Institut fur Architektur von Anwendungssystemen
Universitat Stuttgart
Universitatsstral3e 38
70569 Stuttgart
Germany

Studienarbeit Nr. 2403

Unifizierte Service-Komposition fur ConDec

Siguang, Liang

Studiengang: Informatik

Prufer: Prof. Dr. Frank Leymann
Betreuer: Katharina Gdrlach
begonnen am: 08.11.2012

beendet am: 10.05.2013

CR-Klassifikation: D.3.1, F.4.2

Kurzfassung

Heutzutage werden immer mehr Web Services erstellt und regelmaRig modifiziert. Es
empfiehlt sich, mehrere Web Services zu verbinden, besonders wenn kein einzelner Web
Service die Anforderungen der Benutzer zufrieden stellen kann. Komposition von Web
Services ist ein Prozess von Konstrukt des komplexen Web Services aus ,,atomic* Web
Services, um die spezifische Aufgabe zu erledigen, d.h. eine Reihenfolge von Web Services.
Aber die Web Services werden in verschiedenen Sprachen und Plattformen implementiert.
Wir hoffen, dass es die Abstraktion flir verschiedenen Plattformen und Sprachen gibt, so dass
die Aufrufe der Web Services immer gleich sein koénnen. In dieser Studienarbeit wird
versucht die Transformation von ConDec zu formalen Grammatiken zu implementieren, um
die unifizierte Service-Komposition Uber ConDec zu ermdglichen. Die Service-
Kompositionen werden mit Hilfe der ,,hohen“ Beschreibungssprache ConDec modelliert. Die
resultierende Grammatik wird in einer XML-Datei mit einem vorgegebenen XML-Schema
gespeichert und soll bei einem entsprechenden Automaten ausgefihrt werden. Dartiber hinaus
wird die Architektur des Transformationsprogramms beschrieben. Einige Herausforderungen
in der Transformation von ConDec zu formalen Grammatiken werden auch ausfiihrlich
diskutiert.

Inhalt

KUPZESSUND .. bbbt b ettt b bbbt 1
1 EINTEITUNG ... 4
2 (C U a0 | F=To T o ISR SPSSRRU 5
2.1 WWED SEIVICESueiiiieiieeiie sttt ettt be et e st ebe st e s be e teeneesbeebeeneenren 5
2.1.1 Web Services KOMPOSITIONENccueiieriiiiriinieiisiieieiee e 6

2.2 DeKIAratiVe SPraCheccciuiiiiiiece ettt nne s 7
2.2.1 CONDEC ..o e 9

2.2.2 LT oot 11

2.3 Formale GrammatiKen..........cooiiiiiieieiie e sreene e 12
2.4 TranSTOrMEALIONc.eiuiiiiieie ettt 12

3 IMPIEMENTIEIUNG ...t te e reenae e 16
3.1 Architektur des ProgramimS.........ooiieiirieieienie ettt sttt 20
3.2 HerauSTOrUEIUNGENcoveie ettt et sre e nae e reene e 24
3.2.1 EXIStence TEMPIALEScc.ocveiiieiecccieee e 24

3.2.2 Relation TEMPIALESccoiiiiiieieee e 25

3.2.3 ChOiCe TEMPIALES........eccviiieiieeie et 26

3.2.4 Branching von ReStHKIIONENcceiiiiiiiiieiieieeee e 27

3.3 TESHAIIE ..ot 27

4 ZUSAMMENTASSUNG ...ttt bbbttt sb bbbt 31
AN 4] 0T g o SRS RSPPSURRTIN 32
A.1 Die finale Kompositionsgrammatik vom Beispiel ,,religion®ccccoovvrvrivninnrinninnnn, 32
A.2 Die finale Kompositionsgrammatiken vom Beispiel ,,medical®.cocverrnnennne 34
LIteratUNVEIZEICRINIS ... ettt et eene e reenteaneenneas 39
S T T OSSPSR 41

1. Einleitung

1 Einleitung

Heutzutage verwenden die Kompanien Computer mehr und mehr, um ihre Geschafte zu
unterstiitzen. Es ist via Business-Prozess vorgeschrieben, wie die Geschéfte geschaffen
werden. Die Applikationen unterstiitzen Business-Prozesse und missen mit Business-
Prozessen Ubereinstimmen (Applikation = Businessprozess + Businessfunktion). Die
Anderungen bei der Ausfilhrung von Business miissen baldmdglichst in Applikationen
reflektiert werden. Ein Workflow ist eine Ausfuhrung von Business-Prozess in einem
,,computing environment“. Immer mehr Leute interessieren sich fur Workflow-Technologie.
Workflow ist die Basis von Business Process Management (BPM), wahrend BPM als ,,the
next step nach der Workflow-Welle im neuzigsten Jahrzehnt betrachtet wird[19]. Weske,
Aalst und Verbeek definieren den Begriff BPM: “Supporting business processes using
methods, techniques, and software to design, enact, control, and analyze operational
processes involving humans, organizations, applications, documents and other sources of
information[18].“ BPM reduziert menschliche Fehler und falsche Kommunikation, lasst
Workflow mehr effektiv und effizient ausfiihren. Ein Business-Prozess ist eine Aktivitat oder
eine Reihe der Aktivitaten, die ein spezifisches Ziel erreichen kdnnen.

Die heutigen Betriebe und Organisationen interessieren sich fir die Implementierung ihrer
Business-Prozesse via Web Services. Aber die Web Services werden in unterschiedlichen
Sprachen implementiert, deshalb wird die Abstraktion der Web Services fur verschiedene
Sprachen und Plattformen versucht. Dadurch hoffen wir, dass die Aufrufe der Web Services
immer gleich sind. Wenn kein einzelner Web Service die Anforderungen der Benutzer zufrie-
den stellen kann, interessieren sich die Benutzer fiir die Service-Kompositionen. Zuerst wer-
den Web Services und ihre Kompositionen im Abschnitt 2 vorgestellt. Dann werden eine de-
klarative Sprache ConDec und formale Grammatik kurz vorgestellt. Dartiber hinaus wird die
Transformation von ConDec zu formalen Grammatiken beschrieben. Die Transformation
wird in Java programmiert. Danach wird es im Abschnitt 3 diskutiert, wie die Transformation
implementiert wird. In diesem Abschnitt wird die Architektur des Transformationsprogramms
auch beschrieben. Einige Herausforderungen fir die Transformation werden diskutiert. Dann
zwei Testfalle werden geprift. Die resultierenden Grammatiken werden mit Hilfe eines ent-
sprechenden Automaten ausgeftihrt. Der Zweck ist, dass zum Schluss die Transformationen
weiterer Hochsprachen zu Kompositionsgrammatiken implementiert und mit Hilfe der glei-
chen Automatenklassen ausgefuihrt werden. Beispielsweise werden auch BPEL-Modelle mit
Hilfe eines Automaten ausgefuhrt, obwohl BPEL eine imperative Beschreibungssprache, im
Gegensatz zur deklarativen Beschreibungssprache ConDec ist. Der Assembler-ahnliche Cha-
rakter von Kompositionsgrammatiken bildet dabei die Grundlage flr die Unifizierung. Das ist
,unifizierte Service-Komposition®. Der Abschnitt 4 ist die Zusammenfassung der Arbeit.

2. Grundlagen

2 Grundlagen

Vor der Diskussion des Themas ,,unifizierte Service-Komposition fiir ConDec* werden einige
diesbezugliche Technologien und Modellierungssprachen zundchst vorgestellt. Im Abschnitt
2.1 werden zuerst Web Services und ihre Kompositionen vorgestellt. Dann wird der Begriff
deklarative Sprache im Abschnitt 2.2 ausfuhrlich beschrieben. Danach wird formale Gramma-
tik im Abschnitt 2.3 kurz vorgestellt. Zum Schluss werden die Transformationen von ConDec
zu formalen Grammatiken im Abschnitt 2.4 diskutiert.

2.1 Web Services

., Web services are a new breed of Web application. They are self-contained, self-describing,
modular applications that can be published, located, and invoked across the Web. Web
services perform functions, which can be anything from simple requests to complicated
business processes. Once a Web service is deployed, other applications (and other Web
services) can discover and invoke the deployed service. “ ----IBM web service tutorial[9]

Web Services werden als selbststandige, modulare Einheiten von Applikationslogik
beschrieben, die die Business-Funktionalitdit zu den anderen Applikationen durch
Internetverbindung anbieten[3]. Einige Standards von Web Services werden eingefiihrt, um
die Kommunikation zwischen verschiedenen Systemen in unterschiedlichen Plattformen,
Programmiersprachen und Modellen zu realisieren, wie Universal Discription, Discovery and
Integration(UDDI)[4] , Web Services Discription Language(WSDL)[5] und Simple Object
Access Protocol(SOAP)[6]. UDDI ist ein Verzeichnisdienst, der speziell fur die dynamischen
Aspekte der Katalogisierung von Web Services entworfen wurde. UDDI sucht nicht bei den
Anbietern nach Services. UDDI stellt eine Schnittstelle zwischen Nutzern und Anbietern dar.
Die Anbieter veroffentlichen ihre Services in UDDI, welche von den Nutzern durchsucht
werden. SOAP ist eine Layout-Spezifikation von Nachrichten, mit deren Hilfe Daten
zwischen Systemen ausgetauscht und Remote Procedure Calls (RPC) durchgefiihrt werden
kénnen. WSDL ist eine plattform-, programmiersprachen- und protokollunabhéangige
Beschreibungssprache fuir Web Services zum Austausch der Nachrichten auf Basis von XML.
Web Services werden durch sechs XML-Hauptelemente definiert: Datentypen (types),
Nachricht (message), Schnittstellentypen (portType), Bindung (binding), Port (port) und
Service (service). Datentypen definieren die verwendeten Datentypen. Nachrichten definieren
die zu Ubertragenden Nachrichten abstrakt. Schnittstellentypen setzen sich aus abstrakten
Operationen zusammen und definieren damit eine abstrakte Schnittstelle. Binding verknupft
die abstrakte Schnittstelle an ein konkretes Datenformat und Protokoll. Port weist einem
Binding-Element eine konkrete Adresse zu. Service bildet die nach aullen zugénglichen
Elemente eines Service durch mehrere Ports. Klient mdchte einen bestimmten Web Service
nutzen und benétigt hierfir die oben sechs Elemente. Diese Informationen werden mit WSDL
genau beschrieben. WSDL funktioniert als eine zu verOffentlichende
Schnittstellenbeschreibung. Nutzer vom Web Service kennt nur WSDL, aber braucht
Programm-Code nicht zu kennen. Eine populdre Kategorie von Web Services ist
,syntaktische Web Services® und ,,semantische Web Services“[3]. Fiir den syntaktischen
Forschungsansatz sind die Schnittstellen von Web Services &hnlich wie Remote Procedure
Call (RPC), wéhrend der semantische Forschungsansatz auf logisches Denken Uber Web
Ressourcen fokussiert. In der Arbeit sind die vorkommenden Web Services ,,syntaktisch*.

2. Grundlagen

Die traditionellen Webseiten haben hauptsachlich zur Aufgabe Informationen zu sammeln.
Aber durch Web Services kann die Software Applikationen auf Webseiten zugegriffen
werden und ausgefuhrt werden. Web Services unterstiitzen die Interaktionen zwischen
Business Partners und Business Prozessen dadurch, dass Web Services die Computer und
Gerate untereinander verbinden und die Daten synchron oder asynchron durch Internet
austauschen[9]. Immer mehr der heutigen Betriebe und Organisationen implementieren ihre
Kerngeschafte und outsourcen andere Applikation Services im Internet. Wegen der Vorteile
von Web Services steigt das Interesse flr diesen Vorgang immer mehr, sowohl in Forschung,
als auch in der Industrie.

2.1.1 Web Services Kompositionen
Weil die Zahl der vorhandenen Web Services stetig zunimmt, steigt auch der Bedarf der

Kompositionen der grundlegenden Web Services. Die Forschung Uber Service-
Kompositionen wird populérer und viele Resultate erscheinen seit einigen Jahren in der Fach-
literatur, z.B. Business Process Model Language (BPML) von Business Process Management
Community und XML Process Definition Language (XPDL) von Workflow Community[10].
D. Skogan, R. Gronmo und I. Solheim meinen, dass obwohl einige Organisationen die Kom-
positionssprachen vorgeschlagen hatten, gébe es aber bis jetzt noch keinen bestimmten Sie-
ger[10]. Deshalb ist es ihre Intention, Web Services Kompositionen durch UML Aktivitats-
modelle zu entwerfen. Dariiber hinaus verwenden sie OMG’s (Object Management Group)
Model Driven Architecture (MDA), um die ausfuhrbaren Spezifikationen in verschiedenen
Kompositionssprachen zu erzeugen. Es gibt zwei Schwerpunkte in ihrer Arbeit. Einer ist die
Transformation von WSDL Beschreibung zu UML fir die Fertigstellung von Kompositions-
modellen. Der andere Schwerpunkt ist die Unabhéngigkeit von verschiedenen Web-Services-
Kompositionssprachen. Wegen der Unabhéngigkeit kann ein Benutzer seine vorgezogene
Kompositionssprache auswahlen. lhre Theorie ist schon in zwei Kompositionssprachen
BPEL4WS und WorkSCo gepruft geworden. H. Foster, S. Uchitel, J. Magee und J. Kramer
beschreiben eine formale Methode mit Hilfe von Finite State Processes (FSP) Notation, die
die Kompositionen von Web Services Workflows modellieren und verifizieren kann[7]. Im
heutigen Web-Umfeld werden zahllose Web Services erzeugt und aktualisiert. J. Rao und X.
Su meinen, dass die Analyse von Web Services und die manuelle Herstellung von Kompositi-
onsplanen schon Uber die menschlichen Fahigkeiten hinausgehen. Sie l6sen das Problem
durch Cross-Enterprise Workflow und Al Planning[12].

Durch die vorgestellten Forschungen kann deutlich werden, dass wegen der raschen Entwick-
lung von Web Services deren Kompositionen immer wichtiger werden. Es zeigt auch, dass die
Web Services Kompositionen trotzdem eine sehr komplexe Herausforderung darstellen kon-
nen, obwohl es schon viele Forschungen zu verschiedenen Aspekten gibt. Meiner Meinung
nach verursachen drei Grinde diese Komplexitat. Erstens, die Zahl von Web Services steigt
zu schnell seit einigen Jahren. Jeder Benutzer kann ein riesiges Repository von Web Services
nutzen. Das bedeutet, dass sich die Komplexitat von Services-Kompositionen steigert. Zwei-
tens, Web Services werden regelmaRig erzeugt und aktualisiert. Deshalb muss das Komposi-
tionssystem die Aktualisierung wéhrend der Laufzeit suchen und finden. Sie trifft auch die
Entscheidung Uber aktuelle Informationen. Drittens, Web Services werden von unterschiedli-
chen Organisationen entwickelt. Diese Organisationen verwenden unterschiedliche Konzept-
Modelle, Sprachen und Plattformen, um die Web Services zu realisieren. Meines Wissens

6

2. Grundlagen

nach gibt es noch keine eindeutige Beschreibungssprache, die Web Services in eine identische
Bedeutung transferieren und bewerten kann. Die Forschungsrichtung dieser vorliegenden Ar-
beit soll den dritten Aspekt zum Gegenstand haben. Die Mdoglichkeit zur unifizierten Model-
lierung und Ausfiihrung von Service-Kompositionen auf Basis von formalen Grammatiken
und Automatentheorie wird diskutiert. Es ist beispielsweise méglich, obwohl BPEL eine im-
perative Sprache und ConDec eine deklarative Sprache ist, dass die beiden mit Hilfe der ein-
gefiihrten Kompositionsgrammatiken durch denselben Automaten ausgeftihrt werden kénnen.
Die Studienarbeit fokussiert auf die Transformation von ConDec zu den eingefiihrten forma-
len Grammatiken.

2.2 DekKlarative Sprache

Heutzutage ist der Begriff ,,imperative Sprache* fiir die Benutzer nicht mehr fremd, z.B.
BPEL. Trotzdem werden die deklarativen Sprachen mehr und mehr angewendet, denn sie
haben bessere Flexibilitat. Der Unterschied zwischen imperativen und deklarativen Sprachen
ist offensichtlich. Die Vorgehensweise von den imperativen Sprachen ist ,,say how to do
something*, wahrend das Prinzip der deklarativen Sprachen ,,say what is required and let the
system determine how to achieve it ist[13]. Die Betrachtungsweise der imperativen Sprachen
wird als ,,inside-to-outside* charakterisiert[14]. Es spezifiziert hauptsachlich die Prozeduren,
wie die Arbeit getan wird. Die imperativen Sprachen erfordern, alle Alternativen im Modell
vor der Ausfiihrung der Prozesse explizit zu spezifizieren. Alle neue Alternativen miissen zu
dem Modell wahrend der ,,build-time* hinzugefiigt werden. Aber einige Leute meinen, dass
die imperative Betrachtungsweise tibermaRig spezifiziert ist[2]. Im Gegensatz dazu verwendet
die Vorgehensweise der deklarativen Sprachen eine ,,outside-to-inside” Methode[14]. Es
spezifiziert die Prozesse nicht als ,apriori“. Die deklarative VVorgehensweise determiniert
nicht, wie die Prozesse genau arbeiten, sondern nur die nétigen Eigenschaften werden
beschrieben.

Die Entwicklung von Workflow Management System (WFMS) ist von dem Konflikt der
Benutzeranforderungen beschrankt. Einerseits gibt es die Anforderung der Kontrolle aller
Prozesse, so dass die unkorrekte oder unerwinschte Ausfihrung der Prozesse vermieden
werden koénnen. Andererseits mochten die Benutzer die flexibel Prozesse, die ihre Aktionen
nicht einschranken. Einige Forscher meinen, dass WFMS zu restriktiv ist[15]. Die Abbildung
1 beschreibt die Paradoxie. Die Benutzer hoffen die hohe Flexibilitdt und die hohe
Unterstutzung. Aber hohe Unterstlitzung bedeutet enge Struktur von Systemen, d.h. niedrige
Flexibilitat. Je hoher die Flexibilitat ist, desto lockerer werden Systeme strukturiert, d.h.
niedrige Unterstlitzung. Systeme bieten Unterstiitzung oder Flexibilitat, aber nicht die beide.
Die Benutzer brauchen die Balance zu finden.

2. Grundlagen

high | \ flexibility support
\ (ability to defer, (provide for I
change and analysis and
\ deviate) guidance)
\
\
\
AN
~N
~
~
~ .
~.-
JPCLA
—
-
----- = - —
low [..o
unstructured structured
(e.q. groupware) (e.g. preduction workflow)

Die Abbildung 1. Die Systeme bieten Unterstlitzung oder Flexibilitat, aber nicht die beide.
Die Benutzer brauchen die Balance zu finden[16].

Die deklarative VVorgehensweise kann die beiden Anforderungen zwischen der Unterstlitzung
und Flexibilitat gut ausgleichen. Die Abbildung 2 zeigt den Vergleich von traditioneller und
,constraint-based Vorgehensweise. Die Abbildung 2(a) zeigt drei Typen Szenarios in
Business-Prozessen: (1) Verbotene (forbidden) Szenarios sollen nie geschehen, (2) Optionale
(optional) Szenarios sind erlaubt, aber sollen bei den meisten Féllen vermieden werden. (3)
Erlaubte (allowed) Szenarios kdénnen unbedenklich ausgefiihrt werden. Die Workflow-
Management-Systeme definieren und fiihren die Modelle der Business-Prozesse aus, die die
Reihenfolge der Aktivitaten in Business-Prozessen spezifizieren. In den traditionellen
Workflow-Management-Systemen spezifizieren die Prozess-Modelle die Reihenfolge der
Aktivitaten explizit, z.B. ,,control-flow* eines Business-Prozesses. Mit anderen Worten kann
die Ausfiihrung von Business-Prozessen nur geméaf der expliziten Spezifikation im ,,control-
flow*, wie die Abbildung 2(b) zeigt. Das schwarze Oval zeigt die Grenze der Aktivitéten, die
vom traditionellen (z.B. imperativen) Prozess-Modell nach der Modellierungsmethode
,»inside-to-outside* definiert werden. Wegen der hohen Unberechenbarkeit der Business-
Prozesse werden viele Ausfiihrungen von erlaubten und optionalen Szenarios nicht vorher
erwartet. Sie werden nicht explizit in ,,control-flow* inkludiert. Deshalb ist es fir die
traditionellen Systeme unmdglich, alle Untermengen von erlaubten Szenarios auszufihren,
wie die Abbildung 2(b). Die Abbildung 2(c) zeigt die auf Restriktionen basierende
(,, constraints-based) Vorgehensweise, die die beiden erlaubten und optionalen Szenarios
ausfihren kann. Statt der expliziten Spezifikation, was moglich in Business-Prozess ist,
spezifizieren die auf Restriktionen basierenden Modelle, was verboten ist. Die mogliche
Ordnung der Aktivitaten wird durch die Restriktionen implizit spezifiziert. Darlber hinaus
gibt es zwei Typen Restriktionen: (1) Mandatorische (mandatory) Restriktionen fokussieren
auf die verbotenen Szenarios, (2) Optionale (optional) Restriktionen spezifizieren die
optionalen Szenarios. Irgendetwas, das die mandatorischen Restriktionen nicht verstoft, ist in
der Ausfuhrung eines Modells mdoglich. Die deklarative Betrachtungsweise ist auch auf
Restriktionen basierend. Die schwarze fette Grenze in der Abbildung 2(c) représentiert die
Modellierungsmethode ,,outside-to-inside*, die von der deklarativen Vorgehensweise
unterstitzt wird. Die deklarative VVorgehensweise ermdglicht die Flexibilitt ohne den Verlust
von Unterstutzung. Einerseits bietet die deklarative VVorgehensweise mehrere Moglichkeiten

8

2. Grundlagen

der Ausfuhrung von Modell als die imperative VVorgehensweise. Die Benutzer kénnen die
lokale Entscheidung machen, wie der Business-Prozess ausgefiihrt wird. Andererseits kdnnen
die Benutzer die mehreren Restriktionen im deklarativen Prozess-Modell verfolgen, sodass
die Benutzer diese Restriktionen nicht verstoflen. Daruber hinaus zeigt die deklarative
Vorgehensweise den Unterschied zwischen mandatorischen Restriktionen (must be followed)
und optionalen Restriktionen (should be followed). Beim ersten Fall dirfen die Benutzer die
Restriktionen gar nicht verstollen. Beim zweiten Fall konnen die Benutzer die Restriktionen
verstoRen. Aber die Benutzer werden im Voraus gewarnt. Die Abbildung 2 zeigt den
Unterschied zwischen imperativer und deklarativer VVorgehensweise deutlich. Die traditionelle
(z.B. imperative) Vorgehensweise verwendet die Verfahrensprozess-Modelle, um die
Ausflihrungsprozesse explizit (d.h. step-by-step) zu spezifizieren. Die deklarative
Betrachtungsweise ist auf ,,constraints® (Restriktionen) basierend. ,, Anything is possible as
long as it is not explicitly forbidden[16].“ Deshalb spezifizieren die auf Restriktionen
basierenden Modelle die Ausfiihrungsprozesse implizit mit Hilfe von Restriktionen, solang
keine Ausfuhrung die Restriktionen verstofit. Die deklarative Vorgehensweise kann die
Balance zwischen die Flexibilitat und Unterstutzung finden.

forbidden

optional

allowed

(a) forbidden, optional and allowed
in business processes

(b) traditional approach (¢) constraint-based approach

Die Abbildung 2. Der Vergleich zwischen der traditionellen(z.B. imperativ) und der auf
Restriktionen basierenden(z.B. deklarativ) VVorgehensweise[2]

2.2.1 ConDec

ConDec ist eine deklarative, graphische Sprache, die von Aalst und Pesic[17] im Forschungs-
gebiet von Business Process Management (BPM) vorgeschlagen wird. Es zielt auf die Spezi-
fikation, Konstruktion und Uberwachung von Business Prozessen mit Hilfe von Restriktionen
zwischen Aktivitaten. Jetzt wird ConDec auch im Gebiet Service-Oriented Architecture
(SOA) angewandt. Die Abbildung 3 zeigt den Unterschied zwischen imperative Sprachen und
ConDec. ConDec beginnt mit allen Mdglichkeiten (,,what*) und néhert sich dem erwiinschten
Verhalten (outside-to-inside). Imperative Sprachen beginnen mit der expliziten Spezifikation
von Prozessen (,,how*) und detaillieren die Prozesse ausfiihrlich (inside-to-outside).

2. Grundlagen

o 7 2 Q
00(\0/@:// I:. |I ."'nl ;’f) %O
: P :_/_/: N ".| \ "Ilﬂ .';f\)__.*’f ﬁ ;|| 6’0
forbidden oo SN TV
behavior HF ~ /
| IMPERATIVE | _
~ /_J MODEL _—P_\\,
—-_I N 4 2

') (‘ [
deviations from
the prescribed

model

Die Abbildung 3. Deklarative Sprache ConDec (outside-to-inside) vs. Imperative Sprachen
(inside-to-outside)[17]

Ein ConDec Modell besteht hauptsachlich aus zwei Teilen: Aktivitaten und Beziehungen. Die
Aktivitaten représentieren die Einheiten der Arbeit. Die Beziehungen beschreiben, wie die
Aktivitdten ausgefiihrt werden, und werden als Restriktionen (,, constraints) genannt. In der
folgenden Diskussion reprisentieren alle Aktivitdten ,,Web Services®.

In der Studienarbeit werden alle ConDec Modelle durch die Software ,,Declare konstruiert.
Declare’ ist ein auf Restriktionen basierendes WFMS, das ConDec sowie andere deklarative
Sprachen, wie DecSerFlow, unterstiitzt. Die Abbildung 4 zeigt die Architektur vom Declare
System. Das System besteht aus drei Komponenten: Designer, Framework und Worklist. Die
Aufgabe von Designer ist ,,Constraint Templates* zu herstellen, so dass die konkreten Pro-
zessmodelle konstruiert werden. Framework ist fur die Ausfihrung der Beispiele von Pro-
zessmodellen. Durch Worklist kénnen die aktiven Instanzen erreicht werden.

[]

i Worklist
19 DQSigner Framework instance execution
j constraint templates instance enactment :
(3 constraint models instance adaptation ;]
'g model verification ' Worklist . |

instance execution
constraint templates constraint models logs of executed instances

Die Abbildung 4. Die Architektur von Declare[16]. Es besteht aus 3 Komponenten: Desinger,
Framework und Worklist.

Die meisten Forschungsansatze bieten eine Serie von vordefiniertem Konstrukt, die Abhén-
gigkeit zwischen Aktivitaten in Prozess-Modellen zu beschreiben (z.B. sequence, choice, pa-

L http:/www.win.tue.nl/declare/2011/11/declare-2-2-0-with-modules-released/

10

2. Grundlagen

rallelism, loops usw.). Aber Declare ist anders. Declare benutzt eine ,,customizable Serie von
beliebigen Templates, die Restriktionstemplates (,,constraint templates®) heilen. In Declare
konnen die beliebigen auf Restriktionen basierenden Sprachen definiert werden. Fiir jede
Sprache konnen die beliebigen Templates herstellt werden[2]. Es ist auch der Grund, warum
Declare mehrere deklarativen Sprachen unterstiitzen kann. ConDec kann als eine Sammlung
von ,,Constraint Templates® angesehen werden. Jedes Template hat (1) einen eindeutigen
Namen, (2) eine graphische Repréasentation und (3) eine formale Spezifikation Uber seine
Semantik, namlich Linear Temporal Logic (LTL). Die Abbildung 5 zeigt, wie die Restriktio-
nen durch die Templates in ConDec Modell herstellt werden. Die LTL Formel und die graphi-
sche Représentation werden flr jede Restriktion nicht separat spezifiziert, sondern eine Rest-
riktion ist auf ein Template basierend. Eine Restriktion erbt den Namen, die graphische Re-
prasentation und die LTL Formel aus dem entsprechenden Template. Die Restriktion wird in
ConDec Modell graphisch reprasentiert, wéhrend die darunterliegende LTL Formel verhohlen
bleibt.

$ name response
g b «
% ﬁ LTL i | o | | D (Acompleted) -> <> (B,completed))
3=

AN
%
. [] { (curse,completed) -> [((perform surgery,completed) ->

8 % semantics <> (pray,completed)) <> (prescribe rehabilitation,completed))
I?__ [n
(o] 5) curse response, pray perform response presc_ribg
Q = graph|ca| surgery rehabilitation

Q /

(@] ;/

/ .
_ //) P ,/ /
(&) (72] 1 mspane \\ ’r/
3 0 |’ aren |._.| . W
c 0O
o Q0 blezz
se L [=1
Religion
Fractures Treatment

Die Abbildung 5. ConDec Templates, Restriktionen und Modelle. Die graphische Représenta-
tion wird erbt, aber die LTL Formel ist verhohlen[2].

2.2.2 LTL
LTL ist ein Typ von Logik und fiir die Beschreibung der Sequenzen von Transitionen zwi-

schen Zustanden in reaktiven Systemen. Wegen ihrer deklarativen Natur wird LTL auch ver-
wendet, um die Restriktionen in den auf Restriktionen basierenden Service-Kompositionen zu
spezifizieren. Zusétzlich von traditionellen logischen Operatoren (wie UND, ODER usw.)
benutzt LTL auch temporale Operatoren, wie always (o), eventually (<), next (o), until (U)
und weak until (W)[2]. Z.B. fir das Template response(A, B) wird seine Semantik in der LTL
Formel o(A=<(B)) gegeben. Das bedeutet ,,Whenever activity A is executed, activity B has
to be eventually executed afterwards®. ConDec ist auf Restriktionen basierend und LTL spezi-
fiziert die Semantik formell. Weil LTL Formeln fiir Laien schwierig zu verstehen sind, ver-

11

2. Grundlagen

bindet ConDec eine graphische Reprasentation zu jedem Template. Deshalb brauchen die
Benutzer keine Kenntnisse tber LTL, um ConDec zu benutzen. In der Arbeit wird der Unter-
schied von einigen Templates durch ihre LTL Formeln diskutiert.

2.3 Formale Grammatiken

In der Studienarbeit wird versucht die Transformation von ConDec zu formalen Grammatiken
zu implementieren. Alle ConDec Templates und ihre Kompositionen werden im Format
formaler Grammatiken umgewandelt. Die formalen Grammatiken sind mathematische
Modelle von Grammatiken, die durch die formalen Sprachen beschrieben und erzeugt werden
konnen. In der Arbeit sind die formalen Grammatiken fiir ConDec 4-Tupel G=(V, 3, P, S). V
ist die Menge von Non-Terminals, z.B. S; und A;. Y’ ist die Menge von Terminals, z.B. a und
b. In P werden alle Produktionsregeln gespeichert. S ist das Startsymbol. Die eingefiihrten
Grammatiken in der Arbeit fokussieren nur auf die Produktionsregeln, sondern nicht auf die
Ordnung der Symbole[1]. Z.B. bedeutet die Regel D; D, X = x Y nicht, dass D; und D, sich
auf der linken Seite vom Symbol X. Sie spezifiziert, dass D; und D, nétig sind, um x aus X zu
produzieren. D; und D5 sind im Kontext von X. Aber D; X D, > X Y, D, X D;2> x Y, X D1 D,
2> x Y und X D, D;=> x Y sind semantisch equivalent. In den formalen Grammatiken fiir
ConDec haben alle Non-Terminals ,, Typen. Z.B. A; Bj, Ci € Services und S; € Helpers.

Die in der Arbeit resultierenden Grammatiken werden mit Hilfe eines entsprechenden
Automaten ausgefiihrt. Der Automat ist eine abstrakte Maschine, die ein Modell eines
digitalen, zeitdiskreten Rechners ist. Der Automat kann die resultierenden Grammatiken
einlesen. Nach der Ausfithrung kann der Automat ein ,,Wort* ausdrucken, das die Spur der
Ausfuhrung spezifiziert.

2.4 Transformation

Die grammatischen Produktionsregeln (grammatical production rules) fir die Templates in
ConDec reprasentieren die Abhéangigkeiten zwischen Aktivitaten, die in deklarativen
Workflow Modellen spezifiziert werden. Vor allem beginnen die Produktionsregeln fiir die
deklarativen Service-Kompositionen mit einem Start-Symbol, namlich S, (falls kein init() und
strong init() existiert) oder Sy (falls es mindestens ein init() oder strong init() gibt). Das Start-
Symbol hat mehrere Versionen, d.h. S,, Ss... usw. Alle S;E Helpers. In der Grammatik von
init() oder strong init() gibt es H; & Helpers. AulRer S; und H; prasentieren alle anderen Non-
Terminals die Aktivitdten im deklarativen Modell, z.B. A;, B, C;i usw. In ConDec sind alle
Aktivitaten Services, z.B. A;, Bj, Ci ... €Services. Die Restriktionen fur die deklarativen
Service-Kompositionssprachen brauchen nichtdeterministische, kontextfreie (falls kein init()
und strong init() existiert) oder kontextsensitive (falls es mindestens ein init() oder strong

init() gibt) Produktionsregeln und auch das leere Zeichen ,,&*, um den Prozess zu beenden,
z.B. S—e.

Die angebotenen Templates in ConDec werden in vier Kategorien klassifiziert, d.h. Existence
Templates, Relation Templates, Choice Templates und Negation Templates. Dariiber hinaus
gibt es auch eine Situation ,,branching of constraints*. Die Existence Templates sind unare
Restriktionen, z.B. existence(A), init(A) und absence(A). Das bedeutet, dass die betreffenden
Regeln die Ausfuhrung von Aktivitat A beschrénken.

Die Relation Templates sind bindre Restriktionen, die die Abhangigkeiten zwischen zwei
Aktivitaten beschreiben. Z.B. beschreibt response(A,B), dass die Aktivitat B in die Zukunft

12

2. Grundlagen

ausgefuhrt werden muss, wenn die Aktivitat A mindestens einmal ausgefiihrt wird. Die
Abbildung 6 zeigt die Produktionsregeln fur die Restriktion response(A,B). Falls A ausgefihrt
wird (S;2>A; und A;>a S,), muss B ausgefuhrt werden, um die Prozedur zu beenden
(82982, Bz%b S1 und 819 8).

S > A lB|Cile with: A; B;, C; £ Services
A; ™ a%; S; £ Helpers

- bS; a.b.cC 2
C1 - C'Sl

— A,
Ay — ELS;.-
B ™ b5
C; = CS:

B | Cs

Die Abbildung 6. Produktionsregeln von Restriktion response(A,B).

Die Negation Templates beschreiben die negierten Versionen von einigen Restriktionen, aber
sind nicht gleich der logischen Negation. Z.B. bedeutet not responded existence(A,B), dass die
Aktivitat B darf nicht ausgefiihrt sein (vor und nach A), falls die Aktivitat A ausgefuhrt ist.
Die Abbildung 7 zeigt die Produktionsregeln von not responded existence(A,B). A;—~>aS, und
B,>bS; garantieren die Restriktion. Es gilt zu beachten, dass die Restriktion not co-
existence(A,B) die gleiche Abhédngigkeit in den beiden Richtungen zwischen A und B
beschreibt, d.h. A darf nicht ausgefiihrt sein, falls B ausgefuhrt ist, und die Umkehrung ist
auch richtig. Weil die beiden Restriktionen gleich sind, sind ihre Regeln auch gleich.

S, > AlBIlC e with: A; B;. C; © Services
A > a8, S; £ Helpers
B1_}b53 El.:b:CE Z

C1 - 051

S; > A|Cile

As 7 as;

C:. - CS:.

S}. - B3. C3|E

B: ™ bS:

C}. - CS3.

Die Abbildung 7. Produktionsregeln von not responded existence(A,B) und co-existence(A,B).

Die Choice Templates beschreiben die Auswahl zwischen einigen Aktivitaten. Z.B. choice 1
of 3(A,B,D) bedeutet, dass mindestens ein Aktivitat (von A, B, D) ausgefuhrt wird. Exclusive
choice 2 of 3(A,B,D) bedeutet, dass nur zwei Aktivitaten (aus A, B, D) ausgefiihrt sein durfen.

Die oben erwahnten Templates konnen erweitert sein. Z.B. response(A,B) kann zu
response((A1,A2),B), response(A,(B1,B,)) oder response((A1,A2),(B1,B2,B3)) erweitert werden.
In ConDec heifit diese Erweiterung ,,branching. Die Abbildung 8 ist die Regeln fir
response(A,(B1,B,)). Die Aktivitat B besteht aus B; und B,. Der Algorithmus von ,,branching
constraints* wird in der Arbeit[1] referenziert. Weil die Indexe von Non-Terminals z.B. By,

13

2. Grundlagen

im Transformationsprogramm nicht so représentiert werden kdnnen, wie in der Abbildung 8,
missen die Non-Terminals im Programm verbessert werden. Statt B;; wird B(1,1) angewandt.
Das erste ,,1 ist der erste Index ,,;* von By,, wihrend das zweite ,,1* von B(1,1) ist der zweite
Index ,.,“. Ahnlich statt By, wird B(2,1) angewandt, usw. Natirlich werden die Non-Terminals
mit nur einem Index, wie S;, A;, auch verbessert, um mit die Non-Terminals wie B(1,1),
B(2,1) ubereinzustimmen. Statt S; wird S(1) benutzt. Ahnlich statt A;, By, C; werden A(1),
B(1), C(1) im Programm angewandt.

S > A |BuLIBulCe with: A; B, C; £ Services
A 7 a% S; © Helpers
B, ™ b abect X
Bz, ™ baS;

C1 - [‘31

S = Ay|BilBa
As; 7 aks

Bpi: ™ 1Sy

B 7 b2

Cz: =™ 52

G

Die Abbildung 8. Die Produktionsregeln von response(A,(B1,B>)).

In allen Produktionsregeln fiir die ConDec Restriktionen hat das Non-Terminal C spezielle
Bedeutung. C bedeutet ,,alle andere Aktivititen“. Z.B. in der Regeln fiir response(A,B)
bedeutet C alle andere Aktivitaten auBer den Aufgaben A und B. Falls es in einer XML-Dateli
nur eine Restriktion response(A,B) gibt, kdnnen wir das Non-Terminal C in den
Produktionsregeln einfach anwenden, wie die Abbildung 6 zeigt. Falls es mehrere
Restriktionen in der XML-Datei gibt, ist das Non-Terminal C komplexer. Z.B. ist die
Abbildung 9 ein ConDec Modell ,,religion. Es hat vier Aktivitaten und drei Restriktionen.
Fir die Restriktion existence(pray) bedeutet C (alle andere Aktivitdten) ,,curse®, ,,bless* und
,,become holy*. Fiir die Restriktion response(curse,pray) wird C durch ,,bless* und ,,become
holy“ in seinen Produktionsregeln ersetzt. Flr not co-existence(curse, become holy)
représentiert C ,,pray”“ und ,bless“ . Die Abbildung 10 ist die Produktionsregeln von
response(curse,pray). In der Regeln ist C ,,bless” und ,,become holy“. Die Anwendung von
Non-Terminal C in anderen Restriktionen existence(pray) und not co-existence(curse, become
holy) ist analog. Das bedeutet, dass das Non-Terminal C fiir verschiedene Restriktionen in
einer XML-Datei unterschiedlich ist.

respunsa

become holy

Die Abbildung 9. Ein ConDec Modell ,,religion*
14

2. Grundlagen

§; — curse; | pray;| bless;| becomeholy, | = with: curse;, pray;.blessibecome holy; Services
curse; — curse_tS; 5 Helpers
pray; —* prav_tS curse_t, pray_t, bless_t, become holy_t& X

bless; = bless tS;

become. holv; = becomeholy t5;

§; — curse;|prayz|bless;|become holy;
curse; —* curse_tS;

pray: — prav_t5;

bless; —+ bless t5;

become. holv; — becomeholv t5;

Die Abbildung 10. Die Produktionsregeln von response(curse,pray) im Modell ,,religion®.

In den durch das Programm produzierten Regeln, werden die Namen von Aktivitaten einfach
statt den A, B, C usw. verwendet, wie die Abbildung 10. Hierbei kann ein Problem entstehen.
Z.B. im oben erwéhnten Restriktion response(curse,pray) beinhaltet der Name von der
Aktivitdt ,,become holy ein Leerzeichen. Als Name von Aktivitdt in ConDec Modell ist diese
Situation erlaubt. Aber das Programm benutzt den Namen von Aktivitat einfach als den
Namen von Non-Terminal. Deshalb wird ,,become holy* als der Name von Non-Terminal in
den Produktionsregeln auftreten. Weil die produzierten Regeln durch einen Automaten
ausgefuhrt werden mussen und der Automat das Leerzeichen als Trennungszeichen von
Symbolen in den Produktionsregeln behandelt, missen die Namen von Non-Terminals mit
Leerzeichen verbessert werden. Das Leerzeichen in Namen von Non-Terminals werden durch
ein Punkt ,,.“ ersetzt. Z.B. fiir den Aktivititsnamen ,,become holy* ist sein entsprechender
Non-Terminalname in den Produktionsregeln ,,become.holy“. Die Terminals sollen auch
verbessert werden. Weil die Non-Terminals A, B, C usw. durch die Namen von Aktivitaten
ersetzt werden, werden ihre entsprechenden Terminals a, b, ¢ usw. auch durch ,,Non-
Terminalname t“ ersetzt. Z.B. fur das Non-Terminal ,,become.holy* ist ,,become.holy t* sein
entsprechendes Terminal in den Produktionsregeln, wie in der Abbildung 10.

15

3. Implementierung

3 Implementierung

Im Abschnitt wird es ausfiihrlich vorgestellt, wie das Transformationsprogramm die Trans-
formation implementiert. Im Abschnitt 3.1 werden die Architektur des Programms durch das
Klassendiagramm und das Aktivitatsdiagramm beschrieben. Im Abschnitt 3.2 werden einige
Ausforderungen diskutiert. Die Inhalte von Abschnitt 3.3 sind tber zwei Testfélle.

Wenn ein graphisches Modell in der Software Declare gespeichert wird, wird es in einer
XML-Datei gespeichert. Meine Aufgabe ist, ein Transformationsprogramm zu erstellen. Die
Eingabedatei ist die auf ConDec basierende XML-Datei, und die Ausgabedatei ist eine Kom-
positionsgrammatik, die durch einen Automaten ausgefiihrt werden kann. Eine solche XML-
Datei von ConDec beinhaltet viele Elemente, die die graphische Représentation beschreiben,
z.B. <cellheight="50.0" id="1" width="90.0" x="179.0" y="155.0" />. Diese Informati-
onen sind fur die Studienarbeit nicht relevant und werden daher nicht weiter behandelt. Das
Transformationsprogramm zieht nur die notwendigen Informationen Uber die Restriktionen
heraus, d.h. die Informationen, die sich in Tag-Paaren <acitivitydefiniti-
ons>...</acitivitydefinitions>, <data>...</data> und <constraintdefiniti-
ons>...</constraintdefinitions> befinden. Aber nicht alle Informationen in diesen Tag-Paaren
sind notig.

<activitydefinitions>
<activity id="1" name="kochen 1">
<authorization=
<teamrole>1</teamrole>
</authorization>
<datamodel >
<data element="1" type="0" /=
<data element="2" type="1" />
</datamodel>
< activity>

<activity id="5" name="essen 5" >
<remote task="Hunger 6" />
<authorization />
<datamodel >
<data element="3" type="0" />
<data element="6" type="1" /=
<data element="2" type="0" />
</datamodel >
</activity>

</activitydefinitions >

Die Abbildung 11. <activitydefinitions> beinhaltet alle Aktivitaten, die in XML-Datei vor-
kommen.

16

3. Implementierung

Das Element <activitydefinitions>...</activitydefinitions> beinhaltet alle Aktivitaten in der
XML-Datei, z.B. <activity id="1" name="kochen 1">...</activity>, <activity id="5" na-
me="essen 5">...</activity> usw., wie die Abbildung 11. Die Eigenschaft ,,name* ist der Na-
me von Aktivitat. Die Namen dirfen nicht dupliziert sein. Jedes Tag (Element in spitzen
Klammern eingeschlossenen Kirzel) <activity> kann das Tag <remote task="XXX“> und das
Tag <datamodel> beinhalten (<autorization> hat keine Beziehung zur Arbeit.). <remote
task="XXX“> bedeutet, dass diese Aktivitdt ein Web Service reprasentiert. <datamodel>
zeigt die Ein/Ausgabe-Parameters der Aktivitat, z.B. <data element="1" type="0" />. In der
XML-Datei gibt es noch das Tag <dataelement id="1" initial="aa" name="X" type="string"
/>, wie die Abbildung 12. Die Bedeutungen von der Eigenschaft id="1 und der Eigenschaft
element="1* in <data element="1" type="0" /> sind gleich. Zuerst wird die Eigenschaft ele-
ment="1“ in <data element="1" type="0" /> herausgezogen. Dann suchen wir in <da-
ta>...</data>, welches <dataclement id=“XX‘* initial="XX"“ name=“XX* type="XX‘> die
Eigenschaft id="1* hat. Falls ein solches <dataelement> gefunden ist, werden <data ele-
ment="1" type="0" /> und <dataelement id="1" initial="aa" name="X" type="string" /> ver-
bunden. Durch element="1 und id="1 konnen die Initialisierungsinhalte, Name und Typ
vom Ein/Ausgabe-Parameter gefunden werden. Die Eigenschaft type="0“ von <data> in <da-
tamodel> in der Abbildung 11 zeigt, ob es Eingabe oder Ausgabe oder Eingabe/Ausgabe ist.
Type="“0“ bedeutet Eingabe, type=“1“ bedeutet Ausgabe, type="2“ bedeutet Einga-
be/Ausgabe. Durch <data element="1" type="0" /> in der Abbildung 11 und <dataelement
id="1" initial="aa" name="X" type="string" /> in der Abbildung 12 kénnen wir wissen, dass
die Aktivitdt ,,kochen 1 eine Eingabe hat. Der Eingabename ist ,,X*. Der Eingabetyp ist
,,String®. Der Initialisierungsinhalt ist ,,aa".

<data>
<dataelement id="1" initial="aa" name="X" type="string" />
<dataelement id="2" initial="bbb" name="¥" type="string" />
<dataelement id="3" initial="5" name="Z" type="integer" />
<dataelement id="4" initial="0.0" name="U" type="double" />
<dataelement id="53" initial="7" name="V" type="integer" /=
<dataelement id="6" initial="true" name="W" type="boolean" />

</data>

Die Abbildung 12. <dataelement> beinhaltet die Eigenschaften von Ein/Ausgabe-Parameters.

Das Element <constraintdefinitions>...</constraintdefinitions> umfasst alle Restriktionen in
der XML-Datei, wie in der Abbildung 13. Es beinhaltet ein oder mehrere <constraint>-
Elemente. Jedes <constraint> repréasentiert ein entsprechendes Template und beinhaltet ein
Element <template>. Jedes <template> hat ein paar Tags, z.B. <name>response</name>.
Das ist der Typ von Template. Dadurch kann das in Java programmierte Transformationspro-
gramm entscheiden, welche Grammatik zu produzieren ist. In <text>...</text> ist die LTL-
Formel von Template. In <parameters>...</parameters> werden ein oder mehrere <parame-
ter>-Elemente inkludiert. Jedes <parameter> hat drei Attribute: ,,branchable®, ,,id*, ,,name*,
z.B. fur die Restriktion ,,response(A, B)*“ gibt es <parameter branchable="“true* id="2* na-

17

3. Implementierung

me="A‘>...</parameter> und <parameter branchable="“true* 1d="1* na-
me="B*“>...</parameter>, wie in der Abbildung 13. Branchable="true* bedeutet, dass die Ak-
tivitdt ,,branchable sein kann. ,,id* verbindet <parameter> in <parameters> mit <parameter>
in <constraintparameters>. ,,name* zeigt den Namen der abstrakten Aktivitat in LTL, sondern
nicht den wirklichen Namen der Aktivitat im Template. Wir beriicksichtigen nur die Attribute
,1d“ und ,,name*. In <constraintparameters> werden die wirklichen Namen der Aktivitaten im
Template gespeichert. <constraintparameters> beinhaltet ein oder mehrere <parameter temp-
lateparameter="X‘>. Die Attribut templateparameter="X* wird als die Verbindung mit <pa-
rameter branchable="X‘* id="X‘“ name="X‘> benutzt. Jedes <parameter templateparame-
ter="X‘> inkludiert ein <branches>. Jedes <branches> inkludiert ein oder mehrere <branch
name="XXX"“>. <branch name="XXX*> speichert den wirklichen Namen der Aktivitat. Z.B.
fiir <parameter branchable="“true* id="2“ name=“A‘“> in der Abbildung 13 bedeutet na-
me="A* die abstrakte Aktivitdt A in LTL []J((“A* --> <>(“B*))). Branchable="true‘* bedeutet,
dass die abstrakte Aktivitdt A ,branchable” sein kann. Das Programm zieht id="2* heraus.
Dann sucht das Programm <parameter templateparameter="2“> in <constraintparameters>.
Falls es gefunden wird, werden alle Attribute name="“XXX* aus <branch name="XXX*>
herausgezogen. In der Abbildung 13 bekommen wir < branch name="“kochen 1“/> und <
branch name="“kochen 2¢“/>. Das bedeutet, dass die abstrakte Aktivitat A aus zwei wirkliche
Aktivitdten ,,kochen 1“ und ,,kochen 2 besteht, d.h. response((kochen 1, kochen 2), B).
Ahnlich kann die abstrakte Aktivitat B analysieren.

18

3. Implementierung

<constraintdefinitions>

<constraint id="4" mandatory="true">

<name>init</name:>
<text>(("A.started"” \/ "A.cancelled”) W "A") </text>
<parameters>

<parameter branchable="false" id="1" name="A">

</parameter>
</parameters>

</template>
<constraintparameters>
<parameter templateparameter="1">
<branches>
<branch name="Hurger 6" />
</branches>
</parameter>
</constraintparameters>
</constraint>

<constraint id="5" mandatory="true">

<template>

<name>response</name>
<text=>[]1(("A" -> <>("B")))</text>
<parameters>

<parameter branchable="true" id="2" name="A">

</parameter>

<parameter branchable="true" id="1" name="B">

</parameter>
</parameters>

</template>
<constraintparameters>
<parameter templateparameter="2">
<branches>
<branch name="kochen 1" />
<branch name="kochen 2" />
</branches>
</parameter>
<parameter templateparameter="1">
<branches>
<branch name="essen 3" />
<branch name="essen 4" />
<branch name="essen 5" />
</branches>
</parameter>
</constraintparameters>
</constraint>

</con.¢l.lt-raintdefin'|tion5 >
Die Abbildung 13. <constraintdefinitions> inkludiert alle Restriktionen von XML-Datei.

19

3. Implementierung

3.1 Architektur des Programms

Die Abbildung 14 ist das Klassendiagramm vom Transformationsprogramm. Zuerst ist die
Klasse Excutable die ,main class“. Sie ruft die anderen Klassen an. Die Klasse
CompositionGrammar produziert die Grammatiken ber alle einzelne Templates, die in der
XML-Datei vorkommen, und speichert sie in Datenaufbau ,,List< CompositionGrammar>“,
Die Klassen (ber einzelne Templates produzieren die Grammatiken entsprechendes
Templates, z.B. die Klassen Existence, Existence2 usw. Es gibt 34 Klassen tber einzelne
Templates, deshalb werden nur einige Beispiele ,Existence”, ,Response und
,ExclusiveChoice™ in Abbildung 14 aufgefuhrt. Die Klasse Merginglnits verschmilzt die
Grammatiken von mehreren Templates init() und strong init(). Die Klasse
MergingAlgorithmus ~ verschmilzt ~ zwei allgemeine Grammatiken zu einer
Kompositionsgrammatik, z.B. eine neue Kompositionsgrammatik=
MergingAlgorithmus(response(), precedence()). Die Klasse Rename behandelt die Indexe der
Non-Terminals in den Grammatiken. Sie wandelt die komplexen Indexe zu einfachen Indexen
um, z.B. Sa1) zu Spy. Die Aufgabe der Klasse AnalyseNonTerminal ist, die Indexe und
Symbole von Non-Terminals herauszuziehen. Z.B. kann die Klasse AnalyseNonTerminal
S(,1) einlesen, und gibt die Informationen zuriick, dass S das Symbol ist und (1,1) der Index ist.
Die Klasse GrammarQutput kann eine XML-Datei tber die resultierende Grammatik mit
vorgegebenen XML Schema herstellen. Die Klassen ServiceNonTerminal, ServiceParam und
ServiceNonTerminalType sind selbst definierten Datenaufbaue. ServiceNonTerminal wird
benutzt, die Non-Terminals mit Web Services zu speichern. Die Inhalte der Ein/Ausgabe-
Parameters sind im Format ServiceParam gespeichert. Die Typen von Web Services werden
im Format ServiceNonTerminalType definiert. Die Klassen NonTerminal, Terminal und Rule
sind auch Datenaufbaue. Alle vorkommenden Non-Terminals in Grammatiken sind im
Format NonTerminal definiert. Ahnlich ist die Klasse Terminal fir alle Terminals in
Grammatiken, wahrend alle Produktionsregeln im Format Rule gespeichert werden.

Das Programm beginnt mit der Klasse Excutable und bekommt eine Variable Document doc.
Dann wird die Klasse CompositionGrammar angerufen, um die Variable doc zu behandeln.
Alle Grammatiken von einzelnen Templates in der XML-Datei werden bekommen. Danach
werden die Klassen Merginglnits und MergingAlgorithmus angerufen, um die
Kompositionsgrammatiken zu produzieren. Zum Schluss wird die Klasse GrammarOutput
angerufen, um eine XML-Datei mit dem vorgegebenen Schema zu produzieren.

20

3. Implementierung

ServicelNonTerminalType
ServiceParam F dd: dStTing ServiceNonTerminal GrammarOutput
+type: Stri -address: String A
+€§:e- St;?r? +operation: String Fope:Stng 2 -snts: Set<ServiceNonTerminal>
s string SRS -nputParams: Set<ServiceParam> . i
+name: String binding: String -outputParams: Set<ServiceParam:> SC0ECompeStionGrame:
+portType: String 4 5 :
Excutable Rename
+doc: Document +nonTerminals: Set<INonTerminal>
= = +terminals: Set<ITerminal>
+CompositionGrammar(doc: Document): CompositionGrammar te——— 4rules: Set<IRule>
+MergingInits(doc: Document): MergingInits +start: NonTerminal
+MergingAlgorithmus(G1, G2: CompositionGrammar): MergingAlgorithmus
+Rename(mA: MergingAlgorithmus) +AnalyseNonTerminal(s: String)
+GrammarOutput(servicenonterminal, result_Grammar: CompositionGrammar): XML
1
CompositionGrammar
+nonTerminals: Set<INonTerminal>
+terminals: Set<ITerminal> 0.1
+rules: Set<IRule>
+start: NonTerminal MergingInits MergingAlgorithmus z
+all_CG: List<CompositionGrammar > sk £ AnalyseNonTerminal
+servicenonterminal: Set<ServiceNonTerminal> +nonTerminals: Set<INonTerminal>> +nonTerminals: Set<INonTerminal> +index: String
4nputoutput: List<ServiceParam> +terminals: Set<ITerminal> +terminals: Set<ITerminal> +indexi: String
-remote_Task_S: Set<String> +rules: Set<IRule> +ules: Set<IRule> +indexj: String
-sntt_S: Set<ServiceNonTerminalType > +start: NonTerminal +start: NonTerminal +symbol: String
= = -nits: List<String> -5: Set<NonTerminal >
+Existence(doc: Document, ¢_Id: String)
+Existence2(doc: Document, ¢_Id: String)
.
.
.
+ExdusiveChoice(doc: Document, c_Id: String)
1 1 1
NonTerminal Terminal Rule
#ID: String #ID: String eft: List<INonTerminalOrTerminal >
#type: String -right: List<INonTerminalOrTerminal >
etID|
+getlD(S +getleft)
+getType() +getRight()
+setType() +print()
+print()

Existence Response ExclusiveChoice
+nonTerminals: Set<NonTerminal> +nonTerminals: Set<NonTerminal> +nonTerminals: Set<NonTerminal>
+terminals: Set<Terminal> +terminals: Set<Terminal > +terminals: Set<Terminal >
+ules: Set<Rule> +ules: Set<Rule> ces e +ules: Set<Rule>
+start: NonTerminal +start: NonTerminal +start: NonTerminal
+activities: List<String> +activities: List<String> +activities: List<String>
+all_Activities: List<String> +all_Activities: List<String> +all_Activities: List<String>

w = w

Die Abbildung 14. das Klassendiagramm vom Programm.

Die Abbildung 15 ist das Aktivitatsdiagramm vom Transformationsprogramm. Das
Programm beginnt mit der Klasse ,,Excutable”. Die Grammatiken stammen aus der XML-
Datei, deshalb das Programm die XML-Datei in der Klasse Excutable zuerst ,,parse® muss.
DOM von Java wird angewandt, um XML-Datei zu parse, wie der folgende Code.

21

3.

Implementierung

pocument doc = null;
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setNamespaceAware(true);
factnry.SEtIgﬂnriﬂgE1EmentcnﬂtEﬂtwh1tESpacE(true);

DocumentBuilder builder = factory.newDocumentBuilder ();

doc = builder.parse("test,/ >0, xml");

die Zahl von init() rechnen
die XML-Datei analysieren

>0

et

[Document doc] Ge Klasse MergingInits anrufeD Ge Klasse MergingAlgorithmus anrufen } =

ez - - -4

v
Kompositionsgrammatik von init()s W
asse CompsitionGrammar anrufen =
; nicht umbenannte Grammatik]
:, die Zhal von non-init(s rechnen E
W () |
[Grammatik(en)] die Klasse Rename anrufen
=0 A
W <% umbenannte Kompositionsgrammatik

Ge Zahl der Grammatiken red'lneD

=1 ja

@e finale Kompositionsgrammatik produziereD

Ge Klasse GrammarOutput anrufeD

\
XML-Datei mit dem Ergebnis

beim Automaten ausfiihren

Die Abbildung 15. Das Aktivitatsdiagramm vom Programm.

22

3. Implementierung

Alle getesteten Dateien befinden im Pfad ,,/test/*. Die analysierte XML-Datei wird in der
Variable ,doc“ von Typ ,Document* gespeichert. Zuerst wird die Klasse
,,CompositionGrammar* in der Klasse Excutable angerufen. Die Eingabe der Klasse
CompositionGrammar ist die Variable doc, und seine Ausgabe ist eine oder mehrere
produzierten Grammatiken von den einzelnen Templates, die in der XML-Datei vorkommen.
Die Klasse CompositionGrammar produziert diese Grammatiken durch die entsprechenden
Klassen einzelnes Templates. Wie die Abbildung 13 zeigt, jedes vorkommenden einzelnen
Template wird in <constraint>...</constraint> einbezogen. Darin gibt es ein Element flr das
entsprechende Template, z.B. <name>existence</name>, das den Typ dieses Templates zeigt.
Dadurch entscheidet das Programm, welche Grammatik zu produzieren ist. Dann ruft das
Programm die entsprechende Templates Klasse an. Z.B. falls es <name>existence</name> ist,
dann ruft das Programm die Klasse ,,Existence” auf. Alle produzierten Grammatiken von
einzelnen Templates werden im ,,List<CompositionGrammar> all CG* gespeichert. Dann
entscheidet das Transformationsprogramm die Zahl der produzierten Grammatiken. Falls nur
eine Grammatik hergestellt wird (Das bedeutet, in der XML-Datei gibt es nur ein Template.),
ist sie die finale Grammatik. Falls mehrere Grammatiken produziert werden (Das bedeutet,
die XML-Datei umfasst mehrere Templates), mussen die Grammatiken gemischt werden
(,,merge*). Die Mischung von mehreren init() und strong init() ist ein Typ Operation von ,,U
und die Grammatiken sind kontext-sensitiv, wahrend die Mischung der anderen allgemeinen
Grammatiken ein Typ Operation von ,,N* ist und die Grammatiken kontext-frei sind[1].
Deshalb muss das Transformationsprogramm noch kontrollieren, ob Grammatiken von init()
und strong init() in den produzierten Grammatiken (d.h. ,,List<CompositionGrammar>
all_CG*) existieren. Falls es kein init() oder strong init() gibt (Das bedeutet, alle Grammtiken
sind allgemeine Grammatiken, wie response(), precedence() usw.), wird die Klasse
MergingAlgorithmus direkt wiederholt angerufen, bis alle Grammatiken in all_CG behandelt
werden. Sonst (Es gibt init() oder strong init() in all_CG.) wird die Klasse MergingInits zuerst
angerufen. Durch diese Klasse Merginglnits wird die Kompositonsgrammatik aller in all_CG
vorkommenden init() und strong init() produziert. Danach wird die Klasse
MergingAlgorithmus fir die Kompositionsgrammatik von MerginglInits und die alle anderen
allgemeinen Grammatiken wiederholt angewandt, bis alle Grammatiken in all_CG behandelt
werden. Falls alle Grammatiken in all_CG schon behandelt werden, bekommen wir die finale
Kompositionsgrammatik. Die finale Kompositionsgrammatik wird in ,,CompositionGrammar
result_Grammar gespeichert. Bitte beachten, dass die Klasse MergingAlgorithmus zwei
Grammatiken zu einer Grammatik mischen kann. Aber MergingAlgorithmus kann nur die
Hkleine* Grammatik zur ,,groen” Grammatik mischen[1]. Z.B. wird MergingAlgorithmus
angerufen, um zwei Grammatiken G1 und G2 zu mischen, und wir bekommen die Grammatik
G als Ergebnis. Dann mischen wir die dritte Grammatik G3 weiter. Wir kdnnen nur G3 in G
mischen, aber durfen nicht die Grammatik G in G3 mischen. Der Algorithmus ist links-
assoziativ.

In der Prozedur wird die Klasse Rename angerufen, so dass die komplexen Indexe (z.B. S,1))
zu den einfachen Indexen (z.B. Sg)) umgewandelt werden. Zuerst wird die Klasse
AnalyseNonTerminal von der Klasse Rename angerufen, um die Indexe von Non-Terminals
herauszuziehen. Weil die produzierten einfachen Indexe sukzessiv sein sollen[1], behandelt
die Klasse Rename zuerst die Indexe im Format (i,i) mit i=i. Die Klasse wandelt S zu S
um. Der neue einfache Index i ist ein ,,i* von (i,i), z.B. Sq1,1) ZU S1y, S2.2) ZU Sp). Die Zahl der
Indexe im Format (i,i) ist n. Dann behandelt die Klasse Rename die Indexe (i,j) mit i#. Sie
wandelt Sgj zu Sg) um. Der neue einfache Index k beginnt mit n+1. Nach jeder
Transformation wird ,,n=n+1“ angewandt, z.B. Sq12) zu Sg), Sp;3) zU S). Deshalb sind die
neuen einfachen Indexe sukzessiv.

23

3. Implementierung

Die andere Aufgabe der Klasse CompositionGrammar ist, die Ein/Ausgabe-Parameters und
Web-Services-Informationen von Aktivitaten in XML-Datei auszugeben. Diese Ein/Ausgabe-
Parameters werden als Attribute der Tags <dataelement id="X‘ initial="“"XX* name="“XX*
type="XX‘“> in XML-Datei gespeichert. Das Transformationsprogramm verwendet
,doc.getElementsByTagName()*“ und ,,.getAttribute(), um die Attribute ,,id“, ,,initial®,
,name und ,,type” zu bekommen, wie die Abbildung 11 und 12 oben gezeigt haben. Das
Programm baut ein , List<ServiceParam> inputoutput, und speichert alle Ein/Ausgabe-
Parameters mit den bekommenen Informationen darin. Alle in ConDec Modell
vorkommenden Aktivitdten werden in <activitydefinitions>...</activitydefinitions>
einbezogen. Das Programm muss die Aktivitdten behandeln, deren Typen ,,Web Services*
sind. Das bedeutet, dass diese Aktivitdten das Tag <remote task="XXX‘“> haben, wie die
Abbildung 11 zeigt. Dann werden ,,.getElementsByTagName()“ und ,,.getAttribute()
verwendet, wie oben erwéhnt, um die Informationen von Web Services zu bekommen. Zum
Schluss werden die Attribute ,id“, Typ, Eingabe und Ausgabe im Format
ServiceNonTerminal in ein ,,Set<ServiceNonTerminal> servicenonterminal*“ gespeichert.

Nach der Produktion der finalen Kompositionsgrammatik wird die Klasse ,,GrammarOutput*
in der Klasse Excutable angerufen. Die Eingaben von GrammarOutput sind das
Set<ServiceNonTerminal> servicenonterminal, d.h. alle Non-Terminals mit dem Typ von
Web Services, und CompositionGrammar result_Grammar, d.h. die finale
Kompositionsgrammatik. Die Ausgabe ist eine XML-Datei, die ,,compositiongrammar.xml*
heit. Die Datei ,,compositiongrammar.xml“ befindet sich im Pfad ,\Isg\grammarfile”. Die
Non-Terminals, Typen von Non-Terminals, Ein/Ausgabe-Parameters, Terminals,
Produktionsregeln, Startsymbol usw. werden in dieser XML-Datei mit vorgegebenen XML
Schema gespeichert.

3.2 Herausforderungen

Das Transformationsprogramm ist auf das declare-2.2.0 basierend. Die Software kann den
ConDec Modell strukturieren, aber es gibt noch einige Fragen, die es im Detail zu behandeln
gilt.

3.2.1 Existence Templates

Strong init(A) und init(A): In declare-2.2.0 werden die Existence Templates strong init(A)
und init(A) angeboten. Die Arbeiten[1, 2, 16, 17] betreffen den Unterschied von den beiden
Restriktionen nicht. Jetzt diskutieren wir ihren Unterschied. Das LTL von init(A) in der durch
declare-2.2.0 produzierten XML-Datei ist :(("A.started" \/ "A.cancelled") W "A").
Das LTL von strong init(A) ist: (("A.started" \/ "A.cancelled") U "A.completed").
Der Unterschied ist nur ,,weak until A“ und ,,until A.completed*. Bei ,,weak until A* ist A
nicht bestimmt wahr. Bei ,,until A.completed” muss A ,,completed” sein. Aber die Komposi-
tionsgrammatik behandelt nur die Beziehungen zwischen Aktivitaten[1]. Es wird nicht be-
riicksichtigt, ob A ,,started” oder ,,completed” ist. Deshalb fiir die Kompositionsgrammatik
sind die beiden LTL-Formeln gleich. Ihre Grammatiken sind auch gleich, wie die Abbildung
16.

24

3. Implementierung

S0 — Ay Hp with: A Bi. C; € Services
Ay — a Si. Hj © Helpers
aHy — a 54 a.b.c £ L

S1 — AilBi[Cile

Al — a5

B; — bS5

Ci — 5

Die Abbildung 16. Die Produktionsregeln von strong init(A) und init(A) sind gleich.

Last(A). Die Arbeiten [1, 2] erwdhnt das nicht. In declare-2.2.0 gibt es das Template last(A),
aber keine Beschreibung. In der durch declare-2.2.0 produzierten XML-Datei ist das LTL von
last(A): [1 ("A" -> IXI"A™). Das bedeutet, dass A die letzte Aktivitat im Modell sein muss.
Die Grammatik wurde von mir geschrieben, wie die Abbildung 17 zeigt. In einigen Arbeiten
wird der Operator ,,next* durch ,,0* prasentiert. Aber in den durch declare-2.2.0 produzierten
XML-Dateien reprasentiert ,, X den Operator ,,next*.

S — Ai1lBi1lCile with: A; Bi. C; € Services
Ay — a% S; © Helpers
B: — bS; a.b.c £ X

Cy — o5y

52 — Alls

A — aS

Die Abbildung 17. Die Produktionsregeln von last(A). A ist die letzte Aktivitat.

Error(A). In declare-2.2.0 hat das Template error(A) keine Beschreibung. Das LTL von er-
ror(A) ist: (<> ("A.completed”) /\ !(<> ("A.started"))). Das bedeutet, dass A
schlie3lich nicht startet aber fertig ist. Das LTL von absence(A) ist: 1(<> ("A.started")
). D.h. A startet gar nicht. Der Unterschied zwischen error(A) und absence(A) ist der Zustand
,<>("A.completed")“. Bedingt durch die Kompositionsgrammatik, die keine Zustande
von Aktivitdten behandelt, nehme ich an, dass die Produktionsregeln von error(A) und ab-
sence(A) gleich sind. Die Abbildung 18 zeigt die Produktionsregeln.

S — Bi|Cile with: B;, C; € Services
Bi — bS; S; € Helpers
Ci — ¢S a.b.c € E

Die Abbildung 18. Die Produktionsregeln von error(A) und absence(A) sind gleich.

3.2.2 Relation Templates
Alternate(A,B) und alternate response(A,B). In der Arbeit[1] gibt es alternate response(A,B),

aber keine alternate(A,B). Die beide kommen in declare-2.2.0 vor. Das LTL-Formel von al-
ternate(A,B) ist:[1(("A™ -> X(('("A") W "B")))). Seine Beschreibung in declare-2.2.0
ist: ,,If A is excuted, then next A can not be excuted before B is excuted after the previous A.*

25

3. Implementierung

Z.B. die Folgen CB und ACBACBBAC befriedigen diese Restriktion, die Folge ACAB nicht.
Das LTL von alternate response(A,B) ist:[1(("A" -> X((("A") U "B")))). Die
Beschreibung in declare-2.2.0 ist: ,,After cach A is excuted at least one B is excuted. Another
A can be excuted again only after the first B.* Der Unterschied ist ,,weak until B* und ,,until
B*“. Fur alternate(A,B) kann B nicht geschehen. Fir alternate response(A,B) muss B nach
jedem A mindestens einmal geschehen. Deshalb nehme ich an, dass die beiden Produktions-
regeln gleich sind, wie die Abbildung 19 zeigt.

S — Ai|BilCile with: A; Bi, C; € Services
Ay — a$; 8; € Helpers
B; — b5 ab.c & X

Cy — ¢854

S» — B:2[C:

B: — b5

Ca — 53

Die Abbildung 19. Die Produktionsregeln von alternate(A,B) und alternate response(A,B)
sind gleich.

3.2.3 Choice Templates

choice(A,B). In den Arbeiten[1, 2] wird das Template choice(A,B) nicht diskutiert. Aber in
declare-2.2.0 kommt es vor. Das LTL von choice(A,B) ist:(<> ("A") \/ <>("B")).
Die Beschreibung ist ,,At least one from A and B has to be excuted. Seine LTL und Be-
schreibung sind ahnlich wie das Template 1 of 2(A,B). Das LTL von 1 of 2(A,B) ist: <>((
"A" \/ "B")). Die Beschreibung in declare-2.2.0 ist ,,Either A is excuted at least once, or B
is excuted at least once®. Ich glaube, dass die beiden LTL gleich sind. Deshalb sind ihre Pro-
duktionsregeln auch gleich, wie die Abbildung 20. Der Unterschied in declare-2.2.0 ist, dass 1
of 2(A,B) ,not branchable“ ist und choice(A,B) ,branchable®“ sein kann. Z.B. ist
choice((A1,A2), (B1,B2,B3)) in declare-2.2.0 gliltig. Aber 1 of 2((A1,Az), (B1,B2,B3)) ist in decla-
re-2.2.0 nicht erlaubt. Ich glaube, die Produktionsregeln von choice 1 of 3(A,B,D) im declare-
2.2.0 und 1 of 3(A,B,D) in der Arbeit[2] sind auch gleich. Das LTL von choice 1 of 3(A,B,D)
in declare-2.2.0 ist:((<>("A") \/ <>("B")) \/ <>("C")). Das LTL von 1 of
3(A,B,D) in der Arbeit[2] ist <>("A") \/ <>("B")) \/ <>("C"). Deshalb kann ich
vermuten, dass diese beiden Restriktionen gleich sind.

S — AilBy|Cy with: A; B;, C; € Services
Ay — aS S; € Helpers
B;i — bS%; a.b.c & X

Ci — 5

S» — AyB2[Cale

Ax — aS;

B: — b%;

Ca — 52

Die Abbildung 20. Die Produktionsregeln von 1 of 2(A,B) und choice(A,B) sind gleich.

Exclusive choice 1 of 3(A,B,D). In der Arbeit[1] gibt es kein Exclusive choice 1 of 3(A,B,D).
Seine Beschreibung in declare 2.2.0 ist ,,At least two activities from (A,B,C) have to be ex-
cuted.” Ich glaube, diese Beschreibung ist falsch. Sein LTL in declare-2.2.0 ist:(((((
<>("A") \/ <>("B")) \/ <>("C")) /\ W (<>("A")/\<>("B")))) /\((

26

3. Implementierung

<>("B")/\<>("C"))))/\NW((<>("A") /\ <>("C")))). Das bedeutet, dass
nur eine Aktivitat ausgeflhrt ist, wahrend die anderen zwei Aktivitaten nicht ausgefthrt sein
dirfen. Dartiber hinaus ist das LTL von exclusive 1 of 3(A,B,D) in der Arbeit[2] auch falsch.
Die Beschreibung in der Arbeit[2] ist ,,One of the events A,B or C has to eventually occur, but
the other two can not occur at all.* Aber sein LTL ist: (<>("A") /\ I<>("B")) /\ '<>(
"C")) \/(<>("A") /\ <>("B")) /\1<>("C"))\/(<>("A") /\ I<>("B"))
/\ I<>("C")). <>("A") /\ '<>("B")) /\ !'<>("C") bedeutet, A ist ausgefuhrt
aber B und C nicht ausgefuhrt sind. 1<>("A") /\ <>("B")) /\ '<>("C")bedeutet, B
ist ausgefihrt aber A und C nicht. Deutlich ist der rote Teil falsch. Dieser Teil soll ,,C ist aus-
gefiihrt aber A und B dirfen nicht“ sein. Das richtige LTL vom roten Teil ist: I<>("A") /\
I<>("B")) /\ <>("c").Dasganze LTL von exclusive 1 of 3(A,B,C) ist: (<>("A") /\
I<>(C"B")) /\ I<>("C")) \/(<>("A") /\ <>("B")) /\ I<>("C"))
\/(<>("A") /\ '<>("B")) /\ <>("C")). Dieses LTL ist gleich wie das LTL von
exclusive choice 1 of 3(A,B,D) im declare-2.2.0. Deshalb glaube ich, dass die Restriktionen
exclusive choice 1 of 3(A,B,D) und exclusive 1 of 3(A,B,D) equivalent sind und die Beschrei-
bung von exclusive choice 1 of 3(A,B,D) im declare-2.2.0 falsch ist. Seine richtige
Beschreibung soll ,,only one activity is excuted, the other two activities must not be excuted*
sein.

3.2.4 Branching von Restriktionen

Im declare-2.2.0 dirfen einige Restriktionen nicht ,,branchable“ sein, z.B. chain respon-
se(A,B), choice 1 of 3(A,B,D), choice 2 of 3(A,B,D)... usw. Eine XML-Datei mit der ,,bran-
ching* Situation von diesen Restriktionen wird von declare-2.2.0 nicht gedffnet. Z.B. kann
declare 2.2.0 die XML-Datei mit choice 1 of 3((A1,A2),B,D) nicht 6ffnen. Kein Modell wird in
declare 2.2.0 vorgezeigt. Aber theoretisch sind diese Restriktionen in ConDec ,,branchable“[1,
2]. Deshalb sollen wir die ,,branching® Situationen von diesen Restriktionen berticksichtigen.
Das Programm kann die ,,branching® Situationen behandeln.

3.3 Testfalle

Das Programm muss getestet werden. In dem Abschnitt werden zwei geprufte Beispiele
vorgestellt, das Beispiel ,,religion und das Beispiel ,,medical®. Sie sind die eigenen Beispiele
von declare 2.2.0. Zuerst sehen wir das Beispiel ,religion”. Es befindet sich im Pfad
,\declare-2.2.0\examples\religion\religion.xml*“. Die Abbildung 9 st die graphische
Reprasentation vom ConDec Modell ,religion. Nach der Analyse von der XML-Datei
produziert das Transformationsprogramm drei Grammatiken von einzelnen Templates:
existence(pray), not co-existence(curse, become holy) und response(curse, pray). lhre
ausfihrlichen Produktionsregeln sind einfach und werden hier nicht beschrieben. Z.B. G1 ist
die Grammatik von existence(pray), G2 ist die Grammatik von not co-existence(curse,
become holy) und G3 ist die Grammatik von response(curse, pray). Dann wird
MergingAlgorithmus(G1,G2) angewendet und die Kompositionsgrammatik CG bekommen,
d.h. die Kompositionsgrammatik von existence(pray) und not co-existence(curse, become
holy). Die Abbildung 21 zeigt diese Kompositionsgrammatik CG. Die Klasse
MergingAlgorithmus beginnt mit S(1,1). In der Grammatik von existence(pray) gibt es
S(1)—>curse(1) | pray(1) |bless(1) |Ibecome.holy(1). In der Grammatik wvon not co-
existence(curse, become holy) gibt es S(1)->curse(1)|pray(1)/bless(1)become.holy(1)|e.
Nach dem Merging-Algorithmus von allgemeinen Grammatiken[1] kann S(1,1)->
curse(1,1) |pray(1,1) |bless(1,1) | become.holy(1,1) bekommen werden. S(1)—>¢ gehort nicht zu
existence(pray) (G1), aber nur zu not co-existence(curse, become holy) (G2), deshalb es
geldscht wird. In G1 existiert curse(1)—>curse_t S(1). In G2 existiert curse(1)—>curse_t S(2).

27

3. Implementierung

Deshalb wird curse(1,1)—>curse_t S(1,2) in CG hinzugefugt. S(1,2) wird als neues
unbearbeitetes Non-Terminal in die Menge aller unbearbeiteten S(u,v) hinzugefugt. Diese
Menge heilt S. Alle behandelten S(u,v) werden aus S geléscht. Ahnlich wird
pray(1,1)>pray_t S(2,1) in CG hinzugefiigt und S(2,1) in die Menge S hinzugefligt. Durch
die gleiche Methode wird bless(1,1)->bless_t S(1,1) in CG hinzugefiigt. Aber S(1,1) wird
schon bearbeitet, deshalb wird S(1,1) nicht in die Menge S hinzugefiigt. Die Klasse
wiederholt diese Schritte, bis alle Non-Terminals in S bearbeitet werden. Dann bekommen
wir die Kompositionsgrammatik von existence(pray) und not co-existence(curse, become
holy), wie die Abbildung 21 zeigt. Durch die Klasse Rename werden die komplexen Indexe
zu einfache Indexe umgewandelt. In der Abbildung 21 gibt es (1,1), (2,2), (1,2), (2,1), (1,3)
und (2,3). Zuerst wandelt die Klasse Rename (1,1) zu (1), (2,2) zu (2) um, wie es im
Abschnitt 3.1 vorgestellt wird. Die restlichen Indexe sollen mit ,,3* beginnen. Bitte beachten
Sie, dass die Non-Terminals im Datenaufbau ,,Set< INonterminal > gespeichert werden. Die
Reihenfolge von (1,2), (2,1), (1,3), (2,3) ist nicht bestimmt. Falls die Reihenfolge der
Behandlung (1,2), (2,1), (1,3), (2,3) ist, werden (1,2) zu (3), (2,1) zu (4), (1,3) zu (5) und (2,3)
zu (6) umgewandelt. Falls die Reihenfolge der Behandlung (2,3), (1,2), (2,1), (1,3) ist, werden
(2,3) zu (3), (1,2) zu (4), (2,1) zu (5) und (1,3) zu (6) umgewandelt. Vielleicht sind die neuen
Indexe zweimal unterschiedlich, aber die beiden Ergebnisse sind richtig. (1,1) zu (1), (2,2) zu
(2), (3) bis (6) werden zu (1,2), (2,1), (1,3), (2,3) zufallig zugewiesen.

5(1,1) --» curse(1,1)|pray(1,1)|bless(1,1)| become.holy(1,1)
curse(1,1) --» curse t5(1,2)

pray(1,1) --»pray_ts5(2,1)

bless{1,1) --»bless_t 5(1,1)

become.holy(1,1} --» become.holy t 5(1,3)

5(2,2) --»curse(2,2)| pray(2,2)| bless(2,2)|=
curse(2,2) --»curse_t 5(2,2)

pray(2,2) --»pray_t 5(2,2)

bless(2,2) --»bless t5(2,2)

s(2,3) --»pray(2,3)| bless(2,3)| become.holy(2,3)|=
pray(2,3) --»pray_t5(2,3)

bless(2,3}) --» bless_t 5(2,3)

become.holy(2,3) --> become.holy t 5(2,3)

s(1,3) --»pray(1,3)| bless(1,3)| become.holy(1,3)
pray(1,3) --»pray_t 5(2,3)

bless{1,3}) --» bless_t 5(1,3)

become.holy(1,3) --> become.holy t S(1,3)

5(1,2) --»curse(1,2)| pray(1,2)|bless(1,2)
curse(l,2) --» curse_t 5(1,2)

pray(1,2) --»pray_t 5(2,2)

bless{1,2) --»bless_t 5(1,2)

5(2,1) --» curse(2,1)| pray(2,1)| bless(2,1)| become.holy(2,1)|=
curse(2,1}) --» curse_t 5(2,2)

pray(2,1) --»pray_t5(2,1)

bless{2,1) --»bless_t 5(2,1)

become.holy(2,1) --> become.holy t 5(2,3)

Die Abbildung 21. Die Kompositionsgrammatik von existence(pray) und not co-
existence(curse, become holy).

28

3. Implementierung

Dann werden alle komplexen Indexe der Kompositionsgrammatik CG zu einfachen Indexe
umgewandelt. In diesem Beispiel sind (1,1)=>(1), (2,2)2>(2), (1,2)=>(3), (2,1)>(4),
(1,3)=>(5) und (2,3)->(6). Danach wird MergingAlgorithmus(CG,G3) wieder benutzt, d.h. das
Programm verschmilzt G3 zur erhaltenen Grammatik CG. Die produzierte Grammatik ist auf
Abbildung 22 zu sehen. Dann wird die Klasse Rename nochmal benutzt. Zum Schluss
bekommen wir die finale Kompositionsgrammatik, die sich im Anhang befindet.

5(1,1) --» curse(1,1)| pray(1,1)] bless(1,1)|become.holy(1,1)

curse(1,1) --» curse t 5(3,2)

pray(1l,1) --» pray_t 5(4,1)

bless{1,1) --» bless t 5(1,1)
become.holy(1,1} --» become.holy t 5(5,1)
5(2,2) --» curse(2,2)|pray(2,2)|bless(2,2)
curse(2,2) --» curse_ t 5(2,2)

pray(2,2) --» pray_t 5(2,1)

bless{2,2) --» bless t 5(2,2)

5(6,1) --» pray(6,1)| bless(6,1)|become.holy(6,1)]=
pray(6,1) --» pray_t 5(6,1)

bless({6,1) --» bless t 5(6,1)

become.holy(6,1) --» become.holy t 5(6,1)
5(2,1) --» curse(2,1)| pray(2,1)| bless(2,1)]=
curse(2,1) --» curse t 5(2,2)

pray(2,1) --» pray_t 5(2,1)

bless({2,1) --» bless t 5(2,1)

5(4,1) --» curse(4,1)| pray(4,1)| bless(4,1)| become.holy(4,1)]=
curse(4,1) --¥ curse_t 5(2,2)

pray(4,1) --» pray_t 5(4,1)

bless{4,1) --» bless_t 5(4,1)

become.holy(4,1}) --»> become.holy t 5(&,1)

5(5,1) --» pray(5,1)| bless(5,1)|become.holy(5,1)
pray(s,1) --» pray_t 5(6,1)

bless(5,1) --» bless t 5(5,1)
become.holy(5,1) --» become.holy t 5(5,1)
5(3,2) --» curse(3,2)| pray(3,2)| bless(3,2)]
curse3,2) --¥ curse_t 5(3,2)

pray(3,2) --» pray_t 5(2,1)

bless({3,2) --» bless t 5(3,2)

Die Abbildung 22. Die Kompositionsgrammatik von CG und response(curse, pray).

Jetzt testen wir ein anderes Beispiel ,,medical“. Es befindet sich im Pfad ,\declare-
2.2.0\declare-2.2.0\examples\medical.xml*“. Die Abbildung 23 ist das ConDec Modell vom
Beispiel ,,medical®“. Zuerst bekommen wir die sechs Grammatiken: init(examination),
init(examination), precedence(x-ray,(surgery,cast,fixation)), choice 1 of
4(cast,surgery,sling,fixation), response(surgery rehabilitation) und not co-existence(cast,
fixation). Diese sechs Grammatiken heifen G1, G2, G3, G4, G5 und G6. Weil das Template

29

3. Implementierung

init() existiert, wird die Klasse Merginglnits zuerst angerufen. Diese Klasse mischt alle init()
(G1 und G2 in diesem Beispiel) zusammen. Nach dem ,,Join-Algorithmus®[1] bekommen wir
die Zwischengrammatik CG als die Kompositionsgrammatik von mehreren init(). Weil G1
und G2 gleich sind, ist das Ergebnis der Komposition auch init(examination). Die
resultierende Grammatik beginnt mit S(0). Jetzt wird MergingAlgorithmus(CG,G3)
angewendet, d.h. MergingAlgorithmus(Kompositionsgrammatik ~ mehrerer init(),
precedence(x-ray,(surgery,cast,fixation))). Dann wird die Klasse Rename benutzt und eine
neue Zwischengrammatik bekommen. Das Ergebnis ist wie die Abbildung 24. Die oben
erwahnten Schritte werden wiederholt, bis alle Grammatiken behandelt werden. Zum Schluss
bekommen wir die finale Kompositionsgrammatik, die sich im Anhang befindet.

rﬁw

examination

______ ¥ rehabilitation
regsponse

surgery

X-ray sling

precedence

medication

fixation

Die Abbildung 23. Das Beispiel ,,medical* im declare-2.2.0.

5(8) --» examination(8) H(B)

examination(B) --» examination t

examination t H{8) --» 5(1)

5(1) --> examination(1) | medication(1) | rehabilitation(1) | sling(1)
x-ray(1)|s

examination(1l) --» examination_t 5(1)

medication(1l) --»> medication t 5(1)

rehabilitation{1) --» rehabilitation_t S(1)

sling(1) --» sling t 5(1)

x-ray(l) --» x-ray_t 5(2)

5(2) --> examination(2) | medication(2) | rehabilitation(2) | sling(2)
surgery(2) |x-ray(2) |cast(2) | fixation(2) | €

examination(2) --» examination_t 5(2)

medication(2) --»> medication t 5(2)

rehabilitation{2) --» rehabilitation_t S5(2)

sling(2) --» sling t 5(2)

surgery(2) --» surgery t 5(2)

x-ray(2) --» x-ray_t 5(2)

cast(2) --» cast t 5(2)

fixation(2) --> fixation_t 5(2)

Die Abbildung 24. Die Kompositionsgrammatik von MergingAlgorithmus(CG, precedence(x-
ray,(surgery,cast,fixation)))

30

4. Zusammenfassung

4 Zusammenfassung

In der Arbeit wird die Implementierung einer Transformation von der deklarativen Sprache
ConDec zur Kompositionsgrammatiken diskutiert. In der Forschung besteht die Hoffnung,
dass der assembler-ahnliche Charakter von Kompositionsgrammatiken die Grundlage fur die
unifizierte Modellierung bilden kann. Zuerst werden Web Services und ihre Kompositionen in
der Arbeit vorgestellt. Web Services sind die Abstraktionen flr verschiedene Plattformen und
Sprachen, so dass die Aufrufe von Web Services gleich sind. IThre Kompositionen beschreiben
die Art und Weise wie Web Services miteinander verknupft sind. Dann wird der Begriff de-
klarative Sprache beschrieben. Die Vorgehensweise von imperativen Sprachen ist ,,say how to
do something*. Zum Unterschied von imperativen Sprachen ist die VVorgehensweise deklarati-
ver Sprachen ,,say what is required and let the system determine how to achieve it*. Durch
den Vergleich ist es klar, dass die deklarativen Sprachen die beiden Anforderungen zwischen
Unterstutzung und Flexibilitat von Systemen gut ausgleichen kdnnen. Danach werden Con-
Dec und die Software Declare vorgestellt. ConDec ist eine deklarative Sprache und die Soft-
ware Declare unterstiitzt ConDec. Dann wird die Implementierung der Transformation aus-
fihrlich beschrieben. Durch das Klassendiagramm werden die Funktionen der Klassen vom
Transformationspragramm vorgestellt. Das Aktivitidtsdiagramm beschreibt den Ablauf vom
Transformationspragramm. Daruber hinaus wird eine detaillierte Diskussion tber die Heraus-
forderungen der Transformation gefiihrt. Die Diskussion ist ber einige Templates, die in der
Arbeit[1] nicht vorkommen. Zum Schluss werden zwei Testfélle gepruft, die die eigenen Bei-
spiele in declare-2.2.0 sind.

31

Anhang

A.1 Die finale Kompositionsgrammatik vom Beispiel ,religion“

S(1) -->pray(1)

pray(4) -->pray_t S(4)

bless(2) --> bless_t S(2)

curse(1) -->curse_t S(3)

curse(5) -->curse_t S(2)

S(5) --> curse(5)

bless(6) --> bless_t S(6)

S(5) -->¢

S(5) -->pray(5)

become.holy(7) -->become.holy t S(7)
S(1) --> bless(1)

S(4) -->¢

curse(3) --> curse_t S(3)

bless(7) --> bless_t S(7)

S(5) -->become.holy(5)

S(6) --> bless(6)

bless(5) --> bless_t S(5)
become.holy(5) -->become.holy t S(6)
pray(3) -->pray_t S(4)

become.holy(1) -->become.holy t S(7)
S(2) --> pray(2)

bless(3) --> bless_t S(3)

S(3) --> bless(3)

32

S(3) --> curse(3)

S(2) --> curse(2)
pray(1) --> pray_t S(5)
S(4) --> pray(4)

S(7) --> bless(7)

S(1) --> become.holy(1)
become.holy(6) --> become.holy_t S(6)
S(6) —->¢

S(2) --> bless(2)
pray(2) -->pray_t S(4)
S(7) --> become.holy(7)
S(5) --> bless(5)

S(6) --> become.holy(6)
pray(5) -->pray_t S(5)
S(1) --> curse(1)
curse(4) --> curse_t S(2)
S(3) --> pray(3)

S(4) --> curse(4)
curse(2) -->curse_t S(2)
pray(6) -->pray_t S(6)
bless(1) --> bless_t S(1)
S(6) --> pray(6)

S(4) --> bless(4)
bless(4) --> bless_t S(4)

S(7) --> pray(7)

33

pray(7) -->pray_t S(6)

A.2 Die finale Kompositionsgrammatiken vom Beispiel ,medical®.

S(7) -->examination(7)

S(9) -->sling(9)

S(7) --> medication(7)

S(6) -->surgery(6)

S(8) --> x-ray(8)

rehabilitation(4) --> rehabilitation_t S(4)
sling(8) -->sling_t S(8)
examination(9) --> examination_t S(9)
S(6) --> cast(6)

x-ray(1l) -->x-ray_t S(9)

S(5) --> x-ray(5)

examination(0) --> examination_t
fixation(9) --> fixation_t S(3)
surgery(4) -->surgery_t S(2)

S(3) -->examination(3)
examination(7) -->examination_t S(7)
S(4) -->surgery(4)

S(7) --> x-ray(7)

S(8) --> rehabilitation(8)

S(3) --> rehabilitation(3)

S(6) --> sling(6)

S(9) --> rehabilitation(9)

S(6) --> medication(6)
examination(8) --> examination_t S(8)

medication(6) --> medication_t S(6)

34

S(0) -->examination(0) H(0)

S(3) -->¢

fixation(5) --> fixation_t S(5)

x-ray(3) -->x-ray_t S(3)

S(4) -->cast(4)

medication(1) --> medication_t S(1)
x-ray(8) -->x-ray_t S(6)

sling(9) -->sling_t S(6)

cast(9) --> cast_t S(4)

S(8) -->examination(8)

S(2) --> cast(2)

S(7) --> rehabilitation(7)

S(4) -->sling(4)

medication(8) --> medication_t S(8)
S(4) --> medication(4)

sling(5) -->sling_t S(5)

S(6) -->examination(6)

cast(4) --> cast_t S(4)

rehabilitation(9) --> rehabilitation_t S(9)
S(4) --> rehabilitation(4)
rehabilitation(7) --> rehabilitation_t S(6)
S(9) -->examination(9)

examination(5) -->examination_t S(5)
examination(1) --> examination_t S(1)
cast(7) -->cast_t S(2)

rehabilitation(5) --> rehabilitation_t S(3)

S(9) --> cast(9)

35

rehabilitation(6) --> rehabilitation_t S(6)
S(1) --> medication(1)

sling(1) -->sling_t S(8)

S(7) --> fixation(7)

sling(7) -->sling_t S(7)

medication(5) --> medication_t S(5)
sling(2) -->sling_t S(2)

S(5) --> rehabilitation(5)

S(7) -->sling(7)

S(2) --> medication(2)

S(1) -->examination(1)

S(8) -->¢

S(1) -->sling(1)

S(9) --> x-ray(9)

examination(4) -->examination_t S(4)
x-ray(2) -->x-ray_t S(2)

x-ray(9) -->x-ray_t S(9)

S(6) --> x-ray(6)

S(7) --> cast(7)

surgery(7) -->surgery_t S(7)
examination(6) -->examination_t S(6)
surgery(6) -->surgery_t S(7)
rehabilitation(8) --> rehabilitation_t S(8)
x-ray(5) --> x-ray_t S(5)

S(1) --> rehabilitation(1)

fixation(3) --> fixation_t S(3)

S(5) -->surgery(5)

36

rehabilitation(1) --> rehabilitation_t S(1)
surgery(9) -->surgery_t S(7)
examination(2) -->examination_t S(2)
S(7) -->surgery(7)

medication(9) -->medication_t S(9)
S(6) -->¢

surgery(2) -->surgery_t S(2)

S(4) -->x-ray(4)

S(5) --> fixation(5)

sling(3) -->sling_t S(3)

S(3) -->surgery(3)

fixation(6) --> fixation_t S(3)
rehabilitation(2) --> rehabilitation_t S(4)
medication(7) --> medication_t S(7)
S(9) -->surgery(9)

S(2) -->examination(2)

S@) -->¢

examination_t H(0) --> examination_t S(1)
x-ray(4) -->x-ray_t S(4)

cast(6) --> cast_t S(4)

x-ray(6) -->x-ray_t S(6)

S(9) --> medication(9)

fixation(7) --> fixation_t S(5)

S(3) --> fixation(3)

medication(3) --> medication_t S(3)
S(5) -->medication(5)

S(6) --> fixation(6)

S(4) -->examination(4)

cast(2) -->cast_t S(2)

S(2) -->surgery(2)

S(2) --> rehabilitation(2)

sling(6) -->sling_t S(6)

S(9) --> fixation(9)

S(8) -->sling(8)

S(3) -->sling(3)

S(6) --> rehabilitation(6)

S(8) --> medication(8)
rehabilitation(3) --> rehabilitation_t S(3)
examination(3) -->examination_t S(3)
x-ray(7) -->x-ray_t S(7)

surgery(3) -->surgery_t S(5)

S(5) -->examination(5)
medication(2) --> medication_t S(2)
S(3) --> medication(3)
medication(4) --> medication_t S(4)
surgery(5) -->surgery_t S(5)
sling(4) -->sling_t S(4)

S(2) -->sling(2)

S(3) --> x-ray(3)

S(1) --> x-ray(1)

S(2) --> x-ray(2)

S(5) -->sling(5)

38

Literaturverzeichnis

[1] Gorlach. Katharina: A Generic Transformation of Existing Service Composition Models to
a Unified Model, Fakultat Informatik, Elektrotechnik und Informationstechnik,
Universitat Stuttgart, 2013

[2] Maja, Pesic: Constraint-Based Workflow Management Systems: Shifting Control to Us-
ers, Technische Universitat Eindhoven, 2008

[3] Biplav Srivastava, Jana Koehler: Web Service Composition - Current Solutions and Open
Problems, IBM India Research Laboratory & IBM Zurich Research Laboratory,
2003

[4] T. Bellwood, u.a.: Universal Description, Discovery and Integration specification (UDDI)
3.0, http://uddi.org/pubs/uddi-v3.00-published-20020719.htm, 2002

[5] R. Chinnici, u.a.: Web Services Description Language(WSDL) 1.1,
http://www.w3.0rg/TR/wsdl, 2001

[6] D. Box, u.a.: Simple Object Access Protocol(SOAP) 1.2, http://www.w3.0rg/TR/SOAP,
2007

[7] H. Foster, S.Uchitel, J. Magee, J. Kramer: Model-based Verification of Web Service Com-
positions, Department of Computing, Imperial College London, 2003.

[8] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, S. Weerawarana: Busi-
ness Process Execution Language For Web Services, Version 1.1, 2003.

[9] D. Fensel, C. Bussler, Y. Ding, B.Omelayenko: The Web Service Modeling Framework
WSMF, Vrije Universiteit Amsterdam & Oracle Corporation, 2002.

[10] D. Skogan, R. Gronmo, I. Solheim: Web Service Composition in UML, Enterprise Dis-
tributed Object Computing Conference, 2004.

[11] M.Jaeger, G. Rojec-Goldmann, G. Muehl: QoS Aggregation for Web Service Composi-
tion using Workflow Patterns, Technische Universitat Berlin, 2004

[12] J. Rao, X. Su: A Survey of Automated Web Service Composition Methods, Department of
Computer and Information Science, S.43-54, Springer-Verlag, 2005.

[13] P.V.Roy, S.Haridi: Concepts, Techniques, and Models of Computer Programming, Swe-
dish Institute of Computer Science, 2004

[14] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, H. Reijers: Imperative versus
Declarative Process Modelling Languages: An Empirical Inverstigation, Univer-
sity of Innsbruck, Humboldt-Universitat zu Berlin, Eindhoven University of
Technology, 2011.

39

http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/SOAP

[15] van der Aalst, Jablonski S: Dealing with workflow change: identification of issues and
solutions, International Journal of Computer Systems Science & Engineering, vol.
15 no.5, 2000

[16] W.M.P. van der Aalst, M.Pesic, H. Schonenberg: Declarative workflows: Balancing be-
tween flexibility and support, S.99-113, Springer-Verlag, 2009

[17] M. Pesic, W. M. P. van der Aalst: A Declarative Approach for Flexible Business Pro-
cesses Management. In Proceedings of the BPM 2006 Workshops, volume 4103
of Lecture Notes in Computer Science, S.169-180, Springer-Verlag, 2006

[18] M.Weske, W.M.P.van der Aalst, H.M.W.Verbeek: Advances in business process man-
agement, Data & Knowledge Engineering 50, 2004

[19] W.M.P. van der Aalst, A.H.M. ter Hofstede, M.Weske: Business Process Management,
Eindhoven University of Technology, Queensland University of Technology und
University of Potsdam, S. 1-12, Springer-Verlag, 2003

40

Erklarung

Hiermit versichere ich, diese Arbeit selbststandig verfasst und nur die angegebenen Quellen
benutzt zu haben. Wortliche und sinngemaRe Ubernahmen aus anderen Quellen habe ich nach
bestem Wissen und Gewissen als solche kenntlich gemacht.

Stuttgart,

41

