
Institut für Architektur von Anwendungssystemen
Universität Stuttgart

Universitätsstraße 38
70569 Stuttgart

Germany

Studienarbeit Nr. 2437

Implementation of a Transformation from
BPEL4Chor to BPEL

Jinhui Huang

Studiengang: Informatik

Prüfer: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova

Betreuer: M.Sc. Wirt.-Inf. Andreas Weiß

begonnen am: 27.08.2013

beendet am: 06.03.2014

CR-Klassifikation: D.2.11, D.3.3, H.4.1

3

Abstract

This thesis is engaged with implementing the conceptual approach to transform BPEL4Chor
to BPEL. The transformation process takes topology; grounding and PBDs defined in
BPEL4Chor as input, and outputs abstract BPEL processes and WSDL file. The transfor-
mation process is implemented using JAXB.

5

Contents

Abstract ... 3

1 Introduction ... 7

2 Background .. 8

2.1 WS-BPEL 2.0 .. 8

2.1.1 Basic activities ... 8

2.1.2 Structured activity .. 9

2.1.3 PartnerLink, portType, and operation ... 9

2.2 Interaction pattern between BPEL process ... 10

2.2.1 One-way message ... 10

2.2.2 Synchronous interaction ... 12

2.2.3 Asynchronous interaction .. 14

2.3 BPEL4Chor ... 19

3 Implementation ... 25

3.1 Introduction to JAXB ... 25

3.2 Introduction to the transformation process .. 25

3.2.1 Class Data ... 26

3.2.2 Class TopologyHandler ... 27

3.2.3 Class Comm .. 28

3.2.4 Class GroundingHandler ... 29

3.2.5 Class PBDHandler ... 31

3.2.6 Class WSDLHandler ... 36

4 Evaluation ... 38

4.1 The drawback of relation Comm... 38

4.2 The drawback of current implementation modifying the correlationSet 40

5 Summary ... 42

6 Appendix ... 43

6.1 BPEL Example .. 43

6.1.1 Asynchronous Interaction using WS-Addressing ... 43

6.1.2 Asynchronous Interaction using Correlation Set .. 46

6.2 Result of the transformation process ... 48

6

7 References ... 50

Declaration ... 51

7

1 Introduction

BPEL4Chor, which has been developed in a cooperation of the Institute of Architecture of
Application Systems at the University of Stuttgart and the Hasso-Plattner-Institute at the
University of Potsdam, was built to model choreographies of simulation workflows. Chore-
ographies are coordinated interactions between participants, and during the interactions are
taking place, there is no central controlling mechanism needed. BPEL (Business Process Ex-
ecution Language) is a well-known XML-based mark-up language for composing a set of
discrete services into process flows, which expose also WSDL interface as Web Services.

The conceptual approach for an auto transformation from BPEL4Chor to BPEL has been
proposed in [Rei07], in this thesis, an implementation of this conceptual approach has been
introduced. The implementation used Java Architecture for XML Binding (JAXB), which is a
Java standard that defines an API for reading and writing Java objects to and from XML
documents.

Extending the work of [Rei07], the basis of both two Specifications is introduced in Chapter
2. The implementation is introduced in Chapter 3. In Chapter 4, some of the issues that have
been found during the implementation are discussed. The summary of the implementation
is given in Chapter 5. The result of the transformation process and some experiments in
BPEL can be seen in Chapter 6.

8

2 Background

In this chapter, the WS-BPEL and BPEL4Chor are introduced, this work has already been
done in [Rei07], so in this part the concepts that the author of [Rei07] didn’t involve is
mainly introduced.

2.1 WS-BPEL 2.0

BPEL (Business Process Execution Language for Web Services, also WS-BPEL) is a language
used for specifying business process behavior, BPEL is based on the composition,
orchestration, and coordination of Web Services [BPEL 2.0].

With BPEL, business processes can be described in two ways:

1. Executable BPEL processes: They specify the exact details of business processes and can
be executed by a BPEL process server. The executable BPEL process can provide the
composite Web Services as a new Web Service.

2. Abstract BPEL processes: They are partially specified processes; some of the concrete
operational details are hidden. They could be used to describe the observable behavior
of services offered by an Executable Process, or to define a process template.

WS-BPEL relies on several XML-based specifications, WSDL 1.1 and XML Schema 1.0 are
used for definition of data types, messages and service interfaces. XPath 1.0 is used as the
query and expression language.

The BPEL process logic is performed by activities; there are two kinds of activities:

1. Basic activities: they are elemental steps of process. Such as <invoke> activity that can
invoke Web Service of partner, or <receive> activity that can receive request message
of partner.

2. Structured activities: they are used to describe in which order a collection of activities is
executed. Structured activities contain other activities. Such as <if> activity is used for
conditional behavior, <while> allows activities it contains to be executed repeatedly
based on a given condition.

2.1.1 Basic activities
The <invoke> activity is used to invoke Web Services. Typically, it invokes operations that
the Web Services provide.

WSDL defines four operations that an endpoint can support:

1. One-way. The endpoint receives a message.

2. Request-response. The endpoint receives a message, and sends a correlated message.

3. Solicit-response. The endpoint sends a message, and receives a correlated message.

4. Notification. The endpoint sends a message. [WSDL1.1]

BPEL only uses one-way and request-response operations. [BPEL 2.0]

http://www.w3.org/TR/wsdl.html#_porttypes
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html#SA00001

9

A business process' <receive> activity is used to provide Web Service to the process'
partners, the Web Service is provided through certain operation that is related to the
<receive> activity (relating with partnerLink, see also section 2.1.3), this operation
can receive the request message of the partners. <receive> activity is one of the inbound
message activities (like <receive>, <pick> and <onEvent>).

A business process can only be instantiated by a <receive> activity (or a <pick> activity),
so <receive> activity (or a <pick> activity) is also called a start activity.

If the process provides a Web Service that contains a request-response operation, the
request to this request-response operation that is received by a <receive> activity can be
replied by a <reply> activity, both the <receive> activity and the <reply> activity should
be related to the same request-response operation. A <reply> activity sends a response to
the <invoke> activity that invokes the Web Service (with the request-response operation)
that the process provides. If the process provides a Web Service that contains a one-way
operation, the request that is sent to this one-way operation can be replied with a
<invoke> activity.

The <assign> activity is used to manipulate the data inside the process, like copying data
from one variable to another variable, or inserting new data using XPATH expression into a
variable.

2.1.2 Structured activity
The <sequence> activity is used to wrap a set of activities which should be performed
sequentially. Generally, the set of activities coordinating the flow of messages across the
services integrated within the business process is wrapped in a <sequence>.

The <forEach> activity enables to repeatedly execute its contained scope activity particular
times. It also makes it possible to invoke Services dynamically (see section 3.2.5).

The introduction to other structured activities can be seen in [Rei07].

2.1.3 PartnerLink, portType, and operation
<partnerLinks> define the shape of a relationship with a partner by defining the
portTypes used in the interactions. Each basic activity that could interact with other
partner should set the partnerLink attribute properly, the partnerLink should indicate
which portTypes are used to receive or send the message. Each partnerLink is associated
with one or two portTypes, depends on the operation that the portTypes provide. Firgure
2.1 presents the class diagram of how partnerLink is connected to the operation.

In BPEL, the message is delivered through ports, these ports are bound with portTypes,
and these portTypes provide operations, these operations are defined to send or receive
the messages. ports, portTypes and operations are defined in WSDL file that describes the
service or services that the process provides.

Each partnerLink is identified by its name attribute, if the partnerLinkType specifies one
role, the partnerLink has only one myRole attribute, or one partnerRole attribute, in this
case, the interaction between the process and its partner is one-way interaction or
synchronous interaction. If the partnerLinkType specifies two roles, the partnerLink has
both myRole and partnerRole attribute, in this case, the interaction between the process
and its partner is asynchronous interaction (using WS-Addressing).

10

Figure 2.1: class diagram for PartnerLink

The more detailed description of how to declare partnerLinks and partnerLinkTypes will
be introduced in following section.

2.2 Interaction pattern between BPEL process

BPEL processes interact with partners in two ways:

 The BPEL process invokes operations on other services or processes.

 The operations on the services that the BPEL process provides, is invoked by other
services or clients.

There are some common interaction patterns between BPEL process service component and
its partner, the three basic patterns are:

 one-way (using one one-way operation)

 synchronous (using request-response operation)

 asynchronous (using two one-way operations)

They will be introduced as follows, this part of work based mainly on [BB09] and my own
experiments (see section 6.1), note that only the basic patterns are introduced, the more
complex situations have been left out.

2.2.1 One-way message
The sender process sends a message to the receiver process, and the receiver does not need
to reply. The message is received by a One-way operation, so the operation should be
provided by the portType that is defined in the receiver process' WSDL.

11

Figure 2.2: One-way message

Example 2.2.1.1 <invoke> activity in sender process' BPEL file:

<invoke name="invoke"

 partnerLink="sender_receiver_realizedBy_receivePT"

 portType="prefixOfReceiver:receivePT"

 operation="receive"

 inputVariable="message">

</invoke>

Example 2.2.1.2 <partnerLink> sender_receiver_realizedBy_receivePT in sender process'
BPEL file:

<partnerLink name="sender_receiver_realizedBy_receivePT"

partnerLinkType="prefixOfReceiver:sender_receiver_realizedBy_receivePT_PLT"

 partnerRole="receiver"

</partnerLink>

In sender process' partnerLink sender_receiver_realizedBy_receivePT there is a
partnerRole attribute set to be "receiver", this indicates that, the operation "receive" in
portType "prefixOfReceiver:receivePT" that fulfills the interaction is provided by its partner.

Example 2.2.1.3 <receive> activity in receiver process' BPEL file:

<receive name="receive"

 partnerLink="sender_receiver_realizedBy_receivePT"

 portType="prefixOfReceiver:receivePT"

 operation="receive"

 variable="message">

</receive>

12

Example 2.2.1.4 <partnerLink> sender_receiver_realizedBy_receivePT in receiver process'
BPEL file:

<partnerLink name="sender_receiver_realizedBy_receivePT"

 partnerLinkType="sender_receiver_realizedBy_receivePT_PLT"

 myRole="receiver"

</partnerLink>

In receiver process' partnerLink sender_receiver_realizedBy_receivePT there is a myRole
attribute set to be "receiver", this indicates that, the operation "receive" in portType
"prefixOfReceiver:receivePT" that fulfills the interaction is provided by itself.

Example 2.2.1.5 <partnerLinkType> sender_receiver_realizedBy_receivePT_PLT:

<plnk:partnerLinkType name="sender_receiver_realizedBy_receivePT_PLT"

 plnk:role="receiver"

 plnk:portType="prefixOfReceiver:receivePT"

</plnk:partnerLinkType>

There is only one role attribute is set to "receiver", this indicates that, this interaction only
requires one portType. The <partnerLinkType> could be defined in receiver process'
WSDL file, or in an extra WSDL file that only contains the definition of
<partnerLinkType>, using extensibility mechanism of WSDL 1.1.

2.2.2 Synchronous interaction
The sender process sends a request to its partner, and receives an immediate reply. The
sender process is blocked while waiting the reply. The request message is received by a
request-response operation, and the response message is sent by the same operation, so
the operation should be provided by the portType that is defined in the receiver process'
WSDL file.

Figure 2.3: Synchronous interaction

Example 2.2.2.1 <invoke> activity in sender process' BPEL file:

13

<invoke name="invoke"

 partnerLink="sender_receiver_realizedBy_receiveAndReplyPT"

 portType="prefixOfReceiver:receiveAndReplyPT"

 operation="receiveAndReply"

 inputVariable="requestMessage"

 outputVariable="responseMessage">

</invoke>

Example 2.2.2.2 <partnerLink> sender_receiver_realizedBy_receiveAndReplyPT in sender
process' BPEL file:

<partnerLink name="sender_receiver_realizedBy_receiveAndReplyPT"

 partnerLinkType="prefixOfReceiver:sender_receiver_realizedBy_receiveA

ndReplyPT_PLT"

 partnerRole="receiver"

</partnerLink>

Example 2.2.2.3 <receive> activity in receiver process' BPEL file:

<receive name="receive"

 partnerLink="sender_receiver_realizedBy_receiveAndReplyPT"

 portType="prefixOfReceiver:receiveAndReplyPT"

 operation="receiveAndReply"

 variable="requestMessage">

</receive>

Example 2.2.2.4 <reply> activity in receiver process' BPEL file:

<reply name="reply"

 partnerLink="sender_receiver_realizedBy_receiveAndReplyPT"

 portType="prefixOfReceiver:receiveAndReplyPT"

 operation="receiveAndReply"

 variable="responseMessage">

</receive>

Example 2.2.2.5 <partnerLink> sender_receiver_realizedBy_receiveAndReplyPT in receiver
process' BPEL file:

<partnerLink name="sender_receiver_realizedBy_receiveAndReplyPT"

 partnerLink="prefixOfReceiver:sender_receiver_realizedBy_receiveAndRe

plyPT_PLT"

 myRole="receiver"

</partnerLink>

Example 2.2.2.6 <partnerLinkType> sender_receiver_realizedBy_receiveAndReplyPT_PLT:

14

<plnk:partnerLinkType

 name="sender_receiver_realizedBy_receiveAndReplyPT_PLT"

 plnk:role="receiver"

 plnk:portType="prefixOfReceiver:receiveAndReplyPT"

</plnk:partnerLinkType>

The synchronous interaction requires only one request-response operation, so there is only
one role attribute is set to "receiver".

2.2.3 Asynchronous interaction
In an asynchronous interaction, the sender process sends a request message, but does not
being blocked, the response message will be received from receiver process later.

As Figure 2.4 demonstrates, this asynchronous interaction consists of two pairs of <invoke>
and <receive> activities. Note the difference between asynchronous and a synchronous
interaction: a synchronous BPEL process uses a reply activity to send the response and an
asynchronous BPEL process uses an invoke activity.

If there are multiple potential partners that would initiate sender process, then at any time,
there might be many active sender process instances. The BPEL server must be able to direct
responses to the correct BPEL process service component instance.

Figure 2.4: Asynchronous interaction

There are two ways to realize an asynchronous interaction: [Sha11], [Sad13]

 WS-Addressing

 Correlation Set

WS-Addressing is a transport-neutral mechanism for addressing Web services and messages
[WS-Addressing 1.0]. It can be used to identify asynchronous messages to ensure that
asynchronous callbacks are directed to the appropriate client.

According to [BPEL 2.0]:

http://www.w3.org/TR/ws-addr-core/

15

At the time this specification was completed, various Web Service standards work, such as
WSDL 2.0 and WS-Addressing, were ongoing and not ready for consideration for WS-BPEL 2.0.
Future versions of WS-BPEL may provide support for these standards.

But WS-Addressing is actually supported by BPEL servers which run WS-BPEL 2.0, like
Apache ODE and Oracle SOA Suite [BB09]. And there is actually no explicit declaration for
WS-Addressing in BPEL file, the BPEL server will automatically use it, transparent to the
BPEL process designer.

When using WS-Addressing method, for an asynchronous interaction, we need to declare
one partnerLinkType instantiated by two partnerLinks, each for a message, in each
partnerLink we need to define both myRole and partnerRole attribute, and the value of
myRole and partnerRole attribute in each partnerLink are converse. (Appendix 6.1.1:
asynchronous interaction using WS-Addressing)

Example 2.2.3.1 <partnerLink> sender_receiver_realizedBy_receivePT in sender process'
BPEL file:

<partnerLink name="sender_receiver_realizedBy_receivePT"

 partnerLinkType="prefixOfReceiver:sender_receiver_realizedBy_receiveP

T_PLT"

 partnerRole="receiver"

 myRole="sender"

</partnerLink>

Example 2.2.3.2 <partnerLink> sender_receiver_realizedBy_receivePT in receiver process'
BPEL file:

<partnerLink name="sender_receiver_realizedBy_receivePT"

 partnerLinkType="prefixOfReceiver:sender_receiver_realizedBy_receiveP

T_PLT"

 partnerRole="sender"

 myRole="receiver"

</partnerLink>

Note that these two partnerLinks could have the same name, because they are declared in
different namespaces of different process' BPEL file.

Example 2.2.3.3 <partnerLinkType> sender_receiver_realizedBy_receivePT_PLT:

<plnk:partnerLinkType name="sender_receiver_realizedBy_receivePT_PLT"

 <plnk:role name="receiver"

 portType="prefixOfReceiver:receiveRequestPT"/>

 <plnk:role name="sender"

 portType="prefixOfSender:receiveResponsePT"/>

</plnk:partnerLinkType>

As the Example in Appendix 6.1.1 demonstrates, the portTypes could be separately declared
in each participant process' WSDL file.

16

Example 2.2.3.4 <portType> receiveRequestPT in receiver process' WSDL file:

<portType name="receiveRequestPT"

 <operation name="receiveReqest">

 input message="prefixOfReceiver:requestMessage"/>

 </operation>

</portType>

Example 2.2.3.5 <portType> receiveResponsePT in sender process' WSDL file:

<portType name="receiveResponsePT"

 <operation name="receiveResponse">

 input message="prefixOfSender:responseMessage"/>

 </operation>

</portType>

The portType receiveResponsePT is implemented by the sender process for receiving the
responseMessage, the portType receiveRequestPT is implemented by the receiver process for
receiving the requestMessage, the partnerLinkType sender_receiver_realizedBy _receivePT
_PLT indicates that the interaction is an asynchronous one, and is fulfilled by portType
receiveRequestPT and receiveResponsePT.

Example 2.2.3.6 <invoke> activity in sender process' BPEL file:

<invoke name="invoke"

 partnerLink="sender_receiver_realizedBy_receiveRequestPT"

 portType="prefixOfReceiver:receiveRequestPT"

 operation="receiveRequest"

 inputVariable="requestMessage"

</invoke>

Example 2.2.3.7 <receive> activity in sender process' BPEL file:

<receive name="receive"

 partnerLink="sender_receiver_realizedBy_receiveResponsePT"

 portType="prefixOfReceiver:receiveResponsePT"

 operation="receiveResponse"

 variable="responseMessage">

</receive>

Correlation Set provides another way to direct responses to the correct BPEL process
instance. Correlation Set is a BPEL mechanism that is based on message body contents, they
are used for the correlation of asynchronous messages. This method is designed for services
that do not support WS-Addressing or for more complex interactions, for example, when
the interaction is in the form A > B > C > A instead of A > B > A.

17

Correlation Set is declarative mechanism which specifies correlated groups of operations
within a process instance[BPEL 2.0]. A set of correlation tokens is defined as a set of
properties using propertyAlias, these properties are shared by all messages in the
correlated group.

As the asynchronous interaction consists of two one-way messages, upon the partnerLink
and partnerLinkType that are declared for the one-way messages, we only need to add
proper <correlation> and <correlationSet> tags into both sender and receiver process'
BPEL file. Also, the appropriate <vprop:property> and <vprop:propertyAlias> tags
need to be declared in both sender and receiver process' WSDL file.

Example 2.4.1 <correlationSet> messageID in sender process' BPEL file:

<correlationSet name="messageID"

 properties="prefix:messageID"

</correlationSet>

Unlike using the WS-Addressing method, when using Correlation Set method, each
partnerLink could have only one partnerRole or myRole attribute. Therefore, the
partnerLinkType could have only one role attribute. (Appendix 6.1.2: asynchronous
interaction using Correlation Set)

Example 2.4.2 <partnerLinkType> sender_receiver_realizedBy_receiveRequestPT_PLT in
receiver process' WSDL file:

<plnk:partnerLinkType

 name="sender_receiver_realizedBy_receiveRequestPT_PLT"

 plnk:role="receiver"

 plnk:portType="prefixOfReceiver:receiveRequestPT"

</plnk:partnerLinkType>

partnerLinkType sender_receiver_realizedBy_receiveRequestPT_PLT could be defined in
receiver process' WSDL file.

Example 2.4.3 <partnerLinkType> receiver_sender_realizedBy_receiveResponsePT_PLT in
sender process' WSDL file:

<plnk:partnerLinkType

 name="receiver_sender_realizedBy_receiveResponsePT_PLT"

 plnk:role="sender"

 plnk:portType="prefixOfSender:receiveResponsePT"

</plnk:partnerLinkType>

partnerLinkType receiver_sender_realizedBy_receiveResponsePT_PLT could be defined in
sender process' WSDL file.

Note that there are two partnerLinkTypes to fulfill an asynchronous communication using
Correlation Set.

The portType receiveResponsePT is implemented by the sender process for receiving the
responseMessage, it is declared in sender process' WSDL file.

18

Example 2.4.4 <partnerLink> sender_receiver_realizedBy_receiveRequestPT in sender
process' BPEL file:

<partnerLink name="sender_receiver_realizedBy_receiveRequestPT"

 partnerLinkType="prefixOfReceiver:sender_receiver_realizedBy_receiveR

equestPT_PLT"

 partnerRole="receiver"

</partnerLink>

Note that in Example 2.4.4 partnerLink sender_receiver_realizedBy_receivePT,
partnerRole is set to "receiver" because the portType prefixOfReceiver:receiveRequestPT
bound with the role "receiver" is implemented by receiver process.

Example 2.4.5 <partnerLink> receiver_sender_realizedBy_receiveResponsePT in sender
process' BPEL file:

<partnerLink name="receiver_sender_realizedBy_receiveResponsePT"

 partnerLinkType="prefixOfSender:receiver_sender_realizedBy_receiveRes

ponsePT_PLT"

 myRole="sender"

</partnerLink>

Note that in Example 2.4.5 <partnerLink> receiver_sender_realizedBy_receiveResponsePT,
myRole is set to "sender" because the portType prefixOfSender:receiveResponsePT bound with
the role "sender" is implemented by sender process.

Example 2.4.6 <invoke> activity using <correlationSet> messageID in sender process'
BPEL file:

<invoke name="invoke"

 partnerLink="sender_receiver_realizedBy_receiveRequestPT"

 portType="prefixOfReceiver:receiveRequestPT"

 operation="receiveRequest"

 inputVariable="requestMessage">

 <correlations>

 <correlation set="messageID" initiate="join"> </correlation>

 </correlations>

</invoke>

Example 2.4.7 <receive> activity using <correlationSet> messageID in sender process'
BPEL file:

<receive name="receive"

 partnerLink="sender_receiver_realizedBy_receiveResponsePT"

 portType="prefixOfSender:receiveResponsePT"

 operation="receiveResponse"

19

 variable="responseMessage">

 <correlations>

 <correlation set="messageID" initiate="no"> </correlation>

 </correlations>

</receive>

2.3 BPEL4Chor

The introduction to BPEL4Chor can be seen in [Rei07], in this section, the usage of
BPEL4Chor Designer is introduced. BPEL4Chor Designer generates BPEL4Chor in a model-
driven-architecture approach. Based on Graphical Modeling Framework (GMF) and the
Graphical Editing Framework (GEF), BPEL4Chor Designer was built as a plugin for Eclipse
[Sone13].

Figure 2.5: Palette view of BPEL4Chor Designer

Figure 2.5 shows all the components that can be modeled by BPEL4Chor Designer.
CParticipant, CparticipantSet are used to model participants and participantSets in topology,
CMessageLink is used to model messageLinks between the participants or participantSets.
All the basic activities that can be modeled by BPEL4Chor Designer are invoke, receive,
reply and opaqueActivity. The structured activities that can be modeled are sequence,
scope, forEach, pick and flow.

20

After a participant or participantSet is modeled, a Participant Behavior Description (PBD)
with a sequence is automatically generated in it (Figure 2.6).

Figure 2.6: PBD in a participant

Then the activities can be inserted to the PBD. Note that for activity forEach, a scope is
automatically generated; for activity scope, a sequence need to be inserted firstly, then the
basic activities can be inserted into this sequence; for activities onMessage and onAlarm, a
sequence or scope must be inserted before any basic activities can be inserted. Figure 2.7
shows a diagram that is generated by the BPEL4Chor Designer.

Figure 2.7: diagram travelExample generated by BPEL4Chor Designer

The diagram is modeled based on the choreography example in [DKLW07]. Participant
agency sends PriceInquiryRequest message to a ParticipantSet airline using a forEach loop,
after comparing the price that are returned from each airline, the participant agency sends a
TicketOrderRequest message to the selected airline.

Each messageLink should be configured in the properties view of the component
CMessageLink (Figure 2.8), this step is used to generate the messageLinks in topology file.
After the messageLink is configured, the messageLinks in grounding file could be generated
by configuring the MessageLinks Grounding in Groundings property in properties view of the
entire choreography (Figure 2.9).

21

Figure 2.8: Properties view of component CMessageLink

Figure 2.9: Property Groundings in properties view of choreography

The constructs correlationSet and messageExchange should be configured in the
properties view of PBDs in which these constructs are declared. For example, the
correlationSet agency_TicketOrder_CS declared in PBD agency is modeled by configuring
the property Correlations in the properties view of PBD agency (Figure 2.10), this step is
used to generate the construct correlationSet in PBD file, after that, the Correlation
Grounding in property Groundings of the choreography should be configured (Figure 2.11).

22

Figure 2.10: Property Correlations in properties view of PBD

Figure 2.11: Configuring CorrelationSet Grounding in properties view of choreography

After all the groundings are configured, the BPEl4Chor can be generated. The result is
shown as follows.

Listing 2.3.1: topology file travelExampleTopology.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<topology xmlns="urn:HPI_IAAS:choreography:schemas:choreography:topology:2006/12"

xmlns:agency="http://huang.sa/travelExample/agency"
xmlns:airline="http://huang.sa/travelExample/airline"
name="travelExampleTopology"
targetNamespace="http://huang.sa/travelExample">

 <participantTypes>
 <participantType name="agency_0_type" participantBehaviorDescription="agency:agency"/>
 <participantType name="airline_1_type" participantBehaviorDescription="airline:airline"/>
 </participantTypes>
 <participants>
 <participant name="agency" type="agency_0_type"/>
 <participantSet forEach="agency:ff71e4d4-ce5c-4346-a370-c97a3e803867"

name="airline"
type="airline_1_type">

 <participant forEach="agency:ff71e4d4-ce5c-4346-a370-c97a3e803867"
name="currentAirline"
scope="agency:06b17b89-802a-4ea7-88c3-a5516cf448c3"/>

 <participant name="selectedAirline"/>
 </participantSet>
 </participants>
 <messageLinks>
 <messageLink messageName="PriceInquiryRequest"

name="PriceInquiryRequest"
receiveActivity="8e846abc-0957-46fc-a898-1d4045aeae6e"
receiver="currentAirline"
sendActivity="8f0170a2-1e24-435a-b787-fd1dda88a228"
sender="agency"/>

 <messageLink bindSenderTo="currentAirline"
messageName="PriceInquiryResponse"
name="PriceInquiryResponse"
receiveActivity="f6850b41-312e-477e-a333-38d42926252d"
receiver="agency"
sendActivity="592877a1-03ba-44c0-9843-c19d7242dcc1"
senders="airline"/>

 <messageLink messageName="TicketOrderRequest"
name="TicketOrderRequest"
receiveActivity="4b833553-1b00-4fe0-b379-98940965bba8"
receiver="selectedAirline"
sendActivity="ea171520-a045-4489-86c4-739e127f4d34"
sender="agency"/>

 <messageLink bindSenderTo="selectedAirline"
messageName="TicketOrderResponse"
name="TicketOrderResponse"
receiveActivity="e910dc55-96ff-4e01-9a53-ba4946a279c9"
receiver="agency"
sendActivity="eb8abc2c-a379-4256-acc6-0263bd3ea185"
senders="airline"/>

23

 </messageLinks>
</topology>

Listing 2.3.2: grounding file travelExampleGrounding.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<grounding xmlns="urn:HPI_IAAS:choreography:schemas:choreography:grounding:2006/12"

xmlns:agency="http://huang.sa/travelExample/agency"
xmlns:airline="http://huang.sa/travelExample/airline"
xmlns:top="http://huang.sa/travelExample"
topology="top:travelExampleTopology">

 <messageLinks>
 <messageLink name="PriceInquiryRequest"

operation="ReceivePriceInquiryRequest"
portType="airline:ReceivePriceInquiryRequest_PT"/>

 <messageLink name="PriceInquiryResponse"
operation="ReceivePriceInquiryResponse"
portType="agency:ReceivePriceInquiryResponse_PT"/>

 <messageLink name="TicketOrderRequest"
operation="ReceiveTicketOrderRequest"
portType="airline:ReceiveTicketOrderRequest_PT"/>

 <messageLink name="TicketOrderResponse"
operation="ReceiveTicketOrderResponse"
portType="agency:ReceiveTicketOrderResponse_PT"/>

 </messageLinks>
 <participantRefs>
 <participantRef WSDLproperty="airline:currentAirline" name="currentAirline"/>
 <participantRef WSDLproperty="airline:selectedAirline" name="selectedAirline"/>
 </participantRefs>
 <properties>
 <property WSDLproperty="agency:TravelerID" name="agency_TravelerID"/>
 <property WSDLproperty="agency:TicketOrderNr" name="agency_TicketOrderNr"/>
 <property WSDLproperty="airline:TravelerID" name="airline_TravelerID"/>
 <property WSDLproperty="airline:TicketOrderNr" name="airline_TicketOrderNr"/>
 </properties>
</grounding>

Listing 2.3.3: PBD agency.bpel

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/abstract"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd"
abstractProcessProfile="urn:HPI_IAAS:choreography:profile:2006/12"
name="agency"
targetNamespace="http://huang.sa/travelExample/agency">

 <correlationSets>
 <correlationSet name="agency_TicketOrder_CS"

properties="agency_TravelerID agency_TicketOrderNr"/>
 </correlationSets>
 <sequence name="main" wsu:Id="f05399cc-0002-444e-a038-b60609fa61bd">
 <forEach name="PriceInquiryFE" parallel="yes" wsu:Id="ff71e4d4-ce5c-4346-a370-c97a3e803867">
 <scope name="scope" wsu:Id="06b17b89-802a-4ea7-88c3-a5516cf448c3">
 <sequence name="sequence" wsu:Id="6d59311a-24b5-4500-a8d1-d5f7c3169f99">
 <invoke name="SendPriceInquiryRequest"

wsu:Id="8f0170a2-1e24-435a-b787-fd1dda88a228"/>
 <receive name="ReceivePriceInquiryResponse"

wsu:Id="f6850b41-312e-477e-a333-38d42926252d"/>
 </sequence>
 </scope>
 </forEach>
 <opaqueActivity name="choose airline" wsu:Id="e236bcc7-9d65-4d1f-bfbf-0565139ef547"/>
 <invoke name="SendTicketOrderRequest"

wsu:Id="ea171520-a045-4489-86c4-739e127f4d34">
 <correlations>
 <correlation initiate="yes" set="agency_TicketOrder_CS"/>
 </correlations>
 </invoke>
 <receive name="ReceiveTicketOrderResponse" wsu:Id="e910dc55-96ff-4e01-9a53-ba4946a279c9">
 <correlations>
 <correlation set="agency_TicketOrder_CS"/>
 </correlations>
 </receive>
 </sequence>
</process>

24

Listing 2.3.4 PBD airline.bpel

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/abstract"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd"
abstractProcessProfile="urn:HPI_IAAS:choreography:profile:2006/12"
name="airline"
targetNamespace="http://huang.sa/travelExample/airline">

 <correlationSets>
 <correlationSet name="airline_TicketOrder_CS"

properties="airline_TravelerID airline_TicketOrderNr"/>
 </correlationSets>
 <sequence name="main" wsu:Id="87271be6-0eec-4b12-ae81-98f0f9480726">
 <receive createInstance="yes"

name="ReceivePriceInquiryRequest"
wsu:Id="8e846abc-0957-46fc-a898-1d4045aeae6e"/>

 <invoke name="SendPriceInquiryResponse"
wsu:Id="592877a1-03ba-44c0-9843-c19d7242dcc1"/>

 <pick name="pick" wsu:Id="f4027552-7c16-4cba-b997-9c0b58c0843e">
 <onMessage name="onmessage" wsu:Id="4b833553-1b00-4fe0-b379-98940965bba8">
 <correlations>
 <correlation initiate="yes" set="airline_TicketOrder_CS"/>
 </correlations>
 <sequence name="sequence" wsu:Id="7932d66b-e175-4efb-ad28-800c5361a58c">
 <invoke name="SendTicketOrderResponse"

wsu:Id="eb8abc2c-a379-4256-acc6-0263bd3ea185">
 <correlations>
 <correlation set="airline_TicketOrder_CS"/>
 </correlations>
 </invoke>
 </sequence>
 </onMessage>
 <onAlarm>
 <for>"'Pt2M'"</for>
 <sequence name="sequence1" wsu:Id="1a9ab838-e048-4e04-85f3-afef9e92ebe5">
 <opaqueActivity name="empty" wsu:Id="5a23bf95-ab29-41fc-8ca7-0aa184cecc65"/>
 </sequence>
 </onAlarm>
 </pick>
 </sequence>
</process>

The transformation from BPEL4Chor to abstract BPEL is introduced in the following
chapter.

25

3 Implementation

The implementation of the definitions and algorithms in [Rei07] is using JAXB, I will briefly
introduce JAXB at first. Because the algorithms in [Rei07] are based on JDOM, so I have
modified some algorithms so that it is possible to implement them, the modifications will be
introduced in corresponding sections. The entire project can be seen under
https://code.google.com/p/huang-sa/source/browse/Implementation. And the output BPEL
files of the transformation can be seen at Appendix 6.2.

3.1 Introduction to JAXB

Java Architecture for XML Binding (JAXB) provides a fast and convenient way to bind XML
schemas and Java [JAXB]. As Figure 3.1 demonstrates, the general steps of the binding
process are described as follows:

First, the JAXB binding compiler take an XML schema as input and turn it into JAXB classes
and the generated classes, course files, application code are compiled. Then, XML
documents that instantiates the source XML schema can be unmarshalled by the JAXB
binding Framework, a content tree of data objects that instantiate the generated JAXB
classes are generated. The application can then modifiy the objects by using the methods
that are also generated by the binding compiler. At last, the content tree of modified objects
is marshalled into one or more XML output documents.

Figure 3.1: JAXB binding process [JAXB]

The detailed usage of JAXB will be explained in the following sections.

3.2 Introduction to the transformation process

The sequence diagram of the main function of the transformation is shown in Figure 3.2. All
the data structures are implemented and stored by class Data, class Data is used to store and
aquire the information that are retrieved from BPEL4Chor topology and grounding. The
Definition 3.1 – 3.36 in [Rei07] are implemented in class Data using proper data structures.
Class TopologyHander is used to fetch desired information from topology file, class
GroundingHandler is used to fetch information from grounding file. Class PBDHandler is

https://code.google.com/p/huang-sa/source/browse/Implementation

26

used to transform the PBD into abstract BPEL file. Class WSDLHandler is used to generate
corresponding wsdl file. These classes will be introduced in following sections.

Figure 3.2: sequence diagram

3.2.1 Class Data
There are mainly two kinds of data structure are used to implement the definitions in
[Rei07], they are HashSets and HashMaps. HashSets are used to implement the Definitions
that define sets of data, like Definition 3.4(set of participant types), Definition 3.5(set of
processes) and so on. HashMaps are used to implement the Definitions that define functions,
like Definition 3.9(the function assigning a participant type to each participant reference)
and so on, during the functions in class TopologyHandler and GroundingHandler are being
called, data are assigned to these HashMaps, and these data are fetched to be used to turn
PBD into BPEL file, and to generate wsdl file, when the functions in PBDHandler and
WSDLHandler are being called (Listing 3.2.1.1 – 3.2.1.3).

Listing 3.2.1.1: HashMap paType_PaMap and process_PaTypeMap in class Data

private HashMap<String, String> paType_PaMap = new HashMap<String, String>();

Listing 3.2.1.2: function setPaType_PaMap(String pa, String paType) in class Data

public void setPaType_PaMap(String pa, String paType) {

https://code.google.com/p/huang-sa/source/browse/Implementation/src/main/java/sa/huang/Data.java

27

paType_PaMap.put(pa, paType);
}

Listing 3.2.1.3: function getPaType_PaMap() in class Data

public HashMap<String, String> getPaType_PaMap() {
return paType_PaMap;

}

3.2.2 Class TopologyHandler
The class TopologyHandler is designed based on algorithm 3.1 in [Rei07].

The class diagram is shown as Figure 3.3. The field jaxbContext that instantiates class
JAXBContext is the entry point to the JAXB API, it owns the method unmarshall() and
marshall() and so on[JAVA6], the field topology is the object that instantiates the class
TTopology that is generated by the method unmarshall(). The constructor method
TopologyHandler() calls method loadTopology(String filePath) in which method unmarshall()
is called to unmarshall the input topology file into objects.

Figure 3.3: class diagram of class TopologyHandler

The method analyzeMessageLinksInTopology(Data data) implements the algorithm 3.1. In
[Rei07] it is not discussed how to implement some of the functions like typePa: Pa → PaType
in Definition 3.9, so I implement these functions using methods
analyzeParticipantTypes(Data data), analyzeParticipants(Data data) (Listing 3.2.2.1) and
traversePaset(TParticipantSet paSet, Data data).

Listing 3.2.2.1: method analyzeParticipants(Data data) in class TopologyHandler

01 public void analyzeParticipants(Data data){
02 TParticipants tpas = topology.getParticipants();
03 for(Object paOrPaset : tpas.getParticipantOrParticipantSet()){
04 if(paOrPaset instanceof TParticipant){
05 data.setParticipantSet(((TParticipant)paOrPaset).getName());
06 data.setPaType_PaMap(((TParticipant)paOrPaset).getName(),
((TParticipant)paOrPaset).getType());

07 if(((TParticipant)paOrPaset).getForEach() != null){
08 data.setScopeSet(((TParticipant)paOrPaset).getForEach());
09 }
10 if(((TParticipant)paOrPaset).getScope() != null){
11 data.setScopeSet(((TParticipant)paOrPaset).getScope());
12 }
13 }else{
14 data.setPaType_PaMap(((TParticipantSet)paOrPaset).getName(),
((TParticipantSet)paOrPaset).getType());

15 traversePaset(((TParticipantSet)paOrPaset), data);
16 }

https://code.google.com/p/huang-sa/source/browse/Implementation/src/main/java/sa/huang/TopologyHandler.java
https://code.google.com/p/huang-sa/source/browse/Implementation/target/generated-sources/xjc/hpi_iaas/choreography/schemas/choreography/topology/_2006/_12/TTopology.java
https://code.google.com/p/huang-sa/source/browse/Implementation/target/generated-sources/xjc/hpi_iaas/choreography/schemas/choreography/topology/_2006/_12/TTopology.java

28

17 }
18 }

The method getParticipants() is one of the methods that generated by the JAXB binding
compiler (code 3.2.2.1 line 02), it returns an object that instantiates the class TParicipants,
which has a field List<Object> participantOrParticipantSet, this List contains the objects
participant or participantSet that instantiate the class TParicipant and TParticipantSet that
are generated by the JAXB binding compiler.

Listing 3.2.2.2: method getParticipants() in class TTopology:

public TParticipants getParticipants() {
return participants;

}

The for loop begins from code 3.2.2.1 line 03 traverses the List<Object>
participantOrParticipantSet, for the objects that are instance of TParticipant, the pair of value
((TParticipant)paOrPaset).getName(), ((TParticipant)paOrPaset).getType() are added to the
HashMap paType_PaMap(String pa, String paType). If the objects are instance of
TParticipantSet, the pair of value ((TParticipantSet)paOrPaset).getName(),
((TParticipantSet)paOrPaset).getType() are added to the HashMap paType_PaMap(String pa,
String paType).

The method traversePaset(TParticipantSet paSet, Data data) is used to traverse the possibly
nested participantSet.

The method getTNS(Data data) is used to get the attribute targetNamespace of the topology
file.

3.2.3 Class Comm
The class Comm is designed on the basis of Definition 3.27(the relation Comm). It is used to
store the interactions between the participant processes. The relation Comm is defined in
form ((A, A_pt), (b, b_pt)), so the class Comm has four fields, as Figure 3.4 illustrates.

The Definition 3.27 describes only two kinds of interactions between participants, one-way
message and asynchronous interaction using WS-Addressing. So the class Comm can only
represent these two kinds of interactions (see also section 4.1).

The class Comm will be used in class GroundingHandler and WSDLHandler, the desired
information will be fetched from grounding file and be used to generate corresponding
element comm, and the value pairs of functions defined in Definition 3.28 (the function
assigning a pair of partner link declarations to each element of Comm) and Definition 3.29
(the function assigning a partner link type to each element of Comm) will be updated. These
functions will be used later to generate partnerlinks and partnerlinkTypes.

https://code.google.com/p/huang-sa/source/browse/Implementation/target/generated-sources/xjc/hpi_iaas/choreography/schemas/choreography/topology/_2006/_12/TParticipants.java
https://code.google.com/p/huang-sa/source/browse/Implementation/target/generated-sources/xjc/hpi_iaas/choreography/schemas/choreography/topology/_2006/_12/TParticipant.java
https://code.google.com/p/huang-sa/source/browse/Implementation/target/generated-sources/xjc/hpi_iaas/choreography/schemas/choreography/topology/_2006/_12/TParticipantSet.java
https://code.google.com/p/huang-sa/source/browse/Implementation/src/main/java/sa/huang/Comm.java

29

Figure 3.4: class diagram of class Comm

3.2.4 Class GroundingHandler
The class TopologyHandler is designed based on algorithms 3.2 – 3.4 and 3.11 in [Rei07].

Figure 3.5: class diagram of class GrondingHandler

As Figure 3.5 demonstrates, the class GroundingHandler also contains field jaxbContext:
JAXBContext, which is used to unmarshall the input grounding file into object grounding:
TGrounding. In method analyzeMessageLinksInGrounding(Data data) (Listing 3.2.3.1), we
traverse the result of grounding.getMessageLinks(), which is a List<TMessageLink>, from each
object tml: TMessageLink, we fetch the desired information and store the information in
object data, and then the method traverseComm(Data data) (Listing 3.2.3.2) is called, to
traverse the elements in relation Comm, and compare them to the information we fetched

https://code.google.com/p/huang-sa/source/browse/Implementation/src/main/java/sa/huang/GroundingHandler.java
https://code.google.com/p/huang-sa/source/browse/Implementation/target/generated-sources/xjc/hpi_iaas/choreography/schemas/choreography/grounding/_2006/_12/TGrounding.java
https://code.google.com/p/huang-sa/source/browse/Implementation/target/generated-sources/xjc/hpi_iaas/choreography/schemas/choreography/grounding/_2006/_12/TMessageLink.java

30

from current messageLink, depends on the result of the compare, a new element comm is
declared or not.

Listing 3.2.4.1: Method analyzeMessageLinksInGrounding(Data data) (part) in class
GroundingHandler

public void analyzeMessageLinksInGrounding(Data data){
TMessageLinks tmls = grounding.getMessageLinks();
for(TMessageLink tml : tmls.getMessageLink()){
ml = tml.getName().getLocalPart();
pt = tml.getPortType();
......

}
traverseComm(data)

}

Listing 3.2.4.2: Method traverseComm(Data data) (part) in class GroundingHandler

01 private void traverseComm(Data data) {
02 HashSet<Comm> currentCommSet = new HashSet<Comm>();
03 currentCommSet.addAll(data.getCommSet());
04 Iterator<Comm> i = currentCommSet.iterator();
05 int condition = 0;
06 Comm selectedComm = new Comm();
07
08 do {
09 if(currentCommSet.isEmpty()){
10 System.out.println(" CommSet is empty");
11 break;
12 }
13 Comm currentComm = i.next();
14 if((currentComm.getA().equals(A))
15 && ((data.getPortTypeSet().contains(currentComm.getA_pt())) ||
(currentComm.getA_pt()==null))

16 && (currentComm.getB().equals(b))
17 && ((currentComm.getB_pt().equals(pt)))){
18
19 condition = 1;
20 selectedComm = currentComm;
21 break;
22 } else if(......){
23
24 } while(i.hasNext());
25
26 switch(condition){
27 case 1:
28 data.setPartnerLink_MCMap(mc1, data.getPartnerLinks_CommMap().get(selectedComm).get(0));
29 data.setPartnerLink_MCMap(mc2, data.getPartnerLinks_CommMap().get(selectedComm).get(1));
30 break;
31
32 }
33 }

At the beginning, there is no element in relation Comm, so I used a do-while loop to check
which condition is met(Listing 3.2.4.2 line 08 - 24), if there is no element in relation Comm,
the default case in switch statement(line 26 - 32) will be executed, a new element comm will
be declared.

During the entire do-while loop , new element comm might be added to commSet in each
loop, so a HashSet<Comm> currentCommSet (line 02)which contains all elements in original
commSet is traversed, and new element will be added to original commSet.

Method analyzePropertiesInGrounding(Data data) is desigend based on algorithm 3.11, it
traverses the result of grounding.getProterties(), which is a List<TProperty>, fetches the
disired information and stores the information into object data (see also section 4.2).

31

3.2.5 Class PBDHandler
The class PBDHandler is designed based on algorithms 3.6 – 3.10, 3.12 – 3.17. Figure 3.5
shows the class diagramm of class PBDHandler.

Figure 3.6: class diagramm of class PBDHandler

Method declarePartnerLinks(Object o, Data data) (Listing 3.2.5.1) is based on algorithm 3.6, In
BPEL file, partnerLinks could be declared under the tag <process> or <scope>, the
information for which partnerLinks should be declared in which process or scope, is
stored in HashMap<QName, HashSet<String>> partnerLinks_scopeMap, whose content is
updated during the method createPartnerLinkDeclaration(Comm comm, Data data) in class
GroundingHandler is being called.

Listing 3.2.5.1: Method declarePartnerLinks(Object o, Data data) (part1) in class PBDHandler

01 public void declarePartnerLinks(Object o, Data data){
02 if(o instanceof TProcess){
03 Iterator<QName> iter = data.getPartnerLinks_scopeMap().keySet().iterator();
04 while(iter.hasNext()){
05 QName key = iter.next();
06 if(key.getLocalPart().equals(((TProcess) o).getName())){
07 HashSet<String> sc = data.getPartnerLinks_scopeMap().get(key);
08 TPartnerLinks tpls = new TPartnerLinks();
09 for(Iterator<String> iter_1 = sc.iterator(); iter_1.hasNext();){
10 String pl = iter_1.next();
11 tpls.getPartnerLink().add(generatePartnerLink(pl, data));
12 }
13 ((TProcess) o).setPartnerLinks(tpls);
14 }
15 }

We take the situation that the input object is an instance of TProcess as example. First we
traverse the HashMap<QName, HashSet<String>> partnerLinks_scopeMap(line 03 – 12), the
QName key identifies a process, if the process' name equals the input process' name, we
need to declare the partnerlinks which is stored as the value of this key in
partnerLinks_scopeMap, we traverse this value, which is a HashSet<String>(line 09 - 12),
fetch each String out of this HashSet and generates an object TPartnerLink(line 11), an add
this object into object tpls: TPartnerLinks, at last we add the object tpls to the process.

The situation for TScope is almost the same but the identifier of scope is different, as in
BPEL4Chor, we use wsu:id as the identifier of a scope, the attribute wsu:id can be fetched by
the method ((TScope) o).getOtherAttributes() (Listing 3.2.5.2).

https://code.google.com/p/huang-sa/source/browse/Implementation/src/main/java/sa/huang/PBDHandler.java
https://code.google.com/p/huang-sa/source/browse/Implementation/target/generated-sources/xjc/org/oasis_open/docs/wsbpel/_2_0/process/_abstract/TPartnerLink.java
https://code.google.com/p/huang-sa/source/browse/Implementation/target/generated-sources/xjc/org/oasis_open/docs/wsbpel/_2_0/process/_abstract/TPartnerLinks.java
https://code.google.com/p/huang-sa/source/browse/Implementation/target/generated-sources/xjc/org/oasis_open/docs/wsbpel/_2_0/process/_abstract/TScope.java

32

Listing 3.2.5.2: Method declarePartnerLinks(Object o, Data data) (part2) in class PBDHandler

......
if(o instanceof TScope){
Iterator<QName> iter = ((TScope) o).getOtherAttributes().keySet().iterator();
while(iter.hasNext()){
QName key = iter.next();
String value = ((TScope) o).getOtherAttributes().get(key);
for(Iterator<QName> iter_1 = data.getScopeSet().iterator(); iter_1.hasNext();){
......

Method modifyConstruct(Object o, Data data) is based on algorithms 3.7, 3.9, and 3.12 – 3.16.

In [Rei07] it is not discussed how to deal with construct <sequence>, this might be a
drawback, because in BPEL, the activities that actually realize the business logic are
generally contained by a <sequence>, and there is usually a <sequence> in each <scope> of
a <forEach>. Although it is syntactically correct to directly declare activities like invoke or
assign under the tag <process>, as in schema of BPEL file defined (Listing 3.2.5.3),
therefore in class TProcess (Listing 3.2.5.4) these activities are also declared as fields, but as
in section 2.3 discussed, the PBD files that are generated by BPEL4Chor Designer are
automatically filled with sequences, so in this implementation, some modification have
been done to the algorithms in [Rei07].

Listing 3.2.5.3: Schema for Abstract Process Common Base for WS-BPEL 2.0 (part)

<xsd:complexType name="tProcess">
<xsd:complexContent>
<xsd:extension base="tExtensibleElements">
<xsd:sequence>
<xsd:element ref="extensions" minOccurs="0"/>
<xsd:element ref="import" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="partnerLinks" minOccurs="0"/>
<xsd:element ref="messageExchanges" minOccurs="0"/>
<xsd:element ref="variables" minOccurs="0"/>
<xsd:element ref="correlationSets" minOccurs="0"/>
<xsd:element ref="faultHandlers" minOccurs="0"/>
<xsd:element ref="eventHandlers" minOccurs="0"/>
<xsd:group ref="activity" minOccurs="0"/>

</xsd:sequence>
......

Listing 3.2.5.4: Class TProcess (part)

public class TProcess
extends TExtensibleElements {

 protected TPartnerLinks partnerLinks;
 protected TCorrelationSets correlationSets;
 protected TAssign assign;
 protected TForEach forEach;
 protected TInvoke invoke;

My modifyConstruct(Object o, Data data) is designed as a recursive function, this method
only need to be called once for each BPD file, it takes an object: TProcess as input parameter
in the main function, each construct that is declared under this process corresponds to an
object that is generated by the JAXB compiler, for each of these objects the method
modifyConstruct(Object o, Data data) should be recursively called. Consider that there are
about 30 constructs could be declared under <process>, I only implement part of them
based on [Son13] (see also section 2.3).

http://docs.oasis-open.org/wsbpel/2.0/OS/process/abstract/ws-bpel_abstract_common_base.xsd
https://code.google.com/p/huang-sa/source/browse/Implementation/target/generated-sources/xjc/org/oasis_open/docs/wsbpel/_2_0/process/_abstract/TProcess.java

33

Listing 3.2.5.5: Method modifyConstruct(Object o, Data data) (part1) in class PBDHandler

public void modifyConstruct(Object o, Data data){
if(o instanceof TProcess){
if(((TProcess) o).getCorrelationSets() != null){
for(TCorrelationSet tcorr:((TProcess) o).getCorrelationSets().getCorrelationSet()){
modifyConstruct(tcorr, data);

}
}
declarePartnerLinks(o, data);
TSequence tseq = ((TProcess) o).getSequence();
modifyConstruct(tseq, data);

}

Listing 3.2.5.5 shows what happens for the situation that the method takes an object:
TProcess as input, we check if there is construct correlationSets declared in this process,
if there is, each correlationSet under this correlationSets will be modified (Listing
3.2.5.6). The method declarePartnerLinks(Object o, Data data) is used to declare
corresponding partnerLinks under this process. And then the sequence contained in this
process is modified, for the purpose of simplification, I only considered the situation that
there is only one sequence under a process.

Listing 3.2.5.6: Method modifyConstruct(Object o, Data data) (part2) in class PBDHandler

if(o instanceof TCorrelationSet){
ArrayList<String> properties = new ArrayList<String>();
for(String prop:((TCorrelationSet) o).getProperties()){
String prefix = data.nsprefix_Property(data.property_CorrPropName(prop));
String property = prefix.concat(":").concat(prop);
properties.add(property);

}
((TCorrelationSet) o).getProperties().clear();
((TCorrelationSet) o).getProperties().addAll(properties);

}

Listing 3.2.5.6 shows what happens when the method takes an object: TCorrelationSet as
input, this part is based on algorithm 3.13.

Listing 3.2.5.7 Method modifyConstruct(Object o, Data data) (part3) in class PBDHandler

if(o instanceof TSequence){
for(Object tact:((TSequence) o).getActivity()){
if(tact instanceof TInvoke){
modifyMessageConstruct(tact, data);

}
......

if(tact instanceof TForEach){
modifyConstruct(tact, data);

}
......

}
((TSequence) o).getOtherAttributes().clear();

}

Listing 3.2.5.7 shows what happens when the method takes an object: TSequence as input.
For the situation that the object corresponds an activity that is used to communicate with
other participant, the corresponding construct is modified by the method
modifyMessageConstruct(Object o, Data data), which is based on algorithm 3.10. For other
objects, method modifyConstruct(Object o, Data data) is recursively called. The last
statement is used to clear the attribute wsu:id.

The way that the author of [Rei07] used to modify the construct <forEach> is also not
correct. Based on [AcOS09], [Kai11], and [BPEL 2.0], I will introduce my program as follows.

34

The endpoint reference of each participant reference is stored in an array, which is declared
in BPEL file as Listing 3.2.5.8 shows:

Listing 3.2.5.8: Variable ArrayOfEPRs

<bpel:variables>
<bpel:variable name="ArrayOfEPRs" element="messageType:ArrayOfEPRs"/>

</bpel:variables>

The element "messageType:ArrayOfEPRs" is defined as follows:

Listing 3.2.5.9: Element ArrayOfEPRs

<element name="ArrayOfEPRs">
<complexType>
<sequence>
<element name="ArrayOfEPRs"

type="wsa:EndpointReferenceType"
minOccurs="1"
maxOccurs="unbounded"/>

</sequence>
</complexType>

</element>

The wsa:EndpointReference is defined in [WS-Addressing 1.0], it conveys the information
needed to address a Web service endpoint, which in this case is provided by a BPEL process.
To initiate the array ArrayOfEPRs, all the endpoint references of the processes need to be
assigned to the elements in the ArrayOfEPRs, the initiation could be done as Listing 3.2.5.10.

Listing 3.2.5.10: Initiation of array ArrayOfEPRs

<bpel:assign name="Assign">
<bpel:copy>
<bpel:from>
<bpel:literal xml:space="preserve">

<sref:service-ref xmlns:sref="http://docs.oasis-open.org/wsbpel/2.0/serviceref">
<EndpointReference xmlns="http://www.w3.org/2005/08/addressing">
<Address>http://exampleService</Address>

</EndpointReference>
</sref:service-ref>

</bpel:literal>
</bpel:from>
<bpel:to variable="ArrayOfEPRs">
<bpel:query><![CDATA[messageType:ArrayOfEPRs[1]]]></bpel:query>

</bpel:to>
</bpel:copy>

</bpel:assgn>

As in [AcOS09] introduced, the array in BPEL is indexed from 1, not 0.

So for the participantSet declared in topology file showed in Listing 3.2.5.11, the construct
forEach declared in PBD file showed in Listing 3.2.5.12 will be modified as Listing 3.2.5.13.

Listing 3.2.5.11: participantSet airline in topology file travelExampleTopology

<participantSet forEach="agency:ff71e4d4-ce5c-4346-a370-c97a3e803867"
name="airline"
type="airline_1_type">

<participant forEach="agency:ff71e4d4-ce5c-4346-a370-c97a3e803867"
name="currentAirline"
scope="agency:06b17b89-802a-4ea7-88c3-a5516cf448c3"/>

 <participant name="selectedAirline"/>
</participantSet>

https://code.google.com/p/huang-sa/source/browse/Implementation/src/main/resources/BPEL4Chor/travelExample/travelExampleTopology.xml

35

Listing 3.2.5.12: construct forEach in PBD file agency

<forEach name="PriceInquiryFE"
parallel="yes"
wsu:Id="ff71e4d4-ce5c-4346-a370-c97a3e803867">

<scope name="scope" wsu:Id="06b17b89-802a-4ea7-88c3-a5516cf448c3">
<sequence name="sequence" wsu:Id="6d59311a-24b5-4500-a8d1-d5f7c3169f99">

<invoke name="SendPriceInquiryRequest"
wsu:Id="8f0170a2-1e24-435a-b787-fd1dda88a228"/>

 <receive name="ReceivePriceInquiryResponse"
wsu:Id="f6850b41-312e-477e-a333-38d42926252d"/>

 </sequence>
 </scope>
</forEach>

Listing 3.2.5.13: transformed construct forEach (part)

<forEach counterName="i" parallel="yes" name="PriceInquiryFE">
<startCounterValue>1</startCounterValue>
<finalCounterValue>"size of arrayOfEPRs"</finalCounterValue>
<scope name="scope">
<partnerLinks>
<partnerLink name="agency-currentAirline_isRealizedBy_airline_ReceivePriceInquiryRequest_PT"

partnerLinkType="agency-currentAirline_isRealizedBy_airline_ReceivePriceInquiryRequest_PT-plt"
myRole="agency"
partnerRole="currentAirline"/>

</partnerLinks>
<sequence name="sequence">
<assign>
<copy>
<from variable="arrayOfEPRs[i]"/>
<to partnerLink="agency-currentAirline_isRealizedBy_airline_ReceivePriceInquiryRequest_PT"/>

</copy>
</assign>
<invoke partnerLink="agency-currentAirline_isRealizedBy_airline_ReceivePriceInquiryRequest_PT"

portType="airline:ReceivePriceInquiryRequest_PT"
operation="ReceivePriceInquiryRequest"
name="SendPriceInquiryRequest"/>

……
</sequence>

</scope>
</forEach>

As Listing 3.2.5.13 shows, in each loop of forEach PriceInquiryFE, an endpoint reference
stored in arrayOfEPRs, which indexed by counter i, is copied to the partnerLink that
indicates the communication between the other participant airline and the process agency in
which the forEach is declared.

Listing 3.2.5.14 shows what has been done for completing the modification.

Listing 3.2.5.14: method modifyConstruct(Object o, Data data) (part4) in class PBDHandler

01 if(o instanceof TForEach){
02 TForEach tfe = (TForEach)o;
03 String counterName = "i";
04 tfe.setCounterName(counterName);
05
06 String startCounterValue = "1";
07 startCounter.getContent().add(startCounterValue);
08
09 String finalCounterValue = "size of arrayOfEPRs[".concat(counterName).concat("]");
10 finalCounter.getContent().add(finalCounterValue);
11 tfe.setStartCounterValue(startCounter);
12 tfe.setFinalCounterValue(finalCounter);
13
14 TScope tsc = tfe.getScope();
15 TAssign tassign = new TAssign();
16 TCopy tcopy = new TCopy();
17 TFrom tfrom = new TFrom();
18 tfrom.setVariable("arrayOfEPRs[".concat(counterName).concat("]"));
19 tcopy.setFrom(tfrom);
20 TTo tto = new TTo();

https://code.google.com/p/huang-sa/source/browse/Implementation/src/main/resources/BPEL4Chor/travelExample/agency.bpel

36

21 /**
22 * set the proper partnerLink
23 */
24 Iterator<QName> iter = tsc.getOtherAttributes().keySet().iterator();
25 while(iter.hasNext()){
26 QName key = iter.next();
27 String value = tsc.getOtherAttributes().get(key);
28 for(Iterator<QName> iter_1 = data.getScopeSet().iterator(); iter_1.hasNext();){
29 QName sc = iter_1.next();
30 if(value.equals(sc.getLocalPart())){
31 HashSet<String> pls = data.getPartnerLinks_scopeMap().get(sc);
32 for(Iterator<String> iter_2 = pls.iterator(); iter_2.hasNext();){
33 String pl = iter_2.next();
34 tto.setPartnerLink(pl);
36 }
37 }
38 }
39 }
40 tcopy.setTo(tto);
41 tassign.getCopyOrExtensionAssignOperation().add(tcopy);
42 /**
43 * add assign to activity list
44 */
45 TSequence tseq = tsc.getSequence();
46 for(int i = (tseq.getActivity().size() -1); i>=0; i--){
47 tseq.getActivity().add(i+1,tseq.getActivity().get(i));
48 tseq.getActivity().remove(i);
49 }
50 tseq.getActivity().add(0, tassign);
51 modifyConstruct(tsc, data);
52 ((TForEach) o).getOtherAttributes().clear();
53 }

Statements Line 03 – 12 in Listing 3.2.5.14 set the counterName, startCounterValue and
finalCounterValue. Statements Line 14 – 51 modifies the scope declared in this forEach.
Line 24 – 40 shows how to set the proper partnerLink in the construct to, like the method
declarePartnerLinks(Object o, Data data) (Listing 3.2.5.1), information stored in
HashMap<QName, HashSet<String>> partnerLinks_scopeMap is used to decide which
partnerLink should be set to the construct to. Line 45 – 50 shows how to add the newly
declared and modified object tassign: TAssign to the object tseq: TSequence, because the
construct assign should be declared before all the activities that are already existed in the
sequence, so all the objects in the List<Object>, which is the result of tseq.getActivity() will
be moved to the place where its original index plus 1. So that the object tassign could be
added to the List with index 0.

3.2.6 Class WSDLHandler
The class WSDLHandler is designed based on algorithm 3.19.

Figure 3.7: class diagram of class WSDLHandler

In the schema file of WSDL there is no definition for the partnerLinkType, so I made the
following changes to the schema file of WSDL.

https://code.google.com/p/huang-sa/source/browse/Implementation/target/generated-sources/xjc/org/oasis_open/docs/wsbpel/_2_0/process/_abstract/TSequence.java
https://code.google.com/p/huang-sa/source/browse/Implementation/src/main/java/sa/huang/WSDLHandler.java
http://schemas.xmlsoap.org/wsdl/2003-02-11.xsd

37

First add attribute xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype" to the
root element schema, and import the schema file of partnerLinkType (Listing 3.2.6.1) then
add element partnerLinkType to the group anyTopLevelOptionalElement (Listing 3.2.6.2),
then the class partnerLinkType can be contained by the field List<Object>
anyTopLevelOptionalElement of class TDefinitions which is generated by the JAXB compiler.

Listing 3.2.6.1: tag import in modified schema file of WSDL (part)

<xs:import namespace="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
 schemaLocation="ws-bpel_plnktype.xsd"/>

Listing 3.2.6.2: tag group in modified schema file of WSDL (part)

<xs:group name="anyTopLevelOptionalElement" >
<xs:element name="partnerLinkType" type="plnk:tPartnerLinkType" />
……

The generated wsdl file is showed in Listing 3.2.6.3.

Listing 3.2.6.3: generated wsdl file test_LT.wsdl

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:ns2="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
targetNamespace="http://huang.sa/travelExample">

 <partnerLinkType
name="agency-selectedAirline_isRealizedBy_airline_ReceiveTicketOrderRequest_PT-plt">

 <ns2:role xmlns:airline="http://huang.sa/travelExample/airline"
name="selectedAirline" portType="airline:ReceiveTicketOrderRequest_PT"/>

 <ns2:role xmlns:agency="http://huang.sa/travelExample/agency"
name="agency" portType="agency:ReceiveTicketOrderResponse_PT"/>

 </partnerLinkType>
 <partnerLinkType

name="agency-currentAirline_isRealizedBy_airline_ReceivePriceInquiryRequest_PT-plt">
 <ns2:role xmlns:airline="http://huang.sa/travelExample/airline"

name="currentAirline" portType="airline:ReceivePriceInquiryRequest_PT"/>
 <ns2:role xmlns:agency="http://huang.sa/travelExample/agency"

name="agency" portType="agency:ReceivePriceInquiryResponse_PT"/>
 </partnerLinkType>
</definitions>

https://code.google.com/p/huang-sa/source/browse/Implementation/src/main/resources/schema/wsdl.xsd
https://code.google.com/p/huang-sa/source/browse/Implementation/src/main/resources/schema/wsdl.xsd
https://code.google.com/p/huang-sa/source/browse/Implementation/src/test/resources/generated-BPEL/test_LT.wsdl

38

4 Evaluation

4.1 The drawback of relation Comm

According to [Rei07]:

Definition 3.27 (the relation Comm). The relation Comm ⊆ (2Pa × (PT ∪ { ⊥ })) × (Pa × PT) is
defined as the relation that assigns a subset of participant references and another participant
reference to a pair of port types which they use to communicate. Let ((A, c), (b, d)) be an
element of the relation Comm. Then, the participant references contained in A communicate
with the participant reference b while all participant references contained in A are realized by
the port type c, and the participant reference b is realized by the port type d. If c = ⊥, the
communication will be one-way. That means the participant references contained in A send
something to b, but not vice versa. If c ≠ ⊥, the communication will be request-response. That
means the participant references contained in A send something to b and vice versa.

For some reason that the author didn't mention, he left out the synchronous interaction. So
the Comm set only contains two kinds of communication, one-way communication and
asynchronous communication. And for asynchronous communication:

In Figure3.5 we see a request/response communication between the participant references a and
b. …... we need to create …... one partner link type and two partner link declarations. But this
time each of them gets both roles specified.

This means that the author of [Rei07] used the WS-Addressing method. This might not be
the perfect choice for interaction in the form A > B > C > A.

Consider the conditions in traverseComm():

From the data that can be fetched from both grounding and topology file, for each
messageLink, there are:

A (sender(s)), b (receiver), pt (portType that realizes the communication, that is, it provides
the operation that receive the message), o (operation that receives the message),
sendActivity, receiveActivity, messageName.

While traversing the Comm set, if

(1): ∃comm∈Comm: (comm= ((A, c), (b, pt))∧c∈PT∪{⊥}):

This means that we have already had a message link specifying the same direction of
communication of ml, and in which the participant reference b has been realized by the same
port type.

Let this comm be a one-way communication between A and b, in which A sends Message1
through operation o1 (provided by portType pt) to b. (Figure 4.1.1)

Now the messageLink indicates that Message2 is sent from A to b through the same
portType pt, i assume that there is another operation o2 in pt. The assumption is made
under the consideration as follows:

A one-way operation can only receive message of the same type.

39

Example 4.1.1 <portType> pt in b's WSDL file:

<portType name="pt"

 <operation name="o1">

 input message="prefixOfReceiver:requestMessage"/>

 </operation>

</portType>

Example 4.1.2 <message> requestMessage in b's WSDL file:

<message name="requestMessage">

 <part name="requestMessage"

 element="prefixOfReceiver:requestMessage"/>

</message>

It seems meaningless to me that two messageLinks define messages of the same type using
the same operation, so i assume that there should be another operation.

Figure 4.1.1: Condition (1)

For sending and receiving Message2, if it is used for a one-way communication, we don't
need to declare new partnerLink.

If Message2 is a requestMessage for an asynchronous interaction, then b must provide
another portType (which is implemented by A through WS-Addressing) that receives
responseMessage.

Note that the partnerLinks and partnerLinkTypes used for one-way communication and
asynchronous communication with WS-Addressing are different:

For one-way communication that already exists in Comm set:

Example 3.1.3 <partnerLink> A_b_realizedBy_pt_o1 in A's BPEL file:

<partnerLink name="A_b_realizedBy_pt_o1"

40

 partnerLinkType="prefixOfB:A_b_realizedBy_pt_o1_PLT"

 partnerRole="b"

</partnerLink>

For asynchronous communication that is indicated by the messageLink:

Example 3.1.4 <partnerLink> A_b_realizedBy_pt_o2 in A's BPEL file:

<partnerLink name="A_b_realizedBy_pt_o2"

 partnerLinkType="prefixOfB:A_b_realizedBy_pt_o2_PLT"

 partnerRole="b"

 myRole="A"

</partnerLink>

If Message2 is a responseMessage for a asynchronous interaction, then b must have sent a
requestMessage to A. The partnerLink and partnerLinkType used for Message2 is also
different from that are used for comm.

But according to [Rei07]:

So, we do not need to create new partner link declarations and a new partner link type. Instead,
we can use the ones which have been created for the former message link.

So, the design of the relation Comm is not suitable for the situation that was just discussed.

4.2 The drawback of current implementation modifying the correlationSet

As the BPEL example in section 6.1.2 demonstrates, the correlationSet declared in each
participant process could have the same name, as they are declared in different namespace.
But when using the BPEL4Chor Designer, during the configuration of the CorrelationSets
Grounding (Figure 2.11), if we set the same name to the correlationSet in each participant
PBD, then the value that was set to the correlationSet that was declared lately will
overwrite the value that was set to the correlationSet previously. So I set different names
to the correlationSets that were declared in different participants.

And this drawback also appears in the current implementation, I will explain the problem in
the following.

According to [Rei07]:

Definition 3.32 (set of NCNames of correlation properties). The set CorrPropName is defined as
the set containing all NCNames that are used as names of correlation properties and that are
referenced to WSDL properties in the participant groundings.

Definition 3.33 (set of WSDL properties). The set Property is defined as the set containing all
WSDL properties which are referenced in the participant groundings.

The identifier of an element of Property is the QName of the respective WSDLproperty attribute.

Definition 3.34 (the function assigning a property to each property name). The function
propertyCorrPropName : CorrPropName → Property is defined as the function that assigns a WSDL

41

property to each name of a correlation property which is referenced to the property in the
participant groundings.

For the properties declared in Listing 4.2.1, the set CorrPropName should contains a set of
NCNames: {agency_TravelerID, airline_TravelerID}, the set Property should contains a set of
QNames: {agency:TravelerID, airline:TravelerID}.

Listing 4.2.1: properties in a grounding file

<properties>
 <property WSDLproperty="agency:TravelerID" name="agency_TravelerID"/>
 <property WSDLproperty="airline:TravelerID" name="airline_TravelerID"/>
</properties>

But if the values of name attribute are set to the same NCName, the set CorrPropName can
only store one of them.

As the current BPEL4Chor Designer can only generate the grounding file with different
property names, so I used this approach unchanged.

The method analyzePropertiesInGrounding(Data data) (Listing 4.2.2) is called to fetch the
property names and store them into CorrPropNameSet, and the method setProper-
ty_CorrPropNameMap(String propName, QName property) (designed based on Definition 3.34)
will store the value pair propName: String and property: QName into a HashMap.

Listing 4.2.2: method analyzePropertiesInGrounding(Data data) in class GroundingHandler

public void analyzePropertiesInGrounding(Data data){
 TProperties tprops = grounding.getProperties();
 for(TProperty tprop: tprops.getProperty()){
 String propName = tprop.getName();
 QName property = tprop.getWSDLproperty();
 data.setCorrPropNameSet(propName);
 data.setPropertySet(property);
 data.setProperty_CorrPropNameMap(propName, property);
 data.setNsprefix_PropertyMap(property, property.getPrefix());
 }
 }

42

5 Summary

The main task accomplished by this work was to implement the concept of transformation
from BPEL4Chor to BPEL proposed in [Rei07]. The algorithms and definitions defined in
[Rei07] have been encapsulated into corresponding classes. Class Data wraps the data struc-
tures used by the transformation process, and provides the corresponding methods to access
these data. Class TopologyHandler provides the methods to fetch the desired information
from messageLinks, participants and participantSets in topology file, and store the infor-
mation in corresponding data structures in object data. Class Comm encapsulates the rela-
tion Comm that was designed to represent the patterns of interaction between participants.
Class GroundingHandler provides the methods to analyze the messageLinks and properties
in grounding file. Class PBDHandler encapsulates the methods for the transformation from
PBD file to abstract BPEL file, the information stored in object data is used to modify the
corresponding constructs in PBD file. Class WSDLHandler wraps a method that generates a
WSDL file which declares the corresponding partnerLinkTypes.

In Chapter 3, some drawbacks of the design in [Rei07] have been put forward and the corre-
sponding solutions have been presented. In section 4.1 a design drawback has been dis-
cussed, but due to the complexity and flexibility of BPEL that has been shown in section 2.2
and section 6.1, a feasible solution wasn’t able to be given.

43

6 Appendix

6.1 BPEL Example

The examples are based on the travel agency example used in [DKLW07], All the BPEL
processes have been successfully deployed and tested on Apache Ode. All code can be seen
at https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/. The
way to implement the asynchronous interaction using is very flexible, in section 6.1.1 I
demonstrate two ways to implement an asynchronous interaction using WS-Addressing,
and in section 6.1.2 I demonstrate the implementation of an asynchronous interaction using
Correlation Set.

6.1.1 Asynchronous Interaction using WS-Addressing
First, the asynchronous interaction could be realized by one portType, as Figure 6.1.1
demonstrates, in this case portType AirlinePT should contain both operations
ReceivePriceInquiry and CallbackPriceInquiry that are used by the asynchronous interaction,
the AirlinePT is declared in process airline's WSDL file (Listing 6.1.1). The portType
TripOrderPT is declared in process agency's WSDL file, the operation
ReceiveAndReplyTripOrder is used to communicate with client, this communication is
designed as a synchronous interaction (Listing 6.1.2). There is a partnerLinkType Agency-
Airline_RealizedBy_AirlinePT_PLT declared in the process airline's WSDL file, which is used
for indicating the type of the interaction and the portTypes that are used to fulfill the
interaction, in this case the portTypes used by both roles are the same(Listing 6.1.3). The
entire BPEL project has been uploaded to: https://code.google.com/p/huang-
sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_WS-
Addressing/portTypes_In_One_Process/.

Listing 6.1.1: portType AirlinePT in WSDL file AirlineExampleArtifacts.wsdl

<portType name="AirlinePT">
 <operation name="ReceivePriceInquiry">
 <input message="tns:PriceInquiryRequestMessage"/>
 </operation>
 <operation name="CallbackPriceInquiry">
 <input message="tns:PriceInquiryResponseMessage"/>
 </operation>
</portType>

Listing 6.1.2: portType TripOrderPT in WSDL file AgencyExampleArtifacts.wsdl

<portType name="TripOrderPT">
 <operation name="ReceiveAndReplyTripOrder">
 <input message="tns:TripOrderRequestMessage"/>
 <output message="tns:TripOrderResponseMessage"/>
 </operation>
</portType>

Listing 6.1.3: partnerLinkType Agency-Airline_RealizedBy_AirlinePT_PLT in WSDL file
AirlineExampleArtifacts.wsdl

<plnk:partnerLinkType name="Agency-Airline_RealizedBy_AirlinePT_PLT">
 <plnk:role name="airline" portType="tns:AirlinePT"/>
 <plnk:role name="agency" portType="tns:AirlinePT"/>
</plnk:partnerLinkType>

https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/
https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_WS-Addressing/portTypes_In_One_Process/
https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_WS-Addressing/portTypes_In_One_Process/
https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_WS-Addressing/portTypes_In_One_Process/

44

Figure 6.1.1 portType declared in one process

The BPEL processes are tested by the mechanism provied by Eclipse: "Test with Web
Services Explorer", the result is shown in Figure 6.1.2.

45

Figure 6.1.2: test result of AgencyExampleArtifacts.wsdl

The second way to implement an asynchronous interaction using WS-Addressing is to
declare two portTypes separately in both participant's WSDL file. As Firgure 6.1.3
demonstrates, portType AirlinePT contains only operation ReceivePriceInquiry, the
AirlinePT is declared in process airline's WSDL file (Listing 6.1.4). The portType AgencyPT
is declared in process agency's WSDL file, it contains the operation CallbackPriceInquiry
used by the asynchronous interaction, and the operation ReceiveAndReplyTripOrder used
to communicate with client(Listing 6.1.5), The partnerLinkType Agency-
Airline_RealizedBy_AirlinePT_PLT declared in the process airline's WSDL file, which is used
for indicating the type of the interaction and the portTypes that are used to fulfill the
interaction, in this case there are two different portTypes(Listing 6.1.6). The BPEL project:
https://code.google.com/p/huang-
sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_WS-
Addressing/portType_In_Different_Processes/.

Figure 6.1.3 portTypes declared in different processes

Listing 6.1.4: portType AirlinePT in WSDL file AirlineExampleArtifacts.wsdl

<portType name="AirlinePT">
 <operation name="ReceivePriceInquiry">
 <input message="tns:PriceInquiryRequestMessage"/>
 </operation>
</portType>

Listing 6.1.5: portType AgencyPT in WSDL file AgencyExampleArtifacts.wsdl

<portType name="AgencyPT">
 <operation name="CallbackPriceInquiry">
 <input message="tns:PriceInquiryResponseMessage"/>
 </operation>

https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_WS-Addressing/portType_In_Different_Processes/
https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_WS-Addressing/portType_In_Different_Processes/
https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_WS-Addressing/portType_In_Different_Processes/
https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_WS-Addressing/portType_In_Different_Processes/
https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_WS-Addressing/portType_In_Different_Processes/
https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_WS-Addressing/portType_In_Different_Processes/
https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_WS-Addressing/portType_In_Different_Processes/
https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_WS-Addressing/portType_In_Different_Processes/

46

 <operation name="ReceiveAndReplyTripOrder">
 <input message="tns:TripOrderRequestMessage"/>
 <output message="tns:TripOrderResponseMessage"/>
 </operation>
</portType>

Listing 6.1.6: partnerLinkType Agency-Airline_RealizedBy_AirlinePT_PLT in WSDL file
AirlineExampleArtifacts.wsdl

<plnk:partnerLinkType name="Agency-Airline_RealizedBy_AirlinePT_PLT">
 <plnk:role name="airline" portType="tns:AirlinePT"/>
 <plnk:role name="agency" portType="agency:AgencyPT"/>
</plnk:partnerLinkType>

6.1.2 Asynchronous Interaction using Correlation Set

Firgure 6.1.4: asynchronous interaction using Correlation Set

As Figure 6.1.4 demonstrates, there are one separate portType declared in both participant
process' WSDL file used to fulfill the interaction, ReceiveTicketOrderRequest_PT in airline
process, and CallbackTicketOrderResponse_PT in agency process. A correlationSet
CorrelationSet is declared in both participant process' BPEL file(Listing 6.1.7), note that both
process could have the same name of the correlationSet, as they are in different
namespace. The attribute property and propertyAlias is declared in both participant
process' WSDL file(Listing 6.1.8). The activity OrderTicket and ReceiveTicketOrder
transports the message that initiate the interaction, so the attribute initiate of
correlation is set to "yes"(Listing 6.1.9 and Listing 6.1.10). The entire BPEL project:
https://code.google.com/p/huang-
sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_Correlati
onSet/.

Listing 6.1.7: correlationSet CorrelationSet in BPEL file AgencyExample.bpel

<bpel:correlationSets>

https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_CorrelationSet/
https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_CorrelationSet/
https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_CorrelationSet/
https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_CorrelationSet/
https://code.google.com/p/huang-sa/source/browse/BPEL_Example_In_Appendix/asynchronous_Interaction_Using_CorrelationSet/

47

 <bpel:correlationSet name="CorrelationSet" properties="tns:TravelerID"></bpel:correlationSet>
</bpel:correlationSets>

Listing 6.1.8: property TravelerID and correspoding propertyAlias in WSDL file
AgencyExampleArtifacts.wsdl

<vprop:property name="TravelerID" type="xsd:string"/>
<vprop:propertyAlias messageType="airline:TicketOrderResponseMessage"

part="payload"
propertyName="tns:TravelerID">

 <vprop:query><![CDATA[/messageType:TravelerID]]></vprop:query>
</vprop:propertyAlias>
<vprop:propertyAlias messageType="airline:TicketOrderRequestMessage"

part="payload"
propertyName="tns:TravelerID">

 <vprop:query><![CDATA[/messageType:TravelerID]]></vprop:query>
</vprop:propertyAlias>

Listing 6.1.9: invoke activity OrderTicket in BPEL file AgencyExample.bpel

<bpel:invoke name="OrderTicket"
partnerLink="Agency-Airline_RealizedBy_ReceiveTicketOrderRequest_PT"
operation="ReceiveTicketOrderRequest"
portType="airline:ReceiveTicketOrderRequest_PT"
inputVariable="TicketOrderRequest">

 <bpel:correlations>
 <bpel:correlation set="CorrelationSet" initiate="yes"></bpel:correlation>
 </bpel:correlations>
</bpel:invoke>

Listing 6.1.10: receive activity ReceiveTicketOrder in BPEL file AirlineExample.bpel

<bpel:receive name="ReceiveTicketOrder"
partnerLink="Agency-Airline_RealizedBy_ReceiveTicketOrderRequest_PT"
operation="ReceiveTicketOrderRequest" portType="tns:ReceiveTicketOrderRequest_PT"
variable="TicketOrderRequest" createInstance="yes">

 <bpel:correlations>
 <bpel:correlation set="CorrelationSet" initiate="yes"></bpel:correlation>
 </bpel:correlations>

48

6.2 Result of the transformation process

Listing 6.2.1: The generated BPEL file test_agency.bpel

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<process xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/abstract"

name="agency"
targetNamespace="http://huang.sa/travelExample/agency"
abstractProcessProfile="urn:HPI_IAAS:choreography:profile:2006/12">

<partnerLinks>
<partnerLink name="agency-selectedAirline_isRealizedBy_airline_ReceiveTicketOrderRequest_PT"

partnerLinkType="agency-selectedAirline_isRealizedBy_airline_ReceiveTicketOrderRequest_PT-plt"
myRole="agency"
partnerRole="selectedAirline"/>

</partnerLinks>
<correlationSets>
<correlationSet properties="agency:agency_TravelerID agency:agency_TicketOrderNr"

name="agency_TicketOrder_CS"/>
</correlationSets>
<sequence name="main">
<forEach counterName="i" parallel="yes" name="PriceInquiryFE">
<startCounterValue>1</startCounterValue>
<finalCounterValue>size of arrayOfEPRs[i]</finalCounterValue>
<scope name="scope">
<partnerLinks>
<partnerLink name="agency-currentAirline_isRealizedBy_airline_ReceivePriceInquiryRequest_PT"

partnerLinkType="agency-currentAirline_isRealizedBy_airline_ReceivePriceInquiryRequest_PT-plt"
myRole="agency"
partnerRole="currentAirline"/>

</partnerLinks>
<sequence name="sequence">
<assign>
<copy>
<from variable="arrayOfEPRs[i]"/>
<to partnerLink="agency-currentAirline_isRealizedBy_airline_ReceivePriceInquiryRequest_PT"/>

</copy>
</assign>
<invoke partnerLink="agency-currentAirline_isRealizedBy_airline_ReceivePriceInquiryRequest_PT"

portType="airline:ReceivePriceInquiryRequest_PT"
operation="ReceivePriceInquiryRequest"
name="SendPriceInquiryRequest"/>

<receive partnerLink="agency-currentAirline_isRealizedBy_airline_ReceivePriceInquiryRequest_PT"
portType="agency:ReceivePriceInquiryResponse_PT"
operation="ReceivePriceInquiryResponse"
name="ReceivePriceInquiryResponse"/>

</sequence>
</scope>

</forEach>
<opaqueActivity name="choose airline"/>
<invoke partnerLink="agency-selectedAirline_isRealizedBy_airline_ReceiveTicketOrderRequest_PT"

portType="airline:ReceiveTicketOrderRequest_PT"
operation="ReceiveTicketOrderRequest"
name="SendTicketOrderRequest">

<correlations>
<correlation set="agency_TicketOrder_CS" initiate="yes"/>

</correlations>
</invoke>
<receive partnerLink="agency-selectedAirline_isRealizedBy_airline_ReceiveTicketOrderRequest_PT"

portType="agency:ReceiveTicketOrderResponse_PT"
operation="ReceiveTicketOrderResponse"
name="ReceiveTicketOrderResponse">

<correlations>
 <correlation set="agency_TicketOrder_CS"/>

</correlations>
</receive>

</sequence>
</process>

49

Listing 6.2.2: The generated BPEL file test_agency.bpel

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<process xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/abstract"

name="airline"
targetNamespace="http://huang.sa/travelExample/airline"
abstractProcessProfile="urn:HPI_IAAS:choreography:profile:2006/12">

<partnerLinks>
<partnerLink name="selectedAirline_isRealizedBy_airline_ReceiveTicketOrderRequest_PT-agency"

partnerLinkType="agency-selectedAirline_isRealizedBy_airline_ReceiveTicketOrderRequest_PT-plt"
myRole="selectedAirline"
partnerRole="agency"/>

<partnerLink name="currentAirline_isRealizedBy_airline_ReceivePriceInquiryRequest_PT-agency"
partnerLinkType="agency-currentAirline_isRealizedBy_airline_ReceivePriceInquiryRequest_PT-plt"
myRole="currentAirline"
partnerRole="agency"/>

</partnerLinks>
<correlationSets>
<correlationSet properties="airline:airline_TravelerID airline:airline_TicketOrderNr"

name="airline_TicketOrder_CS"/>
</correlationSets>
<sequence name="main">

<receive partnerLink="currentAirline_isRealizedBy_airline_ReceivePriceInquiryRequest_PT-agency"
portType="airline:ReceivePriceInquiryRequest_PT"
operation="ReceivePriceInquiryRequest"
createInstance="yes"
name="ReceivePriceInquiryRequest"/>

<invoke partnerLink="currentAirline_isRealizedBy_airline_ReceivePriceInquiryRequest_PT-agency"
portType="agency:ReceivePriceInquiryResponse_PT"
operation="ReceivePriceInquiryResponse"
name="SendPriceInquiryResponse"/>

<pick name="pick">
<onMessage partnerLink="selectedAirline_isRealizedBy_airline_ReceiveTicketOrderRequest_PT-agency"

portType="airline:ReceiveTicketOrderRequest_PT"
operation="ReceiveTicketOrderRequest">

<correlations>
<correlation set="airline_TicketOrder_CS" initiate="yes"/>

</correlations>
<sequence name="sequence">

<invoke partnerLink="selectedAirline_isRealizedBy_airline_ReceiveTicketOrderRequest_PT-agency"
portType="agency:ReceiveTicketOrderResponse_PT"
operation="ReceiveTicketOrderResponse"
name="SendTicketOrderResponse">

<correlations>
<correlation set="airline_TicketOrder_CS"/>

</correlations>
</invoke>

</sequence>
</onMessage>
<onAlarm>
<for>"'Pt2M'"</for>
<sequence name="sequence1">
<opaqueActivity name="empty"/>

</sequence>
</onAlarm>

</pick>
</sequence>

</process>

50

7 References

[BPEL 2.0] Web Services Business Process Execution Language Version 2.0 OASIS Standard,
2007

[WSDL 1.1] Web Services Description Language (WSDL) 1.1, 2001

[WS-Addressing 1.0] Web Services Addressing 1.0, 2006

[Sha11] Sharma, Shiv: Correlation Sets, link to the blog, 2011

[Sad13] Saddala, Manohar: Correlation Sets, link to the blog, 2013

[BB09] Beecher, Virginia; Bradshaw, Deanna; Das, Tulika; Kennedy, Mark; Prazma, Alex
and Purich, Peter: Oracle Fusion Middleware Developer's Guide for Oracle SOA
Suite, 11g Release 1 (11.1.1), 2009

[Rei07] P. Reimann. Generating BPEL Processes from a BPEL4Chor Description.
Studienarbeit, Universität Stuttgart, Fakultät Informatik, Elektrotechnik und
Informationstechnik, 2007.

[DKLW07] Decker, Gero ;Kopp, Oliver ;Leymann, Frank ; Weske, Mathias: BPEL4Chor:
Extending BPEL for Modeling Choreographies Technical Report. Unpublished
Technical Report of the Institute of Architecture of Application Systems at the
University of Stuttgart and the Hasso-Plattner-Institute at the University of
Potsdam, revision of August 18th, 2007

[DKLW09] Decker, Gero ;Kopp, Oliver ;Leymann, Frank ; Weske, Mathias: Interacting ser-
vices: From specification to execution, 2009

[Son13] O. Sonnauer. Modellierung von Scientific Workflows mit Choreographien.
Diplomarbeit, Universität Stuttgart, Fakultät Informatik, Elektrotechnik und
Informationstechnik, Germany, 2013.

[JAXB] Introduction to JAXB, http://docs.oracle.com/javase/tutorial/jaxb/intro/index.html

[JAVA6] http://docs.oracle.com/javaee/6/api/

[AcOS09] Using Arrays in a BPEL Process, ActiveVOS Education Center for Developers,
http://www.activevos.com/content/developers/patterns/data/arrays/doc/arrays.h
tml, 2009

[Kai11] Stapel Kai. BPEL-Tutorial - BPEL-Prozess mit dynamischen Invoke auf Apache ODE,
http://www.se.uni-hannover.de/pages/de:tutorials_bpel_ode_dynamicinvoke,
2011

http://shiv-sharma.blogspot.de/2011/09/correlation-sets.html
http://manoharsr.wordpress.com/2013/04/07/correlation-set/
http://docs.oracle.com/javase/tutorial/jaxb/intro/index.html
http://docs.oracle.com/javaee/6/api/
http://www.activevos.com/content/developers/patterns/data/arrays/doc/arrays.html
http://www.activevos.com/content/developers/patterns/data/arrays/doc/arrays.html
http://www.se.uni-hannover.de/pages/de:tutorials_bpel_ode_dynamicinvoke

51

Declaration

I hereby declare that the work presented in this thesis is entirely my own. I did not use any
other sources and references that the listed ones. I have marked all direct or indirect state-
ments from other sources contained therein as quotations. Neither this work nor significant
parts of it were part of another examination procedure. I have not published this work in
whole or in part before. The electronic copy is consistent with all submitted copies.

Stuttgart, 05. March 2014 _____________________

