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Kurzfassung:

Therien und Wilke zeigten in einer Arbeit von 1998, dass 2-Variablen-
Logik erster Stufe (FO?) einer entscheidbaren Klasse endlicher Monoide ent-
spricht. Damit lafst sich insbesondere fiir jede reguldre Sprache entscheiden,
ob sie in F'O? definierbar ist. Dieses Entscheidbarkeitsresultat konnte 2012
in einer Arbeit von Weil und Kufleitner auf die Alternierungshierarchie in-
nerhalb von FO? ausgedehnt werden.

Im Rahmen dieser Arbeit wird untersucht, wie effizient sich diese Entscheid-
barkeitsresultate umsetzen lassen, wenn die regulire Sprache durch determi-
nistische endliche Automaten gegeben ist.

Als Vorstufe hierzu werden geeignete algebraische Charakterisierungen der
Alternierungshierarchie innerhalb von F'O? recherchiert.

Basierend darauf werden Entscheidungsverfahren auf Basis sogenannter Ver-
botsmuster entwickelt.
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1 Einleitung

McNaughton und Papert zeigten 1965, dass die sogenannten sternfreien Spra-
chen in Logik erster Stufe (First-Order Logic, FO) beschrieben werden kon-
nen [1]. Im selben Jahr bewies Schiitzenberger, dass die Klasse der sternfreien
Sprachen aperiodische syntaktische Monoide hat [2]. Kamp zeigt kurz darauf,
dass sich alle F'O-definierbaren Sprachen auch in First-Order-Logik mit nur
3 Variablen (FO?) beschreiben lassen [3].

Der Zusammenhang zwischen formalen (reguléren) Sprachen, deren logischer
Beschreibungsformen und endlichen Halbgruppen eréffnete die Moglichkeiten
zur Anwendung algebraischer Methoden auf dem Feld der Theorie formaler
Sprachen.

In einer Arbeit von 1998 zeigten Therien und Wilke, dass 2-Variablen-
Logik erster Stufe (FO?) einer entscheidbaren Klasse endlicher Monoide ent-
spricht ([4]). Damit liefs sich insbesondere fiir jede regulire Sprache entschei-
den, ob sie in FO? definierbar ist. Dieses Entscheidbarkeitsresultat konnte
2012 von Weil und Kufleitner auf die Alternierungshierarchie innerhalb von
FO? ausgedehnt werden [5].

Im Rahmen dieser Arbeit wird untersucht, wie effizient sich diese Ent-
scheidbarkeitsresultate umsetzen lassen, wenn die reguldre Sprache durch
deterministische endliche Automaten gegeben ist.

Als Vorstufe hierzu werden geeignete algebraische Charakterisierungen der
Alternierungshierarchie innerhalb von FO? recherchiert.

Basierend darauf werden Entscheidungsverfahren auf Basis sogenannter Ver-
botsmuster entwickelt. Dariiber hinaus wird gepriift, wie leicht sich fiir eine
gegebene FO2-basierte Sprache die minimale Anzahl bendtigter Alternierun-
gen berechnen lésst.



2 Grundlagen und Definitionen

In diesem Kapitel werden Grundlagen und Definitionen behandelt, die zum
Versténdnis des weiteren Inhaltes dieser Arbeit notwendig sind, sowie ver-
wendete Begriffe und Notationen erldutert.

Es geht vor allem um die verschiedenen Formen, regulidre Sprachen bzw. be-
stimmte Unterklassen davon zu definieren. Weiter geht es um algebraischen
Hilfsmittel, hauptséchlich die greenschen Relationen, die ein bedeutendes
Werkzeug bei der Arbeit mit Halbgruppen darstellen [6].
Standardlehrbiicher, die einen ausfiihrlicheren Uberblick geben sind [7] und

18],

2.1 Regulare Sprachen

Bekannte Formen eine reguldre Sprache zu definieren sind regulire Aus-
driicke, Grammatiken und deterministische endliche Automaten (DFA). Wei-
tere Moglichkeiten zur Charakterisierung sind logische Formeln und algebrai-
sche Strukturen. Beides wird in diesem Kapitel vehandelt.

Nicht behandelt, aber an dieser Stelle erwidhnt, werden andere Logikarten
wie z.B. Unary-Temporal-Logic (UTL) und sogenannte Ranker (siche z.B.
[9] und [10]).

2.1.1 Definition durch endliche deterministische Automaten

Die Notation fiir die in dieser Arbeit verwendeten endlichen deterministischen
Automaten wird die folgende sein: ein DFA ist ein Tupel M = {3, 7, §, zo, E'}
mit Alphabet ¥, Zustandsmenge Z, (eindeutigem) Startzustand zy € Z, End-
zustandsmenge E C Z und der Zustandsiibergangsfunktion 6 : ¥ x 7 — Z.
Ein DFA akzeptiert ein Wort w, wenn die Zustandsiibergangsfunktion § nach
Eingabe von w einen Endzustand ergibt.

Wir schreiben L(M) fiir die Sprache, die der Automat M akzeptiert. Dies
ist die Menge aller Worter, die M akzeptiert.

Der Zustandiibergangsgraph G(M) von M ist ein Graph mit Knoten-
menge N (die Zustdnde Z von M) und einer mit a € ¥ beschrifteten Kante
zwischen zwei Knoten z; und z; genau dann, wenn d(a,z;) — z». Beide
Ausdrucksformen (Tupel und Graph) werden im Folgenden nicht jedesmal
explizit angegeben. Die jeweils verwendete Ausdrucksform sollte stets aus



dem Kontext ersichtlich sein.

Der erweiterte Zustandiibergangsgraph G’ entspricht von den Zustdnden
her dem Graphen G, aber wir erweitern die Ubergangsfunktion 6 um Waorter
beliebiger Lange, so dass auch Kanten fiir Worter der Lange | = 2,3,4, ...
existieren. Der Graph G’ ist ebenfalls endlich und deterministisch. Man kann
dann mit einem Wort w von einem Zustand z; aus direkt zu 2z, gehen, wenn
d(w, z1) — z9. Dies wird uns die Arbeit in Abschnitt 2.4 erleichtern.

Ein Automat M wird minimal genannt, wenn alle Zustdnde unterscheid-
bar sind. Zwei Zustidnde sind unterscheidbar genau dann, wenn es ein Wort w
gibt, fiir das der eine Zustand akzeptiert d.h. in einen Endzustand fiihrt und
der andere nicht. Es wird davon ausgegangen, dass alle in dieser Arbeit auf-
tretenden Automaten minimal sind, solange nichts anderes angegeben wird.

Wir reden von einer w-Schleife fiir ein Wort w und einen Zustand z, wenn
d(w, z) — z. Da ein DFA fiir jedes Wort w von jedem beliebigen Zustand aus
fiir ausreichend viele Wiederholungen von w in eine solche w-Schleife 1duft
(0(www...w, z,) = zy,), sagen wir auch wir laufen in eine w-Schleife bei einem
Zustand z,,. Der Zustand, an dem wir mit der Eingabe der w’s beginnen ist
dabei unbedeutend.

2.1.2 Definition durch logische Formeln

Regulédre Sprachen lassen sich durch logische Formeln definieren. Dabei ent-
hélt die Sprache L simtliche Worter, die ein Model fiir die definierende For-
mel bilden. Fiir ein Alphabet > und eine Formel ¢ ist

L(¢)=VweX wEo

Bekannte Ergebnisse sind, dass reguldre Sprachen in Monadic-Second-
Order Logik (MSO) definiert werden koénnen ([11]), und dass die sogenannten
sternfreien Sprachen, die durch einen reguléren Ausdruck ohne Verwendung
des Kleene-Sterns gebildet werden (,sternfreier Ausdruck”), den in First-
Order-Logik (FO) definierbaren Sprachen entsprechen [2].

Durch Einschrinkungen z.B. eine Beschrankung der Variablenanzahl oder der
maximalen Anzahl alternierenden Quantorenblécken kénnen weitere Sprach-
klassen unterhalb von F'O definiert werden.



Kamp [3] zeigte, dass sich alle FO-definierbaren Sprachen auch in First-
Order-Logik mit nur 3 Variablen (FO?) beschreiben lassen, solange die Va-
riablennamen wiederverwendet werden diirfen. Beide Sprachklassen sind so-
mit identisch.

FO?*<] enthilt alle Sprachen, welche in First-Order-Logik mit nur zwei
Variablen definierbar sind. Variablennamen diirfen hierbei wiederverwendet
werden (z.B. 3z : Jy : Iz, wiederverwendetes z). Dariiber hinaus wird nur die
Labelfunktion A\, Quantoren (3, V) und die Relation < bzw. > zur Ordnung
der Variablenpostionen benutzt. Wir verzichten deshalb im weiteren auf die
explizite Angabe FO?*[<].

Mit FO? sind alle FO?*-Formeln gemeint, die maximal m alternierende
Blocke gleicher Quantoren haben. Zum Beispiel sind (Jz(3y(Vz(3z...)))) drei
Blocke Quantoren: zwei Block 3-Quantoren, getrennt durch einen Block V-
Quantoren. Dies wird auch die Alternierungshierarchie innerhalb von FO?
genannt [12]. Es ist eine strikte Hierarchie d.h. jede Stufe m+1 ist Ausdruck-
stiarker als die vorherige Stufe m.

Mit FOZ, ,, beschrinkt man zusitzlich die maximale Quantorentiefe auf n.

In dieser Arbeit wird es vor allem um First-Order-Logik mit nur zwei Va-
riablen (FO?) bzw. die damit verbundene Varietit DA gehen (siehe Kapitel
3).

Beispiel. Es lisst sich leicht nachvollziehen, dass fiir ein Alphabet ¥ =
{a,b,c} die Formel

p=7Tz:(Nzx)=aAVy:y>=ux)

die Sprache definiert, bei der alle Worter mit einem a beginnen. Da sich
diese Sprache in First-Order-Logik ausdriicken ldsst ist sofort klar, dass sie
sich auch mit einem sternfreien Ausdruck darstellen lidsst, denn beide Aus-
drucksformen sind ,gleichméchtig®. Auferdem enthilt die Formel nur zwei
Variablen, womit die definierte Sprache auch in FO? ist.

2.1.3 Definition durch algebraische Strukturen

Im folgenden werden der Vollstindigkeit wegen zuerst einmal ein paar grund-
legende algebraische Definitionen wiederholt.



Definition 2.1 (Halbgruppe, Monoid und Idempotente). Sei eine Menge
S und ein Operator @ : S x S — S auf S gegeben, so dass S unter ®
abgeschlossen ist. S wird eimme Halbgruppe genannte, wenn der ®-Operator
assoziativ ist, also (a@b) ®c=a® (b® c).

Ein Element 1 € S fir das fir alle s € S :1® s = sl = s wird neutrales
Element von S genannt. Eine Halbgruppe mit neutralem Element nennt man
Monoid.

Enthdlt eine Halbgruppe S (ein Monoid S) ein Element e fiir das gilt €* = e,
so nennt man dieses Element ein Idempotentes von S. Wir definieren dazu
E(S) als die Menge aller Idempotente in der Halbgruppe (dem Monoid) S.

Definition 2.2 (Homomorphismus, Isomorphismus). Seien S und S’ Halb-
gruppen (bzw. Monoide) und n eine Abbildungn: S — S" so dass n(zx ®@y) =
n(x) @ n(y), so nennt man die Abbildung n einen Homomorphismus.

Sind S und S" Monoide, so muss zusdtzlich erfillt sein, dass n(lg) = 1.
Ein bijektiver Homomorphismus wird Isomorphismus genannt. S und S’ nennt
man isomorph, falls ein Isomorphismus zwischen ihnen existiert.

Da wir uns ausschlieflich mit endlichen Halbgruppen bzw. Monoiden be-
schéftigen werden sind im folgenden einige bekannte Eigenschaften davon
gezeigt.

Lemma 1. Sei S eine endliche Halbgruppe. Jedes Element x € S besitzt eine
Potenz m, so dass ™ idempotent ist.

Beweis. Jedes Element einer endlichen Halbgruppe besitzt einen Index i und
eine Periode p, so dass x'™° = x°. Sei fiir ein Element x der Index i und die
Periode p. Fiir jedes j > i ist 2/ = 277, Ist j ein Vielfaches von p so gilt
(fiir jedes a > 1)

(xj)2 = g = pItap — I

Damit ist 27 ein Idempotentes.

Daraus lédsst sich direkt folgern, dass es ein auch ein II gibt, so dass fiir
alle € S gilt, dass z'' idempotent ist. Man nehme dazu fiir II einfach das
kleinste gemeinsame Vielfache aller Potenzen der Elemente aus S. Auferdem
lasst sich folgern, dass jede nicht-leere endliche Halbgruppe (mindestens) ein
Idempotentes enthélt.

Lemma 2. Sei S eine endliche Halbgruppe. Es gibt ein 11 fiir das fir alle
Elemente x € S gilt ' ist idempotent.

Lemma 3. Sei S eine endliche, nicht-leere Halbgruppe. Es existiert mindes-
tens ein Idempotentes in S.



Lemma 4. Sei S eine endliche Halbgruppe und n = |S|. Dann ezistiert fir
jede Sequenz s1Ss...8, von mindestens n Elementen aus S ewn Index v und
ein Idempotentes e, so dass gilt s185...8; = $189...5;¢. Man sagt das Element
e stabilisiert die Sequenz $15s...5;.

Beweis. Gegeben sei eine Folge s15y...8, von Elementen aus S, n > |S)|.
Dann enthalt die Folge fiir den Fall, dass alle Elemente s; verschieden sind ,
mindestens ein Idempotentes (siehe 3). Enthdlt die Folge sys...s, nicht alle
Elemente aus S, so kommt mindestens ein Element zweimal in der Folge vor
2.B. sj und sy, (j < k). Dann ist

5§1892...8; = Sj(5j+1---5k> = 8182...Sj(5j+1...5k)7r
wobei T die Potenz (aus Lemma 2) fir S ist.

Damit hat man nun eine weitere Mdoglichkeit regulire Sprachen zu cha-
rakterisieren, die sogenannten syntaktischen Halbgruppen.

Definition 2.3 (Syntaktische Halbgruppe). Fir eine Sprache L € ¥* sei die
Relation ~p, definiert, so dass v ~p w genau dann, wenn

pvq € L < pwq € L.

fiir alle p,q € ©*. Die Relation ~y, wird die syntaktische Aquivalenz auf L
genannt.

Die syntaktische Halbgruppe ist die Menge der Aquivalenzklassen von ~y, mit
der Konkatenation als Operator.

Man erhdlt sie auch als den Quotient von S beziglich der syntaktischen Aqui-
valenz ~p, (Synt(L) = X*/ ~p, siehe 2.3 fiir Quotientenbildung bei Halbgrup-
pen,).

Um mit der syntaktischen Halbgruppe Synt(L) die Sprache L erkennen zu
konnen, muss man hierfiir noch den Erkennbarkeitsbegriff definieren. Es gilt,
dass eine Halbgruppe S die Sprache L € Y* erkennt, falls ein erkennender
Homomorphismus von >* nach S existiert.

Definition 2.4 (Erkennender Homomorphismus). Fir eine Sprache L € ¥*
und eine Halbgruppe S sei ein Homomorphismus h : X* — S definiert, so
dass h™Y(h(L)) = L. Man nennt diesen Homomorphismus einen erkennenden
Homomorphismus fiir L. Ezxistiert ein erkenndener Homomorphismus von ¥*
nach S sagt man auch, dass die Halbgruppe S die Sprache L erkennt.



Bei der syntaktischen Halbgruppe handelt es sich um die minimale Hal-
gruppe, fiir die ein erkennender Homomorphismus existiert.

Durch den erkennenden Homomorphismus und die Definiton der syntak-
tischen Aquivalenz wird klar, dass entweder alle, oder aber keines der Worter
einer Aquivalenzklasse von ~, in L liegen. Man kénnte in diesem Zusammen-
hang analog zu Automaten von ,Endzustinden“ und ,Nicht-Endzustinden*
sprechen, in die sich die Elemente der Halbgruppe aufteilen.

Analog hierzu lassen sich syntaktische Monoide definieren. Man ersetze
dazu die Halbgruppe S durch den Monoid S, mit S* = S U {1}. Falls S
bereits ein neutrales Element besitzt gilt S = S!. Alle anderen Definition
gelten weiterhin.

Der Vorteil des algebraischen Erkennbarkeitsbegriffs und der Verwendung
von Halbgruppen (bzw. Monoiden) ist, dass dieses Gebiet der Algebra schon
lange und ausfiihrlich erforscht wird, und sich dadurch eine Vielzahl an be-
reits existierenden Werkzeugen und Hilfsmitteln anbieten.

Diese Arbeit befasst sich mit Sprachen unterhalb der sternfreien Spra-
chen, also sind alle auftretenden Halbgruppen (bzw. Monoide), solange nicht
anders angegeben, stets endlich.

2.2 Greensche Relationen

Die Greenschen Relationen ([13]) stellen ein wichtiges Hilfmittel fiir die Ar-
beit mit Halbgruppen dar. Mit ihnen werden alle Elemente einer Halbgruppe
in Aquivalenzklassen eingeteilt. Elemente der selben Klasse verhalten sich
dabei dhnlich, vor allem im Zusammenhang mit Idempotenten.

Es gilt fiir eine Halbgruppe S und Elemente z,y € S, dass ©z =g y <>
xS C yS. Gilt dies in beide Richtungen so dass (r =g y Ay 2% ) liegen x
und y in der selben R-Klasse. Man schreibt dann 2Ry. Anders ausgedriickt
bedeutet xRy, dass es a,b € S gibt, so dass x = ya und y = xb. Es existiert
also mindestens jeweils ein Element in S, das, wenn man es von rechts an x
(bzw. y) multipliziert, y (bzw. x) ergibt.

Definition 2.5 (Greensche Relationen). Fir x,y € S sind die Relationen
R, L und J wie folgt definiert:

TRy & xS =yS (1)

xLy & Sz = Sy (2)
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rJy & SxS = SyS (3)

Auferdem existieren noch die von R und L abgeleiteten Relationen H
und D:

tHy < (x 2[Ry ANz 2L Y) (4)
2Dy <>(3z € S : 2Rz A zLy)
oder (5)

(Fz € S:xlz A 2ZRy)

Ist eine Halbgruppe endlich so folgt aus dieser Tatsache direkt, dass auch
die Anzahl der R- und L-Klassen endlich ist. Sie formen jeweils eine Partiti-
on von S.

Hat jedes Element aus S seine eigene R-Klasse (L-Klasse, J-Klasse),
so spricht man bei S von einer R-trivialen (L-trivialen, J-trivialen) Halb-
gruppe. Die Relation R (£, J) ist in diesem Fall die Identitdt z.B. fiir eine
R-triviale Halbgruppe S und z,y € S ist 2Ry <> = = y.

2.3 Varietaten

Sei S eine Halbgruppe (bzw. ein Monoid) und R C S x S eine Relation auf
der Halbgruppe (bzw. dem Monoid) S. Anstatt (z,y) € R schreibt man auch
x ~g y bzw. einfach = ~ y wenn die verwendete Relation aus dem Kontext
hervorgeht.

Erfiillt R die folgenden drei Eigenschaften so nennt man R eine Aquivalenz-
relation:

1. (z,z) € R (reflexiv)
2. (x,y) € R+ (y,z) € R (symmetrisch)
3. (z,y) € RA(y,2) € R — (z,z) € R (transitiv)
Aquivalenzrelationen, fiir die gilt
r~yNa~b— (x®a)~ (y®b),Va,b,x,y €S

nennt man kompatibel mit der Operation ® der Halbgruppe (bzw. des Mo-
noiden). Man spricht dann von einer Kongruenz auf der Halbgruppe (bzw.
dem Monoiden).

Damit ldsst sich der Quotient ) von S beziiglich der Kongruenz ~p, ge-
schrieben ) = S/ ~pg, definieren. Es handelt sich dabei um die Menge der
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Aquivalenzklassen von R mit dem (kompatiblen) Operator ® der Halbgrup-
pe (bzw. des Monoiden). Man kann nun von Teilbarkeit sprechen, wenn eine
Halbgruppe (bzw. ein Monoid) S” isomorph zu einer Unterhalbgruppe (bzw.
einem Untermonoid) von S ist. Es ist klar, dass insbesondere alle Unterhalb-
gruppen (bzw. Untermonoide) von S ein Quotient von S sind.

Varietéten definieren Klassen von Halbgruppen (bzw. Monoiden). Sie sind
unter Teilbarkeit und endlichem direkten Produkt abgeschlossen. Ein Mittel
zur Beschreibung von Varietdten sind Omega-Terme.

Omega-Terme (im folgenden auch w-Terme genannt) sind ein verbreitetes
Mittel, um Varietiten zu definieren. Sie werden induktiv iiber eine (endliche)
Variablenmenge Var definiert:

1. Jedes u € Var ist ein w-Term.
2. Sind u und v w-Terme, so ist uv ein w-Term.

3. Ist u ein w-Term, so ist u* ein w-Term.

Eine Varietdt enthélt nun alle Halbgruppen (bzw. Monoide), die eine oder
mehrere durch w-Terme gegebene Identitdt(en) fiir jeden Homomorphismus
h:Var — S* erfiillen. Wir schreiben fiir zwei w-Terme v und v dann

um die Varietét zu bezeichnen, in welcher alle Halbgruppen (bzw. Monoide)
die Identitdt u = v erfiillen.

Jeder Homomorphismus h von >* nach S bildet eine natiirliche Erweiterung
fir w-Terme indem h(u®”) = h(u)* (das Idempotente h(u)“, das von h(u)
erzeugt wird).

Dadurch wird es ermoglicht, dass man mit ganzen Familien von Halbgrup-
pen (bzw. Monoiden) und ihren Eigenschaften arbeitet, ohne eine bestimmte
auszuwahlen.

Sind alle Halbgruppen (bzw. Monoide) endlich, so spricht man in der Regel
von einer Pseudovarietdt. Im folgenden wird auf die Unterscheidung beider
Begriffe der Einfachkeit halber verzichtet, da es sich bei allen vorkommenden

Halbgruppen (bzw. Monoiden) wie in 2.1.3 erwihnt stets um endliche han-
delt.

Beispiel. Die Varietit AP beschreibt die Klasse der aperiodischen Monoide.
Ihre Identitit lautet
[[2* = 2]
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Sie bildet die algebraische Beschreibung der Klasse der sternfreien Sprachen

(121)-

In dieser Arbeit liegt der Fokus auf der Varietdt DA. Sie wird in Kapitel
3 vorgestellt, zusammen mit einer in ihr enthaltenen Hierarchie an Unterva-
rietaten.

2.4 Verbotsmuster

Ein Verbotsmuster P ist ein (nicht notwendigerweise zusammenhéngender)
Graph, dessen Kanten mit Variablen fiir Worter w € ¥* beschriftet sind. Es
wird in der Regel grafisch ausgediickt (siehe z.B. Abbildung 1).

Oft werden zusétzliche Bedingungen gestellt, z.B. dass zwei Knoten inner-
halb des Verbotsmusters verschieden sein miissen. Um zu zeigen, dass zwei
zusténde verschieden (bzw. unterscheidbar) sein sollen, wird in der Regel je-
weils ein Pfeil zu 4+/— bzw. —/+ eingezeichnet, was ausdriicken soll, dass es
Worter gibt, fiir die der eine Zustand akzeptiert (+) und der andere nicht
(-).

Man spricht davon, dass der Graph G ein Verbotsmuster P vermeidet, wenn
es keine Auswahl der Knoten von G fiir die Knoten von P gibt und keine
Belegung fiir die Variablen existiert, so dass alle Bedingungen erfiillt sind.

Verbotsmuster sind dazu geeignet, die definierenden Identitéten einer Va-
rietdt (gegeben in w-Termen) nachzubilden und so die Zugehorigkeit einer
durch einen DFA gegebenen Sprache direkt anhand der Struktur des Auto-
maten zu testen.

Beispiel. Das Verbotsmuster fiir die Varietdt der aperiodischen Monoide
(AP) ist in Abbildung 1 gegeben.
Es ergibt sich aus der Identitdt z* = a“x fiir AP.

Man kann leicht nachvollziehen, dass der syntaktische Monoid M einer Spra-
che L, gegeben durch den Automat A, der das gegebene Muster vermeidet,
aperiodisch sein muss. Vermeidet der Automat das Verbotsmuster, bekommt
man fiir jedes Wort w € ¥* als Belegung fiir x und Anwendung des erken-
nenden Homomorphismus

h(w®) = h(w)* = h(w)?h(w) = h(w“w)

Dies bestétigt die Identitit von AP.
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Abbildung 1: Verbotsmuster P4p

Ist der aperiodische Monoid M fiir L gegeben, und ein Automat A der L
erkennt, so muss A das Verbotsmuster vermeiden. Man nehme an, A vemeide
das Verbotsmuster nicht. Dann existiert kein erkennender Homomorphismus
vo X* auf die Elemente des Monoiden, denn die Wérter pw*q und pw“wq
miissten auf verschiedene Element von M abgebildet werden (da sie in ver-
schiedenen Aquivalenzklassen von ~ liegen). Dies ist nicht mdoglich wenn
der Automat das gegebene Verbotsmuster enthélt.
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3 Die Varietat DA

Nachdem in Kapitel 2 die greenschen Relationen und Varietdten vorgestellt
wurden, wird hier die Varietdt DA behandelt. Diese Varietdt hat zahlreiche
Charakterisierungen (siehe [14]). Uber w-Terme definiert entspricht sie der
Varietat mit Identitdt

[[(zy)” = (vy)“x(zy)~]]

Alternativ kann dies auch in zwei Identitaten ausgedriickt werden:
[z = 2(zy)”]]
[z = (zy)*x]]

Das folgende Lemma zeigt eine wichtige Eigenschaft der Varietdt DA:

Lemma 5. Gegeben ein Monoid M € DA und z,y,a € M. FEs gilt, dass

wenn xRy und yRya dann auch xRxa. Symmetrisch fir L gilt, dass wenn
xLyLby dann auch xLbx.

%

Dies bedeutet, dass die Tatsache, ob xRxa nur vom Element a und der
R-Klasse von x abhingt. Gilt xRxa, so gilt dies auch fiir alle anderen Ele-
mente aus der R-Klasse von z.

Alle Sprachen, deren syntaktische Monoide in der Varietdt DA liegen,
entsprechen der Klasse der in F'O? definierbaren Sprachen [12].

3.1 Die Trotter-Weil-Hierarchie

Innerhalb von DA existiert die sogenannte Trotter-Weil-Hierarchie [15]. Sie
besteht aus einem ,Gitter von (Pseudo-)varietéten mit unendlich vielen ,Stu-
fen“. Die Vereinigung aller Stufen ist gleich DA. Eine Skizze ist in Abbildung
2 gegeben.

Wir verwenden vor allem die folgenden w-Terme fiir die Stufen der Trotter-

Weil-Hierarchie:
Ur = (s21)"s(y1t)”

Vi = (s21)“t(yrt)”
Um = (Umflxm)wUmfl(memfl)w
Vm = (Um—lxm)wvm—l(mem—l)w

(6)
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DA

Abbildung 2: Struktur der Trotter-Weil-Hierarchie

Die Stufe W; entspricht der Varietit der J-trivialen Monoide auf der unters-
ten Stufe der Hierarchie.

Die m-te Stufe dieses Gitters, der Vereinigung von R,,,; und L,,, bildet
eine Varietat W, mit Identitat

Man sieht leicht, dass alle Stufen von W,,, in DA liegen. Dazu muss man
lediglich fiir U; und Vi s = 1 = x und t = y; = y setzen, fiir alle anderen
Stufen U,, und V,, seien die Variablen x,, = y,, = 1. Dies ergibt direkt die
Identitdt von DA.

Wir haben die folgenden Zugehorigkeiten zu den ,Ecken® des Gitters ||:

(U, = W]

HUm 1= Vm— 1“

[(Un-17m) U1 = (Un-1Zm)“ Vin-1]]
[Un—1(Un-17m)* = Vi1 (U -12)”]]

R4
R

L
| 2
L
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Die Stufen W,, der Trotter-Weil-Hierarchie stimmen mit der Alternie-
rungshierarchie innerhalb von FO?, iiberein. Ein ausfiihrlicher Beweis hierfiir
findt sich in [16]. Das heift, dass der syntaktische Monoid einer Sprache, die
durch eine FO?-Formel definiert ist (und nicht in FO? _, definiert werden
kann), in der Varietdt W,, liegt (aber nicht in W,,_; enthalten ist).

Ein Problem mit dem sich Kapitel 4 beschéftigen wird ist, wie grofs der
Aufwand ist, um mittels Verbotsmustern festzustellen, auf welcher Stufe der
Trotter-Weil-Hierarchie bzw. der Alternierungshierarchie innerhalb von FO?
sich eine durch einen DFA gegebene Sprache befindet.
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4 Verbotsmuster fir DA

Es existieren bereits Entscheidungsverfahren fiir die Varietit DA, basierend
auf dem syntaktischen Monoid einer Sprache [9] [5]. Da Sprachen jedoch meist
in einer einfachen Beschreibungsform wie einem DFA vorliegen, ist es in der
Regel notig, den syntaktischen Monoiden zu berechnen, bevor man ein Ent-
scheidungsverfahren aufgrund des syntaktischen Monoids durchfiihren kann.
Dies kann sehr aufwéndig sein. Der syntaktische Monoid eines Automaten
mit n Zustdnden hat n! Elemente haben. Die Multiplikationstabelle des Mo-
noiden ist quadratisch hierzu.

Ein Entscheidungsverfahren unter Zuhilfenahme von Verbotsmustern kann
direkt mit DFAs arbeiten. Es bietet somit Vorteile fiir alle Fille, in denen
nur der DFA gegeben ist, oder eine Grammatik bzw. ein regulirer Ausdruck,
aus denen sich leicht ein DFA erzeugen lasst.

Fiir die w-Terme der Identitdt von DA erhélt man folgendes Verbotsmus-

ter:
(o)

Abbildung 3: Verbotsmuster Ppa

Sei der Monoid M € DA fiir eine Sprache L gegeben. Der akzeptierende
DFA fiir L sei A. Man nehme an, A enthilt das Verbotsmuster. Es gibt also
Worte p(zy)“z(zy)“q und p(ry)“q, mit gleichen Prefix p bzw. Suffix ¢, die
einmal in einen Endzustand fiihren und einmal nicht (denn A ist minimal
und die Zustdnde 1 und 2 verschieden, es gibt also ein Wort w, das sie un-
terscheidet; wir den Suffix ¢ = w).

Damit miissen diese Worter auf unterschiedliche Elemente in M abgebildet
werden. Da Prefix und Suffix gleich sind (und M assoziativ ist), kann es nur
im mittleren Teil mit den w-Termen dazu kommen. Diese ergeben aber nach
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der Annahme M € DA fiir die Worter (zy)“z(zy)“ und (zy)* das gleiche
Element aus M. Es existiert also kein erkennender Homomorphismus, falls
A das Verbotsmuster nicht vermeidet.

Sei nun A der DFA einer Sprache L, und A vermeidet das Verbotsmuster.
Der syntaktische Monoid von L sei M. Fiir alle Worter p(zy)“z(xy)“q und
p(zy)¥q, mit beliebigen Wortern als Belegung fiir Variablen x,y,p,q € ¥*
gilt also

p(zy)z(zy)?q € L « p(zy)“q € L

denn der Automat vermeidet das Verbotsmuster. Damit liegen beide Worter
immer in der selben Aquivalenzklasse von ~;. Da man den syntaktischen
Monoiden auch als Synt(L) = ¥*/ ~ erhélt (siehe Kapitel 2.1.3), miis-
sen beide Worter durch den erkennenden Homomorphimus A auf das selbe
Element von M abgebildet werden.

4.1 Verbotsmuster fiir Stufen der Trotter-Weil-Hierarchie

Nachdem entschieden ist, ob eine Sprache in DA liegt, kann es von Interesse
sein, auf welcher Ebene der Trotter-Weil-Hierarchie (und damit auch der
Alternierungshierarchie in FO2,) sie liegt. Dazu braucht man Verbotsmuster
fiir jede Stufe der Varietiten W,,, die iterativ aufgebaut sind. Aus dem w-
Term der ersten Stufe der Trotter-Weil-Hierarchie erhalten wir das folgende
Verbotsmuster:

Abbildung 4: Verbotsmuster P;

Um iterative Verbotsmuster P, zu definieren miissen wir zuerst den er-
weiterten Zustandiibergangsgraph dahingehend erweitern, dass Kanten mit
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einem Muster ,beschriftet sein konnen bzw. diese Kanten markieren, denn
der erweiterten Zustandiibergangsgraph enthilt bereits Kanten mit Woértern
beliebiger Liange. Wir verbinden also zwei Zustinde, zwischen denen ein be-
stimmtes Muster auftritt. Dies ist im Grunde identisch mit der Suche danach,
ob der Automat ein Verbotsmuster vermeidet.

Da die Verbotsmuster fiir die Stufen von W,,, die wir verwenden, fiir jede
Seite des w-Terms einen Teilgraph enthalten, suchen wir fiir das Muster bei-
der Teilgraphen jeweils seperat. Jeder der beiden Teilgraphen besteht immer
aus zwei Teilen (U;_1z;) und (y;U;_1), die jeweils durch einen Mittelteil (U;_y
bzw. (V;—; ohne w verbunden sind. Wir fiigen eine Kante vom gemeinsa-
men ,Startzustand“ des Verbotsmusters (zu dem uns ein beliebiger Prefix p
und (U;_1z;)* in eine (U;_jx;)-Schleife fithrt) zum ,Endzustand“ d.h. zu dem
Zustand, an dem man nach Eingabe des Mittelteils (U;_; bzw. (V;_; des Ver-
botsmusters durch lesen von (y;U;—1)“ in eine (y;U;_1)-Schleife l&uft.

Ut

Vs

Abbildung 5: Verbotsmuster P,

Mit den Beschriftungen fiir die Muster U; bzw. V; der vorherigen Stufe von
W,, kann man diese nun wie normale Worter behandeln bzw. es ist bekannt
welche Zustdnde von ihnen verbunden werden.

Ein Algorithmus zur Suche nach den Verbotsmustern kénnte wie folgend
aussehen (Skizze):

1. Rate Buchstaben aus ¥ fiir die Worter, die die Variablen des Verbots-
musters belegen sollen. Die Worter miissen endlich sein, also auch das
Wortende wird geraten.

2. Von jedem Zustand des erweiterten Zustandiibergangsgraphen aus kann
man gleichzeitig die Eingabe lesen (alle Zustande sind duch einen Prefix
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p erreichbar). Man geht also fiir den ersten w-Teil des Verbotsmusters
von jedem Zustand aus solange, bis man in eine Schleife an einem Zu-
stand z; lduft. (Man merkt sich diesen Zustand)

. Von Zustand z; aus liest man den Mittelteil des Verbotsmusters, ge-
folgt von der Eingabe des zweiten w-Teil des Verbotsmusters. Man lauft
wieder in eine Schleife an einem Zustand zs.

. Vergleiche z; und z,. Sind sie verschieden wird das Verbotsmuster nicht
vermieden und die durch den DFA gegebene Sprache liegt nicht auf
Stufe m.

((Sind sie nicht verschieden, markiert man sich die Kante von z; nach z;
mit dem Muster, damit man es im Iteratiionschritt verwenden kann.))
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5 Zusammenfassung

Es wurde eine Einfiihrung in die grundleggenden Zusammenhénge zwischen
reguldren Sprachen bzw. deterministischen endlichen Automaten, ihrer De-
finition mihilfe logischer Formeln und deren algebraischen Beschreibungs-
formen gegeben. Basierend darauf wurde der Zusammenhang zwischen der
Alternierungshierarchie in FO? und der Trotter-Weil-Hierarchie innerhalb
der Varietdt DA hergestellt und fiir die Varietit DA bzw. fiir die Stufen
W, der Trotter-Weil-Hierarchie, Verbotsmuster aufgestellt, und diskutiert,
wie effizient diese arbeiten.

19



Literatur

[1] R. McNaughton and S. Papert. Counter-Free Automata. MIT Press,
1971.

[2] M.-P. Schiitzenberger. On finite monoids having only trivial subgroups.
Information and Control, 8:190-194, 1965.

[3] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD
thesis, University of California, 1968.

[4] D. Therien and T. Wilke. Over words, two variables are as powerful as
one quantifier alternation, 1998.

[5] M. Kufleitner and P. Weil. The fo2 alternation hierarchy is decidable.
CoRR, abs/1203.6152, 2012.

[6] J. M. Howie. Semigroups, past, present and future. Proceedings of the
International Conference on Algebra and its Applications, 2002.

[7] S. Eilenberg. Automata, Languages and Machines. Pure and Applied
Mathmatics. Academic Press, 1974.

[8] J.E. Pin. Syntactic semigroups, 1997.

[9] M. Kufleitner and A. Lauser. Quantifier alternation in two-variable first-
order logic with successor is decidable. CoRR, abs/1212.6500, 2012.

[10] M. Kufleitner and P. Weil. On logical hierarchies within fo2-definable
languages. Logical Methods in Computer Science, 8:1-30, 2012.

[11] J. R. Biichi. Weak second-order arithmetic and finite automata. In
Mathematical Logic Quarterly, volume 6, page 66-92, 1960.

[12] P. Weis and N. Immerman. Structure theorem and strict alternation
hierarchy for fo2 on words. Logical Methods in Computer Science, 5(3),
2009.

[13] J. A. Green. On the structure of semigroups. In Annals of Mathematics,
volume 54, pages 163-172, 1951.

[14] P. Tesson and D. Therien. Diamonds are forever: The variety da. In
Semigroups, Algorithms, Automata and Languages, Coimbra (Portugal)
2001, pages 475-500. World Scientific, 2002.

20



[15] P. Trotter and P. Weil. The lattice of pseudovarieties of idempotent
semigroups and a non-regular analogue. In Algebra Univers, volume 37,
pages 491-526, 1997.

[16] Howard Straubing. Algebraic characterization of the alternation hierar-
chy in fo2|<| on finite words. In Marc Bezem, editor, Computer Science
Logic (CSL’11), volume 12 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 525-537. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2011.

21



Erklidrung:

Ich versichere, diese Arbeit selbststindig verfasst zu haben. Ich habe keine
anderen als die angegebenen Quellen benutzt und alle wortlich oder sinnge-
maf aus anderen Werken iibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand
eines anderen Priifungsverfahrens. Ich habe diese Arbeit bisher weder teil-
weise noch vollstindig verdffentlicht. Das elektronische Exemplar stimmt mit
allen eingereichten Exemplaren {iberein.

(Stuttgart, 18.10.2013, Sebastian Miiller)

22



