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EINLEITUNG

3 Einleitung

In der Entwicklung der Programmiersprachen haben sich unterschiedliche Ideen {iber Programme und
ihre verwendeten Stile entwickelt. Gewisse Stile und Konzepte werden zu grundlegenderen und
groferen Programmierparadigmen zusammengefasst. Von den heute verwendeten Paradigmen sind
das prozedurale, das funktionale und das objektorientierte Programmierparadigma die am weitesten
verbreiteten.

Bei aktuellen Programmiersprachen gibt es den Trend, mehrere der Programmierparadigmen zu
biindeln, so unterstiitzt beispielsweise C++ unter anderem die funktionale, imperative,
objektorientierte, prozedurale, strukturierte und generische Programmierung. Der Compiler, und auch
die Laufzeitumgebung miissen alle Konzepte dieser Paradigmen verstehen und unterstiitzen. Dies
betrifft auch virtuelle Bytecode-Maschinen, wie die Java Virtual Machine, die mit Java eine
objektorientierte und mit Clojure eine funktionale Programmiersprache unterstiitzt.

Diese Studienarbeit geht der Frage nach, inwiefern diese unterschiedlichen Konzepte mit einem
Compiler' automatisiert ineinander iiberfithrt werden konnen, am Beispiel einer Kompilierung von der
funktionalen Programmiersprache Haskell in das hauptséchlich objektorientierte Ruby. Auch wenn
Ruby funktionale Programmierung unterstiitzt, werden fiir einige Haskell-Eigenschaften aufwéndigere
Transformationen bendtigt.

Um diese Gemeinsamkeiten und Unterschiede zu finden werden zunéchst von allen involvierten
Programmiersprachen Metamodelle im fiir diese Studienarbeit vorgegebenen Umfang erstellt und
dann aufeinander abgebildet. AnschlieBend wird auf einige Implementierungsdetails von dem im Zuge
dieser Studienarbeit erstellten Compilers Haru® eingegangen.

Einige Notationen werden direkt aus der Sprache des GHC {ibernommen, um den Bruch beim
Wechsel der Bezeichnungen moglichst gering zu halten:

* Identifier: ein Bezeichner, im Grunde ein Name mit einigen angehéngten Daten.
*  Applikation: eine Funktionsanwendung, ein Funktionsaufruf.
* Lambda: eine anonyme Funktion, also eine Funktion ohne Bezeichner.

4 Grundlagen

Bevor die Transformation und deren praktische Umsetzung in einem Programm genauer beschrieben
werden, miissen Details zu den verwendeten Ansétzen, Sprachen und Technologien eingefiihrt
werden.

4.1 Sprachkonzepte und Paradigmen’

Programmiersprachen entstehen als eine Sammlung von Konzepten, die entweder bereits bekannt und
erforscht sind, oder durch die Programmiersprache gepriagt werden sollen. Diese Konzepte

! Compiler zwischen zwei (Hoch-) Sprachen werden auch ,,Transcompiler” genannt. Im Zuge dieser Arbeit werden diese
Programme jedoch auch vereinfacht als ,,Compiler* bezeichnet.

% Haru aus ,,Haskell to Ruby*

3 Nach [10]
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GRUNDLAGEN

beeinflussen das Ausfiihrungsmodell und die Elemente innerhalb der Sprache. Sie beschreiben
statische und dynamische Eigenschaften von Programmiersprachen, beispielsweise iliber den
Kontrollfluss, Variablen oder Objekte. Die Menge dieser Eigenschaften charakterisiert eine
Programmiersprache zusétzlich zu moglichen syntaktischen Neuerungen beziehungsweise
Anderungen.

Ein Programmierparadigma stellt eine Art Programmierstil da, der aus einer Menge von
Sprachkonzepten definiert ist. Die einzelnen Programmierparadigmen sind allerdings nicht disjunkt
definiert, so gibt es viele Programmiersprachen, die mehrere Programmiersprachen unterstiitzen, wie
C++ (siehe unten) oder auch Ruby (unter anderem imperativ, objektorientiert, prozedural, funktional,
nebenlaufig).

Eine der wichtigsten Unterscheidungen innerhalb der Programmierparadigmen ist zwischen der
deklarativen und imperativen Programmierung.

Programming Languages

/N

Imperative Nonimperative
(procedural) (declarative)
Object-oriented Algorithm oriented Functional Logic
(knowledge based)
Fortran Smallitalk Lisp Prolog
Pascal Eiffel Miranda
Ada C++ Hope

Abbildung 1: Ubersicht iiber die Klassifizierung der Programmierparadigmen mit Beispielsprachen*

Bei der imperativen Programmierung besteht ein Programm aus einer Folge von Anweisungen, die
sequenziell vom Computer abgearbeitet werden. Im Quellcode wird hierbei einerseits festgelegt, was
in welcher Reihenfolge abzuarbeiten ist, andererseits werden Kontrollstrukturen (Spriinge, Schleifen,
Verzweigung) bereit gestellt, die den Programmfluss steuern. Die imperative Programmierung ist das
am langsten bekannte Programmierparadigma, sie ist nah angelegt an die tatsdchliche Arbeitsweise
eines Computers der Von-Neumann-Architektur. Bei der imperativen Programmierung wird also eine
Art Handlungsanweisung fiir den Computer beschrieben, der diese Schritt fiir Schritt abarbeitet. Die
prozedurale Programmierung ist ein wichtige Unterkategorie der imperativen Programmierung.

Im Gegensatz zum imperativen Ansatz wird bei der deklarativen Programmierung durch den
Programmierer das Ziel der Berechnung angegeben, anstelle der klaren Berechnungsvorschrift. Die
Vorteile sind ein hoherer Abstraktionsgrad und dadurch eine groBere Kompaktheit der Programme.
Ein weiterer wichtiger Aspekt funktionaler Programme ist die Seiteneffektfreiheit. Sie ermdglicht
partielle Auswertung’ und einfachere Korrektheitsbeweise fiir Programme.

Ein Beispiel fiir die grofere Inhaltsdichte pro Zeichen, aber auch die dadurch héhere Komplexitét gibt
folgendes Code-Beispiel. Auch wird deutlich, wie in der imperativen Sprache der Algorithmus

4 Aus [14], Seite 8
* Insbesondere die parallele Auswertung wird deutlich vereinfacht.
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GRUNDLAGEN

schrittweise beschrieben wird, wahrend in der funktionalen Programmierung schlicht die
Berechnungsvorschrift deklariert wird. Zunéchst eine imperative Implementierung von Quicksort in
Pascal’:

procedure quicksort(l,r : integer);
var x,i,j,tmp : integer;
begin
if r>1 then
begin
x:=al[l]; i:=1; j:=r+1;
repeat
repeat di:=i+1l until al[i]>=x;
repeat j:=j-1 until al[j]<=x;
tmp:=alj]; aljl:=ali]; a[i]l:=tmp;
until j<=1i;
tmp:=alj]; al[jl:=all]; a[l]l:=tmp;
quicksort(l,j-1);
quicksort(j+1,r)
end
end;

Quicksort in Pascal

Das Programm funktional in Haskell:

quicksort [] = []
quicksort (x:xs) =
quicksort [n | n<-xs, n<x] ++ [x] ++ quicksort [n | n<-xs, n>=x]

Quicksort in Haskell

4.1.1Imperatives Programmierparadigma

Auch wenn Ruby als Zielsprache eigentlich rein objektorientiert ist, erlaubt die Sprache es trotzdem,
imperativen Code zu schreiben. Da der von Haru erzeugte Quellcode fast keinen direkten Nutzen aus
der Objektorientierung zieht und der imperative Ansatz aullerdem die Grundlage des
objektorientierten Programmierparadigmas ist, soll hier zunichst das imperative
Programmierparadigma erklért werden.

Der Computer in der Von-Neumann-Architektur ist ein Objekt der Realitdt, somit unterliegt es
zeitlicher Verdnderung. AuBBerdem funktioniert der Computer als ,,Rechner®, er verwandelt Eingabe-
in Ausgabedaten. Dafiir verwendet er Objekte, die einen Namen, einen Speicherplatz und einen Wert
besitzen.

Imperative Sprachen bilden dieses Konzept unterschiedlich genau auf ihre Sprachkonzepte ab. Ein
imperatives Programm verwandelt einen Zustand in einen neuen Zustand, die Durchfiihrung stellt also
eine Reihe an Zustandsiibergidngen dar. Das Programm ist ein ,,Prozess iiber Zeit’, der Gesamtzustand

des Systems wird durch die Menge aller existierenden Variablen zu einem bestimmten Zeitpunkt

% Der Quellcode der Pascal- und der Haskell-Implementierung ist von [15].
"Nach [13]
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GRUNDLAGEN

dargestellt. Die vom Von-Neumann-Rechner verwendeten Objekte fiir die Berechnung entsprechen
genau den Variablen der Programmiersprache. Diese konnen iiber den Verlauf des Programms
unterschiedliche Werte annehmen.

Am besten dargestellt wird diese zeitliche Abhédngigkeit der Variablen durch folgende Formel:

Code-Beispiel zur Verdeutlichung des imperativen Ansatzes

Das imperative Modell hat jedoch auch viele Probleme, die in anderen Paradigmen geldst sind
beziehungsweise konstruktionsbedingt nicht auftreten kdnnen:

*  Aliasing: ein Speicherplatz kann mehrere Namen besitzen.
*  Mehrdeutigkeit der Namen: ein Name kann einen Wert referenzieren (in Ausdriicken), eine
Adresse (in einer Zuweisung) oder einen Zeiger auf eine andere Variable (Pointer).

Die Folge der Probleme ist, dass Werte von Variablen fiir Entwickler nicht offensichtlich gedndert
werden konnen, sie also von den erwarteten Werten abweichen. Dies kann zu versteckten Problemen
filhren, die oftmals eine lange Suche erfordern und das Programmversténdnis erheblich einschréanken.
AuBlerdem produzieren Seiteneffekte versteckte Abhdngigkeiten: ein unsichtbarer externer Zustand
wird zu einer zusitzlichen Eingabegrdofle fiir Funktionen. Dies kann beispielsweise dafiir sorgen, dass
ein Unit-Test von bestimmten Funktionen nur in einer bestimmten Reihenfolge funktioniert, da der
externe Zustand manipuliert und gelesen wird. Dieses Problem erbt die Objektorientierung, da sie auf
diesem Konzept aufbaut, es jedoch nicht veréndert.

4.1.2 Objektorientiertes Programmierparadigma

Wihrend in der imperativen und insbesondere prozeduralen Programmierung das Hauptaugenmerk auf
den Algorithmen und nicht auf den zu verarbeitenden Daten liegt, entfernt sich die Objektorientierung
von dieser Ansicht. Sie biindelt Daten und ihre verarbeitenden Funktionen (in diesem Kontext heilen
die Funktionen ,,Methoden,,) in ein Objekt, mit dem als Einheit im System interagiert wird.

Es ist damit eine Abbildung der Realitét, die ebenfalls aus interagierenden realen und imaginiren
Objekten besteht. Berechnungen sind in dieser Sicht Interaktionen der Objekte untereinander.

Auch werden Programme, die kein fest definiertes Ende haben, in der Objektorientierung erst
konzeptionell sinnvoll®. In einer Datenbank etwa tiberdauern die Daten die Algorithmen oder in einem
Betriebssystem gibt es keine Eingabedaten im eigentlichen Sinne.

Das objektorientierte Programmierparadigma ist aus der Sichtweise entstanden, dass die Welt aus
einer Menge von Objekten aufgebaut ist und Berechnungen in einem Computer im Grunde nur
Transformationen realer und imaginérer Objekte zu Objekten im Computerprogramm sind.

Diese Ansicht, zusammen mit abstrakten Datentypen und Datenkapselung sind die grundlegenden
Konzepte in den objektorientierten Sprachen. Datenkapselung bedeutet, dass nicht direkt auf alle
Daten zugegriffen werden kann, sondern dies iiber fest definierte Schnittstellen geschehen muss.

¥ Dies bedeutet nicht, dass man Betriebssysteme nicht prozedural programmieren kénnte, sondern vielmehr, dass es
ausgehend von den Annahmen des Programmierparadigmen konzeptuelle Fragen aufwirft.
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GRUNDLAGEN

Durch die Konzepte der dynamischen Bindung und der Vererbung wird das objektorientierte Modell
noch erweitert. Die Vererbung erméglicht eine Klassifikation der Objekte des Systems in Uberklassen
und Spezialisierungen davon. Dies erzeugt eine hierarchische Ordnung der Objekte, die der vom
Menschen intuitiv durchgefiihrten hierarchischen Ordnung der realen Welt nahe kommt.

Geschlossener
Kérper
Dreieck Viereck Polygon

I 1

Gleichschenkliges
Dreieck

I 1

Gleichseitiges
Dreieck

Rechteck

Quadrat

Abbildung 2: Beispiel-Klassenhierarchie®

Diese Klassenstruktur stellt direkt ein Modell des Programms dar. Die Programmkonstrukte mit
Klassen und Objekten stellen dort das Metamodell dar (siche 4.2).

Die meisten der objektorientierten Sprachen sind aus einer Erweiterung einer imperativen Sprache
entstanden, nicht so Ruby, das stark an Smalltalk angelehnt ist. In einer solch reinen Sprache
existieren einige nicht-intuitive Konzepte, so sind beispielsweise Zahlen auch Objekte:

irb(main):001:0> 5.class
=> Fixnum

Das Literal 5 ist ein Objekt der Klasse Fixnum.

4.1.3 Funktionales Programmierparadigma

Wihrend der Funktionsbegriff in den imperativen Sprachen unter Umstidnden weit von der
urspriinglichen mathematischen Definition abweicht, ist er in der funktionalen Programmierung direkt
aus der Mathematik umgesetzt. Er ist daher speicherlos und zeitlos. Aus diesen Eigenschaften
resultieren wichtige Eigenschaften:

* Keine Seiteneffekte: wie in der Mathematik héngt das Ergebnis einer Funktion nur von ihrer
Eingabe ab, es gibt keinen (fiir den Entwickler) unsichtbaren Zustand.

* Variablen beschreiben Werte, keine Speicherplétze. Einmal gebunden, kann eine Variable
keinen anderen Wert mehr annehmen. Formal existieren in formalen Sprachen keine
Variablen, sondern es sind konstante Funktionen ohne Argument. Daher kann es auch keine

? Aus [14], Seite 11
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zeitlichen Abfolgen geben. Durch die Seiteneffektfreiheit kann ein Ausdruck in beliebiger
Reihenfolge ausgewertet werden'”.

Trotz der augenscheinlichen Einschrankungen durch den fehlenden Zustand innerhalb des Programms
ist die Sprache dadurch nicht weniger méachtig, dies hat das Fachgebiet der Komplexitétstheorie
bewiesen. Doch das funktionale Paradigma hat nicht nur Einschridnkungen, sondern auch
Erweiterungen im Vergleich zur imperativen Programmierung: Funktionen hoherer Ordnung und Lazy
Evaluation.

Lazy Evaluation bedeutet, dass Ausdriicke erst dann ausgewertet werden, wenn tatséchlich ihr genaues
Ergebnis erfragt wird. Bis zu diesem Punkt werden die Ausdriicke nur soweit ausgewertet, dass die
Berechnung fortfahren kann. Dadurch werden unter Umstinden kostspielige Berechnungen vermieden
beziehungsweise tiberhaupt erst ermoglicht — zum Beispiel mit unendlichen Listen.

-- Bei einer naiven Implementierung von foldr kann es schnell zu
-- Space Leaks kommen. Der gesamte Berechnungsbaum wird im Speicher gehalten.

foldr f z []
foldr f z (x:xs) = x "f° foldr f z xs

foldr (+) 0 [1..100000000]
-- x%x* Exception: stack overflow

Lazy Evaluation kann auch ein Problem bereiten: da der gesamte Berechnungsbaum (,,Thunk“) im Speicher bleiben
muss, kann es bei groRen Berechnungen zu Speicherproblemen kommen (,,Space Leaks). Aus diesem Grund bieten
funktionale Sprachen oft auch explizit strikte Evaluation fiir bestimmte Funktionen an (oder man kann sie selbst
definieren).tt

Funktionen héherer Ordnung beschreiben die Ansicht, dass Funktionen im Grunde auch nur Daten
sind und dadurch auch als solche durch das Programm gereicht werden kénnen. So kénnen Funktionen
als Parameter in andere Funktionen gereicht werden oder als Ergebnis von Funktionsaufrufen
zuriickgegeben werden.

Dieses Prinzip wird noch erweitert durch Currying, das es erlaubt, einzelne Parameter von Funktionen
zu binden. Als Beispiel sei eine Potenzfunktion genannt.

power_function n x = x **x n

Parametrisierte Potenzfunktion in Haskell

Wenn diese nur mit einem Argument, einer ,,2* aufgerufen wird, erhilt man keinen Fehler, sondern als
Riickgabewert eine neue Funktion, die nur noch ein Argument fordert und die Quadratzahlen
berechnet.

Durch die Funktionen hoherer Ordnung und Currying ist es in der funktionalen Programmierung
moglich, durch wenige Funktionen bereits eine sehr méichtige Berechnungsumgebung zu schaffen, in
der mit wenig Zeilen Code aufwindige Algorithmen definiert werden konnen (vergleiche 4.1).

' Oder durch partielle Auswertung oder Lazy Evaluation sogar gar nicht ausgewertet.
! Eine genauere Ausfiihrung findet sich im Wiki von Haskell: http://www.haskell.org/haskellwiki/Foldr_Foldl Foldl'
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4.2 Modelle und Metamodelle

Modell

Ein Modell" ist gekennzeichnet durch drei wesentliche Merkmale: Abbildungsmerkmal,
Verkiirzungsmerkmal und pragmatisches Merkmal.

Ein Modell ist stets eine Abbildung eines Originals. Solche Objekte konnen beliebiger Natur sein,
beispielsweise physische Objekte, als auch der Welt der Symbole, der Vorstellungen oder der
Gedankenprozesse angehdren. Das Verkiirzungsmerkmal besagt, dass im Allgemeinen nicht alle
Attribute, sondern nur solche, die als relevant erachtet werden (durch den Modellerschaffer oder den
Modellbenutzer), abgebildet werden. Der Pragmatismus besagt, dass es nicht nur Modelle ,,von etwas*
sind, sondern auch Modelle fiir eine Zielgruppe, zu einem bestimmten Zeitpunkt und fiir einen
bestimmten Zweck.

beschreibt

relevante
Konzepte der 6 ausgedriickt mit ¢
[ €------------1 Mitteln der i
Domine Metamodell K >———> Abstrakte Statlsch_e ]
<>_ Syntax Semantik
A A, A JAY
0.. E T
Subdomane E 0
'
1
R | Konkrete — DSL '
<<instanceof>> i Syntax

)

1

B :
ausgedriickt mit Mitteln der H

! <<synonym>>
]
erhilt Bedeutung durch : .
Formales | o o e . »|  Semantik Modellierungs
Modell sprache

Abbildung 3: Begriffsdefinition: Modellierung*

Die zu analysierende Sprache entspricht der Doméne. Das zu erstellende Metamodell stellt eine
Kombination aus der syntaktischen Beschreibung mit der statischen Semantik dar.

UML

Modelle konnen auf unterschiedliche Arten dargestellt werden, eine weit verbreitete Art ist die
grafische Darstellung mittels UML". Dies ist eine standardisierte Beschreibungssprache, die
Bezeichner fiir die bei einer Modellierung wichtigsten Begriffe definiert. UML spezifiziert eine Reihe
von Diagrammtypen. Im Folgenden wird ausschlieflich das Klassenmodell verwendet. Dieses Modell
spezifiziert Klassen'®, Schnittstellen und deren Bezichungen. In dieser Arbeit wird eine begrenzte
Menge der Objekte aus dem UML Klassendiagramm verwendet, die im Folgenden kurz erldutert
werden.

2 Nach [3]

" Nach [11]

** Aus [3], Seite 28

'S UML wird hier nur grundlegend erldutert, fiir Details wird auf die Spezifikation verwiesen:
http://www.omg.org/spec/UML/

' Der Begriff Klasse ist hier als abstrakter Begriff zu sehen, nicht als eine Klasse aus der Objektorientierung.
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Klasse

Klasse
{abstract}

Eine Klasse stellt einen Typ dar. Sie kann eine oder mehrere Klassen spezialisieren, sowie
Assoziationen und Abhéngigkeiten zu Klassen besitzen. Die eigentlichen Details, die bei einer Klasse
zusitzlich angegeben werden konnen, werden hier nicht verwendet, da sie fiir die Darstellung in dieser
Arbeit nicht relevant sind. Eine Klasse kann abstrakt sein, dies bedeutet sie dient nur als Uberklasse,
sie kann nicht direkt instanziert werden. Eine abstrakte Klasse wird mit dem Kennwort ,,abstract®
gekennzeichnet.

Generalisierung

Eine Generalisierung ist eine gerichtete Beziehung zwischen zwei Klassen. Die spezialisierte Klasse
ist auch Instanz der generalisierten Klassen (in diesem Beispiel ist links die Unterklasse).

Assoziation

Eine Assoziation stellt eine Beziehung zwischen Klassen dar, die mit Multiplizitdten annotiert wird.
Diese geben an, wie viele Objekte in Relation stehen. Typische Werte sind ,,1%, ,,0..1* maximal eins,
¥ beliebig viele und ,,1..** mindestens eins.

Aggregation und Komposition

<>

Die Aggregation stellt eine Beziehung zwischen Objekten und seinen Teilen dar.
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Eine Komposition ist ein Spezialfall der Aggregation und stellt eine Existenzabhingigkeit dar'’.

Metamodell

Ein Metamodell wiederum beschreibt nun seinerseits bestimmte Aspekte eines Modells. Die Begriffe
sind zunéchst rein relativ zu sehen. Ein Metamodell, das ein Modell hat, kann wiederum ein
Metamodell besitzen. Dieses liegt dann in Relation zum eigentlichen Modell auf der
Metametamodellebene.

Diese Meta-Beziehungen wiederholen sich allerdings nicht endlos, die vierte Ebene (in Abbildung 4:
Ebenen der OMG als M3 bezeichnet) ist selbstreferenziell.

describes v instanceof
1
Typ: Classifier
M3: Meta-Metamodel ID: 5346456
Name: Classifier
describes .
instanceof
¢ | Typ: Classifier
ID: 764535
M2: Metamodel Name: Klasse
Features: Attributes,
d ib Operations, Assoc's, ...
---------- escribes --- ; ————
N mstlanceof Typ: Klasse
ID: 21436456
M1: Model Name: Person
Attribute: Name, Firstn.
] * Operationen: ...
describes . Assoziationen: ...
¢ instanceof
l Typ: Person
MO: Instances ID: 05034503
Name: Doe

Vorname: John

Abbildung 4: Ebenen der OMG*®

In der Softwareentwicklung wird mit Modellen von Programmen eine Abbildung der zu erstellenden
Software erstellt. Die modellgetriebene Softwareentwicklung bietet die Moglichkeit ein UML-
Klassendiagramm so zu implementieren, dass eine Klasse des Metamodells einer Klasse des erzeugten
Programms entspricht. Dies ist sinnvoll, wenn man aus den Modellen des Programms direkt Quellcode
erzeugen will (und umgekehrt). Eine Variation dieses Ansatzes ist es, mithilfe eines Parsergenerators
einen Parser fiir eine Sprache zu erzeugen. Dann entspricht die Grammatik mit ihren Regeln und
Klassen des AST dem Metamodell.

4.3 Sprachtransformationen

Wihrend diese Arbeit eine Sprachtransformation von einer Hochsprache zu einer anderen betrachtet,
werden andere Sprachtransformationen deutlich hiufiger eingesetzt. So ist ein typischer
Kompiliervorgang eine Transformation von einer Sprache in (meist) Maschinencode — der ebenfalls
eine Sprache darstellt.

Durch den Ansatz, die Sprachtransformation iiber Metamodelle durchzufiihren, handelt es sich eher
um eine Modelltransformation. Die Transformation wird dabei selbst als eine Art seiteneffektfreies

17 Die Teile kénnen nicht ohne das Ganze existieren.
'8 Aus [3], Seite 62
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funktionales Programm gesehen, das die Bestandteile des einen Modells auf Teile des anderen
Modells abbildet.

Modell M Modell K

Modell- é >
D O transformation O
AN

Abbildung 5: Modelltransformation®?

Die Modelle sind Instanzen unterschiedlicher Metamodelle (in diesem Fall sind die Modelle die
Sprachen und die Metamodelle entsprechen der Menge ihrer Paradigmen und Konzepte).

Fiir diese Arbeit wird zunédchst das Metamodell M der Ausgangssprache erstellt, anschlieBend das
Metamodell K der Zielsprache erarbeitet und zum Abschluss werden die einzelnen
Transformationsschritte erldutert.

4.4 Eingesetzte Sprachen und Technologien

Im Folgenden werden alle eingesetzten Technologien beschrieben, um die praktische
Aufgabenstellung zu verdeutlichen. Hierbei werden allerdings nur diejenigen Aspekte beschrieben, die
im Umfang der praktischen Arbeit beriicksichtigt sind.

4.4.1 Haskell

Haskell ist eine rein funktionale Programmiersprache. Ende der 1980er Jahre sollte eine einheitliche,
standardisierte und moderne funktionale Sprache entwickelt werden, die fortan als Grundlage fiir
wissenschaftliche Arbeiten dienen sollte. 1990 erschien die erste Version 1.0 von Haskell, 1998 und
zuletzt 2010 wurde die Sprachspezifikation aktualisiert™.

Haskell ist statisch und stark typisiert. Statische Typisierung bedeutet, dass dem Compiler bereits zur
Kompilierzeit alle Typen von allen Ausdriicken bekannt sind. Starke Typisierung bedeutet, dass ein
Programm mit inkompatiblen Typen nicht kompilieren wird und Typen auch nicht automatisch
umgewandelt werden. Damit diese starke Typisierung allerdings keinen Mehraufwand in den
Deklarationen fiir den Entwickler darstellt, verwendet Haskell ein méchtiges Typinferenzsystem, das
einen Grofteil der Typen eines Programms automatisch erkennen und priifen kann. So sind in einem
normalen Programm wenig explizite Typdeklarationen notwendig.

' Aus [3], Seite 200
2 Diese Arbeit baut auf Haskell 2010 auf.
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Prelude> let fun x = x *x 5
Prelude> :t fun

fun :: Num a => a -> a
Prelude> let str x = x ++ ": "
Prelude> :t str

str :: [Char] -> [Char]

Automatische Typinferenz fiir Funktionen ohne explizite Typdeklaration (in GHCi)?!.

Als funktionale Sprache unterstiitzt Haskell das in 4.1.3 erwdhnte Currying, Lazy Evaluation und die
Seiteneffektfreiheit. Eine komplette Seiteneffektfreiheit ist allerdings oftmals sehr hinderlich: so
koénnen keine Dateien im Dateisystem gelesen oder geschrieben werden, es ist keine Interaktion mit
Benutzern méglich und Datums- und Zufallsfunktionen sind auch nur sehr eingeschriankt verwendbar.
Um diesem Umstand zu umgehen implementiert Haskell das Konzept der Monaden. Hierbei werden
Typen in Monaden gekapselt, die damit eine Grenze fiir Seiteneffekte darstellen. Das Programm
auBerhalb verbleibt seiteneffektfrei, wihrend innerhalb des Monaden Interaktion moglich ist.
Monaden werden in dieser Arbeit eigentlich nicht behandelt, sie sollen aber aus Griinden der
Vollstindigkeit erwéhnt werden. Hierzu definiert ein Monade typischerweise drei Schnittstellen: einen
Konstruktor, eine Einheitsfunktion und einen sogenannten Bind-Operator, der Anderungen am
innenliegenden Wert ermdglicht.

Haskell erlaubt Typvariablen, so kénnen typpolymorphe Funktionen geschrieben werden. Mit
monomorphen Typen miisste es beispielsweise unterschiedliche Funktionen fiir die Ldngenberechnung
einer String-Liste und einer Integer-Liste geben. Typpolymorphie erméglicht hierbei den tatséchlichen
Typ zu abstrahieren, da er fiir die Berechnung unbedeutend ist.

AuBerdem wird die Verwendung von algebraischen Datentypen in Haskell ermoglicht. Sie werden
durch Typkonstruktoren definiert und dienen der Erzeugung von neuen, zusammengesetzten
Datentypen. Sie stellen neben reguldren Typ-Umbenennungen (Haru fiihrt einen Typ ,,RubyFragment*
ein, der nur ein String mit einem anderen Namen ist) eine michtige Moglichkeit dar, um geschachtelte
Datenstrukturen wie Bdume zu erstellen. Konstruktoren ohne Argument erzeugen einen Enum-Typ.
Dieses Konzept wird noch erweitert durch GADTs>, die die algebraischen Datentypen um
parametrisierte Typen erweitern.

Durch die im vorigen Kapitel erwdhnte Bindung der Werte an Namen und die Darstellung der Werte
als nullstellige Funktionen ist ein Aufruf von Funktionen und ein Zugriff auf (vermeintliche)
Variablen transparent und Bedarf keiner besonderen Behandlung.

4.4.2 Glasgow Haskell Compiler (GHC)*

Der Glasgow Haskell Compiler (GHC), dessen erste Version 1992 im Zuge eines Forschungsprojektes
entstand, diente in seiner bisher iiber 20 jdhrigen Geschichte als Forschungsprojekt fiir viele
unterschiedliche Arbeiten im Compilerbau. Ein Ziel des GHC ist es, einen robusten und portablen
Compiler zu entwickeln, der performanten Maschinencode erzeugt. Auflerdem soll durch die modulare
Struktur die Erweiterbarkeit des Compilers als groBes Softwareprojekt gewéhrleistet werden. Und

2! Achtung: in GHCi ist die Bedeutung von ,,let“ bedeutend anders als in einem reguliren Haskell-Programm.
2 Generalized Algebraic Datatypes
2 Nach [2], [7] und [8]
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zuletzt soll der Compiler selbst als Forschungsobjekt dienen, um festzustellen, wie sich reale
Programme verhalten — um anschliefend bessere Compiler bauen und entwerfen zu konnen.

Der GHC besteht aus unterschiedlichen Schritten, die in einer Pipeline abgearbeitet werden. Das
Ergebnis eines Schrittes ist wiederum die Eingabe des darauffolgenden Schrittes. Da der erstellte
Quellcode nah an dem Aufbau und der Programmierschnittstelle (,,API*) des GHC angelehnt ist, wird

im Folgenden der strukturelle Aufbau und Ablauf einer Kompilierung erklért.

@

Parse

HsSyn RdrName ‘

Rename

HsSyn Name ‘

Typecheck

HsSyn Id ‘

Desugar

The Simplifier
CoreExpr Rewrite rules

Strictness analysis

Let-floating (inwards and

Simplify outwards)
Specialise overloaded functions
» Constructor specialisation

CoreExpr

CoreExpr
(with tidy names)
| Convert to IfaceSyn |
CoreExpr * IfaceSyn

(in A-normal form) | Serialise |

Convert to STG

Code generation

M.hi

(interface file)

Cmm (C--)
Pretty-print Generate Generate
C code machine code LLVM code

M.hc M.s M.1I
(C code) (asm code) (LLVM code)

Abbildung 6: Die Compiler-Phasen des GHC
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Die fiir Haru wesentlichen Phasen sind:

* Der Parser liest die Eingabedatei ein und erstellt aus dem Eingabequellcode einen abstrakten
Syntaxbaum (AST).

Der Renamer verbindet die einfachen Identifier-Strings im AST nun mit deren Bindings** und
fiigt ein eindeutiges Suffix fiir die Namen hinzu, um Namensiiberschneidungen zu vermeiden.

* Im Typecheck wird die Typinferenz durchgefiihrt, die Typisierung validiert (Typpriifung) und
die Namen werden durch eine Kombination aus Namen und Typ ersetzt.

*  Desugar konvertiert den Haskell AST in eine Darstellung in Core, der internen
Zwischensprache.

e Die Simplify-Phasen fiithren vielfiltige Optimierungen durch wie Variable Floating® oder
Common Sub-Expression Elimination®.

* CoreTidy bereinigt Bindings und benennt sie global eindeutig.

Die ersten drei Schritte konnte man als das Frontend gruppieren, alle Eingabefehler werden dort
entdeckt. Die nédchsten drei Schritte bis einschlieBlich CoreTidy sind die Optimierungsphasen, danach
beginnt das Backend. GHC verwendet eine Zwischensprache als Vorbereitung fiir die
Codegenerierung namens STG?’, aus der dann C-- Code generiert wird.

Fiir diese Arbeit interessant sind insbesondere das Frontend und die Optimierungsphasen. Hier wird
zundchst am Ende des Frontends die komplette Sprache Haskell in eine kleinere Sprache namens Core
umgewandelt, die dann anschlieBend weiter optimiert wird.

4.4.3Core

Core ist die interne Darstellungssprache des Programms. GHC hat hierfiir viele Jahre System F
verwendet. System F bezeichnet das Lambda-Kalkiil nach Church und Kleene, mit der Erweiterung
um polymorphe Typisierung. Dies ermdglicht die Arbeit mit schematisierten Funktionen.

Mit monomorpher Typisierung miisste es mehrere Langen-Funktionen fiir Listen geben,
beispielsweise eine Funktion fiir eine Liste von Strings und eine fiir eine Liste von Integer. Dies ist bei
polymorpher Typisierung nicht notwendig, da der Typ der Funktion mit dem Listen-Typ
parametrisiert werden kann.

Doch dieses System hat sich bei der Implementierung von GADTs™ als unzureichend herausgestellt
und wurde deswegen 2006 zu System FC* erweitert.

Der Grund intern eine zweite, vereinfachte Darstellung der Sprache zu verwenden ist, dass dadurch
viele Schritte entfallen. Core und Haskell sind gleich méchtig, allerdings ist die Syntax und das
Metamodell von Core signifikant kleiner. Optimierungen und Code-Generierung geschehen auf Basis
von Core. Bei einer Spracherweiterung von Haskell wird nur das Frontend angepasst, inklusive der
Umwandlung zu Core. Dadurch kann Haskell erweitert werden, ohne dass man fiir diese neuen

* Ein Binding in Haskell ist die Definition eines Namens. Dies kann der Name einer Funktion sein, als auch der Name einer
Variablen.

2 Verschiebt Let-Blocke: beispielsweise aus sich wiederholenden Ausdriicken heraus (um die mehrfache Ausfiihrung zu
vermeiden) oder in Zweige eines Case-Ausdrucks hinein, falls das Let nur fiir diesen Zweig gilt (und nur dort die
Variablenbindungen des Let verwendet werden).

% Eliminiert doppelte Code-Zweige. Durch die Seiteneffektfreiheit konnen gleiche Ausfiihrungen mit gleicher Eingabe nur
das gleiche Ergebnis erzeugen. Dies wird auch bei mehrfacher Verwendung nur einmal berechnet.

7 Kurz fiir ,,Spineless Tagless G-machine, [5]

* Siehe 4.4.1

% Siehe [12] (Appendix)
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Funktionen die Optimierungen anpassen miisste. In der Gesamtschau besteht Haskell im GHC also aus
3 voneinander relativ stark getrennten Strukturen:

* Dem Frontend (die eigentliche ,,Sprache Haskell*), das zu Core transformiert
*  Core, auf dem alle Optimierungen durchgefiihrt werden, das zu LLVM?® transformiert
* LLVM, das nativen Code fiir die aktuelle Maschine erzeugt

Durch diese Separierung konnen einzelne Bereiche des Compilers ohne grof3e Auswirkungen auf das
restliche Programm erweitert oder umgebaut werden.

Die Verwendung von Core ist jedoch nicht in der Sprachspezifikation von Haskell. GHC hat dies fiir
die eigene Compilerimplementierung so festgelegt. Da Haru allerdings auf dem GHC aufbaut, ist die
Sprache fiir den Compiler essenziell. Die Verwendung von Core verringert signifikant den Aufwand,
den ein Transformationstool aufbringen muss, um Haskell zu iibersetzen — hier die komplette
Grammatik von Core:

Symbol Classes

a,b,c,co — (type variable)

z, f —  (term variable)

c —  (coercion constant)

T —  (value type constructor)
Sh —  (n-ary type function)
K —  (data constructor)
Declarations

pgm — decl; e
decl — dataT:kK — xwhere
K:VaRVb:e.7—Ta
|  typeS,:E"—.
| axiomC:o1~o2

Sorts and kinds
[ — TY|CO Sorts
Kyt — *| K1 — ke |o1~o2 Kinds

Types and Coercions
d - a|T Atom of sort TY
g - c|C Atom of sort CO
P00, T, U,y — a|C|T|tp1goz|Sn¢”|Va:n.<p
| symy|yiov2 | Y@ |lefty | righty
v~ | rightcy | leftcy | v » vy

We use p, o, 7, and v for regular types, y for coercions, and ¢ for both.

Syntactic sugar

Types Kk=>0 = V-ik.0
Terms
u — z|K Variables and data constructors
e — u Term atoms
Aa:k.elep Type abstraction/application
Az:o.e| el ez Term abstraction/application

|

| .

| letz:oc=eiine;
| caseeiof p— ez
|

ery Cast
p — Kb:kTio Pattern
Environments

I' - e€|Tuio|d:ik|T,9:6|T,Sn:ik
A top-level environment binds only type constructors,
T, S, data constructors K, and coercion constants C.

Abbildung 7: Grammatik von Core*

* Dies gilt aktuell als der favorisierte Codeerzeugungspfad. Die direkte Maschinencode-Kompilierung ist hauptséchlich fiir
GHCi interessant, den Kommandozeileninterpreter von GHC.
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Haru verwendet zur Reduzierung der Komplexitit als Ausgangssprache Core. Core bietet aulerdem
einige fundamentale Vorteile:

* Haskell ist stark statisch und implizit typisiert, d.h. viele Typen werden durch Typinferenz
ermittelt. Core ist ebenso stark statisch typisiert, allerdings explizit. (Eigentlich wire die
Typisierung von Core nicht notwendig, da das Frontend das Programm bereits als typkorrekt
akzeptiert hat — aber hierdurch kdnnen die Simplifizierungsschritte validiert werden [diese
miissen die Typkorrektheit erhalten]).

* Core ist sehr stabil. In {iber 20 Jahren Verwendung musste es nur einmal erweitert werden (um
Type Coercions inkl. Casts), wéhrend der gesamte GHC um einen Faktor von 5 gewachsen
ist,

4.4.4 Ruby

Ruby wurde von Yukihiro Matsumoto entwickelt und die erste Version im Jahr 1995 ver6ffentlicht. Es
ist eine interpretierte Sprache. Nachdem Ruby anfangs mangels englischsprachiger Dokumentation
fast ausschlieBlich in Japan verwendet wurde, fand im Jahr 2000 eine Aktion statt, die Ruby auch
auBBerhalb Japans bekannt machen sollte. Heute wird Ruby als Open-Source-Projekt gepflegt, der
Quellcode findet sich auf der Code-Hosting-Plattform GitHub™. Die Sprache unterliegt keiner
schriftlich festgehaltenen Spezifikation, vielmehr ist sie durch die Ausfithrung spezifiziert. Das
Verhalten, das die Referenzimplementierung des Compilers erzeugt, legt die Semantik fest™.

Paradigmen

Ruby ist eine vollkommen objektorientierte Sprache, die sehr durch Konzepte aus Smalltalk inspiriert
wurde. So ist jedes Element in einem Programm auch tatsdchlich ein Objekt (,,alles ist ein Objekt®),
auch beispielsweise Klassen, Zahlen oder Zeichen. Weitere Programmierparadigmen sind ebenfalls in
der Sprache beriicksichtigt.

Ein rein prozedurales Programm kann durch den Umstand geschrieben werden, dass jedes Ruby
Programm automatisch in einem globalen main-Objekt™ erstellt wird, die eigentlich globalen
Funktionen sind dann Methoden dieses main-Objekts, selbst definierte Klassen sind innere Klassen.

def example
puts ,Hello World“
end

example

Ein lauffahiges prozedurales Ruby-Programm.

Funktionale Programmierung wird dadurch ermoglicht, dass alle Ausdriicke (,,Expressions®) in Ruby
einen Wert zuriickliefern, Anweisungen (,,Statements®) im eigentlichen Sinne existieren in Ruby
nicht®®. AuBerdem kénnen anonyme Funktionen als Codeblcke definiert werden.

1 Aus [12]

32 yon etwa 28.000 auf etwa 140.000, [2]

3 https://github.com/

 Es gibt RubySpec, eine Initiative, die eine ausfiihrbare Sprachspezifikation schreiben will (http://rubyspec.org/)
% Die geschieht fiir den Programmierer vollkommen transparent.

36 Auch wenn in der Grammatik ein Ausdruck als ,,STMT* bezeichnet wird.
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Syntaktische und semantische Besonderheiten

Jeder Ausdruck in Ruby hat einen Wert, auch Konstrukte, die dies in anderen Sprachen iiblicherweise
nicht gewéhrleisten.

example = if cond then ,wahr“ else ,falsch“ end

language = case scrutinee
when ,de“ then ,deutsch®
when ,en“ then ,englisch¥
else ,unbekannt*
end

Jeder Ausdruck in Ruby hat einen Riickgabewert, auch Sprachkonstrukte wie case und if.

Ruby erzwingt in eindeutigen Féllen keine Klammern bei einem Methodenaufruf. Dies sorgt fiir eine
transparente Verwendung von Variablen und Methoden ohne Argument.

a = ,variable a“
def b ()

smethode b«
end

puts a # ,variable a“
puts b # ,methode b

Beim Aufruf von b werden keine Klammern benétigt.

Der Wert des letzten Ausdrucks in einer Methode oder einer Expression ist automatisch auch der
Riickgabewert, es ist kein explizites ,,return* notwendig.

4.4.5 Verwandte Arbeiten

Es gibt eine Reihe weiterer Arbeiten, die Haskell in eine andere Zielsprache definieren. Neben dem
GHC, der als Hauptcompiler fiir Haskell in Maschinencode oder LLVM®’-Code iibersetzt (oder
interpretiert), ist aktuell JavaScript als Zielsprache beliebt. So existieren drei Projekte, die versuchen,
Haskell auch in der Webentwicklung zum Einsatz zu bringen:

Fay definiert eine Untermenge von Haskell als Quellsprache und kompiliert direkt von Haskell zu
JavaScript (ohne Umweg iiber STG). Haskell Closures werden direkt zu JavaScript Closures
kompiliert.

Haste implementiert den sogenannten Eval/Apply-Algorithmus, dhnlich zu STG, verwendet aber
ebenfalls JavaScript Closures und den JavaScript Stack.

GHCJS implementiert STG mit einem Stack, dhnlich zur nativen Implementierung, konvertiert aber
Closures selbst.

¥ LLVM ist ein Backend fiir Compiler, das in unterschiedlichste Zielarchitekturen iibersetzt. Der Gedanke dahinter ist, dass
Compiler nur noch das Frontend behandeln miissen, anschlieBend LLVM-Code erzeugen und damit das gesamte Backend
mit allen aufwéndigen Anpassungen fiir unterschiedliche Architekturen von LLVM iibernommen wird.
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5 Realisierung

Fiir die Transformation der Metamodelle werden zunichst die eigentlichen Metamodelle erstellt und
erldutert. AnschlieBend werden die einzelnen Bestandteile in das andere Modell transformiert. Bei
Haskell in Verbindung mit GHC ergibt sich eine Besonderheit, da intern erst in die Sprache Core
umgewandelt wird. Deswegen wird zusétzlich ein Metamodell fiir Core erstellt und die eigentliche
Transformation trennt sich dann in die Bestandteile Haskell zu Core und Core zu Ruby.

Haskell Core Ruby |

Haru
GHC /O

Abbildung 8: Ubersicht iiber die Sprachtransformationsschritte

Hierzu werden zu allen Aspekten kompakte UML-Diagramme erstellt, die den Fokus auf einzelne
Bereiche legen. Um die Diagramme tiibersichtlich zu halten wird die Gesamtansicht in viele Einzelteile
aufgespalten. Es werden nicht immer alle Einzelteile in einem eigenen Diagramm erldutert, auch
werden nicht alle Eigenschaften abgebildet — sondern jeweils nur die Teile, die fiir diese Arbeit
relevant sind.

,Entfernte* Klassen, die eine eigene Erklédrung haben und auf die in dem jeweiligen Diagramm nur
verwiesen wird, haben eine gestrichelte Umrandung. Assoziationen sind benannt, auler wenn die
Zieltypen selbst bereits angeben, welchem Zweck die Verbindung dient.

Die Begriffe in den Datenmodellen sind auf Englisch, da dadurch der Bruch zwischen der
Sprachspezifikation und dieser Arbeit mdglichst gering bleibt. In Kapitel 5 wird also hdufig zwischen
Englisch und Deutsch gewechselt.

5.1 Metamodell von Haskell

Das Metamodell wurde aus dem Language Report von 2010 von Haskell erstellt, der die
Sprachspezifikation darstellt. Ungenauigkeiten wurden durch Analyse von Spezifikationen des GHC
geklart, der eine sehr genaue Umsetzung der Sprachspezifikation darstellt — die internen Typen heiflen
sogar wie die Nichtterminale in der Grammatikdefinition.

Haskell verwendet einige globale Annahmen, die nicht direkt in den Metamodellen auftauchen:
Ausdriicke werden lazy™ ausgewertet, es wird Currying unterstiitzt und jeder Ausdruck muss
zwingend einen Riickgabetyp haben.

5.1.1 Ubersicht

Zunichst wird eine Ubersicht iiber ein komplettes Programm gegeben, bevor dann der eigentliche
Kern der Sprache, die Expressions modelliert werden.

% Das Ergebnis eines Ausdrucks wird nicht direkt berechnet, sondern erst wenn tatsichlich das konkrete Ergebnis benotigt
wird.
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Modul

Auf der obersten Ebene besteht ein Haskell-Programm aus Modulen. Wenn kein Modul explizit
angegeben ist, wird der Modulname ,,Main* verwendet und alle Funktionen exportiert.

T

imports
Module
*
1
entitites
*
Module Entity
peettTTeTTTTTT i
I ]
User Type : Binding '
| i
1
constructors

Type Constructor

Abbildung 9: Haskell: Module

Ein Haskell-Modul kann andere Module oder nur Teile davon (Funktionen und Typen) importieren
und anschlieBend verwenden. Das Modul ,,Prelude wird immer geladen und ist der Kern der
Laufzeitumgebung.

Ein einzelnes Haskell-Modul wiederum besteht auf der obersten Ebene aus Bindings und Typ-
Konstruktoren. Typausdriicke konnen viele verschieden Formen annehmen, wie Typumbenennung,
Definition eigener algebraischer Datentypen und Klasseninstanzen. Ein Binding ist eine benannte
Funktionsdefinition.

Typdefinitionen

Haskell-Datentypen sind entweder ein Basisdatentyp, eine zusammengesetzter Typ (,,Constructed
Type*) oder ein vom Benutzer definierter Typ.

Seite 25



REALISIERUNG

Haskell Type < Type Variable
T T *

parameters
{ordered}

P T T T T T K *

|

Basic Type : Constructed Type : User Type
|
= 1

Abbildung 10: Haskell: Types

Basic Types sind die Basisdatentypen, wie Bool, Integer oder String®. User Type, also vom Benutzer
definierte algebraische Datentypen wurden in der Haskell Sprachbeschreibung bereits ausfiihrlich

beschrieben.
> Constructed Type |<t
List Type Tuple Type Function Type
* * * *
Type Argument
Types
_________ LS
Type 1 : 1.%
! Haskell Type :
o h
1 Result Type

Abbildung 11: Haskell: Constructed Type

Constructed Types sind entweder eine Liste an Werten, ein Tupel aus Werten oder eine Funktion, die
Argumenttypen und einen Ergebnistyp hat. Die Listenelemente miissen alle vom gleichen Typ sein,
die Liste ist aber nach der Erstellung nicht in der Lange beschriankt. Das Tupel ist praktisch ein
Gegenstiick zur Liste: es erlaubt unterschiedliche Typen aber nach Erstellung erzwingt es eine feste
Lénge.

Datentypen werden in der Transformation zu einem grofen Teil ausgelassen. Dies hat den Grund, dass
die Typen zur Codeerzeugung zu weiten Teilen nicht mehr bendtigt werden. Die Typisierung hilft die
Typkorrektheit eines Programms festzustellen und Zuordnung von polymorphen Aufrufen aufzuldsen.

% Tatsichlich sind in GHC nur sehr wenige Typen ,,wired-in“. Die meisten auch nativen Typen sind iiber data-Definitionen
in der Standbibliothek definiert.
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Alle diese Schritte sind bereits erfolgreich durch die vorhergehenden Schritte im GHC erledigt. Einzig
die algebraischen Datentyp-Konstruktoren werden explizit tibersetzt, Literale und Operatoren werden
direkt bei der Erzeugung des Ruby-ASTs umgewandelt.

Bindings

Bindings sind ein allgemeiner Begriff fiir Bindungen von Ausdriicken an explizite Namen.

1 1
1 1
Where : Guard :
1 1

"""""" [ |

* | )

01 ! : Expression :

1 1 |

1 1 * 1 1
Binding "
{abstract} [ Body l<—— Guard Body body
(]
0..1 1
Pattern Function [———— > Function Binding Pattern Binding nested guard body
[
1 1 1 4 1 1
match body
I i .
1
Pattern i

! ! T |
= 1 I I
1
1 1 : Pattern !
1 1

pame (| (| @ -——TtY e

Pattern Assignment

[ 3 4
1 1 0.1

variable

1 result

R " result

<
)
3.
)
=
)

Abbildung 12: Haskell: Bindings

Bindings kénnen einerseits Funktionsdefinitionen auf oberster Ebene sein, Bindungen in Let-
Expressions oder Typdefinitionen fiir Funktionen. Sie kdnnen rekursiv oder nicht-rekursiv sein, was
schlicht angibt, ob in den Bindings Referenzen auf Variablen aus den Bindings selbst existieren (diese
also vor der Codeerzeugung topologisch sortiert werden miissen).

Ein Binding besteht aus einem Body, der den Rumpf der Definition angibt. Dieser kann entweder
selbst eine Expression sein, oder eine Reihe von Guards. Guards stellen einen Pattern Matching-
Mechanismus dar.

Der Kopf einer Funktion kann entweder ein Name mit einem optionalen Pattern sein (Pattern
Function) oder eine Pattern Zuweisung (Pattern Assignment). Beide Mechanismen zusammen
ermoglichen Pattern Matching auf Funktionsargumenten.
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-- Pattern Matching auf Funktionsargumenten
factorial 60 = 1
factorial n = n x (n - 1)

-- Pattern Matching fir Typ-Dekonstruktion
data Color = Red | Green | Blue

data ColoredText = ColoredText Color String
printText (ColoredText Red string) = ,red: , ++ string
printText (ColoredText Blue string) = ,blue: , ++ string

-- auch Wildcards sind moglich, die angeben, dass der eigentliche Wert nicht
-- von Interesse st (nur das mégliche Vorhandensein)
printText (ColoredText _ string) = ,sonstige Farbe: ,, ++ string

Pattern-Matching in Funktionsargumenten

Type Signatures dienen der Spezifikation von Argument-Typen und Ergebnistypen von Funktionen.

' I
I
I Expression :
|
o )
Function
Identifier
Type FTTTTTTTTT o !
. Definiti I
Type Signature 0% Haskell Type :
1 1 :
1.X
0...1
Context

Abbildung 13: Haskell: Type Signature

Sie werden entweder bendtigt, wenn der Compiler durch die Typinferenz Mehrdeutigkeiten entdeckt
und der Benutzer die Moglichkeiten einschrinken muss. Andererseits kann der Programmierer auch
den eigenen Code erst spezifizieren und danach iiberpriifen, ob die Implementierung der Spezifikation
genugt.

Context gibt hier den Kontext an, in dem die Funktion operiert. In Haskell sind dies meist Monaden —
die Funktion fiihrt Transformationen innerhalb des Monaden aus.

5.1.2 Expressions und Unterklassen

Nachdem die Grobstrukturen definiert sind, kommt nun der Kern der eigentlichen Sprache: die
Expressions.

Seite 28



REALISIERUNG

i Type Signature — Do
| Lambda — —— Application !

P i Expression N :

I Let ' Variable !

L i {abstract} b
. poTTTTTTTTTTTT T '
If — ———  Constructor !

i Case — i Literal i

Abbildung 14: Haskell: Expressions*

Expressions sind der Kern von Haskell und bilden das Grundgeriist des AST. Die Unterklassen der
Expressions sind die zentralen Sprachbestandteile, die den gesamten Programmfluss steuern.

Das Do Sprachkonstrukt dient der komfortableren Programmierung in Monaden. So kdnnen mehrere
Expressions wie von anderen Programmiersprachen gewohnt einfach untereinander geschrieben
werden und miissen nicht explizit mit den Monaden-Operatoren verbunden werden.

Im Schaubild nicht explizit aufgefiihrt sind Tupel- und Listen-Konstruktoren.

! I
I . I
: Expression :% I Expression :%
- : L.” : ______________ : 1..*
elements elements
{equal type}
Tupel - List >——
1 1
Abbildung 15: Haskell: Tuple Abbildung 16: Haskell: List

Tupel und Listen sind eine (geordnete) Menge an Expressions mit dem einzigen Unterschied, dass
Tupel eine feste Lidnge haben und beliebige Typen im Inneren besitzen. Eine Liste wiederum besitzt
keine feste Lénge, dafiir miissen alle enthaltenen Elemente vom selben Typ sein.

“ Die Anordnung der Elemente soll keine Gruppierung darstellen.
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m
x
©
=
D
wn
Q.
o
>

Literal

Abbildung 17: Haskell: Literal

Ein Literal stellt eine direkte Darstellung eines Wertes dar, beispielsweise Zahlen oder Zeichen.

Variable

Variable

Abbildung 18: Haskell: Variable

Eine Variable ist grundlegend ein Name. So kann es sich beispielsweise um einen Funktionsnamen,
einen Binding-Namen in einem Let-Block oder um den Namen eines benannten Case-Blocks handeln.

Constructor
> Constructor <+
List Constructor Tuple Constructor Named Constructor

¢
1

Constructorname

Abbildung 19: Haskell: Constructor

Ein allgemeiner Konstruktor. Kann entweder eine leere Liste oder ein leeres Tupel (oder beliebig
langes Tupel ohne Werte ,,(,,,,)“) erstellen oder ein Name eines globalen Typkonstruktors sein.
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body

Abbildung 20: Haskell: Lambda

Eine Lambda-Definition stellt eine anonyme Funktion dar. Sie besteht aus einer Liste an Argumenten
(arguments) und einem Funktionsrumpf (body). Der einzige Unterschied zwischen einer benannten

Funktion und einem Lambda ist, dass die benannten Funktion zusétzlich einen Namen hat. Sobald man

das Lambda einer Variablen zuweist sind sie jedoch anschlieBend dquivalent.

Section

operator

o
@

Variable

Abbildung 21: Haskell: Section

1

Section

[3

operand

Eine Section ist ein gemeinsamer Spezialfall der Lambdadefinition und der partiellen Anwendung. Sie
stellt eine Lambda-Definition eines Operators dar, bei dem eine Seite bereits gebunden ist. So gilt die

folgende Gleichung:

(operator e) = \x -> x operator e

Links Section, rechts Lambda-Definition
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Arithmetic Sequence

| I
|
—> Expression \
1, <
______________ 1 *
to
from
0.1
1 >
®| Arithmetic Sequence then

100

Abbildung 22: Haskell: Arithmetic Sequence

Eine Arithmetic Sequence ist ein Generatorionsmechanismus fiir Listen. So kann der Startwert (from),
ein optionaler Folgewert (¢hen) und ein optionaler Endwert (end, nur wenn auch then gegeben ist)
angegeben werden. Die Folge beginnt beim Startwert, fahrt mit dem Folgewert fort und wird
anschlieBend so lange fortgefiihrt, bis der Endwert erreicht oder {iberschritten ist. Als Spezialfall
konnen so auch unendliche Listen erzeugt werden.

-- erzeugt die Zahlen 1-10
[1, 2..10]

-- erzeugt eine unendliche Liste, beginnend bei 1
[1, 2..]

Arithmetic Sequence Beispiele
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List Comprehension

: <
. I
> Expression
1, ’ :
L, (]
T body
A :
|
| Pattern | body List Comprehension |
I K 1
¢
1 1
{Returntype = Bool}
1 1 1..”
L 4
Generator List Generators
{abstract}

List Generator Expression Generator

T

! Let :

| I

Abbildung 23: Haskell: List Comprehension

Eine List Comprehension beschreibt einen weiteren Weg, eine Liste zu fiillen. Hierbei wird ein Pattern
angegeben, anhand dieses dann die Liste gefiillt wird. Hierzu werden neben dem Pattern noch
Generatoren angegeben, die die Werte fiir die einzelnen Variablen des Patterns erzeugen.

—-- erzeugt: [(1)4): (1)5): (2)4): (2)5): (3)4): (3)5)]
[(x, y) | x <= [1, 2, 3], y <= [4, 5]]

List Comprehension Beispiel

Conditional (if)

1
1 [~~~ e
. |
—=> Expression
P <
o _____ |
A 1
condition
{Return Type = Bool} then else
If
f ¢ ¢
1 1
1

Abbildung 24: Haskell: Conditional
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Ein Conditional ist eine if-Bedingung, wie sie in den meisten Programmier-Sprachen vorkommt.
Allerdings gibt es zwei Besonderheiten: es gibt kein direktes elsif (es muss ein if im else-Zweig
angelegt werden) und das Conditional muss vollstdndig sein. Dies bedeutet, dass immer ein then- und
ein else-Zweig vorhanden sein muss. Dies ist eine direkte Folge aus der Forderung, dass jeder
Ausdruck einen Riickgabewert hat.

Die eigentliche Bedingung (condition) ist eine allgemeine Expression, mit der Einschrinkung, dass sie
einen booleschen Wert zuriickliefern muss.

Application
PoTTTTTT T 1
O o [ ity
[ Expression : 1 : :
: —————————————— i Variable Argument —|>: Variable !
[
I
I
! i
L. ‘ fxor} o ______
1 1 | 1 ! !
Application * f Constructor Argument —l>: Constructor :
i L
L3 [ .
0.1 1 |
|
applicant 1 Tttt

I I
I I
Literal Argument —l>: Literal :
I I

Abbildung 25: Haskell: Application

Eine Application, also ein Aufruf einer Funktion, weist einige Besonderheiten auf. Einerseits muss der
Aufruf immer mit mindestens einem Argument geschehen. Dies ist logisch, da durch die
Seiteneffektfreiheit ein Aufruf einer Funktion ohne Parameter nur einen konstanten Wert liefern kann
(und dadurch intern nicht erst als Funktion dargestellt werden muss).

Andererseits muss der Aufruf immer mit genau einem Argument geschehen. Aufrufe mit mehreren
Argument sind also in Wirklichkeit mehrere sequenzielle Aufrufe mit jeweils einem Argument.

Seite 34



REALISIERUNG

body

Let

¢

bindings

Abbildung 26: Haskell: Let

Eine Let-Bindung fiihrt lokale Variablen und Umbenennungen ein. Let und where (siehe Binding) sind
bis auf einen Unterschied identisch: ein Let-Binding ist lokal begrenzt, ein where-Ausdruck gilt immer
fiir die gesamte Funktion.

Beim Let-Binding werden lokale Bindings eingefiihrt (lokale Namen), die dann fiir den Rumpf (body)
gelten.
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Case
T i
%: Expression :
1o 11
) A
scrutinee
1
. 4 Case
¢
1
1 *
x [TTTTTTTTmooos 1
Case Alternative ! 0... | L. :
{abstract} > | Binding |
where L '
1 body
Guard Alternative Pattern Alternative [
[3 [3 [3
1 1 1
guard match
match
1 1
______________ Al P |
1
[}

Abbildung 27: Haskell: Case

Die Case-Unterscheidung ist der vermutlich méachtigste Expression-Typ*'. Sie besteht im
Wesentlichen aus einem scrutinee® , dessen Wert die verwendete Alternative bestimmt. Die
Alternativen sind entweder Guards oder Pattern Matchings. Auflerdem kann optional noch ein
globales where definiert werden, das Bindings, die {iber alle Alternativen giiltig sind, einfiihrt.

4! Zumindest sehen das die Core-Forscher so und wandeln viele Konzepte aus Haskell in Case-Konstrukte um, siche 5.4
“ Dies ist eine Bezeichnung, die direkt aus dem GHC Kommentar entnommen ist und auf Deutsch in etwa ,,zu priifendes
Element* bedeutet. [16]
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5.1.3Wichtige Unterklassen

Guard
> Guard <t
A
Pattern Guard Local Declaration Boolen Guard
{Expression Type = Bool}
I Vo o Vo ;
M 1 : 1
: Let : 1 Expression :
1 ! 1
1 1

Abbildung 28: Haskell: Guard

Ein Guard wird fiir das Matching von Werten verwendet und ist entweder ein boolescher Ausdruck,
eine lokale Let-Deklaration oder ein Pattern. Beim Pattern Guard wird ein Pattern mit einer gegeben
Expression verglichen und entsprechend ausgewertet.
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Pattern
:_ _____________ | as-Declaration
: Variable :
e : 0.1
1
®
<t
————————> Pattern
<

. Type Constructor . .
Literal Pattern P Patternu Wildcard Deconstruction Pattern

_______ vV o,

! 1

: Literal 1 Tuple Deconstruction List Deconstruction

I \ Pattern Pattern
o ____ |

1 1
{ordered} {ordered}
1.7 1.7
_____________ hl —_———=== _—=====

o
QO
=
=
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~
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>

Abbildung 29: Haskell: Pattern®

Patterns werden an vielen Stellen in der Sprache verwendet und dienen dem Vergleichen von
verschiedenen Werten. Sie lassen insbesondere aber die Typ-Dekonstruktion zu, die ein komfortabler
Weg ist, um zusammengesetzte Typen zu zerlegen (zum Beispiel algebraische Datentypen, Listen oder
Tupel).

5.2 Metamodell von Core

Aus der Haskell-Sprache und dessen Metamodell wird im GHC zunéchst Core erzeugt. Core ist eine
Zwischensprache, die viele Konzepte von Haskell vereinheitlicht, so dass die Vielfalt der Konzepte
deutlich geringer ist — was die weitere Verarbeitung des Programms vereinfacht. Nichtsdestotrotz
konnen alle Konzepte von Haskell in Core abgebildet werden. Alle Erweiterungen von Haskell iiber
Core sind reiner ,,syntaktischer Zucker®, die die Programmierung in der Sprache angenehmer gestalten
sollen und keinen funktionalen Mehrwert bieten.

The existence of Core has also proved to be a tremendous sanity check on the design of the source
language. Our users constantly suggest new features that they would like in the language. Sometimes
these features are manifestly "syntactic sugar", convenient new syntax for something you can do
already. But sometimes they are deeper, and it can be hard to tell how far-reaching the feature is.

“ Pattern ist hier nochmal explizit als Referenz aufgefiihrt, auch wenn die Klasse in diesem Schaubild definiert ist. Dies hat
rein pragmatische Griinde: die Verbindungen quer durch das Schaubild hitten das Versténdnis gestort.
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Core gives us a precise way to evaluate such features. If the feature can readily be translated into
Core, that reassures us that nothing fundamentally new is going on: the new feature is syntactic-
sugar-like. On the other hand, if it would require an extension to Core, then we think much, much
more carefully. — Simon Marlow und Simon Peyton-Jones™

Core vereinfacht viele Sonderfélle von Haskell, generalisiert aber gleichzeitig das Metamodell und
den AST. Dies hat pragmatische Griinde: es macht die Definitionen im AST einheitlicher und senkt
die Anzahl der Typkonstruktoren erheblich. Dafiir hat man nun jedoch Feinheiten, die dadurch, dass
allgemeine Expressions verwendet werden, so eigentlich nicht gegeben sind. Ein Beispiel45 ist der Typ
,Arg® also ein Argument einer Applikation. Wihrend Arg einfach als Synonym fiir Expression
definiert ist, kann nur Arg als erstes Element eine Typdefinition haben. Wahrend syntaktisch jede
Expression eine Typdefinition einfithren kann, ist es semantisch fiir das erste Argument nur so
festgelegt, dass das nur fiir Argumente erlaubt ist.

5.2.1 Ubersicht

Module

Top-Level-Binding Datatype Declaration

Type Constructor :
{abstract} !

Abbildung 30: Core: Module

Ein Modul besteht, dhnlich zu Haskell, aus Typ-Deklarationen und Top-Level Bindings.

“ Aus [2]
4 Aus dem Kommentar zum Typ ,,Arg* in [17]
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Core Binding

[: Core Binding :]
{abstract}

Non-recursive Binding Recursive Binding

Single Core Binding

e |

! I
|

. |
I Expression
|
|

Abbildung 31: Core: Core Binding

Ein Core-Binding kann, dhnlich zu Haskell, rekursiv oder nicht-rekursiv sein. Hier hat sich die
Definition allerdings erheblich vereinfacht: ein einzelnes Binding (beispielsweise eine
Funktionsdefinition) besteht nur noch aus einem Namen (Variable) und einem Rumpf (Expression).

Type Constructor

Type Constructor
{abstract}

A

Data Declaration Type Synonyms Newtype Class Declaration

Abbildung 32: Core: Type Constructor
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Type Constructors sind, bis auf Benennungsunterschiede zu Haskell, weitgehend unveréndert. Es ist

jedoch moglich, dass durch Inlining einzelne Typ-Konstruktor nun verschwunden sind, da alle

Verweise inline verarbeitet werden konnten®.

5.2.2 Expressions und Unterklassen

Abbildung 33: Core: Expression

Expression
{abstract}

Expressions sind im prinzipiellen Aufbau zu Haskell unverandert, es sind nur einige Félle entfallen.

Die Details zu den entfallenen Féllen wird im Kapitel 5.4 beschrieben. Expressions hat noch weitere
Unterklassen, die hier nicht aufgefiihrt werden, namentlich 7Tick, Type und Coercion.

Literal

Literal

Abbildung 34: Core: Literal

Ein Literal ist die direkte Darstellung eines Wertes (in Core hat sie etwas an Abstraktionsgrad verloren

und ist nun intern niher an der Hardwareebene, dies hat auf das Modell jedoch keinen Einfluss).

* Vergleiche 7.3
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Variable und Identifier

Variable

Identifier > Type

+Name
+ Modulename

Abbildung 35: Core: Variable

Eine Variable ist im Grunde ein Name (/dentifier) mit einem Typ und etwas erweiterten Informationen
iiber die Variable und ihre Verwendungen.

Lambda

Lambda

body

|
|

|

! Variable :<]7 Argument
|

|

Abbildung 36: Core: Lambda

Lambda-Definition wurden im Vergleich zu Haskell etwas verdndert. Sie bestehen nun aus genau
einem Parameter und einer Expression als Rumpf (body).
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Application

Application

applicant arguments

Abbildung 37: Core: Application

Applications verbleiben im Vergleich zu Haskell unveréndert. Genau ein Argument und eine
Expression als body. Der Ausdruck des Aufrufenden (applicant) kann entweder trivialerweise ein
Name sein (als Spezialfall der Expression), oder auch eine allgemeine Expression. Dies ermoglicht
direkte verkette Aufrufe (zum Beispiel durch Currying).

Let

Let

body

i
I

. . | . .
: Core Binding ,<]7 Let-Binding
I

Abbildung 38: Core: Let

Let besteht aus einem Core Binding und dem Rumpf, in denen die Bindings gelten. Es fiihrt in den
Bindings lokale Namen und Umbenennung ein, die im Body Giiltigkeit besitzen.
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Abbildung 39: Core: Case

Auch das Case-Statement besteht im Wesentlichen aus den Elementen, die es bereits in Haskell hatte.
Es hat immer noch einen scrutinee, der die auszufithrende Alternative bestimmt, sowie ein Binding,
dass das Ergebnis der scrutinee-Auswertung bindet. Die Alternativen haben jeweils einen body und
eine Moglichkeit, lokale weitere Alternativen zu definieren. Forthin kann jede Alternative als Guard
entweder ein Literal oder einen Data Constructor besitzen, oder immer giiltig sein (Default).

5.3 Metamodell von Ruby

Das Metamodell von Ruby wird nur in dem Umfang behandelt, in dem es benétigt wird, um einerseits
die Core-Metamodelle in Ruby zu transformieren. Dies umfasst nur einen sehr kleinen Teil der
Konzepte der Sprache, was allerdings nur bedeutet, welche Méchtigkeit diese bereits besitzen.

Das Metamodell wurde zu groB3en Teilen aus der Grammatikdefinition der offiziellen Distribution
erstellt, einige Details wurden in der Ausfiihrung validiert.
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5.3.1 Ubersicht

Programm
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Abbildung 40: Ruby: Program

Ein Ruby-Programm besteht aus Modulen, Klassen, Funktionen und Expressions auf der obersten
Ebene. Es sind also deutlich weniger Restriktionen, als das bei den anderen Sprachen der Fall war.

Function Definition

1 1 |
|
Function Definition | 1 Expression :
body : :
1 1
arguments name
* 1
Yy ___ N _ .
l
|
l
|

=
(0]
>
=5
=N
0]
=

Abbildung 41: Ruby: Function Definition

Eine Funktionsdefinition in Ruby besteht aus einem Namen, Argumenten und einem Body. Ruby
erlaubt auBerdem Modifikatoren auf den Argumenten, wie beispielsweise den Splat-Operator ,,*, der
alle weiteren Argumente sammelt, in einem Array zusammenfasst und in die Funktion gibt.

def fun (*xargs)

p args
end

fun 2, 3, 4, 5
# > [2, 3, 4, 5]

Einsatz des Splat-Operators
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Class Definition

Class Definition

- - ——— = = ———————————

e e - o — — — —— ——— —————————

Abbildung 42: Ruby: Class Definition

Class Definition umfasst im Wesentlichen zunichst einen Namen fiir die Klasse. Das Klassenkonzept
ist in einer objektorientierten Sprache natiirlicherweise sehr umfangreich, hier wird aber nur der Teil
vorgestellt, der fiir die tatsdchliche Abbildung der Konzepte benétigt wird.

Klassen werden im erzeugten Code nur fiir die Implementierung des Typ-Systems verwendet und dort
auch nur, um den Array-Typ mit eigenem Namen zu redefinieren.

5.3.2 Expression und Unterklassen

Expression

i Conditional i——|> Expression <———+——— Identifier i
L {abstract} o !
| Assignment ——— — Literal |

O
)
wn
D

Abbildung 43: Ruby: Expression

Die Unterklassen der Expression sind zumindest namentlich weitgehend deckungsgleich mit denen,
die auch Haskell unterstiitzt. Funktionale Expressions, wie Let fallen weg, dafiir kommen imperative
Konzepte wie Assignment hinzu.
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Abbildung 44: Ruby: Literal

Ein Literal in Ruby ist, wie alle anderen Elemente auch, ein Objekt. Es wird aber regulér iiber ein
Literal im Quellcode definiert, dort gibt es also keine Anderung (wichtig fiir die Codeerzeugung).

Variable

Variable

Abbildung 45: Ruby: Variable

Eine Variable in Ruby ist im Wesentlichen ein Namen. Durch die sehr dynamische Natur von Ruby
kann iiber die Variable zur Laufzeit allerdings wesentlich mehr herausgefunden werden, als von einem
kompilierten Haskell-Programm.
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Assignment
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Abbildung 46: Ruby: Assignment

Eine Zuweisung (4ssignment) besteht aus der Expression, deren Wert anschlieBend an einen Identifier
zugewiesen wird.

Lambda

body

Lambda >

parameters

a
®
S
=
=
®
-

Abbildung 47: Ruby: Lambda

Eine Lambda-Definition funktioniert in Ruby iiber die Instanzierung eines Proc-Objekts. Konzeptuell
bleibt aber, dass ein Lambda aus einer Expression als body und einer beliebigen Anzahl Parametern
besteht.
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Application

* | 1

arguments

Abbildung 48: Ruby: Application

Ein Aufruf (dpplication) in Ruby besteht aus einer Expression, deren Ergebnis mit Argumenten

aufgerufen wird.

I
|

—=> Expression |<—
|

—@| Application [@——

Conditional
1 e ______
i P O
i Expression =—
—_— !
| ZT
Conditional [@——
condition body
{Resulttype = Bool} 1 1
if elsif
1
Alternative
1 1

Abbildung 49: Ruby: Conditional

body

else

Ein Conditional ist eine if-else-Kette bestehend aus Bedingungen und Expressions als Rumpf des

Zweigs. Elsif wird unterstiitzt.
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Case
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Abbildung 50: Ruby: Case

Case existiert in Ruby auch, hat jedoch eine Besonderheit. Beim Case wird sequenziell jeder guard
mit dem Wert des scrutinee verglichen, in Code ausgedriickt ,,guard == scrutinee®. Dies schrinkt die
Ausdruckskraft der Case-Expression im Vergleich zu Haskell leicht ein.

5.4 Transformation Haskell zu Core

Prinzipiell ist die Transformation von Haskell zu Core eine Reduktion. Es fallen Konzepte weg, es
kommen jedoch keine neuen hinzu. Dies dient vor allem einer Verringerung der Komplexitit der
Konzepte der Sprache und des Umfangs fiir die weitere Behandlung innerhalb des GHCs. Diese
Verianderungen verringern jedoch nicht die Méchtigkeit der Sprache.

5.4.1 Gemeinsame Aspekte

Da Haskell eine Erweiterung von Core ist, ergeben sich natiirlich viele gemeinsame Konzepte.

Let-Bindings, Variablen, Literale, Applikationen und die Modulstruktur, sowie alle nativen
Datentypen sind unverindert. Auch das Typsystem bleibt bis auf eventuelles Inlining selten
verwendeter Typen erhalten.

Top-Level-Bindings bleiben, ebenso wie Case-Expressions, bis auf die Vereinfachung der
Bezeichnerausdriicke ebenfalls erhalten.

5.4.2 Unterschiede

Im Folgenden werden die Transformationen der einzelnen Aspekte, die in der Originalform nicht mehr
vorhanden sind, beschrieben.
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Pattern Matches und Guards

Patterns und Guards sind propagiert. Dies bedeutet, dass die geschachtelten Pattern Matches nun
geschachtelte Case-Konstruktionen sind, die jeweils einzeln auf die Struktur der Elemente tiberpriifen.
Auch Pattern Matching in Funktionsargumenten wurde in den Funktionsrumpf als Case-Anweisung
propagiert.

Die Typinferenz ist beendet und die Typen wurden den Bezeichnern und Ausdriicken zugewiesen. Die
Typdefinitionen sind, bis auf die Konstruktoren, aus dem AST entfernt.

List Comprehensions

List Comprehensions konnen direkt durch Aufrufe von map, filter und concat umgewandelt werden, es
sind keine gesonderten Sprachfunktionen notwendig. Bei der Implementierung wird iiber alle
generierten Werte mit Map iteriert, ungiiltige Kombinationen gefiltert, die Kombinationsfunktion
(definiert durch das Pattern) angewendet und die Ergebnisse zu einer Liste mittels concat
zusammengefasst.

Arithmetic Sequences

Genau wie List Comprehensions konnen auch Arithmetic Sequences sehr einfach in der
Laufzeitumgebung implementiert werden. So wird dies intern von Core durchgefiihrt; die Generatoren
aus Haskell werden zu simplen Aufrufen interner Laufzeitfunktionen von Core.

Conditional

Da ein If-Else-Konstrukt einen Spezialfall einer Case-Anweisung darstellt (mit den Alternativen True
und False) kann dieses Konzept trivial transformiert werden.

Sections

Diese werden in Lambda-Definition umgewandelt werden (siehe das Kapitel zu Sections in der
Metamodelldefinition von Haskell).

Lambda-Definition

Diese werden so transformiert, dass jede Definition maximal ein Argument hat. Auch dies ist trivial
moglich, indem man fiir die Anzahl an Argumenten Lambda-Ausdriicke schachtelt, von der die
innerste den eigentlichen Rumpf der Funktion erhélt und jede Ebene das Argument aus der
urspriinglichen Argumentsliste, das ihrer Schachtelungstiefe entspricht.

lambda { |a, b, c|
a+b+c

}

# wird umgewandelt zu

lambda { |a|
lambda { |b|
lambda{ |c|
a+b+c
}
}
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Lambda Umstrukturierung beispielhaft in Ruby-Quellcode skizziert.

5.5 Transformation Core zu Ruby

Wihrend die Transformation von Haskell zu Core noch innerhalb des gleichen Paradigmas statt fand
und demnach keine groflen konzeptuellen Verdnderungen zu erwarten waren, konnten hier bei Ruby
mehr Unterschiede auftreten.

Wie sich herausstellen wird, kann die Transformation jedoch trotzdem ohne komplexe Teilschritte
durchgefiihrt werden.

5.5.1Gemeinsame Aspekte

Direkt tibernommen werden kdnnen alle Aspekte auf einer niedrigen Ebene wie Literale und
Variablen. Die unterschiedliche interne Darstellung der Literale ist dabei keine konzeptuelle
Differenz, sondern eine technische®’. Prinzipiell kénnten auch Lambda-Definition fast unveréindert
iibernommen werden, aber im Folgenden wird versucht, dies noch zu optimieren.

5.5.2 Transformation der einzelnen Core-Aspekte

Binding
Ein Binding wird in Ruby direkt zu einer globalen Methoden-Definition (fiir Typdefinition sieche
,,Transformation des Typsystems®).

Transformation des Typsystems

Das Typsystem wird in Ruby-Klassen transformiert, da Typen in objektorientierten Sprachen von
Klassen représentiert werden.

Hierzu wird fiir jeden Typ-Namen eine Klasse als Unterklasse von Array erstellt, die als Konstruktor-
Parameter ein Array von Expressions nimmt. Dieses Array stellt die Typ-Konstruktor-Parameter dar.
Auf diesem Weg sind sowohl geschachtelte algebraische Datentypen moglich, als auch die Typ-
Uberpriifung mittels Uberpriifung der Klasse der Typvariable.

Dies ist ein vereinfachendes Verfahren, dass fiir die Transformation der Sprache jedoch geniigt: die
Typen werden bei der Code-Generierung im Grunde nur noch fiir Darstellungswechsel benétigt, aber
nicht mehr um Typpriifung zu betreiben. Diese wurde bereits in Haskell statisch durchgefiihrt und bei
der Transformation wird die Typsicherheit erhalten bzw. das Typsystem wird sogar permissiver.
Typfehler zur Laufzeit sind also nicht méglich.

Case
Das Case-Statement kann in der Form aus Haskell nicht direkt in Ruby abgebildet werden, da durch
die Bindung des Vergleichs mittels ,==* dies die Vergleichsmoglichkeiten leicht eischrankt™.

Die Losung ist jedoch einfach, da ein Case-Ausdruck in Ruby semantisch sein Spezialfall einer if-
elsif-else-Kaskade ist. Die Transformation ist dann unkompliziert: die Alternativen werden zu if-elsif

47 Ubrigens auch Themen wie unterschiedliche Wertebereiche fiir native Datentypen.
* Im Grunde sind dies Implementierungsdetails, die allerdings zwingend Anderungen des Ziel-Metamodells zur Folge haben.

Seite 52



IMPLEMENTIERUNG DES COMPILERS

Zeigen, die optionale Default-Alternative zum else-Zweig. Die Vergleiche in den if-Bedingungen
werden den Alternativen selbst tiberlassen, sie erhalten nur den scrutinee-Identifier und konnen mit
diesem beliebige Vergleiche generieren.

Let

Wihrend der Body der Let-Bindings direkt iibernommen werden kann, muss der Binding-Block in
eine (sortierte) Liste von Assignments transformiert werden. Als Besonderheit konnte man den Body
und die Assignments in einen direkt ausgefiihrten Lambda-Block aus der Sichtbarkeit nehmen um
auch das Konzept der lokalen Namen direkt abzubilden.

Dies ist allerdings nicht notwendig, da GHC in Core global eindeutige Namen vergibt, die bei der
Code-Erzeugung verwendet werden.

Application und Lambda

Wihrend die einstelligen Applications und Lambda-Definition sich zwar in dieser Form auch in Ruby
darstellen lassen, kann auch versucht werden, etwas ,.,typischeren* imperativen Code zu erzeugen.

Hierzu koénnen direkt geschachtelte Lambda-Blocke wieder in einen Block mit mehreren Parametern
transformiert werden; sowie bei den Aufrufen direkt aufeinanderfolgende Argumente
zusammengefasst werden. Dies ist keine zwingend notwendige Transformation, erzeugt aber eine
Struktur, die mehr mit der Idee einer sauberen Ruby-Implementierung zu tun hat™.

Wie sich herausstellt, ist diese Transformation allerdings zunachst unsinnig, da je nach Currying-
Implementierung diese Transformationsschritte in der Code-Generierung wieder riickgingig gemacht
werden. Trotzdem lohnt sich die Transformation, da der Mehraufwand in der Code-Generierung trivial
ist, aber die Analyse und Optimierung des Ruby-ASTs vereinfacht wird.

6 Implementierung des Compilers

Ahnlich wie Fay™ geht Haru nicht den Weg iiber STG, sondern kompiliert aus Core direkt zu Ruby.
Einerseits, weil Core ein besseres theoretisches Fundament darstellt und man daher die Modellierung
darauf aufbauen kann, andererseits weil die Dokumentation zu Core bedeutend besser ist. Dies ist ein
nicht zu unterschétzender Faktor in der Implementierung eines Systems. Ein Nachteil ist, dass einige
Typoptimierungen dadurch noch nicht durchgefiihrt wurden — dies ist fiir die Codegenerierung in
Ruby aber nicht hinderlich beziehungsweise kann, soweit benétigt, auch selbst durchgefiihrt werden.

Haru trifft einige vereinfachende Annahmen:

* Typisierung der Literale wird fast komplett ignoriert. Das Eingabeprogramm wurde bereits als
typkorrekt analysiert, die Literale werden umgewandelt und das restliche Typsystem ist soweit
kompatibel (bis auf Listen und Strings — dies wird allerdings in der Runtime geldst).

* Das restliche Typsystem wird mittels Arrays von Werten abgebildet. Auch hier gilt: das
Programm wurde bereits als typkorrekt bestdtigt, wie die Typen intern dargestellt werden, ist
irrelevant. Das Hauptaugenmerk liegt auf der korrekten Konstruktion und Dekonstruktion der
geschachtelten Datentypen, die mit Arrays sehr einfach implementiert ist.

* Diese Idee hinter dem Ruby-Code ist dann ein informales Metametamodell.
* Siche 4.4.5
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Die Implementierung von Haru transformiert den GHC AST in einen Ruby AST®' und diesen dann zu
Ruby Quellcode. Die Runtime ist eine statische Ruby-Datei und wird nach der Quellcode-Generierung
einfach vor jedes Modul kopiert™.

Haskell AST Core AST Ruby AST Ruby Code
Runtime

]
— B

B — = =
.hs

GHC GHC Haru.Transform Haru.Generator Haru

Abbildung 51: Haru Pipeline

Zunichst wird das Modul vorbereitet. Hierzu wird die Datei geladen, in die Core-Darstellung
umgewandelt und die GHC Optimierungsschritte durchgefiihrt.

-- | Prepares a module for compilation
- Takes the raw loaded module and generates the module details.
-- These details ("guts") contain the complete information about the

- module, like bindings, type declarations and imports.

-- The different function calls are the single steps of the GHC pipeline.

-- Parameters:
- - moduleSummary The summary of the module to compile
prepareModule :: (GhcMonad m) => ModSummary -> m (CgGuts, ModDetails)

prepareModule moduleSummary = do

env <- getSession

pgm <- parseModule moduleSummary
>>= typecheckModule
>>= desugarModule
>>= 1iftI0 . hscSimplify env . coreModule
>>= 1iftI0O . tidyProgram env

return pgm

Generierung des GHC-ASTs. Im Grunde werden hauptsachlich die fiinf Schritte der GHC-Pipeline ,,parseModule®,
stypecheckModule, ,desugarModule®, ,hasSimplify“ und ,tidyProgram* ausgefiihrt.

Die eigentliche Kompilierung zu Ruby funktioniert &hnlich wie GHC auch reguldren Haskell-Code
kompiliert. Zunéchst generiert Haru den GHC-AST aus einer Haskell-Datei mittels obiger
prepareModule Funktion. AnschlieBend wird die Runtime geladen, die Typkonstruktoren in Ruby
erstellt, aus dem Ruby-AST Quellcode erstellt und alles konkateniert in die Source-Datei geschrieben.

*! Es ist nicht wirklich ein Ruby AST, aber ein an Ruby angepasster AST, der die Codegenerierung einfacher gestaltet.

52 Als eine Art statischem Linken. Dies verhindert aktuell allerdings das importieren mehrerer Dateien gegenseitig, da dann
die Funktionen mehrfach definiert sind. Dies ldsst sich beim Einbau aber einfach dadurch 16sen, dass die Runtime in ein
eigenes Modul kommt, das jeweils durch Ruby eingebunden (,,require*) wird.
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-- | Compiles a single module

- Takes the flags, the output file name and the module summary,
-= generates ruby code and writes it to the output file.

- Parameters:

-- - dynFlags Dynamic flags

- - outputFile The output file name

- - moduleSummary The pregenerated module summary, including the core bindings
compileModule :: (GhcMonad m) => DynFlags -> String -> ModSummary -> m ()

compileModule dynFlags outputFile moduleSummary = do

-- Generate the module details by GHC, containing the Core AST

(cgGuts, modDetails) <- prepareModule moduleSummary

-- Load the runtime code

runtimeCode <- 1iftIO $ runtimeCode

let
-- Collect useful compiler data (data about the program being compiled)
compilerData = generateCompilerData rubyAST
-- Generate code for type constructors
typeConstructorCode = generateTypeConstructors $ transformTypeConstructors (cg_tycons cgGuts)
-- Generate the Ruby AST from the Core AST

rubyAST = map transformBinding (cg_binds cgGuts)
-- Generate Ruby Code from the Ruby AST
programCode = join "\n\n" $ map (generateProgram compilerData) rubyAST

-- Concatenate all code parts to create the complete source file contents
completeProgramCode = runtimeCode ++ "\n\n" ++ typeConstructorCode ++ "\n\n" ++ programCode
in do

-- Write the contents to the ruby file

1TiftIO $ writeOutput outputFile completeProgramCode

Log.log $ " Compilation successfull."

Die Hauptfunktion des Compilers: compileModule kompiliert ein Haskell-Modul zu Ruby-Code.

Wihrend einige Core-Bestandteil einfach zu transformieren sind wie zum Beispiel Literale, sind fiir
andere Bestandteile teils komplizierte Anpassungen notwendig. Einige dieser Anpassungen werden im
Folgenden erlautert.

6.1 Besonderheiten der Implementierung

Haru ignoriert einen Grofiteil der Typisierung des urspriinglichen Haskell-Programms, auflerdem
werden die skalaren Datentypen explizit umgewandelt. Beim Verhalten dieser Typen gibt es ebenfalls
wenig Anpassungsbedarf, da das grundsitzliche Verhalten (Operatoren, Transformationen) zu Haskell
dhnlich ist beziehungsweise permissiver.

0.1.1 Runtime

Haru iibersetzt eigentlich nur den Sprachkern von Haskell und nicht die Standardbibliothek. Dadurch
ist aber das Testen unmdglich, da beispielsweise Funktionen fiir die Ausgabe fehlen. Deswegen wurde
eine kleine Runtime entwickelt, die die fiir das Testen wichtigsten Funktionen bereitstellt™:

*  Put: Gibt einen Wert aus.

s _Format: Funktion, die eine Variable in ein an Haskell angepasstes Ausgabeformat anpasst™.
*  (Cons: Implementiert den cons-Operator ,,:*

*  Uncons: Wird benétigt, um Typen zu dekonstruieren®. Interne Funktion™.

113

3 Alle Runtime-Funktionen beginnen im Namen als ,,HaruRuntime
 Nativ wird [1, 2, 3] in Ruby zu ,,[1, 2, 3], in Haskell jedoch zu ,,[1,2,3].
% Siehe 6.1.3
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* Is String Or_Array: Typliberpriifung, da nicht nur auf Liste tiberpriift werden kann. Interne
Funktion.

*  Map: Map-Implementierung.

* Join: Fasst Elemente eines Arrays mit einem Trennzeichen zu einem String zusammen.

* Enum_From_To: Helfer-Funktion, die eine arithmetische Folge (Enum) generiert.

*  Chain: Funktion, die den Kompositionsoperator ,,.“ implementiert.

Zunichst war geplant, Currying auch in der Runtime zu implementieren, dies hat Ruby allerdings
nicht zugelassen (siehe 6.1.5).

6.1.2 Strings, Listen und Cons

Haskell implementiert Strings als eine Liste von Zeichen. Ruby hat dies in dieser Form nicht, dort sind
Strings vom Type ,,String* und nicht vom Typ ,,Array* (die einfachsten Ruby-Listen). Das hat
Auswirkungen auf die Standardbibliothek: zunéchst miissen Listen-Funktionen so angepasst werden,
dass sie auch fiir Strings funktioniert. Das Problem kdnnte umgangen werden, in dem die Runtime und
der Listen-Typ so angepasst wird, dass er intern nur auf Zeichen-Arrays arbeitet und sich nur bei
wenigen Funktionen wie ein String verhilt (beispielsweise zu ,,puts®). Da Ruby jedoch Strings
anbietet, versucht Haru diese zu verwenden.

Dies wird so umgesetzt, dass in den Runtime-Funktionen zu Beginn eine Priifung statt findet, ob der
iibergebene Wert einer Listenfunktion in Wirklichkeit ein String ist. In diesem Fall wird der String vor
jeglicher Anderung in ein Array aus Strings mit einem Zeichen umgewandelt und nach den
Operationen wieder zusammengefiigt. AuBBerdem erkennt die Runtime, dass ein Zeichen in eine leere
Liste mittels cons eingefiigt wird und erstellt automatisch einen String.

6.1.3 Listen-Dekonstruktion

Listen-Dekonstruktion wird in der Runtime durchgefiihrt.

listFunction (x:xs) = ...

Einfaches Beispiel flir eine Listendekonstruktion.

Fiir die Listendekonstruktion wurde eine Runtime-Funktion namens uncons erstellt. Diese erhilt als
Argument die urspriingliche Liste und die Anzahl der Variablen, die extrahiert werden sollen. Hierbei
wird den Variablen immer der Wert aus der Liste entsprechend ihres 0-basierten Indexes zugewiesen,
das letzte Argument erhélt die restliche Liste.

list = [1, 2, 3, 4, 5]
vl, v2, v3 = HaruRuntime_uncons.call(list, 3)

# vl 1, 0. Element
# v2 2 , 1. Element
# v3 = [3, 4, 5] , letztes Element -> erhalt Rest der Liste

Beispiel fiir die Verwendung von uncons.

%6 Er wird direkt von Haru erzeugt und es ist nicht vorgesehen, dass Benutzer die Methode selbst aufrufen.
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Da das Typ-System wie es aktuell implementiert ist, komplett auf Listen aufbaut, kann uncons auch
mit Typdekonstruktion umgehen.

6.1.4 Funktionsaufrufe

Funktionsaufrufe in Haskell sind, auch durch Currying, sehr transparent. Da es keine Variablen im
eigentlichen Sinne gibt, ist die Aufrufschnittstelle von Funktionen sehr einheitlich. In Haskell gibt es
kein Zustandskonzept’’, das bedeutet dass Variablen ihren Wert nicht andern kénnen (sie sind also
Konstanten). Konstante Werte konnen durch konstante Funktionen ohne Argumente abgebildet
werden. Hierdurch sind in Haskell alle verwendeten Identifier konzeptuell Funktionsaufrufe, die
ihrerseits entweder Funktionen zuriickgeben oder zu Werten ausgewertet werden.

Diese Transparenz existiert in dieser Form in Ruby nicht. Hier gibt es die Trennung zwischen
Variablen und Funktionen, inklusive einiger bedeutender Unterschiede. Eine Gemeinsamkeit existiert
allerdings, und zwar das optionale Auslassen von Klammern. So kann, zumindest bei tatsdchlichen
Funktionen, die Unklarheit ignoriert werden, ob ein Identifier nun einen Ruby-Variablenzugriff oder
einen Ruby-Funktionsaufruf ohne Parameter darstellt (vergleiche Syntaktische und semantische
Besonderheiten im Kapitel 4.4.4), da das Ruby selbst auflost.

Ruby unterstiitzt anonyme Funktionen, die fiir die Umsetzung des Currying eingesetzt werden.
Allerdings gibt es keine einheitliche Aufrufsyntax fiir reguldre und anonyme Funktionen:

def regular (x)
X + 5

end
anonym = lambda { |x|

X + 5

regular(5)
anonym.call(5)

Aufrufsyntax von reguldren und anonymen Methoden.

Beide Aufrufe erlauben nur ihre eigene Syntax, es ist kein gemeinsames Interface vorhanden. Eine
mogliche Losung ist es, jeden Aufruf auf Identifier in einer Funktion zu kapseln, die automatisch
erkennt, ob es ein Wert, eine regulére Funktion oder ein Lambda ist und die entsprechende Aktion
durchfiihrt. Allerdings erlaubt dies Ruby nicht direkt, da man von einer reguldren Funktion kein
Funktionsobjekt erhilt™. In Javascript beispielsweise kann man auf eine definierte per Namen
zugreifen, dies geht in Ruby nicht. Der Grund liegt in den optionalen Klammern: Ruby kann nicht
entscheiden, ob man auf das Funktionsobjekt zugreifen will, oder ob man einen verketten Aufruf
durchfiihren will. Daher sind direkte Zugriffe auf den Namen einer Funktion in Ruby immer direkt
Auswertungen.

57 AuBer in Monaden, aber die werden hier nicht betrachtet.
8 Uber viel Metaprogramming und Umwege kdnnte unter Umstdnden eine mogliche Losung gefunden werden.

Seite 57




IMPLEMENTIERUNG DES COMPILERS

function fun (x, y) {
return x + vy,

console.log(fun.length);

In JavaScript kann auf das Funktions-Objekt per Namen zugegriffen werden. Das Attribute length einer Funktion gibt die
Anzahl der erwarteten Argumente zuriick (und eignet sich daher fiir die Implementierung des eval/apply-Ansatzes fir
Currying).

Ein weiteres Problem, das durch die Generierung von Funktionsdefinitionen entsteht ist die
Sichtbarkeit. Da anonyme Funktionen reguldren Variablen zugewiesen werden, sind diese nicht
innerhalb von anderen Methoden sichtbar. Ein Losungsansatz ist, alle Top-Level-Lambda-Variablen
global zu machen — dies erfordert aber im Anschluss bei jedem Identifier-Zugriff eine globale
Analyse, ob ein Identifier ein Aufruf zu einer globalen Funktion ist (globale Variablen beginnen in
Ruby mit eine ,,$“-Zeichen).

anonym = lambda { ,,anonym“ }
def main () end

def additional_function ()
anonym.call() # <- nicht erlaubt, da nicht im Sichtbarkeitsbereich
main # <- erlaubt, da Methoden immer global sichtbar sind
end

additional_anonym = lambda {

anonym.call() <- erlaubt, da additional_anonym im dufleren Scope 1ist

*+ H*

main <- erlaubt, da Methoden immer global sichtbar sind

}

Sichtbarkeit von Funktionsnamen.

Eine mogliche Losung wir es, komplett auf die Definition von reguldren Funktionen zu verzichten
und nur anonyme Funktionen zu verwenden. Fiir Funktionen ohne Argumente kann man direkt den
Rumpf der Funktion der Variablen zuweisen, da diese konstant sind (per Definition in Haskell). Der
Verlust der Transparenz zwischen reguldrem Funktionsaufruf ohne Argument (ein Lambda ohne
Argument erfordert trotzdem ein ,,.call*) und Variablenzugriff verschwindet dadurch, dass es keine
Funktionen ohne Argumente mehr gibt (diese werden direkt ausgewertet™).

6.1.5Currying

Es gibt im Grunde drei mogliche Varianten, Currying umzusetzen. Zwei geschehen in der Runtime zur
Laufzeit, die dritte Methode umgeht einen GroBteil der Logik und vertraut auf die Korrektheit der
Typpriifung durch Haskell.

% Dies ist problemlos méglich, da diese nicht von unbekannten globalen Zustéinden abhiingen diirfen, héchstens von anderen
Top-Level-Bindungen. Diese werden von Haskell allerdings bereits so vorsortiert, dass mogliche Abhédngigkeiten und
Reihenfolgen eingehalten werden.
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Die Implementierung von Currying ist schwer, da fiir mégliche Optimierungen eine globale
Datenflussanalyse durchgefiihrt werden muss. Das verdeutlicht das folgende Beispiel®:

zipWith :: (a -> b -> ¢) -> [a] -> [b] -> [c]
zipwith £ (1 [1 = [J
zipWith f (x:xs) (y:ys) = (f x y) : (zipWith f xy ys)

Definition von map.

In diesem Beispiel ist f eine unbekannte Funktion. Der Compiler kann nicht einfach f mit zwei
Argumenten aufrufen, da es eine Funktion sein konnte, die erst ein Argument konsumiert, eine Weile
rechnet und anschlieBend das zweite Argument konsumiert. Ebenso ist es mdglich, dass f mehr als
zwei Argumente fordert und zipWith also eine Liste von Funktionen generiert.

Push/Enter

Hier handhabt die Funktion selbst die Verwaltung ihrer Argumente. Jede Funktion besitzt einen Stack,
auf den ihre Argumente beim Aufruf gepusht werden. Die Funktion analysiert in ihrem Einstiegscode
den Stack , 14dt ihre Argumente selbst und entfernt sie vom Stack. Die Funktion muss anschlieBend
selbst dafiir sorgen, dass wenn sie weniger Argumente auf dem Stack hat als sie bendtigt, sie eine
partielle Auswertung ausfiihrt und eine neue Funktion zuriickgibt. Wenn sie zu viele Argument erhilt,
1adt sie trotzdem nur die Argumente vom Stack, die sie bendtigt (die restlichen Argumente werden von
der Funktion konsumiert, die sie zuriickgibt).

Dieser Ansatz funktioniert nicht direkt in Ruby, da man den Einstiegscode von Funktionen nicht in
dieser Weise anpassen kann.

Eval/Apply
In diesem Ansatz analysiert der Aufrufende zunichst die Funktion und ruft sie dann mit der korrekten

Anzahl an Argumenten auf. Dies erfordert eine Laufzeitanalyse des Closures: im Beispiel mit zipWith
folgendes:

* Nimmt f nur ein Argument, werte f mit x aus und anschlieBend die Ergebnisfunktion mit y.

* Nimmt f zwei Argumente, kann es reguldr ausgefiihrt werden.

* Nimmt f mehr als zwei Argumente wird ein neues Closure gebaut, in dem x und y bereits
gebunden sind.

Dieser Ansatz funktioniert in Ruby. Der Kern dieses Ansatzes ist die Abfrage der Stelligkeit eines
Closures, die man in Ruby iiber die Methode arity eines Lambdas erhélt. Sie erfordert allerdings einige
zusitzliche Logik bei jedem Funktionsaufruf.

Einstellige Closures
Dies ist die simpelste der drei Methoden®'. Jeder Funktionsaufruf wird in geschachtelte Lambda-
Aufrufe mit jeweils einem Argument umgebaut. Funktionsapplikationen sind dann immer Aufrufe mit
einem Argument.

0 Aus [4]

Seite 59




IMPLEMENTIERUNG DES COMPILERS

# Definition regular
regular = lambda { |x, y, z|
X +y + z

# Aufruf regular
regular.call(l, 2, 3)

# Definition einstellig
modified = lambda { |x|
lambda { |y|
lambda { |z|
X +y+z

# Aufruf einstellig
modified.call(1l).call(2).call(3)

Umwandlung mehrstelliger Funktionen in einstellige Funktionen.

Diese Struktur ist sehr nah an das tatséchliche Currying von Haskell angelegt, die interne Darstellung
des GHC sieht unmodifiziert dhnlich aus. Ein mdglicher Fehlerfall wire, dass eine Funktion ein
Lambda zuriickgibt, das kein Argument nimmt und damit nicht aufgerufen wird. Oder andersherum:
dass ein Identifier aufgerufen wird, der kein Wert ist. Durch die Konstruktion der Transformationen in
Haru wird dieses Problem allerdings umgangen — es gibt keine Funktionsdefinitionen ohne Argumente
(diese sind schlicht Zuweisungen) also sind Applikationen ohne Argumente schlicht
Variablenzugriffe.

Die strikte Typpriifung von Haskell im Vorfeld sorgt auBerdem dafiir, dass nur Aufrufe auf passende
Identifier ausgefiihrt werden und auch die Anzahl der Argumente stimmt. Die Umstrukturierung in die
neue Struktur kann direkt im Code-Generator fiir Funktionsdefinitionen und —Aufrufe geschehen und
stellt dadurch nur einen kleinen Eingriff in das Programm dar.

6.1.6 Tupel

Tupel haben in Ruby kein direktes Gegenstiick und werden mit Arrays (genauer gesagt, einer Klasse,
die von Array erbt — um Typpriifung auf Array zu ermdglichen) umgesetzt. Die Struktur der Daten ist
von der Darstellung unabhéngig, die Typpriifung bereits durch Haskell erledigt und die
Dekonstruktion kann dadurch einheitlich durch die uncons®-Funktion erledigt werden.

6.1.7 Data-Konstruktoren

Haskell erlaubt die Definition eigener Datentypen. Wéahrend eine Umbenennung eines skalaren Typen
fiir die Codegenerierung wenig interessant ist (die Typen tauchen dort fast nirgends mehr auf und

8! Aufgrund der vielen (unnétigen) anonymen Funktionen und Indirektionen ist sie jedoch in einem Produktionscompiler
nicht zu empfehlen. Es muss davon ausgegangen werden, dass beide Faktoren einen erheblichen Einfluss auf die Laufzeit
und das Speicherverhalten des kompilierten Programms haben.

% Siche 6.1.1
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Umbenennungen sind bereits aufgeldst), sind die GADTs® deutlich interessanter. Die GADTS sind
zusammengesetzte Typen, die durch Konstruktoren erzeugt werden. Diese Konstruktoren konnen
entweder keine Argumente nehmen, dann ist der Typ eine Art Enum, oder mit Argumenten versehen
werden, dann ist es eine Art typisiertes Tupel. Auch geschachtelte Typen sind moglich.

data Color = Red | Green | Blue

-— Parameter:
- String Titel
- Int Produktionsjahr

data Film = Film String Int

data PosterColor = PosterColor Film Color

GADT Definition

Durch die logische Transformation auf Listen ist die Darstellung der GADTs einfach: der eigentliche
Typ wird als von Array abgeleitete Klasse umgesetzt, die Enum-Werte werden ebenfalls als Klassen
umgesetzt. Es wurde dieser Weg gewihlt, da dann bei der Dekonstruktion der Typen in einem Case-
Statement die Typpriifung einfach iibernommen werden kann (der Typ einer Variablen in Ruby ist ihre
Klasse).

Durch die Darstellung der Konstruktoren mit Argumenten als Array kann der Typ auch standardisiert
iiber die uncons-Runtimefunktion dekonstruiert werden.

6.1.8Interne Details des GHC

Currying erzeugt allerdings nicht nur bei der Codegenerierung Probleme. Vielmehr ist es auch durch
die interne Verwendung innerhalb des GHC ein Punkt, der die Compilerimplementierung erschwert.

fun :: Int -> Int -> Int
fun x y = x +y

fun 2 3

Wihrend der Auswertung des Core-ASTs sieht man hier folgende Konstruktion:

fun (Applikation)
|- Stelligkeit: 2
|- Argumente:
|- GHC.Num.+ (Applikation)
|- Stelligkeit: 1
|- Argumente:
|- GHC.Num.S$fNumInt (Applikation)
|- Stelligkeit: ©
|- Argumente: -
|- 2 (Literal)
|- 3 (Literal)

% Siche 4.4.1
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Core-AST-Darstellung fiir eine Addition zweier Integer.

In diesem Beispiel wirkt es intuitiv verwunderlich, dass die Stelligkeit mit den Argumenten nicht
iibereinstimmt. Hier tritt (auch im Compiler selbst, der in Haskell programmiert ist) das Currying zu
Tage. GHC.Num.+ ist in Wirklichkeit ein Dictionary und GHC.Num.$fNumlInt der Schliissel. In
diesem Dictionary sind die tatsdchlichen Implementierungen der Operatoren fiir die unterschiedlichen
Datentypen gespeichert —diese haben dann Stelligkeit 2 und konsumieren die zwei folgenden
Argumente.

Diese Implementierungsdetails bendtigt Ruby allerdings nicht, da es selbst eine Hochsprache ist,
auBerdem kann nicht ohne groBere Umwege auf die Funktion im Dictionary zugegriffen werden.
Deswegen werden diese Aufrufe im Generator ignoriert beziechungsweise bei der Transformation
gefiltert. Dadurch ergibt sich allerdings das Problem, dass die Stelligkeit der Funktionsdefinitionen
manuell angepasst werden muss. So muss dem Compiler fiir die unterschiedlichen Operatoren explizit
mitgeteilt werden, dass zum Beispiel die Stelligkeit von GHC.Num.+ in Wirklichkeit 2 ist und die
andere (Schliissel-)Funktion ignoriert werden kann. Dies hat allerdings zur Folge, dass die
Argumentstruktur nicht mehr stimmt - so ist die Schachtelung der Funktionen fiir die Generierung
ungiinstig:

-- aktuell:
fun (+, 2, 3)

-- korrekt:
fun (+(2, 3))

Struktur, die nach dem Entfernen der Argumente entstehen kann.

Der Transformator versucht diese Struktur nun anzupassen. Dies ist allerdings keine korrekte Losung,
da man Currying beachten muss. So kann es bei dem Beispiel mit der Addition durchaus sein, dass fun
zwei Argumente nimmt und +(2) eine partielle Applikation der Addition ist. Fiir dieses einfache
Beispiel ldsst sich das identifizieren, fiir mehrere (+)-Operatoren, die alle gecurried werden konnen, ist
es im Allgemeinen nicht mehr entscheidbar.

f(3) a(0) b (1) c(0) d(2) e(0) g(0)

Abbildung 52: Fehlende Argumentschachtelung. Die Zahlen in Klammern geben die Stelligkeit des Bezeichners an.

Dieses Problem kann umgegangen werden, indem entweder eine neue, globale Typanalyse
durchgefiihrt wird oder das Currying auch in den internen Compiler-Typen erkannt und teilweise
angewandt wird. Beide Varianten erhohen den Aufwand der Compiler-Implementierung immens.
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Abbildung 53: Korrekte Schachtelung der Argumente.

Da Haru nur fiir kleine Beispielprogramme als Testcompiler eingesetzt wird, ist hier eine pragmatische
Heuristik eingebaut. So fithrt Haru Runtime-Funktionen und Operatoren grundsétzlich in der
Transformation zusammen (diese unterstiitzen also kein Currying64). Ein Sonderfall ist jedoch
implementiert: wenn die Summe der Stelligkeiten mit der Anzahl aller Argumente {ibereinstimmt,
werden alle Aufrufe entsprechend gruppiert.

6.2 Nicht abgebildete Aspekte

Durch die in 6.1.8 angesprochenen Probleme hinsichtlich der Implementierungsdetails des GHCs ist
Currying nur teilweise umgesetzt. Runtime-Funktionen und Operatoren binden immer kommende
Argumente an sich, soweit es welche gibt, Sections (explizites Currying auf Operatoren) wird
allerdings unterstiitzt.

Lazy Evaluation wurde nicht direkt umgesetzt, Ruby bietet sie an einigen Stellen allerdings nativ an.
So gibt es zum Beispiel die ,.kurzschlieBenden Bedingungen, die nur soweit auswerten, wie sich das
Ergebnis der Berechnung noch dndern kann. Im folgenden Beispiel wird also heavy computation nie
ausgewertet, da das Ergebnis den Wert des booleschen Ausdrucks nicht mehr dndern kann:

If true || heavy_computation
# ...
end

if false && heavy_computation
# ...
end

Beispiel fiir ,,kurzschlieRende“ Bedingungen in Ruby

Lazy Evaluation wiirde bedeuten, dass jeder Variablen-Zugriff und jede Zuweisung zunéchst in eine
anonyme Funktion verpackt wird, die dann zu gegebener Stelle aufgerufen wird. Dieser Aspekt wurde
nicht umgesetzt, da er vielféltige negative Auswirkungen auf den Compiler gehabt hitte: die
Komplexitit des Erkennens, wann ausgewertet muss; der zu erwartende Performanceeinbruch und die
Tatsache, dass das resultierende Ruby-Programm erheblich an Lesbarkeit verloren hitte — was eine
spatere Validierung des Programms erschwert hatte.

Direkt damit verbunden ist das Arbeiten mit unendlichen Listen. In Haskell kann man sehr einfach
eine unendliche Liste erstellen und auf dieser operieren:

8 Sections werden trotzdem unterstiitzt, da diese bereits im Vorfeld zu Lambda-Funktionen umgebaut wurden.

Seite 63




TEST UND VALIDIERUNG

infinite_list = [1, 2..]

Definition einer unendlichen Liste in Haskell.

Fiir die Umsetzung von unendlichen Listen muss zwangsldufige Lazy Evaluation implementiert sein,
da diese offensichtlich nicht ausgewertet und in den Speicher geladen werden kann. In Ruby wére dies
mit Generatoren® moglich, sowie seit Version 2.0 ist ein Teil von Lazy Evaluation in Form von Lazy
Enumeration implementiert. Diese erlaubt das Traversieren von und Arbeiten mit unendlichen Listen:

infinite_list = 1..Float::INFINITY
p infinite_list.lazy.collect { |x| x*xx2 }.first(10)
4 => [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Lazy Enumeration in Ruby

Modulunterstiitzung ist ebenfalls ein Feature, das nicht unterstiitzt ist. Dies wiirde einen relativ kleinen
Eingriff bedeuten: die Module werden sowieso separat iibersetzt, die einzigen Erweiterungen wiirden
die Imports (,,require* in Ruby) und moégliche Aliase darstellen. Einzig die Einschrdnkungen der
Imports (nicht alle Funktionen eines Moduls werden im- oder exportiert) miissten separat auf
Umsetzungsmoglichkeiten in Ruby analysiert werden.

Zu guter Letzt wurden Teile des Typsystems nicht direkt libersetzt, so finden sich Klassen und
Instanzen nicht in der Ubersetzung. Der Grund hierfiir ist der begrenzte Umfang des Compilers: fiir
die sinnvolle Verwendung und ein umfangreiches Testen miissten ein GroBteil der Standardbibliothek
ubersetzt werden, da die Funktionen sehr weit darauf aufbauen. Da der Fokus der Arbeit auf der
eigentlichen Transformation und nicht auf einer grolen Laufzeitumgebung liegt, wurde dieser Bereich
deswegen ausgelassen.

7 Testund Validierung

Auch wenn die Modelltransformation als korrekt angenommen wird, muss die tatsdchliche Compiler-
Ausgabe von Haru validiert werden. Die Tests versuchen eine anndhernde semantische Validierung zu
geben, auch wenn das verwendete Testverfahren dies nicht garantiert.

Es wurde nur eine qualitative Validierung der Programme ausgefiihrt, es wurden keine Tests beziiglich
der Laufzeit des Haru-Compilers gemacht. Dies liegt daran, dass die Menge von Haskell-Aspekten,
die Haru tibersetzt, relativ klein ist. Insbesondere ist die gesamte Standardbibliothek (Prelude)
ausgenommen. Dies schrankt die Moglichkeit an den Testprogrammen drastisch ein, wodurch es keine
groferen Tests gibt. Da die Tests aber alle relativ kurz sind (maximal 100 Zeichen), kann keine
Aussage iiber die Kompilierlaufzeit getroffen werden.

Ein weiteres Problem ist, dass GHC teilweise zu umfassend optimiert®. Das folgende
Beispielprogramm soll Funktionsaufrufe testen.

% In Ruby heiflen diese Enumeratoren.
5 Siehe auch 7.3
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main = putStrLn (show (fun 5 6))
fun x y = x +y

Code-Beispiel fiir Inlining

Allerdings ist die Methode klein genug, dass GHC diese ,,inlined* und dadurch den Funktionsaufruf
(inklusive der damit verbundenen Funktionsaufruf-Kosten) umgeht. Einerseits wiinschenswert, da das
entstandene Programm dadurch performanter wird, allerdings fiir den Test hinderlich. Der tatsdchlich
kompilierte Code sieht dann so aus:

main = putStrLn (show 5 + 6)

7.1 Testmethodik

Da die Ausfithrungssemantik einzelner Teile nicht direkt getestet werden kann, werden kleine
Beispielprogramme mittels Unit-Tests getestet. Hierzu werden Test-Programme in Haskell
geschrieben, die ausgefithrt werden. AnschlieBend wird mittels Haru das Programm von Haskell in
Ruby kompiliert und das erzeugte Ruby-Programm ausgefiihrt. Zuletzt werden mittels einer Diff"’-
Implementierung die Ergebnisse beider Ausfithrungen verglichen. Wenn das Diff leer ist (es also keine
Unterschiede zwischen den Ausgaben gibt), werden die Programme als semantisch korrekt angesehen.

Hierbei muss aber darauf geachtet werden, dass mindestens ein Programm iiberhaupt eine Ausgabe
hat. Wenn beide Programme keine Ausgabe haben (aufgrund eines Fehlers oder weil sie regulér keine
Ausgabe erzeugen), kann nicht von der Gleichheit der Programme ausgegangen werden.

Auch muss beachtet werden, dass durch die vereinfachten Tests, die nur die Ausgabe vergleichen,
keine Aussagen iiber das Innere der Programme getroffen werden kann. Ein Programm, dass die 15.
Fibonacci-Zahl ausrechnet und ein Programm, das nur die Zahl 610 ausgibt, werden als gleich
angesehen. Die fortfithrende Validierung muss in diesem Fall manuell geschehen, soweit sie nicht
bereits durch die Validation der Modelltransformationen geschehen ist.

7.2 Automatisierte Testsuite

Es wurde eine automatisierte Testsuite mit knapp 20 Tests entworfen, die sich an den abzubildenden
Haskell-Konzepten orientiert und diese weitgehend abdecken soll. Diese Testsuite wurde in der
Entwicklung einerseits zur testgetriebenen Entwicklung verwendet, andererseits konnten damit
automatisch Regressionen erkannt und behoben werden.

Die Testsuite testet automatisch alle Programme im Beispiel-Ordner und gibt eine Ubersicht {iber den
Status der Tests aus:

67 diff ist ein Unix-Programm, das die Unterschiede zweier Textdateien zeilenweise gegeniiberstellt. Hier wird mit ,,Diff*
allerdings das Verfahren an sich bezeichnet und nicht das konkrete Programm.
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A

® O O 6. apfelbox@apfel...

../Haskell/Haru (zsh) 281

Abbildung 54: Ausgabe der Testsuite, zwei Tests schlagen in diesem Fall fehl

Neue Tests hinzuzufiigen wird damit sehr komfortabel, es muss nur ein Haskell-Programm im
Beispiel-Ordner hinzugefiigt werden.

7.3 Testergebnisse

Die Testergebnisse bestitigen die korrekte Ubersetzung, sowohl der Metamodelle, als auch des
Programms. Wobei man die Testergebnisse mit Vorsicht genielen muss, da die Optimierungen im
GHC teilweise so aggressiv sind, dass die Tests unter Umstinden unbrauchbar werden.

Davon betroffen war beispielsweise die erste Iteration des Data-Tests:

-- Defines the color data type
data Color = Red | Green | Blue

-- Prints the color name

colorName :: Color -> String
colorName Red = "Red"
colorName Green = "Green"
colorName Blue = "Blue"

main = do
putStrLn $ colorName Red
putStrLn $ colorName Green
putStrLn $ colorName Blue
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Erster Test fiir Unterstlitzung von algebraischen Datentypen.

Dieser Test wird von Haskell optimiert und produziert folgenden Ruby-Code:

HaruExamples_Data_main = lambda {
HaruRuntime_put.call('Red')
HaruRuntime_put.call('Green')
HaruRuntime_put.call('Blue')

}

Generierter Ruby-Code

GHC hat die gesamte Typdefinition optimiert und entfernt, zusammen mit der colorName-Funktion
und die Ergebnisse statisch ermittelt und propagiert.

Da nur kleine Teile der Laufzeitumgebung tibertragen wurden, kdnnen die Testfdlle nur aus einer
kleinen Auswahl von Methoden erstellet werden. Dies birgt die Gefahr, dass weitere Testfdlle so weit
optimiert wurden, dass die Testfélle etwas anderes testen. Somit muss die eigentlich automatisierte
Testsuite nach den Tests nochmal manuell nach solchen Punkten {iberpriift werden, denn die Testsuite
meldet den Test als erfolgreich.

8 Zusammenfassung

Zusammenfassend muss betont werden, dass die Sprachtransformation mittels Metamodellen einige
erhebliche Vorteile bringt. Wenn die Sprachen formal spezifiziert sind, lassen sich daraus
unkompliziert Metamodelle ableiten, die anschlieend transformiert werden koénnen. Falls keine
formale Spezifikation existiert, ist es moglich, aus der Grammatik der Sprache grofe Teile des
Metamodells direkt zu generieren.

Der grofle Vorteil im Hinblick auf Kompilierung durch Unterstiitzung der Metamodelle ist, dass man
direkt eine grobe Uberpriifung und Validierung erhilt. Diese Verhindern konzeptuelle Fehler im
generierten Quellcode.

Einer der groBten und kompliziertesten Punkte® im gesamten Verfahren ist allerdings die korrekte
Code-Generierung. Wenn die Zielsprache, wie in diesem Fall Ruby, selbst einige Beschrankungen und
Bedingungen an die Programme stellt (wie Sichtbarkeiten, Giiltigkeitsbereiche oder unterschiedliche
Aufrufsyntax fiir reguldre und anonyme Funktionen) wird die Code-Generierung sehr aufwindig und
komplex. Es miissen viele Sonderfille beachtet werden, auBerdem muss wesentlich mehr
Hintergrundwissen als bei einer einfacheren Zielsprache vorhanden sein. Auch Layout (semantisches
Whitespace70) kann ein erschwerender Faktor sein, wenn der Compiler Code erzeugen will, der nach
der Kompilierung manuell weiterverwendet wird.

% Und am meisten unterschitzt.
" Haskell, Ruby (in Teilen) und beispielsweise Python haben semantisches Whitespace. Dort kénnen Schliisselworte oder
Klammern ausgelassen werden, wenn die Aussage durch korrekte Einriickung oder Zeilenumbriiche erhalten bleibt.
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8.1 Ausblick

Fiir die Erweiterung des Projekts zu einem vollwertigen Compiler miissen zunichst die Metamodelle
zu den restlichen Sprachkonzepten von Core erstellt werden. Nach der Identifikation der nun
zusétzlich benétigten Teile der Ruby-Spezifikation kdnnen die restlichen Core- (und damit Haskell-)
Konzepte ebenfalls transformiert werden — auch wenn diese hauptsédchlich das Typsystem betreffen.

Im Hinblick auf die Implementierung von Haru lassen sich ebenfalls einige Punkte optimieren. So ist
das erzeugte Programm selbst nicht typsicher, die Sicherheit kommt nur durch die vorherige
Validierung des GHCs. Dies bedeutet, dass die erstellten Programme manuell nicht angepasst werden
sollten.

Weiterhin werden alle Identifier innerhalb des Compilers von ihrer eigentlichen Bedeutung gelost —
dies bedeutet, dass die Information, auf was sich ein Identifier bezieht, verloren ist. Dieser
Designschritte ist bewusst so gewihlt, da er die Komplexitit des Compilers verringert und fiir die
Codegenerierung zum jetzigen Zeitpunkt nicht zwingend notwendig ist. Allerdings werden dadurch
Analysen auf den Identifiern erschwert oder verhindert, die zu einer besseren Codeerzeugung fithren
koénnten.

Weiterhin kdnnten noch Optimierungsschritte eingebaut werden, die &hnlich zum GHC Literal
propagieren und kombinieren. Vor allem die (eigentlich statische) Erstellung von Listen kdnnte
deutlich optimiert werden — diese ist aktuell eine direkte Ubersetzung des generierten Core-Codes.

-- 1in Haskell:
[llall, Ilbll’ llcll, Ildll’ llell, Ilfll]

# generiert in Ruby (geklrzt)

cons (
cons('a', [1),
cons (
cons('b', [1),
cons (
cons('c', [1),
cons (
cons('d', [1),
cons (
cons('e', [1),
cons (
cons('f', [1),
[]
)
)
)
)
)

)

Generierte Listenerzeugung

Auch die Erstellung von Strings (als Spezialfall der Listen) kann optimiert werden, die, wie hier zu
sehen ist, als cons-Operation des Zeichens und einer leeren Liste erstellt werden. Diese
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Funktionsaufrufe konnen statisch gefunden und in entsprechende Literale beziehungsweise
Konstruktoraufrufe umgewandelt werde.

Und zuletzt kann der Compiler daraufhin optimiert werden, ,,typischeres® Ruby zu erzeugen. So
verwendet der Compiler nur kleine Teile des Sprachumfangs von Ruby. Dadurch entstehen
Konstruktionen, die fiir den Compiler zwar einfach zu generieren sind, allerdings manuell von einem
Entwickler so nicht geschrieben werden wiirden — unabhingig von Griinde, beispielsweise Lesbarkeit
oder Ausfiihrungsgeschwindigkeit. Dies erhoht zwar enorm die Komplexitit des Generators und des
Transformators, es erscheint aber verschwenderisch, Ruby ,,nur als ein etwas erweitertes C oder
Assembler zu verwenden und nur die reinen Grundfunktionen bei der Codegenerierung zu verwenden.
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