Institut fiir Architektur von Anwendungssystemen

Universitdt Stuttgart
Universitatsstrafie 38
D-70569 Stuttgart

Studienarbeit Nr. 2433

Analyse und Erweiterung eines
bestehenden
Choreographiewerkzeugs

Joas Schilling
Studiengang: Informatik
Priifer/in: Jun.-Prof. Dr.-Ing. Dimka Karastoya-
nova
Betreuer/in: M.Sc. Wirt.-Inf. Andreas Weif3
Beginn am: 10. Juli 2013
Beendet am: 9. Januar 2014

CR-Nummer: D.1.7,D.211,H4.1,1.34

Kurzfassung

Diese Arbeit befasst sich mit dem, von Oliver Sonnauer im Rahmen seiner Diplomarbeit
entwickelten, BPEL4Chor Designer, zum Modellieren von Choreographien. Im ersten Schritt
soll der Designer analysiert werden sowie fehlende Feature und andere Fehler aufgezeigt
werden. Im weiteren Verlauf der Arbeit wird der Designer um fehlende Punkte erweitert.
Dabei liegt der Fokus der Arbeit speziell auf dem Modellieren der Choreographie und
weniger auf der Transformation zum Erstellen der BPEL4Chor Prozesse.

Inhaltsverzeichnis

1 Einleitung

2 Grundlagen
2.1 BPEL - Web Service Business Process Execution Language
2.2 BPEL4Chor - BPEL fiir Choreographien
2.3 EMF - Eclipse Modeling Framework
2.4 GMF - Graphical Modeling Framework

3 Analyse des Choreographiewerkzeugs
3.1 Das Taxi Szenario- Version 1
3.2 Fehlertibersicht
3.3 Voriiberlegungen zu den fehlenden Features

4 Implementierung der fehlenden Features
4.1 Implementierung der <while>-Aktivitat
4.2 Implementierung der <if>-Aktivitat o0 0L
4.3 Implementierung der <assign>-Aktivitat

5 Zusammenfassung und Ausblick
5.1 Das Taxi Szenario erweitert - Version2
5.2 Neue entstandene Fehler L

Literaturverzeichnis

11
11
11
12
12

13
13
14
16
19
19
25
29

35

35
37

39

Abbildungsverzeichnis

3.1 Erste Versionder Taxi App L o

4.1 While-Werkzeug zum Einfiigen der Aktivitét in die graphische Benutzerober-
flache
4.2 Links: “While-Figure Descriptor”, rechts: “While-Figur” des Editors
4.3 While als mogliches Kind fiir Sequence
4.4 Condition-Tab in den Properties eines While-Elements
4.5 Scope - Child Reference fiir die While-Aktivitat. Diese Child Reference ermoglicht
das Einftigen von Scope in ein While.
4.6 Dropdown zum Einfiigen der verschiedenen If-Optionen.
4.7 Neu erstelltes If ohne Unterelemente
4.8 If mit Elseif und Else als Unterelementen
4.9 If mit Elseif und Else als Unterelementen und eingefiigten Aktivititen
4.10 Definition fiir die Child Reference Else
4.11 Assign-Figurbeschreibung links; rechts: Gegeniiberstellung von Assign und
Recetve
4.12 Property Section fir ein Copy-Element.

5.1 Abfrage “freier Taxis aus der Ndhe” aus TaxiApp Version1
5.2 Abfrage “freier Taxis” aus TaxiApp Version2.
5.3 Zweite Versionder Taxi App oo
5.4 Darstellungsprobleme nach dem Einfiigen von Flow innerhalb einer While-
AKHVItAL . . .
5.5 “Workaround” fiir das Darstellungsproblem von verschachtelten Flow und
While-Aktivitaten L
5.6 If-Aktivitit mit mehreren Elseif-Elementen

Verzeichnis der Listings

2.1
2.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

4.11
4.12
4.13
4.14

4.15
4.16

4.17
4.18

419

Einfaches Beispiel einer Receive-Aktivitit in Anlehnung an [OASoya] 11
Einfaches Beispiel einer If-Aktivitdt in Anlehnung an [OASo7za] 11
Fehler im XML-Schema durch die Verwendung eines Kleinerzeichens 17
Aufbau einer <while>-Aktivitit in Anlehnung an [OASoza] 19
Verwendung eines Kleinerzeichens innerhalb eines CDATA-Abschnitts 20
Tools-Element-Eintrag fiir die While-Aktivitat. 20
Weitere Definitionen fiir die While-Figur in der chor.gmfgraph 21
While-Aktivitdt im chor-Diagramm Modell 22
While-Aktivitdt im BPEL4Chor-Dokument 22
Definition des Condition Tab’s 23
Definition der Property Section 23
Aufbau einer <if>-Aktivitdt in Anlehnung an [OASo7a] 25
If-Aktivitat in der Chor Diagram Datei ohne Elseif und Else aus Abbildung 4.7

aufSeite26 28
If-Aktivitat in der exportierten BPEL4Chor-Datei ohne Elseif und Else aus

Abbildung 4.7 28
If-Aktivitat in der Chor Diagram Datei mit Elseif und Else und Kind-Aktivitaten

aus Abbildung 4.9 aufSeite26 L L 28
If-Aktivitdt in der exportierten BPEL4Chor-Datei mit Elseif und Else und Kind-

Aktivititen aus Abbildung 4.9 Lo Lo oL 29
Aufbau einer <assign>-Aktivitit in Anlehnung an [OASo7a] 29
Erstellung der Kontroll-Elemente 31
Konfiguration des Layout’'s 32
Laden der Werte aus dem Modell in die SWT-Elemente 33
Assign-Aktivitdt mit Copy-Element und den angegebenen Attributen im Chor

Modell 33
Assign-Aktivitat mit Copy-Element und den angegebenen Attributen im ex-

portierten BPEL4Chor-Prozess 34

Verzeichnis der Abklirzungen

APl — Application Programming Interface
BPEL — Web Service Business Process Execution Language
BPEL4Chor — BPEL for Choreographies
EMF — Eclipse Modeling Framework

GEF - Graphical Editing Framework

GMF - Graphical Modeling Framework

IDE - Integrated Development Environment
MVC — Model-View Controller

PBD - Participant Behaviour Description
SWT - Standard Widget Toolkit

UML - Unified Modeling Language

XMI — XML Metadata Interchange

XML Extensible Markup Language

XSD — XML Schema Definition

1 Einleitung

Das Bestellen eines Taxis ist heutzutage so einfach wie eh und je. Schnell die passende App
auf dem Smartphone gestartet, Standort und Zielort angegeben und schon ist das Taxi auf
dem Weg, um den Kunden abzuholen und an das gewiinschte Ziel zu beférdern. Was dabei
im Hintergrund alles ablduft, bekommt der Kunde nicht zu sehen. Nur das Unternehmen
selbst weifs, welche Prozesse dabei in Gang gesetzt werden miissen: Freie Taxis werden
ermittelt, diese angefragt ob sie die Beforderung tibernehmen mochten, die Informationen
fiir die Beforderung gesammelt und dann an den Kunden zuriick gesendet werden.

Soll dieser Workflow nun modelliert werden soll, muss fiir jeden der einzelnen Teilnehmer
ein eigener Business Prozess erstellt werden. Wenn die einzelnen Prozesse modelliert werden,
gehen jedoch die Verbindung der einzelnen Prozesse, die Kommunikation zwischen ihnen
und andere Abhdngigkeiten, die die Prozesse untereinander haben, verloren. Diesen Aspekt
der Interaktion von Business Prozessen nennt man Choreographie. [W3Cos5]

Mit der Modellierung solcher Choreographien hat sich Oliver Sonnauer in seiner Di-
plomarbeit “Modellierung von Scientific Workflows mit Choreographien” beschaftigt.
[Son13] Daraus entstand ein Choreographiewerkzeug, mit dem die einzelnen Prozes-
se und Choreographie-Aspekte nicht nur graphisch visualisiert werden, sondern auch
als BPEL4Chor'-Fragmente exportiert werden konnen. Diese so gewonnen BPEL4Chor-
Fragmente konnen dann spater mit anderen Tools? zu vollstandigen BPEL-Prozessen erweitert
und dann verwendet werden.

Ziele dieser Arbeit

Mit Hilfe eines praxisorientierten Beispiels soll das, von Oliver Sonnauer im Rahmen seiner
Diplomarbeit entwickelte, graphische Werkzeug zur Modellierung von Choreographien
analysiert werden. Noch nicht implementierte Features sollen im Anschluss implementiert
werden und sofern im zeitlichen Rahmen der Arbeit noch moglich ein Teil der in Ab-
schnitt 3.2.2 aufgezeigten Fehler behoben werden. Am Ende wird das Beispiel noch einmal
aufgegriffen, um die neuen Moglichkeiten der Modellierung zu zeigen.

'Eine Erweiterung fiir BPEL (Web Service Business Process Execution Language - Sprache zur Ausfiihrung von
Business Prozessen) zur Modellierung von Choreographien [DKLWoy]
*Bspw. Eclipse BPEL Designer [EF14a]

1 Einleitung

Gliederung

Kapitel 2 — Grundlagen beschreibt die grundlegenden Technologien, die, zum Verstdndnis
der Arbeit oder des Werkzeugs an sich, notwendig sind.

Kapitel 3 — Analyse des Choreographiewerkzeugs beschreibt den aktuellen Stand der Im-
plementierung an Hand eines Beispiels und geht auf einige Details ein, die beim
Implementieren der noch fehlenden Feature beachtet werden miissen.

Kapitel 4 — Implementierung der fehlenden Features beschreibt das genauere Vorgehen
beim Implementieren der Features.

Kapitel 5 — Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und
weist auf neu entstandene Problem hin, die Ankniipfungspunkte fiir weitere Arbeiten
sein konnen.

10

2 Grundlagen

2.1 BPEL - Web Service Business Process Execution Language

BPEL, oder auch WS-BPEL genannt, steht fiir Web Service Business Process Execution Language.
Die Sprache, deren Version 2.0 seit April 2007 als Standard definierte ist, ermoglicht es, das
Verhalten von Web Services zu beschreiben. BPEL selbst ist dabei XML basiert. [OASo7b] Die
Hauptelemente von BPEL sind dabei Partner Links, Variables, Correlation Sets, Handlers und
Activities. [LK12]

Die Aktivitdten kann man hauptsdchlich in zwei Gruppen aufteilen:

Basic Activities sind einfache Aktivitdten die nicht aus anderen Aktivitdten aufgebaut sind.
Beispiele hierfiir sind z.B. Reply und Receive, die zum Versenden und Empfangen von
Nachrichten benutzt werden:

Listing 2.1 Einfaches Beispiel einer Receive-Aktivitdt in Anlehnung an [OASo7a]

<receive partnerLink="NCName" operation="NCName" />

Structured Activities dagegen sind solche Aktivitdten, die sich aus anderen Aktivitdten
aufbauen. Ein Beispiel hierfiir wire die If-Aktivitat, welche dazu benutzt werden kann,
eine andere Aktivitdt nur unter bestimmten Bedingungen auszufiihren.

Listing 2.2 Einfaches Beispiel einer If-Aktivitit in Anlehnung an [OASo7a]

<if>
<condition>$nochKeineAntwortBekommen</condition>

<receive partnerLink="NCName" operation="NCName" />
</if>

2.2 BPELA4Chor - BPEL fur Choreographien

Das Einbinden von Services in (BPEL)-Prozesse wird als Composition oder Orchestrierung
bezeichnet. Unter einer Choreographie versteht man das Verbinden mehrerer Orchestrierungen.
In BPEL4Chor, eine Erweiterung fiir BPEL, liegt das Augenmerk auf eben dieser Choreogra-
phie. Dabei wird darauf geachtet, dass die 3 Hauptpunkte einer Choreographie von einander
getrennt bleiben: [DKLWoy]

11

2 Grundlagen

o In der Participant Behaviour Description geht es darum, festzulegen, wie der Daten-
Kontrollfluss zwischen den kommunizierenden Prozessen und den einzelnen Aktiviti-
ten verlauft.

e In der Topology werden die einzelnen Message Links (Nachrichten), aber auch die
Choreographie-Teilnehmer an sich, definiert.

e Das Grounding ist dafiir verantwortlich die technischen Details der Implementierung
aufzunehmen. Dadurch wird erreicht, dass die einzelnen Details fiir die Kommunikati-
on nicht direkt mit den Modellen der anderen zwei Punkte verbunden sind und somit
schnell und einfach ersetzt werden konnen.

2.3 EMF - Eclipse Modeling Framework

Das Eclipse Modeling Framework (EMF) [EF14b] ist ein Framework fiir die bekannte Java
IDE" Eclipse. Mit dessen Hilfe konnen Tools und Anwendungen gebaut werden, die auf
strukturierten Datenmodellen basieren. Abhingig von den installierten Erweiterungen, kann
das Datenmodell aus vielen verschiedenen Formaten? importiert werden, ansonsten muss
es mit Hilfe einer einfachen Baumstruktur und einem Bereich fiir Eigenschaften (Property
Section) manuell erstellt werden. Auf diese Art kann das Modell danach auch erweitert,
vereinfacht und anderweitig bearbeitet werden. Das Modell wird am Ende als XML Metadata
Interchange (XMI) Serialisierung, in einer .ecore-Datei gespeichert. [BSM*04] Aus diesem
Modell kénnen anschlieflend Java-Klassen fiir die weitere Verwendung erstellt werden.

2.4 GMF - Graphical Modeling Framework

Eine Moglichkeit mit dem Modell zu Arbeiten, bietet Graphical Modeling Framework (GMF)
[EF14c], eines der Graphical Modeling Project von Eclipse. Es wurde dafiir entwickelt, das
EMF-Modell mit der Model-View Controller (MVC) Architektur des Graphical Editing Frame-
work (GEF) von Eclipse zu verbinden. Dies hatten davor schon mehrere Projekte versucht
umzusetzen. [BSM T o4]

GMF besteht dabei aus zwei Hauptkomponenten: Einer Tooling-Komponente, mit deren
Hilfe die graphischen Elemente definiert werden und mit dem zu Grunde liegenden Modell
verkniipft werden. Die zweite Komponente ist die runtime-Komponente. Sie ist dafiir verant-
wortlich EMF und GEF mit einander zu verbinden und bietet zusétzlich noch eine API3 zum
Entwickeln des graphischen Editors.

'Integrated Development Environment - Integrierte Entwicklungsumgebung, sie beinhalten meist: einen Editor
fiir den Quellcode, einen Compiler zum Ubersetzen des Programm Codes, verschiedene Werkzeuge zum
Debuggen und leichteren Programmieren

2z.B. Unified Modeling Language Version 2 (UML2), XML Schema Definition (XSD) oder annotierten Java-
Klassen

3Application Programming Interface

12

3 Analyse des Choreographiewerkzeugs

In diesem Kapitel wird ein genauerer Blick das von Oliver Sonnauer entwickelte Choreogra-
phiewerkzeug geworfen. [Son13] Dabei sollen vor allem fehlende Features und andere Fehler
aufgezeigt werden, die im Bereich der Modellierung auftreten. Fehler bei der Transformation
der Choreographie zu BPEL4Chor stehen nicht im Fokus dieser Arbeit.

3.1 Das Taxi Szenario - Version 1

Um die Funktionalitit zu testen wird ein Muster-Szenario, angelehnt an das Taxi-Szenario
aus [Hag11], erstellt. Dabei geht es um den Bestellvorgang fiir ein Taxi. Die Abldufe inner-
halb des Taxi-Unternehmens samt Taxis und Taxi-Service-Provider sollen dabei mit Hilfe des
Choreographiewerkzeuges dargestellt werden.

1. Zu Beginn des Vorgangs, sendet der Kunde seine Anfrage an das Taxi-Unternehmen.
2. Das Taxi-Unternehmen leitet die Anfrage an den Taxi-Service-Provider weiter und wartet
dann auf die Transport-Informationen.
3. Nachdem der Taxi-Service-Provider die Anfrage vom Taxi-Unternehmen erhalten hat, erstellt
er eine Liste aller freien Taxis, die in der Ndhe des Kunden sind.
4. AnschliefSend fragt er die Kontaktdaten der Taxi-Fahrer ab und sendet die Transport-
Anfrage an das jeweilige Taxi.
5. Jetzt wartet er auf eine Antwort durch die Taxis:
* Wenn eine Antwort eintrifft, wird dem Taxi eine Bestdtigung zu gesendet. Somit ist das
Taxi gebucht.
* Trifft jedoch keine Nachricht von einem Taxi ein, steht kein Taxi zur Verfiigung und der
Transport kann nicht durch gefiihrt werden.
6. Der Taxi-Service-Provider sendet anschliefiend die Informationen an das Taxi-Unternehmen,
7. das zum Abschluss des Vorgangs den Kunden iiber den Transport informiert.

Dieser Ablauf kann so auch schon mit dem Werkzeug modelliert werden und ist in Ab-
bildung 3.1 auf Seite 15 zu sehen. Taxi-Unternehmen und Taxi-Service-Provider werden als
Participant in Form eines abgerundeten Rechtecks dargestellt. Die Taxis, deren genaue An-
zahl unbekannt ist, werden als ParticipantSet dargestellt. Solche Sets haben zusétzlich eine
gestrichelte Umrandung am unteren und rechten Rand, um die tibereinander liegenden
einzelnen Teilnehmer zu symbolisieren.

Die Kommunikation zwischen den einzelnen Teilnehmern wird immer durch einen be-
schrifteten Pfeil dargestellt, desen Spitze immer auf den Empfanger der Nachricht zeigt.

13

3 Analyse des Choreographiewerkzeugs

Aktivitdten die mit am Kontrollfluss oder an der Kommunikation beteiligt sind, z.B. ForEach,
Send und Receive, werden ebenfalls angezeigt.

3.2 Fehleriibersicht

3.2.1 Fehlende Features

Wihrend der Modellierung féllt auf, dass nicht alle in BPEL zur Verfiigung stehenden
Aktivitdten zur Verfiigung stehen. Daher mussten im Taxi-Szenario einige Aspekte gekiirzt
werden um das Modell zu erstellen. Wie in der Diplomarbeit [Son13] selbst schon erwihnt,
fehlen:

e <while>
o <if>
e <assign>

e <repeatUntil>

Von denen im BPEL Designer als Actions und Controls bekannten Aktivitdten fehlen auflerdem
noch, die fiir die Modellierung einer Choreographie jedoch weniger erforderlich sind, als die
zuvor genannten Aktivititen:

o <empty>
e <validate>

o <wait>
Des Weiteren fehlen alle BPEL-Aktivitdten, die zur Fehlerbehandlung dienen:

e <catch>

e <catchAll>

o <exit>

e <throw>

o <rethrow>

e <compensate>

e <compensateScope>

Mit diesen Aktivitdten konnen Prozesse beendet, Fehler geworfen und abgefangen werden.
Auch diese Aspekte sind zwar wichtig, um die volle Funktionalitdt zu unterstiitzen, haben
aber nicht die hochste Prioritdt beim Erstellen einer Choreographie.

14

3.2 Fehlertibersicht

S{UMISENbEYUOIELLIYUOD] JOd5UE.| | PLISS:BLUBL <

LOjELLYLI0DEUEDOgIXE | pUSS @

Biqeleny e LoN[|

PaAEI3YUoNEIUOD I0ds eI 0L =

pecjoogionxe L[|

PaAEIEyLoReLLIUn)Y odsUel | oL 5

LLLIE|

pa:joogixe L [|

co_umEEcouton_mcE | ss=o0ad m

UoNEWIUODI0dsUE] | BNEI8l g

Jodsue. | LoD @

Adeyiodsuel | splopuas @_

| uonewyuoDyodsuel) puss m_

h_amxton_mr_m_] ssa00.d m

ﬂonmCmC.EECOU _.

Aideyyiodsuer 1350 ¢

Jlodsue. | Ispio

HUTAde T odsUel LIspioieled 4

[

1B3IILLSLIBILIXE | T

RS xe] 4|

UrsenbayyodsUe [ispioialuel 4

| 1senbayiiodsuel | puss m_

_ OYLITIZEILCDISALIOKE | 356 m_

1sanbayodsue. | puss

Hurysanbeybur|oogixe | iSWEU 4=

HUMAdeyburjongixe | (SLeL <

adods @
Ixe | B|Ce|eAgLPEII0 557 UIO[ELLLICYUITLIOCS U | PLBS @_
SIxe | S|ge|eayAdean1sb %_ 1sanbayixe | piesmio) %_
1sanbayburjoogxe | 156 @‘. 1sanbayixe) 1ab @
e = Uew =
1BPINDIGBOIAIBSIKE | G. AueduwoDixe | H.

IBPIADIGEOIAISSINE | +

AuedLiodxe | <+

Abbildung 3.1: Erste Version der Taxi App

15

3 Analyse des Choreographiewerkzeugs

3.2.2 Andere Fehler

Zusatzlich zu den fehlenden Features sind mehrere Fehler auffillig, die teilweise auch
schon in einem technischen Report, tiber das Choreographiewerkzeug, veroffentlicht wurden.
[WAST13] Einige davon sind lediglich optisch unangenehm:

e Werden zwei Flow-Aktivitidten in einander eingefiigt, wird die Darstellung des Choreo-
graphiewerkzeugs beschddigt. Alle Elemente haben einen zusétzlichen Innenabstand zu
ihrer Umrandung. Die Darstellung ist auch in allen anderen geoffneten Choreographie-
Fenstern defekt. Erst wenn die verschachtelten Flow-Elemente wieder geloscht werden
und dann die Eclipse Instanz neu gestartet wurde, wird der Editor wieder korrekt
dargestellt.

e Die einzelnen OnMessage-Abschnitte der Pick-Aktivitidt werden nicht, wie vom Eclipse
BPEL Designer bekannt, nebeneinander, sondern untereinander dargestellt. Bereits
kurze Prozesse konnen dadurch nicht mehr vollstindig auf einem Bildschirm angezeigt
werden.

o Alle MessageLinks tragen den Text “name:” vor ihrem Label, der nicht geloscht werden
kann.

Weitere Fehler sind zum Beispiel:

e Wenn zwei Aktivitdten aus zwei verschiedenen Participants mit einem MessageLink ver-
bunden werden und dann einer der Participants geloscht wird, kann das Choreographie-
Diagramm nicht mehr gespeichert werden. Grund dafiir ist, dass die angelegten Messa-
geLinks nicht geloscht werden und dann auf nicht mehr existierende Elemente zeigen.
Wenn die Aktivitit anstelle des Participant geloscht wird, tritt der Fehler nicht auf.

e Wird im Nachhinein die Receive Activity oder Send Activity eines MessageLinks tiber die
zugehorige Property Section gedndert, wird der Link in der graphischen Darstellung
nicht aktualisiert und verbindet immer noch die urspriinglichen Elemente. Erst wenn
das Diagramm geschlossen und neu geoffnet wurde, werden die richtigen Elemente
miteinander verbunden.

3.3 Voriiberlegungen zu den fehlenden Features

3.3.1 Sonderzeichen im Condition-Element der If und While-Aktivitaten

Beim Erstellen von If.condition, Elseif.condition und While.condition ist Vorsicht
geboten. Um normale Vergleiche wie “grofier” (>) und “kleiner” (<) zu Ermoglichen, muss
der Inhalt des Elements besonders gespeichert werden, ansonsten wird das XML-Schema
der erzeugten Dateien zerstort. Ein Beispiel dafiir wére der Vergleich “$test.Kleiner <
$test.Vergleich”. Durch das Kleinerzeichen wird ein neues XML-Element getffnet, das
nicht mehr vor dem schlieflenden </condition>-Tag geschlossen wird:

16

3.3 Vorlberlegungen zu den fehlenden Features

Listing 3.1 Fehler im XML-Schema durch die Verwendung eines Kleinerzeichens

<while>
<condition>$test.Kleiner < $test.Vergleich</condition>
<!-- =~ Fehler -->

</while>

3.3.2 Varianten der Copy-Operation

In BPEL stehen mehrere Moglichkeiten zur Verfiigungen, durch die Daten von verschiedenen
Elementen und Abschnitten kopiert werden kénnen, als auch wohin sie gespeichert werden
konnen." Als Quelle (<from>) stehen dabei zur Verfiigung:

e Ein Query oder eine Expression in einer angegebenen Sprache,
e ein Punkt der an einem Kommunikations-Kanal beteiligt ist (Endpoint Reference),
e eine Variable oder die Property einer Variable,

e ein Literal oder ein leeres Elemente (<from />).

Fiir das Ziel des Kopiervorgangs (<to>) steht dabei lediglich die Literal-Variante nicht zur Ver-
fiigung. Wahrend der Implementierung wird lediglich die “von Variable zu Variable”-Variante
erldutert. Die Implementierung der anderen Varianten weicht ndmlich nur geringfiigig von
dieser einen Variante ab.

Thttp://docs.oasis-open.org/wsbpel/2.0/0S/usbpel-v2.0-0S.htm1#SA00032

17

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html#SA00032

4 Implementierung der fehlenden Features

Im Folgenden wird zuerst die Implementierung der <while>-Aktivitdt genauer erkldrt. Bei
den weiteren Features wird nur noch auf mogliche Besonderheiten eingegangen.

4.1 Implementierung der <while>-Aktivitat

Listing 4.1 zeigt den Aufbau einer <while>-Aktivitat in BPEL.

Listing 4.1 Aufbau einer <while>-Aktivitdt in Anlehnung an [OASo7a]

<while>
<condition><!-- Boolescher Ausdruck --></condition>
<!-- Auszufuehrende Aktivitaet -->

</while>

Um die Aktivitat zu implementieren, miissen mehrere Teilaufgaben erledigt werden:

1. Die Spezifikation der Aktivitit muss im EMF-Modell der “Participant Behaviour Description”
pbd.ecore angegeben werden.

Das Werkzeug zum Einfiigen des While’s muss zur Palette hinzugefiigt werden.

Die graphischen Darstellung fiir die Figur muss festgelegt werden.

Das Werkzeug, die Darstellung und die Spezifikation miissen verbunden werden.

Einer Option fiir die Angabe der While-Bedingung muss eingerichtet werden.

Es muss ermoglicht werden, andere Aktivititen innerhalb von While aufrufen zu kdnnen.

ENVIE NN

4.1.1 Spezifikation der <while>-Aktivitat

In der Spezifikation wird festgelegt, wie die While-Aktivitit aufgebaut ist und das sie vom
Typ Activity ist. Auch die ihr zugehorige Aktivitdt While.activity ist vom Typ Activity.
Das heifst alle Elemente die ebenfalls vom Typ Activitiy sind, konnen fiir While.activity
eingesetzt werden. Beispiele dafiir waren Sequence und Reply, aber auch While selbst. Auf die
gleiche Weise kann While auch in alle anderen Elemente eingefiigt werden, die ein Element
vom Typ Activity erwarten, zum Beispiel Sequence und das noch nicht implementierte If.

Die Bedingung While.condition fiir die Aktivitdt ist vom Typ Condition, ein Untertyp von
Expression. Der Inhalt des <condition>-Element muss spiter, wie bereits in den Vortiberle-
gungen in Abschnitt 3.3.1 angekiindigt, in einem CDATA-Abschnitt gespeichert werden.

19

4 Implementierung der fehlenden Features

Dem XML-Parser wird dadurch mit geteilt, dass der folgende Abschnitt nur als norma-
ler Text betrachtet werden soll. Es konnen also auch Sonderzeichen genutzt werden, die
ansonsten Probleme im XML-Dokument verursachen, fiir Vergleiche in den angegebenen
Bedingungen aber unerlésslich sind. Die wichtigsten Zeichen wéaren dabei das Kleiner- (<)
und Groflerzeichen (>), die in XML-Dokumenten Elemente 6ffnen und schlieflen, aber auch
das Anfiihrungszeichen (") konnte ansonsten Problem hervorrufen.

Die korrekte XML-Code des While’s aus Listing 3.1 sieht damit wie folgt aus:

Listing 4.2 Verwendung eines Kleinerzeichens innerhalb eines CDATA-Abschnitts

<while>
<condition><![CDATA[$test.Kleiner < $test.Vergleich]]></condition>

</while>

4.1.2 Option in der Werkzeugpalette

Als zweiter Schritt wird die Option implementiert, mit deren Hilfe der Benutzer spater
die Aktivitdt zur Arbeitsflache hinzufiigen kann. Daftir muss das “Tooling Definition Model”
(chor.gmftool) angepasst werden. Im XML Code dieser Datei, siehe Listing 4.3, wird dabei
ein neues <tools>-Element angelegt. Als untergeordnete Elemente werden dabei ein kleines
und ein grosses Icon angegeben, die spéter, zusammen mit dem Titel und der Beschreibung,
das Werkzeug darstellen.

Listing 4.3 Tools-Element-Eintrag fiir die While-Aktivitat

<tools
xsi:type="gmftool:CreationTool"
title="While"
description="Create new While">

<smallIcon ... />
<largelcon ... />
</tools>

Wenn nun die chor.gmfmap Map aktualisiert, anschlieffend daraus das chor.gmfgen Mo-
dell erzeugt und schliefllich der Diagramm-Code neu erstellt wird, ist in der graphischen
Oberfliche zum Modellieren der Choreographie das While-Werkzeug zu sehen.

e ForEach

<= While

= Pif reate New While

& Pick

Abbildung 4.1: While-Werkzeug zum Einfiigen der Aktivitit in die graphische Benutzerober-
flache

20

4.1 Implementierung der <while>-Aktivitat

4.1.3 Graphische Darstellung

Allerdings lasst sich das While bisher noch nicht in den Editor, die Arbeitsflache, einfligen.
Dafiir muss zuerst in der chor.gmfgraph definiert werden, aus welchen graphischen Elemen-
ten die While-Figur besteht. Vom Knoten selbst, tiber die Beschriftung der Option, bis zur
Darstellung der untergeordneten Aktivitdt kann alles genau definiert werden. In diesem Fall
wurde fiir die Figur selbst ein abgerundetes Rechteck ausgewahlt dhnlich wie bei den bereits
existierenden Figuren, siehe dazu die folgende Abbildung 4.2.

= + Figure Descriptor WhileFigure
El < Rounded Rectangle WhileFigure = _main
¢ b4 Border Layout

<* Rounded Rectangle WhileNameFigure while
[+ < Rectangle WhileCompartmentFigure
<= Child Access getFigurewhileMame /

<+ Child Access getFigureWhileCompartentFigure

Abbildung 4.2: Links: “While-Figure Descriptor”, rechts: “While-Figur” des Editors

In der chor.gmfgraph werden ebenfalls noch die Zugriffspunkte definiert, durch die spater
der Name und die Kind-Aktivitdt passend eingefiigt werden kdnnen:

Listing 4.4 Weitere Definitionen fiir die While-Figur in der chor.gmfgraph

<nodes

name="While"
figure="WhileFigure"/>

<compartments
name="WhileActivityCompartment"
figure="WhileFigure"
accessor="//@figures.1/@descriptors.13/@accessors.1"/>

<labels
name="WhileName"
figure="WhileFigure"
accessor="//@figures.1/@descriptors.13/0@accessors.0"/>

4.1.4 Verknupfung von Werkzeug, Darstellung und Spezifikation

Als letzter Schritt miissen im Mapping Model chor . gmfmap die Darstellung aus dem Graphical
Definition Model und das neue Werkzeug aus dem Tooling Definition Model, zusammen mit
dem Domain Model chor.ecore verkniipft werden. Das Mapping Model greift dabei auf das
Participant Behaviour Description Modell pbd.ecore zuriick, in dem die einzelnen Aspekte der
While-Aktivitat bereits in Abschnitt 4.1.1 definiert wurden.

21

4 Implementierung der fehlenden Features

Zunéchst wird die untergeordnete Kind-Aktivitit ignoriert und die Aktivitat lediglich als
mogliche Child Reference der Sequence-Aktivitat definiert, wie in Abbildung 4.3 zu sehen ist.

=1+ ¥ Child Reference <activity:While Mihile =
: E|I:I Mode Mapping <While M hile =
El < Feature Seq Initializer <While(id,name) =

: 4 Feature Value Spec<id: = return java.util, UUID. randomUUID{ . toString (); =

: 4+ Feature Value Spec<name: = return self.eClass(). getMame(). toLowerCase(); »
“-Ab Feature Label Mapping false

Property | Value |
[= Domain meta information
Element H While -> Activity
Misc
= Visual representation
Diagram Mode 4+ Mode While (WhileFigure)
Tool <+ Creation Tool While

Abbildung 4.3: While als mogliches Kind fiir Sequence

Wirend eine While-Instanz erstellt wird, werden zwei Werte fiir das Element gesetzt: id, zur
eindeutigen Identifizierung des Elements, und name, der im Editor angezeigt wird.

Wenn nun wieder, wie in Abschnitt 4.1.2, das chor.gmfgen Modell und anschliefSend der
Diagramm-Code neu erstellt werden, kann die While-Aktivitdt in den Editor eingefiigt
werden. Sieht man sich anschlieffend das chor-Modell des Diagramm’s an, sieht man dort
die While-Aktivitat als XML-Element:

Listing 4.5 While-Aktivitdt im chor-Diagramm Modell

<activity xsi:type="pbd:While" name="while" id="2e6247d9-0897-4ecb-bal9-4ec7906ce71e">
<condition body="ACED000574000874657374203C2033"/>
</activity>

Anschlieflend kann tiber die Option “ChorDiagramEditor” > “Export to BPEL4Chor” der
BPEL4Chor Prozess aus dem Diagramm exportiert werden, wo sich die While-Aktivitdt dann
auch zum jetzigen Zeitpunkt schon wieder findet:

Listing 4.6 While-Aktivitdat im BPEL4Chor-Dokument

<while name="while" wsu:Id="2e6247d9-0897-4ec5-bal9-4ec7906ce71e">
<condition><! [CDATA[$test <= 10]]1></condition>
</while>

22

4.1 Implementierung der <while>-Aktivitat

4.1.5 Definitionsmoglichkeit fiir die Bedingung

Als Nachsten soll nun ermoglicht werden, die Bedingung des While-Element’s, in einem
neuen Tab der Property View, anzugeben. In der plugin.xml wird hierfiir zu Beginn der Tab
definiert:

Listing 4.7 Definition des Condition Tab’s

<propertyTab
category="extra"
id="property.tab.ConditionTab"
label="Condition">
</propertyTab>

Als zweites wird dann die Property Section definiert:

Listing 4.8 Definition der Property Section

<propertySection
class="org.eclipse.bpeld4chor.property.tabs.sections.WhileConditionSection"
enablesFor="1"
filter="org.eclipse.bpeldchor.property.tabs.sections.filter.WhileTypeFilter"
id="property.section.WhileConditionSection"
tab="property.tab.ConditionTab">
<input
type="org.eclipse.bpel4chor.model.chor.diagram.navigator.ChorAbstractNavigatorItem">
</input>
</propertySection>

Dabei wird ein “Filter” angegeben, der dafiir sorgt, dass die Property Section nur fiir While-
Elemente erstellt wird. Das zweite wichtige Attribut ist die angebene “Klasse” class, die
sich darum kiimmert, dass der in der Textarea eingebene Text im zugeordneten Element
gespeichert und im Falle einer spateren Anderung auch wieder davon geladen wird. Der
erstellte Tab und die zugehorige Property Section sind in der folgenden Abbildung zu sehen:

= =
|2 Markers | | Properties &3 4k Ser'uers\l Y8 Data Source Explureq F=1 Snippy

=2 While

Core While condition: | Stest <= 10 ;I

Appearance
Condition

Base

Abbildung 4.4: Condition-Tab in den Properties eines While-Elements

23

4 Implementierung der fehlenden Features

In Abschnitt 4.3.4 auf Seite 30 wird genauer darauf eingegangen, wie eine solche Property
Section funktioniert.

4.1.6 Weitere Aktivitaten als Eltern- und Kindelement von <while>

Zum Abschluss der Implementierung des While-Features muss ermoglicht werden, andere
Aktivitdten als Kind von While anzugeben. Dafiir wird im Compartment Mapping angegeben,
in welchem Abschnitt der While-Figur die Kinder angezeigt werden. Danach muss fiir jede
mogliche Aktivitdt eine Child Reference definiert werden, die angibt, welches Feature das
jeweilige Kind implementiert, in welchem Compartment es angezeigt werden soll und um
welches Kind es sich dabei handelt.

Froperty | Value
Child Il Mode Mapping <Scope/Scope >
Children Feature
Compartment B Compartment Mapping <WhileActivityCompartment =
Containment Feature = While, activity: Activity
Referenced Child Il Mode Mapping <Scope/Scope >

Abbildung 4.5: Scope - Child Reference fiir die While-Aktivitat. Diese Child Reference ermoglicht
das Einfiigen von Scope in ein While.

Da bisher keine anderen Aktivititen, abgesehen von Sequence, existieren, die eine Whi-
le-Aktivitdt als Kind akzeptieren, ist die Implementierung damit abgeschlossen. Wenn
solche Structured Activities' bereits implementiert wéren, miissten auch Child References
(Abbildung 4.5) dafiir angelegt werden, um While innerhalb solcher Aktivititen nutzen zu
konnen.

Tvgl. Abschnitt 2.1 auf Seite 11

24

4.2 Implementierung der <if>-Aktivitat

4.2 Implementierung der <if>-Aktivitét

Listing 4.9 Aufbau einer <if>-Aktivitit in Anlehnung an [OASo7a]

<if>
<condition><!-- Boolescher Ausdruck --></condition>
<!-- Auszufuehrende Aktivitaet -->
<elseif>=*
<condition><!-- Boolescher Ausdruck --></condition>
<!-- Auszufuehrende Aktivitaet -->
</elseif>
<else>7?
<!'-- Auszufuehrende Aktivitaet -->
</else>
</if>

4.2.1 Spezifikation

Der Basisaufbau der If-Aktivitdt dhnelt sehr dem der While-Aktivitat, innerhalb des Elements
ist zuerst eine Bedingung und dann eine auszufiihrende Aktivitit, siehe hierfiir Listing 4.9.

Zusitzlich dazu konnen im Falle des If’s noch beliebig viele Elseif-Elemente und ein optiona-
les Else-Element folgen. Die Elseif-Elemente bestehen immer aus einer Bedingung und einer
Aktivitit, wie auch schon If und While. Das Else-Element hingegen enthélt nur eine Aktivitat.
Es wird ausgefiihrt, wenn weder das If noch eines der Elseif-Elementen erfiillt wurde.

Wie auch schon bei der While-Aktivitdt miissen die Condition-Elemente auch bei If und
Elseif als <! [CDATA[11>-Abschnitte gespeichert werden um Probleme mit Sonderzeichen zu
vermeiden.

4.2.2 Option in der Werkzeugpalette

Beim Einfiigen der Optionen in die Werkzeugpalette wird nur ein Eintrag erstellt. Spater
werden alle drei Elemente (If, Elseif und Else) mit dieser Option verbunden, da eindeutig ist,
an welche Stelle ein Element eingefiigt werden muss. AufSerhalb von <if>-Elementen kénnen
nur <if>-Elemente eingefiigt werden. Das If selbst wiederum besteht aus 3 Figurteilen. Wird
ein <if> innerhalb des <if>s eingefiigt, so wird das neue If als If .acitivity in den ersten
Abschnitt eingeftigt. Mogliche <elseif>-Elemente kommen in den zweiten Abschnitt, das
optionale <else>-Element in den Dritten. Wahlt man die Option aus und versucht sie in den
Editor einzuftigen, bietet GMF die, an dieser Stelle noch zur Verfiigung stehenden, Optionen
in einem kleinem Dropdown an.

25

4 Implementierung der fehlenden Features

@i

4 Create If
< Create Else
<4 Create Elseif

Abbildung 4.6: Dropdown zum Einfiigen der verschiedenen If-Optionen

4.2.3 Graphische Darstellung

Wie bereits erwdhnt, benétigt die If-Figur, im Gegensatz zur Figur von While, drei Abschnitte,
in die Kinder eingefiigt werden konnen. Die Abschnitte fiir Elseif und Else sind jedoch am
Anfang nicht sichtbar.

@ if

Abbildung 4.7: Neu erstelltes If ohne Unterelemente

Erst wenn {iber die Werkzeugpalette Elseif und Else selbst eingefligt werden, sind sie auch
im Editor zusehen. Siehe dazu Abbildung 4.8

& if

Abbildung 4.8: If mit Elseif und Else als Unterelementen

Die Aktivitdten der einzelnen Elemente werden anschlieffend in die zugehorigen untergeord-
neten Rechtecke der jeweiligen If, Elseif und Else Figur eingefiigt.

@i
& | receive o | receive & | receive

Abbildung 4.9: If mit Elseif und Else als Unterelementen und eingeftigten Aktivitdten

26

4.2 Implementierung der <if>-Aktivitat

4.2.4 Mapping-Eintrag fir If

Der Eintrag fiir das If im Mapping Model chor .gmfmap ist um einiges Umfangreicher, als der
Eintrag des While’s. Zundchst muss wie auch schon beim While das Werkzeug zusammen
mit der Figur und dem Domain Element verbunden werden. Danach werden ebenfalls die
Child References fiir die jeweiligen Elemente als If.activity angelegt. Beim If fehlen nun
aber noch Elseif und Else.

Fiir diese beiden Elemente muss jeweils wieder ein Compartment Mapping angegeben werden,
dann der Aufbau der jeweiligen Elements und die zugehorigen Child References. Wichtig
hierbei ist, dass fiir Elseif und Else, im Gegensatz zu If, keine Child Reference fiir die anderen
Elemente, die Aktivititen enthalten, erstellt werden. <elseif> und <else> konnen also nur
innerhalb von <if> genutzt werden und nicht direkt als Kind von <while> auftreten.

----- ¥ Child Reference <activity:Assign/Assign =

----- ¥ Child Reference <activity:Flow Flow =

----- M1 Child Reference <activity:ForEach/ForEach =

----- M1 Child Reference <activity:If/If=

-----] Child Reference <activity:Invaoke Tnvake =

----- K] Child Reference <activity:OpagueActivity/OpagqueActivity =
----- k] Child Reference <activity:PickPick:>

----- K Child Reference <activity:Receive/Receive »

----- ¥ Child Reference <activity;Reply/Reply =

----- ¥ Child Reference <activity:Scope/Scope =

----- M1 Child Reference <activity:Sequence/Sequence =

----- M1 Child Reference <activity:While \While =

----- B cCompartment Mapping <ElseActivityCompartment =
[+ B] Child Reference <elseif:ElseifElzeif=

----- B cCompartment Mapping <IfActivityCompartment:

----- B cCompartment Mapping <IfElseCompartment:

----- B cCompartment Mapping <IfElseifCompartment:

Abbildung 4.10: Definition fiir die Child Reference Else

4.2.5 Chor Diagram- und BPEL4Chor-Eintrage fur If

Dadurch, das beim Erstellen eines If’s nicht gleich Elseif und Else mit erstellt und eingefiigt
werden kann, wird der Diagram Code und auch der daraus erzeugte BPEL4Chor Code so
einfach wie moglich gehalten. Siehe hierzu die zwei folgenden Listings die das If nur mit
Condition und einer Aktivitat, also ohne Elseif und Else, zeigen:

27

4 Implementierung der fehlenden Features

Listing 4.10 If-Aktivitdt in der Chor Diagram Datei ohne Elseif und Else aus Abbildung 4.7
auf Seite 26
<activity xsi:type="pbd:If" name="if" id="b53c08£f7-d1e5-4190-b079-1b2c888b693f">
<condition body="ACED0005740005656D707479" />
<activity xsi:type="pbd:Receive" name="receive"
id="811c162d-8d68-45ea-ad80-48ea93£39826" />
</activity>

Listing 4.11 If-Aktivitit in der exportierten BPEL4Chor-Datei ohne Elseif und Else aus
Abbildung 4.7

<if name="if" wsu:Id="b53c08f7-d1e5-4190-b079-1b2c888b693f">
<condition><! [CDATA[$test = 1]]1></condition>
<receive name='"receive" wsu:I1d="811c162d-8d68-45ea-ad80-48ea93£39826" />
</if>

Wird noch ein Elseif und ein Else angegeben, kann die volle If-Funktionalitidt gezeigt und
genutzt werden:

Listing 4.12 If-Aktivitéat in der Chor Diagram Datei mit Elseif und Else und Kind-Aktivitdten
aus Abbildung 4.9 auf Seite 26

<activity xsi:type="pbd:If" name="if" id="b53c08f7-d1e5-4190-b079-1b2c888b693f">
<condition body="ACED0O00574000A6E6F74456D7074794966" />
<activity xsi:type="pbd:Receive'" name="receive"
id="811c162d-8d68-45ea-ad80-48ea93£39826" />
<elseif>
<condition body="ACED000574000E6E6F74456D707479456C73656966"/>
<activity xsi:type="pbd:Receive" name='"receive"
id="81b39750-51d8-4f96-b068-144f12fee0c6" />
</elseif>
<else>
<activity xsi:type="pbd:Receive" name="receive"
id="74baea27-3378-45af-8510-b8e2a1721db7"/>
</else>
</activity>

28

4.3 Implementierung der <assign>-Aktivitat

Listing 4.13 If-Aktivitdt in der exportierten BPEL4Chor-Datei mit Elseif und Else und Kind-
Aktivitdten aus Abbildung 4.9

<if name="if" wsu:Id="b53c08f7-d1e5-4190-b079-1b2c888b693f">
<condition><! [CDATA[$notEmptyIf]]></condition>
<receive name="receive" wsu:Id="811c162d-8d68-45ea-ad80-48ea93f39826" />
<elseif>
<condition><![CDATA[$notEmptyElseif]]></condition>
<receive name="receive" wsu:Id="81b39750-51d8-4f96-b068-144f12feelc6"/>
</elseif>
<else>
<receive name="receive" wsu:Id="74baea27-3378-45af-8510-b8e2a1721db7"/>
</else>
</if>

4.2.6 Condition-Option flr If und Elseif

Die Eingabe der Condition fiir die If-Aktivitat und das Elseif-Elemente erfolgt, genau wie bei
der While-Aktivitdt, {iber einen zusétzlichen Tab in der Property View. Der Tab aus Listing 4.7
auf Seite 23 kann dabei wieder verwendet werden. Die Property Section hingegen muss
zweimal neu definiert werden, um den Filter und die Klasse entsprechend fiir das If und
Elseif anzupassen.

Damit ist nun auch die Implementierung von If, Elseif und Else abgeschlossen.

4.3 Implementierung der <assign>-Aktivitat

Listing 4.14 Aufbau einer <assign>-Aktivitdt in Anlehnung an [OASo7a]

<assign validate="yes|no"?>
<copy ignoreMissingFromData="yes|no"? keepSrcElementName="yes|no"?>

<from variable="<!-- Variablenname -->"/>
<to variable="<!-- Variablenname -->"/>
</copy>+
</assign>

4.3.1 Spezifikation

Die Assign-Aktivitat wird benutzt um Wert von einer Variable in eine Andere zu kopieren.
Das optionale Attribut validate, mit dem Standardwert no, ermdoglicht es, mit Hilfe der
XML-Definition zu tiberpriifen, ob der neue Inhalt in der Zielvariable gespeichert werden
darf. Wenn dies nicht der Fall ist, wird ein Fehler geworfen und alle Ziel-Elemente miissen
den Startwert von Beginn der Assign-Aktivitit annehmen — das Assign verhilt sich also
atomar. Das heifst, wenn nicht alle Kopiervorgédnge ausgefiihrt werden konnen, wird kein
Vorgang ausgefiihrt.

29

4 Implementierung der fehlenden Features

Die zwei booleschen Attribute ignoreMissingFromData und keepSrcElementName fiir das
Copy-Element sind ebenfalls optional. Der Wert ist standardmassig fiir beide Attribute no. Im
Falle von ignoreMissingFromData werden mogliche Fehlermeldungen unterdriickt, wenn
das zu kopierende Element nicht existiert. Mit Hilfe von keepSrcElementName kann der
Name des Ziel-Elements {iberschrieben werden, er wird dann mit dem Namen des zu
kopierenden Element’s ersetzt.

4.3.2 Option in der Werkzeugpalette

Wie auch schon bei der If-Implementierung werden Assign und Copy mit dem gleichen
Werkzeug eingefiigt. Wie auch schon beim If ergibt sich aus dem Kontext, ob an der Stelle
ein Assign oder ein Copy eingefiigt werden soll, da Copy-Elemente nur innerhalb von Assign-
Aktivitaten auftreten konnen, gleichzeitig aber die Assign-Aktivitat nur Copy-Elemente als
Unterelemente haben kann.

4.3.3 Graphische Darstellung

= <+ Figure Descriptor AssignFigure
El < Rounded Rectangle AssignFigure
: ----- 4 Border Layout
----- 4 Preferred Size: [100,20]
; -+ Label AssignMame
iew e Child Access getFigureAssigniMame

= Assign

& | Receive

Abbildung 4.11: Assign-Figurbeschreibung links; rechts: Gegeniiberstellung von Assign und
Receive

Die Darstellung der Assign-Aktivitit ist stark an die der Receive-Aktivitdt angelehnt. Es
handelt sich dabei um ein einfaches abgerundetes Rechteck. Die Copy-Elemente finden in
der graphischen Darstellung keine Reprasentation. Die Optionen der Copy-Elemente konnen
tiber das Assign-Element angegeben und gedndert werden.

4.3.4 Erklarung der Property Section

Die Property Sections fiir das Assign-Element und die ihm untergeordneten Copy-Elemente
sind etwas aufwendiger, als die Property Section von While und If, weshalb an dieser Stel-
le genauer darauf eingegangen wird. Fiir das Copy werden zwei Eingabemoglichkeiten
fur die Ausgangs- und Zielvariable benotigt. Aufierdem sollen die 2 optionalen Attribute
ignoreMissingFromData und keepSrcElementName iiber Checkboxen angesteuert werden
konnen, siehe dazu Abbildung 4.12:

30

4.3 Implementierung der <assign>-Aktivitat

T — "
[3_ Markers | =] Properties &3 ol Ser'uersw Data Source Explnrer} F=l Snippets} E :~=:$- = ~ = A
= Assign
Core From: |S5ourceVar
Appearance T SDestinationVar

— 1 Tm
Copy
Base ignoreMissingFromData

[keepSrcElementilame

Abbildung 4.12: Property Section fiir ein Copy-Element

Dafiir miissen in der zugehorigen AssignCopySection. java zundchst die Kontroll-Elemente

erstellt werden, siehe Listing 4.15. Die hierfiir benutzten Buttons, Labels und Textareas sind
aus der bekannten Java-Bibliothek Standard Widget Toolkit (SWT)>.

Listing 4.15 Erstellung der Kontroll-Elemente

public void createControls(Composite parent, TabbedPropertySheetPage
aTabbedPropertySheetPage)

{

assignCopyFromLabel = getWidgetFactory().createCLabel(composite, "From:");
assignCopyFromTextarea = getWidgetFactory().createText(composite, "");

ignoreMissingFromDataCheckBox = getWidgetFactory().createButton(composite,

PbdPackage.eINSTANCE. getCopy_IgnoreMissingFromData() .getName (),
SWT . CHECK) ;

configureLayout () ;

In der aufgerufenen Methode configureLayout () (Listing 4.16) wird anschlieflend festgelegt,

wie die einzelnen Elemente auf der Flache angeordnet sind, an welchen Elementen sie sich
ausrichten und wie viel Abstand sie zu einander haben:

2http://www.eclipse.org/swt/

31

http://www.eclipse.org/swt/

4 Implementierung der fehlenden Features

Listing 4.16 Konfiguration des Layout’s

private void configureLayout ()

{
FormData formData = new FormData();
formData.left = new FormAttachment (0,ITabbedPropertyConstants.HSPACE) ;
formData.top = new FormAttachment (0,ITabbedPropertyConstants.VSPACE);
assignCopyFromLabel.setLayoutData(formData) ;
formData = new FormData();
formData.left = new

FormAttachment (assignCopyFromLabel, ITabbedPropertyConstants.HSPACE) ;

formData.right = new FormAttachment (20,ITabbedPropertyConstants.HSPACE) ;
formData.top = new FormAttachment (0,ITabbedPropertyConstants.VSPACE);
assignCopyFromTextarea.setLayoutData(formData) ;

3

Bis zum jetzigen Zeitpunkt ist aber alles noch ohne Funktion. Daher muss als letzter Schritt
festgelegt werden, dass, bei einer Texteingabe oder einem Klicken auf die Checkbox, die
Daten aus der Anzeige auch in das Chor Diagramm und Chor Modell {ibernommen werden.
Dafiir wird, beim Laden der Property Section, der Wert aus dem Element ausgelesen und in
das SWT-Element eingefiigt. Siehe Listing 4.17

32

4.3 Implementierung der <assign>-Aktivitat

Listing 4.17 Laden der Werte aus dem Modell in die SWT-Elemente
public void refresh()

{
assignCopyFromTextarea.setEnabled(true);
assignCopyFromTextarea.setText ("");
ignoreMissingFromDataCheckBox.setSelection(false);
if (assign.getCopy() != null)
{
if (assign.getCopy().get(0) != null)
{
if (assign.getCopy().get(0).getFrom() != null)
{
if (assign.getCopy().get(0).getFrom().getVariable() !'= null)
{
assignCopyFromTextarea.setText (
assign.getCopy () .get (0) .getFrom() .getVariable().toString()
)5
}
}
if (assign.getCopy() .get(0).getIgnoreMissingFromData() !'= null &&
assign.getCopy () .get (0) .getIgnoreMissingFromData() .equals(Boolean.YES))
{
ignoreMissingFromDataCheckBox.setSelection(true);
}
}
}
addListeners();
}

Mit addListeners() werden an die jeweiligen Elemente Listener hinzugefiigt. Diese Listeners
werden anschlieffend bei jedem Tastendruck aufgerufen und iibernehmen die Anderungen
aus den SWT-Elementen zuriick in die AssignCopySection Klasse. Von dort aus werden die
Werte dann beim Speichern in die Choreographie-Datei default . chor kopiert:

Listing 4.18 Assign-Aktivitat mit Copy-Element und den angegebenen Attributen im Chor
Modell

<activity xsi:type="pbd:Assign" name="assign"
id="dde8812b-9732-4a0d-ac2d-fa60cd4c62a6">
<copy ignoreMissingFromData="yes">
<from variable="$SourceVar"/>
<to variable="$DestinationVar"/>
</copy>
</activity>

33

4 Implementierung der fehlenden Features

Wenn nun tiber "Export as BPEL4Chor"die BPEL4Chor-Datei erstellt wird, sind dort die in der
Property Section angegebenen Werte zu finden: in diesem Fall die Namen der zu kopierenden
Variable “$SourceVar” und der Zielvariable “$DestinationVar”.

Die angewdihlte Checkbox “ignoreMissingFromData” tritt in Form des gleichnamigen Attri-
butes mit dem Wert “yes” auf. Die nicht ausgewihlte Option “keepSrcElementName” wird
nicht ausgegeben, siehe Listing 4.19, da “no” der Standardwert fiir das Attribut ist.

Listing 4.19 Assign-Aktivitat mit Copy-Element und den angegebenen Attributen im expor-
tierten BPEL4Chor-Prozess

<assign name="assign" wsu:Id="dde8812b-9732-4a0d-ac2d-fa60cd4c62a6">
<copy ignoreMissingFromData="yes">
<from variable="$SourceVar"/>
<to variable="$DestinationVar"/>
</copy>
</assign>

Damit ist auch die Implementierung der Assign-Aktivitdt abgeschlossen.

34

5 Zusammenfassung und Ausblick

Mit den jetzt neu zur Verfiigung stehenden Aktivitdten, kann die TaxiApp aus Abschnitt 3.1
erweitert werden.

5.1 Das Taxi Szenario erweitert - Version 2

Ein Beispiel dafiir ware Punkt 3, an dem die freien Taxis der Umgebung abgefragt werden:
<§> getMearbyavailable Taxis

Abbildung 5.1: Abfrage “freier Taxis aus der Nahe” aus TaxiApp Version 1

Wenn keine Taxis in der Néahe frei sind, konnen zum Beispiel freie Taxis aus der weiteren
Umgebung angefragt werden. Sind auch in dieser Kategorie keine Taxis verfiigbar, kann
entschieden werden solange zu warten, bis ein Taxi frei wird.

Die von den jeweiligen Moglichkeiten zuriick gegebenen Taxis werden dann in eine Taxis
Variable kopiert, damit fiir den folgenden Verlauf tiber die gleiche Variable iteriert werden
kann. Fiir diese Anderungen werden allerdings alle 3 neu implementierten Aktivititen
(If, While und Assign) benotigt. Die vollstindige gednderte Version der TaxiApp ist in
Abbildung 5.3 auf der nédchsten Seite zu sehen. Der gednderte Abschnitt des Taxi-Service-
Providers sieht dabei wie folgt aus:

& ifAvailablaMNearby Taxis

= sequence = sequence = sequence

<§> Mearby Taxis <§> Available Taxis o whileMo Taxi
<§> waitForTaxi

= Taxis=Mearby = Taxis=Global

= Taxis=0nhyTaxi

Abbildung 5.2: Abfrage “freier Taxis” aus TaxiApp Version 2

35

5 Zusammenfassung und Ausblick

UITISENbE YUOIBLLIYLIO)} IOTEUE] | PUSSISWEL <

uoljeLLyUo)BUL{oDgIXe | pUSs _m“

S|ge|eATIXELON 1

PENIEI8 YUOBLLIYUST3I0d5UE. | oU

LLLIE|

paoogionxeL [

PaNEI8 JUORELLIYI0 3OS UE L OU

u

pejoogreL [

UCHEWIYLIOS IodsUe) | s5a00.d

LIORELLLIGUCT IO mr_m.__ym:_mumz—

H_On_mCm__yE._cCOu ﬁ

LIoIELLLUO)} IOdSUR | pUSS th

Adayyiodsuel ssaooid

u._Cn_mCm._n_.EfCUu _ﬂ

.a_n_mmtcmmCmL._me @

15enbeyodsuUel L puss ~_

OUTIREIICDIBAUINE 1 156 &

1senba lodsuelLpuss =

adois (@

[QIGETEENS

,” xe | Ao=sie | =

_” [eqojD=5XEe | m _” Aqleany=sixe | m

14e [10431EM

| Adzyylodsue) | IspiopUss @

[Liodsuel LIBpIo

(I
BRI L Ke | 7
YIS IXE | 4|

SurAdayyodsUe L IBpI0 SIWEL 4

UrisanbaylIodsuel LISpIo:SIIeL <

UrAdeyBUEDoge | BLUel 4

urmsanbayburoogixe | :aUeU 4

EECE | speeiqeieay @ | swepdquean &
adUsnbas = adusnbas = astanbes = .
[LO/JeLLIOJUT I0dS e, | PUISS
58 e | 4] F
SIXE | ACLIeaNBICe[EATY (Jsanbaye L pIemIo) &
1sanbayBuroogie | 156 [& [1senba e | 350 [
W = Ul =
ISPINCIRIIBSNE L T Aleduioe] 7
IBPINCIAIIBSNE L 4| (fuedwodike] 4

: Zweite Version der Taxi App

Abbildung 5.3
6

3

5.2 Neue entstandene Fehler

Ahnliche Anderungen kénnen auch an anderen Stellen vorgenommen werden. Wenn zum
Beispiel am Ende kein Taxi den Transport bestétigt, kann ein anderer MessageLink genutzt
werden, um einfacher zwischen einer erfolgreichen und fehlgeschlagenen Anfrage zu unter-
scheiden.

5.2 Neue entstandene Fehler

Wiéhrend der Implementierung der Features wurden noch zuséitzliche Fehler festgestellt.
Einzelne Punkte konnen zusétzlich gedndert werden um dem Benutzer die Bedienung zu
erleichtern.

5.2.1 Darstellungsprobleme nach dem Einfligen von Flow innerhalb von While

Fiir die Implementierung der While-Aktivitat wurde die Figur der Flow-Aktivitat wieder
verwendet. Der graphische Fehler der beim Verschachteln von mehreren Flow-Aktivitdten
auftritt, erscheint daher auch, wenn ein Flow innerhalb einer While-Aktivitat eingeftigt wird.
Siehe dazu die folgende Abbildung:

@ natTrancnnrtRant

s .‘
! _ennfirmTrancnnr

@ warkhil

nrocaceTrancnnrtRant

<§> cand TramennrtCanfirrnating

nnaTrancnnrtCanfirrmatinn R acaiel

K Txvitvzikhh

Q cand TawilRnnlkinn™anfireratiog

Abbildung 5.4: Darstellungsprobleme nach dem Einfiigen von Flow innerhalb einer While-
Aktivitat

Der Fehler kann verhindert werden, wenn die Flow-Aktivitat nicht direkt in das While
eingefiigt wird, sondern z.B. innerhalb einer Sequence:

37

5 Zusammenfassung und Ausblick

i while
- sequence

2| flow

Abbildung 5.5: “Workaround” fiir das Darstellungsproblem von verschachtelten Flow und
While-Aktivitaten

5.2.2 Nur ein Copy pro Assign méglich

Die derzeitige Implementierung von Assign erlaubt es nicht, mehrere Copy-Elemente in
ein Assign-Element einzufiigen. Wird {iber die Choreographie-Datei selbst die Anderung
vorgenommen, so kann immer nur das erste Copy-Element in der Property Section des
Assign-Elements bearbeitet werden.

5.2.3 Elseif-Elemente werden nicht nebeneinander dargestellt

Wie auch schon die OnMessage-Elemente, werden auch die einem If untergeordneten Elseif-
Elemente nicht nebeneinander, sondern untereinander dargestellt:

& if

Abbildung 5.6: If-Aktivitdt mit mehreren Elseif-Elementen

5.2.4 Einfigen von Elementen liber das Kontextmenii

Der letzte Punkt an dieser Stelle betrifft die Benutzerfreundlichkeit beim Modellieren der
Choreographie. Im Gegensatz zum BPEL Designer konnen im Choreographiewerkzeug
untergeordnete Elemente nicht tiber das Kontextmenti (Rechtsklick mit der Maus auf das
jeweilige Element) eingefiigt werden. Dies sollte sowohl bei Assign > Copy als auch If
> Elseif und If > Else ermoglicht werden. Dadurch wird auch das parallele Arbeiten in
BPEL Designer und Choreographiewerkzeug angenehmer, weil der Benutzer nicht zwei
verschiedene Arbeitsweisen beherrschen muss.

38

Literaturverzeichnis

[BSM*o4]

[DKLWo7]

[EF14a]
[EF14b]
[EF14c]

[Hag11]

[LK12]

[OASo7a]

[OASo7b]

[Son13]

[W3Cos]

F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, T. J. Grose. Eclipse Modeling
Framework. Addison-Wesley, 2004. (Zitiert auf Seite 12)

G. Decker, O. Kopp, F. Leymann, M. Weske. BPEL4Chor: Extending BPEL for
Modeling Choreographies. In Proceedings of the IEEE 2007 International Confe-
rence on Web Services (ICWS). 2007. URL http://bpt.hpi.uni-potsdam.de/pub/
Public/GeroDecker/icws2007-BPEL4Chor.pdf. (Zitiert auf den Seiten 9 und 11)

T. Eclipse-Foundation. Eclipse - BPEL Designer Project, 2014. URL http://www.
eclipse.org/bpel/. (Zitiert auf Seite 9)

T. Eclipse-Foundation. Eclipse Modeling Framework (EMF), 2014. URL http:
//projects.eclipse.org/projects/modeling.emf. (Zitiert auf Seite 12)

T. Eclipse-Foundation. Graphical Modeling Project, 2014. URL http://projects.
eclipse.org/projects/modeling.gmp. (Zitiert auf Seite 12)

R. Hagin. Enabling integration and aggregation of context information into WS-
BPEL processes. Diplomarbeit, Universitaet Stuttgart, 2011. URL http://elib.
uni-stuttgart.de/opus/volltexte/2011/6623. (Zitiert auf Seite 13)

F. Leymann, D. Karastoyanova. Chapter 12: BPEL. Vorlesungsunterlagen von
Services and Service Composition, 2012. (Zitiert auf Seite 11)

OASIS. Web Services Business Process Execution Language Version 2.0, 2007.
URL http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.html. (Zi-
tiert auf den Seiten 7, 11, 19, 25 und 29)

OASIS. Web Services Business Process Execution Language Version 2.0 - Spe-
cification, 2007. URL http://docs.oasis-open.org/wsbpel/2.0/0S/process/
abstract/ws-bpel_abstract_common_base.xsd. (Zitiert auf Seite 11)

O. Sonnauer. Modellierung von Scientific Workflows mit Choreographien. Diplom-
arbeit, Universitaet Stuttgart, 2013. URL http://elib.uni-stuttgart.de/opus/
volltexte/2013/8504/. (Zitiert auf den Seiten 9, 13 und 14)

W3C. Web Services Choreography Description Language Version 1.0, 2005. URL
http://www.w3.o0rg/TR/2005/CR-ws-cd1l-10-20051109/. (Zitiert auf Seite 9)

39

http://bpt.hpi.uni-potsdam.de/pub/Public/GeroDecker/icws2007-BPEL4Chor.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/GeroDecker/icws2007-BPEL4Chor.pdf
http://www.eclipse.org/bpel/
http://www.eclipse.org/bpel/
http://projects.eclipse.org/projects/modeling.emf
http://projects.eclipse.org/projects/modeling.emf
http://projects.eclipse.org/projects/modeling.gmp
http://projects.eclipse.org/projects/modeling.gmp
http://elib.uni-stuttgart.de/opus/volltexte/2011/6623
http://elib.uni-stuttgart.de/opus/volltexte/2011/6623
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/process/abstract/ws-bpel_abstract_common_base.xsd
http://docs.oasis-open.org/wsbpel/2.0/OS/process/abstract/ws-bpel_abstract_common_base.xsd
http://elib.uni-stuttgart.de/opus/volltexte/2013/8504/
http://elib.uni-stuttgart.de/opus/volltexte/2013/8504/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/

Literaturverzeichnis

[WAS*13] A. Weiss, V. Andrikopoulos, S. G. Saez, D. Karastoyanova, K. Vukojevic-Haupt.
Modeling Choreographies using the BPEL4Chor Designer: an Evaluation Based
on Case Studies. Technischer Bericht, Institut fuer Architektur von Anwendungs-
systemen - Universitaet Stuttgart, 2013. (Zitiert auf Seite 16)

Alle URLs wurden zuletzt am 07.01. 2014 gepriift.

40

Erkldarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméf aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Grundlagen
	2.1 BPEL - Web Service Business Process Execution Language
	2.2 BPEL4Chor - BPEL für Choreographien
	2.3 EMF - Eclipse Modeling Framework
	2.4 GMF - Graphical Modeling Framework

	3 Analyse des Choreographiewerkzeugs
	3.1 Das Taxi Szenario - Version 1
	3.2 Fehlerübersicht
	3.3 Vorüberlegungen zu den fehlenden Features

	4 Implementierung der fehlenden Features
	4.1 Implementierung der <while>-Aktivität
	4.2 Implementierung der <if>-Aktivität
	4.3 Implementierung der <assign>-Aktivität

	5 Zusammenfassung und Ausblick
	5.1 Das Taxi Szenario erweitert - Version 2
	5.2 Neue entstandene Fehler

	Literaturverzeichnis

