
Institut für Architektur von Anwendungssystemen
Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Studienarbeit Nr. 2406

Unified Service-Composition for
BPEL

Bing Shao

Course of Study: Computer Science

Examiner: Prof. Dr. Frank Leymann

Supervisor: Dipl.-Inf. Katharina Görlach

Commenced: Novermber 08, 2012

Completed: May 10, 2013

CR-Classification: D.2.11, D.3.2, F.3.2, F.4.2, H.4.1

Abstract

Nowadays there are more and more requests from life and business. Those requests can be
realized by composing the existed services. There are multiple models can specify services.
To compose the services which are specified by different models, it’s necessary to unify those
models. Formal grammar is used as unified model. Görlach presents a concept to transform
existing service composition models to a unified model. Based on the work, the control flow
based language, BPEL is focused on in this thesis. This work implements the transformation
of BPEL to formal grammar. The architecture of implementation is introduced. To test and
verify the implementation test cases are represented.

3

Contents

1. Introduction 7

2. Background 9

3. Parsing BPEL 13
3.1. Class Node and Subclass . 13
3.2. Choice of Parsing Method . 16
3.3. Utility Class NodeFactory for Class Node . 17

4. Implementation of Generating Grammar 19
4.1. Architecture . 19
4.2. Transformation . 22
4.3. Test Cases . 24

5. Summary 31

A. Appendix 33
A.1. Predefined Package Grammar . 33
A.2. Test case: Scope with user-defined faultHandlers 33

Bibliography 37

5

List of Figures

1.1. In- and Output of Unified Service-Composition, BPEL file is input, the output
includes the formal grammar and specification of web service and its calls . . . 7

1.2. The Overview of the Processing Module . 8

2.1. The BPM life cycle to compare WFM and BPM [WAV04]. 9

3.1. The Overview of the Processing Module with Parsing BPEL (Step 1) emphasized 13
3.2. The Overview of Class Node and Subclass . 14
3.3. Java XML parsing performance using SAX and DOM [Gor07] 15
3.4. The Overview of Class NodeFactory . 16
3.5. The Activity Diagram of method getNode . 17

4.1. The Overview of the Processing Module with Generating Grammar (Step 2)
emphasized . 19

4.2. Class Diagram for Architecture of Implementation 20
4.3. Activity Diagram of the Process Auction Service. 25
4.4. The Relation of Symbols, which are used in 4.5(a) and 4.5(b) 26
4.5. Compare of the Production Rules of Auction Service based on [Goe13] and

generated by Implementation . 27
4.6. Activity Diagram of the Process Scope with user-defined faultHandlers 28
4.7. The Relation of symbols, which are used in [Goe13, Figure 17(b)] and 4.8 . . . 29
4.8. Production Rules of [Goe13, Figure 17(a)] generated by Implementation 29

A.1. The Classes in Package Grammar and their Relations 34
A.2. Representation of user-defined fault handlers. [Goe13] 35

List of Listings

4.1. Syntax of partnerLinks [AAA+07] . 21
4.2. Syntax of invoke [AAA+07] . 22
4.3. Example to Explain Merging Grammars of BPEL Activities 23

6

1. Introduction

In recent years the web has changed the way we live. To satisfy people’s requests, many
services are running on the web. Man can use them without understanding how they working.
For the business, it’s easier to interchange information with partners. Sometimes the needed
services are not existed. A definite way is to implement a new service. There is also a efficient
solution. By choosing the existed services, put them in logical order and compose them as the
new service. Using service composition, the developing time of new service and the cost of
developing can be less. It’s helpful to increase business benefit and decrease maintain cost.

As a approach to specify business process behavior, the second version of Business Process
Execution Language (BPEL) was announced in 2007 [AAA+07]. As a standard language
in this area BPEL has advantage, more acceptability from industry. But it’s not the only
way to describe business process. There are other models to depict business process, such
as ConDec [PA06], Scufl [OGA+05]. It’s possible, more than one language will be taken
by industry in the future. That’s means, those languages should understand each other,
furthermore communicate, integrate. Use formal grammar the meta-model of a language can
be have, not only for control flow based meta-model, such as BPEL, but also for constraint
based meta-model, such as ConDec. With the help of the formal grammar, a unified model
is a solution. After transformation of BPEL to formal-grammar-based unified model, the
executability of the business process should be verified.

The work in this thesis focused on unified service-composition for BPEL. As figure 1.1 shows
the input is BPEL file, as grammar based unified model the formal grammar of BPEL process
is outputted, and the grammar should be executable by a automaton. The related web service

BPEL File
Unified Service-
Composition for

BPEL
Automaton

Specification of Web Service and its calls

Formal Grammar

Figure 1.1.: In- and Output of Unified Service-Composition, BPEL file is input, the output
includes the formal grammar and specification of web service and its calls

7

1. Introduction

Unified Service-Composition for BPEL : Processing Module

BPEL File Grammar

1
Parsing BPEL

Node
2

Generating
Grammar

Figure 1.2.: The Overview of the Processing Module

and the calls of the service should be specified. The figure 1.2 shows the overview of the
processing module. The first step is Parsing BPEL, after parsing the information of BPEL
process, which described in BPEL file, are saved in a intermediate model, Node. The second
step is Generating Grammar, this step transform the BPEL process to the formal grammar.

This work is structured as follows:

Chapter 2 – Background: The background knowledge that are necessary for this thesis is
introduced.

Chapter 3 – Parsing BPEL: At the beginning read a BPEL file and parse the BPEL
process, then the needed information for the further work is saved in a intermediate
model, Node.

Chapter 4 – Implementation of Generating Grammar: The implementation of this
work and the transformation for BPEL to formal grammar are represented. Test cases
are used to test and verify the implementation.

Chapter 5 – Summary: The conclusion of this thesis will be described.

8

2. Background

In this chapter the needed background knowledge for reading this thesis are briefly introduced.

Business Process Management / Workflow Management

A Business Process Management definition is: “Supporting business processes using methods,
techniques, and software to design, enact, control, and analyze operational processes involving
humans, organizations, applications, documents and other sources of information.” [AHW03].
A Workflow Management System (WFMS) is defined as: “A system that defines, creates
and manages the execution of workfows through the use of software, running on one or more
workflow engines, which is able to interpret the process definition, interact with workflow
participants and, where required, invoke the use of IT tools and applications.” [AHW03].

The Figure 2.1 shows the relationship between workflow management and business process
management using the BPM life cycle. The phases in the life cycle support operational
business processes. The processes are in design phase designed. In configuration phase, the
designed processes are implemented by configuring the process cognizant of a system, e.g.
workflow management system. The enactment phase decide where the operational processes
are executed. Diagnosis phase analyze the processes to identify problems. [WAV04]

Web Services Business Process Execution Language

Web Services Business Process Execution Language (BPEL) [AAA+07] is a kind of XML-
based programming language, used to describe the business process. The target of BPEL is

Figure 2.1.: The BPM life cycle to compare WFM and BPM [WAV04].

9

2. Background

standardization of business process definition. A BPEL process can be composed by one or
more activities. There are two kinds of activities in BPEL, Basics Activities and Structured
Activities. Some steps of the described business process are implemented by web service.

BPEL is dependent on the following standard technologies:

• WSDL: is an XML format for describing network services as a set of endpoints operating
on messages containing either document-oriented or procedure-oriented information.
[CCM+01]

• XML: is a subset of SGML that is completely described in this document. Its goal is to
enable generic SGML to be served, received, and processed on the Web in the way that
is now possible with HTML. [BPSM+97]

• Xpath: is a language for addressing parts of an XML document, designed to be used by
both XSLT and XPointer. [CD+99]

• WS-Addressing: provides transport-neutral mechanisms to address Web services and
messages. [BCC+04]

WSDL [CCM+01] is the most important in those technologies, because BPEL is dependent on
web services. A BPEL process can be published as a WSDL file for web service, and can be
called by other web serves. Note that, BPEL does not support human-machine interaction
directly. The process, which is described by BPEL, communicate only with web services, and
those web services support information interchange with users. The process written by BPEL
can work on the platform or product supporting the BPEL standard.

BPEL supports two kind of business processes, executable and abstract. Executable business
processes define concrete tasks and the needed service calls, can be executed. Abstract processes
describe information interchange between web services, but not behavior details. In this thesis
the executable business process is covered.

Web Services

The W3C definition is “A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web service in a
manner prescribed by its description using SOAP messages, typically conveyed using HTTP
with an XML serialization in conjunction with other Web-related standards.“ [Fer04].

Like BPEL Web Service Description Language (WSDL) is also an XML-based standard. In
BPEL process we use WSDL to call Web services. BPEL process can also be represented as
WSDL for calling. WSDL document uses the following elements in the definition of network
services: [CCM+01]

• Types: a container for data type definitions using some type system (such as XSD).

• Message: an abstract, typed definition of the data being communicated.

10

• Operation: an abstract description of an action supported by the service.

• Port Type: an abstract set of operations supported by one or more endpoints.

• Binding: a concrete protocol and data format specification for a particular port type.

• Port: a single endpoint defined as a combination of a binding and a network address.

• Service: a collection of related endpoints.

Based on the specification, to define a functionality of Web service, the endpoint of service is
necessary. In order to get the message format and protocol details of service, binding should
be known. Obviously the operation is needed, and as the connection point of the functionality
port type is essential. That means, using endpoint of service, binding, port type and operation,
a functionality of service is specified. To call it, the type of parameters should be defined in
message.

Formal Grammar

A formal grammar is defined as the tuple (V,Σ, P, S). The meaning of four parts are:

• V : a finite set of non-terminal symbols.

• Σ : a finite set of terminal symbols. And V ∩ Σ = ∅.

• S : Start symbol. S ∈ V .

• P : a finite set of production rules. the Form of rules is (Σ
⋃
V)∗V (Σ

⋃
V)∗ → (Σ

⋃
V)∗.

Automata

Automata is a abstract computing device that takes a word as input and decides either to
accept it or reject it. A automata is represented formally by a 5-tuple (Q,Σ, δ, q0, F), where:

• Q is a finite set of states.

• Σ is a finite set of symbols, called the alphabet of the automata.

• δ is the transition function, that is, δ : Q× Σ→ Q.

• q0 is the start state, which means, the state of the automaton before any input has been
processed, where q0 ⊆ Q.

• F is a set of states of Q (i.e. F ⊆ Q) called accept states or end states.

11

3. Parsing BPEL

As figure 3.1 shows, parsing BPEL is the first step of the processing module. In this step BPEL
file as input is read and parsed. After parsing, the taken data from input are saved into the
intermediate model, Node. Node represents all kind of activities and scopes of BPEL processes,
such as the basic activities (e.g. invoke, assign), structured activities (e.g. sequence, flow),
scopes (e.g. scope, eventHandler). Except them, a utility class NodeFactory is defined for
class Node, in order to manipulate Node and its subclass easier. The second step, generating
grammar is introduced in chapter 4.

In this chapter, the class Node and its subclass is presented in section 3.1. The section 3.2
shows, how the parsing method is chosen. At the end, the class NodeFactory is introduced in
the section 3.3.

3.1. Class Node and Subclass

Before describe the parsing method, class Node should be introduced. Node is the fundamental
data structure in this work. After parsing, all the information of a XML node in BPEL file
will be saved as data members of class Node. And there are additional data members (cf.
figure 3.2), which to be used in the further step. Among those data members, Children is one
of the most important. It saves all the child nodes of current node. In order to save the child

Unified Service-Composition for BPEL : Processing Module

BPEL File Grammar

1
Parsing BPEL

Node
2

Generating
Grammar

Figure 3.1.: The Overview of the Processing Module with Parsing BPEL (Step 1) emphasized

13

3. Parsing BPEL

Link

... ...

source : Node
target : Node
transitionCondition : Node
joincondition : Node

... ...

Sequence

... ...

... ...
generateGrammar()

Node

... ...

... ...
generateGrammar()

Children : ArrayList<Node>
Grammar : CompositionGrammar
FinalRules : Set<IRule>

Flow

... ...

... ...
generateGrammar()

Figure 3.2.: The Overview of Class Node and Subclass

nodes in the same order as the BPEL file, Children is defined as type ArrayList. Use data
members Children, the original BPEL document will be constructed as a tree model.

Most of method members in class Node are simple, except generateGrammar. The method
is the core of this work. In this method, the grammars of all child activities should be generated
first. Based on its specification, the grammars of child activities are merged. Each kind of
subclass has its own principle, its grammar to generate, therefore the subclass of Node was
defined, such as class Sequence, Flow, etc. Using generateGrammar generated formal
grammar is saved in Grammar (cf. figure 3.2). Its type, CompositionGrammar is described in
figure A.1.

In the generated grammar of a BPEL activities or scopes exists the production rules, which
produce terminal state of the grammar, and the terminal state means the end state of the
activities or scopes. Those production rules are saved in FinalRules (cf. figure 3.2). It will
be used for the merging of grammar in the next chapter. For example, the FinalRules of the
following grammar is the rule (3).

(1) A −→ aB

(2) B −→ bC

(3) C −→ c

Link

14

3.2. Choice of Parsing Method

.

Figure 3.3.: Java XML parsing performance using SAX and DOM [Gor07]

Link is a special subclass of class Node. In WS-BPEL, <link> as child element works with
<flow> activity together, it express the synchronization dependencies of activities inside of the
<flow>. Using the optional element <source> and <target>, the synchronization relationships
between activities are established by <link>’s.

The <source> activity has an optional activity <transitionCondition>, which its value
is a boolean expression. It looks like a trigger for a <link>. When the value of
<transitionCondition> is true, it’s <link> will be activated. Similarly, on the other
side of <link>, the collection element of <target>, <targets> has an optional element
<joinCondition>. The activity will be triggered, only if the value if its <joinCondition>
is true. If no <joinCondition> is specified, the <joinCondition> is the disjunction (i.e. a
logical OR operation) of the link status of all incoming links of this activity. [AAA+07]

The functionality of <link> is the reason why class Link need the additional data mem-
bers (cf. figure 3.2). source saves the Node, which is specified in its optional element
<source>. Like source, target is for element <target>, transitionCondition is for ele-
ment <transitionCondition>, joinCondition is for element <joinCondition>. And Link
does not has its own formal grammar, its functionality can be represented in the grammar of
Flow. Which means, its method generateGrammar does not need to be specified.

15

3. Parsing BPEL

NodeFactory

NODE_SEQUENCE : String
NODE_FLOW : String

ATTRIBUTE_NAME : String
ATTRIBUTE_LINKNAME : String

generateGrammar(Node)
getNode()

... ...

... ...

... ...

NONTERMINAL_TYPE_SERVICES : String
NONTERMINAL_TYPE_HELPERS : String
... ...

Figure 3.4.: The Overview of Class NodeFactory

3.2. Choice of Parsing Method

Usually there are two kind of XML parsers in java, DOM [C+01] and SAX [M+98].

DOM is tree model. The entire XML is parsed and a DOM tree (of the nodes in the XML)
is generated and returned. Once parsed, the DOM tree can be navigated to access the data
embedded in the nodes. Typically the DOM approach is used for small XML structures that
may need to be modified and accessed in different direction once loaded.

SAX is event based. Events are triggered when XML is being parsed. For example, event
startDocument is raised when at the beginning of XML document, and event endDocument
for end of document. SAX reads XML as steam, doesn’t need the whole XML to be loaded
previously.

In general, DOM can manipulate entire XML, traverse in any direction, is easier to use, but
has an overhead of parsing XML before starting. SAX use a tiny part of memory, runs faster,
but traverse node by node, and read only. Onne Gorter has presented performance of XML
parsing using SAX and DOM in java [Gor07], which is observe the difference clearly. As
figure 3.3 shows, using DOM and SAX parsing small document, the overhead of memory and
time is similar. But when document size increased to 1Mb, DOM takes twice the time, and 5
times the memory compared to SAX [Gor07]. In this thesis, we don’t need to modified the
input BPEL process, therefore SAX has it’s advantages, to be chosen.

16

3.3. Utility Class NodeFactory for Class Node

QName return the instanceQName = Sequence? QName = Flow?

Call constructed
function of
Sequence

Yes

No

Call constructed
function of Flow

Yes

No No No

Yes

Call constructed
function

Call constructed
function of Node

Figure 3.5.: The Activity Diagram of method getNode

3.3. Utility Class NodeFactory for Class Node

As mentioned before, Node has multiple subclasses, which are used to save the information of
BPEL activities. In the implementation, instance of Node and its various subclass will be used.
In order to manipulate the instance of Node and all kinds of its subclasses easier, a static class
NodeFactory (cf. figure 3.4) is defined.

For example, instead of the constructed function of the various classes the method getNode (cf.
figure 3.5) is used to get the instance of the classes. After parsing, the tags’ name [BPSM+97]
of the elements in BPEL file can be gotten as a QName [BHL+06]. E.g. the QName of a XML
element <sequence /> is sequence. Use the constructed function of the subclass Sequence,
the instance of the XML element <sequence /> can be initialized. But in the implementation
what we got is the QName instead of the value of the QName. In order to get the instance
of according classes, the method getNode is used in the following implementation. For the
same reason, the method generateGrammar is specified for generating grammar.

In this class, the constants which are used in Node and its subclasses are defined as data
members. It’s easier to maintain them. There are three types of the constants:

• Element names of BPEL document: saves the used tags’ QName of XML elements.

• Element attributes of BPEL document: saves the used name of tags’ attributes of XML
elements.

• Types of non-terminal: saves the used types’ name of non-terminal symbols of formal
grammar.

17

4. Implementation of Generating Grammar

After parsing BPEL file, all the needed information of BPEL process are saved in a tree model,
Node. This chapter focuses on the implementation of generating grammar for BPEL process.
The approach to transform structured activities of BPEL to formal grammar is represented
in [Goe13]. To get the grammar for entire process, the approach of traversing the Node, and
merging of grammar are introduced. The services, which are called in the process, need to
specified. And the implementation should be tested and verified.

In this chapter the architecture of implementation is introduced in section 4.1. The section 4.2
shows, how the Node of a BPEL process is traversed, and the grammars of each activities of
the process are merged together for the entire process. In section 4.3 uses two test cases to
verify the implementation of this work.

4.1. Architecture

As figure 4.2 shows, the implementation in this work is consisted of three packages,
unifiedBpel, unifiedBpel.io and node2grammar. The related package Grammar is a pre-
defined package (cf. figure A.1), not the part of this work. The class Project in package
unifiedBpel is the entrance of the whole process. The file name of the BPEL process is saved
in its data member filename as the input. Then it can be executed by using the procedure
run. It’s comprised of three steps:

Unified Service-Composition for BPEL : Processing Module

BPEL File Grammar

1
Parsing BPEL

Node
2

Generating
Grammar

Figure 4.1.: The Overview of the Processing Module with Generating Grammar (Step 2)
emphasized

19

4. Implementation of Generating Grammar

Project

filename : String
root : Node
grammar : CompositionGrammar
partnerLinks : Set<PartnerLink>

run()
... ...

BPELParser

myContentHandler : BpelContentHandler

BpelContentHandler

BpelDTDHandler

BpelEntityResolver

BpelErrorHandler

myErrorHandler : BpelErrorHandler

myDTDHandler : BpelDTDHandler
myEntityResolver : BpelEntityResolver

project : Project

parse()

ProjectOutputer

saveGrammar()

project : Project

......

......

Node Link

Sequence

Flow

... ...

CompositionGrammar

... ...

... ...

nonTerminals : Set<INonTerminal>
terminals : Set<ITerminal>
rules : Set<IRule>
start : NonTerminal

......

generateGrammar()
... ...

... ...

WSDLParser

getBinding()
......

......

prefixMapping : Map<String, String>
bindingMapping : Map<String, String>
serviceNonTerminalTypes :
Set<ServiceNonTerminalType>

Figure 4.2.: Class Diagram for Architecture of Implementation

1. Parsing BPEL: as mentioned before, the parsing BPEL file is introduced. It is executed
in this step, all the information of the BPEL process are saved in the variable root,
which defined as type Node.

2. Generating Grammar: based on the work of [Goe13], the grammar of the BPEL process
is generated here, and saved in variable grammar.

3. Outputting Grammar: in previous step generated formal grammar is saved to a XML
document in this step.

The functionality of first step and third step are implemented in package unifiedBpel.io.
The functionality of second step is implemented in package node2Grammar.

As mentioned before, the web services, which related to the BPEL process, and its calls should
be specified. The service calls was introduced in [Goe13]. The following information of Web
service are needed for the specification of service calls:

20

4.1. Architecture

Listing 4.1 Syntax of partnerLinks [AAA+07]
1 <partnerLinks>
2 <partnerLink name="NCName"
3 partnerLinkType="QName"
4 myRole="NCName"?
5 partnerRole="NCName"?
6 initializePartnerRole="yes|no"? />+
7 </partnerLinks>

• Address: Address is web service endpoint1, it is specified by using schema
/wsa:EndpointReference/wsa:Address2. Its type should be xs:anyURI3.

• operation: It’s possible, multiple operation in a web service specified. It’s should be
specified, which operation in the service is used.

• binding: the binding of a web service is specified in its WSDL file. The binding
information can be gotten by using class WSDLParser (cf. figure 4.2).

• portType: connection point of the service.

The address of a service should be acquired firstly. Because the binding information of the
service need to be retrieved by access its WSDL document. In order to get the address value,
the following steps are used:

1. Get the attribute partnerLink’s value of the activity.

2. Get the partnerLinkType by using partnerLink’s value. In class Project defines a
variable partnerLinks, which is initialized after parsing BPEL. It saves all the specified
partnerLinks in the BPEL file. As Listing 4.1 shows, the attribute partnerLinkType
must be specified, i.e. by using partnerLinks can get the partnerLinkType.

3. The prefix of partnerLinkType is corresponding to a namespace, which the WSDL
document located. The variable prefixMapping of class Project saves all the Mapping
of prefix and namespaces in the BPEL file. The address of the WSDL is found.

Afterward the class WSDLParser parses the remote WSDL file, and return the binding’s value,
which is implemented in function getBinding. The variable bindingMapping of Project
is used to save the gotten binding’s value according to the service’s address. The specified
services are saved in variable serviceNonTerminalTypes. Once a service is to be specified,
it should be checked, in order to avoid the reduplicated specification for the same service.
There are four types of operation [CCM+01]. To call a specified service, the parameters are
needed.

1A web service endpoint is a (referenceable) entity, processor, or resource where web service messages can be
targeted. [BCC+04]

2wsa is the prefix of namespace http://schemas.xmlsoap.org/ws/2004/08/addressing.
3xs is the prefix of namespace http://www.w3.org/2001/XMLSchema

21

http://schemas.xmlsoap.org/ws/2004/08/addressing
http://www.w3.org/2001/XMLSchema

4. Implementation of Generating Grammar

Listing 4.2 Syntax of invoke [AAA+07]
1 <invoke partnerLink="NCName"
2 portType="QName"?
3 operation="NCName"
4 inputVariable="BPELVariableName"?
5 outputVariable="BPELVariableName"?
6 standard-attributes>
7 ...
8 </invoke>

During the process there are some data generated and needed. The purpose of class Project
is to organize them. For example, a <invoke> activity calls a remote service, based on
[Goe13], the information of the should be defined as type ServiceNonTerminalType. As
Listing 4.2 shows, there is no address attribute. In order to get it, with the help of the
variable partnerLinks can get the prefix of the partnerLinkType, and with the help of
prefixMapping can get the datum of address.

The package unifiedBpel.io means Input and Output functionality for the package
unifiedBpel, it focuses on reading and writing document for unifiedBpel. In this pack-
age class BPELParser is defined to implement the input functionality. As mentioned before,
SAX was chosen as parsing method. Therefore four classes are defined as handlers of SAX,
BpelContentHandler, BpelDTDHandler, BpelEntityResolver, BpelErrorHandler. By us-
ing those classes the functionality of class BPELParser can be realized. Class WSDLParser is
used to get the binding information of service calls. The output functionality is implemented
in class ProjectOutputer. SAX can not modify XML document, therefore ProjectOutputer
uses DOM to realize the functionality. There are no direct relations between the input classes
and class ProjectOutputer, WSDLParser.

The functionality of second step of the function run is realized in package node2Grammar,
i.e. in this package node2Grammar the BPEL process is transformed to formal grammar. The
package node2Grammar is consisted of class Node and its subclass, and the utility class of
class NodeFactory. As mentioned before, after parsing the needed information were saved in
intermediate model, Node. And the BPEL process is reconstructed as a tree model. In order
to get the formal grammar of the whole BPEL process, each element of the tree model should
be traversed. In this work the depth-first algorithm is used for traversing.

4.2. Transformation

The root element of a BPEL file is <process>. A particular BPEL process can be composed
by various activities. Each activities except the root can be nested by another one. As a
type of XML document, activities of a BPEL process are constructed as a tree model. As
mentioned before, after parsing the activities of BPEL file are saved into a tree model, Node,
which has the same structure of the original BPEL process. In order to unify the process to
formal grammar, the tree model need to be traversed.

22

4.2. Transformation

Listing 4.3 Example to Explain Merging Grammars of BPEL Activities
1 <sequence>
2 <flow>
3 <invoke name="S1" />
4 <invoke name="S2" />
5 </flow>
6 <invoke name="S3" />
7 </sequence>

There are two common traversing algorithm, depth-first and breath-first. In structured
activities of BPEL, its subsequent activity can not be activated, before the end of its execution.
Listing 4.3 shows a <flow> activity and its sibling activity, <invoke name="S3" />. Based on
the specification of BPEL, if the child <invoke> S1 activated and <invoke> S2 unactivated,
means the execution of <flow> is not finished. In this case, the <invoke> can not be activated,
because the execution of <flow> isn’t finished yet. In general case, if a BPEL activity has child
activities, based on its specification its children are dealt with before the end of its execution.
Therefore to transform the behavior of BPEL process to the same behavior, which is described
by the corresponded grammar, depth-first algorithm is used for traversing in this work.

In the work of [Goe13], introduced the approach of transformation for structured activities of
BPEL. To get the grammar of entire BPEL process, the grammar of each activity of the process
should be merged together. In BPEL process at the end of the execution of a activities, based
on the specification its subsequent activity should be activated by it. As mentioned before,
the production rules, which produce terminal states of the activity, are saved in FinalRules.
Note that BPEL activity may have more than one end state, and it’s also possible, multiple
production rules produces the same state. By using the help of FinalRules of a activity,
its subsequent activity can be activated. Based on the approach of [Goe13], the grammar of
<flow> in Listing 4.3 has the following production rules:

(1) Start −→ S1S2H

(2) S1 −→ s1
(3) S2 −→ s2
(4) s1s2H −→ s1s2
(5) s2s1H −→ s2s1

with Si ∈ V
si ∈ Σ.

Its FinalRules are rule (4-5). Both of them mean the execution of <flow> is finished. The
different is, rule (4) means S1 finished earlier than S2, whereas rule (5) means S2 finished
earlier than S1. As its subsequent activity, the <invoke name="S3" /> should be activated at
the end of execution of the <flow>, i.e. both of rule (4) and rule (5) need to activate invoke
S3. Its FinalRules (4-5) should be modified as the following:

23

4. Implementation of Generating Grammar

(4) s1s2H −→ s1s2S3
(5) s2s1H −→ s2s1S3
(6) S3 −→ s3

The start symbol of the <invoke name="S3" />’s grammar, S3 was added into the end of
right-hand-side (rhs) of the rules (4-5). The meaning of the new rules (4-5) is after finish of
execution of the <flow>, the S3 is activated. With the new rules (4-5), rules (1-6) mean the
merging of the grammar of the <flow> and <invoke name="S3" />.

Note that the subsequent activity of a activity in BPEL process means behavior subsequence.
It’s not decided by itself, but by its parent activity. In the example of listing 4.3, the
parent activity of the <flow> and <invoke name="S3" /> is a <sequence>. Based on the
specification of <sequence> activity in BPEL, the <invoke name="S3" /> is the subsequent
activity of the <flow>. If the <sequence> is changed to a <flow>, the <invoke name="S3"
/> is no longer the subsequent activity of the <flow>. Both of them should be executed
parallel. Therefore the merging of grammars for activities should be specified in its parent
activity. Every structured activities decides the behavior relations of its children activities,
which specified in [AAA+07]. The merging of grammar in different scene is not the same.
Based on the behavior relations of activities, which are specified in parent activity, the merging
of grammar is different. Consequently the method generateGrammar of each subclasses of
Node has different algorithm, to generate grammar of activities.

4.3. Test Cases

In this section, two test cases are used, to verify the implementation of this work. The first
test cases in this section is example from [AAA+07]. In this test case the basic activities
and structured activities are covered. The second test case is from [Goe13], it tests the
transformation of <scope>. To understand the two processes easier they are both represented
graphical. To verify the results, the production rules based on the approach of [Goe13] and
generated by implementation are compared.

Auction Service

This test case uses a example from [AAA+07, Section 15.4]. This example describes a sim-
plified auction house process. At the beginning of the process, the needed variables are
defined. As figure 4.3 shows, at first step of the process two <receive> activities with name
acceptSellerInformation and acceptBuyerInformation are defined to collect information
of seller and buyer of a auction. The two <receive> has no context relations, therefore
they are contained by a <flow>. After collection the information are saved to the predefined
variables by using the <assign>. The activity registerAuctionResults is a <invoke>. It
calls a service to register the auction, i.e. a instance of auction is initialized. As a <receive>

24

4.3. Test Cases

Figure 4.3.: Activity Diagram of the Process Auction Service.

receiveAuctionRegistrationInformation collects the information of the registered auc-
tion.

A particular auction is actually a information interactive system. It collects the needed
information, and based on its business logic, makes a decision. At the end, the result should
be responded to the seller and buyer. In this process, what in the final step does, is sending
responses back to seller and buyer. There are two <sequence>s, one for seller, another for
buyer. The corresponded <assign> collects the information, which need to be sent. The two
<invoke>, respondToSeller and respondToBuyer do the responses. The two <sequence>s
has no relations, therefore they are contained by a <flow>. The ordering of the steps is firmly.
The information of seller, buyer and auction should be collected firstly. Based on the logic
process the information. And respond the result back. Therefore those steps of entire process
is bounded in a <sequence>.

25

4. Implementation of Generating Grammar

Variables : D1...D6 ←→ V ARIABLE7...V ARIABLE12
First <flow> : S1 ←→ F LOW 16, H1 ←→ F LOW 16.SY NC

acceptSellerInformation : S2 ←→ RECEIV E17, s2 ←→ receive17
acceptBuyerInformation : S3 ←→ RECEIV E20, s3 ←→ receive20

<assign> after first <flow> : D7...D10←→ COP Y 24...COP Y 38, d7...d10←→ copy24...copy38
registerAuctionResults : S4 ←→ INV OKE41, s4 ←→ invoke41

receiveAuctionRegistrationInformation : S5 ←→ RECEIV E42, s5 ←→ receive42
Second <flow> : S6 ←→ F LOW 45, H2 ←→ F LOW 45.SY NC

<assign> for seller responses : D11, D12←→ COP Y 48, COP Y 51, d11, d12←→ copy48, copy51
respondToSeller : S7 ←→ INV OKE55, s7 ←→ invoke55

<assign> for buyer responses : D13, D14←→ COP Y 58, COP Y 61, d13, d14←→ copy58, copy61
respondToBuyer : S8 ←→ INV OKE65, s8 ←→ invoke65

with Symbols in 4.5(a)←→ Symbols in 4.5(b)

Figure 4.4.: The Relation of Symbols, which are used in 4.5(a) and 4.5(b)

Based on the the approach of [Goe13] and merging of grammar. The production rules of
the process is presented in figure 4.5(a), and the rules from the implementation are shows in
figure 4.5(b). In order to observe them easier, the figure 4.4 shows the relations of non-terminals
and terminals between them. There are six variables defined in this process, which represented
by rules (1-7) of figure 4.5(a) and figure 4.5(b). The rules (8-12) of figure 4.5(a) and figure 4.5(b)
mean the first step of the process, collect the information of seller and buyer. After synchro-
nization rules (12-13) the <assign> is activated, which is shown by rules (13-16). The service
calls for registerAuctionResults and receiveAuctionRegistrationInformation are rep-
resented by rules (17-18). In the last step, functionality of the <assign> and respondToSeller
is shown in rules (20-22), rules (23-25) is for another <assign> and respondToBuyer. The
two group of rules are activated by the last <flow> activity, which rule (19) shows. The
synchronization of the <flow> is represented by rules (26-27). By using the help of figure 4.4
it can be concluded, the production rules of figure 4.5(a) and figure 4.5(b) represents the same
process.

26

4.3.
Test

Cases
(1) Start −→ D1

(2) D1 −→ D2

(3) D2 −→ D3

(4) D3 −→ D4

(5) D4 −→ D5

(6) D5 −→ D6

(7) D6 −→ S1

(8) S1 −→ S2S3H1

(9) S2 −→ s2

(10) S3 −→ s3

(11) s2s3H1 −→ s2s3D7

(12) s3s2H1 −→ s3s2D7

(13) D7 −→ d7D8

(14) D8 −→ d8D9

(15) D9 −→ d9D10

(16) D10 −→ d10S4

(17) S4 −→ s4S5

(18) S5 −→ s5S6

(19) S6 −→ D11D13H2

(20) D11 −→ d11D12

(21) D12 −→ d12S7

(22) S7 −→ s7

(23) D13 −→ d13d14

(24) D14 −→ d14S8

(25) S8 −→ s8

(26) s7s8H2 −→ s7s8

(27) s8s7H2 −→ s8s7

with Si ∈ Services

Di ∈ DataContainer

Hi ∈ Helpers

si ∈ Σ.
(a) Production rules of auction ser-

vice based on [Goe13]

(1) Start −→ V ARIABLE7
(2) V ARIABLE7 −→ V ARIABLE8
(3) V ARIABLE8 −→ V ARIABLE9
(4) V ARIABLE9 −→ V ARIABLE10
(5) V ARIABLE10 −→ V ARIABLE11
(6) V ARIABLE11 −→ V ARIABLE12
(7) V ARIABLE12 −→ F LOW 16
(8) F LOW 16 −→ RECEIV E17 RECEIV E20 F LOW 16.SY NC

(9) RECEIV E17 −→ receive17
(10) RECEIV E20 −→ receive20
(11) receive17 receive20 F LOW 16.SY NC −→ receive17 receive20 COP Y 24
(12) receive20 receive17 F LOW 16.SY NC −→ receive20 receive17 COP Y 24
(13) COP Y 24 −→ copy24 COP Y 32
(14) COP Y 32 −→ copy32 COP Y 35
(15) COP Y 35 −→ copy35 COP Y 38
(16) COP Y 38 −→ copy38 INV OKE41
(17) INV OKE41 −→ invoke41 RECEIV E42
(18) RECEIV E42 −→ receive42 F LOW 45
(19) F LOW 45 −→ COP Y 48 COP Y 58 F LOW 45.SY NC

(20) COP Y 48 −→ copy48 COP Y 51
(21) COP Y 51 −→ copy51 INV OKE55
(22) INV OKE55 −→ invoke55
(23) COP Y 58 −→ copy58 COP Y 61
(24) COP Y 61 −→ copy61 INV OKE65
(25) INV OKE65 −→ invoke65
(26) invoke55 invoke65 F LOW 45.SY NC −→ invoke55 invoke65
(27) invoke65 invoke55 F LOW 45.SY NC −→ invoke65 invoke55

(b) Production rules of auction service from the implementation

Figure 4.5.: Compare of the Production Rules of Auction Service based on [Goe13] and generated by Implementation27

4. Implementation of Generating Grammar

Figure 4.6.: Activity Diagram of the Process Scope with user-defined faultHandlers

Scope with user-defined faultHandlers

This test case uses a example from [Goe13, Figure 17], which was used to describe the
transformation for a <scope> with user-defined fault handlers. As a reference it is added in
the appendix of this work. The source code of the process is shown in A.2(a). This process is
very simple. As figure 4.6 shows, a <scope> has a sequence of three <invoke> activities with
name S1, S2, S3, and two fault handlers F1, F2. F1 has a <invoke> activity S4, which will be
activated, once F1 is triggered. Similarly <invoke> S5 is for F2.

The production rules based on approach of [Goe13] are shown in [Goe13, Figure 17(b)], it can
be also located in figure A.2(b). Figure 4.8 shows the production rules from the implementation.
To observe them easier, the relations of the symbols, which used in grammar, is summarized
in figure 4.7. In the process two fault handlers are for <scope> defined, which means there are
three state of execution, regular run and two fault handling mode. There are indicated by t1,
f1 and f2 in A.2(b). Rules (2-9) and (11-12) represents the behavior of the Fault1, similarly
rules (13-22) is for Fault2. Rules (23-33) shows the execution of S1, S2, S3. Before execute
them, the fault handlers should be activated first, which is represented by the right-hand-side
of rules (1,23,26). If the state is t1, S1, S2, S3 can be executed. If the state is f1 or f2, they
are aborted, which is shown in rules (24-25, 27-28, 30-31). Rules (34-37) adapt the execution
state to the end state. With the help of figure 4.7, it can be verified, the production rules of
[Goe13, Figure 17(b)] and 4.8 are accordant.

28

4.3. Test Cases

<scope> : R1 ←→ ST ART.R, T1 ←→ ST ART.T, t1 ←→ start.t, H ′
8 ←→ ST ART.F AULT ′

: b←→ start.b, r ←→ start.r, q ←→ start.q

<invoke>s : S1...S3 ←→ INV OKE7...INV OKE9, S4 ←→ INV OKE3, S5 ←→ INV OKE5
: s1...s3 ←→ invoke7...invoke9, s4 ←→ invoke3, s5 ←→ invoke5

Fault handler F1 : H1 ←→ CAT CH2.F AULT, H ′
1 ←→ CAT CH2.F AULT ′, H3 ←→ CAT CH2.H

: F1 ←→ CAT CH2.F, f1 ←→ catch2.f, b′
1 ←→ catch2.b

Fault handler F2 : H2 ←→ CAT CH4.F AULT, H ′
2 ←→ CAT CH4.F AULT ′, H4 ←→ CAT CH4.H

: F2 ←→ CAT CH4.F, f2 ←→ catch2.f, b′′
1 ←→ catch4.b

with Symbols in [Goe13, Figure 17(b)]←→ Symbols in 4.8

Figure 4.7.: The Relation of symbols, which are used in [Goe13, Figure 17(b)] and 4.8

(1) Start −→ start.t CAT CH2.F AULT CAT CH4.F AULT INV OKE7
ST ART.R

(2) start.t CAT CH2.F AULT −→ ST ART.T

(3) start.t CAT CH2.F AULT −→ CAT CH2.F

(4) catch2.f CAT CH2.F AULT −→ catch2.f

(5) catch4.f CAT CH2.F AULT −→ catch4.f

(6) start.t CAT CH2.F AULT ′ −→ ST ART.T catch2.b

(7) start.t CAT CH2.F AULT ′ −→ CAT CH2.F catch2.b

(8) catch2.f CAT CH2.F AULT ′ −→ catch2.f catch2.b

(9) catch4.f CAT CH2.F AULT ′ −→ catch4.f catch2.b

(10) ST ART.T −→ start.t

(11) CAT CH2.F −→ catch2.f CAT CH2.H

(12) CAT CH2.H −→ INV OKE3
(13) start.t CAT CH4.F AULT −→ ST ART.T

(14) start.t CAT CH4.F AULT −→ CAT CH4.F

(15) catch2.f CAT CH4.F AULT −→ catch2.f

(16) catch4.f CAT CH4.F AULT −→ catch4.f

(17) start.t CAT CH4.F AULT ′ −→ ST ART.T catch4.b

(18) start.t CAT CH4.F AULT ′ −→ CAT CH4.F catch4.b

(19) catch2.f CAT CH4.F AULT ′ −→ catch2.f catch4.b

(20) catch4.f CAT CH4.F AULT ′ −→ catch4.f catch4.b

(21) CAT CH4.F −→ catch4.f CAT CH4.H

(22) CAT CH4.H −→ INV OKE5
(23) start.t INV OKE7 −→ start.t invoke7 CAT CH2.F AULT CAT CH4.F AULT

INV OKE8
(24) catch2.f INV OKE7 −→ catch2.f

(25) catch4.f INV OKE7 −→ catch4.f

(26) start.t INV OKE8 −→ start.t invoke8 CAT CH2.F AULT CAT CH4.F AULT

INV OKE9
(27) catch2.f INV OKE8 −→ catch2.f

(28) catch4.f INV OKE8 −→ catch4.f

(29) start.t INV OKE9 −→ start.t invoke9 CAT CH2.F AULT ′ CAT CH4.F AULT ′

ST ART.F AULT ′

(30) catch2.f INV OKE9 −→ catch2.f

(31) catch4.f INV OKE9 −→ catch4.f

(32) INV OKE3 −→ invoke3
(33) INV OKE5 −→ invoke5
(34) catch2.b catch4.b ST ART.F AULT ′ −→ start.b

(35) start.t start.b ST ART.R −→ start.r

(36) catch2.f start.b ST ART.R −→ start.q

(37) catch4.f start.b ST ART.R −→ start.q

Figure 4.8.: Production Rules of [Goe13, Figure 17(a)] generated by Implementation

29

5. Summary

The work in this thesis focuses on unified service composition for BPEL. Based on the concept
of [Goe13], with the help of formal grammar BPEL process is transformed to a unified model.
In this work the first phase is parsing BPEL process, which is described in chapter 3. The
class Node is defined as a intermediate model in section 3.1 to save the information of activities
for BPEL process. In order to get more efficiency of execution, SAX is used to read and
parse BPEL process (cf. section 3.2). A utility class NodeFactory is defined in section 3.3, to
manipulate Node and its subclass easier. After parsing the Node, which saves the information
of BPEL process, is constructed to the same structure of original process.

The second phase, generating grammar, which is represented in chapter 4, is focuses to get
grammar from entire BPEL process. The architecture of implementation is introduced in
section 4.1. Three packages are used, unifiedBpel, unifiedBpel.io and node2Grammar.
The class Project in package unifiedBpel is the processing’s entrance of this work. The
approach to specify web service and its calls is explained and implemented. The classes in
package unifiedBpel.io handle the inputting and outputting of the work, e.g. parsing BPEL
process. The class Node and its subclass, which is introduced in chapter 3, are bounded in
package node2Grammar. It’s functionality is generating grammar. Based on the behavior of
BPEL activities, in each subclass of Node the method generateGrammar is implemented
to generate its grammar. The section 4.2 introduces the traversing of the tree model, which
is outputted by parsing. The depth-first algorithm is used to traverse the tree. To merge
production rules of grammars the principle of merging is also explained. Two test cases are
used to test and verify the implementation in section 4.3.

31

A. Appendix

A.1. Predefined Package Grammar

In this work the BPEL process is transformed to formal grammar. The predefined package
grammar is used in multiple places. In this package defines a data structure for grammar,
class CompositionGrammar. As figure A.1 shows, its data members, start, nonTeminals,
terminals, rules are defined as the tuple’s elements of formal grammar. Class NonTerminal
is specified for non-terminal symbols, class Terminal for terminal symbols, class Rule for
production rules. Note that, the class ServiceNonTerminal is specified for the non-terminal
symbols, who need call services.

A.2. Test case: Scope with user-defined faultHandlers

Figure A.2 shows the transformation for user-defined fault handlers in scope from [Goe13]. In
this work it is used as a test case, to verify the production rules of the implemented grammar.

33

A.
Appendix

CompositionGrammar

nonTerminals : Set<INonTerminal>

CompositionGrammar(Set<INonTerminal> nt,
Set<ITerminal> t, Set<IRule> r, NonTerminal
s)

void print()

terminals : Set<ITerminal>
rules : Set<IRule>
start : NonTerminal

private void createGrammar(Document doc)

<<Interface>>

INonTerminal

String getType()
void setType(String value)

<<Interface>>

INonTerminalOrTerminal

String getID()

<<Interface>>

IRule

List<INonTerminalOrTerminal> getLeft()
List<INonTerminalOrTerminal> getRight()

<<Interface>>

IServiceNonTerminal

<<Interface>>

ITerminal

NonTerminal

ID : String

NonTerminal(String s, String t)
NonTerminal(String s)

type : String

String getID()

String getType()

void setType(String value)
void print()

Rule

left : List<INonTerminalOrTerminal>

Rule(List<INonTerminalOrTerminal> l,
List<INonTerminalOrTerminal> r)

Rule()

right : List<INonTerminalOrTerminal>

List<INonTerminalOrTerminal> getLeft()

List<INonTerminalOrTerminal> getRight()
void print()

ServiceNonTerminal

inputParams : Set<ServiceParam>

ServiceNonTerminal(String s, String t,
Set<ServiceParam> input, Set<ServiceParam>
output)
ServiceNonTerminal(String s, String t,
Set<ServiceParam> input, Set<ServiceParam>
output, Set<Relation> relationSet)

outputParams : Set<ServiceParam>

Set<ServiceParam> getInputParams()
Set<ServiceParam> getOutputParams()
Set<Relation> getRelations()
void print()

relations : Set<Relation>

Terminal

ID : String

Terminal(String s)
String getID()

CompositionGrammar(Document doc)
CompositionGrammar()

Figure A.1.: The Classes in Package Grammar and their Relations

34

A.2. Test case: Scope with user-defined faultHandlers

<scope name=”R”>
<faultHandlers>
<catch faultname=”Fault1”>
<invoke name=”S4” />
</catch>
<catch faultname=”Fault1”>
<invoke name=”S5” />
</catch>
<faultHandlers>
<sequence>
<invoke name=”S1” />
<invoke name=”S2” />
<invoke name=”S3” />
</sequence>
</scope>

(a) BPEL specification of a scope with
user-defined fault handlers.

(1) Start −→ t1H1H2S1R1
(2) t1H1 −→ T1
(3) t1H1 −→ F1
(4) f1H1 −→ f1
(5) f2H1 −→ f2
(6) t1H

′
1 −→ T1b

′
1

(7) t1H
′
1 −→ F1b

′
1

(8) f1H
′
1 −→ f1b

′
1

(9) f2H
′
1 −→ f2b

′
1

(10) T1 −→ t1
(11) F1 −→ f1H3
(12) H3 −→ S4
(13) t1H2 −→ T1
(14) t1H2 −→ F2
(15) f1H2 −→ f1
(16) f2H2 −→ f2
(17) t1H

′
2 −→ T1b

′′
1

(18) t1H
′
2 −→ F2b

′′
1

(19) f1H
′
2 −→ f1b

′′
1

(20) f2H
′
2 −→ f2b

′′
1

(21) F2 −→ f2H4
(22) H4 −→ S5
(23) t1S1 −→ t1s1H1H2S2
(24) f1S1 −→ f1
(25) f2S1 −→ f2
(26) t1S2 −→ t1s2H1H2S3
(27) f1S2 −→ f1
(28) f2S2 −→ f2
(29) t1S3 −→ t1s3H

′
1H
′
2H
′
8

(30) f1S3 −→ f1
(31) f2S3 −→ f2
(32) S4 −→ s3
(33) S5 −→ s5
(34) b′1b

′′
1H
′
8 −→ b1

(35) t1b1R1 −→ r1
(36) f1b1R1 −→ q1
(37) f2b1R1 −→ q1

with : Si ∈ V
H1, H2 ∈ Faults

Rx, H3, H4, T1, Fy ∈ Helpers
f1, f2, si, t1, b1, b

′
1, b
′′
1 ∈ Σ

(b) Production rules for the user-defined fault handlers H1
and H2 in a scope.

Figure A.2.: Representation of user-defined fault handlers. [Goe13] 35

Bibliography

[AAA+07] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,
Y. Goland, A. Guzar, N. Kartha, et al. Web services business process execution
language version 2.0 (OASIS standard). WS-BPEL TC OASIS, 2007. (Cited on
pages 6, 7, 9, 15, 21, 22 and 24)

[AHW03] W. Van der Aalst, A. ter Hofstede, M. Weske. Business process management: A
survey. Business Process Management, pp. 1019–1019, 2003. (Cited on page 9)

[BCC+04] D. Box, E. Christensen, F. Curbera, D. Ferguson, J. Frey, M. Hadley, C. Kaler,
D. Langworthy, F. Leymann, B. Lovering, et al. Web services addressing (WS-
Addressing), 2004. (Cited on pages 10 and 21)

[BHL+06] T. Bray, D. Hollander, A. Layman, R. Tobin, H. S. Thompson. Namespaces in
XML 1.0 . W3C recommendation. World Wide Web Consortium (W3C), 2006.
(Cited on page 17)

[BPSM+97] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau. Extensible
markup language (XML). World Wide Web Journal, 2(4):27–66, 1997. (Cited on
pages 10 and 17)

[C+01] W. W. W. Consortium, et al. Document Object Model (DOM), 2001. (Cited on
page 16)

[CCM+01] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, et al. Web services
description language (WSDL) 1.1, 2001. (Cited on pages 10 and 21)

[CD+99] J. Clark, S. DeRose, et al. XML path language (XPath) version 1.0, 1999. (Cited
on page 10)

[Fer04] C. Ferris. Web services architecture. Standard, W3C World, 2004. (Cited on
page 10)

[Goe13] K. Goerlach. A generic transformation of existing service composition models to a
unified model. Technical report, Institute of Architecture of Application Systems,
University of Stuttgart, 2013. (Cited on pages 6, 19, 20, 22, 23, 24, 26, 27, 28, 29,
31, 33 and 35)

[Gor07] O. Gorter. Java XML Parsing: SAX vs DOM. URL: http://tech.inhelsinki.nl/2007-
08-29/, 2007. (Cited on pages 6, 15 and 16)

[M+98] D. Megginson, et al. Simple api for xml. URL: http://www.saxproject.org, 1998.
(Cited on page 16)

37

Bibliography

[OGA+05] T. Oinn, M. Greenwood, M. Addis, M. Alpdemir, J. Ferris, K. Glover, C. Goble,
A. Goderis, D. Hull, D. Marvin, et al. Taverna: lessons in creating a workflow
environment for the life sciences. Concurrency and Computation: Practice and
Experience, 18(10):1067–1100, 2005. (Cited on page 7)

[PA06] M. Pesic, W. van der Aalst. A declarative approach for flexible business processes
management. In Business Process Management Workshops, pp. 169–180. Springer,
2006. (Cited on page 7)

[WAV04] M. Weske, W. Van der Aalst, H. Verbeek. Advances in business process man-
agement. Data and Knowledge Engineering, 50(1):1–8, 2004. (Cited on pages 6
and 9)

All links were last followed on May 10, 2013.

38

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

Ort, Datum, Unterschift

	1 Introduction
	2 Background
	3 Parsing BPEL
	3.1 Class Node and Subclass
	3.2 Choice of Parsing Method
	3.3 Utility Class NodeFactory for Class Node

	4 Implementation of Generating Grammar
	4.1 Architecture
	4.2 Transformation
	4.3 Test Cases

	5 Summary
	A Appendix
	A.1 Predefined Package Grammar
	A.2 Test case: Scope with user-defined faultHandlers

	Bibliography

