
Institut für Architektur von Anwendungssystemen
Universität Stuttgart
Universitätsstraße 38

70569 Stuttgart
Germany

Studienarbeit Nr. 2410

VorlagenVorlagenVorlagenVorlagen ffffüüüürrrr dasdasdasdas DeploymentDeploymentDeploymentDeployment vonvonvonvon ServicesServicesServicesServices
undundundund ApplikationenApplikationenApplikationenApplikationen inininin derderderder CloudCloudCloudCloud

Shaojun Zhang

Studiengang:Studiengang:Studiengang:Studiengang: Informatik

PrPrPrPrüüüüfer:fer:fer:fer: Prof. Dr. Frank Leymann

Betreuer:Betreuer:Betreuer:Betreuer: Dipl.-Inf. Johannes Wettinger

begonnenbegonnenbegonnenbegonnen am:am:am:am: 30.11.2012

beendetbeendetbeendetbeendet am:am:am:am: 25.04.2013

CR-Klassifikation:CR-Klassifikation:CR-Klassifikation:CR-Klassifikation: K6; D.2.11; D2.13

KurzfassungKurzfassungKurzfassungKurzfassung

Aktuell werden unterschiedliche Verwaltungswerkzeuge wie Juju [1] oder Chef [2] [23] im
Bereich des Cloud Computing entwickelt um das Deployment und die Verwaltung von
Services und Applikationen in der Cloud zu erleichtern. Mit Hilfe dieser Werkzeuge
können Artefakte entwickelt und verwaltet werden, um die automatisierte Installation und
Konfiguration von Softwarekomponenten zu ermöglichen. Diese Artefakte können
miteinander kombiniert werden um Vorlagen für Cloud-Services („Service-Templates“) zu
erstellen, die sich aus mehreren Softwarekomponenten zusammensetzen. Das
Hauptproblem ist hierbei, dass die Artefakte nicht portabel sind weil sie durch proprietäre
Ansätze implementiert werden und damit von einer ebenfalls proprietären
Laufzeitumgebung abhängig sind.

Um das oben genannte Problem zu vermeiden sind Standardisierungsbemühungen im
Bereich des Cloud Computing von wichtiger Bedeutung. Die "Topology and Orchestration
Specification for Cloud Applications" (TOSCA) [3] stellt einen Standardisierungsansatz
dar, um die Portabilität von Cloud-Services und der zugrundeliegenden Vorlagen und
Artefakte zu verbessern [10].

Ziel dieser Studienarbeit ist der Entwurf und die Entwicklung einer Prozedur, mit der
existierende Artefakte aus der Juju-Community zu TOSCA-konformen Artefakte
konvertiert werden können. Damit können diese Artefakte und entspr. Vorlagen, die diese
Artefakte verwenden, von jeder TOSCA-konformen Laufzeitumgebung verarbeitet werden.

i

InhaltsverzeichnisInhaltsverzeichnisInhaltsverzeichnisInhaltsverzeichnis

1 Einleitung..1

1.1 Einführung..1

1.2 Aufgabenstellung..1

1.3 Struktur der Arbeit..1

2 Grundlagen... 3

2.1 Juju...3

2.1.1 Juju Charm...3

2.1.2 Das Verzeichnis "hooks"..4

2.1.3 Die Datei "metadata.yaml"...5

2.1.4 Die Datei "config.yaml"... 6

2.2 Topology and Orchestration Specification for Cloud Applications (TOSCA)............ 7

2.2.1 TOSCA-Kernbegriffe...7

2.2.2 TOSCA Cloud Service Archive (CSAR).. 9

2.2.3 TOSCA-Definitions Dokument.. 10

2.2.3.1 Definitions...12

2.2.3.2 Import... 12

2.2.3.3 Requirement Types..12

2.2.3.4 Capability Types..13

2.2.3.5 Artifact Types..13

2.2.3.6 Artifact Templates... 14

2.2.3.7 Node Types... 15

2.2.3.8 Node Type Implementations..16

3 Entwurf... 18

3.1 Analyse der Prozedur..18

3.2 Konzept der Prozedur... 19

3.3 Entwurf der zu implementirenden Pakete.. 20

ii

3.3.1 TOSCA-CSAR-Generator..21

3.3.2 ZIP-Bearbeiter... 21

3.3.3 Juju-Yaml-Reader.. 21

3.3.4 TOSCA-XML-Generator... 21

3.4 Verwendetes Java-Paket und Software von Drittanbietern.......................................21

3.4.1 JDK... 21

3.4.2 SnakeYaml...21

3.4.3 Dom4j..22

3.5 Komplettes Sequenzdiagramm..22

4 Implementierung... 24

4.1 Implementirung des Pakets "org.tosca"... 24

4.1.1 Klasse "CharmToNodeType"... 24

4.1.1.1Methode "main".. 24

4.1.1.2 Klasse "Transform"... 24

4.2 Implementierung des Pakets "org.tosca.zip"..24

4.2.1 Klasse "FileModel".. 24

4.2.2 Klasse "FileModelList".. 25

4.2.2.1Methode "format"..25

4.2.3 Klasse "ZipUtil"...25

4.2.3.1Methode "getAllFilenames"...26

4.2.3.2Methode "getFileFromZip"..26

4.2.3.3Methode "format"..27

4.2.3.4Methode "addFileToZip"... 28

4.3 Implementierung des Pakets "org.tosca.yaml"...28

4.3.1 Klasse "YamlModel"..28

4.3.2 Klasse "YamlModelList"..29

iii

4.3.3 Klasse "YamlReader"...29

4.3.3.1Methode "readYamlFile"... 29

4.3.3.2Methode "read"..30

4.4 Implementierung des Pakets "org.tosca.xml"...30

4.4.1 Klasse "XmlElementsModel"...30

4.4.2 Klasse "XmlElementsImpl"..30

4.4.2.1Methode "elementsImpl"... 31

4.4.2.2Methode "rootImpl"...32

4.4.2.3Methode "importImpl"...32

4.4.2.4Methode "requirementTypeImpl".. 33

4.4.2.5Methode "capabilityTypeImpl"..33

4.4.2.6Methode "artifactTypeImpl".. 33

4.4.2.7Methode "artifactTemplateImpl"... 33

4.4.2.8Methode "nodeTypeImpl"..33

4.4.2.9Methode "nodeTypeImplementationImpl"..................................... 34

4.4.3 Klasse "XMLGenerator".. 34

4.4.3.1Methode "generator"..34

4.4.4 Klasse "XsdElementsModel"..34

4.4.5 Klasse "XsdElementsImpl".. 34

4.4.5.1 Klasse "ConfigModel"...35

4.4.5.2Methode "elementsImpl"... 35

4.4.6 Klasse "XSDGenerator"... 36

4.4.6.1Methode "generator"..36

5 Zusammenfassung und Ausblick... 37
Literaturverzeichnis..38
Erklärung... 39

iv

AbbildungsverzeichnisAbbildungsverzeichnisAbbildungsverzeichnisAbbildungsverzeichnis

Abbildung 2.1: Ein Beispiel für die Struktur eines Charm.. 3

Abbildung 2.2: Ein Beispiel für ein "hooks" Verzeichniss.. 4

Abbildung 2.3: Eine "metadata.yaml" Datei des Charm "drupal" [6].................................. 5

Abbildung 2.4: Eine "metadata.yaml" Datei des Charm "mysql" [6]...................................6

Abbildung 2.5: Eine "config.yaml" Datei des Charm "myblog" [7].................................... 7

Abbildung 2.6: Strukturelle Elemente eines Service-Template und ihrer Beziehungen [8]..8

Abbildung 2.7: Die Struktur einer CSAR-Datei..10

Abbildung 3.1: Zusammenhang zwischen der Eingabe und der Ausgabe der Prozedur..... 18

Abbildung 3.2: Ein einfaches Pseudo-Sequenzdiagramm der Prozedur.............................20

Abbildung 3.3: Ein Sequenzdiagramm der Prozedur...23

Abbildung 4.1: Das Speichern von Informationen in einer "metadata.yaml" Datei............29

Abbildung 4.2: Das Speichern von Informationen in einer "config.yaml" Datei................35

AusschnittsverzeichnisAusschnittsverzeichnisAusschnittsverzeichnisAusschnittsverzeichnis

Ausschnitt 2.1: XML-Syntax eines TOSCA-Definitions-Dokuments................................11

Ausschnitt 2.2: XML-Schema für ein Node-Type-Properties-Dokument.......................... 15

v

TabellenverzeichnisTabellenverzeichnisTabellenverzeichnisTabellenverzeichnis

Tabelle 4.1: Parameter der Methode "format"...25

Tabelle 4.2: Parameter der Methode "getAllFilenames"..26

Tabelle 4.3: Parameter der Methode "getFileFromZip"...26

Tabelle 4.4: Parameter der Methode "format"...27

Tabelle 4.5: Parameter der Methode "addFileToZip"..28

Tabelle 4.6: Parameter der Methode "elementsImpl".. 31

AbkAbkAbkAbküüüürzungsverzeichnisrzungsverzeichnisrzungsverzeichnisrzungsverzeichnis

API: Application Program Interface

BPEL: Business Process Execution Language

BPMN: Business Process Model and Notation

CMS: Content Management System

CSAR: Cloud Service Archive

JDK: Java Development Kit

REST: Representational State Transfer

TOSCA: Topology and Orchestration Specification for Cloud Applications

URI: Uniform Resource Identifier

UUID: Universal Unique Identifier

WSDL: Web Services Description Language

XML: Extensible Markup Language

XSD: Extensible Schema Definition

1

1111 EinleitungEinleitungEinleitungEinleitung

1.11.11.11.1 EinfEinfEinfEinfüüüührunghrunghrunghrung

Unter Verwendung von Konfigurationsverwaltungs- und Orchestrierungswerkzeuge
können zur Zeit Anwendungen und Services in der Cloud bereitgestellt werden. Diese
Werkzeuge ermöglichen die Bereitstellung von virtuellen Maschinen sowie die
Installation und die Konfiguration von Softwarekomponenten auf virtuellen Maschinen.
Einer der Vorteile dieser Werkzeuge ist: Entwickler veröffentlichen wiederverwendbare
Artefakte ("Service-Templates") zur Installation und Konfiguration von
Softwarekomponenten wie Apache-Web-Server oder MySQL-Datenbankserver in der
Cloud. Der Nachteil dieser Artefakte ist jedoch die Tatsache, dass sie durch proprietäre
Ansätze implementiert werden. Folglich können die Artefakte nur durch das spezielle
Werkzeug, mit dem sie erstellt werden, verarbeitet werden. Das bedeutet, dass die
Artefakte nicht portabel sind. Um dieses Problem zu lösen, wird aktuell ein Standard
entworfen, der die Portabilität solcher Artefakte verbessern soll: Topology and
Orchestraton Specification for Cloud Applications (TOSCA) [3]. TOSCA befindet sich
noch in der Entwicklung und bezweckt die Erstellung von portablen Service-Templates,
damit jede TOSCA-Laufzeitumgebung diese Service-Templates verarbeiten kann [10].

1.21.21.21.2 AufgabenstellungAufgabenstellungAufgabenstellungAufgabenstellung

Das Ziel der vorliegenden Arbeit ist, eine Prozedur zum Erstellen von TOSCA-Service-
Templates zu entwerfen und zu implementieren. Diese Service-Templates basieren auf
vorhandenen Artefakten, die durch die Juju-Community [4] veröffentlicht und zur
Verfügung gestellt werden.

Das Hauptziel dieser Arbeit ist, eine Prozedur zum Generieren von TOSCA-Node-Types
zu entwickeln. Die Prozedur implementiert eine Konvertierung von Juju-Charms zu
TOSCA-Node-Types. Node-Types sind ein wichtiger Teil eines Service-Template und
werden in einem TOSCA-Definitions-Dokument definiert.

Die Details zum TOSCA-Definitions-Dokument sowie seine Elemente ServiceTemplate,
NodeType etc. werden in dem Grundlagenkapitel (Unterkapitel 2.2) vorgestellt.

1.31.31.31.3 StrukturStrukturStrukturStruktur derderderder ArbeitArbeitArbeitArbeit

Die Arbeit ist in mehrere Kapitel gegliedert. Auf die Einleitung folgt ein
Grundlagenkapitel. In diesem Grundlagenkapitel werden existierende Technologien und
Lösungen wie Juju und TOSCA beschrieben, die als Grundlage dieser Arbeit dienen.

Im dritten Kapitel wird der Entwurf der Anwendungsarchitektur präsentiert. Die
Unterkapitel beschreiben einige Softwarekomponenten, die zur Implementierung benötigt
werden.

Das vierte Kapitel zeigt die Implementierung des Entwurfs. Damit soll gezeigt werden,
dass die Aufgabenstellung tatsächlich realisiert werden kann.

2

Kapitel 5 beinhaltet eine Zusammenfassung der Arbeit und ein kurzer Ausblick auf
mögliche weiterführende Arbeiten.

3

2222 GrundlagenGrundlagenGrundlagenGrundlagen

Aus der Aufgabenstellung (Unterkapitel 1.2) ist die Hauptfunktion der umzusetzenden
Prozedur bekannt, die ein Artefakt von Juju einliest und daraus ein TOSCA-Node-Type
erzeugt. Im Folgenden werden Eingabe und Ausgabe der umgesetzten Prozedur
beschrieben. Dabei werden auch grundlegende Informationen zu Juju und TOSCA zur
Verfügung gestellt.

2.12.12.12.1 JujuJujuJujuJuju

Juju zielt darauf ab, ein Service-Deployment- und Orchestrierungswerkzeug zu sein, das
die Zusammenarbeit zwischen den Services sowie die einfache Verwaltung dieser Services
ermöglicht. Verschiedene Service-Entwickler können mit Juju Services selbständig
erstellen und die Kommunikation von diesen Services durch ein einfaches
Konfigurationsprotokoll koordinieren. Dann können die Service-Benutzer die Services von
verschiedenen Service-Entwicklern nehmen und sie sehr komfortabel in einer Umgebung
bereitstellen. Das Ergebnis ist, dass mehrere Maschinen und Komponenten transparent
zusammenarbeiten können, um die angeforderten Services zur Verfügung zu stellen.

2.1.12.1.12.1.12.1.1 JujuJujuJujuJuju CharmCharmCharmCharm
Die Eingabe der Prozedur ist eine ZIP-Datei, die von der Juju-Community veröffentlicht
und als "Charm" bezeichnet wird. Charms definieren, wie sich Services integrieren und
wie ihre Service-Einheiten auf Ereignisse in der verteilten Umgebung reagieren. Eine
Service-Instanz in Juju besitzt zu Beginn genau eine Service-Einheit. Es können jedoch
weitere Service-Einheiten zu dieser Instanz hinzugefügt werden, um z.B. Skalierbarkeit zu
ermöglichen. Bspw. kann eine MySQL-Datenbank-Instanz zu Beginn genau eine Service-
Einheit besitzen (eine virtuelle Maschine). Später können dann weitere Service-Einheiten
(weitere virtuelle Maschinen) zu dieser Instanz hinzugefügt werden und mit der
ursprünglichen Service-Einheit verknüpft werden. Ein Charm stellt die Definition des
Service zur Verfügung. Zur Definition gehören auch seine Metadaten, die Abhängigkeiten
von anderen Services, die notwendigen Pakete sowie die Verwaltung der Anwendung. In
Abbildung 2.1 wird ein Beispiel für die Struktur eines Charm dargestellt. "xxx" ist der
Namen eines beliebigen Service.

4

AbbildungAbbildungAbbildungAbbildung 2222....1111:::: Ein Beispiel für die Struktur eines Charm

Normalerweise enthält jedes Charm eine "metadata.yaml" Datei und ein Verzeichnis
namens "hooks". Manche Charms enthalten noch eine "config.yaml" Datei.

2.1.22.1.22.1.22.1.2 DasDasDasDas VerzeichnisVerzeichnisVerzeichnisVerzeichnis """"hookshookshookshooks""""
In dem Verzeichnis "hooks" gibt es viele Dateien. Jede dieser Dateien wird als "Hook"
bezeichnet. Die Hooks in einem Charm sind ausführbare Dateien, die unter Verwendung
von einer beliebigen Skript-Sprache oder Programmiersprache geschrieben werden können.
Juju verwendet die Hooks, um eine Service-Einheit über die Veränderungen in ihrem
Lebenszyklus oder in der verteilten Umgebung zu benachrichtigen. Ein für eine Service-
Einheit laufendes Hook kann diese Umgebung überprüfen. Außerdem kann es die
gewünschten lokalen Änderungen auf der Maschine, wo sich dieses Hook befindet,
vornehmen sowie die Einstellung der Relation ändern.

In der Regel gibt es in Bezug auf den Lebenszyklus einer Service-Einheit folgende Hooks:
"install", "start" und "stop" [5]. Es kann noch weitere Hooks geben, die als "Relation-
Hook" bezeichnet werden. Sie werden auf jeder Service-Einheit aufgerufen, wenn eine
Relation hergestellt oder geändert wird. Ein Beispiel für ein "hooks" Verzeichnis wird in
Abbildung 2.2 gezeigt. In diesem Verzeichnis "hooks" gibt es zwei Relation-Hooks "db-
relation-joined" und "db-relation-broken". Das Hook "db-relation-joined" wird aufgerufen,
wenn eine Relation - z.B. eine Datenbankverbindung - zu einer Service-Einheit
hinzugefügt wird. Das Hook "db-relation-broken" wird aufgerufen, wenn die Relation
entfernt wird. Dabei wird die Service-Einheit die Konfigurationsinformationen zur
Datenbankverbindung löschen.

5

AbbildungAbbildungAbbildungAbbildung 2222....2222:::: Ein Bespiel für ein "hooks" Verzeichnis

2.1.32.1.32.1.32.1.3 DieDieDieDie DateiDateiDateiDatei """"metadata.yamlmetadata.yamlmetadata.yamlmetadata.yaml""""
YAML [28] ist eine einfache Markup-Sprache zur Datenserialisierung, die sowohl gut von
Menschen lesbar sein soll als auch vollautomatisch von Maschinen verarbeitbar ist. Die
Datei "metadata.yaml", die sich im Wurzelverzeichnis eines Charm befindet, beschreibt
das Charm und enthält die Metadaten für das Charm. Wir nehmen das Charm "drupal" für
das Deployment des CMS-System als Beispiel [29]. Seine "metadata.yaml" Datei wird in
Abbildung 2.3 dargestellt.

AbbildungAbbildungAbbildungAbbildung 2222....3333:::: Eine "metadata.yaml" Datei des Charm "drupal" [6]

6

Diese Datei "metadata.yaml" deklariert ein Charm mit dem Namen "drupal". Die ersten
vier Abschnitte geben folgende Informationen über dieses Charm an: den Namen des
Charm, die Information über den Ersteller des Charm, eine kurze und eine lange
Beschreibung. Der letzte Abschnitt ist "requires". Dies beschreibt einen Interface-Typ, der
von diesem Charm benötigt wird. Da das Charm "drupal" eine MySQL-Datenbank als
Service benötigt, muss dies in den Metadaten angegeben werden. Da dieses Charm keinen
Service für andere Charms zur Verfügung stellt, gibt es keinen "provides" Abschnitt. Was
bedeutet das Interface "mysql"? Die Antwort ist in der Interface-Information aus der
"metadata.yaml" Datei des Charm namens "mysql" zu finden. Ein Beispiel der Datei
"metadata.yaml" des Charm "mysql" wird in Abbildung 2.4 gezeigt.

AbbildungAbbildungAbbildungAbbildung 2222....4444:::: Eine "metadata.yaml" Datei des Charm "mysql" [6]

In der letzten Zeile ist das Interface erkennbar, welches uns vom Charm "mysql" zur
Verfügung gestellt wird.

2.1.42.1.42.1.42.1.4 DieDieDieDie DateiDateiDateiDatei """"config.yamlconfig.yamlconfig.yamlconfig.yaml""""
Die Datei "config.yaml" befindet sich auch im Wurzelverzeichnis eines Charm. In dieser
Datei werden einige Konfigurationsoptionen definiert, auf die das Charm zugreift. Charms
erlauben nur, die Konfigurationsoptionen zu bearbeiten, die von dem Ersteller des Charm
bekannt gegeben werden. Diese Optionen werden nicht nur für eine bestimmte Service-
Einheit oder Beziehung verwendet, sondern für den gesamten Service. Beispielsweise
definiert der Service "myblog" eine "blog-title" Option. Diese Option kontrolliert den Titel
des zu veröffentlichenden Blogs. Die Änderungen an dieser Option gelten für alle Service-
Einheiten, die zu einer bestimmten Service-Instanz des Service "myblog" gehören. Dabei
wird ein Hook auf jeder von diesen Service-Einheiten aufgerufen.

7

AbbildungAbbildungAbbildungAbbildung 2222....5555:::: Eine "config.yaml" Datei des Charm "myblog" [7]

In Abbildung 2.5 wird gezeigt, wie eine "config.yaml" Datei aussieht. Die Information
enthält eine lesbare Beschreibung und einen optionalen Default-Wert "default". Zusätzlich
kann möglicherweise ein Typ "type" spezifiziert werden. Alle Optionen haben einen
Default-Typ von 'string'. Er bedeutet, dass sein Wert nur als eine Text-Zeichenfolge
behandelt wird. Andere gültige Optionen sind 'int' und 'float'.

2.22.22.22.2 TopologyTopologyTopologyTopology andandandand OrchestrationOrchestrationOrchestrationOrchestration SpecificationSpecificationSpecificationSpecification forforforfor CloudCloudCloudCloud ApplicationsApplicationsApplicationsApplications
(TOSCA)(TOSCA)(TOSCA)(TOSCA)

Cloud Computing [8] [9] kann wertvoller werden, wenn die (semi-)automatische
Erstellung und Verwaltung von Services auf der Anwendungsschicht in den verschiedenen
Cloud-Umgebungen eingesetzt werden kann. Somit können die Services interoperabel
bleiben [10]. Die TOSCA-Spezifikation [11] stellt eine Sprache zur Verfügung, die
Service-Komponenten und ihre Beziehungen mithilfe einer Service-Topologie ("Service-
Topology") beschreibt. Außerdem bietet sie noch die Beschreibung der
Verwaltungsprozeduren an, welche die Services mittels Orchestrierungsprozesse
("Orchestration-Processes") erstellen, ändern und terminieren. In TOSCA werden diese
Prozesse als Pläne bezeichnet. Die Kombination von Topologie und Orchestrierung in
einem Service-Template beschreibt, was unter Deployments in verschiedenen
Umgebungen benötigt wird. Das Ziel ist das interoperable Deployment von Cloud-Services
und ihrer Verwaltung während des gesamten Lebenszyklus zu ermöglichen, wenn die
Applikationen in unterschiedlichen Cloud-Umgebungen deployed werden.

2.2.12.2.12.2.12.2.1 TOSCA-KernbegriffeTOSCA-KernbegriffeTOSCA-KernbegriffeTOSCA-Kernbegriffe
TOSCA ist eine XML-basierte Sprache und definiert ein Metamodell für das Spezifizieren
von IT-Services. Dieses Metamodell legt die Struktur eines Service sowie die Art der
Verwaltung fest. Ein Topolgy-Template (auch als Topologie-Modell eines Service
bezeichnet) bestimmt die Struktur eines Service. Pläne [9] [15] definieren die
Prozessmodelle, die verwendet werden, um einen Service zu erstellen, zu terminieren
sowie ihn während seines ganzen Lebenszyklus zu verwalten.

Die wichtigsten Elemente, die einen Service definieren, sind in Abbildung 2.6 dargestellt.

8

AbbildungAbbildungAbbildungAbbildung 2222....6666:::: Strukturelle Elemente eines Service-Template und ihrer Beziehungen [8]

Ein Topology-Template besteht aus einer Reihe von Node-Templates und Relationship-
Templates, die zusammen das Topologie-Modell eines Service als ein gerichteter Graph
definieren. Ein Knoten in diesem Graph wird von einem Node-Template dargestellt. Ein
Node-Template ist eine Instanz eines Node-Type. Ein Node-Type definiert die
Eigenschaften einer solchen Komponente (via Node-Type-Properties) und die Operationen
(via Interfaces), die das Deployment und Management eines Service ermöglichen. Node-
Types sind für den Zweck der Wiederverwendung separat definiert.

Ein Relationship-Template spezifiziert die Beziehung zwischen zwei Knoten in einem
Topology-Template. Jedes Relationship-Template bezieht sich auf einen Relationship-
Type, der die Semantik und alle Eigenschaften der Beziehung definiert. Relationship-
Types sind zum Wiederverwendungszweck separat definiert. Das Relationship-Template
zeigt die verbundenen Elemente und die Richtung der Beziehung an, indem ein
Quellelement und ein Zielelement (in geschachtelten "SourceElement" und
"TargetElement" Elementen) definiert werden. Das Relationship-Template definiert auch
alle möglichen Beschränkungen mit dem optionalen Element "RelationshipConstraints".

Pläne, die in einem Service-Template definiert sind, beschreiben die Verwaltungsaspekte
von Service-Instanzen, insbesondere ihre Erstellung und Terminierung [23]. Diese Pläne
sind als Prozessmodelle definiert, z.B. ein Workflow bestehend aus einem Schritt oder
mehreren Schritten. Die Spezifikation ist abhängig von existierenden Sprachen wie BPMN
[11] [15] oder BPEL [12], anstatt eine andere Sprache für das Definieren von
Prozessmodellen anzubieten. Abhängigkeit von vorhandenen Standards in diesem Raum
erleichtert Portabilität und Interoperabilität, aber alle Sprachen für das Definieren von
Prozessmodellen können verwendet werden. Das TOSCA-Metamodell stellt Container zur
Verfügung, entweder um ein Prozessmodell (via Plan-Model-Reference) zu referenzieren
oder um ein Prozessmodell (via Plan-Model) einzubauen. Ein Prozessmodell kann die

9

Aufgaben (unter Verwendung von BPMN-Terminologie) beinhalten, die auf (1) die
Operationen der Interfaces von Node-Templates (oder die Operationen, die von Node-
Types definiert sind, und diese Node-Types sind im "type" Attribut der Node-Templates
spezifiziert) oder (2) die Operationen der Interfaces von Relationship-Templates (oder die
Operationen, die von Relationship-Types definiert sind, und diese Relationship-Types sind
im "type" Attribut der Relationship-Templates spezifiziert) verweisen. Dabei kann ein Plan
die Knoten der Topologie eines Service direkt manipulieren oder die Interaktion mit
externen Systemen ausführen. Im Rahmen dieser Arbeit sind die Pläne nicht wichtig. Sie
werden besprochen, um die strukturellen Elemente in einem Service-Template besser
verstehen zu können. Diese Arbeit konzentriert sich auf das Topologie-Modell.

Um in einer bestimmten Umgebung die Durchführung und die Verwaltung des
Lebenszyklus einer Cloud-Anwendung zu unterstützen, müssen alle entsprechenden
Artefakte in dieser Umgebung verfügbar sein. Das heißt, dass neben dem Service-
Template der Cloud-Anwendung die Deployment-Artefakte und die Implementation-
Artefakte in dieser Umgebung verfügbar sein müssen [16]. Um die Verfügbarkeit von allen
genannten Elementen zu garantieren, definiert diese Spezifikation ein entsprechendes
Archiv-Format namens Cloud-Service-Archive (CSAR). Details über CSAR werden im
nächsten Unterkapitel besprochen.

2.2.22.2.22.2.22.2.2 TOSCATOSCATOSCATOSCACloudCloudCloudCloud ServiceServiceServiceService ArchiveArchiveArchiveArchive (CSAR)(CSAR)(CSAR)(CSAR)
Die Ausgabe der im Rahmen dieser Studienarbeit entwickelten Prozedur ist eine Datei, die
als "CSAR" bezeichnet wird. Ein CSAR ist eine ZIP-Datei, die mindestens zwei
Verzeichnisse enthält: "TOSCA-Metadata" und "Definitions". Darüber hinaus können
andere Verzeichnisse in einer CSAR-Datei enthalten sein, d.h. der Ersteller einer CSAR-
Datei hat die Freiheit, die Inhalte einer CSAR-Datei und die Strukturierung dieser Inhalte
den Cloud-Anwendungen entsprechend zu definieren.

Das Verzeichnis "TOSCA-Metadata" enthält die Metadaten, welche die anderen Inhalte
der CSAR-Datei beschreiben. Diese Metadaten werden als "TOSCA-Metadatei"
bezeichnet. Diese Datei besitzt den Dateinamen "TOSCA.meta".

Das Verzeichnis "Definitions" enthält ein oder mehrere TOSCA-Definitions-Dokumente
(Dateierweiterung .tosca.tosca.tosca.tosca). Diese "Definitions" Dateien enthalten in der Regel Definitionen
bezüglich der Cloud-Anwendung der CSAR-Datei. Darüber hinaus kann eine CSAR-Datei
nur die Definition der Elemente für Wiederverwendung in anderen Kontexten enthalten.
Beispielsweise könnte eine CSAR-Datei verwendet werden, um eine Reihe von Node-
Types und Relationship-Types mit ihren jeweiligen Implementierungen zu verpacken, die
dann von Service-Templates in anderen CSAR-Dateien verwendet werden können. In den
Fällen, wo eine komplette Cloud-Anwendung in einer CSAR-Datei verpackt ist, muss eins
der Definitions-Dokumente im Verzeichnis "Definitions" eine Definition für Service-
Template enthalten, die die Struktur und das Verhalten der Cloud-Anwendung definiert.

Abbildung 2.7 zeigt die Struktur einer CSAR-Datei. Die ersten zwei Verzeichnisse in der
CSAR-Datei sind unabdingbar. Die übrigen kann der Ersteller dieser CASR-Datei frei
gestalten.

10

AbbildungAbbildungAbbildungAbbildung 2222....7777:::: Die Struktur einer CSAR-Datei

2.2.32.2.32.2.32.2.3 TOSCA-DefinitionsTOSCA-DefinitionsTOSCA-DefinitionsTOSCA-Definitions DokumentDokumentDokumentDokument
Alle Elemente, die zum Definieren eines TOSCA-Service-Template nötig sind, wie z.B.
Node-Type-Definitionen, Relationship-Type-Definitionen sowie Service-Templates selbst,
sind Teil eines TOSCA-Definitions-Dokuments. Dieser Abschnitt beschreibt die
allgemeine Struktur eines TOSCA-Definitions-Dokuments. Ausschnitt 2.1 beschreibt ein
Pseudo-Schema, das die XML-Syntax eines Definitions-Dokuments definiert. "?" bedeutet
ein optionales Element oder Attribut. "*" bedeutet null oder mehrere Elemente bzw.
Attribute. "+" bedeutet ein oder mehrere Element(e) bzw. Attribut(e). "|" bedeutet
Auswählen. Zum Beispiel zeigt "a|b" eine Wahl zwischen "a" und "b". "(" und ")" werden
verwendet, um den Rahmen der Operatoren "?", "*", "+" und "|" anzugeben.

11

01 <Definitions id="xs:ID"
02 name="xs:string"?
03 targetNamespace="xs:anyURI">
04
05 <Extensions>
06 <Extension namespace="xs:anyURI"
07 mustUnderstand="yes|no"?/> +
08 </Extensions> ?
09
10 <Import namespace="xs:anyURI"?
11 location="xs:anyURI"?
12 importType="xs:anyURI"/> *
13
14 <Types>
15 <xs:schema .../> *
16 </Types> ?
17
18 (
19 <ServiceTemplate> ... </ServiceTemplate>
20 |
21 <NodeType> ... </NodeType>
22 |
23 <NodeTypeImplementation> ... </NodeTypeImplementation>
24 |
25 <RelationshipType> ... </RelationshipType>
26 |
27 <RelationshipTypeImplementation>...

</RelationshipTypeImplementation>
28 |
29 <RequirementType> ... </RequirementType>
30 |
31 <CapabilityType> ... </CapabilityType>
32 |
33 <ArtifactType> ... </ArtifactType>
34 |
35 <ArtifactTemplate> ... </ArtifactTemplate>
36 |
37 <PolicyType> ... </PolicyType>
38 |
39 <PolicyTemplate> ... </PolicyTemplate>
40) +
41

42 </Definitions>

AusschnittAusschnittAusschnittAusschnitt 2.1:2.1:2.1:2.1: XML-Syntax eines TOSCA-Definitions-Dokuments [11]

Ein TOSCA-Definitions-Dokument muss mindestens eines der Elemente ServiceTemplate,
NodeType, NodeTypeImplementation, RelationshipType, RelationshipTypeImplemen-
tation, RequirementType, CapabilityType, ArtifactType, ArtifactTemplate, PolicyType, oder
PolicyTemplate, definieren. Es kann aber beliebig viele dieser Elemente in einer beliebigen
Reihenfolge definieren.

Diese Technik unterstützt eine modulare Definition von Service-Templates. Beispielsweise
kann ein Definitions-Dokument nur die Definitionen von Node-Type und Relationship-
Type enthalten, die dann in ein anderes Definitions-Dokument importiert werden können.
Das zweite Definitions-Dokument definiert dann nur ein Service-Template und verwendet

12

die importierten Node-Types und Relationship-Types. Ebenso können Node-Type-
Properties in separaten XML-Schema-Definitions-Dokumenten definiert werden, die bei
dem Definieren eines Node-Type importiert und referenziert werden.

Im Folgenden werden die Elemente Definitions, Import, RequirementType, CapabilityType,
ArtifactType, ArtifactTemplate, NodeType und NodeTypeImplementations spezifiziert, die
im Rahmen dieser Arbeit wichtig sind.

2.2.3.12.2.3.12.2.3.12.2.3.1 DefinitionsDefinitionsDefinitionsDefinitions
Das Element Definitions ist das Wurzel-Element eines TOSCA-Definitions-Dokuments
und hat die folgenden Attribute: id, name und targetNamespace. Das Attribut id
spezifiziert den Bezeichner des Definitions-Dokuments, der innerhalb des
Zielnamensraums ("Target Namespace") eindeutig sein muss. Das optionale Attribut name
spezifiziert einen beschreibenden Namen des Dofinitions-Dokuments. Der Wert des
Attributes targetNamespace spezifiziert den Zielnamensraum für das Definitions-
Dokument. Alle Elemente, die innerhalb des Defnitions-Dokuments definiert sind, werden
zu diesem Zielnamensraum hinzugefügt, außer ein Element besitzt ein eigenes
targetNamespace-Attribut. Dann gilt der darin angegebene Namensraum.

2.2.3.22.2.3.22.2.3.22.2.3.2 ImportImportImportImport
Das Element Import deklariert eine Abhängigkeit von externen TOSCA-Definitionen,
XML-Schema-Definitionen oder WSDL-Definitionen [14]. Eine beliebige Anzahl von
Elementen Import kann als Kinder des Elements Defnitions erscheinen. Das Element
Import hat die folgenden Attribute: namespace, location und importType. Das optionale
Attribut namespace spezifiziert eine absolute URI, die die importierten Definitions-
Dokumente identifiziert. Das optionale Attribut location enthält eine URI, die angibt, wo
sich das relevante Definitions-Dokument befindet. Das erforderliche Attribut importType
identifiziert den Typ des Dokuments, das durch eine absolute URI importiert wird. Ein
Definitions-Dokument muss alle verwendeten Node-Types, Node-Type-Implementations,
Relationship-Types, Relationship-Type-Implementations, Requirement-Types, Capability-
Types, Artifact-Types, Policy-Types, WSDL-Definitionen und XML-Schema-Definitionen
definieren oder importieren.

2.2.3.32.2.3.32.2.3.32.2.3.3 RequirementRequirementRequirementRequirement TypesTypesTypesTypes
Ein Requirement-Type ist eine wiederverwendbare Entität, die eine Art Anforderung
("Requirement") beschreibt. Ein Node-Type kann deklarieren, solche Anforderung zu
besitzen. Zum Beispiel kann ein Requirement-Type für eine Datenbankverbindung
definiert werden. Verschiedene Node-Types (z.B. ein Node Type für eine Anwendung)
können deklarieren, eine Anforderung für eine Datenbankverbindung zu besitzen.

Das Element RequirementType hat die folgenden wichtigen Attribute: name,
targetNamespace und requiredCapabilityType. Das Attribut name spezifiziert den Namen
oder den Bezeichner des Requirement-Type, der innerhalb des Zielnamensraums eindeutig
sein muss. Das optionale Attribut targetNamespace spezifiziert den Zielnamensraum, zu
dem die Definition des Requirement-Type hinzugefügt werden wird. Wenn
targetNamespace nicht angegeben wird, wird die Definition des Requirement-Type zum
Zielnamensraum des Definitions-Dokuments, in dem dieser Requirement-Type definiert ist,

13

hinzugefügt werden. Das optionale Attribut requiredCapabilityType spezifiziert den Typ
einer Fähigkeit ("Capability") also die Erfüllung einer Anforderung, der dem definierten
Requirement-Type entsprechen muss. Der Wert dieses Attributs verweist auf den Namen
eines CapabilityType-Elements, das in demselben Definitions-Dokument oder in einem
separaten importierten Dokument definiert wird.

2.2.3.42.2.3.42.2.3.42.2.3.4 CapabilityCapabilityCapabilityCapability TypesTypesTypesTypes
Ein Capability-Type ist eine wiederverwendbare Entität, die eine Art Fähigkeit
("Capability") beschreibt. Ein Node-Type kann deklarieren, solche Fähigkeit
bereitzustellen. Zum Beispiel kann ein Capability-Type für einen Datenbankserver
definiert werden. Verschiedene Node-Types (z.B. ein Node-Type für eine Datenbank)
können deklarieren, die Fähigkeit eines Datenbankservers zur Verfügung zu stellen.

Das Element CapabilityType hat die folgenden wichtigen Attribute: name und
targetNamespace. Das Attribut name spezifiziert den Namen oder den Bezeichner des
Capability-Type, der innerhalb des Zielnamensraums eindeutig sein muss. Das optionale
Attribut targetNamespace spezifiziert den Zielnamensraum, zu dem die Definition des
Capability-Type hinzugefügt werden wird. Wenn targetNamespace nicht angegeben wird,
wird die Definition des Capability-Type zum Zielnamensraum des Definitions-Dokuments,
in dem dieser Capability-Type definiert ist, hinzugefügt werden.

2.2.3.52.2.3.52.2.3.52.2.3.5 ArtifactArtifactArtifactArtifact TypesTypesTypesTypes
Ein Artifact-Type ist eine wiederverwendbare Entität, die die Art eines Artifact-Template
oder von meheren Artifact-Templates definiert. Diese Artifact-Templates dienen als
Deployment-Artefakte für Node-Templates oder als Implementation-Artefakte für die
Interface-Operationen von Node-Type und Relationship-Type. Zum Beispiel könnte ein
Artifact-Type "WAR-Datei" zur Beschreibung von Web-Application-Archive-Files
definiert werden. Auf der Grundlage des Artifact-Type können ein oder mehrere Artifact-
Templates, die konkrete WAR-Dateien darstellen, definiert und als Deployment- oder
Implementation-Artefakte referenziert werden. Ein Artifact-Type kann die Struktur von
beobachtbaren Eigenschaften durch eine Properties-Definition definieren, d.h. die Namen ,
die Datentypen und die erlaubten Werte, die die Eigenschaften, die in Artifact-Templates
definiert sind, haben können. Diese Artifact-Templates benutzen einen Artifact-Type oder
Instanzen von solchen Artifact-Templates.

Das Element ArtifactType hat die folgenden wichtigen Eigenschaften: das Attribut name,
das Attribut targetNamespace und das Element PropertiesDefinition. Das Attribut name
spezifiziert den Namen oder den Bezeichner des Artifact-Type, der innerhalb des
Zielnamensraum eindeutig sein muss. Das optionale Attribut targetNamespace spezifiziert
den Zielnamensraum, zu dem die Definition des Artifact-Type hinzugefügt werden wird.
Wenn targetNamespace nicht angegeben wird, wird die Definition des Artifact-Type zum
Zielnamensraum des Definitions-Dokuments, in dem dieser Artifact-Type definiert ist,
hinzugefügt werden. Das Element PropertiesDefinition spezifiziert mittels XML-Schema
die Struktur der beobachtbaren Eigenschaften des Artifact-Type, wie seine Konfiguration
und sein Zusand. Dieses Element hat nur eines der beiden Attribute element und type. Das
Attribut element gibt den Namen eines XML-Elements an, das die Struktur der Artifact-

14

Type-Properties definiert. Das Attribut type gibt den Namen eines (komplexen) XML-Typs
an, der die Struktur der Artifact-Type-Properties definiert.

2.2.3.62.2.3.62.2.3.62.2.3.6 ArtifactArtifactArtifactArtifact TemplatesTemplatesTemplatesTemplates
Ein Artifact-Template beschreibt ein Artefakt, das von anderen Objekten in einem Service-
Template als ein Deployment- oder Implementation-Artefakt referenziert werden kann.
Von Node-Types oder Node-Templates könnte beispielsweise ein Artifact-Template für
einige installierbaren Software als ein Deployment-Artefakt für das Instanziieren einer
spezifischen Software-Komponente referenziert werden. Als ein weiteres Beispiel könnte
aus den Definitionen für das Interface der Node-Types oder der Relationship-Types ein
Artifact-Template für eine WAR-Datei als Implementation-Artefakt für eine REST-
Operation referenziert werden.

Ein Artifact-Template bezieht sich auf einen spezifischen Artifact-Type, der die Struktur
von beobachtbaren Eigenschaften (Metadaten) oder das Artefakt definiert. Das Artifact-
Template definiert in der Regel die Werte dieser Eigenschaften innerhalb des Elements
Properties. Außerdem stellt in der Regel ein Artifact-Template eine Referenz oder mehrere
Referenzen auf das tatsächliche Artefakt selbst zur Verfügung. Es kann als eine Datei in
der CSAR-Datei sein, welche das gesamte Service-Template enthält. Es kann auch an
einem entfernten Ort wie einem FTP-Server verfügbar sein.

Das Element ArtifactTemplate hat die folgenden wichtigen Attribute: id, name und type.
Das Attribut id spezifiziert den Bezeichner des Artifact-Template, der innerhalb des
Zielnamensraum eindeutig sein muss. Das optionale Attribut name spezifiziert den Namen
des Artifact-Template. Der Wert des Attributs type verweist auf einen Artifact-Type, der
den Typ des Artifact-Template zur Verfügung stellt.

Das Element ArtifactTemplate hat die folgenden wichtigen Kindelemente: Properties und
ArtifactReferences. Das optionale Element Properties spezifiziert die invarianten
Eigenschaften des Artifact-Template, d.h. die Eigenschaften, die allgemein in
verschiedenen Kontexten verwendet werden, in denen das Artifact-Template benutzt wird.
Das optionale Element ArtifactReferences enthält einen Verweis oder mehrere Verweise
auf die tatsächlichen Artefakte. Jeder Verweis wird durch ein separates Element
ArtifactReference dargestellt. Das Element ArtifactReference hat wichtige Eigenschaften
wie reference und Include. Das Attribut reference enthält eine URI, die auf ein
tatsächliches Artefakt zeigt. Wenn diese URI eine relative URI ist, wird sie relativ zum
Wurzelverzeichnis der CSAR-Datei, die das Service-Template enthält, interpretiert. Das
optionale Element Include kann verwendet werden, um ein Pattern der Dateien zu
definieren. Diese Dateien sind in dem gesamten Artefakt-Verweis ("Artifact Reference")
enthalten, falls reference auf ein komplettes Verzeichnis verweist. Das Element Include
hat ein Attribut pattern. Dieses Attribut enthält eine Pattern-Definition für die Dateien, die
in dem gesamten Artefakt-Verweis eingeschlossen sind.

2.2.3.72.2.3.72.2.3.72.2.3.7 NodeNodeNodeNode TypesTypesTypesTypes
Ein Node-Type ist eine wiederverwendbare Entität, die die Art eines Node-Template oder
von mehreren Node-Templates definiert. Ein Node-Type definiert die Struktur der
beobachtbaren Eigenschaften durch eine Properties-Definition, d.h. die Namen, die

15

Datentypen und die zulässigen Werte, die die Eigenschaften, die in Node-Templates
definiert sind, haben können. Diese Node-Templates benutzen einen Node-Type oder die
Instanzen von solchen Node-Templates. Im Folgenden werden die Eigenschaften des
Elements NodeType spezifiziert, die im Rahmen dieser Arbeit wichtig sind.

Das Attribut name spezifiziert den Namen oder den Bezeichner des Node-Type, der
innerhalb des Zielnamensraums eindeutig sein muss. Das optionale Attribut
targetNamespace spezifiziert den Zielnamensraum, zu dem die Definition des Node-Type
hinzugefügt werden wird. Wenn targetNamespace nicht angegeben wird, wird die
Definition des Node-Type zum Zielnamensraum des Definitions-Dokuments, in dem dieser
Node-Type definiert ist, hinzugefügt werden.

Durch das Element PropertiesDefinition kann die Struktur der beobachtbaren
Eigenschaften des Node-Type, wie seine Konfiguration und sein Zustand, mittels XML-
Schema spezifiziert. Dieses Element besitzt genau eines der beiden Attribute element und
type. Das Attribut element gibt den Namen eines XML-Elements an, das die Struktur der
Node-Type-Properties definiert. Das Attribut type gibt den Namen eines (komplexen)
XML-Typ an, der die Struktur der Node-Type-Properties definiert. In Ausschnitt 2.2 wird
ein Beispiel für ein Node-Type-Properties-Dokument dargestellt.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://jujucharms.com/charms/precise/myblg/..."
targetNamespace="http://jujucharms.com/charms/precise/myblog/...">
<xs:complexType name="t-myblog-properties">
<xs:sequence>

<xs:element name="port" type="int" default="80">
<xs:annotation>

<xs:documentation xml:lang="en">
Port to listen on

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="admin-email" type="string" default="null">
<xs:annotation>

<xs:documentation xml:lang="en">
Email address for the site administrator.

</xs:documentation>
</xs:annotation>

</xs:element>
</xs:sequence>

</xs:complexType>
<xs:element name="myblog-properties" type="t-myblog-properties"/>

</xs:schema>

AusschnittAusschnittAusschnittAusschnitt 2.2:2.2:2.2:2.2: XML-Schema für ein Node-Type-Properties-Dokument

Ein Node-Type kann deklarieren, bestimmte Anforderungen ("Requirements") mittels des
Elements RequirementDefinition zu benötigen. Das Element RequirementDefinition hat
wichtige Attribute wie name und requirementType. Das Attribut name spezifiziert den
Namen der definierten Anforderung und muss innerhalb von RequirementsDefinitions des

16

aktuellen Node-Type eindeutig sein. Das Attribut requirementType identifiziert durch
seinen Wert den Requirement-Type, welche durch das aktuelle Element
RequirementDefinition definiert wird.

Außerdem kann ein Node-Type deklarieren, bestimmte Fähigkeiten ("Capabilities") unter
Verwendung von dem Element CapabilityDefinition bereitzustellen. Das Element
CapabilityDefinition hat die wichtigen Attribute: name und capabilityType. Das Attribut
name spezifiziert den Namen der definierten Fähigkeit und muss innerhalb von
CapabilityDefinition des aktuellen Node-Type eindeutig sein. Das Attribut capabilityType
identifiziert durch seinen Wert den Capability-Type, welche durch das aktuelle Element
CapabilityDefinition definiert wird.

Die Funktionen, die auf (einer Instanz von) einem entsprechenden Node-Template
durchgeführt werden können, werden durch die Interfaces des Node-Type definiert. Das
Element Interfaces enthält die Definitionen der Operationen, die auf (Instanzen von) dem
Node-Type durchgeführt werden können. Solche Definitionen der Operationen werden in
Form von verschachtelten Elementen Interface angegeben. Das Element Interface hat ein
Attribut name und enthält ein Element Operation. Das Attribut name beschreibt den
Namen des Interface. Der Name ist eine URI, die im Rahmen des definierenden Node-
Type eindeutig sein muss. Das Element Operation definiert eine verfügbare Operation, um
besondere Aspekte des Node-Type wie z.B. den Lebenszyklus eines Service zu verwalten.
Dieses Element hat ein Attribut name. Dieses Attribut definiert den Namen der Operation
und muss innerhalb des Interface, das die Operation enthält, eindeutig sein.

2.2.3.82.2.3.82.2.3.82.2.3.8 NodeNodeNodeNode TypeTypeTypeType ImplementationsImplementationsImplementationsImplementations
Eine Node-Type-Implementation beschreibt den ausführbare Code, der einen spezifischen
Node-Type implementiert. Die Node-Type-Implementation stellt auch eine Sammlung von
ausführbaren Dateien oder Programmen zur Verfügung, welche die Interface-Operationen
eines Node-Type (auch bekannt als Implementation-Artefakte) implementieren. Außerdem
stellt er eine Sammlung von ausführbaren Dateien oder Programmen zur Verfügung, die
nötig sind, um die Instanzen von Node-Templates, die sich auf einen bestimmten Node-
Type (auch bekannt als Deployment-Artefakte) beziehen, zu erstellen. Diese ausführbaren
Dateien oder Programme werden als separate Artifact-Templates definiert und von den
Implementation-Artefakte und den Deployment-Artefakte eines Node-Type referenziert.

Das Element NodeTypeImplementation hat die folgenden wichtigen Attribute: name,
nodeType und targetNamespace. Das Attribut name spezifiziert den Namen oder den
Bezeichner der Node-Type-Implementation, der innerhalb des Zielnamensraums eindeutig
sein muss. Das optionale Attribut targetNamespace spezifiziert den Zielnamensraum, zu
dem die Definition der Node-Type-Implementation hinzugefügt werden wird. Wenn
targetNamespace nicht angegeben wird, wird die Node-Type-Implementation zum
Zielnamensraum des Definitions-Dokuments, in dem diese Node-Type-Implementation
definiert ist, hinzugefügt werden. Der Wert des Attributs nodeType spezifiziert den Node-
Type, der durch diese Node-Type-Implementation implementiert wird.

Das Element ImplementationArtifacts spezifiziert eine Reihe von Implementation-
Artefakten für Interfaces oder Operationen eines Node-Type. Jedes Implementation-

17

Artefakt eines Interface oder einer Operation wird durch das Kindelement
ImplementationArtifact spezifiziert. Dieses Kindelement hat die folgenden Attribute: name,
artifactType, artifactRef, interfaceName und operationName. Das Attribut name
spezifiziert den Namen des Artefakts, der im Rahmen dieser Node-Type-Implementation
eindeutig sein soll. Das Attribut artifactType spezifiziert den Typ des Artefakts. Sein Wert
soll dem Namen eines in demselben Definitions-Dokument oder in einem importierten
Dokument definierten Elements ArtifactType entsprechen. Das optionale Attribut
artifactRef enthält einen Namen, der ein Artifact-Template als ein Implementation-Artefakt
identifiziert. Dieses Artifact-Template kann in demselben Definitions-Dokument oder in
einem separaten, importierten Dokument definiert werden. Das optionale Attribut
interfaceName spezifiziert den Namen des Interface, das durch das tatsächlichen
Implementation-Artefakt implementiert wird. Das optionale Attribut operationName
spezifiziert den Namen der Operation, die durch das tatsächliche Implementation-Artefakt
implementiert wird.

Die Laufzeitumgebungen, die TOSCA unterstützen, werden als TOSCA-Containers
bezeichnet. Ein TOSCA-Container muss eine Reihe von den Typen der Implementation-
Artefakte verarbeiten, die verwendet werden um die Verwaltungsoperationen (zum
Beispiel das Instanziieren eines Node-Type) auszuführen. Außerdem soll ein TOSCA-
Container auch eine Reihe von den Typen der Deployment-Artefakte, die der TOSCA-
Container verarbeiten kann, unterstützen, weil es für das Instanziieren eines Node-Type
erforderlich ist, die Deployment-Artefakte in der entsprechenden Umgebung zur
Verfügung zu stellen. Die Node-Type-Implementations können durch das Element
RequiredContainerFeatures die Hinweise für einen TOSCA-Container spezifizieren, dass
er eine Implementierung, die einer bestimmten Umgebung entspricht, richtig auswählen
kann.

18

3333 EntwurfEntwurfEntwurfEntwurf

In Kapitel 2 wurden die Details über die Eingabe "Juju-Charm", die Ausgabe "TOSCA-
CSAR" der Prozedur sowie die Grundlagen von Juju und TOSCA besprochen. Dadurch ist
die Grundlage geschaffen, sich mit dem Entwurf der Prozedur zu beschäftigen. Zuerst
wird die zu implementierende Prozedur analysiert, um genauer zu erläutern, wie der
Zusammenhang zwischen der Eingabe und der Ausgabe der Prozedur aussieht. Als
nächster Schritt wird das Konzept der Prozedur dargestellt, die beschreibt, welche
Funktionen für die Prozedur implementiert werden müssen und in welcher Reihenfolge die
Schritte der Prozedur ablaufen sollen. Außerdem werden der Entwuf der zu
implementierenden Pakete in der Prozedur und die Software von Drittanbietern
beschrieben. Bevor wir auf die Implementierung der Prozedur eingehen, wird auch ein
Sequenzdiagramm zum besseren Verstehen für die Implementierung besprochen.

3.13.13.13.1 AnalyseAnalyseAnalyseAnalyse derderderder ProzedurProzedurProzedurProzedur

In diesem Abschnitt wird der Zusammenhang zwischen der Eingabe und der Ausgabe der
Prozedur besprochen. In Abbildung 3.1 werden die Informationen bezüglich dieser Arbeit
dargestellt. "xxx" ist der Name eines Service.

AbbildungAbbildungAbbildungAbbildung 3333....1111:::: Zusammenhang zwischen der Eingabe und der Ausgabe der Prozedur

In dieser Abbildung kann man sehen, wie die Struktur sowie die Inhalte der Eingabe und
der Ausgabe der Prozedur aussehen. Die Datei "metadata.yaml" ist für unsere Arbeit sehr
wichtig. Durch die Inhalte dieser Datei, zum Beispiel die Informationen über "name",
"requires" und "provides", kann unsere Prozedur ein entsprechendes TOSCA-Definitions-
Dokument für einen Node-Type generieren. Ebenso kann die Prozedur durch die
Informationen der Datei "config.yaml" auch ein entsprechendes Node-Type-Properties-
Dokument erzeugen. In der Abbildung gibt es zwei gestrichelte Linien, die zeigen, dass die
Prozedur die Dateien "metadata.yaml" und "config.yaml" in der Datei "xxx_charm.zip"

19

einliest und dann die entsprechenden Dateien "xxx_nodetype.tosca" und
"xxx_nodetype_properties.xsd" generiert. Darüber hinaus müssen alle originale Dateien
(alle Hooks und die anderen Dateien) in der Datei "xxx_charm.zip" zu der von unserer
Prozedur generierten Datei "xxx_nodetype_csar.zip" kopiert werden. Dort werden sie noch
als die entsprechenden Artefakte (die ausführbaren Codes oder Dateien) verwendet werden,
um in der TOSCA-Umgebung den Lebenszyklus einer Cloud-Anwendung durchzuführen
und zu verwalten [23]. Wo sich diese Dateien in der CSAR-Datei befinden sollen, kann der
Ersteller der CSAR-Datei selbst entscheiden. Im Rahmen dieser Arbeit werden sie alle in
dem Verzeichnis "Files" gespeichert. Schließlich muss noch eine wichtige Metadatei
"TOSCA.meta" erstellt und sie zur CSAR-Datei hinzugefügt werden.

3.23.23.23.2 KonzeptKonzeptKonzeptKonzept derderderder ProzedurProzedurProzedurProzedur

Mindestens drei Funktionen muss die Prozedur implementieren, um die Aufgabe dieser
Arbeit zu erledigen. Erstens muss die Prozedur die ZIP-Datei bearbeiten. Beispielsweise
kann sie eine Datei in eine ZIP-Datei einbauen oder eine Datei aus einer ZIP-Datei
ausnehmen. Zweitens muss die Prozedur auch die YAML-Dateien behandeln. Sie kann die
Informationen aus einer YAML-Datei bekommen und diese Informationen auf einer
gewissen Weise speichern, damit diese Informationen später noch benutzt werden kann.
Schließlich muss die Prozedur die XML-Datei erstellen. In unserem Fall soll die Prozedur
nur das XML-basierte TOSCA-Definitions-Dokument mittels der Informationen aus der
YAML-Datei generieren.

Für das Schreiben der Prozedur ist noch wichtig in welcher Reihenfolgen die Schritte der
Prozedur ablaufen sollen. Dazu werden im Allgemeinen die folgenden Schritte benötigt:

Schritt 1: Die Charm-ZIP-Datei einlesen und die entsprechenden YAML-Dateien erhalten.

Schritt 2: Die YAML-Dateien analysieren und ihre Inhalte auf einer gewissen Weise
speichern.

Schritt 3: Die XML-Dateien durch die Inhalte der YAML-Dateien erzeugen.

Schritt 4: Schließlich die CSAR-Datei generieren.

In Abbildung 3.2 wird ein einfaches Pseudo-Sequenzdiagramm für die Prozedur dargestellt.
Diese Abbildung zeigt, dass die Funktionseinheit "ZIP-File-Handler" zuerst von der
Funktionseinheit "CSAR-Generator" aufgerufen wird. "ZIP-File-Handler" liest eine
"xxx_charm.zip" Datei ein und gibt die Dateien "metadata.yaml" und "config.yaml" zurück.
Durch die zwei YAML-Dateien erzeugt die Funktionseinheit "Juju-Yaml-Reader" zwei
abstrakte Objekte. Jedes Objekt wird hier als "YamlModelList" bezeichnet. Diese Objekte
dienen zum Speichern der Inhalte der YAML-Dateien. Die Funktionseinheit "XML-
Generator" kann durch die zwei YamlModelList-Objekte die entsprechenden, XML-
basierten Dateien "xxx_nodetype.tosca" und "xxx_nodetype_properties.xsd" generieren.
Schließlich wird die Funktionseinheit "ZIP-File-Handler" wieder aufgerufen, um die
Zieldatei "xxx_nodetype_csar.zip" zu erzeugen. Diese Zieldatei enthält nicht nur die zwei
generierten XML-Dateien sondern auch alle Dateien in der "xxx_charm.zip" Datei und
noch eine entsprechende Metadatei "TOSCA.meta".

20

Wenn es in mancher Charms keine "config.yaml" Datei gibt, dann wird die entsprechende
Bearbeitung für diese Datei ignoriert.

AbbildungAbbildungAbbildungAbbildung 3.3.3.3.2222:::: Ein einfaches Pseudo-Sequenzdiagramm der Prozedur

3.33.33.33.3 EntwurfEntwurfEntwurfEntwurf derderderder zuzuzuzu implementierendenimplementierendenimplementierendenimplementierenden PaketePaketePaketePakete

In Unterkapitel 3.2 werden vier Funktionseinheiten erwähnt. Dazu werden die folgenden
entsprechenden Pakete entworfen: "org.tosca", "org.tosca.xml", "org.tosca.yaml" und
"org.tosca.zip". Jedes Paket wird als eine Funktionseinheit angesehen und kann die
bestimmte Funktion der Prozedur implementieren.

3.3.13.3.13.3.13.3.1 TOSCA-CSAR-GeneratorTOSCA-CSAR-GeneratorTOSCA-CSAR-GeneratorTOSCA-CSAR-Generator
Die Funktion des Pakets "org.tosca" ist, die anderen Pakete der bestimmten Reihenfolge
nach aufzurufen, um eine TOSCA-CSAR-Datei zu generieren. Außerdem müssen hier der
Pfadname und der Dateiname der Eingabe und der Ausgabe der Prozedur angegeben
werden.

3.3.23.3.23.3.23.3.2 ZIP-ZIP-ZIP-ZIP-File-HandlerFile-HandlerFile-HandlerFile-Handler
Die Funktion des Pakets "org.tosca.zip" ist die Verarbeitung einer ZIP-Datei. Mögliche
Aufgaben sind zum Beispiel, eine Liste, die eine Reihe von Pfadnamen und Dateinamen
aller Dateien in einer ZIP-Datei enthält, zu erhalten, eine Datei zu einer ZIP-Datei
hinzuzufügen oder eine Datei aus einer ZIP-Datei auszunehmen. Außerdem kann damit die

21

Struktur der Dateiverzeichnisse in einer ZIP-Datei nach der bestimmten Form geändert
werden.

3.3.33.3.33.3.33.3.3 JujuJujuJujuJuju-Yaml-Reader-Yaml-Reader-Yaml-Reader-Yaml-Reader
Die Funktion des Pakets "org.tosca.yaml" ist, eine YAML-Datei zu lesen. Beispielsweise
können die Inhalte einer YAML-Datei analysiert und jede wichtige Information aus dieser
YAML-Datei als ein YamlModel-Objekt in einer Liste gespeichert werden.

3.3.43.3.43.3.43.3.4 TOSCA-XML-GeneratorTOSCA-XML-GeneratorTOSCA-XML-GeneratorTOSCA-XML-Generator
Die Funktion des Pakets "org.tosca.xml" ist, eine XML-Datei zu erstellen. In unserem Fall
werden ein TOSCA-Definitions-Dokument und ein XML-Schema-Definitions-Dokument
erzeugt. Das Paket ermöglicht, dass durch die Liste mit YamlModel-Objekten alle
entsprechenden Elemente für die zwei oben genannten Dokumente im Rahmen dieser
Arbeit gespeichert werden und dadurch die entsprechenden XML-Dokumente generiert
werden.

3.43.43.43.4 VerwendetesVerwendetesVerwendetesVerwendetes Java-PaketJava-PaketJava-PaketJava-Paket undundundund SoftwareSoftwareSoftwareSoftware vonvonvonvon DrittanbieternDrittanbieternDrittanbieternDrittanbietern

3.4.13.4.13.4.13.4.1 JDKJDKJDKJDK
Für die Implementierung von Schritt 1 und 4 wird das Java-Paket "java.util.zip" [17]
verwendet. Dieses Paket stellt die Klassen für das Lesen und das Schreiben von ZIP-
Dateien zur Verfügung. Man benutzt das Paket, um die Dateien in der ZIP-Datei zu lesen
und eine neue ZIP-Datei zu generieren. Für unseren Fall kann die Prozedur die Dateien
"metadata.yaml" und "config.yaml" in einer Charm-ZIP-Datei erhalten und sie an einem
bestimmten Ort speichern. Schließlich kann die Prozedur durch das Paket eine neue
CSAR-ZIP-Datei erzeugen und dabei ein neu generiertes TOSCA-Definitions-Dokument
zu diesem CSAR-ZIP-Datei hinzufügen.

3.4.23.4.23.4.23.4.2 SnakeYamlSnakeYamlSnakeYamlSnakeYaml
Für Schritt 2 wird eine YAML-Software von Drittanbietern verwendet. SnakeYAML [18]
ist ein YAML-Parser für Programmiersprache "Java". SnakeYAML ist bekannt dafür, dass
er ein kompletter YAML1.1-Parser ist. Durch SnakeYAML kann die YAML-Datei
gelesen werden und können ihre Inhalte gespeichert werden.

3.4.33.4.33.4.33.4.3 DDDDom4jom4jom4jom4j
Für Schritt 3 wird eine XML-Software von Drittanbietern benutzt. Dom4j [19] ist eine
benutzerfreundliche, open-source-Bibliothek, die dafür verwendet wird, mit XML auf der
Java-Plattform unter Verwendung von Java-Collections-Framework zu arbeiten. Um
genauer zu sagen, ist Dom4j eine Java-XML-API, die zum Lesen und Schreiben von
XML-Dateien verwendet wird. Unter Verwendung von DOM4j und Informationen in der
Yaml-Datei kann man eine auf TOSCA-Standard basierende XML-Datei erzeugen.

3.53.53.53.5 KomplettesKomplettesKomplettesKomplettes SequenzdiagrammSequenzdiagrammSequenzdiagrammSequenzdiagramm

Bevor man sich mit der Implementierung der Prozedur beschäftigt, wird hier zuerst ein
komplettes Seuquenzdiagramm in Abbildung 3.3 dargestellt, in dem der gesamte Ablauf
der Prozedur und die Interaktion ihrer Komponenten gezeigt werden [20]. In der

22

Abbildung sind die wichtigen Klassen und die wichtigen Methoden zu sehen, die
implementiert werden müssen. Für Übersichtlichkeit werden die Parameter der Methoden
weggelassen. Dem Sequenzdiagramm nach kann die Prozedur schrittweise implementiert
werden.

23

AbbildungAbbildungAbbildungAbbildung 3.3:3.3:3.3:3.3: Ein Sequenzdiagramm der Prozedur

24

4444 ImplementierungImplementierungImplementierungImplementierung

In diesem Kapitel wird auf Details der Implementierung der Prozedur eingegangen. In den
folgenden Abschnitten wird die Implementierung von allen wichtigen Klassen und
Methoden ausführlich beschrieben.

4.14.14.14.1 ImplementirungImplementirungImplementirungImplementirung desdesdesdes PaketPaketPaketPaketssss """"org.toscaorg.toscaorg.toscaorg.tosca""""

Das Paket "org.tosca" enthält im Rahmen dieser Arbeit nur eine Klasse
"CharmToNodeType".

4.1.14.1.14.1.14.1.1 KlasseKlasseKlasseKlasse """"CharmToCharmToCharmToCharmToNodeType"NodeType"NodeType"NodeType"
In dieser Klasse werden die Methode "main" und eine Klasse "Transform" definiert.

4.1.1.14.1.1.14.1.1.14.1.1.1 MethodeMethodeMethodeMethode "main""main""main""main"
Die Methode "main" [21] ist die Einstiegsfunktion der Prozedur und wird automatisch als
erste Funktion aufgerufen. In dieser Methode definiert man drei Eigenschaften vom Typ
"String". Dies sind "pathname", "inputFilename" und "platform". Die letzte Eigenschaft
"platform" beschreibt eine bestimmte Umgebung, von der eine Implementierung eines
Node-Type abhängig ist. Die Information über "platform" wird in Kapitel 2.2.3.8
besprochen. Die anderen zwei Eigenschaften stellen die Pfadenamen und die Dateinamen
der Eingabe der Prozedur dar. Außerdem wird in der Methode "main" eine Instanz der
Klasse "Transform" mit den drei definierten Eigenschaften als Parameter erstellt und ihre
Methode "transform" aufgerufen.

4.1.1.24.1.1.24.1.1.24.1.1.2 KlasseKlasseKlasseKlasse "Transform""Transform""Transform""Transform"
Diese Klasse enthält einen Konstruktor [21] "Transform" und eine Methode "transform".
Der Konstruktor "Transform" wird mit drei Parametern versehen, die von der Methode
"main" übergeben werden. Durch diese Parameter werden allen nötigen Variablen die
Werte zugewiesen. Die Funktion der Methode "transform" ist, die Instanzen von allen
notwendigen Klassen zu erstellen und ihre Methoden der bestimmten Reihenfolge nach
aufzurufen, um die Aufgabe dieser Prozedur zu verwirklichen. Die Reihenfolge, in der die
Methoden aufgerufen werden, wird auf der linken Seite in Abbildung 3.3 dargestellt.

4.24.24.24.2 ImplementierungImplementierungImplementierungImplementierung desdesdesdes PaketsPaketsPaketsPakets """"org.tosca.ziporg.tosca.ziporg.tosca.ziporg.tosca.zip""""

In dem Paket "org.tosca.zip" werden drei Klassen implementiert: "FileModel",
"FileModelList" und "ZipUtil".

4.2.14.2.14.2.14.2.1 KlasseKlasseKlasseKlasse """"FileModelFileModelFileModelFileModel""""
Die Funktion dieser Klasse ist, den Pfadnamen und den Dateinamen einer Datei als ein
FileModel-Objekt zu speichern. In dieser Klasse werden zwei privaten Eigenschaften
"pathname" und "filename" definiert, deren Werte durch Setter- und Getter-Methoden
jeweils zugewiesen und erhalten werden können.

25

4.2.24.2.24.2.24.2.2 KlasseKlasseKlasseKlasse """"FileModelListFileModelListFileModelListFileModelList""""
Die Funktion dieser Klasse ist, die Pfadnamen und die Dateinamen aller Dateien in einer
ZIP-Datei als FileModel-Objekte in einem FileModelList-Objekt zu speichern. In dieser
Klasse wird eine private Eigenschaft "fileModelList" vom Typ "java.util.List" [22]
definiert. In der Konstrukturmethode wird die Eigenschaft "fileModelList" instanziiert, das
zur Speicherung der FileModel-Objekte dient. Die Werte der Eigenschaft "fileModelList"
können durch Setter- und Getter-Methoden zugewiesen und bekommen werden. Außerdem
enthält diese Klasse noch eine Methode "format",

4.2.2.14.2.2.14.2.2.14.2.2.1 MethodeMethodeMethodeMethode "format""format""format""format"

InputInputInputInput/Output/Output/Output/Output ParameternameParameternameParameternameParametername ParametertypParametertypParametertypParametertyp BeschreibungBeschreibungBeschreibungBeschreibung

Input "servicename" String Der Name eines Service

Input "platform" String
Eine Umgebung, von der eine
Implementierung von "NodeType"
abhängen kann

Output "fl" FileList
Eine Liste von den Pfadnamen und
Dateinamen aller Dateien in einer
ZIP-Datei

TabelleTabelleTabelleTabelle 4.1:4.1:4.1:4.1: Parameter der Methode "format"

In dieser Methode wird der Pfadname jeder Datei in der Charm-Datei zu dem in der
CSAR-Datei verlangten Pfadnamen geändert. Ihre Eingabeparameter und ihre Ausgabe
werden in Tabelle 4.1 gezeigt. Die zwei Parameter der Methode werden in den neuen
Pfadenamen benötigt. Wenn in der Charm-Datei die Dateien namens "install", "start" und
"stop" vorhanden sind, müssen zusätzlich die entsprechenden Dateien names "install.sh",
"start.sh"und "stop.sh" zur CSAR-Datei hinzugefügt werden. Der Grund dafür ist, dass
nicht bekannt ist, in welcher Script-Sprache die Dateien "install", "start" und "stop"
implementiert wurden. Bei TOSCA muss man definieren, um welche Art von Script (zum
Beispiel Shell oder Python) es sich handelt [11]. Deswegen braucht man die zusätzliche
Datei "install.sh" als Wrapper-Script, um die Datei "install" aufzurufen. Dasselbe gilt auch
für "start" und "stop" [23]. Außerdem müssen diese Dateien in Form von FileModel-
Objekten mit den neuen Pfadnemen und den originalen Dateinamen zu dem
entsprechenden FileList-Objekt "fl" hinzugefügt werden. Am Ende gibt die Methode das
FileList-Objekt "fl" zurück, das alle FileModel-Objekte der CSAR-Datei entsprechend
enthält.

4.2.34.2.34.2.34.2.3 KlasseKlasseKlasseKlasse """"ZipUtilZipUtilZipUtilZipUtil""""
Die Funktion dieses Pakets ist die Verarbeitung einer ZIP-Datei. Zu den Aufgaben
gehören zum Beispiel eine Dateiliste, die eine Reihe von Pfadnamen und Dateinamen aller
Dateien in einer ZIP-Datei enthält, zu bekommen, eine Datei zu einer ZIP-Datei
hinzuzufügen oder eine Datei aus einer ZIP-Datei zu nehmen. Außerdem kann durch diese

26

Klasse die Struktur der Dateiverzeichnisse in einer ZIP-Datei der bestimmten Form nach
geändert werden.

4.2.3.14.2.3.14.2.3.14.2.3.1 MethodeMethodeMethodeMethode "getAllFilenames""getAllFilenames""getAllFilenames""getAllFilenames"

InputInputInputInput/Output/Output/Output/Output ParameternameParameternameParameternameParametername ParametertypParametertypParametertypParametertyp BeschreibungBeschreibungBeschreibungBeschreibung

Input "inputFilename" String Der vollständige Name einer ZIP-
Datei

Output "fl" FileList
Eine Liste der Pfadnamen und
Dateinamen aller Dateien in einer
ZIP-Datei

TabelleTabelleTabelleTabelle 4.4.4.4.2222:::: Parameter der Methode "getAllFilenames"

Die Funktion dieser Methode ist, eine Dateiliste mit den Pfadnamen und den Dateinamen
aller Dateien in einer ZIP-Datei zurückzugeben. Ihre Eingabeparameter und ihre Ausgabe
werden in Tabelle 4.2 gezeigt. Zuerst wird eine Instanz der Klasse "ZipInputStream" [24]
erstellt, die einen Input-Stream für das Lesen der Dateien in der ZIP-Datei implementiert.
Mit der Methode "getNextEntry" der Klasse "ZipInputStream" kann der nächste ZIP-Datei-
Eintrag gelesen und dann ein Objekt der Klasse "ZipEntry" als Ausgabe zurückgegeben
werden. Durch eine While-Schleife kann man dann alle Dateien in der ZIP-Datei in Form
der ZipEntry-Objekte erhalten. Bei jeder Schleife wird die Methode "getName" der Klasse
"ZipEntry" [24] aufgerufen, damit man einen vollständigen Namen jeder Datei bekommen
kann. Durch das Teilen jedes vollständigen Namen kann man den Pfadnamen und den
Dateinamen erhalten, die als ein FileModel-Objekt in einem FileList-Objekt "fl"
gespeichert werden. Schließlich wird das FileList-Objekt "fl" zurückgegeben.

4.2.3.24.2.3.24.2.3.24.2.3.2 MethodeMethodeMethodeMethode """"getFileFgetFileFgetFileFgetFileFrorororomZipmZipmZipmZip""""

InputInputInputInput/Output/Output/Output/Output ParameternameParameternameParameternameParametername ParametertypParametertypParametertypParametertyp BeschreibungBeschreibungBeschreibungBeschreibung

Input "inputFile" String
Der vollständige Name einer ZIP-
Datei, aus der eine Datei genommen
wird

Input "filename" String Der Name einer Datei, die aus einer
ZIP-Datei genommen wird

Output "output" File Eine Datei, die aus der ZIP-Datei
genommen wird

TabelleTabelleTabelleTabelle 4.4.4.4.3333:::: Parameter der Methode "getFileFromZip"

27

Die Funktion dieser Methode ist, eine Datei mit einem angegebenen Dateinamen aus einer
ZIP-Datei zu erhalten. Ihre Eingabeparameter und ihre Ausgabe werden in Tabelle 4.3
gezeigt. Zuerst erstellt man zwei Instanzen der Klasse "ZipInputStream" und
"FileOutputStream" [25]. Die Klasse "ZipInputStream" implementiert einen Input-Stream
für das Lesen der Dateien in einer ZIP-Datei. Die Klasse "FileOutputStream" [24]
implementiert einen Output-Stream für das Schreiben der Daten in eine Datei. Ähnlich
wie die Implementierung der oben besprochenen Methode "getAllFilenames" kann man
durch das Teilen eines vollständigen Namens den Pfadnamen und den Dateinamen einer
Datei erhalten. Falls dieser Dateiname dem erwarteten Dateinamen entspricht, wird die
Datei mit diesem Dateinamen durch ein Objekt der Klasse "FileOutputStream" in die Datei
"output" geschrieben. Schließlich wird die Datei "output" zurückgegeben.

4.2.3.34.2.3.34.2.3.34.2.3.3 MethodeMethodeMethodeMethode """"formatformatformatformat""""

InputInputInputInput/Output/Output/Output/Output ParameternameParameternameParameternameParametername ParametertypParametertypParametertypParametertyp BeschreibungBeschreibungBeschreibungBeschreibung

Input "input" String Pfad zu der zu ändernden ZIP-Datei

Input "output" String Pfad zu der geänderten ZIP-Datei

Input "newPathname" String Für das Definition eines neuen
Pfadnamen verwendet

TabelleTabelleTabelleTabelle 4.4.4.4.4444:::: Parameter der Methode "format"

Die Funktion dieser Methode ist, die Struktur der Dateiverzeichnisse einer ZIP-Datei zu
ändern und dann eine neue ZIP-Datei mit der neuen Struktur der Dateiverzeichnisse zu
erzeugen. Ihre Eingabeparameter und ihre Ausgabe werden in Tabelle 4.4 gezeigt.
Tatsächlich wird nur die Pfadnamen jeder Datei in der ZIP-Datei geändert. Zuerst erstellt
man zwei Instanzen der Klasse "ZipInputStream" und "ZipOutputStream". Die Klasse
"ZipInputStream" implementiert einen Input-Stream für das Lesen der Dateien in einer
ZIP-Datei. Die Klasse "ZipOutputStream" implementiert einen Output-Stream für das
Schreiben der Dateien in eine ZIP-Datei. Ähnlich wie die Implementierung der oben
besprochenen Methode "getAllFilenames" kann man die Pfadnamen und die Dateinamen
aller Dateien erhalten. Dann kann man die Pfadnamen ändern. Schließlich müssen alle
Dateien als die neu instanziierten Objekte der Klasse "ZipEntry" mit den neuen Pfadnamen
und den originalen Dateinamen durch das ZipOutputStream-Objekt in die neue ZIP-Datei
geschrieben werden.

28

4.2.3.44.2.3.44.2.3.44.2.3.4 MethodeMethodeMethodeMethode """"addFileToZipaddFileToZipaddFileToZipaddFileToZip""""

InputInputInputInput/Output/Output/Output/Output ParameternameParameternameParameternameParametername ParametertypParametertypParametertypParametertyp BeschreibungBeschreibungBeschreibungBeschreibung

Input "xmlFileArg" String Der Name der XML-Datei, der zur
ZIP-Datei hinzugefügt wird

Input "xsdFileArg" String Der Name der XSD-Datei, der zur
ZIP-Datei hinzugefügt wird

Input "zipInFileArg" String
Der Name einer ZIP-Datei, zu der
die neuen Dateien hinzugefügt
werden

Input "zipOutFileArg" String
Der Name einer ZIP-Datei, zu der
die neuen Dateien schon
hinzugefügt wurden

Output "flag" Boolean
Ob das Hinzufügen der Dateien
erfolgreich ist.

TabelleTabelleTabelleTabelle 4.4.4.4.5555:::: Parameter der Methode "addFileToZip"

Die Funktion der Methode ist, Dateien zu einer ZIP-Datei hinzuzufügen. Ihre
Eingabeparameter und ihre Ausgabe werden in Tabelle 4.5 gezeigt. Wenn in der Charm-
ZIP-Datei keine "config.yaml" Datei vorhanden ist, d.h. es wird kein entsprechendes Node-
Type-Properties-Dokument generiert, dann wird die Methode ohne Parameter
"xsdFileArg" benutzt. In dem anderen Fall, dass es in der Charm-ZIP-Datei die beiden
Dateien "metadata.yaml" und "config.yaml" gibt, d.h. es werden das Node-Type-
Properties-Dokument und das TOSCA-Definitions-Dekument für Node-Type erzeugt,
dann muss die Methode mit den Parameter "xsdFileArg" und "xmlFileArg" verwendet
werden. Am Anfang wird jede Datei in einer Eingabe-ZIP-Datei als ein Zip-Input-Stream
gelesen und dann als ein Zip-Output-Stream in eine neue ZIP-Datei geschrieben. Danach
werden die XML-Datei und die XSD-Datei zu der neuen ZIP-Datei hinzugefügt.
Ausßerdem muss noch eine Datei namens "TOSCA.meta" erzeugt und zu dieser neu
generierten ZIP-Datei hinzugefügt. Schließlich wird "true" zurückgegeben, wenn keine
Ausnahmen passiert haben.

4.34.34.34.3 ImplementierungImplementierungImplementierungImplementierung desdesdesdes PaketsPaketsPaketsPakets """"org.tosca.yamlorg.tosca.yamlorg.tosca.yamlorg.tosca.yaml""""

In dem Paket "org.tosca.yaml" werden drei Klassen implementiert: "YamlModel",
"YamlModelList" und "YamlReader".

4.3.14.3.14.3.14.3.1 KlasseKlasseKlasseKlasse """"YamlModelYamlModelYamlModelYamlModel""""
Die Funktion dieser Klasse ist, die Informationen in der YAML-Datei zu speichern. In
einer YAML-Datei erscheinen alle Informationen in Form von Schlüssel-Wert-Paaren.
Jede Information kann als ein YamlModel-Objekt nämlich ein Schlüssel-Wert-Paar

29

gespeichert werden. In dieser Klasse werden drei privaten Eigenschaften "key", "value"
und "yamlValue" definiert, deren Werte durch Setter- und Getter-Methoden zugewiesen
und erhalten werden können. Die Eigenschaften "key" und "value" sind vom Typ "String"
Die Eigenschaft "yamlValue" ist vom Typ "YamlModel" und kann noch ein YamlModel-
Objekt enthalten. In Abbildung 4.1 wird gezeigt, wie jede Information in der
"metadata.yaml" Datei des Service "mysql" als ein YamlModel-Objekt gespeichert wird.

AbbildungAbbildungAbbildungAbbildung 4.1:4.1:4.1:4.1:Das Speichern von Informationen in einer "metadata.yaml" Datei

4.3.24.3.24.3.24.3.2 KlasseKlasseKlasseKlasse """"YamlModelListYamlModelListYamlModelListYamlModelList""""
Die Funktion dieser Klasse ist, alle Informationen in einer YAML-Datei als YamlModel-
Objekte in einem YamlModelList-Objekt zu speichern. In dieser Klasse wird eine private
Eigenschaft "yamlModelList" vom Typ "java.util.List" definiert. In dem Konstruktor wird
die Eigenschaft "yamlModelList" instanziiert, die für das Speichern der YamlModel-
Objekte verwendet wird. Die Werte der Eigenschaft "yamlModelList" können durch
Setter- und Getter-Methoden zugewiesen und erhalten werden.

4.3.34.3.34.3.34.3.3 KlasseKlasseKlasseKlasse """"YamlReaderYamlReaderYamlReaderYamlReader""""
Die Funktion dieser Klasse ist, die Inhalte einer YAML-Datei zu lesen. Dafür wird eine
Software "SnakeYaml" eines Drittanbieters verwendet.

30

4.3.3.14.3.3.14.3.3.14.3.3.1 MethodeMethodeMethodeMethode """"readYamlFilereadYamlFilereadYamlFilereadYamlFile""""
Durch "SnakeYaml" kann diese Methode die Inhalte in einer YAML-Datei in Form vom
Typ "java.util.Map" [22] lesen. Die Methode benötigt einen Eingabeparameter "file" vom
Typ "java.io.File" [25]. Der Parameter bedeutet eine YAML-Datei, die bearbeitet wird. Als
Ausgabe liefert diese Methode ein YamlModelList-Objekt. Um die Ausgabe zu erzeugen,
werden zuerst die Instanzen der Klasse "Yaml" und "FileInputStream" erstellt. Durch eine
Methode "load" [27] der Klasse "Yaml" kann ein Java-Objekt vom Typ "java.util.Map"
zurückgegeben werden. Nach dem Aufruf einer privaten Methode "read" mit dem
Eingabeparater vom Typ "java.util.Map" wird ein YamlModelList-Objekt erzeugt.

4.3.3.24.3.3.24.3.3.24.3.3.2 MethodeMethodeMethodeMethode """"readreadreadread""""
Durch diese Methode können die Inhalte in einem Objekt vom Typ "java.util.Map" gelesen
und dann als YamlModel-Objekte gespeichert werden. Alle YamlModel-Objekte werden
in einem YamlModelList-Objekt gelagert, welche schließlich zurückgegeben werden muss.
Zuerst bekommt die Methode als Eingabeparameter ein Objekt vom Typ "java.util.Map".
Dann wird der Typ des Objekts zum Typ "java.util.Set" [22] verwandelt, um die Elemente
von "java.util.Map" direkt durch einen Iterator [22] ausgeben zu können. Jedes Element in
"java.util.Map" ist in Form von einem "key-value" Paar gespeichert. Für den Typ von
"value" gibt es zwei Möglichkeiten. Wenn "value" der Typ "java.util.LinkedHashMap"
[22] ist, d.h. "value" enthält auch eine Reihe der Objekte vom Typ "YamlModel", dann
wird die Methode "read" mit dem Eingabeparameter "value" rekursiv aufgerufen. Das Ziel
ist YamlModel-Objekte in "value" zu bekommen. Diese Objekte mit dem gleichen "key"
zusammen werden als YamlModel-Objekte zum YamlModelList-Objekt hinzugefügt. In
dem anderen Fall, dass "value" den elementaren Datentyp wie "String", "Integer" oder
"Boolean" hat, dann werden "key" und "value" als ein YamlModel-Objekt zum
YamlModelList-Objekt hinzugefügt.

4.44.44.44.4 ImplementierungImplementierungImplementierungImplementierung desdesdesdes PaketsPaketsPaketsPakets """"org.tosca.xmlorg.tosca.xmlorg.tosca.xmlorg.tosca.xml""""

In dem Paket "org.tosca.xml" werden folgende Klassen implementiert:
"XmlElementsModel", "XmlElementsImpl", "XmlGenerator", "XsdElementsModel",
"XsdElementsImpl" und "XsdGenerator". Die ersten drei Klassen dienen dazu, ein XML-
Dokument zu generieren. Die anderen drei Klassen werden verwendet, um ein XSD-
Dokument zu erzeugen. Da XSD auf XML basiert und zur Beschreibung der Struktur eines
XML-Dokuments dient, haben diese Klassen die ähnliche Implementierung.

4.4.14.4.14.4.14.4.1 KlasseKlasseKlasseKlasse """"XmlElementsModelXmlElementsModelXmlElementsModelXmlElementsModel""""
Die Funktion dieser Klasse ist, die Elemente in einer XML-Datei zu speichern. Es handelt
sich um alle Elemente sowie ihre Kinderelemente in einem TOSCA-Definitions-Dokument,
die schon in Unterkapitel 2.2.3 besprochen wurden. Zum Beispiel werden die Elemente
RequirementType, CapabilityType, ArtifactType, ArtifactTemplate, NodeType und
NodeTypeImplementation als private Eigenschaften in dieser Klasse definiert und können
durch Setter- und Getter-Methoden zugewiesen und erhalten werden.

4.4.24.4.24.4.24.4.2 KlasseKlasseKlasseKlasse """"XmlElementsImplXmlElementsImplXmlElementsImplXmlElementsImpl""""
Die Funktion dieser Klasse ist im Allgemeinen, durch die Inhalte in einer "metadata.yaml"
Datei die entsprechenden Elemente für ein TOSCA-Definitions-Dokument zu generieren.

31

Das heißt, durch das Lesen eines YamlModelList-Objekts ein XmlElementsModel-Objekt
zu erzeugen. Am Anfang wird ein privates Objekt der Klasse "XmlElementsModel" in dem
Konstruktor instanziiert, das zum Speichern von Elementen dient. Durch das Aufrufen der
Methode "elementsImpl" werden alle Elemente in dem TOSCA-Defnitions-Dokument
implementiert. Jedes Element wird durch eine entsprechende Methode implementiert.
Beispielsweise wird das Root-Element Definitions durch die Methode "rootImpl"
implementiert und das Element NodeType durch die Methode "nodeTypeImpl". Für ihre
Implementierung werden zwei Klassen "org.dom4j.DocumentHelper" und
"org.dom4j.Namespace" sowie ein Interface "org.dom4j.Element" von Dom4j [26]
verwendet. Ein Element kann durch die Methode "createElement" der Klasse
"DocumentHelper" generieren.

4.4.2.14.4.2.14.4.2.14.4.2.1 MethodeMethodeMethodeMethode """"elementsImplelementsImplelementsImplelementsImpl""""

InputInputInputInput/Output/Output/Output/Output ParameternameParameternameParameternameParametername ParametertypParametertypParametertypParametertyp BeschreibungBeschreibungBeschreibungBeschreibung

Input "yml" YamlModelList Ein YamlModellist-Objekt

Input "fl" FileModelList Ein FileModelList-Objekt

Input "flag" Boolean
Bedeutet, ob in der Charm-Zip-
Datei eine "config.yaml" Datei
vorhanden ist.

Input "platform" String
Eine Umgebung, von der eine
Implementierung von "NodeType"
abhängen kann

Output "xmlem"
XmlElements-

Model
Ein XmlElementsModel-Objekt

TabelleTabelleTabelleTabelle 4.4.4.4.6666:::: Parameter der Methode "elementsImpl"

Die Funktion dieser Methode ist, durch ein YamlModelList-Objekt die YamlModel-
Objekte zu bekommen und dadurch die entsprechenden Elemente zu generieren. Ihre
Eingabeparameter und ihre Ausgabe werden in Tabelle 4.6 gezeigt. In der Regel benötigt
man drei wichtige Informationen in einer "metadata.yaml" Datei. Diese drei Informationen
beziehen sich auf drei YamlModel-Objekte mit den Schlüsselwerten "name", "requires"
und "provides". Alle generierten Elemente werden in einem Objekt der Klasse
"XmlElementsModel" gespeichert. Schließlich wird dieses XmlElementsModel-Objekt
zurückgegeben.

Durch das YamlModel-Objekt, dessen Schlüssel den Wert "name" hat, kann man den
Namen des Cloud-Service bekommen. Dabei können die Methoden "rootImpl",
"importImpl", "artifactTypeImpl" und "nodeTypeImpl" aufgerufen werden, um die
entsprechenden Elemente Definitions (Root-Element), Import, ArtifactType und NodeType
zu erzeugen. Bevor man die Methoden "artifactTypeImpl" und "nodeTypeImpl" aufruft,

32

müssen noch die Namen der Operationen für den Lebenszyklus eines Cloud-Service, wie
zum Beispiel "install", "start" und "stop", aus einem FileModelList-Objekt bekommen
werden. Diese Operationsnamen werden danach als Parameter vom Typ "java.util.List" auf
die Methode "artifactTypeImpl" und "nodeTypeImpl" übertragen.

Durch die YamlModel-Objekte mit dem Schlüsselwert "requires" kann man die
Informationen über das Element RequirementType erhalten. Damit können das Element
RequirementType sowie seine Attribute durch das Aufrufen einer entsprechenden Methode
"requirementTypeImpl" erzeugt werden. Das Element RequirementType hat drei Attribute:
name, targetNamespace und requiredCapabilityType. Für das Definieren des Attributs
requiredCapabilityType muss man zuerst überprüfen, ob es in der Liste, die die Elemente
CapabilityType enthält, ein entsprechendes Element gibt, das denselben Namen mit dem
Element RequirementType hat. Wenn die Liste des Elements CapabilityType leer ist oder
es kein solches Element CapabilityType gibt, dann braucht man das Attribut nicht zu
definieren.

In ähnlicher Weise können durch das YamlModel-Objekt "provides" die Informationen
über das Element CapabilityType bekommen und damit dieses Element und seine Attribute
generiert werden. Hier wird eine Methode "capabilityTypeImpl" aufgerufen. Das Element
CapabilityType hat zwei Attribute: name und targetNamespace. Man muss noch
überprüfen, ob ein Element in der Liste des Elements RequirementType vorhanden ist, das
denselben Namen mit diesem Element CapabilityType hat. Wenn es ein solches Element
RequirementType gibt, dann wird ein entsprechendes Attribut requiredCapabilityType mit
dem Namen des Elements CapabilityType zum Element RequirementType hinzugefügt.

4.4.2.24.4.2.24.4.2.24.4.2.2 MethodeMethodeMethodeMethode """"rootImplrootImplrootImplrootImpl""""
In dieser Methode wird das Root-Element Definitions erzeugt. Dabei werden seine
Attribute name, targetNamespace und id zu diesem Element hinzugefügt. Dann definiert
man auch einige Namensräume, die für dieses Dokument benötigt sind. Die Methode
benötigt zwei Parameter: "name" und "flag". Der Parameter "name" bedeutet den Namen
eines Service. Der Parameter "flag" hat den Typ "Boolean" und bedeutet, ob in der Charm-
ZIP-Datei eine "config.yaml" Datei vorhanden ist. Wenn "flag" wahr ist, bedeutet das, dass
es ein Node-Type-Properties-Dokument in der TOSCA-CSAR-Datei gibt, das durch die
Datei "config.yaml" erzeugt wird. Dabei muss ein entsprechender Namensraum definiert
werden. Schließlich wird das Root-Element in dem XmlElementsModel-Objekt
gespeichert.

4.4.2.34.4.2.34.4.2.34.4.2.3 MethodeMethodeMethodeMethode """"importImplimportImplimportImplimportImpl""""
In dieser Methode wird das Element Import erzeugt. Die Methode benötigt zwei Parameter
"name" und "flag". Wenn "flag" wahr ist, muss ein Node-Type-Properties-Dokument
importiert werden. Deshalb muss ein neues Element Import mit dem Attribut location
erzeugt werden. Das Attribut location beschreibt den Pfad zu dem importierten Dokument.
Schließlich wird ein Import-Element oder mehrere Import-Elemente in dem
XmlElementsModel-Objekt gespeichert.

33

4.4.2.44.4.2.44.4.2.44.4.2.4 MethodeMethodeMethodeMethode """"requirementTypeImplrequirementTypeImplrequirementTypeImplrequirementTypeImpl""""
In dieser Methode werden das Element RequirementType und seine Attribute erzeugt. Die
Parameter dieser Methode dienen zum Definieren der Attribute, wenn sie nicht NULL sind.
Nachdem das Element RequirementType in dem XmlElementsModel-Objekt gespeichert
ist, wird eine Methode "requirementDefinitionsImpl" aufgerufen, die zur Implementierung
der Kinderelemente RequirementDefinitions des Elements NodeType dient.

4.4.2.54.4.2.54.4.2.54.4.2.5 MethodeMethodeMethodeMethode """"capabilityTypeImplcapabilityTypeImplcapabilityTypeImplcapabilityTypeImpl""""
In dieser Methode wird das Element CapabilityType und seine Attribute erzeugt. Die
Implementierung dieser Methode ist gleich wie die Methode "requirementTypeImpl".
Darüber wird hier nicht redundant gesprochen. Schließlich wird eine Methode
"capabilityDefinitionsImpl" aufgerufen, die zur Implementierung der Kinderelemente
CapabilityDefinitions des Elements NodeType dient.

4.4.2.64.4.2.64.4.2.64.4.2.6 MethodeMethodeMethodeMethode """"artifactTypeImplartifactTypeImplartifactTypeImplartifactTypeImpl""""
In dieser Methode wird das Element ArtifactType und seine Attribute erzeugt. Nach dem
Erzeugen des Elements und seiner Attribute wird die Methode
"artifactTypePropertiesDefinitionImpl" aufgerufen, um sein Kindelement
PropertiesDefinition zu implementieren. Dann wird dieses Element in dem Objekt der
Klasse XmlElementsModel gespeichert. Die Methode "artifactTypeImpl" benötigt zwei
Eingabeparameter: "fl" und "operationNames". Der Parameter "operationNames" vom Typ
"java.util.List" bedeutet die Namen der Operationen für den Lebenszyklus eines Cloud-
Service. Für jede Operation wie "install", "start" oder "stop" muss eine Methode
"artifactTemplateImpl" aufgerufen werden, um das entsprechende Element
ArtifactTemplate zu implementieren. Der Parameter "fl" wird als ein Parameter an der
Methode "artifactTemplateImpl" weitergegeben.

4.4.2.74.4.2.74.4.2.74.4.2.7 MethodeMethodeMethodeMethode """"artifactTemplateImplartifactTemplateImplartifactTemplateImplartifactTemplateImpl""""
In dieser Methode wird das Element ArtifactTemplate und seine Attribute erzeugt. Für das
Attribut id wird die Klasse "java.util.UUID" [22] verwendet. Die Funktion der Klasse
"java.util.UUID" ist, einen unveränderlichen "Universally-Unique-Identifier" (UUID) zu
generieren. Ein UUID beschreibt einen 128-Bit-Wert. Dann wird dieses Element in dem
XmlElementsModel-Objekt gespeichert. Darüber hinaus muss man die Methode
"artifactTemplatePropertiesImpl" zur Generierung seines Kindelements Properties und die
Methode "artifactReferencesImpl" zur Erzeugung seines anderen Kindelements
ArtifactReferences aufrufen. Schließlich wird zur Implementierung der Kindelemente
ImplementationArtifact des Elements NodeTypeImplementation noch eine Methode
"implementationArtifactImpl" aufgerufen.

4.4.2.84.4.2.84.4.2.84.4.2.8 MethodeMethodeMethodeMethode """"nodeTypeImplnodeTypeImplnodeTypeImplnodeTypeImpl""""
In dieser Methode werden das Element NodeType und seine Attribute generiert. Einer der
Parameter der Methode besitzt den Namen "flag" und er ist vom Typ "Boolean". Wenn
"flag" wahr ist, gibt es in der TOSCA-CSAR-Datei ein Node-Type-Properties-Dokument.
Dazu muss die Methode "nodeTypePropertiesDefinitionImpl" aufgerufen werden, um sein
Kindelement PropertiesDefinition zu erzeugen. Außerdem muss zum Generieren seines
Kindelements Interfaces die Methode "interfacesImpl" aufgerufen werden. Schließlich

34

wird die Methode "nodeTypeImplementationImpl" aufgerufen, um das Element
NodeTypeImplementation zu erzeugen.

4.4.2.94.4.2.94.4.2.94.4.2.9 MethodeMethodeMethodeMethode """"nodeTypeImplementationImplnodeTypeImplementationImplnodeTypeImplementationImplnodeTypeImplementationImpl""""
In dieser Methode werden das Element NodeTypeImplementation und seine Attribute
generiert. Einer der Parameter dieser Methode besitzt den Namen "platform". Wenn der
Parameter "platform" nicht NULL ist, bedeutet das, dass eine bestimmte Umgebung, von
der das Element NodeTypeImplementation abhängt, angegeben ist. In diesem Fall wird die
Methode "requiredContainerFeaturesImpl" aufgerufen, um das Kindelement
requiredContainerFeatures zu erstellen. Schließlich wird zum Generieren des
Kindelements ImplementationArtifacts die Methode "implementationArtifactsImpl"
aufgerufen.

4.4.34.4.34.4.34.4.3 KlasseKlasseKlasseKlasse """"XXXXmlmlmlmlGeneratorGeneratorGeneratorGenerator""""
Die Funktion dieser Klasse ist, durch ein XmlElementsModel-Objekt das endgültige XML-
Dokument, nämlich das TOSCA-Definitions-Dokument zu erzeugen. Das TOSCA-
Definitions-Dokument enthält alle durch die Methode "elementsImpl" der Klasse
"XmlElementsImpl" generierten Elemente. Zuerst wird in dem Konstruktor ein
XmlElementsModel-Objekt empfangen, in dem alle Elemente gespeichert ist. Außerdem
wird auch eine Methode "generator" definiert, um ein XML-Dokument zu generieren.

4.4.3.14.4.3.14.4.3.14.4.3.1 MethodeMethodeMethodeMethode """"generatorgeneratorgeneratorgenerator""""
Die Funktion dieser Methode ist, durch die Methode "createDocument" der Klasse
"org.dom4j.DocumentHelper" ein XML-Dokument zu erstellen. Dabei müssen das Root-
Element und seine Kindelemente zu diesem Dokument hinzugefügt werden. Die Methode
"generator" benötigt einen Eingabeparameter "output", der zeigt, wo das generierte XML-
Dokument ausgegeben werden sollte.

4.4.44.4.44.4.44.4.4 KlasseKlasseKlasseKlasse """"XsdElementsModelXsdElementsModelXsdElementsModelXsdElementsModel""""
Die Funktion dieser Klasse ist, die Elemente "root", "xs:complexType", "xs:sequence" und
"xs:element" in einem XSD-Datei zu speichern. Diese Elemente werden als private
Eigenschaften definiert und können durch Setter- und Getter-Methoden zugewiesen und
erhalten werden.

4.4.54.4.54.4.54.4.5 KlasseKlasseKlasseKlasse """"XsdElementsImplXsdElementsImplXsdElementsImplXsdElementsImpl""""
Die Funktion dieser Klasse ist im Allgemeinen, durch die Inhalte in einer "config.yaml"
Datei die entsprechenden Elemente für ein Node-Type-Properties-Dokument (ein XSD-
Dokument) zu generieren. Das heißt, durch das Lesen eines YamlModelList-Objekts ein
XsdElementsModel-Objekt zu erzeugen. Am Anfang wird ein privates Objekt der Klasse
"XsdElementsModel" in dem Konstruktor instanziiert, das zum Speichern von Elementen
dient. Außerdem werden noch eine Klasse "ConfigModel" zum Speichern der Optionen in
einer "config.yaml" Datei definiert. Durch das Aufrufen der Methode "elementsImpl"
werden alle Elemente in dem Node-Type-Properties-Dokument implementiert. Für die
Elementen "root", "xs:complexType", "xs:sequence" und "xs:element" werden die
entsprechenden Methoden "rootImpl", "complexTypeImpl", "sequenceImpl" und
"elementImpl" definiert.

35

4.4.5.14.4.5.14.4.5.14.4.5.1 KlasseKlasseKlasseKlasse "ConfigModel""ConfigModel""ConfigModel""ConfigModel"
Die Funktion der Klasse ist, die Optionen in einer "config.yaml" Datei zu speichern. Jede
Option mit einem eigenen Optionsnamen besteht aus drei Teilen: "default", "type" und
"description". Jeder Teil bezieht sich auf ein YamlModel-Objekt. Durch das Lesen eines
YamlModelList-Objekts für eine "config.yaml" Datei wird jede Option als ein
ConfigModel-Objekt gespeichert. In Abbildung 4.2 wird gezeigt, wie jede Option in der
"config.yaml" Datei als ein ConfigModel-Objekt gespeichert wird. Dazu definiert man in
der Klasse "ConfigModel" vier private Eigenschaften vom Typ "String": "optionname",
"default", "type" und "description".

AbbildungAbbildungAbbildungAbbildung 4.4.4.4.2222:::: Das Speichern von Informationen in einer "config.yaml" Datei

4.4.5.24.4.5.24.4.5.24.4.5.2 MethodeMethodeMethodeMethode """"elementsImplelementsImplelementsImplelementsImpl""""
Die Funktion dieser Methode ist, durch ein YamlModelList-Objekt alle YamlModel-
Objekte zu bekommen und die entsprechenden Elemente zu generieren. Die Methode
benötigt zwei Eingabeparameter: "name" und "yml".Der Parameter "name" beschreibt den
Namen des Service und wird als Paramter an die Methoden "rootImpl" und
"complexTypeImpl" weitergegeben. Der Parameter "yml" ist ein Objekt der Klasse
"YamlModelList". Durch das YamlModelList-Objekt kann man für jede Option ein
ConfigModel-Objekt erzeugen, das als ein Parameter auf die Methode "elementImpl"

36

übertragen wird. Als Ausgabe liefert diese Methode ein XsdElementsModel-Objekt, in
dem alle generierten Elemente gespeichert werden.

4.4.64.4.64.4.64.4.6 KlasseKlasseKlasseKlasse """"XXXXsdsdsdsdGeneratorGeneratorGeneratorGenerator""""
Die Funktion dieser Klasse ist, durch die oben generierten Elemente das endgültige XSD-
Dokument zu erzeugen. Als Erstes wird in dem Konstruktor ein XsdElementsModel-
Objekt empfangen, in dem alle Elemente für das XSD-Dokument gespeichert sind. Dann
wird die Methode "generator" zum Generieren des XSD-Dokument definiert.

4.4.6.14.4.6.14.4.6.14.4.6.1 MethodeMethodeMethodeMethode """"generatorgeneratorgeneratorgenerator""""
Die Funktion dieser Methode ist, ein XSD-Dokument zu erstellen, das Root-Element und
seine Kindelemente zu diesem Dokument hinzuzufügen und schließlich das Dokument
auszugeben. Die Implementierung dieser Methode ist ähnlich wie die Methode der Klasse
"XmlGenerator".

37

5555 ZusammenfassungZusammenfassungZusammenfassungZusammenfassung undundundund AusblickAusblickAusblickAusblick

In dieser Studienarbeit wurde gezeigt, wie eine automatische Prozedur entwickelt werden
kann, mit der Artefakte, die von der Juju-Community als „Charms“ veröffentlicht wurden,
zu TOSCA-Node-Types konvertiert werden können. Node-Types gehören zu den
wichtigsten Bausteinen in TOSCA um Service-Templates und damit Vorlagen für Cloud-
Services zu erstellen.

In Kapitel 3.2 wurden die hinter der Prozedur stehenden Konzepte erläutert und es wurde
beschrieben, aus welchen Funktionseinheiten die Prozedur besteht. Dabei wurden sowohl
der Ablauf der Prozedur sowie die Interaktion ihrer Komponenten mittels eines
Sequenzdiagramms in Abbildung 3.3 dargestellt. In Kapitel 4 wurde die Implementierung
der wichtigsten Methoden und Klassen der Prozedur besprochen. Besonders ausführlich
wurden die Methoden zum Generieren der Elemente des TOSCA-Defnitions-Dokument in
Kapitel 4.4.2 beschrieben.

In Abbildung 2.6 wurde gezeigt, dass Topology-Templates und Pläne die zentralen
Elemente eines Service-Template sind. Ein Topology-Template besteht aus Node-
Templates und Relationship-Templates. Diese Arbeit beschäftigte sich ausschließlich mit
der Generierung von Node-Types, die den Typ eines oder mehrerer Node-Templates
definieren. Eine Möglichkeit für zukünftige Arbeiten ist die Erzeugung von
entsprechenden Relationship-Types, die den Typ eines oder mehrerer Relationship-
Templates definieren. Außerdem sollte untersucht werden, wie die hier beschriebene
Prozedur auf weitere ähnliche Werkzeuge und Artefakte übertragen werden kann. Ein
möglicher, im Umfeld des Cloud Computing ebenfalls etablierter Kandidat wäre bspw.
Chef [2].

38

LiteraturverzeichnisLiteraturverzeichnisLiteraturverzeichnisLiteraturverzeichnis

Alle Weblinks wurden das letzte Mal am 22.04.2013 geprüft.

[1] Canonical Juju: https://juju.ubuntu.com

[2] Opscode Chef: http://www.opscode.com/chef

[3] TOSCA Committee: http://www.tosca-open.org

[4] Juju-Community: https://juju.ubuntu.com/community/

[5] Juju Documentation: Charms, https://juju.ubuntu.com/docs/charm.html

[6] Juju Documentation: Writing a Charm, https://juju.ubuntu.com/docs/write-charm.html

[7] Juju Documentation: Service Configuration, https://juju.ubuntu.com/docs/service-
config.html

[8] Mell, Grance: The NIST Definition of Cloud Computing National Institute of
Standards and Technology, NIST, 2011

[9] Baun, Kunze, Nimis, Tai: Cloud Computing - Web-basierte dynamische IT-Services, 2.
Aufl. ed., Heidelberg, Dordrecht, London, New York: Springer-Verlag, 2011.

[10] Binz, Breiter, Leymann, Spatzier: Portable Cloud Services Using TOSCA. In: Internet
Computing, IEEE, IEEE, 2012, 16, 80-85

[11] Topology and Orchestration Specification for Cloud Applications (TOSCA) Version
1.0: http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd05/TOSCA-v1.0-
csd05.html

[12] Business Process Model and Notation (BPMN) Version 2.0, Object Management
Group specification, Jan. 2011.

[13] Web Services Business Process Execution Language (BPEL) Version 2.0., OASIS
specification, 2007.

[14] W3C. Web Services Description Language (WSDL) 1.1. [Online] March 15, 2001.
http://www.w3.org/TR/wsdl.

[15] Kopp, Binz, Breitenbücher, Leymann: BPMN4TOSCA: A Domain-Specific
Language to Model Management Plans for Composite Applications. In:
Mendling, Jan (Hrsg); Weidlich, Matthias (Hrsg): 4th International Workshop
on the Business Process Model and Notation, 2012.

39

[16] Leymann, Fehling, Mietzner, Nowak, Dustdar: Moving Applications to the Cloud: An
Approach based on Application Model Enrichment. In: International Journal of
Cooperative Information Systems (IJCIS). Vol. 20(3), World Scientific, 2011.

[17] Java SE 6 Documentation: http://docs.oracle.com/javase/6/docs/

[18] Snakeyaml: http://code.google.com/p/snakeyaml/

[19] Dom4j: http://dom4j.sourceforge.net/

[20] Booch, Rumbaugh, Jacobson: Unified Modeling Language User Guide, Second
Edition; Addison-Wesley Professional;

[21] Horstmann, Cornell: Core Java, Volume I--Fundamentals (8th Edition).

[22] Java SE 6 Documentation: Package java.util,
http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html

[23] Wettinger, Behrendt, Binz, Breitenbücher, Breiter, Leymann, Moser, Schwertle,
Spatzier: Integrating Configuration Management with Model-Driven Cloud
Management Based on TOSCA. In: Proceedings of the 3rd International
Conference on Cloud Computing and Services Science (CLOSER), 2013

[24] Java SE 6 Documentation: Package java.util.zip,
http://docs.oracle.com/javase/6/docs/api/java/util/zip/package-summary.html

[25] Java SE 6 Documentation: Package java.io,
http://docs.oracle.com/javase/6/docs/api/java/io/package-summary.html

[26] Dom4j 1.6.1 API: Package org.dom4j, http://dom4j.sourceforge.net/dom4j-
1.6.1/apidocs/

[27] SnakeYAML Documentation: Loading YAML,
http://code.google.com/p/snakeyaml/wiki/Documentation#Loading_YAML

[28] YAML: http://www.yaml.org/

[29] Drupal: http://drupal.org

40

ErklErklErklErkläääärungrungrungrung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen
Quellen benutzt zu haben. Wörtliche und sinngemäße Übernahmen aus anderen Quellen
habe ich nach bestem Wissen und Gewissen als solche kenntlich gemacht.

Stuttgart, den 25. April 2013 _____________________

	Einleitung
	Einführung
	Aufgabenstellung
	StrukturderArbeit

	Grundlagen
	Juju
	JujuCharm
	DasVerzeichnis"hooks"
	DieDatei"metadata.yaml"
	DieDatei"config.yaml"

	TopologyandOrchestrationSpecificationforCloud
	TOSCA-Kernbegriffe
	TOSCACloudServiceArchive(CSAR)
	TOSCA-DefinitionsDokument
	Definitions
	Import
	RequirementTypes
	CapabilityTypes
	ArtifactTypes
	ArtifactTemplates
	NodeTypes
	NodeTypeImplementations

	Entwurf
	AnalysederProzedur
	KonzeptderProzedur
	EntwurfderzuimplementierendenPakete
	TOSCA-CSAR-Generator
	ZIP-File-Handler
	Juju-Yaml-Reader
	TOSCA-XML-Generator

	VerwendetesJava-PaketundSoftwarevonDrittanbie
	JDK
	SnakeYaml
	Dom4j

	KomplettesSequenzdiagramm

	Implementierung
	ImplementirungdesPakets"org.tosca"
	Klasse"CharmToNodeType"
	Methode"main"
	Klasse"Transform"

	ImplementierungdesPakets"org.tosca.zip"
	Klasse"FileModel"
	Klasse"FileModelList"
	Methode"format"

	Klasse"ZipUtil"
	Methode"getAllFilenames"
	Methode"getFileFromZip"
	Methode"format"
	Methode"addFileToZip"

	ImplementierungdesPakets"org.tosca.yaml"
	Klasse"YamlModel"
	Klasse"YamlModelList"
	Klasse"YamlReader"
	Methode"readYamlFile"
	Methode"read"

	ImplementierungdesPakets"org.tosca.xml"
	Klasse"XmlElementsModel"
	Klasse"XmlElementsImpl"
	Methode"elementsImpl"
	Methode"rootImpl"
	Methode"importImpl"
	Methode"requirementTypeImpl"
	Methode"capabilityTypeImpl"
	Methode"artifactTypeImpl"
	Methode"artifactTemplateImpl"
	Methode"nodeTypeImpl"
	Methode"nodeTypeImplementationImpl"

	Klasse"XmlGenerator"
	Methode"generator"

	Klasse"XsdElementsModel"
	Klasse"XsdElementsImpl"
	Klasse"ConfigModel"
	Methode"elementsImpl"

	Klasse"XsdGenerator"
	Methode"generator"

	ZusammenfassungundAusblick

