Institute of Parallel and Distributed Systems
University of Stuttgart
Universitatsstral3e 38

D-70569 Stuttgart

Studienarbeit Nr. 2440

Dynamic Operator Splitting in
Mobile CEP Scenarios

Stefan Schmidhauser

Course of Study: Informatik

Examiner: Prof. Dr. Rothermel
Supervisor: Dipl.-Inf. Beate Ottenwalder
Commenced: 30. September 2013
Completed: 1. April 2014

CR-Classification: C.21,C22,C24

Abstract

With an increasing number of mobile devices being used in modern day to day life,
applications using data provided by their environment are becoming more and more
common. Complex Event Processing systems are a popular approach to realize them.
Usually the data, collected for example by the mobile devices” built in sensors like GPS is
sent to a stationary host for evaluation. Since distances between host and data source might
be quite large, this is usually done by using communication standards like 3G or GSM.
Since energy costs of such messages are rather high it is in some cases more energy efficient
to evaluate some data directly on the mobile device before sending it, in order to reduce
communication. In large scale networks however, this will still result in a lot of expensive
3G or GSM messages being sent, since each mobile device will have to send its data eventually.

This work will introduce algorithms to create a simple network structure that takes
advantage of the mobile device’s locality in order to create clusters of mobile devices. In
these clusters, members use the much cheaper wireless lan communication to collect data,
which will then be pre-processed locally before being sent to the host via the more expensive
3G or GSM for final processing. To make pre-processing possible we will also examine
Operators used in CEP systems in terms of their ability to be distributed further, and provide
a classification based on this.

Finally we will evaluate our system by performing simulations. We will test the
general performance of our algorithms by measuring the energy consumed to transmit
events. Our evaluation shows that our approach is able to safe energy for systems that
produce events with a high frequency.

Contents

1 Introduction

2 Background

Complex Event Processing
2.2 Communication between mobile devices
2.3 Energy in mobile device communication

2.1

3 System Model

3.1

Infrastructure model
3.2 Operator model
3.3 Energy model

4 Problem Description

5 Operator Classification
Requirements when using relayed transmission and early correlation

5.1

5.2 Operator Classification

6 Algorithmic Solution

6.1
6.2
6.3
6.4

7 Evaluation
Simulation Setup
7.2 Results

7.1

Algorithm in general
Initialization
Cluster Finding
Cluster Maintenance
Lazy Maintenance
Eager Maintenance

6.4.1
6.4.2

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7

Performance for high-frequency event transmission
Performance for low-frequency event transmission
Effects of varying EventIntervals on the system.
Effects of varying Speeds on the system.
Effects of varying MinClusterSizes on the system.
Effects of varying RangeCheckIntervals on the system. . . .

Effects of varying HeadCyclePowerAmount on the system.

8 Related Work

11
11

14
14
15
17

19

21
21
22

26
26
28

29

36
42

46
46
47
47
49
50
51
53
53
54

56

9 Conclusion

Bibliography

59

60

List of Figures

2.1
2.2

3.1
3.2
33

4.1

5.1
5.2
53

6.1
6.2

7.1
7.2
7:3
74

7-5
7.6

77
7.8
79

7.10

Ilustration of the example CEP system used to describe the components. . . . 10
WiFi versus 3G vs GSM measurements: Average energy consumed for down-

loading data of different sizes in a 20 second interval. [BBVog] 13
The systemmodel. 15
Snapshot of an operator state. oL L 16
Formulas to estimate energy cost of downloading data. [BBVog] 17
Event transmissionmodels o o L L 20
Relayed event transmission for Fixed Operators. 23
Relayed event transmission for Modifiable Operators. 24
Relayed event transmission for Filter Operators. 25
Local clusters in the CEP system. 28
Flowcharts for Cluster finding process 32
Averaged energy measurements for high-frequency event transmission. 48
Non-Event message counts for high-frequency simulation. 49
Averaged energy measurements for low-frequency event transmission. 50
Average number of events per device sent as Cluster-Member, in simulations

for2som x 250m. 50
Measurements for differing speeds in a 500m x 500m area with 20 devices. . . 51
Average number of lost events in 500m x 500m area with 20 devices in relation

tospeed. 52
Measurements for differing speeds in a 500m x 500m area with 20 devices. . . 52
Measurements for differing speeds in a 500m x 500m area with 20 devices. . . 53
Average number of lost events in 500m x 500m area with 20 devices in relation

to RangeCheckInterval. L. 54
Remaining energy measured on all Devices during the simulations sorted by

amount to show the amount of variation between values. 55

List of Tables

3.1
3.2

Energy consumption of a 50kb message approximated in high-frequency mode 18
Energy consumption of a 50kb message approximated in low-frequency mode 18

List of Listings

List of Algorithms

6.1 Cluster Request from Non-Cluster device 31
6.2 Handle Cluster Request on Cluster-Head device 33
6.3 Handle Cluster Request on Non-Cluster device 33
6.4 Lazy Range Check on Cluster-Head 38
6.5 Lazy Range Check on Cluster-Member 39
6.6 Lazy RestructureonHead 40
6.7 Lazy Restructureon Member, 40
6.8 Eager Range Check on Cluster-Head 43
6.9 Eager Range Check on Cluster-Member 44
6.10 Eager RestructureonMember 45

1 Introduction

Mobile devices are very common and widespread these days. These devices are usually
equipped with a number of sensors that provide data which can be used in any number of
applications. A rather simple example for this would be a navigation application, which will
use the device’s GPS data to calculate routes for a user. Utilizing the communication ability
most devices possess, this data can be shared. This will allow applications to not only use
sensor data of the device they are running on, but instead to use data provided by a large
number of sensors, which do not necessarily have to be located close to the application’s
device. For example a traveler might want to look up the temperature at his destination, in
order to dress accordingly.

One way to realize more complex applications with such sensor data, is using Complex
Event Processing (CEP). A CEP system collects events from sources. Sources can be any kind
of sensor or device that provides data in form of events for the CEP system. These events
are then scanned for patterns by an operator running on a device that collects said events.
When an operator detects a certain pattern in events, it uses a correlation function on them.
This function uses the information provided by the selected events to create a new complex
event, that describes information on a higher level of abstraction. Three employees entering
a room shortly after one another before any of them leave are separate events, but by putting
them together we can get the complex event "meeting". Complex events can be used by
other operators for further correlation. Alternatively complex events can be consumed by
consumers, which usually are applications that use these complex events to complete their
task.

In these systems events are typically produced by a large number of sources and
collected centrally by devices that host operators, for example servers in data centers. This
means that all events will have to be transmitted by the sensor device, which is usually
done by using 3G. Sources that produce events with a high frequency can put consider-
able strain on the source device’s energy resources, for example battery life of a mobile phone.

In fact if sensor data has to be transmitted at a high frequency, computation cost is
small enough and computation on the sensor device reduces the need for communication
enough it can be energetically more efficient to run parts of the application on the sensor
device itself [Vet12]. This shows that communication cost may not be underestimated and
may provide room for improvement.

In this work we will reduce communication cost by grouping sensor devices into
localized clusters and, instead of using 3G, using the cheaper WLAN communication to
calculate partial solutions for those clusters, before sending them to the final application
device. Of course this will not be possible for all applications, which is why we will

1 Introduction

first classify applications in regard to this approach. Then we will provide algorithms to
build a simple cluster network based on WLAN communication, and evaluate them via
simulation.

Structure

This Document is structured in the following way:

Chapter 2 — Background: This chapter will provide basic information about the preliminar-
ies of this work.

Chapter 3 — System Model: Here we will introduce the system model we use as a foundation
for this work.

Chapter 4 — Problem Description: Chapter 4 will describe the focus of this work in detail.

Chapter 5 — Operator Classification: This chapter will discuss conditions for viability of
operators in context to the provided algorithm and provide a classification regarding
that criteria.

Chapter 6 — Algorithmic Solution: Chapter 6 will introduce and explain the algorithm used
in this work in detail.

Chapter 7 — Algorithmic Solution: Chapter 7 will present evaluation results obtained by
simulations of an implementation of our algorithm.

Chapter 8 — Related Work: In this part we will introduce other works related to CEP that
bare relevance to this work.

Chapter 9 — Conclusion: Chapter g will summarize our work and propose approaches for
future work.

2 Background

This chapter will introduce the basic foundations of this work. We will start by taking a
closer look at the Complex Event Processing (CEP) paradigm. Afterwards we will go over
the different communication technologies used by mobile devices, mainly 3G, GSM and
WLAN. The last part of this chapter will give insight in the energy model used to estimate
energy costs.

2.1 Complex Event Processing

The Complex Event Processing paradigm first surfaced in the mid 1990s. Stanford
University’s Rapide Project[LV95] is credited to be the first CEP model. CEP Systems have
since then become more and more relevant since they allow to process obtained data in real
time, which is interesting for many applications, like for example real-time market analysis
on the stock exchange. Due to their properties CEP systems are also well suited for use in
distributed systems, which allows for high scalability.

The basic idea behind a CEP system is the collection of data provided by informa-
tion sources in the form of events. An event may be any piece of information, like changes in
a company’s stock value. The collected data provided by different sources is then interpreted
by the system. This is accomplished by checking the incoming events for patterns or if they
meet certain requirements, and if so correlating them in order to form Complex Events.
These Complex Events may then again be used as data for other parts of the system or
consumed in an application.

In accordance with the work "Moving Range Queries in Distributed Complex Event
Processing” [KORR12], the detection process in the Complex Event Processing system is
realized by the following three components.

Source: Entities that produce information in form of atomic events are sources. A ther-
mometer notifying the system about a change in temperature would be an example for
a source.

Operator: Operators collect atomic or complex events from sources and other operators. The
collected events are then interpreted and possibly correlated into new complex events.
These new complex events can then be sent to either operators for further correlation
or to consumers. An example would be an operator that collects the temperature of
several locations and calculates the mean. We will give a more detailed description of
the operator model in Chapter 5 as part of the classification process.

2.1 Complex Event Processing

Consumer: Consumers are the systems end points. They receive events from operators and
consume them to fulfil a certain task. An example for a consumer might be a weather
application that visualizes mean temperatures of several areas on a map.

a Sources N / Consumer \

i Event1 Bodantemnperatur in 5 om Tiefe
5

Complex
Operator &
avg(T1,72,T3)

o

Figure 2.1: Illustration of the example CEP system used to describe the components.

Figure 2.1 illustrates the example used in the description of the components. T1, T2
and T3 are sources that measure temperature at their location and submit their readings
to the operator. The operator calculates the average temperature of the area and informs
the consumer via complex event message. The consumer uses the data to visualize the results.

Operators often implement complex correlation functions. Many of these complex
operators can be split into a number of sub-operators, that perform certain steps of the
correlation separately and provide their parent operator with the results. By consecutively
splitting up sub-operators, if possible, we are able to create operator-trees. The leaf nodes of
such an operator-tree are basic operators that perform simple correlations on events they
collect directly from the sources. Operators placed further up in the tree typically receive
their incoming events from lower level operators and are becoming more complex towards
the root. The root operator itself will produce the same correlations as the original unsplit
operator.

The advantage of creating operator-trees is that the different operators in the tree
can be distributed among different nodes in an infrastructure, which allows the system to
perform simpler correlations early on and more complex ones while the events make their
way through the infrastructure towards their goal. This helps to reduce network overhead
and helps when implementing distributed CEP systems.

[KORR12] [OKRR13] [KKR10] [RDR10]

10

2.2 Communication between mobile devices

2.2 Communication between mobile devices

Modern mobile devices have various ways of communicating with stationary servers or
other mobile devices. In this work we will focus on the most common communication
interfaces, namely Wireless LAN, GSM and 3G.

Wireless LAN uses radio waves in order to communicate with other devices. Fre-
quencies used for communication are typically based on the IEEE 802.11 standard. With
WLAN it is possible to connect to an access point, which bridges the WLAN device to
another network, such as the internet. More interesting for us however, is the possibility to
communicate directly with other WLAN devices via peer-to-peer connection. Peer-to-peer
connections may also be used to establish an ad-hoc network, in which devices that would
otherwise be to far apart for communication use other network participants as relay points.
WLAN communication is very fast while consuming less energy for transmissions than other
standards, making it rather energy efficient. Its range however is limited with a maximum
distance of about 100 meters.

Global System for Mobile Communications (GSM) describes the second generation
of communication standards used in mobile phones. These standards include General
Packet Radio Service (GPRS) and Enhanced Data rates for GSM Evolution (EDGE). Both
standards are packet based an TCP-IP compatible. A GPRS service is assigned up to eight
frequencies for transmission by the GSM network, over which it can transfer data in form of
packets. Since several channels can be used at once, transmission speeds are higher than
older standards. Frequencies are shared among users, and only used when data actually
has to be transferred. EDGE is a superset of GPRS, using different coding schemes and
modulation, and can be deployed on any GPRS capable network. It is able to handle about 4
times as much traffic as GPRS. Since GSM uses the cellular network to transmit data, its
range is very high.

3G stands for third generation and is actually not a single service. 3G is a collection of
communication standards that comply with the International Mobile Telecommunications -
2000 specifications. Standards included in 3G are among others UMTS and CDMA2000.
These are perhaps the currently most appropriate standards used in mobile communication.
Both are based on spread spectrum technologies and allow multiple transmitters to send on
shared frequencies. Services based on these standards provide faster data transmission than
the older GSM. 3G transmissions are using the cellular network, which means their range is
very high.

[Schos]

2.3 Energy in mobile device communication

One point that always has to be considered when working with mobile devices is always the
limited availability of energy. Mobile devices are typically powered by accumulators that

11

2.3 Energy in mobile device communication

can only store a limited amount of energy. Since we want to stretch battery life as much as
possible we want to optimize applications running on the device due to energy consumption.
According to “An Analysis of Power Consumption in a Smart-phone’ [CH10] the majority
of power in modern mobile phones is drained by Communication services, CPU and the
graphics hardware.

Interesting for this work is primarily the energy consumed by communication ser-
vices, which is discussed in more detail in 'Energy Consumption in Mobile Phones: A
Measurement Study and Implications for Network Applications’[BBVog].

One of the results is that most of the energy consumed for data transmission using
GSM and 3G standards isn’t used for the transmission itself. In order to transmit data 3G
and GSM have to enter a high-power state. For 3G this already uses up a considerable amount
of energy. After transmitting the data both standards remain in this high-power state for a
short duration, using up energy without actually transmitting data. [BBVog] refers to this as
Tail-Energy. For message sizes of 50Kb, Tail-energy actually makes up over half the power
used when transmitting using 3G and a third when using GSM. Taking the Tail-Energy in
consideration it is favorable to transmit data with a high frequency or in preferably large
files.

In general GSM uses less energy than 3G until a certain data size, at which point the
slower tranfer speeds result in increased time needs.

WLAN does function without a high power state and only uses energy when actu-
ally transmitting data. However if connection to an access point in an infrastructure, WLAN
will have to perform a Scan Association to synchronize with the device. Since this is a one
time operation and the device remains connected this should be irrelevant most of the time.
WLAN outperforms the other standards especially for bigger data files. Due to its high
transmission speeds WLAN is able to send larger amounts of data in less time than the
other standards. Because WLAN already uses less energy for transmission even if the same
time is needed, it outperforms the other standards with growing file size.

12

2.3 Energy in mobile device communication

25

]

_3 —0-3G

Eﬁ ~B-GSM

2 WiFi

L

=>é=\Nifi + SA
0 - !
1 10 100 1000

Data size in KB

Figure 2.2: WiFi versus 3G vs GSM measurements: Average energy consumed for download-
ing data of different sizes in a 20 second interval. [BBVog]

Figure 2.2 shows the average energy needed for transmissions in a 20 second interval
with growing file size. Energy costs for GSM grow fast due to its low transmission speed,
which means that for larger files the time needed to transmit the file is long compared to
the other standards. WiFi + SA assumes that the device needs to perform a scan-association
process before every single transmission, while WiFi shows the actual transmission cost

when already connected to an infrastructure.

13

3 System Model

This chapter will describe the system model used in this work and explains the assumptions
we make about it.

3.1 Infrastructure model

Figure 3.1 illustrates the physical layout of our system. The system consists of two types of
components, a server and a set of mobile devices.

Mobile devices are each equipped with their own CPU and internal data storage, making
them able to execute operators. As the name implies these devices are considered
mobile, meaning their position will change over time. Since the devices are moving a
permanent power supply is unrealistic. Instead power on these devices is provided by
a limited power source like an accumulator. Every device also possesses at least one
sensor for collecting event data. Mobile devices typically posses GPS sensors, however
we cannot guarantee that GPS is activated on all devices, and hence will not expect it.
As for communication abilities, mobile devices are able to transmit and receive data via
3G, GSM and Wireless Lan. 3G and GSM communication is used to communicate with
the server, whose address has to be known at all time. Because of the long range of 3G
and GSM communication the server is always considered to be in range. Wireless Lan
is used to communicate between mobile devices. For addressing purposes each mobile
device has its own unique identifier, like for example a Mac-address. Since Wireless
Lan communication range is limited, other devices will only be reachable when they
are physically close. Figure 3.1 depicts 3G and GSM communication as solid lines and
Wireless Lan as dotted lines. Due to their hardware capabilities mobile devices can
take the role of consumer, operator and source in the CEP system.

The Server in our model has its own CPU and internal data storage. It is able to commu-
nicate with mobile devices via 3G and GSM. Power is supplied by a limitless power
source to guarantee high availability of the server. The server is an entry point to an
infrastructure that hosts the CEP system’s operators. As such it collects all events
produced by sources in a certain area. Because of that it will have to know the IDs of
all mobile devices that supply the operator with events. It then supplies the nearest
infrastructure member, hosting a leaf operator with the collected events. This can but
does not have to be the server itself. In our system the server can take the roles of a
consumer and operator.

In a typical CEP system operators are usually executed on servers in an infrastructure,
whose entry point will be the server in our scenario. Mobile devices will act as sources,
which transmit atomic events to the first server that is part of the infrastructure, but will

14

3.2 Operator model

/ \ 3G,GSM " Mobile
N e .
Server S
|~ ‘\
N J/ ™ Wian
) ~
- Mobile
,, Device
/] n/.// v J/
Mobile

- Device

Figure 3.1: The system model.

also execute operators. Once the events are transmitted to the infrastructure, events are
routed to the corresponding operator-graphs. Event distribution can be performed by using
publish/subscribe [TKK™ 10].

If a mobile device first joins the CEP system, it registers with the nearest. At this point
the mobile device also receives all data necessary for future operations.

As additional assumption we consider the Wireless Lan communication range to be
constant. In reality this is rarely the case, since any kind of physical obstacle interferes with
the signal.

3.2 Operator model

As mentioned in Chapter 2 we use an operator model similar to the one introduced in
[KORR12]. Operators receive events in order over incoming event-streams. Each source
supplies events to its own specific event-stream. As a result the operator will have as many
incoming event streams as it has sources. Events are kept in memory on the server for as
long as they are considered relevant.

Correlation detection is realized using a correlation function on a selection of events. This
selection is determined by using so-called selection windows, which scan segments of an
event-stream for events that qualify for correlation. Each event-stream possesses its own
selection window, with a specific number of slots. Slots indicate how many events of the
particular event-stream are necessary to perform the correlation. Once a selection window
contains enough events to fill all its slots, the event stream is marked as correlation ready. In

15

3.2 Operator model

order to start the correlation a certain number of event streams have to be in the ready state.
The necessary number of ready event-streams may vary for different types of operators. In
order to calculate the mean temperature of an area for example, all event-streams will have
to be ready at the same time, since we will need temperature readings from all devices to
calculate the correct mean. If however we want to find the maximum temperature in the
area we can start filtering the results on any number of event streams being ready, because
correlation on a subset of event-streams will not alter the final result. The actual number of
streams necessary for correlation has to be defined by the programmer.

The correlation step itself is done by applying the correlation function on the selected
event-streams. This function is implemented in the operator and uses the information
provided by the incoming events to create one or more new complex event.

After correlation is finished, the incoming events are processed according to the selected
consumption policy. Usually they are either deleted or kept in storage for further use. Finally
selection windows are repositioned on their respective stream, following a previously defined
selection policy that defines a window’s shift on its event-stream after correlation.

Selection window [slots = 3] -> ready

Event-stream 1 <\/ [O—O

Selection window [slots = 2] -> ready

A\ /A
~\/ /" >

Selection window [slots = 1] -> ready

O\
vV

Q
\J

Event-stream 2

Event-stream 3 -

& O

O\
A4

<

Selection window [slots =2] -> not ready

| A\
| " >

Event-stream 4:

Figure 3.2: Snapshot of an operator state.

Figure 3.2 shows a snapshot of a possible event-stream configuration of an operator.
Event streams are displayed as lines, while the rhombuses represent events. Selection
windows are illustrated in blue. In the case at hand, selection windows of streams 1 and 3
are in the ready state. In order to create a new correlated event the operator will also need
the selection windows of stream 2 and 4 to fill all the required slots.

16

3.3 Energy model

3.3 Energy model

To approximate energy cost of data transfer in our system we will use the experimental results
from "Energy Consumption in Mobile Phones: A Measurement Study and Implications for
Network Applications” [BBVog] as a baseline.

3G and GSM communication may cause additional ramp an tail energy costs besides
the actual transfer cost. This is the case because both methods need to enter a high-power
state before sending. This state will be kept for 6 seconds in case of GSM or 12 seconds for
3G. If in this time no further transfer occurs the system will power down again and all energy
used to keep the high-power state up is wasted. For highly frequent transfers however, the
high-power state is maintained continuously and the upkeep energy is not wasted since we
save the ramp cost to enter it. As a result we will approximate energy cost of communication
with a high frequency by just looking at actual transfer costs. If the message frequency is
low enough that a protocol will return to its low-power state we will add ramp and tail costs
to the transfer energy according to the results in [BBVog].

For Wireless Lan we assume that communication between mobile devices in range of
each other is possible without building an Ad-Hoc network. In this case we can use the
experimental results for wireless transmission without scan-assertion also from [BBVog].

However all results for GSM and Wireless Lan communication are for download
processes. In order to approximate upload cost we use experimental values from
"Context-for-wireless: context-sensitive energy-efficient wireless data transfer” [RZoy]. These
results show that GSM upload transfer cost is approximately double the download cost. For
Wireless Lan uploads, transfers costs about 125 percent of download cost.

This seems to fit the results for upload transfer costs for 3G in [BBVog] well, that are
also approximately double as high as the download transfer cost. However since Ramp and
Tail costs are the same the overall costs for sending a message are not quite twice as high for
transmissions with a low frequency.

3G GSM WiFi
Transfer Energy R(z) | 0.025(x) + 3.5 | 0.036(x) + 1.7 | 0.007(z) + 5.9
Tail energy E 0.62 J/sec 0.25 J/sec NA
Maintenance M 0.02 J/sec 0.03 J/sec 0.05 J/sec
Tail time T 12.5 seconds 6 seconds NA
Energy per S0KB transfer with a 20-second interval 12.5J 5.01] 761

Figure 3.3: Formulas to estimate energy cost of downloading data. [BBVog]

Additionally [BBVog] provides a number of formulas to estimate the energy costs of
downloading data, which are given in Figure 3.3. Tranfer Energy is the amount of energy
actually needed to transfer the data. When using the formulas for WiFi we have to consider
that the additional transfer cost of 5,9 Joules represents the scan-association process, which

17

3.3 Energy model

will not be necessary if a device is already connected to a structure. The addends 3.5 and
1.7 Joule for 3G and GSM stand for the ramp cost to get the communication channel into
its high power state. Tail time gives the time the channels are kept in a high power state
after transmission. Hence when transmitting data again over the same channel before the
respective Tail time has passed, this additional cost will also not apply. Tail energy is the cost
of keeping the channel in a high power state for one second, while Maintenance is the cost of
maintaining channels in their low power state.

Protocol Action Energy (Joule)

WLan receive 1.25
GSM receive 3.5
3G receive 3
WLan send 1.5
GSM send 7
3G send 6

Table 3.1: Energy consumption of a 50kb message approximated in high-frequency mode

Table 3.1 shows the approximated cost values for sending and receiving messages with
a size of 50kb in a high-frequency mode, which ignores tail energy. Table 3.2 also shows
cost values for messages of 50kb of data, but in a low-frequency mode where tail and ramp
energy are included.

Protocol Action Energy (Joule)

WLan receive 1.25
GSM receive 6
3G receive 13
WLan send 1.5
GSM send 10
3G send 17

Table 3.2: Energy consumption of a 50kb message approximated in low-frequency mode

18

4 Problem Description

A CEP system consists of sources, operators and consumers. Sources provide operators with
event data which in turn is used to produce correlated events. These correlated events are
then used by consumers to complete their task.

In current CEP systems it is common to place operators of an operator tree on Servers in an
infrastructure. This has the advantage that Servers usually have sufficient processing power
and energy resources to handle even the most complex operators. Since operators typically
work on events from several sources other than the server hosting the operator itself, this
means that events will have to be transmitted to this server. Typically events from sources
are first collected by what we will call entry servers to the infrastructure. An example for
such an entry server could be a server that collects all events produced by sources located
in a specific area. These entry servers either supply a server hosting a leaf operator of the
operator tree or are hosting such an operator themselves.

Mobile devices like smart phones are becoming more popular and widely spread. Most
of these devices are equipped with a number of sensors like GPS. It is not surprising that
new applications based on CEP systems use them as sources. When considering the ordinary
CEP system model, a large number of mobile devices used as sources will cause a lot of
event messages that have to be sent to the infrastructure. This will result in considerable
network load on the entry servers.

Mobile devices mostly realize event transmission to entry servers by using 3G or GSM
communication as shown in Figure 4.1a. Since reporting events continuously drains the
limited power supply we want to keep it as cheap as possible. Considering the lower energy
cost of Wireless Lan compared to 3G and GSM it seems to be a desirable alternative. However
the range of Wireless Lan communication is very limited, which normally makes the entry
server unreachable. So direct event transmission via Wireless Lan will rarely be possible.

Another approach to reduce energy drain on mobile devices is to simply place the
operator on the mobile device itself and having it stem the atomic events, in hopes to
reduce communication cost to compensate for the additional computational cost and ideally
even safe energy overall. [Vet12] states that this is indeed the case for operators with low
computational cost, few incoming event-streams and high correlation frequency.

While the entry server typically is out of range for Wireless Lan communication, other
mobile devices acting as sources might actually be close enough. In this case, sending events
to other mobile devices is cheaper than sending events to the entry server. In order to reduce
overall energy consumption it seems sensible to take advantage of the cheaper Wireless Lan
transfers and determine which devices are in range of each other. We can then collect events
from these devices locally and assign only one device to send the events to the entry server
collectively, using the more expensive 3G or GSM.

While this effectively reduces the number of expensive 3G and GSM messages we have
to keep in mind that mobile device are moving. This means that devices will eventually

19

4 Problem Description

move out of or into Wireless Lan range. As a result the number of devices from which events
can be collected will be changing over time and has to be redetermined regularly.

Relaying all network traffic over one mobile device will increase the energy drain of that
particular device. Instead of sending only its own event data it now has to send more data,
depending on how many sources it relays the increase can be rather high. Since sending
larger messages results in up to exponentially more energy cost per transfer we want to keep
the messages to the server as small and low frequent as possible. To achieve this we could
incorporate the approach of executing an operator directly on the mobile device. By creating
new correlated events before sending data to the server we can potentially reduce message
size enough to reduce overall energy consumption on the relaying device. This approach is
illustrated in Figure 4.1b.

That said, collecting events before transmitting them to the server will cause fundamen-
tal problems regarding the operator. Correlation detection in operators require selection
windows of a defined set of event-streams to be in ready state. By sending collected event
data we reduce the number of event-streams of the operator, and in case of early correlation
probably even the type of event received by event-streams. In order to keep the operator on
the server operational we will have to account for this if possible.

Figure 4.1 shows the standard approach and a system with relayed events. 3G and
GSM transfers are illustrated as straight lines. Wireless Lan communication is depicted as

dotted lines.
Mobile Moblle
Device Moblle Dewce Mobile
B — DeV|ce - Device
Moblle Mobile ‘
:

3G, GSM
L Mopile ‘ ‘ Mot!ile ‘ Mobile Moblle Operator
Device Device Device Device
4
CWian
(a) Standard event transmission (b) Relayed event transmission

Figure 4.1: Event transmission models

The problem addressed in this thesis is the minimization of the energy consumption of a
CEP system caused by transmitting events from sources to entry servers of the infrastructure.
Any event transmission within the infrastructure is not part of this work.

20

5 Operator Classification

We want to realize relayed event transmission. That means that instead of sending events
directly to an entry server, mobile devices acting as sources will look for other devices in
WLAN range. If a group of mobile devices is in range of each other, one of them will collect
all events produced by that group, using WLAN transmissions. Afterwards this device will
send the collected events to the entry server in one transmission. Since collecting events
can result in larger amounts of data to be sent, we also want to perform early correlation on
this mobile device. This means that the mobile device will execute an operator of some sort
on the events to reduce the amount of data. Relayed event transmission and early correlation
require operators to be adaptable to a certain degree. Different operators can be adapted
more easily to the new system than others. In this chapter we will take a closer look at the
challenges of our approach and how compatible different classes of operators are with early
correlation.

5.1 Requirements when using relayed transmission and early
correlation

In this section we describe the requirements of an operator in order to be used in a system
with early correlation and relayed communication. The more this properties are met the better
it will work with our system. We will now describe these two properties.

Working on a varying number of incoming event streams: In a typical CEP system each mo-
bile device would send its event messages directly to the entry server, who will forward
it to the nearest leaf operator in the infrastructure. According to the operator model
we use in this work, that operator will have an incoming event stream for every source
or in our case mobile device. Using relayed event transmission, we collect events from
mobile devices that are in range of each other. These events are then sent to the server
by only one of these devices. Instead of receiving the collected events over multiple
event-streams, it will only receive events on the stream assigned to the device that col-
lected them. Since correlation will only be performed when a certain number of event
streams are in the ready state this might cause problems. Without modification the
operator might expect some of the collected events to arrive on their original source’s
event-streams, which are now empty, before being able to initiate the correlation. On
top of that mobile devices are moving and will be in range of different mobile devices
over time. This means that the groups, which are collecting events will also change. If
the size of such a group changes, a different number of the operator’s event-streams is
not being served events. A change in member devices of the group on the other hand,
will cause that a different event-stream than before will not receive events. To keep the

21

5.2 Operator Classification

operator functioning it needs to be able to work on a varying number of event streams
or we will have to find an alternative solution to supply the unserved event-streams.

Processing new types of complex events Since we are using early correlation we are execut-
ing an operator on the mobile device collecting the events. We do so in order to keep
the amount of data the device will have to transmit as small as possible. By correlating
the atomic events early we will probably create a new type of complex-event, that
is sent to the entry server. This could cause problems for the operator since each
event-stream typically only receives a predefined type of events. In our case the oper-
ator’s events-stream would receive the new type of complex-event instead. Without
modification the operator will not be able to process this new type of complex event.
This starts with event selection on the operator’s event-streams. Selection windows
scanning the incoming events will not know how to handle the complex event, and
hence the event-stream might not be able to enter the ready state. Even if the selection
windows accept the new complex event we will probably still need to modify the
correlation function itself. The preprocessed event data contained in the complex event
could be presented in a format unknown to the unmodified correlation function. In
this case the correlation function will not be able to process the complex event. To
implement these modifications we will need extensive knowledge about the operator,
which has to be provided by the programmer.

5.2 Operator Classification

We have introduced the main criteria determining how well operators are suited to be
used with our altered CEP system. The next step is to provide a classification based on
suitability.

Fixed Operators: There are two cases in which operators are part of this class. If we have
absolutely no knowledge of the operator and are thus unable to adapt it to better
suit our system or if we do have extensive knowledge about the operator, but the
operator itself simply cannot be modified. In this case the only way to make relayed
event transmission possible is to collect events of mobile devices using Wireless Lan
when devices are in range and save them as (event,source) pairs. These pairs can then
collectively be sent to the server. The server will then have to look through every
(event,source) pair and distribute the events to the operators event-streams as if they
were received by the source device.

Figure 5.1 illustrates this case. Modified components are shown in red. Mobile device
2 collects events from mobile devices 1 and 3 and builds (event,source) pairs. Mobile
device 2 then sends all collected pairs including its own to the server, where the
Distribution Module that we have to implement distributes them to their respective event
streams. Since Mobile device 4 send its event data normally it can simply be forwarded
to its event stream.

22

5.2 Operator Classification

Pair collection T
/ (a2 ovents, Mobile | collect | =gz | Mobile
(o evenl Device2 | /Pair W Device1
Server
|
Event3™. (.)\
. Mobile
R Device3
ecovered

atomic events

Operator

) 4

Figure 5.1: Relayed event transmission for Fixed Operators.

Mobile
Device4

Modifiable Operators: Operators fall into this class if we do have extensive knowledge of the
operator, which has to be provided by the programmer, and are able to adapt it to do
the following things: work on a varying number of event-streams and process the new
correlated event type produced by early correlation. Instead of simply collecting events
and send them collectively as a concatenation we are in this case able to pre-process
some of the information given by the events. In doing so we can minimize the size
of the transfer to the server to safe energy on the relaying device. To deal with the
varying number of event streams we can either alter the operator itself or if possible
use our knowledge of the operator to feed the unserved event-streams proxy events
created by the server from the received correlated event.

An example for this kind of operator would be the average temperature in a weather
application. Usually each source would send their measured temperature to the server.
The server would then calculate the sum of all temperatures and divide by the number
of sources or event streams. However with relayed transmission sources could report
their measurements to a relay device, which would calculate the temporary sum.
Simply sending this temporary sum to the server would falsify the overall result. Since
there would be less event-streams in the operator receiving data, the number it would
divide the final sum by would be too low. So we either have to feed the unserved event
streams with temperatures of zero, or add a weight to the correlated event sent by
the relay device. In the first case the operator would divide by the correct number of
sources or given a weight it could determine the correct number from the correlated
event.

23

5.2 Operator Classification

- N Mobile Mobile
Server Device2 Device1
= m
O mmmm Correlated Event3 . C
% event Mobile
o] _/ Device3
O
E
@ mmam
g Mobil
o obile
/ ;gm Device4

Figure 5.2: Relayed event transmission for Modifiable Operators.

Figure 5.2 shows an example for relayed event transmission for Modifiable Operators.
Modified components are illustrated in red. Mobile device 2 collects events from
mobile devices 1 and 3 and performs early correlation on all collected events, including
its own. Mobile device 2 then sends the correlated event to the server. The operator is
modified to also accept this new type of event and work with a variable number of
event streams. Since Mobile device 4 send its event data normally it can simply be
forwarded to its event stream.

Filter Operators: Operators in this class have two properties. The events produced by the
operator are of the same type as those it receives from the sources. In addition the
operator produces the same result indifferent of how often it is applied and in which
subsets it receives the mobile device’s events. This case is fairly easy to implement. We
can simply place a copy of the operator on the relaying device and transfer the result
to the server. Since outgoing and incoming events are of the same type, message size
equal to the size of a single event from a source, which is ideal for our system.

Considering our weather application, we can name the maximal temperature as an
example. The operator simply scans all incoming events and selects the one with the
maximal temperature. When using relayed transmission, we simply have to the same
on all locally collected events. As long as all mobile devices send their events to the
server in some ways, the operator will always produce the correct result.

The system shown in Figure 5.3 is a simple example for this scenario. Mobile device 2
collects events from mobile devices 1 and 3. It then executes a copy of the operator on
all collected events, including its own and sends the result to the server. The operator
does not have to be modified in this case. Since Mobile device 4 send its event data
normally it can simply be forwarded to its event stream.

24

5.2 Operator Classification

(.
Mobile g E ‘_’el”tj ___________ Mobile
Device2 \ " Device1

]
— Event produced Event2 .. Ty
by Operator Mobile
Device3

JojetsdQ
|

Mobile
\ 7 Evgt_4 Device4

Figure 5.3: Relayed event transmission for Filter Operators.

25

6 Algorithmic Solution

We will now introduce the algorithm we use to implement relayed event transmission and early
correlation. Our goal is to relay messages over mobile devices that are able to communicate
using Wireless Lan in order to reduce the number of more expensive transmissions using
3G or GSM. The relaying device will collect events via Wireless Lan and then send them
collectively. To keep the amount of data that has to be transmitted small we will perform
some sort of early correlation on the relay device. Early correlation poses special challenges to
operators used in CEP system, since it might create new complex-events the operators are
not able to process. Hence we might need to modify their event-streams and correlation
function to be able to handle this new type of complex-event. These modifications are
performed according to Chapter 5.

Section 6.1 will explain the general idea behind the algorithm. The following sec-
tions will then explain how we implemented the different aspects of our algorithm in detail.
Section 6.2 will describe the initialization process of the system in more detail. Section 6.3
will explain the algorithm we use to find groups of mobile devices that are close enough to
each other to use relayed event transmission and early correlation, while Section 6.4 will discuss
the algorithms we use to maintain these groups over time.

6.1 Algorithm in general

During the initialization stage of our algorithm, the mobile devices will make themselves
known to the server. Each device will receive the server’s address to which it can send events
using 3G or GSM at all times. Additionally every device will receive a copy of the operator
used for early correlation, so it can start collecting and pre-processing events immediately.
Whenever a new device enters the system it performs the same steps as the other devices
during initialization. After initializing our system, mobile devices will start transmitting
events using 3G or GSM communication while at the same time searching for other devices
in Wireless Lan range.

In our algorithm we take advantage of this and group the devices into local clusters,
that collect events among each other. These local clusters consist of one Cluster-Head device
and a set of Member devices. The Cluster-Head takes on the role of the relay and handles all
3G and GSM communication for the cluster devices. Member devices will use the cheaper
Wireless Lan communication to transfer events to the Cluster-Head. There the events will be
collected until a transmission to the server is scheduled, at which point the results of the
early correlation will be sent to the server using 3G or GSM communication. Depending on
the operator used, early correlation may happen parallel to the collection process or once
before transmission.

26

6.1 Algorithm in general

In order to find these clusters we use a Wireless Lan broadcast message to reach
all devices in range of the broadcasting device. Receivers of this message will answer the
broadcaster with a message containing information about their status. Status information
consists among others of information about whether the device is part of a cluster or not,
and if so the cluster’s size and the device’s role in it.

The broadcasting device will collect answers for a short time to compensate for message
delays while continuing to send events via 3G or GSM to the server. After that the device
will count the number of replies that indicate devices in range that are not part of a cluster
yet and check for messages from devices that occupy the role of Cluster-Head for already
existing clusters. Depending on the systems parameters the broadcasting device will then
either create a new cluster with other cluster-less devices or join an existing cluster by
notifying a Cluster-Head device. If neither of both options is available, for example due to a
lack of sufficient devices in the area, the device will continue to send events directly to the
server using 3G or GSM communication for the time being and keep regularly looking for
clusters in their proximity.

Our system incorporates mobile devices that are constantly moving. Devices will
eventually move away from each other and clusters will dissipate. To compensate for this
Cluster-Heads will have to perform some sort of maintenance operation to ensure Member
devices will not just move out of communication range and continue sending events via
Wireless Lan messages that are never received. We realize this by having a Cluster-Head
regularly send a check-in message to its cluster’s Member devices. This way Member devices
will notice if they are out of reach, since they will no longer receive such messages.

If a Member realizes that it is no longer in range of its Cluster Head, it will switch back
to being a cluster-less device and report events directly to the server using 3G or GSM again.
Additionally it keeps searching regularly for other devices until it is able to join a cluster or
build a new one.

Devices that are Members are able to safe energy due to cheaper Wireless Lan com-
munication. Cluster-Heads however will actually use up more energy than they normally
would due to additional computational cost for early correlation and additional maintenance
communication. To better distribute those additional burdens over the whole system we
will switch Cluster-Heads within a cluster from time to time. To do so the Cluster-Head
will choose a Member device with sufficient power resources as new Head and inform all
Cluster Members.

Since the Cluster-Head will have a new physical position, this may lead to some devices
no longer being in range and some restructuring. However this will probably be necessary at
some point anyway due to device mobility and this way the previous Cluster-Head will have
an opportunity to compensate for the additional drain by taking on the role of a Member.

27

6.2 Initialization

System area \

Non-cluster
device

AN

Figure 6.1: Local clusters in the CEP system.

Figure 6.1 shows a snapshot of a possible configuration of the CEP system using our
algorithm. The grey area represents the physical space in which the devices are located. The
red diamonds illustrate Cluster-Head devices that collect events from the cluster Members
shown as light blue squares. The circles around the Head devices indicate their Wireless Lan
communication range. The dark blue square represents a device that is currently not part of
any cluster. Event transmission is depicted as arrows, where dotted lines are Wireless Lan
and solid lines are 3G or GSM communication.

6.2 Initialization

During the initialization process, all mobile devices will make themselves known to the
server. Depending on the nature of the system, the server will either subscribe to all
participating mobile devices or the mobile devices will register with the server. In all cases
the mobile devices will receive an address or identifier with which they can address the
server using 3G or GSM communication. This makes sure that each device is able to transmit
the events it will produce on its own without a relay.

To allow dynamic assignment of the Cluster-Head role, every mobile device will
also receive all necessary operator information to fulfil the role of Cluster-Head. That
information includes above all the operator that is used for early correlation. This is necessary
since our system incorporates mobile devices, which means that we will not know which
devices will be in Wireless Lan communication range of each other at different points
in time,making it impossible to tell beforehand, which devices will take on the role of
Cluster-Head.

Alternatively we could transfer the operator data on demand, whenever a device
actually assumes the role of relay device for the first time. This might however delay the
transmission of events to the server noticeably, depending on the amount of data the mobile

28

6.3 Cluster Finding

device has to download from the server.

In case a device parts with the system it will unregister with the server, and may
delete all operator data needed for early correlation. Alternatively our system offers the
possibility to locally buffer the operator information, since it is more cost-effective than
receiving them again from the server. In this case the operator information is stored on the
mobile device for a certain amount of time and then deleted.

6.3 Cluster Finding

This section will describe the algorithm used to build or join clusters in detail. Mobile
devices can either be a Cluster-Head, Cluster-Member or Non-Cluster devices, depending
on their cluster membership and role. Cluster-Head and Cluster-Member devices are part
of a cluster in which they hold the role corresponding to their name, while Non-Cluster
devices are not part of a cluster at the moment.

Algorithms 6.2 and 6.3 are executed continuously on Cluster-Heads and cluster-less
devices. Whenever a Non-Cluster device starts actively searching for a cluster, Algorithm
6.3 continues to run in the background. Algorithm 6.1 does not contain the operations
performed by the process HandleClusterRequestNonCluster for purposes of abbreviation.

Algorithm 6.1 is executed regularly on mobile devices that are currently not part of
a cluster.

During the search process we need to keep track of the Cluster-Head devices in range,
whose clusters we may join. We also want to store all Ids of Non-Cluster devices in the
proximity, in case we will be able to build a new cluster. For this purpose we initialize a set
of variables at the beginning of the algorithm. BestHeadCandidate and BestHeadClusterSize
are used to keep Track of possible Cluster-Head devices, while PossibleMemberList will store
the Ids of Non-Cluster devices in range. Since being a Cluster-Head puts more strain on a
devices energy resources than normal operation we want to restrict the number of devices
that are able to become Head of a new cluster to those with a certain amount of energy left.
MinHeadPowerLevel is a system Parameter that defines how much energy a device has to
have left in order to do that. The ability to create new clusters is expressed by NewCluster.

To find other devices in range, the requesting device will broadcast a ClusterRequest
message containing the searching devices own unique Id Ownld and NewCluster. To allow
other devices to respond before deciding on how to proceed the device will collect answers
for a short time. In Algorithm 6.1 this is done by processing received messages while the
Timer is running. Duration of the Timer is defined by the system.

The ClusterRequest message is received by mobile devices in Wireless Lan communi-
cation range. These devices are either Head of a cluster, Member of a cluster or not part
of any cluster. Depending on their role, they will execute one of the Algorithms 6.2 or 6.3.
Cluster-Member devices will simply discard ClusterRequest messages, since their cluster’s
Head device manages everything.

29

6.3 Cluster Finding

Cluster-Heads executing Algortihm 6.2 will, upon receiving a ClusterRequest message
check their own cluster’s size against the system parameter MaxClusterSize. MaxClusterSize
restricts the maximal cluster size allowed in the system in order to keep them at a manageable
size and prevent bottlenecking. If the cluster is not yet full, the Head device invites the
requesting device to join by sending it a JoinOffer message containing the Head device’s Id
Ownld and .

When Non-Cluster devices executing Algorithm 6.3 receive a ClusterRequest message,
they will first check the parameter NewCluster. If NewCluster is True that means the de-
vices could possibly create a new cluster together since the requesting device has enough
power to become a Head-Device. In this case the Non-Cluster device will answer with a
MemberRequest message containing its own Id Ownld, indicating its willingness to form a
new cluster. Additionally the Non-Cluster device will store the requesting device’s Id in
NewHeadCandidates, to keep track of all devices it offered to build a new cluster with. In case
NewCluster is False the ClusterRequest message is simply discarded.

30

6.3 Cluster Finding

Algorithmus 6.1 Cluster Request from Non-Cluster device

procedure CLUSTERREQUEST
BestHeadCandidate <— NULL
BestHeadClusterSize = MaxClustersize
PossibleMemberList <~ NULL
if (DevicePowerLevel > MinHeadPowerLevel) then
NewCluster <— True
else
NewCluster < False
end if
BroapcasT CLUSTERREQUEST(Ownld, NewCluster)
START TIMER
while (Timer is running) do
if (Rece1vE JoINOFFER(Headld, ClusterSize)) then
if (Clustersize < BestHeadClusterSize) then
BestHeadCandidate <— Headld
BestHeadClusterSize = ClusterSize
end if
else if (RECEIVE MEMBERREQUEST(Deviceld)) then
PossibleMemberList.ADD(Deviceld)
else if (RECEIVE PART(Deviceld)) then
PossibleMemberList. REMOVE(Deviceld)
end if
end while
if (PossibleMemberList.size >= MinClusterSize) then
for all (Id € PossibleMemberList) do
SEND NEWCLUSTERCONFIRM(Ownld) — Id
end for
DeviceRole = Head
ClusterMember < PossibleMemberList
else
if (BestHeadCandidate # NULL) then
SEND JoINCoNFIRM(Ownld) — BestHeadCandidate
SET CLUSTER-HEAD(BestHeadCandidate)
DeviceRole = Member
else
RescHEDULE CLUSTERREQUEST(Searchinterval)
end if
for all (Id € PossibleMemberList) do
SEND NEWCLUSTERREJECT(Ownld) — Id
end for
end if
end procedure

31

6.3 Cluster Finding

While waiting for the Timer to stop, the requesting device will collect the messages sent
in return by the other devices.

Whenever a JoinOffer message is received, the device will check its Clustersize parameter
against BestHeadClusterSize, which contains the size of the currently selected cluster, the
requesting device might join. If the sender’s cluster size is smaller than that of the currently
selected, it is preferred as new cluster. This way we divide devices more equally among
existing clusters. As a result BestHeadCandidate will be assigned the sender’s Id Deviceld and
BestheadClusterSize is updated with Clustersize.

In case a MemberRequest is received, the Deviceld contained in the message will simply
be added to PossibleMemberList to keep track of devices that are available to build a new
cluster. A Part message however indicates that a device that was previously available has
now already been used in construction of a different cluster. Hence Devicelds contained in
Part messages are removed from PossibleMemberList

Once the Timer has stopped, the requesting Device will continue to execute Algorithm
6.1. From this point on there will be 3 different courses of action for the requesting device,
depending on the received answers.

Cluster-Head Device Requesting Device Non-Cluster Device Cluster-Head Device Requesting Device Non-Cluster Device

ClusterRequest ClusterRequest

ClusterRequest ClusterRequest

Start Timer Start Timer

JoinOffer

MemberRequest MemberRequest

JoinConfirm

NewClusterConfirm

NewClusterReject

(a) Flowchart in case of joining existing Cluster (b) Flowchart in case of building new Cluster

Figure 6.2: Flowcharts for Cluster finding process

The first one is illustrated by Figure 6.2b and will be taken in case enough Non-
Cluster devices responded to build a new cluster. This is determined by checking the
number of entries in PossibleMemberRequest against MinClusterSize, which is a system
parameter that indicates the minimal cluster size that is allowed in our system. If enough
devices are available it proceeds to send a NewClusterConfirm message containing its own Id
Ownld to all participating Non-Cluster device Ids stored in PossibleMemberRequest. Finally
it assumes its new role as Cluster-Head by setting its DeviceRole indicator to Head and
converting PossibleMemberList to ClusterMember. Since Cluster-Head devices only invited the

32

6.3 Cluster Finding

requesting device to join but did not actually add it to their Members, no extra message is
necessary to inform them of the device not joining.

Non-Cluster devices that receive a NewClusterConfirm message will send a Part message
to any other device they told they were available, informing them this is no longer the case.
They then proceed to assume their new role as Cluster-Member by setting the requesting
device as their new Cluster-Head and their own role to Member.

Algorithmus 6.2 Handle Cluster Request on Cluster-Head device

procedure HANDLECLUSTERREQUESTHEAD
while DeviceRole = Head do
if (RecEIve CLUSTERREQUEST(Devicel D, NewCluster)) then
if (OwnClusterSize < MaxClusterSize) then
SEND JOoINOFFER(Ownld, OwnClusterSize) — Deviceld
end if
else if (RECEIVE JoINCONFIRM(Deviceld)) then
ClusterMember.ADD(Deviceld)
end if
end while
end procedure

Algorithmus 6.3 Handle Cluster Request on Non-Cluster device

procedure HANDLECLUSTERREQUESTNONCLUSTER
NewHeadCandidates <~ NULL
while DeviceRole = None do
if (RecEIvE CLUSTERREQUEST(Devicel D, NewCluster)) then
if (NewHead) then
SEND MEMBERREQUEST(Ownld) — Deviceld
NewHeadCandidates.ApD(Deviceld)
end if
else if (REceIvE NEWCLUSTERCONFIRM(Deviceld)) then
NewHeadCandidates.REMOVE(Deviceld)
for all (Id € NewHeadCandidates) do
SEND PART(Ownld) — Id
end for
SET CLUSTER-HEAD(Deviceld)
DeviceRole = Member
else if (REcervE NEWCLUSTERREJECT(Deviceld)) then
NewHeadCandidates.REMOVE(Deviceld)
end if
end while
end procedure

33

6.3 Cluster Finding

Figure 6.2a illustrated the second possible outcome. In this case the number of available
devices to form a new cluster is insufficient. The requesting device then continues to
check if BestHeadCandidate is assigned an Id of a Cluster-Head. If so the requesting device
has received at least one JoinOffer message during the timer phase and is able to join
an already existing cluster. It does so by sending a JoinConfirm message containing its
Ownld to the Id stored in BestHeadCandidate. To assume its role as a Cluster-Member it
then sets its Cluster-Head to BestHeadCandidate and its own role to Member. Since no new
cluster has been built the requesting device also informs all Non-Cluster devices stored in
PossibleMemberList about that fact, by sending a NewClusterReject message containing its
Ownld. Non-Cluster devices receiving such a message will remove the message’s Deviceld
from their NewHeadCandidates.

The last possible outcome for the requesting device is that neither enough Non-
Cluster devices are in range to build a new cluster nor did it receive a JoinOffer message.
As a result the device has no possibility to join a cluster at this point it will reschedule the
clusterfinding process at a later time, which is defined by the system parameter Searchlnterval
and inform all devices in its PossibleMemberList that no cluster will be created by sending
them a NewClusterReject message. Without any cluster association the device will continue
to send events directly to the server using 3G or GSM communication.

Concurrency issues will not occur in our system, since mobile devices will only ac-
cept messages they expect in their current role. As an example we look at the case that
two clusters declare themselves the new Cluster-Head of a cluster at the same time,
with each cluster containing the other device. Before sending the NewClusterConfirm
message to the other mobile devices involved in the construction, each device will become
Cluster-Head. As Cluster-Head, Algorithm 6.3 will no longer be executed on the device and
any NewClusterConfirm messages will not be processed. and both devices will continue to act
as Cluster-Head. The fact that each device is not a member of the other device’s cluster will
be detected by the maintenance algorithms introduced in the next section.

Parameters

Describing the algorithm we mentioned a number of system variables. Namely these are
MinHeadPowerLevel, MaxClusterSize, MinClusterSize and Searchlnterval.

MinHeadPowerLevel is supposed to restrict the number of devices that become Cluster-
Heads to those with enough power. Without this parameter every device would try
to build a new cluster, including those that are already very low on power. Would
such a device become a Cluster-Head it could quickly run out of energy completely,
since it would have to perform early correlation and cluster maintenance operations
as well as the normal event transmission. By selecting devices with sufficient energy
resources as Heads we assure that all devices will be able to report event for as long
as possible. Choosing a high value for MinHeadPowerLevel could however result in a
lack of possible Cluster-Heads. Devices would regularly search for clusters but would
rarely be able to build new ones. Over time this might lead to a sparseness of clusters

34

6.3 Cluster Finding

for devices to join. If the probability of finding a cluster is too low, the energy used to
find clusters will be mostly wasted.

Searchinterval defines the frequency with which devices search for clusters. If SearchInterval
is set so that devices are searching for clusters very frequently they will find a cluster as
soon as possible, but will probably waste a decent amount of energy doing so. A new
search is only feasible if the device positions in the system have changed to a certain
amount, otherwise the device would only be answered by the same set of devices over
and over. Change of positions in the system is the result of device movement, and as
such Searchinterval should be linked to the overall mobility of the system. If devices are
mostly moving slowly it is sensible to perform searches less frequently since positions
of devices and cluster coverage will also change slowly. Due to this results of frequent
searches are likely to be very similar and not produce any new results. The faster
devices move the faster will positions change and new local accumulations of devices
be formed. The more frequent change will also warrant more frequent searches.

With faster moving devices, cluster also tend to disperse faster. Which will cause more
expenses in terms of cluster maintenance which we will discuss in detail in the next
section. In general if cluster disperse faster we need to check more often if all Members
are still in range. If they are not they will have to search for a new cluster again, which
might be dispersed again soon. This search/maintenance cycle might cause a decent
amount of communication overhead if Searchinterval is chosen to small.

Another criteria for choosing Searchinterval is the frequency with which events are
produced. Consider a system of fast moving devices that very frequently have to search
for clusters, which in turn will disperse quickly. Now if this system only produces
events with a very low frequency the systems maintenance cost is wasted for the most
part since devices will join and leave cluster without ever sending even one event. In
this case a solution with a low Searchinterval that will only search for cluster right
before events are sent may be better suited.

MinClusterSize and MaxClusterSize are both system parameters that control the size of
clusters. MinClusterSize controls as the name implies the minimum number of
devices a cluster has to consist of. To better understand the purpose of the parameter
we recall that every Cluster-Head also has to perform early-correlation of some
sort, additionally to handling all communication. This early correlation will cost
power since it needs to use the devices processor. We want to safe energy overall
by having Members use Wireless Lan, which however might not be enough to
account for the additional drain if only one Member is actually doing so. In order
to assure that power is saved overall when building a cluster we need to estimate
the additional energy drain caused by early correlation and the savings by using
Wireless Lan. From these two factors we can then derive a sensible number of
minimal devices a cluster has to possess in order to be profitable. If we assume
for example that early correlation is performed once when every Cluster-Member
transmitted an event, we can estimate the clusters savings by applying the formula:
(Number of Members) x (Savings per WLAN Message) — (Early Correlation Cost).

35

6.4 Cluster Maintenance

The bigger the cluster the more energy we can save by using Wireless Lan.
For this reason we want to keep Maxclustersize as large as possible. However we are
using mobile devices like smart-phones in our system, whose computational power
is still limited. A Cluster-Head will have to perform early-correlation and handle
a number of incoming messages due to incoming events and cluster maintenance.
Depending on the form of early-correlation done by the Head device and amount of
communication a device might get overwhelmed, creating a bottleneck in the system
since all of the cluster communication has to pass through it. In order to keep this
from happening we try to restrict cluster size to a reasonable number. We can derive a
value for MaxClusterSize by estimating the computational effort of early-correlation
and looking at the devices hardware specifications.

6.4 Cluster Maintenance

The previous chapter explained how to find and build device clusters. In this chapter we
will explain the algorithms used for cluster maintenance. The first and most important
task of cluster maintenance is to keep track if Member devices are still in Wireless Lan
communication range of the Cluster-Head. Without doing so devices might drift apart and
continuously send events over Wireless Lan that will never be received without noticing it.
The second part of the maintenance is the cycling of Cluster-Heads in order to distribute the
additional workload caused by early correlation and relaying all events more evenly among
the system.

Our goal is to safe as much energy as possible in the overall system. Maintenance can
cause a lot of communication, which causes additional energy drain. To keep communication
to a minimum we will introduce two classes of maintenance algorithms. The first class
consists of a number of lazy algorithms that keep communication to a minimum but
may result in lost events and is described in Subsection 6.4.1.The second class is a set of
eager algorithms described in Subsection 6.4.2, that guarantee maintenance without loosing
messages, but will produce more network traffic.

6.4.1 Lazy Maintenance

In this section we will describe the algorithms used to implement lazy cluster maintenance.
We call these algorithms lazy because we will not make sure that every event reaches its
goal, but instead try to keep the number of sent messages to a minimum in order to safe the
maximum amount of energy in the system.

Subsubsection 6.4.1 describes the realization of range checks, while Subsubsection 6.4.1
introduces the algorithms used to restructure clusters to better distribute the additional
power consumption of Cluster-Heads.

Rangecheck

As soon as a Device takes on the role of Cluster-Head it begins to execute Algorithm 6.4.
To let Cluster-Members know if their Cluster-Head is still in range, Cluster-Heads
regularly send a CheckInMessage to all members. They do so every time a timer called

36

6.4 Cluster Maintenance

SendRangeCheckTimer expires. The duration of this timer and as such the frequency with
which we send these messages is determined by the system parameter SendRangecheckInterval.
The Cluster-Head will check if its members are still in range by using another timer called
DeviceTimeoutTimer. One of these timers is running on the Cluster-Head for each of its
members.

When a Non-Cluster device joins a cluster and becomes a Cluster-Member, it starts
executing Algorithm 6.5.

To check if their Cluster-Head is still in range they wait for CheckInMessages sent by
their Cluster-Head. If they do not receive such a message regularly, they consider the
Cluster-Head to be out of range. The amount of time that may pass between receiving these
messages is given by a timer called ReceiveRangecheckTimer, whose duration is determines
by the system parameter ReceiveRangeCheckInterval. Since CheckInMessages are sent in an
interval determined by SendRangeCheckInterval, ReceiveRangeCheckInterval should be set a
little larger than that to compensate message delays.

After all the timers mentioned above are initialized, the devices will commence
with the actual maintenance operations until, in case of the Head device, it either stops
being a Cluster-Head or a certain amount of power, defined by the system parameter
HeadCyclePowerAmount, has been spent. By limiting the duration of being a Cluster-Head,
using the parameter HeadCyclePowerAmount we distribute the extra workload more evenly
among all devices. Member devices will keep performing maintenance operations until they
no longer occupy the role of a Cluster-Member.

While performing maintenance three situations may occur on the Cluster-Head de-
vice, that need to be resolved.

The first event we need to resolve is the expiration of the SendRangeCheckTimer. In this
case the Cluster-Head will send a CheckInMessage to all cluster members. Afterwards it will
restart the SendRangeCheckTimer to schedule the next check-in.

Regular CheckInMessages let Cluster-Member devices know if they are still in range of
the Cluster-Head or not. Upon receiving a CheckInMessage, a member will simply restart its
own ReceiveRangeCheckTimer and wait for the next check-in. Should no CheckInMessage be
received in time and ReceiveRangeCheckTimer expire, we can consider the head device to be
out of range. In this case the member device will abandon its role and become a Non-Cluster
device, by setting its own DeviceRole to None and scheduling a ClusterRequest.

37

6.4 Cluster Maintenance

Algorithmus 6.4 Lazy Range Check on Cluster-Head
procedure LAZYRANGECHECKHEAD
StART SendRangeCheckTimer(SendRangeCheckInterval)
for all (Id € Cluster Member) do
START DeviceTimeoutTimer(Id, TimeoutInterval)
end for
while (DeviceRole = Head) do
if (FintsHED SendRangeCheckTimer) then
for all (Id € ClusterMember) do
SEND CHECKINMESSAGE(Ownld) — Id
end for
REeSTART SendRangeCheckTimer(SendRangeCheckInterval)
else if (RECEIVE EVENTDATA(Deviceld)) then
REeSET DeviceTimeoutTimer(Deviceld)
else if (FINISHED DeviceTimeoutTimer(Deviceld)) then
ClusterMember.REMOVE(Deviceld)
if (ClusterMember.s1ze() < MinClustersize) then
for all (Id € ClusterMember) do
SEND ABANDON(Ownld) — Id
end for
DeviceRole = None
ScHEDULE CLUSTERREQUEST(SearchInterval)
end if
else if (HeadCylePower Amount spent) then
RESTRUCTUREHEAD
end if
end while
end procedure

The second event on the Cluster-Head is the reception of Event-Data from any Cluster
device. As long as the head device regularly receives Event-Data from a cluster member, that
member is still in Wireless Lan range, and we only need to restart the DeviceTimeoutTimer for
the respective device. Should a DeviceTimeoutTimer expire for a specific member device, that
event has not send any data for an unusual amount of time. In this case we consider the
device to be out of range and remove it from ClusterMember.

Since our cluster just lost a member we also have to check if the cluster still is big
enough to satisfy the system parameter MinClusterSize. If so no further action has to be
taken. However if the cluster just became to small we decide to dissolve it. We do so by
sending an Abandon message to all remaining cluster members, converting the Cluster-Head
to a Non-Cluster device and scheduling a ClusterRequest.

Members that receive an Abandon message will also become Non-Cluster devices and
schedule ClusterRequests.

38

6.4 Cluster Maintenance

Algorithmus 6.5 Lazy Range Check on Cluster-Member
procedure LAZYMAINTENANCEMEMBER
START ReceiveRangeCheckTimer(ReceiveRangeCheckInterval)
while (DeviceRole = Member) do
if (Recerve CHECKINMESSAGE(Deviceld)) then
RESET ReceiveRangeCheckTimer
else if (FINTSHED ReceiveRangeCheckTimer) or (RECEIVE ABANDON(Deviceld)) then
DeviceRole = None
ScHEDULE CLUSTERREQUEST(Searchinterval)
else if (REcEIVE INFORMNEWHEAD(Deviceld, DeviceList)) then
LAzZYRESTRUCTUREMEMBER(Deviceld, DeviceList)
end if
end while
end procedure

Restructure

Once a Cluster-Head spent the amount of power defined by the system parameter Head-
CylePowerAmount it will relinquish its role as head by calling the procedure RestructureHead,
which is described in Algorithm 6.6.

RestructureHead starts by assigning the first cluster member to the variable NewHead.
NewHead will contain the Id of the device that will replace the current head. Afterwards
it checks all entries of ClusterMember for devices whose power resources are higher than
those of the device currently stores in Newhead. If such a device is found NewHead is instead
assigned the device Id with more power.

For the Cluster-Head to be able to monitor the members power levels, Cluster-Members
will transmit their current power level to the server every time they send EventData. This
will not cause significant energy costs since appending one number to the message will not
change transmission costs noticeably.

After selecting its successor the current Cluster-Head will become a member device
itself and adds its Ownld to the list of cluster members ClusterMember. By setting NewHead
as its Cluster-Head the device finishes its role conversion. To inform its former cluster
members about the change it goes on to send them an InformNewHead message containing
the new head’s Id NewHead and the Ids of all members ClusterMember.

The member devices will receive the InformNewHead message while executing their
maintenance Algorithm 6.5, and when doing so will start the procedure LazyRestrucuture-
Member described in Algorithm 6.7.

LazyRestrucutureMember will first check if the receiving devices Ownld matches the new
heads Id NewHead. If so that means that the receiving device was chosen as the new head. In
this case the device will assume its new role as Cluster-Head and assign the List of members
contained in the message as DeviceList to its own list of members ClusterMember. Additionally
the device will have to remove its Ownld from the member list, since the former head did not
already do so. Finally the new head will immediately send CheckInMessages to all members to

39

6.4 Cluster Maintenance

refresh their ReceiveRangeCheckTimers. Devices whose id do not match NewHead will simply
have to set NewHead as their new Cluster-Head and reset their ReceiveRangeCheckTimer
because the new Head will also start a new SendRangeCheckTimer as it assumes its new
role.

Algorithmus 6.6 Lazy Restructure on Head
procedure RESTRUCTUREHEAD
NewHead <— ClusterMeber.FIRST
for all (Id € Cluster Member) do
if (Id.PowerRLEVEL> NewHead POWERLEVEL) then
NewHead « Id
end if
end for
DeviceRole = Member
SET CLUSTER-HEAD(NewHead)
ClusterMember.ADD(Ownld)
for all (Id € Cluster Member) do
if Id # Ownld then
SEND INFORMNEWHEAD(NewHead, Cluster Member) — Id
end if
end for
end procedure

Algorithmus 6.7 Lazy Restructure on Member

procedure LAzZYRESTRUCTUREMEMBER(Deviceld, DeviceList)
if (Ownld = NewHead) then
DeviceRole = Head
ClusterMember <— DeviceList
ClusterMember.REMOVE(OwnId)
for all (Id € Cluster Member) do
SEND CHECKINMESSAGE(Ownld) — Id
end for
else
SET CLUSTER-HEAD(Deviceld)
end if
end procedure

40

6.4 Cluster Maintenance

Parameters

Implementing the maintenance procedures we also introduced a new set of system parame-
ters we will now discuss in detail.

SendRangeCheckinterval and ReceiveRangeCheckinterval are directly related to each
other. The former determines how frequently a Cluster-Head sends ChecklnMes-
sages to its members, while the later sets how long those members wait for these
messages. Therefore ReceiveRangeCheckInterval should always be at least as big as
SendRangeCheckInterval. Considering message delays we actually want to make sure
that ReceiveRangeCheckInterval is bigger than its counterpart. How much bigger will
depend on expected delays and how sure we want to be that delayed messages will be
received in time. In general we do not want the difference to be too big, or member
devices will take to long to realize that they are out of range.

Deciding on how to choose SendRangeCheckInterval presents similar problems
as choosing the system parameter Searchinterval. Frequent check-ins will result in
earlier detection of members that are out of range, but will cause more communication
and consume more energy. Rare check-ins will possibly result in devices being out
of range for some time before noticing it but will produce less messages and safe
more energy. Also any events that were sent to the Cluster-Head by the members
during this time will be lost using lazy maintenance. To find a sensible value for
SendRangeCheckInterval we can look at the systems mobility and how crucial loosing
some events actually is. In systems with high mobility devices tend to move out of
range faster due to the high speed of the member devices, so frequent check-ins will
noticeably reduce the number of lost events. In systems with slow devices changes are
less probable to happen frequently and we can choose a larger SendRangeCheckInterval.

Timeoutinterval determines how long a head device will wait to receive events from de-
vices before considering them out of range. This parameter is directly linked to the
frequency with which events are produced by the system. Its is not reasonable to
set a TimeoutInterval smaller than the frequency we expect the devices to produce
events or most device would be considered out of range immediately. So we want
to keep Timeoutlnterval as least as big as the expected event frequency. Depending
on expected message delay and accuracy of the estimation for event frequency it is
sensible to increase the parameter by an appropriate amount to compensate for these
factors. In general we rather want to choose TimeoutInterval a little too big than too
small, since head devices will not expect events messages from devices, that are not in
their member list. They should however be able to perform early correlation even if one
of their members did not send any EventData messages.

HeadCyclePowerAmount indirectly defines how frequently the role of Cluster-Head is
switched in a cluster. By choosing higher values we keep the same head device for a
longer time which increases the systems stability. After each restructuring a number
of member devices will probably end up out of range of the new Cluster-Head, since
the new head device will be at a different position. In this lazy implementation we

41

6.4 Cluster Maintenance

do not explicitly check which members are still in range after restructuring, so events
may be lost until the remaining duration of the, now out of range, member devices
ReceiveRangeCheckInterval has passed. Higher values for HeadCyclePowerAmount will
lead to certain devices” energy resources being drained noticeably faster than others,
since they will possibly stay head for a long time. Smaller values will lead to a better
overall distribution of energy consumption but due to the communication cost of
restructuring will also drain more energy from the system. Head changes also seem
more sensible in systems with low mobility, since cluster are more probable to persist
over a longer period. In system with high mobility and fast moving devices clusters
are more probable to disperse after a short amount of time, in which case a new head
might be selected upon building a new cluster anyway.

6.4.2 Eager Maintenance

While the lazy maintenance algorithms minimize communication they may loose events at
certain points. This is unacceptable if the CEP system must not loose any events. To achieve
lossless event transmission we will now introduce a set of alternative eager algorithms that
can be used in place of their lazy counterparts. However guaranteed event transmission
comes at the prize of increased maintenance communication and as such will cost more
energy.

Rangecheck

The basic idea behind this new set of algorithms is the replacement of certain timer based
control bursts by using direct confirmation messages. Algorithm 6.8, which replaces
Algorithm 6.4, for example does not start by initializing a SendRangeCheckTimer, since
there will not be regular CheckinMessages to the cluster members. Instead procedure
EagerRangeCheckHead will directly respond to every received EventData by sending an
EventReceived message as a direct answer to the member device it received the event from.

Timeout of members will be handled the same way as in Algorithm 6.4. A timer
DeviceTimeoutTimer with the duration TimeoutInterval will be started for each member device.
If an event is received while the timer is still running, the timer will simply be reset. Is this
not the case and the timer expires, the head considers the member device to be out of range
and removes it from its member list. Since the cluster just became smaller the head device
will check if the cluster is still big enough to mainatin by comparing its size to the system
parameter MinClusterSize. If the cluster is too small it will be disbanded by sending an
Abandon message to the members. Finally the head device will become a cluster-less device
and schedule a ClusterRequest.

Member devices will have their own means of detecting whether they are still in
range of their Cluster-Head and if not will send events directly to the server, so detecting a
member that is no longer in range on the head device will not cause event loss. Keeping
track of members in range on the head is only used to determine the point at which the
cluster has become too small to maintain.

42

6.4 Cluster Maintenance

Just as in the lazy variant we distribute the additional workload of a head device
by having it hand over its role to a member device, after it used up a certain amount of
power. The difference is that we call Algorithm 6.6 instead of its lazy counterpart.

Algorithmus 6.8 Eager Range Check on Cluster-Head

procedure EAGERRANGECHECKHEAD
for all (Id € Cluster Member) do
START DeviceTimeoutTimer(Id, TimeoutInterval)
end for
while (DeviceRole = Head) do
if (Recerve EVENTDATA(Deviceld)) then
SEND EVENTRECEIVED(Ownld) — Deviceld
RESET DeviceTimeoutTimer(Deviceld)
else if (FINISHED DeviceTimeoutTimer(Deviceld)) then
ClusterMember.REMOVE(Deviceld)
if (ClusterMember.s1ze() < MinClustersize) then
for all (Id € Cluster Member) do
SEND ABANDON(Ownld) — Id
end for
DeviceRole = None
ScHEDULE CLUSTERREQUEST(SearchInterval)
end if
else if (HeadCylePower Amount spent) then
RESTRUCTUREHEAD
end if
end while
end procedure

CheckInMessages no longer exist, as a result Algorithm 6.9, which replaces Algorithm
6.5, no longer needs a ReceiveRangeCheckTimer. Instead we initialize the variable Received
with False, which we will use to check if we received a confirmation message from the head
device after sending an event.

We want to assure that every event will be delivered to the server. In order to do
so we start a timer Timeout every time we send an event to the Cluster-Head. If we receive
an EventReceived message from the head device while Timeout is still running we know the
event will be relayed and set Received to True to indicate this fact. In this case we will simply
reset Received to False after the timer has finished. Should on the other hand no confirmation
message arrive and Received still be False after the timer expires, we assume that the head is
no longer in range and never received the event. Hence the member device will leave the
cluster and become a cluster-less device and schedule a new ClusterRequest. To guarantee the
server will receive the event it will also resend the event directly to the server using 3G or
GSM communication.

43

6.4 Cluster Maintenance

The rest of Algorithm 6.9 remains fairly unchanged. In case the device receives an
Abandon message the device will abandon its member role and schedule a ClusterRequest.
The only other difference is that in contrast to its lazy equivalent Algorithm 6.9 will call
Algorithm 6.10 upon receiving an InformNewHead message.

Algorithmus 6.9 Eager Range Check on Cluster-Member

procedure EAGERMAINTENACEMEMBER
Received = False
while DeviceRole = Member do
if (just sent EventData) then
StArRT TIMEOUT
while (Timeout is running) do
if (REcEIvE EVENTRECEIVED(Deviceld)) then
Received = True
end if
end while
if not (Received) then
DeviceRole = Nomne
ScHEDULE CLUSTERREQUEST(Searchinterval)
ResEND EVENTDATA(OWnld)— Serverld
end if
Received = False
else if (RECEIVE ABANDON(Deviceld)) then
DeviceRole = None
ScHEDULE CLUSTERREQUEST(Searchinterval)
else if (REcEIvE INFORMNEWHEAD(Deviceld, DeviceList)) then
EAGERRESTRUCTUREMEMBER(Deviceld, Devicelist)
end if
end while
end procedure

Restructure

Algorithms 6.6 and 6.10 handle the restructuring of a cluster when a head device spent
enough energy performing its task.

Since no timers are used in Algorithm 6.6 no modifications are necessary. We can
simply use the same algorithm as in the lazy approach. First the current Cluster-Head
chooses the member with the highest remaining amount of energy. Then it quits being a
Cluster-Head and declares itself a Cluster-Member, before adding its Ownld to ClusterMember.
Finally it sends an InformNewHead message to all previous Cluster-Members, to inform them
that a new Cluster-Head has been appointed.

The Cluster-Members will receive the InformNewHead message and react by execut-
ing Algorithm 6.10.

44

6.4 Cluster Maintenance

Algorithm 6.10 differs from Algorithm 6.7 only in the point that the newly appointed
Cluster-Head does not have to send a CheckInMessage to the other members, because it no
longer needs to refresh any ReceiveRangeCheckTimer.

If the receiving members Ownld matches the Deviceld, which was contained in the
InformNewHead message, the device will declare itself Cluster-Head. Then it will update its
member list ClusterMember with the DeviceList, which was also contained in the message.
Finally, since the previous head did not already do so, the new Cluster-Head will have to
remove its Ownld from the list of members.

If the parameter Deviceld does not match the members Ownld, it will remain a
Cluster-Member and simply update its Cluster-Head.

If a Cluster-Member is out of range of the new Cluster-Head, this will be detected
by the time the member tries to send the next EventData message. If the device really is
out of range it will not receive a EventReceived message in time and become a Non-Cluster
device before resending the event directly to the server.

Algorithmus 6.10 Eager Restructure on Member

procedure EAGERRESTRUCTUREMEMBER(Deviceld, DeviceList)
if (Ownld = NewHead) then
DeviceRole = Head
ClusterMember <— DevicelList
ClusterMember.REMOVE(OwnId)
else
SET CLUSTER-HEAD(Deviceld)
end if

end procedure

45

7 Evaluation

In this chapter we will evaluate the implementation of relayed event transmission with early
correlation by comparing simulation results. We will examine how the different system
parameters we introduced will effect the performance of the system and under which
circumstances relayed event transmission with early correlation can be applied profitably. Section
7.1 will introduce the setup and software used for our simulations, while 7.2 present the
results of a number of simulations using differing values for our systems parameters.

7.1 Simulation Setup

To evaluate our system, we conducted simulations using the OMNeT++ [Varo1] simulation
system, including the Inetmanet project, which allows the simulation of networks consisting
of mobile devices. For our simulations we observed a restricted spacial area. In this area
we placed a fixed number ob mobile devices, executing the Lazy variants of the algorithms
presented in Chapter 6.

Devices produce and send events at a fixed frequency, which is given by the simulation
parameter Eventlnterval. In order to transmit these events each device is able to send
Wireless Lan messages over a range of 100 meters. 3G and GSM transmission range is
unlimited. During the simulation messages are delivered without delay and no messages
are lost due to transmission errors. Since we have no delay to compensate we will simply
work with the parameter RangeCheckInterval, which will replace SendRangeCheckInterval ans
ReceiveRangeCheckInterval during this chapter.

We simulate mobility of the system using the built in MassMobility model, which is
conform with the model used in [PWgg]. Devices will start moving in an initial direction
with the speed defined by the simulation parameter Speed. Afterwards each device will
change its direction every five seconds. This change is not completely random, instead to
better simulate natural movement the current course of a device will be altered by at most
30 degrees. Whenever a device hits the borders of our simulation area it is reflected.

To measure energy in the system, devices are initialized possessing a fixed amount
of energy. Since we are only interested in the performance of our algorithms we do not
consider energy consumption of other device operations. To estimate the power a device
has consumed during the simulation, we keep track of the number and type of sent and
received messages for each device and apply the energy model we introduced in Chapter 3.
Since we cannot reliably assume how much power operators used for early correlation will
consume, we will concentrate on measuring the energy consumption of the communication
in the system.

We also assume that messages sent during the simulation have a consistent size of
50Kb, otherwise we would not be able to apply our energy model correctly. This means that

46

7.2 Results

our systems implements operators of either the Filter or Modifiable class, that keep messages
to the server small.

If not specified otherwise each simulation performed in this chapter covered a timespan of
1000 seconds. Mobile devices will be initialized with a power capacity of 10000 Joules and
are moving with a speed of 5 meters per second.

The remaining system parameters required for our algorithm are by default set to the
following values : MinHeadPowerLever is set to 4000 Joule when simulating performance for
3G transmissions and to 3000 Joule when simulating GSM. SearchInterval and RangecheckInter-
val are typically both set to 10 seconds. MinClusterSize is usually set to 3 while MaxClustersize
per default 20. Finally HeadCyclePowerAmount is assigned a value of 500 Joule.

Simulations are performed 5 times with differing random number generator seeds. All
results presented in this chapter are averaged over those 5 simulation runs.

7.2 Results

7.2.1 Performance for high-frequency event transmission

In this subsection we compare performance of our algorithm in case of high-frequency
event transmission for a differing number of mobile devices. We also vary the size of the
simulation area to better evaluate the performance of our algorithm. Events are produced
and transmitted every 1 second, which means that every device will send 1000 events.

We simulated spatial areas of 250 square meters, 500 square meters and 750 square
meters. Each time the area was sequentially populated by 10, 20, 30, 40 and finally 50 mobile
devices. Each combination of area size and number of devices was simulated using the
energy model for high-frequency 3G transmissions and using the model for high-frequency
GSM.

Figure 7.1 illustrates the results of these simulations. For the smallest area of 250
square meters, mobile devices using relayed event transmission had on average more energy
left than when using the normal transmission model. This can be seen in Figures 7.1a and
7.1b, which shows the measured remaining energy using relayed transmission compared to
the amount using normal event transmission. However the amount of saved energy gets
smaller the more devices are used in the simulation. This can be explained by the fact that a
large number of devices in such a small area will also cause an increase in Communication
overhead when searching for clusters. This fact is illustrated by Figure 7.2a. The figure
shows the average number of messages, that are not related to event transmission, a device
has to process. As we can see the amount of those messages will increase with the number
of devices in the system.

Figures 7.1c through 7.1f show that while our algorithm still saves energy for an
area of 500 square meters, the remaining energy of mobile devices decreases overall when
we increase the simulation space. This can be accredited to the fact that due to the increasing
space, mobile devices are able to move round more freely and clusters are harder to maintain.

47

7.2 Results

This fact is described by Figure 7.2b which shows the average number of events, a device
sends as a Cluster-Member, using WLan instead of the more expensive standards 3G or
GSM. As we can see this number decreases decreases steadily for each increase in simulation
space.

H Normal event transmssion M Relayed event transmission H Normal event transmssion M Relayed event transmission
5000 4500
4800
4600 4000
9 4400 o 3500
3
9’ 4200 g 3000
€ 4000 c
& 3800 5 20
T 3600 g 2000
L 3400 w
3200 1800
3000 1000
10 20 30 40 50 10 20 30 40 50
Number of devices Number of devices

(a) Average remaining device energy using 3G (b) Average remaining device energy using GSM

for an area of 250m X 250m for an area of 250m X 250m
® Normal event transmssion ® Relayed event transmission ® Normal event transmssion M Relayed event transmission
5000 4500
4800 4000
4600
© 4400 o 3500
S 3
g 4200 S 3000
£ 4000 £ o
@ 3800 5
o 3600 2 2000
w3400]
3200 1800
3000 1000
10 20 30 40 50 10 20 30 40 50
Number of devices Number of devices

(c) Average remaining device energy using 3G (d) Average remaining device energy using GSM

for an area of 500m x 500m for an area of 500m x 500m
® Normal event transmssion M Relayed event transmission H Normal event transmssion M Relayed event transmission

5000 4500

4800 4000

4600
o 4400 o 3500

3

9’ 4200 g 3000
£ 4000 c
5 3800 5 2500
2 3600 2 2000
W 3400 L

3200 1500

3000 1000

10 20 30 40 50 10 20 30 40 50
Number of devices Number of devices

(e) Average remaining device energy using 3G (f) Average remaining device energy using GSM
for an area of 750m x 750m for an area of 750m x 750m

Figure 7.1: Averaged energy measurements for high-frequency event transmission.

7.2 Results

B Messages sent M Messages received 20 devices W30 devices W40 devices

250m x 250m 500m x 500m 750m x 750m

450 450
400 400
350 350
300 300
250 250
200 200
150 150
100 100

Number of messages
Number of events

30

Number of devices : . }
Size of simulation area

(a) Average number of maintenance messages (b) Average number of events per device sent as
for an area of 250m x 250m Cluster-Member

Figure 7.2: Non-Event message counts for high-frequency simulation.

7.2.2 Performance for low-frequency event transmission

Corresponding to the previous subchapter where we compared the performance of our
algorithm for high-frequency event transmission, we will now perform the same evaluation
for low-frequency event transmission. Events are produced and transmitted every 15 second,
which means that every device will send 66 events.

The simulations covered spatial areas of 250 square meters and 500 square me-
ters. Each time the area was sequentially populated by 20, 30 and finally 40 mobile
devices. Each combination of area size and number of devices was simulated using the en-
ergy model for low-frequency 3G transmissions and using the model for low-frequency GSM.

Figure 7.3 shows the remaining energy using relayed event transmission compared to
the remaining energy when using normal event transmission. The results show that even for
the smallest of our simulated areas, relayed event transmission performs worse than normal
event transmission. We can explain this with the fact that despite the low event frequency,
devices kept searching and performed cluster maintenance at the same intervals as in the
high-frequency case, resulting in a noticeable amount of communication overhead. Using
the values of Figure 7.2a and our energy model we, we can calculate this overhead for an
area of 250 square meters, to be approximately 500 Joules. According to the energy model
we used every event transmission via 3G will cost a device 17 Joules. For 66 events this
would equal an amount of 1122 Joules. In order to remain profitable the mobile devices in
the 250 square meters area would then have to send on average almost every second event
message using WLAN instead of 3G. As we can see in Figure 7.4, which shows the average
share of events that were sent using WLAN and 3G per device during the simulations for an
area of the size of 250 square meters, this is not the case.

The results for GSM can be explained similarly by performing analogue calculations
using the energy model for low-frequency GSM transmissions.

49

7.2 Results

® Normal event transmssion M Relayed event transmission ® Normal event transmssion ™ Relayed event transmission
9000 9500
8900 9400
8800 9300
% 8700 % 9200
9’ 8600 9, 9100
C 8500 < 9000
3 8400 & 8900
T 8300 T 8300
w8200 8700
8100 8600
8000 8500
20 30 40 20 30 40
Number of devices Number of devices

(a) Average remaining device energy using 3G (b) Average remaining device energy using GSM

for an area of 250m x 250m for an area of 250m x 250m
® Normal event transmssion M Relayed event transmission ® Normal event transmssion ™ Relayed event transmission
9000 9500
8900 9400
8800 9300
© 8700 o 9200
3 8600 3 9100
el D
£ 8500 < 9000
@ 8400 § 8900
2 8300 2 8800
w8200 u 8700
8100 8600
8000 8500
20 30 40 20 30 40
Number of devices Number of devices

(c) Average remaining device energy using 3G (d) Average remaining device energy using GSM
for an area of 500m x 500m for an area of 500m x 500m

Figure 7.3: Averaged energy measurements for low-frequency event transmission.

M Events sent as Cluster-Member ® Events sent using 3G

40 devices

30 devices

Number of devices

20 devices

o
=)

20 30 40 50 60 70

Messages sent

Figure 7.4: Average number of events per device sent as Cluster-Member, in simulations for
250m X 250m

7.2.3 Effects of varying Eventintervals on the system.

The Interval in which events are produced and transmitted obviously has an effect of our
system. We examined this effect further by running a set of simulations that produced events
at different frequencies and compared the results. The simulation area was fixed at 500
square meters and populated with 20 mobile devices. Each mobile device was initialized

50

7.2 Results

with 30000 Joules of power instead of the usual 10000. Events were produced every o,5
seconds, 1 second and finally 2 seconds.

® Normal event transmission M Relayed event transmission W Average energy difference between devices using relayed- and ® Average number of lost events
normal transmission
29000 1000 1e00
1400
27000

800 1200
o 25000 2

> %) & 1000
S 23000 il 3

c S w5 800
> S 400 g

8 21000 > g 60
@ 1S

@ 19000 2 20 S 00
u z

15000 0.5s 1s - 0

0.5s 1s 2s -200 0.5s 1s 2s
Eventinterval Eventinterval Eventinterval

(a) Average remaining device (b) Difference between remaining (c) Average number lost events.
energy. energy of devices.

Figure 7.5: Measurements for differing speeds in a 50o0m x 500m area with 20 devices.

Figure 7.5a shows the average amounts of remaining energy on devices using nomral-
and relayed event transmission. While relayed transmission performs better at interval of 0.5
and 1 seconds it performs slightly worse than normal transmission at a 2 second interval.
With more frequent events, devices in clusters will be able to send more events using the
cheaper WLAN communication and hence save more energy in the same amount of time. So
it is not surprising that we safe more energy the more frequent the system produces events.
Figure 7.5b better illustrates the difference in remaining energies per device from Figure
7.5a.

Since we are transmitting events more frequently we will also lose more events when a
Cluster-Member moves out of range of its Cluster-Head. In this case the Cluster-Member
will keep sending events to the Cluster-Head until its RecieveRangeCheckTimer expires. If we
send events with a higher frequency that means we will also send more events during that
short period of time, which will never be received. Figure 7.5¢ displays the average number
of lost events relative to event frequency. As we can see we do loose about twice as much
events when we double the event frequency.

7.2.4 Effects of varying Speeds on the system.

Since our system incorporates mobile devices we want to examine how the speed in which
those mobile devices move will affect it. For this we ran a set of simulation with varying
speeds but otherwise fixed parameters. Also we only performed this simulation using 3G
communication since the difference between using 3G an GSM exists only in energy costs
for transmissions. Events are produced and transmitted every 1 second. The simulation area
was fixed at 500 square meters and populated by 20 mobile devices.

To test the effects of different speed on the system we performed simulations for
mobile devices with speeds of 5 meters per second, 10 meters per second and 15 meters per
second.

51

7.2 Results

B Average number of lost events
M Average number of events sent as Cluster-Member

15mps

10mps

5mps

I

Speed of mobile devices

o

500 1000 1500 2000 2500 3000 3500 4000 4500

Number of events

Figure 7.6: Average number of lost events in 500m x 500m area with 20 devices in relation to
speed.

Figure 7.7a shows the recorded average values for remaining energy on each mobile
device. As we can see the different speed have only little effect on our systems energy
consumption. However with faster speeds we do notice an increase in the number of clusters
that are formed during the course of the simulation. The number of clusters formed during
the simulation is illustrated in Figure 7.7b. This can be explained by the fact, that since the
mobile devices are moving faster, Cluster-Head and Cluster-Member devices will also be out
of range earlier, when moving away from each other. This leads to the increased number of
formed clusters, since clusters will also dissipate earlier. This also explains the increased
number of lost event messages with increased speeds, which can be observed in Figure 7.6.
The figure shows the average number of lost events next to the overall number of events
that were sent as Cluster-Member. Once a device joins a cluster it will send events to the
Cluster-Head for at least until its ReceiveRangeCheckTimer expires. This timers duration is
equal to the parameter RangeCheckInterval. The faster a mobile device is out of reach of its
Cluster-Head, the more unreceived events it will send until the timer expires.

W Average remaining energy m Average number of clusters built
4500 180
4450 160
4400 o 140
o 4350 o
<@ % 120
_3’ 4300 E 100
© 4250 o
3 4200 5 8
o 4150 & €
w4100 E x
4050 Z 20
4000 0
5mps 10mps 15mps 5mps 10mps 15mps
Speed of mobile devices Speed of mobile devices

(a) Average remaining device energy using 3G (b) Average number of clusters formed during the
for differing speeds. simulation for differing speeds.

Figure 7.7: Measurements for differing speeds in a 50o0m x 500m area with 20 devices.

52

7.2 Results

7.2.5 Effects of varying MinClusterSizes on the system.

We now want to test what happens to the system if we change the system Parameter
MinClusterSize. To do so we simulated an area of 250 square meters populated by 40 devices.
For this set of simulations we set the parameter MinClusterSize sequentially to 3, 5 and 7.
We only performed this simulation using 3G communication. Events are produced and
transmitted every 1 second.

B Average remaining energy per device m Clusters formed during simulation m Events sent as Cluster-Member
5000 250 12000
4500
4000 200 10000
(2]
9 3500 & 2 g0
3 3000 @ 150]
2 © 9
c 2500 5 w5 6000
3 2000 5 100 o
2 3 o
2 1500 £ S 4000
. Z s 2
1000 2000
0 0 0
3 5 7 3 5 7 3 5 7
MinClusterSize MinClusterSize MinClusterSize

(a) Average remaining device (b) Average number of clusters (c) Average number of Events
energy. formed during simulation. sent as Cluster-Member.

Figure 7.8: Measurements for differing speeds in a 500m x 500m area with 20 devices.

Figure 7.8a shows the average remaining device energy for different values of MinClus-
terSize. As we can see, increasing the minimal cluster size results in a decrease in remaining
energy. We relate this to the fact that it should gets harder to form new clusters with
bigger minimal cluster sizes. This is confirmed by Figure 7.8b, which shows the average
number of clusters that were formed during the simulation. It can clearly be seen that this
number decreases significantly by increasing the minimal cluster size. This is partly the case
because clusters are simply bigger now and devices that were distributed among a number
of clusters are now in the same cluster. Figure 7.8c shows the overall number of events sent
as Cluster-Member, depending on MinClusterSize. According to this figure, far less events
are sent inside clusters with higher values for MinClusterSize, which indicates that overall
less devices find a cluster.

7.2.6 Effects of varying RangeChecklintervals on the system.

In this subsection we examine the amount of events lost in relation to the system parameter
RangeCheckInterval. Therefore we simulated our system with RangeCheckInterval set to 5
seconds ,10 seconds and 15 seconds. The simulation was fixed at 500 square meters and
populated by 20 mobile devices. Events were produced and transmitted every second.

53

7.2 Results

B Average number of lost events
B Average number of events sent as a Cluster-Member

15s

10s

I

bs

RangeCheckinterval

o

500 1000 1500 2000 2500 3000 3500 4000 4500

Number of events

Figure 7.9: Average number of lost events in 500m x 500m area with 20 devices in relation to
RangeCheckInterval.

Figure 7.9 shows the results of this set of simulations. The correlation between the size
of RangeCheckInterval and number of lost events is evident. This makes sense since with
increasing intervals between rangechecks, devices have more time to move out of range
and transmit events that will never reach the Cluster-Head. The amount of lost messages
increases linear to the increase in RangeCheckInterval.

7.2.7 Effects of varying HeadCyclePowerAmount on the system.

In order to distribute the additional workload more evenly we introduced the system
parameter HeadCyclePowerAmount, which limits the time a mobile device acts as Cluster-
Head. To check the effectiveness of this parameter we performed a set of simulations with
HeadCyclePower Amount set to 100 Joule, 300 Joule and finally 500 Joule. The simulation area
was fixed at 500 square meters and populated with 20 devices, each producing events every
second.

Figure 7.10 plots all measured values for remaining device energy during the simu-
lations in a sorted manner. This way we can examine the amount of variance between the
measured valued. We observe that with smaller values for HeadCyclePowerAmoun the skew
of the graph becomes smaller. That means that the overall variance in the system becomes
smaller, which is exactly what we wanted to accomplish with this system parameter.

54

7.2 Results

—— HeadCylcePowerAmount 100 Joule —— HeadCylcePowerAmount 300 Joule
—— HeadCylcePowerAmount 500 Joule

5500

5000

4500

4000

Energyin Joule

3500
3000

2500

Devices

Figure 7.10: Remaining energy measured on all Devices during the simulations sorted by
amount to show the amount of variation between values.

55

8 Related Work

Since CEP systems were first introduced, different approaches for correlation detection have
been introduced.

Cordies (Correlation in distributed event services)[KKR10] is a correlation detection
language in which complex events are detected using Correlation Descriptions (CD). A CD
consists of sources, computations, predicates, expressions and events. Sources are simply
incoming events. Computations and predicates are defined over event attributes and results
of other computations. Each complex event is defined by an expression, which is in turn
a logical equation over predicates. If an expression evaluates to True a complex event is
detected. Predicates and computations can be evaluated as soon as all necessary data is
available, which makes correlation detection very efficient since it allows early abortion of
the detection process.

Typically systems apply operators directly on incoming events, which the operator
obtains through a specific set of event streams. This set of streams is also called an operator’s
interest. Mobile devices have grown in numbers over the last years and applications with
interest in specific spatial ranges are much more common. A driver on the road for example
might be interested in the traffic situation ahead of him. Moreover, this range of interest can
change with the location of the user. A change in range of interest also means a change in
the set of sources for the operator. ’Moving Range Queries in Distributed Complex Event
Processing’[KORR12] introduces an algorithm that allows to reconfigure operators, and deal
with range of interest changes.

Each consumer has to register a dynamic interest query (diq)= [T,fo,R,d]. T represents
the selected operator, fo stands for a focal object which is used as the center of area of
interest, while R denotes the range around fo from which sources are relevant. § specifies
a time-frame in the past for which events are still of interest in the present. Whenever the
operator has to be reconfigured the set of sources can be updated by using fo and R to
calculate the new range of interest.

To reduce the overhead created by dynamically reconfiguring operators, a partitioned
window model for event selection is introduced. A restriction window encases all events
relevant for a specific range of interest, while selection windows on event streams contain
events that may be considered for the current correlation operation. once a complex event is
detected and correlation is finished, selection windows will be shifted so that new events
will be available for correlation. Dependencies between events can be modelled by selection
window behaviour.

Especially in large scale distributed systems it may be of great benefit to place op-

erators used for complex event detection on different physical network nodes. This way
a system might be able to reduce network load. Cordies supports this idea by grouping

56

8 Related Work

predicates based on selectiveness and computational overhead. Using these groups the
original CD is then split into a subset of CDs. These new CDs can be deployed on separate
network nodes using the placement algorithm provided by Cordies. By evaluating very
selective CDs first network load will be kept at a minimum.

Systems that apply operators on events often use operator trees to split the complex
event detection process. Leaf nodes of an operator tree are the sources, while the higher
levels consist of operators, that eventually produce a complex event at the root level. Such a
tree can easily be divided by sequentially splitting of sub-trees, which can then be placed on
separate nodes.

‘Solving the Multi-operator Placement Problem in Large-Scale Operator Networks’ [RDR10]
is a recent work about operator placement in large-scale distributed network. Goal of the
introduced algorithm is to optimize network usage in order to increase scalability.

In order to solve the the Multi-operator Placement problem (MOP) it is sufficient to solve
the Single-operator Placement problem (SOP) for each operator. The SOP considers placement
of an operator regarding its neighbours to minimize network usage.

The SOP corresponds to the Weber Problem[CTgo]. The function for network usage,
based on positioning of the operator, is known to be convex. Using the gradient method to
approximate the optimal solution in a finite number steps works well.

In order to solve the MOP all operators are initially placed in a centralized manner.
Each operator will then possibly be migrated after solving its SOP for the current placement
of all operators. After several Iterations of solving each operator’s SOP and possible
migration, the system will be in an approximately optimal state. In order to deal with
changes in the network each operator will re-evaluate its position again after changes in data
rate of a connected link or if a neighbour migrates.

In mobile scenarios operator placement presents additional challenges since moving
sources and consumers may force the operator to migrate a lot. Operator migration
may however be costly due to the need to also migrate event data associate with the
operator and. To improve network utilization "MigCEP: Operator Migration for Mobility
Driven Distributed Complex Event Processing” [OKRR13] proposes a plan-based migration
approach that predicts movements migrates operators accordingly ahead of time.

Depending on predicted movement MigCEP selects a number of eligible brokers for
future placement. After defining a start and endpoint, when the operator has to be available
at a new placement the algorithm then produces a time-graph. This graph estimates migration
cost and time for all possible migration routes over a number of time intervals, using the
eligible brokers. Each state corresponds to a certain placement while the edges between the
states indicate the migration cost. Finally the k cheapest migration routes are chosen and
executed.

Since all values used in the algorithm are estimates, new migration plans are calculated
regularly and compared to current plans.

Closest to this work is probably the bachelor thesis “Ereigniskorrelation auf energiebeschrank-

ten mobilen Endgerdten’ [Veti2], which takes a closer look at the energy efficiency of
executing certain types of operators directly on mobile devices compared to executing

57

8 Related Work

them in an infrastructure after transmitting source data. Operators are then classified
using the number of incoming event streams, computational cost and execution frequency.
Results indicate that it is more energy efficient to execute operators with few incoming event
streams, low computational cost and high execution frequency on the mobile device.

All of the works mentioned above, except the last, work on events that have already been
transmitted to the infrastructure. While the last method does include communication with
an entry server of an infrastructure, it does not focus on event collection. The operator used
in [Vet12] only uses events that are produced by the mobile device itself, not from multiple
sources. Also none of the methods above investigates the possibility to split operators
further and pre-compute partial results early on mobile devices.

9 Conclusion

The popularity of CEP systems has led to a lot of research on how to optimize event
correlation. The rising availabilty of data provided by mobile devices like smart-phones, also
brought mobile CEP systems with changing spatial areas of interest into focus. Most research
however focuses on optimizing correlation of events that are already in an infrastructure, for
example by optimizing operator placement.

In this work we focused on event transmission from mobile devices, acting as sources, to
such an infrastructure. We realized this first-hop communication by taking advantage
of the mobile devices’ ability to communicate between each other using Wireless Lan.
Instead of sending events directly to the infrastructure, mobile devices collect events
locally using Wireless Lan, before sending them to the server in one message. These
transmissions to the server are realized by using the more expensive communication
methods 3G or GSM. Since collecting events might result in large messages, we also
decided to pre-process the events on the mobile devices. We did so by placing opera-
tors on them, which presented special challenges to the operators placed in the infrastructure.

Addressing these problems, we provided an examination and classification of oper-
ators in CEP systems regarding their compatibility towards pre-processing. Additionally
we presented the algorithms necessary to realize our approach and evaluated them using
the OMNeT++ simulation environment. Evaluation showed that for systems that produce
events at a high frequency we are able to save energy when using our solution to transmit
events to the infrastructure.

Future Work

For future projects we propose the addition of GPS usage to our approach. In this work we
did not include GPS data since we could not guarantee that devices would possess a GPS
sensor or that they have it turned own. Given that our approach heavily relies on spatial
proximity, the use of GPS to find devices in range for Wireless Lan transmissions seems
promising. Using GPS we could also try to predict movement patterns and group devices
moving in similar directions.

Another possible approach could be to make use of a stationary server that could
collect and process GPS data and assign groups, in which events are collected using Wireless
Lan, to devices based on its superior knowledge. A server could also divide the area the
sources are placed in into cells, in which devices are able to communicate using Wireless
Lan, and inform the mobile devices of other devices in their cells.

59

Bibliography

[BBVog]

[CH10]

[CT9o]

[KKR10]

[KORR12]

[LV9s5]

[OKRR13]

[PWo9]

BALASUBRAMANIAN, Niranjan ; BALASUBRAMANIAN, Aruna ; VENKATARAMANI,
Arun: Energy Consumption in Mobile Phones: A Measurement Study and
Implications for Network Applications. In: Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference Pages 280-293, 2009 (Cited on pages 5,
12, 13 and 17)

CarroLL, Aaron ; HEISER, Gernot: An Analysis of Power Consumption in a
Smartphone. In: Proceedings of the 2010 USENIX Annual Technical Conference, 2010
(Cited on page 12)

CHANDRASEKARAN, R. ; TAMIR, Arie: Algebraic Optimization: The Fermat-Weber
Location Problem. In: Math. Program. 46 (1990), S. 219—224 (Cited on page 57)

Kocn, Gerald G. ; KOLDEHOFE, Boris ; ROTHERMEL, Kurt: Cordies: expressive
event correlation in distributed systems. In: Proceedings of the 4th ACM International
Conference on Distributed Event-Based Systems Pages 26-37, 2010 (Cited on pages 10
and 56)

KoLDEHOFE, Boris ; OTTENWALDER, Beate ; ROTHERMEL, Kurt ; RAMACHANDRAN,
Umakishore: Moving range queries in distributed complex event processing. In:
DEBS, ACM, 2012. — ISBN 978-1—4503-1315-5, S. 201—212 (Cited on pages 9, 10,
15 and 56)

LuckuaMm, David C. ; VERA, James: An Event-Based Architecture Definition
Language. In: IEEE Transactions on Software Engineering 21 (1995), Nr. 9, S. 717-734
(Cited on page 9)

OTTENWALDER, Beate ; KOLDEHOFE, Boris ; ROTHERMEL, Kurt ; RAMACHANDRAN,
Umakishore: MigCEP: operator migration for mobility driven distributed complex
event processing. In: CHAKRAVARTHY, Sharma (Hrsg.) ; URBAN, Susan D. (Hrsg.) ;
PrerzucH, Peter (Hrsg.) ; RUNDENSTEINER, Elke A. (Hrsg.): DEBS, ACM, 2013. -
ISBN 978-1-4503-1758-0, 183-194 (Cited on pages 10 and 57)

PerkiNs, Charles E. ; WANG, Kuang-Yeh: Optimized Smooth Handoffs in Mobile
IP. In: ISCC, IEEE Computer Society, 1999. — ISBN 0—7695-0250—4, 340-346 (Cited

on page 46)

60

Bibliography

[RDR1o0]

[RZo7]

[Schos]

[TKK " 10]

[Varo1]

[Vet12]

Rizou, Stamatia ; DURR, Frank ; RoTHERMEL, Kurt: Solving the Multi-Operator
Placement Problem in Large-Scale Operator Networks. In: ICCCN, IEEE, 2010. -
ISBN 978-1—-4244—7115-7, 1-6 (Cited on pages 10 and 57)

RanmMATI, Ahmad ; ZHONG, Lin: Context-for-wireless: context-sensitive energy-
efficient wireless data transfer. In: MobiSys, ACM, 2007. — ISBN 978-1-59593-614—
1, 165-178 (Cited on page 17)

SCHILLER, Jochen: Mobilkommunikation. 2. Addison-Wesley, 2003 (Cited on
page 11)

TariQ, Muhammad A. ; KocH, Gerald G. ; KoLpEHOFE, Boris ; KHAN, Imran
; RoTHERMEL, Kurt: Dynamic Publish/Subscribe to Meet Subscriber-Defined
Delay and Bandwidth Constraints. In: D’AMBRA, Pasqua (Hrsg.) ; GUARRACINO,
Mario R. (Hrsg.) ; TaL1a, Domenico (Hrsg.): Euro-Par (1) Bd. 62771, Springer, 2010
(Lecture Notes in Computer Science). — ISBN 978-3-642-15276—4, 458-470 (Cited
on page 15)

VARGA, Andr‘ig%s: The OMNeT++ Discrete Event Simulation System. In: Proceed-
ings of the European Simulation Multiconference (ESM’2001) (2001), June (Cited on

page 46)

VETTER, Markus: Ereigniskorrelation auf energiebeschrinkten mobilen Endgeriten. 2012
(Cited on pages 7, 19, 57 and 58)

61

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no

stage was any collaboration entered into
with any other party.

(Stefan Schmidhzuser)

	1 Introduction
	2 Background
	2.1 Complex Event Processing
	2.2 Communication between mobile devices
	2.3 Energy in mobile device communication

	3 System Model
	3.1 Infrastructure model
	3.2 Operator model
	3.3 Energy model

	4 Problem Description
	5 Operator Classification
	5.1 Requirements when using relayed transmission and early correlation
	5.2 Operator Classification

	6 Algorithmic Solution
	6.1 Algorithm in general
	6.2 Initialization
	6.3 Cluster Finding
	6.4 Cluster Maintenance
	6.4.1 Lazy Maintenance
	6.4.2 Eager Maintenance

	7 Evaluation
	7.1 Simulation Setup
	7.2 Results
	7.2.1 Performance for high-frequency event transmission
	7.2.2 Performance for low-frequency event transmission
	7.2.3 Effects of varying EventIntervals on the system.
	7.2.4 Effects of varying Speeds on the system.
	7.2.5 Effects of varying MinClusterSizes on the system.
	7.2.6 Effects of varying RangeCheckIntervals on the system.
	7.2.7 Effects of varying HeadCyclePowerAmount on the system.

	8 Related Work
	9 Conclusion
	Bibliography

