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Zusammenfassung

In dieser Studienarbeit Gber "Visualisierung mualtiater Zeitreihen mit der Symbolic
Aggregate Approximation” wurde eine grafische Bertberflache programmiert, die
potentiell lange Zeitserien als klassische Liniagdamme darstellt, mit Hilfe der
Symbolic Aggregate Approximation diskretisiert uadschlieend als Chaos Game
Representation wiedergibt. Der Fokus dabei wurdé di@ gemeinsame Analyse
zwischen den Liniendiagrammen und der Chaos GamepreRentation, dem
sogenannten "Brushing & Linking", gelegt. Als Testsn kamen EKG-Daten von der
MIT-BIH Arrhythmia Database zum Einsatz. Ziel deests war herauszufinden, ob
man durch Chaos Game Representation - Bitmaps hiedsne Herzerkrankungen
darstellen und anhand markanter Merkmale wiedenere kann. Bei der Analyse der
Bitmaps stellte sich jedoch heraus, dass keine agessiuber Herzerkrankungen
getroffen werden kodnnen. Die Hauptgrinde dafir eliegn der Definition des
Sinusrhythmus mit seiner Frequenz und bei den Blaragen der Ableitungen. Werden
jedoch einzelne Herzschlage von Menschen vergliclsamd Unterschiede in der
Struktur bzw. in der Haufigkeit der Verteilungemzelner Kéastchen im Chaos Game
Representation - Bitmap zu erkennen. Daraus |&Sstasis der angewandten Methode

kein praktischer Nutzen fur die Erkennung von Hekinkungen ableiten.
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Kapitel I: Einleitung

1.1 Problembeschreibung

Zeitreihen sind allgegenwartig und stellen einglizbi geordnete Folge von Messdaten
dar. In den verschiedensten Anwendungsbereichenzwie Beispiel die taglichen
Werte des deutschen Aktienindex (DAX) in der Winisit, Elektrokardiogramm -
Daten (EKG) und Elektroenzephalografie - Daten (EEG der Medizin oder
Temperaturdaten in der Meteorologie, werden solgfessdaten generiert und zur
weiteren Verarbeitung gespeichert. lhre hohe Dateslsionalitdit und der damit
verbundene Speicherplatzbedarf stellen heutige msizsteme noch vor Probleme.
Anders sieht es bei der Visualisierung solcher Matn und den damit verbundenen
Zeitreihen aus. Wahrend die Visualisierung einzelwatserien mit Liniendiagrammen
vergleichsweise Ubersichtlich zu gestalten istllesiechunderte oder tausende solcher
Zeitverlaufe in der Visualisierung ein schwierig&®blem dar. Ein vielversprechender
Ansatz besteht darin, die Zeitreihen mit Hilfe d&gmbolic Aggregate Approximation -
Algorithmus (SAX) zu diskretisieren und mit der ®@saGame Representation (CGR)
darzustellen. Bisherige Arbeiten (Kumar, Nishadepgh, Lonardi, Ratanamahatana,
Wei, 2005)beschranken sich dabei auf die Visualisierung émezeZeitreihen und
bieten keine Mdglichkeit zur gemeinsamen Analysekfaissischen Liniendiagrammen,

dem sogenannten "Brushing & Linking".

1.2 Zielsetzung

In dieser Arbeit wird die Anwendung von SAX und C@R die Darstellung vieler und
potenziell langer Zeitreihen untersucht. Hierzul sah graphisches User Interface
(GUI) implementiert werden, die das laden von Zd#ien und die Einstellung der
wichtigsten Parameter fur SAX erlaubt und durch C@#&tgestellt wird. Um das
Verstandnis dieser Visualisierung und die darireeribaren Muster zu gewébhrleisten,
werden  Zeitreihen auch in  klassischen Liniendiagn@m dargestellt.
Interaktionsmdglichkeiten zwischen CGR und Linieggammen, wie zum Beispiel

Zeitpunkt- oder Feldauswahl werden ebenfalls immgletiert.



Eine kurze Analyse der Skalierbarkeit des Systeezsiglich der Lange der Zeitreihen
und ein Test der Implementierung mit verschiede@eitreihen werden am Ende

vorgenommen.

1.3 Aufbau der Arbeit
In Kapitel 1l werden die Grundlagen fiir die Studidoeit erklart. Anschlie3end folgt

eine ausfuhrliche Programmbeschreibung, die im t€hpill beschrieben wird.
Anwendungstest mit EKG-Daten werden im Kapitel Bfgestellt. Am Ende der Arbeit
werden die Ergebnisse noch einmal kurz zusammesgjafad der Ausblick skizziert.



Kapitel Il: Grundlagen

Um ein Verstandnis fur die Darstellungsformemn wilessen Strukturen zu erhalten,
sind Definitionen fir eine genaue Beschreibung Mbralten unumgéanglich. In diesem
Abschnitt  werden Strukturen erklart und Definigon festgelegt, die in dieser

Studienarbeit zur Anwendung kommen.

2.1 Zeitreihen und Zeitserien

Eine ZeitreiheT bezeichnet eine zeitlich geordnete Folge von Bdubiagend einer
Grol3e, wohin gegen eine Zeitserie verschiedeneeftesn der gleichen Beobachtung
sind. Wirde man taglich die DurchschnittstemperatUstuttgart tber ein ganzes Jahr
lang hin messen, so wirde man 365 diskrete Tempemtte erhalten. Diese
Temperaturwerte stellen eine Zeitreihe dar. Liegehrere Zeitreihen verschiedener
Jahre vor, sie missen nicht zusammenhangend peichtsman von Zeitserien. Reelle
Zeitreinen besitzen stets endliche Indexmengen lBaobachtungszeitraume. Die
aufgenommenen Messdaten kdnnen kontinuierlich aligkontinuierlich sein. Die
Merkmalsauspragungen sind meistens metrisch. [Ruschkommen auch andere
Auspragungen, zum Beispiel als Index oder als tpiale Aussage wie “gut”,
“befriedigend” oder “schlecht”, die in einen Indésansformiert wurden, vor. Eine
formalere Definition (Springer Gabler Verlag, 201®) Zeitreihen lautet:

Eine Zeitreihe T =((t,d),...,(t, ,d,)) ist eine Folge vonn-Tupeln, bestehend aus
einem Zeitstempelt und einem dazugehodrigen eindeutigen Messtyertmit
i01,2,...n undnlIN. Der Zeitstempelt, kann sich aus verschiedenen Zeitpunkten

oder Zeitintervallen zusammensetzen. Zeitpunktedlerman dann, falls das zu
messende Merkmal eine Bestandsmasse ist, Zeitatierv wenn es eine

Bewegungsmasse ist.
e Die Bestandsmasse

Eine Bestandsmasse (Springer Gabler Verlag, 2@81&)jne Anzahl statistischer

Einheiten, die Uber einen gewissen Zeitraum geragingn einem Bestand
3



verweilen. Beispielsweise wir die Bevolkerung imnmar einem konkreten

Zeitpunkt gemessen oder geschétzt; sie ist eiraBdsiasse.
* Die Bewegungsmasse

Eine Bewegungsmasse (Springer Gabler Verlag, 26te8) zeitpunktbezogene,
zustandsandernde Ereignisse dar und kann nur iy bestimmten Zeitraum
hinweg ihren Umfang nach erfasst werden. Beispiissvist die Gesamtheit der
Personen, die innerhalb eines Jahres in einer Regyibeitslos werden, eine
Bewegungsmasse; nicht jedoch die Gesamtheit degitalbsen dieser Region

zu einem bestimmten Zeitpunkt.

Zeitreinen werden im klassischen Komponentenmodelklysiert. Das Ziel einer
Zeitreihenanalyse ist, einen Trend als FunktionZkdt oder einen Effekt zu erkennen
und eine Prognose Uber den zuklnftigen Verlauf efatisagen. Auch die Frage nach
wechselseitigen Beziehungen oder Abhangigkeitentlictei unterschiedlicher

Beobachtungen ist von Bedeutung.

2.1.1 Das klassische Komponentenmodell

Eine Zeitreihe besteht aus Komponenten, die inneikemponentenmodell zusammen-
gefasst sind. Es gibt die systematischen Komponeme die irregulédre Komponente.
Die systematischen Komponenten sind Trend, KonjmRkkimponente und
Saisonkomponente.

1. Der Trend = T, erfasst langfristige Entwicklungstendenzen im &liteiner

Zeitreihe. Der Verlauf der Trendkomponente ist hgtlidurch die langfristigen
Ursachen monoton wachsend oder monoton fallend.wii¢é mittels einer

linearen oder nicht linearen Regression mit det Zeals unabhéngige ung
als abhangige Variable berechnet.
2. Die Konjunkturkomponente= K, ist eine zyklische, mehrjahrige aber nicht

notwendigerweise regelmaRige Schwankung. Sie nigimen wellenférmigen

Verlauf aufgrund sich stetig, aber langsam anderkd€lisse an.
3. Die Saisonkomponente= § ist eine jahreszeitlich bedingte Schwankungs-

komponente, die sich nahezu unverandert jedeswiaderholt. Ihr Verlauf ist



wie die Konjunkturkomponente wellenférmig aufgrurdes periodischen
Zeiteinflusses auf die Komponente.

4. Die irregulare oder auch Restkomponente= |, genannt, besteht aus

unvorhersehbare, nicht regelméaRig wiederkehrendd im den Ubrigen

Komponenten nicht enthaltene Einflisse und Stémunge

Der Trend und die Konjunkturkomponente werden lgaudi der Literatur als ,glatte
Komponente* beschriebeny =T, + K ). Konjunktur- und Saisonkomponente stellen

die ,zyklische Komponente* dar. Die Ermittlung deyklischen Komponente erfolgt
dadurch, dass zuerst die glatte Komponente, alsoUthierlagerung von Trend und
zyklischer Komponente geschatzt wird. Dies geschielit Hilfe des gleitenden
Mittelwertes (siehe Anhang A.1l). Die zyklische Koonmente ergibt sich dann durch
Subtraktion des Trends von der glatten Komponente.

Das Komponentenmodell wird Uberwiegend fur wirtdtdvaissenschatftliche Zwecke
genutzt. Es ist aber auch moglich, Zeitreihen auegen Bereichen zu analysieren, wie
zum Beispiel EKG- oder EEG-Datenreihen aus der KlediMehrjahrige oder auch
jahreszeitliche Schwankungen wird man vergebenshesyc aber zyklische

Schwankungen bzw. periodische Verlaufe gibt es &ish

2.1.2 Visualisierung von Zeitreihen durch Diagramme

Diagramme sind ein wichtiges Element in der Dalstgl von sachlich und
wissenschaftlichen Zusammenhangen in schriftlidBenchten und in Présentationen.
Komplexe Vorgange, mathematische Zusammenhangeist®&en, Messergebnisse,
Ablaufe und vieles mehr, die nur mit schwer verdi@éhen Texten zu beschreiben
waren, kbnnen mit einem Blick erfasst werden.

Zeitreinen konnen durch verschiedene Diagrammtyplemgestellt werden. Die
Zielsetzung, was dargestellt werden soll und kasechrénkt die Benutzung der
Diagrammtypen ein. Dabei ist auf die richtigen Awdgmngen des darstellenden
Merkmals zu achten. Im Nachfolgenden werden veesigne Diagrammtypen flr

Zeitreihen vorgestellt.



2.1.2.1 Das Punktdiagramn

Das Punktdiagramm zeigt Zeitreihen als Mengen vonkin an. Die Werte werdt
durch die Position der Punkte im Diagrammraum dsajie. Jeder einzelne nkt kann
durch eine gerade Linie (Gerade) oder einer gegéitt Linie (Kurve) verbunde
werden. Punktediagramme eignen sich hervorragemdgrofRe Mengen verwandi
Daten in einem einzelnen Diagramm anzuzeigen. hkfdiagrammen wird auf der-
Achse ein numerischéVert und auf der YAchse eine andere Kennzahl dargest
sodass die Beziehursichzwischen den beiden Werten fir alle Elemente ingi2isam
leicht erkennen lasstDie Abbildungen 1, 2 und 3 zeigedrei verschiedene

Darstellungstypen voRunktdiagrammen.

15 Fa * Datenreihel
0 W Ditenreihe 2
. > Detenreihe 3
15 *
* Datenreihe 4
10 o * + =
& A [
) S L |
5 ] ¥ g B
X n
0
0 2 4 [ 8 10 12

Abbildung 1: Beispiel fur ein Punktdiagramm ohne Verbindungslinienvon Messwerter

-
A

=+ Dztenreihel

” —-Ditenreihe 2

Detenreihe 3

== Dztenmeihe 4

Abbildung 2: Beispiel fiir ein Punktdiagramm mit geraden Verbindungslinien zwischer den Messwerten
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—&- Ditenreihe 2
Detenreihe 3

== Dztenmeihe 4
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S

Abbildung 3: : Beispiel fir ein Punktdiagramm mit geglatteten Verbindungslinien zwischen eén Messwertel

2.1.2.2 Das Liniendiagramn

Ein Liniendiagramm ist ein Diagrammtyp, bei demzeime Punkte einer Datenrei
oder Zeitreihe mit Hilfe von Liniensegmenten verten werden. Die Werte werd
durch die Hohe der Punkte, gemessen an d-Achse, dargestellt. Sie ist eine
Punktdiagramm sehr a&hnlich, unterscheiden sich cjedon einem wesentliche
Merkmal. Liniendiagramme haben nur eine Werteachse Gegensatz zui
Punktdiagramm mit zwei Werteach. Die zweite Achse im Liniendiagramm ist (
Rubrikenachse. Liniendiagramme dienen in der Regel Vergleich von Werten Ub
die Zeit und eignen sich auch besonders, um Enlwgen und Trends :z

veranschaulichen. Digbbildung 4 zeigt ein solches Liniendiagnam

77777

sssss

31210 10011 200111 EXEn 100211 21.02.11 [EXERTY 140311 240311

Abbildung 4: DAX- Chartverlauf vom 01.01.2011 bis 01.04.2011; mit-Achse als Zeit und Y-Achse als Preis.



2.1.2.3 Das Saulendiagrami

In einem Saulendiagramm werden Haufigkeitsvertgdumdiskreter Werte und Reil-
gruppen als Satze dargestellt, indem auf d-Achse senkrecht stehende, ni
aneinander grenzende Sé&ulen gleicher Breite datfjesnd nach einer Kategor
gruppiert werden. Die Werte werden durch die Hobe $S8ulen, gemessen an de-
Achse, dargestellt. Die Kategorien werden an c-Achse angezetgSaulendiagramm
werden normalerweise zum Vergleich von Werten insel@iedenen Kategorie

verwendet. Die Abbildng 5 zeigt ein solches Saulendiagramm.

W Datenreihe 1

M Datenreihe 2

Datenreihe 3

Abbildung 5: Beispiel eines Saulendiagramms

2.1.2.4Das Balkendiagramm

Das Balkendiagrammist ein sehr héaufig genutzteDiagrammty; und ist dem
Saulendiagrammsehr ahnlich. Es stellt die Datenreihen, im Gegensaum
Saulendiagpmm, durch waagerecht liegende Balken dar. Eseeigich sehr gut zt
Veranschaulichung von Rangfolgen und zum Vergleich Werten in verschieden:
Kategorien. Die Abbildng 6 zeigt ein solches Balkendiagramm.
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‘ Datenreihe 3
‘ M Datenreihe 2

M Datenreihe 1

=N W B U N W©

Abbildung 6: Beispiel eines Balkendiagramms

2.1.2.5 Das Kursdagramm

Ein Kursdiagramm zeigt Reihen als einen Satz vamehi mit Markierungen fir de
hdchsten, den niedrigsten, den Sct- und den Er6ffnungswert an. Die Werte wert
durch die Hohe der Markierung, gemessen an c-Achse, dargestel (Microsoft
Press, 2005Kategorien werden an del-Achse angezeigt. Kursdiagramme eignen
besonders guyym Schwankungen innerhalb eines Zeitraums deutlicimacher Die

Abbildung 7 zeigt ein@ches Kursdiagramm.

67,00€

66,00€
65,00€ ~¢|
64,00€

63,00€ -

J’H Startkurs
I

62,00€ Héchstpreis

61,00€

Tiefstpreis
60,00€

58,00€

Schlusskurs

SBO00E

(%3 (% (% (%] O (%
A F PP g &
DD DD DD DD D

& P P P QT PPN

Abbildung 7: Beispiel eines Kursdiagramms einer fiktiverHandelsware

2.1.2.6Das Netzdiagramm

Ein Netzdiagramm oder au Spinnennetzdiagramngenannt, wird zur grafisct
Darstellung von Werten mehrerer, gleichwertigerdgatien in eineSpinnennetzform
genutzt. Es eignet sich besonders gut zum Viseadisi vonEvaluatione fur zuvor
festgelegte Kriterierzweier bzw. mehrereSerien. Fiur jedeKategori¢ gibt es eine

Achse wobei mindestens 3 Kategorien existieren mussah dir alle Achsen di

9



gleiche Orientierung gilt. Alle Achsen werden kférmig innerhalb von 360 Grad
gleichméaiig angeordnet. Die Werte jeder Serie werdé Linien verbunden. Nutzt
man mehrere Serien werden diese verschieden farbdhcgestellt. Die Abbildung 8

zeigt ein solches Netzdiagramm.

Temperatur —Berlin

—London
Moskau
Oslo

— Rom

Abbildung 8: Netzdiagramm fir die Durchschnittstemperaturen verschiedener Stadte. Abbildung aus (ZM
Internet e.V., 1995)

2.1 PAA - Piecewise Aggregate Approximation

Die Piecewise Aggregate Approximation (PAA), oder auch Piecewise Constant
Approximation genannt ist ein sehr einfaches Vedgatzur Datendimensionsreduktion
von Zeitreihen. Durch das Einteilen von ZeitreihergleichgroRe Segmentabschnitte
und die Berechnung der einzelnen Mittelwerte figleje Abschnitt, kbnnen Zeitreihen
sehr genau approximiert werden. Je kirzer die Se@bschnitte, desto genauer die
Approximierung, aber umso geringer die Datendin@rsieduktion. Die Mittelwerte
kénnen schnell berechnet werden und ermdglicheeffii@ente Indexierung (Keogh &
Pazzan, 2000), (Keogh E. J., 2001) .

* Der Mittelwert

Der Mittelwert oder auch arithmetisches Mittel gemiaist der Quotient aus der

Summe aller beobachteten Werte und der Anzahl daté/Das arithmetische

Mittel einer Menge vom WertenXx,, X,,...,%, ist somit definiert als
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2.2.1 PAA - Repréasentation

Eine Zeitreine X der Langen wird im m-dimensionalen Vektorraum reprasentiert

durch den VektoF (X) = (X, X,... Xqs Xs-er X JMit m< n, m,nON und "0z . Der
m

Mittelwert Z wird durch die nachfolgende Gleichung berechnet.

PAA minimiert somit die Datendimension in dem es die Zeitreihe im gleich grol3e,

nicht Uberlappende Segmentabschnitte geteilt vitzer jeden Segmentabschnitt wird
ein Mittelwert berechnet, der die Zeitreihe sehmageapproximieren kann. Hierbei ist
die Lange der Segmentabschnitte von Bedeutungadget die Segmentabschnitte
gewahlt werden, desto niedriger die resultierengpréximation. Der neu entstandene

Vektor, der aus den Mittelwerten besteht, stelk deduzierte Reprasentation der

Zeitreihe dar und wird als PAA-Signatur, der auszeinen Koeffizienterc, besteht,

bezeichnet. Er kann i®(n) berechnet werden. Die Abbildungen 9 - 11 zeigem ei

solche Transformation.

wWerte

I
0 2 4 &} 8 10 12 14 16
Zeitschritte

Abbildung 9: Zwei Zeitserien als Liniendiagramme, de jeweils aus 15 Punkten bestehen. Abbildung aus
(Google, 2012)
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Werte

Abbildung 10:

Werte

Abbildung 11:

2.2.2 Distanzm

In vielen Bereich

T
0 2 4 B 8 10 12 14 16

Zeitschritte
PAA Beispiel der erstel Zeitserie aus Abbildung 9 mit m = 9Segmentstiicke
=
= i
[ .'.
e
fo
o -
.""'-.
T + o
o4 4 e
p—
T T T T T T T T T
0 2 4 B 8 10 12 14 16
Zeitschritte
PAA Beispiel der zweiten Zeitserie aus Abbildung #nit m = 5 Segmentstiicke

all zweier Zeitreihen in der PA-Repréasentatior

en der Naturwissenschaften inseegsman sich fir diMessung der

Ahnlichkeit zwischen verschiedenen Objekten und init dazu sogenann

Ahnlichkeits- oder aucrDistanzmaReDistanzmaRe werden in der Regel metrisch

skalierte Variablen genutzt, wahrend AhnlichkeitsmaRe fur m@h oder ordina

skalierte Variablen genutzt werden. Moéchte man Ziwei Zeitreihen X und

feststellen, wie ahnlich beide sind, wird das Digtaald agewende

2.2.2.1 Das Distanzma

Seil ={1,2,...N}

eine endliche Menge. Eine Funktid: I x| - R heift Distanzmal}

(Hartung & Elpelt, 198 oder Distanzfunktion, falls fur alle j O gilt:
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Die Funktionswerted(i, ) lassen sich zu einer symmetrischéix N- Matrix

(d(i. ) ,anordnen und heift Distanzmatrix.

In der Mathematik sind verschiedene Distanzfunigiohzw. Metriken bekannt.

2.2.2.2 Die Minkowski-Metrik

Ein allgemein gebrauchliches Distanzmal3 in der Biattik ist die Minkowski-Metrik,

benannt nach dem deutschen Mathematiker und Pinyddeenann Minkowski, mit

o.bxx)=(Sx 5 = {Su- T

wobei p fir den Metrikparameter der Minkowski-Metrik steBter Parameterp ist

eine Art ,Gewichtungsfaktor®. Mit gro3er werdendgm kommt es zu einer immer
starkeren Gewichtung grof3er Distanzen und zu acdewécheren Gewichtung kleiner
Distanzen.x, und x, stehen fur die konkreten Auspragungen der Objektad | auf

der k-ten Variable. Um Abweichungen nach unten und aberpbetrachten, wird der
Betrag genommen. Das Endresultat nach eingesetdterten ist eine konkrete
Kennzahl fur den Abstand zwischen zwei Punkten lzvei Objekten. Diese Kennzahl

lasst sich paarweise fur alle Objekte bestimmen mmceiner, wie bereits erwahnt,

Distanzmatrix zusammenfassen.

2.2.2.3 Das Euklidische Distanzmafl

Das Euklidische Distanzmald ist ein Spezialfall d&nkowski-Metrik, wobei der

Metrikparameterg = 2 gesetzt wird. Der Euklidischen Abstand ergibt sielnn mit:

dz(w)aZ/ZM %[

13



Als Kennzahl fiur den Abstand zwischen zwei Objekae allen relevanten Variablen

erhalt man eine Kennzahl als Teilmenge ®dn Weil die Distanzen quadriert werden,

kdnnen keine Werte kleiner Null vorkommen.

2.2.2.4 Die City-Block-Metrik

Ein weiterer Spezialfall der Minkowski-Metrik istied City-Block-Metrik oder auch
Manhattan-Distanz genannt. Der Metrikparameter wirdler City-Block-Metrik auf

g =1 gesetzt. Die Distanz zwischen zwei Punkten wisdché Summe der absoluten

Differenzen ihrer Einzelkoordinaten definiert, mit

d,(x.%)=3.

i=1

% =%

2.2.2.5 Die Mahalanobis Distanz

Die Mahalanobis Distanz ist ein Distanzmall zwisclmwei Punkten in einem

Vektorraum mit:

dy (x.%)=(x x)F i . x)’

X und X sind Vektoren von Koordinaten zweier Punkten ufd ist eine

Kovarianzmatrix. Die Kovarianz stellt einen monaon Zusammenhang zweier
Zufallsvariablen mit gemeinsamer Wahrscheinlictduatteilung dar. Damit ist eine
Kovarianzmatrix eine Matrix aller paarweisen Kowaazen der Elemente eines
Zufallsvektors. Die Kovarianzmatrix enthalt Infortimmen Uber die Streuung eines

Zufallsvektors und Uber Korrelationen zwischen dassomponenten.

Dieses Distanzmald nutzt man, wenn lineare Kormelati der Variablen untereinander
vorliegen, um diese heraus zu rechnen. Zuvor KertelMerkmale werden dabei erst
durch Datentransformation modifiziert, so dass Uridertheit entsteht. Danach wird
die quadrierte Euklidische Distanz berechnet, éreMahalonobis Distanz entspricht.

2.2.2.6 Weitere Distanzmalie

Weitere Distanzmal3e sind zum Beispiel das Pearsstasizmal3, welches ahnlich dem
Euklidischen Distanzmal? die StandardabweichunginesBerechnung mit aufnimmt
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oder das Gower-Distanzmal3, dhnlich der City-Bloak:lk, welches die Spannweite
(Distanz zwischen dem grof3ten und dem kleinstersies) mit beriicksichtigt.

2.2.3 Euklidische Distanz und die PAA-Reprasentatio

Das wohl am haufigsten verwendete Distanzmal ist Eliklidische Distanz. Die

Bedeutung ist wohl darauf zurlckzufiihren, dass Isiealtlich dem im Alltag

verwendeten Abstandbegriff entspricht. Die georsetre Distanz zweier Objekte im
Raum wird hier auf Basis der kirzesten direktenfdEnting zueinander bestimmit.
Neben lhrer Anschaulichkeit hat die Euklidischet®m den Vorteil, dass die daraus
abgeleiteten Konfigurationen jeder Zeit orthogonal das Koordinatenkreuz rotiert
oder an den Achsen gespiegelt werden kénnen. Dstamien bleiben dadurch
unverandert. (Sturm, Hans-Jorg, Markenfit und Mavkiekung, 2012). Dies machen
sich Yi & Faloutsos und Keogh et al. zu Nutze urehden dies auf Zeitserien an. Sie

beweisen fur die Euklidische Distanz, dass dasabishald,,, zweier ZeitreihenX

und Y in der PAA-Reprasentation das Korrektheitskriterid'Lower Bounding

Lemma" (untere Schranke) einhalt, mit
dppn(X, V) = /%q/Z(—x—‘y)Z <d Xy
i=1

* Lower Bounding Lemma

Seien O, und O, zwei Objekte undd die Euklidische Distanz. Dann gilt:

Wenn der Abstand zweier ahnlicher Objekte kleinderogleich £ im
Originalraum ist, dann ist er auch kleiner odeidjies im Merkmalsraum,

mit
Qyenma( M (0,) M(0,))£d(0,,0) .

Anders ausgedriickt bedeutet das Lower Bounding L&maenn man den Abstand
zweier Objekte im Originalraum vergleicht und delosfand der Approximierten beider
Objekte vergleicht (in diesem Fall die PAA-Objektsd ist der Abstand zwischen den

Approximierten kleiner oder gleich dem Abstand @&jekte im Originalraum.
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Tabelle 1 zeigt noch einmal anschaulich den Zusamhargy zwischen der Euklidischen

Distanz und der Lower Bounding Distanz.

Tabelle 1: Zusammenhang zwischen Euklidischer Distanund Lower Bounding Distanz

Euklidische Distanz d(X,Y) Lower Bounding Distanz d ;(X',Y")
X X
|
b b
1 X l

: 1
d(X,Y) ds(X',Y')

d(X,Y) =,/i(x— y)? dpAA(X,V)E\/%q/i(X-W)Z

2.3 SAX - Symbolic Aggregate approXimation

Auf dem Gebiet des Data Mining (Siehe Anhang A.4)rden viele High-Level-
Reprasentationen fir Zeitserien vorgeschlagen, lespielsweise die Fourier-
Transformation, Wavelets (Siehe Anhang A.5) oderhaverschiedene polynomielle
Modelle nutzen. Die Abbildung 12 illustriert einemierarchischen Ansatz
unterschiedlicher Reprasentationen von Zeitseféale Wissenschaftler haben sich
ebenfalls mit Symboldarstellungen von Zeitseriezsdhaftigt, wobei keiner der
Reprasentationen potenziell Forschern erlaubt, Flidle an Datenstrukturen und
Algorithmen bei der Textverarbeitung oder in depiBformatik zu nutzen. In den
letzten Jahrzehnten sind viele solcher Symboldametgeen von Zeitreihen

veroffentlicht worden, wobei alle Symboldarstelleng mit zwei grundséatzlichen
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Schwachpunkten versehen sind. Erstens ist die Dabtemsionalitat der
Symboldarstellung dieselbe wie seine Ursprungsddiees hat zur Folge, dass alle
Data Mining - Algorithmen eine schlechte Skalieksar bei hoher
Datendimensionalitét  aufweisen.  Zweitens,  obwohl stAbdsmafle  auf
Symboldarstellungen definiert wurden, haben diese geringe Korrelation mit dem
Abstandsmald der urspringlichen Zeitreihe. Ein niggear Ansatz ist die Symbolic
Aggregate approXimation. SAX ermoglicht die Datenensionalitat zu reduzieren und
erlaubt auch ein Distanzmald zu definieren, dasJatergrenze das Abstandsmall der
originalen Zeitserie hat (Lower Bounding Lemma).>XS#urde erstmals von Lin at al.
vorgestellt und wandelt Daten von Zeitreihen in Bgiische Strings um. Damit ist es
das erste symbolische DimensionsreduktionsverfatitenZeitreinen, welches auf
einem Distanzmal definiert wurde. Basierend auf dmivor beschriebenen PAA-
Verfahren nutzt SAX die PAA-Signatur, um diese zskrktisieren. Dariiber hinaus
eroffnet die Verwendung einer Symboldarstellung di@ir zu bestehenden
Datenstrukturen und Stringmanipulationsalgorithnerder Informatik wie Hashing,
regulare Ausdriicke, Pattern Matching, Suffix-Baumeard viele andere mehr (Lin,
Keogh, Wei, & Lonardi, 2006). SAX hat innerhalb ker Zeit auch Spuren in der
Industrie und anderen Wissenschaftsbereichen lasgam. Beispielsweise analysiert
Androulakis komplexe kinetische Mechanismen in Ankeng an SAX (Androulakis,
2005). Dr. Amy McGovern von der Universitat Oklat leitet ein Projekt basierend
auf einem dynamisch relationalen Modelle fur eirebesserte Vorhersage gefahrlicher
Wetterbedingungen. Sie nutzt eine diskrete Reptdsen von meteorologischen
Realwertdaten. Dabei nutzt sie SAX zur Erstellungn vdiskreten Daten aus
kontinuierlichen (McGovern, Kruger, Rosendahl, &Bgemeier, 2006). Ein weiteres
Beispiel ist die Verwendung von SAX und Zufallsgidjonen, um Motive in
telemedizinischen Zeitreihen zu finden (Duchenetb&g & Rialle, 2004), (Silvent,
Carry, & Dojat, 2003), (Silvent, Dojat, & Garbayo@®). Unter anderen nutzt auch der
Telekommunikationskonzern AT&T SAX zur ErkennungivAnomalien in Zeitserien

fur sehr groRe Datenmengen (Riehl, 2010).
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Time Series Representations
g

Data Adaptive Non Data Adaptive
Sorted Coe fficients  Plecewise Singular Symbolic Trees Wavelets Random Spectral Piecewise
Polynomial Value . Mappings Aygnjg(m:
/ ™ \ Decompos ition Approximation
Piccewise Linear Adaptive Piecewise Natural Strings Orthonormal Bi-Orthonormal Discrete Discrete
Approximation Constant Language Fourier Cosine
i . Approximation N Z . Transform Transform
Interpolation Regression . " _ Haar Daubechies Coiflets Symlets
Lower Non- Lower ? b
. . dbn n>1
Bounding Bounding

Abbildung 12: Hierarchie verschiedener Zeitreihendastellungen. Die Blattknoten sind die eigentlichen
Darstellungen und die internen Katen sind die Klassifizierungen der Anndherungen
(Lin, Keogh, Wei, & Londi, 2006)

2.3.1 SAX Transformation

SAX transformiert eine ZeitreiheX der Langen in einen String beliebiger Langs,
w< nund einem Alphabe}. der GroRd > 2.

Der SAX-Algorithmus setzt sich aus zwei Schrittersammen. Im ersten Schritt wird
die ,originale® Zeitreihe in die PAA-Darstellung @ébuhrt und diese
Zwischendarstellung wird in eine Zeichenfolge, veittr des zweiten Schritts,
umgewandelt. Die Uberfiihrung der PAA-KoeffizientienBuchstaben ist in der Zeit
O(n) effizient durchfihrbar. Die Verwendung von PA®A ersten Schritt bringt, wie
bereits oben erwdhnt, den Vorteil einer einfachennd u effizienten
Datendimensionsreduktion.

Die Diskretisierung der PAA-Signatur einer Zeiteeiim SAX kann mit einer Tonleiter
aus der Musik verglichen werden. Die in ein bestiesn Intervall fallenden
Koeffizienten der PAA-Signatur werden einem Buchsta bzw. einem Ton
zugeordnet. Die Intervalle werden mit Hilfe eineau§schen Normalverteilung
bestimmt. Dabei wird die Gaul3normalverteilung sweteilt, dass in jedes Intervall die
gleiche Flache fallt. Abbildung 13 verdeutlicht sli&ine Normierung bei der Nutzung
mehrerer Zeitreihen mittels Z-Standardisierungvist der Transformation notwendig,
da normierte Zeitreihen der Normalverteilung folger dies eine der Grundannahmen
fur die Effizienz des Verfahrens ist. Folgen Zeltem nicht der Normalverteilung,
wirden die PAA-Koeffizienten nicht gleichmaliig alié Buchstaben verteilt werden.

Ein direkter Vergleich zweier Zeitreihen ware daeisgeschlossen. [Schafer Diplom]
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Zeitreihe

i — _ _ _ ___ _ _ _.__ _ _ _ _ _______ Dimensionsredultion

PAA-Reprasentation

BunjlapaAeLLION

—————————— —————— — — ——— — — — —E— = = = = = = Diskretisierung
SAX-Reprasentation BiciciciciciciAiaiDiDiD!

Abbildung 13: SAX Transformation: Diskretisierung der PAA-Koeffizienten mittels Normalverteilung

2.3.1.1 Gauldsche Normalverteilung

Die Gaul3sche Normalverteilung ist eine Wahrschehikitsverteilung, benannt nach

Carl Friedrich Gaul3. Die Parameter der Normalviertgi sind der Erwartungswey
und die Varianzo?®. Die Varianz ¢® ist die Quadrierte Standartabweichumg.
Mithilfe der Standardtransformation konnen Normaedungen mit beliebiger
Parameterlage in die Standardnormalverteilung iiberfverden /=0 und o® =1).
Bei einer grafischer Darstellung (Abbildung 6) étgidie Dichtefunktion einer
Normalverteilung eine glockenférmige Kurve, die syatrisch zur Gerade® = (/ ist.
Die Dichtefunktion einer Normalverteilung mit demrBmeternu und > 0 hat die

Form:

PRY
f(x)= exp(—wj Mit —0 < X< o0
20

1
N2Urlo
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99,73%
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Abbildung 14: Gauf3sche Normalverteilung. Abbildungaus (Springer-Verlag GmbH)

2.3.1.2 Z-Standardisierung

Mit Hilfe von Standardisierungsverfahren werden kheale in ein gleiches

GroRRenverhaltnis transformiert. Die Z-Standardisigr nutzt dazu den Mittelwerts

und die Standardabweichurg. Die Berechnungsvorschrift fir die Z-Standardisiey

bzw. Z-Normalisierung von Variablen ist:

X T , mit 4 = Mittelwert undo = Standardabweichung der Verteilung.
o

Diese Methode bietet gegeniiber anderen Standatdhg®verfahren eine Reihe von
Vorteilen. Der Mittelwert der Verteilung ist nacterdStandardisierung gleich 0, die
Standardabweichung betragt 1. Am Vorzeichen desdatdisierten Wertes ist zu
erkennen, ob die Merkmalsauspragung groRer odereklals der Mittelwert ist. Fast

alle standardisierten Werte liegen in einem Intém@n -2 bis 2. Ist der Betrag nach der
Standardisierung gréf3er als 2, so handelt es sicheinen Ausrei3er. Allerdings

konnen urspringlich nichtnegative Variablen negatiVerte aufweisen. Die Deutung
des standardisierten Wertes im Merkmalskontexdabtvierig. (Universitat Greifswald,

2013)

Abbildung 15 zeigt eine solche Z-Normalisierung mweZeitserien anhand der
Abbildung 9 aus 2.2.1.
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Werte

Zeitschritte

Abbildung 15: PAA zweier Zeitserien mit Z-Normalisierung (Google, 2012)

2.3.2 Breakpoints

Eine sortierte Liste von Intervallgrenzen oder augteakpoints B genannt, mit
B=8,06,,.-8.1, B,<[ und B,=-,[ =, teilt die Flache unter der normierten
GauRkurve N(0,1) fur ein Alphab&t der GréRd =|X| in gleich groRe Teile. (Google,
2012) Die Breakpoints kénnen fir ein gegebenes &iph fest im System hinterlegt
und mittels einer Lookup Table (siehe Anhang A.2¢hgeschlagen werden. Hat man
die PAA-Koeffizientenc eines Signals, die GroRe eines Alphaletsnd alpha, (j-te
Buchstabe des Alphabets) vorliegen, kann die PAgx&ur in SAX tberfuhrt werden.
Ein PAA-Koeffizient der durch die Breakpoints insdgte Intervall fallt, wird auf den
j-ten Buchstaben abgebildet, nit= alphg und ¢ U[A3_,, 4) . Abbildung 16 zeigt die

Intervallgrenzen (Schnittlinien) zweier SAX-transfoerter Zeitreihen fir ein Alphabet

der Grol3e 4 anhand einer Normalverteilung und eldo#nalisierung.

Bun|ia]de AIDLIION

Zeitschritte

Abbildung 16: Intervallgrenzen zweier SAX-transformierter Zeitreihen fiir ein Alphabet der GroR3e 4
(Google, 2012)
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2.3.3 Die SAX-Metrik

SAX fuhrt eine neue Metrik zur Messung des Abstanwischen Strings mit Hilfe des
Euklidischen Abstandes und der PAA-Distanz ein. &inng C stellt eine konvertierte

PAA-SignaturC mit seinen Koeffizientert; dar und ist damit ein Vektor. Die Funktion

MINDIST( X, ?) gibt die minimale Distanz zwischen zwei Stringégantationen der

"originalen” Zeitserien X und Y wieder.

MINDIST(X,Y) E\/%\/i( dist % VY)?

Die distFunktion wird unter Verwendung einer Lookup Takille einen spezifischen
Satz von Breakpoints ausgefihrt. Tabelle 2 zeigte esolche Tabelle fur die

Alphabetlange 4 . Jeder einzelne Wert der Tabelié wie folgt berechnet:

Fur jedezelle(r,s)qilt, dass

0 falls [r-9/<

lgmax(r s)—l_ ﬁmin(r s) sonsi

Zellg(r, 9 ={

ist.

Tabelle 2: Lookup Table - Minimaler Abstand zweier SAXKoeffizienten bei Alphabetlange 4 (Google, 2012)

Alphabet a b c d
a 0 0 0,67 1,34
b 0 0 0 0,67
C 0,67 0 0 0
d 1,34 0,67 0 0

Die Definition des Distanzmalles &hnelt der Distamzier PAA-Signaturen. Der

Unterschied liegt darin, dass die Distanz zwiscllem beiden PAA-Koeffizienten
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(X —Y) durch die Hilfsmethode zum Nachschlagen der Byeits Zelle(r,s) ersetzt

wird. Die Besonderheit der SAX-Reprasentationdsiss durch die Diskretisierung der
minimale Abstand zwischen zwei benachbarten Bubkstsehr klein werden kann,
falls die diskretisierten PAA-Koeffizienten direkan einer Diskretisierungs-
intervallgrenze, also den Breakpoints, liegen. Deldunuss der Abstand zwischen den
benachbarten Buchstaben als 0 definiert werdenomstien entspricht der Abstand
zweier Buchstaben dem minimalen Abstand der daheisdiegenden Intervalle, die

anhand der Breakpoini§ . .,:~ 8 definiert werden. (Schafer, 2008)

ming ¢ )

2.4 CGR - Chaos Game Representation

Die Chaos Game Representation ist eine grafischist&aing einer eindimensionalen
Sequenz, wie zum Beispiel eine Gensequenz, eihii@eutscher Sprache oder wie in
diesem Fall eine SAX-Sequenz. Sie wurde erstmalslalenunabhangige Darstellung
fur Gensequenzen von Jeffrey 1990 in (Jeffrey, 1988geschlagen. Jeffrey wurde bei
der CGR von einem Algorithmus zur Darstellung voakiEalen, auch "Chaos Game"

genannt, inspiriert (Baransley, 1988).

2.4.1 Chaos Game - Erstellung der Grundstruktur undderen Aufteilung

Das Chaos Game ist mathematisch gesehen einvegdtunktionensystem (IFS). Ein
IFS ist ein paarweiser Satz von linearen Gleichaonge der Form x = ax+ by+ ¢,

y =cx+ dy+ f und gibt die Formel zur Berechnung der neuen Waértdie X- und y -
Koordinate wieder. Ein neuer Punkt wird im Chaosm@adurch die halbe Lange
zwischen dem vorhergehenden Punk und dem bestimmtkpunkt festgelegt.
Beispielsweise braucht man fur die Lésung des Claase mit drei Ecken und einer
Gleichung fur jede Koordinate insgesamt sechs Gilgigen. Fasst man die beiden
obigen Koordinatenformeln zusammen, ergibt sicle &mmpaktere Schreibweise mit:

w(X, y)=(ax+ by+ e cx dy .

Dadurch erhalt man eine Gleichung, manchmal aush,Abbildung* oder ,Karte*
bezeichnet, wobei jede Abbildung durch 6 Koeffit@anbeschrieben wird. Nun kommt

noch hinzu, dass jeder Eckpunkt mit einer Nutzurasacheinlichkeit versehen ist.
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Diese wird im 7. Koeffizienten pj abgelegt. Meistens geht man jedoch von
gleichverteilten Wahrscheinlichkeiten aus. Die Thme 3 und 4 zeigen fur ein
gleichseitiges Dreieck und fir ein Quadrat die GeHiaienten und die dazugehdrigen
gleichverteilten Wahrscheinlichkeiten, dem IFS-Céikffrey, 1990).

Tabelle 3: IFS-Code eines gleichseitigen Dreiecks

w a b C d e f p

1 0.5 0 0.5 0 0.33
2 0.5 0 0.5 0.5 0.33
3 0.5 0 0 0.5 0.5 0.5 0.33

Tabelle 4: IFS-Code eines Quadrats

w a b C d e f p

1 0.5 0 0 0.5 0 0.25
2 0.5 0 0 0.5 0.5 0.25
3 0.5 0 0 0.5 0.5 0 0.25
4 0.5 0 0 0.5 0.5 0.5 0.25

Jeffrey nutzt die Kenntnisse Uber das Chaos Game Desoxyribonuklein-
sauresequenzen (DNA-Sequenzen) besser darstell@immen. Dabei geht er wie folgt
vor. Eine Gensequenz besteht aus vier Buchstaberic‘a ‘g, ‘t* bzw. ‘u‘ bei
Ribonukleinsduresequenzen (RNA-Sequenzen), wobder jeBuchstabe fur die
Abklrzung der jeweiligen Base ist, mit a fur Adinmftr Cytosin, g fir Guanin, t fur
Thymin und u fir Uracil. Vier Buchstaben geben daire zu nutzende Form vor und
zwar ein Quadrat mit seinen vier Ecken. FUr den fkoenten p wird eine
Gleichverteilung angenommen und wird nicht weitetréichtet. Jede Ecke wird mit
einer der Basen beschriftet. Der Startpunkt ist Bitelpunkt des Quadrates. Ist
beispielsweise ‘g’ die nachste Base die dargestelitien soll, wird der darzustellende
Punkt in der Mitte zwischen dem vorhergehenden Punl der ‘g'-Ecke abgetragen.
Fur die Gensequenz ,gaattc” zeigt die Abbildung dié Darstellungen fir jeden

einzelnen Abtragungsschritt. Der Beginn ist Link&o und endet rechts unten.
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a t a t a t
g ‘ga” gaa
c g c g c g
a t a t a t
"gaat" "gaatt" "gaattc"

Abbildung 17: CGR Darstellungen fir die GensequenZgaattc"

CGRs konnen, wie bereits angedeutet, in verschead&ormen reprasentiert werden.
Dies gilt nicht nur im zweidimensionalen sonderclaim dreidimensionalen. Wahrend
die Anzahl der Ecken im Zweidimensionalen praktidefliebig gewahlt werden

kénnen, wobei die Mindestanzahl der Ecken 3 betgibt es im Dreidimensionalen

Beschrankungen, die nicht jede Form zulassen. Augsgpaunkt flr die Darstellungen im

Zweidimensionalen ist ein regelmafiges n-gon (Rwilyg Die Regelmafigkeit bei

einem n-eder (Polyeder) muss ebenfalls gegeben Bamminimale Anzahl an Ecken

betragt 4. Aufgrund der geforderten RegelméaRigkesst sich im Dreidimensionalen
nicht jeder Kérper nutzen. Die Tabelle 5 zeigt éién zweidimensionalen Raum (2D)
und dreidimensionalen Raum (3D) die charakterisgacPolygone bzw. Polyeder mit
der dazugehdrigen Anzahl an Ecken.
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Tabelle 5: Charakteristische Polygone im 2D und chakteristische Polyeder im 3D

2D 3D
Anzahl Ecken Bezeichnung Anzahl Ecken Bezeichnung
3 Dreieck 4 Tetraeder
4 Quadrat 6 Hexaeder
5 Pentagon 8 Wiirfel
6 Hexagon 12 Dodekaeder
© Kreis o0 Kugel

2.4.2 CGR-Bitmaps und SAX

Basierend auf der Punktdarstellung der CGR vonrelefhdchte man Bitmaps (Bilder)
zur Darstellung von Zeitserien nutzen. Fir einefisteandigen Quartarbaum (siehe
Anhang A.3) als Bild im Zweidimensionalen wird édGR-Bitmap wie folgt erzeugt.
Die Grundstruktur ist ein Quadrat. Jede Ecke e@peadrates erhélt aus einem Alphabet
2. einen Buchstaben zugeordnet. Setzt man ein ndewsi€puadrat mit der linken
unteren Ecke in den Koordinatenursprung eines $iadikeen Koordinatensystems, so
ergeben sich bei einem Alphabet der Lange 4 mit Bechstaben A, B, C, D, die
Punkte A = (0,0), B = (1,0), C = (0,1) und D = (1,Das Quadrat wird anschliel3end in
vier gleichgroRe Quadrate geteilt, so dass der alastzwischen zwei benachbarten
Buchstaben gleich grofl3 ist. Damit ergeben sich mewe Quadrate. Dieses Schema
entspricht einem Rekursionsanfang fir CGR mit ein8AX-Suffix der Lange 1.
Wiederholt man die Aufteilung der zuvor erzeugtena@rate entspricht dies einem
Rekursionsschritt. Dies wird so lange wiederhois, tman die gewinschte Aufteilung
bzw. die Rekursionstiefe erreicht hat. (Kumar, l&ol Keogh, Lonardi, &
Ratanamahatana, 2005) Die Anzahl der Quadrate in derschiedenenr

r+1)

Rekursionstiefen betramz( mit r J0,...,0. Dies entspricht einer Vervierfachung

der Quadrate pro Rekursionsschritt. Die Langeeines SAX-Suffix gibt die
Rekursionstiefe, mil =r -1, vor und damit auch die Anzahl der Aufteilungsgtéwr
Im 3D Bereich wird analog dem 2D Bereich vorgegangem Beispiel eines Wiirfels

wirden 8 Eckpunkte und damit 8 Kuben sich als Gstro#étur ergeberDie Anzahl der
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Kuben in den verschiedenemRekursionstiefen betré@s(”l) , was eine Verachtfachung
der Kuben pro Rekursionsschritt entspricht. Im Afftgeinen kann man festhalten, dass
ein exponentielles Wachstum aufgrund der Rekursio8D- oder 3D-Bereich gegeben
ist.

2.4.2.1 Beschriftung der Grundstruktur nach SAX-Sufixe und dessen
Haufigkeit

Als zweiter Schritt wird die Beschriftung der eilen Quadrate vorgenommen.
Ausgehend von der Grundstruktur und seinen vierdgaian, entspricht das linke
untere Quadrat dem SAX-Suffix A, das rechte un@oadrat dem SAX-Suffix B, das
linke obere Quadrat dem SAX-Suffix C und D das teetQuadrat. Im ersten
Rekursionsschritt sind 16 Quadrate mit den dazuggd® Suffixen AA, AB, AC, AD,
BA, ..., DD zu belegen. Die linken unteren 4 Qugslrdie zuvor aus dem Quadrat mit
dem Suffix A hervorgegangen sind, haben den Anfamgsstaben A. Der zweite
Buchstabe ist wie zuvor beschrieben gleichermafererteilen. Analog werden die
restlichen 12 Quadrate beschriftet. Diese Bescimgftist flr jede Rekursionstiefe
anzuwenden. Abbildung 9 zeigt eine grafische Remtasionsform als Grundstruktur
eines Quartarbaums, der bis zur zweiten Rekursedasinit den dazugehorigen SAX

Suffixe dargestellt ist.

C D CC|CD|DC DD sl oe e sfl e
CA|/CBDADBI |l s e s
n R AC|ADBCBD] s o sl el
AN ABBABBI |l ol s s

Abbildung 18: Quartarbaum einer Sequenz tUber dem Aphabet {A, B, C, D} in unterschiedlichen
Rekursionstiefen

Zu jedem SAX-Suffix gibt es eine Haufigkeit, wietogin Suffix in der SAX-
Darstellung vorkommt. Diese Haufigkeit ist aussggkbend fir die Farbdarstellung

der einzelnen Quadrate.
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2.4.2.2 Farbdarstellung der CGR-Bitmaps

Der letzte Schritt der CGR ist jedem Quadrat mit gleichen SAX-Haufigkeit eine
Farbe zuzuordnen. Quadrate mit den gleichen SAXfigkeitswerten bekommen die
gleiche Farbe. Quadrate unterschiedlicher SAX-Hykeftswerte werden beispielsweise
durch eine Grauabstufung dargestellt, in dem digbd-aWeil3 die geringste
Haufigkeitsauspragung darstellt und Schwarz diehdtic Abbildung 19 verdeutlicht

noch einmal die Vorgehensweise der CGR.

C D CCCDDCDD
CACBDADB

nl B ACADBCBD
AA ABBABB

75 2131 epcce
ol oo ADDCAAR
2211

1l 9 REIPIE BBBBACD

Abbildung 19: Oben) Vier mogliche SAX-Symbole werden auf den vier Quadnten eines Quadrates
abgebildet, inkl. Rekursionsschritt 1 und die Suffke der Lange 2.Mitte) Eine Sequenz aus 28 Buchstaben,
wobei die Anzahl von SAX-Symbolen auf das Raster éstragen wird. Unten) Die Ubertragenen Werte kénnen

linear einer Farbpalette zugeordnet werden, wodurctein CGR entsteht.

2.4.3 Abhangigkeiten in der CGR

Je nach Anwendungsgebiet und Ergiebigkeit der maign Zeitserie wird die CGR mit
der Anzahl seiner darzustellenden Quadrate vaniddges hangt im Wesentlichen von
zwei Faktoren ab, der PAA-Lange und der SAX-Sulféige. Die PAA-L&nge gibt an,
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in wie viele Segmente die originale Zeitserie atdgewurde. Sie sollte nicht zu klein
gewahlt werden, damit hinreichend verschiedene SAKixe erstellt werden kbnnen,
aber auch nicht zu grofl3, um mdoglicherweise wich#gesschlage in der originalen
Zeitserie zu Uberdecken. Da es fur die PAA-Lange IRatentrezept gibt, muss der
Benutzer durch Ausprobieren fur sich die beste hgstinden. Ebenso verhalt es sich
mit der SAX-Suffix-Lange. Wird die SAX-Suffix-Langeu grol3 gewahlt, relativieren
sich die Haufigkeiten der einzelnen SAX-SuffixeeBiarbdarstellungen der jeweiligen
SAX-Suffixe im CGR wirden ahnlich oder gleich ausse und eine Unterscheidung

unbrauchbar machen.

2.4.4 Vergleich zweier CGR mit unterschiedlicher Weotlange

Der Vergleich zweier CGR mit unterschiedlicher l&mger ist ebenfalls méglich.
Hierbei wird durch eine Normalisierung der SAX-Hgkkitswerte, durch den
Haufigkeitswert mit dem Maximum der langeren SAXgGenz, eine entsprechende

Umformung an der kiirzeren Sequenz vorgenommen.

2.4.5 Skalierbarkeit der CGR

Betrachtet man die strukturelle Skalierbarkeit VOGRS, st63t man schnell an ihre
darstellbaren Grenzen. Limitierender Gegenstanddést Bildschirm, vor dem der
Benutzer sitzt. Nimmt man die darstellbare Auflgureines Monitors von

beispielsweise 1280 x 1024 Bildpunkten (Breite xhk)dan, so ist nach der obigen

r+1

Formel 22" fir die Anzahl der darzustellenden Quadrate in derschiedenen
Rekursionstiefen bezlglich der Hohenangabe nactordtischen r =9Schluss.
Praktisch muss aber =8 gewahlt werden, da die GUI ebenfalls eine gewisse
Rahmenbreite besitzt. In diesem Fall missen 51%cKés pro Seite dargestellt werden,
was eine Gesamtzahl von 262144 darzustellendercli&stentspricht. Vergleicht man
die Zahl von 512 Kéastchen mit den Bildpunkten eiNEmitors, sollte klar sein, dass

die Kastchen Pixelgrof3e erreicht haben.
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Kapitel Ill: Programmbeschreibung

In diesem Kapitel wird das Konzept des Programmgesdellt. Zunachst werden
Anforderungen an das Programm erlautert, welché&dimdlagen des Designprozesses
bilden. Danach werden die Aufteilungen des Progranmdie einzelnen Module sowie
der Datenfluss durch diese Module beschrieben. Imschluss wird die

Anwenderdokumentation flr eine problemlose undesieiNutzung beschrieben.

3.1 Anforderungsdefinitionen

An das Programm wurde eine Reihe von Anforderurggestellt, die im Nachfolgenden

beschrieben werden.

» Graphische Benutzeroberflache (GBO £nglischGUI): Das Programm soll in
eine GUI eingebettet werden, was dem Benutzer dierdktion mit dem
Computer Uber grafische Symbole erlaubt. Die DHostgen und Elemente

sollen unter Verwendung einer Maus als Zeigerggeéteuert werden konnen.

» Einlesen von Zeitserien: Das Programm soll in der Lage sein, Zeitserien

einzulesen und sie zu verarbeiten.

» Hinzufigen von Zeitserien: Das Programm soll in der Lage sein, zu

vorhandenen eingelesenen Zeitserien weitere hifidggen und zu verarbeiten.

» Darstellung der Zeitserien durch Liniendiagramme: Eingelesene Zeitserien

sollen mit Hilfe von Linienplots dargestellt werden

» Skalierung von Liniendiagrammen: Linienplots sollen unter Verwendung

einer Maus skaliert werden kdnnen.

» Darstellung der Zeitserien durch CGR: Eingelesene Zeitserien sollen mit

Hilfe der CGR dargestellt werden.
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» Leichte Konfigurierbarkeit der CGR: Die CGR-Darstellung soll leicht

konfigurierbar sein.

» Skalierung der CGR: Durch die Benutzung der Parameter SAX-Suffix-Lange
und PAA-Lange soll eine Skalierung der CGR ermdglgerden.

» Skalierung der CGR: Durch die Benutzung der Parameter SAX-Suffix-Lange
und PAA-Lange soll eine Skalierung der CGR ermdglgerden.

» Interaktion zwischen Liniendiagramm und CGR: Mit Hilfe von "Brushing &
Linking" sollen zwei verschiedene Darstellungsfomven Zeitserien verknipft
werden. Zeitpunkt- oder Feldauswahl im Liniendiagna sollen in CGR
darstellbar sein. Ebenfalls soll die Feldauswahl@@R die entsprechenden

Felder im Linienplot anzeigen.

» Modularer Aufbau: Das Programm sollte modular aufgebaut sein, ure ein
spatere Erweiterung und/oder Verbesserung zu erch@gl.

» Dokumentation des Programms: Alle Funktionen und Datenschnittstellen

sollen dokumentiert werden, so dass eine spateveiterung erleichtert wird.

3.2 Systementwurf

Um die Anforderungen fur das Programm erflllen éarlen, wurde es in verschiedene
Module zerlegt. Die Modularisierung hat den Vorteder Austauschbarkeit
verschiedener Programmteile. Beispielsweise isméglich, den Datenparser (siehe
Anhang A.6) durch einen anderen zu ersetzt. Aufigalbé nicht zum eigentlichen
Programmablauf gehorten, wurden in eigene Hilfspaogne ausgegliedert.

Die wesentlichen Programmmodule sind der Datenpadge Linienplotdarstellung, die
JMotiv Anbindung (siehe Anhang A.7), die PAA und)SAur Verfigung stellt und die
CGR-Darstellung. Prototypisch wurden zwei verschmeParser programmiert. Durch

eine Neukompilierung des Programms kann der zvizattenparser verwendet werden.
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Die wesentlichen Module und die wichtigsten Datgimae zwischen den Modulen si
noch einmal in Abbildun20 dargestellt.

Programmmodule

JMotif
Zeitserien [Datenparser ]—)[ Linienplot PAA H SAX

Abbildung 20: Vereinfachte Darstellung der wichtigsten Datenstrome und der Prograrmmodule

3.3 Datenfluss

Ein wichtiger Designpunkte fur die Erstellung eir®gramms ist die Festlegung (
Datenflusses vom Parsen bis zur Darstellung der d@Rei wird der Datenfluss vc
verschiedenematenpuffern unterteiltDatenpuffersorgen beim Lesen und Schreil
fur einen kontinuierlicherDatenfluss Der Datenparser liest die Zeitserien ein |
verarbeitet sie, so dass diese als Linienplot daetie werden kénnen. Gleichzei
Ubergibt der P@er die Daten an das JMc-Modul. Hier werden die Daten im P/

Modul weiterverarbeitet. Ein neuer Datenpufferfistdie PAA-Darstellung notwendic
SAX erhédlt den Datenfluss der P.-Darstellung, der wiederum einen eigen

Datenpuffer anlegt. Dieser Dinpuffer enthalt die SAX3arstellung der originale
Zeitserie. Der SAXPatenpuffer wird zur Darstellung der CGR (C-Bitmaps) genutzt.
Eine Ruckrechnung der C(-Daten auf die Linienplots ist ebenfalls mogli

3.4 Anwenderdokumentation

Die Anwenderdokumeation wird wahrend des Produkteinsatzes benutzdismt demr

Zweck, das Produkt problemlos und sicher einsetmekbnnen

3.4.1 Voraussetzungen an So- und Hardware, Standardeinstellungen

Der CGR VMewer ist ein in Java programmiertes Programm ust damit
plattformunabhéngig. Prinzipiell wird jedes Betsspstem (Windows, Linux, (-
Apple, ...) untersttitzt, wobei ein lauffahiges Javstalliert sein muss. Hardwaresei
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kann keine Mindestanforderung definiert werdend@aTestmdglichkeiten fehlen. Als
Mindestauflosung bei der Bildschirmeinstellung eefé ich 1024 x 786 Pixel.

3.4.2 Datenparser

Der Datenparser hat die Aufgabe, die eingeleserserDflr die Weiterverarbeitung
umzuwandeln. Nachfolgende Struktur (Tabelle 6) muke eingelesene Datei
aufweisen, damit der CGR Viewer sie nutzen kanre 8iste Spalte beinhaltet eine
fortlaufende Nummerierung fur die aufgenommenertdagen, welche bei 0 beginnt.
Jede weitere Spalte enthélt eine fortlaufende &bir Alle Spalten sind durch Tabs

oder Lehrzeichen getrennt.

Tabelle 6: Strukturelle Darstellung der einzulesende Daten

Nummerierung Zeitreihe 1  Zeitreihe 2  Zeitreihe ...

0 4 3
1 12 8
2 13 4
3 15 9
4 6 23

3.4.3 Programmstart

Der CGR Viewer muss nicht installiert werden. Emkavon jedem beliebigen
Datentrdgermedium gestartet werden. Beim StartPdegramms wird automatisch ein
Koordinatensystem erzeugt, welches interaktiv bemgrden kann (siehe Mouseevents
ab 3.4.6.1 bis 2.4.6.3). Dazu ist eine Mouse ontel euchpad zwingend erforderlich.
3.4.4 Mentleiste und Navigation

Das ,Main — Window", in dem ein Koordinatensystenzeaigt wird, besitzt eine

Mentleiste. Diese Mentuleiste hat zwei Eintragele™ind "Display"”.

3.4.4.1 Das File-Meni
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Im File-Menu befinden sich die Eintrage "Open Filg "Add File ...", "Clear All" und
"Exit".

"Open File ..." kann Zeitserien 6ffnen.

"Add File ..." kann zu bestehenden eingelesenets&®en weitere Zeitserien

hinzufiigen

"Clear All" 16scht den gesamten Speicher (Datergn)ifmit den eingelesenen

Zeitserien

"Exit" beendet das Programm

3.4.4.2 Das Display-Meni

Im Display-Menl befinden sich die Eintrage "Timeri€&' mit den Unterkategorien
"Select Time Series ..." sowie "Clear Marker" urthdos Game Representation” mit

der Unterkategorie "Select Chaos Game Represemtatio

» "Select Time Series ..." 6ffnet ein neues Fengstedem einzelne Zeitserien zur
Darstellung ausgesucht werden kénnen.

e "Clear Marker" loscht die Sektionen im Linienplatie bei der Interaktion
zwischen CGR-Bitmaps und Linienplots angezeigt werkonnen. (siehe auch
unter Interaktionen und Mouseevents)

» "Select Chaos Game Representation ..." offnet eues Fenster, in dem die

Parameter fur die CGR-Bitmaps eingestellt werdamkd.

3.4.5 Fensterdarstellung
3.4.5.1 Main - Window

Dieses Fenster biete den Zugriff auf die MenuleiSts Weiteren kdnnen geladene

Zeitserien als Linienplot angezeigt werden.
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SI=E

File Display

|1,34E3
|1,26E3

1.18E3 A ‘

L11E3 H ‘

| | | ‘I
01 0277#3 92 1I§GE2 23?E2 31?\‘ |3 95E2 yﬂEE 5 S2E2 6 1E2 |'a‘ 1E2
47

| 8,68E2

_789E2

_T1E2

J631E2

Abbildung 21: Main - Window mit geladener Zeitserie

3.4.5.2 Open/Add File - Window

Um Zeitserien offnen/hinzufiigen zu kdnnen, gibteas eigenes Fenster. Im oberen
Bereich wahlt man sich den Ort (Ordner) aus, in dkenDaten liegen. Im mittleren

Bereich werden die Dateien angezeigt, die der Qrén¢halt. Das Offnen mehreren
Zeitserien ist moglich, in dem man die betreffen@&teien markiert oder den Namen

der zu 6ffnenden Dateien im unteren Bereich urbatéiname"” mit Anfiilhrungszeichen

eingibt.
x
Suchen in: ||j patient |" E

[y potxt [ p7txt
[y praxt [ psatxt
[ p2axt [ pouxt
[ p3xt
[ paxt

[y p5.txt

[ pe.txt

Dateiname: |"p3.Txt" PS4t "p9.tt” "p1 0.kt |

Dateityp: |Text (xt) ‘ - |

| Offnen | | Abbrechen |

Abbildung 22: Open/Add File - Window zum Selektiere der 6ffnenden Daten
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3.4.5.3 Define Time Series — Window

Dieses Fenster gibt dem Anwender die Moéglichketifserien umzubenennen und eine
andere Farbdarstellung zu wahlen. Durch klickedaa Name-Textfeld ist es moglich,
die ausgewéhlte Zeitserie umzubenennen. Klickt @aihden Color-Button, der die

aktuelle Farbe der Zeitserie anzeigt, offnet sichreues Fenster (Select Line Color),

worin man eine gewinschte Farbe einstellen kann.

RIS
Hame: |Serie 1

Color: IS

Abbildung 23: Define Time Series -Window zur Umbenenung der Zeitserie

3.4.5.4 Select Line Color — Window

Dieses Fenster gibt dem Anwender die Maoglichkeie &arbendarstellung der

Zeitserien in den Linienplots zu andern.

| Select Line Color =]

Swatches I HSV | HSL [ RGB | CMYK

Aktuell:

Vorschau

a - [l Beispicitext Beispieltext

. . . Beispieltext Beispieltext

I 0K H Abbrechen H Zurucksetzen |

Abbildung 24: Select Line Color - Window zur farblichen Gestaltung der Zeitserien in Linienplots

3.4.5.5 Select Time Series — Window

Dieses Fenster bietet die Mdoglichkeit, aus den dgrlan Zeitserien einzelne zu
selektieren, um diese im Main - Window anzeigenaasen. Die Namensgebung der
Zeitserien resultiert aus den Dateinamen und deralAinan Zeitserien, die eine Dateli

enthalt. Die Farben fur die Zeitserien sowie disd@iftung sind vorgegeben, kénnen
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aber beliebig abgeandert werden. Dazu ist es rdiigclie Farbdarstellung der Zeitserie
zu Klicken.

CE=S (o

[] select all
p21 —

p22 [v]
p31 [v] .
p32 [
p41 [vw] 0

pd2 [] mmm—

Abbildung 25: Select Time Series - Window zur Auswdhder anzuzeigenden Zeitserien

3.4.5.6 Select Chaos Game Representation — Window

Dieses Fenster bietet die Moglichkeit, aus den agliten Zeitserien im Main
Window einzelne zu selektieren, um diese in ein@men Fenster, dem CGR Graph,
anzeigen zu lassen. Fir jede Zeitserie wird eieregg CGR Graph - Window erzeugt.
Die Parameter "length suffix" und "segments PAAfidsivoreingestellt und kdnnen
abgeandert werden. Der voreingestellte Wert im rfesgs PAA" - Feld gibt die
maximal moégliche Anzahl an PAA-Segmenten an. Desspricht der Gesamtzahl an
Datenpunkten in einer Zeitserie. Die Einstellmdgieiten bezuglich Name und Farbe
der Zeitserien ist analog dem Select Time Seri@amdow.

CESN o

[] select all
p21 —1
p22 []
p31 []

pa1 [] 1

lenght suffix: 1
segments PAA: |650000

Abbildung 26: Select Chaos Game Representation - Wilow zur Anzeige und Parameterwahl von CGR-

Bitmaps
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3.4.5.7 CGR Graph — Window

In der Abbildung 27 wird ein CGR-Bitmap mit den pueingestellten Werten aus dem
Select Chaos Game Representation - Window darjeddet Skala auf der rechten
Seite des CGR-Bitmap reprasentiert die Haufigkeden einzelnen Farben im CGR-
Bitmap, wobei die Farben im CGR-Bitmap von blaurigein nach gelb und rot und
dessen Schattierungen die Haufigkeiten des jevegill§AX-Suffix angeben. Bei einer
linearen Skalierung ist blau die Farbe mit dernggsien Anzahl an Ubereinstimmungen
und Rot die Farbe mit den meisten. Ein weitereshliipt ist die Umstellung von
“linear" auf die "logarithmic" (siehe Anhang A.8k&ierung. Die logarithmische
Skalierung wird nur in einer Farbe und deren Savatigen dargestellt. Abbildung 28
zeigt ein solches Bild.

Abbildung 27: CGR Graph - Window zeigt ein Bitmap ener Zeitserie mit linearer Farbdarstellung

Abbildung 28: CGR Graph - Window zeigt ein Bitmap cer gleichen Zeitserie wie aus Abbildung 27 mit

logarithmischer Farbdarstellung
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3.4.6 Interaktionen und Mouseevents

In diesem Abschnitt werden verschiedene Mouseewerdsderen Aktionen im Main -
Window und CGR-Graph - Window erklart. Um alle Etgeausfihren zu kénnen, ist
eine geladene Zeitserie und das dazugehdrige C@RaBinotwendig.

3.4.6.1 Mouseevents im Main - Window

Das Main — Window besitzt ein Koordinatensysteng darch das gedriickt halten der
linken Maustaste verschoben werden kann. Mit demlfad der Maus kann man das
Koordinatensystem vergréRern oder verkleinern (zngjnum detailliertere oder nicht
detailliertere Darstellungen zu erhalten.

Der erste Einfachklick der linken Maustaste setztdar Stelle des Mauszeigers eine
vertikale Linie als Markierung in das Koordinatestgm. Der zweite Einfachklick der
linken Maustaste setzt eine weitere Markierung aksrtikale Linie in das
Koordinatensystem. Beide Linien spannen nun eineschAnitt auf, der fur spatere
Interaktionen und Darstellungen zwischen dem MaiWidow und CGR-Graph —
Window notwendig sind. Abbildung 31 zeigt einencb@n markierten Abschnitt auf
der linken Seite. Ist ein Abschnitt gesetzt kanawech mit Hilfe der linken Maustaste
vergroRert oder verkleinert werden. Durch einen padidick der linken Maustaste

entfernt man den markierten Abschnitt.

3.4.6.2 Mouseevents im CGR-Graph - Window

Im CGR-Graph — Window gibt es zwei Mouseevents.riHdan mit der Maus Uber ein
Kastchen der CGR-Bitmaps (mouseover), so wird rasher Zeit das dazugehdrige
Suffix mit der Anzahl an Vorkommen eingeblendet.r Deveite Mouseevent ist das
Anklicken (Einfachklick) eines Kastchens. Dies kaine Auswirkungen auf das CGR-
Graph — Window wird aber fur die Interaktion zwischCGR-Graph — Window und

Main — Window benutzt.

3.4.6.3 Mouseevents im Uberblick

Fir eine Kurzibersicht werden alle Mouseeventsléisr Main - Window und das CGR-

Graph - Window in den Tabellen 7 und 8 dargestelit.
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Tabelle 7: Mouseevents fir das Main -Window

Main — Window
Mouseevent Beschreibung

Linksklick gedrickt halten Verschieben des Koortkngystems

scrolling Zoomen des Linienplots

erster einfacher Linksklick Setzen der Anfangsnetkig eines
Abschnitts

zweiter einfacher Linksklick Setzen der Endmarkigyeines
Abschnitts

einfacher Rechtsklick Andern der GroRRe des masiert
Abschnitts

doppelter Linksklick Entfernen des markierten Abstis

Tabelle 8: Mouseevents fir das CGR-Graph - Window

CGR-Graph - Window

Mouseevent Beschreibung
mouseover Suffixanzeige
einfacher Linksklick Stellt den dazugehorigen Abstthm
Linienplot dar

3.4.6.4 Brushing & Linking zwischen Main - Window u\nd CGR-Graph —
Window

Durch das anklicken eines Kastchens im CGR-GraphWikdow werden die
dazugehorigen Abschnitte im Linienplot des Main téw farblich angezeigt. Der
Farbton des Abschnitts entspricht dem Farbton dets@rie. Allerdings wurde eine
geringere Sattigung gewahlt, um den Abschnitt fparenter zu gestalten. Abbildung 29
verdeutlicht dies anschaulich.

Wie bereits beschrieben ist es moglich, innerhab Main — Window ein Feld zu
markieren. Ist ein solches Feld markiert und wurdeor das dazugehérige CGR-
Bitmap erstellt, werden die zum Abschnitt gehdrendeuffixe im CGR-Bitmap
markiert (highlighting). Dies stellt noch einmal sehaulich die Abbildung 30 dar.

Ebenfalls ist es moglich den markierten Abschrigt @GR-Bitmap neu berechnen zu
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lassen. In Abbildung 31 kann

sehen.
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Abbildung 31:

Brushing & Linking auf mehreren dargestellten Zeitserien
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Kapitel IV: Anwendungstests

In diesem Kapitel werden Anwendungstests auf desisBeon EKG-Aufzeichnungen
mit Hilfe des CGR Viewers beschrieben. Um ein besseVerstandnis fur die
medizinische Seite zu bekommen, werden vorab die aétigen Fachinformationen
erklart. Die bei den Tests entstandenen CGR-Bitmapsden medizinischen
Spezialisten zur Beurteilung vorgelegt. Dessen tdadhis und Meinungen flie3en in

die Beurteilung der Tests mit ein.

4.1 Das EKG

Die Elektrokardiografie ist in der Inneren Medizieine der wichtigsten
Untersuchungsmethoden, um elektrische Vorgange imerzrAuskel grafisch
darzustellen und erlaubt damit vielfaltige Rucksske auf die Herzfunktion. Jede
Kontraktion des Herzmuskels bei einem gesunden &emsfolgt einem bestimmten
Muster und wiederholt sich bei jedem Herzschlagg &eht mit einer elektrischen
Erregung einher, die Uber genau definierte Ablgsatektroden am Korper
abgenommen werden. Die elektrische Erregung déntsderch die elektrischen
Aktivitaten der Herzmuskelzellen und werden bis Kdrperoberflache weitergeleitet.
Die sehr schwachen Signale werden von einem EKGiGeerstarkt und als Kurve auf
einem Monitor oder ausgedruckten auf Papier deetiesFur ein vollstandiges 12-
Kanal-EKG werden 12 Ableitungen aufgezeichnet: Dreibipolare
Extremitatenableitungen nach Einthoven, drei uripat Extremitatenableitungen nach
Goldberger sowie sechs unipolaren Brustwandablggnmach Wilson (Kleindienst,
2009).

4.2 Erregung des Herzens und dessen Ableitung

Die Erregung - auch Aktionspotential genannt - dgaedit einem gesunden Menschen
vom Sinusknoten aus. Er befindet sich im Bereichrédehten Vorhofes direkt unterhalb
der Einmindungsstelle der oberen Hohlvene in derzwknd. Der Sinusknoten
bestimmt die Frequenz, mit der das Herz schlagt wird deshalb auch oft als
"Schrittmacher des Herzens" bezeichnet. Ausgehemd 8inusknoten setzt sich die
Erregung Uber die Vorhofmuskulatur fort bis zum hsien zentralen Bereich der

Erregungsleitung, dem Atrio-Ventrikular-Knoten, KuAV-Knoten. Der AV-Knoten,
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befindet sich im Grenzbereich zwischen Vorhof (4tm) und Kammer (Ventrikel). Er

nimmt die Signale aus dem Sinusknoten auf undtlsite weiter an das His'sche-
Bindel, das am Grund des rechten Vorhofs in Richti@ammerscheidewand verlauft.
Im Bereich der Scheidewand teilt sich dann die gtmgsleitung in einen rechten und
einen linken Kammerschenkel auf. Die Kammerschenkellaufen entlang der

Scheidewand in Richtung Herzspitze und verzweigeh dann weiter. Die feinen

Strukturen der Endabzweigungen des Reizleitungssystwerden Purkinje-Fasern
genannt. Sie enden im Herzmuskel (Myokard) undgemedort die Herzmuskelzellen.
Abbildung 33 stellt noch einmal schematisch dieegungsweiterleitung im Herzen dar
(Wehner, 2011).

Sinusknolen

B -Ereoten

. linker
8 Kamamerschienos

rechier
Kamamerschenkel

i,

Purkinje-Faserm

Abbildung 32: Erregungsleitung des Herzens. Bild au§Wehner, 2011)

Die Ableitung des Aktionspotentials am Herzen istoth die verschiedenen Stationen
der Erregungsweiterleitung definiert und ergibt #inen gesund Menschen einen
typische Kurvenverlauf. Abbildung 34 zeigt einecka@ Kurve. Zu erkennen sind 5
Abschnitte P, Q, R, S, und T, wobei jede ihr eigekarvenverhalten hat. Die P-Welle
stellt die Erregungsausbreitung in den Vorhofen dafolgt von der P-Q-Strecke, die
eine Uberleitung auf das His'sche-Biindel bzw. aeifHtbrzkammern reprasentiert. Der
QRS-Komplex ist die vollstandige Erregungsausbrgjtin den Herzkammern, wobei
Q die Erregungsausbreitung in der Kammerscheidewlndie Erregungsausbreitung
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der Kammerwande und S die Erregungsausbreitungkdermerwénde in Richtung
Herzbasis darstellen. Die S-T-Strecke stellt diegitngsriickbildung in den Kammern
dar wobei die T-Welle die Spatphase der Erregumggildung entspricht. Sind
Erkrankungen am Herzen vorhanden, kann dies mi@ndarung der Teilkurven

einhergehen.

ORS-Komplex
([Erregungsausbreitung
in den Kamrmern)

S-T-5trecke (Eregungsrickbildung
in den Kammern)

T-Welle
P-Welle

{Vorhoferregunag) R

-—
P-0-5trecke

{Uberleitung
auf die Kammern)

Abbildung 33: Elektrokardiogramm. Bild aus (NetDoktor.de GmbH, 2013)

4.3 Der Sinusrhythmus

Der normale, regelmafige Herzschlag des Menschehalg Sinusrhythmus bezeichnet
und hat eine Frequenz von 60 bis 100 Schlage pnouteli Verlangsamt sich der
Herzschlag und fallt unter 60 Schlage, spricht mam einer Sinusbradykardie. Ist der
Herzschlag beschleunigt und oberhalb von 100 Sehlagnennt man dies

Sinustachykardie. Krankhafte Abweichungen in dets&&hung oder Weiterleitung der
Herzerregung werden als Herzrhythmusstorungen dazet.

4.4 Datenmaterial

Die Daten stammen aus der Onlinedatenbank der Yéehsww.physionet.org.
PhysioNet bietet einen kostenlosen Web-Zugriff aufe gro3e Sammlungen von
aufgezeichneten physiologischen Signalen. Fur déstsT habe ich die MIT-BIH
Arrhythmia Database gewahlt, da sie mir von Prof. Bied. Dipl.-Inform. (FH)
Thomas Hilbel fir meine Forschungszwecke empfolieinde. Die Daten stammen
vom Bostoner Beth Isarel Deaconess Medical Cemtdrderen Forschungseinrichtung

am MIT (Massachusetts Institute of Technology). Sethélt 48 halbstindige
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Ausschnitte einer ambulanten Zweikanal-EKG-Aufzeiohg. Dreiundzwanzig

Aufnahmen wurden nach einem Zufallsprinzip ausremenge von 4000 ambulanten
24-Stunden-EKG-Aufnahmen einer gemischten Populagewahlt, wobei ca. 60%
stationare Patienten und ca. 40% ambulante Patiemben Bostoner Beth Israel
Deaconess Medical Center beteiligt waren. Die icdsth 25 Aufnahmen wurden aus
dem gleichen Datensatz entnommen. Das Augenmenbehiavurde auf Klinisch

signifikante Arrhythmien gelegt, da diese zu seltater gar nicht in der kleinen
Stichprobe vorkamen (Moody & Mark, 2001), (Goldbarget al., 2000).

Alle Aufnahmen wurde mit 360 Samples pro Sekundejéden Kanal mit 11-Bit
Auflosung Uber einen 10 mV-Bereich digitalisiert.ie® entspricht bei einer
halbstliindigen Aufnahme 648.000 Samples pro Kamnaki Hder mehrere Kardiologen
kommentierten unabhangig voneinander jeden Datern@®abody & Mark, 2001),

(Goldberger, et al., 2000).

4.5 Kurze oder lange Zeitserien

Es ist sehr schwierig, eine formale Definition flturze" oder "lange" Zeitserien zu
finden. Intuitiv wirde man bei "kurzen" Zeitserigdenexpressionsprofile aus der
Genanalyse nennen kdnnen, die 10 - 40 Datenpunitaleen. Auch individuelle EKG-
Aufnahmen mit 100 - 1000 Datenpunkte waren ein mbgs Beispiel dafur. Im
Gegensatz dazu kann man dreiminutige EKG-Aufnahmoder eine flinftagige

Telemetrieaufnahme eines Sensors als "lange" Zieitskezeichnen.

4.6 Testbeschreibung

Fur das Herausarbeiten von verschiedenen CGR-B&mfp unterschiedliche
Herzrhythmen bzw. Herzrhythmusstérungen werden ekwmad lange Zeitserien mit
einer Lange von 2s, 10s, 1min und 3min genutztAimschluss daran werden CGR-
Bitmaps Uber die Gesamtlange der Aufzeichnungelbgtimdige Aufnahmen) erstellt

und mit den Kurzzeitserien verglichen.

Alle Bitmaps werden mit einem SAX-Suffix der Landge und mit einer PAA-

Segmentlange 2 erstellt. Der Grund fir die kleingverte sind eine gute
Vergleichbarkeit zwischen kurzen und langen Zeigseru erreichen. Wahlt man eine
zu grol3e SAX-Suffix-Lange, beispielsweise 7, sitikt Anzahl der Gbereinstimmenden
SAX-Suffixe in der Zeitserie. Eine Farbunterscheigleinzelner Kastchen im Bitmap

ist dann nicht mehr mdglich. Ahnlich verhélt eshsioit der PAA-Segmentlange. Je
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langer die PAA-Segmentlange gewahlt wird, destdestiter ist die Approximierung
der Zeitserie. Dies wirkt sich wiederum negativ digf La&nge der SAX-Sequenz aus. Je
kirzer die SAX-Sequenz ist, desto weniger SAX-Seffgibt es, und desto homogener

ist die Farbverteilung der einzelnen Kastchen itmap.

Die Tests wurden mit der ersten und zweiten EKGefbhg durchgefihrt.

Exemplarisch wird die erste Ableitung zur Darstetjigenutzt.

4.6.1 Testreihe 1

Tabelle 9 zeigt zehn einzelne Herzschlage einesnges Herzens. Im CGR-Bitmap
sind auf allen vier Eckpunkten Treffer zu erkenriautlich fallen die rechte obere und
die linke untere Ecke mit den Farben rot sehr lgaufid griin bzw. gelb weniger haufig
ins Auge. Diese entsprechen den mittleren HohenTiatkén einer Kurve. Im CGR-
Bitmap treten weniger deutlich das Maximum und Miom einer Kurve hervor, die
vom rechten unteren und linken oberen Kastcheran éngezeigt werden. Vereinzelte
Treffer sind auf der Diagonalen zwischen linkeneseh und rechten oberen Kastchen
zu erkennen.

Tabelle 9: Zehn einzelne Herzschlage eines gesundéerzens als Linienplots und den dazugehérigen CGR-
Bitmaps in linearer Farbdarstellung

Anzahl
Linienplot CGR-Bitma
Herz- P P
Samples
schlag
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4.6.2 Testreihe 2

Tabelle 10 zeigt zehn zweisekiindige Intervalle sleedener Sinusrhythmen eines
gesunden Herzens. Die Herzrhythmen liegen zwis@deand 80 Schlage pro Minute.
In den CGR-Bitmaps sind auf allen vier Eckpunkteeffer zu erkennen. Auf der
Diagonale von links unten nach rechts oben sowfedan Vertikalen zwischen den

oberen und unteren Eckpunkten sind vermehrt Tretiegrkennen.

Tabelle 10: Zwei Sekunden Intervalle verschiedenerifusrhythmen eines gesunden Herzens als Linienplots

und den dazugehdrigen CGR-Bitmaps in linearer FarHarstellung

Herzrhythmus - o _
_ Linienplot CGR-Bitmap
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4.6.3 Testreihe 3

Tabelle 11 zeigt zehn zehnsekindige Intervalle cheesiener Sinusrhythmen eines

gesunden Herzens, die als CGR-Bitmaps dargestetlt ®ie Herzrhythmen liegen

zwischen 72 und 84 Schlage pro Minute. Fir einsdresUnterscheidung der Kastchen

mit Treffern wurde die logarithmische Darstellungwghlt. Es ist zu erkennen, dass

sich eine Art "Z-Formation" als Trefferbild herauiskallisiert.

Tabelle 11: Zehn Sekunden Intervalle verschiedeneri®isrhythmen eines gesunden Herzens als CGR-

Bitmaps in logarithmischer Farbdarstellung

Herzrhythmus - ,
. ) CGR-Bitmap
Schlage pro Minute
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) CR Graph (== Fon =]
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4.6.4 Testreihe 4

Tabelle 12 zeigt Intervalllangen von einer und dmglinuten verschiedener
Sinusrhythmen eines gesunden Herzens, die als C@Gfiyss dargestellt sind. Die
Herzrhythmen liegen zwischen 74 und 80 SchlageMirute. Es ist zu erkennen, dass
sich die "Z-Formation" mit zunehmender Intervalti@gnstarker hervorhebt. Auch im

Umfeld der Formation sind Treffer zu erkennen.
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Tabelle 12: eine Minute und drei Minuten Intervalle verschiedener Sinusrhythmen eines gesunden Herzeals

CGR-Bitmaps in logarithmischer Farbdarstellung

Herzrhythmus Herzrhythmu
- CGR-Bitmap - CGR-Bitmap
Schlage pro (1 Minute) Schlage pro (3 Minuten)
Minute Minute
|2/ CGR Graph o o ] |2/ CGR Graph folre =
74
|-/ CGR Graph [ | 2 el | CGR Graph [ =
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|2/ CGR Graph o o ] |2/ CGR Graph folre =
76 !
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4.6.5 Testreihe 5

Tabelle 13 (Herzschrittmacher), 14 (Kammerflatterb) (Vorhoffimmern) und 16
(Sinusbradykardie) zeigen verschiedene Arrhythmienit unterschiedlichen
Intervalllangen, die als CGR-Bitmap dargestelldsirir einen Herzschlag und einem

zwei Sekundenintervall sind die jeweiligen Linieoigl mit aufgefuhrt.
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Tabelle 13: CGR-Bitmaps verschiedener Intervalllange eines Herzrhythmus mit einsetzendem

Herzschrittmacher. Bei den Intervalllangen “ein Heeschlag” und "2 Sekunden’ ist der dazugehérige

Linienplot zu sehen.
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3 Minute
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Tabelle 14: CGR-Bitmaps verschiedener Intervalllange eines Herzrhythmus mit Kammerflattern. Bei den

Intervalllangen “ein Herzschlag” und "2 Sekunden’st der dazugehdérige Linienplot zu sehen.
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L1.08E3
L1.05E3

/f \

L1.01E3 '/ |

£, COR Viewes =

2 Sekunden

-/ CGR Gragh

Ventricular_flutter1.2s_207 1

E=nE-n ==

linear (> logarithmic

File Display
14563

1,38E3

1,3E3

1,2363

11663

| £ COR Viewer 7= o

O {U1ERA9 M45E2 D17E2 29E2  362E2 4352 5ORE2 5962 \652E2

10 Sekunden

-/ CGR Graph

Ventricular_flutter1-10s_207 1 mmm—

=mjpen |

Hnear @ loganthmic
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1 Minute

-/ CGR Gragh

E=nE-n ==

Ventricular_fiutter!-1m_207 1 1 O inear @ Jogarithmic

3 Minuten

-,/ CGR Gragh

E=nE-n ==

Ventricular_fiutier!-3m_207 1 MESS () inear ® logarithmic

Tabelle 15: CGR-Bitmaps verschiedener Intervalllange eines Herzrhythmus mit Vorhofflimmern. Bei den
Intervalllangen “ein Herzschlag” und "2 Sekunden’st der dazugehdérige Linienplot zu sehen.

Intervalllange

Linienplot

CGR-Bitmap

1 Herzschlag

2 CGR Viewes
File Display

_1.1BE3

115E3

11263

11E3

_1.04E3

(= a

I\

L8,52E2

89,2362

0,1€3 2884 8653 11562 1 44E2 1,732 ;UZE:f 3\12\:51:
IBIE2

AA
\’\:\,VNJJ ,% b \\W

) CGR Graph e s

Afrial_Fibrillation1_201 1 NN ® linear () loganithmic

2 Sekunden

£/ CGR Viewer
File Display

+1.37TE3
11,363
12383
L1.45E3 I

J1.08E3 | ‘

F=mjpen |

0. 103BW1 - 1.4M4ER[ 210527 K9ER ITED 43FER 505EA5I7ED BAGEY
T A e At LTI N S T

L,
P
L937E2

w1

=/ CR Graph ==

Atrial_Fibrillation1-2s_201 1 NS & linear ) logarithmic
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) CGR Graph e s

Atrial_Fibrillation-10s_201 1 BES ) linear ® logarithmic

10 Sekunden

F
|
|
|
!

) CGR Graph e s

Atrial_Fibrillation1.1m_201 1 linear @ logarithmic

1 Minute

=/ CR Graph ==

Atrial_Fibrillation1-3m_201 1 NN ) linear ® logarithmic

3 Minuten |r
|
|
\

Tabelle 16: CGR-Bitmaps verschiedener Intervalllange eines Herzrhythmus mit Sinusbradykardien. Bei den
Intervalllangen “ein Herzschlag” und "2 Sekunden’st der dazugehdérige Linienplot zu sehen.

Intervalllange Linienplot CGR-Bitmap

<./ CGR Viewes [ = =/ CR Graph ==

| fe. Display Sinus_Bradycardia_232 1 MEEE ® linear () logarithmic

AL46E3
_1.36E3
_1.25E3

_1.15E3)

1 Herzschlag |‘

0, 1.04BG04E 3\092: 31362 418E2 522E7 627E2 7,31E2 B 3562 §4E7

Ja.dE2

| 8.35E2

T3EZ
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2 Sekunden

£/ CGR Viewes

File Display

1.33E3
1.26€3
11863

1.1E3 I

f=l @ =

0;1,04E3)

9.42E2

B63E2

7.85E2

7.06E2

\

'NA)}}L})E-\?: 2 314E2 30262 471E2 549E2 628E2 7.06E
P AP PARANA AN S AP A S
¥

%) CGR Graph

[=l o=

Sinus_Bradycardial.2s_232 1 NI ® linear () loganthmic

10 Sekunden

%) CGR Graph

Sinus_Bradycardia1.10s_232 1 M.

[=l ==

inear (® logarithmic

1 Minute

£ COR Geaph

Sinus_Bradycardiat-1m_2321 [

= zen |

finear @ logarithmic

3 Minuten

%) CGR Graph

Sinus_Bradycardial-3m_232 1 M

[=l o=

finear @ logarithmic

1

62




4.6.6 Testreihe 6

Tabelle 17 zeigt dreiminltige Sequenzen von veestdner Arrhythmien, die als CGR-

Bitmap dargestellt sind. Zum Vergleich wurde ein RG8itmap eines normalen

Sinusrhythmus mit hinzugenommen. Deutlich zu erkensind bei allen 5 CGR-

Bitmaps die "Z-Formation".

Tabelle 17: CGR-Bitmaps gleicher Lange mit verschieghen Arrhythmien

CGR-Bitmap
(Normaler
Sinusrhythmus)

CGR-Bitmap
(Sinusbradykardie)

CGR-Bitmap

(Kammerflattern)

CGR-Bitmap

(Vorhofflimmern)

CGR-Bitmap

(Herzschrittmacher)

ey =]

]

4.6.7 Testreihe 7

Tabelle 17 zeigt zehn drei3igminitige Sequenzenwayachiedener Arrhythmien, die

als CGR-Bitmap dargestellt sind. Innerhalb der EK@nahmezeit kam es bei den

Patienten zu verschiedenen Arrhythmien in unteestiliher Auspragung und Dauer.

Tabelle 18: 30 Minuten Intervalle verschiedener Herzhythmen mit verschiedenen Arrhythmien

unterschiedlicher Dauer als CGR-Bitmaps dargestellt

Arrhythmien

CGR-Bitmap

Normaler Sinusrhythmus

Herzgerdusche
Artefakte

Vorhofextrasystolen

2/ CGR Graph

E=nEen =

1001 | ) linear

® loganthmic]
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Normaler Sinusrhythmus
Kammerflimmern
Herzgerausche

Herzschrittmacher

|2/ CGR Graph [E=5 goR = |

Normaler Sinusrhythmus
Herzgerausche

Vorhofextrasystolen

2/ COR Graph = )
4171 EEEE O linear @ logarithmic

Ventrikulére Bigeminie
Ventrikulare Couplets
Ventrikulare Tachykardien
Kammerflattern

Normaler Sinusrhythmus
Herzgerausche

Arterielle Couplets

|1/ COR Graph [E=n o=
2072 W linear  ® logarithmic

-
|

Normaler Sinusrhythmus

Herzgerausche

2/ CGR Graph E=nEn =
122101 O linear ® logarithmic
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* Sinusarrhythmien

« Vorhofextrasystolen

* Normaler Sinusrhythmus

e Herzgerausche

* Vorzeitige
Vorhofkontraktionen

¢ Normaler Sinusrhythmus
e Herzschrittmacher

* Vorhofextrasystolen

+ Basline Wander
* Vorzeitige
Vorhofkontraktionen

e Sinusarrhythmien




* Normaler Sinusrhythmus .
e Sinusarrhythmien
e Basline Wander

* Artefakte

4.7 Testauswertung

Der Ausgangspunkt der Testreihen 1 bis 4 ist eame gnormale Erregungsleitung eines
gesunden Menschenherzens, wie sie im Abschnitbds2hrieben ist. Getestet wurden

Kurz- und Langezeitserien.

In der Testreihe 1 habe ich verschiedene InteArajién eines Herzschlages als CGR-
Bitmap dargestellt. Aufgrund der geringen Langeatsthiede (Samples) und der
strukturellen Ahnlichkeit war zu erwarten, dass @i€R-Bitmaps sich sehr dhnelten.
Bis auf vereinzelte Treffer in der Diagonalen d&RGBitmaps hat sich die Annahme
bestatigt. Die Testreihen 2 bis 4 zeigen untersiticiee Sequenzlangen von 2 und 10
Sekunden sowie von einer und 3 Minuten mit verstdnen Herzrhythmen. Zu
beobachten ist, dass sich auch hier keine deutlistreikturellen Unterschiede in den
CGR-Bitmaps zeigen. Aufgrund der zunehmenden Sedfiegen und der damit
verbundenen Auftretenswahrscheinlichkeit der emaelSAX-Suffixe bildet sich eine
"Z-Formation" im CGR-Bitmap immer deutlicher herasich der Vergleich einzelner
CGR-Bitmaps bei gleichen Herzrhythmen ergaben keiesentlichen Unterschiede. In
der Testrelhe 5 und 6 vergleiche ich schwere Hegtarhusstérungen wie das
Einsetzten eines Herzschrittmachers, Kammerflgtteviorhoffimmern und die
Sinusbradykardie. Leichte Unterschiede in den Marigshaufigkeiten eines
Herzschlages sind zu erkennen. Mit zunehmender d_dstgaber kein Unterschied zu
anderen CGR-Bitmaps feststellbar. Wie bereits baimbrmalen Sinusrhythmen bilden
sich auch hier "Z-Formationen" heraus. Die CGR-Bips der Herzrhythmusstérungen
und des normalen Sinusrhythmus sind zu &hnlich, eine Aussage Uber eine
spezifische Herzerkrankung treffen zu konnen. Eildeterscheidung ist damit
ausgeschlossen. In der Testreihe 7 vergleiche GcMiButen Intervalle verschiedener

Herzrhythmen mit verschiedenen Arrhythmien von rsdeiedlicher Dauer.
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Unterschiede in der Struktur der CGR-Bitmaps kamh ierkennen. In den
Nebenbereichen der "Z-Formation" gibt es verschmedeaufige Treffer an
unterschiedlichen Stellen. Jedoch kénnen aufgrued Kbmplexitat der einzelnen
Herzerkrankungen und den daraus resultierenden Bi@faps keine Rickschlisse auf

die Erkrankung selbst oder auf die Herzfrequenogez werden.

Aus meiner Sicht konnen mehrere Details fur die Wksamkeit der CGR-Bitmaps bei
EKG-Zeitserien verantwortlich sein:

Als Erstes ist die Definition des Sinusrhythmus s@iner Frequenz zu nennen, die das
Erkennen eines Krankheitsbildes unmdéglich machthNaefinition wird ein Mensch
als gesund bewertet, wenn die Herzfrequenz zwis@@emnd 100 Schlagen in der
Minute betragt. Auch das Uber- oder unterschreden normalen Herzfrequenzen
missen nicht automatisch auf eine Erkrankung hisevei Beispielsweise sinkt der
Herzrhythmus im Schlaf unter 60 Herzschlage prou#noder bei vielen sportlichen

Aktivitaten steigt die Herzfrequenz oft Uber 100rksehlage an.

Zweitens ist die Veranderung der Wellen und Zaakers normalen Sinusrhythmus zu
nennen. Kein normales Sinusbild gleicht im Detaiheen anderen. Kleinste
Unterschiede konnen Uber ein gesundes Herz oder kibekhafte Verdnderungen
entscheiden.

Der dritter Punkt ist die Ableitung und dessen Bdhsng. Man kann einen
Sinusrhythmus darstellen, der von der normalen &érm teilweise ganz erheblich
abweicht, so dass bei gesunden Menschen mit eimersgéeichen Sinusrhythmus viele
verschiedene Bilder herauskommen und damit keiness&ge Uber den

Gesundheitszustand mittels CGR-Bitmap getrofferdeseikann.

Der Vergleich von Herzfrequenzen und verschiedenerelnen Wellen des EKG sind
voneinander zu unterscheiden. Die Wellenveranderwmn unterschiedlichen
Einzelbildern (ein Herzschlag - CGR-Bitmap) ist homiteinander vergleichbar.
Nimmt man die Frequenz hinzu, wird die Interpretati der CGR-Bitmaps

uniiberschaubar und unklar, so dass keine Aussagengatroffen werden kdnnen.
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Kapitel V: Diskussion und Ausblick

In dieser Arbeit habe ich potentiell lange und kuEZeitserien mit Hilfe von SAX und
CGR untersucht. Dazu habe ich das Programm CGR erigeschrieben und als GUI
programmiert, um eine mausgestitzte und visuellgliglikeit zur Bedienung und
Ansicht zu haben. Das Laden verschiedener Zeitsedie Darstellung der Zeitserien
als klassische Liniendiagramme und als CGR-Bitisgmit dem Programm maoglich.
Wichtige Parameter fur die Darstellung der CGR-Bips, wie zum Beispiel die SAX-
Suffixlange oder die PAA-Lange, sind frei wahlbBxas Hauptaugenmerk der Arbeit
war die Implementierung von Interaktionsmdglich&eit zwischen CGR und
Liniendiagrammen, dem sogenannten "Brushing & lngKj die eine Zeitpunkt- oder
Feldauswahl ermdglichen und die dazugehdrigen Fetdelen einzelnen Windows
anzeigen. Am Ende der Arbeit habe ich mit dem CGRBwer auf der Basis von
potentiell langen und kurzen EKG-Aufzeichnungensehiredene Tests durchgefihrt.
Dabei stellte sich heraus, dass lange EKG-Zeitsede als CGR-Bitmaps dargestellt
wurden, sich nicht zur Analyse von Herzerkrankungggnen. Hauptgrinde dafir
liegen in der Definition des Sinusrhythmus und eeifrequenz und die Darstellungen
der Ableitungen. Vergleicht man jedoch einzelne Zdehlage von gesunden und
erkrankten Menschen, sind Unterschiede in der &truzw. in der Haufigkeit der

Verteilungen einzelner Kastchen im CGR-Bitmap gd«eenen.

Die Vergangenheit hat gezeigt, dass CGR-BitmapsDausstellung und Untersuchung
von DNA-Sequenzen genutzt werden und unbekanntét8ten und Muster aufzeigen.
Diese Muster und Strukturen sind meines Erachtech & langen Zeitserien aus der
Wirtschaft zu finden, wie der sich sekindlich amder DAX-Chart oder im
Leistungssport, bei der Frequenzanalyse der Aufd ulbbewegungen von
Pedalumdrehungen beim Radfahren. Um eine besserprgtation von CGR-Bitmaps
zu gewabhrleisten, ware aus meiner Sicht eine zduothgeflhrte Clusteranalyse sehr
hilfreich.
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Kapitel VI: Anhang

A.1 Gleitender Mittelwert

Der gleitende Mittelwert ist eine einfache Methade Glattung von Messdaten. Die
Menge der gleitenden Mittelwerte werden iteratigpd'gleitend” Uber einen Abschnitt
einer gegebenen Zeitreine berechnet. Der verwendbsehnitt wird tberlappend
verschoben, d.h. wiederholt wird der erste Wert desn betrachteten Abschnitt
gestrichen und der erste Wert nach dem Abschmnittugienommen. Die im Abschnitt

vorkommenden Werte kdnnen gewichtet in den resatiden Mittelwert eingehen.

Der einfache gleitende Mittelwert (Krei3 & NeuhaX)06) n-ter Ordnung einer

diskreten Zeitreihex(t) ist die Folge der arithmetischen Mittelwerte dergils letzten

n aufeinanderfolgender Datenpunkte:
1 n-1
m()==% X(t=1)
Ni=o

A.2 Lookup Table

Eine Lookup Table ist eine Tabelle, die Informa&aorstatisch definiert und diese zur
Laufzeit eines Programms zur Verfugung stellt. Dé&sl dabei ist, aufwandige
Berechnungen wahrend der Laufzeit eines Programnder oden hohen

Speicherplatzbedarf zu vermeiden.
A.3 Quartarbaum

Ein Quartarbaum ist in der Graphentheorie eine isf)ezForm eines Graphen. Es
handelt sich um einen gewurzelten Baum, bei denerjdtnoten hochstens vier
Kinderknoten hat. Ein vollstandiger Quartarbaum kéhe h heit vollstandig, wenn

jeder Knoten einer Tiefe kleindr genau vier Kinderknoten hat.
A.4 Data Mining

Data Mining ist die systematische Anwendung statber Methoden auf einen

Datenbestand mit dem Ziel, neue Muster zu erkenhggrbei geht es auch um die
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Verarbeitung sehr grof3er Datenbestande, woflrieffie Methoden bendtigt werden,
deren Zeitkomplexitat sie fur solche Datenmengexgyet macht.

A.5 Wavelet

Wavelet werden die einer kontinuierlichen oder digdn Wavelet-Transformation

zugrundeliegenden Funktionen bezeichnet.
A.6 Datenparser

Ein (Daten)-Parser ist ein Computerprogramm, dadie Zerlegung und Umwandlung
einer beliebigen Eingabe in ein fur die Weitervbediung brauchbares Format
zustandig ist. Haufig werden Parser eingesetzt, um Anschluss an den
Analysevorgang die Semantik der Eingabe zu erdddheund daraufhin Aktionen

durchzufthren.
A.7 IMotif

JMotif ist eine in Java implementierte Bibliotheke eine Reihe von Methoden flr das
Zeitseriendatenhandling, das Data Mining und diasKifikation zur Verfigung stellt.
Insbesondere setzt JMotif auf ein vollstandigestséeien-Data-Mining-Workflow

welches SAX nutzt.
A.8 Logarithmische Darstellung

Die logarithmische Darstellung basiert auf eineral&k die nicht den Wert einer
physikalischen Grol3e verwendet, sondern den Ldgaus ihres Zahlenwerts. Bei der
logarithmischen Darstellung werden in einem Diagradie Werte einer oder mehrerer
Achsen logarithmiert aufgetragen. Eine solche [#tstg ist vor allem dann hilfreich,
wenn der Wertebereich der dargestellten Daten @Get€enordnungen umfasst. Durch
die logarithmische Darstellung werden Zusammenh&mgBereich der kleinen Werte

besser Uberschaubar. (Wikimedia Foundation Ind.3R0
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