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Kurzfassung

Eine der wichtigsten Aufgabenstellungen in der Computer-Vision ist die Berechnung des Optischen
Flusses und das damit nah verwandte Stereo Matching. Das ultimative Ziel dieser beiden Techniken ist
die Bewegung der Objekte in einer Bildsequenz zu schätzen und diese anschließend dreidimensional
zu rekonstruieren. Viele Algorithmen setzen dabei auf einen pixelbasierten Ansatz. Sie berechnen die
Korrespondenzen der Bilder auf Pixelebene und weisen deshalb eine hohe Laufzeit und Komplexität
auf. Die Algorithmen sind somit nicht geeignet, wenn eine schnelle Berechnung benötigt wird.
Das Ziel dieser Arbeit ist die Entwicklung eines Algorithmus, welcher auf einem segmentbasierten
Ansatz aufbaut. Hierbei werden die Pixel des Bildes zu einzelnen Objekten zusammenfasst. Durch die
einstellbare Segmentierung wird die Komplexität des zu lösenden Problems stark verringert und somit
die Laufzeit verbessert. Zudem erhöht sich die Robustheit durch die segmentweise Zusammenfassung
der Bildinformation.

Abstract

One of the most important tasks in computer-vision is the computation of the optical flow and the
closely related stereo matching. The ultimate goal of these techniques is to estimate the movement
of objects in an image sequence and subsequently to reconstruct a three-dimensional scene. Many
algorithms rely on a pixel-based approach. They calculate the correspondence for each pixel and
thus have a high runtime and complexity. Therefore, these algorithms are not suitable when fast
calculations are required. The aim of this work is to develop an algorithm which is based on a
segment-based approach, which merges the pixels of the image into individual objects. Due to
the adjustable segmentation, the complexity of the problem to be solved is greatly reduced, thus
improving the runtime. In addition, the robustness is increased by the segment-wise Summary of
image information.
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1 Einleitung

Mit zunehmendem Fortschritt der Technik, werden immer mehr Bereiche des Alltags automati-
siert und es wird versucht die Handhabung von Aufgaben zu vereinfachen. Was anfangs nur der
Industrie in der Fertigungstechnik und späteren Qualitätssicherung vorbehalten war, hat sich in
den letzten Jahren stark in den Alltag der Menschen integriert. Was früher noch manuell und mit
viel Aufwand oder Gefahren zu bewältigen war, kann heute automatisiert und ohne Einfluss eines
Menschen durchgeführt werden, was zum einen auch an der Leistung der Hardware lag, welche
vor 1-2 Jahrzehnten nicht die nötige Leistung aufbrachte um solch rechenintensive Vorgänge in
Echtzeit zu berechnen. Gerade die Automobilindustrie, Medizin oder Robotik setzen immer mehr
auf computerassistierende Elemente, um die Fahrt sicherer zu machen und eine Operation oder
Diagnose einfacher durchführen zu können. Die Computer-Vision, welche sich damit beschäftigt,
Computern das Sehen mithilfe von Sensoren oder Kameras beizubringen, befasst sich mit zwei der
interessantesten Aufgabenstellungen in diesem Zusammenhang. Zum einen gibt es den Optischen
Fluss, welcher versucht, die Pixel eines Bildes mit denen eines anderen, welches zeitlich nach dem
Ersten spielt, zu verbinden und so die Bewegung einer Videosequenz oder Bilderfolge berechnet. Dies
ist zum Beispiel in den Luxusklassen vieler Automobilhersteller integriert, um bei Auffahrunfällen
oder gefährlichen Situationen mit Passanten automatisch den Bremsvorgang einleiten zu können. Was
sich aus der Sicht eines Menschen leicht anhört, ist für eine Maschine jedoch schwer zu bewältigen,
da für sie lediglich Bildpunkte mit einem bestimmten Wert vorliegen, aus welcher sich keinerlei
Bedeutung erkennen lässt. Nah verwandt damit ist das sogenannte Stereo Matching, welches nicht
eine Bilderfolge verwendet, sondern zwei gleichzeitig geschossene Fotos desselben Objekts zeigen und
nun versucht, die Szene räumlich darzustellen. Diese Problemstellung ist oft in der Robotik zu finden,
um Robotern die Tiefenwahrnehmung der Umgebung beizubringen. Viele bisherige Algorithmen
setzten jedoch auf einen pixelbasierten Ansatz, welcher jeden Pixel des Bildes zuordnet, was viel Zeit
beansprucht und zu Ungenauigkeiten führen kann. Aus diesem Grund geht die Entwicklung solcher
Algorithmen in eine Richtung, welche die Bilder zuvor segmentiert, also versucht die Objekte des
Bildes zusammenzufassen und anschließend die Verschiebung des kompletten Objektes berechnet.
Das Ziel dieser Arbeit ist es nun einen Algorithmus vorzustellen, welcher zuerst die Bilder mit einem
Segmentierungsalgorithmus bearbeitet, wodurch die Pixel eines Objektes zusammengefasst werden
und anschließend durch einen Optischen Fluss Ansatz die Tiefe der Szene berechnet. Durch die
kleinere Anzahl an sich zu verschiebenden Elementen verringert sich die Laufzeit, je nach der stärke
der Segmentierung, und es entsteht eine genauere Schätzung des Bildes.

1.1 Aufbau der Arbeit

Die Arbeit ist in 6 Kapitel unterteilt. In der Einleitung wird eine Einführung und eine kleine Motivation
beschrieben, gefolgt von verwandten Arbeiten, welche sich mit ähnlichen Verfahren beschäftigen. Ka-
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1 Einleitung

pitel 2 ist eine Einführung in die Mathematischen Grundlagen, welche zum Verständnis des späteren
Algorithmus benötigt werden. Kapitel 3 handelt von der Herleitung und vollständigen Beschreibung
der einzelnen Schritte eines pixelbasierten Ansatzes, welcher als Grundlage für die Entwicklung einer
segmentierten Variante dient. Kapitel 4 behandelt den Kern dieser Arbeit, in welchem die wichtigsten
Schritte der segmentierten Variante vorgestellt und bis zum finalen Algorithmus beschrieben werden.
Anschließend folgt eine Evaluation der Ergebnisse und ein Vergleich mit anderen Arbeiten. Die
Arbeit endet schließlich mit einer Zusammenfassung und einem Ausblick.

1.2 Verwandte Arbeiten

Der folgende Abschnitt handelt über Arbeiten, welche einen Algorithmus vorstellen der ebenfalls auf
einer Segmentierung basiert und das Problem auf eine andere Art und Weise angehen als diese Arbeit.
Diese weisen zu einem gewissen Grad Parallelen auf, welche auf die aktuelle Arbeit Einfluss haben.

1.2.1 Cooperative Optimization

Das erste Paper von Wang und Zheng mit dem Titel „A Region Based Stereo Matching Algorithm
Using Cooperative Optimization“[WZ08] benutzt einen Algorithmus, welcher auf einem lokalen
Ansatz basiert. Das Bild wird zuerst mit dem Mean-Shift Algorithmus segmentiert und danach
mit einem lokalen Korrelationsalgorithmus gelöst, welches eine Grundlage der Lösung ergibt und
später durch weitere Berechnungen gegen Ausreißer korrigert werden soll. Danach wird ein affiner
Ansatz implementiert, der eine Ebene für jedes Segment berechnet basierend auf einer initialen
Schätzung eines Korrelationsalgorithmus. Danach wird die Normale zu jeder Ebene mittels eines
Eigenwertproblems berechnet, wobei die Lösung der Eigenvektor ist, welcher zu dem kleinsten
Eigenwert gehört . Als nächstes wird ein lokaler Glattheitsterm aufgestellt, welche das zu berechnende
Segment und all seine Nachbarn enthält, auch Subtargets genannt. Danach werden alle Subtargets
alternierend gelöst.

8



1.2 Verwandte Arbeiten

.

Abbildung 1.1: Abbildung der lokalen Lösung der Segmente mit ihren Nachbarn des Cooperative
Optimmization Algorithmus [WZ08]

1.2.2 Global Framework for Stereo Computation

Das Paper von Tao et al. mit dem Titel „A Global Matching Framework for Stereo Computation
“[TSK01] stellt ein Framework zur berechnung der Tiefe vor, welches das Bild zuerst segmentiert und
anschließend mit einem lokalen Fenster bestimmte Stellen des Bildes matched. Danach wird versucht
den berechneten Fluss für jedes Segment mithilfe der benachbarten Segmente zu verbessern, indem
Nachbarn in der Tiefe verändert werden und je nach Verbesserung oder Verschlechterung der Lösung
dieser Wert übernommen wird. Da durch die aufwändige Suche sehr viele Vergleiche durchgeführt
werden müssen, wird eine Warping Strategie eingeführt, welche das Referenzbild auf das zweite Bild
registriert. Nun wird eine 3-Schichten-Segmentierung eingefügt, in welcher das zu berechnenden
Segment der Richtigen Tiefe zugeordnet wird. Dies geschieht dadurch, dass das aktuelle Segment
gelöscht wird und die jeweiligen Nachbarn auf verschiedene Tiefen gesetzt werden. Als nächstes
wird ermittelt, zu welcher Tiefe das Segment besser passt, indem alle Möglichkeiten durchprobiert
werden und die beste Lösung schließlich ausgewählt wird.

9



1 Einleitung

Abbildung 1.2: Abbildung des Warping Vorgangs. Das Bild wird gewarped, das Segment gelöscht
und mehrere verschiedene Tiefen durchprobiert [TSK01].
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2 Grundlagen

2.1 Mathematisches Grundwissen

Zuerst folgt eine Erklärung der wichtigsten Begriffe und Operatoren, welche für das spätere Ver-
ständnis der Algorithmen und verschiedenen Berechnungen benötigt werden. Zur besseren Ver-
anschaulichung werden Beispiele für Funktionen mit einer sowie mit mehreren Veränderlichen
angegeben.

2.1.1 Funktion

Bei Funktionen wird zwischen Skalarwertigen Funktionen und Vektorwertigen Funktionen unter-
schieden.

Skalarwertige Funktionen sind Funktionen, welche von einer Menge Rn → R abbilden. Die Dimensi-
on n steht für die Anzahl der Veränderlichen, jedoch wird auch bei mehreren Variablen auf ein Skalar
abgebildet. Solche Funktionen sind zum Beispiel:

(2.1) f(x) = x2 + 2x + 2

(2.2) f(x, y, z) = x2 + y2 + z2

Vektorwertige Funktionen unterscheiden sich in der Hinsicht, dass von Rn → Rm abgebildet wird,
also nicht mehr wie zuvor auf ein Skalar sondern stattdessen auf einen Vektor. Beispiele hierfür
sind:

(2.3) f(x) =
(

3x

cos(x)

)

(2.4) f(x, y, z) =

sin(x)
cos(y)
cos(z)



11



2 Grundlagen

2.1.2 Differential

Das Differential beschreibt die Veränderung einer Funktion über eine bestimme Variable x. Also im
Allgemeinen die Steigung an jedem Punkt der Funktion. Unterschieden wird zum einen zwischen
dem Differenzenquotienten und dem Differentialquotient.

Differenzenquotient:

(2.5) ϕ(x0, x1) = f(x1) − f(x0)
x1 − x0

Wobei x0 und x1 für zwei Punkte stehen und f für die abzuleitende Funktion. Dabei beschreibt x1−x0
den Intervall von welchem die Steigung berechnet werden soll, was besonders im diskreten Bereich
wichtig ist, da nicht nur kontinuierliche Funktionen betrachtet werden, sondern auch Diskrete, welche
nur in bestimmten Abständen definiert sind.

Differentialquotient:

(2.6) lim
x→0

f(x0 + h) − f(x0)
h

Wird nun x1 − x0 durch h ersetzt und lässt h gegen 0 laufen, also den Intervall unendlich klein setzt
und somit die Steigung an jedem Punkt der Funktion berechnet, erhält man den Differentialquotienten,
welcher allgemein als Ableitung einer Funktion bezeichnet und mit d

dx abgekürzt wird, wobei x die
Variable darstellt nach welcher man ableitet.

2.1.3 Integral

Das Integral ist neben dem Differential einer der wichtigsten Bereiche der Analysis. Es beschreibt
die Fläche welche von der Funktion und der x-Achse eingeschlossen wird. Unterschieden wird zum
einen zwischen dem bestimmten Integral, welches einem Intervall die jeweils dazugehörige Fläche
zuordnet und dem unbestimmten Integral, welches aus der Menge aller Stammfunktionen besteht.

Bestimmtes Integral:

(2.7)
∫ b

a
f(x)dx

wobei die Punkte a und b die Grenzen der Fläche markieren und f(x) die zu integrierende Funktion
ist, dx steht für die Variable nach der integriert wird.

Unbestimmtes Integral:

(2.8)
∫

f(x)dx = F (x) + C

12



2.1 Mathematisches Grundwissen

wobei F (x) für eine Stammfunktion von f(x) steht. Leitet man sie ab, erhält man wieder die
ursprüngliche Funktion f(x), somit existieren unendlich viele Stammfunktionen, da das Absolutglied
C durch das differenzieren wegfällt.

2.1.4 Nabla Operator

Der Nabla Operator ∇ ist ein Symbol um bestimmte Differentialoperatoren wie den Gradienten
oder den Laplace Operator zu beschreiben, auf welchen später noch etwas eingegangen wird. Er ist
definiert als:

(2.9) ∇ =


∂

∂x
∂

∂y
∂
∂z



und besteht aus den partiellen Ableitungen ∂
∂x ,

∂
∂y ,

∂
∂z . Für Funktionen mit mehreren Variablen

erweitert sich der Vektor entsprechend.

2.1.5 Gradient

Der Gradient ist ein Vektor, welcher für jeden Punkt einer Funktion f in die Richtung des stärksten
Anstiegs zeigt. Berechnet wird er durch das Produkt des Nabla Operators und f .

(2.10) ∇f(x, y, z) =


∂

∂x
∂

∂y
∂
∂z

 f(x, y, z) =


∂

∂xf(x, y, z)
∂

∂y f(x, y, z)
∂
∂z f(x, y, z)

 =

fx

fy

fz



Betrachten man nun die Funktion f(x, y, z) = x2y2z2 so ist der Gradient von f :

(2.11) ∇f(x, y, z) =


∂

∂x(x2y2z2)
∂

∂y (x2y2z2)
∂
∂z (x2y2z2)

 =

 2xy2z2

x2 · 2yz2

x2y2 · 2z


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2 Grundlagen

2.1.6 Hesse-Matrix

Da spätere Grundlagen auf die Hesse-Matrix zurückgreifen und sie zum besseren Verständnis beiträgt,
wird nun etwas näher auf sie eingegangen. Die Hesse Matrix ist eine Beschreibung aller zweiten
partiellen Ableitungen einer Funktion f :

(2.12) H(f(x, y, z)) =


∂2

∂x2 f(x, y, z) ∂2

∂xy f(x, y, z) ∂2

∂xz f(x, y, z)
∂2

∂yxf(x, y, z) ∂2

∂y2 f(x, y, z) ∂2

∂yz f(x, y, z)
∂2

∂zxf(x, y, z) ∂2

∂zy f(x, y, z) ∂2

∂z2 f(x, y, z)

 =

fxx fxy fxz

fyx fyy fyz

fxz fzy fzz



wobei ∂2

∂xy für die Ableitung nach x und danach nach y steht. Da die Ableitung ∂2

∂xy und ∂2

∂yx und alle
anderen gemischten Ableitungen dem Gleichen entsprechen und die Matrix somit in der Diagonalen
gespiegelt ist, kommt es vor, dass der untere Teil manchmal weggelassen wird.

2.1.7 Spur einer Matrix

Als die Spur einer Matrix bezeichnet man die Summe der Elemente der Hauptdiagonalen, welche
gleichzeitig der Summe der Eigenwerte λ entspricht.

(2.13) Spur(A) =
n∑

j=1
ajj = a11 + a22 + · · · + ann =

n∑
j=1

λj

2.1.8 Laplace Operator

Bei dem Laplace Operator ∆ handelt es sich um einen mathematischen Operator welcher gerade
in der Physik eine große Rolle spielt. Dort dient er der Berechnung von physikalischen Feldern,
beispielsweise der Ausbreitung der Wärme in einem geschlossenem Raum.

Zur Berechnung wird zum einen die Hesse Matrix benötigt

(2.14) H(f) =

fxx fxy fxz

fyx fyy fyz

fzx fzy fzz


von welcher dann die Summe der Hauptdiagonalen berechnet wird. Der Laplace Operator ist somit
die Spur der Hesse Matrix.

(2.15) ∆f = Spur(H(f)) = fxx + fyy + fzz
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2.1 Mathematisches Grundwissen

2.1.9 Funktional

Funktionale unterscheiden sich zu Funktionen in der Hinsicht, dass die Parameter nicht wie bisher
Elemente aus einem Zahlenraum R oder Q sind, sondern aus einem Funktionenraum V, in welchem
jedes Element selbst eine Funktion ist.

(2.16) G(f(x)) =
∫

Ω
f(x)dx

Funktionale sind also Funktionen von Funktionen, welche auf einen skalaren Wert abbilden. Ein Teil-
gebiet der Mathematik, die Variationsrechnung, beschäftigt sich mit Extremale wie der Minimierung
solcher Funktionale, welche auch in dieser Arbeit eine zentrale Rollen spielt. Der wohl wichtigste
Begriff daraus sind die Euler-Lagrange Gleichungen, welche hier nur zur Vollständigkeit erwähnt
und in einem späteren Kapitel näher erläutert werden.

2.1.10 Differentialgleichung

Differentialgleichungen sind mathematische Gleichungen, welche eine oder mehrere Variablen
enthalten, sowie beliebig viele Ableitungen derselben Funktion auftreten können. Berechnet wird also
nicht wie bisher ein Skalar oder ein Vektor, sondern eine Funktion f , welche die Differentialgleichung
erfüllt.

Um dies zu verdeutlichen, ein kleines Beispiel:

(2.17) y = y′

Gesucht ist eine Funktion y, welcher ihrer Ableitung entspricht. Durch Trennung der Variablen kann
diese Funktion nun berechnet werden

(2.18)

y = dy

dx

dx = dy

y

1 · dx = 1
y

dy

x = ln(y)
ex = y

Die gesuchte Funktion ist also die e-Funktion.
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2 Grundlagen

2.1.11 Taylorreihe

Die Taylorreihe ist ein Näherungsverfahren, mit welchem Funktionen um einen beliebigen Punkt
herum entwickelt werden können. Das sogenannte Taylorpolynom besteht aus der Funktion selbst
und ihrer Potenzreihe. Somit können komplizierte Funktionen schon mithilfe weniger Ableitungen
hinreichend angenähert werden.

Das Taylorpolynom n-ten Grades sieht wie folgt aus:

(2.19) T (f) =
n∑

k=0

f (k)(a)
k! (x − a)k

wobei a der Entwicklungspunkt, k! die Fakultät ist und f (k) für die k-te Ableitung steht. Das
Taylorpolynom ist für mehrere Variablen erweiterbar

(2.20) T (f) = f(a, b) + f (1)(a)
1 (x − a) + f (1)(b)

1 (y − b) + ...

2.1.12 Linearisierung

Mithilfe der Linearisierung können nichtlineare Funktionen durch eine lineare Funktion approximiert
werden. Dies wird benötigt, da im späteren Verlauf des Verfahrens so ein lineares Gleichungssystem
entsteht, anstatt eines Nichtlinearen, welches um ein vielfaches schwieriger zu berechnen wäre.
Erzielt wird dies mit der zuvor besprochenen Taylorreihe, mit dem Unterschied, dass nur die linearen
Terme verwendet werden.

Abbildung 2.1: Rot: sin(x), Grün: lineare Annäherung an sin(x) mit Entwicklungspunkt 0
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2.1 Mathematisches Grundwissen

2.1.13 Gauß Kern

Die Gauß-Funktion ist eine Dichtefunktion, welche die Normalverteilung zu einer gegebenen Situation
beschreibt. Sie ist unendlich oft differenzierbar zudem betrifft die Fläche unter der Funktion genau 1,
was dem Mittelwert der Funktion nicht verändert. Dies ist besonders nützlich, da die Faltung einer
Funktion mit dem Gauß Kern diese Eigenschaft überträgt und somit Bilder beliebig oft abgeleitet
werden können.

Für den 2-dimensionalen Fall, sieht der Kern wie folgt aus:

(2.21) G(x, y, σ) = 1
2πσ2 e− x2+y2

2σ2

wobei x und y für Koordinaten stehen und die Standardabweichung σ die Stelle des Wendepunkts
markiert. Dadurch ist es möglich den Kern mit σ auf das Problem anzupassen, wobei ein großer
Wert das Gewicht auf eine breitere Fläche verteilt und ein kleiner Wert den Fokus auf die mittleren
Koordinaten legt. Hinzukommt, dass etwa 99.7% der Fläche in dem Intervall −3σ und 3σ liegen und
deshalb der Rest meist vernachlässigt werden kann.

Abbildung 2.2: Eindimensionale Gauß-Funktionen mit unterschiedlichen Standardabweichungen.
Blau: σ=1, Grün: σ=4 [Hem].

In Abbildung 2.2 lässt sich dies gut an der blauen Kurve erkennen. Die Standardabweichung beträgt 1,
somit ändert die Kurve an 1 und -1 ihre Richtung und bei 3 und -3 beträgt der Wert schon beinahe 0.
Im Zentrum wird stark Gewichtet wogegen schon die Werte > 3 und < 3 keine Rolle mehr spielen.
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2 Grundlagen

In der grünen Kurve, welche ein Standardabweichung von 4 hat, lässt sich erkennen, dass die Werte
um den Hochpunkt weit weniger gewichtet werden und auch Werte, welche um den Bereich von -5
und 5 liegen, noch einen gewissen Einfluss auf das Ergebnis haben.

2.2 Bilder

Da dies ein Verfahren ist, welches hauptsächlich in Videosequenzen oder Bildern seine Anwendung
findet, wird nun etwas näher auf die Bilder an sich und deren Aufbau eingegangen.

Bis ins späte 20. Jahrhundert wurde die Fotografieszene noch hauptsächlich von analogen Kameras
dominiert, welche einen Film benötigten auf welches das fotografierte Objekt abgelichtet wurde. Erst
Mitte der 70er Jahre änderte sich dies mit der Erfindung der Digitalkamera. Fotos wurden nicht länger
mittels chemischen Prozessen gespeichert, sondern durch Halbleitersensoren in Rasteranordnung
eingefangen.

2.2.1 Digitale Bilder

Da Computer nicht mit den kontinuierlichen Daten umgehen konnten, welche durch die analoge
Fotografie entstanden, mussten die Fotos zuerst in eine Form gebracht werden mit welcher gerechnet
werden konnte. Dies entstand durch die Abstufung der Fotos, also die Diskretisierung auf einzel-
ne Bildpunkte, welche von Monitoren oder dem Fernseher bekannt sind. Dies wird auch oft als
Digitalisierung bezeichnet.

Ein Digitales Bild wird durch verschiedene Elemente beschrieben:

Auflösung

Die Auflösung eines Bildes wird durch die Anzahl an Bildpunkten bestimmt. Jedes Foto hat eine be-
stimmte Anzahl an Bildpunkten in der Breite sowie in der Höhe. Multipliziert man diese Werte erhält
man die Auflösung des Bildes. Je mehr Bildelemente vorhanden sind, desto feiner und detaillierter
wird das Objekt auf dem Foto abgebildet. Die Auflösung gibt also die Abtastrate des analogen Bildes
an. Oft wird auch der Begriff PPI (Pixel per inch) verwendet, welcher die Punktdichte eines Bildes
oder Bildschirmes beschreibt.

Pixel

Jedes Bildelement, auch Pixel genannt, besteht aus den Farben rot, grün und blau. Diese werden in 3
oder manchmal auch 4 Subpixel unterteilt, also 4 Unterelemente eines Pixels, wobei die Farbe grün
öfter vertreten ist, da das menschliche Auge am sensitivsten gegenüber grün ist. Durch die hohe
Dichte und Größe der Subpixel verschwimmen so die einzelnen Farbkanäle, sodass das Auge dieses
als einen Farbwert wahrnimmt. In der Regel haben Pixel eine quadratische oder rechteckige Form, es
existieren jedoch Varianten, welche einer Raute oder einem Parallelogramm ähneln.
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2.3 Farbraum

Abbildung 2.3: Stark vergrößertes Bild eines Monitors, zu erkennen sind die Einzelnen Pixel und
deren rote, grüne und blaue Subpixel [Jö09].

Farbtiefe

Die Farbtiefe bestimmt die Abstufung (Quantisierung) innerhalb eines Farbkanals. Je mehr Bit der
Kanal besitzt, desto mehr verschiedene Farben können dargestellt werden. In einem Binärbild, welches
nur aus den Farben schwarz oder weiß besteht, ist nur 1 Bit notwendig, da nur 2 verschiedene Farben
existieren. Ein Bild welches aus vielen verschiedenen Grauwerten besteht, benötigt deshalb mehr Bit
um die Grautöne und Verläufe zwischen den Farben detailliert darzustellen.

2.3 Farbraum

Die Farbe eines Bildes wird durch den entsprechenden Farbraum bestimmt. Dieser wird durch die
verschiedenen Farbkanäle wie rot, grün und blau erzeugt und kann durch einen 3-dimensionalen
geometrischen Körper dargestellt werden, sodass jede Farbe einen einzigartigen Punkt in diesem
Körper erhält.

2.3.1 RGB

Der RGB Farbraum ist vom Prinzip her wie das menschliche Auge aufgebaut und besteht aus den 3
Farbkanälen Rot, Grün und Blau, welche den Zapfen des Auges nachempfunden sind. Jeder Kanal
besteht aus 8 Bit, somit sind 256 verschiedene Werte Pro Kanal darstellbar was in einer Menge aus
16.777.216 Farben resultiert. Wobei schwarz mit den Werten 0,0,0 und weiß mit 255,255,255 dargestellt
wird. Durch additives Hinzufügen der Kanäle können so alle verschiedenen Farben erreicht werden.
Bei dem gleichen Wert aller Kanäle, erhält man die Graustufen von schwarz bis weiß.

In Abbildung 2.4 ist eine mögliche Darstellung des RGB Farbraums zu sehen. Jeder Kanal wird
auf eine Achse des Koordinatensystems verteilt, welche Werte von 0 bis 255 annehmen kann. Der
Ursprung, welcher schwarz entspricht, ist im hinteren Bereich unten links zu sehen und weiß
im Vordergrund oben rechts. Durch die Mischung der Kanäle können so bis zu 16.7 Millionen
verschiedene Farben erzeugt werden. Grauwerte liegen in den Diagonalen zwischen schwarz und
weiß. Schön zu sehen ist die Gruppierung der Farben, jede nimmt einen bestimmten Platz des Würfels
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2 Grundlagen

Abbildung 2.4: Räumliche Darstellung des RGB Farbraums [Fra]

ein, so dass beispielsweise Orange und alle Verläufe davon, ob hell oder dunkel, in einem Bereich
zusammengefasst werden können. Dies hat den Vorteil dass bei späteren Berechnungen oder der
Identifizierung einer bestimmten Farbe direkt ein Bereich festgelegt werden kann.

2.4 Kamera-Aufbau

Um die Tiefe einer Szene zu berechnen, reicht ein einziges Bild nicht aus. Man kann sich dies wie bei
einer normalen Fotokamera vorstellen. Das zu fotografierende Objekt wird anvisiert und nach dem
Abzug durch die Linse auf ein 2-dimensionales Bild übertragen. Durch diesen Schritt geht allerdings
die komplette Tiefeninformation verloren, da jeder Punkt zwischen der Linse und dem Objekt, im
Prinzip auch alle Objekte dahinter, auf ein und denselben Punkt abgebildet werden. Die logische
Schlussfolgerung ist, eine zweite Kamera zu benutzen, die die Szene aus einem anderen Blickwinkel
aufnimmt und so das Mehrdeutigkeitsproblem löst. Für die Berechnung der Tiefe werden also 2 Bilder
der gleichen Szene benötigt, welche von verschiedenen Kameras zur gleichen Zeit aufgenommen
werden und in einem bestimmten Abstand nebeneinander aufgestellt sind. In diesem Format gibt es 2
Varianten, einmal eine konvergierende Kameraanordnung, wobei die Kameras auf das Objekt geneigt
sind und eine orthoparallele Anordnung, in welchem die Kameras den exakt gleichen Winkel zum
Objekt haben und nur ein Unterschied durch die Position zustande kommt. Der Algorithmus dieser
Arbeit geht von einer Aufnahme in orthoparallelen Anordnung aus, weshalb dieser nun etwas näher
erläutert wird.
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2.4 Kamera-Aufbau

Abbildung 2.5: Prinzipieller Aufbau einer orthoparallelen Anordnung der Kameras [Bru13a]

Links ist nun ein gelbes Dreieck zu sehen, welches zwischen dem Szenenpunkt oben und den beiden
Kameras unten aufgespannt wird. Gleich darüber liegen die jeweiligen Bildbereiche der Kameras,
auf welche das spätere Objekt abgebildet wird und zwar an den Punkten, wo sich Bildebenen und
die Linien des Dreiecks schneiden. Die roten Linien sind die sogenannten Epipolarlinien. Sie bilden
den direkten Weg der benachbarten Kamera zum zu fotografierenden Objekt. Sie sind somit ein
Abbild der Information, welche zwischen Szenenpunkt und der anderen Kamera stattfindet. Durch
die parallele Anordnung sind hier die Epipolar Linien jedoch horizontal, was auch völlig Sinn macht,
da sich Kamera 1 niemals in dem Blickfeld von Kamera 2 befindet oder umgekehrt und sie sich somit
im unendlichen befinden. Dadurch kann eine Verschiebung der Szene nur auf diesen beiden Linien
stattfinden, weshalb der vertikale Fall außen vor gelassen werden kann, was im späteren Verlauf die
mathematische Berechnung ein wenig erleichtert.

Zunächst wird anhand eines kleines Beispiels gezeigt, wieso eine Verschiebung nur dort stattfinden
kann. Dies kann mittels Strahlensatzes gezeigt werden. Betrachtet man das rechte Bild, lassen sich bei
genauerem Blick vier Dreiecke erkennen, jeweils zwei Große und zwei Kleine. Zum einen das Dreieck
zwischen dem Szenenpunkt M , der Kamera C1 und dem Punkt P1, wobei die Linie zwischen C1 und
M für die Entfernung der ersten Kamera zum Objekt steht. In diesem integriert ist nun ein kleineres
Dreieck, welches durch die Punkte C1, c1 und m1 definiert ist, wobei der Abstand C1 und c1 die
Brennweite ist. Anhand diesen beiden Dreiecken lässt sich erkennen, dass sie im selben Verhältnis
zueinander stehen.

Dieses Verhalten lässt sich durch den Strahlensatz mittels folgender Gleichung ausdrücken:

(2.22)
x

z
= x

′
1

f
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2 Grundlagen

Exakt das Gleiche gilt für die zweite Kamera. Auch hier gibt es ein großes und ein kleines Dreieck,
nämlich an den Punkten M , P2, C2 und m2, c2, C2. Dies kann wieder mittels Strahlensatz beschrieben
werden:

(2.23)
x − b

z
= x

′
2

f

Stellt man diese zwei Gleichungen nun nach x um und setzt sie ein, erhält man:

(2.24) z = b · f

x
′
1 − x

′
2

Ist der Abstand b der beiden Kameras, sowie die Brennweite bekannt, ergibt der Abstand der Punkte
x

′
1 und x

′
2 die gewünschte Tiefe z. Somit lässt sich alleine durch die Länge der Verschiebung, die

Tiefe rekonstruieren, wobei die Tiefe invers proportional zur Länge der Verschiebung ist.
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3 Optischer Fluss

Der Optische Fluss ist in der Computer Vision ein weit verbreitetes und tief erforschtes Gebiet, da
er in vielen Bereichen seine Anwendung findet. Von der Komprimierung von Videodateien, über
Sicherheitssysteme der Automobilindustrie, bis hin zur Robotik. Alle nutzen die Vorteile der Bildver-
arbeitungstechnik. Der Optische Fluss beschreibt auf den ersten Blick eine für den Menschen recht
einfache Aufgabe, nämlich das Wiederfinden von bestimmten Positionen in einer Bilderfolge. Genauer
gesagt wird versucht, jeden Pixel aus einem Bild in einem zweiten Bild wiederzufinden, welches sich
allerdings durch Zeit, Bewegung oder einen anderen Blickwinkel an einem anderen Ort befindet. Was
für den Menschen jedoch allgegenwärtig ist, ist für den PC nicht ganz so einfach zu bewerkstelligen,
da der Computer aus den Bildern alleine, keinerlei Beziehung zwischen verschiedenen Pixeln oder
Objekten herstellen kann.

Um dies zu ändern wurden Ansätze zur Berechnung entwickelt. Zum einen lokale Ansätze, welche
vom Ausgangspixel, jeden anderen Pixel in einer gewissen Nachbarschaft absuchen und miteinander
vergleichen. Unterschieden wird hier in diskrete Modelle wie dem Blockmatching, welches eine
Region absucht und kontinuierliche Modelle wie dem Lucas Kanade Verfahren [LK81], welches zwar
auch nur eine gewissen Bereich abdeckt, die Lösung aber explizit berechnet. Beide Varianten hatten
jedoch gewisse Nachteile, auf welche später noch etwas näher eingegangen wird, welche erst durch
die globalen Methoden elegant gelöst wurden.

Dies war schließlich 1981 der Fall als die Horn und SchunckMethode [HS81] entwickelt wurde, welche
die Grundlage für alle zukünftigen Methoden darstellt und Grundlage dieser Arbeit ist. Zugehörige
Pixel wurden nun nicht mehr in einer Nachbarschaft berechnet, sondern global bestimmt.

3.1 Grundlagen

Zur Berechnung des Optischen Flusses werden Constraints benötigt, mit welchen das bisherige
Wissen in den Ansatz einfließt. Dies sind kleine Gleichungen und Funktionen, welche das Vorhaben
beschreiben. Zusätzlich folgt eine Erklärung zur Interpretation des Ergebnisses.

3.1.1 Grauwertkonstanz

Der erste Constraint ist die Grauwertkonstanz (BCCE), sie ist eine Gleichung, welche die Beziehung
zwischen dem Grauwert eines Pixels aus Bild 1 mit dem Grauwert eines anderen Pixels aus Bild 2
vergleicht. Bei einem kurzen zeitlichen Intervall oder im Stereofall, nur durch eine andere Perspektive,
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3 Optischer Fluss

kann davon ausgegangen werden, dass sich der Grauwert hinsichtlich Reflexion, Schattierung oder
Beleuchtung gar nicht oder nur sehr leicht ändert. Die BCCE sieht demnach wie folgt aus:

(3.1) f(x + u, y + v, t + 1) − f(x, y, t) = 0

Die Gleichung besteht aus einer Funktion f , welche zu einer gegebenen Koordinate x und y und
Zeitpunkt t den Grauwert des Pixels berechnet. Für das zweite Bild, befindet sich dieser Pixel an einer
anderen Stelle, nämlich an einer in x-Richtung um u und in y-Richtung um v verschobenen Stelle,
wobei u und v keine Variablen sondern Funktionen der Form u(x, y) und v(x, y) sind, welche die
Verschiebung im Punkt x, y berechnen. t + 1 bedeutet, dass es sich hierbei um das direkt folgende
Bild in einer Bilderfolge handelt.

3.1.2 Glattheitsannahme

Ein weiterer Constraint, welcher diese Methode erst von den lokalen Varianten abhebt, ist die
Glattheitsannahme. Die Glattheit sorgt für einen gleichmäßigen Fluss benachbarter Pixel, wie es
beispielsweise bei einer Wand oder gleichfarbigen Fläche auftritt. Berechnet wird sie allgemein
durch:

(3.2) |∇u|2 + |∇v|2 = 0

Jeder Pixel hat im späteren Fluss einen Wert u und v, welcher die Verschiebung des Pixels beschreibt.
Berechnet man von dieser Map nun den Betrag des Gradienten (Siehe Abschnitt 2.1.4), erhält man
die Steigung des Flusses zu jedem Pixel. Da eine Fläche oder ein Objekt in der Regel in die gleiche
Richtung verschoben wird, also zwei benachbarte Pixel nach der Verschiebung im Optimalfall wieder
benachbart sein sollten, haben beide Pixel den gleichen Fluss, was im Gradienten dem Wert 0
entspricht. Verdeutlicht wird dies ebenfalls in Abbildung 3.1.

Abbildung 3.1: Links: Flussfeld ohne Glattheit, benachbarte Pixel verschieben sich kreuz und quer.
Rechts: Flussfeld mit Glattheit, benachbarte Pixel sind nach der Verschiebung
wieder nebeneinander
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Natürlich sollte dies nur an Stellen beachtet werden, welche zum gleichen Objekt gehören und nicht
an Kanten, welche unterschiedliche Objekte markieren.

3.1.3 Vektordarstellung

Um die berechneten Flussfelder darzustellen, haben sich mehrere Varianten etabliert. Zum einen ist
es möglich die Verschiebungen in ein Vektorfeld zu zeichnen. So ist es sehr einfach den Ursprung,
sowie die Position im zweiten Bild zu erkennen, wie in Abbildung 3.2 zu sehen ist. Es gibt allerdings
einen großen Nachteil dieser Variante, nämlich dass die Vektoren viel Platz benötigen und so mehrere
andere Pixel überdecken. Würde jeder Pixel einen Vektor bekommen, wäre das Ergebnis demnach
komplett schwarz und nicht zu gebrauchen.

Abbildung 3.2: Bild eines Vektorfelds. Jeder Vektor steht für die Verschiebung eines Pixels. Gut zu
erkennen ist die Richtung, jedoch auch der große Abstand zwischen den Vektoren
[All08].

3.1.4 Farbdarstellung

Eine weitere Methode wäre die Darstellung mittels Farbkreis. Hierzu wird ein Template eines
Farbkreises benötigt, welcher als Kodierung der Richtung sowie der Länge des Vektors dient. Die
Vorteile dieser Methode liegen klar auf der Hand, denn es werden keine Vektoren eingezeichnet,
sondern jedem Pixel wird eine Farbe zugeordnet, welche vom Mittelpunkt des Kreises aus gesehen
dem eigentlich Vektor entspricht. So ist die Verschiebung jedes einzelnen Pixels zu erkennen. Hinzu
kommt, dass die Länge des Vektors gleich mitkodiert wird, nämlich durch die Intensität der Farbe.
Schwarz steht für keine Verschiebung und ist in der Mitte des Kreises platziert, je weiter man sich
jedoch dem Rand nähert, also je länger der Vektor ist, desto kräftiger wird die entsprechende Farbe.

Wie in Abbildung 3.3 zu erkennen ist, wird im Gegensatz zum Vektorfeld jeder Pixel mit einer
Verschiebung versehen und ein Bild erzeugt, welches dem originalen Bild recht ähnlich sieht. Man
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Abbildung 3.3: Links: Template des Farbkreises. Rechts: Yosemite Testsequenz mit eingefärbter
Verschiebung [Bru13b].

sieht sofort welche Regionen in welche Richtung verschoben wurden, jedoch hat diese Methode
nicht nur Vorteile, denn anhand der Farbe ist es nicht ersichtlich, wo der eigentliche Pixel nach der
Verschiebung nun platziert ist. Es ist nur möglich die ungefähre Position in Relation zu den anderen
Pixeln zu bestimmen. In dieser Arbeit fällt die Wahl allerdings trotzdem auf die Farbdarstellung.

3.2 Ansatz von Horn und Schunck

Der Ansatz, der nun für die Berechnung des Optischen Flusses erstellt werden soll, besteht aus
den Constraints, welche weiter oben besprochen wurden. Diese werden in das Funktional (siehe
Abschnitt 2.1.9) eingesetzt und quadratische Abweichungen werden über den gesamten Bildbereich
integriert. Die Lösung ist dann der Fluss, der die Abweichung minimiert. Das allgemeine Optische-
Fluss-Funktional, welches noch ein wenig modifiziert muss, jedoch zum besseren Verständnis erklärt
wird, sieht folgendermaßen aus:

(3.3) E(u, v) =
∫

Ω
(f(x + u, y + v, t + 1) − f(x, y, t))2︸ ︷︷ ︸

Datenterm

+α (|∇u|2 + |∇v|2)︸ ︷︷ ︸
Glattheitsterm

dxdy

wobei
∫

Ω für das bestimmte Integral über den Bildbereich Ω steht. Es wird also nun versucht für
das Energiefunktional E das kleinstmögliche Volumen zu finden, welches von E und den Achsen
des Koordinatensystems eingeschlossen wird. Was wiederum der kleinsten Energie und der besten
allgemeinen Lösung für alle Pixel des Bildes entspricht. Erzielt wird dies durch den Datenterm, welcher
Grauwerte miteinander vergleicht und ihnen eine Energie zuordnet. Je größer der Unterschied der
beiden Werte desto größer oder auch schlechter die Energie. Da jedoch nicht bekannt ist, welcher
der beiden Grauwerte der Größere ist und es deshalb vorkommen kann, dass man ein negatives
Ergebnis des Datenterms erhält, wird dieser noch quadriert um sicher zu stellen, dass zur Energie nur
hinzugefügt und nichts abgezogen wird. Im hinteren Teil steht der bereits bekannte Glattheitsterm,
welcher allerdings mit α multipliziert wird. Der Parameter α steht für die Gewichtung der beiden

26



3.3 Aperturproblem

Terme zur Energie. Ein kleiner Wert für α legt den Fokus auf den Datenterm, es wird hauptsächlich
versucht gleiche Pixel zu finden und die Glattheit wird eher vernachlässigt, da ein großer Unterschied
der Farbe direkt in einer großen Energie resultieren würde. Ein hoher Wert für αlegt den Fokus
dagegen auf ein gleichmäßiges Resultat.

Anhand dieser Grundlage kann das Funktional auf das Problem angepasst werden. Zum einen
verändern sich Datenterm und Glattheitsterm in der Hinsicht, dass aufgrund des Aufbaus (siehe
Abschnitt 2.4), mit welchem die Fotos gemacht wurden, keine Verschiebung in y-Richtung möglich ist
und deshalb dieser Fall auch nicht beachtet werden muss. Zum anderen werden in dieser Arbeit keine
Grauwertbilder verwendet, sondern es dienen Farbbilder als Quelle (siehe Abschnitt 2.3.1). Wird das
allgemeine Optische-Fluss-Funktional nun auf die Änderungen angepasst, entsteht:

(3.4) E(u) =
∫

Ω

3∑
i=1

(fi(x + u, y, t + 1) − fi(x, y, t))2 + α(|∇u|2)dxdy

Was sofort auffällt ist, dass alle Argumente mit v verschwunden sind und sich der Datenterm ein
wenig geändert hat. Da nun Farbbilder betrachtet werden und nicht mehr Graubilder wie bisher,
haben sich auch die Anzahl der Kanäle geändert.

∑3
i=1 bedeutet, dass der Farbwert des Bildes in

jedem Kanal einzeln verglichen, aufsummiert und in ein gemeinsames Flussfeld übertragen wird.

3.3 Aperturproblem

Das Aperturproblem ist ein häufig auftretendes Problem der optischen Bildverarbeitung. Es beschreibt
die Problematik zweier Pixel, welche nicht eindeutig identifizierbar sind. Um einen Pixel mit sei-
nem Äquivalent zu verbinden werden Informationen benötigt, welche ihn von seiner Umgebung
unterscheiden.

In Abbildung 3.4 sind 2 Rechtecke zu sehen, ein schwarzes, welches Bild 1 entspricht und ein graues,
welches Bild 2 zugeordnet wird. Die kleinen roten Quadrate stehen für die Bereiche, welche vom
Optischen Fluss betrachtet werden. Sieht man sich nun die einzelnen Bereiche etwas genauer an,
lässt sich erkennen, dass es bei Quadrat 1 und 2 Schwierigkeiten gibt. Der Algorithmus versucht
die Pixel der schwarzen Linie mit denen der grauen zu verbinden. Da jedoch in Ausschnitt 1 nicht
ersichtlich ist, ob eine Verschiebung nach rechts oder nach links stattgefunden hat, kann hier keine
Lösung berechnet werden. Gleiches gilt für das zweite Quadrat, bei der Verschiebung in y-Richtung.
Quadrat 3 hingegen zeigt eine Ecke des Rechtecks, somit sind Informationen in x- und y-Richtung
vorhanden und es kann deshalb exakt wiedergefunden werden.

Was in den lokalen Methoden noch zu Problemen geführt hat, wird in der Horn und Schunck
Methode durch den Glattheitsterm gelöst. Sollte der Datenterm keine Lösung liefern, übernimmt
der Glattheitsterm, sodass zumindest die Glattheit erfüllt ist. Die kleinste mögliche Energie wäre
demnach eine glatte Fläche mit Gradient = 0. Dies geschieht durch Propagation bekannter Pixel auf
nicht berechnete Nachbarn, bis alle Bereiche einen Fluss zugeordnet bekommen. Somit könnte alleine
durch Quadrat 3 und die Propagation auf die anderen Bereiche der gesamte Fluss des Bildes berechnet
werden.
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3 Optischer Fluss

Abbildung 3.4: Zu sehen sind zwei Rechtecke, einmal zum Zeitpunkt t und t+1. Bei Quadrat 1 und 2
entsteht das Aperturproblem, Quadrat 3 hingegen kann berechnet werden und zeigt
den wahren Fluss des Rechtecks. [Ape]

3.4 Minimierung

Um die Lösung des Funktionals zu berechnen, muss dies minimiert werden, da nur die allgemein
kleinste Energie für den Fluss relevant ist. Dies ist vergleichbar mit der Minimierung normaler
Funktionen. Die Funktion wird abgeleitet, gleich 0 gesetzt und anschließend nach dem globalen
Minimum gesucht. Da es sich aber um eine Energiefunktional handelt, kann dies nicht 1 zu 1
übertragen werden. Hier fließt die Variationsrechnung mit ein, welche sich mit der Minimierung
genau solcher Funktionale beschäftigt. Der wohl bekannteste Begriff der Variationsrechnung ist die
Euler-Lagrange-Gleichung.

3.5 Euler-Lagrange-Gleichung

Zuerst muss die Form des Funktionals identifiziert werden. Bei der typischen Form des Optischen
Flusses besteht es aus einer Funktion F , welche eine weitere Funktion u beinhaltet, wobei u diffe-
renzierbar ist, u′ was für die Ableitung von u steht, und x, y was den Extremwert des Funktionals
darstellt.

Das Funktional hat also die Form:

(3.5) E(u) =
∫

Ω
F (x, y, u, ux, uy)dxdy
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3.5 Euler-Lagrange-Gleichung

Für diese Art des Funktionals existiert ein Euler-Lagrange-Framework, welche alle Funktionale der
obigen Form ableitet:

(3.6) Fu − d

dx
Fux − d

dy
Fuy = 0

wobei Fu für die Ableitung von F nach u steht und Fux und Fuy die Ableitungen nach ux sowie
uy sind. Wird dieses Framework jetzt auf das Funktional angewendet, erhält man die fertige Euler-
Lagrange-Gleichung.

Als erstes kann durch Umformulierung des Glattheitsterms der Gradient auseinander gezogen werden
und man erhält:

(3.7) F =
3∑

i=1
(fi(x + u, y, t + 1) − fi(x, y, t))2 + α(u2

x + u2
y)dxdy

Danach werden die benötigten Komponenten des Frameworks berechnet, wobei ux und uy hier als
eigenständige Variablen gewertet werden.

(3.8) Fu = 2
3∑

i=1
(fi(x + u, y, t + 1) − fi(x, y, t)) · fix(x + u, y, t + 1)

(3.9) Fux = 2αux Fuy = 2αuy

und eingesetzt

(3.10) 0 = 2
3∑

i=1
fix(x + u, y, t + 1) · (fi(x + u, y, t + 1) − fi(x, y, t)) − d

dx
2αux − d

dy
2αuy

durch Umformulierung und Berechnung der partiellen Ableitungen erhält man schließlich:

(3.11) 0 =
3∑

i=1
fix(x + u, y, t + 1) · (fi(x + u, y, t + 1) − fi(x, y, t)) − α (uxx + uyy)︸ ︷︷ ︸

∆u

Nun kann der Glattheitsterm wieder zusammengefasst werden, was dem Laplace Operator (siehe
Abschnitt 2.1.8) von u entspricht.
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3 Optischer Fluss

3.5.1 Neumann Randbedingung

Da Bilder nicht unendlich sind, sondern nur in einem bestimmten Bereichen definiert sind, ist nicht
klar was genau an den Rändern der Funktion passiert. Genau um dieses Problem kümmern sich die
Neumann Randbedingungen, welche Bestandteil der Euler-Lagrange-Gleichungen. Sie entscheidet,
welchen Wert die Ableitung der Differentialgleichung an den Rändern annimmt. Definiert ist sie
durch:

(3.12) nT

(
Fux

Fuy

)
= 0

Hierbei steht nT für die transponierte Normale und Fux , Fuy für die bereits bekannten Ableitungen.
Jede Differentialgleichung hat also ihre eigenen individuellen Randbedingungen, welche die Werte
der Ableitung in Richtung der Normale bestimmen. Für dieses Funktional sieht sie folgendermaßen
aus:

(3.13) nT

(
2αux

2αuy

)
= nT ∇u = 0

wobei 2α herausgezogen werden kann und durch die Division weg fällt. Einfach gesagt, werden die
Pixel der Ränder gespiegelt, sodass ein zusätzlich eingefügter Rahmen entsteht, welcher die gleichen
Werte annimmt wie die Randpixel. So entsteht eine Ableitung welche in Richtung der Normale einen
Wert von 0 hat.

3.6 Warping

Im herkömmlichen Optischen Fluss Verfahren wird normalerweise direkt die Grauwertkonstanz-
Annahme linearisiert (siehe Abschnitt 2.1.12). Dies ist nötig, da nur durch die linearisierte Funktion
und der quadratischen Bestrafung, nach der Ableitung eine strikt konvexe Funktion entsteht. Dies
führt allerdings dazu, dass größere Verschiebungen nicht mehr berechnet werden können, da eine
lineare Funktion nur innerhalb eines bestimmten Abstandes um den Entwicklungspunkt brauchbare
Ergebnisse liefert.

In Abbildung 3.5 wird dieser Fall etwas verdeutlicht. Zu sehen sind 2 Funktionen, −x3 + x2 in rot
und die lineare Annäherung in grün. In dem Intervall von -2 bis 2 ist die Approximation noch in
einer bestimmten Nähe, welche der Funktion im Groben recht nahe kommt. Macht man jedoch einen
etwas größeren Sprung in eine Richtung, so haben die beiden Funktionen nicht mehr viel miteinander
gemein.
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3.6 Warping

Abbildung 3.5: Rot: −x3 + x2, Grün: Linearisierte Funktion um Entwicklungspunkt 1

Mit demWarping wird der Algorithmus nun so abgeändert, dass er sich iterativ der Lösung durch viele
kleinere Verschiebungen annähert und so das Problem der großen Sprünge umgangen wird. Zuerst
muss allerdings das Funktional angepasst werden, beginnend mit der Ursprünglichen Gleichung:

(3.14) 0 =
3∑

i=1
fix(x + u, y, t + 1) · (fi(x + u, y, t + 1) − fi(x, y, t)) − α∆u

Zuerst wird eine Fixpunktiteration eingefügt, welche die gesuchte Lösung u schrittweise berechnet.
Dazu muss das Funktional in zwei verschiedene Zeitschritte unterteilt werden, sodass mit einem
Startwert von u, einen neues u berechnet werden kann und sich so dem richtigen Wert immer mehr
angenähert wird:

(3.15) 0 =
3∑

i=1
fix(x + uk, y, t + 1) · (fi(x + uk+1, y, t + 1) − fi(x, y, t)) − α∆uk+1

Nun folgt die Einführung eines Inkrementes, in welchem die Lösung in mehrere kleine Verschie-
bungen zerlegt wird. Um uk+1 zu berechnen, wird es mithilfe des Inkrements duk und der vorigen
Lösung uk ausgewählt:

(3.16) uk+1 = uk + duk

und eingesetzt:

(3.17) 0 =
3∑

i=1
fix(x + uk, y, t + 1) · (fi(x + (uk + duk), y, t + 1) − fi(x, y, t)) − α∆(uk + duk)
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3 Optischer Fluss

wobei uk für den bisherigen Fluss aus den alten Zeitschritten steht und duk für das Inkrement,
welches bei jeder neuen Iteration dazu addiert wird. Da durch das Warping jedoch die Linearisierung
nur hinausgezögert wurde und nicht gänzlich umgangen werden kann, ist dies der nächste Schritt.

Zuerst wird die Taylorreihe (siehe Abschnitt 2.1.11) auf die entsprechende Form für Vektoren ange-
passt:

(3.18) f(x) ≈ f(a) + (x − a)T ∇3f(a)

und anschließend um den Punkt a = (x + uk, y, t + 1) nach du linearisiert:

(3.19)

fi(x+(uk+duk), y, t+1) ≈ fi(x+uk, y, t+1)+

x + uk + duk − (x + uk)
y − y

t + 1 − (t + 1)


T fix(x + uk, y, t + 1)

fiy(x + uk, y, t + 1)
fit(x + uk, y, t + 1)


was folgendem entspricht:

(3.20) fi(x + uk, y, t + 1) +

duk

0
0


T fix(x + uk, y, t + 1)

fiy(x + uk, y, t + 1)
fit(x + uk, y, t + 1)


Werden die Vektoren nun ausmultipliziert erhält man:

(3.21) fi(x + uk, y, t + 1) + fix(x + uk, y, t + 1)duk

Danach wird die linearisierte Version wieder in die Gleichung eingesetzt und ausmultipliziert:

(3.22)

0 =
3∑

i=1
fix(x+uk, y, t+1)(fix(x+uk, y, t+1)duk+fi(x + uk, y, t + 1) − fi(x, y, t))︸ ︷︷ ︸

≈fit

−α∆(uk+duk)

(3.23) 0 =
3∑

i=1
fix(x+uk, y, t+1)2duk +fix(x+uk, y, t+1) ·(fit(x+uk, y, t+1)−α∆uk −α∆duk
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3.6 Warping

Zum Schluss wird noch in die Bewegungstensor-Notation umgeformt:

(3.24) 0 =
3∑

i=1
J11iduk + J12i − α∆uk − α∆duk

Hierbei steht J11 und J12 für den jeweils ersten und zweiten Eintrag der Matrix J =
(

f2
ix fixfit

fitfix f2
it

)
welche auch als Motion Tensor bekannt ist.

Zur besseren Übersicht kann die Summe auch in den Bewegungstensor gezogen werden:

(3.25) 0 = J11duk + J12 − α∆uk − α∆duk

mit J =
( ∑3

i=1 f2
ix

∑3
i=1 fixfit∑3

i=1 fitfix
∑3

i=1 f2
it

)

3.6.1 Hierarchische Minimierung

Diese Fixpunktiteration wird nun in ein Coarse-to-Fine Schema eingefügt, welches bei der Lösung
der größeren Verschiebungen hilft. Durch das Weglassen der Linearisierung im Modell ändert sich
das Funktional von einem konvexen zu einem nicht-konvexen Funktional und es existiert deshalb
mehr als ein Minimum. Als Folge dessen wird die Auflösung des Bildes schrittweise gesenkt, wodurch
Details verschwinden und eine simplere Variante des Bildes entsteht. Oft wird dieser Vorgang auch
Coarse-to-Fine-Pyramide genannt, da jedes Level eine Ebene einer Pyramide darstellt, auf welcher
die Nächste aufbaut, wobei die unterste Ebene der gröbsten Auflösung entspricht.

Das Ziel ist nun, der Fixpunktiteration von ihrem Startpunkt aus, den Weg zu dem globalen Minimum
zu ebnen. In der originalen Auflösung existieren viele lokale Minima, sodass es sehr wahrscheinlich
ist, dass die Iteration in ein lokales anstatt des globalen Minimums konvergiert, was in Abbildung
3.6 an dem roten Pfeil zu erkennen ist und wiederum in einer falschen Verschiebung resultieren
würde.

Das Schema beginnt also mit einer Initialisierung des Flusses u, welcher auf 0 gesetzt wird. Nun
werden die verschiedenen Ebenen erstellt und mit der gröbsten begonnen. Als nächstes folgt die Be-
rechnung des Inkrements du, was dem globalen Minimum dieses Levels entspricht und anschließend
auf den bisherigen Gesamtfluss u addiert wird. Dieser Wert dient nun als Startwert für das nächst
feinere Level. Der Vorgang wird bis zur originalen Auflösung wiederholt, bis dort schließlich der
finale Fluss berechnet wird.
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3 Optischer Fluss

Abbildung 3.6: Coarse to Fine Pyramide mit drei Leveln. Unten: Originales Bild. Zu sehen sind
viele lokale Minima, in welche die Fixpunktiteration stecken bleiben kann. Mitte:
Herunterskalierte Version des Bildes. Viele Minima sind bereits verschwunden.
Oben: Gröbste Version. Alle Minima bis auf eines sind verschwunden. Die optimale
Schätzung dieser Ebene ist nun möglich [Bru13b].

3.6.2 Rückwärtsregistrierung

Der nächste Schritt ist nun das eigentliche Warping des Bildes. Nachdem der Fluss des aktuellen
Levels berechnet wurde, muss er anschließend auf die Auflösung des nächsten Levels hochskaliert
werden. Hinzu kommt, dass das zweite Bild um genau diesen Fluss verschoben werden muss, sodass
sich Bild 1 und Bild 2 theoretisch in genau diesem Bereich überschneiden würden. Dies hat den Grund,
dass anschließend nur die kleinere Verschiebung berechnet werden soll, welche durch die Skalierung
des Bildes auf die nächstfeinere Ebene entstanden ist. Ohne diesen Schritt, würde auf jedem Level der
komplette Fluss noch einmal berechnet berechnet werden, was den Sinn des Inkrements zunichte
macht.

Betrachtet man Abbildung 3.7 sind kleine Ausschnitte von Bild 1 und 2 zu sehen. Der interessante
Teil ist nun das kleine Quadrat mit den Werten 10, welcher sich im 1. Bild links und im 2. Bild rechts
befindet. Der aktuelle Fluss wäre demnach für u = 2. Als nächstes folgt das Warping von Bild 2.
Realisiert wird dies durch die Summe der Position der Pixel und der Verschiebung u. Für all die Pixel,
welche nach der Verschiebung außerhalb des Bildbereichs landen würden, erhält das verschobene
Bild f2_w die Werte aus Bild 1, somit gilt f2_wi,j = f1_wi,j . Und für alle anderen Pixel, welche
innerhalb des Bildbereichs sind, gilt f2_wi,j = f2_wi,j + u.

Der gesamte Vorgang des Coarse to Fine Warpings sieht also wie folgt aus:

1. Level der Coarse to Fine Pyramide erstellen.

2. Startwert u mit 0 initialisieren und mit gröbstem Level beginnen.

3. Für jedes Level:
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3.7 Diskretisierung

Abbildung 3.7: Backward Registration. Links: Ausschnitt aus Bild 1.Mitte: Ausschnitt aus Bild 2
mit verschobenem Quadrat um u = 2. Rechts: Zusammenstellung von gewarptem
Bild f2_w. Pixel welche aus dem Bild gewarped werden, kommen aus Bild 1, die
restlichen aus Bild 2.

a) Inkrement du berechnen.

b) Inkrement du auf Gesamtfluss u addieren.

c) Fluss auf nächsthöheres Level skalieren.

d) Zweites Bild durch Rückwärtsregistrierung um du warpen.

4. Schritt 3 wiederholen bis originales Level erreicht ist.

5. Fluss u ist berechnet.

3.7 Diskretisierung

Digitale Bilder (siehe Abschnitt 2.2.1) sind immer nur abschnittsweise definiert, nämlich an den
jeweiligen Stellen der Pixel. Daher können die kontinuierlichen Funktionen dort nicht ohne weiteres
angewendet werden. Diese müssen nun mithilfe finiter Differenzen diskretisiert werden. Dazu werden
allgemein drei verschiedene Varianten verwendet.

Vorwärtsdifferenz:

(3.26) ui,j = ui+1,j − ui,j

hx

i-1 , j i , j i+1 , j

Abbildung 3.8: ui,j steht hier für den zu diskretisierenden Bereich an der Stelle i, j, welcher nun
mit dem Differenzen-Quotienten approximiert wird. Dazu wird die Differenz des
rechts neben ihm liegenden (vorwärts) und des zentralen Pixel berechnet und durch
die Länge des Intervalls hx geteilt, wobei x für die x-Richtung steht. Rechts daneben
die Maske mit den relevanten Pixel in grün, sowie die unwichtigen in rot.

Rückwärtsdifferenz:
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3 Optischer Fluss

(3.27) ui,j = ui,j − ui−1,j

hx

i-1 , j i , j i+1 , j

Abbildung 3.9: Bei der Rückwärtsifference läuft der Vorgang genau gleich ab, mit dem Unterschied,
dass nun der Pixel links daneben (rückwärts) mit einfließt. Rechts daneben die Maske
mit den relevanten Pixel in grün, sowie die unwichtigen in rot.

Zentrale Differenz:

(3.28) ui,j = ui+1,j − ui−1,j

2hx

i-1 , j i , j i+1 , j

Abbildung 3.10: Die Zentrale Differenz ist im Prinzip eine Mischung aus beiden vorherigen Metho-
den, hier werden jeweils der linke und der rechte Pixel mit einbezogen, mit dem
Unterschied dass nun die Länge des Intervalls doppelt so groß ist. Rechts daneben
die Maske mit den relevanten Pixel in grün, sowie die unwichtigen in rot.

Benötigt wird hier allerdings nur die Zentrale Differenz, die die genauste Approximation liefert. Als
Ausgangspunkt wird von der bereits bekannten Euler-Lagrange-Gleichung gestartet:

(3.29) J11duk + J12 − α∆uk − α∆duk = 0

Anhand des Funktionals lässt sich erkennen, dass zum einen der Bewegungstensor J , die Flussvariable
du, sowie der Laplace von u und du diskretisiert werden muss, wobei das Vorgehen bei ∆u und ∆du
identisch ist und deshalb nur für ∆du veranschaulicht wird.

Diskretisierung von du:

(3.30) dui,j = du(i · hx, j · hy)

Die Diskretisierung von du erfordert nicht viel Aufwand und ist der trivialste Teil, denn die Funktion
muss nur an das Gitter der Funktion angepasst werden, was mit der Multiplikation des Intervalls
erreicht wird.

Diskretisierung von J :

Hier müssen einzeln alle Einträge der Matrix J diskretisiert werden. Da diese allerdings aus fx und
ft bestehen, reicht es diese auszurechnen.

(3.31) [fx]i,j = 1
2

(
f1i+1,j − f1i−1,j

2hx
+ f2i+1,j − f2i−1,j

2hx

)
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3.7 Diskretisierung

wobei hier der Durchschnitt beider Zentraler Differenzen aus Bild f1 sowie f2 genommen wurde.

Die Zeit wird durch die Differenz beider Bilder errechnet.

(3.32) [ft]i,j = (f2i,j − f1i,j)

Diskretisierung von ∆du:

Um den Laplace zu berechnen, wird dieser zuerst in eine andere Darstellung umgeformt.

(3.33) ∆du = (dux)x + (duy)y

Wie zu erkennen ist, bestehen die Terme jeweils aus der zweiten Ableitung von du, weshalb die
Berechnung der Zentralen Differenz zwei mal ausgeführt werden muss. Aus diesem Grund wird ein
Intervall von 1

2hx festgelegt, um später wieder ein Intervall der Länge 1 zu erhalten, welche jeweils
nur die benachbarten Pixel mit einfließen lässt.

(3.34)

(dux)x + (duy)y ≈
(dux)i+ 1

2 ,j − (dux)i− 1
2 ,j

2(1
2hx)

+
(duy)i,j+ 1

2
− (duy)i,j− 1

2

2(1
2hy)

≈
dui+1,j−dui,j

2( 1
2 )hx

− dui,j−dui−1,j

2( 1
2 )hx

2(1
2)hx

+
dui,j+1−dui,j

2( 1
2 )hy

− dui,j−dui,j−1
2( 1

2 )hy

2(1
2)hy

= dui+1,j − dui,j

h2
x

− dui,j − dui−1,j

h2
x

+ dui,j+1 − dui,j

h2
y

− dui,j − dui,j−1
h2

y

=
∑

l∈x,y

∑
(̄i,j̄)∈Nl(i,j)

duī,j̄ − dui,j

h2
l

Der Laplace ist somit die Summe der Differenzen der Nachbarn zu ihrem zentralen Pixel.

Werden nun alle Approximationen zusammengesetzt erhält man die diskrete Euler-Lagrange-
Gleichung.

(3.35) 0 = [J11]du + [J12] − α
∑

l∈x,y

∑
(̄i,j̄)∈Nl(i,j)

uī,j̄ − ui,j

h2
l

− α
∑

l∈x,y

∑
(̄i,j̄)∈Nl(i,j)

duī,j̄ − dui,j

h2
l

wobei
∑

l∈x,y für die Richtung des Intevalls und
∑

(̄i,j̄)∈Nl(i,j) für die jeweiligen Nachbarn des Pixel
i, j steht.
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3 Optischer Fluss

3.8 Lösung

Das Problem ist aufgestellt, nun muss es gelöst werden. Für jeden Pixel liegt eine Gleichung vor,
welche alle gemeinsam und unter Beachtung der anderen Gleichungen berechnet werden müssen.
Dies entspricht der Lösung eines linearen Gleichungssystems in der Größe der Auflösung der
Bilder. Es gibt verschiedene Ansätze für Gleichungssysteme, doch einige sind nur bis zu einem
gewissen Grad brauchbar und können bei dieser Größenordnung nicht mehr eingesetzt werden, da
sie schlicht zu lange brauchen und zu viel Speicher benötigen. Ein Beispiel dafür wäre das Gauß’sche
Eliminationsverfahren, welches eine Laufzeit von O(n3) hat, also die Laufzeit kubisch ansteigt mit
der Anzahl der Zeilen. Aus diesem Grund werden in der Regel Iterationsverfahren verwendet, welche
sich der Lösung langsam annähern und auf bereits berechneten Ergebnissen aufbauen.

Ein Beispiel dafür sind die Splitting-Verfahren, welche durch geschicktes Trennen der Matrix mit
einemAnfangsvektor schrittweise zu dem Ergebnis konvergieren und nach ausreichender Genauigkeit
abgebrochen werden.

Um von einem linearen Gleichungssystem der Form Ax = b auf das gewünschte Iterationsschema zu
kommen, muss die Matrix wie bereits erwähnt aufgeteilt werden:

(3.36) A = A1 + A2

Wird dies nun in die alte Form eingesetzt, kann die Gleichung nach dem Lösungsvektor x umgestellt
werden.

(3.37) (A1 + A2)x = b → A1x + A2x = b → A1x = b − A2x → x = A−1
1 (b − A2x)

wobei A−1
1 für die invertierte Matrix von A1 steht.

Zum Schluss wird noch die Fixpunktiteration eingeführt:

(3.38) xk+1 = A−1
1 (b − A2xk)

3.8.1 Jacobi-Methode

Angefangen wird mit der Jacobi Methode, welche allerdings nur als Grundlage dient und später noch
durch einige Verbesserungen aufgewertet wird. Die Jacobi Methode trennt die Matrix A in zwei Teile
auf, nämlich der Hauptdiagonale A1 und den restlichen Einträgen A2. Dies hat den Grund, dass A1
invertiert werden muss und Diagonalmatrizen sehr einfach zu invertieren sind.

Um die nächsten Schritte besser zu veranschaulichen, ist es sinnvoll die Form des Gleichungssystems
in geringer Größe etwas näher zu betrachten. Hierzu werden die Gleichungen umgeformt und alle
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3.8 Lösung

Komponenten, welche nichts mit du zu tun haben auf die rechte Seite gebracht. Das folgende Beispiel
ist ein lineares Gleichungssystem, welches durch ein 2x2 Pixel großes Bild entstehen könnte:

(3.39)
J11

J11
J11

J11


︸ ︷︷ ︸

J11

−α


−2 1 1
1 −2 1
1 −2 1

1 1 −2


︸ ︷︷ ︸

∆du︸ ︷︷ ︸
A


du

du

du

du


︸ ︷︷ ︸
F luss︸ ︷︷ ︸

x

=


−J12
−J12
−J12
−J12


︸ ︷︷ ︸

J12

+α


−2 1 1
1 −2 1
1 −2 1

1 1 −2


︸ ︷︷ ︸

∆u


u

u

u

u


︸ ︷︷ ︸

b

Im nächsten Schritt wird A in den diagonalen Teil und den Rest aufgeteilt und anschließend A2 auf
die andere Seite gebracht.

(3.40)




J11
J11

J11
J11

− α


−2

−2
−2

−2





duk+1

duk+1

duk+1

duk+1



=


−J12
−J12
−J12
−J12

+ α


−2 1 1
1 −2 1
1 −2 1

1 1 −2




u

u

u

u

+ α


1 1

1 1
1 1

1 1




duk

duk

duk

duk


Zuletzt wird noch nach du umgestellt indem durch A1 geteilt wird, was äquivalent zur Multiplikation
der invertierten Matrix ist.

(3.41)


duk+1

duk+1

duk+1

duk+1

 =




J11
J11

J11
J11

− α


−2

−2
−2

−2




−1

·




−J12
−J12
−J12
−J12

+ α




−2 1 1
1 −2 1
1 −2 1

1 1 −2




u

u

u

u

+


1 1

1 1
1 1

1 1




duk

duk

duk

duk





39



3 Optischer Fluss

Der allgemeine Jacobi Löser für die oben angesprochene Gleichung lautet somit:

(3.42) duk+1 =
−J12 + α

∑
l∈x,y

∑
(̄i,j̄)∈Nl(i,j)

uī,j̄+duk
ī,j̄

−ui,j

h2
l

J11 +
∑

l∈x,y

∑
(̄i,j̄)∈Nl(i,j)

1
h2

l

3.8.2 Gauß-Seidel-Methode

Die Gauß-SeidelMethode ist eine Erweiterung des Jacobi-Verfahrens. Die Matrix A wird hier etwas
anders aufgeteilt als es noch zuvor der Fall war. Da der diagonale Teil nur eine sehr vage Approxi-
mation der ursprünglichen Matrix ist, kommt hier noch der untere Teil des Restes dazu, womit eine
Dreiecksmatrix und eine bessere Näherung von A entsteht. Die Vorteile dieser Methode sind eine
schnellere Konvergenz der Lösung, etwa um den Faktor 50 und eine Einsparung des Speichers, weil
nicht wie bei der Jacobi Methode zwei Vektoren gespeichert werden müssen, einmal für k und k + 1,
sondern die bereits berechneten Werte k + 1 direkt in die aktuelle Iteration mit einfließen.

(3.43)

duk+1 =
−J12 + α

∑
l∈x,y

∑
(̄i,j̄)∈N−

l
(i,j)

uk+1
ī,j̄

+duk+1
ī,j̄

−uk+1
i,j

h2
l

+ α
∑

l∈x,y

∑
(̄i,j̄)∈N+

l
(i,j)

uk
ī,j̄

+duk
ī,j̄

−uk
i,j

h2
l

J11 + α
∑

l∈x,y

∑
(̄i,j̄)∈Nl(i,j)

1
h2

l

wobei N−
l und N+

l für die untere sowie obere Dreicksmatrix stehen, welche durch die Gauß-Seidel-
Erweiterung dazu kam.

3.8.3 Successive Over-Relaxation

Der Successive Over-Relaxation Löser ist wiederum eine Erweiterung des Gauß Seidel Solvers.

(3.44)

duk+1 = (1 − ω) · duk + ω

·

−J12 + α
∑

l∈x,y

∑
(̄i,j̄)∈N−

l
(i,j)

uk+1
ī,j̄

+duk+1
ī,j̄

−uk+1
i,j

h2
l

+ α
∑

l∈x,y

∑
(̄i,j̄)∈N+

l
(i,j)

uk
ī,j̄

+duk
ī,j̄

−uk
i,j

h2
l

J11 + α
∑

l∈x,y

∑
(̄i,j̄)∈Nl(i,j)

1
h2

l


In der SOR-Methode wird zusätzlich ein Überrelaxationsparameter ω eingeführt, welcher dafür sorgt,
dass das Iterationsschema noch schneller zu der Lösung konvergiert, etwa um den Faktor 2. Generell
wird ein Wert zwischen 1.50 und < 2.0 gewählt, je nach Matrix, wobei das Verfahren nur für Werte
zwischen 0 und < 2 überhaupt konvergiert.
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4 Segmentationsgestützte
Stereorekonstruktion

Der Algorithmus des letzten Kapitels (siehe Sektion 3.2) dient nun als Grundlage für die weiteren
Schritte dieser Arbeit. Das Ziel ist es, den zuvor angesprochenen Algorithmus von einer pixelbasierten
Vorgehensweise mithilfe einer Segmentierung zu beschleunigen und gegebenenfalls zu verbessern.
Doch bevor die einzelnen Schritte erläutert werden, ist es sinnvoll die eigentliche Segmentierung zu
erklären.

4.1 Segmentation

Die Aufgabenstellung der Segmentierung an sich ist recht einfach zu beschreiben, sie ist der Vorgang
einzelne Pixel zu Gruppen zusammenzufassen, im besten Fall zu den wahren Objekten des Bildes. Im
optimalen Fall bestünde das segmentierte Bild also, nach der Anwendung eines Segmentationsalgo-
rithmus, nur noch aus gruppierten Pixel welche jeweils einem Objekt zugeordnet werden.

Abbildung 4.1: Links: Zweites Bild der Venus Testsequenz [SS02], Rechts: Segmentiertes bild mit
σ = 4.

In Abbildung 4.1 sind zum einen das unveränderte Bild und daneben ein segmentiertes Bild zu sehen.
Gut zu erkennen ist zum Beispiel die Integration der Schrift in die Zeitung, welche bei einem noch
höheren σ völlig miteinander verschmelzen würden.
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4 Segmentationsgestützte Stereorekonstruktion

Zur Segmentierung gibt es zahlreiche verschiedene Ansätze. Zum einen gibt es die pixelorientierten
Verfahren, welche für jeden Pixel selbst entscheiden, ob er zum Hintergrund oder einem Objekt
gehört. Hierzu wird lediglich ein Parameter benötigt, welcher anhand des Grauwertes oder der
Farbe entscheidet, zu welcher Region der Pixel zugeordnet wird. Ein weiterer Ansatz sind die
regionsbasierten Verfahren. Diese erstellen die Segmente anhand der Information innerhalb des
Segmentes, beispielsweise durch eine Energiefunktion, welche die Farbwerte der Segmentierung
mit dem Originalbild vergleicht und die geringste Abweichung davon wählt. Schließlich gibt es
noch die kantenorientierten Verfahren, welche mit der Kanteninformation versuchen die Objekte
einzuschließen. In dieser Arbeit wird die Segmentierung mittels Kantenerkennung vorgenommen.
Der verwendete Algorithmus ist die Wasserscheidentransformation Segmentierung, welche nun
genauer erklärt wird.

4.1.1 Wasserscheidentransformation

Wie bereits erwähnt, werden zur Segmentierung Kanten benötigt, weshalb das Bild zuerst durch eine
Faltung mit dem Gauß-Kern (siehe Abschnitt 2.1.13) etwas geglättet wird. Dies spielt eine wichtige
Rolle, da sich der Grad der Glättung, eingestellt durch die Standardabweichung σ des Gauß-Kerns,
sehr stark auf die Anzahl und Größe der späteren Segmente auswirkt, worauf gleich noch etwas näher
eingegangen wird. Danach müssen Stellen identifiziert werden, welche mögliche Kanten darstellen.
Dazu wird zum einen für jeden Pixel die Ableitung in x- sowie in y-Richtung benötigt. Der Betrag
des Gradienten (siehe Abschnitt 2.1.5), welcher die Steigung an jedem Punkt angibt, lässt sich dann
nach folgendem Schema berechnen [Beu92]:

(4.1) |∇f | =
√

f2
x + f2

y

Zur Veranschaulichung lassen sich die jeweiligenWerte auch in ein Bild eintragen wie es in Abbildung
4.2 der Fall ist, wobei die weißen Stellen einen hohen Gradienten angeben und schwarze einen kleinen
Wert haben oder gar 0 sind.
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4.1 Segmentation

Abbildung 4.2: Gradient Magnitude des zweiten Bildes der Venus Testsequenz

Hier lässt sich gut die bereits angesprochene Problematik der Glättung erkennen. Da durch ein großes
σ viele Pixel der Nachbarschaft in die Berechnung mit einfließen und somit eine Ähnlichkeit der
umliegenden Pixel entsteht. Dies hat zur Folge, dass der Gradient kleiner und somit die Segmente
größer werden, da bestimmte Kanten nicht mehr als Trennung der Segmente ausreichen. Der Algo-
rithmus durchläuft nun jeden Pixel des Bildes, angefangen am linken oberen Rand, welcher zuerst als
besucht markiert wird. Danach werden die Gradienten der 8 umliegenden Nachbarpixel ermittelt.
Anschließend wird der Nachbar mit dem kleinsten Gradienten als nächster Pixel der Reihe festgelegt
und der Vorgang wiederholt. So entsteht ein Pfad vom Ausgangspixel bis hin zu einem Minimum,
an welchem alle Nachbarpixel einen größeren oder gleichen Gradienten besitzen und der Pfad sein
Ende findet. Alle Pixel des Pfades gehören nun zu dem selben Segment. Man kann sich dies wie
einen Wassertropfen vorstellen, welcher am Rand einer Schale beginnt und den Weg bis zum Boden
herunterfließt. Dies wird so lange wiederholt, bis schließlich jeder Pixel einmal besucht wurde. Sollte
der Tropfen auf einen Pixel treffen, welcher bereits besucht wurde, kann die Iteration sofort gestoppt
werden, da der Pfad dieses Pixels bereits bekannt ist.

Während der Arbeit wurden zwei verschiedene Varianten der Segmentierung getestet. In der ersten
Methode wurde jede Ebene der Coarse-to-fine-Pyramide einzeln segmentiert, was allerdings ein
paar Probleme bei der Zuordnung der Segmente verursachte. Die Idee der zweiten Methode war das
ursprüngliche Bild zu segmentieren und es mittels eines Nearest Neighbour Algorithmus auf die
benötigten Auflösungen anzupassen. Im Nachhinein hat sich die Methode der Nearest Neighbour
Skalierung als die bessere herausgestellt, welche von nun an in den verschiedenen Algorithmen ihren
Einsatz findet.
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4 Segmentationsgestützte Stereorekonstruktion

Abbildung 4.3: Verschieden starke Segmentierungen. Links: σ: 0.3, Mitte: σ: 4, Rechts: σ: 10

4.2 Algorithmen

Die Anpassung auf ein segmentationsgesützten Ansatz ist ein längerer Prozess, indem mehrere
Erweiterungen den Weg in das Funktional gefunden haben und deshalb schrittweise die wichtigsten
Änderungen aufgeführt und ähnlich der Baseline beschrieben werden. Die drei großen Änderungen
waren zum einen die Anpassung des Funktionals auf eine segmentbasierte Variante. Anschließend
wurde Daten- und Glattheitsterm mithilfe einer subquadratischen Funktion abgeschwächt und robus-
ter gegen Ausreißer gemacht. Der letzte Schritt war die Erweiterung auf ein affines Flussmodell.

4.3 Segmentierter Ansatz

Im ersten Schritt ist es das Ziel, den bereits bekannten Baseline-Ansatz (siehe Abschnitt 3.2) auf
ein Modell umzustellen, welches den Fluss mithilfe einer Segmentierung des Bildes berechnet. Im
Gegensatz zur Baseline wird die Funktion diskret formuliert um bestimmte Bereiche etwas leichter
darzustellen. Dies erfordert eine Änderung des Bewegungstensors, welcher nicht mehr aus den
Pixel selbst besteht, sondern aus der Summe derer, welche innerhalb des entsprechenden Segments
liegen. Zusätzlich wird der Bewegungstensor normiert, sodass größere Segmente nicht mehr Einfluss
auf das Ergebnis haben als kleine. Ein weiterer Schritt ist die Anpassung des Glattheitsterms. Da
Segmente keine feste Position oder Anordnung haben, können für jedes Segment unterschiedlich
viele Nachbarn entstehen. In der Pixelbasierten Variante konnten drei Fälle auftreten. Es gab Eckpixel
mit 2 Nachbarn, Kantenpixel mit 3 Nachbarn und Pixel, welche mitten im Bild lagen, und demnach 4
benachbarte Pixel hatten. In der segmentierten Variante können dagegen theoretisch beliebig viele
Nachbarn entstehen. Auch hier wird durch die Anzahl der Nachbarn geteilt, aus dem selben Grund
wie bei dem Bewegungstensor. All dies führt schließlich zu folgender Funktion:

(4.2) E(u) =
m∑

l=1

1
|Ωl|

∫
Ωl

3∑
i=1

(f2i(x + ul, y) − f1i(x, y))2dxdy + α
m∑

l=1

1
|N(l)|

∑
j∈N(l)

(ul − uj)2
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4.3 Segmentierter Ansatz

Das Funktional besteht wie bisher aus einer Energiefunktion, welche es zu minimieren gilt. Wobei m
für die Anzahl der Segmente steht und l für das aktuelle Segment. Der Datenterm wird wie bereits
erwähnt durch 1

|Ωl| normiert und über den Bereich
∫

Ωl aufsummiert, wobei jeder Pixel x innerhalb
des Segments durch den gleichen Segmentfluss ul verschoben wird. Gleiches beim Glattheitsterm, m
steht für die Segmente und 1

|N(l)| für die Normierung über die Anzahl der Nachbarn von Segment l.
Die Differenz der Nachbarn zu ihrem zentralen Segment bilden schlussendlich den Glattheitsterm.

4.3.1 Minimierung

Die Minimierung läuft ähnlich ab wie noch bei der Baseline (siehe Abschnitt 3.4), mit dem Unterschied,
dass es nun diskret formuliert wurde und deshalb die Euler-Lagrange-Gleichung nicht länger benötigt
wird, sondern einfach differenziert werden kann. Was zu folgender Ableitung führt:

(4.3) 0 = 1
|Ωl|

∫
Ωl

3∑
i=1

(f2i(x + ul, y) − f1i(x, y))f2ix(x + ul) dxdy + α
Nl + Nj

Nl · Nj

∑
j∈N(l)

(ul − uj)

wobei der Faktor Nl+Nj

Nl·Nj
die Normalisierung ist, welche den Glattheitsterm mit steigender Anzahl

an Nachbarn heruntergewichtet. Durch die Kettenregel entsteht das Produkt der äußeren Ablei-
tung des Datenterms, welcher mit der inneren Ableitung multipliziert wird. Gleiches gilt für den
Glattheitsterm.

4.3.2 Warping

Als nächstes wird die Gleichung für das Warping vorbereitet, indem zuerst ein Iterationsschema
eingeführt wird und danach mit der Regel uk+1 = uk + duk ein Inkrement eingeführt wird, welches
die kleinen Verschiebungen bestimmt. Am Ende wird alles in eine Coarse to fine Pyramide integriert
(siehe Abschnitt 3.6):

(4.4)

0 = 1
|Ωl|

∫
Ωl

3∑
i=1

(f2i(x+uk+1
l , y)−f1i(x, y))f2ix(x+uk

l , y) dxdy+α
Nl + Nj

Nl · Nj

∑
j∈N(l)

(uk+1
l −uk+1

j )

Durch Anwendung der bereits angesprochenen Regel wird uk+1 durch die Inkrementelle Berechnung
ersetzt:

(4.5)

0 = 1
|Ωl|

∫
Ωl

3∑
i=1

(f2i(x + (uk
l + duk

l ), y) − f1i(x, y))f2ix(x + uk
l , y) dxdy

+ α
Nl + Nj

Nl · Nj

∑
j∈N(l)

(uk
l + duk

l − uk
j − duk

j )

45



4 Segmentationsgestützte Stereorekonstruktion

Nun bestehen alle Verschiebungen wieder komplett aus dem alten Zeitschritt und können so zur
Berechnung des neuen uk+1 benutzt werden. Zuvor muss allerdings nach duk linearisiert werden.
Dies geschieht durch die bereits bekannte Taylorreihe, welche um den Punkt (x + uk

l , y) entwickelt
wird:

(4.6) f2(x + (uk
l + duk

l ), y) ≈ f2(x + ul, y) +
(

x + uk
l + duk

l − x − uk
l

y − y

)(
f2x(x + uk

l , y)
f2y (x + uk

l , y)

)

was ausmultipliziert und in die obige Gleichung eingesetzt folgendem entspricht:

(4.7)

0 = 1
|Ωl|

∫
Ωl

3∑
i=1

(f2ix(x + uk
l , y)duk

l + f2i(x + uk
l , y) − f1i(x, y)︸ ︷︷ ︸

≈fit

)f2ix(x + uk
l , y) dxdy

+ α
Nl + Nj

Nl · Nj

∑
j∈N(l)

(uk
l + duk

l − uk
j − duk

j )

Im letzten Schritt kann die Gleichung auf die Bewegungstensor-Notation umgeformt werden:

(4.8)

0 = 1
|Ωl|

∫
Ωl

3∑
i=1

(f2ix(x + uk
l , y)2duk

l + f2ix(x + uk
l , y)f2it(x + uk

l , y)) dxdy

+ α
Nl + Nj

Nl · Nj

∑
j∈N(l)

(uk
l + duk

l − uk
j − duk

j )

(4.9) 0 = 1
|Ωl|

∫
Ωl

(
3∑

i=1
J11iduk

l + J12i) dxdy + α
Nl + Nj

Nl · Nj

∑
j∈N(l)

(uk
l + duk

l − uk
j − duk

j )

wobei das Integral durch die Summe ersetzt und mit der Farbe in den Bewegungstensor gezogen
werden kann:

(4.10) 0 = 1
|Ωl|

Ĵ11duk
l + 1

|Ωl|
Ĵ12 + α

Nl + Nj

Nl · Nj

∑
j∈N(l)

(uk
l + duk

l − uk
j − duk

j )

mit dem Bewegungstensor Tensor:

(4.11) Ĵ =
( ∑

j∈l(
∑3

i=1 f2
2ijx

)
∑

j∈l(
∑3

i=1 f2ijxf2ijt)∑
j∈l(

∑3
i=1 f2ijtf2ijx)

∑
j∈l(

∑3
i=1 f2

2ijt
)

)
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4.3 Segmentierter Ansatz

Die hier erstellte Funktion ist bereits zuvor diskret formuliert worden (siehe Abschnitt 4.3), weshalb
an dieser Stelle auf eine Diskretisierung, wie es noch in der Baseline das Fall war, verzichtet und sie
direkt gelöst werden kann.

4.3.3 Lösung

Die Lösung des linearen Gleichungssystem läuft im Prinzip ähnlich ab, wie die pixelbasierte Variante.
Zuerst müssen alle Terme, welche nichts mit duk

l zu tun haben auf die andere Seite gebracht werden,
dass die Form Ax = b entsteht. Danach wird die Hauptdiagonale vom Rest getrennt und nach duk

l

umgestellt.

(4.12) 0 = 1
|Ωl|

Ĵ11duk
l + 1

|Ωl|
Ĵ12 + α

Nl + Nj

Nl · Nj

∑
j∈N(l)

(uk
l + duk

l − uk
j − duk

j )

ist äquivalent zu

(4.13)
1

|Ωl|
Ĵ11duk

l + α
Nl + Nj

Nl · Nj

∑
N(l)

duk
l + α

Nl + Nj

Nl · Nj

∑
j∈N(l)

duk
j = − 1

|Ωl|
Ĵ12 − α

Nl + Nj

Nl · Nj

∑
j∈N(l)

(ul − uj)

Anschließen wird noch nach du und auf den SOR-Löser umgestellt:

(4.14)

duk+1
l = (1 − ω)duk

l

+ ω

− 1
|Ωl| Ĵ12 + α

Nl+Nj

Nl·Nj

∑
j∈N−

l
(uk+1

j + duk+1
j − uk+1

l ) + α
Nl+Nj

Nl·Nj

∑
j∈N+

l
(uk

j + duk
j − uk

l )
1

|Ωl| Ĵ11 + α
Nl+Nj

Nl·Nj

∑
N(l) 1



4.3.4 Ergebnisse

Im folgenden Abschnitt sind die Ergebnisse für zwei Bilder, jeweils aus der Middlebury Testsequenz
Venus und Cones, welche mit dem bisherigen Algorithmus berechnet wurden.
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4 Segmentationsgestützte Stereorekonstruktion

Abbildung 4.4: Links: Venus, Rechts: Cones

4.4 Subquadratischer Ansatz

Die Idee hinter dem subquadratischen Ansatz ist, den Einfluss von Ausreißern zu verringern und die
Kanten besser zu erhalten. Wie in Abbildung 4.4 zu sehen ist, sind vereinzelt kleine schwarze Pixel
oder sehr helle zu erkennen, welche vom Algorithmus falsch zugeordnet wurden und eine zu kleine
sowieso zu große Verschiebung bedeuten. Um dies besser zu verhindern und ein gleichmäßigeres
Bild zu erzeugen, wird nun eine Funktion eingeführt, welche das Energiefunktional nicht länger
quadratisch, sondern subquadratisch bestraft. Dies ist vergleichbar mit einer Funktion welche stärker
als linear, jedoch langsamer als eine quadratische Funktion ansteigt.

(4.15)

E(u) =
m∑

l=1
ΨD

(
1

|Ωl|

∫
Ωl

3∑
i=1

(f2i(x + ul, y) − f1i(x, y))2dxdy

)
+α

m∑
l=1

1
|N(l)|

∑
j∈N(l)

ΨS((ul−uj)2)

4.4.1 Funktion Ψ

Die Funktion Ψ hat die Aufgabe, den Datenterm, sowie den Glattheitsterm subquadratisch zu
bestrafen. Aus diesem Grund werden beide als Argument an Ψ übergeben, welche folgende Form
hat:

(4.16) Ψ(s2) = 2ϵ2 ·

√
1 + s2

ϵ2
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4.4 Subquadratischer Ansatz

wobei ϵ ein weiterer Parameter in Daten- und Glattheitsterm ist. Ψ wird zwar auf beide Terme
angewendet, beide besitzen jedoch unterschiedliche ϵ, da die Größenordnung der Argumente nicht
gleich sein muss.

Der große Unterschied zu der bisherigen Variante ist nun, dass bei Abweichung des Daten- oder
Glattheitsterm, die Energie direkt in die Höhe geschossen wäre und all diese Pixel als mögliche
Treffer ausscheiden würden , da der jeweils andere Term, nicht die Möglichkeit hat diese auszuglei-
chen. Durch den Faktor, welcher mit Ψ′ vorangestellt wird, werden diese hohen Energien herunter
gewichtet, sodass jeweils der andere Term dominieren kann.

4.4.2 Minimierung

Die Minimierung mit subquadratischer Bestrafungsfunktion verhält sich fast identisch zur bereits
bekannten Minimierung des segmentbasierten Ansatzes. Zuerst wird mit der Kettenregel Ψ abgeleitet,
wobei die äußere Ableitung Ψ′ als Faktor vorangestellt und danach das Argument von Ψ wie in
Abschnitt 4.3.1 differenziert wird.

(4.17)

0 = Ψ′
D·
(

1
|Ωl|

∫
Ωl

3∑
i=1

(f2i(x + ul, y) − f1i(x, y))f2ix(x + ul, y) dxdy

)
+α

Nl + Nj

Nl · Nj

∑
j∈N(l)

Ψ′
S ·(ul−uj)

mit

(4.18) Ψ′(s2) = 1√
1 + s2

ϵ2

4.4.3 Warping

Auch das Warping ist mit der segmentbasierten Version identisch, wobei nur Ψ′ jeweils zum Zeit-
schritt k mitberechnet werden muss. Die Linearisierung und Integration in die Coarse-to-fine-
Pyramide ist hingegen genau wie in Abschnitt 4.3.2 zu berechnen.

(4.19)

0 = [Ψ′
D]k ·

(
1

|Ωl|

∫
Ωl

3∑
i=1

(f2i(x + uk+1
l , y) − f1i(x, y))f2ix(x + uk

l , y) dxdy

)

+ α
Nl + Nj

Nl · Nj

∑
j∈N(l)

[Ψ′
S ]k · (uk+1

l − uk+1
j )
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4 Segmentationsgestützte Stereorekonstruktion

(4.20)

0 = [Ψ′
D]k ·

(
1

|Ωl|

∫
Ωl

3∑
i=1

(f2i(x + (uk
l + duk

l ), y) − f1i(x, y))f2ix(x + uk
l , y) dxdy

)

+ α
Nl + Nj

Nl · Nj

∑
j∈N(l)

[Ψ′
S ]k · (uk

l + duk
l − uk+1

j − duk
l )

Nun kann nach duk
l linearisiert und die Farbe mit dem Integral in den Bewegungstensor gezogen

werden.

(4.21)

0 = [Ψ′
D]k 1

|Ωl|

∫
Ωl

3∑
i=1

(f2ix(x + uk
l , y)2duk

l + f2ix(x + uk
l , y)f2it(x + uk

l , y) dxdy

+ α
Nl + Nj

Nl · Nj

∑
j∈N(l)

[Ψ′
S ]k(uk

l + duk
l − uk

j − duk
j )

(4.22) 0 = [Ψ′
D]k

( 1
|Ωl|

Ĵ11duk
l + 1

|Ωl|
Ĵ12

)
+ α

Nl + Nj

Nl · Nj

∑
j∈N(l)

[Ψ′
S ]k(uk

l + duk
l − uk

j − duk
j )

4.4.4 Lösung

Die Lösung ist analog zu der segmentierten Variante, einzig Ψ′ muss ausmultipliziert und dann mit
den entsprechenden Termen auf die andere Seite gebracht werden.

(4.23) 0 = [Ψ′
D]k

( 1
|Ωl|

Ĵ11duk
l + 1

|Ωl|
Ĵ12

)
+ α

Nl + Nj

Nl · Nj

∑
j∈N(l)

[Ψ′
S ]k(uk

l + duk
l − uk

j − duk
j )

(4.24)

Ψ′k
D

1
|Ωl|

Ĵ11duk
l + Ψ′k

S α
Nl + Nj

Nl · Nj

∑
N(l)

duk
l + Ψ′k

S α
Nl + Nj

Nl · Nj

∑
j∈N(l)

duk
j

= −Ψ′k
D

1
|Ωl|

Ĵ12 − Ψ′k
S α

Nl + Nj

Nl · Nj

∑
j∈N(l)

(ul − uj)

(4.25)

duk+1
l = (1 − ω)duk

l

+ ω

−Ψ′k
S

1
|Ωl| Ĵ12 + Ψ′k

S α
Nl+Nj

Nl·Nj

∑
j∈N−

l
(uk+1

j + duk+1
j − uk+1

l )

Ψ′k
D

1
|Ωl| Ĵ11 + Ψ′k

S α
Nl+Nj

Nl·Nj

∑
N(l) 1


+ ω

Ψ′k
S α

Nl+Nj

Nl·Nj

∑
j∈N+

l
(uk

j + duk
j − uk

l )

Ψ′k
D

1
|Ωl| Ĵ11 + Ψ′k

S α
Nl+Nj

Nl·Nj

∑
N(l) 1


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4.5 Affiner Parametrisierungs Ansatz

4.4.5 Lagged-Nonlinearity-Ansatz

Da bei der Funktion Ψ durch die Ableitung die Flussvariable dul in den Nenner rückt, ist nicht länger
ein lineares Gleichungssystem, sondern ein nicht-lineares Gleichungssytem vorhanden, welches auf
die herkömmliche Weise nicht mehr gelöst werden kann. Deshalb wird das System als Serie von
linearen Gleichungssystemen gelöst. Dies bedeutet, dass Ψ′ jeweils zum alten Zeitpunkt k ausgewertet
wird, welches zwar nur eine ungenaue, jedoch ausreichende Lösung ist, damit das Gleichungssystem
konvergiert. Ψ′ hängt also immer etwas hinterher (lagged) und wird erst nach jeder Iteration auf den
neusten Stand gebracht. Erste Ergebnisse sind im folgenden Abschnitt zu finden.

4.4.6 Ergebnisse

Abbildung 4.5: Links: Venus, Rechts: Cones

4.5 Affiner Parametrisierungs Ansatz

Die nächste Idee war es eine Parametrisierung einzuführen indem die Funktion u(x, y) auf eine affine
Form umgestellt wird. Realisiert wird dies durch eine Ebene der Form ax + by + c, welche für jedes
Segment erzeugt wird. Dies formuliert den Fluss allgemeiner und hat den Vorteil dass nicht länger
von einem konstanten Fluss innerhalb der Segmente ausgegangen wird, sondern von einem affinen.

4.5.1 Affine Parametrisierung

Um den Vorgang etwas genauer zu beschreiben, wird der Vorgang von der Bewegungstensor-Notation
umgeformt. Als erstes wird der Flussvektor w = (u, 1)T auf die affine Form umgestellt, indem u
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4 Segmentationsgestützte Stereorekonstruktion

durch ax + by + c ersetzt wird. Danach kann w in zwei Vektoren aufgespalten werden, wobei p die
Flussvariablen beinhaltet.

(4.26) w =
(

u

1

)
=
(

ax + by + c

1

)
=
(

x y 1 0
0 0 0 1

)
︸ ︷︷ ︸

M

·


a

b

c

1


︸ ︷︷ ︸

p

Dies kann nun in die Bewegunstensor-Notation eingesetzt werden. Um schließlich wieder die be-
kannte Form zu erhalten, wird der vordere Teil transponiert und anschließend die beiden Vektoren
MT und M in den Tensor hinein multipliziert.

(4.27) wT Jw = (Mp)T J(Mp) = (pT MT )J(Mp) = pT Jp

wobei J für folgende Matrix steht:

(4.28) J =


f2

xx2 f2
xyx f2

xx fxftx

f2
xxy f2

xy2 f2
xy fxfty

f2
xx f2

xy f2
x fxft

ftfxx ftfxy ftfx f2
t


Die Besonderheit im Gegensatz zu den bisherigen Ansätzen ist der, dass nun die Stelle des Pixel x, y,
Einfluss auf das Ergebnis hat. Durch Anwendung der Parametrisierung wird schlussendlich der finale
Ansatz erzeugt, welcher die letzte Stufe dieser Arbeit darstellt.

(4.29)

E(a, b, c) =
m∑

l=1
ΨD

(
1

|Ωl|

∫
Ωl

3∑
i=1

(f2i(x + (axl + byl + c), y) − f1i(x, y))2dxdy

)

+ α
m∑

l=1

1
|N(l)|

∑
j∈N(l)

ΨS((al − aj)2 + (bl − bj)2 + (cl − cj)2)

4.5.2 Minimierung

Die Minimierung hat sich in der Hinsicht geändert, dass nicht länger nur eine Gleichung vorhanden
ist, sondern gleich drei. Dies hat den Grund, dass der Fluss nicht mehr ausschließlich durch u
beschrieben wird, sondern durch die Parameter a, b, c.
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4.5 Affiner Parametrisierungs Ansatz

Ableitung nach a:

(4.30)

0 = Ψ′
D · 1

|Ωl|

∫
Ωl

3∑
i=1

(f2i(x + (axl + byl + c), y) dxdy − f1i(x, y))

·
∫

Ωl

3∑
i=1

f2ix(x + (axl + byl + c), y) dxdy · x

+ α
Nl + Nj

Nl · Nj

∑
j∈N(l)

Ψ′
S · (al − aj)

Ableitung nach b:

(4.31)

0 = Ψ′
D · 1

|Ωl|

∫
Ωl

3∑
i=1

(f2i(x + (axl + byl + c), y) dxdy − f1i(x, y))

·
∫

Ωl

3∑
i=1

f2ix(x + (axl + byl + c), y) dxdy · y

+ α
Nl + Nj

Nl · Nj

∑
j∈N(l)

Ψ′
S · (bl − bj)

Ableitung nach c:

(4.32)

0 = Ψ′
D · 1

|Ωl|

∫
Ωl

3∑
i=1

(f2i(x + (axl + byl + c), y) dxdy − f1i(x, y))

·
∫

Ωl

3∑
i=1

f2ix(x + (axl + byl + c), y) dxdy

+ α
Nl + Nj

Nl · Nj

∑
j∈N(l)

Ψ′
S · (cl − cj)

mit

(4.33) Ψ′
D = Ψ′(Ĵ11a2 + Ĵ22b2 + Ĵ33c2 + 2Ĵ12ab + 2Ĵ13ac + 2Ĵ23bc + 2Ĵ14a + 2Ĵ24b + 2Ĵ34c + Ĵ44)

(4.34) Ψ′
S = Ψ′((al − aj)2 + (bl − bj)2 + (cl − cj)2)
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4 Segmentationsgestützte Stereorekonstruktion

Zu beachten ist hier, dass im Datenterm drei mal die Kettenregel angewendet werden muss, wobei
zuerst Ψ abgeleitet wird, dann f2, sowie f2x , welche die Faktoren x und y jeweils erzeugt. Bei den
beiden Ψ′ Funktionen wird das Argument jeweils in die Bewegungstensor-Notation umgeformt und
anschließend die affine Parametrisierung eingesetzt. Die Einträge von J entsprechend dann der weiter
oben beschriebenen Art.

4.5.3 Warping

Das Warping hat sich in der Hinsicht ein wenig geändert, dass nun bei 3 Gleichungen ein Inkrement
eingeführt wird und zwar für alle 3 Variablen a, b, c. Da sich die Ableitungen jedoch nur in dem
Faktor x, y und 1, sowie dem Glattheitsterm unterschieden, wird hier nur die Variante für a erläutert.
Die beiden Anderen können dazu analog berechnet werden.

Im ersten Schritt wird ein Iterationsschema eingeführt, welches anschließend in die Coarse-to-Fine-
Pyramide eingesetzt wird, indem die Inkremente da, db und dc eingeführt werden.

(4.35)

0 = Ψ′
D · 1

|Ωl|

∫
Ωl

3∑
i=1

(f2i(x + (axl + byl + c) + (daxl + dbyl + dc), y) dxdy − f1(x, y))

·
∫

Ωl
f2ix(x + (axl + byl + c), y) dxdy · x

+ α
Nl + Nj

Nl · Nj

∑
j∈N(l)

Ψ′
S · (al + dal − aj − daj)

Nun kann mit der Taylorreihe um den Punkt (x + (ax + by + c)) nach da, db und dc linearisiert
werden.

(4.36)

f2(x + (axl + byl + c) + (daxl + dbyl + dc), y) ≈ f2(x + (ax + by + c), y)

+
(

x + (ax + by + c) + (dax + day + dc) − x − (ax + by + c)
y − y

)
·
(

f2x(x + (ax + by + c), y)
f2y (x + (ax + by + c), y)

)

was ausmultipliziert und in die alte Gleichung eingesetzt folgendes ergibt:

(4.37)
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4.5 Affiner Parametrisierungs Ansatz

0 = Ψ′
D · 1

|Ωl|

∫
Ωl

3∑
i=1

(f2ixx · da + f2ixy · db + f2ix · dc + f2i(x + (ax + by + c), y) − f1i(x, y)︸ ︷︷ ︸
≈fit

dxdy)

·
∫

Ωl

3∑
i=1

f2ix(x + (axl + byl + c), y) dxdy · x

+ α
Nl + Nj

Nl · Nj

∑
j∈N(l)

Ψ′
S · (al + dal − aj − daj)

Multipliziert man die Gleichung aus und zieht das Integral mit der Farbe in den Bewegungstensor
erhält man die finale Form der Ableitungen welche anschließend gelöst werden kann:

Für da:

(4.38)

0 = Ψ′
D · 1

|Ωl|
(Ĵ11da + Ĵ12db + Ĵ13dc + Ĵ14) + α

Nl + Nj

Nl · Nj

∑
j∈N(l)

Ψ′
S · (al + dal − aj − daj)

Für db:

(4.39)

0 = Ψ′
D · 1

|Ωl|
(Ĵ12da + Ĵ22db + Ĵ23dc + Ĵ24) + α

Nl + Nj

Nl · Nj

∑
j∈N(l)

Ψ′
S · (bl + dbl − bj − dbj)

Für dc:

(4.40)

0 = Ψ′
D · 1

|Ωl|
(Ĵ13da + Ĵ23db + Ĵ33dc + Ĵ34) + α

Nl + Nj

Nl · Nj

∑
j∈N(l)

Ψ′
S · (cl + dcl − cj − dcj)

4.5.4 Lösung

Alle drei Gleichungen werden nun gleichzeitig gelöst und nach jedem Level geupdated. Auf der
letzten Ebene angekommen wird der Fluss wieder auf u mit u = ax + by + c zurückgemappt.

(4.41)

0 = Ψ′
D · 1

|Ωl|
(Ĵ11da + Ĵ12db + Ĵ13dc + Ĵ14) + α

Nl + Nj

Nl · Nj

∑
j∈N(l)

Ψ′
S · (al + dal − aj − daj)
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(4.42)

Ψ′k
D

1
|Ωl|

Ĵ11dak
l + Ψ′k

S α
Nl + Nj

Nl · Nj

∑
N(l)

dak
l + Ψ′k

S α
Nl + Nj

Nl · Nj

∑
j∈N(l)

dak
j

= Ψ′k
D

1
|Ωl|

(−Ĵ12dbk
l − Ĵ13dck

l − Ĵ14) − Ψ′k
S α

Nl + Nj

Nl · Nj

∑
j∈N(l)

(al − aj)

(4.43)

dak+1
l = (1 − ω)dak

l

+ ω

Ψ′k
S

1
|Ωl|(−Ĵ12dbk

l − Ĵ13dck
l − Ĵ14) + Ψ′k

S α
Nl+Nj

Nl·Nj

∑
j∈N−

l
(ak+1

j + dak+1
j − ak+1

l )

Ψ′k
D

1
|Ωl| Ĵ11 + Ψ′k

S α
Nl+Nj

Nl·Nj

∑
N(l) 1


+ ω

Ψ′k
S α

Nl+Nj

Nl·Nj

∑
j∈N+

l
(ak

j + dak
j − ak

l )

Ψ′k
D

1
|Ωl| Ĵ11 + Ψ′k

S α
Nl+Nj

Nl·Nj

∑
N(l) 1


Die anderen beiden Gleichung sind analog zu da:

(4.44)

dbk+1
l = (1 − ω)dbk

l

+ ω

Ψ′k
S

1
|Ωl|(−Ĵ12dak

l − Ĵ23dck
l − Ĵ24) + Ψ′k

S α
Nl+Nj

Nl·Nj

∑
j∈N−

l
(bk+1

j + dbk+1
j − bk+1

l )

Ψ′k
D

1
|Ωl| Ĵ22 + Ψ′k

S α
Nl+Nj

Nl·Nj

∑
N(l) 1


+ ω

Ψ′k
S α

Nl+Nj

Nl·Nj

∑
j∈N+

l
(bk

j + dbk
j − bk

l )

Ψ′k
D

1
|Ωl| Ĵ22 + Ψ′k

S α
Nl+Nj

Nl·Nj

∑
N(l) 1



(4.45)

dck+1
l = (1 − ω)dck

l

+ ω

Ψ′k
S

1
|Ωl|(−Ĵ13dak

l − Ĵ23dbk
l − Ĵ34) + Ψ′k

S α
Nl+Nj

Nl·Nj

∑
j∈N−

l
(ck+1

j + dck+1
j − ck+1

l )

Ψ′k
D

1
|Ωl| Ĵ33 + Ψ′k

S α
Nl+Nj

Nl·Nj

∑
N(l) 1


+ ω

Ψ′k
S α

Nl+Nj

Nl·Nj

∑
j∈N+

l
(ck

j + dck
j − ck

l )

Ψ′k
D

1
|Ωl| Ĵ33 + Ψ′k

S α
Nl+Nj

Nl·Nj

∑
N(l) 1


Erste Ergebnisse sind im folgenden abschnitt zu sehen.
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4.5 Affiner Parametrisierungs Ansatz

4.5.5 Ergebnisse

Abbildung 4.6: Links: Venus, Rechts: Cones
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5 Evaluation

In der Evaluation werden die verschiedenen Entwicklungsschritte miteinander verglichen und analy-
siert. Als Test wurden Bilder des Middlebury Benchmarks verwendet, genauer die Bildersequenzen
von Venus, Tsukuba, Teddy und Cones. Dies sind computergenerierte Bilder, welche extra für den
Test eines Stereo Algorithmus entworfen wurden. Aus diesem Grund kann eine Ground Truth, welche
gleich etwas näher beschrieben wird, erstellt werden, welche die exakte Lösung darstellt und mit
welcher der errechnete Fluss verglichen werden kann. Zunächst folgt jedoch eine kleine Einführung
der Parameter, welche zur Erzeugung der Bilder verwendet wurden.

5.0.6 Alpha

Dieser Parameter ist bereits aus dem Funktional bekannt, er gewichtet den Glattheitsterm im Ver-
hältnis zum Datenterm. So kann entschieden werden, ob mehr auf exakte Farbwerte der Segmente
geachtet werden oder eher ein glattes Ergebnis vorliegen soll.

5.0.7 Sigma

Sigma steht für die Standardabweichung des Gauß-Kern, mit welchem der Grad der Segmentierung
geregelt wird und gleichzeitig für die Vorverarbeitung der Glätte des Bildes steht. Anhand dieser
Segmentierung, wird der Startwert des Algorithmus festgelegt.

5.0.8 Iterationen

Dieser Wert steht für die Anzahl an Iterationen, bei welchem der Algorithmus zum Stillstand kommt
und die bisher errechnete Lösung an die nächste Ebene weitergegeben wird. Zum einen wurde ein
Parameter für die äußere Iteration definiert, welcher für den Lagged-Nonlinearity-Ansatz zuständig ist.
Nach jeder äußeren Iteration wird Ψ′ angepasst und an den Löser übergeben. Der zweite Parameter
steht für die innere Iteration, welcher die Anzahl der Schritte des SOR-Lösers bestimmt.

5.0.9 Omega

Omega gibt den Relaxationsparameter für den SOR-Solver an. Dieser wurde bei allen Lösungen auf
1.95 gesetzt.
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5.0.10 Epsilon

Epsilon steht für die beiden Parameter, mit welcher Ψ eingestellt werden kann. Durch ein kleines
Epsilon kann das Segment jeweils heruntergewichtet werden, wobei ein großer Wert mehr Fokus
darauf legt. Im Prinzip kann so neben Alpha noch etwas feiner gewichtet werden.

5.1 Ground Truth

Die Ground Truth ist ein separates Bild, welches bei dem Prozess mit eingelesen wird um die
berechnete Lösung mit ihr zu vergleichen. Sie ist ein im voraus berechnetes Bild, welches zu 100% der
perfekten Lösung entspricht. Da die Ursprünglichen Bilder computergeneriert sind, ist für jeden Pixel
der Fluss bekannt und kann in der Ground Truth durch einen Wert beschrieben werden. Durch die
Differenz dieses Wertes mit der berechneten Lösung kann so schnell erkannt werden, ob der Fluss
stimmt oder nicht.

5.2 Okklusions Map

Die Okklusions Map ist ein binäres Bild, welche alle Pixel schwarz markiert, welche vom Algorithmus
nicht berechnet werden können. Durch den anderen Blickwinkel der beiden Kameras auf die Szene,
sind Bereiche nur auf einem der Bilder wiederzufinden, deshalb werden alle Pixel, welche nicht
gematched werden können, bei der Evaluation des Fehler nicht berücksichtigt.

5.3 Bad Pixel Error

Als Testverfahren um die verschiedenen Lösungen zu evaluieren wurde der Bad Pixel Error verwendet.
Dieser nimmt die berechnete Lösung und vergleicht diese Pixel für Pixel mit der Ground Truth, wobei
die Differenz kleiner als ein vorher bestimmter Threshold sein, muss um als korrekter Pixel erkannt
zu werden. Als Threshold wurde in allen Bilder der Wert 1 verwendet, was bedeutet, dass alle Pixel
die um mehr als 1 Pixel an der eigentliche Lösung verschieden sind, als falsche Pixel markiert werden.
Der finale Fehler entsteht dann durch eine Prozentuale Angabe der falschen Pixel wobei 0% ein in
allen Belangen korrektes Bild angibt.

5.4 Vergleich

Im Folgenden Abschnitt werden alle Schritte, welche bis hin zum finalen Algorithmus benötigt
wurden, einzeln evaluiert und miteinander verglichen. Dazu wurden alle 4 Testsequenzen mit den
Algorithmen berechnet, welche anschließend mit dem Bad Pixel Error bewertet wurden. Anschließend
wird jeweils auf die Vor- und Nachteile der jeweiligen Varianten näher eingegangen.
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5.4 Vergleich

Abbildung 5.1: Oben Links: Venus Testsequenz, Oben Mitte: Grount Truth, Oben Rechts: Kon-
stanter Ansatz mit α = 75, σ = 0.3 und einem Bad Pixel Error von 7.8%, Unten
Links: Robuster konstanter Ansatz mit α = 177, σ = 0.3, ϵD = 0.05, ϵS = 0.0017 und
einem Error von 3.39%, Unten Mitte: Affiner Ansatz mit α = 6493814, σ = 0.3 und
einem Error von 8.7%, Unten Rechts: Robuster affiner Ansatz mit α = 237137, σ =
0.3, ϵD = 0.05, ϵS = 0.00056 und einem Error von 5.6%

Bei der Venus Sequenz war vor allem der Bereich der Kanten und die Fläche der Zeitungen zu beachten.
Zu erkennen ist, dass mit der konstanten Methode die Form der Zeitungen gut getroffen wurde,
jedoch die Kanten ein recht unscharfes Bild ergeben und zum Teil weiter unten auch miteinander
verschmelzen. Innerhalb der Zeitung gab es hauptsächlich bei der Schrift Probleme und die Fläche
an sich war nicht so glatt wie erhofft. Durch den robusten konstanten Ansatz wurde das Problem
der unscharfen Kanten größtenteils behoben. Das Bild ist allgemein schärfer, die Brücke zwischen
beiden Zeitungen ist verschwunden und auch die Fläche besteht aus einem gleichmäßigerem Grün.
Der affine Ansatz hat sich im Vergleich mit der konstanten Variante nur marginal auf die Qualität
ausgewirkt und ist an bestimmten Stellen etwas schlechter. Gerade bei dünnen Objekten wie der
Schrift kamen einige Fehler hinzu. Diese konnten allerdings durch die robuste Ψ Funktion wieder
zum Teil korrigiert werden.
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Abbildung 5.2: Oben Links: Tsukuba Testsequenz, Oben Mitte: Grount Truth, Oben Rechts:
Konstanter Ansatz mit α = 153, σ = 0.3 und einem Bad Pixel Error von 13.2%, Unten
Links: Robuster konstanter Ansatz mit α = 649, σ = 0.3, ϵD = 0.05, ϵS = 0.0017 und
einem Error von 7.4%, Unten Mitte: Affiner Ansatz mit α = 4869674, σ = 0.3 und
einem Error von 11.88%, Unten Rechts: Robuster affiner Ansatz mit α = 865964, σ
= 0.3, ϵD = 0.05, ϵS = 0.00017 und einem Error von 7.2%

Bei der Tsukuba Sequenz bestand die Schwierigkeit darin, den gezeigten Objekten die richtige Tiefe
zuzuordnen, da viele Objekte durch ein anderes oder gleich mehrere Objekte verdeckt wurden.
Gerade der Bereich der Lampe mit der dünnen Halterung wurde oft nicht richtig erkannt, da dort
gleich drei verschiedene Tiefen innerhalb weniger Pixel auftreten. So hat der konstante Ansatz zwar
die Form der Lampe gut wiedergegeben, dabei aber die Tiefe an den Rändern falsch zugeordnet.
Durch die Robustheit wurden die Kanten wieder glatter und die Flächen gleichmäßiger, dabei gingen
allerdings dünne Teile der Halterung verloren. Die affine Methode hat auch hier die etwas feineren
Objekte zurückgebracht, leidet jedoch im Großen und Ganzen an den gleichen Fehlern wie bereits
die konstante Variante. Kombiniert mit der robusten Ψ Funktion, erhält man schließlich wieder die
Glattheit aus dem robusten konstanten Ansatz mit dem Vorteil dass nun die dünnen Objekte besser
erhalten wurden. Teile die zuvor noch dem Tisch zugeordnet wurden, werden nun korrekt an der
Lampe platziert.
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5.4 Vergleich

Abbildung 5.3: Oben Links: Teddy Testsequenz, Oben Mitte: Grount Truth, Oben Rechts: Kon-
stanter Ansatz mit α = 86, σ = 0.3 und einem Bad Pixel Error von 20.6%, Unten
Links: Robuster konstanter Ansatz mit α = 273, σ = 0.3, ϵD = 0.05, ϵS = 0.0017 und
einem Error von 14.3%, Unten Mitte: Affiner Ansatz mit α = 6493815, σ = 0.3 und
einem Error von 22.2%, Unten Rechts: Robuster affiner Ansatz mit α = 273841, σ =
0.3, ϵD = 0.05, ϵS = 0.00056 und einem Error von 18.5% [SS03].

Die Teddy Testsequenz ist von den 4 evaluierten Bildern diejenige, welche allgemein den größten
Fehler hatte. Dies liegt daran, dass gerade im vorderen Bereich eine große Anzahl an okkludierten
Pixel zu finden sind, welche durch die schwarzen Bereiche der Ground Truth dargestellt werden. Der
konstante Ansatz hinterlässt dort ein sehr unscharfes Bild, wobei die Konturen des Bären und Teile
der Pflanzen noch zu erkennen sind. Die Kanten werden jedoch erst durch die robuste Variante wieder
etwas schärfer, wodurch der Kamin des Hauses besser dargestellt wird. Auch der Teddy kommt hier
besser zum Vorschein. Die affine Methode hat auch hier Einfluss auf die etwas kleineren Bereiche,
welche besser erhalten werden. Der Teddy der im konstanten Ansatz noch mit dem rechten Rand
verschmolzen war, ist nun deutlich im Bereich des Armes von ihm getrennt. Im finalen Ansatz wird
dies noch etwas fortgeführt. Hier werden Teile der Pflanze, welche zuvor noch ein großer Fleck
waren, nun besser dargestellt und besser vom Hintergrund getrennt.
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Abbildung 5.4: Oben Links: Cones Testsequenz, Oben Mitte: Grount Truth, Oben Rechts: Kon-
stanter Ansatz mit α = 100, σ = 0.3 und einem Bad Pixel Error von 13.9%, Unten
Links:Robuster konstanter Ansatz mit α = 421, σ = 0.3, ϵD = 0.05, ϵS = 0.0017 und
einem Error von 8.8%, Unten Mitte: Affiner Ansatz mit α = 6493815, σ = 0.3 und
einem Error von 15.34%, Unten Rechts: Robuster affiner Ansatz mit α = 273841, σ
= 0.3, ϵD = 0.05, ϵS = 0.00017 und einem Error von 10.7% [SS03].

Cones besteht aus einer Menge kleiner Kegel, welche in vielen verschiedenen Tiefen platziert sind
und zum Teil sich gegenseitig verdecken. Eines der Probleme war die Tasse im rechten unteren
Bereich des Bildes. Die dünnen Bleistifte gingen leicht verloren und konnten von keinem der Ansätze
korrekt zugeordnet werden. Der konstante Ansatz konnte jedoch bereits viele der Kegel der richtigen
Tiefe zuordnen, leidet aber wie schon zuvor an unscharfen Kanten. Dies konnte durch den robusten
Ansatz zum Teil behoben werden, wobei besonders die Maske sehr gut getroffen wurde. Die beiden
affinen Ansätze bringen wieder die bereits Bekannten Vorteile mit sich, welche im hinteren Bereich
des Zaunes zu erkennen sind. Viele Holzlatten welche zuvor miteinander verschmolzen waren, sind
nun wieder zu erkennen.

Im Allgemeinen lässt sich über die einzelnen Varianten sagen, dass die subquadratische Bestra-
fungsfunktion einen sehr starken Einfluss auf das spätere Ergebnis hat. Die Kanten werden um
ein vielfaches schärfer und die Flächen gleichmäßiger. Die affine Parametrisierung hat nur unter
bestimmten Voraussetzungen ein positiven Einfluss, zum einen wenn es um dünne und kleine Objekte
geht, die dadurch besser erhalten werden.
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5.5 Middlebury Benchmark

5.5 Middlebury Benchmark

Das Middlebury Benchmark [mid] ist eine Homepage der Computer Vision, welche es sich zur
Aufgabe gemacht hat, verschiedene entwickelte Algorithmen im Bereich des Stereo Matchings oder
des Optischen Flusses miteinander zu vergleichen. Zum Testen wurden mehrere auf das Problem
angepasste Testsequenzen entwickelt, welche die Schwierigkeiten des Alltags repräsentieren sollen.
Dort wird mithilfe der Ground Truth, Okklusions Map und anderen Statistiken eine Rangliste der
dort hochgeladenen Algorithmen erstellt. Um für ein faires Ergebnis zu sorgen, müssen allerdings
alle 4 Bilder mit den gleichen Parametern berechnet werden und dürfen nicht auf jedes Bild einzeln
angepasst sein.

Abbildung 5.5: Vergleich mit anderen Algorithmen der Middlebury Benchmark Homepage Von
links nach rechts: Tsukuba, Venus, Teddy, Cones

Bild 5.5 zeigt nun einen kleinen Ausschnitt dieser Rangliste, in welcher dieser Algorithmus gelb
gekennzeichnet ist. Die Wahl des Ansatzes fiel auf den robusten affinen Ansatz, da dieser das meiste
Potential der Algorithmen hat und allgemein zufriedenstellende Ergebnisse erzielt. Die erste Spalte
von links steht für den Rang, daneben ist die Analyse der Tsukuba Sequenz, gefolgt von Venus, Teddy
und Cones. Die letzte Spalte steht für den durchschnittlichen Bad Pixel Error aller Tests. Es wurden
3 Tests für jedes der Bilder durchgeführt. Von links nach rechts ist dies zum einen der Vergleich
mit einer Okklusions Map, bei welchem die Okkludierten Pixel nicht in den Fehler mit einfließen.
Zum anderen ein Vergleich ohne Okklusions Map, bei der jeder Pixel Einfluss auf den Fehler hat,
okkludiert oder nicht. Der letzte Test war auf die Kanten der jeweiligen Bilder fokussiert, hier wurden
nur umliegende Bereich der Kanten gewertet. Zu erkennen ist, dass gerade bei den Kanten ein sehr
hoher Fehler erzielt wird, welcher auch die Hauptproblematik vieler anderen Verfahren ist. Durch
eine bessere Erhaltung der kanten, lässt sich somit ein weit besseres Ergebnis erzielen.
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6 Zusammenfassung und Ausblick

Im letzten Kapitel dieser Arbeit werden die einzelnen Schritte des Algorithmus, sowie die Ergebnisse
noch einmal zusammengefasst. Darüber hinaus wird im Ausblick etwas näher auf die zukünftige
Entwicklung eingegangen, sowie ein paar Möglichkeiten angesprochen, welche den Algorithmus
erweitern.

6.1 Zusammenfassung

Das Ziel dieser Arbeit war einen segmentationsgestützen Algorithmus zu entwerfen, welcher die
räumliche Tiefe mithilfe eines Optischen Fluss Ansatzes berechnet. Angefangen wurde mit einem
Orthoparallelen Kameraaufbau, welcher einzig Verschiebungen in der x-Achse zulässt, worauf zuerst
der allgemeine Optische-Fluss-Ansatz auf Farbe und die angesprochene Stereoform umgestellt wurde,
welche als Baseline für die nächsten Schritte diente. Diese konnte darauf in einen segmentierten
Ansatz umgestellt werden, indem die Bilder zuvor mit der Wasserscheidentransformation segmentiert
und die Objekte geclustert wurden. Da es sich um ein Minimierungsproblem handelt, musste das
Funktional mithilfe des Euler-Lagrange Frameworks nach dem Fluss abgeleitet werden. Um jedoch
größere Verschiebungen berechnen zu können, wurde die Lineariserung bis in den numerischen
Teil hinausgezögert und alles in eine Warping-Strategie eingebaut, genauer gesagt in eine Coarse-
to-Fine-Pyramide integriert. Anschließend wurde die Lösung schrittweise für verschieden große
Auflösungen berechnet, wobei mit der gröbsten Auflösung begonnen wird und diese dann in die
nächsthöhere Auflösung übertragen wird. Dadurch wurden die großen Verschiebung in viele Kleine
aufgeteilt. Danach wurde alles durch einen iterativen SOR-Löser berechnet. Dieser Ansatz konnte
mithilfe weiterer Konzepte allerdings verbessert werden. Das erste bestand darin, den Ansatz robuster
gegen Ausreißer zu machen, dies geschah durch die Funktion Ψ, welche Fehler in der Zuordnung
nicht länger quadratisch sondern subquadratisch bestraft, worauf Ausreißer an Einfluss verloren.
Dies kam besonders der Erhaltung der Kanten zugute und erzeugte ein gleichmäßigeres Bild. Der
letzte Schritt war die Umwandlung auf ein affines Modell, welches für jedes Segment eine Ebene mit
den Parametern a, b und c berechnete und so den Fluss allgemeiner darstellte.

6.2 Ausblick

Die Richtung in die sich die Verfahren entwickeln geht klar zu den segmentierten Varianten, da viele
Einsatzgebiete solcher Algorithmen einen echtzeitfähigen Algorithmus voraussetzen, also eine schnel-
le Berechnung erfordern, worauf zur Not eine nicht zu 100% korrekte Lösung in Kauf genommen wird.
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6 Zusammenfassung und Ausblick

Nichtsdestotrotz bestehen durchaus weitere Möglichkeiten, die Ergebnisse zu verbessern und trotz-
dem eine schnellen Algorithmus zu bekommen. Der affine Ansatz kann durch weitere Gewichtungen
des Glattheitsterm besser auf die jeweiligen Parameter a, b, c angepasst werden, wodurch ein besseres
Ergebnis entsteht. Zudem können Modifikationen am Datenterm vorgenommen werden, indem er
durch eine Gradientenkonstanz erweitert wird, welche Pixel trotz Änderung der Beleuchtung richtig
zuordnet. Eine weitere Möglichkeit wäre einen besseren Segmentierungsalgorithmus zu verwenden,
wie den der Mean-Shift Segmentierung [CM02], welche nicht kantenbasiert, sondern regionsbasiert
ist. Der größte Schritt wird allerdings durch die Erhaltung der Kanten erzielt, welche in diesem
Algorithmus die größten Schwachstellen sind. Der hier entwickelte Algorithmus bietet aber eine
solide Grundlage, welche in Zukunft weiter ausgebaut und auf verschiedene Anwendungsgebiete
angepasst werden kann.
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