Institut fur Architektur von Anwendungssystemen
Universitat Stuttgart
Universitatsstralle 38
70569 Stuttgart
Germany

Studienarbeit Nr. 2410

Vorlagen fiir das Deployment von Services
und Applikationen in der Cloud

Shaojun Zhang

Studiengang: Informatik

Priifer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. Johannes Wettinger
begonnen am: 30.11.2012

beendet am: 25.04.2013

CR-Klassifikation: K6; D.2.11; D2.13

Kurzfassung

Aktuell werden unterschiedliche Verwaltungswerkzeuge wie Juju [1] oder Chef [2] [23] im
Bereich des Cloud Computing entwickelt um das Deployment und die Verwaltung von
Services und Applikationen in der Cloud zu erleichtern. Mit Hilfe dieser Werkzeuge
konnen Artefakte entwickelt und verwaltet werden, um die automatisierte Installation und
Konfiguration von Softwarekomponenten zu ermdoglichen. Diese Artefakte konnen
miteinander kombiniert werden um Vorlagen fiir Cloud-Services (,,Service-Templates®) zu
erstellen, die sich aus mehreren Softwarekomponenten zusammensetzen. Das
Hauptproblem ist hierbei, dass die Artefakte nicht portabel sind weil sie durch proprietire
Ansitze implementiert werden und damit von einer ebenfalls proprietiren
Laufzeitumgebung abhingig sind.

Um das oben genannte Problem zu vermeiden sind Standardisierungsbemiihungen im
Bereich des Cloud Computing von wichtiger Bedeutung. Die "Topology and Orchestration
Specification for Cloud Applications" (TOSCA) [3] stellt einen Standardisierungsansatz
dar, um die Portabilitdt von Cloud-Services und der zugrundeliegenden Vorlagen und
Artefakte zu verbessern [10].

Ziel dieser Studienarbeit ist der Entwurf und die Entwicklung einer Prozedur, mit der
existierende Artefakte aus der Juju-Community zu TOSCA-konformen Artefakte
konvertiert werden konnen. Damit konnen diese Artefakte und entspr. Vorlagen, die diese
Artefakte verwenden, von jeder TOSCA-konformen Laufzeitumgebung verarbeitet werden.

Inhaltsverzeichnis

T EINICIEUNG . ..ttt ettt e e e ettt e e e st e e e e entbbeeeesnsbaeeeeensaeeaeennnees 1
1.1 EINfURIUNG. ...ooiiiiiiiice et e ettt e e e et e e e e nbbee e e e nnbaeaeenes 1
1.2 AufgabenstellUng.........ccoooiiiiiiiiiiii e e 1
1.3 Struktur der ATDEIt.....cc.vviiiiiiiiiiie e 1

2 GIUNAIAZEN.eeiieeiiiiie ettt e e e et e e e e ebaeeeesnbaeeeeenbaeeeeensaeeaeennees 3
2 B 1 1 OSSP PP UPRRRPPPPRRN 3

2. 1.7 JUJU CRATIMNL ettt ettt e e et e e e e et e e e e esbaeeeeennnees 3
2.1.2 Das Verzeichnis "hooKS"...........oooriiiiiiiiiiiieeiieeeee e 4
2.1.3 Die Datei "metadata.yaml"............ccccoovviiiiiiiniiiieeeieee e 5
2.1.4 Die Datei "config.yaml"..........ccooiiiiiiiiiiiiiieiieeeeee e 6
2.2 Topology and Orchestration Specification for Cloud Applications (TOSCA)............ 7
2.2.1 TOSCA-Kernbegriffe.........uuiiieriiiieieiiiiie et 7
2.2.2 TOSCA Cloud Service Archive (CSAR)........cooiviiiiiiiiieeeeeeciieieeeeeeeees 9
2.2.3 TOSCA-Definitions Dokument...............ceeereuiiireeniiiieeeiiieeeeiieee e 10
2.2.3.7 DETINITIONS. ...eeeiuiiieeiiie ettt ettt et 12

2O 1008 1111010) o TSSOSO PUPPPRRPPP 12
2.2.3.3 Requirement TYPES.......cccerruuiiiieriiiieeeeiieeeeeiite e et e e e reee e e 12
2.2.3.4 Capability TYPeS.....ceeeeiuiiieeiiiiiieeeiiiieeeeiieeeeeriete e e e siaee e e eveeeeeenes 13
2.2.3.5 ATHIACE TYPES...uiviiiieiiiiiee ettt et e e 13
2.2.3.6 Artifact Templates..........ccooviiiiiiiiiiieeiiiiee e 14
2.2.3.7INOAE TYPES..eeieeiiiiiieeeiiieeeeiiitee e ettt e e esitee e e esrteeeeenebteeeeeneneeeaeanes 15
2.2.3.8 Node Type Implementations.cc..eeeerrriieeeniiiieeeeiiieeeesiieeeenes 16

B ENEWULT ..o ettt et 18
3.1 Analyse der ProZedUur.........cccuiiiiiiiiiiiiiiiiie ettt e e e ee e 18
3.2 Konzept der ProZedur............ooociiiiiiiiiiieeeeiie e 19
3.3 Entwurf der zu implementirenden Pakete..............ccccviieiiiiiiiiiniiiiie e 20

3.3.1 TOSCA-CSAR-GENETALOT . c...eeveeeireeeiee ettt et e et e e e eeanes 21

3.3.2 ZIP-BearbEIter.....ccuviiiiiieiiiieeiiieeeieee ettt ettt 21

3.3.3 Juju-Yaml-Reader..........cooiiiiiiiiiiiiieeiiiie et 21

3.3.4 TOSCA-XML-GENEIALOT...c...veieiiieeiiieeniieeeiteeeitee ettt et e e e siee e 21

3.4 Verwendetes Java-Paket und Software von Drittanbietern............ccceecuveevieenineenne. 21
BT IDK ottt ettt et ens 21

3.4.2 SNaKeYaml.......eeiiiiiiiiiiii e 21

B3 DOMA .ttt et e 22

3.5 Komplettes Sequenzdiagramm..............ceevveeiriiiiniieeniieeniieenieeeriee e 22
4 TMPICMENTIETUNG.veieeeiiiieeeeiiiiee e ettt eeeesittee e e ettt eeeessbteeeessbaeeesansaaeesanssseeeeannsseeaeanns 24
4.1 Implementirung des Pakets "org.tosca..........cooouiiieeriiiieeeiiiiee e 24
4.1.1 Klasse "CharmToNodeType".........cooeriiiiieeiiiiieeeiieee e 24
4.7.7.7 Methode "Main"...........coceeiriiiiniiiiiiee e 24

4.7.1.2 Klasse "Transform"............cccovueeiiiiiiniiiinieeeeree e 24

4.2 Implementierung des Pakets "org.tosca.zip"........ccooveeriiiiinieiinieeeiiceeeeeen 24
4.2.1 Klasse "FIeModel"..........cooiiiiiiiiiieieec e 24

4.2.2 Klasse "FIleModelList"..........cooiiiiiiiiiieeieeeee e 25

4.2.2.7 Methode "format"...........cooouiiiiiiiiniiieie e 25

4.2.3 KIasse "ZIPULI".....cuviiiieiiiiee ettt 25
4.2.3.1 Methode "getAlIFilenames"...........ccovveeeriiiiniiieiniieeniiee e 26

4.2.3.2 Methode "getFileFromZip"..........coooiiiieiiiiieeeeiiiee e 26

4.2.3.3 Methode "format"...........cocoeiiiiiiiiiiiiiie e 27

4.2.3.4 Methode "addFileTOZip".......cccviiieeiiiiieeeeiieeeeeee e 28

4.3 Implementierung des Pakets "org.tosca.yaml"...........ccoooeiiiiiiiniiiiniiinicee, 28
4.3.1 Klasse "YamIModel"........ccc.ooiiiiiiiiiiieice e 28

4.3.2 Klasse "YamIModelList".........cceiiriiiiiiiiiiie e 29

il

4.3.3 KIasse "YamIREAAET oo 29

4.3.3.1 Methode "readYamlFile"...........ccoooeiiiiiiiiiiiiiecen 29
4.3.3.2Methode "read"..........coouiiiiiiiiiiiii e 30

4.4 Implementierung des Pakets "org.tosca.xml"...........cccooiiiiiiiiiiniiiniieeee, 30
4.4.1 Klasse "XmlIElementsModel"...........ccoooueiiiiiiiniiiiniieiiceceeeeee 30

4.4.2 Klasse "XmlElementsImpl"..........cccccoeiiiiiiiiiiniiiieeie e 30

4.4.2.7 Methode "elementsImpl".............ccccoiriiiiiiiniiiiiee e 31

4.4.2.2 Methode "rootImpl"..........coooriiiiiiiiiie e 32

4.4.2.3 Methode "importImpl"............cccoiiiiiiiiiiiieeeeee e 32

4.4.2.4 Methode "requirement Typelmpl"...........ccccoiiiiiiiiinniiieeeiieee, 33

4.4.2.5 Methode "capabilityTypelmpl"...........cccviiiiiiiiiiiiieeeeeeee 33

4.4.2.6 Methode "artifactTypelmpl"..........cccoeeiiiiiiiiiniiiieiee e 33

4.4.2.7 Methode "artifactTemplateImpl".............ccccoooiiiiiiiiiiiieieeee, 33

4.4.2.8 Methode "nodeTypelmpl"..........cccovivieiiiiiiiiieee e 33

4.4.2.9 Methode "nodeTypelmplementationImpl"..............ccceeeviiiieennne. 34

4.4.3 Klasse "XMLGENETAtOI".......ccccuitiriiiiiiieeniiee ettt 34

4.4.3. 1 Methode "generator............ceeviuiiieeriiiiee et 34

4.4.4 Klasse "XsdElementsModel"............cooiiiiiiiiiiiiiiiieeeceeee e 34

4.4.5 Klasse "XsdElementsImpl"...........ccccoiiiiiiiiiiiiiii e 34

4.4.5.7 Klasse "ConfigModel"............coooiiiiiieiiiiiieeeiiee e 35

4.4.5.2 Methode "elementsImpl".............ccccooiiiiiiiiiniiiiiie e 35

4.4.6 Klasse "XSDGENEIAtOr"......cc..eiiiiiieiiieeiiiee ettt 36

4.4.6.7 Methode "generator...........coeeviuiiieeiiiiiiee et 36

5 Zusammenfassung und AUusbliCK..........cccciiiiiiiiiiiiiiiii e 37
LIteraturverZ@ICHIIS.eoiutiiiiiiie ittt e 38
EIKIATUNG. ...ttt e e ettt e e e ettt e e e et eeeesbbeeeeesbbeeeeennnees 39

il

Abbildungsverzeichnis

Abbildung 2.1:
Abbildung 2.2:
Abbildung 2.3:
Abbildung 2.4:
Abbildung 2.5:
Abbildung 2.6:
Abbildung 2.7:
Abbildung 3.1:
Abbildung 3.2:
Abbildung 3.3:
Abbildung 4.1:

Abbildung 4.2:

Ein Beispiel fiir die Struktur eines Charm............ccoeceeeviiiiniieiniieeniieenn 3
Ein Beispiel flir ein "hooks" Verzeichniss..........cccocveeeviieiniieeniceniiecnnen, 4
Eine "metadata.yaml" Datei des Charm "drupal" [6].........cccovvveeriiireeennnnee. 5
Eine "metadata.yaml" Datei des Charm "mysql" [6]......cccccveeeviiiiieennnnnnn. 6
Eine "config.yaml" Datei des Charm "myblog" [7].....cccccevoviiiniiiiniieennnen. 7

Strukturelle Elemente eines Service-Template und ihrer Beziehungen [8]..8
Die Struktur einer CSAR-DAtel........ccccuvveeiriiiiiieiiiiiieeeiieee et 10

Zusammenhang zwischen der Eingabe und der Ausgabe der Prozedur..... 18

Ein einfaches Pseudo-Sequenzdiagramm der Prozedur................cccoeeee. 20
Ein Sequenzdiagramm der Prozedur...........cccccoeoviiiiniiiiniiiiniiceicce, 23
Das Speichern von Informationen in einer "metadata.yaml" Datei............ 29
Das Speichern von Informationen in einer "config.yaml" Datei................ 35

Ausschnittsverzeichnis

Ausschnitt 2.1:

Ausschnitt 2.2:

XML-Syntax eines TOSCA-Definitions-Dokuments............cccceveuveernnennns 11

XML-Schema fiir ein Node-Type-Properties-Dokument.......................... 15

v

Tabellenverzeichnis

Tabelle 4.1: Parameter der Methode "format"............ccccoiviiiiiiiiiniiiieeen
Tabelle 4.2: Parameter der Methode "getAllFilenames".............cccceeeviiiiieeniiiieeeiiiiee e
Tabelle 4.3: Parameter der Methode "getFileFromZip"...........coooiiiiiiiiiiiieiiiieeeieee e
Tabelle 4.4: Parameter der Methode "format"............ccccoiiiiiiiiiiiniiii e,
Tabelle 4.5: Parameter der Methode "addFileToZip".........ccccvviiiiiiiiiiiiiiiieeeeee e

Tabelle 4.6: Parameter der Methode "elementsImpl"...............cccoieiiiiiiinniiiiiieee

Abkiirzungsverzeichnis

API: Application Program Interface

BPEL: Business Process Execution Language
BPMN: Business Process Model and Notation
CMS: Content Management System

CSAR: Cloud Service Archive

JDK: Java Development Kit

REST: Representational State Transfer
TOSCA: Topology and Orchestration Specification for Cloud Applications
URI: Uniform Resource Identifier

UUID: Universal Unique Identifier

WSDL: Web Services Description Language
XML: Extensible Markup Language

XSD: Extensible Schema Definition

1 Einleitung

1.1 Einfiihrung

Unter Verwendung von Konfigurationsverwaltungs- und Orchestrierungswerkzeuge
konnen zur Zeit Anwendungen und Services in der Cloud bereitgestellt werden. Diese
Werkzeuge ermoglichen die Bereitstellung von virtuellen Maschinen sowie — die
Installation und die Konfiguration von Softwarekomponenten auf virtuellen Maschinen.
Einer der Vorteile dieser Werkzeuge ist: Entwickler verdffentlichen wiederverwendbare
Artefakte ("Service-Templates") zur Installation und Konfiguration von
Softwarekomponenten wie Apache-Web-Server oder MySQL-Datenbankserver in der
Cloud. Der Nachteil dieser Artefakte ist jedoch die Tatsache, dass sie durch proprietéire
Ansidtze implementiert werden. Folglich konnen die Artefakte nur durch das spezielle
Werkzeug, mit dem sie erstellt werden, verarbeitet werden. Das bedeutet, dass die
Artefakte nicht portabel sind. Um dieses Problem zu l6sen, wird aktuell ein Standard
entworfen, der die Portabilitit solcher Artefakte verbessern soll: Topology and
Orchestraton Specification for Cloud Applications (TOSCA) [3]. TOSCA befindet sich
noch in der Entwicklung und bezweckt die Erstellung von portablen Service-Templates,
damit jede TOSCA-Laufzeitumgebung diese Service-Templates verarbeiten kann [10].

1.2 Aufgabenstellung

Das Ziel der vorliegenden Arbeit ist, eine Prozedur zum Erstellen von TOSCA-Service-
Templates zu entwerfen und zu implementieren. Diese Service-Templates basieren auf
vorhandenen Artefakten, die durch die Juju-Community [4] verdffentlicht und zur
Verfiligung gestellt werden.

Das Hauptziel dieser Arbeit ist, eine Prozedur zum Generieren von TOSCA-Node-Types
zu entwickeln. Die Prozedur implementiert eine Konvertierung von Juju-Charms zu
TOSCA-Node-Types. Node-Types sind ein wichtiger Teil eines Service-Template und
werden in einem TOSCA-Definitions-Dokument definiert.

Die Details zum TOSCA-Definitions-Dokument sowie seine Elemente ServiceZemplate,
NodeType etc. werden in dem Grundlagenkapitel (Unterkapitel 2.2) vorgestellt.

1.3 Struktur der Arbeit

Die Arbeit ist in mehrere Kapitel gegliedert. Auf die Einleitung folgt ein
Grundlagenkapitel. In diesem Grundlagenkapitel werden existierende Technologien und
Losungen wie Juju und TOSCA beschrieben, die als Grundlage dieser Arbeit dienen.

Im dritten Kapitel wird der Entwurf der Anwendungsarchitektur prasentiert. Die
Unterkapitel beschreiben einige Softwarekomponenten, die zur Implementierung bendtigt
werden.

Das vierte Kapitel zeigt die Implementierung des Entwurfs. Damit soll gezeigt werden,
dass die Aufgabenstellung tatsdchlich realisiert werden kann.

Kapitel 5 beinhaltet eine Zusammenfassung der Arbeit und ein kurzer Ausblick auf
mogliche weiterfithrende Arbeiten.

2 Grundlagen

Aus der Aufgabenstellung (Unterkapitel 1.2) ist die Hauptfunktion der umzusetzenden
Prozedur bekannt, die ein Artefakt von Juju einliest und daraus ein TOSCA-Node-Type
erzeugt. Im Folgenden werden Eingabe und Ausgabe der umgesetzten Prozedur
beschrieben. Dabei werden auch grundlegende Informationen zu Juju und TOSCA zur
Verfiigung gestellt.

2.1 Juju

Juju zielt darauf ab, ein Service-Deployment- und Orchestrierungswerkzeug zu sein, das
die Zusammenarbeit zwischen den Services sowie die einfache Verwaltung dieser Services
ermoglicht. Verschiedene Service-Entwickler konnen mit Juju Services selbstindig
erstellen und die Kommunikation von diesen Services durch ein einfaches
Konfigurationsprotokoll koordinieren. Dann konnen die Service-Benutzer die Services von
verschiedenen Service-Entwicklern nehmen und sie sehr komfortabel in einer Umgebung
bereitstellen. Das Ergebnis ist, dass mehrere Maschinen und Komponenten transparent
zusammenarbeiten konnen, um die angeforderten Services zur Verfiigung zu stellen.

211 Juju Charm

Die Eingabe der Prozedur ist eine ZIP-Datei, die von der Juju-Community verdffentlicht
und als "Charm" bezeichnet wird. Charms definieren, wie sich Services integrieren und
wie ihre Service-Einheiten auf Ereignisse in der verteilten Umgebung reagieren. Eine
Service-Instanz in Juju besitzt zu Beginn genau eine Service-Einheit. Es koénnen jedoch
weitere Service-Einheiten zu dieser Instanz hinzugefiigt werden, um z.B. Skalierbarkeit zu
ermoglichen. Bspw. kann eine MySQL-Datenbank-Instanz zu Beginn genau eine Service-
Einheit besitzen (eine virtuelle Maschine). Spéter konnen dann weitere Service-Einheiten
(weitere virtuelle Maschinen) zu dieser Instanz hinzugefiigt werden und mit der
urspriinglichen Service-Einheit verkniipft werden. Ein Charm stellt die Definition des
Service zur Verfligung. Zur Definition gehdren auch seine Metadaten, die Abhéingigkeiten
von anderen Services, die notwendigen Pakete sowie die Verwaltung der Anwendung. In
Abbildung 2.1 wird ein Beispiel fiir die Struktur eines Charm dargestellt. "xxx" ist der
Namen eines beliebigen Service.

xxx_charm.zip

hooks

config. yaml

copyright

metadata. yaml

README

revision

Abbildung 2.1: Ein Beispiel fiir die Struktur eines Charm

Normalerweise enthdlt jedes Charm eine "metadata.yaml" Datei und ein Verzeichnis
namens "hooks". Manche Charms enthalten noch eine "config.yaml" Datei.

2.1.2 Das Verzeichnis "hooks"

In dem Verzeichnis "hooks" gibt es viele Dateien. Jede dieser Dateien wird als "Hook"
bezeichnet. Die Hooks in einem Charm sind ausfiihrbare Dateien, die unter Verwendung
von einer beliebigen Skript-Sprache oder Programmiersprache geschrieben werden koénnen.
Juju verwendet die Hooks, um eine Service-Einheit iiber die Verdnderungen in ihrem
Lebenszyklus oder in der verteilten Umgebung zu benachrichtigen. Ein fiir eine Service-
Einheit laufendes Hook kann diese Umgebung iiberpriifen. AuBerdem kann es die
gewiinschten lokalen Anderungen auf der Maschine, wo sich dieses Hook befindet,
vornehmen sowie die Einstellung der Relation dndern.

In der Regel gibt es in Bezug auf den Lebenszyklus einer Service-Einheit folgende Hooks:
"install", "start" und "stop" [5]. Es kann noch weitere Hooks geben, die als "Relation-
Hook" bezeichnet werden. Sie werden auf jeder Service-Einheit aufgerufen, wenn eine
Relation hergestellt oder gedndert wird. Ein Beispiel fiir ein "hooks" Verzeichnis wird in
Abbildung 2.2 gezeigt. In diesem Verzeichnis "hooks" gibt es zwei Relation-Hooks "db-
relation-joined" und "db-relation-broken". Das Hook "db-relation-joined" wird aufgerufen,
wenn eine Relation - z.B. eine Datenbankverbindung - zu einer Service-Einheit
hinzugefiigt wird. Das Hook "db-relation-broken" wird aufgerufen, wenn die Relation
entfernt wird. Dabei wird die Service-Einheit die Konfigurationsinformationen zur
Datenbankverbindung 16schen.

T 11111 111 4 1 1

db-relation-broken

db-relation-joined

install

start

stop

Abbildung 2.2: Ein Bespiel fiir ein "hooks" Verzeichnis

2.1.3 Die Datei "metadata.yaml”

YAML [28] ist eine einfache Markup-Sprache zur Datenserialisierung, die sowohl gut von
Menschen lesbar sein soll als auch vollautomatisch von Maschinen verarbeitbar ist. Die
Datei "metadata.yaml", die sich im Wurzelverzeichnis eines Charm befindet, beschreibt
das Charm und enthélt die Metadaten fiir das Charm. Wir nehmen das Charm "drupal" fiir
das Deployment des CMS-System als Beispiel [29]. Seine "metadata.yaml" Datei wird in

Abbildung 2.3 dargestellt.

-

name: drupal
summary: "Drupal CMS"

maintainer: "Drupal PowerUser <drupaluser@somedomain.foo>"

description: |

Installs the drupal CMS system, relates to the mysql charm provided in
examples directory. Can be scaled to multiple web servers

requires:
db:
interface: mysql

Abbildung 2.3: Eine "metadata.yaml" Datei des Charm "drupal" [6]

Diese Datei "metadata.yaml" deklariert ein Charm mit dem Namen "drupal". Die ersten
vier Abschnitte geben folgende Informationen iiber dieses Charm an: den Namen des
Charm, die Information iiber den Ersteller des Charm, eine kurze und eine lange
Beschreibung. Der letzte Abschnitt ist "requires". Dies beschreibt einen Interface-Typ, der
von diesem Charm bendtigt wird. Da das Charm "drupal" eine MySQL-Datenbank als
Service bendtigt, muss dies in den Metadaten angegeben werden. Da dieses Charm keinen
Service fiir andere Charms zur Verfligung stellt, gibt es keinen "provides" Abschnitt. Was
bedeutet das Interface "mysql"? Die Antwort ist in der Interface-Information aus der
"metadata.yaml" Datei des Charm namens "mysql" zu finden. Ein Beispiel der Datei
"metadata.yaml" des Charm "mysql" wird in Abbildung 2.4 gezeigt.

e 2

name: mysq|
summary: "MySQL relational database provider"
maintainer: "Joe Charmer <youremail@whatever.com>"
description: |
Installs and configures the MySQL package (mysqldb), then runs it.

Upon a consuming service establishing a relation, creates a new
database for that service, if the database does not yet

exist. Publishes the following relation settings for consuming
services:

database: database name
user: user name to access database
password: password to access the database
host: local hostname
provides:
db:
interface: mysql

Abbildung 2.4: Eine "metadata.yaml" Datei des Charm "mysql" [6]

In der letzten Zeile ist das Interface erkennbar, welches uns vom Charm "mysql" zur
Verfiigung gestellt wird.

2.14 Die Datei "config.yaml"

Die Datei "config.yaml" befindet sich auch im Wurzelverzeichnis eines Charm. In dieser
Datei werden einige Konfigurationsoptionen definiert, auf die das Charm zugreift. Charms
erlauben nur, die Konfigurationsoptionen zu bearbeiten, die von dem Ersteller des Charm
bekannt gegeben werden. Diese Optionen werden nicht nur fiir eine bestimmte Service-
Einheit oder Beziehung verwendet, sondern fiir den gesamten Service. Beispielsweise
definiert der Service "myblog" eine "blog-title" Option. Diese Option kontrolliert den Titel
des zu verdffentlichenden Blogs. Die Anderungen an dieser Option gelten fiir alle Service-
Einheiten, die zu einer bestimmten Service-Instanz des Service "myblog" gehdren. Dabei
wird ein Hook auf jeder von diesen Service-Einheiten aufgerufen.

options:

port:
default: 80
type: int
description: Port to listen on

admin-email:
type: str is implied
default: null
description: Email address for the site administrator.

Abbildung 2.5: Eine "config.yaml" Datei des Charm "myblog" [7]

In Abbildung 2.5 wird gezeigt, wie eine "config.yaml" Datei aussieht. Die Information
enthélt eine lesbare Beschreibung und einen optionalen Default-Wert "default". Zusétzlich
kann moglicherweise ein Typ "type" spezifiziert werden. Alle Optionen haben einen
Default-Typ von 'string'. Er bedeutet, dass sein Wert nur als eine Text-Zeichenfolge
behandelt wird. Andere giiltige Optionen sind 'int' und 'float'.

2.2 Topology and Orchestration Specification for Cloud Applications
(TOSCA)

Cloud Computing [8] [9] kann wertvoller werden, wenn die (semi-)automatische
Erstellung und Verwaltung von Services auf der Anwendungsschicht in den verschiedenen
Cloud-Umgebungen eingesetzt werden kann. Somit konnen die Services interoperabel
bleiben [10]. Die TOSCA-Spezifikation [11] stellt eine Sprache zur Verfligung, die
Service-Komponenten und ihre Beziehungen mithilfe einer Service-Topologie ("Service-
Topology") beschreibt. AuBlerdem bietet sie noch die Beschreibung der
Verwaltungsprozeduren an, welche die Services mittels Orchestrierungsprozesse
("Orchestration-Processes") erstellen, dndern und terminieren. In TOSCA werden diese
Prozesse als Pline bezeichnet. Die Kombination von Topologie und Orchestrierung in
einem Service-Template beschreibt, was unter Deployments in verschiedenen
Umgebungen bendtigt wird. Das Ziel ist das interoperable Deployment von Cloud-Services
und ihrer Verwaltung wihrend des gesamten Lebenszyklus zu ermoglichen, wenn die
Applikationen in unterschiedlichen Cloud-Umgebungen deployed werden.

2.21 TOSCA-Kernbegriffe

TOSCA ist eine XML-basierte Sprache und definiert ein Metamodell fiir das Spezifizieren
von IT-Services. Dieses Metamodell legt die Struktur eines Service sowie die Art der
Verwaltung fest. Ein Topolgy-Template (auch als Topologie-Modell eines Service
bezeichnet) bestimmt die Struktur eines Service. Pline [9] [15] definieren die
Prozessmodelle, die verwendet werden, um einen Service zu erstellen, zu terminieren
sowie ihn wihrend seines ganzen Lebenszyklus zu verwalten.

Die wichtigsten Elemente, die einen Service definieren, sind in Abbildung 2.6 dargestellt.

Service Template

/ Topology Template Node Types \
a Node Type N\
/ \ Capability Definitions
____________ 0 =1
; F= o
typefor | © 3,
Relationship 8—{ 8
Template/ N\, . E Requirement Definitions "’/
i Relationship Types
i (" ., Relationship Type)
! Rol =
i | type for £ F—é
Q oy
Node E 2
Template - Plans L
()
NS / > _ -/

Abbildung 2.6: Strukturelle Elemente eines Service-Template und ihrer Beziehungen [8]

Ein Topology-Template besteht aus einer Reihe von Node-Templates und Relationship-
Templates, die zusammen das Topologie-Modell eines Service als ein gerichteter Graph
definieren. Ein Knoten in diesem Graph wird von einem Node-Template dargestellt. Ein
Node-Template ist eine Instanz eines Node-Type. Ein Node-Type definiert die
Eigenschaften einer solchen Komponente (via Node-Type-Properties) und die Operationen
(via Interfaces), die das Deployment und Management eines Service ermdglichen. Node-
Types sind fiir den Zweck der Wiederverwendung separat definiert.

Ein Relationship-Template spezifiziert die Beziehung zwischen zwei Knoten in einem
Topology-Template. Jedes Relationship-Template bezieht sich auf einen Relationship-
Type, der die Semantik und alle Eigenschaften der Beziehung definiert. Relationship-
Types sind zum Wiederverwendungszweck separat definiert. Das Relationship-Template
zeigt die verbundenen Elemente und die Richtung der Beziehung an, indem ein
Quellelement und ein Zielelement (in geschachtelten "SourceElement" und
"TargetElement" Elementen) definiert werden. Das Relationship-Template definiert auch
alle moglichen Beschrinkungen mit dem optionalen Element "RelationshipConstraints".

Pléne, die in einem Service-Template definiert sind, beschreiben die Verwaltungsaspekte
von Service-Instanzen, insbesondere ihre Erstellung und Terminierung [23]. Diese Plidne
sind als Prozessmodelle definiert, z.B. ein Workflow bestehend aus einem Schritt oder
mehreren Schritten. Die Spezifikation ist abhéngig von existierenden Sprachen wie BPMN
[11] [15] oder BPEL [12], anstatt eine andere Sprache fiir das Definieren von
Prozessmodellen anzubieten. Abhidngigkeit von vorhandenen Standards in diesem Raum
erleichtert Portabilitdt und Interoperabilitit, aber alle Sprachen fiir das Definieren von
Prozessmodellen konnen verwendet werden. Das TOSCA-Metamodell stellt Container zur
Verfiigung, entweder um ein Prozessmodell (via Plan-Model-Reference) zu referenzieren
oder um ein Prozessmodell (via Plan-Model) einzubauen. Ein Prozessmodell kann die

8

Aufgaben (unter Verwendung von BPMN-Terminologie) beinhalten, die auf (1) die
Operationen der Interfaces von Node-Templates (oder die Operationen, die von Node-
Types definiert sind, und diese Node-Types sind im "type" Attribut der Node-Templates
spezifiziert) oder (2) die Operationen der Interfaces von Relationship-Templates (oder die
Operationen, die von Relationship-Types definiert sind, und diese Relationship-Types sind
im "type" Attribut der Relationship-Templates spezifiziert) verweisen. Dabei kann ein Plan
die Knoten der Topologie eines Service direkt manipulieren oder die Interaktion mit
externen Systemen ausfiihren. Im Rahmen dieser Arbeit sind die Pliane nicht wichtig. Sie
werden besprochen, um die strukturellen Elemente in einem Service-Template besser
verstehen zu konnen. Diese Arbeit konzentriert sich auf das Topologie-Modell.

Um in einer bestimmten Umgebung die Durchfiihrung und die Verwaltung des
Lebenszyklus einer Cloud-Anwendung zu unterstiitzen, miissen alle entsprechenden
Artefakte in dieser Umgebung verfiigbar sein. Das heifit, dass neben dem Service-
Template der Cloud-Anwendung die Deployment-Artefakte und die Implementation-
Artefakte in dieser Umgebung verfiigbar sein miissen [16]. Um die Verfiigbarkeit von allen
genannten Elementen zu garantieren, definiert diese Spezifikation ein entsprechendes
Archiv-Format namens Cloud-Service-Archive (CSAR). Details iiber CSAR werden im
néchsten Unterkapitel besprochen.

2.2.2 TOSCA Cloud Service Archive (CSAR)

Die Ausgabe der im Rahmen dieser Studienarbeit entwickelten Prozedur ist eine Datei, die
als "CSAR" bezeichnet wird. Ein CSAR ist eine ZIP-Datei, die mindestens zwei
Verzeichnisse enthidlt: "TOSCA-Metadata" und "Definitions". Darliber hinaus kdénnen
andere Verzeichnisse in einer CSAR-Datei enthalten sein, d.h. der Ersteller einer CSAR-
Datei hat die Freiheit, die Inhalte einer CSAR-Datei und die Strukturierung dieser Inhalte
den Cloud-Anwendungen entsprechend zu definieren.

Das Verzeichnis "TOSCA-Mectadata" enthilt die Mectadaten, welche die anderen Inhalte
der CSAR-Datei beschreiben. Diese Metadaten werden als "TOSCA-Metadatei"”
bezeichnet. Diese Datei besitzt den Dateinamen "TOSCA.meta".

Das Verzeichnis "Definitions" enthdlt ein oder mehrere TOSCA-Definitions-Dokumente
(Dateierweiterung .tesca). Diese "Definitions" Dateien enthalten in der Regel Definitionen
beziiglich der Cloud-Anwendung der CSAR-Datei. Dariiber hinaus kann eine CSAR-Datei
nur die Definition der Elemente fiir Wiederverwendung in anderen Kontexten enthalten.
Beispielsweise konnte eine CSAR-Datei verwendet werden, um eine Reihe von Node-
Types und Relationship-Types mit ihren jeweiligen Implementierungen zu verpacken, die
dann von Service-Templates in anderen CSAR-Dateien verwendet werden konnen. In den
Féllen, wo eine komplette Cloud-Anwendung in einer CSAR-Datei verpackt ist, muss eins
der Definitions-Dokumente im Verzeichnis "Definitions" eine Definition fiir Service-
Template enthalten, die die Struktur und das Verhalten der Cloud-Anwendung definiert.

Abbildung 2.7 zeigt die Struktur einer CSAR-Datei. Die ersten zwei Verzeichnisse in der
CSAR-Datei sind unabdingbar. Die iibrigen kann der Ersteller dieser CASR-Datei frei
gestalten.

/ TOSCA-Metadata

/ Definitions

Abbildung 2.7: Die Struktur einer CSAR-Datei

223 TOSCA-Definitions Dokument

Alle Elemente, die zum Definieren eines TOSCA-Service-Template nétig sind, wie z.B.
Node-Type-Definitionen, Relationship-Type-Definitionen sowie Service-Templates selbst,
sind Teil eines TOSCA-Definitions-Dokuments. Dieser Abschnitt beschreibt die
allgemeine Struktur eines TOSCA-Definitions-Dokuments. Ausschnitt 2.1 beschreibt ein
Pseudo-Schema, das die XML-Syntax eines Definitions-Dokuments definiert. "?" bedeutet
ein optionales Element oder Attribut. "*" bedeutet null oder mehrere Elemente bzw.
Attribute. "+" bedeutet ein oder mehrere Element(e) bzw. Attribut(e). "|" bedeutet
Auswihlen. Zum Beispiel zeigt "a|b" eine Wahl zwischen "a" und "b". "(" und ")" werden
verwendet, um den Rahmen der Operatoren "?", "*", "+" und "|" anzugeben.

10

01 <Definitions id="xs:ID"

02 name="xs:string"?

03 targetNamespace="xs:anyURI">

04

05 <Extensions>

06 <Extension namespace="xs:anyURI"

07 mustUnderstand="yes |no"?/> +

08 </Extensions> ?

09

10 <Import namespace="xs:anyURI"?

11 location="xs:anyURI"?

12 importType="xs:anyURI" /> *

13

14 <Types>

15 <xs:schema .../> *

16 </Types> ?

17

18 (

19 <ServiceTemplate> ... </ServiceTemplate>

20 |

21 <NodeType> ... </NodeType>

22 |

23 <NodeTypeImplementation> ... </NodeTypeImplementation>

24 |

25 <RelationshipType> ... </RelationshipType>

26 |

27 <RelationshipTypeImplementation>. ..
</RelationshipTypelImplementation>

28 |

29 <RequirementType> ... </RequirementType>

30 |

31 <CapabilityType> ... </CapabilityType>

32 |

33 <ArtifactType> ... </ArtifactType>

34 |

35 <ArtifactTemplate> ... </ArtifactTemplate>

36 |

37 <PolicyType> ... </PolicyType>

38 |

39 <PolicyTemplate> ... </PolicyTemplate>

40) +

41

42 </Definitions>
Ausschnitt 2.1: XML-Syntax eines TOSCA-Definitions-Dokuments [11]

Ein TOSCA-Definitions-Dokument muss mindestens eines der Elemente Service7emplate,
NodeDype, Nodelypelmplementation, RelationshipDipe, RelationshipTipelmplemen-
tation, Requirementype, Capability Tipe, ArtifactType, ArtifactTemplate, PolicyTipe, oder
Policylemplate, definieren. Es kann aber beliebig viele dieser Elemente in einer beliebigen
Reihenfolge definieren.

Diese Technik unterstiitzt eine modulare Definition von Service-Templates. Beispielsweise
kann ein Definitions-Dokument nur die Definitionen von Node-Type und Relationship-
Type enthalten, die dann in ein anderes Definitions-Dokument importiert werden konnen.
Das zweite Definitions-Dokument definiert dann nur ein Service-Template und verwendet

11

die importierten Node-Types und Relationship-Types. Ebenso konnen Node-Type-
Properties in separaten XML-Schema-Definitions-Dokumenten definiert werden, die bei
dem Definieren eines Node-Type importiert und referenziert werden.

Im Folgenden werden die Elemente Definitions, Import, RequirementType, Capability Type,
ArtifactDpe, ArtifactTemplate, Nodelype und Nodelypelmplementations spezifiziert, die
im Rahmen dieser Arbeit wichtig sind.

2.2.3.1 Definitions

Das Element Definitions ist das Wurzel-Element eines TOSCA-Definitions-Dokuments
und hat die folgenden Attribute: 7, name und targetNamespace. Das Attribut 7id
spezifiziert den Bezeichner des Definitions-Dokuments, der innerhalb des
Zielnamensraums ("Target Namespace") eindeutig sein muss. Das optionale Attribut zame
spezifiziert einen beschreibenden Namen des Dofinitions-Dokuments. Der Wert des
Attributes zargetNamespace spezifiziert den Zielnamensraum fiir das Definitions-
Dokument. Alle Elemente, die innerhalb des Defnitions-Dokuments definiert sind, werden
zu diesem Zielnamensraum hinzugefiigt, auBler ein Element besitzt ein eigenes
targetNamespace-Attribut. Dann gilt der darin angegebene Namensraum.

2.2.3.2 Import

Das Element /Zmport deklariert eine Abhéngigkeit von externen TOSCA-Definitionen,
XML-Schema-Definitionen oder WSDL-Definitionen [14]. Eine beliebige Anzahl von
Elementen /Zmport kann als Kinder des Elements Defnitions erscheinen. Das Element
Import hat die folgenden Attribute: namespace, location und import7ype. Das optionale
Attribut namespace spezifiziert eine absolute URI, die die importierten Definitions-
Dokumente identifiziert. Das optionale Attribut /ocazion enthélt eine URI, die angibt, wo
sich das relevante Definitions-Dokument befindet. Das erforderliche Attribut zmport7ipe
identifiziert den Typ des Dokuments, das durch eine absolute URI importiert wird. Ein
Definitions-Dokument muss alle verwendeten Node-Types, Node-Type-Implementations,
Relationship-Types, Relationship-Type-Implementations, Requirement-Types, Capability-
Types, Artifact-Types, Policy-Types, WSDL-Definitionen und XML-Schema-Definitionen
definieren oder importieren.

2.2.3.3 Requirement Types

Ein Requirement-Type ist eine wiederverwendbare Entitdt, die eine Art Anforderung
("Requirement") beschreibt. Ein Node-Type kann deklarieren, solche Anforderung zu
besitzen. Zum Beispiel kann ein Requirement-Type fiir eine Datenbankverbindung
definiert werden. Verschiedene Node-Types (z.B. ein Node Type fiir eine Anwendung)
konnen deklarieren, eine Anforderung fiir eine Datenbankverbindung zu besitzen.

Das Element AeqguirementZipe hat die folgenden wichtigen Attribute: name,
targetNamespace und requiredCapabilityTipe. Das Attribut name spezifiziert den Namen
oder den Bezeichner des Requirement-Type, der innerhalb des Zielnamensraums eindeutig
sein muss. Das optionale Attribut zargetNamespace spezifiziert den Zielnamensraum, zu
dem die Definition des Requirement-Type hinzugefiigt werden wird. Wenn
targetNamespace nicht angegeben wird, wird die Definition des Requirement-Type zum
Zielnamensraum des Definitions-Dokuments, in dem dieser Requirement-Type definiert ist,

12

hinzugefiigt werden. Das optionale Attribut requiredCapability7ipe spezifiziert den Typ
einer Fahigkeit ("Capability") also die Erfiillung einer Anforderung, der dem definierten
Requirement-Type entsprechen muss. Der Wert dieses Attributs verweist auf den Namen
eines CapabilityTipe-Elements, das in demselben Definitions-Dokument oder in einem
separaten importierten Dokument definiert wird.

2.2.3.4 Capability Types

Ein Capability-Type ist eine wiederverwendbare Entitdt, die eine Art Fihigkeit
("Capability") beschreibt. Ein Node-Type kann deklarieren, solche Féhigkeit
bereitzustellen. Zum Beispiel kann ein Capability-Type fiir einen Datenbankserver
definiert werden. Verschiedene Node-Types (z.B. ein Node-Type fiir eine Datenbank)
konnen deklarieren, die Fahigkeit eines Datenbankservers zur Verfiigung zu stellen.

Das Element CapabilityZipe hat die folgenden wichtigen Attribute: #ame und
targetNamespace. Das Attribut name spezifiziert den Namen oder den Bezeichner des
Capability-Type, der innerhalb des Zielnamensraums eindeutig sein muss. Das optionale
Attribut zargetNamespace spezifiziert den Zielnamensraum, zu dem die Definition des
Capability-Type hinzugefiigt werden wird. Wenn zar.getNamespace nicht angegeben wird,
wird die Definition des Capability-Type zum Zielnamensraum des Definitions-Dokuments,
in dem dieser Capability-Type definiert ist, hinzugefiigt werden.

2.2.3.5 Artifact Types

Ein Artifact-Type ist eine wiederverwendbare Entitét, die die Art eines Artifact-Template
oder von meheren Artifact-Templates definiert. Diese Artifact-Templates dienen als
Deployment-Artefakte fiir Node-Templates oder als Implementation-Artefakte fiir die
Interface-Operationen von Node-Type und Relationship-Type. Zum Beispiel konnte ein
Artifact-Type "WAR-Datei" zur Beschreibung von Web-Application-Archive-Files
definiert werden. Auf der Grundlage des Artifact-Type konnen ein oder mehrere Artifact-
Templates, die konkrete WAR-Dateien darstellen, definiert und als Deployment- oder
Implementation-Artefakte referenziert werden. Ein Artifact-Type kann die Struktur von
beobachtbaren Eigenschaften durch eine Properties-Definition definieren, d.h. die Namen ,
die Datentypen und die erlaubten Werte, die die Eigenschaften, die in Artifact-Templates
definiert sind, haben konnen. Diese Artifact-Templates benutzen einen Artifact-Type oder
Instanzen von solchen Artifact-Templates.

Das Element Arzfact7ipe hat die folgenden wichtigen Eigenschaften: das Attribut zame,
das Attribut zargetNamespace und das Element PropertiesDefinition. Das Attribut name
spezifiziert den Namen oder den Bezeichner des Artifact-Type, der innerhalb des
Zielnamensraum eindeutig sein muss. Das optionale Attribut zzrgetNamespace spezitiziert
den Zielnamensraum, zu dem die Definition des Artifact-Type hinzugefiigt werden wird.
Wenn zargetNamespace nicht angegeben wird, wird die Definition des Artifact-Type zum
Zielnamensraum des Definitions-Dokuments, in dem dieser Artifact-Type definiert ist,
hinzugefiigt werden. Das Element PropertiesDefinition spezifiziert mittels XML-Schema
die Struktur der beobachtbaren Eigenschaften des Artifact-Type, wie seine Konfiguration
und sein Zusand. Dieses Element hat nur eines der beiden Attribute e/emens und zpe. Das
Attribut element gibt den Namen eines XML-Elements an, das die Struktur der Artifact-

13

Type-Properties definiert. Das Attribut pe gibt den Namen eines (komplexen) XML-Typs
an, der die Struktur der Artifact-Type-Properties definiert.

2.2.3.6 Artifact Templates

Ein Artifact-Template beschreibt ein Artefakt, das von anderen Objekten in einem Service-
Template als ein Deployment- oder Implementation-Artefakt referenziert werden kann.
Von Node-Types oder Node-Templates konnte beispielsweise ein Artifact-Template fiir
einige installierbaren Software als ein Deployment-Artefakt fiir das Instanziieren einer
spezifischen Software-Komponente referenziert werden. Als ein weiteres Beispiel konnte
aus den Definitionen fiir das Interface der Node-Types oder der Relationship-Types ein
Artifact-Template flir eine WAR-Datei als Implementation-Artefakt fiir eine REST-
Operation referenziert werden.

Ein Artifact-Template bezieht sich auf einen spezifischen Artifact-Type, der die Struktur
von beobachtbaren Eigenschaften (Metadaten) oder das Artefakt definiert. Das Artifact-
Template definiert in der Regel die Werte dieser Eigenschaften innerhalb des Elements
Properties. AuBBerdem stellt in der Regel ein Artifact-Template eine Referenz oder mehrere
Referenzen auf das tatsdchliche Artefakt selbst zur Verfiigung. Es kann als eine Datei in
der CSAR-Datei sein, welche das gesamte Service-Template enthélt. Es kann auch an
einem entfernten Ort wie einem FTP-Server verfiigbar sein.

Das Element ArzfactZemplate hat die folgenden wichtigen Attribute: 7@, name und fpe.
Das Attribut 77 spezifiziert den Bezeichner des Artifact-Template, der innerhalb des
Zielnamensraum eindeutig sein muss. Das optionale Attribut #ame spezifiziert den Namen
des Artifact-Template. Der Wert des Attributs 7pe verweist auf einen Artifact-Type, der
den Typ des Artifact-Template zur Verfligung stellt.

Das Element Arzfact7emplate hat die folgenden wichtigen Kindelemente: Zroperties und
ArtifactReferences. Das optionale Element PFProperties spezifiziert die invarianten
Eigenschaften des Artifact-Template, d.h. die Eigenschaften, die allgemein in
verschiedenen Kontexten verwendet werden, in denen das Artifact-Template benutzt wird.
Das optionale Element ArzfactReferences enthilt einen Verweis oder mehrere Verweise
auf die tatsdchlichen Artefakte. Jeder Verweis wird durch ein separates Element
ArtifactReference dargestellt. Das Element Ar7factReference hat wichtige Eigenschaften
wie reference und /nclude. Das Attribut reference enthédlt eine URI, die auf ein
tatsdchliches Artefakt zeigt. Wenn diese URI eine relative URI ist, wird sie relativ zum
Wurzelverzeichnis der CSAR-Datei, die das Service-Template enthdlt, interpretiert. Das
optionale Element /Zzc/ude kann verwendet werden, um ein Pattern der Dateien zu
definieren. Diese Dateien sind in dem gesamten Artefakt-Verweis ("Artifact Reference")
enthalten, falls reference auf ein komplettes Verzeichnis verweist. Das Element Zzc/ude
hat ein Attribut pastern. Dieses Attribut enthélt eine Pattern-Definition fiir die Dateien, die
in dem gesamten Artefakt-Verweis eingeschlossen sind.

2.2.3.7 Node Types

Ein Node-Type ist eine wiederverwendbare Entitdt, die die Art eines Node-Template oder
von mehreren Node-Templates definiert. Ein Node-Type definiert die Struktur der
beobachtbaren Eigenschaften durch eine Properties-Definition, d.h. die Namen, die

14

Datentypen und die zuldssigen Werte, die die Eigenschaften, die in Node-Templates
definiert sind, haben konnen. Diese Node-Templates benutzen einen Node-Type oder die
Instanzen von solchen Node-Templates. Im Folgenden werden die Eigenschaften des
Elements NodeZjpe spezifiziert, die im Rahmen dieser Arbeit wichtig sind.

Das Attribut zame spezifiziert den Namen oder den Bezeichner des Node-Type, der
innerhalb des Zielnamensraums eindeutig sein muss. Das optionale Attribut
targetNamespace spezifiziert den Zielnamensraum, zu dem die Definition des Node-Type
hinzugefiigt werden wird. Wenn zargetNamespace nicht angegeben wird, wird die
Definition des Node-Type zum Zielnamensraum des Definitions-Dokuments, in dem dieser
Node-Type definiert ist, hinzugefiigt werden.

Durch das Element PropertiesDefinition kann die Struktur der beobachtbaren
Eigenschaften des Node-Type, wie seine Konfiguration und sein Zustand, mittels XML-
Schema spezifiziert. Dieses Element besitzt genau eines der beiden Attribute e/emens und
ype. Das Attribut element gibt den Namen eines XML-Elements an, das die Struktur der
Node-Type-Properties definiert. Das Attribut spe gibt den Namen eines (komplexen)
XML-Typ an, der die Struktur der Node-Type-Properties definiert. In Ausschnitt 2.2 wird
ein Beispiel fiir ein Node-Type-Properties-Dokument dargestellt.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://jujucharms.com/charms/precise/myblg/..."
targetNamespace="http://jujucharms.com/charms/precise/myblog/...">
<xs:complexType name="t-myblog-properties">
<xs:sequence>
<xs:element name="port" type="int" default="80">
<xs:annotation>
<xs:documentation xml:lang="en">
Port to listen on
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="admin-email" type="string" default="null">
<xs:annotation>
<xs:documentation xml:lang="en">
Email address for the site administrator.
</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:element name="myblog-properties" type="t-myblog-properties"/>
</xs:schema>

Ausschnitt 2.2: XML-Schema fiir ein Node-Type-Properties-Dokument

Ein Node-Type kann deklarieren, bestimmte Anforderungen ("Requirements") mittels des
Elements ReguirementDefinition zu benodtigen. Das Element AReguirementDefinition hat
wichtige Attribute wie name und requirementZype. Das Attribut name spezifiziert den
Namen der definierten Anforderung und muss innerhalb von ReguirementsDefinitions des

15

aktuellen Node-Type eindeutig sein. Das Attribut reguirement7ipe identifiziert durch
seinen Wert den Requirement-Type, welche durch das aktuelle Element
ReguirementDefinition definiert wird.

AuBlerdem kann ein Node-Type deklarieren, bestimmte Fahigkeiten ("Capabilities") unter
Verwendung von dem Element CapabilitvDefinition bereitzustellen. Das Element
CapabilityDefinition hat die wichtigen Attribute: zame und capability7ipe. Das Attribut
name spezifiziert den Namen der definierten Fdhigkeit und muss innerhalb von
CapabilityDefinition des aktuellen Node-Type eindeutig sein. Das Attribut capability 7ipe
identifiziert durch seinen Wert den Capability-Type, welche durch das aktuelle Element
CapabilityDefinition definiert wird.

Die Funktionen, die auf (einer Instanz von) einem entsprechenden Node-Template
durchgefiihrt werden konnen, werden durch die Interfaces des Node-Type definiert. Das
Element Znzerfaces enthilt die Definitionen der Operationen, die auf (Instanzen von) dem
Node-Type durchgefiihrt werden kdnnen. Solche Definitionen der Operationen werden in
Form von verschachtelten Elementen /Zzzerface angegeben. Das Element /Znzerface hat ein
Attribut zame und enthdlt ein Element Operation. Das Attribut name beschreibt den
Namen des Interface. Der Name ist eine URI, die im Rahmen des definierenden Node-
Type eindeutig sein muss. Das Element Operation definiert eine verfiigbare Operation, um
besondere Aspekte des Node-Type wie z.B. den Lebenszyklus eines Service zu verwalten.
Dieses Element hat ein Attribut #ame. Dieses Attribut definiert den Namen der Operation
und muss innerhalb des Interface, das die Operation enthélt, eindeutig sein.

2.2.3.8 Node Type Iinplementations

Eine Node-Type-Implementation beschreibt den ausfiithrbare Code, der einen spezifischen
Node-Type implementiert. Die Node-Type-Implementation stellt auch eine Sammlung von
ausfiihrbaren Dateien oder Programmen zur Verfligung, welche die Interface-Operationen
eines Node-Type (auch bekannt als Implementation-Artefakte) implementieren. Aullerdem
stellt er eine Sammlung von ausfiihrbaren Dateien oder Programmen zur Verfiigung, die
ndtig sind, um die Instanzen von Node-Templates, die sich auf einen bestimmten Node-
Type (auch bekannt als Deployment-Artefakte) beziehen, zu erstellen. Diese ausfiihrbaren
Dateien oder Programme werden als separate Artifact-Templates definiert und von den
Implementation-Artefakte und den Deployment-Artefakte eines Node-Type referenziert.

Das Element NodeZypelmplementation hat die folgenden wichtigen Attribute: name,
nodelype und targetNamespace. Das Attribut name spezifiziert den Namen oder den
Bezeichner der Node-Type-Implementation, der innerhalb des Zielnamensraums eindeutig
sein muss. Das optionale Attribut zargetNamespace spezifiziert den Zielnamensraum, zu
dem die Definition der Node-Type-Implementation hinzugefiigt werden wird. Wenn
targetNamespace nicht angegeben wird, wird die Node-Type-Implementation zum
Zielnamensraum des Definitions-Dokuments, in dem diese Node-Type-Implementation
definiert ist, hinzugefiigt werden. Der Wert des Attributs #odeZipe spezitiziert den Node-
Type, der durch diese Node-Type-Implementation implementiert wird.

Das Element /ZmplementationArtifacts spezifiziert eine Reihe von Implementation-
Artefakten fiir Interfaces oder Operationen eines Node-Type. Jedes Implementation-

16

Artefakt eines Interface oder einer Operation wird durch das Kindelement
ImplementationArtifact spezitiziert. Dieses Kindelement hat die folgenden Attribute: #ame,
artifactDpe, artifactRef, interfaceName und operationName. Das Attribut name
spezifiziert den Namen des Artefakts, der im Rahmen dieser Node-Type-Implementation
eindeutig sein soll. Das Attribut arzfact7ype spezifiziert den Typ des Artefakts. Sein Wert
soll dem Namen eines in demselben Definitions-Dokument oder in einem importierten
Dokument definierten Elements Ar7fact7ipe entsprechen. Das optionale Attribut
artifactRef enthilt einen Namen, der ein Artifact-Template als ein Implementation-Artefakt
identifiziert. Dieses Artifact-Template kann in demselben Definitions-Dokument oder in
einem separaten, importierten Dokument definiert werden. Das optionale Attribut
interfaceName spezifiziert den Namen des Interface, das durch das tatsichlichen
Implementation-Artefakt implementiert wird. Das optionale Attribut operationName
spezifiziert den Namen der Operation, die durch das tatsachliche Implementation-Artefakt
implementiert wird.

Die Laufzeitumgebungen, die TOSCA unterstiitzen, werden als TOSCA-Containers
bezeichnet. Ein TOSCA-Container muss eine Reihe von den Typen der Implementation-
Artefakte verarbeiten, die verwendet werden um die Verwaltungsoperationen (zum
Beispiel das Instanziieren eines Node-Type) auszufithren. AuBlerdem soll ein TOSCA-
Container auch eine Reihe von den Typen der Deployment-Artefakte, die der TOSCA-
Container verarbeiten kann, unterstiitzen, weil es fiir das Instanziieren eines Node-Type
erforderlich ist, die Deployment-Artefakte in der entsprechenden Umgebung zur
Verfiigung zu stellen. Die Node-Type-Implementations kdnnen durch das Element
RequiredContainerfeatures die Hinweise fiir einen TOSCA-Container spezifizieren, dass
er eine Implementierung, die einer bestimmten Umgebung entspricht, richtig auswéhlen
kann.

17

3 Entwurf

In Kapitel 2 wurden die Details liber die Eingabe "Juju-Charm", die Ausgabe "TOSCA-
CSAR" der Prozedur sowie die Grundlagen von Juju und TOSCA besprochen. Dadurch ist
die Grundlage geschaffen, sich mit dem Entwurf der Prozedur zu beschiftigen. Zuerst
wird die zu implementierende Prozedur analysiert, um genauer zu erldutern, wie der
Zusammenhang zwischen der Eingabe und der Ausgabe der Prozedur aussieht. Als
nichster Schritt wird das Konzept der Prozedur dargestellt, die beschreibt, welche
Funktionen fiir die Prozedur implementiert werden miissen und in welcher Reihenfolge die
Schritte der Prozedur ablaufen sollen. AuBlerdem werden der Entwuf der zu
implementierenden Pakete in der Prozedur und die Software von Drittanbietern
beschrieben. Bevor wir auf die Implementierung der Prozedur eingehen, wird auch ein
Sequenzdiagramm zum besseren Verstehen fiir die Implementierung besprochen.

3.1 Analyse der Prozedur

In diesem Abschnitt wird der Zusammenhang zwischen der Eingabe und der Ausgabe der
Prozedur besprochen. In Abbildung 3.1 werden die Informationen beziiglich dieser Arbeit
dargestellt. "xxx" ist der Name eines Service.

xxx_charm.zip Xxx_ nodetype_csar.zip
hooks | ; / TOSCA-Metadata

= | : | TOSCA. meta

= config.yaml ------f----: :

= copyright ! / Definitions

- Prozedur . S i xxx_nodetype.tosca

= metadata. yaml ------ : . S L xxx_nodetype_properties.xsd

= README Rk

= revision I—

- L install

Abbildung 3.1: Zusammenhang zwischen der Eingabe und der Ausgabe der Prozedur

In dieser Abbildung kann man sehen, wie die Struktur sowie die Inhalte der Eingabe und
der Ausgabe der Prozedur aussehen. Die Datei "metadata.yaml" ist fiir unsere Arbeit sehr
wichtig. Durch die Inhalte dieser Datei, zum Beispiel die Informationen iiber "name",
"requires" und "provides", kann unsere Prozedur ein entsprechendes TOSCA-Definitions-
Dokument fiir einen Node-Type generieren. Ebenso kann die Prozedur durch die
Informationen der Datei "config.yaml" auch ein entsprechendes Node-Type-Properties-
Dokument erzeugen. In der Abbildung gibt es zwei gestrichelte Linien, die zeigen, dass die
Prozedur die Dateien "metadata.yaml" und "config.yaml" in der Datei "xxx charm.zip"

18

einliest und dann die entsprechenden Dateien "xxx nodetype.tosca" und
"xxx_nodetype properties.xsd" generiert. Dariiber hinaus miissen alle originale Dateien
(alle Hooks und die anderen Dateien) in der Datei "xxx_charm.zip" zu der von unserer
Prozedur generierten Datei "xxx_nodetype csar.zip" kopiert werden. Dort werden sie noch
als die entsprechenden Artefakte (die ausfiihrbaren Codes oder Dateien) verwendet werden,
um in der TOSCA-Umgebung den Lebenszyklus einer Cloud-Anwendung durchzufiihren
und zu verwalten [23]. Wo sich diese Dateien in der CSAR-Datei befinden sollen, kann der
Ersteller der CSAR-Datei selbst entscheiden. Im Rahmen dieser Arbeit werden sie alle in
dem Verzeichnis "Files" gespeichert. SchlieSlich muss noch eine wichtige Metadatei
"TOSCA.meta" erstellt und sie zur CSAR-Datei hinzugefiigt werden.

3.2 Konzept der Prozedur

Mindestens drei Funktionen muss die Prozedur implementieren, um die Aufgabe dieser
Arbeit zu erledigen. Erstens muss die Prozedur die ZIP-Datei bearbeiten. Beispielsweise
kann sie eine Datei in eine ZIP-Datei einbauen oder eine Datei aus einer ZIP-Datei
ausnechmen. Zweitens muss die Prozedur auch die YAML-Dateien behandeln. Sie kann die
Informationen aus einer YAML-Datei bekommen und diese Informationen auf einer
gewissen Weise speichern, damit diese Informationen spiter noch benutzt werden kann.
SchlieSlich muss die Prozedur die XML-Datei erstellen. In unserem Fall soll die Prozedur
nur das XML-basierte TOSCA-Definitions-Dokument mittels der Informationen aus der
YAML-Datei generieren.

Fiir das Schreiben der Prozedur ist noch wichtig in welcher Reihenfolgen die Schritte der
Prozedur ablaufen sollen. Dazu werden im Allgemeinen die folgenden Schritte bendtigt:

Schritt 1: Die Charm-ZIP-Datei einlesen und die entsprechenden YAML-Dateien erhalten.

Schritt 2: Die YAML-Dateien analysieren und ihre Inhalte auf einer gewissen Weise
speichern.

Schritt 3: Die XML-Dateien durch die Inhalte der YAML-Dateien erzeugen.
Schritt 4: SchlieBlich die CSAR-Datei generieren.

In Abbildung 3.2 wird ein einfaches Pseudo-Sequenzdiagramm fiir die Prozedur dargestellt.
Diese Abbildung zeigt, dass die Funktionseinheit "ZIP-File-Handler" zuerst von der
Funktionseinheit "CSAR-Generator" aufgerufen wird. "ZIP-File-Handler" liest eine
"xxx_charm.zip" Datei ein und gibt die Dateien "metadata.yaml" und "config.yaml" zuriick.
Durch die zwei YAML-Dateien erzeugt die Funktionseinheit "Juju-Yaml-Reader" zwei
abstrakte Objekte. Jedes Objekt wird hier als "YamlModelList" bezeichnet. Diese Objekte
dienen zum Speichern der Inhalte der YAML-Dateien. Die Funktionseinheit "XML-
Generator" kann durch die zwei YamlModelList-Objekte die entsprechenden, XML-
basierten Dateien "xxx nodetype.tosca" und "xxx nodetype properties.xsd" generieren.
SchlieBlich wird die Funktionseinheit "ZIP-File-Handler" wieder aufgerufen, um die
Zieldatei "xxx_nodetype csar.zip" zu erzeugen. Diese Zieldatei enthélt nicht nur die zwei
generierten XML-Dateien sondern auch alle Dateien in der "xxx charm.zip" Datei und
noch eine entsprechende Metadatei "TOSCA.meta".

19

Wenn es in mancher Charms keine "config.yaml" Datei gibt, dann wird die entsprechende
Bearbeitung fiir diese Datei ignoriert.

1 1 [[
CSAR-Generator ZIP-File-Handler Juju-Yaml-Reader XML-Generator
. i i '
| | | :
| |
L xxx_charm.zip . : |
Schritte 1 |:| ! '
4----------) I |
metadata. yaml / config. yaml, I |
[
I |
metadata. yaml / config. yaml > I |
Schritte 2 ' |
Metadata—YamlModeIList:/ Config-YamIModelList |
__________ e |
' |
Metadata-YamlModelList// Config-YamIModelList >
Schritte 3 !)
< xxx_nodetype,tosc_;lé / xxx_nodetype_properties.xsd
|
xxx_nodetype.tosca / ;
Xxx_nodetype_properties.xsd
>
Schritte 4
4--------- -
XXX_ nodetype_csar.zip

Abbildung 3.2: Ein einfaches Pseudo-Sequenzdiagramm der Prozedur

3.3 Entwurf der zu implementierenden Pakete

In Unterkapitel 3.2 werden vier Funktionseinheiten erwdhnt. Dazu werden die folgenden
entsprechenden Pakete entworfen: "org.tosca", "org.tosca.xml", "org.tosca.yaml" und
"org.tosca.zip". Jedes Paket wird als eine Funktionseinheit angesehen und kann die
bestimmte Funktion der Prozedur implementieren.

3.3.1 TOSCA-CSAR-Generator

Die Funktion des Pakets "org.tosca" ist, die anderen Pakete der bestimmten Reihenfolge
nach aufzurufen, um eine TOSCA-CSAR-Datei zu generieren. Aullerdem miissen hier der
Pfadname und der Dateiname der Eingabe und der Ausgabe der Prozedur angegeben
werden.

3.3.2 ZIP-File-Handler

Die Funktion des Pakets "org.tosca.zip" ist die Verarbeitung einer ZIP-Datei. Mogliche
Aufgaben sind zum Beispiel, eine Liste, die eine Reihe von Pfadnamen und Dateinamen
aller Dateien in einer ZIP-Datei enthélt, zu erhalten, eine Datei zu einer ZIP-Datei
hinzuzufiigen oder eine Datei aus einer ZIP-Datei auszunehmen. AuBBerdem kann damit die

20

Struktur der Dateiverzeichnisse in einer ZIP-Datei nach der bestimmten Form geéndert
werden.

3.3.3 Juju-Yaml-Reader

Die Funktion des Pakets "org.tosca.yaml" ist, eine YAML-Datei zu lesen. Beispielsweise
konnen die Inhalte einer YAML-Datei analysiert und jede wichtige Information aus dieser
YAML-Datei als ein YamlModel-Objekt in einer Liste gespeichert werden.

3.3.4 TOSCA-XML-Generator

Die Funktion des Pakets "org.tosca.xml" ist, eine XML-Datei zu erstellen. In unserem Fall
werden ein TOSCA-Definitions-Dokument und ein XML-Schema-Definitions-Dokument
erzeugt. Das Paket ermoglicht, dass durch die Liste mit YamlModel-Objekten alle
entsprechenden Elemente fiir die zwei oben genannten Dokumente im Rahmen dieser
Arbeit gespeichert werden und dadurch die entsprechenden XML-Dokumente generiert
werden.

3.4 Verwendetes Java-Paket und Software von Drittanbietern

34.1 JDK

Fiir die Implementierung von Schritt 1 und 4 wird das Java-Paket "java.util.zip" [17]
verwendet. Dieses Paket stellt die Klassen fiir das Lesen und das Schreiben von ZIP-
Dateien zur Verfligung. Man benutzt das Paket, um die Dateien in der ZIP-Datei zu lesen
und eine neue ZIP-Datei zu generieren. Fiir unseren Fall kann die Prozedur die Dateien
"metadata.yaml" und "config.yaml" in einer Charm-ZIP-Datei erhalten und sie an einem
bestimmten Ort speichern. Schlielich kann die Prozedur durch das Paket eine neue
CSAR-ZIP-Datei erzeugen und dabei ein neu generiertes TOSCA-Definitions-Dokument
zu diesem CSAR-ZIP-Datei hinzufiligen.

3.4.2 SnakeYaml

Fiir Schritt 2 wird eine YAML-Software von Drittanbietern verwendet. SnakeYAML [18]
ist ein YAML-Parser fiir Programmiersprache "Java". SnakeY AML ist bekannt dafiir, dass
er ein kompletter YAMLI1.1-Parser ist. Durch SnakeYAML kann die YAML-Datei
gelesen werden und konnen ihre Inhalte gespeichert werden.

3.4.3 Dom4j

Fiir Schritt 3 wird eine XML-Software von Drittanbietern benutzt. Dom4j [19] ist eine
benutzerfreundliche, open-source-Bibliothek, die dafiir verwendet wird, mit XML auf der
Java-Plattform unter Verwendung von Java-Collections-Framework zu arbeiten. Um
genauer zu sagen, ist Dom4j eine Java-XML-API, die zum Lesen und Schreiben von
XML-Dateien verwendet wird. Unter Verwendung von DOM4j und Informationen in der
Yaml-Datei kann man eine auf TOSCA-Standard basierende XML-Datei erzeugen.

3.5 Komplettes Sequenzdiagramm

Bevor man sich mit der Implementierung der Prozedur beschiftigt, wird hier zuerst ein
komplettes Seuquenzdiagramm in Abbildung 3.3 dargestellt, in dem der gesamte Ablauf
der Prozedur und die Interaktion ihrer Komponenten gezeigt werden [20]. In der

21

Abbildung sind die wichtigen Klassen und die wichtigen Methoden zu sehen, die
implementiert werden miissen. Fiir Ubersichtlichkeit werden die Parameter der Methoden
weggelassen. Dem Sequenzdiagramm nach kann die Prozedur schrittweise implementiert
werden.

22

H ueajoog :bey 0z
<

() dizola|14ppenz:6L

() 1eW0yNZ 18|

m__A

() 103019URB BjWIX 1/ |

[9POINSIUSWID|F|WIX:WD|WX 19 |

() [dwsius W I9|WIX :§ |

101013USDTNIX
:bjux

IS IEMEETNY
HE0

1030J9U3DASX
:bpsx

() 103eI2USBBPSX H7 |

< () dizwou4a|14196'nZ

I
| () rewnoyisiieifndur g "

E- “s191d asrindul T
<

() saweud)|i4||y196'nz

[dwisyuawa|Ipsy
1I9pSX

Japeay|wep A

‘L

mndiz :nz

wojsuel|

suelny

Ein Sequenzdiagramm der Prozedur

Abbildung 3.3

23

4 Implementierung

In diesem Kapitel wird auf Details der Implementierung der Prozedur eingegangen. In den
folgenden Abschnitten wird die Implementierung von allen wichtigen Klassen und
Methoden ausfiihrlich beschrieben.

4.1 Implementirung des Pakets "org.tosca"

Das Paket '"org.tosca" enthdlt im Rahmen dieser Arbeit nur eine Klasse
"CharmToNodeType".

4.1.1 Klasse "CharmToNodeType"
In dieser Klasse werden die Methode "main" und eine Klasse "Transform" definiert.

4.1.1.1 Methode "main”

Die Methode "main" [21] ist die Einstiegsfunktion der Prozedur und wird automatisch als
erste Funktion aufgerufen. In dieser Methode definiert man drei Eigenschaften vom Typ
"String". Dies sind "pathname", "inputFilename" und "platform". Die letzte Eigenschaft
"platform" beschreibt eine bestimmte Umgebung, von der eine Implementierung eines
Node-Type abhéngig ist. Die Information iiber "platform" wird in Kapitel 2.2.3.8
besprochen. Die anderen zwei Eigenschaften stellen die Pfadenamen und die Dateinamen
der Eingabe der Prozedur dar. AuBBerdem wird in der Methode "main" eine Instanz der
Klasse "Transform" mit den drei definierten Eigenschaften als Parameter erstellt und ihre

Methode "transform" aufgerufen.

4.1.1.2 Klasse "Transform”

Diese Klasse enthélt einen Konstruktor [21] "Transform" und eine Methode "transform".
Der Konstruktor "Transform" wird mit drei Parametern versehen, die von der Methode
"main" iibergeben werden. Durch diese Parameter werden allen nétigen Variablen die
Werte zugewiesen. Die Funktion der Methode "transform" ist, die Instanzen von allen
notwendigen Klassen zu erstellen und ihre Methoden der bestimmten Reihenfolge nach
aufzurufen, um die Aufgabe dieser Prozedur zu verwirklichen. Die Reihenfolge, in der die
Methoden aufgerufen werden, wird auf der linken Seite in Abbildung 3.3 dargestellt.

4.2 Implementierung des Pakets "org.tosca.zip"

In dem Paket "org.tosca.zip" werden drei Klassen implementiert: "FileModel",
"FileModelList" und "ZipUtil".

4.2.1 Klasse "FileModel"

Die Funktion dieser Klasse ist, den Pfadnamen und den Dateinamen einer Datei als ein
FileModel-Objekt zu speichern. In dieser Klasse werden zwei privaten Eigenschaften
"pathname" und "filename" definiert, deren Werte durch Setter- und Getter-Methoden
jeweils zugewiesen und erhalten werden konnen.

24

422 Klasse "FileModelList"

Die Funktion dieser Klasse ist, die Pfadnamen und die Dateinamen aller Dateien in einer
ZIP-Datei als FileModel-Objekte in einem FileModelList-Objekt zu speichern. In dieser
Klasse wird eine private Eigenschaft "fileModelList" vom Typ "java.util.List" [22]
definiert. In der Konstrukturmethode wird die Eigenschaft "fileModelList" instanziiert, das
zur Speicherung der FileModel-Objekte dient. Die Werte der Eigenschaft "fileModelList"
konnen durch Setter- und Getter-Methoden zugewiesen und bekommen werden. Aullerdem
enthilt diese Klasse noch eine Methode "format",

4.2.2.1 Methode "format”

Input/Output | Parametername | Parametertyp | Beschreibung

Input "servicename" String Der Name eines Service

Eine Umgebung, von der eine
Input "platform" String Implementierung von "NodeType"
abhéngen kann

Eine Liste von den Pfadnamen und
Output "f]" FileList Dateinamen aller Dateien in einer
ZIP-Datei

Tabelle 4.1: Parameter der Methode "format"

In dieser Methode wird der Pfadname jeder Datei in der Charm-Datei zu dem in der
CSAR-Datei verlangten Pfadnamen geéndert. Thre Eingabeparameter und ihre Ausgabe
werden in Tabelle 4.1 gezeigt. Die zwei Parameter der Methode werden in den neuen
Pfadenamen bendtigt. Wenn in der Charm-Datei die Dateien namens "install", "start" und
"stop" vorhanden sind, miissen zusétzlich die entsprechenden Dateien names "install.sh",
"start.sh"und "stop.sh" zur CSAR-Datei hinzugefiigt werden. Der Grund dafiir ist, dass
nicht bekannt ist, in welcher Script-Sprache die Dateien "install", "start" und "stop"
implementiert wurden. Bei TOSCA muss man definieren, um welche Art von Script (zum
Beispiel Shell oder Python) es sich handelt [11]. Deswegen braucht man die zusitzliche
Datei "install.sh" als Wrapper-Script, um die Datei "install" aufzurufen. Dasselbe gilt auch
fiir "start" und "stop" [23]. AuBerdem miissen diese Dateien in Form von FileModel-
Objekten mit den neuen Pfadnemen und den originalen Dateinamen zu dem
entsprechenden FileList-Objekt "fI" hinzugefiigt werden. Am Ende gibt die Methode das
FileList-Objekt "fI" zuriick, das alle FileModel-Objekte der CSAR-Datei entsprechend
enthélt.

4.2.3 Klasse "ZipUtil"

Die Funktion dieses Pakets ist die Verarbeitung einer ZIP-Datei. Zu den Aufgaben
gehoren zum Beispiel eine Dateiliste, die eine Reihe von Pfadnamen und Dateinamen aller
Dateien in einer ZIP-Datei enthdlt, zu bekommen, eine Datei zu einer ZIP-Datei
hinzuzufiigen oder eine Datei aus einer ZIP-Datei zu nehmen. Auflerdem kann durch diese

25

Klasse die Struktur der Dateiverzeichnisse in einer ZIP-Datei der bestimmten Form nach
gedndert werden.

4.2.3.1 Methode "getAllFilenames”

Input/Output | Parametername | Parametertyp | Beschreibung

Der vollstdndige Name einer ZIP-

Input "i tFil " tri .
npu inputFilename String Datei

Eine Liste der Pfadnamen und
Output "f]" FileList Dateinamen aller Dateien in einer

ZIP-Datei

Tabelle 4.2: Parameter der Methode "getAllFilenames"

Die Funktion dieser Methode ist, eine Dateiliste mit den Pfadnamen und den Dateinamen
aller Dateien in einer ZIP-Datei zuriickzugeben. Thre Eingabeparameter und ihre Ausgabe
werden in Tabelle 4.2 gezeigt. Zuerst wird eine Instanz der Klasse "ZipInputStream" [24]
erstellt, die einen Input-Stream fiir das Lesen der Dateien in der ZIP-Datei implementiert.
Mit der Methode "getNextEntry" der Klasse "ZipInputStream" kann der nichste ZIP-Datei-
Eintrag gelesen und dann ein Objekt der Klasse "ZipEntry" als Ausgabe zuriickgegeben
werden. Durch eine While-Schleife kann man dann alle Dateien in der ZIP-Datei in Form
der ZipEntry-Objekte erhalten. Bei jeder Schleife wird die Methode "getName" der Klasse
"ZipEntry" [24] aufgerufen, damit man einen vollstindigen Namen jeder Datei bekommen
kann. Durch das Teilen jedes vollstindigen Namen kann man den Pfadnamen und den
Dateinamen erhalten, die als ein FileModel-Objekt in einem FileList-Objekt "fl"
gespeichert werden. Schlieflich wird das FileList-Objekt "fl" zuriickgegeben.

4.2.3.2 Methode ’getFileFromZip”

Input/Output | Parametername | Parametertyp | Beschreibung

Der vollstdndige Name einer ZIP-

Input "inputFile" String Datei, aus der eine Datei genommen
wird
" " . Der Name einer Datei, die aus einer
Input filename String

ZIP-Datei genommen wird

Eine Datei, die aus der ZIP-Datei

Output "output" Fil .
vy oy He genommen wird

Tabelle 4.3: Parameter der Methode "getFileFromZip"

26

Die Funktion dieser Methode ist, eine Datei mit einem angegebenen Dateinamen aus einer
ZIP-Datei zu erhalten. Thre Eingabeparameter und ihre Ausgabe werden in Tabelle 4.3
gezeigt. Zuerst erstellt man zwei Instanzen der Klasse "ZiplnputStream" und
"FileOutputStream" [25]. Die Klasse "ZipInputStream" implementiert einen Input-Stream
fiir das Lesen der Dateien in einer ZIP-Datei. Die Klasse "FileOutputStream" [24]
implementiert einen Output-Stream fiir das Schreiben der Daten in eine Datei. Ahnlich
wie die Implementierung der oben besprochenen Methode "getAllFilenames" kann man
durch das Teilen eines vollstindigen Namens den Pfadnamen und den Dateinamen einer
Datei erhalten. Falls dieser Dateiname dem erwarteten Dateinamen entspricht, wird die
Datei mit diesem Dateinamen durch ein Objekt der Klasse "FileOutputStream" in die Datei
"output" geschrieben. Schliellich wird die Datei "output" zuriickgegeben.

4.2.3.3 Methode "format”

Input/Output | Parametername | Parametertyp | Beschreibung

Input "input" String Pfad zu der zu dndernden ZIP-Datei
Input "output” String Pfad zu der gednderten ZIP-Datei

. , Definition ei
Input "ewPathname” String Fiir das Definition eines neuen

Pfadnamen verwendet

Tabelle 4.4: Parameter der Methode "format"

Die Funktion dieser Methode ist, die Struktur der Dateiverzeichnisse einer ZIP-Datei zu
dndern und dann eine neue ZIP-Datei mit der neuen Struktur der Dateiverzeichnisse zu
erzeugen. lhre Eingabeparameter und ihre Ausgabe werden in Tabelle 4.4 gezeigt.
Tatsdchlich wird nur die Pfadnamen jeder Datei in der ZIP-Datei gedndert. Zuerst erstellt
man zwei Instanzen der Klasse "ZipInputStream" und "ZipOutputStream". Die Klasse
"ZipInputStream" implementiert einen Input-Stream fiir das Lesen der Dateien in einer
ZIP-Datei. Die Klasse "ZipOutputStream" implementiert einen Output-Stream fiir das
Schreiben der Dateien in eine ZIP-Datei. Ahnlich wie die Implementierung der oben
besprochenen Methode "getAllFilenames" kann man die Pfadnamen und die Dateinamen
aller Dateien erhalten. Dann kann man die Pfadnamen dndern. Schlielich miissen alle
Dateien als die neu instanziierten Objekte der Klasse "ZipEntry" mit den neuen Pfadnamen
und den originalen Dateinamen durch das ZipOutputStream-Objekt in die neue ZIP-Datei
geschrieben werden.

27

4.2.3.4 Methode "addFileToZip”

Input/Output | Parametername | Parametertyp | Beschreibung

Der Name der XML-Datei, der zur

Input xmiFileArg String ZIP-Datei hinzugefiigt wird
" . " . Der Name der XSD-Datei, der zur
Input xsdFileArg String ZIP-Datei hinzugefiigt wird
Der Name einer ZIP-Datei, zu der
Input "zipInFileArg" String die neuen Dateien hinzugefiigt

werden

Der Name einer ZIP-Datei, zu der
Input "zipOutFileArg" | String die neuen Dateien schon
hinzugefiigt wurden

Ob das Hinzufligen der Dateien
Output "flag" Boolean erfolgreich ist.

Tabelle 4.5: Parameter der Methode "addFileToZip"

Die Funktion der Methode ist, Dateien zu einer ZIP-Datei hinzuzufiigen. Ihre
Eingabeparameter und ihre Ausgabe werden in Tabelle 4.5 gezeigt. Wenn in der Charm-
ZIP-Datei keine "config.yaml" Datei vorhanden ist, d.h. es wird kein entsprechendes Node-
Type-Properties-Dokument generiert, dann wird die Methode ohne Parameter
"xsdFileArg" benutzt. In dem anderen Fall, dass es in der Charm-ZIP-Datei die beiden
Dateien "metadata.yaml" und "config.yaml" gibt, d.h. es werden das Node-Type-
Properties-Dokument und das TOSCA-Definitions-Dekument fiir Node-Type erzeugt,
dann muss die Methode mit den Parameter "xsdFileArg" und "xmlFileArg" verwendet
werden. Am Anfang wird jede Datei in einer Eingabe-ZIP-Datei als ein Zip-Input-Stream
gelesen und dann als ein Zip-Output-Stream in eine neue ZIP-Datei geschrieben. Danach
werden die XML-Datei und die XSD-Datei zu der neuen ZIP-Datei hinzugefiigt.
Ausflerdem muss noch eine Datei namens "TOSCA.meta" erzeugt und zu dieser neu
generierten ZIP-Datei hinzugefiigt. SchlieBlich wird "true" zuriickgegeben, wenn keine
Ausnahmen passiert haben.

4.3 Implementierung des Pakets "org.tosca.yaml"

In dem Paket "org.tosca.yaml" werden drei Klassen implementiert: "YamlModel",
"YamlModelList" und "YamlIReader".

4.3.1 Klasse "YamlModel"

Die Funktion dieser Klasse ist, die Informationen in der YAML-Datei zu speichern. In
einer YAML-Datei erscheinen alle Informationen in Form von Schliissel-Wert-Paaren.
Jede Information kann als ein YamlModel-Objekt nidmlich ein Schliissel-Wert-Paar

28

gespeichert werden. In dieser Klasse werden drei privaten Eigenschaften "key", "value"
und "yamlValue" definiert, deren Werte durch Setter- und Getter-Methoden zugewiesen
und erhalten werden kdnnen. Die Eigenschaften "key" und "value" sind vom Typ "String"
Die Eigenschaft "yamlValue" ist vom Typ "YamlModel" und kann noch ein YamlModel-
Objekt enthalten. In Abbildung 4.1 wird gezeigt, wie jede Information in der
"metadata.yaml" Datei des Service "mysql" als ein YamlModel-Objekt gespeichert wird.

name: mysql
summary: MySQL is a fast, stable and true multi-user, multi-threaded SQL database
provides:
db:

mterface: niyvsql
db-acmin: key value

interface: mysql-root YamiModel | /-
— 1yl

requires:
slave:
mterface: mysql-oneway-replication

YamiModel YamiMocdel /'Yam]l\-lcrdel
yamlValue ﬂ;} yamlValue key value
"YamIModel'

”1)10\'1(1&:5” Y am]Model'j’ "db" "interface" | | "mysql”

YamIModel YamIModel YamiModel
yamlValue yamlValue key value
”1)1 0\'1(1&5” "YamModel + achnm” "YamModel "interface” | | "mysql-root”

Abbildung 4.1: Das Speichern von Informationen in einer "metadata.yaml" Datei

4.3.2 Klasse "YamlModelList"

Die Funktion dieser Klasse ist, alle Informationen in einer YAML-Datei als YamlModel-
Objekte in einem YamlModelList-Objekt zu speichern. In dieser Klasse wird eine private
Eigenschaft "yamlModelList" vom Typ "java.util.List" definiert. In dem Konstruktor wird
die Eigenschaft "yamlModelList" instanziiert, die fiir das Speichern der YamlModel-
Objekte verwendet wird. Die Werte der Eigenschaft "yamlModelList" konnen durch
Setter- und Getter-Methoden zugewiesen und erhalten werden.

4.3.3 Klasse "YamlReader"
Die Funktion dieser Klasse ist, die Inhalte einer YAML-Datei zu lesen. Dafiir wird eine
Software "SnakeYaml" eines Drittanbieters verwendet.

29

4.3.3.1 Methode "readYamlFile”

Durch "SnakeYaml" kann diese Methode die Inhalte in einer YAML-Datei in Form vom
Typ "java.util. Map" [22] lesen. Die Methode benétigt einen Eingabeparameter "file" vom
Typ "java.io.File" [25]. Der Parameter bedeutet eine YAML-Datei, die bearbeitet wird. Als
Ausgabe liefert diese Methode ein YamlModelList-Objekt. Um die Ausgabe zu erzeugen,
werden zuerst die Instanzen der Klasse "Yaml" und "FileInputStream" erstellt. Durch eine
Methode "load" [27] der Klasse "Yaml" kann ein Java-Objekt vom Typ "java.util. Map"
zuriickgegeben werden. Nach dem Aufruf einer privaten Methode "read" mit dem
Eingabeparater vom Typ "java.util. Map" wird ein YamlModelList-Objekt erzeugt.

4.3.3.2 Methode "read”

Durch diese Methode konnen die Inhalte in einem Objekt vom Typ "java.util. Map" gelesen
und dann als YamlModel-Objekte gespeichert werden. Alle YamlModel-Objekte werden
in einem YamlModelList-Objekt gelagert, welche schlieBlich zuriickgegeben werden muss.
Zuerst bekommt die Methode als Eingabeparameter ein Objekt vom Typ "java.util.Map".
Dann wird der Typ des Objekts zum Typ "java.util.Set" [22] verwandelt, um die Elemente
von "java.util. Map" direkt durch einen Iterator [22] ausgeben zu konnen. Jedes Element in
"java.util.Map" ist in Form von einem "key-value" Paar gespeichert. Fiir den Typ von
"value" gibt es zwei Mdglichkeiten. Wenn "value" der Typ "java.util.LinkedHashMap"
[22] ist, d.h. "value" enthilt auch eine Reihe der Objekte vom Typ "YamlModel", dann
wird die Methode "read" mit dem Eingabeparameter "value" rekursiv aufgerufen. Das Ziel
ist YamlModel-Objekte in "value" zu bekommen. Diese Objekte mit dem gleichen "key"
zusammen werden als YamlModel-Objekte zum YamlModelList-Objekt hinzugefiigt. In
dem anderen Fall, dass "value" den elementaren Datentyp wie "String", "Integer" oder
"Boolean" hat, dann werden "key" und '"value" als ein YamlModel-Objekt zum
YamlModelList-Objekt hinzugefiigt.

44 Implementierung des Pakets "org.tosca.xml"

In dem Paket "org.tosca.xml" werden folgende Klassen implementiert:
"XmlElementsModel", "XmlElementsImpl", "XmlGenerator", "XsdElementsModel",
"XsdElementsImpl" und "XsdGenerator". Die ersten drei Klassen dienen dazu, ein XML-
Dokument zu generieren. Die anderen drei Klassen werden verwendet, um ein XSD-
Dokument zu erzeugen. Da XSD auf XML basiert und zur Beschreibung der Struktur eines
XML-Dokuments dient, haben diese Klassen die dhnliche Implementierung.

441 Klasse "XmlElementsModel"

Die Funktion dieser Klasse ist, die Elemente in einer XML-Datei zu speichern. Es handelt
sich um alle Elemente sowie ihre Kinderelemente in einem TOSCA-Definitions-Dokument,
die schon in Unterkapitel 2.2.3 besprochen wurden. Zum Beispiel werden die Elemente
ReguirementType, Capabilitylype, Artifactlype, Artifactlemplate, Nodelipe und
NodeTypelmplementation als private Eigenschaften in dieser Klasse definiert und konnen
durch Setter- und Getter-Methoden zugewiesen und erhalten werden.

4.4.2 Klasse "XmlElementsImpl"
Die Funktion dieser Klasse ist im Allgemeinen, durch die Inhalte in einer "metadata.yaml"
Datei die entsprechenden Elemente fiir ein TOSCA-Definitions-Dokument zu generieren.

30

Das heil3t, durch das Lesen eines YamlModelList-Objekts ein XmlElementsModel-Objekt
zu erzeugen. Am Anfang wird ein privates Objekt der Klasse "XmlElementsModel" in dem
Konstruktor instanziiert, das zum Speichern von Elementen dient. Durch das Aufrufen der
Methode "elementsImpl" werden alle Elemente in dem TOSCA-Defnitions-Dokument
implementiert. Jedes Element wird durch eine entsprechende Methode implementiert.
Beispielsweise wird das Root-Element Definitions durch die Methode "rootImpl"
implementiert und das Element Aode7jpe durch die Methode "nodeTypelmpl". Fiir ihre
Implementierung ~ werden zwei Klassen "org.dom4j.DocumentHelper" und
"org.dom4j.Namespace" sowie ein Interface "org.dom4j.Element" von Dom4j [26]
verwendet. Ein Element kann durch die Methode '"createElement" der Klasse
"DocumentHelper" generieren.

4.4.2.1 Methode "elementsimpl”

Input/Output | Parametername | Parametertyp | Beschreibung

Input "yml" YamlModelList | Ein YamlModellist-Objekt

Input "f1" FileModelList | Ein FileModelList-Objekt

Bedeutet, ob in der Charm-Zip-
Boolean Datei eine "config.yaml" Datei
vorhanden ist.

Input "flag

Eine Umgebung, von der eine
Input "platform" String Implementierung von "NodeType'
abhéngen kann

XmlElements- | Ein XmlElementsModel-Objekt

Output "xmlem"
Model

Tabelle 4.6: Parameter der Methode "elementsImpl"

Die Funktion dieser Methode ist, durch ein YamlModelList-Objekt die YamlModel-
Objekte zu bekommen und dadurch die entsprechenden Elemente zu generieren. lhre
Eingabeparameter und ihre Ausgabe werden in Tabelle 4.6 gezeigt. In der Regel bendtigt
man drei wichtige Informationen in einer "metadata.yaml" Datei. Diese drei Informationen
beziehen sich auf drei YamlModel-Objekte mit den Schliisselwerten "name", "requires"
und "provides". Alle generierten Elemente werden in einem Objekt der Klasse
"XmlElementsModel" gespeichert. Schlielich wird dieses XmlElementsModel-Objekt

zuriickgegeben.

Durch das YamlModel-Objekt, dessen Schliissel den Wert "name" hat, kann man den
Namen des Cloud-Service bekommen. Dabei konnen die Methoden "rootImpl",
"importlmpl", "artifactTypelmpl" und "nodeTypelmpl" aufgerufen werden, um die
entsprechenden Elemente Definitions (Root-Element), Zmport, ArtifactTipe und NodeType
zu erzeugen. Bevor man die Methoden "artifactTypelmpl" und "nodeTypelmpl" aufruft,

31

miissen noch die Namen der Operationen fiir den Lebenszyklus eines Cloud-Service, wie
zum Beispiel "install", "start" und "stop", aus einem FileModelList-Objekt bekommen
werden. Diese Operationsnamen werden danach als Parameter vom Typ "java.util.List" auf
die Methode "artifactTypelmpl" und "nodeTypelmpl" libertragen.

Durch die YamlModel-Objekte mit dem Schliisselwert "requires" kann man die
Informationen iiber das Element Reguirement7ipe erhalten. Damit konnen das Element
RegquirementType sowie seine Attribute durch das Aufrufen einer entsprechenden Methode
"requirementTypelmpl" erzeugt werden. Das Element Requirement7ipe hat drei Attribute:
name, targetNamespace und requiredCapabilityType. Fiir das Definieren des Attributs
requiredCapability7ype muss man zuerst iberpriifen, ob es in der Liste, die die Elemente
CapabilityTipe enthilt, ein entsprechendes Element gibt, das denselben Namen mit dem
Element Reguirement7ipe hat. Wenn die Liste des Elements Capability7ipe leer ist oder
es kein solches Element Cupability7ipe gibt, dann braucht man das Attribut nicht zu
definieren.

In dhnlicher Weise konnen durch das YamlModel-Objekt "provides" die Informationen
iiber das Element Capability7ipe bekommen und damit dieses Element und seine Attribute
generiert werden. Hier wird eine Methode "capabilityTypelmpl" aufgerufen. Das Element
Capabilitylipe hat zwei Attribute: name und rargetNamespace. Man muss noch
iiberpriifen, ob ein Element in der Liste des Elements Reguzrement7ype vorhanden ist, das
denselben Namen mit diesem Element Capability7ipe hat. Wenn es ein solches Element
ReguirementTipe gibt, dann wird ein entsprechendes Attribut requiredCapability7ipe mit
dem Namen des Elements Capability7ipe zum Element Reqguirement7pe hinzugefiigt.

4.4.2.2 Methode "rootImpl”

In dieser Methode wird das Root-Element Definitions erzeugt. Dabei werden seine
Attribute zame, targetNamespace und id zu diesem Element hinzugefiigt. Dann definiert
man auch einige Namensrdume, die fiir dieses Dokument benétigt sind. Die Methode
benoétigt zwei Parameter: "name" und "flag". Der Parameter "name" bedeutet den Namen
eines Service. Der Parameter "flag" hat den Typ "Boolean" und bedeutet, ob in der Charm-
ZIP-Datei eine "config.yaml" Datei vorhanden ist. Wenn "flag" wahr ist, bedeutet das, dass
es ein Node-Type-Properties-Dokument in der TOSCA-CSAR-Datei gibt, das durch die
Datei "config.yaml" erzeugt wird. Dabei muss ein entsprechender Namensraum definiert
werden. SchlieBlich wird das Root-Element in dem XmlElementsModel-Objekt
gespeichert.

4.4.2.3 Methode "importlmpl”

In dieser Methode wird das Element Zzport erzeugt. Die Methode benétigt zwei Parameter
"name" und "flag". Wenn "flag" wahr ist, muss ein Node-Type-Properties-Dokument
importiert werden. Deshalb muss ein neues Element Zzpors mit dem Attribut /ocation
erzeugt werden. Das Attribut /ocation beschreibt den Pfad zu dem importierten Dokument.
Schlieflich wird ein /Zmporr-Element oder mehrere /Zmpors-Elemente in dem
XmlElementsModel-Objekt gespeichert.

32

4.4.2.4 Methode "requirementTypelmpl”

In dieser Methode werden das Element Reguirement7ipe und seine Attribute erzeugt. Die
Parameter dieser Methode dienen zum Definieren der Attribute, wenn sie nicht NULL sind.
Nachdem das Element Reguirement7ipe in dem XmlElementsModel-Objekt gespeichert
ist, wird eine Methode "requirementDefinitionsImpl" aufgerufen, die zur Implementierung
der Kinderelemente ReguirementDefinitions des Elements Node7ype dient.

4.4.2.5 Methode "capability Typelmpl”

In dieser Methode wird das Element Capability7ipe und seine Attribute erzeugt. Die
Implementierung dieser Methode ist gleich wie die Methode "requirementTypelmpl".
Dariiber wird hier nicht redundant gesprochen. SchlieBlich wird eine Methode
"capabilityDefinitionsImpl" aufgerufen, die zur Implementierung der Kinderelemente
CapabilityDefinitions des Elements NodeZjpe dient.

4.4.2.6 Methode "artifactTypelmpl”

In dieser Methode wird das Element A7#fact7ipe und seine Attribute erzeugt. Nach dem
Erzeugen des Elements und seiner Attribute wird die = Methode
"artifactTypePropertiesDefinitionImpl" aufgerufen, um sein Kindelement
PropertiesDefinition zu implementieren. Dann wird dieses Element in dem Objekt der
Klasse XmlElementsModel gespeichert. Die Methode "artifactTypelmpl" bendtigt zwei
Eingabeparameter: "fl" und "operationNames". Der Parameter "operationNames" vom Typ
"java.util.List" bedeutet die Namen der Operationen fiir den Lebenszyklus eines Cloud-
Service. Fiir jede Operation wie "install", "start" oder "stop" muss eine Methode
"artifactTemplatelmpl" aufgerufen werden, um das entsprechende Element
ArtifactTemplate zu implementieren. Der Parameter "fl" wird als ein Parameter an der
Methode "artifactTemplateImpl" weitergegeben.

4.4.2.7 Methode "artifactTemplatelmpl”

In dieser Methode wird das Element 477fact7emplate und seine Attribute erzeugt. Fiir das
Attribut 77 wird die Klasse "java.utiLUUID" [22] verwendet. Die Funktion der Klasse
"java.utiL,UUID" ist, einen unverdnderlichen "Universally-Unique-Identifier" (UUID) zu
generieren. Ein UUID beschreibt einen 128-Bit-Wert. Dann wird dieses Element in dem
XmlElementsModel-Objekt gespeichert. Dariiber hinaus muss man die Methode
"artifactTemplatePropertiesImpl" zur Generierung seines Kindelements Properties und die
Methode "artifactReferenceslmpl" zur Erzeugung seines anderen Kindelements
ArtifactReferences aufrufen. SchlieBlich wird zur Implementierung der Kindelemente
ImplementationArtifact des Elements MNodeZipelmplementation noch eine Methode
"implementationArtifactImpl" aufgerufen.

4.4.2.8 Methode "nodeTypelmpl”

In dieser Methode werden das Element ModeZipe und seine Attribute generiert. Einer der
Parameter der Methode besitzt den Namen "flag" und er ist vom Typ "Boolean". Wenn
"flag" wahr ist, gibt es in der TOSCA-CSAR-Datei ein Node-Type-Properties-Dokument.
Dazu muss die Methode "nodeTypePropertiesDefinitionlmpl" aufgerufen werden, um sein
Kindelement PropertiesDefinition zu erzeugen. Auflerdem muss zum Generieren seines
Kindelements /Zzzerfaces die Methode "interfacesImpl" aufgerufen werden. SchlieBlich

33

wird die Methode "nodeTypelmplementationlmpl" aufgerufen, um das Element
Nodeypelmplementation zu erzeugen.

4.4.2.9 Methode "nodeTypelmplementationlmpl”

In dieser Methode werden das Element MNodeZypelmplementation und seine Attribute
generiert. Einer der Parameter dieser Methode besitzt den Namen "platform". Wenn der
Parameter "platform" nicht NULL ist, bedeutet das, dass eine bestimmte Umgebung, von
der das Element NodeZypelmplementation abhingt, angegeben ist. In diesem Fall wird die
Methode "requiredContainerFeaturesImpl" aufgerufen, um das Kindelement
requiredContainerfeatures zu erstellen. Schliefflich wird zum Generieren des
Kindelements /ZmplementationArtifacts die Methode "implementationArtifactsimpl"
aufgerufen.

4.4.3 Klasse "XmlGenerator"

Die Funktion dieser Klasse ist, durch ein XmlElementsModel-Objekt das endgiiltige XML-
Dokument, ndmlich das TOSCA-Definitions-Dokument zu erzeugen. Das TOSCA-
Definitions-Dokument enthélt alle durch die Methode "elementsImpl" der Klasse
"XmlElementsImpl" generierten Elemente. Zuerst wird in dem Konstruktor ein
XmlElementsModel-Objekt empfangen, in dem alle Elemente gespeichert ist. Aulerdem
wird auch eine Methode "generator" definiert, um ein XML-Dokument zu generieren.

4.4.3.1 Methode "generator”

Die Funktion dieser Methode ist, durch die Methode "createDocument" der Klasse
"org.dom4j.DocumentHelper" ein XML-Dokument zu erstellen. Dabei miissen das Root-
Element und seine Kindelemente zu diesem Dokument hinzugefiigt werden. Die Methode
"generator" benoétigt einen Eingabeparameter "output", der zeigt, wo das generierte XML-
Dokument ausgegeben werden sollte.

44.4 Klasse "XsdElementsModel"

Die Funktion dieser Klasse ist, die Elemente "root", "xs:complexType", "xs:sequence" und
"xs:element" in einem XSD-Datei zu speichern. Diese Elemente werden als private
Eigenschaften definiert und konnen durch Setter- und Getter-Methoden zugewiesen und
erhalten werden.

4.4.5 Klasse "XsdElementsImpl"

Die Funktion dieser Klasse ist im Allgemeinen, durch die Inhalte in einer "config.yaml"
Datei die entsprechenden Elemente fiir ein Node-Type-Properties-Dokument (ein XSD-
Dokument) zu generieren. Das heifit, durch das Lesen eines YamlModelList-Objekts ein
XsdElementsModel-Objekt zu erzeugen. Am Anfang wird ein privates Objekt der Klasse
"XsdElementsModel" in dem Konstruktor instanziiert, das zum Speichern von Elementen
dient. AuBlerdem werden noch eine Klasse "ConfigModel" zum Speichern der Optionen in
einer "config.yaml" Datei definiert. Durch das Aufrufen der Methode "elementsImpl"
werden alle Elemente in dem Node-Type-Properties-Dokument implementiert. Fiir die
Elementen "root", "xs:complexType", "xs:sequence" und "xs:element" werden die
entsprechenden Methoden "rootlmpl", "complexTypelmpl", "sequencelmpl" und
"elementImpl" definiert.

34

4.4.5.1 Klasse "ConfigModel”

Die Funktion der Klasse ist, die Optionen in einer "config.yaml" Datei zu speichern. Jede
Option mit einem eigenen Optionsnamen besteht aus drei Teilen: "default", "type" und
"description”. Jeder Teil bezieht sich auf ein YamlModel-Objekt. Durch das Lesen eines
YamlModelList-Objekts fiir eine "config.yaml" Datei wird jede Option als ein
ConfigModel-Objekt gespeichert. In Abbildung 4.2 wird gezeigt, wie jede Option in der
"config.yaml" Datei als ein ConfigModel-Objekt gespeichert wird. Dazu definiert man in
der Klasse "ConfigModel" vier private Eigenschaften vom Typ "String": "optionname",
"default", "type" und "description".

options: Confighfodel
port: optionname default
default: 80 mort” g0
type: mt L
| description: Port to listen on | type description
admun-email: "int"’ |”P4:rrt to listen on"
type: string
default: null
description: Email address for the site administrator.
amiModel YamiModel YamiModel
key yamlValue yvamlValue value
"options”| [YamiModel' 4 ”pm‘t” "YamModel'| clefault”
YamlModel YamIModel YamiModel
key yamlValue yamlValue key value
”0ptions”| 'Yam]L—Iodel')- ”pnlt” YanﬂL—Imclel' "type" "ot
YamiModel YamlModel YamlModel
key vamlValue yvanlValue ey value
"options”| ["YamIModel' | "130113" “YamModel "Port to
lizsten on

Abbildung 4.2: Das Speichern von Informationen in einer "config.yaml" Datei

4.4.5.2 Methode "elementsimpl”

Die Funktion dieser Methode ist, durch ein YamlModelList-Objekt alle YamlModel-
Objekte zu bekommen und die entsprechenden Elemente zu generieren. Die Methode
benotigt zwei Eingabeparameter: "name" und "yml".Der Parameter "name" beschreibt den
Namen des Service und wird als Paramter an die Methoden "rootlmpl" und
"complexTypelmpl" weitergegeben. Der Parameter "yml" ist ein Objekt der Klasse
"YamlModelList". Durch das YamlModelList-Objekt kann man fiir jede Option ein
ConfigModel-Objekt erzeugen, das als ein Parameter auf die Methode "elementImpl"

35

iibertragen wird. Als Ausgabe liefert diese Methode ein XsdElementsModel-Objekt, in
dem alle generierten Elemente gespeichert werden.

4.4.6 Klasse "XsdGenerator"

Die Funktion dieser Klasse ist, durch die oben generierten Elemente das endgiiltige XSD-
Dokument zu erzeugen. Als Erstes wird in dem Konstruktor ein XsdElementsModel-
Objekt empfangen, in dem alle Elemente fiir das XSD-Dokument gespeichert sind. Dann
wird die Methode "generator" zum Generieren des XSD-Dokument definiert.

4.4.6.1 Methode "generator”

Die Funktion dieser Methode ist, ein XSD-Dokument zu erstellen, das Root-Element und
seine Kindelemente zu diesem Dokument hinzuzufiigen und schlieBlich das Dokument
auszugeben. Die Implementierung dieser Methode ist dhnlich wie die Methode der Klasse
"XmlGenerator".

36

5 Zusammenfassung und Ausblick

In dieser Studienarbeit wurde gezeigt, wie eine automatische Prozedur entwickelt werden
kann, mit der Artefakte, die von der Juju-Community als ,,Charms® veroffentlicht wurden,
zu TOSCA-Node-Types konvertiert werden konnen. Node-Types gehoren zu den
wichtigsten Bausteinen in TOSCA um Service-Templates und damit Vorlagen fiir Cloud-
Services zu erstellen.

In Kapitel 3.2 wurden die hinter der Prozedur stehenden Konzepte erldutert und es wurde
beschrieben, aus welchen Funktionseinheiten die Prozedur besteht. Dabei wurden sowohl
der Ablauf der Prozedur sowie die Interaktion ihrer Komponenten mittels eines
Sequenzdiagramms in Abbildung 3.3 dargestellt. In Kapitel 4 wurde die Implementierung
der wichtigsten Methoden und Klassen der Prozedur besprochen. Besonders ausfiihrlich
wurden die Methoden zum Generieren der Elemente des TOSCA-Defnitions-Dokument in
Kapitel 4.4.2 beschrieben.

In Abbildung 2.6 wurde gezeigt, dass Topology-Templates und Pline die zentralen
Elemente eines Service-Template sind. Ein Topology-Template besteht aus Node-
Templates und Relationship-Templates. Diese Arbeit beschéftigte sich ausschlieBlich mit
der Generierung von Node-Types, die den Typ eines oder mehrerer Node-Templates
definieren. Eine Moglichkeit fiir zukiinftige Arbeiten ist die Erzeugung von
entsprechenden Relationship-Types, die den Typ eines oder mehrerer Relationship-
Templates definieren. AuBlerdem sollte untersucht werden, wie die hier beschriebene
Prozedur auf weitere &dhnliche Werkzeuge und Artefakte iibertragen werden kann. Ein
moglicher, im Umfeld des Cloud Computing ebenfalls etablierter Kandidat wire bspw.
Chef [2].

37

Literaturverzeichnis

Alle Weblinks wurden das letzte Mal am 22.04.2013 gepriift.

[1] Canonical Juju: https://juju.ubuntu.com

[2] Opscode Chef: http://www.opscode.com/chef

[3] TOSCA Committee: http://www.tosca-open.org

[4] Juju-Community: https://juju.ubuntu.com/community/

[5] Juju Documentation: Charms, https://juju.ubuntu.com/docs/charm.html

[6] Juju Documentation: Writing a Charm, https://juju.ubuntu.com/docs/write-charm.html

[7] Juju Documentation: Service Configuration, https://juju.ubuntu.com/docs/service-
config.html

[8] Mell, Grance: The NIST Definition of Cloud Computing National Institute of
Standards and Technology, NIST, 2011

[9] Baun, Kunze, Nimis, Tai: Cloud Computing - Web-basierte dynamische IT-Services, 2.
Aufl. ed., Heidelberg, Dordrecht, London, New York: Springer-Verlag, 2011.

[10] Binz, Breiter, Leymann, Spatzier: Portable Cloud Services Using TOSCA. In: Internet
Computing, IEEE, IEEE, 2012, 16, 80-85

[11] Topology and Orchestration Specification for Cloud Applications (TOSCA) Version
1.0: http://docs.oasis-open.org/tosca/ TOSCA/v1.0/csd05/TOSCA-v1.0-
csd05.html

[12] Business Process Model and Notation (BPMN) Version 2.0, Object Management
Group specification, Jan. 2011.

[13] Web Services Business Process Execution Language (BPEL) Version 2.0., OASIS
specification, 2007.

[14] W3C. Web Services Description Language (WSDL) 1.1. [Online] March 15, 2001.
http://www.w3.org/TR/wsdl.

[15] Kopp, Binz, Breitenbiicher, Leymann: BPMN4TOSCA: A Domain-Specific
Language to Model Management Plans for Composite Applications. In:
Mendling, Jan (Hrsg); Weidlich, Matthias (Hrsg): 4th International Workshop
on the Business Process Model and Notation, 2012.

38

[16] Leymann, Fehling, Mietzner, Nowak, Dustdar: Moving Applications to the Cloud: An
Approach based on Application Model Enrichment. In: International Journal of
Cooperative Information Systems (IJCIS). Vol. 20(3), World Scientific, 2011.

[17] Java SE 6 Documentation: http://docs.oracle.com/javase/6/docs/
[18] Snakeyaml: http://code.google.com/p/snakeyaml/
[19] Dom4j: http://dom4;j.sourceforge.net/

[20] Booch, Rumbaugh, Jacobson: Unified Modeling Language User Guide, Second
Edition; Addison-Wesley Professional;

[21] Horstmann, Cornell: Core Java, Volume I--Fundamentals (8th Edition).

[22] Java SE 6 Documentation: Package java.util,
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html

[23] Wettinger, Behrendt, Binz, Breitenbiicher, Breiter, Leymann, Moser, Schwertle,
Spatzier: Integrating Configuration Management with Model-Driven Cloud
Management Based on TOSCA. In: Proceedings of the 3rd International
Conference on Cloud Computing and Services Science (CLOSER), 2013

[24] Java SE 6 Documentation: Package java.util.zip,
http://docs.oracle.com/javase/6/docs/api/java/util/zip/package-summary.html

[25] Java SE 6 Documentation: Package java.io,
http://docs.oracle.com/javase/6/docs/api/java/io/package-summary.html

[26] Dom4;j 1.6.1 API: Package org.dom4;j, http://dom4;j.sourceforge.net/dom4;j-
1.6.1/apidocs/

[27] SnakeY AML Documentation: Loading YAML,
http://code.google.com/p/snakeyaml/wiki/Documentation#Loading YAML

[28] YAML: http://www.yaml.org/

[29] Drupal: http://drupal.org

39

Erklirung

Hiermit versichere ich, diese Arbeit selbststindig verfasst und nur die angegebenen
Quellen benutzt zu haben. Wortliche und sinngemiBe Ubernahmen aus anderen Quellen
habe ich nach bestem Wissen und Gewissen als solche kenntlich gemacht.

Stuttgart, den 25. April 2013

40

	Einleitung
	Einführung
	Aufgabenstellung
	StrukturderArbeit

	Grundlagen
	Juju
	JujuCharm
	DasVerzeichnis"hooks"
	DieDatei"metadata.yaml"
	DieDatei"config.yaml"

	TopologyandOrchestrationSpecificationforCloud
	TOSCA-Kernbegriffe
	TOSCACloudServiceArchive(CSAR)
	TOSCA-DefinitionsDokument
	Definitions
	Import
	RequirementTypes
	CapabilityTypes
	ArtifactTypes
	ArtifactTemplates
	NodeTypes
	NodeTypeImplementations

	Entwurf
	AnalysederProzedur
	KonzeptderProzedur
	EntwurfderzuimplementierendenPakete
	TOSCA-CSAR-Generator
	ZIP-File-Handler
	Juju-Yaml-Reader
	TOSCA-XML-Generator

	VerwendetesJava-PaketundSoftwarevonDrittanbie
	JDK
	SnakeYaml
	Dom4j

	KomplettesSequenzdiagramm

	Implementierung
	ImplementirungdesPakets"org.tosca"
	Klasse"CharmToNodeType"
	Methode"main"
	Klasse"Transform"

	ImplementierungdesPakets"org.tosca.zip"
	Klasse"FileModel"
	Klasse"FileModelList"
	Methode"format"

	Klasse"ZipUtil"
	Methode"getAllFilenames"
	Methode"getFileFromZip"
	Methode"format"
	Methode"addFileToZip"

	ImplementierungdesPakets"org.tosca.yaml"
	Klasse"YamlModel"
	Klasse"YamlModelList"
	Klasse"YamlReader"
	Methode"readYamlFile"
	Methode"read"

	ImplementierungdesPakets"org.tosca.xml"
	Klasse"XmlElementsModel"
	Klasse"XmlElementsImpl"
	Methode"elementsImpl"
	Methode"rootImpl"
	Methode"importImpl"
	Methode"requirementTypeImpl"
	Methode"capabilityTypeImpl"
	Methode"artifactTypeImpl"
	Methode"artifactTemplateImpl"
	Methode"nodeTypeImpl"
	Methode"nodeTypeImplementationImpl"

	Klasse"XmlGenerator"
	Methode"generator"

	Klasse"XsdElementsModel"
	Klasse"XsdElementsImpl"
	Klasse"ConfigModel"
	Methode"elementsImpl"

	Klasse"XsdGenerator"
	Methode"generator"

	ZusammenfassungundAusblick

