

Institut für Architektur von Anwendungssystemen
Universität Stuttgart

Universitätsstraße 38
70569 Stuttgart

Germany

Studienarbeit Nr. 2403

 Unifizierte Service-Komposition für ConDec

Siguang, Liang

Studiengang: Informatik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: Katharina Görlach

begonnen am: 08.11.2012

beendet am: 10.05.2013

CR-Klassifikation: D.3.1, F.4.2

1

Kurzfassung

Heutzutage werden immer mehr Web Services erstellt und regelmäßig modifiziert. Es

empfiehlt sich, mehrere Web Services zu verbinden, besonders wenn kein einzelner Web

Service die Anforderungen der Benutzer zufrieden stellen kann. Komposition von Web

Services ist ein Prozess von Konstrukt des komplexen Web Services aus „atomic“ Web

Services, um die spezifische Aufgabe zu erledigen, d.h. eine Reihenfolge von Web Services.

Aber die Web Services werden in verschiedenen Sprachen und Plattformen implementiert.

Wir hoffen, dass es die Abstraktion für verschiedenen Plattformen und Sprachen gibt, so dass

die Aufrufe der Web Services immer gleich sein können. In dieser Studienarbeit wird

versucht die Transformation von ConDec zu formalen Grammatiken zu implementieren, um

die unifizierte Service-Komposition über ConDec zu ermöglichen. Die Service-

Kompositionen werden mit Hilfe der „hohen“ Beschreibungssprache ConDec modelliert. Die

resultierende Grammatik wird in einer XML-Datei mit einem vorgegebenen XML-Schema

gespeichert und soll bei einem entsprechenden Automaten ausgeführt werden. Darüber hinaus

wird die Architektur des Transformationsprogramms beschrieben. Einige Herausforderungen

in der Transformation von ConDec zu formalen Grammatiken werden auch ausführlich

diskutiert.

3

Inhalt

Kurzfassung .. 1

1 Einleitung ... 4

2 Grundlagen ... 5

2.1 Web Services .. 5

2.1.1 Web Services Kompositionen ... 6

2.2 Deklarative Sprache ... 7

2.2.1 ConDec ... 9

2.2.2 LTL ... 11

2.3 Formale Grammatiken .. 12

2.4 Transformation ... 12

3 Implementierung .. 16

3.1 Architektur des Programms .. 20

3.2 Herausforderungen ... 24

3.2.1 Existence Templates ... 24

3.2.2 Relation Templates ... 25

3.2.3 Choice Templates .. 26

3.2.4 Branching von Restriktionen .. 27

3.3 Testfälle .. 27

4 Zusammenfassung .. 31

Anhang ... 32

A.1 Die finale Kompositionsgrammatik vom Beispiel „religion“ 32

A.2 Die finale Kompositionsgrammatiken vom Beispiel „medical“. 34

Literaturverzeichnis .. 39

Erklärung .. 41

1. Einleitung

4

1 Einleitung

Heutzutage verwenden die Kompanien Computer mehr und mehr, um ihre Geschäfte zu

unterstützen. Es ist via Business-Prozess vorgeschrieben, wie die Geschäfte geschaffen

werden. Die Applikationen unterstützen Business-Prozesse und müssen mit Business-

Prozessen übereinstimmen (Applikation = Businessprozess + Businessfunktion). Die

Änderungen bei der Ausführung von Business müssen baldmöglichst in Applikationen

reflektiert werden. Ein Workflow ist eine Ausführung von Business-Prozess in einem

„computing environment“. Immer mehr Leute interessieren sich für Workflow-Technologie.

Workflow ist die Basis von Business Process Management (BPM), während BPM als „the

next step“ nach der Workflow-Welle im neuzigsten Jahrzehnt betrachtet wird[19]. Weske,

Aalst und Verbeek definieren den Begriff BPM: “Supporting business processes using

methods, techniques, and software to design, enact, control, and analyze operational

processes involving humans, organizations, applications, documents and other sources of

information[18].“ BPM reduziert menschliche Fehler und falsche Kommunikation, lässt

Workflow mehr effektiv und effizient ausführen. Ein Business-Prozess ist eine Aktivität oder

eine Reihe der Aktivitäten, die ein spezifisches Ziel erreichen können.

Die heutigen Betriebe und Organisationen interessieren sich für die Implementierung ihrer

Business-Prozesse via Web Services. Aber die Web Services werden in unterschiedlichen

Sprachen implementiert, deshalb wird die Abstraktion der Web Services für verschiedene

Sprachen und Plattformen versucht. Dadurch hoffen wir, dass die Aufrufe der Web Services

immer gleich sind. Wenn kein einzelner Web Service die Anforderungen der Benutzer zufrie-

den stellen kann, interessieren sich die Benutzer für die Service-Kompositionen. Zuerst wer-

den Web Services und ihre Kompositionen im Abschnitt 2 vorgestellt. Dann werden eine de-

klarative Sprache ConDec und formale Grammatik kurz vorgestellt. Darüber hinaus wird die

Transformation von ConDec zu formalen Grammatiken beschrieben. Die Transformation

wird in Java programmiert. Danach wird es im Abschnitt 3 diskutiert, wie die Transformation

implementiert wird. In diesem Abschnitt wird die Architektur des Transformationsprogramms

auch beschrieben. Einige Herausforderungen für die Transformation werden diskutiert. Dann

zwei Testfälle werden geprüft. Die resultierenden Grammatiken werden mit Hilfe eines ent-

sprechenden Automaten ausgeführt. Der Zweck ist, dass zum Schluss die Transformationen

weiterer Hochsprachen zu Kompositionsgrammatiken implementiert und mit Hilfe der glei-

chen Automatenklassen ausgeführt werden. Beispielsweise werden auch BPEL-Modelle mit

Hilfe eines Automaten ausgeführt, obwohl BPEL eine imperative Beschreibungssprache, im

Gegensatz zur deklarativen Beschreibungssprache ConDec ist. Der Assembler-ähnliche Cha-

rakter von Kompositionsgrammatiken bildet dabei die Grundlage für die Unifizierung. Das ist

„unifizierte Service-Komposition“. Der Abschnitt 4 ist die Zusammenfassung der Arbeit.

2. Grundlagen

5

2 Grundlagen

Vor der Diskussion des Themas „unifizierte Service-Komposition für ConDec“ werden einige

diesbezügliche Technologien und Modellierungssprachen zunächst vorgestellt. Im Abschnitt

2.1 werden zuerst Web Services und ihre Kompositionen vorgestellt. Dann wird der Begriff

deklarative Sprache im Abschnitt 2.2 ausführlich beschrieben. Danach wird formale Gramma-

tik im Abschnitt 2.3 kurz vorgestellt. Zum Schluss werden die Transformationen von ConDec

zu formalen Grammatiken im Abschnitt 2.4 diskutiert.

2.1 Web Services

„Web services are a new breed of Web application. They are self-contained, self-describing,

modular applications that can be published, located, and invoked across the Web. Web

services perform functions, which can be anything from simple requests to complicated

business processes. Once a Web service is deployed, other applications (and other Web

services) can discover and invoke the deployed service. “ ----IBM web service tutorial[9]

Web Services werden als selbstständige, modulare Einheiten von Applikationslogik

beschrieben, die die Business-Funktionalität zu den anderen Applikationen durch

Internetverbindung anbieten[3]. Einige Standards von Web Services werden eingeführt, um

die Kommunikation zwischen verschiedenen Systemen in unterschiedlichen Plattformen,

Programmiersprachen und Modellen zu realisieren, wie Universal Discription, Discovery and

Integration(UDDI)[4] , Web Services Discription Language(WSDL)[5] und Simple Object

Access Protocol(SOAP)[6]. UDDI ist ein Verzeichnisdienst, der speziell für die dynamischen

Aspekte der Katalogisierung von Web Services entworfen wurde. UDDI sucht nicht bei den

Anbietern nach Services. UDDI stellt eine Schnittstelle zwischen Nutzern und Anbietern dar.

Die Anbieter veröffentlichen ihre Services in UDDI, welche von den Nutzern durchsucht

werden. SOAP ist eine Layout-Spezifikation von Nachrichten, mit deren Hilfe Daten

zwischen Systemen ausgetauscht und Remote Procedure Calls (RPC) durchgeführt werden

können. WSDL ist eine plattform-, programmiersprachen- und protokollunabhängige

Beschreibungssprache für Web Services zum Austausch der Nachrichten auf Basis von XML.

Web Services werden durch sechs XML-Hauptelemente definiert: Datentypen (types),

Nachricht (message), Schnittstellentypen (portType), Bindung (binding), Port (port) und

Service (service). Datentypen definieren die verwendeten Datentypen. Nachrichten definieren

die zu übertragenden Nachrichten abstrakt. Schnittstellentypen setzen sich aus abstrakten

Operationen zusammen und definieren damit eine abstrakte Schnittstelle. Binding verknüpft

die abstrakte Schnittstelle an ein konkretes Datenformat und Protokoll. Port weist einem

Binding-Element eine konkrete Adresse zu. Service bildet die nach außen zugänglichen

Elemente eines Service durch mehrere Ports. Klient möchte einen bestimmten Web Service

nutzen und benötigt hierfür die oben sechs Elemente. Diese Informationen werden mit WSDL

genau beschrieben. WSDL funktioniert als eine zu veröffentlichende

Schnittstellenbeschreibung. Nutzer vom Web Service kennt nur WSDL, aber braucht

Programm-Code nicht zu kennen. Eine populäre Kategorie von Web Services ist

„syntaktische Web Services“ und „semantische Web Services“[3]. Für den syntaktischen

Forschungsansatz sind die Schnittstellen von Web Services ähnlich wie Remote Procedure

Call (RPC), während der semantische Forschungsansatz auf logisches Denken über Web

Ressourcen fokussiert. In der Arbeit sind die vorkommenden Web Services „syntaktisch“.

2. Grundlagen

6

Die traditionellen Webseiten haben hauptsächlich zur Aufgabe Informationen zu sammeln.

Aber durch Web Services kann die Software Applikationen auf Webseiten zugegriffen

werden und ausgeführt werden. Web Services unterstützen die Interaktionen zwischen

Business Partners und Business Prozessen dadurch, dass Web Services die Computer und

Geräte untereinander verbinden und die Daten synchron oder asynchron durch Internet

austauschen[9]. Immer mehr der heutigen Betriebe und Organisationen implementieren ihre

Kerngeschäfte und outsourcen andere Applikation Services im Internet. Wegen der Vorteile

von Web Services steigt das Interesse für diesen Vorgang immer mehr, sowohl in Forschung,

als auch in der Industrie.

2.1.1 Web Services Kompositionen
Weil die Zahl der vorhandenen Web Services stetig zunimmt, steigt auch der Bedarf der

Kompositionen der grundlegenden Web Services. Die Forschung über Service-

Kompositionen wird populärer und viele Resultate erscheinen seit einigen Jahren in der Fach-

literatur, z.B. Business Process Model Language (BPML) von Business Process Management

Community und XML Process Definition Language (XPDL) von Workflow Community[10].

D. Skogan, R. Gronmo und I. Solheim meinen, dass obwohl einige Organisationen die Kom-

positionssprachen vorgeschlagen hätten, gäbe es aber bis jetzt noch keinen bestimmten Sie-

ger[10]. Deshalb ist es ihre Intention, Web Services Kompositionen durch UML Aktivitäts-

modelle zu entwerfen. Darüber hinaus verwenden sie OMG’s (Object Management Group)

Model Driven Architecture (MDA), um die ausführbaren Spezifikationen in verschiedenen

Kompositionssprachen zu erzeugen. Es gibt zwei Schwerpunkte in ihrer Arbeit. Einer ist die

Transformation von WSDL Beschreibung zu UML für die Fertigstellung von Kompositions-

modellen. Der andere Schwerpunkt ist die Unabhängigkeit von verschiedenen Web-Services-

Kompositionssprachen. Wegen der Unabhängigkeit kann ein Benutzer seine vorgezogene

Kompositionssprache auswählen. Ihre Theorie ist schon in zwei Kompositionssprachen

BPEL4WS und WorkSCo geprüft geworden. H. Foster, S. Uchitel, J. Magee und J. Kramer

beschreiben eine formale Methode mit Hilfe von Finite State Processes (FSP) Notation, die

die Kompositionen von Web Services Workflows modellieren und verifizieren kann[7]. Im

heutigen Web-Umfeld werden zahllose Web Services erzeugt und aktualisiert. J. Rao und X.

Su meinen, dass die Analyse von Web Services und die manuelle Herstellung von Kompositi-

onsplänen schon über die menschlichen Fähigkeiten hinausgehen. Sie lösen das Problem

durch Cross-Enterprise Workflow und AI Planning[12].

Durch die vorgestellten Forschungen kann deutlich werden, dass wegen der raschen Entwick-

lung von Web Services deren Kompositionen immer wichtiger werden. Es zeigt auch, dass die

Web Services Kompositionen trotzdem eine sehr komplexe Herausforderung darstellen kön-

nen, obwohl es schon viele Forschungen zu verschiedenen Aspekten gibt. Meiner Meinung

nach verursachen drei Gründe diese Komplexität. Erstens, die Zahl von Web Services steigt

zu schnell seit einigen Jahren. Jeder Benutzer kann ein riesiges Repository von Web Services

nutzen. Das bedeutet, dass sich die Komplexität von Services-Kompositionen steigert. Zwei-

tens, Web Services werden regelmäßig erzeugt und aktualisiert. Deshalb muss das Komposi-

tionssystem die Aktualisierung während der Laufzeit suchen und finden. Sie trifft auch die

Entscheidung über aktuelle Informationen. Drittens, Web Services werden von unterschiedli-

chen Organisationen entwickelt. Diese Organisationen verwenden unterschiedliche Konzept-

Modelle, Sprachen und Plattformen, um die Web Services zu realisieren. Meines Wissens

2. Grundlagen

7

nach gibt es noch keine eindeutige Beschreibungssprache, die Web Services in eine identische

Bedeutung transferieren und bewerten kann. Die Forschungsrichtung dieser vorliegenden Ar-

beit soll den dritten Aspekt zum Gegenstand haben. Die Möglichkeit zur unifizierten Model-

lierung und Ausführung von Service-Kompositionen auf Basis von formalen Grammatiken

und Automatentheorie wird diskutiert. Es ist beispielsweise möglich, obwohl BPEL eine im-

perative Sprache und ConDec eine deklarative Sprache ist, dass die beiden mit Hilfe der ein-

geführten Kompositionsgrammatiken durch denselben Automaten ausgeführt werden können.

Die Studienarbeit fokussiert auf die Transformation von ConDec zu den eingeführten forma-

len Grammatiken.

2.2 Deklarative Sprache

Heutzutage ist der Begriff „imperative Sprache“ für die Benutzer nicht mehr fremd, z.B.

BPEL. Trotzdem werden die deklarativen Sprachen mehr und mehr angewendet, denn sie

haben bessere Flexibilität. Der Unterschied zwischen imperativen und deklarativen Sprachen

ist offensichtlich. Die Vorgehensweise von den imperativen Sprachen ist „say how to do

something“, während das Prinzip der deklarativen Sprachen „say what is required and let the

system determine how to achieve it“ ist[13]. Die Betrachtungsweise der imperativen Sprachen

wird als „inside-to-outside“ charakterisiert[14]. Es spezifiziert hauptsächlich die Prozeduren,

wie die Arbeit getan wird. Die imperativen Sprachen erfordern, alle Alternativen im Modell

vor der Ausführung der Prozesse explizit zu spezifizieren. Alle neue Alternativen müssen zu

dem Modell während der „build-time“ hinzugefügt werden. Aber einige Leute meinen, dass

die imperative Betrachtungsweise übermäßig spezifiziert ist[2]. Im Gegensatz dazu verwendet

die Vorgehensweise der deklarativen Sprachen eine „outside-to-inside“ Methode[14]. Es

spezifiziert die Prozesse nicht als „apriori“. Die deklarative Vorgehensweise determiniert

nicht, wie die Prozesse genau arbeiten, sondern nur die nötigen Eigenschaften werden

beschrieben.

Die Entwicklung von Workflow Management System (WFMS) ist von dem Konflikt der

Benutzeranforderungen beschränkt. Einerseits gibt es die Anforderung der Kontrolle aller

Prozesse, so dass die unkorrekte oder unerwünschte Ausführung der Prozesse vermieden

werden können. Andererseits möchten die Benutzer die flexibel Prozesse, die ihre Aktionen

nicht einschränken. Einige Forscher meinen, dass WFMS zu restriktiv ist[15]. Die Abbildung

1 beschreibt die Paradoxie. Die Benutzer hoffen die hohe Flexibilität und die hohe

Unterstützung. Aber hohe Unterstützung bedeutet enge Struktur von Systemen, d.h. niedrige

Flexibilität. Je höher die Flexibilität ist, desto lockerer werden Systeme strukturiert, d.h.

niedrige Unterstützung. Systeme bieten Unterstützung oder Flexibilität, aber nicht die beide.

Die Benutzer brauchen die Balance zu finden.

2. Grundlagen

8

Die Abbildung 1. Die Systeme bieten Unterstützung oder Flexibilität, aber nicht die beide.

Die Benutzer brauchen die Balance zu finden[16].

Die deklarative Vorgehensweise kann die beiden Anforderungen zwischen der Unterstützung

und Flexibilität gut ausgleichen. Die Abbildung 2 zeigt den Vergleich von traditioneller und

„constraint-based“ Vorgehensweise. Die Abbildung 2(a) zeigt drei Typen Szenarios in

Business-Prozessen: (1) Verbotene (forbidden) Szenarios sollen nie geschehen, (2) Optionale

(optional) Szenarios sind erlaubt, aber sollen bei den meisten Fällen vermieden werden. (3)

Erlaubte (allowed) Szenarios können unbedenklich ausgeführt werden. Die Workflow-

Management-Systeme definieren und führen die Modelle der Business-Prozesse aus, die die

Reihenfolge der Aktivitäten in Business-Prozessen spezifizieren. In den traditionellen

Workflow-Management-Systemen spezifizieren die Prozess-Modelle die Reihenfolge der

Aktivitäten explizit, z.B. „control-flow“ eines Business-Prozesses. Mit anderen Worten kann

die Ausführung von Business-Prozessen nur gemäß der expliziten Spezifikation im „control-

flow“, wie die Abbildung 2(b) zeigt. Das schwarze Oval zeigt die Grenze der Aktivitäten, die

vom traditionellen (z.B. imperativen) Prozess-Modell nach der Modellierungsmethode

„inside-to-outside“ definiert werden. Wegen der hohen Unberechenbarkeit der Business-

Prozesse werden viele Ausführungen von erlaubten und optionalen Szenarios nicht vorher

erwartet. Sie werden nicht explizit in „control-flow“ inkludiert. Deshalb ist es für die

traditionellen Systeme unmöglich, alle Untermengen von erlaubten Szenarios auszuführen,

wie die Abbildung 2(b). Die Abbildung 2(c) zeigt die auf Restriktionen basierende

(„constraints-based“) Vorgehensweise, die die beiden erlaubten und optionalen Szenarios

ausführen kann. Statt der expliziten Spezifikation, was möglich in Business-Prozess ist,

spezifizieren die auf Restriktionen basierenden Modelle, was verboten ist. Die mögliche

Ordnung der Aktivitäten wird durch die Restriktionen implizit spezifiziert. Darüber hinaus

gibt es zwei Typen Restriktionen: (1) Mandatorische (mandatory) Restriktionen fokussieren

auf die verbotenen Szenarios, (2) Optionale (optional) Restriktionen spezifizieren die

optionalen Szenarios. Irgendetwas, das die mandatorischen Restriktionen nicht verstößt, ist in

der Ausführung eines Modells möglich. Die deklarative Betrachtungsweise ist auch auf

Restriktionen basierend. Die schwarze fette Grenze in der Abbildung 2(c) repräsentiert die

Modellierungsmethode „outside-to-inside“, die von der deklarativen Vorgehensweise

unterstützt wird. Die deklarative Vorgehensweise ermöglicht die Flexibilität ohne den Verlust

von Unterstützung. Einerseits bietet die deklarative Vorgehensweise mehrere Möglichkeiten

2. Grundlagen

9

der Ausführung von Modell als die imperative Vorgehensweise. Die Benutzer können die

lokale Entscheidung machen, wie der Business-Prozess ausgeführt wird. Andererseits können

die Benutzer die mehreren Restriktionen im deklarativen Prozess-Modell verfolgen, sodass

die Benutzer diese Restriktionen nicht verstoßen. Darüber hinaus zeigt die deklarative

Vorgehensweise den Unterschied zwischen mandatorischen Restriktionen (must be followed)

und optionalen Restriktionen (should be followed). Beim ersten Fall dürfen die Benutzer die

Restriktionen gar nicht verstoßen. Beim zweiten Fall können die Benutzer die Restriktionen

verstoßen. Aber die Benutzer werden im Voraus gewarnt. Die Abbildung 2 zeigt den

Unterschied zwischen imperativer und deklarativer Vorgehensweise deutlich. Die traditionelle

(z.B. imperative) Vorgehensweise verwendet die Verfahrensprozess-Modelle, um die

Ausführungsprozesse explizit (d.h. step-by-step) zu spezifizieren. Die deklarative

Betrachtungsweise ist auf „constraints“ (Restriktionen) basierend. „Anything is possible as

long as it is not explicitly forbidden[16].“ Deshalb spezifizieren die auf Restriktionen

basierenden Modelle die Ausführungsprozesse implizit mit Hilfe von Restriktionen, solang

keine Ausführung die Restriktionen verstößt. Die deklarative Vorgehensweise kann die

Balance zwischen die Flexibilität und Unterstützung finden.

Die Abbildung 2. Der Vergleich zwischen der traditionellen(z.B. imperativ) und der auf

Restriktionen basierenden(z.B. deklarativ) Vorgehensweise[2]

2.2.1 ConDec
ConDec ist eine deklarative, graphische Sprache, die von Aalst und Pesic[17] im Forschungs-

gebiet von Business Process Management (BPM) vorgeschlagen wird. Es zielt auf die Spezi-

fikation, Konstruktion und Überwachung von Business Prozessen mit Hilfe von Restriktionen

zwischen Aktivitäten. Jetzt wird ConDec auch im Gebiet Service-Oriented Architecture

(SOA) angewandt. Die Abbildung 3 zeigt den Unterschied zwischen imperative Sprachen und

ConDec. ConDec beginnt mit allen Möglichkeiten („what“) und nähert sich dem erwünschten

Verhalten (outside-to-inside). Imperative Sprachen beginnen mit der expliziten Spezifikation

von Prozessen („how“) und detaillieren die Prozesse ausführlich (inside-to-outside).

2. Grundlagen

10

Die Abbildung 3. Deklarative Sprache ConDec (outside-to-inside) vs. Imperative Sprachen

(inside-to-outside)[17]

Ein ConDec Modell besteht hauptsächlich aus zwei Teilen: Aktivitäten und Beziehungen. Die

Aktivitäten repräsentieren die Einheiten der Arbeit. Die Beziehungen beschreiben, wie die

Aktivitäten ausgeführt werden, und werden als Restriktionen („constraints“) genannt. In der

folgenden Diskussion repräsentieren alle Aktivitäten „Web Services“.

In der Studienarbeit werden alle ConDec Modelle durch die Software „Declare“ konstruiert.

Declare
1
 ist ein auf Restriktionen basierendes WFMS, das ConDec sowie andere deklarative

Sprachen, wie DecSerFlow, unterstützt. Die Abbildung 4 zeigt die Architektur vom Declare

System. Das System besteht aus drei Komponenten: Designer, Framework und Worklist. Die

Aufgabe von Designer ist „Constraint Templates“ zu herstellen, so dass die konkreten Pro-

zessmodelle konstruiert werden. Framework ist für die Ausführung der Beispiele von Pro-

zessmodellen. Durch Worklist können die aktiven Instanzen erreicht werden.

Die Abbildung 4. Die Architektur von Declare[16]. Es besteht aus 3 Komponenten: Desinger,

Framework und Worklist.

Die meisten Forschungsansätze bieten eine Serie von vordefiniertem Konstrukt, die Abhän-

gigkeit zwischen Aktivitäten in Prozess-Modellen zu beschreiben (z.B. sequence, choice, pa-

1 http://www.win.tue.nl/declare/2011/11/declare-2-2-0-with-modules-released/

2. Grundlagen

11

rallelism, loops usw.). Aber Declare ist anders. Declare benutzt eine „customizable“ Serie von

beliebigen Templates, die Restriktionstemplates („constraint templates“) heißen. In Declare

können die beliebigen auf Restriktionen basierenden Sprachen definiert werden. Für jede

Sprache können die beliebigen Templates herstellt werden[2]. Es ist auch der Grund, warum

Declare mehrere deklarativen Sprachen unterstützen kann. ConDec kann als eine Sammlung

von „Constraint Templates“ angesehen werden. Jedes Template hat (1) einen eindeutigen

Namen, (2) eine graphische Repräsentation und (3) eine formale Spezifikation über seine

Semantik, nämlich Linear Temporal Logic (LTL). Die Abbildung 5 zeigt, wie die Restriktio-

nen durch die Templates in ConDec Modell herstellt werden. Die LTL Formel und die graphi-

sche Repräsentation werden für jede Restriktion nicht separat spezifiziert, sondern eine Rest-

riktion ist auf ein Template basierend. Eine Restriktion erbt den Namen, die graphische Re-

präsentation und die LTL Formel aus dem entsprechenden Template. Die Restriktion wird in

ConDec Modell graphisch repräsentiert, während die darunterliegende LTL Formel verhohlen

bleibt.

Die Abbildung 5. ConDec Templates, Restriktionen und Modelle. Die graphische Repräsenta-

tion wird erbt, aber die LTL Formel ist verhohlen[2].

2.2.2 LTL
LTL ist ein Typ von Logik und für die Beschreibung der Sequenzen von Transitionen zwi-

schen Zuständen in reaktiven Systemen. Wegen ihrer deklarativen Natur wird LTL auch ver-

wendet, um die Restriktionen in den auf Restriktionen basierenden Service-Kompositionen zu

spezifizieren. Zusätzlich von traditionellen logischen Operatoren (wie UND, ODER usw.)

benutzt LTL auch temporale Operatoren, wie always (□), eventually (◇), next (○), until (∪)

und weak until (W)[2]. Z.B. für das Template response(A, B) wird seine Semantik in der LTL

Formel □(A⇒◇(B)) gegeben. Das bedeutet „Whenever activity A is executed, activity B has

to be eventually executed afterwards“. ConDec ist auf Restriktionen basierend und LTL spezi-

fiziert die Semantik formell. Weil LTL Formeln für Laien schwierig zu verstehen sind, ver-

2. Grundlagen

12

bindet ConDec eine graphische Repräsentation zu jedem Template. Deshalb brauchen die

Benutzer keine Kenntnisse über LTL, um ConDec zu benutzen. In der Arbeit wird der Unter-

schied von einigen Templates durch ihre LTL Formeln diskutiert.

2.3 Formale Grammatiken

In der Studienarbeit wird versucht die Transformation von ConDec zu formalen Grammatiken

zu implementieren. Alle ConDec Templates und ihre Kompositionen werden im Format

formaler Grammatiken umgewandelt. Die formalen Grammatiken sind mathematische

Modelle von Grammatiken, die durch die formalen Sprachen beschrieben und erzeugt werden

können. In der Arbeit sind die formalen Grammatiken für ConDec 4-Tupel G=(V, ∑, P, S). V

ist die Menge von Non-Terminals, z.B. S1 und A1. ∑ ist die Menge von Terminals, z.B. a und

b. In P werden alle Produktionsregeln gespeichert. S ist das Startsymbol. Die eingeführten

Grammatiken in der Arbeit fokussieren nur auf die Produktionsregeln, sondern nicht auf die

Ordnung der Symbole[1]. Z.B. bedeutet die Regel D1 D2 X  x Y nicht, dass D1 und D2 sich

auf der linken Seite vom Symbol X. Sie spezifiziert, dass D1 und D2 nötig sind, um x aus X zu

produzieren. D1 und D2 sind im Kontext von X. Aber D1 X D2  x Y, D2 X D1 x Y, X D1 D2

 x Y und X D2 D1 x Y sind semantisch equivalent. In den formalen Grammatiken für

ConDec haben alle Non-Terminals „Typen“. Z.B. Ai, Bi, Ci ∈ Services und Si ∈ Helpers.

Die in der Arbeit resultierenden Grammatiken werden mit Hilfe eines entsprechenden

Automaten ausgeführt. Der Automat ist eine abstrakte Maschine, die ein Modell eines

digitalen, zeitdiskreten Rechners ist. Der Automat kann die resultierenden Grammatiken

einlesen. Nach der Ausführung kann der Automat ein „Wort“ ausdrucken, das die Spur der

Ausführung spezifiziert.

2.4 Transformation

Die grammatischen Produktionsregeln (grammatical production rules) für die Templates in

ConDec repräsentieren die Abhängigkeiten zwischen Aktivitäten, die in deklarativen

Workflow Modellen spezifiziert werden. Vor allem beginnen die Produktionsregeln für die

deklarativen Service-Kompositionen mit einem Start-Symbol, nämlich S1 (falls kein init() und

strong init() existiert) oder S0 (falls es mindestens ein init() oder strong init() gibt). Das Start-

Symbol hat mehrere Versionen, d.h. S2, S3... usw. Alle Si∈Helpers. In der Grammatik von

init() oder strong init() gibt es Hi∈Helpers. Außer Si und Hi präsentieren alle anderen Non-

Terminals die Aktivitäten im deklarativen Modell, z.B. Ai, Bi, Ci usw. In ConDec sind alle

Aktivitäten Services, z.B. Ai, Bi, Ci ... ∈Services. Die Restriktionen für die deklarativen

Service-Kompositionssprachen brauchen nichtdeterministische, kontextfreie (falls kein init()

und strong init() existiert) oder kontextsensitive (falls es mindestens ein init() oder strong

init() gibt) Produktionsregeln und auch das leere Zeichen „ɛ“, um den Prozess zu beenden,

z.B. S→ɛ.

Die angebotenen Templates in ConDec werden in vier Kategorien klassifiziert, d.h. Existence

Templates, Relation Templates, Choice Templates und Negation Templates. Darüber hinaus

gibt es auch eine Situation „branching of constraints“. Die Existence Templates sind unäre

Restriktionen, z.B. existence(A), init(A) und absence(A). Das bedeutet, dass die betreffenden

Regeln die Ausführung von Aktivität A beschränken.

Die Relation Templates sind binäre Restriktionen, die die Abhängigkeiten zwischen zwei

Aktivitäten beschreiben. Z.B. beschreibt response(A,B), dass die Aktivität B in die Zukunft

2. Grundlagen

13

ausgeführt werden muss, wenn die Aktivität A mindestens einmal ausgeführt wird. Die

Abbildung 6 zeigt die Produktionsregeln für die Restriktion response(A,B). Falls A ausgeführt

wird (S1A1 und A1a S2), muss B ausgeführt werden, um die Prozedur zu beenden

(S2B2, B2b S1 und S1 ɛ).

Die Abbildung 6. Produktionsregeln von Restriktion response(A,B).

Die Negation Templates beschreiben die negierten Versionen von einigen Restriktionen, aber

sind nicht gleich der logischen Negation. Z.B. bedeutet not responded existence(A,B), dass die

Aktivität B darf nicht ausgeführt sein (vor und nach A), falls die Aktivität A ausgeführt ist.

Die Abbildung 7 zeigt die Produktionsregeln von not responded existence(A,B). A1aS2 und

B1bS3 garantieren die Restriktion. Es gilt zu beachten, dass die Restriktion not co-

existence(A,B) die gleiche Abhängigkeit in den beiden Richtungen zwischen A und B

beschreibt, d.h. A darf nicht ausgeführt sein, falls B ausgeführt ist, und die Umkehrung ist

auch richtig. Weil die beiden Restriktionen gleich sind, sind ihre Regeln auch gleich.

Die Abbildung 7. Produktionsregeln von not responded existence(A,B) und co-existence(A,B).

Die Choice Templates beschreiben die Auswahl zwischen einigen Aktivitäten. Z.B. choice 1

of 3(A,B,D) bedeutet, dass mindestens ein Aktivität (von A, B, D) ausgeführt wird. Exclusive

choice 2 of 3(A,B,D) bedeutet, dass nur zwei Aktivitäten (aus A, B, D) ausgeführt sein dürfen.

Die oben erwähnten Templates können erweitert sein. Z.B. response(A,B) kann zu

response((A1,A2),B), response(A,(B1,B2)) oder response((A1,A2),(B1,B2,B3)) erweitert werden.

In ConDec heißt diese Erweiterung „branching“. Die Abbildung 8 ist die Regeln für

response(A,(B1,B2)). Die Aktivität B besteht aus B1 und B2. Der Algorithmus von „branching

constraints“ wird in der Arbeit[1] referenziert. Weil die Indexe von Non-Terminals z.B. B11

2. Grundlagen

14

im Transformationsprogramm nicht so repräsentiert werden können, wie in der Abbildung 8,

müssen die Non-Terminals im Programm verbessert werden. Statt B11 wird B(1,1) angewandt.

Das erste „1“ ist der erste Index „1“ von B11, während das zweite „1“ von B(1,1) ist der zweite

Index „1“. Ähnlich statt B21 wird B(2,1) angewandt, usw. Natürlich werden die Non-Terminals

mit nur einem Index, wie S1, A1, auch verbessert, um mit die Non-Terminals wie B(1,1),

B(2,1) übereinzustimmen. Statt S1 wird S(1) benutzt. Ähnlich statt A1, B1, C1 werden A(1),

B(1), C(1) im Programm angewandt.

Die Abbildung 8. Die Produktionsregeln von response(A,(B1,B2)).

In allen Produktionsregeln für die ConDec Restriktionen hat das Non-Terminal C spezielle

Bedeutung. C bedeutet „alle andere Aktivitäten“. Z.B. in der Regeln für response(A,B)

bedeutet C alle andere Aktivitäten außer den Aufgaben A und B. Falls es in einer XML-Datei

nur eine Restriktion response(A,B) gibt, können wir das Non-Terminal C in den

Produktionsregeln einfach anwenden, wie die Abbildung 6 zeigt. Falls es mehrere

Restriktionen in der XML-Datei gibt, ist das Non-Terminal C komplexer. Z.B. ist die

Abbildung 9 ein ConDec Modell „religion“. Es hat vier Aktivitäten und drei Restriktionen.

Für die Restriktion existence(pray) bedeutet C (alle andere Aktivitäten) „curse“, „bless“ und

„become holy“. Für die Restriktion response(curse,pray) wird C durch „bless“ und „become

holy“ in seinen Produktionsregeln ersetzt. Für not co-existence(curse, become holy)

repräsentiert C „pray“ und „bless“ . Die Abbildung 10 ist die Produktionsregeln von

response(curse,pray). In der Regeln ist C „bless“ und „become holy“. Die Anwendung von

Non-Terminal C in anderen Restriktionen existence(pray) und not co-existence(curse, become

holy) ist analog. Das bedeutet, dass das Non-Terminal C für verschiedene Restriktionen in

einer XML-Datei unterschiedlich ist.

Die Abbildung 9. Ein ConDec Modell „religion“

2. Grundlagen

15

Die Abbildung 10. Die Produktionsregeln von response(curse,pray) im Modell „religion“.

In den durch das Programm produzierten Regeln, werden die Namen von Aktivitäten einfach

statt den A, B, C usw. verwendet, wie die Abbildung 10. Hierbei kann ein Problem entstehen.

Z.B. im oben erwähnten Restriktion response(curse,pray) beinhaltet der Name von der

Aktivität „become holy“ ein Leerzeichen. Als Name von Aktivität in ConDec Modell ist diese

Situation erlaubt. Aber das Programm benutzt den Namen von Aktivität einfach als den

Namen von Non-Terminal. Deshalb wird „become holy“ als der Name von Non-Terminal in

den Produktionsregeln auftreten. Weil die produzierten Regeln durch einen Automaten

ausgeführt werden müssen und der Automat das Leerzeichen als Trennungszeichen von

Symbolen in den Produktionsregeln behandelt, müssen die Namen von Non-Terminals mit

Leerzeichen verbessert werden. Das Leerzeichen in Namen von Non-Terminals werden durch

ein Punkt „.“ ersetzt. Z.B. für den Aktivitätsnamen „become holy“ ist sein entsprechender

Non-Terminalname in den Produktionsregeln „become.holy“. Die Terminals sollen auch

verbessert werden. Weil die Non-Terminals A, B, C usw. durch die Namen von Aktivitäten

ersetzt werden, werden ihre entsprechenden Terminals a, b, c usw. auch durch „Non-

Terminalname_t“ ersetzt. Z.B. für das Non-Terminal „become.holy“ ist „become.holy_t“ sein

entsprechendes Terminal in den Produktionsregeln, wie in der Abbildung 10.

3. Implementierung

16

3 Implementierung

Im Abschnitt wird es ausführlich vorgestellt, wie das Transformationsprogramm die Trans-

formation implementiert. Im Abschnitt 3.1 werden die Architektur des Programms durch das

Klassendiagramm und das Aktivitätsdiagramm beschrieben. Im Abschnitt 3.2 werden einige

Ausforderungen diskutiert. Die Inhalte von Abschnitt 3.3 sind über zwei Testfälle.

Wenn ein graphisches Modell in der Software Declare gespeichert wird, wird es in einer

XML-Datei gespeichert. Meine Aufgabe ist, ein Transformationsprogramm zu erstellen. Die

Eingabedatei ist die auf ConDec basierende XML-Datei, und die Ausgabedatei ist eine Kom-

positionsgrammatik, die durch einen Automaten ausgeführt werden kann. Eine solche XML-

Datei von ConDec beinhaltet viele Elemente, die die graphische Repräsentation beschreiben,

z.B. <cellheight="50.0" id="1" width="90.0" x="179.0" y="155.0" />. Diese Informati-

onen sind für die Studienarbeit nicht relevant und werden daher nicht weiter behandelt. Das

Transformationsprogramm zieht nur die notwendigen Informationen über die Restriktionen

heraus, d.h. die Informationen, die sich in Tag-Paaren <acitivitydefiniti-

ons>...</acitivitydefinitions>, <data>...</data> und <constraintdefiniti-

ons>...</constraintdefinitions> befinden. Aber nicht alle Informationen in diesen Tag-Paaren

sind nötig.

Die Abbildung 11. <activitydefinitions> beinhaltet alle Aktivitäten, die in XML-Datei vor-

kommen.

3. Implementierung

17

Das Element <activitydefinitions>...</activitydefinitions> beinhaltet alle Aktivitäten in der

XML-Datei, z.B. <activity id="1" name="kochen 1">...</activity>, <activity id="5" na-

me="essen 5">...</activity> usw., wie die Abbildung 11. Die Eigenschaft „name“ ist der Na-

me von Aktivität. Die Namen dürfen nicht dupliziert sein. Jedes Tag (Element in spitzen

Klammern eingeschlossenen Kürzel) <activity> kann das Tag <remote task=“XXX“> und das

Tag <datamodel> beinhalten (<autorization> hat keine Beziehung zur Arbeit.). <remote

task=“XXX“> bedeutet, dass diese Aktivität ein Web Service repräsentiert. <datamodel>

zeigt die Ein/Ausgabe-Parameters der Aktivität, z.B. <data element="1" type="0" />. In der

XML-Datei gibt es noch das Tag <dataelement id="1" initial="aa" name="X" type="string"

/>, wie die Abbildung 12. Die Bedeutungen von der Eigenschaft id=“1“ und der Eigenschaft

element=“1“ in <data element="1" type="0" /> sind gleich. Zuerst wird die Eigenschaft ele-

ment=“1“ in <data element="1" type="0" /> herausgezogen. Dann suchen wir in <da-

ta>...</data>, welches <dataelement id=“XX“ initial=“XX“ name=“XX“ type=“XX“> die

Eigenschaft id=“1“ hat. Falls ein solches <dataelement> gefunden ist, werden <data ele-

ment="1" type="0" /> und <dataelement id="1" initial="aa" name="X" type="string" /> ver-

bunden. Durch element=“1“ und id=“1“ können die Initialisierungsinhalte, Name und Typ

vom Ein/Ausgabe-Parameter gefunden werden. Die Eigenschaft type=“0“ von <data> in <da-

tamodel> in der Abbildung 11 zeigt, ob es Eingabe oder Ausgabe oder Eingabe/Ausgabe ist.

Type=“0“ bedeutet Eingabe, type=“1“ bedeutet Ausgabe, type=“2“ bedeutet Einga-

be/Ausgabe. Durch <data element="1" type="0" /> in der Abbildung 11 und <dataelement

id="1" initial="aa" name="X" type="string" /> in der Abbildung 12 können wir wissen, dass

die Aktivität „kochen 1“ eine Eingabe hat. Der Eingabename ist „X“. Der Eingabetyp ist

„string“. Der Initialisierungsinhalt ist „aa“.

Die Abbildung 12. <dataelement> beinhaltet die Eigenschaften von Ein/Ausgabe-Parameters.

Das Element <constraintdefinitions>...</constraintdefinitions> umfasst alle Restriktionen in

der XML-Datei, wie in der Abbildung 13. Es beinhaltet ein oder mehrere <constraint>-

Elemente. Jedes <constraint> repräsentiert ein entsprechendes Template und beinhaltet ein

Element <template>. Jedes <template> hat ein paar Tags, z.B. <name>response</name>.

Das ist der Typ von Template. Dadurch kann das in Java programmierte Transformationspro-

gramm entscheiden, welche Grammatik zu produzieren ist. In <text>...</text> ist die LTL-

Formel von Template. In <parameters>...</parameters> werden ein oder mehrere <parame-

ter>-Elemente inkludiert. Jedes <parameter> hat drei Attribute: „branchable“, „id“, „name“,

z.B. für die Restriktion „response(A, B)“ gibt es <parameter branchable=“true“ id=“2“ na-

3. Implementierung

18

me=“A“>...</parameter> und <parameter branchable=“true“ id=“1“ na-

me=“B“>...</parameter>, wie in der Abbildung 13. Branchable=“true“ bedeutet, dass die Ak-

tivität „branchable“ sein kann. „id“ verbindet <parameter> in <parameters> mit <parameter>

in <constraintparameters>. „name“ zeigt den Namen der abstrakten Aktivität in LTL, sondern

nicht den wirklichen Namen der Aktivität im Template. Wir berücksichtigen nur die Attribute

„id“ und „name“. In <constraintparameters> werden die wirklichen Namen der Aktivitäten im

Template gespeichert. <constraintparameters> beinhaltet ein oder mehrere <parameter temp-

lateparameter=“X“>. Die Attribut templateparameter=“X“ wird als die Verbindung mit <pa-

rameter branchable=“X“ id=“X“ name=“X“> benutzt. Jedes <parameter templateparame-

ter=“X“> inkludiert ein <branches>. Jedes <branches> inkludiert ein oder mehrere <branch

name=“XXX“>. <branch name=“XXX“> speichert den wirklichen Namen der Aktivität. Z.B.

für <parameter branchable=“true“ id=“2“ name=“A“> in der Abbildung 13 bedeutet na-

me=“A“ die abstrakte Aktivität A in LTL []((“A“ --> <>(“B“))). Branchable=“true“ bedeutet,

dass die abstrakte Aktivität A „branchable“ sein kann. Das Programm zieht id=“2“ heraus.

Dann sucht das Programm <parameter templateparameter=“2“> in <constraintparameters>.

Falls es gefunden wird, werden alle Attribute name=“XXX“ aus <branch name=“XXX“>

herausgezogen. In der Abbildung 13 bekommen wir < branch name=“kochen 1“/> und <

branch name=“kochen 2“/>. Das bedeutet, dass die abstrakte Aktivität A aus zwei wirkliche

Aktivitäten „kochen 1“ und „kochen 2“ besteht, d.h. response((kochen 1, kochen 2), B).

Ähnlich kann die abstrakte Aktivität B analysieren.

3. Implementierung

19

Die Abbildung 13. <constraintdefinitions> inkludiert alle Restriktionen von XML-Datei.

3. Implementierung

20

3.1 Architektur des Programms

Die Abbildung 14 ist das Klassendiagramm vom Transformationsprogramm. Zuerst ist die

Klasse Excutable die „main class“. Sie ruft die anderen Klassen an. Die Klasse

CompositionGrammar produziert die Grammatiken über alle einzelne Templates, die in der

XML-Datei vorkommen, und speichert sie in Datenaufbau „List< CompositionGrammar>“.

Die Klassen über einzelne Templates produzieren die Grammatiken entsprechendes

Templates, z.B. die Klassen Existence, Existence2 usw. Es gibt 34 Klassen über einzelne

Templates, deshalb werden nur einige Beispiele „Existence“, „Response“ und

„ExclusiveChoice“ in Abbildung 14 aufgeführt. Die Klasse MergingInits verschmilzt die

Grammatiken von mehreren Templates init() und strong init(). Die Klasse

MergingAlgorithmus verschmilzt zwei allgemeine Grammatiken zu einer

Kompositionsgrammatik, z.B. eine neue Kompositionsgrammatik=

MergingAlgorithmus(response(), precedence()). Die Klasse Rename behandelt die Indexe der

Non-Terminals in den Grammatiken. Sie wandelt die komplexen Indexe zu einfachen Indexen

um, z.B. S(1,1) zu S(1). Die Aufgabe der Klasse AnalyseNonTerminal ist, die Indexe und

Symbole von Non-Terminals herauszuziehen. Z.B. kann die Klasse AnalyseNonTerminal

S(1,1) einlesen, und gibt die Informationen zurück, dass S das Symbol ist und (1,1) der Index ist.

Die Klasse GrammarOutput kann eine XML-Datei über die resultierende Grammatik mit

vorgegebenen XML Schema herstellen. Die Klassen ServiceNonTerminal, ServiceParam und

ServiceNonTerminalType sind selbst definierten Datenaufbaue. ServiceNonTerminal wird

benutzt, die Non-Terminals mit Web Services zu speichern. Die Inhalte der Ein/Ausgabe-

Parameters sind im Format ServiceParam gespeichert. Die Typen von Web Services werden

im Format ServiceNonTerminalType definiert. Die Klassen NonTerminal, Terminal und Rule

sind auch Datenaufbaue. Alle vorkommenden Non-Terminals in Grammatiken sind im

Format NonTerminal definiert. Ähnlich ist die Klasse Terminal für alle Terminals in

Grammatiken, während alle Produktionsregeln im Format Rule gespeichert werden.

Das Programm beginnt mit der Klasse Excutable und bekommt eine Variable Document doc.

Dann wird die Klasse CompositionGrammar angerufen, um die Variable doc zu behandeln.

Alle Grammatiken von einzelnen Templates in der XML-Datei werden bekommen. Danach

werden die Klassen MergingInits und MergingAlgorithmus angerufen, um die

Kompositionsgrammatiken zu produzieren. Zum Schluss wird die Klasse GrammarOutput

angerufen, um eine XML-Datei mit dem vorgegebenen Schema zu produzieren.

3. Implementierung

21

Die Abbildung 14. das Klassendiagramm vom Programm.

Die Abbildung 15 ist das Aktivitätsdiagramm vom Transformationsprogramm. Das

Programm beginnt mit der Klasse „Excutable“. Die Grammatiken stammen aus der XML-

Datei, deshalb das Programm die XML-Datei in der Klasse Excutable zuerst „parse“ muss.

DOM von Java wird angewandt, um XML-Datei zu parse, wie der folgende Code.

3. Implementierung

22

Die Abbildung 15. Das Aktivitätsdiagramm vom Programm.

3. Implementierung

23

Alle getesteten Dateien befinden im Pfad „/test/“. Die analysierte XML-Datei wird in der

Variable „doc“ von Typ „Document“ gespeichert. Zuerst wird die Klasse

„CompositionGrammar“ in der Klasse Excutable angerufen. Die Eingabe der Klasse

CompositionGrammar ist die Variable doc, und seine Ausgabe ist eine oder mehrere

produzierten Grammatiken von den einzelnen Templates, die in der XML-Datei vorkommen.

Die Klasse CompositionGrammar produziert diese Grammatiken durch die entsprechenden

Klassen einzelnes Templates. Wie die Abbildung 13 zeigt, jedes vorkommenden einzelnen

Template wird in <constraint>...</constraint> einbezogen. Darin gibt es ein Element für das

entsprechende Template, z.B. <name>existence</name>, das den Typ dieses Templates zeigt.

Dadurch entscheidet das Programm, welche Grammatik zu produzieren ist. Dann ruft das

Programm die entsprechende Templates Klasse an. Z.B. falls es <name>existence</name> ist,

dann ruft das Programm die Klasse „Existence“ auf. Alle produzierten Grammatiken von

einzelnen Templates werden im „List<CompositionGrammar> all_CG“ gespeichert. Dann

entscheidet das Transformationsprogramm die Zahl der produzierten Grammatiken. Falls nur

eine Grammatik hergestellt wird (Das bedeutet, in der XML-Datei gibt es nur ein Template.),

ist sie die finale Grammatik. Falls mehrere Grammatiken produziert werden (Das bedeutet,

die XML-Datei umfasst mehrere Templates), müssen die Grammatiken gemischt werden

(„merge“). Die Mischung von mehreren init() und strong init() ist ein Typ Operation von „∪“

und die Grammatiken sind kontext-sensitiv, während die Mischung der anderen allgemeinen

Grammatiken ein Typ Operation von „∩“ ist und die Grammatiken kontext-frei sind[1].

Deshalb muss das Transformationsprogramm noch kontrollieren, ob Grammatiken von init()

und strong init() in den produzierten Grammatiken (d.h. „List<CompositionGrammar>

all_CG“) existieren. Falls es kein init() oder strong init() gibt (Das bedeutet, alle Grammtiken

sind allgemeine Grammatiken, wie response(), precedence() usw.), wird die Klasse

MergingAlgorithmus direkt wiederholt angerufen, bis alle Grammatiken in all_CG behandelt

werden. Sonst (Es gibt init() oder strong init() in all_CG.) wird die Klasse MergingInits zuerst

angerufen. Durch diese Klasse MergingInits wird die Kompositonsgrammatik aller in all_CG

vorkommenden init() und strong init() produziert. Danach wird die Klasse

MergingAlgorithmus für die Kompositionsgrammatik von MergingInits und die alle anderen

allgemeinen Grammatiken wiederholt angewandt, bis alle Grammatiken in all_CG behandelt

werden. Falls alle Grammatiken in all_CG schon behandelt werden, bekommen wir die finale

Kompositionsgrammatik. Die finale Kompositionsgrammatik wird in „CompositionGrammar

result_Grammar“ gespeichert. Bitte beachten, dass die Klasse MergingAlgorithmus zwei

Grammatiken zu einer Grammatik mischen kann. Aber MergingAlgorithmus kann nur die

„kleine“ Grammatik zur „großen“ Grammatik mischen[1]. Z.B. wird MergingAlgorithmus

angerufen, um zwei Grammatiken G1 und G2 zu mischen, und wir bekommen die Grammatik

G als Ergebnis. Dann mischen wir die dritte Grammatik G3 weiter. Wir können nur G3 in G

mischen, aber dürfen nicht die Grammatik G in G3 mischen. Der Algorithmus ist links-

assoziativ.

In der Prozedur wird die Klasse Rename angerufen, so dass die komplexen Indexe (z.B. S(1,1))

zu den einfachen Indexen (z.B. S(1)) umgewandelt werden. Zuerst wird die Klasse

AnalyseNonTerminal von der Klasse Rename angerufen, um die Indexe von Non-Terminals

herauszuziehen. Weil die produzierten einfachen Indexe sukzessiv sein sollen[1], behandelt

die Klasse Rename zuerst die Indexe im Format (i,i) mit i=i. Die Klasse wandelt S(i,i) zu S(i)

um. Der neue einfache Index i ist ein „i“ von (i,i), z.B. S(1,1) zu S(1), S(2,2) zu S(2). Die Zahl der

Indexe im Format (i,i) ist n. Dann behandelt die Klasse Rename die Indexe (i,j) mit i≠j. Sie

wandelt S(i,j) zu S(k) um. Der neue einfache Index k beginnt mit n+1. Nach jeder

Transformation wird „n=n+1“ angewandt, z.B. S(1,2) zu S(3), S(2,3) zu S(4). Deshalb sind die

neuen einfachen Indexe sukzessiv.

3. Implementierung

24

Die andere Aufgabe der Klasse CompositionGrammar ist, die Ein/Ausgabe-Parameters und

Web-Services-Informationen von Aktivitäten in XML-Datei auszugeben. Diese Ein/Ausgabe-

Parameters werden als Attribute der Tags <dataelement id=“X“ initial=“XX“ name=“XX“

type=“XX“> in XML-Datei gespeichert. Das Transformationsprogramm verwendet

„doc.getElementsByTagName()“ und „.getAttribute()“, um die Attribute „id“, „initial“,

„name“ und „type“ zu bekommen, wie die Abbildung 11 und 12 oben gezeigt haben. Das

Programm baut ein „List<ServiceParam> inputoutput“, und speichert alle Ein/Ausgabe-

Parameters mit den bekommenen Informationen darin. Alle in ConDec Modell

vorkommenden Aktivitäten werden in <activitydefinitions>...</activitydefinitions>

einbezogen. Das Programm muss die Aktivitäten behandeln, deren Typen „Web Services“

sind. Das bedeutet, dass diese Aktivitäten das Tag <remote task=“XXX“> haben, wie die

Abbildung 11 zeigt. Dann werden „.getElementsByTagName()“ und „.getAttribute()“

verwendet, wie oben erwähnt, um die Informationen von Web Services zu bekommen. Zum

Schluss werden die Attribute „id“, Typ, Eingabe und Ausgabe im Format

ServiceNonTerminal in ein „Set<ServiceNonTerminal> servicenonterminal“ gespeichert.

Nach der Produktion der finalen Kompositionsgrammatik wird die Klasse „GrammarOutput“

in der Klasse Excutable angerufen. Die Eingaben von GrammarOutput sind das

Set<ServiceNonTerminal> servicenonterminal, d.h. alle Non-Terminals mit dem Typ von

Web Services, und CompositionGrammar result_Grammar, d.h. die finale

Kompositionsgrammatik. Die Ausgabe ist eine XML-Datei, die „compositiongrammar.xml“

heißt. Die Datei „compositiongrammar.xml“ befindet sich im Pfad „\lsg\grammarfile“. Die

Non-Terminals, Typen von Non-Terminals, Ein/Ausgabe-Parameters, Terminals,

Produktionsregeln, Startsymbol usw. werden in dieser XML-Datei mit vorgegebenen XML

Schema gespeichert.

3.2 Herausforderungen

Das Transformationsprogramm ist auf das declare-2.2.0 basierend. Die Software kann den

ConDec Modell strukturieren, aber es gibt noch einige Fragen, die es im Detail zu behandeln

gilt.

3.2.1 Existence Templates
Strong init(A) und init(A): In declare-2.2.0 werden die Existence Templates strong init(A)

und init(A) angeboten. Die Arbeiten[1, 2, 16, 17] betreffen den Unterschied von den beiden

Restriktionen nicht. Jetzt diskutieren wir ihren Unterschied. Das LTL von init(A) in der durch

declare-2.2.0 produzierten XML-Datei ist :(("A.started" \/ "A.cancelled") W "A").

Das LTL von strong init(A) ist: (("A.started" \/ "A.cancelled") U "A.completed").

Der Unterschied ist nur „weak until A“ und „until A.completed“. Bei „weak until A“ ist A

nicht bestimmt wahr. Bei „until A.completed“ muss A „completed“ sein. Aber die Komposi-

tionsgrammatik behandelt nur die Beziehungen zwischen Aktivitäten[1]. Es wird nicht be-

rücksichtigt, ob A „started“ oder „completed“ ist. Deshalb für die Kompositionsgrammatik

sind die beiden LTL-Formeln gleich. Ihre Grammatiken sind auch gleich, wie die Abbildung

16.

3. Implementierung

25

Die Abbildung 16. Die Produktionsregeln von strong init(A) und init(A) sind gleich.

Last(A). Die Arbeiten [1, 2] erwähnt das nicht. In declare-2.2.0 gibt es das Template last(A),

aber keine Beschreibung. In der durch declare-2.2.0 produzierten XML-Datei ist das LTL von

last(A): [] ("A" -> !X!"A"). Das bedeutet, dass A die letzte Aktivität im Modell sein muss.

Die Grammatik wurde von mir geschrieben, wie die Abbildung 17 zeigt. In einigen Arbeiten

wird der Operator „next“ durch „○“ präsentiert. Aber in den durch declare-2.2.0 produzierten

XML-Dateien repräsentiert „X“ den Operator „next“.

Die Abbildung 17. Die Produktionsregeln von last(A). A ist die letzte Aktivität.

Error(A). In declare-2.2.0 hat das Template error(A) keine Beschreibung. Das LTL von er-

ror(A) ist: (<> ("A.completed") /\ !(<> ("A.started"))). Das bedeutet, dass A

schließlich nicht startet aber fertig ist. Das LTL von absence(A) ist: !(<> ("A.started")

). D.h. A startet gar nicht. Der Unterschied zwischen error(A) und absence(A) ist der Zustand

„<>("A.completed")“. Bedingt durch die Kompositionsgrammatik, die keine Zustände

von Aktivitäten behandelt, nehme ich an, dass die Produktionsregeln von error(A) und ab-

sence(A) gleich sind. Die Abbildung 18 zeigt die Produktionsregeln.

Die Abbildung 18. Die Produktionsregeln von error(A) und absence(A) sind gleich.

3.2.2 Relation Templates
Alternate(A,B) und alternate response(A,B). In der Arbeit[1] gibt es alternate response(A,B),

aber keine alternate(A,B). Die beide kommen in declare-2.2.0 vor. Das LTL-Formel von al-

ternate(A,B) ist:[](("A" -> X((!("A") W "B")))). Seine Beschreibung in declare-2.2.0

ist: „If A is excuted, then next A can not be excuted before B is excuted after the previous A.“

3. Implementierung

26

Z.B. die Folgen CB und ACBACBBAC befriedigen diese Restriktion, die Folge ACAB nicht.

Das LTL von alternate response(A,B) ist:[](("A" -> X((!("A") U "B")))). Die

Beschreibung in declare-2.2.0 ist: „After each A is excuted at least one B is excuted. Another

A can be excuted again only after the first B.“ Der Unterschied ist „weak until B“ und „until

B“. Für alternate(A,B) kann B nicht geschehen. Für alternate response(A,B) muss B nach

jedem A mindestens einmal geschehen. Deshalb nehme ich an, dass die beiden Produktions-

regeln gleich sind, wie die Abbildung 19 zeigt.

Die Abbildung 19. Die Produktionsregeln von alternate(A,B) und alternate response(A,B)

sind gleich.

3.2.3 Choice Templates
choice(A,B). In den Arbeiten[1, 2] wird das Template choice(A,B) nicht diskutiert. Aber in

declare-2.2.0 kommt es vor. Das LTL von choice(A,B) ist:(<> ("A") \/ <>("B")).
Die Beschreibung ist „At least one from A and B has to be excuted“. Seine LTL und Be-

schreibung sind ähnlich wie das Template 1 of 2(A,B). Das LTL von 1 of 2(A,B) ist: <>((

"A" \/ "B")). Die Beschreibung in declare-2.2.0 ist „Either A is excuted at least once, or B

is excuted at least once“. Ich glaube, dass die beiden LTL gleich sind. Deshalb sind ihre Pro-

duktionsregeln auch gleich, wie die Abbildung 20. Der Unterschied in declare-2.2.0 ist, dass 1

of 2(A,B) „not branchable“ ist und choice(A,B) „branchable“ sein kann. Z.B. ist

choice((A1,A2), (B1,B2,B3)) in declare-2.2.0 gültig. Aber 1 of 2((A1,A2), (B1,B2,B3)) ist in decla-

re-2.2.0 nicht erlaubt. Ich glaube, die Produktionsregeln von choice 1 of 3(A,B,D) im declare-

2.2.0 und 1 of 3(A,B,D) in der Arbeit[2] sind auch gleich. Das LTL von choice 1 of 3(A,B,D)

in declare-2.2.0 ist:((<>("A") \/ <>("B")) \/ <>("C")). Das LTL von 1 of

3(A,B,D) in der Arbeit[2] ist <>("A") \/ <>("B")) \/ <>("C"). Deshalb kann ich

vermuten, dass diese beiden Restriktionen gleich sind.

Die Abbildung 20. Die Produktionsregeln von 1 of 2(A,B) und choice(A,B) sind gleich.

Exclusive choice 1 of 3(A,B,D). In der Arbeit[1] gibt es kein Exclusive choice 1 of 3(A,B,D).

Seine Beschreibung in declare 2.2.0 ist „At least two activities from (A,B,C) have to be ex-

cuted.“ Ich glaube, diese Beschreibung ist falsch. Sein LTL in declare-2.2.0 ist:(((((

<>("A") \/ <>("B")) \/ <>("C")) /\ !((<>("A") /\ <>("B")))) /\ !((

3. Implementierung

27

<>("B") /\ <>("C")))) /\ !((<>("A") /\ <>("C")))). Das bedeutet, dass

nur eine Aktivität ausgeführt ist, während die anderen zwei Aktivitäten nicht ausgeführt sein

dürfen. Darüber hinaus ist das LTL von exclusive 1 of 3(A,B,D) in der Arbeit[2] auch falsch.

Die Beschreibung in der Arbeit[2] ist „One of the events A,B or C has to eventually occur, but

the other two can not occur at all.“ Aber sein LTL ist: (<>("A") /\ !<>("B")) /\ !<>(

"C")) \/(!<>("A") /\ <>("B")) /\ !<>("C"))\/(<>("A") /\ !<>("B"))

/\ !<>("C")). <>("A") /\ !<>("B")) /\ !<>("C") bedeutet, A ist ausgeführt

aber B und C nicht ausgeführt sind. !<>("A") /\ <>("B")) /\ !<>("C")bedeutet, B

ist ausgeführt aber A und C nicht. Deutlich ist der rote Teil falsch. Dieser Teil soll „C ist aus-

geführt aber A und B dürfen nicht“ sein. Das richtige LTL vom roten Teil ist: !<>("A") /\

!<>("B")) /\ <>("C"). Das ganze LTL von exclusive 1 of 3(A,B,C) ist: (<>("A") /\

!<>("B")) /\ !<>("C")) \/(!<>("A") /\ <>("B")) /\ !<>("C"))
\/(!<>("A") /\ !<>("B")) /\ <>("C")). Dieses LTL ist gleich wie das LTL von

exclusive choice 1 of 3(A,B,D) im declare-2.2.0. Deshalb glaube ich, dass die Restriktionen

exclusive choice 1 of 3(A,B,D) und exclusive 1 of 3(A,B,D) equivalent sind und die Beschrei-

bung von exclusive choice 1 of 3(A,B,D) im declare-2.2.0 falsch ist. Seine richtige

Beschreibung soll „only one activity is excuted, the other two activities must not be excuted“

sein.

3.2.4 Branching von Restriktionen
Im declare-2.2.0 dürfen einige Restriktionen nicht „branchable“ sein, z.B. chain respon-

se(A,B), choice 1 of 3(A,B,D), choice 2 of 3(A,B,D)... usw. Eine XML-Datei mit der „bran-

ching“ Situation von diesen Restriktionen wird von declare-2.2.0 nicht geöffnet. Z.B. kann

declare 2.2.0 die XML-Datei mit choice 1 of 3((A1,A2),B,D) nicht öffnen. Kein Modell wird in

declare 2.2.0 vorgezeigt. Aber theoretisch sind diese Restriktionen in ConDec „branchable“[1,

2]. Deshalb sollen wir die „branching“ Situationen von diesen Restriktionen berücksichtigen.

Das Programm kann die „branching“ Situationen behandeln.

3.3 Testfälle

Das Programm muss getestet werden. In dem Abschnitt werden zwei geprüfte Beispiele

vorgestellt, das Beispiel „religion“ und das Beispiel „medical“. Sie sind die eigenen Beispiele

von declare 2.2.0. Zuerst sehen wir das Beispiel „religion“. Es befindet sich im Pfad

„\declare-2.2.0\examples\religion\religion.xml“. Die Abbildung 9 ist die graphische

Repräsentation vom ConDec Modell „religion“. Nach der Analyse von der XML-Datei

produziert das Transformationsprogramm drei Grammatiken von einzelnen Templates:

existence(pray), not co-existence(curse, become holy) und response(curse, pray). Ihre

ausführlichen Produktionsregeln sind einfach und werden hier nicht beschrieben. Z.B. G1 ist

die Grammatik von existence(pray), G2 ist die Grammatik von not co-existence(curse,

become holy) und G3 ist die Grammatik von response(curse, pray). Dann wird

MergingAlgorithmus(G1,G2) angewendet und die Kompositionsgrammatik CG bekommen,

d.h. die Kompositionsgrammatik von existence(pray) und not co-existence(curse, become

holy). Die Abbildung 21 zeigt diese Kompositionsgrammatik CG. Die Klasse

MergingAlgorithmus beginnt mit S(1,1). In der Grammatik von existence(pray) gibt es

S(1)curse(1)|pray(1)|bless(1)|become.holy(1). In der Grammatik von not co-

existence(curse, become holy) gibt es S(1)curse(1)|pray(1)|bless(1)|become.holy(1)|ɛ.

Nach dem Merging-Algorithmus von allgemeinen Grammatiken[1] kann S(1,1)

curse(1,1)|pray(1,1)|bless(1,1)|become.holy(1,1) bekommen werden. S(1)ɛ gehört nicht zu

existence(pray) (G1), aber nur zu not co-existence(curse, become holy) (G2), deshalb es

gelöscht wird. In G1 existiert curse(1)curse_t S(1). In G2 existiert curse(1)curse_t S(2).

3. Implementierung

28

Deshalb wird curse(1,1)curse_t S(1,2) in CG hinzugefügt. S(1,2) wird als neues

unbearbeitetes Non-Terminal in die Menge aller unbearbeiteten S(u,v) hinzugefügt. Diese

Menge heißt S. Alle behandelten S(u,v) werden aus S gelöscht. Ähnlich wird

pray(1,1)pray_t S(2,1) in CG hinzugefügt und S(2,1) in die Menge S hinzugefügt. Durch

die gleiche Methode wird bless(1,1)bless_t S(1,1) in CG hinzugefügt. Aber S(1,1) wird

schon bearbeitet, deshalb wird S(1,1) nicht in die Menge S hinzugefügt. Die Klasse

wiederholt diese Schritte, bis alle Non-Terminals in S bearbeitet werden. Dann bekommen

wir die Kompositionsgrammatik von existence(pray) und not co-existence(curse, become

holy), wie die Abbildung 21 zeigt. Durch die Klasse Rename werden die komplexen Indexe

zu einfache Indexe umgewandelt. In der Abbildung 21 gibt es (1,1), (2,2), (1,2), (2,1), (1,3)

und (2,3). Zuerst wandelt die Klasse Rename (1,1) zu (1), (2,2) zu (2) um, wie es im

Abschnitt 3.1 vorgestellt wird. Die restlichen Indexe sollen mit „3“ beginnen. Bitte beachten

Sie, dass die Non-Terminals im Datenaufbau „Set< INonterminal >“ gespeichert werden. Die

Reihenfolge von (1,2), (2,1), (1,3), (2,3) ist nicht bestimmt. Falls die Reihenfolge der

Behandlung (1,2), (2,1), (1,3), (2,3) ist, werden (1,2) zu (3), (2,1) zu (4), (1,3) zu (5) und (2,3)

zu (6) umgewandelt. Falls die Reihenfolge der Behandlung (2,3), (1,2), (2,1), (1,3) ist, werden

(2,3) zu (3), (1,2) zu (4), (2,1) zu (5) und (1,3) zu (6) umgewandelt. Vielleicht sind die neuen

Indexe zweimal unterschiedlich, aber die beiden Ergebnisse sind richtig. (1,1) zu (1), (2,2) zu

(2), (3) bis (6) werden zu (1,2), (2,1), (1,3), (2,3) zufällig zugewiesen.

Die Abbildung 21. Die Kompositionsgrammatik von existence(pray) und not co-

existence(curse, become holy).

3. Implementierung

29

Dann werden alle komplexen Indexe der Kompositionsgrammatik CG zu einfachen Indexe

umgewandelt. In diesem Beispiel sind (1,1)(1), (2,2)(2), (1,2)(3), (2,1)(4),

(1,3)(5) und (2,3)(6). Danach wird MergingAlgorithmus(CG,G3) wieder benutzt, d.h. das

Programm verschmilzt G3 zur erhaltenen Grammatik CG. Die produzierte Grammatik ist auf

Abbildung 22 zu sehen. Dann wird die Klasse Rename nochmal benutzt. Zum Schluss

bekommen wir die finale Kompositionsgrammatik, die sich im Anhang befindet.

Die Abbildung 22. Die Kompositionsgrammatik von CG und response(curse, pray).

Jetzt testen wir ein anderes Beispiel „medical“. Es befindet sich im Pfad „\declare-

2.2.0\declare-2.2.0\examples\medical.xml“. Die Abbildung 23 ist das ConDec Modell vom

Beispiel „medical“. Zuerst bekommen wir die sechs Grammatiken: init(examination),

init(examination), precedence(x-ray,(surgery,cast,fixation)), choice 1 of

4(cast,surgery,sling,fixation), response(surgery rehabilitation) und not co-existence(cast,

fixation). Diese sechs Grammatiken heißen G1, G2, G3, G4, G5 und G6. Weil das Template

3. Implementierung

30

init() existiert, wird die Klasse MergingInits zuerst angerufen. Diese Klasse mischt alle init()

(G1 und G2 in diesem Beispiel) zusammen. Nach dem „Join-Algorithmus“[1] bekommen wir

die Zwischengrammatik CG als die Kompositionsgrammatik von mehreren init(). Weil G1

und G2 gleich sind, ist das Ergebnis der Komposition auch init(examination). Die

resultierende Grammatik beginnt mit S(0). Jetzt wird MergingAlgorithmus(CG,G3)

angewendet, d.h. MergingAlgorithmus(Kompositionsgrammatik mehrerer init(),

precedence(x-ray,(surgery,cast,fixation))). Dann wird die Klasse Rename benutzt und eine

neue Zwischengrammatik bekommen. Das Ergebnis ist wie die Abbildung 24. Die oben

erwähnten Schritte werden wiederholt, bis alle Grammatiken behandelt werden. Zum Schluss

bekommen wir die finale Kompositionsgrammatik, die sich im Anhang befindet.

Die Abbildung 23. Das Beispiel „medical“ im declare-2.2.0.

Die Abbildung 24. Die Kompositionsgrammatik von MergingAlgorithmus(CG, precedence(x-

ray,(surgery,cast,fixation)))

4. Zusammenfassung

31

4 Zusammenfassung

In der Arbeit wird die Implementierung einer Transformation von der deklarativen Sprache

ConDec zur Kompositionsgrammatiken diskutiert. In der Forschung besteht die Hoffnung,

dass der assembler-ähnliche Charakter von Kompositionsgrammatiken die Grundlage für die

unifizierte Modellierung bilden kann. Zuerst werden Web Services und ihre Kompositionen in

der Arbeit vorgestellt. Web Services sind die Abstraktionen für verschiedene Plattformen und

Sprachen, so dass die Aufrufe von Web Services gleich sind. Ihre Kompositionen beschreiben

die Art und Weise wie Web Services miteinander verknüpft sind. Dann wird der Begriff de-

klarative Sprache beschrieben. Die Vorgehensweise von imperativen Sprachen ist „say how to

do something“. Zum Unterschied von imperativen Sprachen ist die Vorgehensweise deklarati-

ver Sprachen „say what is required and let the system determine how to achieve it“. Durch

den Vergleich ist es klar, dass die deklarativen Sprachen die beiden Anforderungen zwischen

Unterstützung und Flexibilität von Systemen gut ausgleichen können. Danach werden Con-

Dec und die Software Declare vorgestellt. ConDec ist eine deklarative Sprache und die Soft-

ware Declare unterstützt ConDec. Dann wird die Implementierung der Transformation aus-

führlich beschrieben. Durch das Klassendiagramm werden die Funktionen der Klassen vom

Transformationspragramm vorgestellt. Das Aktivitätsdiagramm beschreibt den Ablauf vom

Transformationspragramm. Darüber hinaus wird eine detaillierte Diskussion über die Heraus-

forderungen der Transformation geführt. Die Diskussion ist über einige Templates, die in der

Arbeit[1] nicht vorkommen. Zum Schluss werden zwei Testfälle geprüft, die die eigenen Bei-

spiele in declare-2.2.0 sind.

32

Anhang

A.1 Die finale Kompositionsgrammatik vom Beispiel „religion“

S(1) --> pray(1)

pray(4) --> pray_t S(4)

bless(2) --> bless_t S(2)

curse(1) --> curse_t S(3)

curse(5) --> curse_t S(2)

S(5) --> curse(5)

bless(6) --> bless_t S(6)

S(5) -->ε

S(5) --> pray(5)

become.holy(7) --> become.holy_t S(7)

S(1) --> bless(1)

S(4) -->ε

curse(3) --> curse_t S(3)

bless(7) --> bless_t S(7)

S(5) --> become.holy(5)

S(6) --> bless(6)

bless(5) --> bless_t S(5)

become.holy(5) --> become.holy_t S(6)

pray(3) --> pray_t S(4)

become.holy(1) --> become.holy_t S(7)

S(2) --> pray(2)

bless(3) --> bless_t S(3)

S(3) --> bless(3)

33

S(3) --> curse(3)

S(2) --> curse(2)

pray(1) --> pray_t S(5)

S(4) --> pray(4)

S(7) --> bless(7)

S(1) --> become.holy(1)

become.holy(6) --> become.holy_t S(6)

S(6) -->ε

S(2) --> bless(2)

pray(2) --> pray_t S(4)

S(7) --> become.holy(7)

S(5) --> bless(5)

S(6) --> become.holy(6)

pray(5) --> pray_t S(5)

S(1) --> curse(1)

curse(4) --> curse_t S(2)

S(3) --> pray(3)

S(4) --> curse(4)

curse(2) --> curse_t S(2)

pray(6) --> pray_t S(6)

bless(1) --> bless_t S(1)

S(6) --> pray(6)

S(4) --> bless(4)

bless(4) --> bless_t S(4)

S(7) --> pray(7)

34

pray(7) --> pray_t S(6)

A.2 Die finale Kompositionsgrammatiken vom Beispiel „medical“.

S(7) --> examination(7)

S(9) --> sling(9)

S(7) --> medication(7)

S(6) --> surgery(6)

S(8) --> x-ray(8)

rehabilitation(4) --> rehabilitation_t S(4)

sling(8) --> sling_t S(8)

examination(9) --> examination_t S(9)

S(6) --> cast(6)

x-ray(1) --> x-ray_t S(9)

S(5) --> x-ray(5)

examination(0) --> examination_t

fixation(9) --> fixation_t S(3)

surgery(4) --> surgery_t S(2)

S(3) --> examination(3)

examination(7) --> examination_t S(7)

S(4) --> surgery(4)

S(7) --> x-ray(7)

S(8) --> rehabilitation(8)

S(3) --> rehabilitation(3)

S(6) --> sling(6)

S(9) --> rehabilitation(9)

S(6) --> medication(6)

examination(8) --> examination_t S(8)

medication(6) --> medication_t S(6)

35

S(0) --> examination(0) H(0)

S(3) --> ε

fixation(5) --> fixation_t S(5)

x-ray(3) --> x-ray_t S(3)

S(4) --> cast(4)

medication(1) --> medication_t S(1)

x-ray(8) --> x-ray_t S(6)

sling(9) --> sling_t S(6)

cast(9) --> cast_t S(4)

S(8) --> examination(8)

S(2) --> cast(2)

S(7) --> rehabilitation(7)

S(4) --> sling(4)

medication(8) --> medication_t S(8)

S(4) --> medication(4)

sling(5) --> sling_t S(5)

S(6) --> examination(6)

cast(4) --> cast_t S(4)

rehabilitation(9) --> rehabilitation_t S(9)

S(4) --> rehabilitation(4)

rehabilitation(7) --> rehabilitation_t S(6)

S(9) --> examination(9)

examination(5) --> examination_t S(5)

examination(1) --> examination_t S(1)

cast(7) --> cast_t S(2)

rehabilitation(5) --> rehabilitation_t S(3)

S(9) --> cast(9)

36

rehabilitation(6) --> rehabilitation_t S(6)

S(1) --> medication(1)

sling(1) --> sling_t S(8)

S(7) --> fixation(7)

sling(7) --> sling_t S(7)

medication(5) --> medication_t S(5)

sling(2) --> sling_t S(2)

S(5) --> rehabilitation(5)

S(7) --> sling(7)

S(2) --> medication(2)

S(1) --> examination(1)

S(8) --> ε

S(1) --> sling(1)

S(9) --> x-ray(9)

examination(4) --> examination_t S(4)

x-ray(2) --> x-ray_t S(2)

x-ray(9) --> x-ray_t S(9)

S(6) --> x-ray(6)

S(7) --> cast(7)

surgery(7) --> surgery_t S(7)

examination(6) --> examination_t S(6)

surgery(6) --> surgery_t S(7)

rehabilitation(8) --> rehabilitation_t S(8)

x-ray(5) --> x-ray_t S(5)

S(1) --> rehabilitation(1)

fixation(3) --> fixation_t S(3)

S(5) --> surgery(5)

37

rehabilitation(1) --> rehabilitation_t S(1)

surgery(9) --> surgery_t S(7)

examination(2) --> examination_t S(2)

S(7) --> surgery(7)

medication(9) --> medication_t S(9)

S(6) --> ε

surgery(2) --> surgery_t S(2)

S(4) --> x-ray(4)

S(5) --> fixation(5)

sling(3) --> sling_t S(3)

S(3) --> surgery(3)

fixation(6) --> fixation_t S(3)

rehabilitation(2) --> rehabilitation_t S(4)

medication(7) --> medication_t S(7)

S(9) --> surgery(9)

S(2) --> examination(2)

S(4) --> ε

examination_t H(0) --> examination_t S(1)

x-ray(4) --> x-ray_t S(4)

cast(6) --> cast_t S(4)

x-ray(6) --> x-ray_t S(6)

S(9) --> medication(9)

fixation(7) --> fixation_t S(5)

S(3) --> fixation(3)

medication(3) --> medication_t S(3)

S(5) --> medication(5)

S(6) --> fixation(6)

38

S(4) --> examination(4)

cast(2) --> cast_t S(2)

S(2) --> surgery(2)

S(2) --> rehabilitation(2)

sling(6) --> sling_t S(6)

S(9) --> fixation(9)

S(8) --> sling(8)

S(3) --> sling(3)

S(6) --> rehabilitation(6)

S(8) --> medication(8)

rehabilitation(3) --> rehabilitation_t S(3)

examination(3) --> examination_t S(3)

x-ray(7) --> x-ray_t S(7)

surgery(3) --> surgery_t S(5)

S(5) --> examination(5)

medication(2) --> medication_t S(2)

S(3) --> medication(3)

medication(4) --> medication_t S(4)

surgery(5) --> surgery_t S(5)

sling(4) --> sling_t S(4)

S(2) --> sling(2)

S(3) --> x-ray(3)

S(1) --> x-ray(1)

S(2) --> x-ray(2)

S(5) --> sling(5)

39

Literaturverzeichnis

[1] Görlach. Katharina: A Generic Transformation of Existing Service Composition Models to

a Unified Model, Fakultät Informatik, Elektrotechnik und Informationstechnik,

Universität Stuttgart, 2013

[2] Maja, Pesic: Constraint-Based Workflow Management Systems: Shifting Control to Us-

ers,Technische Universität Eindhoven, 2008

[3] Biplav Srivastava, Jana Koehler: Web Service Composition - Current Solutions and Open

Problems, IBM India Research Laboratory & IBM Zurich Research Laboratory,

2003

[4] T. Bellwood, u.a.: Universal Description, Discovery and Integration specification (UDDI)

3.0, http://uddi.org/pubs/uddi-v3.00-published-20020719.htm, 2002

[5] R. Chinnici, u.a.: Web Services Description Language(WSDL) 1.1,

http://www.w3.org/TR/wsdl, 2001

[6] D. Box, u.a.: Simple Object Access Protocol(SOAP) 1.2, http://www.w3.org/TR/SOAP,

2007

[7] H. Foster, S.Uchitel, J. Magee, J. Kramer: Model-based Verification of Web Service Com-

positions, Department of Computing, Imperial College London, 2003.

[8] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, S. Weerawarana: Busi-

ness Process Execution Language For Web Services, Version 1.1, 2003.

[9] D. Fensel, C. Bussler, Y. Ding, B.Omelayenko: The Web Service Modeling Framework

WSMF, Vrije Universiteit Amsterdam & Oracle Corporation, 2002.

[10] D. Skogan, R. Gronmo, I. Solheim: Web Service Composition in UML, Enterprise Dis-

tributed Object Computing Conference, 2004.

[11] M.Jaeger, G. Rojec-Goldmann, G. Muehl: QoS Aggregation for Web Service Composi-

tion using Workflow Patterns, Technische Universität Berlin, 2004

[12] J. Rao, X. Su: A Survey of Automated Web Service Composition Methods, Department of

Computer and Information Science, S.43-54, Springer-Verlag, 2005.

[13] P.V.Roy, S.Haridi: Concepts, Techniques, and Models of Computer Programming, Swe-

dish Institute of Computer Science, 2004

[14] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, H. Reijers: Imperative versus

Declarative Process Modelling Languages: An Empirical Inverstigation, Univer-

sity of Innsbruck, Humboldt-Universität zu Berlin, Eindhoven University of

Technology, 2011.

http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/SOAP

40

[15] van der Aalst, Jablonski S: Dealing with workflow change: identification of issues and

solutions, International Journal of Computer Systems Science & Engineering, vol.

15 no.5, 2000

[16] W.M.P. van der Aalst, M.Pesic, H. Schonenberg: Declarative workflows: Balancing be-

tween flexibility and support, S.99-113, Springer-Verlag, 2009

[17] M. Pesic, W. M. P. van der Aalst: A Declarative Approach for Flexible Business Pro-

cesses Management. In Proceedings of the BPM 2006 Workshops, volume 4103

of Lecture Notes in Computer Science, S.169-180, Springer-Verlag, 2006

[18] M.Weske, W.M.P.van der Aalst, H.M.W.Verbeek: Advances in business process man-

agement, Data & Knowledge Engineering 50, 2004

[19] W.M.P. van der Aalst, A.H.M. ter Hofstede, M.Weske: Business Process Management,

Eindhoven University of Technology, Queensland University of Technology und

University of Potsdam, S. 1-12, Springer-Verlag, 2003

41

Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen Quellen

benutzt zu haben. Wörtliche und sinngemäße Übernahmen aus anderen Quellen habe ich nach

bestem Wissen und Gewissen als solche kenntlich gemacht.

Stuttgart, _____________________ _____________________

