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Kurzfassung:

Therien und Wilke zeigten in einer Arbeit von 1998, dass 2-Variablen-
Logik erster Stufe (FO2) einer entscheidbaren Klasse endlicher Monoide ent-
spricht. Damit läÿt sich insbesondere für jede reguläre Sprache entscheiden,
ob sie in FO2 de�nierbar ist. Dieses Entscheidbarkeitsresultat konnte 2012
in einer Arbeit von Weil und Ku�eitner auf die Alternierungshierarchie in-
nerhalb von FO2 ausgedehnt werden.
Im Rahmen dieser Arbeit wird untersucht, wie e�zient sich diese Entscheid-
barkeitsresultate umsetzen lassen, wenn die reguläre Sprache durch determi-
nistische endliche Automaten gegeben ist.
Als Vorstufe hierzu werden geeignete algebraische Charakterisierungen der
Alternierungshierarchie innerhalb von FO2 recherchiert.
Basierend darauf werden Entscheidungsverfahren auf Basis sogenannter Ver-
botsmuster entwickelt.
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1 Einleitung

McNaughton und Papert zeigten 1965, dass die sogenannten sternfreien Spra-
chen in Logik erster Stufe (First-Order Logic, FO) beschrieben werden kön-
nen [1]. Im selben Jahr bewies Schützenberger, dass die Klasse der sternfreien
Sprachen aperiodische syntaktische Monoide hat [2]. Kamp zeigt kurz darauf,
dass sich alle FO-de�nierbaren Sprachen auch in First-Order-Logik mit nur
3 Variablen (FO3) beschreiben lassen [3].
Der Zusammenhang zwischen formalen (regulären) Sprachen, deren logischer
Beschreibungsformen und endlichen Halbgruppen erö�nete die Möglichkeiten
zur Anwendung algebraischer Methoden auf dem Feld der Theorie formaler
Sprachen.

In einer Arbeit von 1998 zeigten Therien und Wilke, dass 2-Variablen-
Logik erster Stufe (FO2) einer entscheidbaren Klasse endlicher Monoide ent-
spricht ([4]). Damit lieÿ sich insbesondere für jede reguläre Sprache entschei-
den, ob sie in FO2 de�nierbar ist. Dieses Entscheidbarkeitsresultat konnte
2012 von Weil und Ku�eitner auf die Alternierungshierarchie innerhalb von
FO2 ausgedehnt werden [5].

Im Rahmen dieser Arbeit wird untersucht, wie e�zient sich diese Ent-
scheidbarkeitsresultate umsetzen lassen, wenn die reguläre Sprache durch
deterministische endliche Automaten gegeben ist.
Als Vorstufe hierzu werden geeignete algebraische Charakterisierungen der
Alternierungshierarchie innerhalb von FO2 recherchiert.
Basierend darauf werden Entscheidungsverfahren auf Basis sogenannter Ver-
botsmuster entwickelt. Darüber hinaus wird geprüft, wie leicht sich für eine
gegebene FO2-basierte Sprache die minimale Anzahl benötigter Alternierun-
gen berechnen lässt.
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2 Grundlagen und De�nitionen

In diesem Kapitel werden Grundlagen und De�nitionen behandelt, die zum
Verständnis des weiteren Inhaltes dieser Arbeit notwendig sind, sowie ver-
wendete Begri�e und Notationen erläutert.
Es geht vor allem um die verschiedenen Formen, reguläre Sprachen bzw. be-
stimmte Unterklassen davon zu de�nieren. Weiter geht es um algebraischen
Hilfsmittel, hauptsächlich die greenschen Relationen, die ein bedeutendes
Werkzeug bei der Arbeit mit Halbgruppen darstellen [6].
Standardlehrbücher, die einen ausführlicheren Überblick geben sind [7] und
[8].

2.1 Reguläre Sprachen

Bekannte Formen eine reguläre Sprache zu de�nieren sind reguläre Aus-
drücke, Grammatiken und deterministische endliche Automaten (DFA). Wei-
tere Möglichkeiten zur Charakterisierung sind logische Formeln und algebrai-
sche Strukturen. Beides wird in diesem Kapitel vehandelt.
Nicht behandelt, aber an dieser Stelle erwähnt, werden andere Logikarten
wie z.B. Unary-Temporal-Logic (UTL) und sogenannte Ranker (siehe z.B.
[9] und [10]).

2.1.1 De�nition durch endliche deterministische Automaten

Die Notation für die in dieser Arbeit verwendeten endlichen deterministischen
Automaten wird die folgende sein: ein DFA ist ein TupelM = {Σ, Z, δ, z0, E}
mit Alphabet Σ, Zustandsmenge Z, (eindeutigem) Startzustand z0 ∈ Z, End-
zustandsmenge E ⊆ Z und der Zustandsübergangsfunktion δ : Σ× Z → Z.
Ein DFA akzeptiert ein Wort w, wenn die Zustandsübergangsfunktion δ nach
Eingabe von w einen Endzustand ergibt.
Wir schreiben L(M) für die Sprache, die der Automat M akzeptiert. Dies
ist die Menge aller Wörter, dieM akzeptiert.

Der Zustandübergangsgraph G(M) von M ist ein Graph mit Knoten-
menge N (die Zustände Z vonM) und einer mit a ∈ Σ beschrifteten Kante
zwischen zwei Knoten z1 und z2 genau dann, wenn δ(a, z1) → z2. Beide
Ausdrucksformen (Tupel und Graph) werden im Folgenden nicht jedesmal
explizit angegeben. Die jeweils verwendete Ausdrucksform sollte stets aus
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dem Kontext ersichtlich sein.

Der erweiterte Zustandübergangsgraph G′ entspricht von den Zuständen
her dem Graphen G, aber wir erweitern die Übergangsfunktion δ um Wörter
beliebiger Länge, so dass auch Kanten für Wörter der Länge l = 2, 3, 4, ...
existieren. Der Graph G′ ist ebenfalls endlich und deterministisch. Man kann
dann mit einem Wort w von einem Zustand z1 aus direkt zu z2 gehen, wenn
δ(w, z1)→ z2. Dies wird uns die Arbeit in Abschnitt 2.4 erleichtern.

Ein AutomatM wird minimal genannt, wenn alle Zustände unterscheid-
bar sind. Zwei Zustände sind unterscheidbar genau dann, wenn es ein Wort w
gibt, für das der eine Zustand akzeptiert d.h. in einen Endzustand führt und
der andere nicht. Es wird davon ausgegangen, dass alle in dieser Arbeit auf-
tretenden Automaten minimal sind, solange nichts anderes angegeben wird.

Wir reden von einer w-Schleife für ein Wort w und einen Zustand z, wenn
δ(w, z)→ z. Da ein DFA für jedes Wort w von jedem beliebigen Zustand aus
für ausreichend viele Wiederholungen von w in eine solche w-Schleife läuft
(δ(www...w, za)→ zw), sagen wir auch wir laufen in eine w-Schleife bei einem
Zustand zw. Der Zustand, an dem wir mit der Eingabe der w's beginnen ist
dabei unbedeutend.

2.1.2 De�nition durch logische Formeln

Reguläre Sprachen lassen sich durch logische Formeln de�nieren. Dabei ent-
hält die Sprache L sämtliche Wörter, die ein Model für die de�nierende For-
mel bilden. Für ein Alphabet Σ und eine Formel φ ist

L(φ) = ∀w ∈ Σ∗ : w |= φ

Bekannte Ergebnisse sind, dass reguläre Sprachen in Monadic-Second-
Order Logik (MSO) de�niert werden können ([11]), und dass die sogenannten
sternfreien Sprachen, die durch einen regulären Ausdruck ohne Verwendung
des Kleene-Sterns gebildet werden (�sternfreier Ausdruck�), den in First-
Order-Logik (FO) de�nierbaren Sprachen entsprechen [2].
Durch Einschränkungen z.B. eine Beschränkung der Variablenanzahl oder der
maximalen Anzahl alternierenden Quantorenblöcken können weitere Sprach-
klassen unterhalb von FO de�niert werden.
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Kamp [3] zeigte, dass sich alle FO-de�nierbaren Sprachen auch in First-
Order-Logik mit nur 3 Variablen (FO3) beschreiben lassen, solange die Va-
riablennamen wiederverwendet werden dürfen. Beide Sprachklassen sind so-
mit identisch.

FO2[<] enthält alle Sprachen, welche in First-Order-Logik mit nur zwei
Variablen de�nierbar sind. Variablennamen dürfen hierbei wiederverwendet
werden (z.B. ∃x : ∃y : ∃x, wiederverwendetes x). Darüber hinaus wird nur die
Labelfunktion λ, Quantoren (∃, ∀) und die Relation < bzw. > zur Ordnung
der Variablenpostionen benutzt. Wir verzichten deshalb im weiteren auf die
explizite Angabe FO2[<].

Mit FO2
m sind alle FO2-Formeln gemeint, die maximal m alternierende

Blöcke gleicher Quantoren haben. Zum Beispiel sind (∃x(∃y(∀x(∃x...)))) drei
Blöcke Quantoren: zwei Blöck ∃-Quantoren, getrennt durch einen Block ∀-
Quantoren. Dies wird auch die Alternierungshierarchie innerhalb von FO2

genannt [12]. Es ist eine strikte Hierarchie d.h. jede Stufe m+1 ist Ausdruck-
stärker als die vorherige Stufe m.
Mit FO2

m,n beschränkt man zusätzlich die maximale Quantorentiefe auf n.

In dieser Arbeit wird es vor allem um First-Order-Logik mit nur zwei Va-
riablen (FO2) bzw. die damit verbundene Varietät DA gehen (siehe Kapitel
3).

Beispiel. Es lässt sich leicht nachvollziehen, dass für ein Alphabet Σ =
{a, b, c} die Formel

φ = ∃x : (λ(x) = a ∧ ∀y : y >= x)

die Sprache de�niert, bei der alle Wörter mit einem a beginnen. Da sich
diese Sprache in First-Order-Logik ausdrücken lässt ist sofort klar, dass sie
sich auch mit einem sternfreien Ausdruck darstellen lässt, denn beide Aus-
drucksformen sind �gleichmächtig�. Auÿerdem enthält die Formel nur zwei
Variablen, womit die de�nierte Sprache auch in FO2 ist.

2.1.3 De�nition durch algebraische Strukturen

Im folgenden werden der Vollständigkeit wegen zuerst einmal ein paar grund-
legende algebraische De�nitionen wiederholt.
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De�nition 2.1 (Halbgruppe, Monoid und Idempotente). Sei eine Menge
S und ein Operator ⊗ : S × S → S auf S gegeben, so dass S unter ⊗
abgeschlossen ist. S wird eine Halbgruppe genannte, wenn der ⊗-Operator
assoziativ ist, also (a⊗ b)⊗ c = a⊗ (b⊗ c).
Ein Element 1 ∈ S für das für alle s ∈ S : 1 ⊗ s = s1̇ = s wird neutrales
Element von S genannt. Eine Halbgruppe mit neutralem Element nennt man
Monoid.
Enthält eine Halbgruppe S (ein Monoid S) ein Element e für das gilt e2 = e,
so nennt man dieses Element ein Idempotentes von S. Wir de�nieren dazu
E(S) als die Menge aller Idempotente in der Halbgruppe (dem Monoid) S.

De�nition 2.2 (Homomorphismus, Isomorphismus). Seien S und S ′ Halb-
gruppen (bzw. Monoide) und η eine Abbildung η : S → S ′ so dass η(x⊗ y) =
η(x)⊗ η(y), so nennt man die Abbildung η einen Homomorphismus.
Sind S und S ′ Monoide, so muss zusätzlich erfüllt sein, dass η(1S) = 1S′.
Ein bijektiver Homomorphismus wird Isomorphismus genannt. S und S ′ nennt
man isomorph, falls ein Isomorphismus zwischen ihnen existiert.

Da wir uns ausschlieÿlich mit endlichen Halbgruppen bzw. Monoiden be-
schäftigen werden sind im folgenden einige bekannte Eigenschaften davon
gezeigt.

Lemma 1. Sei S eine endliche Halbgruppe. Jedes Element x ∈ S besitzt eine
Potenz πx so dass xπx idempotent ist.

Beweis. Jedes Element einer endlichen Halbgruppe besitzt einen Index i und
eine Periode p, so dass xi+p = xi. Sei für ein Element x der Index i und die
Periode p. Für jedes j > i ist xj = xj+p. Ist j ein Vielfaches von p so gilt
(für jedes a > 1)

(xj)2 = x2j = xj+ap = xj

Damit ist xj ein Idempotentes.

Daraus lässt sich direkt folgern, dass es ein auch ein Π gibt, so dass für
alle x ∈ S gilt, dass xΠ idempotent ist. Man nehme dazu für Π einfach das
kleinste gemeinsame Vielfache aller Potenzen der Elemente aus S. Auÿerdem
lässt sich folgern, dass jede nicht-leere endliche Halbgruppe (mindestens) ein
Idempotentes enthält.

Lemma 2. Sei S eine endliche Halbgruppe. Es gibt ein Π für das für alle
Elemente x ∈ S gilt xΠ ist idempotent.

Lemma 3. Sei S eine endliche, nicht-leere Halbgruppe. Es existiert mindes-
tens ein Idempotentes in S.

5



Lemma 4. Sei S eine endliche Halbgruppe und n = |S|. Dann existiert für
jede Sequenz s1s2...sn von mindestens n Elementen aus S ein Index i und
ein Idempotentes e, so dass gilt s1s2...si = s1s2...sie. Man sagt das Element
e stabilisiert die Sequenz s1s2...si.

Beweis. Gegeben sei eine Folge s1s2...sn von Elementen aus S, n ≥ |S|.
Dann enthält die Folge für den Fall, dass alle Elemente si verschieden sind ,
mindestens ein Idempotentes (siehe 3). Enthält die Folge s1s2...sn nicht alle
Elemente aus S, so kommt mindestens ein Element zweimal in der Folge vor
z.B. sj und sk (j < k). Dann ist

s1s2...sj = sj(sj+1...sk) = s1s2...sj(sj+1...sk)
π

wobei π die Potenz (aus Lemma 2) für S ist.

Damit hat man nun eine weitere Möglichkeit reguläre Sprachen zu cha-
rakterisieren, die sogenannten syntaktischen Halbgruppen.

De�nition 2.3 (Syntaktische Halbgruppe). Für eine Sprache L ∈ Σ∗ sei die
Relation ∼L de�niert, so dass v ∼L w genau dann, wenn

pvq ∈ L↔ pwq ∈ L.

für alle p, q ∈ Σ∗. Die Relation ∼L wird die syntaktische Äquivalenz auf L
genannt.
Die syntaktische Halbgruppe ist die Menge der Äquivalenzklassen von ∼L mit
der Konkatenation als Operator.
Man erhält sie auch als den Quotient von S bezüglich der syntaktischen Äqui-
valenz ∼L (Synt(L) = Σ∗/ ∼L, siehe 2.3 für Quotientenbildung bei Halbgrup-
pen).

Ummit der syntaktischen Halbgruppe Synt(L) die Sprache L erkennen zu
können, muss man hierfür noch den Erkennbarkeitsbegri� de�nieren. Es gilt,
dass eine Halbgruppe S die Sprache L ∈ Σ∗ erkennt, falls ein erkennender
Homomorphismus von Σ∗ nach S existiert.

De�nition 2.4 (Erkennender Homomorphismus). Für eine Sprache L ∈ Σ∗

und eine Halbgruppe S sei ein Homomorphismus h : Σ∗ → S de�niert, so
dass h−1(h(L)) = L. Man nennt diesen Homomorphismus einen erkennenden
Homomorphismus für L. Existiert ein erkenndener Homomorphismus von Σ∗

nach S sagt man auch, dass die Halbgruppe S die Sprache L erkennt.
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Bei der syntaktischen Halbgruppe handelt es sich um die minimale Hal-
gruppe, für die ein erkennender Homomorphismus existiert.

Durch den erkennenden Homomorphismus und die De�niton der syntak-
tischen Äquivalenz wird klar, dass entweder alle, oder aber keines der Wörter
einer Äquivalenzklasse von ∼L in L liegen. Man könnte in diesem Zusammen-
hang analog zu Automaten von �Endzuständen� und �Nicht-Endzuständen�
sprechen, in die sich die Elemente der Halbgruppe aufteilen.

Analog hierzu lassen sich syntaktische Monoide de�nieren. Man ersetze
dazu die Halbgruppe S durch den Monoid S1, mit S1 = S ∪ {1}. Falls S
bereits ein neutrales Element besitzt gilt S = S1. Alle anderen De�nition
gelten weiterhin.

Der Vorteil des algebraischen Erkennbarkeitsbegri�s und der Verwendung
von Halbgruppen (bzw. Monoiden) ist, dass dieses Gebiet der Algebra schon
lange und ausführlich erforscht wird, und sich dadurch eine Vielzahl an be-
reits existierenden Werkzeugen und Hilfsmitteln anbieten.

Diese Arbeit befasst sich mit Sprachen unterhalb der sternfreien Spra-
chen, also sind alle auftretenden Halbgruppen (bzw. Monoide), solange nicht
anders angegeben, stets endlich.

2.2 Greensche Relationen

Die Greenschen Relationen ([13]) stellen ein wichtiges Hilfmittel für die Ar-
beit mit Halbgruppen dar. Mit ihnen werden alle Elemente einer Halbgruppe
in Äquivalenzklassen eingeteilt. Elemente der selben Klasse verhalten sich
dabei ähnlich, vor allem im Zusammenhang mit Idempotenten.

Es gilt für eine Halbgruppe S und Elemente x, y ∈ S, dass x �R y ↔
xS ⊆ yS. Gilt dies in beide Richtungen so dass (x �R y ∧ y �R x) liegen x
und y in der selben R-Klasse. Man schreibt dann xRy. Anders ausgedrückt
bedeutet xRy, dass es a, b ∈ S gibt, so dass x = ya und y = xb. Es existiert
also mindestens jeweils ein Element in S, das, wenn man es von rechts an x
(bzw. y) multipliziert, y (bzw. x) ergibt.

De�nition 2.5 (Greensche Relationen). Für x, y ∈ S sind die Relationen
R, L und J wie folgt de�niert:

xRy ⇔ xS = yS (1)

xLy ⇔ Sx = Sy (2)
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xJ y ⇔ SxS = SyS (3)

Auÿerdem existieren noch die von R und L abgeleiteten Relationen H
und D:

xHy ↔ (x �R y ∧ x �L y) (4)

xDy ↔(∃z ∈ S : xRz ∧ zLy)

oder

(∃z ∈ S : xLz ∧ zRy)

(5)

Ist eine Halbgruppe endlich so folgt aus dieser Tatsache direkt, dass auch
die Anzahl der R- und L-Klassen endlich ist. Sie formen jeweils eine Partiti-
on von S.

Hat jedes Element aus S seine eigene R-Klasse (L-Klasse, J -Klasse),
so spricht man bei S von einer R-trivialen (L-trivialen, J -trivialen) Halb-
gruppe. Die Relation R (L, J ) ist in diesem Fall die Identität z.B. für eine
R-triviale Halbgruppe S und x, y ∈ S ist xRy ↔ x = y.

2.3 Varietäten

Sei S eine Halbgruppe (bzw. ein Monoid) und R ⊂ S × S eine Relation auf
der Halbgruppe (bzw. dem Monoid) S. Anstatt (x, y) ∈ R schreibt man auch
x ∼R y bzw. einfach x ∼ y wenn die verwendete Relation aus dem Kontext
hervorgeht.
Erfüllt R die folgenden drei Eigenschaften so nennt man R eine Äquivalenz-
relation:

1. (x, x) ∈ R (re�exiv)

2. (x, y) ∈ R↔ (y, x) ∈ R (symmetrisch)

3. (x, y) ∈ R ∧ (y, z) ∈ R→ (x, z) ∈ R (transitiv)

Äquivalenzrelationen, für die gilt

x ∼ y ∧ a ∼ b→ (x⊗ a) ∼ (y ⊗ b),∀a, b, x, y ∈ S

nennt man kompatibel mit der Operation ⊗ der Halbgruppe (bzw. des Mo-
noiden). Man spricht dann von einer Kongruenz auf der Halbgruppe (bzw.
dem Monoiden).
Damit lässt sich der Quotient Q von S bezüglich der Kongruenz ∼R, ge-
schrieben Q = S/ ∼R, de�nieren. Es handelt sich dabei um die Menge der
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Äquivalenzklassen von R mit dem (kompatiblen) Operator ⊗ der Halbgrup-
pe (bzw. des Monoiden). Man kann nun von Teilbarkeit sprechen, wenn eine
Halbgruppe (bzw. ein Monoid) S ′ isomorph zu einer Unterhalbgruppe (bzw.
einem Untermonoid) von S ist. Es ist klar, dass insbesondere alle Unterhalb-
gruppen (bzw. Untermonoide) von S ein Quotient von S sind.

Varietäten de�nieren Klassen von Halbgruppen (bzw. Monoiden). Sie sind
unter Teilbarkeit und endlichem direkten Produkt abgeschlossen. Ein Mittel
zur Beschreibung von Varietäten sind Omega-Terme.

Omega-Terme (im folgenden auch ω-Terme genannt) sind ein verbreitetes
Mittel, um Varietäten zu de�nieren. Sie werden induktiv über eine (endliche)
Variablenmenge V ar de�niert:

1. Jedes u ∈ V ar ist ein ω-Term.

2. Sind u und v ω-Terme, so ist uv ein ω-Term.

3. Ist u ein ω-Term, so ist uω ein ω-Term.

Eine Varietät enthält nun alle Halbgruppen (bzw. Monoide), die eine oder
mehrere durch ω-Terme gegebene Identität(en) für jeden Homomorphismus
h : V ar → S∗ erfüllen. Wir schreiben für zwei ω-Terme u und v dann

[[u = v]]

um die Varietät zu bezeichnen, in welcher alle Halbgruppen (bzw. Monoide)
die Identität u = v erfüllen.
Jeder Homomorphismus h von Σ∗ nach S bildet eine natürliche Erweiterung
für ω-Terme indem h(uω) = h(u)ω (das Idempotente h(u)ω, das von h(u)
erzeugt wird).
Dadurch wird es ermöglicht, dass man mit ganzen Familien von Halbgrup-
pen (bzw. Monoiden) und ihren Eigenschaften arbeitet, ohne eine bestimmte
auszuwählen.
Sind alle Halbgruppen (bzw. Monoide) endlich, so spricht man in der Regel
von einer Pseudovarietät. Im folgenden wird auf die Unterscheidung beider
Begri�e der Einfachkeit halber verzichtet, da es sich bei allen vorkommenden
Halbgruppen (bzw. Monoiden) wie in 2.1.3 erwähnt stets um endliche han-
delt.

Beispiel. Die VarietätAP beschreibt die Klasse der aperiodischen Monoide.
Ihre Identität lautet

[[xω = xωx]]
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Sie bildet die algebraische Beschreibung der Klasse der sternfreien Sprachen
([2]).

In dieser Arbeit liegt der Fokus auf der Varietät DA. Sie wird in Kapitel
3 vorgestellt, zusammen mit einer in ihr enthaltenen Hierarchie an Unterva-
rietäten.

2.4 Verbotsmuster

Ein Verbotsmuster P ist ein (nicht notwendigerweise zusammenhängender)
Graph, dessen Kanten mit Variablen für Wörter w ∈ Σ∗ beschriftet sind. Es
wird in der Regel gra�sch ausgedückt (siehe z.B. Abbildung 1).
Oft werden zusätzliche Bedingungen gestellt, z.B. dass zwei Knoten inner-
halb des Verbotsmusters verschieden sein müssen. Um zu zeigen, dass zwei
zustände verschieden (bzw. unterscheidbar) sein sollen, wird in der Regel je-
weils ein Pfeil zu +/− bzw. −/+ eingezeichnet, was ausdrücken soll, dass es
Wörter gibt, für die der eine Zustand akzeptiert (+) und der andere nicht
(−).
Man spricht davon, dass der Graph G ein Verbotsmuster P vermeidet, wenn
es keine Auswahl der Knoten von G für die Knoten von P gibt und keine
Belegung für die Variablen existiert, so dass alle Bedingungen erfüllt sind.

Verbotsmuster sind dazu geeignet, die de�nierenden Identitäten einer Va-
rietät (gegeben in ω-Termen) nachzubilden und so die Zugehörigkeit einer
durch einen DFA gegebenen Sprache direkt anhand der Struktur des Auto-
maten zu testen.

Beispiel. Das Verbotsmuster für die Varietät der aperiodischen Monoide
(AP) ist in Abbildung 1 gegeben.

Es ergibt sich aus der Identität xω = xωx für AP.
Man kann leicht nachvollziehen, dass der syntaktische MonoidM einer Spra-
che L, gegeben durch den Automat A, der das gegebene Muster vermeidet,
aperiodisch sein muss. Vermeidet der Automat das Verbotsmuster, bekommt
man für jedes Wort w ∈ Σ∗ als Belegung für x und Anwendung des erken-
nenden Homomorphismus

h(wω) = h(w)ω = h(w)ωh(w) = h(wωw)

Dies bestätigt die Identität von AP.
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Abbildung 1: Verbotsmuster PAP

Ist der aperiodische Monoid M für L gegeben, und ein Automat A der L
erkennt, so muss A das Verbotsmuster vermeiden. Man nehme an, A vemeide
das Verbotsmuster nicht. Dann existiert kein erkennender Homomorphismus
vo Σ∗ auf die Elemente des Monoiden, denn die Wörter pwωq und pwωwq
müssten auf verschiedene Element von M abgebildet werden (da sie in ver-
schiedenen Äquivalenzklassen von ∼L liegen). Dies ist nicht möglich wenn
der Automat das gegebene Verbotsmuster enthält.
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3 Die Varietät DA

Nachdem in Kapitel 2 die greenschen Relationen und Varietäten vorgestellt
wurden, wird hier die Varietät DA behandelt. Diese Varietät hat zahlreiche
Charakterisierungen (siehe [14]). Über ω-Terme de�niert entspricht sie der
Varietät mit Identität

[[(xy)ω = (xy)ωx(xy)ω]]

Alternativ kann dies auch in zwei Identitäten ausgedrückt werden:

[[x = x(xy)ω]]

[[x = (xy)ωx]]

Das folgende Lemma zeigt eine wichtige Eigenschaft der Varietät DA:

Lemma 5. Gegeben ein Monoid M ∈ DA und x, y, a ∈ M . Es gilt, dass
wenn xRy und yRya dann auch xRxa. Symmetrisch für L gilt, dass wenn
xLyLby dann auch xLbx.

%
Dies bedeutet, dass die Tatsache, ob xRxa nur vom Element a und der

R-Klasse von x abhängt. Gilt xRxa, so gilt dies auch für alle anderen Ele-
mente aus der R-Klasse von x.

Alle Sprachen, deren syntaktische Monoide in der Varietät DA liegen,
entsprechen der Klasse der in FO2 de�nierbaren Sprachen [12].

3.1 Die Trotter-Weil-Hierarchie

Innerhalb von DA existiert die sogenannte Trotter-Weil-Hierarchie [15]. Sie
besteht aus einem �Gitter� von (Pseudo-)varietäten mit unendlich vielen �Stu-
fen�. Die Vereinigung aller Stufen ist gleich DA. Eine Skizze ist in Abbildung
2 gegeben.

Wir verwenden vor allem die folgenden ω-Terme für die Stufen der Trotter-
Weil-Hierarchie:

U1 = (sx1)ωs(y1t)
ω

V1 = (sx1)ωt(y1t)
ω

Um = (Um−1xm)ωUm−1(ymUm−1)ω

Vm = (Um−1xm)ωVm−1(ymUm−1)ω

(6)
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Abbildung 2: Struktur der Trotter-Weil-Hierarchie

Die StufeW1 entspricht der Varietät der J -trivialen Monoide auf der unters-
ten Stufe der Hierarchie.
Die m-te Stufe dieses Gitters, der Vereinigung von Rm+1 und Lm+1, bildet
eine Varietät Wm mit Identität

[[Um = Vm]]

Man sieht leicht, dass alle Stufen von Wm in DA liegen. Dazu muss man
lediglich für U1 und V1 s = x1 = x und t = y1 = y setzen, für alle anderen
Stufen Um und Vm seien die Variablen xm = ym = 1. Dies ergibt direkt die
Identität von DA.
Wir haben die folgenden Zugehörigkeiten zu den �Ecken� des Gitters []:

R1 = L1 = [[U1 = V1]]

Rm ∩ Lm = [[Um−1 = Vm−1]]

Rm = [[(Um−1xm)ωUm−1 = (Um−1xm)ωVm−1]]

Lm = [[Um−1(Um−1xm)ω = Vm−1(Um−1xm)ω]]

(7)
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Die Stufen Wm der Trotter-Weil-Hierarchie stimmen mit der Alternie-
rungshierarchie innerhalb von FO2

m überein. Ein ausführlicher Beweis hierfür
�ndt sich in [16]. Das heiÿt, dass der syntaktische Monoid einer Sprache, die
durch eine FO2

m-Formel de�niert ist (und nicht in FO2
m−1 de�niert werden

kann), in der Varietät Wm liegt (aber nicht in Wm−1 enthalten ist).

Ein Problem mit dem sich Kapitel 4 beschäftigen wird ist, wie groÿ der
Aufwand ist, um mittels Verbotsmustern festzustellen, auf welcher Stufe der
Trotter-Weil-Hierarchie bzw. der Alternierungshierarchie innerhalb von FO2

sich eine durch einen DFA gegebene Sprache be�ndet.
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4 Verbotsmuster für DA

Es existieren bereits Entscheidungsverfahren für die Varietät DA, basierend
auf dem syntaktischen Monoid einer Sprache [9] [5]. Da Sprachen jedoch meist
in einer einfachen Beschreibungsform wie einem DFA vorliegen, ist es in der
Regel nötig, den syntaktischen Monoiden zu berechnen, bevor man ein Ent-
scheidungsverfahren aufgrund des syntaktischen Monoids durchführen kann.
Dies kann sehr aufwändig sein. Der syntaktische Monoid eines Automaten
mit n Zuständen hat n! Elemente haben. Die Multiplikationstabelle des Mo-
noiden ist quadratisch hierzu.
Ein Entscheidungsverfahren unter Zuhilfenahme von Verbotsmustern kann
direkt mit DFAs arbeiten. Es bietet somit Vorteile für alle Fälle, in denen
nur der DFA gegeben ist, oder eine Grammatik bzw. ein regulärer Ausdruck,
aus denen sich leicht ein DFA erzeugen lässt.

Für die ω-Terme der Identität von DA erhält man folgendes Verbotsmus-
ter:

Abbildung 3: Verbotsmuster PDA

Sei der Monoid M ∈ DA für eine Sprache L gegeben. Der akzeptierende
DFA für L sei A. Man nehme an, A enthält das Verbotsmuster. Es gibt also
Worte p(xy)ωx(xy)ωq und p(xy)ωq, mit gleichen Pre�x p bzw. Su�x q, die
einmal in einen Endzustand führen und einmal nicht (denn A ist minimal
und die Zustände 1 und 2 verschieden, es gibt also ein Wort w, das sie un-
terscheidet; wir den Su�x q = w).
Damit müssen diese Wörter auf unterschiedliche Elemente in M abgebildet
werden. Da Pre�x und Su�x gleich sind (und M assoziativ ist), kann es nur
im mittleren Teil mit den ω-Termen dazu kommen. Diese ergeben aber nach
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der Annahme M ∈ DA für die Wörter (xy)ωx(xy)ω und (xy)ω das gleiche
Element aus M . Es existiert also kein erkennender Homomorphismus, falls
A das Verbotsmuster nicht vermeidet.

Sei nun A der DFA einer Sprache L, und A vermeidet das Verbotsmuster.
Der syntaktische Monoid von L sei M . Für alle Wörter p(xy)ωx(xy)ωq und
p(xy)ωq, mit beliebigen Wörtern als Belegung für Variablen x, y, p, q ∈ Σ∗

gilt also
p(xy)ωx(xy)ωq ∈ L↔ p(xy)ωq ∈ L

denn der Automat vermeidet das Verbotsmuster. Damit liegen beide Wörter
immer in der selben Äquivalenzklasse von ∼L. Da man den syntaktischen
Monoiden auch als Synt(L) = Σ∗/ ∼L erhält (siehe Kapitel 2.1.3), müs-
sen beide Wörter durch den erkennenden Homomorphimus h auf das selbe
Element von M abgebildet werden.

4.1 Verbotsmuster für Stufen der Trotter-Weil-Hierarchie

Nachdem entschieden ist, ob eine Sprache in DA liegt, kann es von Interesse
sein, auf welcher Ebene der Trotter-Weil-Hierarchie (und damit auch der
Alternierungshierarchie in FO2

m) sie liegt. Dazu braucht man Verbotsmuster
für jede Stufe der Varietäten Wm, die iterativ aufgebaut sind. Aus dem ω-
Term der ersten Stufe der Trotter-Weil-Hierarchie erhalten wir das folgende
Verbotsmuster:

Abbildung 4: Verbotsmuster P1

Um iterative Verbotsmuster Pi zu de�nieren müssen wir zuerst den er-
weiterten Zustandübergangsgraph dahingehend erweitern, dass Kanten mit
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einem Muster �beschriftet� sein können bzw. diese Kanten markieren, denn
der erweiterten Zustandübergangsgraph enthält bereits Kanten mit Wörtern
beliebiger Länge. Wir verbinden also zwei Zustände, zwischen denen ein be-
stimmtes Muster auftritt. Dies ist im Grunde identisch mit der Suche danach,
ob der Automat ein Verbotsmuster vermeidet.
Da die Verbotsmuster für die Stufen von Wm, die wir verwenden, für jede
Seite des ω-Terms einen Teilgraph enthalten, suchen wir für das Muster bei-
der Teilgraphen jeweils seperat. Jeder der beiden Teilgraphen besteht immer
aus zwei Teilen (Ui−1xi) und (yiUi−1), die jeweils durch einen Mittelteil (Ui−1

bzw. (Vi−1 ohne ω verbunden sind. Wir fügen eine Kante vom gemeinsa-
men �Startzustand� des Verbotsmusters (zu dem uns ein beliebiger Pre�x p
und (Ui−1xi)

ω in eine (Ui−1xi)-Schleife führt) zum �Endzustand� d.h. zu dem
Zustand, an dem man nach Eingabe des Mittelteils (Ui−1 bzw. (Vi−1 des Ver-
botsmusters durch lesen von (yiUi−1)ω in eine (yiUi−1)-Schleife läuft.

Abbildung 5: Verbotsmuster Pm

Mit den Beschriftungen für die Muster Ui bzw. Vi der vorherigen Stufe von
Wm kann man diese nun wie normale Wörter behandeln bzw. es ist bekannt
welche Zustände von ihnen verbunden werden.

Ein Algorithmus zur Suche nach den Verbotsmustern könnte wie folgend
aussehen (Skizze):

1. Rate Buchstaben aus Σ für die Wörter, die die Variablen des Verbots-
musters belegen sollen. Die Wörter müssen endlich sein, also auch das
Wortende wird geraten.

2. Von jedem Zustand des erweiterten Zustandübergangsgraphen aus kann
man gleichzeitig die Eingabe lesen (alle Zustände sind duch einen Pre�x
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p erreichbar). Man geht also für den ersten ω-Teil des Verbotsmusters
von jedem Zustand aus solange, bis man in eine Schleife an einem Zu-
stand z1 läuft. (Man merkt sich diesen Zustand)

3. Von Zustand z1 aus liest man den Mittelteil des Verbotsmusters, ge-
folgt von der Eingabe des zweiten ω-Teil des Verbotsmusters. Man läuft
wieder in eine Schleife an einem Zustand z2.

4. Vergleiche z1 und z2. Sind sie verschieden wird das Verbotsmuster nicht
vermieden und die durch den DFA gegebene Sprache liegt nicht auf
Stufe m.
((Sind sie nicht verschieden, markiert man sich die Kante von z1 nach z2

mit dem Muster, damit man es im Iteratiionschritt verwenden kann.))
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5 Zusammenfassung

Es wurde eine Einführung in die grundleggenden Zusammenhänge zwischen
regulären Sprachen bzw. deterministischen endlichen Automaten, ihrer De-
�nition mihilfe logischer Formeln und deren algebraischen Beschreibungs-
formen gegeben. Basierend darauf wurde der Zusammenhang zwischen der
Alternierungshierarchie in FO2 und der Trotter-Weil-Hierarchie innerhalb
der Varietät DA hergestellt und für die Varietät DA bzw. für die Stufen
Wm der Trotter-Weil-Hierarchie, Verbotsmuster aufgestellt, und diskutiert,
wie e�zient diese arbeiten.
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