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3 Einleitung 
In der Entwicklung der Programmiersprachen haben sich unterschiedliche Ideen über Programme und 
ihre verwendeten Stile entwickelt. Gewisse Stile und Konzepte werden zu grundlegenderen und 
größeren Programmierparadigmen zusammengefasst. Von den heute verwendeten Paradigmen sind 
das prozedurale, das funktionale und das objektorientierte Programmierparadigma die am weitesten 
verbreiteten. 

Bei aktuellen Programmiersprachen gibt es den Trend, mehrere der Programmierparadigmen zu 
bündeln, so unterstützt beispielsweise C++ unter anderem die funktionale, imperative, 
objektorientierte, prozedurale, strukturierte und generische Programmierung. Der Compiler, und auch 
die Laufzeitumgebung müssen alle Konzepte dieser Paradigmen verstehen und unterstützen. Dies 
betrifft auch virtuelle Bytecode-Maschinen, wie die Java Virtual Machine, die mit Java eine 
objektorientierte und mit Clojure eine funktionale Programmiersprache unterstützt. 

Diese Studienarbeit geht der Frage nach, inwiefern diese unterschiedlichen Konzepte mit einem 
Compiler1 automatisiert ineinander überführt werden können, am Beispiel einer Kompilierung von der 
funktionalen Programmiersprache Haskell in das hauptsächlich objektorientierte Ruby. Auch wenn 
Ruby funktionale Programmierung unterstützt, werden für einige Haskell-Eigenschaften aufwändigere 
Transformationen benötigt. 

Um diese Gemeinsamkeiten und Unterschiede zu finden werden zunächst von allen involvierten 
Programmiersprachen Metamodelle im für diese Studienarbeit vorgegebenen Umfang erstellt und 
dann aufeinander abgebildet. Anschließend wird auf einige Implementierungsdetails von dem im Zuge 
dieser Studienarbeit erstellten Compilers Haru2 eingegangen. 

Einige Notationen werden direkt aus der Sprache des GHC übernommen, um den Bruch beim 
Wechsel der Bezeichnungen möglichst gering zu halten: 

• Identifier: ein Bezeichner, im Grunde ein Name mit einigen angehängten Daten. 
• Applikation: eine Funktionsanwendung, ein Funktionsaufruf. 
• Lambda: eine anonyme Funktion, also eine Funktion ohne Bezeichner. 

4 Grundlagen 
Bevor die Transformation und deren praktische Umsetzung in einem Programm genauer beschrieben 
werden, müssen Details zu den verwendeten Ansätzen, Sprachen und Technologien eingeführt 
werden. 

4.1 Sprachkonzepte und Paradigmen3 
Programmiersprachen entstehen als eine Sammlung von Konzepten, die entweder bereits bekannt und 
erforscht sind, oder durch die Programmiersprache geprägt werden sollen. Diese Konzepte 

                                                        
1 Compiler zwischen zwei (Hoch-) Sprachen werden auch „Transcompiler“ genannt. Im Zuge dieser Arbeit werden diese 
Programme jedoch auch vereinfacht als „Compiler“ bezeichnet. 
2 Haru aus „Haskell to Ruby“ 
3 Nach [10] 
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beeinflussen das Ausführungsmodell und die Elemente innerhalb der Sprache. Sie beschreiben 
statische und dynamische Eigenschaften von Programmiersprachen, beispielsweise über den 
Kontrollfluss, Variablen oder Objekte. Die Menge dieser Eigenschaften charakterisiert eine 
Programmiersprache zusätzlich zu möglichen syntaktischen Neuerungen beziehungsweise 
Änderungen. 

Ein Programmierparadigma stellt eine Art Programmierstil da, der aus einer Menge von 
Sprachkonzepten definiert ist. Die einzelnen Programmierparadigmen sind allerdings nicht disjunkt 
definiert, so gibt es viele Programmiersprachen, die mehrere Programmiersprachen unterstützen, wie 
C++ (siehe unten) oder auch Ruby (unter anderem imperativ, objektorientiert, prozedural, funktional, 
nebenläufig). 

Eine der wichtigsten Unterscheidungen innerhalb der Programmierparadigmen ist zwischen der 
deklarativen und imperativen Programmierung. 

 

Abbildung 1: Übersicht über die Klassifizierung der Programmierparadigmen mit Beispielsprachen4 

Bei der imperativen Programmierung besteht ein Programm aus einer Folge von Anweisungen, die 
sequenziell vom Computer abgearbeitet werden. Im Quellcode wird hierbei einerseits festgelegt, was 
in welcher Reihenfolge abzuarbeiten ist, andererseits werden Kontrollstrukturen (Sprünge, Schleifen, 
Verzweigung) bereit gestellt, die den Programmfluss steuern. Die imperative Programmierung ist das 
am längsten bekannte Programmierparadigma, sie ist nah angelegt an die tatsächliche Arbeitsweise 
eines Computers der Von-Neumann-Architektur. Bei der imperativen Programmierung wird also eine 
Art Handlungsanweisung für den Computer beschrieben, der diese Schritt für Schritt abarbeitet. Die 
prozedurale Programmierung ist ein wichtige Unterkategorie der imperativen Programmierung. 

Im Gegensatz zum imperativen Ansatz wird bei der deklarativen Programmierung durch den 
Programmierer das Ziel der Berechnung angegeben, anstelle der klaren Berechnungsvorschrift. Die 
Vorteile sind ein höherer Abstraktionsgrad und dadurch eine größere Kompaktheit der Programme. 
Ein weiterer wichtiger Aspekt funktionaler Programme ist die Seiteneffektfreiheit. Sie ermöglicht 
partielle Auswertung5 und einfachere Korrektheitsbeweise für Programme. 

Ein Beispiel für die größere Inhaltsdichte pro Zeichen, aber auch die dadurch höhere Komplexität gibt 
folgendes Code-Beispiel. Auch wird deutlich, wie in der imperativen Sprache der Algorithmus 

                                                        
4 Aus [14], Seite 8 
5 Insbesondere die parallele Auswertung wird deutlich vereinfacht. 
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schrittweise beschrieben wird, während in der funktionalen Programmierung schlicht die 
Berechnungsvorschrift deklariert wird. Zunächst eine imperative Implementierung von Quicksort in 
Pascal6: 

Quicksort in Pascal 

Das Programm funktional in Haskell: 

Quicksort in Haskell 

4.1.1 Imperatives Programmierparadigma 
Auch wenn Ruby als Zielsprache eigentlich rein objektorientiert ist, erlaubt die Sprache es trotzdem, 
imperativen Code zu schreiben. Da der von Haru erzeugte Quellcode fast keinen direkten Nutzen aus 
der Objektorientierung zieht und der imperative Ansatz außerdem die Grundlage des 
objektorientierten Programmierparadigmas ist, soll hier zunächst das imperative 
Programmierparadigma erklärt werden.  

Der Computer in der Von-Neumann-Architektur ist ein Objekt der Realität, somit unterliegt es 
zeitlicher Veränderung. Außerdem funktioniert der Computer als „Rechner“, er verwandelt Eingabe- 
in Ausgabedaten. Dafür verwendet er Objekte, die einen Namen, einen Speicherplatz und einen Wert 
besitzen. 

Imperative Sprachen bilden dieses Konzept unterschiedlich genau auf ihre Sprachkonzepte ab. Ein 
imperatives Programm verwandelt einen Zustand in einen neuen Zustand, die Durchführung stellt also 
eine Reihe an Zustandsübergängen dar. Das Programm ist ein „Prozess über Zeit“7, der Gesamtzustand 
des Systems wird durch die Menge aller existierenden Variablen zu einem bestimmten Zeitpunkt 

                                                        
6 Der Quellcode der Pascal- und der Haskell-Implementierung ist von [15]. 
7 Nach [13] 

procedure quicksort(l,r : integer); 
 var x,i,j,tmp : integer; 
 begin 
   if r>l then 
   begin 
     x:=a[l]; i:=l; j:=r+1; 
     repeat 
       repeat  i:=i+1 until a[i]>=x; 
       repeat  j:=j-1 until a[j]<=x; 
       tmp:=a[j]; a[j]:=a[i]; a[i]:=tmp; 
     until j<=i; 
     tmp:=a[j]; a[j]:=a[l]; a[l]:=tmp; 
     quicksort(l,j-1); 
     quicksort(j+1,r) 
   end 
 end; 

quicksort [] = [] 
quicksort (x:xs) =  
    quicksort [n | n<-xs, n<x] ++ [x] ++ quicksort [n | n<-xs, n>=x]  
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dargestellt. Die vom Von-Neumann-Rechner verwendeten Objekte für die Berechnung entsprechen 
genau den Variablen der Programmiersprache. Diese können über den Verlauf des Programms 
unterschiedliche Werte annehmen. 

Am besten dargestellt wird diese zeitliche Abhängigkeit der Variablen durch folgende Formel: 

Code-Beispiel zur Verdeutlichung des imperativen Ansatzes 

Das imperative Modell hat jedoch auch viele Probleme, die in anderen Paradigmen gelöst sind 
beziehungsweise konstruktionsbedingt nicht auftreten können: 

• Aliasing: ein Speicherplatz kann mehrere Namen besitzen. 
• Mehrdeutigkeit der Namen: ein Name kann einen Wert referenzieren (in Ausdrücken), eine 

Adresse (in einer Zuweisung) oder einen Zeiger auf eine andere Variable (Pointer). 

Die Folge der Probleme ist, dass Werte von Variablen für Entwickler nicht offensichtlich geändert 
werden können, sie also von den erwarteten Werten abweichen. Dies kann zu versteckten Problemen 
führen, die oftmals eine lange Suche erfordern und das Programmverständnis erheblich einschränken. 
Außerdem produzieren Seiteneffekte versteckte Abhängigkeiten: ein unsichtbarer externer Zustand 
wird zu einer zusätzlichen Eingabegröße für Funktionen. Dies kann beispielsweise dafür sorgen, dass 
ein Unit-Test von bestimmten Funktionen nur in einer bestimmten Reihenfolge funktioniert, da der 
externe Zustand manipuliert und gelesen wird. Dieses Problem erbt die Objektorientierung, da sie auf 
diesem Konzept aufbaut, es jedoch nicht verändert. 

4.1.2 Objektorientiertes Programmierparadigma 
Während in der imperativen und insbesondere prozeduralen Programmierung das Hauptaugenmerk auf 
den Algorithmen und nicht auf den zu verarbeitenden Daten liegt, entfernt sich die Objektorientierung 
von dieser Ansicht. Sie bündelt Daten und ihre verarbeitenden Funktionen (in diesem Kontext heißen 
die Funktionen „Methoden„) in ein Objekt, mit dem als Einheit im System interagiert wird. 

Es ist damit eine Abbildung der Realität, die ebenfalls aus interagierenden realen und imaginären 
Objekten besteht. Berechnungen sind in dieser Sicht Interaktionen der Objekte untereinander. 

Auch werden Programme, die kein fest definiertes Ende haben, in der Objektorientierung erst 
konzeptionell sinnvoll8. In einer Datenbank etwa überdauern die Daten die Algorithmen oder in einem 
Betriebssystem gibt es keine Eingabedaten im eigentlichen Sinne. 

Das objektorientierte Programmierparadigma ist aus der Sichtweise entstanden, dass die Welt aus 
einer Menge von Objekten aufgebaut ist und Berechnungen in einem Computer im Grunde nur 
Transformationen realer und imaginärer Objekte zu Objekten im Computerprogramm sind. 

Diese Ansicht, zusammen mit abstrakten Datentypen und Datenkapselung sind die grundlegenden 
Konzepte in den objektorientierten Sprachen. Datenkapselung bedeutet, dass nicht direkt auf alle 
Daten zugegriffen werden kann, sondern dies über fest definierte Schnittstellen geschehen muss. 

                                                        
8 Dies bedeutet nicht, dass man Betriebssysteme nicht prozedural programmieren könnte, sondern vielmehr, dass es 
ausgehend von den Annahmen des Programmierparadigmen konzeptuelle Fragen aufwirft. 

x := x + 1 
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Durch die Konzepte der dynamischen Bindung und der Vererbung wird das objektorientierte Modell 
noch erweitert. Die Vererbung ermöglicht eine Klassifikation der Objekte des Systems in Überklassen 
und Spezialisierungen davon. Dies erzeugt eine hierarchische Ordnung der Objekte, die der vom 
Menschen intuitiv durchgeführten hierarchischen Ordnung der realen Welt nahe kommt. 

 

Abbildung 2: Beispiel-Klassenhierarchie9 

Diese Klassenstruktur stellt direkt ein Modell des Programms dar. Die Programmkonstrukte mit 
Klassen und Objekten stellen dort das Metamodell dar (siehe 4.2). 

Die meisten der objektorientierten Sprachen sind aus einer Erweiterung einer imperativen Sprache 
entstanden, nicht so Ruby, das stark an Smalltalk angelehnt ist. In einer solch reinen Sprache 
existieren einige nicht-intuitive Konzepte, so sind beispielsweise Zahlen auch Objekte: 

Das Literal 5 ist ein Objekt der Klasse Fixnum.  

4.1.3 Funktionales Programmierparadigma 
Während der Funktionsbegriff in den imperativen Sprachen unter Umständen weit von der 
ursprünglichen mathematischen Definition abweicht, ist er in der funktionalen Programmierung direkt 
aus der Mathematik umgesetzt. Er ist daher speicherlos und zeitlos. Aus diesen Eigenschaften 
resultieren wichtige Eigenschaften: 

• Keine Seiteneffekte: wie in der Mathematik hängt das Ergebnis einer Funktion nur von ihrer 
Eingabe ab, es gibt keinen (für den Entwickler) unsichtbaren Zustand. 

• Variablen beschreiben Werte, keine Speicherplätze. Einmal gebunden, kann eine Variable 
keinen anderen Wert mehr annehmen. Formal existieren in formalen Sprachen keine 
Variablen, sondern es sind konstante Funktionen ohne Argument. Daher kann es auch keine 

                                                        
9 Aus [14], Seite 11 

irb(main):001:0> 5.class 
=> Fixnum 
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zeitlichen Abfolgen geben. Durch die Seiteneffektfreiheit kann ein Ausdruck in beliebiger 
Reihenfolge ausgewertet werden10. 

Trotz der augenscheinlichen Einschränkungen durch den fehlenden Zustand innerhalb des Programms 
ist die Sprache dadurch nicht weniger mächtig, dies hat das Fachgebiet der Komplexitätstheorie 
bewiesen. Doch das funktionale Paradigma hat nicht nur Einschränkungen, sondern auch 
Erweiterungen im Vergleich zur imperativen Programmierung: Funktionen höherer Ordnung und Lazy 
Evaluation. 

Lazy Evaluation bedeutet, dass Ausdrücke erst dann ausgewertet werden, wenn tatsächlich ihr genaues 
Ergebnis erfragt wird. Bis zu diesem Punkt werden die Ausdrücke nur soweit ausgewertet, dass die 
Berechnung fortfahren kann. Dadurch werden unter Umständen kostspielige Berechnungen vermieden 
beziehungsweise überhaupt erst ermöglicht – zum Beispiel mit unendlichen Listen. 

Lazy Evaluation kann auch ein Problem bereiten: da der gesamte Berechnungsbaum („Thunk“) im Speicher bleiben 
muss, kann es bei großen Berechnungen zu Speicherproblemen kommen („Space Leaks“). Aus diesem Grund bieten 
funktionale Sprachen oft auch explizit strikte Evaluation für bestimmte Funktionen an (oder man kann sie selbst 
definieren).11 

Funktionen höherer Ordnung beschreiben die Ansicht, dass Funktionen im Grunde auch nur Daten 
sind und dadurch auch als solche durch das Programm gereicht werden können. So können Funktionen 
als Parameter in andere Funktionen gereicht werden oder als Ergebnis von Funktionsaufrufen 
zurückgegeben werden. 

Dieses Prinzip wird noch erweitert durch Currying, das es erlaubt, einzelne Parameter von Funktionen 
zu binden. Als Beispiel sei eine Potenzfunktion genannt. 

Parametrisierte Potenzfunktion in Haskell 

Wenn diese nur mit einem Argument, einer „2“ aufgerufen wird, erhält man keinen Fehler, sondern als 
Rückgabewert eine neue Funktion, die nur noch ein Argument fordert und die Quadratzahlen 
berechnet. 

Durch die Funktionen höherer Ordnung und Currying ist es in der funktionalen Programmierung 
möglich, durch wenige Funktionen bereits eine sehr mächtige Berechnungsumgebung zu schaffen, in 
der mit wenig Zeilen Code aufwändige Algorithmen definiert werden können (vergleiche 4.1). 

                                                        
10 Oder durch partielle Auswertung oder Lazy Evaluation sogar gar nicht ausgewertet. 
11 Eine genauere Ausführung findet sich im Wiki von Haskell: http://www.haskell.org/haskellwiki/Foldr_Foldl_Foldl' 

-- Bei einer naiven Implementierung von foldr kann es schnell zu  
-- Space Leaks kommen. Der gesamte Berechnungsbaum wird im Speicher gehalten. 
 
foldr f z []     = z 
foldr f z (x:xs) = x `f` foldr f z xs 
 
foldr (+) 0 [1..100000000] 
-- *** Exception: stack overflow 

power_function n x = x ** n 
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4.2 Modelle und Metamodelle12 
 Modell 
Ein Modell13 ist gekennzeichnet durch drei wesentliche Merkmale: Abbildungsmerkmal, 
Verkürzungsmerkmal und pragmatisches Merkmal. 

Ein Modell ist stets eine Abbildung eines Originals. Solche Objekte können beliebiger Natur sein, 
beispielsweise physische Objekte, als auch der Welt der Symbole, der Vorstellungen oder der 
Gedankenprozesse angehören. Das Verkürzungsmerkmal besagt, dass im Allgemeinen nicht alle 
Attribute, sondern nur solche, die als relevant erachtet werden (durch den Modellerschaffer oder den 
Modellbenutzer), abgebildet werden. Der Pragmatismus besagt, dass es nicht nur Modelle „von etwas“ 
sind, sondern auch Modelle für eine Zielgruppe, zu einem bestimmten Zeitpunkt und für einen 
bestimmten Zweck. 

 

Abbildung 3: Begriffsdefinition: Modellierung14 

Die zu analysierende Sprache entspricht der Domäne. Das zu erstellende Metamodell stellt eine 
Kombination aus der syntaktischen Beschreibung mit der statischen Semantik dar. 

 UML 
Modelle können auf unterschiedliche Arten dargestellt werden, eine weit verbreitete Art ist die 
grafische Darstellung mittels UML15. Dies ist eine standardisierte Beschreibungssprache, die 
Bezeichner für die bei einer Modellierung wichtigsten Begriffe definiert. UML spezifiziert eine Reihe 
von Diagrammtypen. Im Folgenden wird ausschließlich das Klassenmodell verwendet. Dieses Modell 
spezifiziert Klassen16, Schnittstellen und deren Beziehungen. In dieser Arbeit wird eine begrenzte 
Menge der Objekte aus dem UML Klassendiagramm verwendet, die im Folgenden kurz erläutert 
werden. 
                                                        
12 Nach [3] 
13 Nach [11] 
14 Aus [3], Seite 28 
15 UML wird hier nur grundlegend erläutert, für Details wird auf die Spezifikation verwiesen: 
http://www.omg.org/spec/UML/ 
16 Der Begriff Klasse ist hier als abstrakter Begriff zu sehen, nicht als eine Klasse aus der Objektorientierung. 
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 Klasse 

 

Eine Klasse stellt einen Typ dar. Sie kann eine oder mehrere Klassen spezialisieren, sowie 
Assoziationen und Abhängigkeiten zu Klassen besitzen. Die eigentlichen Details, die bei einer Klasse 
zusätzlich angegeben werden können, werden hier nicht verwendet, da sie für die Darstellung in dieser 
Arbeit nicht relevant sind. Eine Klasse kann abstrakt sein, dies bedeutet sie dient nur als Überklasse, 
sie kann nicht direkt instanziert werden. Eine abstrakte Klasse wird mit dem Kennwort „abstract“ 
gekennzeichnet. 

 Generalisierung 

 

Eine Generalisierung ist eine gerichtete Beziehung zwischen zwei Klassen. Die spezialisierte Klasse 
ist auch Instanz der generalisierten Klassen (in diesem Beispiel ist links die Unterklasse). 

 Assoziation 

 

Eine Assoziation stellt eine Beziehung zwischen Klassen dar, die mit Multiplizitäten annotiert wird. 
Diese geben an, wie viele Objekte in Relation stehen. Typische Werte sind „1“, „0..1“ maximal eins, 
„*“ beliebig viele und „1..*“ mindestens eins. 

 Aggregation und Komposition 

  

Die Aggregation stellt eine Beziehung zwischen Objekten und seinen Teilen dar. 

 

Klasse
{abstract}

1 1
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Eine Komposition ist ein Spezialfall der Aggregation und stellt eine Existenzabhängigkeit dar17. 

 Metamodell 
Ein Metamodell wiederum beschreibt nun seinerseits bestimmte Aspekte eines Modells. Die Begriffe 
sind zunächst rein relativ zu sehen. Ein Metamodell, das ein Modell hat, kann wiederum ein 
Metamodell besitzen. Dieses liegt dann in Relation zum eigentlichen Modell auf der 
Metametamodellebene. 

Diese Meta-Beziehungen wiederholen sich allerdings nicht endlos, die vierte Ebene (in Abbildung 4: 
Ebenen der OMG als M3 bezeichnet) ist selbstreferenziell. 

 

Abbildung 4: Ebenen der OMG18 

In der Softwareentwicklung wird mit Modellen von Programmen eine Abbildung der zu erstellenden 
Software erstellt. Die modellgetriebene Softwareentwicklung bietet die Möglichkeit ein UML-
Klassendiagramm so zu implementieren, dass eine Klasse des Metamodells einer Klasse des erzeugten 
Programms entspricht. Dies ist sinnvoll, wenn man aus den Modellen des Programms direkt Quellcode 
erzeugen will (und umgekehrt). Eine Variation dieses Ansatzes ist es, mithilfe eines Parsergenerators 
einen Parser für eine Sprache zu erzeugen. Dann entspricht die Grammatik mit ihren Regeln und 
Klassen des AST dem Metamodell. 

4.3 Sprachtransformationen 
Während diese Arbeit eine Sprachtransformation von einer Hochsprache zu einer anderen betrachtet, 
werden andere Sprachtransformationen deutlich häufiger eingesetzt. So ist ein typischer 
Kompiliervorgang eine Transformation von einer Sprache in (meist) Maschinencode – der ebenfalls 
eine Sprache darstellt. 

Durch den Ansatz, die Sprachtransformation über Metamodelle durchzuführen, handelt es sich eher 
um eine Modelltransformation. Die Transformation wird dabei selbst als eine Art seiteneffektfreies 
                                                        
17 Die Teile können nicht ohne das Ganze existieren. 
18 Aus [3], Seite 62 
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funktionales Programm gesehen, das die Bestandteile des einen Modells auf Teile des anderen 
Modells abbildet.  

 

Abbildung 5: Modelltransformation19 

Die Modelle sind Instanzen unterschiedlicher Metamodelle (in diesem Fall sind die Modelle die 
Sprachen und die Metamodelle entsprechen der Menge ihrer Paradigmen und Konzepte).  

Für diese Arbeit wird zunächst das Metamodell M der Ausgangssprache erstellt, anschließend das 
Metamodell K der Zielsprache erarbeitet und zum Abschluss werden die einzelnen 
Transformationsschritte erläutert. 

4.4 Eingesetzte Sprachen und Technologien 
Im Folgenden werden alle eingesetzten Technologien beschrieben, um die praktische 
Aufgabenstellung zu verdeutlichen. Hierbei werden allerdings nur diejenigen Aspekte beschrieben, die 
im Umfang der praktischen Arbeit berücksichtigt sind. 

4.4.1 Haskell  
Haskell ist eine rein funktionale Programmiersprache. Ende der 1980er Jahre sollte eine einheitliche, 
standardisierte und moderne funktionale Sprache entwickelt werden, die fortan als Grundlage für 
wissenschaftliche Arbeiten dienen sollte. 1990 erschien die erste Version 1.0 von Haskell, 1998 und 
zuletzt 2010 wurde die Sprachspezifikation aktualisiert20. 

Haskell ist statisch und stark typisiert. Statische Typisierung bedeutet, dass dem Compiler bereits zur 
Kompilierzeit alle Typen von allen Ausdrücken bekannt sind. Starke Typisierung bedeutet, dass ein 
Programm mit inkompatiblen Typen nicht kompilieren wird und Typen auch nicht automatisch 
umgewandelt werden. Damit diese starke Typisierung allerdings keinen Mehraufwand in den 
Deklarationen für den Entwickler darstellt, verwendet Haskell ein mächtiges Typinferenzsystem, das 
einen Großteil der Typen eines Programms automatisch erkennen und prüfen kann. So sind in einem 
normalen Programm wenig explizite Typdeklarationen notwendig. 

                                                        
19 Aus [3], Seite 200 
20 Diese Arbeit baut auf Haskell 2010 auf. 
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Automatische Typinferenz für Funktionen ohne explizite Typdeklaration (in GHCi)21. 

Als funktionale Sprache unterstützt Haskell das in 4.1.3 erwähnte Currying, Lazy Evaluation und die 
Seiteneffektfreiheit. Eine komplette Seiteneffektfreiheit ist allerdings oftmals sehr hinderlich: so 
können keine Dateien im Dateisystem gelesen oder geschrieben werden, es ist keine Interaktion mit 
Benutzern möglich und Datums- und Zufallsfunktionen sind auch nur sehr eingeschränkt verwendbar. 
Um diesem Umstand zu umgehen implementiert Haskell das Konzept der Monaden. Hierbei werden 
Typen in Monaden gekapselt, die damit eine Grenze für Seiteneffekte darstellen. Das Programm 
außerhalb verbleibt seiteneffektfrei, während innerhalb des Monaden Interaktion möglich ist. 
Monaden werden in dieser Arbeit eigentlich nicht behandelt, sie sollen aber aus Gründen der 
Vollständigkeit erwähnt werden. Hierzu definiert ein Monade typischerweise drei Schnittstellen: einen 
Konstruktor, eine Einheitsfunktion und einen sogenannten Bind-Operator, der Änderungen am 
innenliegenden Wert ermöglicht. 

Haskell erlaubt Typvariablen, so können typpolymorphe Funktionen geschrieben werden. Mit 
monomorphen Typen müsste es beispielsweise unterschiedliche Funktionen für die Längenberechnung 
einer String-Liste und einer Integer-Liste geben. Typpolymorphie ermöglicht hierbei den tatsächlichen 
Typ zu abstrahieren, da er für die Berechnung unbedeutend ist. 

Außerdem wird die Verwendung von algebraischen Datentypen in Haskell ermöglicht. Sie werden 
durch Typkonstruktoren definiert und dienen der Erzeugung von neuen, zusammengesetzten 
Datentypen. Sie stellen neben regulären Typ-Umbenennungen (Haru führt einen Typ „RubyFragment“ 
ein, der nur ein String mit einem anderen Namen ist) eine mächtige Möglichkeit dar, um geschachtelte 
Datenstrukturen wie Bäume zu erstellen. Konstruktoren ohne Argument erzeugen einen Enum-Typ. 
Dieses Konzept wird noch erweitert durch GADTs22, die die algebraischen Datentypen um 
parametrisierte Typen erweitern. 

Durch die im vorigen Kapitel erwähnte Bindung der Werte an Namen und die Darstellung der Werte 
als nullstellige Funktionen ist ein Aufruf von Funktionen und ein Zugriff auf (vermeintliche) 
Variablen transparent und Bedarf keiner besonderen Behandlung. 

4.4.2 Glasgow Haskell Compiler (GHC)23 
Der Glasgow Haskell Compiler (GHC), dessen erste Version 1992 im Zuge eines Forschungsprojektes 
entstand, diente in seiner bisher über 20 jährigen Geschichte als Forschungsprojekt für viele 
unterschiedliche Arbeiten im Compilerbau. Ein Ziel des GHC ist es, einen robusten und portablen 
Compiler zu entwickeln, der performanten Maschinencode erzeugt. Außerdem soll durch die modulare 
Struktur die Erweiterbarkeit des Compilers als großes Softwareprojekt gewährleistet werden. Und 

                                                        
21 Achtung: in GHCi ist die Bedeutung von „let“ bedeutend anders als in einem regulären Haskell-Programm. 
22 Generalized Algebraic Datatypes 
23 Nach [2], [7] und [8] 

Prelude> let fun x = x * 5 
Prelude> :t fun 
fun :: Num a => a -> a 
Prelude> let str x = x ++ ": " 
Prelude> :t str 
str :: [Char] -> [Char] 
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zuletzt soll der Compiler selbst als Forschungsobjekt dienen, um festzustellen, wie sich reale 
Programme verhalten – um anschließend bessere Compiler bauen und entwerfen zu können. 

Der GHC besteht aus unterschiedlichen Schritten, die in einer Pipeline abgearbeitet werden. Das 
Ergebnis eines Schrittes ist wiederum die Eingabe des darauffolgenden Schrittes. Da der erstellte 
Quellcode nah an dem Aufbau und der Programmierschnittstelle („API“) des GHC angelehnt ist, wird 
im Folgenden der strukturelle Aufbau und Ablauf einer Kompilierung erklärt. 

 

Abbildung 6: Die Compiler-Phasen des GHC 
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Die für Haru wesentlichen Phasen sind: 

• Der Parser liest die Eingabedatei ein und erstellt aus dem Eingabequellcode einen abstrakten 
Syntaxbaum (AST). 

• Der Renamer verbindet die einfachen Identifier-Strings im AST nun mit deren Bindings24 und 
fügt ein eindeutiges Suffix für die Namen hinzu, um Namensüberschneidungen zu vermeiden. 

• Im Typecheck wird die Typinferenz durchgeführt, die Typisierung validiert (Typprüfung) und 
die Namen werden durch eine Kombination aus Namen und Typ ersetzt. 

• Desugar konvertiert den Haskell AST in eine Darstellung in Core, der internen 
Zwischensprache. 

• Die Simplify-Phasen führen vielfältige Optimierungen durch wie Variable Floating25 oder 
Common Sub-Expression Elimination26. 

• CoreTidy bereinigt Bindings und benennt sie global eindeutig. 

Die ersten drei Schritte könnte man als das Frontend gruppieren, alle Eingabefehler werden dort 
entdeckt. Die nächsten drei Schritte bis einschließlich CoreTidy sind die Optimierungsphasen, danach 
beginnt das Backend. GHC verwendet eine Zwischensprache als Vorbereitung für die 
Codegenerierung namens STG27, aus der dann C-- Code generiert wird. 

Für diese Arbeit interessant sind insbesondere das Frontend und die Optimierungsphasen. Hier wird 
zunächst am Ende des Frontends die komplette Sprache Haskell in eine kleinere Sprache namens Core 
umgewandelt, die dann anschließend weiter optimiert wird. 

4.4.3 Core 
Core ist die interne Darstellungssprache des Programms. GHC hat hierfür viele Jahre System F 
verwendet. System F bezeichnet das Lambda-Kalkül nach Church und Kleene, mit der Erweiterung 
um polymorphe Typisierung. Dies ermöglicht die Arbeit mit schematisierten Funktionen. 

Mit monomorpher Typisierung müsste es mehrere Längen-Funktionen für Listen geben, 
beispielsweise eine Funktion für eine Liste von Strings und eine für eine Liste von Integer. Dies ist bei 
polymorpher Typisierung nicht notwendig, da der Typ der Funktion mit dem Listen-Typ 
parametrisiert werden kann. 

Doch dieses System hat sich bei der Implementierung von GADTs28 als unzureichend herausgestellt 
und wurde deswegen 2006 zu System FC29 erweitert. 

Der Grund intern eine zweite, vereinfachte Darstellung der Sprache zu verwenden ist, dass dadurch 
viele Schritte entfallen. Core und Haskell sind gleich mächtig, allerdings ist die Syntax und das 
Metamodell von Core signifikant kleiner. Optimierungen und Code-Generierung geschehen auf Basis 
von Core. Bei einer Spracherweiterung von Haskell wird nur das Frontend angepasst, inklusive der 
Umwandlung zu Core. Dadurch kann Haskell erweitert werden, ohne dass man für diese neuen 
                                                        
24 Ein Binding in Haskell ist die Definition eines Namens. Dies kann der Name einer Funktion sein, als auch der Name einer 
Variablen. 
25 Verschiebt Let-Blöcke: beispielsweise aus sich wiederholenden Ausdrücken heraus (um die mehrfache Ausführung zu 
vermeiden) oder in Zweige eines Case-Ausdrucks hinein, falls das Let nur für diesen Zweig gilt (und nur dort die 
Variablenbindungen des Let verwendet werden). 
26 Eliminiert doppelte Code-Zweige. Durch die Seiteneffektfreiheit können gleiche Ausführungen mit gleicher Eingabe nur 
das gleiche Ergebnis erzeugen. Dies wird auch bei mehrfacher Verwendung nur einmal berechnet. 
27 Kurz für „Spineless Tagless G-machine“, [5] 
28 Siehe 4.4.1 
29 Siehe [12] (Appendix) 



GRUNDLAGEN 

Seite 21 

Funktionen die Optimierungen anpassen müsste. In der Gesamtschau besteht Haskell im GHC also aus 
3 voneinander relativ stark getrennten Strukturen:  

• Dem Frontend (die eigentliche „Sprache Haskell“), das zu Core transformiert 
• Core, auf dem alle Optimierungen durchgeführt werden, das zu LLVM30 transformiert 
• LLVM, das nativen Code für die aktuelle Maschine erzeugt 

Durch diese Separierung können einzelne Bereiche des Compilers ohne große Auswirkungen auf das 
restliche Programm erweitert oder umgebaut werden. 

Die Verwendung von Core ist jedoch nicht in der Sprachspezifikation von Haskell. GHC hat dies für 
die eigene Compilerimplementierung so festgelegt. Da Haru allerdings auf dem GHC aufbaut, ist die 
Sprache für den Compiler essenziell. Die Verwendung von Core verringert signifikant den Aufwand, 
den ein Transformationstool aufbringen muss, um Haskell zu übersetzen – hier die komplette 
Grammatik von Core: 

 

Abbildung 7: Grammatik von Core31 

                                                        
30 Dies gilt aktuell als der favorisierte Codeerzeugungspfad. Die direkte Maschinencode-Kompilierung ist hauptsächlich für 
GHCi interessant, den Kommandozeileninterpreter von GHC. 
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Haru verwendet zur Reduzierung der Komplexität als Ausgangssprache Core. Core bietet außerdem 
einige fundamentale Vorteile: 

• Haskell ist stark statisch und implizit typisiert, d.h. viele Typen werden durch Typinferenz 
ermittelt. Core ist ebenso stark statisch typisiert, allerdings explizit. (Eigentlich wäre die 
Typisierung von Core nicht notwendig, da das Frontend das Programm bereits als typkorrekt 
akzeptiert hat – aber hierdurch können die Simplifizierungsschritte validiert werden [diese 
müssen die Typkorrektheit erhalten]). 

• Core ist sehr stabil. In über 20 Jahren Verwendung musste es nur einmal erweitert werden (um 
Type Coercions inkl. Casts), während der gesamte GHC um einen Faktor von 5 gewachsen 
ist32. 

4.4.4 Ruby 
Ruby wurde von Yukihiro Matsumoto entwickelt und die erste Version im Jahr 1995 veröffentlicht. Es 
ist eine interpretierte Sprache. Nachdem Ruby anfangs mangels englischsprachiger Dokumentation 
fast ausschließlich in Japan verwendet wurde, fand im Jahr 2000 eine Aktion statt, die Ruby auch 
außerhalb Japans bekannt machen sollte. Heute wird Ruby als Open-Source-Projekt gepflegt, der 
Quellcode findet sich auf der Code-Hosting-Plattform GitHub33. Die Sprache unterliegt keiner 
schriftlich festgehaltenen Spezifikation, vielmehr ist sie durch die Ausführung spezifiziert. Das 
Verhalten, das die Referenzimplementierung des Compilers erzeugt, legt die Semantik fest34. 

 Paradigmen 
Ruby ist eine vollkommen objektorientierte Sprache, die sehr durch Konzepte aus Smalltalk inspiriert 
wurde. So ist jedes Element in einem Programm auch tatsächlich ein Objekt („alles ist ein Objekt“), 
auch beispielsweise Klassen, Zahlen oder Zeichen. Weitere Programmierparadigmen sind ebenfalls in 
der Sprache berücksichtigt. 

Ein rein prozedurales Programm kann durch den Umstand geschrieben werden, dass jedes Ruby 
Programm automatisch in einem globalen main-Objekt35 erstellt wird, die eigentlich globalen 
Funktionen sind dann Methoden dieses main-Objekts, selbst definierte Klassen sind innere Klassen. 

Ein lauffähiges prozedurales Ruby-Programm. 

Funktionale Programmierung wird dadurch ermöglicht, dass alle Ausdrücke („Expressions“) in Ruby 
einen Wert zurückliefern, Anweisungen („Statements“) im eigentlichen Sinne existieren in Ruby 
nicht36. Außerdem können anonyme Funktionen als Codeblöcke definiert werden. 

                                                                                                                                                                             
31 Aus [12] 
32 Von etwa 28.000 auf etwa 140.000, [2] 
33 https://github.com/ 
34 Es gibt RubySpec, eine Initiative, die eine ausführbare Sprachspezifikation schreiben will (http://rubyspec.org/) 
35 Die geschieht für den Programmierer vollkommen transparent. 
36 Auch wenn in der Grammatik ein Ausdruck als „STMT“ bezeichnet wird. 

def example 
    puts „Hello World“ 
end 
 
example 
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 Syntaktische und semantische Besonderheiten 
Jeder Ausdruck in Ruby hat einen Wert, auch Konstrukte, die dies in anderen Sprachen üblicherweise 
nicht gewährleisten.  

Jeder Ausdruck in Ruby hat einen Rückgabewert, auch Sprachkonstrukte wie case und if. 

Ruby erzwingt in eindeutigen Fällen keine Klammern bei einem Methodenaufruf. Dies sorgt für eine 
transparente Verwendung von Variablen und Methoden ohne Argument. 

Beim Aufruf von b werden keine Klammern benötigt. 

Der Wert des letzten Ausdrucks in einer Methode oder einer Expression ist automatisch auch der 
Rückgabewert, es ist kein explizites „return“ notwendig. 

4.4.5  Verwandte Arbeiten 
Es gibt eine Reihe weiterer Arbeiten, die Haskell in eine andere Zielsprache definieren. Neben dem 
GHC, der als Hauptcompiler für Haskell in Maschinencode oder LLVM37-Code übersetzt (oder 
interpretiert), ist aktuell JavaScript als Zielsprache beliebt. So existieren drei Projekte, die versuchen, 
Haskell auch in der Webentwicklung zum Einsatz zu bringen: 

Fay definiert eine Untermenge von Haskell als Quellsprache und kompiliert direkt von Haskell zu 
JavaScript (ohne Umweg über STG). Haskell Closures werden direkt zu JavaScript Closures 
kompiliert. 

Haste implementiert den sogenannten Eval/Apply-Algorithmus, ähnlich zu STG, verwendet aber 
ebenfalls JavaScript Closures und den JavaScript Stack. 

GHCJS implementiert STG mit einem Stack, ähnlich zur nativen Implementierung, konvertiert aber 
Closures selbst. 

                                                        
37 LLVM ist ein Backend für Compiler, das in unterschiedlichste Zielarchitekturen übersetzt. Der Gedanke dahinter ist, dass 
Compiler nur noch das Frontend behandeln müssen, anschließend LLVM-Code erzeugen und damit das gesamte Backend 
mit allen aufwändigen Anpassungen für unterschiedliche Architekturen von LLVM übernommen wird. 

example = if cond then „wahr“ else „falsch“ end 
 
language = case scrutinee 
             when „de“  then „deutsch“ 
             when „en“  then „englisch“ 
             else „unbekannt“ 
           end 

a = „variable a“ 
def b () 
  „methode b“ 
end 
 
puts a # „variable a“ 
puts b # „methode b“ 
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5 Realisierung 
Für die Transformation der Metamodelle werden zunächst die eigentlichen Metamodelle erstellt und 
erläutert. Anschließend werden die einzelnen Bestandteile in das andere Modell transformiert. Bei 
Haskell in Verbindung mit GHC ergibt sich eine Besonderheit, da intern erst in die Sprache Core 
umgewandelt wird. Deswegen wird zusätzlich ein Metamodell für Core erstellt und die eigentliche 
Transformation trennt sich dann in die Bestandteile Haskell zu Core und Core zu Ruby. 

 

Abbildung 8: Übersicht über die Sprachtransformationsschritte 

Hierzu werden zu allen Aspekten kompakte UML-Diagramme erstellt, die den Fokus auf einzelne 
Bereiche legen. Um die Diagramme übersichtlich zu halten wird die Gesamtansicht in viele Einzelteile 
aufgespalten. Es werden nicht immer alle Einzelteile in einem eigenen Diagramm erläutert, auch 
werden nicht alle Eigenschaften abgebildet – sondern jeweils nur die Teile, die für diese Arbeit 
relevant sind. 

„Entfernte“ Klassen, die eine eigene Erklärung haben und auf die in dem jeweiligen Diagramm nur 
verwiesen wird, haben eine gestrichelte Umrandung. Assoziationen sind benannt, außer wenn die 
Zieltypen selbst bereits angeben, welchem Zweck die Verbindung dient. 

Die Begriffe in den Datenmodellen sind auf Englisch, da dadurch der Bruch zwischen der 
Sprachspezifikation und dieser Arbeit möglichst gering bleibt. In Kapitel 5 wird also häufig zwischen 
Englisch und Deutsch gewechselt. 

5.1 Metamodell von Haskell 
Das Metamodell wurde aus dem Language Report von 2010 von Haskell erstellt, der die 
Sprachspezifikation darstellt. Ungenauigkeiten wurden durch Analyse von Spezifikationen des GHC 
geklärt, der eine sehr genaue Umsetzung der Sprachspezifikation darstellt – die internen Typen heißen 
sogar wie die Nichtterminale in der Grammatikdefinition. 

Haskell verwendet einige globale Annahmen, die nicht direkt in den Metamodellen auftauchen: 
Ausdrücke werden lazy38 ausgewertet, es wird Currying unterstützt und jeder Ausdruck muss 
zwingend einen Rückgabetyp haben. 

5.1.1 Übersicht 
Zunächst wird eine Übersicht über ein komplettes Programm gegeben, bevor dann der eigentliche 
Kern der Sprache, die Expressions modelliert werden. 

                                                        
38 Das Ergebnis eines Ausdrucks wird nicht direkt berechnet, sondern erst wenn tatsächlich das konkrete Ergebnis benötigt 
wird. 

Haskell RubyCore

GHC
Haru
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 Modul 
Auf der obersten Ebene besteht ein Haskell-Programm aus Modulen. Wenn kein Modul explizit 
angegeben ist, wird der Modulname „Main“ verwendet und alle Funktionen exportiert. 

 

Abbildung 9: Haskell: Module 

Ein Haskell-Modul kann andere Module oder nur Teile davon (Funktionen und Typen) importieren 
und anschließend verwenden. Das Modul „Prelude“ wird immer geladen und ist der Kern der 
Laufzeitumgebung. 

Ein einzelnes Haskell-Modul wiederum besteht auf der obersten Ebene aus Bindings und Typ-
Konstruktoren. Typausdrücke können viele verschieden Formen annehmen, wie Typumbenennung, 
Definition eigener algebraischer Datentypen und Klasseninstanzen. Ein Binding ist eine benannte 
Funktionsdefinition. 

 Typdefinitionen 
Haskell-Datentypen sind entweder ein Basisdatentyp, eine zusammengesetzter Typ („Constructed 
Type“) oder ein vom Benutzer definierter Typ. 

Module
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User Type Binding

Type Constructor

1

1

*

1…*

imports

entitites

constructors

1

*



REALISIERUNG 

Seite 26 

 

Abbildung 10: Haskell: Types 

Basic Types sind die Basisdatentypen, wie Bool, Integer oder String39. User Type, also vom Benutzer 
definierte algebraische Datentypen wurden in der Haskell Sprachbeschreibung bereits ausführlich 
beschrieben. 

 

Abbildung 11: Haskell: Constructed Type 

Constructed Types sind entweder eine Liste an Werten, ein Tupel aus Werten oder eine Funktion, die 
Argumenttypen und einen Ergebnistyp hat. Die Listenelemente müssen alle vom gleichen Typ sein, 
die Liste ist aber nach der Erstellung nicht in der Länge beschränkt. Das Tupel ist praktisch ein 
Gegenstück zur Liste: es erlaubt unterschiedliche Typen aber nach Erstellung erzwingt es eine feste 
Länge. 

Datentypen werden in der Transformation zu einem großen Teil ausgelassen. Dies hat den Grund, dass 
die Typen zur Codeerzeugung zu weiten Teilen nicht mehr benötigt werden. Die Typisierung hilft die 
Typkorrektheit eines Programms festzustellen und Zuordnung von polymorphen Aufrufen aufzulösen. 

                                                        
39 Tatsächlich sind in GHC nur sehr wenige Typen „wired-in“. Die meisten auch nativen Typen sind über data-Definitionen 
in der Standbibliothek definiert. 
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Alle diese Schritte sind bereits erfolgreich durch die vorhergehenden Schritte im GHC erledigt. Einzig 
die algebraischen Datentyp-Konstruktoren werden explizit übersetzt, Literale und Operatoren werden 
direkt bei der Erzeugung des Ruby-ASTs umgewandelt. 

 Bindings 
Bindings sind ein allgemeiner Begriff für Bindungen von Ausdrücken an explizite Namen.  

 

Abbildung 12: Haskell: Bindings 

Bindings können einerseits Funktionsdefinitionen auf oberster Ebene sein, Bindungen in Let-
Expressions oder Typdefinitionen für Funktionen. Sie können rekursiv oder nicht-rekursiv sein, was 
schlicht angibt, ob in den Bindings Referenzen auf Variablen aus den Bindings selbst existieren (diese 
also vor der Codeerzeugung topologisch sortiert werden müssen). 

Ein Binding besteht aus einem Body, der den Rumpf der Definition angibt. Dieser kann entweder 
selbst eine Expression sein, oder eine Reihe von Guards. Guards stellen einen Pattern Matching-
Mechanismus dar.  

Der Kopf einer Funktion kann entweder ein Name mit einem optionalen Pattern sein (Pattern 
Function) oder eine Pattern Zuweisung (Pattern Assignment). Beide Mechanismen zusammen 
ermöglichen Pattern Matching auf Funktionsargumenten. 
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Pattern-Matching in Funktionsargumenten 

Type Signatures dienen der Spezifikation von Argument-Typen und Ergebnistypen von Funktionen. 

 

Abbildung 13: Haskell: Type Signature 

Sie werden entweder benötigt, wenn der Compiler durch die Typinferenz Mehrdeutigkeiten entdeckt 
und der Benutzer die Möglichkeiten einschränken muss. Andererseits kann der Programmierer auch 
den eigenen Code erst spezifizieren und danach überprüfen, ob die Implementierung der Spezifikation 
genügt. 

Context gibt hier den Kontext an, in dem die Funktion operiert. In Haskell sind dies meist Monaden – 
die Funktion führt Transformationen innerhalb des Monaden aus. 

5.1.2 Expressions und Unterklassen 
Nachdem die Grobstrukturen definiert sind, kommt nun der Kern der eigentlichen Sprache: die 
Expressions.  

Type Signature

Expression

Haskell Type

Context

Type 
Definitions

Function 
Identifier

1

1

1...*

0…1

1 1

-- Pattern Matching auf Funktionsargumenten 
factorial 0 = 1 
factorial n = n * (n – 1) 
 
-- Pattern Matching für Typ-Dekonstruktion 
data Color = Red | Green | Blue 
data ColoredText  = ColoredText Color String 
 
printText (ColoredText Red string)  = „red: „ ++ string 
printText (ColoredText Blue string) = „blue: „ ++ string 
-- auch Wildcards sind möglich, die angeben, dass der eigentliche Wert nicht 
-- von Interesse ist (nur das mögliche Vorhandensein) 
printText (ColoredText _    string) = „sonstige Farbe: „ ++ string 



REALISIERUNG 

Seite 29 

 

Abbildung 14: Haskell: Expressions40 

Expressions sind der Kern von Haskell und bilden das Grundgerüst des AST. Die Unterklassen der 
Expressions sind die zentralen Sprachbestandteile, die den gesamten Programmfluss steuern. 

Das Do Sprachkonstrukt dient der komfortableren Programmierung in Monaden. So können mehrere 
Expressions wie von anderen Programmiersprachen gewohnt einfach untereinander geschrieben 
werden und müssen nicht explizit mit den Monaden-Operatoren verbunden werden. 

Im Schaubild nicht explizit aufgeführt sind Tupel- und Listen-Konstruktoren. 

 
Abbildung 15: Haskell: Tuple 

 
Abbildung 16: Haskell: List 

Tupel und Listen sind eine (geordnete) Menge an Expressions mit dem einzigen Unterschied, dass 
Tupel eine feste Länge haben und beliebige Typen im Inneren besitzen. Eine Liste wiederum besitzt 
keine feste Länge, dafür müssen alle enthaltenen Elemente vom selben Typ sein. 

                                                        
40 Die Anordnung der Elemente soll keine Gruppierung darstellen. 
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 Literal 

 

Abbildung 17: Haskell: Literal 

Ein Literal stellt eine direkte Darstellung eines Wertes dar, beispielsweise Zahlen oder Zeichen. 

 Variable 

 

Abbildung 18: Haskell: Variable 

Eine Variable ist grundlegend ein Name. So kann es sich beispielsweise um einen Funktionsnamen, 
einen Binding-Namen in einem Let-Block oder um den Namen eines benannten Case-Blocks handeln. 

 Constructor 

 

Abbildung 19: Haskell: Constructor 

Ein allgemeiner Konstruktor. Kann entweder eine leere Liste oder ein leeres Tupel (oder beliebig 
langes Tupel ohne Werte „(,,,,)“) erstellen oder ein Name eines globalen Typkonstruktors sein. 

Expression
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Constructor

Tuple ConstructorList Constructor Named Constructor
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1
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 Lambda 

 

Abbildung 20: Haskell: Lambda 

Eine Lambda-Definition stellt eine anonyme Funktion dar. Sie besteht aus einer Liste an Argumenten 
(arguments) und einem Funktionsrumpf (body). Der einzige Unterschied zwischen einer benannten 
Funktion und einem Lambda ist, dass die benannten Funktion zusätzlich einen Namen hat. Sobald man 
das Lambda einer Variablen zuweist sind sie jedoch anschließend äquivalent. 

 Section 

 

Abbildung 21: Haskell: Section 

Eine Section ist ein gemeinsamer Spezialfall der Lambdadefinition und der partiellen Anwendung. Sie 
stellt eine Lambda-Definition eines Operators dar, bei dem eine Seite bereits gebunden ist. So gilt die 
folgende Gleichung: 

Links Section, rechts Lambda-Definition 

Expression

Pattern

Lambda
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1

1

body
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Expression

Section
operator

Variable
1 1

operand

1

1

(operator e) = \x -> x operator e 
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 Arithmetic Sequence 

 

Abbildung 22: Haskell: Arithmetic Sequence 

Eine Arithmetic Sequence ist ein Generatorionsmechanismus für Listen. So kann der Startwert (from), 
ein optionaler Folgewert (then) und ein optionaler Endwert (end, nur wenn auch then gegeben ist) 
angegeben werden. Die Folge beginnt beim Startwert, fährt mit dem Folgewert fort und wird 
anschließend so lange fortgeführt, bis der Endwert erreicht oder überschritten ist.  Als Spezialfall 
können so auch unendliche Listen erzeugt werden. 

Arithmetic Sequence Beispiele 

Expression

Arithmetic Sequence

to

0...1

1…*

0...1

then

from

1

1

-- erzeugt die Zahlen 1-10 
[1, 2..10] 
 
-- erzeugt eine unendliche Liste, beginnend bei 1 
[1, 2..] 
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 List Comprehension 

 

Abbildung 23: Haskell: List Comprehension 

Eine List Comprehension beschreibt einen weiteren Weg, eine Liste zu füllen. Hierbei wird ein Pattern 
angegeben, anhand dieses dann die Liste gefüllt wird. Hierzu werden neben dem Pattern noch 
Generatoren angegeben, die die Werte für die einzelnen Variablen des Patterns erzeugen. 

List Comprehension Beispiel 

 Conditional (if) 

 

Abbildung 24: Haskell: Conditional 
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{Return Type = Bool} elsethen

-- erzeugt: [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)] 
[(x, y) | x <- [1, 2, 3], y <- [4, 5]] 
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Ein Conditional ist eine if-Bedingung, wie sie in den meisten Programmier-Sprachen vorkommt. 
Allerdings gibt es zwei Besonderheiten: es gibt kein direktes elsif (es muss ein if im else-Zweig 
angelegt werden) und das Conditional muss vollständig sein. Dies bedeutet, dass immer ein then- und 
ein else-Zweig vorhanden sein muss. Dies ist eine direkte Folge aus der Forderung, dass jeder 
Ausdruck einen Rückgabewert hat. 

Die eigentliche Bedingung (condition) ist eine allgemeine Expression, mit der Einschränkung, dass sie 
einen booleschen Wert zurückliefern muss. 

 Application 

 

Abbildung 25: Haskell: Application 

Eine Application, also ein Aufruf einer Funktion, weist einige Besonderheiten auf. Einerseits muss der 
Aufruf immer mit mindestens einem Argument geschehen. Dies ist logisch, da durch die 
Seiteneffektfreiheit ein Aufruf einer Funktion ohne Parameter nur einen konstanten Wert liefern kann 
(und dadurch intern nicht erst als Funktion dargestellt werden muss). 

Andererseits muss der Aufruf immer mit genau einem Argument geschehen. Aufrufe mit mehreren 
Argument sind also in Wirklichkeit mehrere sequenzielle Aufrufe mit jeweils einem Argument. 
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Let 

 

Abbildung 26: Haskell: Let 

Eine Let-Bindung führt lokale Variablen und Umbenennungen ein. Let und where (siehe Binding) sind 
bis auf einen Unterschied identisch: ein Let-Binding ist lokal begrenzt, ein where-Ausdruck gilt immer 
für die gesamte Funktion.  

Beim Let-Binding werden lokale Bindings eingeführt (lokale Namen), die dann für den Rumpf (body) 
gelten. 
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Binding
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 Case 

 

Abbildung 27: Haskell: Case 

Die Case-Unterscheidung ist der vermutlich mächtigste Expression-Typ41. Sie besteht im 
Wesentlichen aus einem scrutinee42 , dessen Wert die verwendete Alternative bestimmt. Die 
Alternativen sind entweder Guards oder Pattern Matchings. Außerdem kann optional noch ein 
globales where definiert werden, das Bindings, die über alle Alternativen gültig sind, einführt. 

                                                        
41 Zumindest sehen das die Core-Forscher so und wandeln viele Konzepte aus Haskell in Case-Konstrukte um, siehe 5.4 
42 Dies ist eine Bezeichnung, die direkt aus dem GHC Kommentar entnommen ist und auf Deutsch in etwa „zu prüfendes 
Element“ bedeutet. [16] 
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5.1.3 Wichtige Unterklassen 

 Guard 

 

Abbildung 28: Haskell: Guard 

Ein Guard wird für das Matching von Werten verwendet und ist entweder ein boolescher Ausdruck, 
eine lokale Let-Deklaration oder ein Pattern. Beim Pattern Guard wird ein Pattern mit einer gegeben 
Expression verglichen und entsprechend ausgewertet. 

Pattern Guard Local Declaration

Guard

Boolen Guard

Let Expression

{Expression Type = Bool}
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 Pattern 

 

Abbildung 29: Haskell: Pattern43 

Patterns werden an vielen Stellen in der Sprache verwendet und dienen dem Vergleichen von 
verschiedenen Werten. Sie lassen insbesondere aber die Typ-Dekonstruktion zu, die ein komfortabler 
Weg ist, um zusammengesetzte Typen zu zerlegen (zum Beispiel algebraische Datentypen, Listen oder 
Tupel). 

5.2 Metamodell von Core 
Aus der Haskell-Sprache und dessen Metamodell wird im GHC zunächst Core erzeugt. Core ist eine 
Zwischensprache, die viele Konzepte von Haskell vereinheitlicht, so dass die Vielfalt der Konzepte 
deutlich geringer ist – was die weitere Verarbeitung des Programms vereinfacht. Nichtsdestotrotz 
können alle Konzepte von Haskell in Core abgebildet werden. Alle Erweiterungen von Haskell über 
Core sind reiner „syntaktischer Zucker“, die die Programmierung in der Sprache angenehmer gestalten 
sollen und keinen funktionalen Mehrwert bieten. 

The existence of Core has also proved to be a tremendous sanity check on the design of the source 
language. Our users constantly suggest new features that they would like in the language. Sometimes 
these features are manifestly "syntactic sugar", convenient new syntax for something you can do 
already. But sometimes they are deeper, and it can be hard to tell how far-reaching the feature is. 

                                                        
43 Pattern ist hier nochmal explizit als Referenz aufgeführt, auch wenn die Klasse in diesem Schaubild definiert ist. Dies hat 
rein pragmatische Gründe: die Verbindungen quer durch das Schaubild hätten das Verständnis gestört. 
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Core gives us a precise way to evaluate such features. If the feature can readily be translated into 
Core, that reassures us that nothing fundamentally new is going on: the new feature is syntactic-
sugar-like. On the other hand, if it would require an extension to Core, then we think much, much 
more carefully. – Simon Marlow und Simon Peyton-Jones44 

Core vereinfacht viele Sonderfälle von Haskell, generalisiert aber gleichzeitig das Metamodell und 
den AST. Dies hat pragmatische Gründe: es macht die Definitionen im AST einheitlicher und senkt 
die Anzahl der Typkonstruktoren erheblich. Dafür hat man nun jedoch Feinheiten, die dadurch, dass 
allgemeine Expressions verwendet werden, so eigentlich nicht gegeben sind. Ein Beispiel45 ist der Typ 
„Arg“ also ein Argument einer Applikation. Während Arg einfach als Synonym für Expression 
definiert ist, kann nur Arg als erstes Element eine Typdefinition haben. Während syntaktisch jede 
Expression eine Typdefinition einführen kann, ist es semantisch für das erste Argument nur so 
festgelegt, dass das nur für Argumente erlaubt ist. 

5.2.1 Übersicht 

 

Abbildung 30: Core: Module 

Ein Modul besteht, ähnlich zu Haskell, aus Typ-Deklarationen und Top-Level Bindings. 

                                                        
44 Aus [2] 
45 Aus dem Kommentar zum Typ „Arg“ in [17] 

Module

Top-Level-Binding Datatype Declaration

Type Constructor
{abstract}

*

11

*

Core-Binding



REALISIERUNG 

Seite 40 

 Core Binding 

 

Abbildung 31: Core: Core Binding 

Ein Core-Binding kann, ähnlich zu Haskell, rekursiv oder nicht-rekursiv sein. Hier hat sich die 
Definition allerdings erheblich vereinfacht: ein einzelnes Binding (beispielsweise eine 
Funktionsdefinition) besteht nur noch aus einem Namen (Variable) und einem Rumpf (Expression). 

 Type Constructor 

 

Abbildung 32: Core: Type Constructor 
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Type Constructors sind, bis auf Benennungsunterschiede zu Haskell, weitgehend unverändert. Es ist 
jedoch möglich, dass durch Inlining einzelne Typ-Konstruktor nun verschwunden sind, da alle 
Verweise inline verarbeitet werden konnten46. 

5.2.2 Expressions und Unterklassen 

 

Abbildung 33: Core: Expression 

Expressions sind im prinzipiellen Aufbau zu Haskell unverändert, es sind nur einige Fälle entfallen. 
Die Details zu den entfallenen Fällen wird im Kapitel 5.4 beschrieben. Expressions hat noch weitere 
Unterklassen, die hier nicht aufgeführt werden, namentlich Tick, Type und Coercion. 

 Literal 

 

Abbildung 34: Core: Literal 

Ein Literal ist die direkte Darstellung eines Wertes (in Core hat sie etwas an Abstraktionsgrad verloren 
und ist nun intern näher an der Hardwareebene, dies hat auf das Modell jedoch keinen Einfluss). 

                                                        
46 Vergleiche 7.3 
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 Variable und Identifier 

 

Abbildung 35: Core: Variable 

Eine Variable ist im Grunde ein Name (Identifier) mit einem Typ und etwas erweiterten Informationen 
über die Variable und ihre Verwendungen. 

Lambda 

 

Abbildung 36: Core: Lambda 

Lambda-Definition wurden im Vergleich zu Haskell etwas verändert. Sie bestehen nun aus genau 
einem Parameter und einer Expression als Rumpf (body). 
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 Application 

 

Abbildung 37: Core: Application 

Applications verbleiben im Vergleich zu Haskell unverändert. Genau ein Argument und eine 
Expression als body. Der Ausdruck des Aufrufenden (applicant) kann entweder trivialerweise ein 
Name sein (als Spezialfall der Expression), oder auch eine allgemeine Expression. Dies ermöglicht 
direkte verkette Aufrufe (zum Beispiel durch Currying). 

 Let 

 

Abbildung 38: Core: Let 

Let besteht aus einem Core Binding und dem Rumpf, in denen die Bindings gelten. Es führt in den 
Bindings lokale Namen und Umbenennung ein, die im Body Gültigkeit besitzen. 
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 Case 

 

Abbildung 39: Core: Case 

Auch das Case-Statement besteht im Wesentlichen aus den Elementen, die es bereits in Haskell hatte. 
Es hat immer noch einen scrutinee, der die auszuführende Alternative bestimmt, sowie ein Binding, 
dass das Ergebnis der scrutinee-Auswertung bindet. Die Alternativen haben jeweils einen body und 
eine Möglichkeit, lokale weitere Alternativen zu definieren. Forthin kann jede Alternative als Guard 
entweder ein Literal oder einen Data Constructor besitzen, oder immer gültig sein (Default). 

5.3 Metamodell von Ruby 
Das Metamodell von Ruby wird nur in dem Umfang behandelt, in dem es benötigt wird, um einerseits 
die Core-Metamodelle in Ruby zu transformieren. Dies umfasst nur einen sehr kleinen Teil der 
Konzepte der Sprache, was allerdings nur bedeutet, welche Mächtigkeit diese bereits besitzen. 

Das Metamodell wurde zu großen Teilen aus der Grammatikdefinition der offiziellen Distribution 
erstellt, einige Details wurden in der Ausführung validiert. 
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5.3.1 Übersicht 

 Programm 

 

Abbildung 40: Ruby: Program 

Ein Ruby-Programm besteht aus Modulen, Klassen, Funktionen und Expressions auf der obersten 
Ebene. Es sind also deutlich weniger Restriktionen, als das bei den anderen Sprachen der Fall war.  

 Function Definition 

 

Abbildung 41: Ruby: Function Definition 

Eine Funktionsdefinition in Ruby besteht aus einem Namen, Argumenten und einem Body. Ruby 
erlaubt außerdem Modifikatoren auf den Argumenten, wie beispielsweise den Splat-Operator „*“, der 
alle weiteren Argumente sammelt, in einem Array zusammenfasst und in die Funktion gibt. 

Einsatz des Splat-Operators 

Program

Function Definition Class Definition Expression

111

***

Function Definition Expression

Identifier

11

*

body

1 1

1
namearguments

def fun (*args) 
  p args 
end 
 
fun 2, 3, 4, 5 
# > [2, 3, 4, 5] 
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 Class Definition 

 

Abbildung 42: Ruby: Class Definition 

Class Definition umfasst im Wesentlichen zunächst einen Namen für die Klasse. Das Klassenkonzept 
ist in einer objektorientierten Sprache natürlicherweise sehr umfangreich, hier wird aber nur der Teil 
vorgestellt, der für die tatsächliche Abbildung der Konzepte benötigt wird. 

Klassen werden im erzeugten Code nur für die Implementierung des Typ-Systems verwendet und dort 
auch nur, um den Array-Typ mit eigenem Namen zu redefinieren. 

5.3.2 Expression und Unterklassen 

 Expression 

 

Abbildung 43: Ruby: Expression 

Die Unterklassen der Expression sind zumindest namentlich weitgehend deckungsgleich mit denen, 
die auch Haskell unterstützt. Funktionale Expressions, wie Let fallen weg, dafür kommen imperative 
Konzepte wie Assignment hinzu. 
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 Literal 

 

Abbildung 44: Ruby: Literal 

Ein Literal in Ruby ist, wie alle anderen Elemente auch, ein Objekt. Es wird aber regulär über ein 
Literal im Quellcode definiert, dort gibt es also keine Änderung (wichtig für die Codeerzeugung). 

 Variable 

 

Abbildung 45: Ruby: Variable 

Eine Variable in Ruby ist im Wesentlichen ein Namen. Durch die sehr dynamische Natur von Ruby 
kann über die Variable zur Laufzeit allerdings wesentlich mehr herausgefunden werden, als von einem 
kompilierten Haskell-Programm. 
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 Assignment 

 

Abbildung 46: Ruby: Assignment 

Eine Zuweisung (Assignment) besteht aus der Expression, deren Wert anschließend an einen Identifier 
zugewiesen wird. 

 Lambda 

 

Abbildung 47: Ruby: Lambda 

Eine Lambda-Definition funktioniert in Ruby über die Instanzierung eines Proc-Objekts. Konzeptuell 
bleibt aber, dass ein Lambda aus einer Expression als body und einer beliebigen Anzahl Parametern 
besteht. 
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 Application 

 

Abbildung 48: Ruby: Application 

Ein Aufruf (Application) in Ruby besteht aus einer Expression, deren Ergebnis mit Argumenten 
aufgerufen wird. 

 Conditional 

 

Abbildung 49: Ruby: Conditional 

Ein Conditional ist eine if-else-Kette bestehend aus Bedingungen und Expressions als Rumpf des 
Zweigs. Elsif wird unterstützt.  
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 Case 

 

Abbildung 50: Ruby: Case 

Case existiert in Ruby auch, hat jedoch eine Besonderheit. Beim Case wird sequenziell jeder guard 
mit dem Wert des scrutinee verglichen, in Code ausgedrückt „guard == scrutinee“. Dies schränkt die 
Ausdruckskraft der Case-Expression im Vergleich zu Haskell leicht ein. 

5.4 Transformation Haskell zu Core 
Prinzipiell ist die Transformation von Haskell zu Core eine Reduktion. Es fallen Konzepte weg, es 
kommen jedoch keine neuen hinzu. Dies dient vor allem einer Verringerung der Komplexität der 
Konzepte der Sprache und des Umfangs für die weitere Behandlung innerhalb des GHCs. Diese 
Veränderungen verringern jedoch nicht die Mächtigkeit der Sprache. 

5.4.1 Gemeinsame Aspekte 
Da Haskell eine Erweiterung von Core ist, ergeben sich natürlich viele gemeinsame Konzepte. 

Let-Bindings, Variablen, Literale, Applikationen und die Modulstruktur, sowie alle nativen 
Datentypen sind unverändert. Auch das Typsystem bleibt bis auf eventuelles Inlining selten 
verwendeter Typen erhalten. 

Top-Level-Bindings bleiben, ebenso wie Case-Expressions, bis auf die Vereinfachung der 
Bezeichnerausdrücke ebenfalls erhalten. 

5.4.2 Unterschiede 
Im Folgenden werden die Transformationen der einzelnen Aspekte, die in der Originalform nicht mehr 
vorhanden sind, beschrieben. 
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 Pattern Matches und Guards  
Patterns und Guards sind propagiert. Dies bedeutet, dass die geschachtelten Pattern Matches nun 
geschachtelte Case-Konstruktionen sind, die jeweils einzeln auf die Struktur der Elemente überprüfen. 
Auch Pattern Matching in Funktionsargumenten wurde in den Funktionsrumpf als Case-Anweisung 
propagiert. 

Die Typinferenz ist beendet und die Typen wurden den Bezeichnern und Ausdrücken zugewiesen. Die 
Typdefinitionen sind, bis auf die Konstruktoren, aus dem AST entfernt. 

 List Comprehensions 
List Comprehensions können direkt durch Aufrufe von map, filter und concat umgewandelt werden, es 
sind keine gesonderten Sprachfunktionen notwendig. Bei der Implementierung wird über alle 
generierten Werte mit Map iteriert, ungültige Kombinationen gefiltert, die Kombinationsfunktion 
(definiert durch das Pattern) angewendet und die Ergebnisse zu einer Liste mittels concat 
zusammengefasst.  

 Arithmetic Sequences 
Genau wie List Comprehensions können auch Arithmetic Sequences sehr einfach in der 
Laufzeitumgebung implementiert werden. So wird dies intern von Core durchgeführt; die Generatoren 
aus Haskell werden zu simplen Aufrufen interner Laufzeitfunktionen von Core. 

 Conditional 
Da ein If-Else-Konstrukt einen Spezialfall einer Case-Anweisung darstellt (mit den Alternativen True 
und False) kann dieses Konzept trivial transformiert werden. 

 Sections 
Diese werden in Lambda-Definition umgewandelt werden (siehe das Kapitel zu Sections in der 
Metamodelldefinition von Haskell). 

 Lambda-Definition 
Diese werden so transformiert, dass jede Definition maximal ein Argument hat. Auch dies ist trivial 
möglich, indem man für die Anzahl an Argumenten Lambda-Ausdrücke schachtelt, von der die 
innerste den eigentlichen Rumpf der Funktion erhält und jede Ebene das Argument aus der 
ursprünglichen Argumentsliste, das ihrer Schachtelungstiefe entspricht. 

lambda { |a, b, c| 
  a + b + c 
} 
 
# wird umgewandelt zu 
 
lambda { |a| 
  lambda { |b| 
    lambda{ |c| 
      a + b + c 
    } 
  } 
} 
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Lambda Umstrukturierung beispielhaft in Ruby-Quellcode skizziert. 

5.5 Transformation Core zu Ruby 
Während die Transformation von Haskell zu Core noch innerhalb des gleichen Paradigmas statt fand 
und demnach keine großen konzeptuellen Veränderungen zu erwarten waren, könnten hier bei Ruby 
mehr Unterschiede auftreten. 

Wie sich herausstellen wird, kann die Transformation jedoch trotzdem ohne komplexe Teilschritte 
durchgeführt werden. 

5.5.1 Gemeinsame Aspekte 
Direkt übernommen werden können alle Aspekte auf einer niedrigen Ebene wie Literale und 
Variablen. Die unterschiedliche interne Darstellung der Literale ist dabei keine konzeptuelle 
Differenz, sondern eine technische47. Prinzipiell könnten auch Lambda-Definition fast unverändert 
übernommen werden, aber im Folgenden wird versucht, dies noch zu optimieren. 

5.5.2 Transformation der einzelnen Core-Aspekte 

 Binding 
Ein Binding wird in Ruby direkt zu einer globalen Methoden-Definition (für Typdefinition siehe 
„Transformation des Typsystems“). 

 Transformation des Typsystems 
Das Typsystem wird in Ruby-Klassen transformiert, da Typen in objektorientierten Sprachen von 
Klassen repräsentiert werden. 

Hierzu wird für jeden Typ-Namen eine Klasse als Unterklasse von Array erstellt, die als Konstruktor-
Parameter ein Array von Expressions nimmt. Dieses Array stellt die Typ-Konstruktor-Parameter dar. 
Auf diesem Weg sind sowohl geschachtelte algebraische Datentypen möglich, als auch die Typ-
Überprüfung mittels Überprüfung der Klasse der Typvariable. 

Dies ist ein vereinfachendes Verfahren, dass für die Transformation der Sprache jedoch genügt: die 
Typen werden bei der Code-Generierung im Grunde nur noch für Darstellungswechsel benötigt, aber 
nicht mehr um Typprüfung zu betreiben. Diese wurde bereits in Haskell statisch durchgeführt und bei 
der Transformation wird die Typsicherheit erhalten bzw. das Typsystem wird sogar permissiver. 
Typfehler zur Laufzeit sind also nicht möglich. 

 Case 
Das Case-Statement kann in der Form aus Haskell nicht direkt in Ruby abgebildet werden, da durch 
die Bindung des Vergleichs mittels „==“ dies die Vergleichsmöglichkeiten leicht eischränkt48. 

Die Lösung ist jedoch einfach, da ein Case-Ausdruck in Ruby semantisch sein Spezialfall einer if-
elsif-else-Kaskade ist. Die Transformation ist dann unkompliziert: die Alternativen werden zu if-elsif 

                                                        
47 Übrigens auch Themen wie unterschiedliche Wertebereiche für native Datentypen. 
48 Im Grunde sind dies Implementierungsdetails, die allerdings zwingend Änderungen des Ziel-Metamodells zur Folge haben. 
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Zeigen, die optionale Default-Alternative zum else-Zweig. Die Vergleiche in den if-Bedingungen 
werden den Alternativen selbst überlassen, sie erhalten nur den scrutinee-Identifier und können mit 
diesem beliebige Vergleiche generieren. 

 Let 
Während der Body der Let-Bindings direkt übernommen werden kann, muss der Binding-Block in 
eine (sortierte) Liste von Assignments transformiert werden. Als Besonderheit könnte man den Body 
und die Assignments in einen direkt ausgeführten Lambda-Block aus der Sichtbarkeit nehmen um 
auch das Konzept der lokalen Namen direkt abzubilden. 

Dies ist allerdings nicht notwendig, da GHC in Core global eindeutige Namen vergibt, die bei der 
Code-Erzeugung verwendet werden. 

 Application und Lambda 
Während die einstelligen Applications und Lambda-Definition sich zwar in dieser Form auch in Ruby 
darstellen lassen, kann auch versucht werden, etwas „typischeren“ imperativen Code zu erzeugen.  

Hierzu können direkt geschachtelte Lambda-Blöcke wieder in einen Block mit mehreren Parametern 
transformiert werden; sowie bei den Aufrufen direkt aufeinanderfolgende Argumente 
zusammengefasst werden. Dies ist keine zwingend notwendige Transformation, erzeugt aber eine 
Struktur, die mehr mit der Idee einer sauberen Ruby-Implementierung zu tun hat49. 

Wie sich herausstellt, ist diese Transformation allerdings zunächst unsinnig, da je nach Currying-
Implementierung diese Transformationsschritte in der Code-Generierung wieder rückgängig gemacht 
werden. Trotzdem lohnt sich die Transformation, da der Mehraufwand in der Code-Generierung trivial 
ist, aber die Analyse und Optimierung des Ruby-ASTs vereinfacht wird. 

6 Implementierung des Compilers 
Ähnlich wie Fay50 geht Haru nicht den Weg über STG, sondern kompiliert aus Core direkt zu Ruby. 
Einerseits, weil Core ein besseres theoretisches Fundament darstellt und man daher die Modellierung 
darauf aufbauen kann, andererseits weil die Dokumentation zu Core bedeutend besser ist. Dies ist ein 
nicht zu unterschätzender Faktor in der Implementierung eines Systems. Ein Nachteil ist, dass einige 
Typoptimierungen dadurch noch nicht durchgeführt wurden – dies ist für die Codegenerierung in 
Ruby aber nicht hinderlich beziehungsweise kann, soweit benötigt, auch selbst durchgeführt werden. 

Haru trifft einige vereinfachende Annahmen: 

• Typisierung der Literale wird fast komplett ignoriert. Das Eingabeprogramm wurde bereits als 
typkorrekt analysiert, die Literale werden umgewandelt und das restliche Typsystem ist soweit 
kompatibel (bis auf Listen und Strings – dies wird allerdings in der Runtime gelöst). 

• Das restliche Typsystem wird mittels Arrays von Werten abgebildet. Auch hier gilt: das 
Programm wurde bereits als typkorrekt bestätigt, wie die Typen intern dargestellt werden, ist 
irrelevant. Das Hauptaugenmerk liegt auf der korrekten Konstruktion und Dekonstruktion der 
geschachtelten Datentypen, die mit Arrays sehr einfach implementiert ist. 

                                                        
49 Diese Idee hinter dem Ruby-Code ist dann ein informales Metametamodell. 
50 Siehe 4.4.5 
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Die Implementierung von Haru transformiert den GHC AST in einen Ruby AST51 und diesen dann zu 
Ruby Quellcode. Die Runtime ist eine statische Ruby-Datei und wird nach der Quellcode-Generierung 
einfach vor jedes Modul kopiert52. 

 

Abbildung 51: Haru Pipeline 

Zunächst wird das Modul vorbereitet. Hierzu wird die Datei geladen, in die Core-Darstellung 
umgewandelt und die GHC Optimierungsschritte durchgeführt. 

Generierung des GHC-ASTs. Im Grunde werden hauptsächlich die fünf Schritte der GHC-Pipeline „parseModule“, 
„typecheckModule“, „desugarModule“, „hasSimplify“ und „tidyProgram“ ausgeführt. 

Die eigentliche Kompilierung zu Ruby funktioniert ähnlich wie GHC auch regulären Haskell-Code 
kompiliert. Zunächst generiert Haru den GHC-AST aus einer Haskell-Datei mittels obiger 
prepareModule Funktion. Anschließend wird die Runtime geladen, die Typkonstruktoren in Ruby 
erstellt, aus dem Ruby-AST Quellcode erstellt und alles konkateniert in die Source-Datei geschrieben. 
                                                        
51 Es ist nicht wirklich ein Ruby AST, aber ein an Ruby angepasster AST, der die Codegenerierung einfacher gestaltet. 
52 Als eine Art statischem Linken. Dies verhindert aktuell allerdings das importieren mehrerer Dateien gegenseitig, da dann 
die Funktionen mehrfach definiert sind. Dies lässt sich beim Einbau aber einfach dadurch lösen, dass die Runtime in ein 
eigenes Modul kommt, das jeweils durch Ruby eingebunden („require“) wird. 

GHC Haru.TransformGHC

Haskell AST Core AST

.hs

Haru.Generator

Ruby Code

Haru

.rb

Runtime
Ruby AST

-- | Prepares a module for compilation 
-- 
--   Takes the raw loaded module and generates the module details. 
--   These details ("guts") contain the complete information about the 
--   module, like bindings, type declarations and imports. 
-- 
--   The different function calls are the single steps of the GHC pipeline. 
-- 
--   Parameters: 
--     - moduleSummary    The summary of the module to compile 
prepareModule :: (GhcMonad m) => ModSummary -> m (CgGuts, ModDetails) 
prepareModule moduleSummary = do 
    env <- getSession 
    pgm <- parseModule moduleSummary 
        >>= typecheckModule 
        >>= desugarModule 
        >>= liftIO . hscSimplify env . coreModule 
        >>= liftIO . tidyProgram env 
    return pgm 
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Die Hauptfunktion des Compilers: compileModule kompiliert ein Haskell-Modul zu Ruby-Code. 

Während einige Core-Bestandteil einfach zu transformieren sind wie zum Beispiel Literale, sind für 
andere Bestandteile teils komplizierte Anpassungen notwendig. Einige dieser Anpassungen werden im 
Folgenden erläutert.  

6.1 Besonderheiten der Implementierung 
Haru ignoriert einen Großteil der Typisierung des ursprünglichen Haskell-Programms, außerdem 
werden die skalaren Datentypen explizit umgewandelt. Beim Verhalten dieser Typen gibt es ebenfalls 
wenig Anpassungsbedarf, da das grundsätzliche Verhalten (Operatoren, Transformationen) zu Haskell 
ähnlich ist beziehungsweise permissiver. 

6.1.1 Runtime 
Haru übersetzt eigentlich nur den Sprachkern von Haskell und nicht die Standardbibliothek. Dadurch 
ist aber das Testen unmöglich, da beispielsweise Funktionen für die Ausgabe fehlen. Deswegen wurde 
eine kleine Runtime entwickelt, die die für das Testen wichtigsten Funktionen bereitstellt53: 

• Put: Gibt einen Wert aus. 
• _Format: Funktion, die eine Variable in ein an Haskell angepasstes Ausgabeformat anpasst54. 
• Cons: Implementiert den cons-Operator „:“ 
• Uncons: Wird benötigt, um Typen zu dekonstruieren55. Interne Funktion56. 

                                                        
53 Alle Runtime-Funktionen beginnen im Namen als „HaruRuntime_“ 
54 Nativ wird [1, 2, 3] in Ruby zu „[1, 2, 3]“, in Haskell jedoch zu „[1,2,3]“. 
55 Siehe 6.1.3 

-- | Compiles a single module 
-- 
--   Takes the flags, the output file name and the module summary, 
--   generates ruby code and writes it to the output file. 
-- 
--   Parameters: 
--     - dynFlags         Dynamic flags 
--     - outputFile       The output file name 
--     - moduleSummary    The pregenerated module summary, including the core bindings 
compileModule :: (GhcMonad m) => DynFlags -> String -> ModSummary -> m () 
compileModule dynFlags outputFile moduleSummary = do 
    -- Generate the module details by GHC, containing the Core AST 
    (cgGuts, modDetails) <- prepareModule moduleSummary 
    -- Load the runtime code 
    runtimeCode <- liftIO $ runtimeCode 
    let 
        -- Collect useful compiler data (data about the program being compiled) 
        compilerData        = generateCompilerData rubyAST 
        -- Generate code for type constructors 
        typeConstructorCode = generateTypeConstructors $ transformTypeConstructors (cg_tycons cgGuts) 
        -- Generate the Ruby AST from the Core AST 
        rubyAST             = map transformBinding (cg_binds cgGuts) 
        -- Generate Ruby Code from the Ruby AST 
        programCode         = join "\n\n" $ map (generateProgram compilerData) rubyAST 
        -- Concatenate all code parts to create the complete source file contents 
        completeProgramCode = runtimeCode ++ "\n\n" ++ typeConstructorCode ++  "\n\n" ++ programCode 
        in do 
            -- Write the contents to the ruby file 
            liftIO $ writeOutput outputFile completeProgramCode 
            Log.log $ "  Compilation successfull." 
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• Is_String_Or_Array: Typüberprüfung, da nicht nur auf Liste überprüft werden kann. Interne 
Funktion. 

• Map: Map-Implementierung. 
• Join: Fasst Elemente eines Arrays mit einem Trennzeichen zu einem String zusammen. 
• Enum_From_To: Helfer-Funktion, die eine arithmetische Folge (Enum) generiert. 
• Chain: Funktion, die den Kompositionsoperator „.“ implementiert. 

Zunächst war geplant, Currying auch in der Runtime zu implementieren, dies hat Ruby allerdings 
nicht zugelassen (siehe 6.1.5). 

6.1.2 Strings, Listen und Cons  
Haskell implementiert Strings als eine Liste von Zeichen. Ruby hat dies in dieser Form nicht, dort sind 
Strings vom Type „String“ und nicht vom Typ „Array“ (die einfachsten Ruby-Listen). Das hat 
Auswirkungen auf die Standardbibliothek: zunächst müssen Listen-Funktionen so angepasst werden, 
dass sie auch für Strings funktioniert. Das Problem könnte umgangen werden, in dem die Runtime und 
der Listen-Typ so angepasst wird, dass er intern nur auf Zeichen-Arrays arbeitet und sich nur bei 
wenigen Funktionen wie ein String verhält (beispielsweise zu „puts“). Da Ruby jedoch Strings 
anbietet, versucht Haru diese zu verwenden. 

Dies wird so umgesetzt, dass in den Runtime-Funktionen zu Beginn eine Prüfung statt findet, ob der 
übergebene Wert einer Listenfunktion in Wirklichkeit ein String ist. In diesem Fall wird der String vor 
jeglicher Änderung in ein Array aus Strings mit einem Zeichen umgewandelt und nach den 
Operationen wieder zusammengefügt. Außerdem erkennt die Runtime, dass ein Zeichen in eine leere 
Liste mittels cons eingefügt wird und erstellt automatisch einen String. 

6.1.3 Listen-Dekonstruktion 
Listen-Dekonstruktion wird in der Runtime durchgeführt. 

Einfaches Beispiel für eine Listendekonstruktion. 

Für die Listendekonstruktion wurde eine Runtime-Funktion namens uncons erstellt. Diese erhält als 
Argument die ursprüngliche Liste und die Anzahl der Variablen, die extrahiert werden sollen. Hierbei 
wird den Variablen immer der Wert aus der Liste entsprechend ihres 0-basierten Indexes zugewiesen, 
das letzte Argument erhält die restliche Liste. 

Beispiel für die Verwendung von uncons. 

                                                                                                                                                                             
56 Er wird direkt von Haru erzeugt und es ist nicht vorgesehen, dass Benutzer die Methode selbst aufrufen. 

listFunction (x:xs) = ... 

list = [1, 2, 3, 4, 5] 
v1, v2, v3 = HaruRuntime_uncons.call(list, 3) 
 
# v1 = 1 , 0. Element 
# v2 = 2 , 1. Element 
# v3 = [3, 4, 5] , letztes Element -> erhält Rest der Liste 
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Da das Typ-System wie es aktuell implementiert ist, komplett auf Listen aufbaut, kann uncons auch 
mit Typdekonstruktion umgehen. 

6.1.4 Funktionsaufrufe 
Funktionsaufrufe in Haskell sind, auch durch Currying, sehr transparent. Da es keine Variablen im 
eigentlichen Sinne gibt, ist die Aufrufschnittstelle von Funktionen sehr einheitlich. In Haskell gibt es  
kein Zustandskonzept57, das bedeutet dass Variablen ihren Wert nicht ändern können (sie sind also 
Konstanten). Konstante Werte können durch konstante Funktionen ohne Argumente abgebildet 
werden. Hierdurch sind in Haskell alle verwendeten Identifier konzeptuell Funktionsaufrufe, die 
ihrerseits entweder Funktionen zurückgeben oder zu Werten ausgewertet werden. 

Diese Transparenz existiert in dieser Form in Ruby nicht. Hier gibt es die Trennung zwischen 
Variablen und Funktionen, inklusive einiger bedeutender Unterschiede. Eine Gemeinsamkeit existiert 
allerdings, und zwar das optionale Auslassen von Klammern. So kann, zumindest bei tatsächlichen 
Funktionen, die Unklarheit ignoriert werden, ob ein Identifier nun einen Ruby-Variablenzugriff oder 
einen Ruby-Funktionsaufruf ohne Parameter darstellt (vergleiche Syntaktische und semantische 
Besonderheiten im Kapitel 4.4.4), da das Ruby selbst auflöst. 

Ruby unterstützt anonyme Funktionen, die für die Umsetzung des Currying eingesetzt werden. 
Allerdings gibt es keine einheitliche Aufrufsyntax für reguläre und anonyme Funktionen: 

Aufrufsyntax von regulären und anonymen Methoden. 

Beide Aufrufe erlauben nur ihre eigene Syntax, es ist kein gemeinsames Interface vorhanden. Eine 
mögliche Lösung ist es, jeden Aufruf auf Identifier in einer Funktion zu kapseln, die automatisch 
erkennt, ob es ein Wert, eine reguläre Funktion oder ein Lambda ist und die entsprechende Aktion 
durchführt. Allerdings erlaubt dies Ruby nicht direkt, da man von einer regulären Funktion kein 
Funktionsobjekt erhält58. In Javascript beispielsweise kann man auf eine definierte per Namen 
zugreifen, dies geht in Ruby nicht. Der Grund liegt in den optionalen Klammern: Ruby kann nicht 
entscheiden, ob man auf das Funktionsobjekt zugreifen will, oder ob man einen verketten Aufruf 
durchführen will. Daher sind direkte Zugriffe auf den Namen einer Funktion in Ruby immer direkt 
Auswertungen. 

                                                        
57 Außer in Monaden, aber die werden hier nicht betrachtet. 
58 Über viel Metaprogramming und Umwege könnte unter Umständen eine mögliche Lösung gefunden werden. 

def regular (x) 
    x + 5 
end 
 
anonym = lambda { |x| 
    x + 5 
} 
 
regular(5) 
anonym.call(5) 
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In JavaScript kann auf das Funktions-Objekt per Namen zugegriffen werden. Das Attribute length einer Funktion gibt die 
Anzahl der erwarteten Argumente zurück (und eignet sich daher für die Implementierung des eval/apply-Ansatzes für 
Currying). 

Ein weiteres Problem, das durch die Generierung von Funktionsdefinitionen entsteht ist die 
Sichtbarkeit. Da anonyme Funktionen regulären Variablen zugewiesen werden, sind diese nicht 
innerhalb von anderen Methoden sichtbar. Ein Lösungsansatz ist, alle Top-Level-Lambda-Variablen 
global zu machen – dies erfordert aber im Anschluss bei jedem Identifier-Zugriff eine globale 
Analyse, ob ein Identifier ein Aufruf zu einer globalen Funktion ist (globale Variablen beginnen in 
Ruby mit eine „$“-Zeichen). 

Sichtbarkeit von Funktionsnamen. 

Eine mögliche Lösung wär es, komplett auf die Definition von regulären Funktionen zu verzichten 
und nur anonyme Funktionen zu verwenden. Für Funktionen ohne Argumente kann man direkt den 
Rumpf der Funktion der Variablen zuweisen, da diese konstant sind (per Definition in Haskell). Der 
Verlust der Transparenz zwischen regulärem Funktionsaufruf ohne Argument (ein Lambda ohne 
Argument erfordert trotzdem ein „.call“) und Variablenzugriff verschwindet dadurch, dass es keine 
Funktionen ohne Argumente mehr gibt (diese werden direkt ausgewertet59). 

6.1.5 Currying 
Es gibt im Grunde drei mögliche Varianten, Currying umzusetzen. Zwei geschehen in der Runtime zur 
Laufzeit, die dritte Methode umgeht einen Großteil der Logik und vertraut auf die Korrektheit der 
Typprüfung durch Haskell. 

                                                        
59 Dies ist problemlos möglich, da diese nicht von unbekannten globalen Zuständen abhängen dürfen, höchstens von anderen 
Top-Level-Bindungen. Diese werden von Haskell allerdings bereits so vorsortiert, dass mögliche Abhängigkeiten und 
Reihenfolgen eingehalten werden. 

function fun (x, y) { 
    return x + y; 
} 
 
console.log(fun.length); 

anonym = lambda { „anonym“ } 
def main () end 
 
def additional_function () 
    anonym.call() # <- nicht erlaubt, da nicht im Sichtbarkeitsbereich 
    main          # <- erlaubt, da Methoden immer global sichtbar sind 
end 
 
additional_anonym = lambda { 
    anonym.call() # <- erlaubt, da additional_anonym im äußeren Scope ist 
    main          # <- erlaubt, da Methoden immer global sichtbar sind 
} 
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Die Implementierung von Currying ist schwer, da für mögliche Optimierungen eine globale 
Datenflussanalyse durchgeführt werden muss. Das verdeutlicht das folgende Beispiel60: 

Definition von map. 

In diesem Beispiel ist f eine unbekannte Funktion. Der Compiler kann nicht einfach f mit zwei 
Argumenten aufrufen, da es eine Funktion sein könnte, die erst ein Argument konsumiert, eine Weile 
rechnet und anschließend das zweite Argument konsumiert. Ebenso ist es möglich, dass f mehr als 
zwei Argumente fordert und zipWith also eine Liste von Funktionen generiert. 

 Push/Enter 
Hier handhabt die Funktion selbst die Verwaltung ihrer Argumente. Jede Funktion besitzt einen Stack, 
auf den ihre Argumente beim Aufruf gepusht werden. Die Funktion analysiert in ihrem Einstiegscode 
den Stack , lädt ihre Argumente selbst und entfernt sie vom Stack. Die Funktion muss anschließend 
selbst dafür sorgen, dass wenn sie weniger Argumente auf dem Stack hat als sie benötigt, sie eine 
partielle Auswertung ausführt und eine neue Funktion zurückgibt. Wenn sie zu viele Argument erhält, 
lädt sie trotzdem nur die Argumente vom Stack, die sie benötigt (die restlichen Argumente werden von 
der Funktion konsumiert, die sie zurückgibt). 

Dieser Ansatz funktioniert nicht direkt in Ruby, da man den Einstiegscode von Funktionen nicht in 
dieser Weise anpassen kann.  

 Eval/Apply 
In diesem Ansatz analysiert der Aufrufende zunächst die Funktion und ruft sie dann mit der korrekten 
Anzahl an Argumenten auf. Dies erfordert eine Laufzeitanalyse des Closures: im Beispiel mit zipWith 
folgendes:  

• Nimmt f nur ein Argument, werte f mit x aus und anschließend die Ergebnisfunktion mit y. 
• Nimmt f zwei Argumente, kann es regulär ausgeführt werden. 
• Nimmt f mehr als zwei Argumente wird ein neues Closure gebaut, in dem x und y bereits 

gebunden sind. 

Dieser Ansatz funktioniert in Ruby. Der Kern dieses Ansatzes ist die Abfrage der Stelligkeit eines 
Closures, die man in Ruby über die Methode arity eines Lambdas erhält. Sie erfordert allerdings einige 
zusätzliche Logik bei jedem Funktionsaufruf. 

 Einstellige Closures 
Dies ist die simpelste der drei Methoden61. Jeder Funktionsaufruf wird in geschachtelte Lambda-
Aufrufe mit jeweils einem Argument umgebaut. Funktionsapplikationen sind dann immer Aufrufe mit 
einem Argument. 

                                                        
60 Aus [4] 

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] 
zipWith f [] []     = [] 
zipWith f (x:xs) (y:ys) = (f x y) : (zipWith f xy ys) 
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Umwandlung mehrstelliger Funktionen in einstellige Funktionen. 

Diese Struktur ist sehr nah an das tatsächliche Currying von Haskell angelegt, die interne Darstellung 
des GHC sieht unmodifiziert ähnlich aus. Ein möglicher Fehlerfall wäre, dass eine Funktion ein 
Lambda zurückgibt, das kein Argument nimmt und damit nicht aufgerufen wird. Oder andersherum: 
dass ein Identifier aufgerufen wird, der kein Wert ist. Durch die Konstruktion der Transformationen in 
Haru wird dieses Problem allerdings umgangen – es gibt keine Funktionsdefinitionen ohne Argumente 
(diese sind schlicht Zuweisungen) also sind Applikationen ohne Argumente schlicht 
Variablenzugriffe. 

Die strikte Typprüfung von Haskell im Vorfeld sorgt außerdem dafür, dass nur Aufrufe auf passende 
Identifier ausgeführt werden und auch die Anzahl der Argumente stimmt. Die Umstrukturierung in die 
neue Struktur kann direkt im Code-Generator für Funktionsdefinitionen und –Aufrufe geschehen und 
stellt dadurch nur einen kleinen Eingriff in das Programm dar. 

6.1.6 Tupel 
Tupel haben in Ruby kein direktes Gegenstück und werden mit Arrays (genauer gesagt, einer Klasse, 
die von Array erbt – um Typprüfung auf Array zu ermöglichen) umgesetzt. Die Struktur der Daten ist 
von der Darstellung unabhängig, die Typprüfung bereits durch Haskell erledigt und die 
Dekonstruktion kann dadurch einheitlich durch die uncons62-Funktion erledigt werden. 

6.1.7 Data-Konstruktoren 
Haskell erlaubt die Definition eigener Datentypen. Während eine Umbenennung eines skalaren Typen 
für die Codegenerierung wenig interessant ist (die Typen tauchen dort fast nirgends mehr auf und 

                                                                                                                                                                             
61 Aufgrund der vielen (unnötigen) anonymen Funktionen und Indirektionen ist sie jedoch in einem Produktionscompiler 
nicht zu empfehlen. Es muss davon ausgegangen werden, dass beide Faktoren einen erheblichen Einfluss auf die Laufzeit 
und das Speicherverhalten des kompilierten Programms haben. 
62 Siehe 6.1.1 

# Definition regulär 
regular = lambda { |x, y, z| 
    x + y + z 
} 
 
# Aufruf regulär 
regular.call(1, 2, 3) 
 
 
# Definition einstellig 
modified = lambda { |x| 
    lambda { |y| 
        lambda { |z| 
            x + y + z 
        } 
    } 
} 
 
# Aufruf einstellig 
modified.call(1).call(2).call(3) 
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Umbenennungen sind bereits aufgelöst), sind die GADTs63 deutlich interessanter. Die GADTs sind 
zusammengesetzte Typen, die durch Konstruktoren erzeugt werden. Diese Konstruktoren können 
entweder keine Argumente nehmen, dann ist der Typ eine Art Enum, oder mit Argumenten versehen 
werden, dann ist es eine Art typisiertes Tupel. Auch geschachtelte Typen sind möglich. 

GADT Definition 

Durch die logische Transformation auf Listen ist die Darstellung der GADTs einfach: der eigentliche 
Typ wird als von Array abgeleitete Klasse umgesetzt, die Enum-Werte werden ebenfalls als Klassen 
umgesetzt. Es wurde dieser Weg gewählt, da dann bei der Dekonstruktion der Typen in einem Case-
Statement die Typprüfung einfach übernommen werden kann (der Typ einer Variablen in Ruby ist ihre 
Klasse).  

Durch die Darstellung der Konstruktoren mit Argumenten als Array kann der Typ auch standardisiert 
über die uncons-Runtimefunktion dekonstruiert werden. 

6.1.8 Interne Details des GHC 
Currying erzeugt allerdings nicht nur bei der Codegenerierung Probleme. Vielmehr ist es auch durch 
die interne Verwendung innerhalb des GHC ein Punkt, der die Compilerimplementierung erschwert. 

Während der Auswertung des Core-ASTs sieht man hier folgende Konstruktion: 

                                                        
63 Siehe 4.4.1 

data Color = Red | Green | Blue 
 
-- Parameter:  
--   String  Titel 
--   Int     Produktionsjahr 
data Film = Film String Int 
 
data PosterColor = PosterColor Film Color 

fun :: Int -> Int -> Int 
fun x y = x + y 
 
fun 2 3 

fun (Applikation) 
   |- Stelligkeit: 2 
   |- Argumente: 
      |- GHC.Num.+ (Applikation) 
         |- Stelligkeit: 1 
         |- Argumente: 
            |- GHC.Num.$fNumInt (Applikation) 
               |- Stelligkeit: 0 
               |- Argumente: - 
            |- 2 (Literal) 
            |- 3 (Literal) 
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 Core-AST-Darstellung für eine Addition zweier Integer. 

In diesem Beispiel wirkt es intuitiv verwunderlich, dass die Stelligkeit mit den Argumenten nicht 
übereinstimmt. Hier tritt (auch im Compiler selbst, der in Haskell programmiert ist) das Currying zu 
Tage. GHC.Num.+ ist in Wirklichkeit ein Dictionary und GHC.Num.$fNumInt der Schlüssel. In 
diesem Dictionary sind die tatsächlichen Implementierungen der Operatoren für die unterschiedlichen 
Datentypen gespeichert –diese haben dann Stelligkeit 2 und konsumieren die zwei folgenden 
Argumente. 

Diese Implementierungsdetails benötigt Ruby allerdings nicht, da es selbst eine Hochsprache ist, 
außerdem kann nicht ohne größere Umwege auf die Funktion im Dictionary zugegriffen werden. 
Deswegen werden diese Aufrufe im Generator ignoriert beziehungsweise bei der Transformation 
gefiltert. Dadurch ergibt sich allerdings das Problem, dass die Stelligkeit der Funktionsdefinitionen 
manuell angepasst werden muss. So muss dem Compiler für die unterschiedlichen Operatoren explizit 
mitgeteilt werden, dass zum Beispiel die Stelligkeit von GHC.Num.+ in Wirklichkeit 2 ist und die 
andere (Schlüssel-)Funktion ignoriert werden kann. Dies hat allerdings zur Folge, dass die 
Argumentstruktur nicht mehr stimmt - so ist die Schachtelung der Funktionen für die Generierung 
ungünstig: 

Struktur, die nach dem Entfernen der Argumente entstehen kann. 

Der Transformator versucht diese Struktur nun anzupassen. Dies ist allerdings keine korrekte Lösung, 
da man Currying beachten muss. So kann es bei dem Beispiel mit der Addition durchaus sein, dass fun 
zwei Argumente nimmt und +(2) eine partielle Applikation der Addition ist. Für dieses einfache 
Beispiel lässt sich das identifizieren, für mehrere (+)-Operatoren, die alle gecurried werden können, ist 
es im Allgemeinen nicht mehr entscheidbar. 

 

Abbildung 52: Fehlende Argumentschachtelung. Die Zahlen in Klammern geben die Stelligkeit des Bezeichners an. 

Dieses Problem kann umgegangen werden, indem entweder eine neue, globale Typanalyse 
durchgeführt wird oder das Currying auch in den internen Compiler-Typen erkannt und teilweise 
angewandt wird. Beide Varianten erhöhen den Aufwand der Compiler-Implementierung immens. 

a(0) b (1) c(0) d(2) e(0) g(0)f(3)

-- aktuell: 
fun (+, 2, 3) 
 
-- korrekt: 
fun (+(2, 3)) 
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Abbildung 53: Korrekte Schachtelung der Argumente. 

Da Haru nur für kleine Beispielprogramme als Testcompiler eingesetzt wird, ist hier eine pragmatische 
Heuristik eingebaut. So führt Haru Runtime-Funktionen und Operatoren grundsätzlich in der 
Transformation zusammen (diese unterstützen also kein Currying64). Ein Sonderfall ist jedoch 
implementiert: wenn die Summe der Stelligkeiten mit der Anzahl aller Argumente übereinstimmt, 
werden alle Aufrufe entsprechend gruppiert. 

6.2 Nicht abgebildete Aspekte 
Durch die in 6.1.8 angesprochenen Probleme hinsichtlich der Implementierungsdetails des GHCs ist 
Currying nur teilweise umgesetzt. Runtime-Funktionen und Operatoren binden immer kommende 
Argumente an sich, soweit es welche gibt, Sections (explizites Currying auf Operatoren) wird 
allerdings unterstützt. 

Lazy Evaluation wurde nicht direkt umgesetzt, Ruby bietet sie an einigen Stellen allerdings nativ an. 
So gibt es zum Beispiel die „kurzschließenden“ Bedingungen, die nur soweit auswerten, wie sich das 
Ergebnis der Berechnung noch ändern kann. Im folgenden Beispiel wird also heavy_computation nie 
ausgewertet, da das Ergebnis den Wert des booleschen Ausdrucks nicht mehr ändern kann: 

Beispiel für „kurzschließende“ Bedingungen in Ruby 

Lazy Evaluation würde bedeuten, dass jeder Variablen-Zugriff und jede Zuweisung zunächst in eine 
anonyme Funktion verpackt wird, die dann zu gegebener Stelle aufgerufen wird. Dieser Aspekt wurde 
nicht umgesetzt, da er vielfältige negative Auswirkungen auf den Compiler gehabt hätte: die 
Komplexität des Erkennens, wann ausgewertet muss; der zu erwartende Performanceeinbruch und die 
Tatsache, dass das resultierende Ruby-Programm erheblich an Lesbarkeit verloren hätte – was eine 
spätere Validierung des Programms erschwert hätte. 

Direkt damit verbunden ist das Arbeiten mit unendlichen Listen. In Haskell kann man sehr einfach 
eine unendliche Liste erstellen und auf dieser operieren: 

                                                        
64 Sections werden trotzdem unterstützt, da diese bereits im Vorfeld zu Lambda-Funktionen umgebaut wurden. 

a(0) b (1) c(0) d(2) e(0) g(0)f(3)

If true || heavy_computation 
  # ... 
end 
 
if false && heavy_computation 
  # ... 
end 
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Definition einer unendlichen Liste in Haskell. 

Für die Umsetzung von unendlichen Listen muss zwangsläufige Lazy Evaluation implementiert sein, 
da diese offensichtlich nicht ausgewertet und in den Speicher geladen werden kann. In Ruby wäre dies 
mit Generatoren65 möglich, sowie seit Version 2.0 ist ein Teil von Lazy Evaluation in Form von Lazy 
Enumeration implementiert. Diese erlaubt das Traversieren von und Arbeiten mit unendlichen Listen: 

Lazy Enumeration in Ruby 

Modulunterstützung ist ebenfalls ein Feature, das nicht unterstützt ist. Dies würde einen relativ kleinen 
Eingriff bedeuten: die Module werden sowieso separat übersetzt, die einzigen Erweiterungen würden 
die Imports („require“ in Ruby) und mögliche Aliase darstellen. Einzig die Einschränkungen der 
Imports (nicht alle Funktionen eines Moduls werden im- oder exportiert) müssten separat auf 
Umsetzungsmöglichkeiten in Ruby analysiert werden. 

Zu guter Letzt wurden Teile des Typsystems nicht direkt übersetzt, so finden sich Klassen und 
Instanzen nicht in der Übersetzung. Der Grund hierfür ist der begrenzte Umfang des Compilers: für 
die sinnvolle Verwendung und ein umfangreiches Testen müssten ein Großteil der Standardbibliothek 
übersetzt werden, da die Funktionen sehr weit darauf aufbauen. Da der Fokus der Arbeit auf der 
eigentlichen Transformation und nicht auf einer großen Laufzeitumgebung liegt, wurde dieser Bereich 
deswegen ausgelassen. 

7 Test und Validierung 
Auch wenn die Modelltransformation als korrekt angenommen wird, muss die tatsächliche Compiler-
Ausgabe von Haru validiert werden. Die Tests versuchen eine annähernde semantische Validierung zu 
geben, auch wenn das verwendete Testverfahren dies nicht garantiert. 

Es wurde nur eine qualitative Validierung der Programme ausgeführt, es wurden keine Tests bezüglich 
der Laufzeit des Haru-Compilers gemacht. Dies liegt daran, dass die Menge von Haskell-Aspekten, 
die Haru übersetzt, relativ klein ist. Insbesondere ist die gesamte Standardbibliothek (Prelude) 
ausgenommen. Dies schränkt die Möglichkeit an den Testprogrammen drastisch ein, wodurch es keine 
größeren Tests gibt. Da die Tests aber alle relativ kurz sind (maximal 100 Zeichen), kann keine 
Aussage über die Kompilierlaufzeit getroffen werden. 

Ein weiteres Problem ist, dass GHC teilweise zu umfassend optimiert66. Das folgende 
Beispielprogramm soll Funktionsaufrufe testen. 

                                                        
65 In Ruby heißen diese Enumeratoren. 
66 Siehe auch 7.3 

infinite_list = [1, 2..] 

infinite_list = 1..Float::INFINITY 
p infinite_list.lazy.collect { |x| x**2 }.first(10) 
# => [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] 
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Code-Beispiel für Inlining 

Allerdings ist die Methode klein genug, dass GHC diese „inlined“ und dadurch den Funktionsaufruf 
(inklusive der damit verbundenen Funktionsaufruf-Kosten) umgeht. Einerseits wünschenswert, da das 
entstandene Programm dadurch performanter wird, allerdings für den Test hinderlich. Der tatsächlich 
kompilierte Code sieht dann so aus: 

main = putStrLn (show 5 + 6) 

 

7.1 Testmethodik 
Da die Ausführungssemantik einzelner Teile nicht direkt getestet werden kann, werden kleine 
Beispielprogramme mittels Unit-Tests getestet. Hierzu werden Test-Programme in Haskell 
geschrieben, die ausgeführt werden. Anschließend wird mittels Haru das Programm von Haskell in 
Ruby kompiliert und das erzeugte Ruby-Programm ausgeführt. Zuletzt werden mittels einer Diff67-
Implementierung die Ergebnisse beider Ausführungen verglichen. Wenn das Diff leer ist (es also keine 
Unterschiede zwischen den Ausgaben gibt), werden die Programme als semantisch korrekt angesehen. 

Hierbei muss aber darauf geachtet werden, dass mindestens ein Programm überhaupt eine Ausgabe 
hat. Wenn beide Programme keine Ausgabe haben (aufgrund eines Fehlers oder weil sie regulär keine 
Ausgabe erzeugen), kann nicht von der Gleichheit der Programme ausgegangen werden. 

Auch muss beachtet werden, dass durch die vereinfachten Tests, die nur die Ausgabe vergleichen, 
keine Aussagen über das Innere der Programme getroffen werden kann. Ein Programm, dass die 15. 
Fibonacci-Zahl ausrechnet und ein Programm, das nur die Zahl 610 ausgibt, werden als gleich 
angesehen. Die fortführende Validierung muss in diesem Fall manuell geschehen, soweit sie nicht 
bereits durch die Validation der Modelltransformationen geschehen ist. 

7.2 Automatisierte Testsuite 
Es wurde eine automatisierte Testsuite mit knapp 20 Tests entworfen, die sich an den abzubildenden 
Haskell-Konzepten orientiert und diese weitgehend abdecken soll. Diese Testsuite wurde in der 
Entwicklung einerseits zur testgetriebenen Entwicklung verwendet, andererseits konnten damit 
automatisch Regressionen erkannt und behoben werden. 

Die Testsuite testet automatisch alle Programme im Beispiel-Ordner und gibt eine Übersicht über den 
Status der Tests aus: 

                                                        
67 diff ist ein Unix-Programm, das die Unterschiede zweier Textdateien zeilenweise gegenüberstellt. Hier wird mit „Diff“ 
allerdings das Verfahren an sich bezeichnet und nicht das konkrete Programm. 

main = putStrLn (show (fun 5 6)) 
fun x y = x + y  
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Abbildung 54: Ausgabe der Testsuite, zwei Tests schlagen in diesem Fall fehl 

Neue Tests hinzuzufügen wird damit sehr komfortabel, es muss nur ein Haskell-Programm im 
Beispiel-Ordner hinzugefügt werden.  

7.3 Testergebnisse 
Die Testergebnisse bestätigen die korrekte Übersetzung, sowohl der Metamodelle, als auch des 
Programms. Wobei man die Testergebnisse mit Vorsicht genießen muss, da die Optimierungen im 
GHC teilweise so aggressiv sind, dass die Tests unter Umständen unbrauchbar werden. 

Davon betroffen war beispielsweise die erste Iteration des Data-Tests: 

-- Defines the color data type 
data Color = Red | Green | Blue 
 
-- Prints the color name 
colorName :: Color -> String 
colorName Red   = "Red" 
colorName Green = "Green" 
colorName Blue  = "Blue" 
 
 
main = do 
    putStrLn $ colorName Red 
    putStrLn $ colorName Green 
    putStrLn $ colorName Blue 
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Erster Test für Unterstützung von algebraischen Datentypen. 

Dieser Test wird von Haskell optimiert und produziert folgenden Ruby-Code: 

Generierter Ruby-Code 

GHC hat die gesamte Typdefinition optimiert und entfernt, zusammen mit der colorName-Funktion 
und die Ergebnisse statisch ermittelt und propagiert. 

Da nur kleine Teile der Laufzeitumgebung übertragen wurden, können die Testfälle nur aus einer 
kleinen Auswahl von Methoden erstellet werden. Dies birgt die Gefahr, dass weitere Testfälle so weit 
optimiert wurden, dass die Testfälle etwas anderes testen. Somit muss die eigentlich automatisierte 
Testsuite nach den Tests nochmal manuell nach solchen Punkten überprüft werden, denn die Testsuite 
meldet den Test als erfolgreich. 

8 Zusammenfassung 
Zusammenfassend muss betont werden, dass die Sprachtransformation mittels Metamodellen einige 
erhebliche Vorteile bringt. Wenn die Sprachen formal spezifiziert sind, lassen sich daraus 
unkompliziert Metamodelle ableiten, die anschließend transformiert werden können. Falls keine 
formale Spezifikation existiert, ist es möglich, aus der Grammatik der Sprache große Teile des 
Metamodells direkt zu generieren. 

Der große Vorteil im Hinblick auf Kompilierung durch Unterstützung der Metamodelle ist, dass man 
direkt eine grobe Überprüfung und Validierung erhält. Diese Verhindern konzeptuelle Fehler im 
generierten Quellcode. 

Einer der größten und kompliziertesten Punkte69 im gesamten Verfahren ist allerdings die korrekte 
Code-Generierung. Wenn die Zielsprache, wie in diesem Fall Ruby, selbst einige Beschränkungen und 
Bedingungen an die Programme stellt (wie Sichtbarkeiten, Gültigkeitsbereiche oder unterschiedliche 
Aufrufsyntax für reguläre und anonyme Funktionen) wird die Code-Generierung sehr aufwändig und 
komplex. Es müssen viele Sonderfälle beachtet werden, außerdem muss wesentlich mehr 
Hintergrundwissen als bei einer einfacheren Zielsprache vorhanden sein. Auch Layout (semantisches 
Whitespace70) kann ein erschwerender Faktor sein, wenn der Compiler Code erzeugen will, der nach 
der Kompilierung manuell weiterverwendet wird. 

                                                        
69 Und am meisten unterschätzt. 
70 Haskell, Ruby (in Teilen) und beispielsweise Python haben semantisches Whitespace. Dort können Schlüsselworte oder 
Klammern ausgelassen werden, wenn die Aussage durch korrekte Einrückung oder Zeilenumbrüche erhalten bleibt. 

HaruExamples_Data_main = lambda { 
    HaruRuntime_put.call('Red') 
    HaruRuntime_put.call('Green') 
    HaruRuntime_put.call('Blue') 
} 
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8.1 Ausblick 
Für die Erweiterung des Projekts zu einem vollwertigen Compiler müssen zunächst die Metamodelle 
zu den restlichen Sprachkonzepten von Core erstellt werden. Nach der Identifikation der nun 
zusätzlich benötigten Teile der Ruby-Spezifikation können die restlichen Core- (und damit Haskell-) 
Konzepte ebenfalls transformiert werden – auch wenn diese hauptsächlich das Typsystem betreffen.  

Im Hinblick auf die Implementierung von Haru lassen sich ebenfalls einige Punkte optimieren. So ist 
das erzeugte Programm selbst nicht typsicher, die Sicherheit kommt nur durch die vorherige 
Validierung des GHCs. Dies bedeutet, dass die erstellten Programme manuell nicht angepasst werden 
sollten. 

Weiterhin werden alle Identifier innerhalb des Compilers von ihrer eigentlichen Bedeutung gelöst – 
dies bedeutet, dass die Information, auf was sich ein Identifier bezieht, verloren ist. Dieser 
Designschritte ist bewusst so gewählt, da er die Komplexität des Compilers verringert und für die 
Codegenerierung zum jetzigen Zeitpunkt nicht zwingend notwendig ist. Allerdings werden dadurch 
Analysen auf den Identifiern erschwert oder verhindert, die zu einer besseren Codeerzeugung führen 
könnten. 

Weiterhin könnten noch Optimierungsschritte eingebaut werden, die ähnlich zum GHC Literal 
propagieren und kombinieren. Vor allem die (eigentlich statische) Erstellung von Listen könnte 
deutlich optimiert werden – diese ist aktuell eine direkte Übersetzung des generierten Core-Codes. 

Generierte Listenerzeugung 

Auch die Erstellung von Strings (als Spezialfall der Listen) kann optimiert werden, die, wie hier zu 
sehen ist, als cons-Operation des Zeichens und einer leeren Liste erstellt werden. Diese 

-- in Haskell: 
["a", "b", "c", "d", "e", "f"] 
 
# generiert in Ruby (gekürzt) 
cons( 
    cons('a', []), 
    cons( 
        cons('b', []), 
        cons( 
            cons('c', []), 
            cons( 
                cons('d', []), 
                cons( 
                    cons('e', []), 
                    cons( 
                        cons('f', []), 
                        [] 
                    ) 
                ) 
            ) 
        ) 
    ) 
) 
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Funktionsaufrufe können statisch gefunden und in entsprechende Literale beziehungsweise 
Konstruktoraufrufe umgewandelt werde. 

Und zuletzt kann der Compiler daraufhin optimiert werden, „typischeres“ Ruby zu erzeugen. So 
verwendet der Compiler nur kleine Teile des Sprachumfangs von Ruby. Dadurch entstehen 
Konstruktionen, die für den Compiler zwar einfach zu generieren sind, allerdings manuell von einem 
Entwickler so nicht geschrieben werden würden – unabhängig von Gründe, beispielsweise Lesbarkeit 
oder Ausführungsgeschwindigkeit. Dies erhöht zwar enorm die Komplexität des Generators und des 
Transformators, es erscheint aber verschwenderisch, Ruby „nur“ als ein etwas erweitertes C oder 
Assembler zu verwenden und nur die reinen Grundfunktionen bei der Codegenerierung zu verwenden. 
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