Course of Study:
Examiner:

Supervisor:

Commenced:

Completed:

CR-Classification:

Institute of Parallel and Distributed Systems
Department Distributed Systems
University of Stuttgart
Universitatsstrae 38
D-70569 Stuttgart

Studienarbeit Nr. 2408

Concepts and Mechanisms
for Consistent Route
Transitions in
Software-defined Networks

Benjamin Gayer

Computer Science
Prof. Dr. rer. Nat. Dr. h. c. Kurt Rotherml

Dr. rer. nat. Frank Durr

12.11.2012
14.05.2013

C20,C22,C24,C26

Index

AADSTIACT. ..ottt ettt h e e a e bttt h bbb a e bt et ea e e bt et e ehtenbe et e bt e e beeeas 1
L IEEOAUCTION. ...ttt ettt et ht e et e s b e et e e s bt e et e e easbeeesasbeeeenbeeeeaneee 3
2. Background and related WOTK............cocuiiiiiiiiiiiieie ettt e 5
2.1 UNICAST-ROULINE. ..ccviiieiiieciieecee ettt tee e et e e et e e e e e e abeeessseeesaeessnaeesnnsnneeeaeannns 5
2.2 SDIN/JOPENFLIOW........iiiiiieiiieiiieieeee ettt ettt et ettt e e be e teesateesbeeeensbeeeensbeaeensseeeennes 8
2.3 Related WOTK.....oueiiiiiie et e 11
3. System-Model and Problem Statement............cccueeiuieriiiiiienieeiierie ettt e e eas 15
3.1 SYStEM-MOAEL.....ooiiiiiiie ettt e et e e et e e b e e enaa e e nrraaaee s 15
3.2 Problem Stat@IMENL..........cciieiiiiiiiiiieeie ettt ettt ettt et e st te e snbe e e enbaeeennaee s 17
4. CONCEPLUAL DIESIZN....eeecuviiieiieeiiieeeiee ettt et e et e et e e et e e s aeeestaeesssaeessseeesssaeensseeesseeassaeassaeens 19
4.1 The ALGOTTERIML...cccuiiiiiiiiieiiee ettt ettt et e st e et e e aaeebeesnbeeseesnseeeanneeas 19
N b 1 T 1S 1L 010) TSRS 20
4.3 BIaCK ROLES. ...ttt ettt et 21
IR 0331 o] (S5 40153 01 7 15 10) FO PRSP PR 23
5.1 The Floodlight CONtrOlLET........ccccuiiiiiiiiieiieeit ettt et e et eeeaeaee s 24
5.2 IMPIEMENTALION. ... tiieiiiieiiieeiiee et e et e et eeree e et eeeteeesateeessaeeessseeessseeensseeesseeesseeeesassnssneeeens 25
0. EVAIUALION. ..ottt ettt ettt a et b ettt b et e e s 27
6.1 EXPEITIMENTuviiiiiiieciie ettt ettt et e et e e s tee e steeestteeesteeesaaeessseesnssaeasssaessseeessseeenssaeeeeans 27
0.2 DISCUSSION.euieiieiteie ettt ettt ettt ettt ettt sht ettt e eb e e bt e st e sbt e bt et e ebe e bt eabesatenbeentesaeeenbeeennee 29
7 COMCIUSION. ..ttt et ettt e bt e e st e e bt e s it e e bt e e abe e bt e s abe e bt e sabeenbeeeennaeeas 31
8. BIDIOZIAPINYeiiuiiiiiieiiieie ettt ettt ettt et et e et e tbe e teeenbe e beeebteeeennaaeens 33

List of figures

Figure [1]: The SDN Architecture. Source: [1] 0N PAZE 7....cceevvieniieeiieriieeieeiie ettt 9
Figure [2]: An example topology showing a SDN with 5 hosts, 3 switches and one controller........ 16
Figure [3]: The topology of the Testbed that was used to test the algorithm..............ccoceerriinnnennn 23
Figure [4]: The Floodlight architecture Source:

http://docs.projectfloodlight.org/display/floodlightcontroller/The+Controller............cccccoeevveenncenne 25

Figure [5]: The topology used for the experiment. Old route: red links, new route: green links....... 28

Abstract

Abstract

Software-defined Networking (SDN) [1] is a big trend in network research and
industry. The key idea of SDN is to separate the control and the forwarding
functionality. In conventional networks the firmware on the switches determines
how the switches handle packets, so that they treat all packets in exactly the
same way. This leads to static networks, that can not adapt to changing
requirements. In Software-defined Networks a (logically) centralized controller
enables the network administration to change the routing simply by updating the
controller. The controller then can change the flow table entries of a subset or
even all the switches in the network. There is no longer the need to update every
switch separately. SDN is in general used for highly adaptive routing to fit the
requirements of dynamic load, frequent topology changes, migration of virtual
machines and hosts.

This work is about consistent route updates in Software-defined Networks. Two
classes of consistency have to be distinguished. The first one is eventual
consistency, that means during the update inconsistency's can occur, but the final
state will be consistent. The second one is strict consistency, here the routes are
always consistent, even during the update process. Inconsistent updates can
lead to security issues, loss of connection, inaccessibility and many other
problems. In current networks updates are necessary to fit the frequently
changing requirements.

The problem with (strict) consistent updates in SDN is that there are no atomic
updates because the switches are inherently distributed. And even if there would
be such an update, it would affect packets in transit. Therefore the goal is to
avoid transient route inconsistencies like “black holes” and loops.

There are already a couple of update strategies for SDN which result in
consistent updates, but all of them are limited in some way, for example some
can just be used for OSPF or BGP. There is also one approach by Reitblatt et al.
[3], that is not limited. This strategy is a two phase update which leads to a “per
packet consistency”. The old route and the new route are installed at the same
time, so that every packet is on a consistent route (the old route, before the
update, or the new one, after the update). This approach has an overhead in
terms of storage-use, because the new route exists at the same time as the old
one and also needs rewriting of the packet headers to signal the phase. But the
storage capacity of switches is limited and so a doubling of forwarding table
space is a high burden. The approach shown in this work is more light-weight and
requires no change of header fields and no additional forwarding table space or
any other modifications of the switches.

Abstract

The key idea is to update the switches backwards according to the new route.
That means the first switch that is updated is the predecessor of the destination
and the last one is the source. So packets will follow the old route until they reach
an already updated switch which will forward them along the new route. This is
also true for packets in transit. On the downside this approach can in some
situations “only” lead to the eventual consistency, which is a result of the
underlying network model (asynchronous communication). To achieve strict

consistency it would be necessary to avoid certain updates or to change the
underlying network model.

1. Introduction

1. Introduction

In the last years the requirements for networks changed, such that the traditional
network architecture no longer can satisfy the needs of the networks. In the past,
networks were designed to fit client-server communication. In the traditional
network architecture switches are forwarding packets according to there pre-
installed firmware. All packets are handled in the same way by the switch. That is
the reason why it is a problem for common networks, which are static, to adapt to
dynamic changes.

Today we are dealing with different requirements. Cloud-computing for example
needs dynamic distribution of storage and processing power. Carriers today are
facing a fast growing need for more bandwidth and mobility.

It is a very complex and challenging task to adapt the traditional network
architecture to todays tasks. Complex protocols are developed to achieve this. To
implement a new policy it can be necessary to update hundreds or thousands of
devices manually. This is of course very time-consuming, so it can for example
take a few hours to migrate a single virtual machine in a data center.

To face the new requirements, Software-Defined Networking (SDN) [1] was
developed by the Open Networking Foundation (ONF). SDN is a network
architecture, where the control functionality (done by the controller in software) is
decoupled from the forwarding functionality (performed by the switches in
hardware). In this way it is possible to abstract the underlying infrastructure, such
that applications can treat the network as a logical unit. The controller is
(logically) centralized and has a global view of the entire network, in contrast to
traditional networks, where on each switch a distributed algorithm is running
independently. Network administrators now can configure the network just by
changing the software running on the controller and do not need to update every
single device in the entire network separately, but only the controller. This makes
SDN highly flexible so that it can face todays requirements.

The OpenFlow protocol [2, 5] offers a standard for the communication between
the controller and the switches in SDN. OpenFlow was the first standard and is
already accepted and supported by academia and industry.

As described above, SDN provides a powerful tool for adapting networks to
changing requirements. Though SDN assumes a logically centralized controller
the whole network is in fact still a distributed system. Therefore updates can not
occur at precisely the same time on every switch. Even if the initial and the final
state are consistent, this may lead to inconsistent updates, which result in
transient “black holes” or transient loops. If an already updated switch forwards a
packet to a switch that was not part of the old route, then this new switch has no
entry in its forwarding table and therefore does not know what to do witch this
packet — the packet is in a black hole — which means the packet is lost. Loops
cause packets to circle in the network, so that they may not reach their
destination before they are dropped because their time to life equals zero.

1. Introduction

But even if there would be an atomic update such that the forwarding tables of all
switches become updated at the same time, such an update would still hit
packets that are in transit.

There are several approaches that address this problem, for example one by
Reitblatt et al. [3] and another one by MCGeer [4]. The approach by Reitblatt et
al. is a two phase update, that means during the update the old route persists
and a second route is introduced, this approach modifies the packet header fields
to signal to which phase (route) a packet belongs. This approach needs also a lot
of forwarding table space on the switches, which is limited. The approach shown
here does not need a modification of header fields and needs less forwarding
table space.

The second approach by MCGeer needs much less forwarding table space than
the one by Reitblatt et al. and also no modification of header fields, but it creates
a lot of additional traffic around the controller, because the control plane is
exploited to forward data during the update. The new approach described here
does not use the control plane to forward packets, therefore it creates no
additional traffic around the controller.

In this work a new approach is shown that avoids black holes and leads to
eventual consistency. In some cases the approach can lead to strict consistency
as well, but without modification of the basic approach this is not true in general,
because it is possible that there occur transient loops during the update process.
The idea is to update the route beginning with the destination, backwards to the
source. In contrast to previous approaches this one will not need changes of
header fields. For each packet a guarantee can be given, that the packet will
follow entirely the old path (before the update), entirely the new path (after the
update), or it will start on the old path and then, after is has reached the first
updated switch, continue its way through the network on the new path (during the
update). Furthermore it is guarantied that after a packet has reached an updated
switch it will not reach a switch that is not updated.

In the following “OpenFlow” and SDN are described. Then there is an introduction
to unicast-routing in general, followed by an overview of related work. In the third
chapter the system model, this work is based on, is introduced. Furthermore it
contains a formal description of the problem. The forth chapter contains the
solution of the described problem and a formal proof of the correctness of this
solution. Chapter five describes the implementation, which solves the update-
problem, in the way described in chapter four. The implementation was tested
and the results, as well as informations about the test-setup and the used
metrics, can be found in chapter six. All this is finally summarized in chapter
seven.

2. Background and related work

2. Background and related work

2.1 Unicast-Routing

In this chapter an overview about unicast routing strategies is provided, note that
just routing in electronic data networks using packet switching technology is
concerned. In packet switching networks packets are forwarded from the source
to the destination via intermediate nodes which can be for example routers or
switches. The routers and switches (in the following just the term switch will be
used) maintain forwarding tables that contain the information on what outgoing
line a packet has to be forwarded to reach its destination. Routing is the task to
find a path from the source to the destination. A routing decision can be made
separately for each packet or can be done once for a whole stream (often called
“flow”) of packets.

In a unicast network a packet is forwarded from one source to exactly one
destination. This is in contrast to multicast networks where one packet can be
forwarded to multiple destinations. Broadcast is a special case of multicast where
one packet is forwarded to all nodes within the network.

Two kinds of routing strategies can be distinguished in general:

1. Static routing (also called non-adaptive routing) is using pre-computed
routing tables and can therefore only be used in static networks or in
networks, where changes are occurring very rarely.

2. Dynamic routing (also called adaptive routing) uses routing tables that
become generated automatically by routing protocols, this makes it
possible to route packets in dynamic networks, where topology changes
are occurring frequently.

In the following the focus is on dynamic routing, because SDN, which is the topic
of this work, is a design that was invented to face the flexibility problems in
dynamic networks.

There are three different strategies for dynamic routing:

1. Centralized routing uses a (centralized) Routing Control Center (RCC).
In general centralized routing is not suitable for distributed systems
because it provides a single point of failure, but because SDN assumes a
logically centralized controller it is worth a closer look. The main
advantage of centralized routing is that, due to the global view of the RCC,
it is possible to compute optimal routes. Routes can be computed for
different metrics, for example minimum delay by using Dijkstra's algorithm.
Another advantage is that not every node has to use resources to compute
its routing table.

2. Background and related work

Depending on the algorithm (and the networkt topology) it is also possible
that a centralized algorithm reduces the comunication costs (it is the
number of messages send) for creating the routing table.

The main disadvantage is, that the RCC is of course a single point of
failure and if it fails no routing updates can be done, but messages are still
forwarded based on the (outaged) routing tables of the switches. There is
also a high communication effort for the RCC which has to send routing
table updates to every switch and has to receive messages containing
information about topology changes. Another problem closely related to
the topic of this work is inconsistent updates. Inconsistent updates can
occure in centralised routing, because the central computed routig tables
have to be send to the switches. It is not possible to ensure that every
switch will receive or install the update at the same time.

. Isolated routing is a strategy, where every switch does its own routing.
There is no exchange of routing information. A popular representative is
the “Backward-Learning-Algorithm” which is introduced now.

If a switch has no entry in its routing table for a packet it will forward the
packet on all outgoing lines, this is called flooding. Flooding creates a
huge message overhead, but ensures that the packet will reach its
destination (If it is reachable) and it also finds the shortest path(s). In
addition to this first rule, there is another rule: If a switch receives a packet
it also learns a path to the source with the length coded in the header of
the packet. If the learned route is better (the length of the path is smaller)
then a new entry is added to the routing table. In this way not every packet
has to be flooded because after every flooding all switches will know a
route to the source. That means the switches are learning routs over time.
The problems with this approach are, at first, the overhead created by
flooding and that the network is not learning about changes in the network,
if they decrease the performance. The last problem is solved by
introducing a time to live for the routing table entries, so a switch will forget
about routes. This introduces, of course, a parameter which is critical for
the performance of the algorithm. The first problem can not be solved, but
its effect can be reduced by limiting the flooding and doing a more clever
flooding (for example do not send messages to switches from which you
already received the message or only flood a message once, even if you
receive it multiple times).

. Distributed routing is an approach, where every node periodically
exchanges routing information with its neighbors. This information is then
used by each node to set up its own routing table. There are two different
types of algorithms for this approach.

2. Background and related work

The first one is the “distance-vector routing”. To every connection between
two nodes a number representing the costs is assigned. Each node knows
the costs to its (direct) neighbors and periodically sends this routing
information (distance-vectors) to its neighbors. If a node receives a
distance-vector from its neighbor, it can compute the communication costs
to all neighbors of the sender via the sender. In this way the locally
measured costs are propagated through the network. Improvements in the
communication costs are propagated fast, but if the communication costs
become worse, then the algorithm suffers a problem called “count to
infinity”. If a node A fails then its neighbors will notice that and set the
communication costs to this neighbor to infinity. This information is
propagated to their neighbors, but ,unfortunately, the neighbors know a
better path to A via another node and the neighbor of A. This is in fact a
cycle! That means that the direct neighbors of A will learn a new path to A
which is cheaper than infinity but does not exist in reality. Of course, finally,
the communication costs within the cycle will increase to a value that is
representing infinity, but this takes some time.

The second algorithm is the link-state routing. Each node measures the
communication costs to its direct neighbors and then sends this
information as a link-state-packet to each node in the network, this creates
a global view of the network. To send the link-state-packets flooding is
used. If a node has received a link-state-packet from every other node
within the network it can compute its routing table based on this global
view. The downside is that every node computes exactly the same routing
table, which is of course a waste of processing power. Furthermore this
approach does not scale for large networks.

2. Background and related work

2.2 SDN/OpenFlow

Software-defined Networking (SDN) [1] is predicted to be one of the biggest
network-trends in 2013, many big companies have announced SDN enabled
hardware products for this year. In the SDN network architecture the control
plane is decoupled from the forwarding functionality and is directly
programmable. This is achieved because the network-control is done by a
logically centralized controller, which is connected to all switches within the
network and can program the forwarding tables of this switches. Forwarding is
then performed by the switches, according to the forwarding table entries, at line
rate. This makes it possible for applications to abstract the underlying
infrastructure and to treat the network as a logical unit. The network architecture
is shown in figure [1]. The Application can access the SDN controller via an API,
the control is done by this software-based controller, which has a global view and
can therefore be used to compute optimal routes for a chosen metric. The
centralized controller enables IT to change the networks behavior in real time and
provides the full control over the network to the user. The fact that the controller is
now programmable by the user, and not only by software updates provided by the
hardware vendors, leads to an unprecedented flexibility of the networks.

Because SDN assumes a centralized controller which sends the routing tables to
the switches, special switches are needed, that are able to communicate with the
controller.

The OpenFlow protocol is the first standard communication interface between the
control and the forwarding plane, that means it describes the communication
between the controller and a switch. OpenFlow is based on Ethernet switches
and allows it to add or remove entries in the forwarding tables of switches. As the
name indicates OpenFlow uses the concept of flows, that means each
connection between two endpoints is described by a unique set of parameters
like, MAC address, IP address or port number of source and destination. The
usage of flows allows it to route the communication between two endpoints on
different paths, for example based on QoS (Quality of Service) it would be
possible that the data of a delay sensitive application is routed on a path with a
low end-to-end delay, while a data transfer, which needs a high bandwidth, is
routed on a path that provides a large bandwidth. Current IP based routing does
not provide this flexibility, because it routes all the communication between two
end points along the same path. In the meantime OpenFlow is well accepted and
supported by academia and industry. Note that OpenFlow provides an interface
which can be used for the communication between controller and switches, but it
provides no functionality like to ensure the order of the execution of an update.
Therefore OpenFlow is no solution to the basic problem of updates in distributed
systems, which is the fact that it is impossible to ensure that all switches receive
the update at the same time.

2. Background and related work

APPLICATION LAYER |

Business Applications

CONTROL LAYER

Network Services

Control Data Plane interface
(e.qg., OpenFlow)

INFRASTRUCTURE LAYER

Network Device Network Device Network Device

Network Device Network Device

Figure [1]: The SDN Architecture. Source: [1] on page 7

2. Background and related work

2.3 Related work

There has been a lot of research around many aspects of SND and OpenFlow,
there are also some papers that are closely related to the topic of this work. Two
of these papers are introduced in the following section, because of their
importance for this work. The first one is interesting because the approach
described within it gives almost the same guarantees as the approach described
in this work. The second one can be seen as “state of the art” and is therefore the
approach this work will be compared with.

The first paper that is discussed here is “A Safe, Efficient Update Protocol for
OpenFlow Networks” by Rick MCGeer [4]. The approach described by MCGeer
exploits the SDN architecture in which a centralized controller is connected to
each node via a control link, that is originally only used for transmitting control
messages.

The update protocol consists of four epochs. In the first epoch the old ruleset is
installed on the switches and all packages are following the old path. In the
second epoch an intermediate transfer function is send to the switches.
According to this intermediate transfer function a switch is forwarding packets in
the same way as in the old ruleset, if the new ruleset is equal to the old one. If the
new ruleset differs from the old one, the switch forwards all packets to the
controller. Every switch sends a completion signal to the controller if it has
installed the new ruleset. If the controller has received a completion signal form
each switch it waits for the maximum network delay and then epoch three begins.
In epoch three the controller sends the new ruleset to all switches, which send a
message back that is indicating, that they are now forwarding packets according
to the new ruleset. If the controller has received such a message from every
switch, it will again wait for the maximum network delay. After that the update is
completed.

The maximum space that is required on the switches is the maximum of the three
rulesets (the old, the intermediate and the new ruleset). The intermediate step is
necessary because for any switch it is unclear if it is forwarding packets
according to the new or the old ruleset, during the update process.

This approach gives the guaranty that a packet is handled by a consistent set of
rules, either completely by the old ruleset, or completely by the new ruleset. If a
packet is once forwarded under the new ruleset, all following packets are
forwarded according to the new ruleset. This leads to a “per flow consistency”, a
flow is either entirely forwarded under the old ruleset, or entirely under the new
ruleset, or the prefix of the flow is forwarded according to the old ruleset and the
suffix is forwarded according to the new ruleset.

11

2. Background and related work

The approach shown in this work has similar guarantees. A packet is either
following entirely the old route, entirely the new route, or it starts on the old route
and after it reaches the first updated switch, it is forwarded from there on the
remaining part of the new path. Furthermore the approach described in this work
introduces the missing knowledge, that makes the intermediate transfer function
necessary in MCGeer's approach.

The downside of MCGeer's approach is obviously the high traffic that is
generated around the controller, which is not only sending and receiving control
messages, but also actively forwarding data packets (the ones that are forwarded
to the controller during epoch two). In contrast the approach shown in this work is
not using the control layer to forward packets and therefore the controller is not
involved in the forwarding.

The second paper that is introduced now is “Abstractions for Network Update” by
Reitblatt et al. and was published on the SIGCOMM'12. The approach avoids the
inconsistencies that can occur during the update by using a two phase update
strategy. The old route persists during the update and an additional flow, along
the new route, is created. Therefore it is necessary to modify the header fields to
indicate to which phase a packet belongs. At first packets follow the old route,
then the controller creates the new flow along the new route. After this the ingress
switch is updated to change the header field (typically the VLAN tag is used) to
indicate that all following packets belong to the second phase. All packets that
are tagged prior to the ingress switch update follow the old route to their
destination, all packets that are tagged after the update of the ingress switch
follow the new route. This approach provides per packet consistency, which
means that each packet is handled by exactly one globally consistent state. This
means each packet is processed either on the old path before the update, or on
the new path after the update, but never on a mixture of them.

A strength of this protocol is that the properties of a path are preserved during the
update, for example if the path is free of forwarding loops before and after the
update, it is guaranteed, that there will be no loops during the update. On the
downside this approach needs forwarding table space for both routes, the new
and the old one, at the same time and it is necessary to modify the header field.
The approach described in these works requires no modification of the header
fields and needs less forwarding table space.

12

3. System-Model and Problem Statement

3. System-Model and Problem Statement

In the following a description of the System-Model that is required by the
algorithm, described in this work, is given. The algorithm assumes an
asynchronous system, that means there is no maximum delay for messages that
are sent. The only guaranty that is given an asynchronous system is that the
messages arrive eventually — that means also that no messages are lost, which
is important for an update-protocol. Furthermore the only other assumption is that
we assume FIFO (First In First Out) channels, this is required for the use of TCP
in practice. Note, that even if FIFO channels are used, that there is no guaranty
that the FIFO order consists during an update. For example the old route could
be one with a high delay, while the new route has a low end to end delay. In this
case it would be possible, that the first packet send via the new route arrives
before its predecessor, which is the last packet send via the old route. The
algorithm assumes an SDN, the components used within such an SDN are
introduced in the following.

3.1 System-Model

This section is about the network, more precisely the hardware components used
within a SDN. There are three components: Hosts, multilayer switches and the
controller. The hosts are connected (they can exchange information/data) via the
multilayer switches with other hosts. The multilayer switches are forwarding the
packets, send by the hosts, to their destinations. The routing is done by the
controller which calculates the routes through the network and sends the
resulting forwarding tables to the switches. In the following section the single
components are considered in detail.

Hosts are participants in a network, (Assuming the client-server model) they can
be clients or servers . A client is a hardware component that is using services that
are provided by another hardware component, which is called server. These two
separate hardware components (Client and Server) are communicating with each
other via the network. In addition to the client-server role a host can also be a
node in a peer-to-peer system. A peer is a network participant that is a server as
well as a client. In general a host is a communication endpoint in a network.

Multilayer switches are a group of switches, that are using more packet
information for the switching than ordinary switches, which only use the
information provided on layer two (data link layer) of the OSI model. A Switch is a
network device that forwards incoming packets to their destination based on the
information provided in the header of the packets. Every switch has its own
forwarding table, which is of course limited in terms of storage capacity.

15

3. System-Model and Problem Statement

The Controller is something like the brain of a SDN, it is calculating the
forwarding table for each switch and sends these tables to the switches. To fulfill
this task the controller has a direct link to each switch, these links are called
control links and are used to exchange control messages. There are approaches
that use the control links also for forwarding tasks, but the approach described
here is only using them for control messages. The controller provides two
interfaces, the first one is the so called southbound interface which is responsible
for the communication between the controller and the switches. As described
above there is already a standard for the communication between controller and
switch, which is the OpenFlow protocol. The second interface is the northbound
interface, which defines the communication between controller and applications.
For example the controller exposes information about network topology or traffic
to the application. Until now there is no standard for this interface defined, for this
work floodlight was used.

Figure [2] shows an example network with 5 hosts, 3 switches and one controller.

host 1 host 2 host 3 host4 | | host 5

Figure [2]: An example topology showing a SDN with 5 hosts, 3 switches and one controller

16

3. System-Model and Problem Statement

3.2 Problem Statement

As described above the problem with updating routes in SDN is, that it is hard to
guarantee consistency during the update, because each update hits packets that
are already in transit. In order to perform an update routing tables on distributed
switches have to be updated by the (centralized) controller. Without a maximum
message delay the only possibility to ensure the order in which the switches are
updated is to update one single switch and to wait for its confirmation. But this
strategy is no solution to the basic problem, which is how to determine the order
for a consistent update. The next chapter shows an algorithm that solves this
problem. In the following the problem is formalized.
A route is defined by a sequence of switches s, these switches can be numbered,
starting with the first switch (switch,) that receives a packet. To the last switch
(switch,) the number n is assigned, this switch is the one directly before the
receiver or it is an egress switch (switch that forwards packets out of the
network). A route update u is a sequence of k instructions m; (j € [1..k]) that
converts one route r,, into another route r,, . That means one sequence of
switches is converted into another sequence of switches. The problem of a
consistent update is to order the instructions m; in a way such that no black
holes and no loops occur. A black hole occurs if a packet is forwarded to a switch
that has no flow-table-entry for the flow the packet belongs to. This results in the
drop of the packet. A loop is a sequence of switches, in which at least one switch
occurs more than once. That means a packet that is forwarded according to such
a sequence will reach at least one switch more than once. The packet is in a
circle. Such a circle can be a transient loop, that occurs during the update but is
not present in the final route after the update, but it can also be a permanent
loop, that is also present in the final route after the update is finished.

17

4. Conceptual Design

4. Conceptual Design

This chapter provides detailed information about the new algorithm that is the
topic of this work. At first the algorithm is introduced in an informal way, than a
formal description follows. After the formal descriptions it is shown that the update
can cause transient loops and it is proven, that the update protocol avoids black
holes.

4.1 The Algorithm

The key idea of the algorithm is to update the new route backwards. That means
if there is an old route that has to updated to a new route, then the algorithm will
at first update the last switch on the new route. After the last switch is updated the
one before the last one is updated and so on until the update reaches the first
switch. If a switch is part of the new route as well as of the old route, then its old
routing table is replaced by the new one (this step helps to save routing table
space and avoids the modification of header fields that is necessary in a two
phase update, as the one by Reitblatt et al.). If a switch is part of the new route,
but not part of the old route, than a new entry is added to its routing table.
More formal:
Given two sequences of switches s, that belong to two different routes r,, and
r..» ,the one sequence can be converted into the other one by executing the
following algorithm:
For each switch s on the new route there is one instruction m. There are two
types of instructions, the first one is updating an existing flow-table-entry. The
second one is adding a new flow table entry to the forwarding table of a switch.
The first kind of instruction is used for switches that belong to both sequences.
The second one is used for switches that belong only to 7, The instructions
are changing the forwarding-table-entries of the switches according to the
sequence of r,,. The instructions m; are ordered in a way that their order
matches the reverse of the sequence of switches s of the new route r,.,. If the
sequence of switches is numbered consecutively by 1 to n, then the instructions
are ordered starting with m, downwards up to m,.
If the instructions are executed in this order, then the resulting sequence of
switches s is free of loops. Furthermore during and after the update process there
will be no black holes. But it is possible that transient loops occur during the
update process. Transient loops are discussed in detail in the following section.
Note that during and after the update in each flow-table there is at most one entry
per flow.

19

4. Conceptual Design

4.2 Transient Loops

During the update the old route will not persist. The old route is much more
something like a bypass (or a sequence of bypasses) to the new route, that is
used by packets that are in transit on the old route during the update. This also
means, that during the update it is hard to tell what way each packet takes. A
packet may start on the old route and continue its way completely on the old
route, or it starts on the old route and continues on the new route. In general the
following holds: After a packet has once been forwarded on the new route it will
no longer be forwarded along the old route, because all switches below the path
are already updated. However there is an exception to this general behavior. The
update strategy described here prevents no transient loops. Transient loops are
loops that occur during the update process but do not persist and are therefore
not present after the update. Transient loops occur if the new route connects
(direct or indirect!) two switches that are connected (direct or indirect) on the old
route in reverse order. If switch, forwards packets to switch, on the old route
and swiich, forwards packets to switch, according to the new route, then
packets that are in transit between this two switches during the update of
switch, will be forwarded back to switch, and therefore circle exactly one time.
Figure 2 shows an example for a topology that leads to a transient loop during
the update. Figure 2 a) shows the topology before the update, figure 2 b) shows
the loop during the update and figure 2 c) shows the resulting topology after the
update.
According to the update protocol at first switch, (in the following per switch just
one capital letter is used to address it.) is updated, in this case no changes occur.
In the next step B is updated to forward packets to D instead of forwarding them
to C. In this way an intermediate route is created that forwards Packets from A to
B and from B to D. After that, C's routing table is updated to forward packets to B.
This step creates the transient loop! Packets that are in transit between B and C
during this update step will be forwarded from C back to B. That means this
packets circle exactly one time. In the next step A is updated and the update is
finished.
Always, if a transient loop is generated during the update, packets can circle in
this transient loop at most once and all packets that enter such a transient loop
will circle there exactly one time.
The Algorithm described in this work provides no solution to this problem.
However it is important, that even if the algorithm produces transient loops the
final route will always be free of loops, because there is always at most one flow-
table-entry per flow at each switch at each time. With one flow-table-entry it is
possible to create a loop, but in this case the destination is not part of the route
with the loop. This case can not occur, because we start with the destination and
update from there.

20

4. Conceptual Design

4.3 Black holes

The update protocol described above will always lead to black hole free routes,
that means every switch that receives a packet always knows to which switch it
must forward the packet. This is not only valid for the start and the final state, but
also for all intermediate occurring states. The proof of this is shown below.

Let the switches on the new route be consecutively numbered, where the start
has the number 1 and the destination is labeled by n.

At the beginning there is just the old route, which is by definition black hole free.
(Note: Even if there is no route at the beginning, the route created is black hole
free)

According to the update protocol, an entry to the flow table of switch, | is
added, so that arriving packets, which belong to the updated flow, will be
forwarded to switch,. If there already is an entry in the flow table, this entry is
overwritten (changed).

There are 3 cases that have to be distinguished.

1.) Switch, | is the start:

That means, there is now a new route from the start (n-1) to the destination (n)
and every switch on this route has a flow table entry for the flow. In addition to
that an modified version of the old route exists. It is not exactly the old route,
because switch, | is of course also the start of the old route and the entry in its
flow table has been changed. That means new packets will follow the new route,
which also means that there are no new packets entering the old route. Packets
that have entered the old route before the update will reach the destination on the
old route. So there are neither black holes on the new route, nor on the old route.

2.) Switch, , is a switch on the old route, but not the start.

Like in the first case, packets arriving at switch, , are forwarded to switch, and
packets that already have passed switch, , will continue their way on the old
route to switch,. New packets will be forwarded on the old route until they
reach switch, |, then they will follow the new route to switch,. As described
above the old route is considered to be black hole free, furthermore the new route
is black hole free.

3.) Switch, | is not on the old route.

That means no other switch will forward packets to switch, |, and all packets will
follow the old route. The change made has no effect to the network so far. The
old route is completely unaltered and therefore black hole free.

21

4. Conceptual Design

The next step is to update all the other switches along the new route in reverse
order. That means the next switch updated is switch, ,. In general the flow table
of switch,_, (1 <i<n)is updated, so that there is a connection from switch,_,
to switch switch;. Note there is also a connection from switch, to switch,.
Again 3 different cases must be distinguished.

1.) i=2: In this case switch, | is the start.

As described above switch, | is connected to switch;, which is connected to
the destination. Therefore the new route is completely established. All new
packets will follow the new route. Packets on the fly will follow the old route until
they reach a switch that belongs to the new route, after that they will follow the
new route. If there is no switch, that belongs to the old route as well as to the new
route, then packets on the fly will follow the old route to the destination.

2.) Switch,_, is a switch on the old route and not the start (i > 2).

In this case all packets arriving on switch,_, are forwarded to the destination
completely on the new route. Packets that already have passed switch, , are
following the old route, until they reach another switch, that is part of the new
route and already updated. then they will follow the new route to the destination.

3.) Switch,_, is a switch, that is not on the old route.
As seen before this update is not affecting the old route. The new route stays
also black hole free.

The last step of the update process is to delete all flow table entries, for the
updated flow, on all switches that belong to the old route, but not the new route.
This could cause black holes, if these entries are deleted before all packets on
the fly are forwarded to the destination (that would be the maximum propagation
time of the old route). If we avoid this, then there are no black holes at any time
during the update process and of course the final state is black hole free.

22

5. Implementation

5. Implementation

The algorithm introduced above was implemented and tested on a testbed. The
topology of this testbed is shown in figure [3]. This chapter contains a description
of this testbed and explains how the algorithm was implemented. The testbed
consists of 10 Open vSwitches and 2 virtual machines, each running 4 hosts (8
hosts in total), as controller Floodlight was used. Because OpenFlow is the
standard for the communication between Switches and Controller (Southbound
Interface), it was used in the testbed. In the following a short description of the
floodlight controller is given, followed by an explanation, how the algorithm was
implemented.

host1| [host2 host3 | |host4 host5| | host& host7 | [host8

Figure [3]: The topology of the Testbed that was used to test the algorithm.

23

5. Implementation

5.1 The Floodlight Controller

Floodlight is a controller, but it also provides a collection of applications build on
top of the Floodlight Controller. While the Floodlight Controller, which is written in
JAVA, provides functionality to control an OpenFlow network, the applications are
the so called “Northbound Interface”, which are used for the communication
between controller and other applications that are using the controller in order to
do their tasks. In fact Floodlight provides two different interfaces. The first one is
the Module Interface the second one is the REST Interface. This architecture is
shown in figure [4].

The Module Interface supports proactive as well as reactive routing. Proactive
routing means that the entries into the flow tables of the switches, that are
needed to forward the packages correctly, are added to the flow tables before the
first packet is sent. Reactive routing means that the first switch that receives a
packet that belongs to a flow, it has no entry for in its flow table, forwards this
packet to the controller, which then sets up the forwarding tables of all switches.
In contrast to this the REST Interface is less powerful and only supports proactive
flow programming. For testing the algorithm it is sufficient to use proactive
routing, therefore only the REST Interface is introduced.

Representational State Transfer (REST) is a software architecture that is used in
distributed systems. The REST architecture assumes a client-server-model in
which the client sends a request to a server that processes this request and
returns a reply. REST is resource-oriented, which suits it well for the task,
because the single switches, that the user or an application (the client) wants to
access, match the resources and the controller is the equivalent to a server. To
manipulate resources (to modify flow tables) HTTP methods like GET, POST,
PUT, etc. are used. Because of this it is possible to modify the flow tables with the
following command line code:

curl -d '{"switch": "00:00:00:00:00:00:00:05",
"name":"flow-mod-11",

"priority":"32768",

"ingress-port":"2",

"active":"true",

"actions":"output=3"

}' http://localhost:8080/wm/staticflowentrypusher/json

The command line tool “cURL” posts HTTP requests, which be used to access
the REST API. The json payload tells the Controller which switch has to be
modified and the parameters of the flow, in this case name of the flow, priority, on
which port the packets arrive and if the flow is active. The action dictates what is
done with the arriving packets, in this case they are forwarded to port 3. The
HTTP request is then forwarded to the Static Flow Entry Pusher.

24

5. Implementation

REST Applications

sirc#it Ope"St;‘:k _ Applications in any language leveraging services via REST
i Slsnusn T ee APl exposed by controller modules and module applications
(python) (python)
Module Applications Floodlight Controller
Stati{ R R R
VNF ‘H‘] F|0W_J I‘\.-‘Ic:clul\c-__J Thread Packet Jython ‘\."'.nfeb'_j Unit
Entry Manager Pool Streamer Server (8] Tests

Firewall ﬁJ Pusher

PortD o R R R
5 OWT‘ Forwarding o Device sy Topology 4 Link - Flow SmragefJ
Reconciliation 4 Manager/
Manager B Discovery Cache* Menor
D] B : e
Hub Learning = N sai* |
i 05q
Switch 2 OpenFlow Services P
Applications with smtches] C&Z::;”rer‘j perfMOn*J Trace*j Counter™q
higher bandwidth t Store
communication -
with controller Core services of common interest to SDN applications

such as Packetin's

* Interfaces defined only & not implemented: FlowCache, NoSql

Figure [4]: The Floodlight architecture
Source: http://docs.projectfloodlight.org/display/floodlightcontroller/The+Controller

5.2 Implementation

In fact there is no real implementation. As shown above cURL can be used to
access the Floodlight controller and to setup or modify flows. This command lines
can be scribed into a bash-script, which can be executed. This is an easy way to
test the algorithm, but on the downside it is not possible to update one switch and
to wait for its reply. Therefore just a modified version of the algorithm was tested.
In this modified version the controller is sending the updates to the switches in
the correct order, but it is not ensured by replies that they are executed in the
correct order. However tests showed that in the testbed, that was used, the
switches are executing the updates most likely in the correct order. Even if this
might not be the case in general, for the testbed, that was used, and therefore for
the experiments this modification was no problem.

25

6. Evaluation

6. Evaluation

In order to test the algorithm an experiment was run. In this chapter the
experiment is introduced and the results are shown and discussed. At first the
topology, the goal and the results of the experiment are shown. After that the
results of the experiment are discussed.

6.1 Experiment

For this experiment the topology shown in figure [5] is used, where the red links
indicate the old route and the green links are the ones used by the new route. At
first, only the old route is present, then a file transfer from VM 1 to VM 5 is
started. The time this file transfer takes is measured. This step is executed 10
times to get more reliable results. In addition the same procedure is done with the
new route (the route after the update).

After that again a file transfer is started. During this file transfer the route update
is executed. Again the time required for the file transfer is measured.

Three different update strategies are tested and each strategy is tested 10 times.
The first strategy is the one shown in this work, the second one is updating the
switches in the same order as the packets pass them. This is the opposite
direction compared the strategy described in this work and leads to black holes.
The fourth strategy is a two phase update where the new route is created before
the update starts, so that the update is only updating the ingress switch.

The File transfer is done by using netcat on both hosts. Netcat sets up a TCP-
Connection between this two hosts. The time is measured by using the unix
“time” function, which measures the time needed for executing a function. The
following code was executed:

On VM 5: nc -1 2000 > /dev/null
On VM 1: time nc VM1 2000 < test

The first command makes netcat listening on port 2000 for incoming connections,
if a connection is set up, the received data is dropped, because it is not needed.
The second command measures the time that netcat needs to set up a
connection to VM 1 and to send the “test” file, which is a 1GB big file filled with
Zeros.

After each single test all flow-table-entries on all switches are deleted and the old
route is set up again, so that each test has the same preconditions. The updates
are done by using bash-scripts for the Static Flow Table Pusher.

The goal of the experiment is to find out what influence the algorithm described in
this work has on a TCP-Connection and how large this influence is compared to
other strategies.

The results are shown in the table below.

27

6. Evaluation

Old route New route End to Begin to Two Phase

without update |without update Begin End
Test 1 8.947 s 8.957 s 8.952s 9.000 s 8.957 s
Test 2 8.949 s 8951 s 8.953 s 8.987s 8.951s
Test 3 8.950 s 8.953 s 8.950 s 8.999 s 8.953 s
Test 4 8.947 s 8.955s 8.946 s 9.775s 8.955s
Test 5 9.228 s 8.950 s 8.955s 9.315s 8.950 s
Test 6 8.956 s 8.949 s 8.951s 9.631 s 8.949 s
Test 7 8.954 s 8.950 s 8.950 s 9.026 s 8.950 s
Test 8 8.947 s 8.951s 8.949 s 9.905 s 8.951s
Test 9 8.948 s 8.959 s 8.947 s 9.409 s 8.959 s
Test 10 |8.947 s 8.965 s 8.950 s 9.170 s 8.965 s
min 8.947 s 8.949 s 8.946 s 8.987 s 8.949 s
max 9.228 s 8.965 s 8.955s 9.905 s 8.965 s
average |8.977s 8.954 s 8.950 s 9.322's 8.954 s
Average |8.949s 8.953 s 8.950 s 9.291 s 8.953 s
without
min and
max

Figure [5]: The topology used for the experiment. Old route: red links, new route: green links

28

6. Evaluation

6.2 Discussion

In this section the results of the experiments above are discussed. The table
shows the following results:

In the second column the results for the old route without update are shown. In
the third column the results for the new route without update are shown. The
columns four, five and six are show the results for the three update strategies.
Column four shows the strategy that starts with the last switch and updates all
other switches in reverse order (the approach shown in this work). Column five
shows the counterpart, the update starts with the first switch and ends with the
last one. Column six finally is the two phase update.

First of all it is important to notice, that both routes, the new and the old one,
contain the same amount of switches, therefore the path length should be almost
the same. If the outliers, the minimal and the maximal value, are removed and
the remaining 8 values are compared this is indeed the case.

The next interesting fact is that the “reverse update” is much better than the
update that starts with the first switch. This is the case, because the second
update strategy leads to black holes, which means that packets are lost during
the update, this leads to retransmissions, which further lets TCP assume a
congestion, which in result slows the data transfer down.

Another interesting result is that the “reverse update” is slightly better than the
two phase update, which probably is the case because the reverse update
strategy needs no vlan tagging. But it is more likely that this result is based on
errors in the measurements. For example the measurements for both algorithms
where done at different points in time. That means the conditions within the
testbed may have changed. The big outliers in the second column show that the
conditions within the testbed are unstable. But both approaches lead to very
similar results and are better than the update strategy that is updating the
switches along the route.

Also it is interesting how small the effect of the “reverse update” and the two
phase update is on the performance. According to this result it seems as the
‘reverse update is, at least, competitive to the two phase update strategy. But this
could be different in topologies in which the reverse update strategy leads to
transient loops.

To find out which of the two protocols is better under which conditions needs
more tests with more different topologies.

29

7. Conclusion

7. Conclusion

This work shows a new approach for consistent route updates in SDN. Even if
the algorithm is not leading to strict consistency, at least eventual consistency is
reached.

This is reached by updating the switches on a new route, that replaces the old
one, in reverse order. Reverse order means that the update starts with updating
the last switch on the new route and then the one before and so on until the first
switch (ingress switch) is reached.

Many other existing approaches are limitted in some ways, for example only work
with specific protocols like BGP (Border Gateway Protocol), even the approch by
Reitblatt et al., wich can be seen as "state of the art", suffers under the restriction
that it is necessary to modify the header fields. This is necessary, because this
approach is a two phase update and therefore the packets must hold the state of
the phase. For example vlan tagging can be used to do that.

This algorithm on the other hand has no such restrictions, this is reflected in the
system model which makes only very general assumptions. On the downside the
algorithm only reaches eventual consistency, because there exist some
topologies in which the algorithm creates transient loops, loops that exist during
the update is executed, but not after the update is finished.

There are two possible ways to avoid this transient loops. One would be to use a
controller that recognizes such topologies, which is not a big deal, because this
topologies all have in comon that there are two or more switches, which are used
in both routes, the old and the new one, but in different directions.

The other possibility would be to modity the algorithm which is beond the scope
of this work, but would most certenly be no big deal.

The experiment that was run in this work furthermore shows, that the algorithm is,
at least in the topology that was used for the experiment, competitive to a two
phase protocol in terms of performance. Also the ordering, that the algorithm
uses to update the switches, achives much better results than a different ordering
that updates the switches in the same direction as packets would pass them,
which is the opposite direction compared to the one that the algorithm, shown in
this work, uses. Probably the most surprising result of the experiment was, that
the update algorithm has a very sligtly effect on the performance of a TCP file
transfer that is executed before, during and after the update.

Further work is required to test the algorithm in more different topologies, for
examples in topologies for which the algorithm creates transient loops.
Furthermore the effect on a UDP file transfer could be tested and compared to
the results for TCP-Connections. Also the algortihm could be modified in a way
that it can avoid transient loops in certain topologies.

31

8. Bibliography

8. Bibliography

[1] Open Networking Foundation. Software-defined Networking: The New Norm
for Networks, Apr. 2012.

[2] Open Networking Foundation. OpenFlow switch specification, June 2012.

[3] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. Abstractions
for network update. In Proceedings of the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication, pages 323-334, Helsinki, Finland, Aug. 2012.

[4] R. McGeer. A safe, efficient update protocol for OpenFlow networks. In
Proceedings of the First Workshop on Hot Topics in Software-defined Networks,
page 61-66, Helsinki, Finland, Aug. 2012.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Perterson, J.
Rexford, S. Shenker, and J.Turner. OpenFlow: Enabling innovation in campus
networks. ACM SIGCOMM Computer Communication Review, 38(2):69-74, Apr.
2008.

33

Erklarung

Ich Versichere , diese Arbeit selbststéindig verfasst zu haben.

Ich habe keine anderen als die angegebenen Quellen benutzt und alle wortlich oder sinngeméf aus anderen Werken
iibernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines Anderen Priifungsverfahrens.

Ich habe diese Arbeit bisher weder vollstdndig noch teilweise veroffentlicht.

Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren {iberein.

Unterschrift:

(Stuttgart, 13.05.2013)

	 Abstract
	1. Introduction
	2. Background and related work
	2.1 Unicast-Routing
	2.2 SDN/OpenFlow
	2.3 Related work

	3. System-Model and Problem Statement
	3.1 System-Model
	3.2 Problem Statement

	4. Conceptual Design
	4.1 The Algorithm
	4.2 Transient Loops
	4.3 Black holes

	5. Implementation
	5.1 The Floodlight Controller
	5.2 Implementation

	6. Evaluation
	6.1 Experiment
	6.2 Discussion

	7. Conclusion
	8. Bibliography

