime

Cell location O(1)

Streamtracing O(|S| · p)

Isosurface construction O(|C|)

Isosurface reduction O(|C| · log(|C|))

Mesh Boundary Extraction O(log(|C|))

Streamline intersection O(p)

Adaptive refinement O(|C|)

Total runtime O(|C|)

Operation

Time needed for computation of figuresa

aAMD Phenom II X6 1055T Processor x6, 8 GB RAM,
ATI Radeon 5850

Texture based coronal hole map
(512x512) → 524288 streamlines

20m:34s

Isosurface generation 00m:03s

Reduction of isosurface → 254157
streamlines

11m:42s

Edge extraction 00m:07s

Adaptive refinement 03m:17s

6.2. Future Work

The topological division of the magnetic field in two distinct parts is an interesting feature of
coronal hole boundaries and their corresponding CBLs. An investigation in extracting CBLs
in another manner than by isosurface reduction is desirable and might make the adaptive
refinement unnecessary. Pilipenko investigated relationships between different fields supplied
of the Helioseismic and Magnetic Imager Solar Dynamics Observatory, including the relations
between the magnetic field and the current density [Pil12]. There may be a way to utilize
these insights to compute other topological features which are not apparent at the moment,
and use the gained knowledge to improve the CBL evaluation.
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6.2. Future Work

Figure 6.1.: Adaptive refinement with resulting coronal hole corridor.

Figure 6.2.: Difference between unrefined (magenta) and refined (yellow) coronal hole bound-
aries.
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6. Results

Figure 6.3.: Approach of extracting coronal hole boundaries with isolines of Br = 0 at sphere
rp instead of reduced isosurfaces. It resulted in segmentation of the coronal hole
boundaries.

Figure 6.4.: Oscillating polyline result in isoline approach.
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6.2. Future Work

Figure 6.5.: Corridor which could not be refined until a sufficient representation was aquired.

Figure 6.6.: Another corridor where the refinement failed but nethertheless the result is
accurate enough for further refinement.
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6. Results

Figure 6.7.: Repelling of streamlines near yellow critical points.

Figure 6.8.: Repelling of streamlines near yellow critical points.
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6.2. Future Work

Figure 6.9.: Difference between texture based coronal hole rendering and coronal hole bound-
ary extraction. Note the corridor at the left side of the image.

Figure 6.10.: Critical points (magenta) near the surface of the Sun.
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6. Results

Figure 6.11.: Compliance of coronal hole boundary extraction and texture based coronal
hole rendering.

Adaptive refinement is the greatest challenge of coronal boundary extraction due to the re-
pelling character of critical points (figure 6.11). It may be possible to make use of critical
points or bifurcation lines to simplify the process. It may also be possible to utilize the texture
based method to gain additional information on how to decide on a good refinement strategy.
Filtering the MHD data before processing to reduce the advent of critical points might also
be helpful.

The next step for coronal hole boundaries extraction is to identify corridors and classify them
in terms of connectivity. The topological evolution of both the coronal holes and the corridors
is also of great interest. This could be achieved by using level sets to construct level surfaces.
Analyzing them for repetitive patterns may lead to new insights on solar dynamics and help
to forecast geomagnetic storms.
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7. Algorithms
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7. Algorithms

Algorithmus 7.1 Classical Fourth-Order Runge-Kutta Method

Input:

• Seeding point

• Grid

• Number of points to generate

• Step size

• Integration direction (forward/backward)
Output: A streamline starting at seed, consisting of numPoints points

function RungeKutta4(seed, grid, numPoints, stepSize, direction)
Line l
Point p← seed, p2

Cell c
for i = 1→ numPoints do

appendPoint(l, p)
c← getCell(grid, p)
k1 ← interpolateTrilinear(c, p)
if direction = FORWARD then

p2 ← p+ k1 ·
stepSize

2
else

p2 ← p− k1 ·
stepSize

2
end if

k2 ← interpolateTrilinear(c, p2)
if direction = FORWARD then

p2 ← p+ k2 ·
stepSize

2
else

p2 ← p− k2 ·
stepSize

2
end if

k3 ← interpolateTrilinear(c, p2)
if direction = FORWARD then

p2 ← p+ k3 · stepSize
else

p2 ← p− k3 · stepSize
end if

k4 ← interpolateTrilinear(c, p2)
if direction = FORWARD then

p2 ← p+ (k1 + 2k2 + 2k3 + k4) · stepSize6
else

p2 ← p− (k1 + 2k2 + 2k3 + k4) · stepSize6
end if

p← p2

end for

return l
end function
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Algorithmus 7.2 Index φ, θ, r to Spherical Coordinates

Input: Indices φ ∈ N, θ ∈ N, radius r ∈ R
+ and the corresponding maximal values of these

indices maxφ,maxθ
Output: Spherical coordinates for the given values

function indicesToSphericalCoords(φ, θ, r,maxφ,maxθ)
~p← ~0

Φ←
mod(φ,maxφ)
maxφ−1 · 2π

Θ← mod(θ,maxθ)
maxθ−1 · π

~px ← r · sin(Θ) · cos(Φ)
~py ← r · sin(Θ) · sin(Φ)
~pz ← r · cos(Θ)
return ~p

end function

Algorithmus 7.3 Index φ, θ, r to Sphere Gradient

Input: Indices φ ∈ N, θ ∈ N, radius r ∈ R
+ and the corresponding maximal values of these

indices maxφ,maxθ
Output: Sphere gradient for the given values

function indicesToSphereGradient(φ, θ, r,maxφ,maxθ)

Φ←
mod(φ,maxφ)
maxφ−1 · 2π

Θ← mod(θ,maxθ)
maxθ−1 · π

return







−r · sin(Θ) sin(Φ) r · cos(Θ) cos(Φ) sin(Θ) cos(Φ)

r · sin(Θ) cos(Φ) r · cos(Θ) sin(Φ) sin(Θ) sin(Φ)

0 −r · sin(Θ) cos(Θ)







end function
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7. Algorithms

Algorithmus 7.4 Staggered Grid to Curvilinear Grid

Input: HDF data files
Output: The resulting grid

function staggeredGridToCurvilinearGrid(hdfFiles[])
Bφ[][][] ← hdfFiles[0]
Bθ[][][] ← hdfFiles[1]
Br[][][] ← hdfFiles[2]
grid[Bφ.size(φ)][Bθ .size(θ)][Br.size(r)]
for r = 0→ Br.size(r)− 1 do

for θ = 0→ Bθ.size(θ)− 1 do

for φ = 0→ Bφ.size(φ) − 1 do

grid[φ][θ][r].pos ←
indicesToSphericalCoords(φ, θ,Br[φ][θ][r], Bφ.size(φ), Bθ .size(θ))

grid[φ][θ][r].valx ← interpolateLinear(Bφ[φ][θ][r], Bφ[φ+ 1][θ][r], 0.5)
grid[φ][θ][r].valy ← interpolateLinear(Bθ[φ][θ][r], Bθ [φ][θ + 1][r], 0.5)
grid[φ][θ][r].valz ← interpolateLinear(Br[φ][θ][r], Br [φ][θ][r + 1], 0.5)
m← indicesToSphereGradient(φ, θ,Br[φ][θ][r], Bφ.size(φ), Bθ .size(θ))
grid[φ][θ][r].val ←m · grid[φ][θ][r].val

end for

end for

end for

return grid
end function

Algorithmus 7.5 Isosurface Removal

Input: The isosurface and the radius which classifies a streamline to be contained in the
magnetic field or not.

Output: The reduced isosurface
function reduceIsoSurface(mesh, radius)

for i = 0→ mesh.vertices.size() − 1 do

Line l[2]← startStreamlineInBothDirections(mesh.vertices[i])
if l[0] ∩ Sphere(radius) 6= ∅ AND l[1] ∩ Sphere(radius) 6= ∅ then

mesh.removeV ertexAndNeighbouringTriangles(mesh.vertices[i])
end if

end for

return mesh
end function
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Algorithmus 7.6 Edge Detection

Input: A triangle mesh
Output: Edges which belong to only one triangle

function getEdges(triangles, numTriangles)
HashMap edges
HashMap tempEdges
for i = 0→ numTriangles− 1 do

Point p[3]← triangles[i].getV ertices()
for j = 0→ 2 do

Edge e← Edge(p[j], p[mod(j + 1, 3)])
edges.insert(e)
if tempEdges.find(e) then

edges.erase(e)
else

tempEdges.insert(e)
end if

end for

end for

List result
for i = 0→ edges.size() − 1 do

result.insert(edges[i])
end for

return result
end function
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7. Algorithms

Algorithmus 7.7 Merge Edge Segments

Input: A list of edges
Output: Lines which contain the merged edges

function mergeEdgeSegments(edges)
List lines
for i = 0→ edges.size() − 1 do

Bool vertexFound← FALSE
for j = 0→ lines.size() do

if lines[j].f irst = edges[i].f irst) then

vertexFound← TRUE
lines[j].prepend(edges[i].second)
BREAK

else if lines[j].second = edges[i].f irst) then

vertexFound← TRUE
lines[j].append(edges[i].second)
BREAK

else if lines[j].f irst = edges[i].second) then

vertexFound← TRUE
lines[j].prepend(edges[i].f irst)
BREAK

else if lines[j].second = edges[i].second) then

vertexFound← TRUE
lines[j].append(edges[i].f irst)
BREAK

end if

end for

if vertexFound then

CONTINUE
else

lines.insert(Line(edges[i].f irst, edges[i].second))
end if

end for

lines← mergeLines(lines)
return lines

end function
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Algorithmus 7.8 Merge Lines

Input: A list of lines
Output: The list of merged lines

function mergeLines(lines)
Bool linesChanged
repeat

linesChanged← FALSE
for i = 0→ lines.size()− 1 do

for j = 1→ lines.size() − 1 do

if lines[i].f irst = lines[j].f irst then

linesChanged← TRUE
lines[i].prependReverse(lines[j])
lines.remove(j)
j ← j − 1

else if lines[i].f irst = lines[j].second then

linesChanged← TRUE
lines[i].prepend(lines[j])
lines.remove(j)
j ← j − 1

else if lines[i].second = lines[j].f irst then

linesChanged← TRUE
lines[i].append(lines[j])
lines.remove(j)
j ← j − 1

else if lines[i].second = lines[j].second then

linesChanged← TRUE
lines[i].appendReverse(lines[j])
lines.remove(j)
j ← j − 1

end if

end for

end for

until linesChanged = FALSE
return lines

end function
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7. Algorithms

Algorithmus 7.9 Adaptive Refinement

Input: Mesh boundaries, the desired length limit and the radius rp for the cut
Output: The adaptively refined coronal hole boundaries

function adaptiveRefinement(meshBoundaries, lengthLimit, radius)
List lines← meshBoundaries.getEdges()
List tempLines
for i = 0→ lines.size() − 1 do

if lines[i].length() < lengthLimit then

List seeds = createPointsInBetween(lines[i])
tempLines = streamTraceAndCutRecursively(seeds, radius)

end if

end for

return tempLines
end function
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8. Conclusion

Extracting coronal holes from the magnetic field data of the sun remains a difficult problem.
With our approach, the extraction was possible, but it needed heavy computation and still has
some flaws. Using our first approach based on isolines at a specific radius as seeding regions
was not sufficient and leaded to segmented and incorrect coronal hole boundaries (figure 6.3
and 6.4). Our subsequent approach based on isosurfaces of Br = 0 was successful.

The biggest problem during extraction seems to be the fact that there are many critical points
near the surface of the sun, leading to aberration of the streamlines and the need of very fine
refinement (see figure 1.2 and 6.9). But even with many subdivisions, it was not possible to
refine all segments correctly. The sawtooth patterns resulting from the coarse mesh boundary
representation could not be resolved in a satisfactory manner. Subdividing the cells containing
the mesh boundaries even further and applying the marching cubes scheme on them might be
of help. Alternatively, one could make a brute force attempt and take these cells to sample
them with enough points and start streamlines from there.

We were able to identify structures which resemble corridors between coronal holes, providing
a basis for future work. However refinement of these corridors was only partially successful.
There might be a correlation between these corridors and critical points, but this has yet to
be confirmed.
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A. Appendix

A.1. Manual

A.1.1. Compiling the Program

In order to compile the provided software, there are several prerequirements. The following
dependencies must be met:

• CMake (version >= 2.8)

• VTK libraries (version >= 5.10)1

• QT libraries (version >= 4.8.3)

• pthread libraries

• OpenGL libraries2

• OpenCL libraries3

• HDF4 libraries (version >= 4.2.7)

• libjpeg

• libz

For compiling the main program, a sh-script4 is provided. It first generates the doxygen
documentation. Next, it compiles the libraries ReadMAS, HDFExtract and clTracer. After
that, the main program coronalHoles is compiled.

1VTK needs to be compiled with QT support
2GL, GLU (and glfw for the test modules)
3The OpenCL C++ Wrapper is also needed
4compile.sh
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A. Appendix

A.1.2. Command Line Arguments

Command Effect

- -num-threads Number of cores to be used

- -coronal-holes-sphere Display coronal holes using the standard method

- -critical-points Display critical points

- -no-critical-points Disable critical points calculation

- -shrink Cells will be shrinked (you should shrink apx. 10
* (RAM size in GiB) / 2 spheres at max)

continued on next page
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A.1. Manual

continued from previous page

Command Effect

- -tubes Create tubed mesh

- -field Draw arrows which illustrate the underlying vec-
tor field

- -isolines Create isolines

- -threshold Use a specific value for thresholding

- -isomin Which isoline to begin with (typically 0 - 2)

- -isomax Which isoline to end with (typically 0 - 2)

- -isoradmin Which isoline to begin with

- -isoradmax Which isoline to end with

- -separated-isolines If isolines are created, they will be separated and
not be one mesh

- -gradients Create gradients

- -sphere Render a sphere

- -no-sphere Don’t render the default sphere

- -streamlines Create streamlines

- -streamtubes Create streamtubes

- -tube-radius Specify tube radius (default: 0.01)

- -streamribbons Create streamribbons

- -streamlines-from-isolines Create streamlines from isolines

- -seedmin On which sphere to start the seedpoints for
streamlines (needs to be in range of rmin and
rmax)

- -seedmax On which sphere to end the seedpoints for
streamlines (needs to be in range of rmin and
rmax)

- -propagation Used for integration of streamlines

- -runge-kutta Defines which integration method to use (2, 4,
45)

- -cutter Make a cut through the sphere

- -streamlines-cutter Make a cut through the streamlines

- -streamlines-from-isolines-cutter Make a cut through the streamlines of isolines

- -cutter-radius Define the radius of the cutting sphere

- -streamline-limit Limit the number of streamlines which are com-
puted in parallel. Useful when getting clOut-
OfResources exceptions

- -write-to-file Write the data generated to files

Table A.1.: List of command line arguments
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