
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Studienarbeit Nr. 2433

Analyse und Erweiterung eines
bestehenden

Choreographiewerkzeugs

Joas Schilling

Studiengang: Informatik

Prüfer/in: Jun.-Prof. Dr.-Ing. Dimka Karastoya-
nova

Betreuer/in: M.Sc. Wirt.-Inf. Andreas Weiß

Beginn am: 10. Juli 2013

Beendet am: 9. Januar 2014

CR-Nummer: D.1.7, D.2.11, H.4.1, I.3.4

Kurzfassung

Diese Arbeit befasst sich mit dem, von Oliver Sonnauer im Rahmen seiner Diplomarbeit
entwickelten, BPEL4Chor Designer, zum Modellieren von Choreographien. Im ersten Schritt
soll der Designer analysiert werden sowie fehlende Feature und andere Fehler aufgezeigt
werden. Im weiteren Verlauf der Arbeit wird der Designer um fehlende Punkte erweitert.
Dabei liegt der Fokus der Arbeit speziell auf dem Modellieren der Choreographie und
weniger auf der Transformation zum Erstellen der BPEL4Chor Prozesse.

3

Inhaltsverzeichnis

1 Einleitung 9

2 Grundlagen 11
2.1 BPEL - Web Service Business Process Execution Language 11

2.2 BPEL4Chor - BPEL für Choreographien . 11

2.3 EMF - Eclipse Modeling Framework . 12

2.4 GMF - Graphical Modeling Framework . 12

3 Analyse des Choreographiewerkzeugs 13
3.1 Das Taxi Szenario - Version 1 . 13

3.2 Fehlerübersicht . 14

3.3 Vorüberlegungen zu den fehlenden Features . 16

4 Implementierung der fehlenden Features 19
4.1 Implementierung der <while>-Aktivität . 19

4.2 Implementierung der <if>-Aktivität . 25

4.3 Implementierung der <assign>-Aktivität . 29

5 Zusammenfassung und Ausblick 35
5.1 Das Taxi Szenario erweitert - Version 2 . 35

5.2 Neue entstandene Fehler . 37

Literaturverzeichnis 39

5

Abbildungsverzeichnis

3.1 Erste Version der Taxi App . 15

4.1 While-Werkzeug zum Einfügen der Aktivität in die graphische Benutzerober-
fläche . 20

4.2 Links: “While-Figure Descriptor”, rechts: “While-Figur” des Editors 21

4.3 While als mögliches Kind für Sequence . 22

4.4 Condition-Tab in den Properties eines While-Elements 23

4.5 Scope - Child Reference für die While-Aktivität. Diese Child Reference ermöglicht
das Einfügen von Scope in ein While. 24

4.6 Dropdown zum Einfügen der verschiedenen If -Optionen 26

4.7 Neu erstelltes If ohne Unterelemente . 26

4.8 If mit Elseif und Else als Unterelementen . 26

4.9 If mit Elseif und Else als Unterelementen und eingefügten Aktivitäten 26

4.10 Definition für die Child Reference Else . 27

4.11 Assign-Figurbeschreibung links; rechts: Gegenüberstellung von Assign und
Receive . 30

4.12 Property Section für ein Copy-Element . 31

5.1 Abfrage “freier Taxis aus der Nähe” aus TaxiApp Version 1 35

5.2 Abfrage “freier Taxis” aus TaxiApp Version 2 . 35

5.3 Zweite Version der Taxi App . 36

5.4 Darstellungsprobleme nach dem Einfügen von Flow innerhalb einer While-
Aktivität . 37

5.5 “Workaround” für das Darstellungsproblem von verschachtelten Flow und
While-Aktivitäten . 38

5.6 If -Aktivität mit mehreren Elseif -Elementen . 38

6

Verzeichnis der Listings

2.1 Einfaches Beispiel einer Receive-Aktivität in Anlehnung an [OAS07a] 11

2.2 Einfaches Beispiel einer If -Aktivität in Anlehnung an [OAS07a] 11

3.1 Fehler im XML-Schema durch die Verwendung eines Kleinerzeichens 17

4.1 Aufbau einer <while>-Aktivität in Anlehnung an [OAS07a] 19

4.2 Verwendung eines Kleinerzeichens innerhalb eines CDATA-Abschnitts 20

4.3 Tools-Element-Eintrag für die While-Aktivität . 20

4.4 Weitere Definitionen für die While-Figur in der chor.gmfgraph 21

4.5 While-Aktivität im chor-Diagramm Modell . 22

4.6 While-Aktivität im BPEL4Chor-Dokument . 22

4.7 Definition des Condition Tab’s . 23

4.8 Definition der Property Section . 23

4.9 Aufbau einer <if>-Aktivität in Anlehnung an [OAS07a] 25

4.10 If -Aktivität in der Chor Diagram Datei ohne Elseif und Else aus Abbildung 4.7
auf Seite 26 . 28

4.11 If -Aktivität in der exportierten BPEL4Chor-Datei ohne Elseif und Else aus
Abbildung 4.7 . 28

4.12 If -Aktivität in der Chor Diagram Datei mit Elseif und Else und Kind-Aktivitäten
aus Abbildung 4.9 auf Seite 26 . 28

4.13 If -Aktivität in der exportierten BPEL4Chor-Datei mit Elseif und Else und Kind-
Aktivitäten aus Abbildung 4.9 . 29

4.14 Aufbau einer <assign>-Aktivität in Anlehnung an [OAS07a] 29

4.15 Erstellung der Kontroll-Elemente . 31

4.16 Konfiguration des Layout’s . 32

4.17 Laden der Werte aus dem Modell in die SWT-Elemente 33

4.18 Assign-Aktivität mit Copy-Element und den angegebenen Attributen im Chor
Modell . 33

4.19 Assign-Aktivität mit Copy-Element und den angegebenen Attributen im ex-
portierten BPEL4Chor-Prozess . 34

7

Verzeichnis der Abkürzungen

API – Application Programming Interface

BPEL – Web Service Business Process Execution Language

BPEL4Chor – BPEL for Choreographies

EMF – Eclipse Modeling Framework

GEF – Graphical Editing Framework

GMF – Graphical Modeling Framework

IDE – Integrated Development Environment

MVC – Model-View Controller

PBD – Participant Behaviour Description

SWT – Standard Widget Toolkit

UML – Unified Modeling Language

XMI – XML Metadata Interchange

XML Extensible Markup Language

XSD – XML Schema Definition

8

1 Einleitung

Das Bestellen eines Taxis ist heutzutage so einfach wie eh und je. Schnell die passende App
auf dem Smartphone gestartet, Standort und Zielort angegeben und schon ist das Taxi auf
dem Weg, um den Kunden abzuholen und an das gewünschte Ziel zu befördern. Was dabei
im Hintergrund alles abläuft, bekommt der Kunde nicht zu sehen. Nur das Unternehmen
selbst weiß, welche Prozesse dabei in Gang gesetzt werden müssen: Freie Taxis werden
ermittelt, diese angefragt ob sie die Beförderung übernehmen möchten, die Informationen
für die Beförderung gesammelt und dann an den Kunden zurück gesendet werden.

Soll dieser Workflow nun modelliert werden soll, muss für jeden der einzelnen Teilnehmer
ein eigener Business Prozess erstellt werden. Wenn die einzelnen Prozesse modelliert werden,
gehen jedoch die Verbindung der einzelnen Prozesse, die Kommunikation zwischen ihnen
und andere Abhängigkeiten, die die Prozesse untereinander haben, verloren. Diesen Aspekt
der Interaktion von Business Prozessen nennt man Choreographie. [W3C05]

Mit der Modellierung solcher Choreographien hat sich Oliver Sonnauer in seiner Di-
plomarbeit “Modellierung von Scientific Workflows mit Choreographien” beschäftigt.
[Son13] Daraus entstand ein Choreographiewerkzeug, mit dem die einzelnen Prozes-
se und Choreographie-Aspekte nicht nur graphisch visualisiert werden, sondern auch
als BPEL4Chor1-Fragmente exportiert werden können. Diese so gewonnen BPEL4Chor-
Fragmente können dann später mit anderen Tools2 zu vollständigen BPEL-Prozessen erweitert
und dann verwendet werden.

Ziele dieser Arbeit

Mit Hilfe eines praxisorientierten Beispiels soll das, von Oliver Sonnauer im Rahmen seiner
Diplomarbeit entwickelte, graphische Werkzeug zur Modellierung von Choreographien
analysiert werden. Noch nicht implementierte Features sollen im Anschluss implementiert
werden und sofern im zeitlichen Rahmen der Arbeit noch möglich ein Teil der in Ab-
schnitt 3.2.2 aufgezeigten Fehler behoben werden. Am Ende wird das Beispiel noch einmal
aufgegriffen, um die neuen Möglichkeiten der Modellierung zu zeigen.

1Eine Erweiterung für BPEL (Web Service Business Process Execution Language - Sprache zur Ausführung von
Business Prozessen) zur Modellierung von Choreographien [DKLW07]

2Bspw. Eclipse BPEL Designer [EF14a]

9

1 Einleitung

Gliederung

Kapitel 2 – Grundlagen beschreibt die grundlegenden Technologien, die, zum Verständnis
der Arbeit oder des Werkzeugs an sich, notwendig sind.

Kapitel 3 – Analyse des Choreographiewerkzeugs beschreibt den aktuellen Stand der Im-
plementierung an Hand eines Beispiels und geht auf einige Details ein, die beim
Implementieren der noch fehlenden Feature beachtet werden müssen.

Kapitel 4 – Implementierung der fehlenden Features beschreibt das genauere Vorgehen
beim Implementieren der Features.

Kapitel 5 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und
weist auf neu entstandene Problem hin, die Anknüpfungspunkte für weitere Arbeiten
sein können.

10

2 Grundlagen

2.1 BPEL - Web Service Business Process Execution Language

BPEL, oder auch WS-BPEL genannt, steht für Web Service Business Process Execution Language.
Die Sprache, deren Version 2.0 seit April 2007 als Standard definierte ist, ermöglicht es, das
Verhalten von Web Services zu beschreiben. BPEL selbst ist dabei XML basiert. [OAS07b] Die
Hauptelemente von BPEL sind dabei Partner Links, Variables, Correlation Sets, Handlers und
Activities. [LK12]

Die Aktivitäten kann man hauptsächlich in zwei Gruppen aufteilen:

Basic Activities sind einfache Aktivitäten die nicht aus anderen Aktivitäten aufgebaut sind.
Beispiele hierfür sind z.B. Reply und Receive, die zum Versenden und Empfangen von
Nachrichten benutzt werden:

Listing 2.1 Einfaches Beispiel einer Receive-Aktivität in Anlehnung an [OAS07a]
<receive partnerLink="NCName" operation="NCName" />

Structured Activities dagegen sind solche Aktivitäten, die sich aus anderen Aktivitäten
aufbauen. Ein Beispiel hierfür wäre die If -Aktivität, welche dazu benutzt werden kann,
eine andere Aktivität nur unter bestimmten Bedingungen auszuführen.

Listing 2.2 Einfaches Beispiel einer If -Aktivität in Anlehnung an [OAS07a]
<if>

<condition>$nochKeineAntwortBekommen</condition>

<receive partnerLink="NCName" operation="NCName" />

</if>

2.2 BPEL4Chor - BPEL für Choreographien

Das Einbinden von Services in (BPEL)-Prozesse wird als Composition oder Orchestrierung
bezeichnet. Unter einer Choreographie versteht man das Verbinden mehrerer Orchestrierungen.
In BPEL4Chor, eine Erweiterung für BPEL, liegt das Augenmerk auf eben dieser Choreogra-
phie. Dabei wird darauf geachtet, dass die 3 Hauptpunkte einer Choreographie von einander
getrennt bleiben: [DKLW07]

11

2 Grundlagen

• In der Participant Behaviour Description geht es darum, festzulegen, wie der Daten-
Kontrollfluss zwischen den kommunizierenden Prozessen und den einzelnen Aktivitä-
ten verläuft.

• In der Topology werden die einzelnen Message Links (Nachrichten), aber auch die
Choreographie-Teilnehmer an sich, definiert.

• Das Grounding ist dafür verantwortlich die technischen Details der Implementierung
aufzunehmen. Dadurch wird erreicht, dass die einzelnen Details für die Kommunikati-
on nicht direkt mit den Modellen der anderen zwei Punkte verbunden sind und somit
schnell und einfach ersetzt werden können.

2.3 EMF - Eclipse Modeling Framework

Das Eclipse Modeling Framework (EMF) [EF14b] ist ein Framework für die bekannte Java
IDE1 Eclipse. Mit dessen Hilfe können Tools und Anwendungen gebaut werden, die auf
strukturierten Datenmodellen basieren. Abhängig von den installierten Erweiterungen, kann
das Datenmodell aus vielen verschiedenen Formaten2 importiert werden, ansonsten muss
es mit Hilfe einer einfachen Baumstruktur und einem Bereich für Eigenschaften (Property
Section) manuell erstellt werden. Auf diese Art kann das Modell danach auch erweitert,
vereinfacht und anderweitig bearbeitet werden. Das Modell wird am Ende als XML Metadata
Interchange (XMI) Serialisierung, in einer .ecore-Datei gespeichert. [BSM+

04] Aus diesem
Modell können anschließend Java-Klassen für die weitere Verwendung erstellt werden.

2.4 GMF - Graphical Modeling Framework

Eine Möglichkeit mit dem Modell zu Arbeiten, bietet Graphical Modeling Framework (GMF)
[EF14c], eines der Graphical Modeling Project von Eclipse. Es wurde dafür entwickelt, das
EMF-Modell mit der Model-View Controller (MVC) Architektur des Graphical Editing Frame-
work (GEF) von Eclipse zu verbinden. Dies hatten davor schon mehrere Projekte versucht
umzusetzen. [BSM+

04]

GMF besteht dabei aus zwei Hauptkomponenten: Einer Tooling-Komponente, mit deren
Hilfe die graphischen Elemente definiert werden und mit dem zu Grunde liegenden Modell
verknüpft werden. Die zweite Komponente ist die runtime-Komponente. Sie ist dafür verant-
wortlich EMF und GEF mit einander zu verbinden und bietet zusätzlich noch eine API3 zum
Entwickeln des graphischen Editors.

1Integrated Development Environment - Integrierte Entwicklungsumgebung, sie beinhalten meist: einen Editor
für den Quellcode, einen Compiler zum Übersetzen des Programm Codes, verschiedene Werkzeuge zum
Debuggen und leichteren Programmieren

2z.B. Unified Modeling Language Version 2 (UML2), XML Schema Definition (XSD) oder annotierten Java-
Klassen

3Application Programming Interface

12

3 Analyse des Choreographiewerkzeugs

In diesem Kapitel wird ein genauerer Blick das von Oliver Sonnauer entwickelte Choreogra-
phiewerkzeug geworfen. [Son13] Dabei sollen vor allem fehlende Features und andere Fehler
aufgezeigt werden, die im Bereich der Modellierung auftreten. Fehler bei der Transformation
der Choreographie zu BPEL4Chor stehen nicht im Fokus dieser Arbeit.

3.1 Das Taxi Szenario - Version 1

Um die Funktionalität zu testen wird ein Muster-Szenario, angelehnt an das Taxi-Szenario
aus [Hag11], erstellt. Dabei geht es um den Bestellvorgang für ein Taxi. Die Abläufe inner-
halb des Taxi-Unternehmens samt Taxis und Taxi-Service-Provider sollen dabei mit Hilfe des
Choreographiewerkzeuges dargestellt werden.

1. Zu Beginn des Vorgangs, sendet der Kunde seine Anfrage an das Taxi-Unternehmen.
2. Das Taxi-Unternehmen leitet die Anfrage an den Taxi-Service-Provider weiter und wartet

dann auf die Transport-Informationen.
3. Nachdem der Taxi-Service-Provider die Anfrage vom Taxi-Unternehmen erhalten hat, erstellt

er eine Liste aller freien Taxis, die in der Nähe des Kunden sind.
4. Anschließend fragt er die Kontaktdaten der Taxi-Fahrer ab und sendet die Transport-

Anfrage an das jeweilige Taxi.
5. Jetzt wartet er auf eine Antwort durch die Taxis:

* Wenn eine Antwort eintrifft, wird dem Taxi eine Bestätigung zu gesendet. Somit ist das
Taxi gebucht.

* Trifft jedoch keine Nachricht von einem Taxi ein, steht kein Taxi zur Verfügung und der
Transport kann nicht durch geführt werden.

6. Der Taxi-Service-Provider sendet anschließend die Informationen an das Taxi-Unternehmen,
7. das zum Abschluss des Vorgangs den Kunden über den Transport informiert.

Dieser Ablauf kann so auch schon mit dem Werkzeug modelliert werden und ist in Ab-
bildung 3.1 auf Seite 15 zu sehen. Taxi-Unternehmen und Taxi-Service-Provider werden als
Participant in Form eines abgerundeten Rechtecks dargestellt. Die Taxis, deren genaue An-
zahl unbekannt ist, werden als ParticipantSet dargestellt. Solche Sets haben zusätzlich eine
gestrichelte Umrandung am unteren und rechten Rand, um die übereinander liegenden
einzelnen Teilnehmer zu symbolisieren.

Die Kommunikation zwischen den einzelnen Teilnehmern wird immer durch einen be-
schrifteten Pfeil dargestellt, desen Spitze immer auf den Empfänger der Nachricht zeigt.

13

3 Analyse des Choreographiewerkzeugs

Aktivitäten die mit am Kontrollfluss oder an der Kommunikation beteiligt sind, z.B. ForEach,
Send und Receive, werden ebenfalls angezeigt.

3.2 Fehlerübersicht

3.2.1 Fehlende Features

Während der Modellierung fällt auf, dass nicht alle in BPEL zur Verfügung stehenden
Aktivitäten zur Verfügung stehen. Daher mussten im Taxi-Szenario einige Aspekte gekürzt
werden um das Modell zu erstellen. Wie in der Diplomarbeit [Son13] selbst schon erwähnt,
fehlen:

• <while>

• <if>

• <assign>

• <repeatUntil>

Von denen im BPEL Designer als Actions und Controls bekannten Aktivitäten fehlen außerdem
noch, die für die Modellierung einer Choreographie jedoch weniger erforderlich sind, als die
zuvor genannten Aktivitäten:

• <empty>

• <validate>

• <wait>

Des Weiteren fehlen alle BPEL-Aktivitäten, die zur Fehlerbehandlung dienen:

• <catch>

• <catchAll>

• <exit>

• <throw>

• <rethrow>

• <compensate>

• <compensateScope>

Mit diesen Aktivitäten können Prozesse beendet, Fehler geworfen und abgefangen werden.
Auch diese Aspekte sind zwar wichtig, um die volle Funktionalität zu unterstützen, haben
aber nicht die höchste Priorität beim Erstellen einer Choreographie.

14

3.2 Fehlerübersicht

Abbildung 3.1: Erste Version der Taxi App

15

3 Analyse des Choreographiewerkzeugs

3.2.2 Andere Fehler

Zusätzlich zu den fehlenden Features sind mehrere Fehler auffällig, die teilweise auch
schon in einem technischen Report, über das Choreographiewerkzeug, veröffentlicht wurden.
[WAS+13] Einige davon sind lediglich optisch unangenehm:

• Werden zwei Flow-Aktivitäten in einander eingefügt, wird die Darstellung des Choreo-
graphiewerkzeugs beschädigt. Alle Elemente haben einen zusätzlichen Innenabstand zu
ihrer Umrandung. Die Darstellung ist auch in allen anderen geöffneten Choreographie-
Fenstern defekt. Erst wenn die verschachtelten Flow-Elemente wieder gelöscht werden
und dann die Eclipse Instanz neu gestartet wurde, wird der Editor wieder korrekt
dargestellt.

• Die einzelnen OnMessage-Abschnitte der Pick-Aktivität werden nicht, wie vom Eclipse
BPEL Designer bekannt, nebeneinander, sondern untereinander dargestellt. Bereits
kurze Prozesse können dadurch nicht mehr vollständig auf einem Bildschirm angezeigt
werden.

• Alle MessageLinks tragen den Text “name:” vor ihrem Label, der nicht gelöscht werden
kann.

Weitere Fehler sind zum Beispiel:

• Wenn zwei Aktivitäten aus zwei verschiedenen Participants mit einem MessageLink ver-
bunden werden und dann einer der Participants gelöscht wird, kann das Choreographie-
Diagramm nicht mehr gespeichert werden. Grund dafür ist, dass die angelegten Messa-
geLinks nicht gelöscht werden und dann auf nicht mehr existierende Elemente zeigen.
Wenn die Aktivität anstelle des Participant gelöscht wird, tritt der Fehler nicht auf.

• Wird im Nachhinein die Receive Activity oder Send Activity eines MessageLinks über die
zugehörige Property Section geändert, wird der Link in der graphischen Darstellung
nicht aktualisiert und verbindet immer noch die ursprünglichen Elemente. Erst wenn
das Diagramm geschlossen und neu geöffnet wurde, werden die richtigen Elemente
miteinander verbunden.

3.3 Vorüberlegungen zu den fehlenden Features

3.3.1 Sonderzeichen im Condition-Element der If und While-Aktivitäten

Beim Erstellen von If.condition, Elseif.condition und While.condition ist Vorsicht
geboten. Um normale Vergleiche wie “größer” (>) und “kleiner” (<) zu Ermöglichen, muss
der Inhalt des Elements besonders gespeichert werden, ansonsten wird das XML-Schema
der erzeugten Dateien zerstört. Ein Beispiel dafür wäre der Vergleich “$test.Kleiner <

$test.Vergleich”. Durch das Kleinerzeichen wird ein neues XML-Element geöffnet, das
nicht mehr vor dem schließenden </condition>-Tag geschlossen wird:

16

3.3 Vorüberlegungen zu den fehlenden Features

Listing 3.1 Fehler im XML-Schema durch die Verwendung eines Kleinerzeichens
<while>

<condition>$test.Kleiner < $test.Vergleich</condition>

<!-- ^ Fehler -->

...

</while>

3.3.2 Varianten der Copy-Operation

In BPEL stehen mehrere Möglichkeiten zur Verfügungen, durch die Daten von verschiedenen
Elementen und Abschnitten kopiert werden können, als auch wohin sie gespeichert werden
können.1 Als Quelle (<from>) stehen dabei zur Verfügung:

• Ein Query oder eine Expression in einer angegebenen Sprache,

• ein Punkt der an einem Kommunikations-Kanal beteiligt ist (Endpoint Reference),

• eine Variable oder die Property einer Variable,

• ein Literal oder ein leeres Elemente (<from />).

Für das Ziel des Kopiervorgangs (<to>) steht dabei lediglich die Literal-Variante nicht zur Ver-
fügung. Während der Implementierung wird lediglich die “von Variable zu Variable”-Variante
erläutert. Die Implementierung der anderen Varianten weicht nämlich nur geringfügig von
dieser einen Variante ab.

1http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html#SA00032

17

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html#SA00032

4 Implementierung der fehlenden Features

Im Folgenden wird zuerst die Implementierung der <while>-Aktivität genauer erklärt. Bei
den weiteren Features wird nur noch auf mögliche Besonderheiten eingegangen.

4.1 Implementierung der <while>-Aktivität

Listing 4.1 zeigt den Aufbau einer <while>-Aktivität in BPEL.

Listing 4.1 Aufbau einer <while>-Aktivität in Anlehnung an [OAS07a]
<while>

<condition><!-- Boolescher Ausdruck --></condition>

<!-- Auszufuehrende Aktivitaet -->

</while>

Um die Aktivität zu implementieren, müssen mehrere Teilaufgaben erledigt werden:

1. Die Spezifikation der Aktivität muss im EMF-Modell der “Participant Behaviour Description”
pbd.ecore angegeben werden.

2. Das Werkzeug zum Einfügen des While’s muss zur Palette hinzugefügt werden.
3. Die graphischen Darstellung für die Figur muss festgelegt werden.
4. Das Werkzeug, die Darstellung und die Spezifikation müssen verbunden werden.
5. Einer Option für die Angabe der While-Bedingung muss eingerichtet werden.
6. Es muss ermöglicht werden, andere Aktivitäten innerhalb von While aufrufen zu können.

4.1.1 Spezifikation der <while>-Aktivität

In der Spezifikation wird festgelegt, wie die While-Aktivität aufgebaut ist und das sie vom
Typ Activity ist. Auch die ihr zugehörige Aktivität While.activity ist vom Typ Activity.
Das heißt alle Elemente die ebenfalls vom Typ Activitiy sind, können für While.activity

eingesetzt werden. Beispiele dafür wären Sequence und Reply, aber auch While selbst. Auf die
gleiche Weise kann While auch in alle anderen Elemente eingefügt werden, die ein Element
vom Typ Activity erwarten, zum Beispiel Sequence und das noch nicht implementierte If.

Die Bedingung While.condition für die Aktivität ist vom Typ Condition, ein Untertyp von
Expression. Der Inhalt des <condition>-Element muss später, wie bereits in den Vorüberle-
gungen in Abschnitt 3.3.1 angekündigt, in einem CDATA-Abschnitt gespeichert werden.

19

4 Implementierung der fehlenden Features

Dem XML-Parser wird dadurch mit geteilt, dass der folgende Abschnitt nur als norma-
ler Text betrachtet werden soll. Es können also auch Sonderzeichen genutzt werden, die
ansonsten Probleme im XML-Dokument verursachen, für Vergleiche in den angegebenen
Bedingungen aber unerlässlich sind. Die wichtigsten Zeichen wären dabei das Kleiner- (<)
und Größerzeichen (>), die in XML-Dokumenten Elemente öffnen und schließen, aber auch
das Anführungszeichen (") könnte ansonsten Problem hervorrufen.

Die korrekte XML-Code des While’s aus Listing 3.1 sieht damit wie folgt aus:

Listing 4.2 Verwendung eines Kleinerzeichens innerhalb eines CDATA-Abschnitts
<while>

<condition><![CDATA[$test.Kleiner < $test.Vergleich]]></condition>

...

</while>

4.1.2 Option in der Werkzeugpalette

Als zweiter Schritt wird die Option implementiert, mit deren Hilfe der Benutzer später
die Aktivität zur Arbeitsfläche hinzufügen kann. Dafür muss das “Tooling Definition Model”
(chor.gmftool) angepasst werden. Im XML Code dieser Datei, siehe Listing 4.3, wird dabei
ein neues <tools>-Element angelegt. Als untergeordnete Elemente werden dabei ein kleines
und ein grosses Icon angegeben, die später, zusammen mit dem Titel und der Beschreibung,
das Werkzeug darstellen.

Listing 4.3 Tools-Element-Eintrag für die While-Aktivität
<tools

xsi:type="gmftool:CreationTool"

title="While"

description="Create new While">

<smallIcon ... />

<largeIcon ... />

</tools>

Wenn nun die chor.gmfmap Map aktualisiert, anschließend daraus das chor.gmfgen Mo-
dell erzeugt und schließlich der Diagramm-Code neu erstellt wird, ist in der graphischen
Oberfläche zum Modellieren der Choreographie das While-Werkzeug zu sehen.

Abbildung 4.1: While-Werkzeug zum Einfügen der Aktivität in die graphische Benutzerober-
fläche

20

4.1 Implementierung der <while>-Aktivität

4.1.3 Graphische Darstellung

Allerdings lässt sich das While bisher noch nicht in den Editor, die Arbeitsfläche, einfügen.
Dafür muss zuerst in der chor.gmfgraph definiert werden, aus welchen graphischen Elemen-
ten die While-Figur besteht. Vom Knoten selbst, über die Beschriftung der Option, bis zur
Darstellung der untergeordneten Aktivität kann alles genau definiert werden. In diesem Fall
wurde für die Figur selbst ein abgerundetes Rechteck ausgewählt ähnlich wie bei den bereits
existierenden Figuren, siehe dazu die folgende Abbildung 4.2.

Abbildung 4.2: Links: “While-Figure Descriptor”, rechts: “While-Figur” des Editors

In der chor.gmfgraph werden ebenfalls noch die Zugriffspunkte definiert, durch die später
der Name und die Kind-Aktivität passend eingefügt werden können:

Listing 4.4 Weitere Definitionen für die While-Figur in der chor.gmfgraph
<nodes

name="While"

figure="WhileFigure"/>

...

<compartments

name="WhileActivityCompartment"

figure="WhileFigure"

accessor="//@figures.1/@descriptors.13/@accessors.1"/>

...

<labels

name="WhileName"

figure="WhileFigure"

accessor="//@figures.1/@descriptors.13/@accessors.0"/>

4.1.4 Verknüpfung von Werkzeug, Darstellung und Spezifikation

Als letzter Schritt müssen im Mapping Model chor.gmfmap die Darstellung aus dem Graphical
Definition Model und das neue Werkzeug aus dem Tooling Definition Model, zusammen mit
dem Domain Model chor.ecore verknüpft werden. Das Mapping Model greift dabei auf das
Participant Behaviour Description Modell pbd.ecore zurück, in dem die einzelnen Aspekte der
While-Aktivität bereits in Abschnitt 4.1.1 definiert wurden.

21

4 Implementierung der fehlenden Features

Zunächst wird die untergeordnete Kind-Aktivität ignoriert und die Aktivität lediglich als
mögliche Child Reference der Sequence-Aktivität definiert, wie in Abbildung 4.3 zu sehen ist.

Abbildung 4.3: While als mögliches Kind für Sequence

Wärend eine While-Instanz erstellt wird, werden zwei Werte für das Element gesetzt: id, zur
eindeutigen Identifizierung des Elements, und name, der im Editor angezeigt wird.

Wenn nun wieder, wie in Abschnitt 4.1.2, das chor.gmfgen Modell und anschließend der
Diagramm-Code neu erstellt werden, kann die While-Aktivität in den Editor eingefügt
werden. Sieht man sich anschließend das chor-Modell des Diagramm’s an, sieht man dort
die While-Aktivität als XML-Element:

Listing 4.5 While-Aktivität im chor-Diagramm Modell
<activity xsi:type="pbd:While" name="while" id="2e6247d9-0897-4ec5-ba19-4ec7906ce71e">

<condition body="ACED000574000874657374203C2033"/>

</activity>

Anschließend kann über die Option “ChorDiagramEditor” > “Export to BPEL4Chor” der
BPEL4Chor Prozess aus dem Diagramm exportiert werden, wo sich die While-Aktivität dann
auch zum jetzigen Zeitpunkt schon wieder findet:

Listing 4.6 While-Aktivität im BPEL4Chor-Dokument
<while name="while" wsu:Id="2e6247d9-0897-4ec5-ba19-4ec7906ce71e">

<condition><![CDATA[$test <= 10]]></condition>

</while>

22

4.1 Implementierung der <while>-Aktivität

4.1.5 Definitionsmöglichkeit für die Bedingung

Als Nächsten soll nun ermöglicht werden, die Bedingung des While-Element’s, in einem
neuen Tab der Property View, anzugeben. In der plugin.xml wird hierfür zu Beginn der Tab
definiert:

Listing 4.7 Definition des Condition Tab’s
<propertyTab

category="extra"

id="property.tab.ConditionTab"

label="Condition">

</propertyTab>

Als zweites wird dann die Property Section definiert:

Listing 4.8 Definition der Property Section
<propertySection

class="org.eclipse.bpel4chor.property.tabs.sections.WhileConditionSection"

enablesFor="1"

filter="org.eclipse.bpel4chor.property.tabs.sections.filter.WhileTypeFilter"

id="property.section.WhileConditionSection"

tab="property.tab.ConditionTab">

<input

type="org.eclipse.bpel4chor.model.chor.diagram.navigator.ChorAbstractNavigatorItem">

</input>

</propertySection>

Dabei wird ein “Filter” angegeben, der dafür sorgt, dass die Property Section nur für While-
Elemente erstellt wird. Das zweite wichtige Attribut ist die angebene “Klasse” class, die
sich darum kümmert, dass der in der Textarea eingebene Text im zugeordneten Element
gespeichert und im Falle einer späteren Änderung auch wieder davon geladen wird. Der
erstellte Tab und die zugehörige Property Section sind in der folgenden Abbildung zu sehen:

Abbildung 4.4: Condition-Tab in den Properties eines While-Elements

23

4 Implementierung der fehlenden Features

In Abschnitt 4.3.4 auf Seite 30 wird genauer darauf eingegangen, wie eine solche Property
Section funktioniert.

4.1.6 Weitere Aktivitäten als Eltern- und Kindelement von <while>

Zum Abschluss der Implementierung des While-Features muss ermöglicht werden, andere
Aktivitäten als Kind von While anzugeben. Dafür wird im Compartment Mapping angegeben,
in welchem Abschnitt der While-Figur die Kinder angezeigt werden. Danach muss für jede
mögliche Aktivität eine Child Reference definiert werden, die angibt, welches Feature das
jeweilige Kind implementiert, in welchem Compartment es angezeigt werden soll und um
welches Kind es sich dabei handelt.

Abbildung 4.5: Scope - Child Reference für die While-Aktivität. Diese Child Reference ermöglicht
das Einfügen von Scope in ein While.

Da bisher keine anderen Aktivitäten, abgesehen von Sequence, existieren, die eine Whi-
le-Aktivität als Kind akzeptieren, ist die Implementierung damit abgeschlossen. Wenn
solche Structured Activities1 bereits implementiert wären, müssten auch Child References
(Abbildung 4.5) dafür angelegt werden, um While innerhalb solcher Aktivitäten nutzen zu
können.

1vgl. Abschnitt 2.1 auf Seite 11

24

4.2 Implementierung der <if>-Aktivität

4.2 Implementierung der <if>-Aktivität

Listing 4.9 Aufbau einer <if>-Aktivität in Anlehnung an [OAS07a]
<if>

<condition><!-- Boolescher Ausdruck --></condition>

<!-- Auszufuehrende Aktivitaet -->

<elseif>*

<condition><!-- Boolescher Ausdruck --></condition>

<!-- Auszufuehrende Aktivitaet -->

</elseif>

<else>?

<!-- Auszufuehrende Aktivitaet -->

</else>

</if>

4.2.1 Spezifikation

Der Basisaufbau der If -Aktivität ähnelt sehr dem der While-Aktivität, innerhalb des Elements
ist zuerst eine Bedingung und dann eine auszuführende Aktivität, siehe hierfür Listing 4.9.

Zusätzlich dazu können im Falle des If ’s noch beliebig viele Elseif -Elemente und ein optiona-
les Else-Element folgen. Die Elseif -Elemente bestehen immer aus einer Bedingung und einer
Aktivität, wie auch schon If und While. Das Else-Element hingegen enthält nur eine Aktivität.
Es wird ausgeführt, wenn weder das If noch eines der Elseif -Elementen erfüllt wurde.

Wie auch schon bei der While-Aktivität müssen die Condition-Elemente auch bei If und
Elseif als <![CDATA[]]>-Abschnitte gespeichert werden um Probleme mit Sonderzeichen zu
vermeiden.

4.2.2 Option in der Werkzeugpalette

Beim Einfügen der Optionen in die Werkzeugpalette wird nur ein Eintrag erstellt. Später
werden alle drei Elemente (If, Elseif und Else) mit dieser Option verbunden, da eindeutig ist,
an welche Stelle ein Element eingefügt werden muss. Außerhalb von <if>-Elementen können
nur <if>-Elemente eingefügt werden. Das If selbst wiederum besteht aus 3 Figurteilen. Wird
ein <if> innerhalb des <if>s eingefügt, so wird das neue If als If.acitivity in den ersten
Abschnitt eingefügt. Mögliche <elseif>-Elemente kommen in den zweiten Abschnitt, das
optionale <else>-Element in den Dritten. Wählt man die Option aus und versucht sie in den
Editor einzufügen, bietet GMF die, an dieser Stelle noch zur Verfügung stehenden, Optionen
in einem kleinem Dropdown an.

25

4 Implementierung der fehlenden Features

Abbildung 4.6: Dropdown zum Einfügen der verschiedenen If -Optionen

4.2.3 Graphische Darstellung

Wie bereits erwähnt, benötigt die If -Figur, im Gegensatz zur Figur von While, drei Abschnitte,
in die Kinder eingefügt werden können. Die Abschnitte für Elseif und Else sind jedoch am
Anfang nicht sichtbar.

Abbildung 4.7: Neu erstelltes If ohne Unterelemente

Erst wenn über die Werkzeugpalette Elseif und Else selbst eingefügt werden, sind sie auch
im Editor zusehen. Siehe dazu Abbildung 4.8

Abbildung 4.8: If mit Elseif und Else als Unterelementen

Die Aktivitäten der einzelnen Elemente werden anschließend in die zugehörigen untergeord-
neten Rechtecke der jeweiligen If, Elseif und Else Figur eingefügt.

Abbildung 4.9: If mit Elseif und Else als Unterelementen und eingefügten Aktivitäten

26

4.2 Implementierung der <if>-Aktivität

4.2.4 Mapping-Eintrag für If

Der Eintrag für das If im Mapping Model chor.gmfmap ist um einiges Umfangreicher, als der
Eintrag des While’s. Zunächst muss wie auch schon beim While das Werkzeug zusammen
mit der Figur und dem Domain Element verbunden werden. Danach werden ebenfalls die
Child References für die jeweiligen Elemente als If.activity angelegt. Beim If fehlen nun
aber noch Elseif und Else.

Für diese beiden Elemente muss jeweils wieder ein Compartment Mapping angegeben werden,
dann der Aufbau der jeweiligen Elements und die zugehörigen Child References. Wichtig
hierbei ist, dass für Elseif und Else, im Gegensatz zu If, keine Child Reference für die anderen
Elemente, die Aktivitäten enthalten, erstellt werden. <elseif> und <else> können also nur
innerhalb von <if> genutzt werden und nicht direkt als Kind von <while> auftreten.

Abbildung 4.10: Definition für die Child Reference Else

4.2.5 Chor Diagram- und BPEL4Chor-Einträge für If

Dadurch, das beim Erstellen eines If ’s nicht gleich Elseif und Else mit erstellt und eingefügt
werden kann, wird der Diagram Code und auch der daraus erzeugte BPEL4Chor Code so
einfach wie möglich gehalten. Siehe hierzu die zwei folgenden Listings die das If nur mit
Condition und einer Aktivität, also ohne Elseif und Else, zeigen:

27

4 Implementierung der fehlenden Features

Listing 4.10 If -Aktivität in der Chor Diagram Datei ohne Elseif und Else aus Abbildung 4.7
auf Seite 26

<activity xsi:type="pbd:If" name="if" id="b53c08f7-d1e5-4190-b079-1b2c888b693f">

<condition body="ACED0005740005656D707479"/>

<activity xsi:type="pbd:Receive" name="receive"

id="811c162d-8d68-45ea-ad80-48ea93f39826"/>

</activity>

Listing 4.11 If -Aktivität in der exportierten BPEL4Chor-Datei ohne Elseif und Else aus
Abbildung 4.7

<if name="if" wsu:Id="b53c08f7-d1e5-4190-b079-1b2c888b693f">

<condition><![CDATA[$test = 1]]></condition>

<receive name="receive" wsu:Id="811c162d-8d68-45ea-ad80-48ea93f39826"/>

</if>

Wird noch ein Elseif und ein Else angegeben, kann die volle If -Funktionalität gezeigt und
genutzt werden:

Listing 4.12 If -Aktivität in der Chor Diagram Datei mit Elseif und Else und Kind-Aktivitäten
aus Abbildung 4.9 auf Seite 26

<activity xsi:type="pbd:If" name="if" id="b53c08f7-d1e5-4190-b079-1b2c888b693f">

<condition body="ACED000574000A6E6F74456D7074794966"/>

<activity xsi:type="pbd:Receive" name="receive"

id="811c162d-8d68-45ea-ad80-48ea93f39826"/>

<elseif>

<condition body="ACED000574000E6E6F74456D707479456C73656966"/>

<activity xsi:type="pbd:Receive" name="receive"

id="81b39750-51d8-4f96-b068-144f12fee0c6"/>

</elseif>

<else>

<activity xsi:type="pbd:Receive" name="receive"

id="74baea27-3378-45af-8510-b8e2a1721db7"/>

</else>

</activity>

28

4.3 Implementierung der <assign>-Aktivität

Listing 4.13 If -Aktivität in der exportierten BPEL4Chor-Datei mit Elseif und Else und Kind-
Aktivitäten aus Abbildung 4.9

<if name="if" wsu:Id="b53c08f7-d1e5-4190-b079-1b2c888b693f">

<condition><![CDATA[$notEmptyIf]]></condition>

<receive name="receive" wsu:Id="811c162d-8d68-45ea-ad80-48ea93f39826"/>

<elseif>

<condition><![CDATA[$notEmptyElseif]]></condition>

<receive name="receive" wsu:Id="81b39750-51d8-4f96-b068-144f12fee0c6"/>

</elseif>

<else>

<receive name="receive" wsu:Id="74baea27-3378-45af-8510-b8e2a1721db7"/>

</else>

</if>

4.2.6 Condition-Option für If und Elseif

Die Eingabe der Condition für die If -Aktivität und das Elseif -Elemente erfolgt, genau wie bei
der While-Aktivität, über einen zusätzlichen Tab in der Property View. Der Tab aus Listing 4.7
auf Seite 23 kann dabei wieder verwendet werden. Die Property Section hingegen muss
zweimal neu definiert werden, um den Filter und die Klasse entsprechend für das If und
Elseif anzupassen.

Damit ist nun auch die Implementierung von If, Elseif und Else abgeschlossen.

4.3 Implementierung der <assign>-Aktivität

Listing 4.14 Aufbau einer <assign>-Aktivität in Anlehnung an [OAS07a]
<assign validate="yes|no"?>

<copy ignoreMissingFromData="yes|no"? keepSrcElementName="yes|no"?>

<from variable="<!-- Variablenname -->"/>

<to variable="<!-- Variablenname -->"/>

</copy>+

</assign>

4.3.1 Spezifikation

Die Assign-Aktivität wird benutzt um Wert von einer Variable in eine Andere zu kopieren.
Das optionale Attribut validate, mit dem Standardwert no, ermöglicht es, mit Hilfe der
XML-Definition zu überprüfen, ob der neue Inhalt in der Zielvariable gespeichert werden
darf. Wenn dies nicht der Fall ist, wird ein Fehler geworfen und alle Ziel-Elemente müssen
den Startwert von Beginn der Assign-Aktivität annehmen – das Assign verhält sich also
atomar. Das heißt, wenn nicht alle Kopiervorgänge ausgeführt werden können, wird kein
Vorgang ausgeführt.

29

4 Implementierung der fehlenden Features

Die zwei booleschen Attribute ignoreMissingFromData und keepSrcElementName für das
Copy-Element sind ebenfalls optional. Der Wert ist standardmässig für beide Attribute no. Im
Falle von ignoreMissingFromData werden mögliche Fehlermeldungen unterdrückt, wenn
das zu kopierende Element nicht existiert. Mit Hilfe von keepSrcElementName kann der
Name des Ziel-Elements überschrieben werden, er wird dann mit dem Namen des zu
kopierenden Element’s ersetzt.

4.3.2 Option in der Werkzeugpalette

Wie auch schon bei der If -Implementierung werden Assign und Copy mit dem gleichen
Werkzeug eingefügt. Wie auch schon beim If ergibt sich aus dem Kontext, ob an der Stelle
ein Assign oder ein Copy eingefügt werden soll, da Copy-Elemente nur innerhalb von Assign-
Aktivitäten auftreten können, gleichzeitig aber die Assign-Aktivität nur Copy-Elemente als
Unterelemente haben kann.

4.3.3 Graphische Darstellung

Abbildung 4.11: Assign-Figurbeschreibung links; rechts: Gegenüberstellung von Assign und
Receive

Die Darstellung der Assign-Aktivität ist stark an die der Receive-Aktivität angelehnt. Es
handelt sich dabei um ein einfaches abgerundetes Rechteck. Die Copy-Elemente finden in
der graphischen Darstellung keine Repräsentation. Die Optionen der Copy-Elemente können
über das Assign-Element angegeben und geändert werden.

4.3.4 Erklärung der Property Section

Die Property Sections für das Assign-Element und die ihm untergeordneten Copy-Elemente
sind etwas aufwendiger, als die Property Section von While und If, weshalb an dieser Stel-
le genauer darauf eingegangen wird. Für das Copy werden zwei Eingabemöglichkeiten
für die Ausgangs- und Zielvariable benötigt. Außerdem sollen die 2 optionalen Attribute
ignoreMissingFromData und keepSrcElementName über Checkboxen angesteuert werden
können, siehe dazu Abbildung 4.12:

30

4.3 Implementierung der <assign>-Aktivität

Abbildung 4.12: Property Section für ein Copy-Element

Dafür müssen in der zugehörigen AssignCopySection.java zunächst die Kontroll-Elemente
erstellt werden, siehe Listing 4.15. Die hierfür benutzten Buttons, Labels und Textareas sind
aus der bekannten Java-Bibliothek Standard Widget Toolkit (SWT)2.

Listing 4.15 Erstellung der Kontroll-Elemente
public void createControls(Composite parent, TabbedPropertySheetPage

aTabbedPropertySheetPage)

{

...

assignCopyFromLabel = getWidgetFactory().createCLabel(composite, "From:");

assignCopyFromTextarea = getWidgetFactory().createText(composite, "");

...

ignoreMissingFromDataCheckBox = getWidgetFactory().createButton(composite,

PbdPackage.eINSTANCE.getCopy_IgnoreMissingFromData().getName(),

SWT.CHECK);

...

configureLayout();

}

In der aufgerufenen Methode configureLayout() (Listing 4.16) wird anschließend festgelegt,
wie die einzelnen Elemente auf der Fläche angeordnet sind, an welchen Elementen sie sich
ausrichten und wie viel Abstand sie zu einander haben:

2http://www.eclipse.org/swt/

31

http://www.eclipse.org/swt/

4 Implementierung der fehlenden Features

Listing 4.16 Konfiguration des Layout’s
private void configureLayout()

{

FormData formData = new FormData();

formData.left = new FormAttachment(0,ITabbedPropertyConstants.HSPACE);

formData.top = new FormAttachment(0,ITabbedPropertyConstants.VSPACE);

assignCopyFromLabel.setLayoutData(formData);

formData = new FormData();

formData.left = new

FormAttachment(assignCopyFromLabel,ITabbedPropertyConstants.HSPACE);

formData.right = new FormAttachment(20,ITabbedPropertyConstants.HSPACE);

formData.top = new FormAttachment(0,ITabbedPropertyConstants.VSPACE);

assignCopyFromTextarea.setLayoutData(formData);

...

}

Bis zum jetzigen Zeitpunkt ist aber alles noch ohne Funktion. Daher muss als letzter Schritt
festgelegt werden, dass, bei einer Texteingabe oder einem Klicken auf die Checkbox, die
Daten aus der Anzeige auch in das Chor Diagramm und Chor Modell übernommen werden.
Dafür wird, beim Laden der Property Section, der Wert aus dem Element ausgelesen und in
das SWT-Element eingefügt. Siehe Listing 4.17

32

4.3 Implementierung der <assign>-Aktivität

Listing 4.17 Laden der Werte aus dem Modell in die SWT-Elemente
public void refresh()

{

...

assignCopyFromTextarea.setEnabled(true);

assignCopyFromTextarea.setText("");

ignoreMissingFromDataCheckBox.setSelection(false);

...

if (assign.getCopy() != null)

{

if (assign.getCopy().get(0) != null)

{

if (assign.getCopy().get(0).getFrom() != null)

{

if (assign.getCopy().get(0).getFrom().getVariable() != null)

{

assignCopyFromTextarea.setText(

assign.getCopy().get(0).getFrom().getVariable().toString()

);

}

}

...

if (assign.getCopy().get(0).getIgnoreMissingFromData() != null &&

assign.getCopy().get(0).getIgnoreMissingFromData().equals(Boolean.YES))

{

ignoreMissingFromDataCheckBox.setSelection(true);

}

...

}

}

addListeners();

}

Mit addListeners() werden an die jeweiligen Elemente Listener hinzugefügt. Diese Listeners
werden anschließend bei jedem Tastendruck aufgerufen und übernehmen die Änderungen
aus den SWT-Elementen zurück in die AssignCopySection Klasse. Von dort aus werden die
Werte dann beim Speichern in die Choreographie-Datei default.chor kopiert:

Listing 4.18 Assign-Aktivität mit Copy-Element und den angegebenen Attributen im Chor
Modell

<activity xsi:type="pbd:Assign" name="assign"

id="dde8812b-9732-4a0d-ac2d-fa60cd4c62a6">

<copy ignoreMissingFromData="yes">

<from variable="$SourceVar"/>

<to variable="$DestinationVar"/>

</copy>

</activity>

33

4 Implementierung der fehlenden Features

Wenn nun über "Export as BPEL4Chor"die BPEL4Chor-Datei erstellt wird, sind dort die in der
Property Section angegebenen Werte zu finden: in diesem Fall die Namen der zu kopierenden
Variable “$SourceVar” und der Zielvariable “$DestinationVar”.

Die angewählte Checkbox “ignoreMissingFromData” tritt in Form des gleichnamigen Attri-
butes mit dem Wert “yes” auf. Die nicht ausgewählte Option “keepSrcElementName” wird
nicht ausgegeben, siehe Listing 4.19, da “no” der Standardwert für das Attribut ist.

Listing 4.19 Assign-Aktivität mit Copy-Element und den angegebenen Attributen im expor-
tierten BPEL4Chor-Prozess

<assign name="assign" wsu:Id="dde8812b-9732-4a0d-ac2d-fa60cd4c62a6">

<copy ignoreMissingFromData="yes">

<from variable="$SourceVar"/>

<to variable="$DestinationVar"/>

</copy>

</assign>

Damit ist auch die Implementierung der Assign-Aktivität abgeschlossen.

34

5 Zusammenfassung und Ausblick

Mit den jetzt neu zur Verfügung stehenden Aktivitäten, kann die TaxiApp aus Abschnitt 3.1
erweitert werden.

5.1 Das Taxi Szenario erweitert - Version 2

Ein Beispiel dafür wäre Punkt 3, an dem die freien Taxis der Umgebung abgefragt werden:

Abbildung 5.1: Abfrage “freier Taxis aus der Nähe” aus TaxiApp Version 1

Wenn keine Taxis in der Nähe frei sind, können zum Beispiel freie Taxis aus der weiteren
Umgebung angefragt werden. Sind auch in dieser Kategorie keine Taxis verfügbar, kann
entschieden werden solange zu warten, bis ein Taxi frei wird.

Die von den jeweiligen Möglichkeiten zurück gegebenen Taxis werden dann in eine Taxis

Variable kopiert, damit für den folgenden Verlauf über die gleiche Variable iteriert werden
kann. Für diese Änderungen werden allerdings alle 3 neu implementierten Aktivitäten
(If, While und Assign) benötigt. Die vollständige geänderte Version der TaxiApp ist in
Abbildung 5.3 auf der nächsten Seite zu sehen. Der geänderte Abschnitt des Taxi-Service-
Providers sieht dabei wie folgt aus:

Abbildung 5.2: Abfrage “freier Taxis” aus TaxiApp Version 2

35

5 Zusammenfassung und Ausblick

Abbildung 5.3: Zweite Version der Taxi App

36

5.2 Neue entstandene Fehler

Ähnliche Änderungen können auch an anderen Stellen vorgenommen werden. Wenn zum
Beispiel am Ende kein Taxi den Transport bestätigt, kann ein anderer MessageLink genutzt
werden, um einfacher zwischen einer erfolgreichen und fehlgeschlagenen Anfrage zu unter-
scheiden.

5.2 Neue entstandene Fehler

Während der Implementierung der Features wurden noch zusätzliche Fehler festgestellt.
Einzelne Punkte können zusätzlich geändert werden um dem Benutzer die Bedienung zu
erleichtern.

5.2.1 Darstellungsprobleme nach dem Einfügen von Flow innerhalb von While

Für die Implementierung der While-Aktivität wurde die Figur der Flow-Aktivität wieder
verwendet. Der graphische Fehler der beim Verschachteln von mehreren Flow-Aktivitäten
auftritt, erscheint daher auch, wenn ein Flow innerhalb einer While-Aktivität eingefügt wird.
Siehe dazu die folgende Abbildung:

Abbildung 5.4: Darstellungsprobleme nach dem Einfügen von Flow innerhalb einer While-
Aktivität

Der Fehler kann verhindert werden, wenn die Flow-Aktivität nicht direkt in das While
eingefügt wird, sondern z.B. innerhalb einer Sequence:

37

5 Zusammenfassung und Ausblick

Abbildung 5.5: “Workaround” für das Darstellungsproblem von verschachtelten Flow und
While-Aktivitäten

5.2.2 Nur ein Copy pro Assign möglich

Die derzeitige Implementierung von Assign erlaubt es nicht, mehrere Copy-Elemente in
ein Assign-Element einzufügen. Wird über die Choreographie-Datei selbst die Änderung
vorgenommen, so kann immer nur das erste Copy-Element in der Property Section des
Assign-Elements bearbeitet werden.

5.2.3 Elseif -Elemente werden nicht nebeneinander dargestellt

Wie auch schon die OnMessage-Elemente, werden auch die einem If untergeordneten Elseif -
Elemente nicht nebeneinander, sondern untereinander dargestellt:

Abbildung 5.6: If -Aktivität mit mehreren Elseif -Elementen

5.2.4 Einfügen von Elementen über das Kontextmenü

Der letzte Punkt an dieser Stelle betrifft die Benutzerfreundlichkeit beim Modellieren der
Choreographie. Im Gegensatz zum BPEL Designer können im Choreographiewerkzeug
untergeordnete Elemente nicht über das Kontextmenü (Rechtsklick mit der Maus auf das
jeweilige Element) eingefügt werden. Dies sollte sowohl bei Assign > Copy als auch If
> Elseif und If > Else ermöglicht werden. Dadurch wird auch das parallele Arbeiten in
BPEL Designer und Choreographiewerkzeug angenehmer, weil der Benutzer nicht zwei
verschiedene Arbeitsweisen beherrschen muss.

38

Literaturverzeichnis

[BSM+
04] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, T. J. Grose. Eclipse Modeling

Framework. Addison-Wesley, 2004. (Zitiert auf Seite 12)

[DKLW07] G. Decker, O. Kopp, F. Leymann, M. Weske. BPEL4Chor: Extending BPEL for
Modeling Choreographies. In Proceedings of the IEEE 2007 International Confe-
rence on Web Services (ICWS). 2007. URL http://bpt.hpi.uni-potsdam.de/pub/

Public/GeroDecker/icws2007-BPEL4Chor.pdf. (Zitiert auf den Seiten 9 und 11)

[EF14a] T. Eclipse-Foundation. Eclipse - BPEL Designer Project, 2014. URL http://www.

eclipse.org/bpel/. (Zitiert auf Seite 9)

[EF14b] T. Eclipse-Foundation. Eclipse Modeling Framework (EMF), 2014. URL http:

//projects.eclipse.org/projects/modeling.emf. (Zitiert auf Seite 12)

[EF14c] T. Eclipse-Foundation. Graphical Modeling Project, 2014. URL http://projects.

eclipse.org/projects/modeling.gmp. (Zitiert auf Seite 12)

[Hag11] R. Hagin. Enabling integration and aggregation of context information into WS-
BPEL processes. Diplomarbeit, Universitaet Stuttgart, 2011. URL http://elib.

uni-stuttgart.de/opus/volltexte/2011/6623. (Zitiert auf Seite 13)

[LK12] F. Leymann, D. Karastoyanova. Chapter 12: BPEL. Vorlesungsunterlagen von
Services and Service Composition, 2012. (Zitiert auf Seite 11)

[OAS07a] OASIS. Web Services Business Process Execution Language Version 2.0, 2007.
URL http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. (Zi-
tiert auf den Seiten 7, 11, 19, 25 und 29)

[OAS07b] OASIS. Web Services Business Process Execution Language Version 2.0 - Spe-
cification, 2007. URL http://docs.oasis-open.org/wsbpel/2.0/OS/process/

abstract/ws-bpel_abstract_common_base.xsd. (Zitiert auf Seite 11)

[Son13] O. Sonnauer. Modellierung von Scientific Workflows mit Choreographien. Diplom-
arbeit, Universitaet Stuttgart, 2013. URL http://elib.uni-stuttgart.de/opus/

volltexte/2013/8504/. (Zitiert auf den Seiten 9, 13 und 14)

[W3C05] W3C. Web Services Choreography Description Language Version 1.0, 2005. URL
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/. (Zitiert auf Seite 9)

39

http://bpt.hpi.uni-potsdam.de/pub/Public/GeroDecker/icws2007-BPEL4Chor.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/GeroDecker/icws2007-BPEL4Chor.pdf
http://www.eclipse.org/bpel/
http://www.eclipse.org/bpel/
http://projects.eclipse.org/projects/modeling.emf
http://projects.eclipse.org/projects/modeling.emf
http://projects.eclipse.org/projects/modeling.gmp
http://projects.eclipse.org/projects/modeling.gmp
http://elib.uni-stuttgart.de/opus/volltexte/2011/6623
http://elib.uni-stuttgart.de/opus/volltexte/2011/6623
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/process/abstract/ws-bpel_abstract_common_base.xsd
http://docs.oasis-open.org/wsbpel/2.0/OS/process/abstract/ws-bpel_abstract_common_base.xsd
http://elib.uni-stuttgart.de/opus/volltexte/2013/8504/
http://elib.uni-stuttgart.de/opus/volltexte/2013/8504/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/

Literaturverzeichnis

[WAS+13] A. Weiss, V. Andrikopoulos, S. G. Saez, D. Karastoyanova, K. Vukojevic-Haupt.
Modeling Choreographies using the BPEL4Chor Designer: an Evaluation Based
on Case Studies. Technischer Bericht, Institut fuer Architektur von Anwendungs-
systemen - Universitaet Stuttgart, 2013. (Zitiert auf Seite 16)

Alle URLs wurden zuletzt am 07. 01. 2014 geprüft.

40

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Grundlagen
	2.1 BPEL - Web Service Business Process Execution Language
	2.2 BPEL4Chor - BPEL für Choreographien
	2.3 EMF - Eclipse Modeling Framework
	2.4 GMF - Graphical Modeling Framework

	3 Analyse des Choreographiewerkzeugs
	3.1 Das Taxi Szenario - Version 1
	3.2 Fehlerübersicht
	3.3 Vorüberlegungen zu den fehlenden Features

	4 Implementierung der fehlenden Features
	4.1 Implementierung der <while>-Aktivität
	4.2 Implementierung der <if>-Aktivität
	4.3 Implementierung der <assign>-Aktivität

	5 Zusammenfassung und Ausblick
	5.1 Das Taxi Szenario erweitert - Version 2
	5.2 Neue entstandene Fehler

	Literaturverzeichnis

