Institut fur Architektur von Anwendungssystemen
Universitat Stuttgart
Universitatsstralle 38
70569 Stuttgart
Deutschland

Studienarbeit Nr. 2424

Analyse und Prognose von
Umweltdaten in Geschaftsprozessen

Lazar Davidkov

Studiengang: Informatik

Priifer: Prof. Dr. Frank Leymann
Betreuer: M.Sc. Wirt.-Inf. Alexander Nowak
begonnen am: 16.04.2013

beendet am: 11.10.2013

CR-Klassifikation: H.4.1

Inhaltsverzeichnis

I EINICIEUNG .ottt ettt ettt e ettt e s abeesseeenbeesseeenbeenseeenseenns 1
B D 1cS 11112 (0] 1 1<) s DO OO OO S TU PO PURUPRRRPSPTOTRRPRO 3
2.1 Business Process / WOrkflOWc.coocuiiiiiiiiiiiiiiic e 3
2.2 GTEEN IT ittt ettt et et e 5
2.2.1 Green OrganiSaAtiONSccueeerveeerueeerteeesereeessreesssseesssaeesseeessssesssseesssseesssseessssees 5
222 Green TeChNOlOZYcocuiiiiiiiiiiiiiiee ettt 7
2.2.3 GIEEN PrOCESSES. .. eeiiiiiiiiiieiieetteeite ettt sttt e 7

2.3 Business Intelligence Werkzeugeccveeevieeiiieeiiieeieeceeeee et 8
2.3.1 Data WarChOUSEcccviiiiiiieeiieecee et be e e eeeabeeeanee s 8
2.3.2 ETLPIOZESSE ...couiiiiiiiieeeeee ettt 9
2.3.3 DashbDOArd......cc.coiiiiiiiie et 10

B KONZEPE .ttt e e e st e et e et e et e st e e 11
3.1 ZielDESHIMMUNGeeieiiieiieeiieie ettt ettt et site et e ssaeeteesabeenbeesnseenseens 11
3.2 Funktionale Anforderungen...........ccocueecuieriiiiiienieeiiienie ettt 11
3.3 Nicht-funktionale Anforderungenc.ccoooeeriiiiiiniiiiiieee e 12

T B 1o ¥4 s WO TSRS 14
4.1 Java EE ATCRItEKIUTooiiitiiiieiectieteee ettt 14
4.2 KEIDA — UDEIDLCK ...vuieieciriirireiiiieici ittt 16
4.3 KEIDA — DESIZIN .ietieiiiiiiieiiieiie et etie et esite ettt eeteesstesteesseesnbeeseesnseesseesaseenseesnsens 17
4.4 KEIDA — ArChiteKturcooiiiiiiiiieieieeee et 18
4.4.1 Serverseitige ATchiteKtur..........cccocoiiiiiiiiiiiiii e 18
442 Clientseitige ATChiteKtULcoouiiiiiiiiiiie et 19

5 IMPICMENTICIUNGvieiiieiiieiieetieeteeieeete et e et e et e staeesbeeesbeesseessseesseessseenseessseenseessseeseens 21
5.1 SpringMVC und JQUETYooueiuieiiriiiieiieetete ettt sttt 21
5.2 KONTIGUIALION.eiiiiieiieitieeieeeie ettt ettt et e et e et e e s ete e bt essaeesseessseesbeessseenseens 22
5.3 Controllerschicht (Controller Layer)ccccccuieiuieiiieiieiiieiiecieeieeee e 24
5.4 Présentationsschicht (VIEW Layer).......cccoooiiiiiiiiiiiiniieieeeee e 26
5.5 Modellschicht (MOdel Layer)cccoieviieiiiiiiieiieiieeieeeee ettt 28
5.6 GUI IMPIeMENTICIUNG.cccviieiiieiieeieeiieeieeiteeteerieeereeteeeaeeseeseseesseeesseenseesnseessnenns 32

6 Anwendungsfall: Optimieren eines Prozesses in KEIDAcccccoiiniiiiiiiniininicnene 33
T ZUSAMMENTASSUNGveeiiieiiieiieeiieeriie et et e et esteeebeesteesebeesseesnseeseessseesseesnsaenseesnseenseesnsens 39
8 Anhang A — KEIDA KoONfigurationccceeeueeviieniieiiienieeiieeeieeieeseeereesseeveessneeneens 40
9 Anhang B — KEIDA KIasSenStruKtUur..........ccc.eeeiiiiriiieeeiieesiee e eiee e e 44
LteraturVeTZ@ICRIISe.eeeiiiiiieiteiee ettt sttt et sttt et sbe e 49

Abkiirzungsverzeichnis

API

AJAX

BI

BPEL

BPM

BPMN

DAO

DWH

ETL

GUI

GW

JSON

KEIDA

MVC

SOA

SVG

WIMC

WS

WSDL

Application Programming Interface
Asynchronous JavaScript and XML
Business Intelligence

Business Process Execution Language
Business Process Management
Business Process Management Notation
Data Access Object

Data Warehouse

Extract, Transform, Load

Graphical User Interface

Gigawatt

JavaScript Object Notation

Key Ecological Indicators Dashboard
Key Performance Indicator

Model, View, Controller

Service Oriented Architecture
Scalable Vector Graphics

Workflow Management Coalition
Web Service

Web Service Description Language

il

Abbildungsverzeichnis

Abb. 2.1 IBM Business Process Manager

Abb. 2.2 The devil’s pentagon

Abb. 4.1 MVC Entwurfsmuster

Abb. 4.2 Architektur einer Webanwendung

Abb. 4.3 KEIDA Dashboard

Abb. 4.4 KEIDA Visualisierungswerkzeug

Abb. 4.5 KEIDA Architektur

Abb. 4.6 Bearbeitung einer Anfrage in KEIDA

Abb. 5.1 DispatcherServlet workflow

Abb. 5.2 Servlet- und Servlet-Mapping-Definitionen in web.xml
Abb. 5.3 Importieren von Konfigurationsdateien in spring-servlet.xml
Abb. 5.4 Auszug aus der spring-servlet.xml -Datei

Abb. 5.5 Tiles 2.2 Konfiguration

Abb. 5.6 MySQL Konfiguration

Abb. 5.7 ViproWS Konfiguration in keida-viproWS-konfiguration.xml
Abb. 5.8 Handler Mapping

Abb. 5.9 Controllerklassen

Abb. 5.10 Mapping einer Controller Klasse

Abb. 5.11 Mapping einer AJAX Anfrage

Abb. 5.12 View Konfiguration in views.xml

Abb. 5.13 Ausschnitt aus index.jsp

Abb. 5.14 Auflésung des Namens eines Views

Abb. 5.15 Definition der Startseite des Dashboards

Abb. 5.16 KEIDA Process page mock-up

Abb. 5.17 processView()-Methode der ProcessPageController-Klasse

il

Abb. 5.18 getViewPage-Methode der PPC-Klasse

Abb. 5.19 chartMonthlyData()-Methode der Klasse ChartServiceWorker

Abb.

Abb.

Abb.

Abb.

Abb.

Abb.

Abb.

Abb.

Abb.

Abb.

Abb.

Abb.

Abb.

Abb.

5.20 Ausschnitt aus der Klasse ChartJDBCTemplate

6.1

6.2

6.3

6.4

6.5

6.6

6.7

8.1

8.2

8.3

8.4

9.1

9.2

KEIDA Dashboard

PurchaseOrderResselerProcess Dashboard

Verbrauch griiner Energie

Durchschnittlicher Anteil der griinen Energie bei einem Prozessdurchlauf
Konfigurationsassistent

Visualisierung des PurchaseOrder Prozesses

Vergleich von zwei Visualisierungen

MySQL Konfiguration in keida-db.xml

Homepage Konfiguration in der keida-homepage-configuration.xml-Datei
ViproWS Konfiguration

ColorMap Konfiguration

showDashboard() - Methode der Klasse HomepageController

getDayValue()-Methode der Klasse chartJ/DBCTemplate

v

1 Einleitung

Heute ist es kaum denkbar, dass ein Unternehmen existieren kann, ohne eine eigene IT zu
haben oder IT-Dienstleistungen zu beziehen. Im Jahr 2020 wird die Mehrzahl der
Geschiftsprozesse in der Wirtschaft mit Hilfe von IT-Systemen betrieben werden [Egl3].
Diese Systeme (Hardware und darauf laufende Software) fiihren zu einem enormen
Energieverbrauch in den Unternehmen. Google z.B. verbraucht kontinuierlich 260 Millionen
Watt, was einem Viertel der Energie eines Atomkraftwerks entspricht oder dem Strom, der
bendtigt wird, um eine Stadt mit 200 000 Haushalten zu versorgen [Krl13]. Nur die
Rechenzentren in Deutschland verbrauchen die Energie, die der Leistung von vier mittleren
Kohlekraftwerken entspricht, ndmlich 10 Milliarden kWh [KW10]. Bei der Produktion dieser
Energie wird eine enorme Menge CO, in die Atmosphidre ausgestoBen. Dieser
Energieverbrauch ist auch mit hohen Kosten verbunden. Das fiihrte in den letzten Jahren
dazu, dass das Management in vielen Unternehmen mit dem Problem konfrontiert wurde (und
ist immer noch), wie dieser Energieverbrauch verringert werden kann, um die steigenden
Kosten einzudampfen. Losungen gibt es viele und alle sind direkt oder indirekt mit einem
nachhaltigen Umgang mit den knappen Ressourcen verbunden, die zu Verfiigung stehen und
bei der Energiegewinnung eine Rolle spielt. Als Nebeneffekt tragen die Unternehmen aktiv
dazu bei, die Umwelt so wenig wie moglich zu belasten. Die Unternehmen sollen heute nicht
nach dem “single bottom line”-Prinzip gefiihrt werden, sondern nach dem “tripple bottom
line”-Prinzip [BS12]. Dieses enthélt nicht nur den Erlés am Ende des Geschiftsjahres,
sondern ist auf die Menschen und die Umwelt ausgerichtet. Diese Diskussionen und
Uberlegungen fiihrten 2008 zur Formulierung des Begriffs “Green IT”. Green IT beruht auf
zwel Ansdtzen: Wie kann die IT zum nachhaltigen Umgang mit den begrenzten Ressourcen
beitragen und wie ldsst sich die IT nachhaltiger betreiben [LN11].

Die angestofene Diskussion um die Nachhaltigkeit beim Umgang mit den begrenzten
Ressourcen zeigt langsam ihre Wirkung. So haben Branchenriesen wie Google und Facebook
die Notwendigkeit von energiesparenden Rechenzentren sehr schnell erkannt und bauen diese
im Norden (in Finnland, im Fall von Facebook), um die Rechner mit Meerwasser zu kiihlen.
Bei Google werden die Gebdude und die Hardware so konstruiert, dass diese am wenigsten
Energie verbrauchen [Go13]. Die Notwendigkeit, weniger Energie zu verbrauchen, fiihrt bei
vielen Unternehmen zum Uberdenken der ganzen IT-Strategie. Das deutsche Unternehmen
Strato z.B. ersetzte nicht nur die Server mit energiesparenden Geréten, sondern auch die
Software, die darauf l4duft, wurde so umprogrammiert, dass die Algorithmen viel weniger
CPU-Zyklen in Anspruch nehmen und dadurch viel weniger Strom bei den Berechnungen
brauchen [BES10].

Das Beispiel von Strato zeigt, dass es wichtig ist, nicht nur die Hardware mit
energiesparenden Losungen zu ersetzen, sondern auch die Software so zu optimieren, dass
diese den geringsten Energieverbrauch aufweist. KEI Framework stellt eine Losung dar, die
genau das anstrebt: eine Optimierung der Okobilanz der Software, die hinter den
Geschiftsprozessen eines Unternehmens steht. Das KEI Framework ist in der Lage, den
Ablauf eines Prozesses im produktiven Einsatz zu tiberwachen, diesen in einer Testumgebung
zu simulieren und Informationen zu dessen Energieverbrauch zu ermitteln. Diese

Informationen sollen dazu dienen, den Prozess so zu gestalten, dass dieser moglichst effizient
1

und mit einem moglichst geringeren Energieverbrauch lduft. KEI Dashboard (KEIDA) ist das
Front-End des KEI Frameworks und hat die Aufgabe, die Informationen, die vom KEI
Framework gewonnen werden, graphisch darzustellen, um eine Analyse dieser Informationen
zu ermoglichen. Diese Auswertung soll anhand von Grafiken erfolgen, die den Verlauf des
Business Prozesses zeigen, sowie dessen einzelne Aktivititen und den Beitrag der Aktivitéten
zum gesamten Energieverbrauch. Mit Hilfe des Visualisierungswebservice ViproWS soll
dann noch zusitzlich die Struktur des Prozesses graphisch dargestellt werden. Diese
Darstellung basiert auf den Informationen iiber den Energieverbrauch jeder einzelnen
Aktivitdit. Dadurch konnen die Benutzer, die einen Prozess analysieren, schnell
nachzuvollziehen, wo sich die Problemzonen befinden. Durch Annotation sind die Benutzer
in der Lage, eine zweite Darstellung des Prozesses zu bekommen, die sich mit der ersten
vergleichen ldsst. Das Ziel dabei ist ein direkter Vergleich der zwei Versionen des Prozesses.

Diese Studienarbeit gibt einen Uberblick iiber die Technologien, die hinter dem KEI
Framework stehen, und erldutert wie KEIDA konzipiert und implementiert ist.

Die vorliegende Studienarbeit gliedert sich neben Einleitung und Zusammenfassung in fiinf
Hauptteile. Nach der Einleitung folgt ein Uberblick iiber die Begriffe, die eine groBe Rolle bei
dem Aufbau des KEI Frameworks und KEIDA spielen. Eine kurze Einfiihrung erldutert, was
ein Geschéftsprozess ist und wie sich dieser mit Software realisieren ldsst. Ein anderes
wichtiges Thema, das besprochen wird, ist die Green IT und wie die griine Technologie ihren
Platz im Alltag findet. KEI Framework setzt auf Business Intelligence (BI) Konzepten. Aus
diesem Grund wurden beim Aufbau des KEIDA viele Ideen aus diesem Bereich einbezogen.
In diesem Zusammenhang werden auch Begriffe und wichtige Konzepte aus dem BI-Bereich
eingefiihrt.

Funktionale und nicht-funktionale Anforderungen dienen als Basis jeder Software und sind
ein wichtiger Teil jeder Dokumentation. Sie dienen als Vertrag zwischen Auftraggeber und
Auftragnehmer und werden aufgrund ihrer Wichtigkeit in Kapitel 3 detailliert beschrieben.
Anschlieend wird das Design der Software erldutert und welche Konzepte dabei eigesetzt
wurden. Es wird eine Ubersicht iiber Java EE und die vier Tier Architektur angeboten, die
diese ermoglicht und die als Grundlage aller modernen Webanwendungen dient. Die MVC
Architekturstyle ist auch ein Bestandteil jeder Webanwendung und spielt eine grofle Rolle bei
der Verteilung der Zustdndigkeiten innerhalb der Software. KEIDA verfolgt diese Prinzipien
und setzt auf die MVC-Architektur. Ein Uberblick iiber die MVC-Architektur und wie diese
in KEIDA eingesetzt wird gibt Kapitel 4.

In Kapitel 5 folgt die eigentliche Implementierung von KEIDA. Anhand von Beispielen, die
aus dem Source Code der Software genommen wurden, werden der Aufbau und die
Funktionsweise von KEIDA erlautert. Kapitel 6 veranschaulicht anhand eines
Anwendungsfalls, wie sich die Software beim Optimieren eines Geschéftsprozesses einsetzen
lasst. Anhang A enthélt die Information, die bei einer Installation auf dem Server gebraucht
wird, und Anhang B verschafft einen Uberblick iiber die eigentliche Struktur der Java-Pakete
und tiber die dazugehdrigen Java-Klassen, die KEIDA bilden.

2 Definitionen

In dieser Studienarbeit werden Ansédtze, die bei jeder BI-Losung zu finden sind, eingesetzt.
Wie schon in Kapitel 1 aufgefiihrt, liegt die Aufgabe darin, ein Dashboard aufzubauen, auf
dem die im Data Warehouse abgelegten Informationen grafisch dargestellt und die Analyse
dieser Informationen ermoglicht werden. Ein weiterer Schwerpunkt der Studienarbeit ist es,
die Visualisierung anhand des bestehenden Visualisierungswebservice zu vereinfachen und
benutzerfreundlich zu gestalten. Dabei wird dem Nutzer die Moglichkeit gegeben, die
berechneten Werte mit neuen auszutauschen und die neue graphische Darstellung mit der
alten zu vergleichen. Begriffe, die dabei eine gro3e Bedeutung haben, sind Business Process,
Business Process Management, Dashboard, Data Warehouse, Extract Transoform and Load
(ETL) Prozesse und Key Ecological Indicators (KEI) und werden in diesem Kapitel ndher
erldutert.

2.1 Business Process / Workflow

Eine Definition des Business Process, auf Deutsch Gechiftsprozess, geben Davenport und
Short [DS90]:

’

“A set of logically-related tasks performed to achieve defined business outcome.’
und:

“1) Processes have customers, that is, processes have a defined business outcome,
and there are recipients of the outcomes. Customers may be either internal or external
to the firm; and

2) They cross organizational boundaries, that is, normally that occurs across or
between organizational subunits. Processes are generally independent of formal
organizational structure.”

Beispiele fiir Geschéftsprozesse sind die Erstellung eines Produkts, die Bestellung von Waren
bei einem Lieferanten oder die Abwicklung einer Bestellung eines Kunden in einem
Onlineshop.

Die Definition oben besagt, dass ein Prozess aus verschiedenen Aktivititen besteht, wobei die
Aktivitdten auch andere Prozesse sein konnen. Diese Aktivitdten werden in einer festgelegten
zeitlichen und logischen Reihenfolge ausgefiihrt und so entsteht ein Workflow. Eine
Definition des Begriffs Workflow findet man bei WfMC': “the automation of a business
process” [WMC]. Die Prozesse konnen auch sehr komplex sein und dadurch mehrere
Workflows enthalten.

Geschiéftsprozesse sind nicht etwas Statisches. Sie werden stindig gedndert und an die neuen
Anforderungen angepasst. Das ist notig, damit diese immer wieder Wettbewerbsvorteile
gegeniiber der Konkurrenz liefern. Um diese Anderbarkeit zu vereinfachen, wird auf Business
Prozess Management Systeme (BPM) gesetzt. BPM erleichtert das Design und die
Entwicklung eines Prozesses, sowie seine kontinuierliche Verbesserung. Weitere wichtige

' The Workflow Management Coalition

Funktionen des BPMs sind die Reduktion von menschlichen Fehlern und die Verbesserung
der Kommunikation zwischen den Stakeholdern (sieche Abb. 2.1). Die Stakeholder sind dann
in der Lage, sich auf den Anforderungen ihrer Rollen zu konzentrieren [Rm11]. BPM hilt die
Administration dieses Anderungsprozesses einfacher. Die Weiterentwicklung bestehender
Prozesse und derer einzelnen Aktivititen und dadurch alle verbundenen Aufgaben wie
Versionierung, Testen usw. werden vom BPM vereinfacht und aktiv unterstiitzt.

Process End-Users »
Process Owners .

f Business & IT Authors
s

Process

Q Authors & Admins.
Designer £

Integration
Designer

Process Center
Governance of Entire BPM Life Cycle

Shared Assets SN

IBM BPM Improve Deploy Backward
wldgets work campaubﬂﬂy,
with IBM easy migration

WebSphere Process Server from WLE &

Portal WPS

Rules Monitoring

Configurable
Bt.nslngssguSpaoe

Abbildung 2.1: IBM Business Process Manager [Sk11]

Die Geschiftsprozesse die in dieser Studienarbeit betrachtet werden, sind mit Hilfe der
Business Process Execution Language fiir Web Services (WS-BPEL) beschrieben. WS-BPEL
ist xml-basiert und dient zur Orchestrierung von WS. Diese Web Services stellen die
einzelnen Aktivitditen des Geschédftsprozesses dar. BPEL baut auf die WSDL auf und
ermoglicht die Bereitstellung eines Prozesses selbst als WS, was den Aufbau von sehr
komplexen Geschiftsprozessen vereinfacht. Die Webservices-Technologie definiert, wie
Funktionalitdten iiber Internet Protokolle zugidnglich gemacht werden konnen. WS-BPEL
beschreibt, wie diese in eine logische Struktur zusammengefiihrt werden koénnen, um eine
spezifische Aufgabe zu 16sen.

Die Orchestrierung der Web Services ist der zentrale Aspekt von WS-BPEL und stellt die
Grundlage beim Aufbau von Service Oriented Architecture (SOA)-Lésungen dar. Das erfolgt
in zwei Schritten:

- die Entwicklung und Ver6ffentlichung von Web Services
- die Orchestrierung dieser Web Services in einem Geschiftsprozess mittels WS-
BPEL

29 <¢

WS-BPEL unterstiitzt als Sprache neben einfache Aktivititen wie “assign”, “invoke”, “throw”
auch Konstrukte wie “sequence”, “while”, “repeatUntil” usw. Das macht die Beschreibung
von sehr komplexen Geschiftsprozessen moglich, wobei neben der reinen Reihenfolge auch
eine komplexere Logik des Prozesses umgesetzt werden kann. Ein Beispiel fiir
Geschiéftsprozess ist die Bestellungsabwicklung, die als Beispielprozess in dem DWH von

KEIDA abgelegt ist. Die Ausfithrung des Prozesses ist mit dem Aufruf verschiedener Web
4

Services verbunden, die Teilaufgaben 16sen, z.B. die Abfrage, ob es die bestellten Waren auf
Lager gibt, und falls diese nicht da sind, die Bestellung bei den Lieferanten, die
Kreditwiirdigkeit des Kunde zu tiberpriifen usw. Somit ist der Prozess fiir eine vollstindige
Abwicklung einer Bestellung zustindig. Die einzelnen Aktivititen, die als WS realisiert sind,
werden entweder in dem Unternehmen entwickelt und betrieben oder aber auch von externen
Anbietern bezogen.

Das Verteilen der Aufgaben auf einzelnen Web Services macht eine Auslagerung der
Funktionalititen moglich und ist eine der wichtigsten Voraussetzungen bei der
Prozessoptimierung. Speziell im Kontext des KEI Frameworks spielen nicht nur die Preise der
externen Anbieter fiir die Nutzung der Webservices eine Rolle, sondern auch von welchem
Stromanbieter der Strom zum Betreiben der Rechenzentren bezogen und wie viel Energie
verbraucht wird, um die Aktivitit auszufiihren. Jeder Stromanbieter hat einen eigenen
Energiemix und bei der Stromproduktion fallen verschiedene Mengen an CO; und Atommiill
an. Fiir die Prozessoptimierung im Fall von KEIDA wird nach dem moglichst geringen CO,-
Ausstof3 oder dem produzierten Atommiill gesucht, um den Prozess moglichst 6kologisch zu
betreiben.

2.2 GreenlIT

Die Rechner spielen heutzutage eine groBe Rolle in den meisten Unternehmen. Ein
Arbeitsplatz ohne Rechner ist fast undenkbar. Dazu gehoren auch die groflen Datenzentren,
die tdglich grole Datenmengen bei der Abwicklung der Prozesse in den Unternehmen
bearbeiten und speichern. Das Beitreiben dieser Rechenzentren ist mit einem enormen
Energieverbrauch verbunden. Dieser steigt stindig und erreicht neue Dimensionen. Der
Stromverbrauch in den Rechenzentren weltweit betrug im Jahr 2007 12GW. Vier Jahren
spater, in 2011, hat sich dieser verdoppelt und stieg auf 24GW an. Fiir 2013 wird erwartet,
dass die verbrauchte Energie in den Rechenzentren weltweit 43GW betragen wiirde [Val2].
Dieser stetige Anstieg des Energieverbrauchs spiegelt sich nicht nur in den steigenden Kosten,
sondern ist mit einer Erhéhung der CO,-Emissionen verbunden. Diese zwei Faktoren lassen
sich durch das Einsetzen neue und zeitgemifle IT Technologien positiv beeinflussen. Diese
neuen Technologien sind viel sparsamer und auch leistungsfahiger. Dadurch lésst sich die IT
griiner gestalten und an den neuen Anforderungen anpassen.

2.2.1 Green Organisations

Deutschland war schon immer ein Vorreiter in Sachen Nachhaltigkeit. Eine IDC-Umfrage
vom Jahr 2008 zeigt, dass schon damals 52% der angefragten deutschen Unternehmen die IT-
Infrastruktur griiner gestalten wollten. Laut den Autoren der Umfrage sind die wichtigsten
Treiber die steigenden Energiekosten, die sichtbare Erhohung des ,,Carbon Footprint®, die
grofle Konkurrenz von Unternechmen aullerhalb Europas und der USA, die vergleichbare
Leistungen fiir niedrigere Preise anbieten und auch die EU-Richtlinien fiir die Effektivitit
beim Aufbau und Betreiben von groflen Datenzentren [MBO08].

Die Organisationen sollen aber unter Green IT nicht nur die Auslagerung von Anwendungen
auf die Cloud verstehen. Um eine Organisation griin zu gestalten, ist viel mehr verlangt.
Energieeffizienz ist nicht nur auf dem Arbeitsplatz und in den Datenzentren erforderlich.
Wichtig sind auch energieeffiziente Software und Hardware, sowie energieeffiziente

5

Produktion und Wiederverwenden der Abfille. Einige Strategien, wie sich die IT griin
gestalten kann, sind bei [Jo12] zu finden:

- Virtualisierung. Statt mehrere Server zu betreiben, die nie voll ausgelastet werden,
und die meiste Zeit unbenutzt bleiben, besser auf Virtualisierung setzen. Dadurch werden viel
weniger Server betrieben, die gut ausgelastet sind, was zu einer Reduktion der Hardware- und
Stromkosten fiihrt. Untersuchungen zeigen, dass Windows Server ohne Virtualisierung nur zu
10% ausgelastet werden. Bei Windows Servern mit Virtualisierung steigt die Auslastung auf
60% [CW10].

- Optimierung des Datacenters und Power Management. Die Datenzentren sind so
zu gestalten/umzubauen, dass diese moglichst wenig Energie verbrauchen. Der grofBte Teil
des Energieverbrauchs fallt auf die Kiihlung. Deswegen werden immer neue Ansitze
vorgeschlagen, wie sich dieser Verbrauch reduzieren ldsst. Ein interessantes Beispiel aus der
Perspektive der Green IT ist die Kiithlung des Datacenters des Telekommunikationsanbieters
BT. Das Rechenzentrum in Frankfurt wird mittels Regenwasser gekiihlt [Ral3]. Andere
innovative Ansétze sind z.B. unterirdische Eisspeicher oder kaltes Wasser aus Brunnen. Bei
der Stromversorgung gibt es neben den Strom aus erneuerbaren Quellen auch ungewdhnliche
Ansitze wie z.B. Strom aus der Alge [Ral3]. Bei der Optimierung des Datacenters soll auch
berticksichtigt werden, ob sich die Anzahl der Server verringern lasst. Neben der Anzahl sind
ihre physische Grofle sowie der Energieverbrauch wichtige Eigenschaften. Neue Atom-Server
von Dell und HP sollen laut Hersteller zu 90% Platzeinsparrungen gewéhrleisten [Ral3].

- Data deduplication. Die Daten, die im Unternechmen generiert und gespeichert
werden, betragen nicht mehr einige Megabytes, sondern sind auf mehrere Terabytes zu
beziffern. Das fiihrt zur einen VergroBBerung der Speicherkapazititen und ist mit Investitionen
verbunden. Eine Losung, wie diese Menge sich verkleinern ldsst, stellt die Data deduplication
dar. Tests zeigen, dass der Speicherplatz dadurch sehr niedrig gehalten werden kann, ohne
Performanceeinbufle. Die Dateien werden komprimiert gehalten, was aber von dem Benutzer
unbemerkt bleibt und sein Zugriff auf die Dateien sich nicht dndert. Der Fokus bei dieser
Technologie liegt im Sparen der Systemressourcen [Joh12].

- Cloud Computing. Immer mehr Anwendungen werden wie Software as a Service in
der Cloud angeboten. Die komplexen Aufgaben werden dadurch vom lokalen Rechner auf das
Rechenzentrum oder die Cloud ausgelagert. Das macht den Einsatz von s.g. Thin Clients
moglich. Die Mitarbeiter im Biiro brauchen dann in den meisten Fillen nichts mehr als einen
Browser, in dem alle Anwendungen laufen. Der Energieverbrauch kann dadurch enorm
gesenkt werden. An dieser Stelle soll auch die Frage nach der Notwendigkeit des Betreibens
von eigenen Rechenzentren gestellt werden. Einerseits sind die Datenzentren der Cloud
Anbieter viel besser ausgelegt, indem sie viel weniger Strom verbrauchen und auch auf
erneuerbaren Energiequellen setzen und andererseits ist der Administrationsaufwand viel
kleiner, was zu Personaleinsparungen flihren kann.

- Teleconference/Telecommute/Telework. Studien [VelO0] zeigen, dass das Benutzen
von Teleconference Software in den US-Unternehmen bis zum Jahr 2020 ungefihr 4.6
Millionen Tonnen CO, Emissionen sparen kann. Das entspricht 875 000 Autos weniger auf

den Straflen innerhalb eines Jahres und ist mit Ersparnissen von iiber 19 Milliarden US Dollar
verbunden.

- Paperless Solutions, Document Management. Laut BMU” liegt der jéhrliche
Papierverbrauch in Deutschland bei rund 19 Millionen Tonnen und die Hélfte davon fallt auf
die Bereiche Presse, Druck und Biiromaterial [Bmull]. Die Herstellung von Papier ist ein
energieintensiver Prozess. Fiir 100 kg Papier werden mindestens 110 kg CO, freigesetzt, 5000
Liter Wasser gebraucht und iiber 1000 Kilowattstunden Energie verbraucht. Heutzutage
existieren sehr viele Software-Losungen, die diesen Verbrauch in den Unternehmen
verringern konnen. Smartphones und Tablets sind ldngst ein Standard geworden und bieten
viele Moglichkeiten, den Papierverbrauch im Biiro zu reduzieren. Cloud Dienste wie
Evernote’, Google Docs’, Dropbox’ und viele mehr vereinfachen das Erstellen von Notizen
und die gemeinsame Arbeit an Office Dokumenten.

2.2.2 Green Technology

In 2.2.1 wurden Strategien gezeigt, wie sich ein Unternehmen an die neuen Anforderungen
des nachhaltigen Umgangs mit den knappen Ressourcen mittels IT ausrichten ldsst. Dadurch
werden hauptsdchlich nur CO, Emissionen gespart. Es ist aber auch wichtig, dass bei der
Produktion, z.B. in der Landwirtschaft, die Chemikalien durch andere Substanzen oder
Methoden ersetzt werden, die die Umwelt schonen. Mit diesem Problem beschiftigt sich die
Griine Technologie. Sie ist “technology that has the potential to significantly improve
environmental performance relative to other technology” [UN12]. Die Nutzung einer solchen
Technologie beinhaltet “the use of environmental technologies for monitoring and
assessment, pollution prevention and control, and remediation and restoration” [UNI12].
Griine Technologien lassen sich von der Landwirtschaft iiber den Gebdudebau oder den
Transport von Giitern und Personen bis hin zur Produktion von Lebensmitteln und
elektronischen Geréten, die zum Einsatz in jedem Biiro kommen, einsetzen. Die
Energiegewinnung aus erneuerbaren Quellen wie Wind und Solar ist ein Beispiel flir diese
griinen Technologien. In dem Kontext der IT beschéftigt sich die Green IT mit dieser Frage.
Hier geht es um das Design, die Produktion, das Verschrotten und das Benutzen von
Rechnern, Servern und allen dazugehorigen Peripheriegerdten wie Bildschirme, Drucker,
Speichermedien, Netzwerkgerdte und Kommunikationssysteme, wobei der Schwerpunkt auf
das Minimieren ihres Einflusses auf die Umwelt liegt [Ms08]. So setzt z.B. das Griine
Rechner Design auf neue Materialien und Techniken, ohne das Gerét teurer zu machen oder
an Leistung zu sparen. Das beweist auch die Weiterentwicklung der Prozessoren von Single
zu Multi-Core. Die neue Multi-Core Chips sind leistungsfahiger und verbrauchen viel
weniger Energie. Wie bei der Optimierung der Datenzentren gezeigt wurde, werden die
Server auch immer kleiner und dadurch leichter zu kiihlen, aber gleichzeitig leistungsfihiger.

2.2.3 Green Processes

Wie gerade gezeigt, unterstiitzt die IT den ganzen Zyklus vom Design iiber die
Implementierung und das Management bis hin zum Reengineering eines Geschiftsprozesses.

2 Bundesministerium fiir Umwelt, Naturschutz und Reaktorsicherheit
> www.ervernote.com
* www.docs.google.com

> www.dropbox.com

Die fithrenden GroBen, nach denen sich diese Schritte orientieren, sind: Zeit, Qualitét, Preis
und Effektivitit. Nachdem die Energieeffizienz und der damit verbundene niedrige CO,
Ausstol auf die Tagesordnung stehen, muss beim Gestalten des BPs noch eine Grof3e
beriicksichtigt werden, und zwar die Nachhaltigkeit (Abb. 2.2) [NLM11]. Dabei ist es wichtig
zu wissen, wie viel Energie jede einzelne Aktivitdt verbraucht und wie sich dieser Verbrauch
verringern ldsst. Die Green IT leistet gute Arbeit durch die Bereitstellung von neuen
innovativen Softwarewerkzeugen, unter anderem der Analyse, Modellierung und Simulation
der Folgen auf die Umwelt dienen und den Energieverbrauch iliberwachen [Ms08]. Die
gesammelte Information kann benutzt werden, um die BPs zu optimieren. Ein solches
Werkzeug ist das KEI Framework. Es {iberwacht, simuliert den Ablauf eines Prozesses und
sammelt Informationen iiber den Energieverbrauch jeder Aktivitit. Diese Informationen
werden danach aggregiert und gespeichert. Die Analyse dieses Verbrauchs erlaubt die
Lokalisierung der grofften Stromfresser und eventuell ihre Ersetzung durch energiesparende
Losungen. Dabei ist es wichtig, dass die externen Anbieter Informationen iiber die Laufzeit
und iiber die gebrauchte und eingesetzte Energie zur Verfiigung stellen. Auf dieser Basis kann
entschieden werden, ob das Ersetzen der bestehenden Aktivitit mit der neuen zu einer
Verbesserung der Oko-Bilanz des Prozesses beitrigt.

Quality
A Time
Sustainability Flexibility
Cost « » Time
Y
Flexibility Quality Cost

Abbildung 2.2: The devil’s pentagon [BS12]

2.3 Business Intelligence Werkzeuge

Business Intelligence (BI)-Losungen spielen eine groe Rolle bei Entscheidungen des
Managements in den heutigen Unternehmen. BI Werkzeuge ermdglichen eine umfassende
Analyse der tdglich entstehenden Daten. Somit sind bestimmte Trends leicht zu erkennen und
auf diese Trends kann rechtzeitig und entsprechend reagiert werden. Der gleiche Ansatz wird
auch beim KEI Framework verfolgt. Das Framework ist so ausgelegt, dass Informationen
iiber die Laufzeit des BP und seinen Energieverbrauch durch einen ETL-Prozess in einem
Data Warehouse gespeichert und diese Informationen grafisch auf einem Dashboard
dargestellt werden.

2.3.1 Data Warehouse

Ein DWH wird als ein unternechmensweiter Datenbestand konzipiert. Es steht iiber den
operativen Systemen und speichert alle relevanten Informationen, die an den Interessierten
zur Verfligung gestellt werden. Inmon definiert ein Data Warehouse als: ... subject oriented,

8

integrated, nonvolatile, and time-variant collection of data in support of management’s
decisions. The data warehouse contains granular corporate data” [In96]. Das Data Warehouse
dient als zentraler Speicherplatz fiir die Informationen, die beim tdglichen Geschift in dem
Unternehmen entstehen. Aus der Inmons Definition lassen sich die Haupteigenschaften des
DWH ablesen:

- themenorientiert. Die Themen ergeben sich aus den Interessen des Managements. So
sind die Entscheidungstridger in der Lage, nach Themen, an denen sie interessiert sind, zu
recherchieren [KMUO6]. Im Fall von KEI Framework sind diese Themen: Prozesse und die
dazugehorigen Prozessaktivitten.

- integriert. Normalerweise stammen die Daten in einem Data Warehouse aus
verschiedenen Quellen. Die Hauptaufgabe bei der Erstellung von einem DWH ist es, die
Informationen, die von unterschiedlichen operativen Systeme generiert werden, zu
integrieren, sie zu transformieren und unifizieren und so widerspruchsfrei in der Datenbank
abzulegen [KMUO06].

- nicht fliichtig. Einmal abgelegt in dem Data Warehouse werden die Daten nie
geldscht oder gedndert. Das macht eine Analyse der Daten, die in vergangenen Perioden dort
abgelegt wurden, moglich [KMUO06].

- geitbezogen. Die Daten, die im DWH abgelegt werden, sind schon aggregiert und
repriasentieren einen Zeitraum. Im Unterschied dazu sind die Daten in den operativen
Systemen zeitpunktbezogen, d.h. diese werden sofort nach Entstehung erfasst und gespeichert
[KMUO06].

Die Daten im DWH werden auf Dauer aufbewahrt. Sie dienen der Analyse nicht nur von
gingigen Perioden, sondern auch zur Uberpriifung wie sich die aktuelle Situation zu den
vergangenen Perioden gedndert hat. Die Interessierten an dieser Information sind dann in der
Lage, sie mit verschiedenen Werkzeugen auszuwerten. Das betrifft auch die Informationen,
die das KEI Framework generiert und im DWH speichert. Diese Information spielt eine
wichtige Rolle bei Entscheidungen, die die Optimierung des jeweiligen Prozesses betreffen.

2.3.2 ETL-Prozesse

Die Daten, die die operativen Systeme, wie Supply Chain Management, Enterprise Ressource
Planning oder E-Procurement liefern, koénnen in verschiedenen Datenformaten oder
Strukturen vorliegen. Damit die Daten fiir die Speicherung in dem DWH vorbereitet werden,
sollen diese durch spezielle ETL-Prozesse transformiert werden. Die ETL-Prozesse haben die
Aufgabe, diese Daten zu extrahieren, zu transformieren und dann in dem Ziel-Data
Warehouse abzuspeichern.

Als erster Schritt wird die Extraktion angesetzt. Ihre Aufgabe ist es, die Daten aus den
operativen Systemen zu holen. Da die Abspeicherung der Daten in den operativen Systemen
wegen der Grofe der generierten Daten von sehr kurzer Dauer ist, soll diese Extraktion
periodisch erfolgen. Andere denkbaren Szenarien sind, dass sie auf Anforderung erfolgt oder
ereignisgesteuert ist.

In dem zweiten Schritt liegt eine Transformation der gewonnenen Daten. Sie werden in
betriebswirtschaftlich interpretierbare Daten umgewandelt. Dieser Schritt besteht aus vier
Teilschritten: Filterung, Harmonisierung, Aggregation und Einreichung [KMUO06].

Nachdem die Daten extrahiert und transformiert wurden, sind diese bereit, im DWH abgelegt
zu werden. Dies erfolgt in einem dritten Schritt, der als Load bezeichnet wird. Die so
abgelegten Daten sind dann bereit, durchsucht oder analysiert zu werden.

2.3.3 Dashboard

Die Daten, die das DWH aufbewahrt, sind in den meisten Fillen Zahlen. Wiirden diese in
einer Tabelle auf dem Bildschirm angezeigt, ist fiir den Analysten sehr schwer, nach
Abhéngigkeiten zu suchen. Dafiir sollen die Daten visualisiert und in einer Form bereitgestellt
werden, die fiir jeden verstidndlich ist. Die Menschen sind in der Lage, sehr schnell
Zusammenhdnge in grafisch dargestellten Zahlenmengen zu finden, was beim Anschauen
einer Excel-Tabelle mit der gleichen Information fast unmoglich erscheint. Dazu wird ein
Dashboard eingesetzt. Ein Dashboard ist “a visual display of the most important information
needed to achieve one or more objectives; consolidated and arranged on a single screen so the
information can be monitored at a glance” [Fe04].

Die Dashboards stellen die wichtigste Information dar und ermoglichen einen schnellen
Uberblick iiber die wichtigsten Entwicklungen. Die Charakteristiken eines Dashboards sind
wie folgt [RC04]:

- Auf dem Bildschirm sind verschiedene Metriken auf einem einzigen Screen gezeigt.
- Die angezeigte Information ist auf dem hochsten Niveau der Granularitét.

- Intuitive Indikatoren zeigen die wichtigsten Performance Indikatoren (KPI).

- Auf dem Dashboard werden nur die Folgen und nicht die Ursachen angezeigt.

- Der Autfbau ist intuitiv und einfach und kann leicht verstanden und bedient werden.
- Die angezeigte Information wird automatisch aktualisiert.

Das KEI Framework beschéftigt sich mit der Optimierung der Prozesse und damit, wie sich
diese dadurch nachhaltiger betreiben lassen. Deswegen wird hier nicht iiber KPI geredet
sondern liber Key Ecological Indicators (KEI). Die wichtigste Grofle in diesem Fall ist der
Energieverbrauch. Aus dem Energieverbrauch und das vorliegende Energiemix des
Stromzulieferers lassen sich auch weitere KEIs berechnen. Das sind die Griine Energie, die
CO, Emissionen sowie der radioaktive Miill, die bei der Produktion der benétigten Energie
als Endprodukt anfallen und natiirlich nicht an letzter Stelle auch die Kosten, die beim
Ausfiihren des Prozesses entstehen.

10

3 Konzept

3.1 Zielbestimmung

Die Nachhaltigkeit ist zu einem zentralen Thema in den heutigen Unternechmen geworden.
Die Energieeffizienz in jedem Bereich des Unternehmens spielt eine wesentliche Rolle. Dabei
geht es nicht nur um Energieeffizienz der Hardware, sondern auch der Software. Von der
Software wird erwartet, dass diese auch zu einem sparsamen Ablauf der Prozesse beitragt.
Deswegen wird bei der Optimierung der Prozesse, wie in 2.2.1 gezeigt wurde, neben Groflen
wie Zeit, Qualitdt, Preis und Effektivitit auch die Grole Nachhaltigkeit beriicksichtigt. Es
wird Wert darauf gelegt, wie viel Strom der Prozess bei einem Durchlauf verbraucht und wie
viel CO;, bei der Produktion dieses Stroms in die Atmosphére ausgestoBBen wird. Das KEI
Framework stellt einen solchen Einsatz dar und versucht, Antworten auf diese Fragen zu
geben. Dadurch ist eine Optimierung der Prozesse im Einklang mit den neuen Anforderungen
moglich.

Auf Basis des KEI Frameworks existieren zwei Teilprojekte, die es unterstiitzen: KEI
Dashboard und Greevi App. Das erste ist eine Dashboard Implementierung und wurde nur mit
dem Ziel geschaffen, zu zeigen, dass die Information, die im DWH gespeichert wird, sich
leicht in der gewiinschten Form visualisieren ldsst. Das Greevi App dagegen unterstiitzt das
Visualisierungswebservice “ViproWS” und ermoglicht iiber ein Web-Interface auf Basis der
Daten im DWH sowie verschiedene Templates eine Visualisierung des Prozesses. Somit
werden die Problemzonen direkt auf dem Prozessmodell graphisch angezeigt. Unter
Problemzonen sind die Aktivititen zu verstehen, die z.B. zu viel Energie verbrauchen oder bei
denen im Energiemix des Stromanbieters zu viel Energie aus Atomkraftwerken benutzt wird.
Dadurch sinkt der Teil an griiner Energie und diese Aktivitit wird entsprechend dem
vorgegebenen Mapping auf dem Bild gefarbt oder skaliert.

Die zwei Teilprojekte sind mit verschiedenen Technologien realisiert. Das KEI Dashboard
setzt direkt auf JSP (Java Server Pages), die Greevi App hingegen auf das Vaadin Framework.
Ziel dieser Studienarbeit ist es, diese zwei Prototypen zu vereinigen, zu erweitern, damit eine
vollstindige Analyse von jedem im DWH abgelegten Prozess moglich ist. Es wird nach einer
Losung gesucht, die die benétigte Funktionalitidt und Information an einer Stelle anbietet und
die einfach zu bedienen ist.

3.2 Funktionale Anforderungen

Aufbereitung historischer Informationen: Die Daten im DWH erfassen jeden Durchlauf
eines Prozesses und zeichnen auf, wann dieser gestartet und beendet wurde. Dabei werden
alle einzelnen Aktivititen, die im Prozess aufgerufen werden, deren Start- und Endzeitpunkte,
die Energie, die sie verbraucht haben, und die dazugehdrigen KEIs (CO,-Ausstol3, Atommiill,
Prozent griiner Energie), beriicksichtigt und abgelegt. Diese Granularitit ist jedoch zu hoch
und bevor die Daten auf dem Dashboard visualisiert werden, sollen diese aggregiert werden.
Deswegen soll das System eine Aggregation der Daten nach Stunde, Tag, Woche und Monat
bieten. Dabei ist es nicht wichtig, wie oft der Prozess und die dazugehorige Aktivititen
aufgerufen wurden, sondern ihr Energieverbrauch, der Prozent Griiner Energie, der
produzierte CO,, die Atommiillmengen und die verursachten Kosten.

11

Darstellung historischer Informationen: Wie in 2.3.3 deutlich wurde, trigt eine graphische
Darstellung von Zahlenreihen dazu bei, dass die Zusammenhénge, die dahinter stecken, von
den Menschen leichter analysiert werden kdnnen. Das System soll deswegen die aufbereiteten
historischen Informationen in einer geeigneten graphischen Form dem Benutzer bereitstellen.
Als graphische Darstellungen werden verschiedene Graphiken vorausgesetzt, wie Balken- und
Liniendiagramme oder Tachometer.

Visualisierung eines Prozesses: Bei der Analyse eines Prozesses ist neben der graphischen
Darstellung der historischen Informationen eine weitere Analyse des Prozesses mit Hilfe von
ViproWS moglich. Das System soll deswegen die Mdglichkeit bieten, dieses Webservice zu
benutzen und eine geeignete Visualisierung der Struktur des Prozesses zu ermdglichen. Der
Benutzer soll an erster Stelle in der Lage sein, einen bestimmten Prozess und die Instanzen
aus einem Zeitraum, in dem dieser gelaufen ist, auszuwdhlen. Der Benutzer soll weiter die
Moglichkeit haben, Funktionen und dazugehorige Funktionswerte festzulegen, um bestimmte
Aspekte der generierten Daten der ausgewéhlten Prozessinstanzen untersuchen zu konnen.
Wichtige Aspekte dabei sind, ob der Mittelwert kleiner als vom Benutzer eingegebenen
Funktionswert ist, ob das Maximum {iiber alle Instanzen kleiner oder gréBer ist usw. Danach
soll der Benutzer die Wahl zwischen verschiedenen vorgegebenen Mappings treffen konnen,
um eine geeignete Visualisierung des Prozesses zu erhalten.

Prognosefunktionalititen durch Annotationen von Aktivititen: Die Visualisierung der
Prozesse erfolgt anhand der im DWH gespeicherten Daten. Diese werden benutzt, um die
Werte, die an das ViproWS geschickt werden, zu berechnen. Wie in 2.1. gezeigt wurde,
konnten die einzelnen Aktivititen eines Prozesses auch von externen Anbietern bezogen
werden. Die Unternehmen, die ihre Prozesse mit dem KEI Framework optimieren wollen,
werden dann von den WSs Anbieter erwarten, dass diese nicht nur die Preise, sondern auch
Informationen iiber den Energieverbrauch, CO,-Aussto3 usw. angeben. Das System soll dann
dem Benutzer die Mdoglichkeit bieten, diese neue Information mit der Information, die im
DWH steht, zu ersetzen. Dadurch ist der Benutzer des Systems in der Lage, eine neue
temporidre Visualisierung des Prozesses zu generieren, die auf Basis der neuen Daten gemacht
wurde.

Vergleich von zwei Darstellungen eines Prozesses: Die vorherigen zwei Anforderungen
beschreiben, dass der Benutzer des Systems die Moglichkeit haben soll, zwei
Visualisierungen zu bekommen, einmal mit den originalen Daten und einmal mit den
gednderten Daten. Damit dieser die Unterschiede leicht erkennen kann, soll er in der Lage
sein, die zwei Abbildungen zu vergleichen. Daraus erfolgt die Anforderung an das System,
dass dieses dem Benutzer die Mdoglichkeit geben soll, die von dem ViproWS generierten
Bilder nebeneinander zu stellen, um sie vergleichen zu kdnnen.

3.3 Nicht-funktionale Anforderungen

Technische Anforderungen:

- Als Programmiersprache wird Java vorausgesetzt. Die Java Version soll 6 oder hoher
sein.

- Die Architektur soll als Client/Server konzipiert werden.

12

- Das Client soll webbasiert und in allen giangigen Webbrowser abrufbar sein.
- Der Server soll Apache Tomcat 6 oder eine héhere Version sein.

Benutzerfreundlichkeit: Die Benutzerfreundlichkeit der GUI ist einer der wichtigsten As-
pekte, die bei der Akzeptanz seitens der Benutzer eine Rolle spielen.

- Die graphische Oberfldche soll zeitgemil gestaltet werden. Diese soll iibersichtlich
und aufgerdumt sein und alle benétigten Funktionalitdten anbieten. Die Benutzer sol-
len ohne groen Aufwand den Umgang mit dem System lernen.

- Die Funktionen, die bereit stehen, sollen leicht bedienbar sein. Bei falschen Eingaben
sollen entsprechende Fehlermeldungen angezeigt werden.

Zuverlissigkeit: Das System unterstiitzt den Entscheidungstriger bei der Optimierung eines
Prozesses. Dabei spielt die Richtigkeit der angezeigten Werte eine grofle Rolle. Aus diesem
Grund soll das System immer die geforderten Informationen korrekt berechnen.

13

4 Design

In Kapitel 3 ist unter Technische Anforderungen Java als Programmiersprache zu sehen.
Diese Voraussetzung fiihrte dazu, dass beim Design des KEIDA und bei der nachfolgenden
Implementierung die Grundprinzipien der Java EE Architektur befolgt wurden. In 4.1 werden
die Java EE Architektur sowie das Model-View-Controller (MVC) Entwurfsmuster kurz
erliutert. AnschlieBend werden ein Uberblick iiber das KEIDA Design und eine Beschreibung
der KEIDA Architektur gemacht.

4.1 Java EE Architektur

Java EE ist eine Plattform zur Entwicklung von unternehmensweiten Anwendungen [IT13].
Java EE ist auf Basis des 4-Tier-Architekturmodells aufgebaut — Client-, Web-, EJBS- und
EIS’-Tier. Java EE ist komponentenbasiert und ermdglicht den Aufbau von verteilten
Anwendungen. Die Komponenten, die eine Anwendung aufbauen, laufen auf verschiedenen
Schichten der Architektur, sie sind lose, gekoppelt und unabhéngig voneinander. Das fiihrt zu
einer klaren Trennung nicht nur der Funktionalititen und Zusténdigkeiten der Komponenten,
sondern auch zu einer engen Spezialisierung seitens der Entwickler.

KEIDA setzt auf die Java EE Plattform. Als Client dient ein Web-Browser. Die Web- und
EJB-Tier sind in einem Apache Tomcat Server untergebracht. Eine relationale Datenbank
(MySQL Server) sowie das ViproWs, das auf einen Apache Tomcat Server lduft, sind als
EIS-Tier eingesetzt.

Mit Java EE lassen sich Webanwendungen erstellen. Bei der Entwicklung der
Webanwendungen hat sich die Model-View-Controller (MVC) Architektur bewiesen.
Heutzutage sind viele Open Source und kommerzielle Frameworks auf ihrer Basis aufgebaut.
Die Architektur teilt, wie auch in der GUI-Programmierung der Fall ist, die Anwendung in
drei Schichten. Das sind die Modell-, Priasentations- und Controllerschicht. Diese drei
Schichten tibernehmen spezifische Aufgaben und haben verschiedene Verantwortlichkeiten
gegeniiber den anderen Schichten [SSJ02]. Die Aufgaben werden dann in verschiedenen
Kategorien von Objekten definiert: “the objects that deal with presentation aspects of the
application, objects that deal with the business rules and data, and objects that accept and
interpret user requests and control the business objects to fulfill these request” [SSJ02]. Die
MV C-Architektur erlaubt z.B. das Ersetzen der Pridsentation, ohne dass dabei das Modell
gedndert wird.

Model-View-Controller Architektur. Die MVC-Architektur fiihrt zu einer klaren Trennung
der Aufgaben. In einer GUI sowie in einer Webanwendung interagiert der Benutzer mit der
Anwendung und erwartet eine entsprechende Ausgabe. In einer GUI-Anwendung gibt der
Benutzer eine Eingabe {iber die graphische Oberflidche, die Anwendung nimmt dann diese
Eingabe, bearbeitet sie und gibt eine Antwort zuriick, indem sich die GUI neuzeichnet. Im
Fall einer Web Anwendung ist die GUI in den meisten Féllen in einem Webbrowser
dargestellt. Der Benutzer stellt {iber diesen Browser die Anfragen an den Web Server. Der

% Enterprise Java Bean
7 Enterprise Information System

14

Server bearbeitet die Anfragen, wahlt die Prasentation (HTML, PDF, SVG usw.) und schickt
sie zurlick an den Benutzer.

Die drei Teile der MV C-Architektur sind auf Abb. 4.1 zu sehen. Diese sind:

- Model: Das Model implementiert die Geschiftslogik. Das Model hat Zugriff auf die
persistenten Daten und hat die Funktionalititen, diese zu bearbeiten und sie in einer
geeigneten Form dem View bereitzustellen.

- View: Das View ist zustindig fiir die Reprédsentation der Daten, die das Model
zuriickgibt. Das View kann von dem Model neue Daten erfordern und diese in einer
geeigneten Form darstellen. Uber das View werden die Befehle an den Controller iibergeben.

- Controller: Der Controller ist fiir den gesamten Flow der Anwendung zustindig.
Anhand der Eingaben des Benutzers wird eine entsprechende Funktion ausgefiihrt. Der
Benutzer schickt Eingaben in Form von HTTP GET oder POST Anfragen. Anhand dieser
Anfragen entscheidet sich der Controller, welche Model und View gebraucht werden, um die
Information zu bearbeiten und in einer geeigneten Form zu présentieren.

State query P State change

A
» Y

Change Notification

View selection

User gestures

Abbildung 4.1: MVC Entwurfsmuster [NB13]

In einer Webanwendung wird der Controller in der Regel als ein Servlet implementiert. Der
Servlet hat die Verantwortung, anhand der Eingabe die passende Aktion zu unternehmen. Fiir
das View konnten Java Server Pages (JSP) oder Java Server Faces (JSF) eingesetzt werden.
Das ist aber nicht zwingend, weil die Antwort auch in einer anderen Form zuriickgegeben
werden kann, z.B. in Form einer pdf-Datei. Die Daten in der Datenbank werden iiber Session
Beans und Data Acess Objects (DAO) aufgerufen und bearbeitet. Diese bilden das Model der
Webanwendung. (Abb. 4.2)

15

Model

Reque Controller —
(Servlet)

Session Beans
(EJB)

Entity Classes Database

(JPA)

¥ View

Response (JSP)

Abbildung 4.2: Architektur einer Webanwendung [NB13]

In der MVC-Architektur finden viele andere Entwurfsmuster wie Composite View, Front
Controller, View Helper, Data Access Object ihren Platz. Eine volle Liste sowie ausfiihrliche
Beschreibungen der einzelnen Muster findet man in J2EE Core Patterns [A103].

4.2 KEIDA - Uberblick

KEIDA (KEI Dashboard) ist eine typische Webanwendung. Sie setzt auf die dreischichtige
Architektur - Client, Web und EIS. Der Benutzer kann auf KEIDA iiber einen Browser
zugreifen. Die Browser-Anfragen werden von einem Tomcat Server, auf dem KEIDA lauft,
abgefangen und bearbeitet. Die Daten, auf die das System zugreift, befinden sich auf einem
MySQL-Server. KEIDA greift auf das ViproWS auf, um ein BP zu visualisieren. Die
Anwendung besteht aus zwei Hauptteilen - Dashboard und Visualisierungswerkzeug.

Dashboard. Das Dashboard ist nach den Anforderungen des Systems, die in Kapitel 3
beschrieben wurden, aufgebaut. Es ist so konzipiert, dass der Benutzer eine Periode
auswihlen kann und die entsprechende Information entweder alle Prozesse oder nur einen
einzelnen Prozess sehen und analysieren kann. Es ist auch mdglich, dass der Benutzer auch
nach einem bestimmten Prozess suchen kann.

KEIDA (D Dashboard O Processes (& Visualization

Dashboard
1/9/2011 - 14/9/2013 hourly daily | weekly = monthly
Edit Chart title = KEL*
Sk 10k
Electricity Usage N
18172.721 Wh =¥ jo%
ax i
Clean Energy -
2826.383 Wh = 0%
i x = =
Co2 Emission
> 0%
® H 8457326 9
* 25K Atomic Waste N
9.033 mg =3 0%
Electricity Costs o
T o 4.539 EUR 2 %
“(compared to previous period)
ok Er
Oct' 1 Jan"12 Apr'12 Juz Oct'12 Jan"3 Apr'13 Jul'3
| @ Co2 Emission Electricity Usage |
Co2 Emission = Clean Energy = Electricity Costs= Last Active Processes

Nr. Process name Instances ElUsageinWh % Clean Energy
1 {http//iaas.uni-stutigart.de/purc.. 46 8977.79646 49%

2 {deunistutigartiaas process}Sim 126 217128236 45%

| B thep:/ fia Other | | 9 thwep:/ia £ Other | | B fhep:/ fia Other |

Abbildung 4.3: KEIDA Dashboard
16

Visualisierungswerkzeug. Der Benutzer kann mittels eines Konfigurationsassistenten die
von ViproWS benétigte Information angeben, um einen Prozess zu visualisieren. Weiter ist es
auch moglich, dass die Daten, die das System zu jeder Aktivitdt des Prozesses berechnet, von
dem Benutzer gedndert werden. Dadurch bekommt der Benutzer eine zweite optimierte
Visualisierung des Prozesses. Das Visualisierungswerkzeug bietet die Moglichkeit, die zwei
graphischen Reprisentationen nebeneinander darzustellen und ermdglicht somit einen
Vergleich beider Darstellungen.

KEIDA (D Dashboard @ Processes [a] Visualization

, ,
(httpi//iaas.uni-stuttgart de/purchaseOrderfresellerPr... W T R N M BN,
Configuration ATE | close ﬁ
S 7T Em T 2
orderltemsFromSupplisrl 28.89650673 ' !
[11 = |
ShipProducts 0.70685383
getPaymentPrefs 0.9820042
getCChetails 1.3784348
requestAuth 0.14106461
notifyCustomerPaid 0.50764037
Download svg Picture
PROCESS INSTANCES - Aangntortiethaymenthrers Pangntorshipment
46 Instances chosen
FUNCTIONS - ﬁ
1 electricity Av. < x 1 7
[‘CCPayment] Template 2] [n\derCuswmenGhinmenlei']l
MAPS - T T

ransfer] [ReceiveShipmentAck

!

0.0 08 002596

08 0.9 008CD2

AssignForRequestAuth

i f

Abbildung 4.4: KEIDA Visualisierungswerkzeug

4.3 KEIDA - Design

Beim Studieren der Anforderungen an das System und der Funktionalititen, die es haben soll,
wurde sofort klar, dass eine Teilung in Dashboard und Visualisierungswerkzeug unbedingt
notig ist. Die zwei Teile beziehen sich auf die gleichen Daten, haben jedoch zwei véllig
unterschiedliche Funktionen. Die Anforderungen an das Dashboard setzen eine graphische
Darstellung der historischen Daten voraus. Mit dem Visualisierungswerkzeug sollte eine
graphische Darstellung der Struktur des BPs mittels ViproWS moglich sein.

Das Dashboard ermdéglicht die Auswahl einer Periode, fiir die die Information iiber alle
gelaufenen Prozesse angezeigt wird sowie die Suche nach einem Prozess. Dadurch kann der
Benutzer nicht nur alle Prozesse, sondern auch einzelne Prozesse analysieren. Fiir das
Visualisierungswerkzeug ist eine Art Konfigurationsassistent erforderlich. Mit seiner Hilfe
soll der Benutzer in der Lage sein, verschiedene Parameter einzustellen, die fiir eine
Visualisierung bendtigt werden. Der Benutzer soll auch die Moglichkeit haben, die
berechneten Werte, die den Prozess-Aktivititen zugewiesen sind, zu dndern und eine zweite
Visualisierung vom System anzufordern. Die wichtigste Aufgabe dabei ist es, diese zweite
Visualisierung mit der ersten vergleichen zu konnen.

17

4.4 KEIDA - Architektur

KEIDA ist als eine Webanwendung realisiert und iiber einen Browser zuginglich (Abb. 4.5).
Diese Anwendung lduft auf einem Web Server (Apache Tomcat). Sie setzt auf die MVC-
Architektur und ist in drei Schichten aufgeteilt, die in 4.4.1 ndher erldutert werden. Die Daten,
die auf dem Dashboard graphisch angezeigt werden, befinden sich auf einem Database Server
(MySQL) und KEIDA greift auf sie iiber eine jdbc-Verbindung zu. Bei der Visualisierung der
Processen wird das Vipro Webservice gebraucht, das in einem anderen Web Server (Apache
Tomcat) untergebracht ist. Die folgenden zwei Unterkapitel geben einen tieferen Uberblick
der serverseitigen sowie clientseitigen Architektur.

KEIDA Client KEIDA /
(Web browser) .

Controller Layer Model Layer /
http User Input [« | Business Logik

i Data Access

View Layer Objects K,J&}
=
JSP Pages

Servlet container

| Webserver

Tomcat 7 deploys
Vipro WebService

\ 4

Database server
MySQL 5

Web server
Tomcat 7 deploys

KEIDA-Application (*.war/File)

Abbildung 4.5: KEIDA Architektur

4.4.1 Serverseitige Architektur

Die serverseitige Architektur ist entsprechend der Darstellung auf Abb. 4.5 aufgebaut. Sie
setzt auf die MVC-Architektur, die eine klare Trennung der einzelnen Schichten und deren
Zustandigkeiten liefert. Diese Tatsache veranschaulicht auch das verallgemeinerte
Sequenzdiagramm auf Abbildung 4.6. In der MVC-Architektur dient ein Servlet als Front
Controller und {ibergibt die Aufgaben an den unter ihm stehenden Controller. Diese
Controller sind eng spezialisiert und wie in Kapitel 5 deutlich wird, nur fiir bestimmte
Aufgaben zustindig. Diese Controller kennen die Modelle, die die bendtigte Information
liefern konnen und leiten die von dem Request {ibergebenen Parameter an diese Modelle
weiter. Die von dem Modell zuriickgegebene Information wird zusammen mit dem Namen
des Views an den Front Controller zuriickgeliefert. Dieser bereitet die Antwort vor und
schickt sie an den Browser. Das Model von KEIDA ist auf verschiedenen Services aufgebaut.
Diese Services sind unabhingig voneinander und sind in der Lage, direkt auf die Daten in der
Datenbank zuzugreifen oder auch auf das ViproWS. Der Front Controller nimmt wie oben
beschreiben diese Daten von dem Modell und fiigt sie in die passende Prasentation ein, die
dann an den Browser geschickt wird.

18

‘ Browser Front Controller | Controller ‘ Model | ‘ View | | Database ‘ ViproWs |

: 1 1 1 1 1]
Request | | I | |
" S L | 1 I 1 1
(POST, GET) New Np : | | ;
Ll 1 1 1 1
1 1 1 1
[1 1 1 1
Invoke Action‘ﬁI . I 1 1
> | Invoke Meth I i 1

Get data ‘D
T > 1
Lookup " - .
view alt [] 1
1 1 1
Get process visualization | }E]

1 1

1 1
= 1 1 1
1 1 1 1

L] '

Render | . N ! . .

. ol .
_Response ! ' : ! !
| {HTML, SVG, ! ! ! : :
L1 Json) | | | | '
1 1 1 1 1

Abbildung 4.6: Bearbeitung einer Anfrage in KEIDA

Prisentationsschicht (View Layer): Die Prisentationsschicht ist hauptsidchlich auf JSP
Dateien aufgebaut. Hier wird auf dem Composite View Pattern gesetzt, weil mehrere statische
Elemente einer Web Seite sich immer wieder wiederholen und diese sich dadurch nur einmal
definieren und in mehrere Seiten oder Views einfligen lassen. Auf Basis der Anforderungen
an das System wurden die folgenden Ansichten definiert: Dashboard fiir alle Prozesse,
Dashboard fiir einzelne Prozesse, Suche, Konfigurationsassistent, Prozessvisualisierung und
Vergleich zweier Prozessvisualisierungen.

Modelschicht (Model Layer): Die Modelschicht enthélt die Geschiftslogik des Systems. Sie
ist in einzelnen Beans verteilt. Diese haben Zugriff auf die Businessobjekte und sind so
aufgeteilt, dass sie jede spezifische Funktionalitit bereitstellen. Diese Gruppierung der
Funktionalitdten macht eine zukiinftige Erweiterung leichter, weil eine definierte Grenze
zwischen den Zustdndigkeiten existiert. Die Trennung nach Funktionalititen fiihrt zu einem
tiberschaubaren Code, der leicht zugeordnet werden kann. Das Model ist auf einzelnen
getrennten Komponenten aufgebaut. Dadurch ist leicht nachvollziehbar, welche Komponente
welche Zustindigkeiten hat. Diese Aufteilung ermdglicht eine Wiederverwendung von
Funktionalititen an verschiedenen Stellen.

Controllerschicht (Controller Layer): Die Controllerschicht setzt auf das Front Controller
Entwurfsmuster. Der Controller steuert die Anwendung, indem dieser die Anfragen des
Benutzers bearbeitet und an das richtige Model weiterleitet. Der Controller ist in Kombination
mit Command Entwurfsmuster aufgebaut. Die HTTP Anfragen haben eine spezifische
Struktur, anhand derer sie einem Model zugewiesen werden. Dieses Model hat die passende
Businesslogik und liefert die angefragte Information. Die Anwendung kann dadurch das
richtige View auswihlen, um die passende Prisentation der Information zu gewéhrleisten.

4.4.2 C(lientseitige Architektur

Der Benutzer der Anwendung kann auf sie iiber einen Browser zugreifen. Wie schon erldutert,
besteht KEIDA aus zwei Hauptteilen, ndmlich Dashboard und Konfigurationsassistent. Da
das Dashboard Informationen graphisch darstellt, wird auch keine grof3e Interaktion mit dem
Benutzer vorausgesetzt. Dagegen ist der Konfigurationsassistent komplexer und begleitet den

19

Benutzer beim Visualisierungsprozess. Die GUI, die hier aufgebaut ist, setzt wie jede andere
auch auf MVC. Das Muster ist ein Bestandteil einer GUI-Anwendung und erleichtert den
Aufbau des Konfigurationsassistenten. Hier hat das Model im Unterschied zu den MVC auf
dem Server einen Einfluss auf die Prisentation. Auf dem Server wird das Model so
konzipiert, dass es auch durch ein anderes ersetzt werden kann, ohne dass etwas in dem View
oder Controller gedndert werden muss. In der GUI hat jedoch das Model eine Referenz zum
View und benachrichtigt es wann es sich updaten soll. Das Modell enthélt alle Informationen,
die bei der Einstellung einer Visualisierung eingegeben werden, und sorgt dafiir, dass das
View rechtzeitig auf gednderte Informationen entsprechend reagiert. Das View leitet die neu
eingefiigten Informationen an den Controller weiter. Dieser benachrichtigt seinerseits das
Modell. Darauf bauen alle graphischen Elemente auf, die eine Interaktion mit dem Benutzer
ermoglichen.

20

5 Implementierung

Im folgenden Kapitel wird eine ausfiihrliche Beschreibung der Implementierung des
Konzepts, das in Kapitel 4 eingefiihrt wurde, gemacht. Das Kapitel fangt mit einer kurzen
Einflihrung der eingesetzten Frameworks an: SpringMVC auf der Serverseite und jQuery auf
der Clientseite. Danach folgen Beschreibungen der konkreten Implementierung der
Konfiguration sowie der View-, Model- und Controller-Schichten auf dem Server. Der
Kapitel schlieBt mit einer Ubersicht der clientseitigen Implementierung ab.

5.1 SpringMVC und jQuery

Die Serverseitige Implementierung setzt, wie schon in Kapitel 4 gezeigt wurde, auf die Java
EE Technologie auf. Diese bietet die Grundfunktionalititen, die den Aufbau einer
Webanwendung ermoglichen. Dieser Aufbau ist bei jedem Projekt mit der Implementierung
von spezifischen Funktionalititen, die immer wieder vorkommen und sich als Best Practices
bewiesen haben, verbunden. Das ist z.B. die MVC-Architektur bei einer Webanwendung.
Diese Funktionalititen werden in den Frameworks implementiert und dem Entwickler zur
Verfiigung gestellt. Ein solches Framework ist SpringMVC, das zum Einsatz beim Aufbau
der serverseitigen Funktionalitdten von KEIDA kommt.

£ Handler
'~..2:.;f--7 mapping

gan
1/-.!-\| A -
| Dispatcher ¢ MOdIE| and lagical Controller
Request serviet — | viewname 4
@ = View Resolver
&\
gt View

Abbildung 5.1: Dispatcher servlet workflow [Wall]

Spring MVC [Wall] ist um den DispatcherServlet aufgebaut. Dieser setzt auf das Front-
Controller Entwurfsmuster. Der Front-Controller ist der Eingangspunkt fiir alle Anfragen, die
der Benutzer an die Webanwendung macht. Die Aufgabe der DispatcherServlet ist es, diese
Anfragen an den zustindigen Controller weiterzuleiten. Die vom Entwickler geschriebenen
Controller sind mit @Controller annotiert. In den Controller-Klassen sind die Methoden mit
@RequestMapping zusétzlich annotiert und fiir spezifische Aufgaben zustindig. Diese
Informationen werden in dem zweiten Schritt “Handler mapping” im Request-Workflow
benétigt (Abb. 5.1, Schritt 2). Somit ist der DispatcherServiet in der Lage, den richtigen
Controller auszuwihlen (Abb. 5.1, Schritt 3). Der Controller seinerseits hat eine Referenz
zum Model und leitet ihm die Daten, die der Benutzer geschickt hat (Abb. 5.1, Schritt 4). Das
Model implementiert die Geschéftslogik, die anhand der Anfrage des Benutzers und der
mitgeschickten Daten eine entsprechende Antwort liefern kann. Der Controller gibt an den
DispatcherServlet nicht nur die Daten zuriick, die das Model geliefert hat, sondern auch den

21

Namen des Views, das bei der Prisentation dieser Daten benutzt werden soll. Dieses View
wird von dem ViewResolver bestimmt (Abb. 5.1, Schritt 5). Der ServietDispatcher kann jetzt
dieses View nehmen (Abb. 5.1, Schritt 6), um die Antwort, die an den Benutzer
zuriickgeschickt wird, richtig zu formatieren. In den meisten Féllen wird als View eine
HTML-Template-Technologie eingesetzt z.B. JSP oder Tiles. Es ist aber auch mdglich,
einfaches XML oder JSON an den Browser zuriickzuschicken.

Auf die Clientseite werden bei der GUI-Programmierung JavaScript und HTML benutzt. Als
Framework wird hier jQuery eingesetzt. jQuery implementiert wie Spring MVC wichtige,
sich immer wieder wiederholende Funktionalitdten und stellt diese in einer einfachen und
leicht verstindlichen Form an den Front-End Entwickler bereit. Einige davon sind:

- Document Object Model (DOM) und Cascading Style Sheet (CSS) Manipulation
- Event-System

- AJAX Funktionalititen

- Moglichkeit, die Bibliothek mit Hilfe von benutzerdefinierten Plug-Ins um eigene
Funktionalititen zu erweitern

- Animationen von HTML-Elementen.

Bei der Visualisierung der Graphiken auf dem Dashboard wird die Highcharts JavaScript
Bibliothek benutzt. Diese generiert anhand von JSON Objekte die graphische Darstellung der
Zahlenreihen, die auf dem Server berechnet wurden.

5.2 Konfiguration

Der Eingangspunkt jeder Spring MVC Anwendung ist, wie in 5.1 gezeigt wurde, der
ServietDispatcher. Damit dieser als solcher erkannt wird, wird er in der web.xml Datei
definiert:

<servlets>
<servlet-name>spring</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<load-on-startup>1l</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>spring</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

Abbildung 5.2: Servlet- und Servlet-Mapping-Definitionen in web.xml

Die Servlet-Definition besagt, dass der DispacherServiet als erster geladen werden soll und
die Servilet-Mapping zeigt, dass alle Anfragen an diesen weitergeleitet werden sollen. Serviet-
Name ist der Name der Spring-Konfigurationsdatei. Im Fall von KEIDA ist das die spring-
servlet.xml. Die Konfiguration von KEIDA wurde auf mehrere xml-Dateien verteilt. Die
einzelnen Dateien enthalten spezifische Teile dieser Konfiguration (Abb. 5.3). Sie erfolgt

22

mittels Java Beans, die zur Initialisierungszeit in den einzelnen Klassen durch Dependencies
Injection geladen werden. So ist z.B. in der keida-db.xml-Datei der “dataSource”-Bean, der
eine Verbindung mit der Datenbank aufbaut, definiert (Abb. 5.6). Dieser braucht neben den
Namen der Datenbank den Pfad, den Benutzernamen und das Passwort. Dadurch kann Spring
zur Initialisierungszeit eine Verbindung mit der Datenbank aufbauen. In dieser Datei sind alle
anderen Beans, die einen Zugriff auf die Datenbank bendtigen, definiert.

<!-- MySQL Data Base configuration -->
<import resource="keida-db.xml" />

<!-- Services Beans -->

<import resource="keida-services.xml" />

<!-- ViproWS Configuration -->

<import resource="keida-viproWS-configuration.xml" />
<!-- Main Dashboard Configuration -->

<import resource="keida-homepage-configuration.xml" />

<!-- Process page Configuration -->

<import resource="keida-processPage-configuration.xml" />
<!-- Visualization page Configuration -->

<import resource="keida-visualization-mapping.xml" />

Abbildung 5.3: Importieren von Konfugurationsdateien in spring-servlet.xml

In der spring-serviet.xml ist angegeben, wo sich die Controller befinden und dass diese durch
Annotation gekennzeichnet sind:

<context:component-scan base-package="de.unistuttgart.iaas.keida.controller" />

<mvc:annotation-driven/>

Abbildung 5.4: Auszug aus der spring-servlet.xml -Datei

Weiter folgt die Definition des ViewResolvers. Als Template-System wird in KEIDA auf
Tiles 2.2 gesetzt. Der Tiles2-Bean definiert, in welchem Ordner sich die Template-Dateien
befinden sowie dass das TilesViewResolver gebraucht wird, um den entsprechenden View zu
finden:

<bean class="org.springframework.web.servlet.view.tiles2.TilesConfigurer">
<property name="definitions">
<list>
<value>/WEB-INF/views/**/views.xml</value>
</list>
</property>
</beans>

<bean class="org.springframework.web.servlet.view.tiles2.TilesViewResolver" />

Abbildung 5.5: Tiles 2.2 Konfiguration

23

<bean id="dataSource" class="org.springframework.jdbc.datasource..">
<property name="driverClassName" value="com.mysqgl.jdbc.Driver" />
<property name="url" value="jdbc:mysql://localhost:3306/kei dwupdate" />
<property name="username" value="root" />
<property name="password" value="" />

</beans>

<bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate">

<property name="dataSource"> <ref bean="dataSource"/> </property>

</beans>

Abbildung 5.6: MySQL Konfiguration

Ein wichtiger Bean stellt die Konfiguration des ViproWS dar (Abb. 5.7). SpringMVC ist in
der Lage, iiber eine solche Konfiguration zur Initialisierungszeit alle bendtigten
Vorbereitungen zu treffen, damit ein spiterer WS-Aufruf ohne groBen Aufwand erfolgen
kann:

<bean id="vis" class="org.springframework.remoting.jaxws.JaxWsPort..." >
<property name="servicelnterface" value="arapoport.viproService.Vipro..." />
<property name="wsdlDocumentUrl" val-
ue="http://localhost:8080/viproWS/services/viproService?wsdl" />

<property name="namespaceUri" value="http://arapoport/viproService" />

<property name="serviceName" value="viproService"/>

<property name="portName" value="viproService"/>

</beans>

Abbildung 5.7: ViproWS Konfiguration in keida-viproWS-konfiguration.xml

Die Konfigurationsdateien definieren die einzelnen Schichten innerhalb der MVC-
Architektur. In den folgenden Unterkapiteln folgt eine ausfiihrliche Beschreibung der
Implementation diesen Schichten.

5.3 Controllerschicht (Controller Layer)

Der DispatcherServlet ist als Front-Controller aufgebaut. Dieser Front-Controller leitet die
Anfragen an den jeweiligen Controller weiter. Damit der DispatcherServiet diese finden kann,
ist der Package, in dem sie sich befinden, in der xml-Konfigurationsdatei spring-servlet.xml
(Abb. 5.2) angegeben. Die Parameter, die die Browseranfragen liefern, sollen dann auch den
richtigen Methoden der jeweiligen Controller zugewiesen werden (Abb. 5.9). Dieses “Handler
Mapping” wird durch die “annotation-driven”-Definition moglich gemacht (Abb. 5.4).
Annotationen wie “Controller” oder “RequestMapping” dienen dem DispatcherServliet, die
Controller und die zugehorige Methode auszuwidhlen (Abb. 5.8).

24

Mapping der Controller-Klasse

http://localhost:8082/KEIDA/processes/process/quickview

Mapping der Methode

Abbildung 5.8: Handler Mapping

KEIDA ist um die zwei Themen Dashboard und Visualisierungswerkzeug aufgebaut und
implementiert Controller, die diese zwei Tatsachen abbilden (Abb. 5.9). Die Browser-
Anfragen an das Dashboard werden an den “Home Page Controller” sowie “Process Page
Controller” weitergeleitet. Zustindig fiir das Visualisierungswerkzeug ist der “Visualization
Page Controller”.

4 ;% Java Resources
4 (58 src
> f arapopert.viproService
4 |} deunistuttgart.iaas.keida.controller
> [J] HomePageControllerjava
. [J] ProcessPageController.java
» [J] SWGDownloadCentroller.java
. [4] VisualizationPageController.java
» 3 deunistuttgart.iaas.keida.dao.barChart
> £} deunistuttgart.iaas.keida.dao.chart
> f# deunistuttgart.iaas.keida.dao.gadget
. £} deunistuttgart.iaas.keida.dao.gauge
> £} deunistuttgart.iaas.keida.dao.process

Abbildung 5.9: Controllerklassen

Die Controller sind in der Regel so aufgebaut, dass sie fast keine Funktionalititen oder Algo-
rithmen implementieren. Sie wissen nur welches Modell fiir die Bearbeitung der Anfrage zu-
standig ist und welches View fiir die Prasentation gebraucht wird. Das wird am Beispiel der
Klasse ProcessPageController deutlicher (Abb. 5.10). An erster Stelle ist diese Klasse mit
“@Controller” als Controller annotiert. Sie wird immer dann von dem DispatcherServlet
ausgewdhlt, wenn sie in der URL (Abb. 5.8) nach dem Servlet-Namen, in diesem Fall “pro-
cesses”, auftaucht. Die Methode, die fiir eine Visualisierung des Prozesses mit “id=1" ge-
braucht wird, ist mit “RequestMapping” mit Wert “process/quickview” annotiert. In der Me-
thode wird ein Objekt ModelAndView erzeugt, das als Eingabeparameter den Namen des
Views bekommt. Das Model liefert in diesem Fall den Namen einer SVG-Datei, die von
ViproWS generiert und in einem Ordner auf dem Server abgespeichert wurde. Der Request-
Dispatcher nimmt diesen Namen, findet das View und schickt eine Antwort zurlick an den
Browser.

@Controller
@RequestMapping (value="/processes")

public class ProcessPageController (

@RequestMapping (value={"process/quickview"}, method=GET)
public ModelAndView quickView(@RequestParam(value="id", required=false) int

id)

25

ModelAndView mav = new ModelAndView ("processes/process/quickview") ;
HashMap hm = this.ppc.getQuickview(id) ;
mav.addAllObjects (hm) ;

return mav;

Abbildung 5.10: Mapping einer Controllerklasse

Die Controller liefern in den meisten Féllen den logischen Namen des Views und anhand
dieser kann dann die Prisentation bestimmt werden. Die Présentation ist in JSP-Dateien
beschrieben. Das ist aber nicht zwingend. So kann z.B. der Controller “VisualisationPage”
auch AJAX Anfragen beantworten und liefert ein JSON Objekt (Abb. 5.11). Der Controller
“SVGDownload” gibt auch keine HTML-Représentation zuriick, sondern eine SVG-Datei, die
sich auf dem Server befindet und vom Benutzer angefragt wird.

@RequestMapping (value="/instances", method=GET)

public @ResponseBody List<ProcessInstance> getProces-

sInstancesJSON (@RequestParam("pid") int pid, @RequestParam("date")String date) {
List<ProcessInstances> result = this.vpsc.getProcessInstances (pid, date);

return result;

Abbildung 5.11: Mapping einer AJAX Anfrage

5.4 Prasentationsschicht (View Layer)

Beim Aufbau der Prisentationsschicht wurde auf Apache Tiles 2.2° gesetzt. Apache Tiles ist
ein System fiir modularen Aufbau von graphischen Oberflichen in Webanwendungen. Die
Seiten bestehen in der Regel aus Elementen, die sich immer wieder wiederholen. Apache
Tiles dient dazu, diese Elemente, auch Tiles genannt, zu kombinieren und eine komplette
Webseite aufzubauen. Die Tiles sind in JSP-Dateien definiert und mittels Beschreibung in
xml-Konfigurationsdateien zur Laufzeit auf einer Seite zusammengefasst. Diese Aufteilung
der Seiten fiihrt zu einer besseren Organisation der Views. Die KEIDA-Views befinden sich
m ‘“views”’-Ordner unter ,,WebContent/WEB-INF*. Die Prasentationsschicht ist in drei

29 ¢

Kategorien gegliedert: “home”, “processes” und “visualize”.

Die Views sind in den views.xml-Dateien, die in den jeweiligen Ordnern liegen, definiert. Sie
sind hierarchisch aufgebaut. Ganz oben in der Hierarchie steht die in dem Hauptordner
liegende views.xml-Datei. Sie definiert die Hauptvorlage (index.jsp), die den Rahmen jeder
HTML-Seite darstellt:

8 http://tiles.apache.org/

26

<definition name="template" template="/WEB-INF/views/index.jsp">
<put-attribute name="header" value="/WEB-INF/views/header.jsp" />

</definition>

Abbildung 5.12: View Konfiguration in views.xml

Das Attribut “name” (Abb. 5.12) ist der eindeutige Identifikator des Templates. Dieser wird
spéter von den anderen Vorlagen geerbt und erweitert. Das “template-Attribut enthdlt den
Pfad zur jsp-Vorlagedatei. In dieser jsp-Datei werden per benutzerdefinierte Tags “files” die
einzelnen Teile zur Laufzeit eingefiigt (Abb. 5.13). Diese Teile sind mit “put-attribute” in der
views.xml-Datei (Abb. 5.12) definiert.

<body>

<!-- begin header -->
<tiles:insertAttribute name="header" />

<!-- end header -->

Abbildung 5.13: Ausschnitt aus index.jsp

Die Auflosung des Views erfolgt durch den TilesViewResolver. Dieser braucht den Namen
des Views, der im jeweiligen Controller definiert wird. Der TilesViewResolver seinerseits
weill nicht, was eine Tiles-Definition ist und verldsst sich auf dem TilesConfigurer. Der
TilesConfigurer weil}, dass die Views in ,/WEB-INF/views/* definiert sind (Abb. 5.14 als
Prifix markiert). Die Ant-Style Maske “**” in der Definition (siche Abb. 5.4) zeigt ihm, dass
dort sich ein Ordner mit dem gleichen Namen, der vom DispatcherServlet libergeben wird,
befindet (in diesem Fall ,,hjome*, siche Abb. 5.14) Die views.xml-Datei wird ausgelesen und
die dort definierte Struktur als Vorlage genommen.

Name des Views

/WEB-INF/views/home/views.xml

Prafix Suffix

Abbildung 5.14: Auflésung des Namens eines Views

Die Definition des Dashboards sieht so aus:

<definition name="home" extends="template">
<put-attribute name="body" value="myapp.homepage.body"/>
</definition>
<definition name="myapp.homepage.body" emplate="/WEB-INF/views/home/body.jsp">
<put-attribute name="title" value="/WEB-INF/views/home/title.jsp"/>

<put-attribute name="datePicker" value="/WEB-

27

INF/views/home/datePicker.jsp"/>
<put-attribute name="kei" value="/WEB-INF/views/home/kei.jsp" />
<put-attribute name="chart" value="/WEB-INF/views/home/chart.jsp" />
<put-attribute name="processList" value="/WEB-
INF/views/home/processList.jsp"/>
<put-attribute name="gadgets" value="/WEB-INF/views/home/gadgets.jsp"/>

</definition>

Abbildung 5.15: Definition der Startseite des Dashboards

Beim Aufrufen der URL: “http://localhost:8080/KEIDA/dashboard” im Browser gibt der
HomePageController als logischen View-Namen “home” an den TilesViewResolver. Der
TilesViewResolver wendet sich an den TilesConfigurer und er holt die Vorlage mit allen
Teilen und gibt sie an den TilesViewResolver zurlick. Die Information, die vom Model
vorbereitet wurde, wird an den richtigen Plédtzen eingefiigt und die so erstellte HTML-Seite an
den Browser zuriickgeschickt. Ein Beispielergebnis ist auf Abb. 4.3 zu sehen.

In 5.3 und 5.4 wurde die Funktionsweise der Controller- und View-Schichten beschrieben.
Die Geschiftslogik hinter jeder Aktion, die der Controller erlaubt, ist in der Modelschicht
implementiert. Das nichste Unterkapitel gibt einen Uberblick iiber die Implementierung
dieser Schicht.

5.5 Modellschicht (Model Layer)

Die Modellschicht der serverseitigen Implementierung von KEIDA ist auf den einzelnen
Komponenten, die auf jeder Seite des Front-Ends gebraucht werden, aufgebaut. Die
Komponenten sind verschiedene Graphiken oder Listen mit Prozessinformationen (siche Abb.
5.16). Dieser modulare Aufbau fiihrt zu einer klaren Trennung der Funktionalitidten und der
Zusténdigkeiten bei der Implementierung der einzelnen Komponenten. Der Vorteil dabei ist,
dass diese unabhéngig voneinander sind. Diese Komponenten lassen sich leicht austauschen,
ohne dass andere gedndert werden miissen. Das fiihrt auch zu einer Wiederverwendbarkeit der
Komponenten.

Die Services, auf denen die einzelnen Seiten aufgebaut sind, tragen den Namen der
Controller, die sie bendtigen. ProcessPageController greift z.B. auf
ProcessPageServiceComposer. Die einzelnen Services implementieren das Kompositum
(Composite) und das Facade -Entwurfsmuster [GHJV11]. Wie das KEIDA Prozessseite
Mock-up zeigt (Abb. 5.16), besteht die Seite aus den Komponenten: Main Chart, Process
Information, Key Ecological Indicators und Activities. Jede dieser Komponenten braucht
verschiedene Informationen von der Datenbank und stellt eine andere Datensicht dar. Die
ServiceComposer-Klassen dienen auch als Facade vor dem Controller, weil sie das Benutzen
der darunterliegenden Subsystemen (Services) definieren. Diese Subsysteme enthalten die
eigentliche Businesslogik.

28

S X 1€

i Dobert B roceme [Vit
PurchaseOrderResellerProcess
TAVE0n - SR ﬁ

Main chart Process Information

Key Ecclogical Indicators

Haghast o cormarpten Hegpert C02 ermmmmen Hegpast COZ amme

QOO

A over A over ot

Abbildung 5.16: KEIDA Process page mock-up

Fiir den Aufbau jeder Graphik werden Informationen, wie die analysierten Indikatoren, die
betrachtete Periode, der Name der Graphik usw. gebraucht. Diese Information wird von der
Datenbank von einem speziell fiir diese Aufgabe ausgelegten ServiceWorker libernommen.
Diese ServiceWorker haben einen direkten Zugriff auf die persistente Schicht. Sie wissen,
welche Informationen fiir jeden einzelnen Typ Graphik gebraucht werden. Diese
ServiceWorker implementieren die Logik, die bei der Bearbeitung dieser Informationen
benétigt wird. Nachdem der ServiceComposer die Daten bekommen hat, werden sie an das
Highcharts-Subsystem {ibergeben, das fiir die Generierung der JSON-Objekte zustdndig ist.
Das Ausgliedern der JSON-Generierung von der Datenbearbeitung fiihrt zu einer klaren
Entkoppelung der Zustindigkeiten, um moglichst voneinander unabhéngige Subsysteme zu
schaffen.

Bei den Text-Komponenten werden nur ServiceWorker gebraucht, weil sie keine spezielle
Darstellung erfordern. Diese wird direkt vom View iibernommen. Im Unterschied dazu stellt
das View nur einen Platzhalter fiir die Graphiken bereit. Die eigentliche visuelle Darstellung
ist dem Highcharts JS API iiberlassen.

Als Beispiel fiir die oben beschriebene Generierung eines solchen JavaScript Objekts wird der
Aufbau der Hauptgrafik erldutert.

Der ProcessPageController erhilt die Aufgabe, die Ubersichtseite des Prozesses mit ID=1 zu
zeigen. Nach Eingabe im Browser “ http://localhost:8082/KEIDA/processes/process
/view?id=1" wird folgende Methode der Controller-Klasse ProcessPageController ausge-
fiihrt:

@RequestMapping (value={"process/view"}, method=GET)
public ModelAndView processView (@RequestParam(value="id", required=false) int id,

HttpServletRequest request) {

HashMap hm = this.ppc.getViewPage (sessionRange, sessionPeriod, idI) ;
ModelAndView mav = new ModelAndView ("processes/process/view") ;
mav.addAllObjects (hm) ;

return mav;

29

Abbildung 5.17: processView()-Methode der ProcessPageController-Klasse

Die Methode iibergibt die bendtigten Informationen an den ProcessPageServiceComposer-
Klasse (PPC). Wie am Anfang des Kapitels gezeigt wurde, implementiert die PPC-Klasse das
Composite-Pattern. Das bedeutet, dass sie die Struktur der Seite kennt und weil}, welche
Komponenten auf der Seite vorkommen und welche Informationen dabei erwartet werden.
Die Methode, die in diesem Fall interessant ist, ist getViewPage der PPC-Klasse. Sie
iibernimmt die Aufgabe, eine Komposition mit allen Komponenten zu erzeugen und als ein
assoziatives Array (HashMap) zuriickzugeben. Fiir die Vorbereitung der Hauptgraphik
werden folgende Schritte bendtigt:

public HashMap getViewPage (String period, String type, String name) {

ArrayList<String> indicators = (Ar-

rayList<Strings>) this.chartConfiguratorPP.getIndicators () .get ("mainChart") ;
CalendarMath calMath = new CalendarMath (period) ;

ArraylList<double[]> data = this.csw.chartDataArray (period, type, indicators,
name) ;

ArrayList<String[]> labels = this.csw.chartLabels (indicators) ;

ChartWidget cw = new ChartWidget () ;

cw.initialize (calMath.getStartDate (), type, data, labels);

this.hm.put ("highcharts", cw.display());

Abbildung 5.18: getViewPage-Methode der PPC-Klasse

Name, Datenreihe, Startdatum fiir x-Achse und die Legende werden von dem
ChartServiceWorker (csw) bereitgestellt. Diese werden dem ChartWidget(cw) weitergeben.
Beim Ausfiihren der cw display-Methode wird das JS-Objekt geliefert und dieses unter dem
Namen “highcharts” in das assoziative Array (hm) eingefiigt. Im View wird diese ausgelesen
und in den Platzhalter, der fiir die Graphik bereit steht, geschrieben.

Wie schon oben erwihnt implementiert der ChartServiceWorker die Geschiftslogik, die hin-
ter jedem Graphiktypen steht. So wird z.B. die Methode getChartArray() der ChartService-
Worker-Klasse aufgerufen, um die Datenreihe fiir eine Graphik zu bekommen. Diese Methode
liefert die Daten aggregiert nach Periodentyp: pro Stunde, pro Tag usw.

private double[] chartMonthlyData(CalendarMath cal, String type, String indicator,

String name) {

List<Month> months = this.chartJDBC.getMonthValue (cal.getStartDate(),
cal.getEndDate (), name, indicator);
double[] jsData = new double[cal.getMonthsBetween()];
Calendar temp = Calendar.getInstance() ;
if (!months.isEmpty())

for (Month m : months) {

30

temp.set (Calendar.YEAR, m.getYear()) ;
temp.set (Calendar.MONTH, m.getMonth()) ;
temp.set (Calendar.DAY OF MONTH, m.getDay());

jsData[cal.indexForMonthArray (temp) -1] = m.getValue() ;

}

return jsData;

Abbildung 5.19: chartMonthlyData()-Methode der Klasse ChartServiceWorker

Die Daten aus der Datenbank werden mit Hilfe vom JdbcTemplate-Objekt, das in der keida-
db.xml- Datei definiert ist, geholt. Das JdbcTemplate-Objekt wird zur Initialisierungszeit
erzeugt und per Dependencies Injection in der Chart/DBCTemplate-Klasse instanziiert. Die
JdbcTemplate-Klasse iibernimmt die Aufgaben, die beim Aufbau der Verbindung mit der
Datenbank oder beim Ausfiihren einer Anfrage an die Datenbank erfiillt werden.

public class ChartJDBCTemplate implements ChartDAO

@Autowired

private JdbcTemplate jdbcTemplateObject;

public List<Month> getMonthValue (Calendar startDate, Calendar endDate, String name,
String indicatorDefinition) {

String sql = this.buildSQLQuery (startDate, endDate, "month", indicatorDefi-
nition, name);

List<Month> months = jdbcTemplateObject.query(sgl, new MonthMapper()) ;

return months;

Abbildung 5.20: Ausschnitt aus der Klasse ChartJDBCTemplate

Die Methode getMonthValue() der ChartJDBCTemplate liefert die Information, die fiir eine
Periode und fiir einen Indikator in der Datenbank abgespeichert ist. Diese wird dann in
chartMonthlyData() weiterbearbeitet und als eine Zahlenreihe ausgegeben.

Die gerade gezeigte Struktur steht als Basis fiir alle ServiceComposer und ServiceWorker. Die
ServiceComposer nutzen verschiedene ServiceWorker beim Aufbau der Seiten. Die
ServiceWorker sind dabei so ausgelegt, dass diese unabhingig voneinander sind. Das macht
ihren Einsatz in verschiedenen Composer moglich. So wird z.B. die oben gezeigte
Hauptgraphik auf der ersten Dashboard-Seite, sowie auf den Seiten mit der einzelnen
Prozessiibersicht erzeugt.

Die serverseitige Implementierung von KEIDA erfolgt auf Basis der MVC-Architektur. Die
dadurch mdégliche Trennung der einzelnen Schichten erlaubt eine klare Rollenzuweisung. Die

31

weitere Aufteilung der Seiten in Komponenten, die wie bei der GUI-Widgets eine eigene
Darstellung und Geschéftslogik besitzen, ermoglicht ihr Einsetzen auf mehrere Seiten. Die
serverseitige Implementierung ist aber nur ein Teil von KEIDA. Das Frontend in Teil
Visualisierungswerkzeug setzt auf einer aktiven Interaktion mit dem Benutzer. Diese
Interaktion sowie eine leichte Bedienung des Konfigurationsassistenten erfordern eine
Auslagerung von Funktionalitdten in den Browser. Im nichsten Kapitel werden diese ndher
erliutert.

5.6 GUIImplementierung

Uber das Frontend von KEIDA ist der Benutzer in der Lage, alle benétigten Daten, die fiir die
Visualisierung eines Prozesses notwendig sind, einzugeben. Unter bendtigten Daten sind die
Prozessinstanzen, die Funktionen, die fiir jeden KEI gebraucht werden, sowie das Mapping
(Color, Size usw.) zu verstehen. Dabei gibt es Abhingigkeiten, die zu beachten sind. Diese
Abhingigkeiten fiihren zu bestimmten Konfigurationen und die GUI hat die Aufgabe, den
Benutzer dabei aktiv zu unterstiitzen. Eine wichtige Anforderung jeder Software ist die
einfache Bedienung und Erlernbarkeit. Deswegen wurde dieser Teil von KEIDA nicht in
separate Schritte aufgeteilt, bei denen eine Anfrage an den Server in jedem Schritt gemacht
wird, sondern als eine Desktop-Anwendung konzipiert, die im Browser lduft. Daraus ist der
Konfigurationsassistent entstanden. Dieser Wizard wird zum Teil auf dem Server vorbereitet
und erfordert auch eine aktive serverseitige Unterstiitzung.

Die Logik, die den Konfigurationsassistenten steuert, ist in JavaScript implementiert. Erst
beim Erfiillen von bestimmten Vorgaben werden Aktivititen moglich. Diese Ereignisse
werden per JavaScript iiberwacht. So ist z.B. die Bedingung zum Anzeigen des “Visualize”-
Buttons die ausfiihrliche Eingabe aller fiir eine Visualisierung bendtigten Informationen.
Diese werden beim Klicken auf den Button dem Server mittels eines AJAX-Aufrufs
tibergeben. Diese AJAX-Aufrufe dienen als Basis des Konfigurationsassistenten und spielen
eine grofle Rolle bei seinem Aufbau. AJAX-Aufrufe ermdglichen es, nur Teile der Webseite
von dem Server anzufordern und dadurch ist das Neuladen der ganzen Seite unnétig. AJAX
kommt auch beim Laden der Prozessinstanzenliste und bei der zweiten Visualisierung zum
Einsatz.

Die Architektur des Front-Endes ist wie auch die Serverseite auf MVC-Basis aufgebaut. Der
entscheidende Unterschied dabei ist, dass das View und das Model auf dem Observer-Pattern
setzen. Dadurch sind beide immer in Verbindung und das View kann sich entsprechend
erneuern, falls das Model neue Informationen zur Verfligung stellt.

Das Dashboard ist auf einer aktiven Unterstiitzung von JavaScript angewiesen. Die
Graphiken, die zu sehen sind, setzen auf der Highcharts-Bibliothek. Die Bibliothek nutzt die
Moglichkeiten der modernen Browser und wird auf den neuesten Standards wie HTMLS5 und
SVG aufgebaut. Wie im vorherigen Kapitel gezeigt, muss zuerst die bendtigte Information auf
dem Server vorbereitet werden, um eine Graphik in die Seite zu integrieren. Die Highcharts-
Bibliothek erfordert ein JSON-Objekt, mit dessen Hilfe die Graphik beschrieben wird. Dieses
Objekt wird dann von dem Highcharts-API als Vorlage bei der Generierung der svg-
Représentation, die auf der Webseite zu sehen ist, gebraucht.

32

6 Anwendungsfall: Optimieren eines Prozesses in KEIDA

In dem DWH, auf dem KEIDA aufgebaut ist, werden Informationen iiber den Energiever-
brauch verschiedener Geschéftsprozesse, die in einem Unternehmen laufen oder deren Ablauf
simuliert worden war, gespeichert. In der nachfolgenden Untersuchung werden die sich dort
befindenden Informationen, die bei der Simulation zweier Prozesse entstanden sind, als Basis
genommen. Ziel dabei ist es, das Optimieren der Okobilanz eines Prozesses mittels KEIDA zu
zeigen.

Beim Optimieren ist es empfehlenswert, die Untersuchung auf dem Dashboard anzufangen.
Dort sind alle relevanten Informationen iiber alle Geschiftsprozesse abgebildet. Auf dem
Dashboard sind die Auffilligkeiten sofort zu sehen. So ist es auch auf Abb. 6.1 leicht zu er-
kennen, dass der ,,PurchaseOrderRessellerProcess* 98% des Energieverbrauchs ausweist. Die
nachfolgende Optimierung wird sich deswegen mit ihm befassen.

€ - http/focalhost 8082/keida/dashboard

KEIDA (©) Dashboard @ Processes [ad visualization

Dashboard
1/9/2011 - 20/9/2013 hourly daily weekly maonthly
Edit Monthly Electricity Usage,Clean Energy and Co2 Emission = KEL*
15k sk
Electricity Usage
- 0%
TR i 18172.721 Wh
Clean Energy
-2 0%
10k 3k 8836.383 Wh
Co2 Emission
5 - 0%
F 75k % @ 8457.326g
Atomic Waste
o
S5k 1k 9.033 mg > 0%
Electricity Costs -
2.5k Ok 4.539 EUR =% 0%
“{compared to previous period)
ok . - . -1k
Oct 11 Jan"12 Apriz Juiiz Oct 12 Jan"13 Apr'13 Jui1s
| Electricity Usage Clean Energy -® Co2 Emission
Electricity Usage= Clean Energy = Co2 Emission = Last Active Processes
Nr. Process name Instances El. Usage in Wh % Clean Energy
{http:/fiaas.uni-stuttgart.de/purc... 46 8977.79646 49%
2 {de.unistuttgartiaas.process}Sim... 126 217.128236 45%

| B (htp:/fia [Other | | B thttp:/fim [Other | | B thttp-/fia [Other |

Abbildung 6.1: KEIDA Dashboard

Diese Untersuchung des Prozesses kann auf der einzelnen Prozesssicht-Seite fortgesetzt wer-
den (Abb. 6.2). Hier stehen dem Benutzer verschiedene Informationen zur Verfiigung. Es gibt
einen gesamten Blick auf alle simulierten Daten {iber alle Perioden sowie die Mdglichkeit, die
Periode abzugrenzen und sich nur auf einem bestimmten Zeitraum zu konzentrieren. Die KEI
Tachometer bilden den durchschnittlichen Wert jedes KEI bei einem Prozessdurchlauf ab.
Auf dieser Seite sind auch die Werte, die die einzelnen Aktivitdten generiert haben, zu sehen.
Die Information auf dieser Seite ist immer periodenbezogen. Wiahlt der Benutzer eine andere

33

Periode, wird sich diese entsprechend dndern und ist nur dem ausgewdhlten Zeitraum zuge-
ordnet.

& = http:/localhost 8082/keida/dashboard

KEIDA (?) Dashboard @ Processes [ad] Visualization

{http://iaas.uni-stuttgart.de/purchaseCOrder/resellerProcess}PurchaseOrderResellerProcess

Process BPEL Viewer Process Visualizer Quick View
1/9/2011 - 20/9/2013 hourly daily weekly monthly
Edit Monthly Co2 Emission and Electricity Usage = Process Information
sk 10k
{http://iaas.uni-stuttgart.de/purchase...
_ Instances : 46
4k 7.5k
Electricity Usage =
8977.79646 Wh < &
3k k
Clean Energy =
= z 4368.857871 Wh ws
2% e Co2 Emission > 0%
3722.826656 g
Tk ok Atomic Waste "
4.451979 mg ws
2 Electricity Costs
%epmt Jan'12 May 12 Sep'12 Jan"13 May 13 sep13”* 2.243096 EUR > 0%
Kei's Process’s Activities

Average Co2 Emission Percentage Clean Energy
pro Process instance pro Process instance

2 Clean Energy/Wh

getCCDetails I 66.040795

requestauth [J| 130588542 —
80.931 49 l | B Clean Eneray |

notifyCustomerPaid - 350.550986

Average Electricity Costs Average Atomic Waste

pro Process instance pro Process instance gewaymenterers || N - ;-

L 005 ShipProducts | 9.171727
o
%

7 orderitemsFromsupptier! [211346785
EUR | mg, .
checkAvailabilitylnStack 513.929002
0.049 0.097 Y 3

0 500 1,000 1,500 2,000 2,500 3,000 3,500

Average Electricity Consumption =
pro Process instance

100
Wh,

195.169

Abbildung 6.2: PurchaseOrderResselerProcess Dashboard

Die KEI-Tachometer zeigen, dass der Energieverbrauch weit iiber dem gewiinschten durch-
schnittlichen Wert liegt. Rechts davon auf dem Balkendiagramm, bei dem die KEI Werte auf
die einzelnen Aktivitdten verteilt sind, kann man sehr schnell fiindig werden. Hier ist leicht
erkennbar, dass sich der Energieverbrauch mancher Aktivititen weit iiber den der anderen
erstreckt. Dafiir kann es verschiedene Griinde geben, die aus den vorliegenden Informationen
nicht nachvollziehbar sind. Das, was man hier erkennen kann, ist, dass die Aktivitdten und
insbesondere ,,checkAvailabilityInStock® sehr wenig griine Energie verwenden (Abb. 6.3).
Diese Tatsache ist auf dem ,,Percentage Clean Energy* sichtbar (Abb. 6.4). Dabei liegt der

34

Anteil griiner Energie weit unter den gewliinschten 80%. Die Prioritdt der nachfolgenden Op-
timierung des Prozesses liegt auf der Verringerung des Stromverbrauchs. Damit werden die
Senkung des CO,-Ausstofles und die Verkleinerung der Mengen Atommiill, die bei der Pro-
duktion der Energie anfallen, angestrebt.

Electricity Usage /Wh Clean Energy/Wh
getCCDetails - 293.408001 getCCDetails | £6.040795
requestAuth _ 834 488977 requestAuth l 130.586542

| B Electricity Usage ‘

notifyCustomerPaid _ 1449.351457 notifyCustomerPaid - 350.550986

ShipProducts |28.Z?4ISS ShipProducts | 9.171727

| B Clean Energy

orderltemsFromSupplierl _ 953.584722 orderltemsFromSupplier1 . 211.346785
— Py ey e
o 300 1,000 1,500 2,000 2,500 3,000 3,500 0 500 1,000 1,500 2,000 2,500 3,000 3500

Abbildung 6.3: Verbrauch griiner Energie

Percentage Clean Energy
pro Process instance

50

49

ool

Abbildung 6.4: Durchschnittlicher Anteil der griinen Energie bei einem Prozessdurchlauf

Fiir die weiteren Untersuchungen wird das Visualisierungswerkzeug eingesetzt, das ein Be-
standteil von KEIDA ist und das die graphische Darstellung der Prozessaktivititen anhand der
Informationen, die im DWH liegen und auch mittels externer Informationen moglich macht.

Das Visualisierungswerkzeug besteht aus zwei Teilen. Links befindet sich der Konfiguration-
sassistent und rechts werden die Visualisierungen angezeigt (Abb. 4.4). Durch ihn sind die
Benutzer in der Lage, alle benétigten Informationen einzugeben, um eine Visualisierung zu
bekommen. Hier kann man Prozessinstanzen aus einer bestimmten Periode auswihlen (Abb.
6.5, links), Funktionen, die einen Zusammenhang darstellen, einfiigen (Abb. 6.5, Mitte) und
auch die Mapping Methode festlegen (Abb. 6.5, rechts).

35

Process Instances Functions. Mapping Process Instances Functions Mapping Process Instances Functions. Mapping

From |1/1/1970 To |20/9/2013 [En] NEW FUNCTION

Name*
el consumption
Activity* Definitions
requestAuth checkAvailabilitylnStock
notifyCustomerPaid orderltemsFromSupplier’ 00 03 £009596 i_
ShipProducts
&* | getPaymentPrefs 08 0s #008CD2 W
getCCDetails 0.9 1.0 #1CDB00 w
1.0 11 w
=T} L 2 w
13:13:44 16/5/2013 o Substance® Function®
i electricity [=] Av. <x [=]
13:14:22 16/5/2013 3
i Value ®
13:15:27 16/5/2013 3 T
[E] |
13:15:59 16/5/2013 m

ik 0 16/5/2013

13:17:22 16/5/2013

13:18:7 16/5/2013

1. 0 16/5/2013 16/5/2013
13:19:51 16/5/2013 16/5/2013

13:20:34 16/5/2013 3:38:13 16/5/2013

13:21:19 16/5/2013 3: 16/5/2013

13:22:7 16/5/2013 3:38:15 16/5/2013
13:22:57 16/5/2013 13:38:16 16/5/2013

16/5/2013

16/5/2013
Abbildung 6.5: Konfigurationswizard

Sobald der Benutzer alle Informationen eingegeben hat, kann dieser die Visualisierung vom
Server anfordern. Die Konfiguration, die fiir das gezeigte Beispiel verwendet wurde, ist wie
folgt:

- Prozessinstanzen. Alle Prozessinstanzen, die im DWH abgelegt sind, wurden ausge-
wihlt. Als Periode wurde der gesamte Zeitraum genommen. Von 1/1/1970 bis heute
(20/9/2013).

- Funktionen. Um das Beispiel einfach zu halten, wurde nur eine Funktion eigestellt.
Dabei wurden alle Aktivitdten genommen, als Substanz wurde Elektrizitit ausgewéhlt
und als Funktion durchschnittlicher Verbrauch keiner als der Wert 25 (Wh).

- Mapping. Als Mapping wurde ,,Color Map* genommen mit den voreingestellten Wer-
ten und den zugewiesenen Farben. Z.B. falls der Wert bis zu 80% dem Funktionswert
entspricht, wird die Aktivitidt mit der Farbe #002596 (dunkel blau) gefarbt. Folgende
Farbeinstellungen wurden dabei vorgenommen:

o zwischen 80 und 90% : #008CD?2 (hell blau)

zwischen 90 und 100%: #1CDBOO (griin)

zwischen 100 und 110% : #FFE100 (hell gelb)

zwischen 110 und 120%: #FFAF00 (orange)

alle Werte, die iiber 120% des eingegebenen Funktionswerts liegen, werden in

dunkel rot gefarbt.

©)
©)
@)
@)

Das Ergebnis kann man auf Abb. 6.6 sehen.

36

€ = http:/localhost 8082/keidalvisualization/?pid=1

KEIDA (D Dashboard @ Processes [ad] Visualization

{http://iaas.uni-stuttgart.de/purchaseOrder/resellerPr... W
AssignForAvailabilityCheck

Configuration | u *
ACTIVITIES / ELECTRICITY t *

PROCESS INSTANCES =

e ErrorInvokingSe:
46 Instances chosen rrorinvokingService

el. cons. electricity Av. < x 25

Ap =
MAPS TtemsfiotAvailable

ContactSuppliers

0.0 0.8 002596

AssignForSupplie

it

PositiveNlatifyCustomes

laceholderCustomerhotificati

ErrorlnvokingServi

orderItemsFromSupplierl

ErrorInvokingService

waitForRepair

Wil (i

Abbildung 6.6: Visualisierung des PurchaseOrder Prozesses

In diesem ersten Schritt in Richtung einer mdglichen Verbesserung der Okobilanz des Prozes-
ses sind die Aktivitdten, die eventuell spiter mit energiesparenderen Aktivitdten ersetzt wer-
den sollen, sofort zu sehen. In dem betrachteten Beispiel sind das die ,,checkAvailabilityln-
Stock* (Abb. 6.6, in rot) sowie ,,getPaymentPrefs* (auf dem Bild nicht zu sehen). Sie haben
einen sehr hohen durchschnittlichen Energieverbrauch. ,,CheckAvailabilityInStock® weist
einen Verbrauch von ungefahr 50Wh pro Durchlauf auf und bei ,,getPaymentPrefs liegt die-
ser Wert sogar bei 67.38Wh bei einem angestrebten Wert von nur 25Wh. Fiir die weitere Pro-
zessoptimierung ist es wichtig, dass die Problemaktivititen sich durch andere, die die gleiche
Funktionalitdt bereitstellen, ersetzen lassen und dass die neuen Aktivitidten bessere Durch-
schnittswerte haben. Deswegen wird hier angenommen, dass es solche Aktivititen gibt und
sie die jetzigen ersetzen konnen, ohne die Struktur des Prozesses zu dndern. Fiir die
,»checkAvailabilityInStock® wird angenommen, dass es einen Ersatz gibt mit einem durch-
schnittlichen Wert von 22Wh und fiir ,,getPaymentPrefs* ist ein Ersatz mit durchschnittlichem
Wert von 30Wh zu finden.

Nachdem die neuen Werte eingegeben wurden und die neue Version der Visualisierung ange-
fordert ist, ist sofort zu sehen, dass diese Anderung den gesamten Energieverbrauch um mehr
als 32% verringert. Graphisch ist das auf der rechten Seite der Abb. 6.7 auch leicht zu erken-

37

nen. Die Verfarbung der Aktivitdt ist (Abb. 6.7, rechts unten) jetzt im hell blauen Bereich
(zwischen 80 und 90% des angestrebten Wertes). Im Vergleich mit der Ausgangsituation
(Abb. 6.7, oben rechts) ist diese Aktivitit dunkel rot geférbt, was einem viel hoheren Wert als
den gewiinschten entspricht.

€ = hitp:/localhost 8082/keida/visualization/?pid=1

KEIDA (D Dashboard @ Processes [ad] Visualization

. _ . . Download svg Picture
[http:/fiaas.uni-stuttgart.de/purchaseOrder/resellerPr... W

Configuration

CLOSE

ACTIVITIES / ELECTRICITY =

TtemshlotAvailable
1

checkAvailabilitylnStock 22

orderltemsFromSupplierl 28.89650673
e ——
getPaymentPrefs 30

A 18.14106461
notifyCustomerPaid 31.50764037
Current 203.4280906700Wh ErrorInvokingService

= o,

Updated 137.63050034Wh 32.34440%
PROCESS INSTANCES - e
46 Instances chosen
el. cons. electricity Av. < x 25
MA] i

Cenr —
0.0 08 002596
0.8 09 008CD2 AssignForSupplier

09 1.0

10 g §

laceholderCustomerNotificatid

ErrorInvokingService

bl

orderTtemsFromSupplierl

Abbildung 6.7: Vergleich von zwei Visualisierungen

Dieses Beispiel zeigt, wie man mit KEIDA in einigen Schritten bei Vorliegen der benétigten
Informationen (z.B. liber Aktivititen, die auch von externen Anbietern stammen kénnen) eine
Optimierung eines Geschiftsprozesses beziiglich Energieeffizienz erzielt werden kann. KEI-
DA stellt die Informationen iiber das Verhalten des Prozesses graphisch dar und erleichtert
dadurch das Ziehen von Riickschliissen auf die Problemzonen dieses Geschéftsprozesses.
Beim Vorliegen externer Daten iiber die Okobilanz einer Aktivitit lassen sich diese leicht
durch die im System abgelegten Daten ersetzen. Dadurch kann schnell visuell gezeigt werden,
was fiir einen Einfluss sie auf dem gesamten Prozess haben. Die so gewonnenen Erkenntnisse
kann man spéter beim Optimieren des Prozesses beriicksichtigen, um ein nachhaltiges und mit
einer verbesserten Okobilanz Betreiben dieses Prozesses zu erzielen.

38

7 Zusammenfassung

Green IT entwickelt sich in den letzten Jahren von einem Trend zu einer neuen Denkweise.
Die Unternehmen sehen dabei das grof3e Potential nicht nur Geld zu sparen, sondern ihren
Umgang mit den knappen Ressourcen zu dndern. Wie in Kap. 1 gezeigt, machen grof3e Unter-
nehmen wie Google und Facebook die ersten Schritte in diese Richtung und viele kleine Un-
ternehmen wie Strato folgen. Dabei geht es um das Generieren immer neuer Ansitze, wie sich
die IT in einem Unternehmen ,,griiner betreiben ldsst, sowie darum, durch IT eine Verbesse-
rung des Umgangs mit den knappen Ressourcen zu erzielen.

Software Losungen wie das KEI Framework stellen nicht nur die Moglichkeiten dar, die
Energiefresser unter den Geschiftsprozessen des Unternehmens ausfindig zu machen, sondern
geben auch an, welcher Anteil dieser Energie griin ist, wie viel CO; in die Atmosphére ausge-
stoen worden ist sowie wie viel Atommiill bei der Nutzung von Kernenergie angefallen ist.
Beim Optimieren gibt es verschiedene Losungen und eine davon stellt KEIDA dar. KEIDA
baut auf das KEI Framework auf und versucht, alle relevanten Aspekte des Energieverbrauchs
eines Geschiftsprozesses in einer geeigneten Form graphisch dem interessierten Benutzer
bereitzustellen. Der Benutzer ist dann in der Lage, wie in Kap. 6 gezeigt wurde, schnell Unre-
gelméBigkeiten oder Auffalligkeiten aufzuspiiren und diese zu untersuchen. Dabei wurde auch
gezeigt, wie mit dem Visualisierungswerkzeug schnell und unkompliziert eine graphische
Darstellung des Prozesses mittels ViproWS gemacht werden kann. Dabei ist es auch wichtig,
dass beim Vorliegen externer Daten {liber den Energieverbrauch, den CO,-Ausstof3 oder die
Mengen Atommiill einer Aktivitit, der Benutzer sie mit der bestehenden Aktivitét ersetzen
und sich graphisch die Unterschiede anschauen kann.

Software Losungen wie KEI Framework und KEIDA sind eine gute Basis fiir die Optimie-
rung der Okobilanz eines Prozesses innerhalb eines Unternehmens. Solche Softwareldsungen
werden in der Zukunft in jedem Unternehmen eine grof3e Rolle spielen. Einerseits ist der Sinn
und Zweck eines jeden Optimieren eines Prozesses, dass dieser Wettbewerbsvorteile gegen-
iiber der Konkurrenz bringt. Andererseits tragt das Unternechmen dazu bei, die Umwelt zu
erhalten und fiir die kiinftigen Generationen zu bewahren.

39

8 Anhang A - KEIDA Konfiguration

1. Webserver

Apache Tomcat Server 7.x.

2. Datenbank Server

MySQL 5.x

3.Konfiguration von KEIDA

Die Konfigurationsdateien befinden sich in dem “WebContent/WEB-INF”-Ordner.

Diese sind:

- keida-db.xml

- keida-homepage-configuration.xml

- keida-processPage-configuration.xml

- keida-viproWS-configuration.xml

- keida-services.xml

- keida-visualization-mapping.xml

- spring.servlet.xml
Wie in Kap. 5.2 erldutert wurde, werden in die spring-servlet.xml alle anderen
Konfigurationsdateien importiert.

3.1. keida-db.xml

Hier kann die Verbindung mit der Datenbank eingestellt werden. Die bendtigten
Informationen sind: URL der Datenbank, der Username, das Passwort und der Name der
Datenbank. Eine Beispielkonfiguration wére:

<bean id="dataSource"
class="org.springframework. jdbc.datasource.DriverManagerDataSource" >
<property name="driverClassName" value="com.mysqgl.jdbc.Driver" />
<property name="url" value="jdbc:mysqgl://localhost:3306/kei dwupdate" />
<property name="username" value="root" />
<property name="password" value="" />

</bean>

Abbildung 8.1: MySQL Konfiguration in keida-db.xml

40

3.2 keida-homepage-configuration.xml

Diese Datei definiert ein Bean, das die Konfiguration der Graphiken auf dem Dashboard
darstellt. Mit dem Bean werden die Indikatoren festgelegt, die auf den Graphiken verglichen
werden. Die Indikatoren sind in der Klasse IndicatorDefinitions festgelegt.

<!-- Indicators:
- ACTIVITY EL USAGE
- ACTIVITY CO2 EMISSION
- ACTIVITY CLEAN ENERGY
- ACTIVITY ELECTRICITY COSTS
- ACTIVITY ATOMIC WASTE
Usage:
#{indicatorDefinitions. {IndicatorType}} -->
<bean id="indicatorDefinitions"
class="de.unistuttgart.iaas.keida.domain.IndicatorDefinitions"/>
<bean id="chartConfiguratorAll"
class="de.unistuttgart.iaas.keida.service.helper.PageConfigurator"s>
<property name="indicators">
<map>
<entry key="charts"s>
<list>
<value>#{indicatorDefinitions.ACTIVITY CO2 EMISSION}</value>
<value>#{indicatorDefinitions.ACTIVITY EL USAGE}</value>
</list>
</entry>
<entry key="pies">
<list>
<value>#{indicatorDefinitions.ACTIVITY CO2 EMISSION}</value>
<value>#{indicatorDefinitions.ACTIVITY CLEAN ENERGY}</value>
<value>#{indicatorDefinitions.ACTIVITY ELECTRICITY COSTS}</value>
</list>
</entry>
</map>
</property>

</bean>

Abbildung 8.2: Homepage Konfiguration in der keida-homepage-configuration.xml-Datei

Abb. 7.2 zeigt die schon eingestellte Konfiguration. Diese lésst sich leicht dndern, indem die
schon eingegebenen Werte durch neue ersetzt werden oder neue dazugegeben werden. Die
Werte, die moglich sind, sind am Anfang der Datei aufgelistet.

3.3 keida-processPage-configuration.xml

Die Graphiken auf den einzelnen Prozesssicht-Seiten lassen sich in der keida-processPage-
configuration.xml steuern. Die Konfiguration erfolgt wie in 3.2.

41

3.4 keida-viproWS-configuration.xml

Bei der Visualisierung setzt KEIDA auf das ViproWS. Als Webservice ist ViproWS auf
einem externen Server zugédnglich. Die Konfiguration des Zugriffs auf das Webservice kann
in keida-viproWS-configuration.xml eingestellt werden.
Informationen gebraucht (Abb. 7.3): Pfad zur WSDL-Beschreibung, Servicename laut

WSDL, Port Name laut WSDL.

Dafiir werden folgende

<bean id="vis"

<property name="serviceInterface"

value="arapoport.viproService.ViproService" />

<property name="wsdlDocumentUrl"

class="org.springframework.remoting. jaxws.JaxWsPortProxyFactoryBean">

value="http://localhost:8080/viproWS/services/viproService?wsdl" />

<property name="namespaceUri" value="http://arapoport/viproService" />

<property name="serviceName" value="viproService" />

<property name="portName" value="viproService"

</bean>

/>

Abbildung 8.3: ViproWS Konfiguration

3.5 keida-visualization-mapping.xml

In dieser Datei sind die voreingestellten Mappings fiir das Visualisierungswerkzeug
aufgelistet. Sie sind nach Map-Typ gegliedert. Die Konfiguration fiir das ColorMap ist wie

folgt:

<entry key="colorMap">

<list>

<bean class="de.unistuttgart.iaas.keida.service
<property name="lower" value="0.0" />
<property name="upper" value="0.8" />
<property name="color" value="#002596" />

</beans>

<bean class="de.unistuttgart.iaas.keida.service
<property name="lower" value="0.8" />
<property name="upper" value="0.9" />
<property name="color" value="#008cd2" />

</beans>

<bean class="de.unistuttgart.iaas.keida.service
<property name="lower" value="0.9" />
<property name="upper" value="1.0" />
<property name="color" value="#lcdb00" />

</beans>

<bean class="de.unistuttgart.iaas.keida.service

<property name="lower" value="1.0" />

42

.helper

.helper

.helper

.helper

.MapDefinition">

.MapDefinition">

.MapDefinition">

.MapDefinition"s>

<property name="upper" value="1.1" />
<property name="color" value="#ffelO0" />

</bean>

<bean class="de.unistuttgart.iaas.keida.service.helper.MapDefinition">
<property name="lower" value="1.1" />
<property name="upper" value="1.2" />
<property name="color" value="#ffafoo" />

</bean>

</list>

</entry>

Abbildung 8.4: ColorMap Konfiguration
3.6. keida-services.xml

Hier sind nur die Beans definiert, die in den Klassen innerhalb von KEIDA gebraucht werden.
Keine spezielle Konfiguration ist moglich oder erforderlich.

4. Speichern von Visualisierungen

ViproWS liefert die Visualisierung eines Prozesses in Form einer svg-Datei und diese Dateien
konnten bis zu 14 MB grofl werden. Nachdem diese von dem ViproWS geliefert werden,
werden sie in einem speziell fiir das Ziel ausgelegten Ordner auf dem Server gespeichert.
Dann wird der GUI nur der Pfad zu den Dateien weitergegeben und diese werden von dort
abgerufen. In dem Prototyp wurde die Abspeicherung so konzipiert, dass jede Visualisierung
im ,,temp“-Ordner des Betriebssystems abgelegt wurde. Nachteil dabei ist, dass dadurch sehr
schnell sehr viel Platz belegt wird. Da die Visualisierungen aber immer nur fiir einen
speziellen Fall gemacht werden, die Fille keine Verbindung miteinander haben und die
Zuordnung von alten Visualisierungen nach der Ausgangsituation unmdglich ist, wurde diese
Abspeicherung abgeschafft. Beim ersten Visualisierungsvorgang erzeugt KEIDA einen neuen
Ordner unter “Ressourcen” mit dem Namen “temp”. Sobald eine neue Visualisierung erzeugt
wird, wird die alte geldscht. Wird eine zweite Visualisierung anhand der ersten gemacht,
bleibt die erste erhalten. Damit ist ein nachtriglicher Download seitens des Benutzers
moglich. Die Bilder, die bereits auf dem Server abgespeichert sind, werden bei einem neuen
Visualisierungsvorgang durch neu generierte Bilder ersetzt. Dadurch wird immer nur so viel
Platz auf der Festplatte gebraucht, wie die zwei aktuellen Reprdsentationen eines Prozesses
brauchen.

5. Bibliotheken
Alle externen Java-Bibliotheken, die KEIDA braucht, sind unter “WEB-INF/Ilib” zu finden.
6. Interface Labels

In der Datei “general.properties” im Ordner “WebContent/WEB-INF/resources” sind alle
Beschriftungen, die im Frontend von KEIDA vorkommen, aufgelistet.

43

9 Anhang B - KEIDA Klassenstruktur

Die Java Klassen, die fiir die serverseitige Implementierung von KEIDA gebraucht werden,
sind wie folgt gegliedert:

- arapoport.viproService

- de.unistuttgart.iaas.keida.controller

- de.unistuttgart.iaas.keida.dao.barChart

- de.unistuttgart.iaas.keida.dao.chart

- de.unistuttgart.iaas.keida.dao.gadget

- de.unistuttgart.iaas.keida.dao.gadget

- de.unistuttgart.iaas.keida.dao.gauge

- de.unistuttgart.iaas.keida.dao.process

- de.unistuttgart.iaas.keida.dao.domain

- de.unistuttgart.iaas.keida.domain.visualization

- de.unistuttgart.iaas.keida.math

- de.unistuttgart.iaas.keida.service.composer

- de.unistuttgart.iaas.keida.service.helper

- de.unistuttgart.iaas.keida.service.worker

- de.unistuttgart.iaas.keida.ui.datepicker

- de.unistuttgart.iaas.keida.ui.highcharts

- de.unistuttgart.iaas.keida.ui.menu

- de.unistuttgart.iaas.keida.xml.rtdformat

- de.unistuttgart.iaas.keida.xml.rtdinstance

- de.unistuttgart.iaas.keida.xml.templatecfg

1. Webservice-Klassen
arapoport.viproService

Dieses Paket enthilt die automatisch generierten Klassen, die beim Aufrufen des ViproWS
gebraucht werden.

de.unisttugart.iaas.keida.xml.rtdformat
de.unisttugart.iaas.keida.xml.rtdinstance

de.unisttugart.iaas.keida.xml.templatecfg

44

Diese Pakete enthalten Klassen, die mit JAXB erzeugt wurden und stellen eine Représentation
der Konfiguration dar, die an den ViproWS gesendet wird.

2. Controller-Klassen

de.unistuttgart.iaas.keida.controller
- HomePageController
- ProcessPageController
- SVGDownloadController
- VisualizationPageController

Das Paket enthélt die Controller-Klassen. Diese Controller sind mit “Controller” annotiert
und enthalten alle Methoden, die zusidtzlich mit “RequestMapping” annotiert und auf
spezifische Funktionen zugeschnitten sind. Die Methoden machen nur einen Aufruf des
zugehorigen Modells und legen die richtige Présentation fest. (Abb. 9.1)

@RequestMapping (value={"/", " /dashboard"}, method=RequestMethod.GET)

public ModelAndView showDashboard(HttpServletRequest request)

LinkedHashMap hm = this.hmsi.getModel ("","");

request.getSession () .setAttribute ("dateRange", "");

request.getSession () .setAttribute ("radio", "");

ModelAndView mav = new ModelAndView ("home") ;

mav.addAllObjects (hm) ;

return mav;

Abbildung 9.1: showDashboard() - Methode der Klasse HomepageController

Der HomePageController implementiert die Methoden showDashboard und
updateFirstPage. Beide haben fast die gleiche Funktion, der Unterschied liegt darin, dass die
erste auf eine GET Anfrage zugeschnitten ist und die zweite Antworten an POST Anfragen
seitens des Browsers liefert. Das showDashboard ermoglicht eine Reprisentation der Daten,
ohne dabei eine spezielle Periode in der GUI anzugeben, wobei die zweite das Start- und
Enddatum der Periode bekommt, die der Benutzer ausgewéhlt hat.

ProcessPageController implementiert die Methoden, die einer Suche nach einem
bestimmten Prozess, einer Visualisierung, einer Anfrage der BPEL-Datei sowie der
Darstellung des Dashboards des ausgewéhlten Prozesses, antworten.

SVGDownloadController implementiert nur eine einzige Methode, die eine SVG-Datei
liefert. Der Controller ist dafiir da, weil die SVG-Dateien im Browser als Bilder angezeigt
werden. Damit aber diese als Download bereitgestellt werden kdnnen, muss die Antwort an

45

den Browser modifiziert ~werden und der Header als “attachment;
filename=SVGDATEINAME.svg” gekennzeichnet werden. Dadurch wird die Datei im
Browser als Download bereitgestellt und nicht direkt angezeigt.

VisualizationPageController implementiert Methoden, die statt HTML JSON Objekte
liefern. Sie erhalten von der Anfrage JSON Objekte, die vom JavaScript auf dem Klient
generiert wurden. Als Antwort wird wieder ein JSON Objekt zuriickgeschickt.

3.Modell-Klassen

de.unistuttgart.iaas.keida.service.composer
de.unistuttgart.iaas.keida.service.helper
de.unistuttgart.iaas.keida.service.worker

Die drei Pakete enthalten die Klassen, die das Modell in der MVC-Architektur bilden. Die
Composer Klassen implementieren die Struktur der einzelnen Seiten. Sie sind auf Basis des
Kompositum Entwurfsmusters aufgebaut. Die Methoden dieser Klassen liefern ein
vollstdndiges Model der zugehorigen Seite oder Unterseite.
de.unistuttgart.iaas.keida.service.composer

- HomePageServiceComposerImpl

- ProcessesPageServiceComposerImpl

- VisualizationPageSerivceComposer

- PageServiceComposer

Die Namen der Klassen entsprechen dem Namen der Controller-Klasse, von der sie
aufgerufen werden. HomePageServiceComposerImpl enthélt z.B. die Methoden, die das
Modell bei der Generierung der Daten der Dashboard-Seite braucht. Die anderen Klassen
haben eine &hnliche Funktionalitit. Sie entspricht den Anforderungen der anderen Seite.
PageServiceComposer ist eine abstrakte Klasse, die von den ,, * Impl*“-Klassen geerbt und
erweitert wird.

de.unistuttgart.iaas.keida.service.helper

- SerivceCaller

- ServiceConfiguration
- SvgFileWriter

- TemplateHelper

Das sind alle Klassen, die vom ServiceComposer oder ServiceWorker gebraucht werden.
ServiceCaller ist fir das Aufrufen des ViproWS zustindig, ServiceConfiguration fiir die
Konfiguration dieses Aufrufs. SvgFileWriter speichert die zuriickgegebene svg-
Repriasentation auf dem Server. TemplateHelper arbeitet zusammen mit der
ServiceConfiguration-Klasse.

46

de.unistuttgart.iaas.keida.service.worker

- BarChartServiceWorker

- ChartServiceWorker

- GadgetServiceWorker

- GaugeServiceWorker

- KEIIndicatorServiceWorker
- ProcessServiceWorker

- ServiceWorker
-VisualizationServiceWorker

Diese Klassen implementieren die Geschiftslogik innerhalb des Modells. Sie instanziieren ein
JdbcTemplate-Objekt und sind dadurch in der Lage, Daten aus dem DWH zu holen. Die
Klassen tragen die Namen der Komponenten, aus denen eine Seite im Frontend aufgebaut ist.
BarChartServiceWoker implementiert z.B. die Logik, die hinter den Daten einer
Balkengraphik steckt.

4.DAO-Klassen

de.unistuttgart.iaas.keida.dao.chart
de.unistuttgart.iaas.keida.dao.gadget
de.unistuttgart.iaas.keida.dao.gadget
de.unistuttgart.iaas.keida.dao.gauge
de.unistuttgart.iaas.keida.dao.process
de.unistuttgart.iaas.keida.dao.domain

Die Gruppe der Data Access Objekte (DAO) stellt die Ansammlung von Klassen, die die
Ergebnisse der Anfragen an das DWH repriasentieren. In jedem Paket ist eine
* JDBCTemplate Klasse zu finden. Diese Klasse enthilt die eigentlichen Queries und liefert
je nach Anfrage eine Liste von Objekten.

public List<Day> getDayValue (Calendar startDate, Calendar endDate, String name,

String indicatorDefinition) {
String sgl = this.buildSQLQuery (startDate, endDate, "day", indicatorDefinition,
name) ;

List<Day> days = jdbcTemplateObject.query(sqgl, new DayMapper()) ;

return days;

Abbildung 9.2: getDayValue()-Methode der Klasse chartJDBCTemplate

47

Die getDayValue()-Methode liefert z.B. eine Liste mit den Daten aller Prozesse aggregiert pro
Tag. Diese Information wird dann bendtigt, wenn als Periodentyp ,,Tag* ausgewéhlt wurde.

Zu jeder DAO Klasse existiert auch eine Mapper-Klasse. Sie wird von der JDBCTemplate-
Klasse gebraucht, damit die Ergebnisse der DWH-Anfragen richtig gemappt werden kdnnen.

5.Math-Klassen

de.unistuttgart.iaas.keida.math
- CalendarMath
- MappingMath

Das Paket enthélt die Klassen CalendarMath und MappingMath. Die Klasse CalendarMath
implementiert Methoden, die mit Daten (z.B. 09/01/1970-09/01/2013) rechnen. Die Klasse
berechnet z.B. wie viele Tage, Wochen und Monate es innerhalb einer Periode gibt. Die
MappingMath-Klasse dagegen wird bei der Konfiguration der Daten gebraucht, die an das
ViproWS gesendet werden. Jede Mapping-Art erfordert eigene Berechnungen und die
Methoden dieser Klasse stellen diese Funktionalitidten zur Verfiigung.

6.UI-Klassen

de.unistuttgart.iaas.keida.ui.datepicker
de.unistuttgart.iaas.keida.ui.highcharts
de.unistuttgart.iaas.keida.ui.menu

Die Klassen, die in diesen Paketen definiert sind, helfen beim Aufbau von verschiedenen auf
den Frontend-Seiten auftauchenden Ul-Elementen. Das Menii-Paket dient z.B. dem Aufbau
des Meniis.

Das highcharts-Paket enthilt die Klassen, die die JSON Représentation einer Graphik im
Format der Highcharts-Bibiliothek liefern.

Das datepicker-Paket dagegen liefert die JavaScript, die fiir den Aufbau der Datepicker-
Widget zusténdig ist.

7.Domain-Klassen

de.unisttugart.iaas.keida.domain.visualization

In diesem Paket sind die Klassen definiert, die bei der AJAX aufgerufen im
VisualizationPageController gebraucht werden. Die JSON-Objekte, die an KEIDA geschickt
werden, miissen beim Eintreffen in der zustindigen Methode eine entsprechende Java-
Représentation haben.

48

Literaturverzeichnis

[AIO3] Alur, Deepak: Core J2EE Patterns, Prentice hall Professional, 2003

[Bmull] Bundesministerium fiir Umwelt, Naturschutz und Reaktorsicherheit: Papierver-
brauch in Deutschland, http://goo.gl/K3KkZI, besucht am 05.09.2013

[BES10] Buchta, Dirk; Eul, Marcus; Schulte-Croonenberg, Helmut: Strategic IT-
Management: Increase value, control performance, reduce costs, Springer, 2010

[BS12] vom Brocke, Jan; Seidel, Stefan: Green Business Process Management: Towards the
Sustainable Enterprise, Springer, 2012

[CW10] ComputerWeekly: Carbon reduction brings financial benefits, http://goo.gl/yKTFCg,
besucht am 04.09.2013

[DS90] Davenport, Thomas; Short, James: The new industrial engineering: Information tech-
nology and business process redesign, in Sloan Management Review, VI. 31, No.4, Massa-
chusetts Institute of Technology, 1990

[Eg13] Eggert, Ulrich, Wachstum im Handel durch Internet, E-Commerce & Co.,
http://goo.gl/9DRwU3, Besucht am 02.09.2013

[Fe04] Few, Stephen: Dashboard Confusion, Perceptual edge, http://goo.gl/o6¢YLU, 2004
[GHJV11] Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John: Entwurfsmuster.
Elemente wiederverwendbarer objektorientierter Software, Addison-Wesley, 2011

[Go13] Google, http://www.google.com/green/bigpicture/, besucht am 03.09.2013

[IT13] ITWissen: J2EE Komponentenmodell, http://goo.gl/ZNytpg, besucht am 10.09.2013

[In96] Inmon, William: Building the Data Warehouse, John Wiley, 1996

[Jo12] Jones, Terell: What Are the Top 10 Green IT Strategies?, http://goo.gl/A78kf2, besucht
am 04.09.2013

[Joh12] Johnson, Scott: Introduction to Data Deduplication in Windows Server 2012,
http://goo.gl/Hdtebf, besucht am 05.09.2013

[KMUO06] Kemper, Hans-Georg; Mehanna, Walid; Unger Carsten: Business Intelligence:
Grundlagen und Praktische Anwendungen, Westdeutscher Verlag, 2006

[Kr13] kra, Suchmaschinenriese: Google verbraucht so viel Strom wie eine GroBstadt,
http://goo.gl/ueYxIs, Besucht am 02.09.2013

[KW10] Kosch, Bernd; Wagner, Heinz: Alles im griinen Bereich — Mit Green IT zu Energie-
effizienz und Nachhaltigkeit, in Green Office, Gabler, 2010

[LN11] Loos, Peter; Nebel, Wolfgang: Green IT: Ein Thema fiir die Wirtschaftsinformatik?,
in WIRTSCHAFTSINFORMATIK, Vol.53, Nr.4, SP Gabler Verlag, 2011

[MBO08] Martinez, Nathaneil; Bahloul, Karim: European Organisations and the Business Im-
peratives of Deploying a Green and Sustainable IT Strategy, http://goo.gl/DU8Ebc, IDC, 2008

49

[Ms08] Murugesan, San: Harnessing green IT: Principles and Practices, in IT Pro Jan/Feb
2008, http://goo.gl/yZoi8v, IEEE Xplore, 2008

[NB13] Netbeans, The NetBeans E-commerce Tutorial - Designing the Application,
http://goo.gl/FH2Kau, besucht am 02.09.2013

[NLM11] Nowak, Alexander; Leymann, Frank; Mietzner, Ralph: Towards Green Business
Process Reengineering, Universitéit Stuttgart, Deutschland, 2011

[Ral3] Riidiger, Ariane: Die richtige Kiihlung fiir das Rechenzentrum, http://goo.gl/90J213,
besucht am 05.09.2013

[RC04] Rivard, Kurt; Cogswell, Doug: Using Analytical Dashboards to cut through the
clutter, in DM Review, http://goo.gl/hle9Wc, April 2004

[Rm11] Rouse, Margaret: business process management (BPM), http://goo.gl/YRVbPL ,
besucht am 03.09.2013

[Sk11] Summitt, Krista: The four Pillars of BPM 7.5 Part Two: Governance,
http://goo.gl/EB1s6r, besucht am 03.09.2013

[SSJ02] Singh, Inderjeet; Stearns, Beth; Johnson, Mark: designing Enterprise Applications
with the J2EE Platform, Second Edition, Pearson, 2002

[St08] Stern: It-Branche gibt sich umweltfreundlich, http://goo.gl/bp2XtU, besucht am
03.09.2013

[UN12] United Nations ESCAP, Low Carbon Green growth Roadmap for Asian an the Pacif-
ic: Fact Sheet — Green technology, http://goo.gl/2NTnsF

[Val2] Ventarman, Archana: Global census shows datacentre power demand grew 63% in
2012, http://goo.gl/bwFGsA, besucht am 03.09.2013

[VelO] Verdanti: Carbon Disclosure Project Study 2010: The telepresence Revolution,
http://goo.gl/TgImQv

[Wall] Walls, Craig: Spring in Action, Third Edition, Manning Publications, 2011

[WMC] Workflow Management Coalition, The Workflow Management Coalition Specifica-
tion, http://goo.gl/dwULJU, besucht am 02.09.2013

50

Erkliarung

Hiermit versichere ich, diese Arbeit selbststindig verfasst und nur die angegebenen Quellen
benutzt zu haben. Wértliche und sinngemiBe Ubernahmen aus anderen Quellen habe ich nach
bestem Wissen und Gewissen als solche kenntlich gemacht.

Stuttgart, den 11. Oktober 2013

51

