
Institut für Parallele und Verteilte Systeme
Abteilung Parallele Systeme

Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Studienarbeit Nr. 2391

Droplet feature extraction from
images obtained from spray

drying process

Xiaolei Guo

Course of Study: Computer Science

Examiner: Prof. Dr. Sven Simon

Supervisor: M.Sc. Silvia Ahmed

Commenced: June 01, 2012

Completed: December 01, 2012

CR-Classification: I.3.5, I.4.3, I.4.7

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Aim . 7

1.2.1 Tasks . 8

2 Pre-Processing Methods 9
2.1 Threshold . 9
2.2 Edge Detection . 10

2.2.1 Line Filters . 10
2.2.2 Prewitt Filter . 10
2.2.3 Sobel Filter . 11
2.2.4 Laplacian of Gaussian Filter . 12
2.2.5 Canny Filter . 12

2.3 Segmentation: Morphological Watershed . 13
2.4 Morphological Operations . 13

2.4.1 Dilation and Erosion . 14
2.4.2 Hole Filling . 15

2.5 Additional Image Processing Methods . 16
2.5.1 Mean Filter . 16
2.5.2 Antialias Filter . 17
2.5.3 Deinterlace Filter . 17
2.5.4 Despeckle Filter . 19
2.5.5 Contrast Enhancement Filter . 19

3 Generic Composited Method 21
3.1 Comparison of Object Extracting Methods . 21

3.1.1 Simple Threshold . 21
3.1.2 Line Filters . 22
3.1.3 Prewitt Filter . 24
3.1.4 Sobel Filter . 24
3.1.5 Laplacian of Gaussian Filter . 25
3.1.6 Canny Filter . 25
3.1.7 Morphological Watershed Filter . 27
3.1.8 Comparison and Conclusion . 27

3.2 Comparison of Pre-Processing Methods . 28
3.2.1 Additional Pre-Processing Methods . 28

3.3 The Matlab Implementation and Geometry Calculation 35

3

3.3.1 Image Processing Methods in Matlab 35
3.3.2 Geometry Calculation in Matlab . 35
3.3.3 The Algorithm . 36
3.3.4 Comparison of Geometry Calculation Results 36

4 Single-Pass Implementation 39
4.1 Memory Space Usage Analysis . 39
4.2 Algorithm Analysis . 40

4.2.1 Sobel Method . 40
4.2.2 Dilation Method . 41
4.2.3 Hole Filling Method . 41
4.2.4 Erosion Method . 44
4.2.5 Alternative Approach to Regionprops Method 44

5 Results and Conclusion 47
5.1 Algorithm Test . 47

5.1.1 Triangle Test . 47
5.1.2 Rectangle Test . 48
5.1.3 Circle Test . 48
5.1.4 Ellipse Test . 49
5.1.5 Conclusion . 50

5.2 Single-Pass Algorithm Test . 51
5.2.1 On regular Shapes . 51
5.2.2 Single-Pass Algorithm on the Droplet Image 51
5.2.3 Summary of Algorithm Requirements 54

6 Summary 55

A Appendix 57
A.1 Modified Shape Constructing Method . 57

A.1.1 Rectangle . 57
A.1.2 Circle . 57
A.1.3 Ellipse . 58

A.2 Part of Single-Pass Algorithm . 58
A.2.1 Buffer Constructing . 58
A.2.2 Sobel Filter . 59
A.2.3 Hole Filling . 59

Bibliography 61

4

List of Figures

1.1 Original Droplet Image . 8

2.1 Line Filters . 10
2.2 Prewitt Filter Masks . 11
2.3 Sobel Filter Masks . 11
2.4 LoG Filter Mask . 13
2.5 Dilation . 14
2.6 Pixels connected through dilation process . 15
2.7 Erosion . 15
2.8 Hole Filling . 16
2.9 Mean Filter . 17
2.10 Antialias Filter . 18
2.11 Deinterlace Filter . 18
2.12 Contrast Enhancement Filter . 20

3.1 Simple Threshold Filter Results . 22
3.2 Line Filter results . 23
3.3 Prewitt Filter Results . 24
3.4 Sobel Filter Results . 25
3.5 LoG Filter . 26
3.6 Canny Filter . 26
3.7 Morphological Watershed . 27
3.8 Pre-Processing with Mean Filter . 29
3.9 Pre-Processing with Antialias Filter . 29
3.10 Pre-Processing with Deinterlace Filter . 30
3.11 Pre-Processing with Despeckle Filter . 30
3.12 Pre-Processing with Contrast Enhancement Filter 31
3.13 Morphological Operation Results on Original Image 32
3.14 Morphological Operation Results on Mean Filter filtered Images 32
3.15 Morphological Operation Results on Antialias Filter filtered Images 33
3.16 Morphological Operation Results on Deinterlace Filter filtered Images 33
3.17 Morphological Operation Results on Despeckle Filter filtered Images 34
3.18 Morphological Operation Results on Contrast Enhanced Images 34

4.1 Process Delay . 40
4.2 Sobel Method Memory Usage . 41
4.3 Boundary Example . 42

5

4.4 Boundary Example . 43
4.5 Filters used . 44

5.1 Result on a Triangle . 47
5.2 Result on a Rectangle . 48
5.3 Result on a Circle . 49
5.4 Result on a Ellipse . 50
5.5 Test Result . 51
5.6 Single-Pass Algorithm Result . 52

List of Tables

3.1 Comparison of Image Extracting Methods . 28
3.2 Comparison of Geometry Calculation Results 37

5.1 Algorithm Result . 50

List of Listings

6

1 Introduction

1.1 Motivation

Image processing is not only used in the normal daily life for personal usage, it is also widely
used in the industrial area. For example, in pharmaceutical and chemical industries spray
processes are used to remove solvents from thermolabile compounds. In order to analyze the
formation of morphology and shape forming inside the spray tower an image of a droplet should
be taken in the stages and the required geometry from the image should also be analyzed.
In most cases it is not easy to extract the droplet because of its transparency. The difference
between the droplet and the background is usually small, thus the normal single image
processing methods are usually not appliable. A combination of different processing methods
is needed, which can make a good preparation to get the properties of the droplet.

1.2 Aim

The goal is to find a suitable combination of normal image processing methods which can
extract the droplet from the background in the image. Due to the features of the image, the
normal image processing methods can not be used directly, some specification and modification
should also be added.
When the general combination is found, some effort should be given to reduce the requirements
of the algorithm. It is better to process the image on the fly, which means that this algorithm
is able to process the image even if it doesn’t get the full view of the image. The minimal
usage of memory and bandwidth will be preferred. The to be processed image in this article is
depicted in Figure-1.1:

7

1 Introduction

(a) original droplet image (b) contrast enhanced image

Figure 1.1: Original Droplet Image

1.2.1 Tasks

• Compare the common used image processing methods and choose a proper composition
of them. Use this to extract the droplet object from the image.

• Find methods to extract the features of the droplet, such as axis lengths and thus the
area, volume, etc .

• Try to modify the combined methods or algorithms to reduce the memory and bandwidth
usage.

8

2 Pre-Processing Methods

When an image of an object is captured, the image is not always readable for human eyes.
Sometimes the boundaries of the object is not clear enough, extra noise pixels may also be
added due to the functionality of the image capturing mechanism. In order to reduce the
negative effect and do a good preparation for the image property calculation step , image
pre-processing methods should be introduced.
In this chapter some useful methods for image processing are discussed.

2.1 Threshold

The pixel value varies both in object and on the edge. When all of the changes are treated as
changes on the edge, an image with a lot of useless noise pixels exists. Thus a threshold value
is needed to seperate the usefull data from the noise.
There are a lot of threshold value generating methods. The most used one is the global
threshold[3] . The main steps of the global threshold value generation is described as follows:

• Collect all values in the computing domain.

• Find the maximum value MAX and the minimum value MIN.

• Calculate the median T by doing (MAX + MIN)/2 .

• T seperates all values into 2 parts: values bigger or equal to T, and the rest.

• Calculate the mean value of the two parts, and set them as MAX and MIN. Then we
will get another median value T’.

• If abs(T′ −T) < 0.5 , the calculation will end, and T is the threshold. If not, T will be
set with the value of T’, and do another loop will begin from the seperating step.

But this threshold doesn’t always work perfectly in the edge detection step. According to the
experiment, it is better to lower the value a bit, such as use only 70% of this threshold .
In the next section some edge detection filters will be introduced.

9

2 Pre-Processing Methods

(a) horizontal (b) verti-
cal

(c) diagonal 1 (d) diagonal 2

Figure 2.1: Line Filters

2.2 Edge Detection

In order to extract the droplet from the image, a method to find the boundary between the
droplet and the background is needed. A basic idea to identify the boundary (or edge) between
two object is to check how fast the pixel value varies. The basic assumption is that the acute
changes of pixel value most happen at the boundary instead of in the object. the ideal situation
is that all pixels on the edge can be found through calculating the derivatives (first-order) of
the pixel value , and by connecting these pixels the boundaries can be obtained.

2.2.1 Line Filters

These filters [3] calculate the difference between 2 neighbouring pixels or 2 diagonal neighbour-
ing pixels. 4 directions (or 4 connectivities) can be calculated: up-down, left-to-right, left-top
to right-bottom, left-bottom to right-top.(The latter 2 are also called roberts cross gradient
operators.)
Figure-2.1 shows the usually used filters.

2.2.2 Prewitt Filter

This method [3] convolves a image with a small integer-valued operator in horizontal or vertical
direction. The smallest filter masks are of size 3 × 3 . When the horizontal approximation
gx and the vertical approximation gy are calculated , a 3× 3 neighbourhood to calculate the
center value z5 is used , which is shown in Figure-2.2.

gx = ∂f

∂x
= (z3 + z6 + z9)− (z1 + z4 + z7)

10

2.2 Edge Detection

(a) indices (b) horizontal (c) vertical

Figure 2.2: Prewitt Filter Masks

(a) indices (b) horizontal (c) vertical

Figure 2.3: Sobel Filter Masks

gy = ∂f

∂y
= (z1 + z2 + z3)− (z7 + z8 + z9)

With gx and gy the gradient magnitude can be calculated by using

g =
√
g2
x + g2

y

2.2.3 Sobel Filter

The sobel filter [3] works almost the same as prewitt filter. The only difference is that the
sobel filter calculates an extra gradient in horizontal or in vertical direction, just as showed in
the masks in Figure-2.3.

gx = ∂f

∂x
= (z3 + z6 × 2 + z9)− (z1 + z4 × 2 + z7)

11

2 Pre-Processing Methods

gy = ∂f

∂y
= (z7 + z2 × 8 + z9)− (z1 + z2 × 2 + z3)

g =
√
g2
x + g2

y

The effect of sobel filter is similar to the effect of prewitt filter. The difference between the two
is that sobel filter concerns more about the neighbouring pixels in the vertical and horizontal
direction.

2.2.4 Laplacian of Gaussian Filter

All of the filters above don’t concern about noise content or edge characteristics. More advanced
techniques by using factors like noise content can also be used for image processing. According
to Marr and Hildreth [7], such a filter need to have 2 features :

• The differential operator can calculate the approximation of the first or second order of
derivative at every point in the image.

• The operator can be “tuned” to suite for any desired size. Large scale operator to detect
blurry edges and small scale operator to detect sharply focused fine detail should be
supported.

The Laplacian of Gaussian filter ∇2G satisfies the requirement. Here ∇2 is the Laplacian
operator (∂2/∂x2 + ∂2/∂y2) , and G is the 2-D Gaussian function:

G(x, y) = e−
x2+y2

2σ2

Thus the Laplacian of Gaussian equation is expressed as:

∇2G(x, y) = [x
2 + y2 − 2σ2

σ4]e−
x2+y2

2σ2

With this expression the LoG filter of any size can be generated, such as the 5× 5 filter showed
in Figure-2.4.

2.2.5 Canny Filter

Canny operator [3] is designed to find the “optimal” edges. An “optimal” edge means:

• Low error rate : all edges should be found

• Good localization : all edges should be as close as possible to the true edges.

• Single edge point response : the operator returns only 1 response for 1 true edge point.

The steps to apply Canny filter:

• Use Gaussian filter to smooth the image.

12

2.3 Segmentation: Morphological Watershed

(a) LoG Mask

Figure 2.4: LoG Filter Mask

• Calculate the gradient magnitude and the angle images.

• Apply the nonmaxima suppression to the gradient magnitude image.

• Analyse and detect linked edges by using double thresholding and connectivity.

2.3 Segmentation: Morphological Watershed

Morphological Watershed [3] is a segmentation method to connect segmentation boundaries.
This method treats a 2-D image together with its density as the third dimension parameter.
Imagine that the image is cut into different segment according to the density of the pixel, then
flood the image from the lowest value to the higher. Pixels with lower values will be quickly
flooded. When the water rises to a certain level, two segment meet at some points, then a pixel
on the deviding line will be found. As this process goes, the boundaries between segments
could be obtained in the end. But this method is also not suitable for this case, because the
original image (see Figure-1.1) has blurred background and the difference between droplet
and background is not big enough. The processed result on the original image is shown in
Section-3.1.7.

2.4 Morphological Operations

After the edge detection process another method is needed to extract the image components
in the representation and description of region shape. The goal is to get the parameters of
the droplet. Thus the morphological operations such as dilation, erosion, hole filling will be

13

2 Pre-Processing Methods

(a) original (b) 4-connected dila-
tion

(c) 8-connected dila-
tion

(d) 8 diamond

Figure 2.5: Dilation

introduced in the next part.

2.4.1 Dilation and Erosion

The mathematical definition of dilation and erosion [3] is defined in the following:
Assume that A and B are sets in Z2, dilation is denoted as A⊕B , and erosion is denoted as
A	B ,

A⊕B = {z|(B̂)z ∩A 6= ∅}

A	B = {z|(B)z ⊆ A}

The basic idea is doing spatial convolution operations with a morphological operator on the
image. The dilation operation goes as described in the following : we have a 5× 5 image with
1 pixel set in the center. The operator can be a 4-connected, 8-connected or diamond. When
the operator moves to the center, the convolution operation is applied, and the neighbouring
pixels will be set. In the example in Figure-2.5, the result of the 5× 5 image after the dilation
operation is identical to the operator.
The simplest applications of dilation is for bridging gaps. Suppose that two pixels are on the
edge . The aim is to connect these 2 pixels. When the 4-connected operator is used, the result
is shown in Figure-2.6.

Because the dilation operation adds a lot of extra pixels in the neighbourhood of the object,
an operation which does just the opposite is needed. The erosion operation is just the function
we want for this.
Suppose that an image is presented as in Figure-2.7a , and the erosion operator is a 4-connected
operator or an 8-connected operator. After applying this operator the result is shown in
Figure-2.7b and Figure-2.7c.

14

2.4 Morphological Operations

(a) isolated pixels (b) pixels connected

Figure 2.6: Pixels connected through dilation process

(a) original (b) 4-connected erosion (c) 8-connected erosion

Figure 2.7: Erosion

2.4.2 Hole Filling

One problem now exists : if isolated pixels on the edge need to be connected, the dilation
function should be applied. But the extra pixels that the dilation operation adds are not needed.
The erosion function does just the opposite thing of that the dilation function does, thus it
can not be used directly to erase those extra pixels. The “dilation–erosion” process , which
is also called “closing” [3] operation, can only be used for smoothing contours, eliminating
small holes. These two methods are not enough to connect the isolated points on the long thin
edges. So an extra function will be introduced , which is called “hole filling” [3]operation.
It contains 2 steps:

• check whether there are pixels surrounded by connected border pixels.

• if there are these type of pixels, assign some value(normally the same as the border
pixels) to these pixels

15

2 Pre-Processing Methods

(a) original (b) first iteration (c) finish

Figure 2.8: Hole Filling

The hole filling operation can be implemented with the dilation operation: A loop with dilation
operator on all the pixels within the border is processed. The process is shown in Figure-2.8.
After the hole filling operation, all of the pixels on the thin edge will not be erased by the
erosion function. Thus the border of an object can be obtained through the “dilation–hole
filling–erosion” process .

2.5 Additional Image Processing Methods

Doing modification on the input or output to get the best effect is one of the goals of this
work. In this section some extra image pre-processing methods will be discussed. A lot of
these functions can be found and used in Gimp [1].

2.5.1 Mean Filter

When an operator is used on an image, noise always comes out. Reason for the existence of
noise is that the assumption of these filters is not always suitable unter all circumstance. For
example, for the edge detection methods we assume that the pixel value varies quickly only on
the edge. But in the real world this can also happen in the object or in the area of background.
Thus noise pixels come out when the edge filter is applied . Most noise pixels are isolated,
which means that by checking the values of the neighbourhood pixels these pixels could be
identified, then with a threshold it is possible to erase these noise pixels.
The mean filter [3] is used for smoothing an image. A normal version of this filter is

x = (
9∑
i=1

Zi)/9

If the mean filter is applied on the original image , the job to extract the border will be harder

16

2.5 Additional Image Processing Methods

(a) original image (b) applied with mean filter

Figure 2.9: Mean Filter

. Because this method makes the difference between object and background smaller.
The boundaries on the original droplet image are already not clear enough. The difference
between the 2 images can not be identified by eye easily(see Figure-2.9). But actually the
result of edge detection operation on the smoothed image will be worse than that on the
original one .

2.5.2 Antialias Filter

Antialias [1] is a process to reverse alias, or to make the jagged edge smoother. It adjusts the
values of pixels on the boundary. After this operation, the changes of the pixel values will not
be so abrupt.
An example is shown in Figure-2.10.

2.5.3 Deinterlace Filter

When a moving object need to be recorded , especially when this object moves very fast, the
obtained image looks always blurred and stripped. This problem comes with the working
mechanism of camera. Normal cameras record the double amount of images per second, but
all of them have only half vertical resolution. After the recording step every 2 images will be
interlaced into 1 image by interlacing them in the following way: first line of first image, then
first line of the second image, then the second line of the first image , then the second line

17

2 Pre-Processing Methods

(a) original image (b) filtered image

Figure 2.10: Antialias Filter

(a) original image (b) filtered image

Figure 2.11: Deinterlace Filter

of the second image , and so on. When the object moves very fast, it is possible that the 2
images will no longer be compatible with each other.
The following is a simple approaches that can realize the Deinterlace Filter [1]:

• Calculate the possible offset of the second to the first image.

• Choose lines to keep. For example: keep the even lines.

• According to this offset adjust all the pixels in the odd lines or vice versa.

An example is shown in Figure-2.11.

18

2.5 Additional Image Processing Methods

2.5.4 Despeckle Filter

Despeckle Filter [1] is used to remove small defect caused by dust or scratches. The basic idea
is replacing the defective pixels with some valid values.
Here is a simple approach to realize this filter:

• Select the defect areas. This is normally done by hand.

• Set a proper radius. It is better to set the radius bigger than the radius of the defect
areas.

• Calculate the median value of the pixels within the specified radius.

• Replace the defect pixels with the median value.

This filter is similar to the mean filter, both of them can be used to remove noise.
Advantages of this filter over the mean filter:

• Easy to implement.

• Sorting is much faster than multiplication and division.

Disadvantages of despeckle filter over the mean filter:

• The defect area must be specified.

• The radius must be specified. It can not be set beforehand, otherwise when the radius is
too small, this filter will not work.

• The median is not always a proper value.

2.5.5 Contrast Enhancement Filter

This filter maps the values of pixels in the original image to a range so that the image can be
identified much easier.
A simple example is shown in Figure-2.12. The process can also be done in Gimp.[1] The
result of applying an adjust contrast enhancement filter onto the original droplet image is
also shown here. Although the result of the droplet image seems good, this filter is still not
suitable for the edge detection methods applied on our droplet image.
The biggest problem is this filter doesn’t change the relationship between adjacent pixels. The
pixel values of the droplet are not significantly different to those of the background. Edges can
only be detected by calculating the difference between pixels. During the boundary detecting
process, the difference between the adjacent pixels are calculated. Then a threshold is also
calculated. According to this threshold these differences should be evaluated . Once they fulfill
the requirement of the threshold, the related pixels become the potential edge pixels.
Two aspects are important in the process: one is the difference between two pixels , the other
one is the threshold. The absolute value of the difference ifself is not so important, because
when the difference is small, the threshold can also be reduced to fit this situation. This

19

2 Pre-Processing Methods

(a) filter example 1 (b) filter example 2

(c) filtered image

Figure 2.12: Contrast Enhancement Filter

produces more noise .

20

3 Generic Composited Method

In this chapter the method to extract the droplet object from the image and ways to calculate
the properties of this object will be discussed.

3.1 Comparison of Object Extracting Methods

In Chapter-2 several edge detection methods to extract object boundaries were introduced.
The possible methods that can be applied on the droplet image are:

• simple threshold in Section-2.1

• line filters in Section-2.2.1

• prewitt filter in Section-2.2.2

• sobel filter in Section-2.2.3

• Laplacian of Gaussian filter in Section-2.2.4

• Canny filter in Section-2.2.5

• morphological watershed method in Section-2.3

3.1.1 Simple Threshold

In our case it is not possible to apply the simple threshold on the droplet image, because it’s
hard to distinguish the value range of the droplet from the value range of the background.
Most of the pixels in the original droplet image have values between 0 → 30 . In order to
see the effect of the threshold filter, the value 10, 20, 30, and the global threshold value 33.5
and the half of the global threshold value 16.75 were applied. The results are as shown in
Figure-3.1.
With the threshold 20 a general shape of the droplet has been obtained. The problem is that
part of the boundaries was missing.
With threshold 10, 30 or 33.5 nothing could be obtained.
With threshold 16.75 (half of 33.5) a droplet object with a lot of noise below the droplet was
obtained.
Thus the simple threshold method is not suitable in our case.

21

3 Generic Composited Method

(a) threshold: 10 (b) threshold: 20 (c) threshold: 30

(d) global threshold: 33.5 (e) threshold: 16.75

Figure 3.1: Simple Threshold Filter Results

3.1.2 Line Filters

Actually this kind of filters (vertical, horizontal and diagonal) generated nothing but a lot of
noise , which are presented in Figure-3.2. None of these filters worked on the original image.
The results indicate that the line filters are also not suitable here. The boundary of the droplet
can not be seen.

22

3.1 Comparison of Object Extracting Methods

(a) horizontal filter (b) vertical filter

(c) diagonal filter 1 (d) diagonal filter 2

Figure 3.2: Line Filter results

23

3 Generic Composited Method

(a) in horizontal direction (b) in vertical direction (c) in both direction

Figure 3.3: Prewitt Filter Results

3.1.3 Prewitt Filter

Applied with the prewitt filter (horizontal, vertical and both directions) on the original image ,
the results as shown in Figure-3.3 have been obtained .
The results showed most part of the boundary clearly. The horizontal filter missed a lot of
edge pixels on the left and right side of the droplet. The vertical filter missed a lot of the
edge pixels on top and bottom side of the droplet. A good shape of the droplet was obtained
when the results of both directions were combined, although some small part of the boundary
was still missing. The image applied with prewitt filter (with both directions) had a better
outcome. Only a small part on the left-bottom side of the droplet was missing. The amount
of noise in the both direction filtered image was relatively less than that in the images filtered
with only one direction.
Problem of this filter was that most generated pixels were on the border. and a lot of them
were not connected. So an additional method should be introduced here for further operation.

3.1.4 Sobel Filter

Sobel filter performs similarly as prewitt filter. The sobel filter (in horizontal, vertical and
both directions) was applied on the original image , the results is shown in Figure-3.4.

The images with horizontal or vertical filter have the same problem just like that with prewitt
filter: when the horizontal filter has been applied, part of the boundary on the left and the
right side were missing. When the vertical filter has been applied , part of the boundary on
top or at the bottom of the droplet were not presented.

24

3.1 Comparison of Object Extracting Methods

(a) in horizontal direction (b) in vertical direction (c) in both direction

Figure 3.4: Sobel Filter Results

But the output with filter in both directions looks like to be perfect. Only a very small part
on the left-bottom side was missing.
The problem with this filter is the same with prewitt filter: although the generated pixels were
on the boundaries, a lot of them were isolated. An additional method should also be used to
achieve a better outcome.

3.1.5 Laplacian of Gaussian Filter

The Laplacian of Gaussian filter was applied on the original image. The result image (Figure-3.5
) shows that the LoG filter can certainly extract the droplet shape from the image. But the
noise could not be handled by LoG filter .
Most of the result image was covered with useless noise pixels , a lot of them had relative big
size so that they could not be easily removed by simple noise removing methods.
Thus this method is also not suitable .

3.1.6 Canny Filter

Canny filter has the same issue as LoG filter, although it is not so severe as that with LoG
filter. Figure-3.6 shows the result of applying the Canny filter on the droplet image. The
boundary of the droplet could be seen, but the noise has taken almost half of the area which
this filter has extracted. Canny filter is also not suitable .

25

3 Generic Composited Method

(a) filtered image

Figure 3.5: LoG Filter

Figure 3.6: Canny Filter

26

3.1 Comparison of Object Extracting Methods

Figure 3.7: Morphological Watershed

3.1.7 Morphological Watershed Filter

The result after applying the morphological watershed filter is shown in Figure-3.7. The
outcome was very bad. The border of the droplet could not be seperated from the noise. The
morphological watershed filter could not simply be applied on the original image.

3.1.8 Comparison and Conclusion

The results of the filters showed that most of them can not process the image with a satisfying
result, only because the original droplet image has the following features:

• The value range of the droplet and that of the background have overlapping part.

• The value varies on the whole image, not only on the boundary of the droplet. Thus
some filters that are sentitive to the value changes have generated a lot of noise.

To extract the droplet object from the noise is not easy, so the Canny filter was not chosen.
The line filters , the LoG filter , the morphological watershed filter have failed to generate
a identifiable droplet shape, thus they were not be chosen. The threshold method could get
most part of a droplet shape, but parts of the droplet were still missing.
Only prewitt filter and sobel filter have generated relative satisfying results: the results were
with relatively clear boundaries and less noise. But some additional methods need to be added
to achieve our aim.

27

3 Generic Composited Method

Filter name Results
simple threshold The result depends on the value of the threshold.

Not easy to get the whole object of the droplet.
line filters Only generated noise.
prewitt filter The result of using the both directions filter looks

good. Need extra function to connect the isolated
pixels on the edge.

sobel filter similar to prewitt filter.
LoG filter The shape of the droplet was obtained, but a lot

of noise was also generated.
Canny filter similar to LoG filter, with less noise, but still not

practical for the original droplet image.
morphological watershed It generated only noise

Table 3.1: Comparison of Image Extracting Methods

3.2 Comparison of Pre-Processing Methods

In Section-2.5 several methods for image pre-processing were introduced. All of them were
applied on the original droplet image and was checked whether they could improve the
performance of the object extracting methods .
The introduced 5 methods are :

• Mean filter

• Antialias filter

• Deinterlace filter

• Despeckle filter

• Contrast Enhancement filter

3.2.1 Additional Pre-Processing Methods

In this part the pre-processing methods on the original image were firstly applied, after that
the object extracting methods on the processed images were used. Then the morphological
operations were applied to see whether the outcome could be better or not.
According to Section-2.5, prewitt filter and sobel filter were applied on the processed image.

28

3.2 Comparison of Pre-Processing Methods

(a) first with Mean Filter (b) then with Prewitt Filter (c) or with Sobel Filter

Figure 3.8: Pre-Processing with Mean Filter

(a) with Antialias Filter (b) then with Prewitt Filter (c) or with Sobel Filter

Figure 3.9: Pre-Processing with Antialias Filter

3.2.1.1 For Edge Detection Methods

The first one was doing object extraction with the 3× 3 mean filter filtered image: The mean
filter was firstly applied, then the output was processed by prewitt filter or sobel filter. The
results are shown in Figure-3.8.

The next try was with the antialias filter : The antialias filter was applied on the original
image, after that prewitt filter or sobel filter was used. The results are shown in Figure-3.9.
And the next one was the results with the deinterlace filter: The result applied with the

29

3 Generic Composited Method

(a) with Deinterlace Filter (b) then with Prewitt Filter (c) or with Sobel Filter

Figure 3.10: Pre-Processing with Deinterlace Filter

(a) with Despeckle Filter (b) then with Prewitt Filter (c) or with Sobel Filter

Figure 3.11: Pre-Processing with Despeckle Filter

deinterlace filter is shown in Figure-3.10a, after that prewitt filter or sobel filter was used. The
results are shown in Figure-3.10b and Figure-3.10c.
And the next one was with the Despeckle filter. The procedure went as antialias filter or
deinterlace filter : first with the despeckle filter, then with prewitt filter or sobel filter. The
results are shown in Figure-3.11.

The last part was doing the process with the contrast enhancement filter. The results are
shown in Figure-3.12.

30

3.2 Comparison of Pre-Processing Methods

(a) contrast Enhancement (b) then with Prewitt Filter (c) or with Sobel Filter

Figure 3.12: Pre-Processing with Contrast Enhancement Filter

3.2.1.2 Comparison by using Morphological Operations

In this part the morphological operations were applied on the input that were described in
Section-3.2.1.1, and the results were compared. The one with better outcome was chosen.
At first the original image was directly applied with prewitt filter or sobel filter. No other
pre-processing methods were applied . The results are shown in Figure-3.13.

The next one was the image filtered by the Mean filter . The results are shown in Figure-3.14.
The results indicated that the filtered images were not suitable to apply the morphological
operations. The gap between pixels on the edge was too big to fill. Only two whole white
pictures were obtained after the morphological operation, that means that this operation has
totally failed .

The next one was images filtered by the antialias filter . The results are shown in Figure-3.15.
The next part was to apply the morphological operations on the images filtered by the Dein-
terlace filter. The results are shown in Figure-3.16. The filtered image has generated a lot of
extra noise pixels. It was not suitable for our case. The next one was the image filtered by the
Despeckle filter. The results are shown in Figure-3.17. The outcome seemed to be perfect. In
the statistical comparison Table-3.2 , this one was also the best.
But the problem with the Despeckle Filter was as mentioned in Section-2.5.4: implementation
of this filter without human intervention is very difficult. And the last one was with the
contrast enhanced images. The results are shown in Figure-3.18. The results also indicated
that this method was also not suitable for further processing. Conclusion on the results : in the
first step the antialias filter could be used, or none of these methods should be applied. After
that the morphological operation could be used. Thus a relatively good result could be obtained.

31

3 Generic Composited Method

(a) with Prewitt Filter (b) with Sobel Filter

Figure 3.13: Morphological Operation Results on Original Image

(a) with Prewitt Filter: failed, all pixels were
white

(b) with Sobel Filter: failed, all pixels were
white

Figure 3.14: Morphological Operation Results on Mean Filter filtered Images

32

3.2 Comparison of Pre-Processing Methods

(a) with Prewitt Filter (b) with Sobel Filter

Figure 3.15: Morphological Operation Results on Antialias Filter filtered Images

(a) with Prewitt Filter (b) with Sobel Filter

Figure 3.16: Morphological Operation Results on Deinterlace Filter filtered Images

33

3 Generic Composited Method

(a) with Prewitt Filter (b) with Sobel Filter

Figure 3.17: Morphological Operation Results on Despeckle Filter filtered Images

(a) with Prewitt Filter (b) with Sobel Filter

Figure 3.18: Morphological Operation Results on Contrast Enhanced Images

34

3.3 The Matlab Implementation and Geometry Calculation

3.3 The Matlab Implementation and Geometry Calculation

In this section some useful functions in matlab are introduced.

3.3.1 Image Processing Methods in Matlab

There are built-in functions for edge detection [4], for example :

[e_img_rob , threshold_e_rob] = edge (Orig, ’roberts’);
[e_img_pre_v , threshold_e_pre_v] = edge (Orig, ’prewitt’, ’vertical’);

The common edge detection methods such as prewitt method, sobel method, Canny method,
Laplacian of Gaussian method are implemented, the correspondent parameters for these
methods are : prewitt, sobel, canny, log, and for prewitt and sobel filter the connectivity
parameter can also be given by using keywords like vertical, horizontal or both . This function
feeds back a filtered matrix and the threshold used for the matrix. The threshold is usually
calculated by using the standard distribution method.
For the morphological operations, 3 functions in Matlab can be found to fulfill our requirements:
imdilate, imfill, imerode. Example for that is just as follows:

img_tmp = imdilate(img_sob_b, strel(’disk’, 7));
img_tmp = imfill(img_tmp, ’holes’);
img_tmp = imerode(img_tmp , strel(’disk’, 7));

The need parameters that need to be specified are :on which image or matrix the function
will be applied , how big the radius of the affected area is. Matlab also provides method
to calculate the global threshold . This function is called “graythresh(m)”, m is the input matrix.

3.3.2 Geometry Calculation in Matlab

Matlab provides a built-in function , which is called “regionprops” , to measure the geometric
properties of an image.
The basic usage of this function is as shown:

STATS = regionprops(Image, properties)

35

3 Generic Composited Method

“properties” in this function has a lot of values, such as “Area”, “Centroid”, “MajorAxisLength”
.etc . Calculation of the area , the length of the major- and minor-axis of the droplet is the
goal, thus “FilledArea”, “MajorAxisLength”, “MinorAxisLength” should be the minimun set
of the properties parameters.
Although the filtered images worked with the regionprops function, presenting the droplet
itself was preferred. Thus all the other noise should be eliminated.
Matlab has no built-in function for that, but another way could be used: keep the object with
the biggest area , or the longest MajorAxisLength, then erase all the other objects.
This method was implemented as follows:

• Calculate the “FilledArea”, “MajorAxisLength”, “MinorAxisLength”, “PixelList” prop-
erties with regionprops function

• Use “max” function to find the ID of the biggest object.

Another feature of this procedure was : the ID number of the droplet can also more or less
reflect how many noise clusters were in the processed image. But it didn’t indicate how many
noise pixels exist.

3.3.3 The Algorithm

Now the droplet could be extracted and features of the droplet could be calculated. The
algorithm could be described as follows:

• smooth the image, or do nothing.

• detect edges.

• do morphological operations to connect the isolated pixels on edges.

• extract features of the droplet.

3.3.4 Comparison of Geometry Calculation Results

When the droplet has been extracted from the image , the properties calculation should be
done on the droplet. The “regionprops” function was applied on the images from Section
3.2.1.2, The properties of the droplet such as area, axislengths of the object were obtained.
The result is shown in table-3.2. The despeckle method could generate the most clean result
as discussed in Section-3.2.1.2. Although it was not chosen as part of our algorithm, the result
on the despeckle filtered image could be used as a standard to check whether a method is
good.
The comparison indicated that the image without the additional pre-processing methods
worked well.
The prewitt method and sobel method both worked fine.

36

3.3 The Matlab Implementation and Geometry Calculation

Pre-Processing Method Edge Detection Method Major Axis Length Minor Axis Length Area

No Prewitt 776.9 495.3 301910
Sobel 803.6 513.6 319301

Mean Prewitt 1478 1182 1310720
Sobel 1478 1182 1310720

Antialias Prewitt 776.9 497.6 303172
Sobel 798.6 506.3 312956

Deinterlace Prewitt 937.6 523.9 355126
Sobel 815.8 634.7 381056

Despeckle Prewitt 773.2 492.0 298296
Sobel 772.4 491.8 298161

Contrast Prewitt 783.4 505.8 309620
Sobel 1040.8 563.5 392874

Table 3.2: Comparison of Geometry Calculation Results

In the next chapter sobel filter was chosen as the edge detector to realize the single-pass
algorithm.

37

4 Single-Pass Implementation

In Chapter-3 we have compared the image processing methods and introduced an appliable
image property calculating method. The final processing procedure consists of the following
steps:

• 1. Image smoothing.

• 2. Edge detection.

• 3. Image Dilation.

• 4. Image Hole Filling.

• 5. Image Erosion.

• 6. Features extracting function.

The morphological operations should be seperated into different steps only because each
operation in this list generates a new image. In some circumstances this requires too many
memory space. And when this algorithm is applied, waiting for the arrival of the entire image
data is necessary. This wastes a lot of time.

4.1 Memory Space Usage Analysis

The needed memory space can be calculated as follows:
The original image file have a size of 1280× 1024 . Assume that for each pixel a single unit of
memory is needed to save the value. Thus 1280× 1024× 1 = 1310720 units are needed to save
the temporary data.
For each step in step 1, step 2 , step 3, step 4, step 5 a sample of the temporary data is needed,
thus 1280× 1024× 1× 5 = 6553600 = 6M units of memory space are needed .
In this procedure, the algorithm stops 5 times to wait for the arrival of the whole temporary
data of the image, which is shown in Figure-4.1. Thus the optimization of the algorithm is
needed.

39

4 Single-Pass Implementation

Figure 4.1: Process Delay

4.2 Algorithm Analysis

In this section the image processing methods were looked into to see whether they could be
improved.
If there is no possilibity to improve the method, a comparable method would be introduced
and then a relatively good result should come out.
Sobel method was used in the following section for discussion.

4.2.1 Sobel Method

The content of sobel method in Section-2.2.3 showed that the sobel method convolves the
original image with sobel filter. In our case a 3× 3 sobel filter was used.
Although the Matlab built-in function applied this method with a whole image as its input,
the real data that was operated on was just in a 3× 3 matrix. and the outcome was a value of
the centering pixel.
Then the sobel method could be modified into :

• Read the data of a 3× 3 matrix from the original image.

• Apply the sobel method.

• Return the value of the centering pixel.

It was difficult to read 3 pixels in the first row, then jump to the second row , and to the third
row. When the second pixel was processed , jumping back to the first row to read the required
data was needed.
Thus a temporary memory was also needed . In our case 2 rows and 3 extra pixels would be
enough. The conclusion: To implement the sobel method 2 rows and 3 pixels of data should
be read, which was 2× 1024 + 3 = 2051 units of memory. The waiting time for image reading
was shortened from 1280 rows to 2 rows, after that the reading operation was done parallelly
with the image processing procedure.
Figure-4.2 indicates the situation. In this graphic, “Zi” means the area where the sobel filter
can be applied, “D” means the already read data, “U” means the still not read data.

40

4.2 Algorithm Analysis

Figure 4.2: Sobel Method Memory Usage

4.2.2 Dilation Method

The dilation algorithm worked similarly as the sobel method. Just as discussed in Section-2.4.1,
and in Section-3.2.1.2 the dilation and erosion filter with the size of 7× 7 were used. To fulfill
the requirement of the filter 6 rows and 7 pixels should be read at first , then the dilation
method could be used.
The output was the value of the centered pixel.
The total memory usage was 6× 1024× 1 + 7 = 6151 units.
The waiting time was shortened from waiting 1280 lines to waiting 6 lines .
For the implementation of dilation method the whole 7× 7 area should be scanned , when a
pixel which has value bigger than the “blank value” (In our case we use 0) was encountered,
the output was set to 1 or 255. The optimal situation is that in each scanning process the first
pixel already has a bigger value, then the next 48 pixels will not be looked into. In this way
the processing time would be reduced.
Also the worst case exists: all pixels in the 7× 7 matrix contain only “blank value”. Thus all
49 pixels should be scanned.

4.2.3 Hole Filling Method

This part is about one of the two difficult parts of the algorithm modification. Reason for the
difficulty is that the hole filling method can only be applied on the whole image.
In Section-2.4.2 a method was introduced: At first the pixel set of connected boundaries is
obtained. After that all pixels within this boundaries could be assigned with some values
(normally the value of the border pixels). The second step could be applied with the recursive
dilation function.
Collection of the information of the boundaries are needed in the first step. Thus a whole image
is needed in the first step, otherwise the wrong boundaries could exist during the process.
A simple example is shown in Figure-4.4. If only part of the image is concerned (in Figure-4.3b),
this line can not be confirmed as part of the boundary, because without the information of the
whole, this line could be anything.

41

4 Single-Pass Implementation

(a) original image (b) part of the image

Figure 4.3: Boundary Example

The traditional hole filling method can not be applied here. An alternative method was used
to do the same job.
The outcome was not perfect, but it worked.
A set of rules was introduced to decide whether a pixel is “ in the hole filling area”. A 3× 3
filter was used in this case.

• The optimal situation is shown in Figure-4.4a, and the operation is very simple : filling
Z5 pixel without any doubt.

• The less optimal situation is that one of the 4 edges is missing , as shown in Figure-4.4b
or in Figure-4.4c. Under this condition the center of the matrix can also be assigned
with a valid value.

• When there are two edges missing, the center of the matrix can also be filled. Assume
that this condition is at the intersection point of two edges. But the assumption could be
wrong , thus the operation may cause some bias. Not all of the situation are considered
as valid . This operation is not be applied on all of the corners.
For example, the situation like Figure-4.4d is valid, because the scanning process is from
top-left side to the right-bottom side. When this situation is encountered, in most cases
the area in the boundary of the top-edge and left-edge is filled. To the contrary, as shown
in Figure-4.4e , the center pixel resides most likely outside the area of the boundary,
because this situation happens most outside the right-top area. Area between left-edge
and bottom-edge could be filled through other way The situation shown in Figure-4.4f is
also not suitable to fill.

• The next situation is when there is only one edge left. Just as mentioned, the bottom
edge is not required in this algorithm. The top-edge, left-edge and the right edge are

42

4.2 Algorithm Analysis

already enough. Although a single right edge is rare, it was also included. Three types
of the filters are shown in Figure-4.4g,Figure-4.4h,Figure-4.4i.

• The last situation is the diagonal situation. The diagonal line between Z1 and Z9 was
chosen . The other one is not included because of the reason mentioned above. Figure-4.4j
shows this situation.

(a) 0 (b) 1-1 (c) 1-2

(d) 2-1 (e) 2-2 (f) 2-3

(g) 3-1 (h) 3-2 (i) 3-3 (j) 4

Figure 4.4: Boundary Example

In order to improve the performance, checking all pixels on one side was not necessary. In a
3× 3 matrix, an edge contains only 3 pixels. The head and end pixels are enough to represent
an edge. Thus these two were chosen. It is also easy to find a situation with 2 edges or 1 edge
which can represent the situation with 3 or 4 edges. Then the simplified filters are shown in
Figure-4.5.
For a 3× 3 filter 2 rows and 3 pixels are needed. The input of this filter is the result of the
dilation operation.
The output is the value of centered pixel.
The waiting time can be reduced from waiting for 1280 rows to only 2 rows.

43

4 Single-Pass Implementation

(a) 1 (b) 2 (c) 3 (d) 4

(e) 5 (f) 6 (g) 7 (h) 8

Figure 4.5: Filters used

4.2.4 Erosion Method

This method worked almost the same as the dilation method.
As the opposite method to dilation, a 7× 7 filter was applied. Thus 6 rows and 7 pixels should
be saved for temporary usage.
The input was the result of the hole filling operation.
The output was the value of the centered pixel.
The waiting time was also reduced from waiting for 1280 rows to only 6 rows.
To speed up this function, the similar scanning method was also introduced as in the dilation
method: When a “blank” pixel was encountered, the result was directly set to 0 without
scanning all values in the 7× 7 matrix.

4.2.5 Alternative Approach to Regionprops Method

The Matlab built-in regionprops function can not be used here, the reason for dropping this
function is that it needs the whole image as the input.
The following method was introduced in [5] and [6]. Assume that in region D a two-dimensional
image intensity function f(x, y) is defined. Parameters x and y are the column value and row
value of the corresponding pixel. Then the (r + c)th order geometric moments of f(x, y) can
be expressed in

Mc,r =
∫ ∫

D
f(x, y)xcyrdxdy

44

4.2 Algorithm Analysis

In our case the filtered image is a binary image, which means that the value of a pixel is either
“0” or “1”. Thus the integral becomes addition, and the equation is changed to

Mc,r =
∑
D

xcyr

Then two coordinates are introduced : xt = m10
m00

and yt = m01
m00

. These two are called centroid
coordinates. Image translation by vector (−xt,−yt) can produce a centered image. When
computed with respect to these object centroids the moment function can be modified as

µc,r =
∑
D

(x− xt)c(y − yt)r

A droplet shape can be represented by an ellipse who’s center has the centroid coordinates of

the droplet. A covariance matrix [µ20 µ11
µ11 µ02

] can be built based on the second-order central

moments. In the single-pass method, all of the second-order moments can be determined in
this way: counting the number “N” of pixels that have the value “1” in the valid area where
the droplet resides. These 3 expressions can be used:

µ20 = 1
N

[
N∑
i=1

x2
i −

1
N

(
N∑
i=1

xi)2]

µ02 = 1
N

[
N∑
i=1

y2
i −

1
N

(
N∑
i=1

yi)2]

µ11 = 1
N

[
N∑
i=1

x2y2 − 1
N

(
N∑
i=1

xi)(
N∑
i=1

yi)]

In order to save the temporary result , variables like sum of xi (sum_x), sum of yi (sum_y), ,
sum of square of xi (sum_x_square), and sum of square of yi .etc can be saved. The number
“N” of valid pixels is represented by variable sum_one . The eigenvalues of this matrix can be
found by using the equation:

λl,s =
µ20 + µ02 ±

√
(µ20 + µ02)2 + 4µ2

11

2

The semi-axes a and b can be defermined by

a = 2
√
λl

b = 2
√
λs

These two semi-axes can be used in the equation of the ellipse

x2

a2 + y2

b2 = 1

45

4 Single-Pass Implementation

When the whole image is processed , the result can be calculated in the following sequence:

µ20 =
sum_x_square− sum_x2

sum_one
sum_one ;

µ02 =
sum_y_square− sum_y2

sum_one
sum_one ;

µ11 =
sum_xy − sum_x×sum_y

sum_one
sum_one ;

tr_µ = µ20 + µ02;

det_µ = µ20 × µ02 − µ2
11;

λl = tr_µ+
√
tr_µ2 − 4× det_µ

2 ;

λs = tr_µ−
√
tr_µ2 − 4× det_µ

2 ;

r_max = 2×
√
λl;

r_min = 2×
√
λs;

area = π × r_max× r_min;

46

5 Results and Conclusion

5.1 Algorithm Test

In this section the algorithm was applied on some regular shapes and the effect is also discussed
. The algorithm was applied on the following regular shaples : a triangle, a rectangle, a circle
and an ellipse.
Area error ratio was used to check the result. This error ratio was determined by using equation

(5.1) |areaa − aream|
aream

× 100%

where areaa was the result of the algorithm, aream was the area determined by the constructing
program.

5.1.1 Triangle Test

The first to be tested shape was the triangle. The result is shown in Figure-5.1. This triangle
image was created in Matlab . The used code is as follows:

(a) test image (b) filtered by sobel filter (c) applied with the algorithm

Figure 5.1: Result on a Triangle

47

5 Results and Conclusion

(a) test image (b) filtered by sobel filter (c) applied with the algorithm

Figure 5.2: Result on a Rectangle

A = eye(200,200);
B = A(:, end:-1:1);
C = [A,B];
C(1,:)=1;
C = imfill(C);
C = C * 255;
img_tri = zeros(1000,1000);
img_tri (401:600, 301:700) = C;
figure,imshow(img_tri);

The area of the triangle could also easily be calculated : (200× 2× 200÷ 2 + 200× 2 = 40400 .
The algorithm returned the area value : 40599.
The error ratio was determined by Equation-5.1 : 0.49% .

5.1.2 Rectangle Test

The second one was rectangle.
The creation of rectangle was simpler than triangle. A rectangle shape could easily be obtained
by setting the edges . The result is shown in Figure-5.2.
According to the Matlab code , the area of the rectangle was 400× 400 = 160000.
The algorithm got a result of 160796 .
The error ratio was determined by Equation-5.1 : 0.5%

5.1.3 Circle Test

In this section the algorithm was applied on the circle shape.
The Matlab code for generating the circle [2] is as follows:

48

5.1 Algorithm Test

(a) test image (b) filtered by sobel filter (c) applied with the algorithm

Figure 5.3: Result on a Circle

texsize = 400;
[x y] = meshgrid(1:texsize, 1:texsize);
temp = sqrt((x-texsize/2+.5).^2 + (y-texsize/2+.5).^2)> texsize/2-1;
temp = (1 - temp)*255;
img_cir = zeros(1000,1000);
img_cir(301:700,301:700) = temp;

And the result is shown in Figure-5.3. The area of the circle was π × 2002 = 125664 .
The result of the algorithm was 125008.
Refering to 5.1, the error ratio was 0.52% .

5.1.4 Ellipse Test

The last test was on an ellipse.
The Matlab code for generating an ellipse with a major-axislength of 300 and minor-axislength
of 200 is shown as follows:

a = 300;
b = 200;
rot_ang = (4/12) * pi ;
theta = 0:0.01:2*pi ;
x_tmp = a * cos(theta);
y_tmp = b * sin(theta);
xx = cos(rot_ang) * x_tmp - sin(rot_ang) * y_tmp;
yy = sin(rot_ang) * x_tmp + cos(rot_ang) * y_tmp;
xx = round(xx) + 500;
yy = round(yy) + 500;

49

5 Results and Conclusion

(a) test image (b) filtered by sobel filter (c) applied with the algorithm

Figure 5.4: Result on a Ellipse

shape size calculated size error ratio
triangle 40400 40599 0.49%
rectangle 160000 160796 0.5%
circle 125664 125008 0.52%
ellipse 188496 190058 0.83%

Table 5.1: Algorithm Result

img_ell1 = zeros(1000,1000);
img_ell1(sub2ind(size(img_ell1), xx’, yy’)) = 255;
img_ell1 = imfill(img_ell1);

The result image is shown in Figure-5.4. The area of the ellipse shape was π×300×200 = 188496
.
The result of our algorithm was 190058.
The error ratio was calculated by Equation-5.1 : 0.83% .

The result indicated that the algorithm worked perfectly on the regular shapes.

5.1.5 Conclusion

Table - 5.1 shows the test result on some regular shapes. The correspondent tests can be found
im Section-5.1. These results have only very small deviation compared with the original
shapes. All of the error ratio were less than 1%. The algorithm worked well.

50

5.2 Single-Pass Algorithm Test

(a) Rectangle (b) Circle (c) Ellipse

Figure 5.5: Test Result

5.2 Single-Pass Algorithm Test

5.2.1 On regular Shapes

As in Section-5.1 the algorithm was tested on a rectangle, a circle, and an ellipse.
Because the mean filter was used in the algorithm, a thin edge could be just eliminated by
mean filter, so the shape constructing method was modified to enlarge the edges. The modified
methods can be found in A.1.1, A.1.2 and A.1.3. The filtered result is shown in Figure-5.5.
Some parts of the edges were not connected , which affected the final result.
But the feature of our algorithm could be seen clearly in the result: The edges of the shape
could be detected and most part of the pixels in the hole filling area were filled. The downside
of the algorithm was that the right-bottom side of the shape was also filled.

5.2.2 Single-Pass Algorithm on the Droplet Image

After the single-pass algorithm has been applied on the original image, The result in Figure-5.6a
was obtained.

Many noise pixels have been generated, and the pixels in the droplet was not fully set. Further
modification was needed.
To eliminate the noise , 2 methods were used here:

• Raise the threshold of sobel filter on the area outside the shape of the droplet. The
original threshold of the sobel filter was 7.

• Use mean filter to erase original noise pixels.

51

5 Results and Conclusion

(a) first try (b) second try

Figure 5.6: Single-Pass Algorithm Result

To enhance the algorithm effect in the droplet, the threshold of sobel filter in this area was
modified. According to the experiments, the modification has been done as follows:

• About the boundaries of the threshold changes: 10% length of from each side was chosen.

• About the values of the threshold: outside the droplet area it was set to 9, and within
the droplet area it was set to 5 .

After the modification the result was as shown in Figure-5.6b.
This time the result was better.
The only problem left was that pixels were added on right-bottom side, and on the left-botteom
side the noise area was enlarged. This problem was caused by the mean filter and the hole
filling operation, and it was difficult to solve. If the threshold in the mean filter was increased,
some parts of the droplet was missing. If some filters in the hole filling operation were removed,
the shape of the droplet could not be obtained. The outcome of the modified algorithm was
:

• Major-Axislength : 880.2

• Minor-Axislength : 653.2

• The area is 451642.5

52

5.2 Single-Pass Algorithm Test

When the Matlab built-in function regionprops was applied on the output image, the corre-
sponding three numbers were: 878.7, 652.8, 371273. The Major- and Minor-Axislength were
almost the same , The problem went with the area size. The algorithm simply multiplied the
outcome of Major- and Minor-Axislength. To the contrary, the regionprops function counted
how many pixels were in the droplet.
Two big blocks of noise at the left bottom of the droplet took responsibility for the problem.
Another reason to explain the result difference between the original algorithm and the single-
pass algorithm was that the hole filling method filled the right bottom of the droplet. One
possible method to modify this result was calculating the difference between an ellipse and an
rectangle. Here a was used to express the the half length of major axis, and b was used to
express the half length of the minor axis. The area difference was regarded as

2a× 2b− π × a× b = a× b× (4− π);

The difference was about (4− π) .
In our case only right-bottom side had the problem. When only a quarter in an ellipse was
filled as a rectangle, the area difference could be calculated as

a× b× π
a× b× π × 3

4 + a× b
= abπ

ab(1 + 3π
4)

The area difference is
π

(1 + 3π
4)

Thus the axis difference could also be obtained through multiplying
√

π
(1+ 3π

4) . The axis result
was adjusted as follows:

880.2×
√

π

(1 + 3π
4)

= 851.6

653.2×
√

π

(1 + 3π
4)

= 631.9

The droplet image processed with sobel filter had a result of 803.6 and 513.6, as described in
Section-3.3.4.
The error ratio were

|851.6− 803.6| ÷ 803.6 = 5.97%

|631.9− 513.6| ÷ 513.6 = 23.0%

The area value obtained by the algorithm was adjusted as follows:

451642.2× π

1 + 3π/4 = 422763

and the result with the regionprops method was adjusted as follows:

371273× π

1 + 3π/4 = 347532

53

5 Results and Conclusion

The original droplet image with sobel filter had a result of 319301 , as described in Section-3.3.4.
Then the error ratio of the area were:

|422763− 319301| ÷ 319301 = 32.4%

|347532− 319301| ÷ 319301 = 8.8%

The error ratio of the algorithm result was very big. One reason was that the noise blocks on
the left-bottom had negative effect on the feature-extracting method. Another reason was that
the filtered object was not a regular ellipse, but the feature-extracting method treated the
filtered object as an ellipse and just simply calculated the area with the ellipse area equation
a× b× π . The big error ratio of the minor axis had proven the reasons. The result from the
regionprops function showed the actual area result. This result had an error ratio of 8.8% .

5.2.3 Summary of Algorithm Requirements

In this section the needed memory space and saved time were discussed.
All space these methods needed were:

• sobel method: 2 rows + 3 pixels

• mean filter : 2 rows + 3 pixels

• dilation method: 6 rows + 7 pixels

• hole filling : 2 rows + 3 pixels

• erosion : 6 rows + 7 pixels

• area calculation: 6 variables

That was
(2× 3 + 6× 2)× 1024 + (3 + 3 + 7 + 3 + 7 + 6) = 18461

units of memory space.
Each step in the original algorithm required a buffer size of 1024× englisch280× 1 = 1310720
units. This buffer was repeatedly used. Thus the memory requirement difference could be
calculated as

18461÷ (1024× 1280)× 100% = 1.4%

The memory usage was significantly cut down. And the reduction of the processing time was
also significant. Since the first few lines have been read, all the processing methods could be
used parallelly.

54

6 Summary

In this article some generally used methods for processing images were introduced. The
features of each method were compared. The effects of these methods on the droplet image
have also been discussed.. After that the different composition of these methods have also
been discussed. On the processed image a function for calculating the properties of the droplet
was introduced.
Then a composited algorithm was built as

• smooth the image, or do nothing.

• detect edges.

• do morphological operations to connect the isolated pixels on edges.

• extract features of the droplet.

The algorithm could extract the droplet from the original image and also returned a reliable
values for the properties(in Section-3.3.2). As discussed in Section-5.1.5, this algorithm had
less than 1% error ratio when it was applied on regular shapes.
Then the algorithm was modified in order to reduce the memory usage and the processing time.
A new hole filling method and a new droplet feature extracting method were introduced. The
modified algorithm didn’t work as good as the algorithm which we have found at first. Section-
5.2.2 indicated that the major axis result had an error ratio of 5.97% , but the minor axis result
had an error ratio of 23%. Thus the result of the area had an error ratio of 32.4%. Although
the actual error ratio which had been calculated by Matlab built-in function regionprops was
8.8%, this error ratio not was not able to be achieved by the modified algorithm. Further
consideration is needed for the modified algorithm.

55

A Appendix

A.1 Modified Shape Constructing Method

A.1.1 Rectangle

A = ones(400,400)*100;
A(1:end, 1) = 168;
A(1, 1:end) = 168;
A(end, 1:end) = 168;
A(1:end, end) = 168;
img_rect = zeros(1000,1000);
img_rect (301:700, 301:700) = A ;

A.1.2 Circle

texsize = 400;
[x y] = meshgrid(1:texsize, 1:texsize);
temp = sqrt((x-texsize/2+.5).^2 + (y-texsize/2+.5).^2)> texsize/2-1;
temp = (1 - temp)*50;
img_cir = zeros(1000,1000);
img_cir(301:700,301:700) = temp;
clear x y temp;
texsize = 398;
[x y] = meshgrid(1:texsize, 1:texsize);
temp = sqrt((x-texsize/2+.5).^2 + (y-texsize/2+.5).^2)> texsize/2-1;
temp = (1 - temp)*50;
img_cir(302:699,302:699) = img_cir(302:699,302:699)+ temp;
texsize = 396;
[x y] = meshgrid(1:texsize, 1:texsize);
temp = sqrt((x-texsize/2+.5).^2 + (y-texsize/2+.5).^2)> texsize/2-1;
temp = (1 - temp)*50;
img_cir(303:698,303:698) = img_cir(303:698,303:698)+ temp;

57

A Appendix

A.1.3 Ellipse

a = 300;
b = 200;
rot_ang = (8/12) * pi ;
theta = 0:0.00005:2*pi ;
x_tmp = a * cos(theta);
y_tmp = b * sin(theta);
xx = cos(rot_ang) * x_tmp - sin(rot_ang) * y_tmp;
yy = sin(rot_ang) * x_tmp + cos(rot_ang) * y_tmp;
xx = round(xx) + 500;
yy = round(yy) + 500;
img_ell1 = zeros(1000,1000);
img_ell1(sub2ind(size(img_ell1), xx’, yy’)) = 100;
img_ell1 = imfill(img_ell1);
img_ell1(sub2ind(size(img_ell1), xx’, yy’)) = 200;

A.2 Part of Single-Pass Algorithm

A.2.1 Buffer Constructing

At the beginning of the program the buffers for temporary data in each step were constructed:

calc_img_4_sob = zeros(3 , len + 4);
calc_img_4_mean = zeros (3, len + 4);
calc_img_4_morph_d = zeros (7, len + 4);
calc_img_4_morph_f = zeros (3, len + 4);
calc_img_4_morph_e = zeros (7, len + 4);

When a row has been processed, these buffers were reconstructed. The first row was erased
and a new row was added at the bottom of the matrix.

calc_img_4_sob = [calc_img_4_sob(2:end, :) ; zeros(1, len + 4)] ;
calc_img_4_mean = [calc_img_4_mean(2:end, :) ; zeros(1, len+4)];
calc_img_4_morph_d = [calc_img_4_morph_d(2:end, :) ; zeros(1,len+4)] ;
calc_img_4_morph_f = [calc_img_4_morph_f(2:end, :) ; zeros(1,len+4)] ;
calc_img_4_morph_e = [calc_img_4_morph_e(2:end, :) ; zeros(1,len+4)] ;

58

A.2 Part of Single-Pass Algorithm

A.2.2 Sobel Filter

In the code, “j” was the current column index.

calc_img_4_mean(3,j+1) = abs(sum(calc_img_4_sob(1,j:j+2)) ...
- sum(calc_img_4_sob(3,j:j+2)) + calc_img_4_sob(1,j+1) ...
- calc_img_4_sob(3,j+1) + sum(calc_img_4_sob(:,j)) ...
- sum(calc_img_4_sob(:,j+2)) + calc_img_4_sob(2,j) ...
- calc_img_4_sob(2,j+2));

if (i>sob_thresh_region_v && i<hei-sob_thresh_region_v ...
&& j>sob_thresh_region_h && j<len-sob_thresh_region_v)
sob_thresh = sob_thresh_base - sob_thresh_diff ;

else
sob_thresh = sob_thresh_base ;

end
if (calc_img_4_mean(3,j+1) <= sob_thresh)

calc_img_4_mean(3,j+1) = 0;
else

calc_img_4_mean(3,j+1) = 1;
end

A.2.3 Hole Filling

“calc_img_4_morph_f” is the input matrix for hole filling method. The current column index
is j.

if ((calc_img_4_morph_f(2,j-2)>0) || ...
((calc_img_4_morph_e(end,j-3)>0) && ...
(sum(calc_img_4_morph_e(end-1,j-3:j-1)>1))) || ...
(sum(sum(calc_img_4_morph_f(:,j-3:j-1)) >3)) || ...
(calc_img_4_morph_e(end-1,j-3)+calc_img_4_morph_e(end-1,j-2)+ ...
calc_img_4_morph_e(end,j-3)+calc_img_4_morph_f(3,j-3)+ ...
calc_img_4_morph_f(3,j-2) > 2) || ...

(sum(calc_img_4_morph_f(3,j-3:j-1)) + ...
sum(calc_img_4_morph_f(2:3,j-1) >2)))

calc_img_4_morph_e(end,j-2) = 1 ;

59

Bibliography

[1] Gimp documentation. http://docs.gimp.org/en/index.html, 2012. (Cited on pages 16,
17, 18 and 19)

[2] Winston Chang. Matlab cookbook. http://wiki.stdout.org/matlabcookbook/
Presenting%20visual%20stimuli/Quickly%20drawing%20many%20images%20or%
20shapes/, 2009. (Cited on page 48)

[3] Rafael C. Gonzales and Richard E. Woods. Digital Image Processing. Pearson Pretice Hall,
3 edition, 2008. (Cited on pages 9, 10, 11, 12, 13, 14, 15 and 16)

[4] The Mathworks Inc. Matlab help. http://www.mathworks.de/de/help/
documentation-center.html, 2012. (Cited on page 35)

[5] M Klaiber, S Ahmed, Z Wang, L Rockstroh, Y Gera, and S Simon. Online image
analysis of spray processes based on a reconfigurable embedded system. 10. Workshop
ueber Sprays, Techniken der Fluidzerstaeubung und Untersuchungen von Spruehvorgaengen,
Berlin, Germany, May.2012. (Cited on page 44)

[6] J Laackmann, S Ahmed, R Sedelmayer, M Klaiber, W Pauer, S Simon, and H.-U.Moritz.
Investigation of polymerization and drying of polyvinylpyrrolidone in an acoustic levitator
using a smart camera for online process measurement. ICLASS 2012, Sep.2012. (Cited on
page 44)

[7] D Marr and E Hildreth. Theory of edge detection. Proc.R.Soc.Lond., 1980. (Cited on
page 12)

All links were last followed on November 27, 2012.

61

http://docs.gimp.org/en/index.html
http://wiki.stdout.org/matlabcookbook/Presenting%20visual%20stimuli/Quickly%20drawing%20many%20images%20or%20shapes/
http://wiki.stdout.org/matlabcookbook/Presenting%20visual%20stimuli/Quickly%20drawing%20many%20images%20or%20shapes/
http://wiki.stdout.org/matlabcookbook/Presenting%20visual%20stimuli/Quickly%20drawing%20many%20images%20or%20shapes/
http://www.mathworks.de/de/help/documentation-center.html
http://www.mathworks.de/de/help/documentation-center.html

Declaration

I declar that this thesis is the solely effort of the author. I did
not use any other sources and references than the listed ones.
I have marked all contained direct or indirect statements
from other sources as such. Neither this work nor significant
parts of it were part of another review process. I did not
publish this work partially or completely yet. The electronic
copy is consitent with all submitted copies.

Ort, Datum, Unterschift

	1 Introduction
	1.1 Motivation
	1.2 Aim
	1.2.1 Tasks

	2 Pre-Processing Methods
	2.1 Threshold
	2.2 Edge Detection
	2.2.1 Line Filters
	2.2.2 Prewitt Filter
	2.2.3 Sobel Filter
	2.2.4 Laplacian of Gaussian Filter
	2.2.5 Canny Filter

	2.3 Segmentation: Morphological Watershed
	2.4 Morphological Operations
	2.4.1 Dilation and Erosion
	2.4.2 Hole Filling

	2.5 Additional Image Processing Methods
	2.5.1 Mean Filter
	2.5.2 Antialias Filter
	2.5.3 Deinterlace Filter
	2.5.4 Despeckle Filter
	2.5.5 Contrast Enhancement Filter

	3 Generic Composited Method
	3.1 Comparison of Object Extracting Methods
	3.1.1 Simple Threshold
	3.1.2 Line Filters
	3.1.3 Prewitt Filter
	3.1.4 Sobel Filter
	3.1.5 Laplacian of Gaussian Filter
	3.1.6 Canny Filter
	3.1.7 Morphological Watershed Filter
	3.1.8 Comparison and Conclusion

	3.2 Comparison of Pre-Processing Methods
	3.2.1 Additional Pre-Processing Methods

	3.3 The Matlab Implementation and Geometry Calculation
	3.3.1 Image Processing Methods in Matlab
	3.3.2 Geometry Calculation in Matlab
	3.3.3 The Algorithm
	3.3.4 Comparison of Geometry Calculation Results

	4 Single-Pass Implementation
	4.1 Memory Space Usage Analysis
	4.2 Algorithm Analysis
	4.2.1 Sobel Method
	4.2.2 Dilation Method
	4.2.3 Hole Filling Method
	4.2.4 Erosion Method
	4.2.5 Alternative Approach to Regionprops Method

	5 Results and Conclusion
	5.1 Algorithm Test
	5.1.1 Triangle Test
	5.1.2 Rectangle Test
	5.1.3 Circle Test
	5.1.4 Ellipse Test
	5.1.5 Conclusion

	5.2 Single-Pass Algorithm Test
	5.2.1 On regular Shapes
	5.2.2 Single-Pass Algorithm on the Droplet Image
	5.2.3 Summary of Algorithm Requirements

	6 Summary
	A Appendix
	A.1 Modified Shape Constructing Method
	A.1.1 Rectangle
	A.1.2 Circle
	A.1.3 Ellipse

	A.2 Part of Single-Pass Algorithm
	A.2.1 Buffer Constructing
	A.2.2 Sobel Filter
	A.2.3 Hole Filling

	Bibliography

