
Institut für Architektur von Anwendungssystemen
Universität Stuttgart

Universitätsstraße 38
70569 Stuttgart

Deutschland

Studienarbeit Nr. 2424

Analyse und Prognose von
Umweltdaten in Geschäftsprozessen

Lazar Davidkov

Studiengang: Informatik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: M.Sc. Wirt.-Inf. Alexander Nowak

begonnen am: 16.04.2013

beendet am: 11.10.2013

CR-Klassifikation: H.4.1

i

Inhaltsverzeichnis

1 Einleitung ... 1

2 Definitionen .. 3

2.1 Business Process / Workflow .. 3

2.2 Green IT ... 5

2.2.1 Green Organisations ... 5

2.2.2 Green Technology .. 7

2.2.3 Green Processes .. 7

2.3 Business Intelligence Werkzeuge .. 8

2.3.1 Data Warehouse ... 8

2.3.2 ETL-Prozesse ... 9

2.3.3 Dashboard ... 10

3 Konzept .. 11

3.1 Zielbestimmung ... 11

3.2 Funktionale Anforderungen ... 11

3.3 Nicht-funktionale Anforderungen ... 12

4 Design ... 14

4.1 Java EE Architektur ... 14

4.2 KEIDA – Überblick ... 16

4.3 KEIDA – Design ... 17

4.4 KEIDA – Architektur .. 18

4.4.1 Serverseitige Architektur .. 18

4.4.2 Clientseitige Architektur .. 19

5 Implementierung .. 21

5.1 SpringMVC und jQuery .. 21

5.2 Konfiguration ... 22

5.3 Controllerschicht (Controller Layer) ... 24

5.4 Präsentationsschicht (View Layer) .. 26

5.5 Modellschicht (Model Layer) .. 28

5.6 GUI Implementierung .. 32

6 Anwendungsfall: Optimieren eines Prozesses in KEIDA .. 33

7 Zusammenfassung .. 39

8 Anhang A – KEIDA Konfiguration ... 40

9 Anhang B – KEIDA Klassenstruktur ... 44

Literaturverzeichnis .. 49

ii

Abkürzungsverzeichnis

API Application Programming Interface

AJAX Asynchronous JavaScript and XML

BI Business Intelligence

BPEL Business Process Execution Language

BPM Business Process Management

BPMN Business Process Management Notation

DAO Data Access Object

DWH Data Warehouse

ETL Extract, Transform, Load

GUI Graphical User Interface

GW Gigawatt

JSON JavaScript Object Notation

KEIDA Key Ecological Indicators Dashboard

KPI Key Performance Indicator

MVC Model, View, Controller

SOA Service Oriented Architecture

SVG Scalable Vector Graphics

WfMC Workflow Management Coalition

WS Web Service

WSDL Web Service Description Language

iii

Abbildungsverzeichnis

Abb. 2.1 IBM Business Process Manager

Abb. 2.2 The devil’s pentagon

Abb. 4.1 MVC Entwurfsmuster

Abb. 4.2 Architektur einer Webanwendung

Abb. 4.3 KEIDA Dashboard

Abb. 4.4 KEIDA Visualisierungswerkzeug

Abb. 4.5 KEIDA Architektur

Abb. 4.6 Bearbeitung einer Anfrage in KEIDA

Abb. 5.1 DispatcherServlet workflow

Abb. 5.2 Servlet- und Servlet-Mapping-Definitionen in web.xml

Abb. 5.3 Importieren von Konfigurationsdateien in spring-servlet.xml

Abb. 5.4 Auszug aus der spring-servlet.xml -Datei

Abb. 5.5 Tiles 2.2 Konfiguration

Abb. 5.6 MySQL Konfiguration

Abb. 5.7 ViproWS Konfiguration in keida-viproWS-konfiguration.xml

Abb. 5.8 Handler Mapping

Abb. 5.9 Controllerklassen

Abb. 5.10 Mapping einer Controller Klasse

Abb. 5.11 Mapping einer AJAX Anfrage

Abb. 5.12 View Konfiguration in views.xml

Abb. 5.13 Ausschnitt aus index.jsp

Abb. 5.14 Auflösung des Namens eines Views

Abb. 5.15 Definition der Startseite des Dashboards

Abb. 5.16 KEIDA Process page mock-up

Abb. 5.17 processView()-Methode der ProcessPageController-Klasse

iv

Abb. 5.18 getViewPage-Methode der PPC-Klasse

Abb. 5.19 chartMonthlyData()-Methode der Klasse ChartServiceWorker

Abb. 5.20 Ausschnitt aus der Klasse ChartJDBCTemplate

Abb. 6.1 KEIDA Dashboard

Abb. 6.2 PurchaseOrderResselerProcess Dashboard

Abb. 6.3 Verbrauch grüner Energie

Abb. 6.4 Durchschnittlicher Anteil der grünen Energie bei einem Prozessdurchlauf

Abb. 6.5 Konfigurationsassistent

Abb. 6.6 Visualisierung des PurchaseOrder Prozesses

Abb. 6.7 Vergleich von zwei Visualisierungen

Abb. 8.1 MySQL Konfiguration in keida-db.xml

Abb. 8.2 Homepage Konfiguration in der keida-homepage-configuration.xml-Datei

Abb. 8.3 ViproWS Konfiguration

Abb. 8.4 ColorMap Konfiguration

Abb. 9.1 showDashboard() - Methode der Klasse HomepageController

Abb. 9.2 getDayValue()-Methode der Klasse chartJDBCTemplate

1

1 Einleitung

Heute ist es kaum denkbar, dass ein Unternehmen existieren kann, ohne eine eigene IT zu
haben oder IT-Dienstleistungen zu beziehen. Im Jahr 2020 wird die Mehrzahl der
Geschäftsprozesse in der Wirtschaft mit Hilfe von IT-Systemen betrieben werden [Eg13].
Diese Systeme (Hardware und darauf laufende Software) führen zu einem enormen
Energieverbrauch in den Unternehmen. Google z.B. verbraucht kontinuierlich 260 Millionen
Watt, was einem Viertel der Energie eines Atomkraftwerks entspricht oder dem Strom, der
benötigt wird, um eine Stadt mit 200 000 Haushalten zu versorgen [Kr13]. Nur die
Rechenzentren in Deutschland verbrauchen die Energie, die der Leistung von vier mittleren
Kohlekraftwerken entspricht, nämlich 10 Milliarden kWh [KW10]. Bei der Produktion dieser
Energie wird eine enorme Menge CO2 in die Atmosphäre ausgestoßen. Dieser
Energieverbrauch ist auch mit hohen Kosten verbunden. Das führte in den letzten Jahren
dazu, dass das Management in vielen Unternehmen mit dem Problem konfrontiert wurde (und
ist immer noch), wie dieser Energieverbrauch verringert werden kann, um die steigenden
Kosten einzudampfen. Lösungen gibt es viele und alle sind direkt oder indirekt mit einem
nachhaltigen Umgang mit den knappen Ressourcen verbunden, die zu Verfügung stehen und
bei der Energiegewinnung eine Rolle spielt. Als Nebeneffekt tragen die Unternehmen aktiv
dazu bei, die Umwelt so wenig wie möglich zu belasten. Die Unternehmen sollen heute nicht
nach dem “single bottom line”-Prinzip geführt werden, sondern nach dem “tripple bottom
line”-Prinzip [BS12]. Dieses enthält nicht nur den Erlös am Ende des Geschäftsjahres,
sondern ist auf die Menschen und die Umwelt ausgerichtet. Diese Diskussionen und
Überlegungen führten 2008 zur Formulierung des Begriffs “Green IT”. Green IT beruht auf
zwei Ansätzen: Wie kann die IT zum nachhaltigen Umgang mit den begrenzten Ressourcen
beitragen und wie lässt sich die IT nachhaltiger betreiben [LN11].

Die angestoßene Diskussion um die Nachhaltigkeit beim Umgang mit den begrenzten
Ressourcen zeigt langsam ihre Wirkung. So haben Branchenriesen wie Google und Facebook
die Notwendigkeit von energiesparenden Rechenzentren sehr schnell erkannt und bauen diese
im Norden (in Finnland, im Fall von Facebook), um die Rechner mit Meerwasser zu kühlen.
Bei Google werden die Gebäude und die Hardware so konstruiert, dass diese am wenigsten
Energie verbrauchen [Go13]. Die Notwendigkeit, weniger Energie zu verbrauchen, führt bei
vielen Unternehmen zum Überdenken der ganzen IT-Strategie. Das deutsche Unternehmen
Strato z.B. ersetzte nicht nur die Server mit energiesparenden Geräten, sondern auch die
Software, die darauf läuft, wurde so umprogrammiert, dass die Algorithmen viel weniger
CPU-Zyklen in Anspruch nehmen und dadurch viel weniger Strom bei den Berechnungen
brauchen [BES10].

Das Beispiel von Strato zeigt, dass es wichtig ist, nicht nur die Hardware mit
energiesparenden Lösungen zu ersetzen, sondern auch die Software so zu optimieren, dass
diese den geringsten Energieverbrauch aufweist. KEI Framework stellt eine Lösung dar, die
genau das anstrebt: eine Optimierung der Ökobilanz der Software, die hinter den
Geschäftsprozessen eines Unternehmens steht. Das KEI Framework ist in der Lage, den
Ablauf eines Prozesses im produktiven Einsatz zu überwachen, diesen in einer Testumgebung
zu simulieren und Informationen zu dessen Energieverbrauch zu ermitteln. Diese
Informationen sollen dazu dienen, den Prozess so zu gestalten, dass dieser möglichst effizient

2

und mit einem möglichst geringeren Energieverbrauch läuft. KEI Dashboard (KEIDA) ist das
Front-End des KEI Frameworks und hat die Aufgabe, die Informationen, die vom KEI
Framework gewonnen werden, graphisch darzustellen, um eine Analyse dieser Informationen
zu ermöglichen. Diese Auswertung soll anhand von Grafiken erfolgen, die den Verlauf des
Business Prozesses zeigen, sowie dessen einzelne Aktivitäten und den Beitrag der Aktivitäten
zum gesamten Energieverbrauch. Mit Hilfe des Visualisierungswebservice ViproWS soll
dann noch zusätzlich die Struktur des Prozesses graphisch dargestellt werden. Diese
Darstellung basiert auf den Informationen über den Energieverbrauch jeder einzelnen
Aktivität. Dadurch können die Benutzer, die einen Prozess analysieren, schnell
nachzuvollziehen, wo sich die Problemzonen befinden. Durch Annotation sind die Benutzer
in der Lage, eine zweite Darstellung des Prozesses zu bekommen, die sich mit der ersten
vergleichen lässt. Das Ziel dabei ist ein direkter Vergleich der zwei Versionen des Prozesses.

Diese Studienarbeit gibt einen Überblick über die Technologien, die hinter dem KEI
Framework stehen, und erläutert wie KEIDA konzipiert und implementiert ist.

Die vorliegende Studienarbeit gliedert sich neben Einleitung und Zusammenfassung in fünf
Hauptteile. Nach der Einleitung folgt ein Überblick über die Begriffe, die eine große Rolle bei
dem Aufbau des KEI Frameworks und KEIDA spielen. Eine kurze Einführung erläutert, was
ein Geschäftsprozess ist und wie sich dieser mit Software realisieren lässt. Ein anderes
wichtiges Thema, das besprochen wird, ist die Green IT und wie die grüne Technologie ihren
Platz im Alltag findet. KEI Framework setzt auf Business Intelligence (BI) Konzepten. Aus
diesem Grund wurden beim Aufbau des KEIDA viele Ideen aus diesem Bereich einbezogen.
In diesem Zusammenhang werden auch Begriffe und wichtige Konzepte aus dem BI-Bereich
eingeführt.

Funktionale und nicht-funktionale Anforderungen dienen als Basis jeder Software und sind
ein wichtiger Teil jeder Dokumentation. Sie dienen als Vertrag zwischen Auftraggeber und
Auftragnehmer und werden aufgrund ihrer Wichtigkeit in Kapitel 3 detailliert beschrieben.
Anschließend wird das Design der Software erläutert und welche Konzepte dabei eigesetzt
wurden. Es wird eine Übersicht über Java EE und die vier Tier Architektur angeboten, die
diese ermöglicht und die als Grundlage aller modernen Webanwendungen dient. Die MVC
Architekturstyle ist auch ein Bestandteil jeder Webanwendung und spielt eine große Rolle bei
der Verteilung der Zuständigkeiten innerhalb der Software. KEIDA verfolgt diese Prinzipien
und setzt auf die MVC-Architektur. Ein Überblick über die MVC-Architektur und wie diese
in KEIDA eingesetzt wird gibt Kapitel 4.

In Kapitel 5 folgt die eigentliche Implementierung von KEIDA. Anhand von Beispielen, die
aus dem Source Code der Software genommen wurden, werden der Aufbau und die
Funktionsweise von KEIDA erläutert. Kapitel 6 veranschaulicht anhand eines
Anwendungsfalls, wie sich die Software beim Optimieren eines Geschäftsprozesses einsetzen
lässt. Anhang A enthält die Information, die bei einer Installation auf dem Server gebraucht
wird, und Anhang B verschafft einen Überblick über die eigentliche Struktur der Java-Pakete
und über die dazugehörigen Java-Klassen, die KEIDA bilden.

3

2 Definitionen

In dieser Studienarbeit werden Ansätze, die bei jeder BI-Lösung zu finden sind, eingesetzt.
Wie schon in Kapitel 1 aufgeführt, liegt die Aufgabe darin, ein Dashboard aufzubauen, auf
dem die im Data Warehouse abgelegten Informationen grafisch dargestellt und die Analyse
dieser Informationen ermöglicht werden. Ein weiterer Schwerpunkt der Studienarbeit ist es,
die Visualisierung anhand des bestehenden Visualisierungswebservice zu vereinfachen und
benutzerfreundlich zu gestalten. Dabei wird dem Nutzer die Möglichkeit gegeben, die
berechneten Werte mit neuen auszutauschen und die neue graphische Darstellung mit der
alten zu vergleichen. Begriffe, die dabei eine große Bedeutung haben, sind Business Process,
Business Process Management, Dashboard, Data Warehouse, Extract Transoform and Load
(ETL) Prozesse und Key Ecological Indicators (KEI) und werden in diesem Kapitel näher
erläutert.

2.1 Business Process / Workflow
Eine Definition des Business Process, auf Deutsch Gechäftsprozess, geben Davenport und
Short [DS90]:

“A set of logically-related tasks performed to achieve defined business outcome.”

und:

“1) Processes have customers; that is, processes have a defined business outcome,
and there are recipients of the outcomes. Customers may be either internal or external
to the firm; and

2) They cross organizational boundaries; that is, normally that occurs across or
between organizational subunits. Processes are generally independent of formal
organizational structure.”

Beispiele für Geschäftsprozesse sind die Erstellung eines Produkts, die Bestellung von Waren
bei einem Lieferanten oder die Abwicklung einer Bestellung eines Kunden in einem
Onlineshop.

Die Definition oben besagt, dass ein Prozess aus verschiedenen Aktivitäten besteht, wobei die
Aktivitäten auch andere Prozesse sein können. Diese Aktivitäten werden in einer festgelegten
zeitlichen und logischen Reihenfolge ausgeführt und so entsteht ein Workflow. Eine
Definition des Begriffs Workflow findet man bei WfMC1: “the automation of a business
process” [WMC]. Die Prozesse können auch sehr komplex sein und dadurch mehrere
Workflows enthalten.

Geschäftsprozesse sind nicht etwas Statisches. Sie werden ständig geändert und an die neuen
Anforderungen angepasst. Das ist nötig, damit diese immer wieder Wettbewerbsvorteile
gegenüber der Konkurrenz liefern. Um diese Änderbarkeit zu vereinfachen, wird auf Business
Prozess Management Systeme (BPM) gesetzt. BPM erleichtert das Design und die
Entwicklung eines Prozesses, sowie seine kontinuierliche Verbesserung. Weitere wichtige

1 The Workflow Management Coalition

4

Funktionen des BPMs sind die Reduktion von menschlichen Fehlern und die Verbesserung
der Kommunikation zwischen den Stakeholdern (siehe Abb. 2.1). Die Stakeholder sind dann
in der Lage, sich auf den Anforderungen ihrer Rollen zu konzentrieren [Rm11]. BPM hält die
Administration dieses Änderungsprozesses einfacher. Die Weiterentwicklung bestehender
Prozesse und derer einzelnen Aktivitäten und dadurch alle verbundenen Aufgaben wie
Versionierung, Testen usw. werden vom BPM vereinfacht und aktiv unterstützt.

Abbildung 2.1: IBM Business Process Manager [Sk11]

Die Geschäftsprozesse die in dieser Studienarbeit betrachtet werden, sind mit Hilfe der
Business Process Execution Language für Web Services (WS-BPEL) beschrieben. WS-BPEL
ist xml-basiert und dient zur Orchestrierung von WS. Diese Web Services stellen die
einzelnen Aktivitäten des Geschäftsprozesses dar. BPEL baut auf die WSDL auf und
ermöglicht die Bereitstellung eines Prozesses selbst als WS, was den Aufbau von sehr
komplexen Geschäftsprozessen vereinfacht. Die Webservices-Technologie definiert, wie
Funktionalitäten über Internet Protokolle zugänglich gemacht werden können. WS-BPEL
beschreibt, wie diese in eine logische Struktur zusammengeführt werden können, um eine
spezifische Aufgabe zu lösen.

Die Orchestrierung der Web Services ist der zentrale Aspekt von WS-BPEL und stellt die
Grundlage beim Aufbau von Service Oriented Architecture (SOA)-Lösungen dar. Das erfolgt
in zwei Schritten:

- die Entwicklung und Veröffentlichung von Web Services
- die Orchestrierung dieser Web Services in einem Geschäftsprozess mittels WS-

BPEL

WS-BPEL unterstützt als Sprache neben einfache Aktivitäten wie “assign”, “invoke”, “throw”
auch Konstrukte wie “sequence”, “while”, “repeatUntil” usw. Das macht die Beschreibung
von sehr komplexen Geschäftsprozessen möglich, wobei neben der reinen Reihenfolge auch
eine komplexere Logik des Prozesses umgesetzt werden kann. Ein Beispiel für
Geschäftsprozess ist die Bestellungsabwicklung, die als Beispielprozess in dem DWH von
KEIDA abgelegt ist. Die Ausführung des Prozesses ist mit dem Aufruf verschiedener Web

5

Services verbunden, die Teilaufgaben lösen, z.B. die Abfrage, ob es die bestellten Waren auf
Lager gibt, und falls diese nicht da sind, die Bestellung bei den Lieferanten, die
Kreditwürdigkeit des Kunde zu überprüfen usw. Somit ist der Prozess für eine vollständige
Abwicklung einer Bestellung zuständig. Die einzelnen Aktivitäten, die als WS realisiert sind,
werden entweder in dem Unternehmen entwickelt und betrieben oder aber auch von externen
Anbietern bezogen.

Das Verteilen der Aufgaben auf einzelnen Web Services macht eine Auslagerung der
Funktionalitäten möglich und ist eine der wichtigsten Voraussetzungen bei der
Prozessoptimierung. Speziell im Kontext des KEI Frameworks spielen nicht nur die Preise der
externen Anbieter für die Nutzung der Webservices eine Rolle, sondern auch von welchem
Stromanbieter der Strom zum Betreiben der Rechenzentren bezogen und wie viel Energie
verbraucht wird, um die Aktivität auszuführen. Jeder Stromanbieter hat einen eigenen
Energiemix und bei der Stromproduktion fallen verschiedene Mengen an CO2 und Atommüll
an. Für die Prozessoptimierung im Fall von KEIDA wird nach dem möglichst geringen CO2-
Ausstoß oder dem produzierten Atommüll gesucht, um den Prozess möglichst ökologisch zu
betreiben.

2.2 Green IT
Die Rechner spielen heutzutage eine große Rolle in den meisten Unternehmen. Ein
Arbeitsplatz ohne Rechner ist fast undenkbar. Dazu gehören auch die großen Datenzentren,
die täglich große Datenmengen bei der Abwicklung der Prozesse in den Unternehmen
bearbeiten und speichern. Das Beitreiben dieser Rechenzentren ist mit einem enormen
Energieverbrauch verbunden. Dieser steigt ständig und erreicht neue Dimensionen. Der
Stromverbrauch in den Rechenzentren weltweit betrug im Jahr 2007 12GW. Vier Jahren
später, in 2011, hat sich dieser verdoppelt und stieg auf 24GW an. Für 2013 wird erwartet,
dass die verbrauchte Energie in den Rechenzentren weltweit 43GW betragen würde [Va12].
Dieser stetige Anstieg des Energieverbrauchs spiegelt sich nicht nur in den steigenden Kosten,
sondern ist mit einer Erhöhung der CO2-Emissionen verbunden. Diese zwei Faktoren lassen
sich durch das Einsetzen neue und zeitgemäße IT Technologien positiv beeinflussen. Diese
neuen Technologien sind viel sparsamer und auch leistungsfähiger. Dadurch lässt sich die IT
grüner gestalten und an den neuen Anforderungen anpassen.

2.2.1 Green Organisations

Deutschland war schon immer ein Vorreiter in Sachen Nachhaltigkeit. Eine IDC-Umfrage
vom Jahr 2008 zeigt, dass schon damals 52% der angefragten deutschen Unternehmen die IT-
Infrastruktur grüner gestalten wollten. Laut den Autoren der Umfrage sind die wichtigsten
Treiber die steigenden Energiekosten, die sichtbare Erhöhung des „Carbon Footprint“, die
große Konkurrenz von Unternehmen außerhalb Europas und der USA, die vergleichbare
Leistungen für niedrigere Preise anbieten und auch die EU-Richtlinien für die Effektivität
beim Aufbau und Betreiben von großen Datenzentren [MB08].

Die Organisationen sollen aber unter Green IT nicht nur die Auslagerung von Anwendungen
auf die Cloud verstehen. Um eine Organisation grün zu gestalten, ist viel mehr verlangt.
Energieeffizienz ist nicht nur auf dem Arbeitsplatz und in den Datenzentren erforderlich.
Wichtig sind auch energieeffiziente Software und Hardware, sowie energieeffiziente

6

Produktion und Wiederverwenden der Abfälle. Einige Strategien, wie sich die IT grün
gestalten kann, sind bei [Jo12] zu finden:

 - Virtualisierung. Statt mehrere Server zu betreiben, die nie voll ausgelastet werden,
und die meiste Zeit unbenutzt bleiben, besser auf Virtualisierung setzen. Dadurch werden viel
weniger Server betrieben, die gut ausgelastet sind, was zu einer Reduktion der Hardware- und
Stromkosten führt. Untersuchungen zeigen, dass Windows Server ohne Virtualisierung nur zu
10% ausgelastet werden. Bei Windows Servern mit Virtualisierung steigt die Auslastung auf
60% [CW10].

 - Optimierung des Datacenters und Power Management. Die Datenzentren sind so
zu gestalten/umzubauen, dass diese möglichst wenig Energie verbrauchen. Der größte Teil
des Energieverbrauchs fällt auf die Kühlung. Deswegen werden immer neue Ansätze
vorgeschlagen, wie sich dieser Verbrauch reduzieren lässt. Ein interessantes Beispiel aus der
Perspektive der Green IT ist die Kühlung des Datacenters des Telekommunikationsanbieters
BT. Das Rechenzentrum in Frankfurt wird mittels Regenwasser gekühlt [Ra13]. Andere
innovative Ansätze sind z.B. unterirdische Eisspeicher oder kaltes Wasser aus Brunnen. Bei
der Stromversorgung gibt es neben den Strom aus erneuerbaren Quellen auch ungewöhnliche
Ansätze wie z.B. Strom aus der Alge [Ra13]. Bei der Optimierung des Datacenters soll auch
berücksichtigt werden, ob sich die Anzahl der Server verringern lässt. Neben der Anzahl sind
ihre physische Größe sowie der Energieverbrauch wichtige Eigenschaften. Neue Atom-Server
von Dell und HP sollen laut Hersteller zu 90% Platzeinsparrungen gewährleisten [Ra13].

 - Data deduplication. Die Daten, die im Unternehmen generiert und gespeichert
werden, betragen nicht mehr einige Megabytes, sondern sind auf mehrere Terabytes zu
beziffern. Das führt zur einen Vergrößerung der Speicherkapazitäten und ist mit Investitionen
verbunden. Eine Lösung, wie diese Menge sich verkleinern lässt, stellt die Data deduplication
dar. Tests zeigen, dass der Speicherplatz dadurch sehr niedrig gehalten werden kann, ohne
Performanceeinbuße. Die Dateien werden komprimiert gehalten, was aber von dem Benutzer
unbemerkt bleibt und sein Zugriff auf die Dateien sich nicht ändert. Der Fokus bei dieser
Technologie liegt im Sparen der Systemressourcen [Joh12].

 - Cloud Computing. Immer mehr Anwendungen werden wie Software as a Service in
der Cloud angeboten. Die komplexen Aufgaben werden dadurch vom lokalen Rechner auf das
Rechenzentrum oder die Cloud ausgelagert. Das macht den Einsatz von s.g. Thin Clients
möglich. Die Mitarbeiter im Büro brauchen dann in den meisten Fällen nichts mehr als einen
Browser, in dem alle Anwendungen laufen. Der Energieverbrauch kann dadurch enorm
gesenkt werden. An dieser Stelle soll auch die Frage nach der Notwendigkeit des Betreibens
von eigenen Rechenzentren gestellt werden. Einerseits sind die Datenzentren der Cloud
Anbieter viel besser ausgelegt, indem sie viel weniger Strom verbrauchen und auch auf
erneuerbaren Energiequellen setzen und andererseits ist der Administrationsaufwand viel
kleiner, was zu Personaleinsparungen führen kann.

 - Teleconference/Telecommute/Telework. Studien [Ve10] zeigen, dass das Benutzen
von Teleconference Software in den US-Unternehmen bis zum Jahr 2020 ungefähr 4.6
Millionen Tonnen CO2 Emissionen sparen kann. Das entspricht 875 000 Autos weniger auf

7

den Straßen innerhalb eines Jahres und ist mit Ersparnissen von über 19 Milliarden US Dollar
verbunden.

- Paperless Solutions, Document Management. Laut BMU2 liegt der jährliche
Papierverbrauch in Deutschland bei rund 19 Millionen Tonnen und die Hälfte davon fällt auf
die Bereiche Presse, Druck und Büromaterial [Bmu11]. Die Herstellung von Papier ist ein
energieintensiver Prozess. Für 100 kg Papier werden mindestens 110 kg CO2 freigesetzt, 5000
Liter Wasser gebraucht und über 1000 Kilowattstunden Energie verbraucht. Heutzutage
existieren sehr viele Software-Lösungen, die diesen Verbrauch in den Unternehmen
verringern können. Smartphones und Tablets sind längst ein Standard geworden und bieten
viele Möglichkeiten, den Papierverbrauch im Büro zu reduzieren. Cloud Dienste wie
Evernote3, Google Docs4, Dropbox5 und viele mehr vereinfachen das Erstellen von Notizen
und die gemeinsame Arbeit an Office Dokumenten.

2.2.2 Green Technology

In 2.2.1 wurden Strategien gezeigt, wie sich ein Unternehmen an die neuen Anforderungen
des nachhaltigen Umgangs mit den knappen Ressourcen mittels IT ausrichten lässt. Dadurch
werden hauptsächlich nur CO2 Emissionen gespart. Es ist aber auch wichtig, dass bei der
Produktion, z.B. in der Landwirtschaft, die Chemikalien durch andere Substanzen oder
Methoden ersetzt werden, die die Umwelt schonen. Mit diesem Problem beschäftigt sich die
Grüne Technologie. Sie ist “technology that has the potential to significantly improve
environmental performance relative to other technology” [UN12]. Die Nutzung einer solchen
Technologie beinhaltet “the use of environmental technologies for monitoring and
assessment, pollution prevention and control, and remediation and restoration” [UN12].
Grüne Technologien lassen sich von der Landwirtschaft über den Gebäudebau oder den
Transport von Gütern und Personen bis hin zur Produktion von Lebensmitteln und
elektronischen Geräten, die zum Einsatz in jedem Büro kommen, einsetzen. Die
Energiegewinnung aus erneuerbaren Quellen wie Wind und Solar ist ein Beispiel für diese
grünen Technologien. In dem Kontext der IT beschäftigt sich die Green IT mit dieser Frage.
Hier geht es um das Design, die Produktion, das Verschrotten und das Benutzen von
Rechnern, Servern und allen dazugehörigen Peripheriegeräten wie Bildschirme, Drucker,
Speichermedien, Netzwerkgeräte und Kommunikationssysteme, wobei der Schwerpunkt auf
das Minimieren ihres Einflusses auf die Umwelt liegt [Ms08]. So setzt z.B. das Grüne
Rechner Design auf neue Materialien und Techniken, ohne das Gerät teurer zu machen oder
an Leistung zu sparen. Das beweist auch die Weiterentwicklung der Prozessoren von Single
zu Multi-Core. Die neue Multi-Core Chips sind leistungsfähiger und verbrauchen viel
weniger Energie. Wie bei der Optimierung der Datenzentren gezeigt wurde, werden die
Server auch immer kleiner und dadurch leichter zu kühlen, aber gleichzeitig leistungsfähiger.

2.2.3 Green Processes

Wie gerade gezeigt, unterstützt die IT den ganzen Zyklus vom Design über die
Implementierung und das Management bis hin zum Reengineering eines Geschäftsprozesses.

2 Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit
3 www.ervernote.com
4 www.docs.google.com
5 www.dropbox.com

8

Die führenden Größen, nach denen sich diese Schritte orientieren, sind: Zeit, Qualität, Preis
und Effektivität. Nachdem die Energieeffizienz und der damit verbundene niedrige CO2
Ausstoß auf die Tagesordnung stehen, muss beim Gestalten des BPs noch eine Größe
berücksichtigt werden, und zwar die Nachhaltigkeit (Abb. 2.2) [NLM11]. Dabei ist es wichtig
zu wissen, wie viel Energie jede einzelne Aktivität verbraucht und wie sich dieser Verbrauch
verringern lässt. Die Green IT leistet gute Arbeit durch die Bereitstellung von neuen
innovativen Softwarewerkzeugen, unter anderem der Analyse, Modellierung und Simulation
der Folgen auf die Umwelt dienen und den Energieverbrauch überwachen [Ms08]. Die
gesammelte Information kann benutzt werden, um die BPs zu optimieren. Ein solches
Werkzeug ist das KEI Framework. Es überwacht, simuliert den Ablauf eines Prozesses und
sammelt Informationen über den Energieverbrauch jeder Aktivität. Diese Informationen
werden danach aggregiert und gespeichert. Die Analyse dieses Verbrauchs erlaubt die
Lokalisierung der größten Stromfresser und eventuell ihre Ersetzung durch energiesparende
Lösungen. Dabei ist es wichtig, dass die externen Anbieter Informationen über die Laufzeit
und über die gebrauchte und eingesetzte Energie zur Verfügung stellen. Auf dieser Basis kann
entschieden werden, ob das Ersetzen der bestehenden Aktivität mit der neuen zu einer
Verbesserung der Öko-Bilanz des Prozesses beiträgt.

Abbildung 2.2: The devil’s pentagon [BS12]

2.3 Business Intelligence Werkzeuge
Business Intelligence (BI)-Lösungen spielen eine große Rolle bei Entscheidungen des
Managements in den heutigen Unternehmen. BI Werkzeuge ermöglichen eine umfassende
Analyse der täglich entstehenden Daten. Somit sind bestimmte Trends leicht zu erkennen und
auf diese Trends kann rechtzeitig und entsprechend reagiert werden. Der gleiche Ansatz wird
auch beim KEI Framework verfolgt. Das Framework ist so ausgelegt, dass Informationen
über die Laufzeit des BP und seinen Energieverbrauch durch einen ETL-Prozess in einem
Data Warehouse gespeichert und diese Informationen grafisch auf einem Dashboard
dargestellt werden.

2.3.1 Data Warehouse

Ein DWH wird als ein unternehmensweiter Datenbestand konzipiert. Es steht über den
operativen Systemen und speichert alle relevanten Informationen, die an den Interessierten
zur Verfügung gestellt werden. Inmon definiert ein Data Warehouse als: “... subject oriented,

9

integrated, nonvolatile, and time-variant collection of data in support of management’s
decisions. The data warehouse contains granular corporate data” [In96]. Das Data Warehouse
dient als zentraler Speicherplatz für die Informationen, die beim täglichen Geschäft in dem
Unternehmen entstehen. Aus der Inmons Definition lassen sich die Haupteigenschaften des
DWH ablesen:

 - themenorientiert. Die Themen ergeben sich aus den Interessen des Managements. So
sind die Entscheidungsträger in der Lage, nach Themen, an denen sie interessiert sind, zu
recherchieren [KMU06]. Im Fall von KEI Framework sind diese Themen: Prozesse und die
dazugehörigen Prozessaktivitäten.

 - integriert. Normalerweise stammen die Daten in einem Data Warehouse aus
verschiedenen Quellen. Die Hauptaufgabe bei der Erstellung von einem DWH ist es, die
Informationen, die von unterschiedlichen operativen Systeme generiert werden, zu
integrieren, sie zu transformieren und unifizieren und so widerspruchsfrei in der Datenbank
abzulegen [KMU06].

 - nicht flüchtig. Einmal abgelegt in dem Data Warehouse werden die Daten nie
gelöscht oder geändert. Das macht eine Analyse der Daten, die in vergangenen Perioden dort
abgelegt wurden, möglich [KMU06].

 - zeitbezogen. Die Daten, die im DWH abgelegt werden, sind schon aggregiert und
repräsentieren einen Zeitraum. Im Unterschied dazu sind die Daten in den operativen
Systemen zeitpunktbezogen, d.h. diese werden sofort nach Entstehung erfasst und gespeichert
[KMU06].

Die Daten im DWH werden auf Dauer aufbewahrt. Sie dienen der Analyse nicht nur von
gängigen Perioden, sondern auch zur Überprüfung wie sich die aktuelle Situation zu den
vergangenen Perioden geändert hat. Die Interessierten an dieser Information sind dann in der
Lage, sie mit verschiedenen Werkzeugen auszuwerten. Das betrifft auch die Informationen,
die das KEI Framework generiert und im DWH speichert. Diese Information spielt eine
wichtige Rolle bei Entscheidungen, die die Optimierung des jeweiligen Prozesses betreffen.

2.3.2 ETL-Prozesse

Die Daten, die die operativen Systeme, wie Supply Chain Management, Enterprise Ressource
Planning oder E-Procurement liefern, können in verschiedenen Datenformaten oder
Strukturen vorliegen. Damit die Daten für die Speicherung in dem DWH vorbereitet werden,
sollen diese durch spezielle ETL-Prozesse transformiert werden. Die ETL-Prozesse haben die
Aufgabe, diese Daten zu extrahieren, zu transformieren und dann in dem Ziel-Data
Warehouse abzuspeichern.

Als erster Schritt wird die Extraktion angesetzt. Ihre Aufgabe ist es, die Daten aus den
operativen Systemen zu holen. Da die Abspeicherung der Daten in den operativen Systemen
wegen der Größe der generierten Daten von sehr kurzer Dauer ist, soll diese Extraktion
periodisch erfolgen. Andere denkbaren Szenarien sind, dass sie auf Anforderung erfolgt oder
ereignisgesteuert ist.

10

In dem zweiten Schritt liegt eine Transformation der gewonnenen Daten. Sie werden in
betriebswirtschaftlich interpretierbare Daten umgewandelt. Dieser Schritt besteht aus vier
Teilschritten: Filterung, Harmonisierung, Aggregation und Einreichung [KMU06].

Nachdem die Daten extrahiert und transformiert wurden, sind diese bereit, im DWH abgelegt
zu werden. Dies erfolgt in einem dritten Schritt, der als Load bezeichnet wird. Die so
abgelegten Daten sind dann bereit, durchsucht oder analysiert zu werden.

2.3.3 Dashboard

Die Daten, die das DWH aufbewahrt, sind in den meisten Fällen Zahlen. Würden diese in
einer Tabelle auf dem Bildschirm angezeigt, ist für den Analysten sehr schwer, nach
Abhängigkeiten zu suchen. Dafür sollen die Daten visualisiert und in einer Form bereitgestellt
werden, die für jeden verständlich ist. Die Menschen sind in der Lage, sehr schnell
Zusammenhänge in grafisch dargestellten Zahlenmengen zu finden, was beim Anschauen
einer Excel-Tabelle mit der gleichen Information fast unmöglich erscheint. Dazu wird ein
Dashboard eingesetzt. Ein Dashboard ist “a visual display of the most important information
needed to achieve one or more objectives; consolidated and arranged on a single screen so the
information can be monitored at a glance” [Fe04].

Die Dashboards stellen die wichtigste Information dar und ermöglichen einen schnellen
Überblick über die wichtigsten Entwicklungen. Die Charakteristiken eines Dashboards sind
wie folgt [RC04]:

 - Auf dem Bildschirm sind verschiedene Metriken auf einem einzigen Screen gezeigt.

 - Die angezeigte Information ist auf dem höchsten Niveau der Granularität.

 - Intuitive Indikatoren zeigen die wichtigsten Performance Indikatoren (KPI).

 - Auf dem Dashboard werden nur die Folgen und nicht die Ursachen angezeigt.

 - Der Aufbau ist intuitiv und einfach und kann leicht verstanden und bedient werden.

 - Die angezeigte Information wird automatisch aktualisiert.

Das KEI Framework beschäftigt sich mit der Optimierung der Prozesse und damit, wie sich
diese dadurch nachhaltiger betreiben lassen. Deswegen wird hier nicht über KPI geredet
sondern über Key Ecological Indicators (KEI). Die wichtigste Größe in diesem Fall ist der
Energieverbrauch. Aus dem Energieverbrauch und das vorliegende Energiemix des
Stromzulieferers lassen sich auch weitere KEIs berechnen. Das sind die Grüne Energie, die
CO2 Emissionen sowie der radioaktive Müll, die bei der Produktion der benötigten Energie
als Endprodukt anfallen und natürlich nicht an letzter Stelle auch die Kosten, die beim
Ausführen des Prozesses entstehen.

11

3 Konzept

3.1 Zielbestimmung
Die Nachhaltigkeit ist zu einem zentralen Thema in den heutigen Unternehmen geworden.
Die Energieeffizienz in jedem Bereich des Unternehmens spielt eine wesentliche Rolle. Dabei
geht es nicht nur um Energieeffizienz der Hardware, sondern auch der Software. Von der
Software wird erwartet, dass diese auch zu einem sparsamen Ablauf der Prozesse beiträgt.
Deswegen wird bei der Optimierung der Prozesse, wie in 2.2.1 gezeigt wurde, neben Größen
wie Zeit, Qualität, Preis und Effektivität auch die Größe Nachhaltigkeit berücksichtigt. Es
wird Wert darauf gelegt, wie viel Strom der Prozess bei einem Durchlauf verbraucht und wie
viel CO2 bei der Produktion dieses Stroms in die Atmosphäre ausgestoßen wird. Das KEI
Framework stellt einen solchen Einsatz dar und versucht, Antworten auf diese Fragen zu
geben. Dadurch ist eine Optimierung der Prozesse im Einklang mit den neuen Anforderungen
möglich.

Auf Basis des KEI Frameworks existieren zwei Teilprojekte, die es unterstützen: KEI
Dashboard und Greevi App. Das erste ist eine Dashboard Implementierung und wurde nur mit
dem Ziel geschaffen, zu zeigen, dass die Information, die im DWH gespeichert wird, sich
leicht in der gewünschten Form visualisieren lässt. Das Greevi App dagegen unterstützt das
Visualisierungswebservice “ViproWS” und ermöglicht über ein Web-Interface auf Basis der
Daten im DWH sowie verschiedene Templates eine Visualisierung des Prozesses. Somit
werden die Problemzonen direkt auf dem Prozessmodell graphisch angezeigt. Unter
Problemzonen sind die Aktivitäten zu verstehen, die z.B. zu viel Energie verbrauchen oder bei
denen im Energiemix des Stromanbieters zu viel Energie aus Atomkraftwerken benutzt wird.
Dadurch sinkt der Teil an grüner Energie und diese Aktivität wird entsprechend dem
vorgegebenen Mapping auf dem Bild gefärbt oder skaliert.

Die zwei Teilprojekte sind mit verschiedenen Technologien realisiert. Das KEI Dashboard
setzt direkt auf JSP (Java Server Pages), die Greevi App hingegen auf das Vaadin Framework.
Ziel dieser Studienarbeit ist es, diese zwei Prototypen zu vereinigen, zu erweitern, damit eine
vollständige Analyse von jedem im DWH abgelegten Prozess möglich ist. Es wird nach einer
Lösung gesucht, die die benötigte Funktionalität und Information an einer Stelle anbietet und
die einfach zu bedienen ist.

3.2 Funktionale Anforderungen
Aufbereitung historischer Informationen: Die Daten im DWH erfassen jeden Durchlauf
eines Prozesses und zeichnen auf, wann dieser gestartet und beendet wurde. Dabei werden
alle einzelnen Aktivitäten, die im Prozess aufgerufen werden, deren Start- und Endzeitpunkte,
die Energie, die sie verbraucht haben, und die dazugehörigen KEIs (CO2-Ausstoß, Atommüll,
Prozent grüner Energie), berücksichtigt und abgelegt. Diese Granularität ist jedoch zu hoch
und bevor die Daten auf dem Dashboard visualisiert werden, sollen diese aggregiert werden.
Deswegen soll das System eine Aggregation der Daten nach Stunde, Tag, Woche und Monat
bieten. Dabei ist es nicht wichtig, wie oft der Prozess und die dazugehörige Aktivitäten
aufgerufen wurden, sondern ihr Energieverbrauch, der Prozent Grüner Energie, der
produzierte CO2, die Atommüllmengen und die verursachten Kosten.

12

Darstellung historischer Informationen: Wie in 2.3.3 deutlich wurde, trägt eine graphische
Darstellung von Zahlenreihen dazu bei, dass die Zusammenhänge, die dahinter stecken, von
den Menschen leichter analysiert werden können. Das System soll deswegen die aufbereiteten
historischen Informationen in einer geeigneten graphischen Form dem Benutzer bereitstellen.
Als graphische Darstellungen werden verschiedene Graphiken vorausgesetzt, wie Balken- und
Liniendiagramme oder Tachometer.

Visualisierung eines Prozesses: Bei der Analyse eines Prozesses ist neben der graphischen
Darstellung der historischen Informationen eine weitere Analyse des Prozesses mit Hilfe von
ViproWS möglich. Das System soll deswegen die Möglichkeit bieten, dieses Webservice zu
benutzen und eine geeignete Visualisierung der Struktur des Prozesses zu ermöglichen. Der
Benutzer soll an erster Stelle in der Lage sein, einen bestimmten Prozess und die Instanzen
aus einem Zeitraum, in dem dieser gelaufen ist, auszuwählen. Der Benutzer soll weiter die
Möglichkeit haben, Funktionen und dazugehörige Funktionswerte festzulegen, um bestimmte
Aspekte der generierten Daten der ausgewählten Prozessinstanzen untersuchen zu können.
Wichtige Aspekte dabei sind, ob der Mittelwert kleiner als vom Benutzer eingegebenen
Funktionswert ist, ob das Maximum über alle Instanzen kleiner oder größer ist usw. Danach
soll der Benutzer die Wahl zwischen verschiedenen vorgegebenen Mappings treffen können,
um eine geeignete Visualisierung des Prozesses zu erhalten.

Prognosefunktionalitäten durch Annotationen von Aktivitäten: Die Visualisierung der
Prozesse erfolgt anhand der im DWH gespeicherten Daten. Diese werden benutzt, um die
Werte, die an das ViproWS geschickt werden, zu berechnen. Wie in 2.1. gezeigt wurde,
könnten die einzelnen Aktivitäten eines Prozesses auch von externen Anbietern bezogen
werden. Die Unternehmen, die ihre Prozesse mit dem KEI Framework optimieren wollen,
werden dann von den WSs Anbieter erwarten, dass diese nicht nur die Preise, sondern auch
Informationen über den Energieverbrauch, CO2-Ausstoß usw. angeben. Das System soll dann
dem Benutzer die Möglichkeit bieten, diese neue Information mit der Information, die im
DWH steht, zu ersetzen. Dadurch ist der Benutzer des Systems in der Lage, eine neue
temporäre Visualisierung des Prozesses zu generieren, die auf Basis der neuen Daten gemacht
wurde.

Vergleich von zwei Darstellungen eines Prozesses: Die vorherigen zwei Anforderungen
beschreiben, dass der Benutzer des Systems die Möglichkeit haben soll, zwei
Visualisierungen zu bekommen, einmal mit den originalen Daten und einmal mit den
geänderten Daten. Damit dieser die Unterschiede leicht erkennen kann, soll er in der Lage
sein, die zwei Abbildungen zu vergleichen. Daraus erfolgt die Anforderung an das System,
dass dieses dem Benutzer die Möglichkeit geben soll, die von dem ViproWS generierten
Bilder nebeneinander zu stellen, um sie vergleichen zu können.

3.3 Nicht-funktionale Anforderungen
Technische Anforderungen:

- Als Programmiersprache wird Java vorausgesetzt. Die Java Version soll 6 oder höher
sein.

- Die Architektur soll als Client/Server konzipiert werden.

13

- Das Client soll webbasiert und in allen gängigen Webbrowser abrufbar sein.

- Der Server soll Apache Tomcat 6 oder eine höhere Version sein.

Benutzerfreundlichkeit: Die Benutzerfreundlichkeit der GUI ist einer der wichtigsten As-
pekte, die bei der Akzeptanz seitens der Benutzer eine Rolle spielen.

- Die graphische Oberfläche soll zeitgemäß gestaltet werden. Diese soll übersichtlich
und aufgeräumt sein und alle benötigten Funktionalitäten anbieten. Die Benutzer sol-
len ohne großen Aufwand den Umgang mit dem System lernen.

- Die Funktionen, die bereit stehen, sollen leicht bedienbar sein. Bei falschen Eingaben
sollen entsprechende Fehlermeldungen angezeigt werden.

Zuverlässigkeit: Das System unterstützt den Entscheidungsträger bei der Optimierung eines
Prozesses. Dabei spielt die Richtigkeit der angezeigten Werte eine große Rolle. Aus diesem
Grund soll das System immer die geforderten Informationen korrekt berechnen.

14

4 Design

In Kapitel 3 ist unter Technische Anforderungen Java als Programmiersprache zu sehen.
Diese Voraussetzung führte dazu, dass beim Design des KEIDA und bei der nachfolgenden
Implementierung die Grundprinzipien der Java EE Architektur befolgt wurden. In 4.1 werden
die Java EE Architektur sowie das Model-View-Controller (MVC) Entwurfsmuster kurz
erläutert. Anschließend werden ein Überblick über das KEIDA Design und eine Beschreibung
der KEIDA Architektur gemacht.

4.1 Java EE Architektur
Java EE ist eine Plattform zur Entwicklung von unternehmensweiten Anwendungen [IT13].
Java EE ist auf Basis des 4-Tier-Architekturmodells aufgebaut – Client-, Web-, EJB6- und
EIS7-Tier. Java EE ist komponentenbasiert und ermöglicht den Aufbau von verteilten
Anwendungen. Die Komponenten, die eine Anwendung aufbauen, laufen auf verschiedenen
Schichten der Architektur, sie sind lose, gekoppelt und unabhängig voneinander. Das führt zu
einer klaren Trennung nicht nur der Funktionalitäten und Zuständigkeiten der Komponenten,
sondern auch zu einer engen Spezialisierung seitens der Entwickler.

KEIDA setzt auf die Java EE Plattform. Als Client dient ein Web-Browser. Die Web- und
EJB-Tier sind in einem Apache Tomcat Server untergebracht. Eine relationale Datenbank
(MySQL Server) sowie das ViproWS, das auf einen Apache Tomcat Server läuft, sind als
EIS-Tier eingesetzt.

Mit Java EE lassen sich Webanwendungen erstellen. Bei der Entwicklung der
Webanwendungen hat sich die Model-View-Controller (MVC) Architektur bewiesen.
Heutzutage sind viele Open Source und kommerzielle Frameworks auf ihrer Basis aufgebaut.
Die Architektur teilt, wie auch in der GUI-Programmierung der Fall ist, die Anwendung in
drei Schichten. Das sind die Modell-, Präsentations- und Controllerschicht. Diese drei
Schichten übernehmen spezifische Aufgaben und haben verschiedene Verantwortlichkeiten
gegenüber den anderen Schichten [SSJ02]. Die Aufgaben werden dann in verschiedenen
Kategorien von Objekten definiert: “the objects that deal with presentation aspects of the
application, objects that deal with the business rules and data, and objects that accept and
interpret user requests and control the business objects to fulfill these request” [SSJ02]. Die
MVC-Architektur erlaubt z.B. das Ersetzen der Präsentation, ohne dass dabei das Modell
geändert wird.

Model-View-Controller Architektur. Die MVC-Architektur führt zu einer klaren Trennung
der Aufgaben. In einer GUI sowie in einer Webanwendung interagiert der Benutzer mit der
Anwendung und erwartet eine entsprechende Ausgabe. In einer GUI-Anwendung gibt der
Benutzer eine Eingabe über die graphische Oberfläche, die Anwendung nimmt dann diese
Eingabe, bearbeitet sie und gibt eine Antwort zurück, indem sich die GUI neuzeichnet. Im
Fall einer Web Anwendung ist die GUI in den meisten Fällen in einem Webbrowser
dargestellt. Der Benutzer stellt über diesen Browser die Anfragen an den Web Server. Der

6 Enterprise Java Bean
7 Enterprise Information System

15

Server bearbeitet die Anfragen, wählt die Präsentation (HTML, PDF, SVG usw.) und schickt
sie zurück an den Benutzer.

Die drei Teile der MVC-Architektur sind auf Abb. 4.1 zu sehen. Diese sind:

 - Model: Das Model implementiert die Geschäftslogik. Das Model hat Zugriff auf die
persistenten Daten und hat die Funktionalitäten, diese zu bearbeiten und sie in einer
geeigneten Form dem View bereitzustellen.

 - View: Das View ist zuständig für die Repräsentation der Daten, die das Model
zurückgibt. Das View kann von dem Model neue Daten erfordern und diese in einer
geeigneten Form darstellen. Über das View werden die Befehle an den Controller übergeben.

 - Controller: Der Controller ist für den gesamten Flow der Anwendung zuständig.
Anhand der Eingaben des Benutzers wird eine entsprechende Funktion ausgeführt. Der
Benutzer schickt Eingaben in Form von HTTP GET oder POST Anfragen. Anhand dieser
Anfragen entscheidet sich der Controller, welche Model und View gebraucht werden, um die
Information zu bearbeiten und in einer geeigneten Form zu präsentieren.

Abbildung 4.1: MVC Entwurfsmuster [NB13]

In einer Webanwendung wird der Controller in der Regel als ein Servlet implementiert. Der
Servlet hat die Verantwortung, anhand der Eingabe die passende Aktion zu unternehmen. Für
das View könnten Java Server Pages (JSP) oder Java Server Faces (JSF) eingesetzt werden.
Das ist aber nicht zwingend, weil die Antwort auch in einer anderen Form zurückgegeben
werden kann, z.B. in Form einer pdf-Datei. Die Daten in der Datenbank werden über Session
Beans und Data Acess Objects (DAO) aufgerufen und bearbeitet. Diese bilden das Model der
Webanwendung. (Abb. 4.2)

16

Abbildung 4.2: Architektur einer Webanwendung [NB13]

In der MVC-Architektur finden viele andere Entwurfsmuster wie Composite View, Front
Controller, View Helper, Data Access Object ihren Platz. Eine volle Liste sowie ausführliche
Beschreibungen der einzelnen Muster findet man in J2EE Core Patterns [Al03].

4.2 KEIDA – Überblick
KEIDA (KEI Dashboard) ist eine typische Webanwendung. Sie setzt auf die dreischichtige
Architektur - Client, Web und EIS. Der Benutzer kann auf KEIDA über einen Browser
zugreifen. Die Browser-Anfragen werden von einem Tomcat Server, auf dem KEIDA läuft,
abgefangen und bearbeitet. Die Daten, auf die das System zugreift, befinden sich auf einem
MySQL-Server. KEIDA greift auf das ViproWS auf, um ein BP zu visualisieren. Die
Anwendung besteht aus zwei Hauptteilen - Dashboard und Visualisierungswerkzeug.

Dashboard. Das Dashboard ist nach den Anforderungen des Systems, die in Kapitel 3
beschrieben wurden, aufgebaut. Es ist so konzipiert, dass der Benutzer eine Periode
auswählen kann und die entsprechende Information entweder alle Prozesse oder nur einen
einzelnen Prozess sehen und analysieren kann. Es ist auch möglich, dass der Benutzer auch
nach einem bestimmten Prozess suchen kann.

Abbildung 4.3: KEIDA Dashboard

17

Visualisierungswerkzeug. Der Benutzer kann mittels eines Konfigurationsassistenten die
von ViproWS benötigte Information angeben, um einen Prozess zu visualisieren. Weiter ist es
auch möglich, dass die Daten, die das System zu jeder Aktivität des Prozesses berechnet, von
dem Benutzer geändert werden. Dadurch bekommt der Benutzer eine zweite optimierte
Visualisierung des Prozesses. Das Visualisierungswerkzeug bietet die Möglichkeit, die zwei
graphischen Repräsentationen nebeneinander darzustellen und ermöglicht somit einen
Vergleich beider Darstellungen.

Abbildung 4.4: KEIDA Visualisierungswerkzeug

4.3 KEIDA – Design
Beim Studieren der Anforderungen an das System und der Funktionalitäten, die es haben soll,
wurde sofort klar, dass eine Teilung in Dashboard und Visualisierungswerkzeug unbedingt
nötig ist. Die zwei Teile beziehen sich auf die gleichen Daten, haben jedoch zwei völlig
unterschiedliche Funktionen. Die Anforderungen an das Dashboard setzen eine graphische
Darstellung der historischen Daten voraus. Mit dem Visualisierungswerkzeug sollte eine
graphische Darstellung der Struktur des BPs mittels ViproWS möglich sein.

Das Dashboard ermöglicht die Auswahl einer Periode, für die die Information über alle
gelaufenen Prozesse angezeigt wird sowie die Suche nach einem Prozess. Dadurch kann der
Benutzer nicht nur alle Prozesse, sondern auch einzelne Prozesse analysieren. Für das
Visualisierungswerkzeug ist eine Art Konfigurationsassistent erforderlich. Mit seiner Hilfe
soll der Benutzer in der Lage sein, verschiedene Parameter einzustellen, die für eine
Visualisierung benötigt werden. Der Benutzer soll auch die Möglichkeit haben, die
berechneten Werte, die den Prozess-Aktivitäten zugewiesen sind, zu ändern und eine zweite
Visualisierung vom System anzufordern. Die wichtigste Aufgabe dabei ist es, diese zweite
Visualisierung mit der ersten vergleichen zu können.

18

4.4 KEIDA – Architektur
KEIDA ist als eine Webanwendung realisiert und über einen Browser zugänglich (Abb. 4.5).
Diese Anwendung läuft auf einem Web Server (Apache Tomcat). Sie setzt auf die MVC-
Architektur und ist in drei Schichten aufgeteilt, die in 4.4.1 näher erläutert werden. Die Daten,
die auf dem Dashboard graphisch angezeigt werden, befinden sich auf einem Database Server
(MySQL) und KEIDA greift auf sie über eine jdbc-Verbindung zu. Bei der Visualisierung der
Processen wird das Vipro Webservice gebraucht, das in einem anderen Web Server (Apache
Tomcat) untergebracht ist. Die folgenden zwei Unterkapitel geben einen tieferen Überblick
der serverseitigen sowie clientseitigen Architektur.

Abbildung 4.5: KEIDA Architektur

4.4.1 Serverseitige Architektur

Die serverseitige Architektur ist entsprechend der Darstellung auf Abb. 4.5 aufgebaut. Sie
setzt auf die MVC-Architektur, die eine klare Trennung der einzelnen Schichten und deren
Zuständigkeiten liefert. Diese Tatsache veranschaulicht auch das verallgemeinerte
Sequenzdiagramm auf Abbildung 4.6. In der MVC-Architektur dient ein Servlet als Front
Controller und übergibt die Aufgaben an den unter ihm stehenden Controller. Diese
Controller sind eng spezialisiert und wie in Kapitel 5 deutlich wird, nur für bestimmte
Aufgaben zuständig. Diese Controller kennen die Modelle, die die benötigte Information
liefern können und leiten die von dem Request übergebenen Parameter an diese Modelle
weiter. Die von dem Modell zurückgegebene Information wird zusammen mit dem Namen
des Views an den Front Controller zurückgeliefert. Dieser bereitet die Antwort vor und
schickt sie an den Browser. Das Model von KEIDA ist auf verschiedenen Services aufgebaut.
Diese Services sind unabhängig voneinander und sind in der Lage, direkt auf die Daten in der
Datenbank zuzugreifen oder auch auf das ViproWS. Der Front Controller nimmt wie oben
beschreiben diese Daten von dem Modell und fügt sie in die passende Präsentation ein, die
dann an den Browser geschickt wird.

19

Abbildung 4.6: Bearbeitung einer Anfrage in KEIDA

Präsentationsschicht (View Layer): Die Präsentationsschicht ist hauptsächlich auf JSP
Dateien aufgebaut. Hier wird auf dem Composite View Pattern gesetzt, weil mehrere statische
Elemente einer Web Seite sich immer wieder wiederholen und diese sich dadurch nur einmal
definieren und in mehrere Seiten oder Views einfügen lassen. Auf Basis der Anforderungen
an das System wurden die folgenden Ansichten definiert: Dashboard für alle Prozesse,
Dashboard für einzelne Prozesse, Suche, Konfigurationsassistent, Prozessvisualisierung und
Vergleich zweier Prozessvisualisierungen.

Modelschicht (Model Layer): Die Modelschicht enthält die Geschäftslogik des Systems. Sie
ist in einzelnen Beans verteilt. Diese haben Zugriff auf die Businessobjekte und sind so
aufgeteilt, dass sie jede spezifische Funktionalität bereitstellen. Diese Gruppierung der
Funktionalitäten macht eine zukünftige Erweiterung leichter, weil eine definierte Grenze
zwischen den Zuständigkeiten existiert. Die Trennung nach Funktionalitäten führt zu einem
überschaubaren Code, der leicht zugeordnet werden kann. Das Model ist auf einzelnen
getrennten Komponenten aufgebaut. Dadurch ist leicht nachvollziehbar, welche Komponente
welche Zuständigkeiten hat. Diese Aufteilung ermöglicht eine Wiederverwendung von
Funktionalitäten an verschiedenen Stellen.

Controllerschicht (Controller Layer): Die Controllerschicht setzt auf das Front Controller
Entwurfsmuster. Der Controller steuert die Anwendung, indem dieser die Anfragen des
Benutzers bearbeitet und an das richtige Model weiterleitet. Der Controller ist in Kombination
mit Command Entwurfsmuster aufgebaut. Die HTTP Anfragen haben eine spezifische
Struktur, anhand derer sie einem Model zugewiesen werden. Dieses Model hat die passende
Businesslogik und liefert die angefragte Information. Die Anwendung kann dadurch das
richtige View auswählen, um die passende Präsentation der Information zu gewährleisten.

4.4.2 Clientseitige Architektur

Der Benutzer der Anwendung kann auf sie über einen Browser zugreifen. Wie schon erläutert,
besteht KEIDA aus zwei Hauptteilen, nämlich Dashboard und Konfigurationsassistent. Da
das Dashboard Informationen graphisch darstellt, wird auch keine große Interaktion mit dem
Benutzer vorausgesetzt. Dagegen ist der Konfigurationsassistent komplexer und begleitet den

20

Benutzer beim Visualisierungsprozess. Die GUI, die hier aufgebaut ist, setzt wie jede andere
auch auf MVC. Das Muster ist ein Bestandteil einer GUI-Anwendung und erleichtert den
Aufbau des Konfigurationsassistenten. Hier hat das Model im Unterschied zu den MVC auf
dem Server einen Einfluss auf die Präsentation. Auf dem Server wird das Model so
konzipiert, dass es auch durch ein anderes ersetzt werden kann, ohne dass etwas in dem View
oder Controller geändert werden muss. In der GUI hat jedoch das Model eine Referenz zum
View und benachrichtigt es wann es sich updaten soll. Das Modell enthält alle Informationen,
die bei der Einstellung einer Visualisierung eingegeben werden, und sorgt dafür, dass das
View rechtzeitig auf geänderte Informationen entsprechend reagiert. Das View leitet die neu
eingefügten Informationen an den Controller weiter. Dieser benachrichtigt seinerseits das
Modell. Darauf bauen alle graphischen Elemente auf, die eine Interaktion mit dem Benutzer
ermöglichen.

21

5 Implementierung

Im folgenden Kapitel wird eine ausführliche Beschreibung der Implementierung des
Konzepts, das in Kapitel 4 eingeführt wurde, gemacht. Das Kapitel fängt mit einer kurzen
Einführung der eingesetzten Frameworks an: SpringMVC auf der Serverseite und jQuery auf
der Clientseite. Danach folgen Beschreibungen der konkreten Implementierung der
Konfiguration sowie der View-, Model- und Controller-Schichten auf dem Server. Der
Kapitel schließt mit einer Übersicht der clientseitigen Implementierung ab.

5.1 SpringMVC und jQuery
Die Serverseitige Implementierung setzt, wie schon in Kapitel 4 gezeigt wurde, auf die Java
EE Technologie auf. Diese bietet die Grundfunktionalitäten, die den Aufbau einer
Webanwendung ermöglichen. Dieser Aufbau ist bei jedem Projekt mit der Implementierung
von spezifischen Funktionalitäten, die immer wieder vorkommen und sich als Best Practices
bewiesen haben, verbunden. Das ist z.B. die MVC-Architektur bei einer Webanwendung.
Diese Funktionalitäten werden in den Frameworks implementiert und dem Entwickler zur
Verfügung gestellt. Ein solches Framework ist SpringMVC, das zum Einsatz beim Aufbau
der serverseitigen Funktionalitäten von KEIDA kommt.

Abbildung 5.1: Dispatcher servlet workflow [Wa11]

Spring MVC [Wa11] ist um den DispatcherServlet aufgebaut. Dieser setzt auf das Front-
Controller Entwurfsmuster. Der Front-Controller ist der Eingangspunkt für alle Anfragen, die
der Benutzer an die Webanwendung macht. Die Aufgabe der DispatcherServlet ist es, diese
Anfragen an den zuständigen Controller weiterzuleiten. Die vom Entwickler geschriebenen
Controller sind mit @Controller annotiert. In den Controller-Klassen sind die Methoden mit
@RequestMapping zusätzlich annotiert und für spezifische Aufgaben zuständig. Diese
Informationen werden in dem zweiten Schritt “Handler mapping” im Request-Workflow
benötigt (Abb. 5.1, Schritt 2). Somit ist der DispatcherServlet in der Lage, den richtigen
Controller auszuwählen (Abb. 5.1, Schritt 3). Der Controller seinerseits hat eine Referenz
zum Model und leitet ihm die Daten, die der Benutzer geschickt hat (Abb. 5.1, Schritt 4). Das
Model implementiert die Geschäftslogik, die anhand der Anfrage des Benutzers und der
mitgeschickten Daten eine entsprechende Antwort liefern kann. Der Controller gibt an den
DispatcherServlet nicht nur die Daten zurück, die das Model geliefert hat, sondern auch den

22

Namen des Views, das bei der Präsentation dieser Daten benutzt werden soll. Dieses View
wird von dem ViewResolver bestimmt (Abb. 5.1, Schritt 5). Der ServletDispatcher kann jetzt
dieses View nehmen (Abb. 5.1, Schritt 6), um die Antwort, die an den Benutzer
zurückgeschickt wird, richtig zu formatieren. In den meisten Fällen wird als View eine
HTML-Template-Technologie eingesetzt z.B. JSP oder Tiles. Es ist aber auch möglich,
einfaches XML oder JSON an den Browser zurückzuschicken.

Auf die Clientseite werden bei der GUI-Programmierung JavaScript und HTML benutzt. Als
Framework wird hier jQuery eingesetzt. jQuery implementiert wie Spring MVC wichtige,
sich immer wieder wiederholende Funktionalitäten und stellt diese in einer einfachen und
leicht verständlichen Form an den Front-End Entwickler bereit. Einige davon sind:

 - Document Object Model (DOM) und Cascading Style Sheet (CSS) Manipulation

 - Event-System

 - AJAX Funktionalitäten

 - Möglichkeit, die Bibliothek mit Hilfe von benutzerdefinierten Plug-Ins um eigene
Funktionalitäten zu erweitern

 - Animationen von HTML-Elementen.

Bei der Visualisierung der Graphiken auf dem Dashboard wird die Highcharts JavaScript
Bibliothek benutzt. Diese generiert anhand von JSON Objekte die graphische Darstellung der
Zahlenreihen, die auf dem Server berechnet wurden.

5.2 Konfiguration
Der Eingangspunkt jeder Spring MVC Anwendung ist, wie in 5.1 gezeigt wurde, der
ServletDispatcher. Damit dieser als solcher erkannt wird, wird er in der web.xml Datei
definiert:

<servlet>

 <servlet-name>spring</servlet-name>

 <servlet-class>org.springframework.web.servlet.DispatcherServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>spring</servlet-name>

 <url-pattern>/</url-pattern>

</servlet-mapping>

Abbildung 5.2: Servlet- und Servlet-Mapping-Definitionen in web.xml

Die Servlet-Definition besagt, dass der DispacherServlet als erster geladen werden soll und
die Servlet-Mapping zeigt, dass alle Anfragen an diesen weitergeleitet werden sollen. Servlet-
Name ist der Name der Spring-Konfigurationsdatei. Im Fall von KEIDA ist das die spring-
servlet.xml. Die Konfiguration von KEIDA wurde auf mehrere xml-Dateien verteilt. Die
einzelnen Dateien enthalten spezifische Teile dieser Konfiguration (Abb. 5.3). Sie erfolgt

23

mittels Java Beans, die zur Initialisierungszeit in den einzelnen Klassen durch Dependencies
Injection geladen werden. So ist z.B. in der keida-db.xml-Datei der “dataSource”-Bean, der
eine Verbindung mit der Datenbank aufbaut, definiert (Abb. 5.6). Dieser braucht neben den
Namen der Datenbank den Pfad, den Benutzernamen und das Passwort. Dadurch kann Spring
zur Initialisierungszeit eine Verbindung mit der Datenbank aufbauen. In dieser Datei sind alle
anderen Beans, die einen Zugriff auf die Datenbank benötigen, definiert.

<!-- MySQL Data Base configuration -->
<import resource="keida-db.xml" />

<!-- Services Beans -->

<import resource="keida-services.xml" />

<!-- ViproWS Configuration -->

<import resource="keida-viproWS-configuration.xml" />

<!-- Main Dashboard Configuration -->

<import resource="keida-homepage-configuration.xml" />

<!-- Process page Configuration -->

<import resource="keida-processPage-configuration.xml" />

<!-- Visualization page Configuration -->

<import resource="keida-visualization-mapping.xml" />

Abbildung 5.3: Importieren von Konfugurationsdateien in spring-servlet.xml

In der spring-servlet.xml ist angegeben, wo sich die Controller befinden und dass diese durch
Annotation gekennzeichnet sind:

<context:component-scan base-package="de.unistuttgart.iaas.keida.controller" />

<mvc:annotation-driven/>

Abbildung 5.4: Auszug aus der spring-servlet.xml -Datei

Weiter folgt die Definition des ViewResolvers. Als Template-System wird in KEIDA auf
Tiles 2.2 gesetzt. Der Tiles2-Bean definiert, in welchem Ordner sich die Template-Dateien
befinden sowie dass das TilesViewResolver gebraucht wird, um den entsprechenden View zu
finden:

...

<bean class="org.springframework.web.servlet.view.tiles2.TilesConfigurer">

 <property name="definitions">

 <list>

 <value>/WEB-INF/views/**/views.xml</value>

 </list>

 </property>

 </bean>

<bean class="org.springframework.web.servlet.view.tiles2.TilesViewResolver" />

...

Abbildung 5.5: Tiles 2.2 Konfiguration

24

...
<bean id="dataSource" class="org.springframework.jdbc.datasource…">

 <property name="driverClassName" value="com.mysql.jdbc.Driver" />

 <property name="url" value="jdbc:mysql://localhost:3306/kei_dwupdate" />

 <property name="username" value="root" />

 <property name="password" value="" />

</bean>

<bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate">

 <property name="dataSource"> <ref bean="dataSource"/> </property>

</bean>

...

Abbildung 5.6: MySQL Konfiguration

Ein wichtiger Bean stellt die Konfiguration des ViproWS dar (Abb. 5.7). SpringMVC ist in
der Lage, über eine solche Konfiguration zur Initialisierungszeit alle benötigten
Vorbereitungen zu treffen, damit ein späterer WS-Aufruf ohne großen Aufwand erfolgen
kann:

<bean id="vis" class="org.springframework.remoting.jaxws.JaxWsPort..." >

 <property name="serviceInterface" value="arapoport.viproService.Vipro..." />

<property name="wsdlDocumentUrl" val-

ue="http://localhost:8080/viproWS/services/viproService?wsdl" />

 <property name="namespaceUri" value="http://arapoport/viproService" />

 <property name="serviceName" value="viproService"/>

 <property name="portName" value="viproService"/>

</bean>

Abbildung 5.7: ViproWS Konfiguration in keida-viproWS-konfiguration.xml

Die Konfigurationsdateien definieren die einzelnen Schichten innerhalb der MVC-
Architektur. In den folgenden Unterkapiteln folgt eine ausführliche Beschreibung der
Implementation diesen Schichten.

5.3 Controllerschicht (Controller Layer)
Der DispatcherServlet ist als Front-Controller aufgebaut. Dieser Front-Controller leitet die
Anfragen an den jeweiligen Controller weiter. Damit der DispatcherServlet diese finden kann,
ist der Package, in dem sie sich befinden, in der xml-Konfigurationsdatei spring-servlet.xml
(Abb. 5.2) angegeben. Die Parameter, die die Browseranfragen liefern, sollen dann auch den
richtigen Methoden der jeweiligen Controller zugewiesen werden (Abb. 5.9). Dieses “Handler
Mapping” wird durch die “annotation-driven”-Definition möglich gemacht (Abb. 5.4).
Annotationen wie “Controller” oder “RequestMapping” dienen dem DispatcherServlet, die
Controller und die zugehörige Methode auszuwählen (Abb. 5.8).

25

Abbildung 5.8: Handler Mapping

KEIDA ist um die zwei Themen Dashboard und Visualisierungswerkzeug aufgebaut und
implementiert Controller, die diese zwei Tatsachen abbilden (Abb. 5.9). Die Browser-
Anfragen an das Dashboard werden an den “Home Page Controller” sowie “Process Page
Controller” weitergeleitet. Zuständig für das Visualisierungswerkzeug ist der “Visualization
Page Controller”.

Abbildung 5.9: Controllerklassen

Die Controller sind in der Regel so aufgebaut, dass sie fast keine Funktionalitäten oder Algo-
rithmen implementieren. Sie wissen nur welches Modell für die Bearbeitung der Anfrage zu-
ständig ist und welches View für die Präsentation gebraucht wird. Das wird am Beispiel der
Klasse ProcessPageController deutlicher (Abb. 5.10). An erster Stelle ist diese Klasse mit
“@Controller” als Controller annotiert. Sie wird immer dann von dem DispatcherServlet
ausgewählt, wenn sie in der URL (Abb. 5.8) nach dem Servlet-Namen, in diesem Fall “pro-
cesses”, auftaucht. Die Methode, die für eine Visualisierung des Prozesses mit “id=1” ge-
braucht wird, ist mit “RequestMapping” mit Wert “process/quickview” annotiert. In der Me-
thode wird ein Objekt ModelAndView erzeugt, das als Eingabeparameter den Namen des
Views bekommt. Das Model liefert in diesem Fall den Namen einer SVG-Datei, die von
ViproWS generiert und in einem Ordner auf dem Server abgespeichert wurde. Der Request-
Dispatcher nimmt diesen Namen, findet das View und schickt eine Antwort zurück an den
Browser.

@Controller

@RequestMapping(value="/processes")

public class ProcessPageController {

…
@RequestMapping(value={"process/quickview"}, method=GET)

public ModelAndView quickView(@RequestParam(value="id", required=false) int

id)

26

{

 ModelAndView mav = new ModelAndView("processes/process/quickview");

 HashMap hm = this.ppc.getQuickview(id);

 mav.addAllObjects(hm);

 return mav;

}

….

Abbildung 5.10: Mapping einer Controllerklasse

Die Controller liefern in den meisten Fällen den logischen Namen des Views und anhand
dieser kann dann die Präsentation bestimmt werden. Die Präsentation ist in JSP-Dateien
beschrieben. Das ist aber nicht zwingend. So kann z.B. der Controller “VisualisationPage”
auch AJAX Anfragen beantworten und liefert ein JSON Objekt (Abb. 5.11). Der Controller
“SVGDownload” gibt auch keine HTML-Repräsentation zurück, sondern eine SVG-Datei, die
sich auf dem Server befindet und vom Benutzer angefragt wird.

@RequestMapping(value="/instances",method=GET)

public @ResponseBody List<ProcessInstance> getProces-

sInstancesJSON(@RequestParam("pid") int pid, @RequestParam("date")String date){

 List<ProcessInstance> result = this.vpsc.getProcessInstances(pid, date);

 return result;

}

Abbildung 5.11: Mapping einer AJAX Anfrage

5.4 Präsentationsschicht (View Layer)
Beim Aufbau der Präsentationsschicht wurde auf Apache Tiles 2.28 gesetzt. Apache Tiles ist
ein System für modularen Aufbau von graphischen Oberflächen in Webanwendungen. Die
Seiten bestehen in der Regel aus Elementen, die sich immer wieder wiederholen. Apache
Tiles dient dazu, diese Elemente, auch Tiles genannt, zu kombinieren und eine komplette
Webseite aufzubauen. Die Tiles sind in JSP-Dateien definiert und mittels Beschreibung in
xml-Konfigurationsdateien zur Laufzeit auf einer Seite zusammengefasst. Diese Aufteilung
der Seiten führt zu einer besseren Organisation der Views. Die KEIDA-Views befinden sich
im “views”-Ordner unter „WebContent/WEB-INF“. Die Präsentationsschicht ist in drei
Kategorien gegliedert: “home”, “processes” und “visualize”.

Die Views sind in den views.xml-Dateien, die in den jeweiligen Ordnern liegen, definiert. Sie
sind hierarchisch aufgebaut. Ganz oben in der Hierarchie steht die in dem Hauptordner
liegende views.xml-Datei. Sie definiert die Hauptvorlage (index.jsp), die den Rahmen jeder
HTML-Seite darstellt:

8 http://tiles.apache.org/

27

<definition name="template" template="/WEB-INF/views/index.jsp">

 <put-attribute name="header" value="/WEB-INF/views/header.jsp" />

</definition>

Abbildung 5.12: View Konfiguration in views.xml

Das Attribut “name” (Abb. 5.12) ist der eindeutige Identifikator des Templates. Dieser wird
später von den anderen Vorlagen geerbt und erweitert. Das “template“-Attribut enthält den
Pfad zur jsp-Vorlagedatei. In dieser jsp-Datei werden per benutzerdefinierte Tags “tiles” die
einzelnen Teile zur Laufzeit eingefügt (Abb. 5.13). Diese Teile sind mit “put-attribute” in der
views.xml-Datei (Abb. 5.12) definiert.

<body>

 ...

 <!-- begin header -->

 <tiles:insertAttribute name="header" />

 <!-- end header -->

...

Abbildung 5.13: Ausschnitt aus index.jsp

Die Auflösung des Views erfolgt durch den TilesViewResolver. Dieser braucht den Namen
des Views, der im jeweiligen Controller definiert wird. Der TilesViewResolver seinerseits
weiß nicht, was eine Tiles-Definition ist und verlässt sich auf dem TilesConfigurer. Der
TilesConfigurer weiß, dass die Views in „/WEB-INF/views/“ definiert sind (Abb. 5.14 als
Präfix markiert). Die Ant-Style Maske “**” in der Definition (siehe Abb. 5.4) zeigt ihm, dass
dort sich ein Ordner mit dem gleichen Namen, der vom DispatcherServlet übergeben wird,
befindet (in diesem Fall „home“, siehe Abb. 5.14) Die views.xml-Datei wird ausgelesen und
die dort definierte Struktur als Vorlage genommen.

Abbildung 5.14: Auflösung des Namens eines Views

Die Definition des Dashboards sieht so aus:

<definition name="home" extends="template">

 <put-attribute name="body" value="myapp.homepage.body"/>

</definition>

<definition name="myapp.homepage.body" emplate="/WEB-INF/views/home/body.jsp">

 <put-attribute name="title" value="/WEB-INF/views/home/title.jsp"/>

 <put-attribute name="datePicker" value="/WEB-

28

INF/views/home/datePicker.jsp"/>

 <put-attribute name="kei" value="/WEB-INF/views/home/kei.jsp" />

 <put-attribute name="chart" value="/WEB-INF/views/home/chart.jsp" />

 <put-attribute name="processList" value="/WEB-

INF/views/home/processList.jsp"/>

 <put-attribute name="gadgets" value="/WEB-INF/views/home/gadgets.jsp"/>

</definition>

Abbildung 5.15: Definition der Startseite des Dashboards

Beim Aufrufen der URL: “http://localhost:8080/KEIDA/dashboard” im Browser gibt der
HomePageController als logischen View-Namen “home” an den TilesViewResolver. Der
TilesViewResolver wendet sich an den TilesConfigurer und er holt die Vorlage mit allen
Teilen und gibt sie an den TilesViewResolver zurück. Die Information, die vom Model
vorbereitet wurde, wird an den richtigen Plätzen eingefügt und die so erstellte HTML-Seite an
den Browser zurückgeschickt. Ein Beispielergebnis ist auf Abb. 4.3 zu sehen.

In 5.3 und 5.4 wurde die Funktionsweise der Controller- und View-Schichten beschrieben.
Die Geschäftslogik hinter jeder Aktion, die der Controller erlaubt, ist in der Modelschicht
implementiert. Das nächste Unterkapitel gibt einen Überblick über die Implementierung
dieser Schicht.

5.5 Modellschicht (Model Layer)
Die Modellschicht der serverseitigen Implementierung von KEIDA ist auf den einzelnen
Komponenten, die auf jeder Seite des Front-Ends gebraucht werden, aufgebaut. Die
Komponenten sind verschiedene Graphiken oder Listen mit Prozessinformationen (siehe Abb.
5.16). Dieser modulare Aufbau führt zu einer klaren Trennung der Funktionalitäten und der
Zuständigkeiten bei der Implementierung der einzelnen Komponenten. Der Vorteil dabei ist,
dass diese unabhängig voneinander sind. Diese Komponenten lassen sich leicht austauschen,
ohne dass andere geändert werden müssen. Das führt auch zu einer Wiederverwendbarkeit der
Komponenten.

Die Services, auf denen die einzelnen Seiten aufgebaut sind, tragen den Namen der
Controller, die sie benötigen. ProcessPageController greift z.B. auf
ProcessPageServiceComposer. Die einzelnen Services implementieren das Kompositum
(Composite) und das Facade -Entwurfsmuster [GHJV11]. Wie das KEIDA Prozessseite
Mock-up zeigt (Abb. 5.16), besteht die Seite aus den Komponenten: Main Chart, Process
Information, Key Ecological Indicators und Activities. Jede dieser Komponenten braucht
verschiedene Informationen von der Datenbank und stellt eine andere Datensicht dar. Die
ServiceComposer-Klassen dienen auch als Facade vor dem Controller, weil sie das Benutzen
der darunterliegenden Subsystemen (Services) definieren. Diese Subsysteme enthalten die
eigentliche Businesslogik.

29

Abbildung 5.16: KEIDA Process page mock-up

Für den Aufbau jeder Graphik werden Informationen, wie die analysierten Indikatoren, die
betrachtete Periode, der Name der Graphik usw. gebraucht. Diese Information wird von der
Datenbank von einem speziell für diese Aufgabe ausgelegten ServiceWorker übernommen.
Diese ServiceWorker haben einen direkten Zugriff auf die persistente Schicht. Sie wissen,
welche Informationen für jeden einzelnen Typ Graphik gebraucht werden. Diese
ServiceWorker implementieren die Logik, die bei der Bearbeitung dieser Informationen
benötigt wird. Nachdem der ServiceComposer die Daten bekommen hat, werden sie an das
Highcharts-Subsystem übergeben, das für die Generierung der JSON-Objekte zuständig ist.
Das Ausgliedern der JSON-Generierung von der Datenbearbeitung führt zu einer klaren
Entkoppelung der Zuständigkeiten, um möglichst voneinander unabhängige Subsysteme zu
schaffen.

Bei den Text-Komponenten werden nur ServiceWorker gebraucht, weil sie keine spezielle
Darstellung erfordern. Diese wird direkt vom View übernommen. Im Unterschied dazu stellt
das View nur einen Platzhalter für die Graphiken bereit. Die eigentliche visuelle Darstellung
ist dem Highcharts JS API überlassen.

Als Beispiel für die oben beschriebene Generierung eines solchen JavaScript Objekts wird der
Aufbau der Hauptgrafik erläutert.

Der ProcessPageController erhält die Aufgabe, die Übersichtseite des Prozesses mit ID=1 zu
zeigen. Nach Eingabe im Browser “ http://localhost:8082/KEIDA/processes/process
/view?id=1” wird folgende Methode der Controller-Klasse ProcessPageController ausge-
führt:

@RequestMapping(value={"process/view"}, method=GET)

public ModelAndView processView(@RequestParam(value="id", required=false) int id,

HttpServletRequest request){

 ...

 HashMap hm = this.ppc.getViewPage(sessionRange, sessionPeriod, idI);

 ModelAndView mav = new ModelAndView("processes/process/view");

 mav.addAllObjects(hm);

 return mav;

}

30

Abbildung 5.17: processView()-Methode der ProcessPageController-Klasse

Die Methode übergibt die benötigten Informationen an den ProcessPageServiceComposer-
Klasse (PPC). Wie am Anfang des Kapitels gezeigt wurde, implementiert die PPC-Klasse das
Composite-Pattern. Das bedeutet, dass sie die Struktur der Seite kennt und weiß, welche
Komponenten auf der Seite vorkommen und welche Informationen dabei erwartet werden.
Die Methode, die in diesem Fall interessant ist, ist getViewPage der PPC-Klasse. Sie
übernimmt die Aufgabe, eine Komposition mit allen Komponenten zu erzeugen und als ein
assoziatives Array (HashMap) zurückzugeben. Für die Vorbereitung der Hauptgraphik
werden folgende Schritte benötigt:

public HashMap getViewPage(String period, String type, String name){

 ...

ArrayList<String> indicators = (Ar-

rayList<String>)this.chartConfiguratorPP.getIndicators().get("mainChart");

CalendarMath calMath = new CalendarMath(period);

ArrayList<double[]> data = this.csw.chartDataArray(period, type, indicators,

name);

ArrayList<String[]> labels = this.csw.chartLabels(indicators);

ChartWidget cw = new ChartWidget();

cw.initialize(calMath.getStartDate(), type, data, labels);

this.hm.put("highcharts", cw.display());

...

}

Abbildung 5.18: getViewPage-Methode der PPC-Klasse

Name, Datenreihe, Startdatum für x-Achse und die Legende werden von dem
ChartServiceWorker (csw) bereitgestellt. Diese werden dem ChartWidget(cw) weitergeben.
Beim Ausführen der cw display-Methode wird das JS-Objekt geliefert und dieses unter dem
Namen “highcharts” in das assoziative Array (hm) eingefügt. Im View wird diese ausgelesen
und in den Platzhalter, der für die Graphik bereit steht, geschrieben.

Wie schon oben erwähnt implementiert der ChartServiceWorker die Geschäftslogik, die hin-
ter jedem Graphiktypen steht. So wird z.B. die Methode getChartArray() der ChartService-
Worker-Klasse aufgerufen, um die Datenreihe für eine Graphik zu bekommen. Diese Methode
liefert die Daten aggregiert nach Periodentyp: pro Stunde, pro Tag usw.

private double[] chartMonthlyData(CalendarMath cal, String type, String indicator,

String name){

 List<Month> months = this.chartJDBC.getMonthValue(cal.getStartDate(),

cal.getEndDate(), name, indicator);

 double[] jsData = new double[cal.getMonthsBetween()];

 Calendar temp = Calendar.getInstance();

 if(!months.isEmpty()) {

 for(Month m : months){

31

 temp.set(Calendar.YEAR,m.getYear());

 temp.set(Calendar.MONTH, m.getMonth());

 temp.set(Calendar.DAY_OF_MONTH, m.getDay());

 jsData[cal.indexForMonthArray(temp)-1] = m.getValue();

 }

 }

 return jsData;

}

Abbildung 5.19: chartMonthlyData()-Methode der Klasse ChartServiceWorker

Die Daten aus der Datenbank werden mit Hilfe vom JdbcTemplate-Objekt, das in der keida-
db.xml- Datei definiert ist, geholt. Das JdbcTemplate-Objekt wird zur Initialisierungszeit
erzeugt und per Dependencies Injection in der ChartJDBCTemplate-Klasse instanziiert. Die
JdbcTemplate-Klasse übernimmt die Aufgaben, die beim Aufbau der Verbindung mit der
Datenbank oder beim Ausführen einer Anfrage an die Datenbank erfüllt werden.

public class ChartJDBCTemplate implements ChartDAO {

...

@Autowired

private JdbcTemplate jdbcTemplateObject;

...

public List<Month> getMonthValue(Calendar startDate, Calendar endDate, String name,

String indicatorDefinition){

 String sql = this.buildSQLQuery(startDate, endDate, "month", indicatorDefi-

nition, name);

 List<Month> months = jdbcTemplateObject.query(sql, new MonthMapper());

 return months;

}

...

}

Abbildung 5.20: Ausschnitt aus der Klasse ChartJDBCTemplate

Die Methode getMonthValue() der ChartJDBCTemplate liefert die Information, die für eine
Periode und für einen Indikator in der Datenbank abgespeichert ist. Diese wird dann in
chartMonthlyData() weiterbearbeitet und als eine Zahlenreihe ausgegeben.

Die gerade gezeigte Struktur steht als Basis für alle ServiceComposer und ServiceWorker. Die
ServiceComposer nutzen verschiedene ServiceWorker beim Aufbau der Seiten. Die
ServiceWorker sind dabei so ausgelegt, dass diese unabhängig voneinander sind. Das macht
ihren Einsatz in verschiedenen Composer möglich. So wird z.B. die oben gezeigte
Hauptgraphik auf der ersten Dashboard-Seite, sowie auf den Seiten mit der einzelnen
Prozessübersicht erzeugt.

Die serverseitige Implementierung von KEIDA erfolgt auf Basis der MVC-Architektur. Die
dadurch mögliche Trennung der einzelnen Schichten erlaubt eine klare Rollenzuweisung. Die

32

weitere Aufteilung der Seiten in Komponenten, die wie bei der GUI-Widgets eine eigene
Darstellung und Geschäftslogik besitzen, ermöglicht ihr Einsetzen auf mehrere Seiten. Die
serverseitige Implementierung ist aber nur ein Teil von KEIDA. Das Frontend in Teil
Visualisierungswerkzeug setzt auf einer aktiven Interaktion mit dem Benutzer. Diese
Interaktion sowie eine leichte Bedienung des Konfigurationsassistenten erfordern eine
Auslagerung von Funktionalitäten in den Browser. Im nächsten Kapitel werden diese näher
erläutert.

5.6 GUI Implementierung
Über das Frontend von KEIDA ist der Benutzer in der Lage, alle benötigten Daten, die für die
Visualisierung eines Prozesses notwendig sind, einzugeben. Unter benötigten Daten sind die
Prozessinstanzen, die Funktionen, die für jeden KEI gebraucht werden, sowie das Mapping
(Color, Size usw.) zu verstehen. Dabei gibt es Abhängigkeiten, die zu beachten sind. Diese
Abhängigkeiten führen zu bestimmten Konfigurationen und die GUI hat die Aufgabe, den
Benutzer dabei aktiv zu unterstützen. Eine wichtige Anforderung jeder Software ist die
einfache Bedienung und Erlernbarkeit. Deswegen wurde dieser Teil von KEIDA nicht in
separate Schritte aufgeteilt, bei denen eine Anfrage an den Server in jedem Schritt gemacht
wird, sondern als eine Desktop-Anwendung konzipiert, die im Browser läuft. Daraus ist der
Konfigurationsassistent entstanden. Dieser Wizard wird zum Teil auf dem Server vorbereitet
und erfordert auch eine aktive serverseitige Unterstützung.

Die Logik, die den Konfigurationsassistenten steuert, ist in JavaScript implementiert. Erst
beim Erfüllen von bestimmten Vorgaben werden Aktivitäten möglich. Diese Ereignisse
werden per JavaScript überwacht. So ist z.B. die Bedingung zum Anzeigen des “Visualize”-
Buttons die ausführliche Eingabe aller für eine Visualisierung benötigten Informationen.
Diese werden beim Klicken auf den Button dem Server mittels eines AJAX-Aufrufs
übergeben. Diese AJAX-Aufrufe dienen als Basis des Konfigurationsassistenten und spielen
eine große Rolle bei seinem Aufbau. AJAX-Aufrufe ermöglichen es, nur Teile der Webseite
von dem Server anzufordern und dadurch ist das Neuladen der ganzen Seite unnötig. AJAX
kommt auch beim Laden der Prozessinstanzenliste und bei der zweiten Visualisierung zum
Einsatz.

Die Architektur des Front-Endes ist wie auch die Serverseite auf MVC-Basis aufgebaut. Der
entscheidende Unterschied dabei ist, dass das View und das Model auf dem Observer-Pattern
setzen. Dadurch sind beide immer in Verbindung und das View kann sich entsprechend
erneuern, falls das Model neue Informationen zur Verfügung stellt.

Das Dashboard ist auf einer aktiven Unterstützung von JavaScript angewiesen. Die
Graphiken, die zu sehen sind, setzen auf der Highcharts-Bibliothek. Die Bibliothek nutzt die
Möglichkeiten der modernen Browser und wird auf den neuesten Standards wie HTML5 und
SVG aufgebaut. Wie im vorherigen Kapitel gezeigt, muss zuerst die benötigte Information auf
dem Server vorbereitet werden, um eine Graphik in die Seite zu integrieren. Die Highcharts-
Bibliothek erfordert ein JSON-Objekt, mit dessen Hilfe die Graphik beschrieben wird. Dieses
Objekt wird dann von dem Highcharts-API als Vorlage bei der Generierung der svg-
Repräsentation, die auf der Webseite zu sehen ist, gebraucht.

33

6 Anwendungsfall: Optimieren eines Prozesses in KEIDA

In dem DWH, auf dem KEIDA aufgebaut ist, werden Informationen über den Energiever-
brauch verschiedener Geschäftsprozesse, die in einem Unternehmen laufen oder deren Ablauf
simuliert worden war, gespeichert. In der nachfolgenden Untersuchung werden die sich dort
befindenden Informationen, die bei der Simulation zweier Prozesse entstanden sind, als Basis
genommen. Ziel dabei ist es, das Optimieren der Ökobilanz eines Prozesses mittels KEIDA zu
zeigen.

Beim Optimieren ist es empfehlenswert, die Untersuchung auf dem Dashboard anzufangen.
Dort sind alle relevanten Informationen über alle Geschäftsprozesse abgebildet. Auf dem
Dashboard sind die Auffälligkeiten sofort zu sehen. So ist es auch auf Abb. 6.1 leicht zu er-
kennen, dass der „PurchaseOrderRessellerProcess“ 98% des Energieverbrauchs ausweist. Die
nachfolgende Optimierung wird sich deswegen mit ihm befassen.

Abbildung 6.1: KEIDA Dashboard

Diese Untersuchung des Prozesses kann auf der einzelnen Prozesssicht-Seite fortgesetzt wer-
den (Abb. 6.2). Hier stehen dem Benutzer verschiedene Informationen zur Verfügung. Es gibt
einen gesamten Blick auf alle simulierten Daten über alle Perioden sowie die Möglichkeit, die
Periode abzugrenzen und sich nur auf einem bestimmten Zeitraum zu konzentrieren. Die KEI
Tachometer bilden den durchschnittlichen Wert jedes KEI bei einem Prozessdurchlauf ab.
Auf dieser Seite sind auch die Werte, die die einzelnen Aktivitäten generiert haben, zu sehen.
Die Information auf dieser Seite ist immer periodenbezogen. Wählt der Benutzer eine andere

34

Periode, wird sich diese entsprechend ändern und ist nur dem ausgewählten Zeitraum zuge-
ordnet.

Abbildung 6.2: PurchaseOrderResselerProcess Dashboard

Die KEI-Tachometer zeigen, dass der Energieverbrauch weit über dem gewünschten durch-
schnittlichen Wert liegt. Rechts davon auf dem Balkendiagramm, bei dem die KEI Werte auf
die einzelnen Aktivitäten verteilt sind, kann man sehr schnell fündig werden. Hier ist leicht
erkennbar, dass sich der Energieverbrauch mancher Aktivitäten weit über den der anderen
erstreckt. Dafür kann es verschiedene Gründe geben, die aus den vorliegenden Informationen
nicht nachvollziehbar sind. Das, was man hier erkennen kann, ist, dass die Aktivitäten und
insbesondere „checkAvailabilityInStock“ sehr wenig grüne Energie verwenden (Abb. 6.3).
Diese Tatsache ist auf dem „Percentage Clean Energy“ sichtbar (Abb. 6.4). Dabei liegt der

35

Anteil grüner Energie weit unter den gewünschten 80%. Die Priorität der nachfolgenden Op-
timierung des Prozesses liegt auf der Verringerung des Stromverbrauchs. Damit werden die
Senkung des CO2-Ausstoßes und die Verkleinerung der Mengen Atommüll, die bei der Pro-
duktion der Energie anfallen, angestrebt.

Abbildung 6.3: Verbrauch grüner Energie

Abbildung 6.4: Durchschnittlicher Anteil der grünen Energie bei einem Prozessdurchlauf

Für die weiteren Untersuchungen wird das Visualisierungswerkzeug eingesetzt, das ein Be-
standteil von KEIDA ist und das die graphische Darstellung der Prozessaktivitäten anhand der
Informationen, die im DWH liegen und auch mittels externer Informationen möglich macht.

Das Visualisierungswerkzeug besteht aus zwei Teilen. Links befindet sich der Konfiguration-
sassistent und rechts werden die Visualisierungen angezeigt (Abb. 4.4). Durch ihn sind die
Benutzer in der Lage, alle benötigten Informationen einzugeben, um eine Visualisierung zu
bekommen. Hier kann man Prozessinstanzen aus einer bestimmten Periode auswählen (Abb.
6.5, links), Funktionen, die einen Zusammenhang darstellen, einfügen (Abb. 6.5, Mitte) und
auch die Mapping Methode festlegen (Abb. 6.5, rechts).

36

Abbildung 6.5: Konfigurationswizard

Sobald der Benutzer alle Informationen eingegeben hat, kann dieser die Visualisierung vom
Server anfordern. Die Konfiguration, die für das gezeigte Beispiel verwendet wurde, ist wie
folgt:

- Prozessinstanzen. Alle Prozessinstanzen, die im DWH abgelegt sind, wurden ausge-
wählt. Als Periode wurde der gesamte Zeitraum genommen. Von 1/1/1970 bis heute
(20/9/2013).

- Funktionen. Um das Beispiel einfach zu halten, wurde nur eine Funktion eigestellt.
Dabei wurden alle Aktivitäten genommen, als Substanz wurde Elektrizität ausgewählt
und als Funktion durchschnittlicher Verbrauch keiner als der Wert 25 (Wh).

- Mapping. Als Mapping wurde „Color Map“ genommen mit den voreingestellten Wer-
ten und den zugewiesenen Farben. Z.B. falls der Wert bis zu 80% dem Funktionswert
entspricht, wird die Aktivität mit der Farbe #002596 (dunkel blau) gefärbt. Folgende
Farbeinstellungen wurden dabei vorgenommen:

o zwischen 80 und 90% : #008CD2 (hell blau)
o zwischen 90 und 100%: #1CDB00 (grün)
o zwischen 100 und 110% : #FFE100 (hell gelb)
o zwischen 110 und 120%: #FFAF00 (orange)
o alle Werte, die über 120% des eingegebenen Funktionswerts liegen, werden in

dunkel rot gefärbt.

Das Ergebnis kann man auf Abb. 6.6 sehen.

37

Abbildung 6.6: Visualisierung des PurchaseOrder Prozesses

In diesem ersten Schritt in Richtung einer möglichen Verbesserung der Ökobilanz des Prozes-
ses sind die Aktivitäten, die eventuell später mit energiesparenderen Aktivitäten ersetzt wer-
den sollen, sofort zu sehen. In dem betrachteten Beispiel sind das die „checkAvailabilityIn-
Stock“ (Abb. 6.6, in rot) sowie „getPaymentPrefs“ (auf dem Bild nicht zu sehen). Sie haben
einen sehr hohen durchschnittlichen Energieverbrauch. „CheckAvailabilityInStock“ weist
einen Verbrauch von ungefähr 50Wh pro Durchlauf auf und bei „getPaymentPrefs“ liegt die-
ser Wert sogar bei 67.38Wh bei einem angestrebten Wert von nur 25Wh. Für die weitere Pro-
zessoptimierung ist es wichtig, dass die Problemaktivitäten sich durch andere, die die gleiche
Funktionalität bereitstellen, ersetzen lassen und dass die neuen Aktivitäten bessere Durch-
schnittswerte haben. Deswegen wird hier angenommen, dass es solche Aktivitäten gibt und
sie die jetzigen ersetzen können, ohne die Struktur des Prozesses zu ändern. Für die
„checkAvailabilityInStock“ wird angenommen, dass es einen Ersatz gibt mit einem durch-
schnittlichen Wert von 22Wh und für „getPaymentPrefs“ ist ein Ersatz mit durchschnittlichem
Wert von 30Wh zu finden.

Nachdem die neuen Werte eingegeben wurden und die neue Version der Visualisierung ange-
fordert ist, ist sofort zu sehen, dass diese Änderung den gesamten Energieverbrauch um mehr
als 32% verringert. Graphisch ist das auf der rechten Seite der Abb. 6.7 auch leicht zu erken-

38

nen. Die Verfärbung der Aktivität ist (Abb. 6.7, rechts unten) jetzt im hell blauen Bereich
(zwischen 80 und 90% des angestrebten Wertes). Im Vergleich mit der Ausgangsituation
(Abb. 6.7, oben rechts) ist diese Aktivität dunkel rot gefärbt, was einem viel höheren Wert als
den gewünschten entspricht.

Abbildung 6.7: Vergleich von zwei Visualisierungen

Dieses Beispiel zeigt, wie man mit KEIDA in einigen Schritten bei Vorliegen der benötigten
Informationen (z.B. über Aktivitäten, die auch von externen Anbietern stammen können) eine
Optimierung eines Geschäftsprozesses bezüglich Energieeffizienz erzielt werden kann. KEI-
DA stellt die Informationen über das Verhalten des Prozesses graphisch dar und erleichtert
dadurch das Ziehen von Rückschlüssen auf die Problemzonen dieses Geschäftsprozesses.
Beim Vorliegen externer Daten über die Ökobilanz einer Aktivität lassen sich diese leicht
durch die im System abgelegten Daten ersetzen. Dadurch kann schnell visuell gezeigt werden,
was für einen Einfluss sie auf dem gesamten Prozess haben. Die so gewonnenen Erkenntnisse
kann man später beim Optimieren des Prozesses berücksichtigen, um ein nachhaltiges und mit
einer verbesserten Ökobilanz Betreiben dieses Prozesses zu erzielen.

39

7 Zusammenfassung

Green IT entwickelt sich in den letzten Jahren von einem Trend zu einer neuen Denkweise.
Die Unternehmen sehen dabei das große Potential nicht nur Geld zu sparen, sondern ihren
Umgang mit den knappen Ressourcen zu ändern. Wie in Kap. 1 gezeigt, machen große Unter-
nehmen wie Google und Facebook die ersten Schritte in diese Richtung und viele kleine Un-
ternehmen wie Strato folgen. Dabei geht es um das Generieren immer neuer Ansätze, wie sich
die IT in einem Unternehmen „grüner“ betreiben lässt, sowie darum, durch IT eine Verbesse-
rung des Umgangs mit den knappen Ressourcen zu erzielen.

Software Lösungen wie das KEI Framework stellen nicht nur die Möglichkeiten dar, die
Energiefresser unter den Geschäftsprozessen des Unternehmens ausfindig zu machen, sondern
geben auch an, welcher Anteil dieser Energie grün ist, wie viel CO2 in die Atmosphäre ausge-
stoßen worden ist sowie wie viel Atommüll bei der Nutzung von Kernenergie angefallen ist.
Beim Optimieren gibt es verschiedene Lösungen und eine davon stellt KEIDA dar. KEIDA
baut auf das KEI Framework auf und versucht, alle relevanten Aspekte des Energieverbrauchs
eines Geschäftsprozesses in einer geeigneten Form graphisch dem interessierten Benutzer
bereitzustellen. Der Benutzer ist dann in der Lage, wie in Kap. 6 gezeigt wurde, schnell Unre-
gelmäßigkeiten oder Auffälligkeiten aufzuspüren und diese zu untersuchen. Dabei wurde auch
gezeigt, wie mit dem Visualisierungswerkzeug schnell und unkompliziert eine graphische
Darstellung des Prozesses mittels ViproWS gemacht werden kann. Dabei ist es auch wichtig,
dass beim Vorliegen externer Daten über den Energieverbrauch, den CO2-Ausstoß oder die
Mengen Atommüll einer Aktivität, der Benutzer sie mit der bestehenden Aktivität ersetzen
und sich graphisch die Unterschiede anschauen kann.

Software Lösungen wie KEI Framework und KEIDA sind eine gute Basis für die Optimie-
rung der Ökobilanz eines Prozesses innerhalb eines Unternehmens. Solche Softwarelösungen
werden in der Zukunft in jedem Unternehmen eine große Rolle spielen. Einerseits ist der Sinn
und Zweck eines jeden Optimieren eines Prozesses, dass dieser Wettbewerbsvorteile gegen-
über der Konkurrenz bringt. Andererseits trägt das Unternehmen dazu bei, die Umwelt zu
erhalten und für die künftigen Generationen zu bewahren.

40

8 Anhang A – KEIDA Konfiguration

1. Webserver

Apache Tomcat Server 7.x.

2. Datenbank Server

MySQL 5.x

3.Konfiguration von KEIDA

Die Konfigurationsdateien befinden sich in dem “WebContent/WEB-INF”-Ordner.

Diese sind:

 - keida-db.xml

 - keida-homepage-configuration.xml

 - keida-processPage-configuration.xml

 - keida-viproWS-configuration.xml

 - keida-services.xml

 - keida-visualization-mapping.xml

 - spring.servlet.xml

Wie in Kap. 5.2 erläutert wurde, werden in die spring-servlet.xml alle anderen
Konfigurationsdateien importiert.

3.1. keida-db.xml

Hier kann die Verbindung mit der Datenbank eingestellt werden. Die benötigten
Informationen sind: URL der Datenbank, der Username, das Passwort und der Name der
Datenbank. Eine Beispielkonfiguration wäre:

<bean id="dataSource"

 class="org.springframework.jdbc.datasource.DriverManagerDataSource">

 <property name="driverClassName" value="com.mysql.jdbc.Driver" />

 <property name="url" value="jdbc:mysql://localhost:3306/kei_dwupdate" />

 <property name="username" value="root" />

 <property name="password" value="" />

</bean>

Abbildung 8.1: MySQL Konfiguration in keida-db.xml

41

3.2 keida-homepage-configuration.xml

Diese Datei definiert ein Bean, das die Konfiguration der Graphiken auf dem Dashboard
darstellt. Mit dem Bean werden die Indikatoren festgelegt, die auf den Graphiken verglichen
werden. Die Indikatoren sind in der Klasse IndicatorDefinitions festgelegt.

<!-- Indicators:

 - ACTIVITY_EL_USAGE

 - ACTIVITY_CO2_EMISSION

 - ACTIVITY_CLEAN_ENERGY

 - ACTIVITY_ELECTRICITY_COSTS

 - ACTIVITY_ATOMIC_WASTE

 Usage:

 #{indicatorDefinitions.{IndicatorType}} -->

 <bean id="indicatorDefinitions"

class="de.unistuttgart.iaas.keida.domain.IndicatorDefinitions"/>

 <bean id="chartConfiguratorAll"

class="de.unistuttgart.iaas.keida.service.helper.PageConfigurator">

 <property name="indicators">

 <map>

 <entry key="charts">

 <list>

 <value>#{indicatorDefinitions.ACTIVITY_CO2_EMISSION}</value>

 <value>#{indicatorDefinitions.ACTIVITY_EL_USAGE}</value>

 </list>

 </entry>

 <entry key="pies">

 <list>

 <value>#{indicatorDefinitions.ACTIVITY_CO2_EMISSION}</value>

 <value>#{indicatorDefinitions.ACTIVITY_CLEAN_ENERGY}</value>

 <value>#{indicatorDefinitions.ACTIVITY_ELECTRICITY_COSTS}</value>

 </list>

 </entry>

 </map>

 </property>

 </bean>

Abbildung 8.2: Homepage Konfiguration in der keida-homepage-configuration.xml-Datei

Abb. 7.2 zeigt die schon eingestellte Konfiguration. Diese lässt sich leicht ändern, indem die
schon eingegebenen Werte durch neue ersetzt werden oder neue dazugegeben werden. Die
Werte, die möglich sind, sind am Anfang der Datei aufgelistet.

3.3 keida-processPage-configuration.xml

Die Graphiken auf den einzelnen Prozesssicht-Seiten lassen sich in der keida-processPage-
configuration.xml steuern. Die Konfiguration erfolgt wie in 3.2.

42

3.4 keida-viproWS-configuration.xml

Bei der Visualisierung setzt KEIDA auf das ViproWS. Als Webservice ist ViproWS auf
einem externen Server zugänglich. Die Konfiguration des Zugriffs auf das Webservice kann
in keida-viproWS-configuration.xml eingestellt werden. Dafür werden folgende
Informationen gebraucht (Abb. 7.3): Pfad zur WSDL-Beschreibung, Servicename laut
WSDL, Port Name laut WSDL.

<bean id="vis"

 class="org.springframework.remoting.jaxws.JaxWsPortProxyFactoryBean">

 <property name="serviceInterface"

value="arapoport.viproService.ViproService" />

 <property name="wsdlDocumentUrl"

 value="http://localhost:8080/viproWS/services/viproService?wsdl" />

 <property name="namespaceUri" value="http://arapoport/viproService" />

 <property name="serviceName" value="viproService" />

 <property name="portName" value="viproService" />

 </bean>

Abbildung 8.3: ViproWS Konfiguration

3.5 keida-visualization-mapping.xml

In dieser Datei sind die voreingestellten Mappings für das Visualisierungswerkzeug
aufgelistet. Sie sind nach Map-Typ gegliedert. Die Konfiguration für das ColorMap ist wie
folgt:

<entry key="colorMap">

 <list>

 <bean class="de.unistuttgart.iaas.keida.service.helper.MapDefinition">

 <property name="lower" value="0.0" />

 <property name="upper" value="0.8" />

 <property name="color" value="#002596" />

 </bean>

 <bean class="de.unistuttgart.iaas.keida.service.helper.MapDefinition">

 <property name="lower" value="0.8" />

 <property name="upper" value="0.9" />

 <property name="color" value="#008cd2" />

 </bean>

 <bean class="de.unistuttgart.iaas.keida.service.helper.MapDefinition">

 <property name="lower" value="0.9" />

 <property name="upper" value="1.0" />

 <property name="color" value="#1cdb00" />

 </bean>

 <bean class="de.unistuttgart.iaas.keida.service.helper.MapDefinition">

 <property name="lower" value="1.0" />

43

 <property name="upper" value="1.1" />

 <property name="color" value="#ffe100" />

 </bean>

 <bean class="de.unistuttgart.iaas.keida.service.helper.MapDefinition">

 <property name="lower" value="1.1" />

 <property name="upper" value="1.2" />

 <property name="color" value="#ffaf00" />

 </bean>

 </list>

</entry>

Abbildung 8.4: ColorMap Konfiguration

3.6. keida-services.xml

Hier sind nur die Beans definiert, die in den Klassen innerhalb von KEIDA gebraucht werden.
Keine spezielle Konfiguration ist möglich oder erforderlich.

4. Speichern von Visualisierungen

ViproWS liefert die Visualisierung eines Prozesses in Form einer svg-Datei und diese Dateien
könnten bis zu 14 MB groß werden. Nachdem diese von dem ViproWS geliefert werden,
werden sie in einem speziell für das Ziel ausgelegten Ordner auf dem Server gespeichert.
Dann wird der GUI nur der Pfad zu den Dateien weitergegeben und diese werden von dort
abgerufen. In dem Prototyp wurde die Abspeicherung so konzipiert, dass jede Visualisierung
im „temp“-Ordner des Betriebssystems abgelegt wurde. Nachteil dabei ist, dass dadurch sehr
schnell sehr viel Platz belegt wird. Da die Visualisierungen aber immer nur für einen
speziellen Fall gemacht werden, die Fälle keine Verbindung miteinander haben und die
Zuordnung von alten Visualisierungen nach der Ausgangsituation unmöglich ist, wurde diese
Abspeicherung abgeschafft. Beim ersten Visualisierungsvorgang erzeugt KEIDA einen neuen
Ordner unter “Ressourcen” mit dem Namen “temp”. Sobald eine neue Visualisierung erzeugt
wird, wird die alte gelöscht. Wird eine zweite Visualisierung anhand der ersten gemacht,
bleibt die erste erhalten. Damit ist ein nachträglicher Download seitens des Benutzers
möglich. Die Bilder, die bereits auf dem Server abgespeichert sind, werden bei einem neuen
Visualisierungsvorgang durch neu generierte Bilder ersetzt. Dadurch wird immer nur so viel
Platz auf der Festplatte gebraucht, wie die zwei aktuellen Repräsentationen eines Prozesses
brauchen.

5. Bibliotheken

Alle externen Java-Bibliotheken, die KEIDA braucht, sind unter “WEB-INF/lib” zu finden.

6. Interface Labels

In der Datei “general.properties” im Ordner “WebContent/WEB-INF/resources” sind alle
Beschriftungen, die im Frontend von KEIDA vorkommen, aufgelistet.

44

9 Anhang B – KEIDA Klassenstruktur

Die Java Klassen, die für die serverseitige Implementierung von KEIDA gebraucht werden,
sind wie folgt gegliedert:

 - arapoport.viproService

 - de.unistuttgart.iaas.keida.controller

 - de.unistuttgart.iaas.keida.dao.barChart

 - de.unistuttgart.iaas.keida.dao.chart

 - de.unistuttgart.iaas.keida.dao.gadget

 - de.unistuttgart.iaas.keida.dao.gadget

 - de.unistuttgart.iaas.keida.dao.gauge

 - de.unistuttgart.iaas.keida.dao.process

 - de.unistuttgart.iaas.keida.dao.domain

 - de.unistuttgart.iaas.keida.domain.visualization

 - de.unistuttgart.iaas.keida.math

 - de.unistuttgart.iaas.keida.service.composer

 - de.unistuttgart.iaas.keida.service.helper

 - de.unistuttgart.iaas.keida.service.worker

 - de.unistuttgart.iaas.keida.ui.datepicker

 - de.unistuttgart.iaas.keida.ui.highcharts

 - de.unistuttgart.iaas.keida.ui.menu

 - de.unistuttgart.iaas.keida.xml.rtdformat

 - de.unistuttgart.iaas.keida.xml.rtdinstance

 - de.unistuttgart.iaas.keida.xml.templatecfg

1. Webservice-Klassen

arapoport.viproService

Dieses Paket enthält die automatisch generierten Klassen, die beim Aufrufen des ViproWS
gebraucht werden.

de.unisttugart.iaas.keida.xml.rtdformat

de.unisttugart.iaas.keida.xml.rtdinstance

de.unisttugart.iaas.keida.xml.templatecfg

45

Diese Pakete enthalten Klassen, die mit JAXB erzeugt wurden und stellen eine Repräsentation
der Konfiguration dar, die an den ViproWS gesendet wird.

2. Controller-Klassen

de.unistuttgart.iaas.keida.controller

 - HomePageController

 - ProcessPageController

 - SVGDownloadController

 - VisualizationPageController

Das Paket enthält die Controller-Klassen. Diese Controller sind mit “Controller” annotiert
und enthalten alle Methoden, die zusätzlich mit “RequestMapping” annotiert und auf
spezifische Funktionen zugeschnitten sind. Die Methoden machen nur einen Aufruf des
zugehörigen Modells und legen die richtige Präsentation fest. (Abb. 9.1)

@RequestMapping(value={"/","/dashboard"}, method=RequestMethod.GET)

 public ModelAndView showDashboard(HttpServletRequest request) {

 LinkedHashMap hm = this.hmsi.getModel("","");

 request.getSession().setAttribute("dateRange", "");

 request.getSession().setAttribute("radio", "");

 ModelAndView mav = new ModelAndView("home");

 mav.addAllObjects(hm);

 return mav;

 }

Abbildung 9.1: showDashboard() - Methode der Klasse HomepageController

Der HomePageController implementiert die Methoden showDashboard und
updateFirstPage. Beide haben fast die gleiche Funktion, der Unterschied liegt darin, dass die
erste auf eine GET Anfrage zugeschnitten ist und die zweite Antworten an POST Anfragen
seitens des Browsers liefert. Das showDashboard ermöglicht eine Repräsentation der Daten,
ohne dabei eine spezielle Periode in der GUI anzugeben, wobei die zweite das Start- und
Enddatum der Periode bekommt, die der Benutzer ausgewählt hat.

ProcessPageController implementiert die Methoden, die einer Suche nach einem
bestimmten Prozess, einer Visualisierung, einer Anfrage der BPEL-Datei sowie der
Darstellung des Dashboards des ausgewählten Prozesses, antworten.

SVGDownloadController implementiert nur eine einzige Methode, die eine SVG-Datei
liefert. Der Controller ist dafür da, weil die SVG-Dateien im Browser als Bilder angezeigt
werden. Damit aber diese als Download bereitgestellt werden können, muss die Antwort an

46

den Browser modifiziert werden und der Header als “attachment;
filename=SVGDATEINAME.svg” gekennzeichnet werden. Dadurch wird die Datei im
Browser als Download bereitgestellt und nicht direkt angezeigt.

VisualizationPageController implementiert Methoden, die statt HTML JSON Objekte
liefern. Sie erhalten von der Anfrage JSON Objekte, die vom JavaScript auf dem Klient
generiert wurden. Als Antwort wird wieder ein JSON Objekt zurückgeschickt.

3.Modell-Klassen

de.unistuttgart.iaas.keida.service.composer

de.unistuttgart.iaas.keida.service.helper

de.unistuttgart.iaas.keida.service.worker

Die drei Pakete enthalten die Klassen, die das Modell in der MVC-Architektur bilden. Die
Composer Klassen implementieren die Struktur der einzelnen Seiten. Sie sind auf Basis des
Kompositum Entwurfsmusters aufgebaut. Die Methoden dieser Klassen liefern ein
vollständiges Model der zugehörigen Seite oder Unterseite.

de.unistuttgart.iaas.keida.service.composer

 - HomePageServiceComposerImpl

 - ProcessesPageServiceComposerImpl

 - VisualizationPageSerivceComposer

 - PageServiceComposer

Die Namen der Klassen entsprechen dem Namen der Controller-Klasse, von der sie
aufgerufen werden. HomePageServiceComposerImpl enthält z.B. die Methoden, die das
Modell bei der Generierung der Daten der Dashboard-Seite braucht. Die anderen Klassen
haben eine ähnliche Funktionalität. Sie entspricht den Anforderungen der anderen Seite.
PageServiceComposer ist eine abstrakte Klasse, die von den „*.Impl“-Klassen geerbt und
erweitert wird.

de.unistuttgart.iaas.keida.service.helper

 - SerivceCaller

 - ServiceConfiguration

 - SvgFileWriter

 - TemplateHelper

Das sind alle Klassen, die vom ServiceComposer oder ServiceWorker gebraucht werden.
ServiceCaller ist für das Aufrufen des ViproWS zuständig, ServiceConfiguration für die
Konfiguration dieses Aufrufs. SvgFileWriter speichert die zurückgegebene svg-
Repräsentation auf dem Server. TemplateHelper arbeitet zusammen mit der
ServiceConfiguration-Klasse.

47

de.unistuttgart.iaas.keida.service.worker

 - BarChartServiceWorker

 - ChartServiceWorker

 - GadgetServiceWorker

 - GaugeServiceWorker

 - KEIIndicatorServiceWorker

 - ProcessServiceWorker

 - ServiceWorker

 -VisualizationServiceWorker

Diese Klassen implementieren die Geschäftslogik innerhalb des Modells. Sie instanziieren ein
JdbcTemplate-Objekt und sind dadurch in der Lage, Daten aus dem DWH zu holen. Die
Klassen tragen die Namen der Komponenten, aus denen eine Seite im Frontend aufgebaut ist.
BarChartServiceWoker implementiert z.B. die Logik, die hinter den Daten einer
Balkengraphik steckt.

4.DAO-Klassen

de.unistuttgart.iaas.keida.dao.chart

de.unistuttgart.iaas.keida.dao.gadget

de.unistuttgart.iaas.keida.dao.gadget

de.unistuttgart.iaas.keida.dao.gauge

de.unistuttgart.iaas.keida.dao.process

de.unistuttgart.iaas.keida.dao.domain

Die Gruppe der Data Access Objekte (DAO) stellt die Ansammlung von Klassen, die die
Ergebnisse der Anfragen an das DWH repräsentieren. In jedem Paket ist eine
*.JDBCTemplate Klasse zu finden. Diese Klasse enthält die eigentlichen Queries und liefert
je nach Anfrage eine Liste von Objekten.

public List<Day> getDayValue(Calendar startDate, Calendar endDate, String name,

String indicatorDefinition){

 String sql = this.buildSQLQuery(startDate, endDate, "day", indicatorDefinition,

name);

 List<Day> days = jdbcTemplateObject.query(sql, new DayMapper());

 return days;

}

Abbildung 9.2: getDayValue()-Methode der Klasse chartJDBCTemplate

48

Die getDayValue()-Methode liefert z.B. eine Liste mit den Daten aller Prozesse aggregiert pro
Tag. Diese Information wird dann benötigt, wenn als Periodentyp „Tag“ ausgewählt wurde.

Zu jeder DAO Klasse existiert auch eine Mapper-Klasse. Sie wird von der JDBCTemplate-
Klasse gebraucht, damit die Ergebnisse der DWH-Anfragen richtig gemappt werden können.

5.Math-Klassen

de.unistuttgart.iaas.keida.math

 - CalendarMath

 - MappingMath

Das Paket enthält die Klassen CalendarMath und MappingMath. Die Klasse CalendarMath
implementiert Methoden, die mit Daten (z.B. 09/01/1970-09/01/2013) rechnen. Die Klasse
berechnet z.B. wie viele Tage, Wochen und Monate es innerhalb einer Periode gibt. Die
MappingMath-Klasse dagegen wird bei der Konfiguration der Daten gebraucht, die an das
ViproWS gesendet werden. Jede Mapping-Art erfordert eigene Berechnungen und die
Methoden dieser Klasse stellen diese Funktionalitäten zur Verfügung.

6.UI-Klassen

de.unistuttgart.iaas.keida.ui.datepicker

de.unistuttgart.iaas.keida.ui.highcharts

de.unistuttgart.iaas.keida.ui.menu

Die Klassen, die in diesen Paketen definiert sind, helfen beim Aufbau von verschiedenen auf
den Frontend-Seiten auftauchenden UI-Elementen. Das Menü-Paket dient z.B. dem Aufbau
des Menüs.

Das highcharts-Paket enthält die Klassen, die die JSON Repräsentation einer Graphik im
Format der Highcharts-Bibiliothek liefern.

Das datepicker-Paket dagegen liefert die JavaScript, die für den Aufbau der Datepicker-
Widget zuständig ist.

7.Domain-Klassen

de.unisttugart.iaas.keida.domain.visualization

In diesem Paket sind die Klassen definiert, die bei der AJAX aufgerufen im
VisualizationPageController gebraucht werden. Die JSON-Objekte, die an KEIDA geschickt
werden, müssen beim Eintreffen in der zuständigen Methode eine entsprechende Java-
Repräsentation haben.

49

Literaturverzeichnis

[Al03] Alur, Deepak: Core J2EE Patterns, Prentice hall Professional, 2003

[Bmu11] Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit: Papierver-
brauch in Deutschland, http://goo.gl/K3KkZl, besucht am 05.09.2013

[BES10] Buchta, Dirk; Eul, Marcus; Schulte-Croonenberg, Helmut: Strategic IT-
Management: Increase value, control performance, reduce costs, Springer, 2010

[BS12] vom Brocke, Jan; Seidel, Stefan: Green Business Process Management: Towards the
Sustainable Enterprise, Springer, 2012

[CW10] ComputerWeekly: Carbon reduction brings financial benefits, http://goo.gl/yKTFCg,
besucht am 04.09.2013

[DS90] Davenport, Thomas; Short, James: The new industrial engineering: Information tech-
nology and business process redesign, in Sloan Management Review, Vl. 31, No.4, Massa-
chusetts Institute of Technology, 1990

[Eg13] Eggert, Ulrich, Wachstum im Handel durch Internet, E-Commerce & Co.,
http://goo.gl/9DRwU3, Besucht am 02.09.2013

[Fe04] Few, Stephen: Dashboard Confusion, Perceptual edge, http://goo.gl/o6cYLU, 2004

[GHJV11] Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John: Entwurfsmuster.
Elemente wiederverwendbarer objektorientierter Software, Addison-Wesley, 2011

[Go13] Google, http://www.google.com/green/bigpicture/, besucht am 03.09.2013

[IT13] ITWissen: J2EE Komponentenmodell, http://goo.gl/ZNytpg, besucht am 10.09.2013

[In96] Inmon, William: Building the Data Warehouse, John Wiley, 1996

[Jo12] Jones, Terell: What Are the Top 10 Green IT Strategies?, http://goo.gl/A78kf2, besucht
am 04.09.2013

[Joh12] Johnson, Scott: Introduction to Data Deduplication in Windows Server 2012,
http://goo.gl/Hdtebf, besucht am 05.09.2013

 [KMU06] Kemper, Hans-Georg; Mehanna, Walid; Unger Carsten: Business Intelligence:
Grundlagen und Praktische Anwendungen, Westdeutscher Verlag, 2006

[Kr13] kra, Suchmaschinenriese: Google verbraucht so viel Strom wie eine Großstadt,
http://goo.gl/ueYxIs, Besucht am 02.09.2013

[KW10] Kosch, Bernd; Wagner, Heinz: Alles im grünen Bereich – Mit Green IT zu Energie-
effizienz und Nachhaltigkeit, in Green Office, Gabler, 2010

[LN11] Loos, Peter; Nebel, Wolfgang: Green IT: Ein Thema für die Wirtschaftsinformatik?,
in WIRTSCHAFTSINFORMATIK, Vol.53, Nr.4, SP Gabler Verlag, 2011

[MB08] Martinez, Nathaneil; Bahloul, Karim: European Organisations and the Business Im-
peratives of Deploying a Green and Sustainable IT Strategy, http://goo.gl/DU8Ebc, IDC, 2008

50

[Ms08] Murugesan, San: Harnessing green IT: Principles and Practices, in IT Pro Jan/Feb
2008, http://goo.gl/yZoi8v, IEEE Xplore, 2008

[NB13] Netbeans, The NetBeans E-commerce Tutorial - Designing the Application,
http://goo.gl/FH2Kau, besucht am 02.09.2013

[NLM11] Nowak, Alexander; Leymann, Frank; Mietzner, Ralph: Towards Green Business
Process Reengineering, Universität Stuttgart, Deutschland, 2011

[Ra13] Rüdiger, Ariane: Die richtige Kühlung für das Rechenzentrum, http://goo.gl/9OJ2l3,
besucht am 05.09.2013

[RC04] Rivard, Kurt; Cogswell, Doug: Using Analytical Dashboards to cut through the
clutter, in DM Review, http://goo.gl/hle9Wc, April 2004

[Rm11] Rouse, Margaret: business process management (BPM), http://goo.gl/YRVbPL ,
besucht am 03.09.2013

[Sk11] Summitt, Krista: The four Pillars of BPM 7.5 Part Two: Governance,
http://goo.gl/EB1s6r, besucht am 03.09.2013

[SSJ02] Singh, Inderjeet; Stearns, Beth; Johnson, Mark: designing Enterprise Applications
with the J2EE Platform, Second Edition, Pearson, 2002

[St08] Stern: It-Branche gibt sich umweltfreundlich, http://goo.gl/bp2XtU, besucht am
03.09.2013

[UN12] United Nations ESCAP, Low Carbon Green growth Roadmap for Asian an the Pacif-
ic: Fact Sheet – Green technology, http://goo.gl/2NTnsF

[Va12] Ventarman, Archana: Global census shows datacentre power demand grew 63% in
2012, http://goo.gl/bwFGsA, besucht am 03.09.2013

[Ve10] Verdanti: Carbon Disclosure Project Study 2010: The telepresence Revolution,
http://goo.gl/TgJmQv

[Wa11] Walls, Craig: Spring in Action, Third Edition, Manning Publications, 2011

[WMC] Workflow Management Coalition, The Workflow Management Coalition Specifica-
tion, http://goo.gl/dwULJU, besucht am 02.09.2013

51

Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen Quellen
benutzt zu haben. Wörtliche und sinngemäße Übernahmen aus anderen Quellen habe ich nach
bestem Wissen und Gewissen als solche kenntlich gemacht.

Stuttgart, den 11. Oktober 2013 _____________________

