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Kurzfassung

Eine der wichtigsten Aufgabenstellungen in der Computer-Vision ist die Berechnung des Optischen
Flusses und das damit nah verwandte Stereo Matching. Das ultimative Ziel dieser beiden Techniken ist
die Bewegung der Objekte in einer Bildsequenz zu schitzen und diese anschlieffend dreidimensional
zu rekonstruieren. Viele Algorithmen setzen dabei auf einen pixelbasierten Ansatz. Sie berechnen die
Korrespondenzen der Bilder auf Pixelebene und weisen deshalb eine hohe Laufzeit und Komplexitit
auf. Die Algorithmen sind somit nicht geeignet, wenn eine schnelle Berechnung benétigt wird.
Das Ziel dieser Arbeit ist die Entwicklung eines Algorithmus, welcher auf einem segmentbasierten
Ansatz aufbaut. Hierbei werden die Pixel des Bildes zu einzelnen Objekten zusammenfasst. Durch die
einstellbare Segmentierung wird die Komplexitit des zu 16senden Problems stark verringert und somit
die Laufzeit verbessert. Zudem erhoht sich die Robustheit durch die segmentweise Zusammenfassung
der Bildinformation.

Abstract

One of the most important tasks in computer-vision is the computation of the optical flow and the
closely related stereo matching. The ultimate goal of these techniques is to estimate the movement
of objects in an image sequence and subsequently to reconstruct a three-dimensional scene. Many
algorithms rely on a pixel-based approach. They calculate the correspondence for each pixel and
thus have a high runtime and complexity. Therefore, these algorithms are not suitable when fast
calculations are required. The aim of this work is to develop an algorithm which is based on a
segment-based approach, which merges the pixels of the image into individual objects. Due to
the adjustable segmentation, the complexity of the problem to be solved is greatly reduced, thus
improving the runtime. In addition, the robustness is increased by the segment-wise Summary of
image information.
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1 Einleitung

Mit zunehmendem Fortschritt der Technik, werden immer mehr Bereiche des Alltags automati-
siert und es wird versucht die Handhabung von Aufgaben zu vereinfachen. Was anfangs nur der
Industrie in der Fertigungstechnik und spéteren Qualititssicherung vorbehalten war, hat sich in
den letzten Jahren stark in den Alltag der Menschen integriert. Was frither noch manuell und mit
viel Aufwand oder Gefahren zu bewéltigen war, kann heute automatisiert und ohne Einfluss eines
Menschen durchgefithrt werden, was zum einen auch an der Leistung der Hardware lag, welche
vor 1-2 Jahrzehnten nicht die nétige Leistung aufbrachte um solch rechenintensive Vorgiange in
Echtzeit zu berechnen. Gerade die Automobilindustrie, Medizin oder Robotik setzen immer mehr
auf computerassistierende Elemente, um die Fahrt sicherer zu machen und eine Operation oder
Diagnose einfacher durchfithren zu kénnen. Die Computer-Vision, welche sich damit beschéftigt,
Computern das Sehen mithilfe von Sensoren oder Kameras beizubringen, befasst sich mit zwei der
interessantesten Aufgabenstellungen in diesem Zusammenhang. Zum einen gibt es den Optischen
Fluss, welcher versucht, die Pixel eines Bildes mit denen eines anderen, welches zeitlich nach dem
Ersten spielt, zu verbinden und so die Bewegung einer Videosequenz oder Bilderfolge berechnet. Dies
ist zum Beispiel in den Luxusklassen vieler Automobilhersteller integriert, um bei Auffahrunfillen
oder gefihrlichen Situationen mit Passanten automatisch den Bremsvorgang einleiten zu kdnnen. Was
sich aus der Sicht eines Menschen leicht anhoért, ist fiir eine Maschine jedoch schwer zu bewaltigen,
da fiir sie lediglich Bildpunkte mit einem bestimmten Wert vorliegen, aus welcher sich keinerlei
Bedeutung erkennen ldsst. Nah verwandt damit ist das sogenannte Stereo Matching, welches nicht
eine Bilderfolge verwendet, sondern zwei gleichzeitig geschossene Fotos desselben Objekts zeigen und
nun versucht, die Szene raumlich darzustellen. Diese Problemstellung ist oft in der Robotik zu finden,
um Robotern die Tiefenwahrnehmung der Umgebung beizubringen. Viele bisherige Algorithmen
setzten jedoch auf einen pixelbasierten Ansatz, welcher jeden Pixel des Bildes zuordnet, was viel Zeit
beansprucht und zu Ungenauigkeiten fithren kann. Aus diesem Grund geht die Entwicklung solcher
Algorithmen in eine Richtung, welche die Bilder zuvor segmentiert, also versucht die Objekte des
Bildes zusammenzufassen und anschlieflend die Verschiebung des kompletten Objektes berechnet.
Das Ziel dieser Arbeit ist es nun einen Algorithmus vorzustellen, welcher zuerst die Bilder mit einem
Segmentierungsalgorithmus bearbeitet, wodurch die Pixel eines Objektes zusammengefasst werden
und anschlieffend durch einen Optischen Fluss Ansatz die Tiefe der Szene berechnet. Durch die
kleinere Anzahl an sich zu verschiebenden Elementen verringert sich die Laufzeit, je nach der stirke
der Segmentierung, und es entsteht eine genauere Schitzung des Bildes.

1.1 Aufbau der Arbeit

Die Arbeit ist in 6 Kapitel unterteilt. In der Einleitung wird eine Einfithrung und eine kleine Motivation
beschrieben, gefolgt von verwandten Arbeiten, welche sich mit dhnlichen Verfahren beschéftigen. Ka-



1 Einleitung

pitel 2 ist eine Einfithrung in die Mathematischen Grundlagen, welche zum Verstindnis des spateren
Algorithmus benotigt werden. Kapitel 3 handelt von der Herleitung und vollstdndigen Beschreibung
der einzelnen Schritte eines pixelbasierten Ansatzes, welcher als Grundlage fiir die Entwicklung einer
segmentierten Variante dient. Kapitel 4 behandelt den Kern dieser Arbeit, in welchem die wichtigsten
Schritte der segmentierten Variante vorgestellt und bis zum finalen Algorithmus beschrieben werden.
Anschlieflend folgt eine Evaluation der Ergebnisse und ein Vergleich mit anderen Arbeiten. Die
Arbeit endet schliefSlich mit einer Zusammenfassung und einem Ausblick.

1.2 Verwandte Arbeiten

Der folgende Abschnitt handelt iber Arbeiten, welche einen Algorithmus vorstellen der ebenfalls auf
einer Segmentierung basiert und das Problem auf eine andere Art und Weise angehen als diese Arbeit.
Diese weisen zu einem gewissen Grad Parallelen auf, welche auf die aktuelle Arbeit Einfluss haben.

1.2.1 Cooperative Optimization

Das erste Paper von Wang und Zheng mit dem Titel ,,A Region Based Stereo Matching Algorithm
Using Cooperative Optimization“[WZ08] benutzt einen Algorithmus, welcher auf einem lokalen
Ansatz basiert. Das Bild wird zuerst mit dem Mean-Shift Algorithmus segmentiert und danach
mit einem lokalen Korrelationsalgorithmus gelost, welches eine Grundlage der Lésung ergibt und
spéter durch weitere Berechnungen gegen Ausreifler korrigert werden soll. Danach wird ein affiner
Ansatz implementiert, der eine Ebene fiir jedes Segment berechnet basierend auf einer initialen
Schitzung eines Korrelationsalgorithmus. Danach wird die Normale zu jeder Ebene mittels eines
Eigenwertproblems berechnet, wobei die Losung der Eigenvektor ist, welcher zu dem kleinsten
Eigenwert gehort . Als niachstes wird ein lokaler Glattheitsterm aufgestellt, welche das zu berechnende
Segment und all seine Nachbarn enthilt, auch Subtargets genannt. Danach werden alle Subtargets
alternierend gelost.
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Abbildung 1.1: Abbildung der lokalen Losung der Segmente mit ihren Nachbarn des Cooperative
Optimmization Algorithmus [WZ08]

1.2.2 Global Framework for Stereo Computation

Das Paper von Tao et al. mit dem Titel ,,A Global Matching Framework for Stereo Computation
“[TSK01] stellt ein Framework zur berechnung der Tiefe vor, welches das Bild zuerst segmentiert und
anschlieffend mit einem lokalen Fenster bestimmte Stellen des Bildes matched. Danach wird versucht
den berechneten Fluss fiir jedes Segment mithilfe der benachbarten Segmente zu verbessern, indem
Nachbarn in der Tiefe verdndert werden und je nach Verbesserung oder Verschlechterung der Losung
dieser Wert itbernommen wird. Da durch die aufwéndige Suche sehr viele Vergleiche durchgefiihrt
werden miissen, wird eine Warping Strategie eingefiihrt, welche das Referenzbild auf das zweite Bild
registriert. Nun wird eine 3-Schichten-Segmentierung eingefiigt, in welcher das zu berechnenden
Segment der Richtigen Tiefe zugeordnet wird. Dies geschieht dadurch, dass das aktuelle Segment
geloscht wird und die jeweiligen Nachbarn auf verschiedene Tiefen gesetzt werden. Als néchstes
wird ermittelt, zu welcher Tiefe das Segment besser passt, indem alle Moglichkeiten durchprobiert
werden und die beste Losung schlie8lich ausgewahlt wird.
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Abbildung 1.2: Abbildung des Warping Vorgangs. Das Bild wird gewarped, das Segment geléscht
und mehrere verschiedene Tiefen durchprobiert [TSKO01].
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2 Grundlagen

2.1 Mathematisches Grundwissen

Zuerst folgt eine Erklarung der wichtigsten Begriffe und Operatoren, welche fiir das spatere Ver-
standnis der Algorithmen und verschiedenen Berechnungen benétigt werden. Zur besseren Ver-
anschaulichung werden Beispiele fiir Funktionen mit einer sowie mit mehreren Veranderlichen
angegeben.

2.1.1 Funktion

Bei Funktionen wird zwischen Skalarwertigen Funktionen und Vektorwertigen Funktionen unter-
schieden.

Skalarwertige Funktionen sind Funktionen, welche von einer Menge R™ — R abbilden. Die Dimensi-
on n steht fiir die Anzahl der Veranderlichen, jedoch wird auch bei mehreren Variablen auf ein Skalar
abgebildet. Solche Funktionen sind zum Beispiel:

(21) f(z) =22 +2z+2

(2.2) f(x,y,2) = 2?4+ y? 4 22

Vektorwertige Funktionen unterscheiden sich in der Hinsicht, dass von R™ — R™ abgebildet wird,
also nicht mehr wie zuvor auf ein Skalar sondern stattdessen auf einen Vektor. Beispiele hierfiir
sind:

(23) f(z) = (coiw

sin(x)
(24) f(x,y,2) = | cos(y)
cos(z)

11



2 Grundlagen

2.1.2 Differential

Das Differential beschreibt die Veranderung einer Funktion tiber eine bestimme Variable x. Also im
Allgemeinen die Steigung an jedem Punkt der Funktion. Unterschieden wird zum einen zwischen
dem Differenzenquotienten und dem Differentialquotient.

Differenzenquotient:

25) plag,a) = L) =T 120)

T1 — Xo
Wobei xg und 1 fiir zwei Punkte stehen und f fiir die abzuleitende Funktion. Dabei beschreibt 1 — g
den Intervall von welchem die Steigung berechnet werden soll, was besonders im diskreten Bereich
wichtig ist, da nicht nur kontinuierliche Funktionen betrachtet werden, sondern auch Diskrete, welche
nur in bestimmten Abstianden definiert sind.

Differentialquotient:

@6) lim J(zo + h})b — f(zo)

Wird nun x1 — x¢ durch h ersetzt und lasst h gegen 0 laufen, also den Intervall unendlich klein setzt
und somit die Steigung an jedem Punkt der Funktion berechnet, erhélt man den Differentialquotienten,
welcher allgemein als Ableitung einer Funktion bezeichnet und mit % abgekiirzt wird, wobei x die
Variable darstellt nach welcher man ableitet.

2.1.3 Integral

Das Integral ist neben dem Differential einer der wichtigsten Bereiche der Analysis. Es beschreibt
die Flache welche von der Funktion und der x-Achse eingeschlossen wird. Unterschieden wird zum
einen zwischen dem bestimmten Integral, welches einem Intervall die jeweils dazugehoérige Flache
zuordnet und dem unbestimmten Integral, welches aus der Menge aller Stammfunktionen besteht.

Bestimmtes Integral:

b
27) / Flz)da

wobei die Punkte @ und b die Grenzen der Fliche markieren und f(x) die zu integrierende Funktion
ist, dz steht fiir die Variable nach der integriert wird.

Unbestimmtes Integral:
(2.8) / f(x)de = F(z) + C

12



2.1 Mathematisches Grundwissen

wobei F'(x) fur eine Stammfunktion von f(x) steht. Leitet man sie ab, erhilt man wieder die
urspriingliche Funktion f(x), somit existieren unendlich viele Stammfunktionen, da das Absolutglied
C' durch das differenzieren wegfallt.

2.1.4 Nabla Operator

Der Nabla Operator V ist ein Symbol um bestimmte Differentialoperatoren wie den Gradienten
oder den Laplace Operator zu beschreiben, auf welchen spiter noch etwas eingegangen wird. Er ist
definiert als:

(2.9) V =

Floglogle

und besteht aus den partiellen Ableitungen -2 B2 88?; 5, Fur Funktionen mit mehreren Variablen

erweitert sich der Vektor entsprechend.

2.1.5 Gradient

Der Gradient ist ein Vektor, welcher fiir jeden Punkt einer Funktion f in die Richtung des stérksten
Anstiegs zeigt. Berechnet wird er durch das Produkt des Nabla Operators und f.

= 2 f(x,y,z2) fo
(2.10) Vf(z,y,2) = | 55 | fle,v,2) = | & f(@,9,2) | = | £,
% agf(l',y,Z) fZ

Betrachten man nun die Funktion f(z,v, 2) = 22y?2? so ist der Gradient von f:

8%E(x2y222) 2:L’y2Z2
211) Vf(z,y,2) = | &(2%y%2%) | = | 2?2922
%(nyQZQ) $2y2 .9

13



2 Grundlagen

2.1.6 Hesse-Matrix

Da spatere Grundlagen auf die Hesse-Matrix zuriickgreifen und sie zum besseren Verstandnis beitragt,
wird nun etwas niher auf sie eingegangen. Die Hesse Matrix ist eine Beschreibung aller zweiten
partiellen Ableitungen einer Funktion f:

2 2
36%2.]0(1’71/72) daxyf(x Y,z ) 6agczf(x Y,z ) fx:z: fxy f:z:z
(212) H(f(l',y, Z)) = ai/?xf(x y7 ) (92,(2 f(.%' y7 ) 8yzf<x y7 ) = fya: fyy fyz
adsz<$ Y,z ) azyf($ Y,z ) Bz2 f(xay7 Z) fzz ny fZZ
wobei -2 8— fiir die Ableitung nach z und danach nach y steht. Da die Ableitung -2 ax und gyw und alle

anderen gemlschten Ableitungen dem Gleichen entsprechen und die Matrix somit in der Diagonalen
gespiegelt ist, kommt es vor, dass der untere Teil manchmal weggelassen wird.

2.1.7 Spur einer Matrix

Als die Spur einer Matrix bezeichnet man die Summe der Elemente der Hauptdiagonalen, welche
gleichzeitig der Summe der Eigenwerte A entspricht.

(2.13) Spur(A) = Z aj; =ai1 +az+- -+ app = Z Aj
j=1 =

2.1.8 Laplace Operator

Bei dem Laplace Operator A handelt es sich um einen mathematischen Operator welcher gerade
in der Physik eine grofie Rolle spielt. Dort dient er der Berechnung von physikalischen Feldern,
beispielsweise der Ausbreitung der Warme in einem geschlossenem Raum.

Zur Berechnung wird zum einen die Hesse Matrix benétigt

fx:p fxy fxz
(2.14) H(f) = fyac fyy fyz
fzx fzy fzz

von welcher dann die Summe der Hauptdiagonalen berechnet wird. Der Laplace Operator ist somit
die Spur der Hesse Matrix.

(2.15) Af = Spur(H(f)) = faw + fyy + ==

14



2.1 Mathematisches Grundwissen

2.1.9 Funktional

Funktionale unterscheiden sich zu Funktionen in der Hinsicht, dass die Parameter nicht wie bisher
Elemente aus einem Zahlenraum R oder Q sind, sondern aus einem Funktionenraum V, in welchem
jedes Element selbst eine Funktion ist.

(2.16) G(f(x)) = /Q f(x)da

Funktionale sind also Funktionen von Funktionen, welche auf einen skalaren Wert abbilden. Ein Teil-
gebiet der Mathematik, die Variationsrechnung, beschéftigt sich mit Extremale wie der Minimierung
solcher Funktionale, welche auch in dieser Arbeit eine zentrale Rollen spielt. Der wohl wichtigste
Begriff daraus sind die Euler-Lagrange Gleichungen, welche hier nur zur Vollstindigkeit erwahnt
und in einem spateren Kapitel niher erldutert werden.

2.1.10 Differentialgleichung

Differentialgleichungen sind mathematische Gleichungen, welche eine oder mehrere Variablen
enthalten, sowie beliebig viele Ableitungen derselben Funktion auftreten kénnen. Berechnet wird also
nicht wie bisher ein Skalar oder ein Vektor, sondern eine Funktion f, welche die Differentialgleichung
erfullt.

Um dies zu verdeutlichen, ein kleines Beispiel:

217) y=1y

Gesucht ist eine Funktion y, welcher ihrer Ableitung entspricht. Durch Trennung der Variablen kann
diese Funktion nun berechnet werden

_dy
 dx
_dy

Y

dx

Die gesuchte Funktion ist also die e-Funktion.

15



2 Grundlagen

2.1.11 Taylorreihe

Die Taylorreihe ist ein Naherungsverfahren, mit welchem Funktionen um einen beliebigen Punkt
herum entwickelt werden kénnen. Das sogenannte Taylorpolynom besteht aus der Funktion selbst
und ihrer Potenzreihe. Somit kénnen komplizierte Funktionen schon mithilfe weniger Ableitungen
hinreichend angenéhert werden.

Das Taylorpolynom n-ten Grades sieht wie folgt aus:

wobei a der Entwicklungspunkt, k! die Fakultit ist und f(*) fiir die k-te Ableitung steht. Das
Taylorpolynom ist fiir mehrere Variablen erweiterbar

(2:20) T(f) = f(a,b) +

2.1.12 Linearisierung

Mithilfe der Linearisierung konnen nichtlineare Funktionen durch eine lineare Funktion approximiert
werden. Dies wird benétigt, da im spéteren Verlauf des Verfahrens so ein lineares Gleichungssystem
entsteht, anstatt eines Nichtlinearen, welches um ein vielfaches schwieriger zu berechnen ware.
Erzielt wird dies mit der zuvor besprochenen Taylorreihe, mit dem Unterschied, dass nur die linearen
Terme verwendet werden.

Abbildung 2.1: Rot: sin(x), Griin: lineare Annidherung an sin(x) mit Entwicklungspunkt 0

16



2.1 Mathematisches Grundwissen

2.1.13 Gauf} Kern

Die Gauf3-Funktion ist eine Dichtefunktion, welche die Normalverteilung zu einer gegebenen Situation
beschreibt. Sie ist unendlich oft differenzierbar zudem betrifft die Flache unter der Funktion genau 1,
was dem Mittelwert der Funktion nicht verdndert. Dies ist besonders niitzlich, da die Faltung einer
Funktion mit dem Gauf} Kern diese Eigenschaft ibertragt und somit Bilder beliebig oft abgeleitet
werden konnen.

Fiir den 2-dimensionalen Fall, sieht der Kern wie folgt aus:

1 z"+ty
(&} 202

(2.21) G(z,y,0) =

2mo?

wobei x und y fiir Koordinaten stehen und die Standardabweichung o die Stelle des Wendepunkts
markiert. Dadurch ist es moglich den Kern mit o auf das Problem anzupassen, wobei ein grofler
Wert das Gewicht auf eine breitere Flache verteilt und ein kleiner Wert den Fokus auf die mittleren
Koordinaten legt. Hinzukommt, dass etwa 99.7% der Fliche in dem Intervall —30 und 30 liegen und
deshalb der Rest meist vernachlissigt werden kann.

057

) 2
Abbildung 2.2: Eindimensionale Gauf3-Funktionen mit unterschiedlichen Standardabweichungen.
Blau: o=1, Griin: 0=4 [Hem].
In Abbildung 2.2 lasst sich dies gut an der blauen Kurve erkennen. Die Standardabweichung betrégt 1,

somit dndert die Kurve an 1 und -1 ihre Richtung und bei 3 und -3 betragt der Wert schon beinahe 0.
Im Zentrum wird stark Gewichtet wogegen schon die Werte > 3 und < 3 keine Rolle mehr spielen.

17



2 Grundlagen

In der griinen Kurve, welche ein Standardabweichung von 4 hat, lasst sich erkennen, dass die Werte
um den Hochpunkt weit weniger gewichtet werden und auch Werte, welche um den Bereich von -5
und 5 liegen, noch einen gewissen Einfluss auf das Ergebnis haben.

2.2 Bilder

Da dies ein Verfahren ist, welches hauptséichlich in Videosequenzen oder Bildern seine Anwendung
findet, wird nun etwas néher auf die Bilder an sich und deren Aufbau eingegangen.

Bis ins spate 20. Jahrhundert wurde die Fotografieszene noch hauptséchlich von analogen Kameras
dominiert, welche einen Film benétigten auf welches das fotografierte Objekt abgelichtet wurde. Erst
Mitte der 70er Jahre dnderte sich dies mit der Erfindung der Digitalkamera. Fotos wurden nicht langer
mittels chemischen Prozessen gespeichert, sondern durch Halbleitersensoren in Rasteranordnung
eingefangen.

2.2.1 Digitale Bilder

Da Computer nicht mit den kontinuierlichen Daten umgehen konnten, welche durch die analoge
Fotografie entstanden, mussten die Fotos zuerst in eine Form gebracht werden mit welcher gerechnet
werden konnte. Dies entstand durch die Abstufung der Fotos, also die Diskretisierung auf einzel-
ne Bildpunkte, welche von Monitoren oder dem Fernseher bekannt sind. Dies wird auch oft als
Digitalisierung bezeichnet.

Ein Digitales Bild wird durch verschiedene Elemente beschrieben:

Auflésung

Die Aufl6sung eines Bildes wird durch die Anzahl an Bildpunkten bestimmt. Jedes Foto hat eine be-
stimmte Anzahl an Bildpunkten in der Breite sowie in der Hohe. Multipliziert man diese Werte erhilt
man die Auflosung des Bildes. Je mehr Bildelemente vorhanden sind, desto feiner und detaillierter
wird das Objekt auf dem Foto abgebildet. Die Auflésung gibt also die Abtastrate des analogen Bildes
an. Oft wird auch der Begriff PPI (Pixel per inch) verwendet, welcher die Punktdichte eines Bildes
oder Bildschirmes beschreibt.

Pixel

Jedes Bildelement, auch Pixel genannt, besteht aus den Farben rot, griin und blau. Diese werden in 3
oder manchmal auch 4 Subpixel unterteilt, also 4 Unterelemente eines Pixels, wobei die Farbe griin
ofter vertreten ist, da das menschliche Auge am sensitivsten gegeniiber griin ist. Durch die hohe
Dichte und Gréf3e der Subpixel verschwimmen so die einzelnen Farbkanile, sodass das Auge dieses
als einen Farbwert wahrnimmt. In der Regel haben Pixel eine quadratische oder rechteckige Form, es
existieren jedoch Varianten, welche einer Raute oder einem Parallelogramm dhneln.
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2.3 Farbraum

Abbildung 2.3: Stark vergroflertes Bild eines Monitors, zu erkennen sind die Einzelnen Pixel und
deren rote, griine und blaue Subpixel [J609].

Farbtiefe

Die Farbtiefe bestimmt die Abstufung (Quantisierung) innerhalb eines Farbkanals. Je mehr Bit der
Kanal besitzt, desto mehr verschiedene Farben kénnen dargestellt werden. In einem Binarbild, welches
nur aus den Farben schwarz oder weify besteht, ist nur 1 Bit notwendig, da nur 2 verschiedene Farben
existieren. Ein Bild welches aus vielen verschiedenen Grauwerten besteht, benotigt deshalb mehr Bit
um die Grautone und Verlaufe zwischen den Farben detailliert darzustellen.

2.3 Farbraum

Die Farbe eines Bildes wird durch den entsprechenden Farbraum bestimmt. Dieser wird durch die
verschiedenen Farbkanile wie rot, griin und blau erzeugt und kann durch einen 3-dimensionalen
geometrischen Korper dargestellt werden, sodass jede Farbe einen einzigartigen Punkt in diesem
Korper erhalt.

2.3.1 RGB

Der RGB Farbraum ist vom Prinzip her wie das menschliche Auge aufgebaut und besteht aus den 3
Farbkanilen Rot, Griin und Blau, welche den Zapfen des Auges nachempfunden sind. Jeder Kanal
besteht aus 8 Bit, somit sind 256 verschiedene Werte Pro Kanal darstellbar was in einer Menge aus
16.777.216 Farben resultiert. Wobei schwarz mit den Werten 0,0,0 und weify mit 255,255,255 dargestellt
wird. Durch additives Hinzufiigen der Kanéle kénnen so alle verschiedenen Farben erreicht werden.
Bei dem gleichen Wert aller Kanéle, erhalt man die Graustufen von schwarz bis weif3.

In Abbildung 2.4 ist eine mogliche Darstellung des RGB Farbraums zu sehen. Jeder Kanal wird
auf eine Achse des Koordinatensystems verteilt, welche Werte von 0 bis 255 annehmen kann. Der
Ursprung, welcher schwarz entspricht, ist im hinteren Bereich unten links zu sehen und weif3
im Vordergrund oben rechts. Durch die Mischung der Kanile kénnen so bis zu 16.7 Millionen
verschiedene Farben erzeugt werden. Grauwerte liegen in den Diagonalen zwischen schwarz und
weif}. Schon zu sehen ist die Gruppierung der Farben, jede nimmt einen bestimmten Platz des Wiirfels

19



2 Grundlagen

Abbildung 2.4: Rdumliche Darstellung des RGB Farbraums [Fra]

ein, so dass beispielsweise Orange und alle Verlaufe davon, ob hell oder dunkel, in einem Bereich
zusammengefasst werden konnen. Dies hat den Vorteil dass bei spateren Berechnungen oder der
Identifizierung einer bestimmten Farbe direkt ein Bereich festgelegt werden kann.

2.4 Kamera-Aufbau

Um die Tiefe einer Szene zu berechnen, reicht ein einziges Bild nicht aus. Man kann sich dies wie bei
einer normalen Fotokamera vorstellen. Das zu fotografierende Objekt wird anvisiert und nach dem
Abzug durch die Linse auf ein 2-dimensionales Bild Gibertragen. Durch diesen Schritt geht allerdings
die komplette Tiefeninformation verloren, da jeder Punkt zwischen der Linse und dem Objekt, im
Prinzip auch alle Objekte dahinter, auf ein und denselben Punkt abgebildet werden. Die logische
Schlussfolgerung ist, eine zweite Kamera zu benutzen, die die Szene aus einem anderen Blickwinkel
aufnimmt und so das Mehrdeutigkeitsproblem 16st. Fiir die Berechnung der Tiefe werden also 2 Bilder
der gleichen Szene benétigt, welche von verschiedenen Kameras zur gleichen Zeit aufgenommen
werden und in einem bestimmten Abstand nebeneinander aufgestellt sind. In diesem Format gibt es 2
Varianten, einmal eine konvergierende Kameraanordnung, wobei die Kameras auf das Objekt geneigt
sind und eine orthoparallele Anordnung, in welchem die Kameras den exakt gleichen Winkel zum
Objekt haben und nur ein Unterschied durch die Position zustande kommt. Der Algorithmus dieser
Arbeit geht von einer Aufnahme in orthoparallelen Anordnung aus, weshalb dieser nun etwas néaher
erlautert wird.
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Abbildung 2.5: Prinzipieller Aufbau einer orthoparallelen Anordnung der Kameras [Brul3a]

Links ist nun ein gelbes Dreieck zu sehen, welches zwischen dem Szenenpunkt oben und den beiden
Kameras unten aufgespannt wird. Gleich dartiber liegen die jeweiligen Bildbereiche der Kameras,
auf welche das spitere Objekt abgebildet wird und zwar an den Punkten, wo sich Bildebenen und
die Linien des Dreiecks schneiden. Die roten Linien sind die sogenannten Epipolarlinien. Sie bilden
den direkten Weg der benachbarten Kamera zum zu fotografierenden Objekt. Sie sind somit ein
Abbild der Information, welche zwischen Szenenpunkt und der anderen Kamera stattfindet. Durch
die parallele Anordnung sind hier die Epipolar Linien jedoch horizontal, was auch vo6llig Sinn macht,
da sich Kamera 1 niemals in dem Blickfeld von Kamera 2 befindet oder umgekehrt und sie sich somit
im unendlichen befinden. Dadurch kann eine Verschiebung der Szene nur auf diesen beiden Linien
stattfinden, weshalb der vertikale Fall auflen vor gelassen werden kann, was im spéteren Verlauf die
mathematische Berechnung ein wenig erleichtert.

Zunichst wird anhand eines kleines Beispiels gezeigt, wieso eine Verschiebung nur dort stattfinden
kann. Dies kann mittels Strahlensatzes gezeigt werden. Betrachtet man das rechte Bild, lassen sich bei
genauerem Blick vier Dreiecke erkennen, jeweils zwei Grofie und zwei Kleine. Zum einen das Dreieck
zwischen dem Szenenpunkt M, der Kamera ('} und dem Punkt P;, wobei die Linie zwischen C und
M fir die Entfernung der ersten Kamera zum Objekt steht. In diesem integriert ist nun ein kleineres
Dreieck, welches durch die Punkte C7, ¢; und m; definiert ist, wobei der Abstand C und ¢; die
Brennweite ist. Anhand diesen beiden Dreiecken lasst sich erkennen, dass sie im selben Verhaltnis
zueinander stehen.

Dieses Verhalten lasst sich durch den Strahlensatz mittels folgender Gleichung ausdriicken:

(2.22)

ISEIRS
[
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2 Grundlagen

Exakt das Gleiche gilt fiir die zweite Kamera. Auch hier gibt es ein grof3es und ein kleines Dreieck,
namlich an den Punkten M, P», C5 und ms, co, Cs. Dies kann wieder mittels Strahlensatz beschrieben
werden:

Stellt man diese zwei Gleichungen nun nach x um und setzt sie ein, erhalt man:

b-
o )

Ist der Abstand b der beiden Kameras, sowie die Brennweite bekannt, ergibt der Abstand der Punkte
xll und x/2 die gewiinschte Tiefe z. Somit l4sst sich alleine durch die Lange der Verschiebung, die
Tiefe rekonstruieren, wobei die Tiefe invers proportional zur Lange der Verschiebung ist.

22



3 Optischer Fluss

Der Optische Fluss ist in der Computer Vision ein weit verbreitetes und tief erforschtes Gebiet, da
er in vielen Bereichen seine Anwendung findet. Von der Komprimierung von Videodateien, iiber
Sicherheitssysteme der Automobilindustrie, bis hin zur Robotik. Alle nutzen die Vorteile der Bildver-
arbeitungstechnik. Der Optische Fluss beschreibt auf den ersten Blick eine fiir den Menschen recht
einfache Aufgabe, ndmlich das Wiederfinden von bestimmten Positionen in einer Bilderfolge. Genauer
gesagt wird versucht, jeden Pixel aus einem Bild in einem zweiten Bild wiederzufinden, welches sich
allerdings durch Zeit, Bewegung oder einen anderen Blickwinkel an einem anderen Ort befindet. Was
fiir den Menschen jedoch allgegenwiértig ist, ist fiir den PC nicht ganz so einfach zu bewerkstelligen,
da der Computer aus den Bildern alleine, keinerlei Beziehung zwischen verschiedenen Pixeln oder
Objekten herstellen kann.

Um dies zu d4ndern wurden Anséitze zur Berechnung entwickelt. Zum einen lokale Ansétze, welche
vom Ausgangspixel, jeden anderen Pixel in einer gewissen Nachbarschaft absuchen und miteinander
vergleichen. Unterschieden wird hier in diskrete Modelle wie dem Blockmatching, welches eine
Region absucht und kontinuierliche Modelle wie dem Lucas Kanade Verfahren [LK81], welches zwar
auch nur eine gewissen Bereich abdeckt, die Losung aber explizit berechnet. Beide Varianten hatten
jedoch gewisse Nachteile, auf welche spéter noch etwas niaher eingegangen wird, welche erst durch
die globalen Methoden elegant gelost wurden.

Dies war schliefilich 1981 der Fall als die Horn und Schunck Methode [HS81] entwickelt wurde, welche
die Grundlage fiir alle zukiinftigen Methoden darstellt und Grundlage dieser Arbeit ist. Zugehorige
Pixel wurden nun nicht mehr in einer Nachbarschaft berechnet, sondern global bestimmt.

3.1 Grundlagen

Zur Berechnung des Optischen Flusses werden Constraints benétigt, mit welchen das bisherige
Wissen in den Ansatz einflief3t. Dies sind kleine Gleichungen und Funktionen, welche das Vorhaben
beschreiben. Zusatzlich folgt eine Erklarung zur Interpretation des Ergebnisses.

3.1.1 Grauwertkonstanz
Der erste Constraint ist die Grauwertkonstanz (BCCE), sie ist eine Gleichung, welche die Beziehung

zwischen dem Grauwert eines Pixels aus Bild 1 mit dem Grauwert eines anderen Pixels aus Bild 2
vergleicht. Bei einem kurzen zeitlichen Intervall oder im Stereofall, nur durch eine andere Perspektive,
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3 Optischer Fluss

kann davon ausgegangen werden, dass sich der Grauwert hinsichtlich Reflexion, Schattierung oder
Beleuchtung gar nicht oder nur sehr leicht dndert. Die BCCE sieht demnach wie folgt aus:

(3.1) f(r+u,y+v,t+1)— f(z,y,t) =0

Die Gleichung besteht aus einer Funktion f, welche zu einer gegebenen Koordinate x und y und
Zeitpunkt ¢ den Grauwert des Pixels berechnet. Fiir das zweite Bild, befindet sich dieser Pixel an einer
anderen Stelle, namlich an einer in x-Richtung um « und in y-Richtung um v verschobenen Stelle,
wobei u und v keine Variablen sondern Funktionen der Form u(z, y) und v(z, y) sind, welche die
Verschiebung im Punkt z, y berechnen. ¢ 4 1 bedeutet, dass es sich hierbei um das direkt folgende
Bild in einer Bilderfolge handelt.

3.1.2 Glattheitsannahme

Ein weiterer Constraint, welcher diese Methode erst von den lokalen Varianten abhebt, ist die
Glattheitsannahme. Die Glattheit sorgt fiir einen gleichméfligen Fluss benachbarter Pixel, wie es
beispielsweise bei einer Wand oder gleichfarbigen Flache auftritt. Berechnet wird sie allgemein

durch:

(3.2) |[Vul* + Vo[> =0

Jeder Pixel hat im spateren Fluss einen Wert u und v, welcher die Verschiebung des Pixels beschreibt.
Berechnet man von dieser Map nun den Betrag des Gradienten (Siehe Abschnitt 2.1.4), erhalt man
die Steigung des Flusses zu jedem Pixel. Da eine Flache oder ein Objekt in der Regel in die gleiche
Richtung verschoben wird, also zwei benachbarte Pixel nach der Verschiebung im Optimalfall wieder
benachbart sein sollten, haben beide Pixel den gleichen Fluss, was im Gradienten dem Wert 0
entspricht. Verdeutlicht wird dies ebenfalls in Abbildung 3.1.

Abbildung 3.1: Links: Flussfeld ohne Glattheit, benachbarte Pixel verschieben sich kreuz und quer.
Rechts: Flussfeld mit Glattheit, benachbarte Pixel sind nach der Verschiebung
wieder nebeneinander
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3.1 Grundlagen

Natiirlich sollte dies nur an Stellen beachtet werden, welche zum gleichen Objekt gehdren und nicht
an Kanten, welche unterschiedliche Objekte markieren.

3.1.3 Vektordarstellung

Um die berechneten Flussfelder darzustellen, haben sich mehrere Varianten etabliert. Zum einen ist
es moglich die Verschiebungen in ein Vektorfeld zu zeichnen. So ist es sehr einfach den Ursprung,
sowie die Position im zweiten Bild zu erkennen, wie in Abbildung 3.2 zu sehen ist. Es gibt allerdings
einen grofien Nachteil dieser Variante, namlich dass die Vektoren viel Platz benétigen und so mehrere

andere Pixel iiberdecken. Wiirde jeder Pixel einen Vektor bekommen, wire das Ergebnis demnach
komplett schwarz und nicht zu gebrauchen.
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Abbildung 3.2: Bild eines Vektorfelds. Jeder Vektor steht fiir die Verschiebung eines Pixels. Gut zu

erkennen ist die Richtung, jedoch auch der grofle Abstand zwischen den Vektoren
[All08].

3.1.4 Farbdarstellung

Eine weitere Methode wire die Darstellung mittels Farbkreis. Hierzu wird ein Template eines
Farbkreises benétigt, welcher als Kodierung der Richtung sowie der Lange des Vektors dient. Die
Vorteile dieser Methode liegen klar auf der Hand, denn es werden keine Vektoren eingezeichnet,
sondern jedem Pixel wird eine Farbe zugeordnet, welche vom Mittelpunkt des Kreises aus gesehen
dem eigentlich Vektor entspricht. So ist die Verschiebung jedes einzelnen Pixels zu erkennen. Hinzu
kommt, dass die Lange des Vektors gleich mitkodiert wird, namlich durch die Intensitét der Farbe.
Schwarz steht fiir keine Verschiebung und ist in der Mitte des Kreises platziert, je weiter man sich
jedoch dem Rand nihert, also je ldnger der Vektor ist, desto kraftiger wird die entsprechende Farbe.

Wie in Abbildung 3.3 zu erkennen ist, wird im Gegensatz zum Vektorfeld jeder Pixel mit einer
Verschiebung versehen und ein Bild erzeugt, welches dem originalen Bild recht dhnlich sieht. Man
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3 Optischer Fluss

Abbildung 3.3: Links: Template des Farbkreises. Rechts: Yosemite Testsequenz mit eingefarbter
Verschiebung [Bru13b].

sieht sofort welche Regionen in welche Richtung verschoben wurden, jedoch hat diese Methode
nicht nur Vorteile, denn anhand der Farbe ist es nicht ersichtlich, wo der eigentliche Pixel nach der
Verschiebung nun platziert ist. Es ist nur moglich die ungefahre Position in Relation zu den anderen
Pixeln zu bestimmen. In dieser Arbeit fallt die Wahl allerdings trotzdem auf die Farbdarstellung.

3.2 Ansatz von Horn und Schunck

Der Ansatz, der nun fiir die Berechnung des Optischen Flusses erstellt werden soll, besteht aus
den Constraints, welche weiter oben besprochen wurden. Diese werden in das Funktional (siehe
Abschnitt 2.1.9) eingesetzt und quadratische Abweichungen werden tiber den gesamten Bildbereich
integriert. Die Losung ist dann der Fluss, der die Abweichung minimiert. Das allgemeine Optische-
Fluss-Funktional, welches noch ein wenig modifiziert muss, jedoch zum besseren Verstandnis erklart
wird, sieht folgendermafien aus:

(33) E(u,v) =/Q(f(x+u,y+v,t+1) — f(z,y,1))* +a (|Vul® + |Vv|?) dzdy

Datenterm Glattheitsterm

wobei [, fiir das bestimmte Integral iiber den Bildbereich €2 steht. Es wird also nun versucht fiir
das Energiefunktional E das kleinstmdgliche Volumen zu finden, welches von E und den Achsen
des Koordinatensystems eingeschlossen wird. Was wiederum der kleinsten Energie und der besten
allgemeinen Losung fiir alle Pixel des Bildes entspricht. Erzielt wird dies durch den Datenterm, welcher
Grauwerte miteinander vergleicht und ihnen eine Energie zuordnet. Je grofier der Unterschied der
beiden Werte desto grofler oder auch schlechter die Energie. Da jedoch nicht bekannt ist, welcher
der beiden Grauwerte der Grof3ere ist und es deshalb vorkommen kann, dass man ein negatives
Ergebnis des Datenterms erhalt, wird dieser noch quadriert um sicher zu stellen, dass zur Energie nur
hinzugefiigt und nichts abgezogen wird. Im hinteren Teil steht der bereits bekannte Glattheitsterm,
welcher allerdings mit o multipliziert wird. Der Parameter « steht fiir die Gewichtung der beiden
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3.3 Aperturproblem

Terme zur Energie. Ein kleiner Wert fiir v legt den Fokus auf den Datenterm, es wird hauptséchlich
versucht gleiche Pixel zu finden und die Glattheit wird eher vernachlassigt, da ein grofier Unterschied
der Farbe direkt in einer grofien Energie resultieren wiirde. Ein hoher Wert fiir alegt den Fokus
dagegen auf ein gleichméfliges Resultat.

Anhand dieser Grundlage kann das Funktional auf das Problem angepasst werden. Zum einen
verdndern sich Datenterm und Glattheitsterm in der Hinsicht, dass aufgrund des Aufbaus (siehe
Abschnitt 2.4), mit welchem die Fotos gemacht wurden, keine Verschiebung in y-Richtung méglich ist
und deshalb dieser Fall auch nicht beachtet werden muss. Zum anderen werden in dieser Arbeit keine
Grauwertbilder verwendet, sondern es dienen Farbbilder als Quelle (siehe Abschnitt 2.3.1). Wird das
allgemeine Optische-Fluss-Funktional nun auf die Anderungen angepasst, entsteht:

3
(3.4) E(u) = /Q S (filz +u,y, t+1) — filz,y,1)? + a(|Vu|*)dzdy
=1

Was sofort auffallt ist, dass alle Argumente mit v verschwunden sind und sich der Datenterm ein
wenig gedndert hat. Da nun Farbbilder betrachtet werden und nicht mehr Graubilder wie bisher,
haben sich auch die Anzahl der Kanile geandert. >°5_| bedeutet, dass der Farbwert des Bildes in
jedem Kanal einzeln verglichen, aufsummiert und in ein gemeinsames Flussfeld iibertragen wird.

3.3 Aperturproblem

Das Aperturproblem ist ein haufig auftretendes Problem der optischen Bildverarbeitung. Es beschreibt
die Problematik zweier Pixel, welche nicht eindeutig identifizierbar sind. Um einen Pixel mit sei-
nem Aquivalent zu verbinden werden Informationen benétigt, welche ihn von seiner Umgebung
unterscheiden.

In Abbildung 3.4 sind 2 Rechtecke zu sehen, ein schwarzes, welches Bild 1 entspricht und ein graues,
welches Bild 2 zugeordnet wird. Die kleinen roten Quadrate stehen fiir die Bereiche, welche vom
Optischen Fluss betrachtet werden. Sieht man sich nun die einzelnen Bereiche etwas genauer an,
lasst sich erkennen, dass es bei Quadrat 1 und 2 Schwierigkeiten gibt. Der Algorithmus versucht
die Pixel der schwarzen Linie mit denen der grauen zu verbinden. Da jedoch in Ausschnitt 1 nicht
ersichtlich ist, ob eine Verschiebung nach rechts oder nach links stattgefunden hat, kann hier keine
Loésung berechnet werden. Gleiches gilt fiir das zweite Quadrat, bei der Verschiebung in y-Richtung.
Quadrat 3 hingegen zeigt eine Ecke des Rechtecks, somit sind Informationen in x- und y-Richtung
vorhanden und es kann deshalb exakt wiedergefunden werden.

Was in den lokalen Methoden noch zu Problemen gefiihrt hat, wird in der Horn und Schunck
Methode durch den Glattheitsterm geldst. Sollte der Datenterm keine Losung liefern, tibernimmt
der Glattheitsterm, sodass zumindest die Glattheit erfiillt ist. Die kleinste mogliche Energie wire
demnach eine glatte Flache mit Gradient = 0. Dies geschieht durch Propagation bekannter Pixel auf
nicht berechnete Nachbarn, bis alle Bereiche einen Fluss zugeordnet bekommen. Somit kénnte alleine
durch Quadrat 3 und die Propagation auf die anderen Bereiche der gesamte Fluss des Bildes berechnet
werden.
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3 Optischer Fluss
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Abbildung 3.4: Zu sehen sind zwei Rechtecke, einmal zum Zeitpunkt t und t+1. Bei Quadrat 1 und 2
entsteht das Aperturproblem, Quadrat 3 hingegen kann berechnet werden und zeigt
den wahren Fluss des Rechtecks. [Ape]

3.4 Minimierung

Um die Losung des Funktionals zu berechnen, muss dies minimiert werden, da nur die allgemein
kleinste Energie fiir den Fluss relevant ist. Dies ist vergleichbar mit der Minimierung normaler
Funktionen. Die Funktion wird abgeleitet, gleich 0 gesetzt und anschlieBend nach dem globalen
Minimum gesucht. Da es sich aber um eine Energiefunktional handelt, kann dies nicht 1 zu 1
tibertragen werden. Hier fliefSt die Variationsrechnung mit ein, welche sich mit der Minimierung
genau solcher Funktionale beschéftigt. Der wohl bekannteste Begriff der Variationsrechnung ist die
Euler-Lagrange-Gleichung.

3.5 Euler-Lagrange-Gleichung

Zuerst muss die Form des Funktionals identifiziert werden. Bei der typischen Form des Optischen
Flusses besteht es aus einer Funktion F', welche eine weitere Funktion u beinhaltet, wobei v diffe-
renzierbar ist, ' was fiir die Ableitung von u steht, und x, y was den Extremwert des Funktionals
darstellt.

Das Funktional hat also die Form:

(5 Bw) = [ Flo,y,uup,u,)dody
Q
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3.5 Euler-Lagrange-Gleichung

Fiir diese Art des Funktionals existiert ein Euler-Lagrange-Framework, welche alle Funktionale der
obigen Form ableitet:

d d
36) F, ——F, ——F, =0
(3.6) de " dy 7

wobei F, fir die Ableitung von F' nach u steht und F,, und F,,, die Ableitungen nach u, sowie
u, sind. Wird dieses Framework jetzt auf das Funktional angewendet, erhalt man die fertige Euler-
Lagrange-Gleichung.

Als erstes kann durch Umformulierung des Glattheitsterms der Gradient auseinander gezogen werden
und man erhalt:

3
B7) F=> (filx+uyt+1)— fi(z,y,1)* + a(ul + u})dzdy

=1

Danach werden die benétigten Komponenten des Frameworks berechnet, wobei ;. und u, hier als
eigenstandige Variablen gewertet werden.

3
=1

(3.9) Fu, = 2auy Fu, = 2auy,
und eingesetzt
3
d d
i=1

durch Umformulierung und Berechnung der partiellen Ableitungen erhélt man schliefilich:

3

(3.11) 0 = me(x +u,y,t+1) - (filx +u,y,t +1) — fi(z,y,t)) — a (Uuga + uyy)
—_————

—
¢ Au

Nun kann der Glattheitsterm wieder zusammengefasst werden, was dem Laplace Operator (siehe
Abschnitt 2.1.8) von u entspricht.
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3 Optischer Fluss

3.5.1 Neumann Randbedingung

Da Bilder nicht unendlich sind, sondern nur in einem bestimmten Bereichen definiert sind, ist nicht
klar was genau an den Ridndern der Funktion passiert. Genau um dieses Problem kiimmern sich die
Neumann Randbedingungen, welche Bestandteil der Euler-Lagrange-Gleichungen. Sie entscheidet,
welchen Wert die Ableitung der Differentialgleichung an den Randern annimmt. Definiert ist sie
durch:

F,
(3.12) nT< “> =0
F,,

Hierbei steht n” fiir die transponierte Normale und F,,_, F,, fiir die bereits bekannten Ableitungen.
Jede Differentialgleichung hat also ihre eigenen individuellen Randbedingungen, welche die Werte
der Ableitung in Richtung der Normale bestimmen. Fiir dieses Funktional sieht sie folgendermafien
aus:

(3.13) nT (;O‘UQC) =nTVu=0
auy

wobei 2a herausgezogen werden kann und durch die Division weg fallt. Einfach gesagt, werden die
Pixel der Rander gespiegelt, sodass ein zusitzlich eingefiigter Rahmen entsteht, welcher die gleichen
Werte annimmt wie die Randpixel. So entsteht eine Ableitung welche in Richtung der Normale einen
Wert von 0 hat.

3.6 Warping

Im herkémmlichen Optischen Fluss Verfahren wird normalerweise direkt die Grauwertkonstanz-
Annahme linearisiert (sieche Abschnitt 2.1.12). Dies ist notig, da nur durch die linearisierte Funktion
und der quadratischen Bestrafung, nach der Ableitung eine strikt konvexe Funktion entsteht. Dies
fuhrt allerdings dazu, dass grof3ere Verschiebungen nicht mehr berechnet werden kénnen, da eine
lineare Funktion nur innerhalb eines bestimmten Abstandes um den Entwicklungspunkt brauchbare
Ergebnisse liefert.

In Abbildung 3.5 wird dieser Fall etwas verdeutlicht. Zu sehen sind 2 Funktionen, —z3 + 22 in rot
und die lineare Anndherung in griin. In dem Intervall von -2 bis 2 ist die Approximation noch in
einer bestimmten Néhe, welche der Funktion im Groben recht nahe kommt. Macht man jedoch einen
etwas grofieren Sprung in eine Richtung, so haben die beiden Funktionen nicht mehr viel miteinander
gemein.
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3.6 Warping

. f(x)"
4 \ X+1 -

Abbildung 3.5: Rot: —2° + 22, Griin: Linearisierte Funktion um Entwicklungspunkt 1

Mit dem Warping wird der Algorithmus nun so abgeandert, dass er sich iterativ der Losung durch viele
kleinere Verschiebungen annahert und so das Problem der grofien Spriinge umgangen wird. Zuerst
muss allerdings das Funktional angepasst werden, beginnend mit der Urspriinglichen Gleichung:

3
=1

Zuerst wird eine Fixpunktiteration eingefiigt, welche die gesuchte Lésung u schrittweise berechnet.
Dazu muss das Funktional in zwei verschiedene Zeitschritte unterteilt werden, sodass mit einem
Startwert von u, einen neues u berechnet werden kann und sich so dem richtigen Wert immer mehr
angendhert wird:

3

(315) 0= Zflx(w + uk7y7t + 1) ' (fl(x + uk+1>y7t + 1) - fl(l'ayvt)) - O(AUIH_I
i=1

Nun folgt die Einfithrung eines Inkrementes, in welchem die Losung in mehrere kleine Verschie-
bungen zerlegt wird. Um u**! zu berechnen, wird es mithilfe des Inkrements du” und der vorigen
Losung u* ausgewahlt:

(3.16) v = uF + du
und eingesetzt:

3
(3.17) 0= me(x + uk7y7t + 1) ’ (fz(l' + (uk + duk)?yvt + 1) - fi($>y7t)) - OzA(uk + duk)
=1
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3 Optischer Fluss

wobei u* fiirr den bisherigen Fluss aus den alten Zeitschritten steht und du” fiir das Inkrement,
welches bei jeder neuen Iteration dazu addiert wird. Da durch das Warping jedoch die Linearisierung
nur hinausgezdgert wurde und nicht génzlich umgangen werden kann, ist dies der néchste Schritt.

Zuerst wird die Taylorreihe (sieche Abschnitt 2.1.11) auf die entsprechende Form fiir Vektoren ange-
passt:

(3.18) f(z) ~ f(a) + (z — a)" Vs f(a)

und anschlieend um den Punkt a = (z + u*, y,t + 1) nach du linearisiert:

(3.19)
x+ uf + duf — (x—l—uk) 4 fix(x—l—uk,y,t—i—l)
filwt (@ du®),y, t41) = fi(a+u®,y, t+1)+ y—y fiy(x + by, t+1)
t+1—(t+1) fit(z + Py, t+1)
was folgendem entspricht:
T
(3.20) fi(z+u*,y,t+1)+| 0 fiy(x + byt +1)

0 flt($+uk7y7t+1)

Werden die Vektoren nun ausmultipliziert erhalt man:

(3.21) fi(z +u,y, t+ 1)+ fin(x +ub y,t + 1)du”

Danach wird die linearisierte Version wieder in die Gleichung eingesetzt und ausmultipliziert:

(3.22)
3
0= firlwtu® y, t+1)(fie(a+u®, y, t+1)du"+ fi(x + u*,y,t + 1) — fi(z,y,1)) —aA(u"+du")
=1 ~fit
3
(3.23) 0= fie(x+u® y, t+1)2duf + fip (@ +u",y, t+1) - (fir(z+u",y, t+1) — aAu” — aAdu”
=1
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3.6 Warping

Zum Schluss wird noch in die Bewegungstensor-Notation umgeformt:

3
(3.24) 0= Z Jniduk + J19; — ozAuk — ozAduk
=1

2 . f.
Hierbei steht J1; und Ji2 fiir den jeweils ersten und zweiten Eintrag der Matrix J = <f ?c [ w:g zt)
itJix it

welche auch als Motion Tensor bekannt ist.

Zur besseren Ubersicht kann die Summe auch in den Bewegungstensor gezogen werden:

(3.25) 0 = Jidu® + Jig — aAuF — aAdu®

3 2 3
o —1 [ i—1 fia fit
mit J = ( v W 3 >

3 2
i=1 fztfzx i=1 Jit

3.6.1 Hierarchische Minimierung

Diese Fixpunktiteration wird nun in ein Coarse-to-Fine Schema eingefiigt, welches bei der Lésung
der groleren Verschiebungen hilft. Durch das Weglassen der Linearisierung im Modell dndert sich
das Funktional von einem konvexen zu einem nicht-konvexen Funktional und es existiert deshalb
mehr als ein Minimum. Als Folge dessen wird die Auflosung des Bildes schrittweise gesenkt, wodurch
Details verschwinden und eine simplere Variante des Bildes entsteht. Oft wird dieser Vorgang auch
Coarse-to-Fine-Pyramide genannt, da jedes Level eine Ebene einer Pyramide darstellt, auf welcher
die Néchste aufbaut, wobei die unterste Ebene der grobsten Auflésung entspricht.

Das Ziel ist nun, der Fixpunktiteration von ihrem Startpunkt aus, den Weg zu dem globalen Minimum
zu ebnen. In der originalen Auflosung existieren viele lokale Minima, sodass es sehr wahrscheinlich
ist, dass die Iteration in ein lokales anstatt des globalen Minimums konvergiert, was in Abbildung
3.6 an dem roten Pfeil zu erkennen ist und wiederum in einer falschen Verschiebung resultieren
wiirde.

Das Schema beginnt also mit einer Initialisierung des Flusses u, welcher auf 0 gesetzt wird. Nun
werden die verschiedenen Ebenen erstellt und mit der grébsten begonnen. Als nichstes folgt die Be-
rechnung des Inkrements du, was dem globalen Minimum dieses Levels entspricht und anschlieend
auf den bisherigen Gesamtfluss u addiert wird. Dieser Wert dient nun als Startwert fiir das nachst
feinere Level. Der Vorgang wird bis zur originalen Auflésung wiederholt, bis dort schlie8lich der
finale Fluss berechnet wird.
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3 Optischer Fluss

\

Abbildung 3.6: Coarse to Fine Pyramide mit drei Leveln. Unten: Originales Bild. Zu sehen sind
viele lokale Minima, in welche die Fixpunktiteration stecken bleiben kann. Mitte:
Herunterskalierte Version des Bildes. Viele Minima sind bereits verschwunden.
Oben: Grobste Version. Alle Minima bis auf eines sind verschwunden. Die optimale
Schétzung dieser Ebene ist nun moglich [Bru13b].

3.6.2 Riickwartsregistrierung

Der nichste Schritt ist nun das eigentliche Warping des Bildes. Nachdem der Fluss des aktuellen
Levels berechnet wurde, muss er anschlieBend auf die Auflésung des néchsten Levels hochskaliert
werden. Hinzu kommt, dass das zweite Bild um genau diesen Fluss verschoben werden muss, sodass
sich Bild 1 und Bild 2 theoretisch in genau diesem Bereich tiberschneiden wiirden. Dies hat den Grund,
dass anschlieflend nur die kleinere Verschiebung berechnet werden soll, welche durch die Skalierung
des Bildes auf die néchstfeinere Ebene entstanden ist. Ohne diesen Schritt, wiirde auf jedem Level der
komplette Fluss noch einmal berechnet berechnet werden, was den Sinn des Inkrements zunichte
macht.

Betrachtet man Abbildung 3.7 sind kleine Ausschnitte von Bild 1 und 2 zu sehen. Der interessante
Teil ist nun das kleine Quadrat mit den Werten 10, welcher sich im 1. Bild links und im 2. Bild rechts
befindet. Der aktuelle Fluss wire demnach fiir v = 2. Als néchstes folgt das Warping von Bild 2.
Realisiert wird dies durch die Summe der Position der Pixel und der Verschiebung u. Fiir all die Pixel,
welche nach der Verschiebung auflerhalb des Bildbereichs landen wiirden, erhilt das verschobene
Bild f2_w die Werte aus Bild 1, somit gilt f2_w; ; = f1_w; ;. Und fiir alle anderen Pixel, welche
innerhalb des Bildbereichs sind, gilt f2_w; ; = f2_w; ; + u.

Der gesamte Vorgang des Coarse to Fine Warpings sieht also wie folgt aus:

1. Level der Coarse to Fine Pyramide erstellen.
2. Startwert v mit 0 initialisieren und mit grobstem Level beginnen.

3. Fir jedes Level:
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3.7 Diskretisierung
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Abbildung 3.7: Backward Registration. Links: Ausschnitt aus Bild 1. Mitte: Ausschnitt aus Bild 2
mit verschobenem Quadrat um u = 2. Rechts: Zusammenstellung von gewarptem
Bild f2_w. Pixel welche aus dem Bild gewarped werden, kommen aus Bild 1, die
restlichen aus Bild 2.

a) Inkrement du berechnen.

b) Inkrement du auf Gesamtfluss v addieren.

¢) Fluss auf nachsthoheres Level skalieren.

d

NN P2

Zweites Bild durch Rickwiértsregistrierung um du warpen.
4. Schritt 3 wiederholen bis originales Level erreicht ist.

5. Fluss u ist berechnet.

3.7 Diskretisierung

Digitale Bilder (siehe Abschnitt 2.2.1) sind immer nur abschnittsweise definiert, namlich an den
jeweiligen Stellen der Pixel. Daher konnen die kontinuierlichen Funktionen dort nicht ohne weiteres
angewendet werden. Diese miissen nun mithilfe finiter Differenzen diskretisiert werden. Dazu werden
allgemein drei verschiedene Varianten verwendet.

Vorwartsdifferenz:

Uitl,j — Uiy

(3.26) U5 = hx

Abbildung 3.8: u; ; steht hier fiir den zu diskretisierenden Bereich an der Stelle ¢, j, welcher nun
mit dem Differenzen-Quotienten approximiert wird. Dazu wird die Differenz des
rechts neben ihm liegenden (vorwérts) und des zentralen Pixel berechnet und durch
die Lange des Intervalls h, geteilt, wobei x fiir die x-Richtung steht. Rechts daneben
die Maske mit den relevanten Pixel in griin, sowie die unwichtigen in rot.

Ruckwartsdifferenz:
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3 Optischer Fluss

Wij — Ui, "
(3.27) uiy = —L——1 A : - o
x

Abbildung 3.9: Bei der Rickwirtsifference lauft der Vorgang genau gleich ab, mit dem Unterschied,
dass nun der Pixel links daneben (riickwirts) mit einflie3t. Rechts daneben die Maske
mit den relevanten Pixel in griin, sowie die unwichtigen in rot.

Zentrale Differenz:

Wit1,j — Ui—1,5 i1, i+1,j

(3.28) w;j = oh
z

Abbildung 3.10: Die Zentrale Differenz ist im Prinzip eine Mischung aus beiden vorherigen Metho-
den, hier werden jeweils der linke und der rechte Pixel mit einbezogen, mit dem
Unterschied dass nun die Lange des Intervalls doppelt so grofl ist. Rechts daneben
die Maske mit den relevanten Pixel in griin, sowie die unwichtigen in rot.

Benotigt wird hier allerdings nur die Zentrale Differenz, die die genauste Approximation liefert. Als
Ausgangspunkt wird von der bereits bekannten Euler-Lagrange-Gleichung gestartet:

(3.29) Jiidu* + Jia — aAuF — aAduF =0

Anhand des Funktionals l4sst sich erkennen, dass zum einen der Bewegungstensor .J, die Flussvariable
du, sowie der Laplace von u und du diskretisiert werden muss, wobei das Vorgehen bei Au und Adu
identisch ist und deshalb nur fir Adu veranschaulicht wird.

Diskretisierung von du:

(3.30) dujj = du(i-hg,j - hy)

Die Diskretisierung von du erfordert nicht viel Aufwand und ist der trivialste Teil, denn die Funktion
muss nur an das Gitter der Funktion angepasst werden, was mit der Multiplikation des Intervalls
erreicht wird.

Diskretisierung von J:

Hier miissen einzeln alle Eintrage der Matrix .J diskretisiert werden. Da diese allerdings aus f, und
f+ bestehen, reicht es diese auszurechnen.

1/ fliviy;— flicay f2i+1j_f2i—lj)
331) [fulij = = : : : :
(3:31) [feli 2( 2h, + 2h,
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3.7 Diskretisierung

wobei hier der Durchschnitt beider Zentraler Differenzen aus Bild f1 sowie f2 genommen wurde.

Die Zeit wird durch die Differenz beider Bilder errechnet.

(3:32) [filij = (f2i5 — fLij)

Diskretisierung von Adu:

Um den Laplace zu berechnen, wird dieser zuerst in eine andere Darstellung umgeformt.

(3.33) Adu = (duy)y + (duy),

Wie zu erkennen ist, bestehen die Terme jeweils aus der zweiten Ableitung von du, weshalb die
Berechnung der Zentralen Differenz zwei mal ausgefithrt werden muss. Aus diesem Grund wird ein
Intervall von %hz festgelegt, um spater wieder ein Intervall der Lange 1 zu erhalten, welche jeweils
nur die benachbarten Pixel mit einflieffen lasst.

(dux)wé,j - (dux)if%,j (duy)i,j+% - (duy)i,jf%

(dug)e + (duy)y ~

+

1 1
2(5ha) 2(5hy)
duivij—duiy _ duij—dui1;  duigii—dug;  dugj—duggoa
2G5 2(3)ha 2(3)hy 2(3)hy
~ 1 1
(3'34) 2(§)h$ 2(§)hy
_ iy —duy dugg —duiny | duggen — duig o dugg — dug g
- 2 o 2 2 o 2
h2 h2 h3 hs

du; = — du; ;
- Z Z 8 h12 :

Der Laplace ist somit die Summe der Differenzen der Nachbarn zu ihrem zentralen Pixel.

Werden nun alle Approximationen zusammengesetzt erhédlt man die diskrete Euler-Lagrange-
Gleichung.

u; = — uiyj d’LL*-*» — dui,j

(335) 0=[Juldu+ [Jio] — > > ”T S i 2

l€x,y (7,5)EN, (i,5) ! l€2y (1,7)EN; (i.7)

wobei } ¢, , fir die Richtung des Intevalls und )5 5yc vy
1, j steht.

;,;) fr die jeweiligen Nachbarn des Pixel
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3 Optischer Fluss

3.8 Losung

Das Problem ist aufgestellt, nun muss es gelost werden. Fiir jeden Pixel liegt eine Gleichung vor,
welche alle gemeinsam und unter Beachtung der anderen Gleichungen berechnet werden miissen.
Dies entspricht der Losung eines linearen Gleichungssystems in der Grofie der Auflésung der
Bilder. Es gibt verschiedene Ansitze fiir Gleichungssysteme, doch einige sind nur bis zu einem
gewissen Grad brauchbar und kénnen bei dieser Gréflenordnung nicht mehr eingesetzt werden, da
sie schlicht zu lange brauchen und zu viel Speicher benétigen. Ein Beispiel dafiir wire das Gauf’sche
Eliminationsverfahren, welches eine Laufzeit von O(n3) hat, also die Laufzeit kubisch ansteigt mit
der Anzahl der Zeilen. Aus diesem Grund werden in der Regel Iterationsverfahren verwendet, welche
sich der Losung langsam anndhern und auf bereits berechneten Ergebnissen aufbauen.

Ein Beispiel dafiir sind die Splitting-Verfahren, welche durch geschicktes Trennen der Matrix mit
einem Anfangsvektor schrittweise zu dem Ergebnis konvergieren und nach ausreichender Genauigkeit
abgebrochen werden.

Um von einem linearen Gleichungssystem der Form Az = b auf das gewiinschte Iterationsschema zu
kommen, muss die Matrix wie bereits erwahnt aufgeteilt werden:

(3.36) A=A+ As

Wird dies nun in die alte Form eingesetzt, kann die Gleichung nach dem Losungsvektor x umgestellt
werden.

(3.37) (A1 + A)z =b— Az + Asx = b — Ayz = b — Asx — x = AT (b — Asx)

wobei A7 fiir die invertierte Matrix von A; steht.

Zum Schluss wird noch die Fixpunktiteration eingefiihrt:

(3.38) 2" = A7 (b — Agah)

3.8.1 Jacobi-Methode

Angefangen wird mit der Jacobi Methode, welche allerdings nur als Grundlage dient und spéter noch
durch einige Verbesserungen aufgewertet wird. Die Jacobi Methode trennt die Matrix A in zwei Teile
auf, namlich der Hauptdiagonale A; und den restlichen Eintrdgen As. Dies hat den Grund, dass A;
invertiert werden muss und Diagonalmatrizen sehr einfach zu invertieren sind.

Um die néchsten Schritte besser zu veranschaulichen, ist es sinnvoll die Form des Gleichungssystems
in geringer Grofle etwas niher zu betrachten. Hierzu werden die Gleichungen umgeformt und alle
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3.8 Losung

Komponenten, welche nichts mit du zu tun haben auf die rechte Seite gebracht. Das folgende Beispiel
ist ein lineares Gleichungssystem, welches durch ein 2x2 Pixel grof3es Bild entstehen konnte:

(3.39)
Ji1 -2 1 1 du —J12 -2 1 1 U
J11 1 —2 1 du —J12 —2 u
—Q = +a
J11 1 -2 1 du —J12 —2 U
J11 1 1 —2 du —J12 1 1 —2 u
—— Y
J11 Adu Fluss Ji2 Au
——
A z b

Im néichsten Schritt wird A in den diagonalen Teil und den Rest aufgeteilt und anschlieflend Az auf
die andere Seite gebracht.

Ji1 -2 duft1
J11 —a —2 dukH
J11 -2 duk+1
J11 —2 dukJrl
(3.40)
—Ji2 -2 1 1 u 11 du®
_ —J12 + o 1 -2 1 u + o duk
—Ji2 1 -2 1 u du®
—Ji9 1 1 =2/ \u 11 du®

Zuletzt wird noch nach du umgestellt indem durch A; geteilt wird, was dquivalent zur Multiplikation
der invertierten Matrix ist.

duk+1 J11 -2 -

duf | Ji1 —2

duk+1 N JH -« —2

(3.41) duk+1 J11 -2

—Ji2 -2 1 1 u 11 du®
—Jio G 1 =2 ul du®
—J12 1 -2 u duk
—Ji2 1 1 =2/ \u 11 du®
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3 Optischer Fluss

Der allgemeine Jacobi Loser fiir die oben angesprochene Gleichung lautet somit:

u;y;—l—du%;—ui’j
S22 ery DG femig) — R

1

(3.42) dut! =
i+ Dieay 2@ femiig) 12

3.8.2 Gauf3-Seidel-Methode

Die Gauf3-SeidelMethode ist eine Erweiterung des Jacobi-Verfahrens. Die Matrix A wird hier etwas
anders aufgeteilt als es noch zuvor der Fall war. Da der diagonale Teil nur eine sehr vage Approxi-
mation der urspriinglichen Matrix ist, kommt hier noch der untere Teil des Restes dazu, womit eine
Dreiecksmatrix und eine bessere Ndherung von A entsteht. Die Vorteile dieser Methode sind eine
schnellere Konvergenz der Losung, etwa um den Faktor 50 und eine Einsparung des Speichers, weil
nicht wie bei der Jacobi Methode zwei Vektoren gespeichert werden miissen, einmal fiir £ und £ + 1,
sondern die bereits berechneten Werte & + 1 direkt in die aktuelle Iteration mit einflielen.

(3.43)
u?i_'l—l—dul“'l— fot1 k_tduk k.

—Ji2ta e, Z(E,j)eN( (i,5) B ﬁ;ﬂ = QY ey Z(%,j)eNl*(i,j)
1
S+ Xieny 2G5eNi) 72

dukJrl _

wobei IV, und NV, l+ fur die untere sowie obere Dreicksmatrix stehen, welche durch die Gauf3-Seidel-
Erweiterung dazu kam.

3.8.3 Successive Over-Relaxation

Der Successive Over-Relaxation Loser ist wiederum eine Erweiterung des Gauf} Seidel Solvers.

(3.44)
du ™t = (1 —w) du* +w
u?}'l—&-dufi_l—uk*'l k _+du§7 x

2,] 17.7 _ 3] 1,7 3,
h? ta ey E(z’u‘)eNﬁ (i.5) h?

—J12+ @3 eay 2 5)en (i)

1
it O eny 2G5em i) B2

In der SOR-Methode wird zusitzlich ein Uberrelaxationsparameter w eingefiihrt, welcher dafiir sorgt,
dass das Iterationsschema noch schneller zu der Lésung konvergiert, etwa um den Faktor 2. Generell
wird ein Wert zwischen 1.50 und < 2.0 gewahlt, je nach Matrix, wobei das Verfahren nur fiir Werte
zwischen 0 und < 2 iiberhaupt konvergiert.
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4 Segmentationsgestiitzte
Stereorekonstruktion

Der Algorithmus des letzten Kapitels (siehe Sektion 3.2) dient nun als Grundlage fiir die weiteren
Schritte dieser Arbeit. Das Ziel ist es, den zuvor angesprochenen Algorithmus von einer pixelbasierten
Vorgehensweise mithilfe einer Segmentierung zu beschleunigen und gegebenenfalls zu verbessern.
Doch bevor die einzelnen Schritte erldutert werden, ist es sinnvoll die eigentliche Segmentierung zu
erklaren.

4.1 Segmentation

Die Aufgabenstellung der Segmentierung an sich ist recht einfach zu beschreiben, sie ist der Vorgang
einzelne Pixel zu Gruppen zusammenzufassen, im besten Fall zu den wahren Objekten des Bildes. Im
optimalen Fall bestiinde das segmentierte Bild also, nach der Anwendung eines Segmentationsalgo-
rithmus, nur noch aus gruppierten Pixel welche jeweils einem Objekt zugeordnet werden.

Abbildung 4.1: Links: Zweites Bild der Venus Testsequenz [SS02], Rechts: Segmentiertes bild mit
o =4

In Abbildung 4.1 sind zum einen das unverénderte Bild und daneben ein segmentiertes Bild zu sehen.
Gut zu erkennen ist zum Beispiel die Integration der Schrift in die Zeitung, welche bei einem noch
héheren o vollig miteinander verschmelzen wiirden.
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4 Segmentationsgestiitzte Stereorekonstruktion

Zur Segmentierung gibt es zahlreiche verschiedene Ansitze. Zum einen gibt es die pixelorientierten
Verfahren, welche fiir jeden Pixel selbst entscheiden, ob er zum Hintergrund oder einem Objekt
gehort. Hierzu wird lediglich ein Parameter benotigt, welcher anhand des Grauwertes oder der
Farbe entscheidet, zu welcher Region der Pixel zugeordnet wird. Ein weiterer Ansatz sind die
regionsbasierten Verfahren. Diese erstellen die Segmente anhand der Information innerhalb des
Segmentes, beispielsweise durch eine Energiefunktion, welche die Farbwerte der Segmentierung
mit dem Originalbild vergleicht und die geringste Abweichung davon wahlt. Schlief$lich gibt es
noch die kantenorientierten Verfahren, welche mit der Kanteninformation versuchen die Objekte
einzuschliefen. In dieser Arbeit wird die Segmentierung mittels Kantenerkennung vorgenommen.
Der verwendete Algorithmus ist die Wasserscheidentransformation Segmentierung, welche nun
genauer erklart wird.

4.1.1 Wasserscheidentransformation

Wie bereits erwahnt, werden zur Segmentierung Kanten benétigt, weshalb das Bild zuerst durch eine
Faltung mit dem Gauf3-Kern (siehe Abschnitt 2.1.13) etwas geglattet wird. Dies spielt eine wichtige
Rolle, da sich der Grad der Glattung, eingestellt durch die Standardabweichung o des Gauf3-Kerns,
sehr stark auf die Anzahl und Gréfle der spateren Segmente auswirkt, worauf gleich noch etwas néher
eingegangen wird. Danach miissen Stellen identifiziert werden, welche mogliche Kanten darstellen.
Dazu wird zum einen fiir jeden Pixel die Ableitung in x- sowie in y-Richtung benétigt. Der Betrag
des Gradienten (siehe Abschnitt 2.1.5), welcher die Steigung an jedem Punkt angibt, lasst sich dann
nach folgendem Schema berechnen [Beu92]:

@) |VfI =2+ 15

Zur Veranschaulichung lassen sich die jeweiligen Werte auch in ein Bild eintragen wie es in Abbildung
4.2 der Fall ist, wobei die weif3en Stellen einen hohen Gradienten angeben und schwarze einen kleinen
Wert haben oder gar 0 sind.
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4.1 Segmentation

Abbildung 4.2: Gradient Magnitude des zweiten Bildes der Venus Testsequenz

Hier lasst sich gut die bereits angesprochene Problematik der Glattung erkennen. Da durch ein grofles
o viele Pixel der Nachbarschaft in die Berechnung mit einflieBen und somit eine Ahnlichkeit der
umliegenden Pixel entsteht. Dies hat zur Folge, dass der Gradient kleiner und somit die Segmente
grofer werden, da bestimmte Kanten nicht mehr als Trennung der Segmente ausreichen. Der Algo-
rithmus durchlauft nun jeden Pixel des Bildes, angefangen am linken oberen Rand, welcher zuerst als
besucht markiert wird. Danach werden die Gradienten der 8 umliegenden Nachbarpixel ermittelt.
Anschlieflend wird der Nachbar mit dem kleinsten Gradienten als nachster Pixel der Reihe festgelegt
und der Vorgang wiederholt. So entsteht ein Pfad vom Ausgangspixel bis hin zu einem Minimum,
an welchem alle Nachbarpixel einen grofieren oder gleichen Gradienten besitzen und der Pfad sein
Ende findet. Alle Pixel des Pfades gehéren nun zu dem selben Segment. Man kann sich dies wie
einen Wassertropfen vorstellen, welcher am Rand einer Schale beginnt und den Weg bis zum Boden
herunterflieft. Dies wird so lange wiederholt, bis schlief3lich jeder Pixel einmal besucht wurde. Sollte
der Tropfen auf einen Pixel treffen, welcher bereits besucht wurde, kann die Iteration sofort gestoppt
werden, da der Pfad dieses Pixels bereits bekannt ist.

Wiéhrend der Arbeit wurden zwei verschiedene Varianten der Segmentierung getestet. In der ersten
Methode wurde jede Ebene der Coarse-to-fine-Pyramide einzeln segmentiert, was allerdings ein
paar Probleme bei der Zuordnung der Segmente verursachte. Die Idee der zweiten Methode war das
urspringliche Bild zu segmentieren und es mittels eines Nearest Neighbour Algorithmus auf die
benotigten Auflésungen anzupassen. Im Nachhinein hat sich die Methode der Nearest Neighbour
Skalierung als die bessere herausgestellt, welche von nun an in den verschiedenen Algorithmen ihren
Einsatz findet.
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4 Segmentationsgestiitzte Stereorekonstruktion

Abbildung 4.3: Verschieden starke Segmentierungen. Links: o: 0.3, Mitte: o: 4, Rechts: 0: 10

4.2 Algorithmen

Die Anpassung auf ein segmentationsgesiitzten Ansatz ist ein langerer Prozess, indem mehrere
Erweiterungen den Weg in das Funktional gefunden haben und deshalb schrittweise die wichtigsten
Anderungen aufgefithrt und dhnlich der Baseline beschrieben werden. Die drei groflen Anderungen
waren zum einen die Anpassung des Funktionals auf eine segmentbasierte Variante. Anschlieflend
wurde Daten- und Glattheitsterm mithilfe einer subquadratischen Funktion abgeschwicht und robus-
ter gegen Ausreifler gemacht. Der letzte Schritt war die Erweiterung auf ein affines Flussmodell.

4.3 Segmentierter Ansatz

Im ersten Schritt ist es das Ziel, den bereits bekannten Baseline-Ansatz (siehe Abschnitt 3.2) auf
ein Modell umzustellen, welches den Fluss mithilfe einer Segmentierung des Bildes berechnet. Im
Gegensatz zur Baseline wird die Funktion diskret formuliert um bestimmte Bereiche etwas leichter
darzustellen. Dies erfordert eine Anderung des Bewegungstensors, welcher nicht mehr aus den
Pixel selbst besteht, sondern aus der Summe derer, welche innerhalb des entsprechenden Segments
liegen. Zusitzlich wird der Bewegungstensor normiert, sodass grofiere Segmente nicht mehr Einfluss
auf das Ergebnis haben als kleine. Ein weiterer Schritt ist die Anpassung des Glattheitsterms. Da
Segmente keine feste Position oder Anordnung haben, kénnen fiir jedes Segment unterschiedlich
viele Nachbarn entstehen. In der Pixelbasierten Variante konnten drei Falle auftreten. Es gab Eckpixel
mit 2 Nachbarn, Kantenpixel mit 3 Nachbarn und Pixel, welche mitten im Bild lagen, und demnach 4
benachbarte Pixel hatten. In der segmentierten Variante konnen dagegen theoretisch beliebig viele
Nachbarn entstehen. Auch hier wird durch die Anzahl der Nachbarn geteilt, aus dem selben Grund
wie bei dem Bewegungstensor. All dies fithrt schlieBlich zu folgender Funktion:

m 3 m
(4.2) E(u) = Z / Z foi(z 4wy, y) — fri(z,y))2dzdy + a Z Z up — uj)?
l:1 i=1 =1 en(i
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4.3 Segmentierter Ansatz

Das Funktional besteht wie bisher aus einer Energiefunktion, welche es zu minimieren gilt. Wobei m
fir die Anzahl der Segmente steht und [ fiir das aktuelle Segment. Der Datenterm wird wie bereits
erwahnt durch Qil' normiert und tiber den Bereich [, aufsummiert, wobei jeder Pixel = innerhalb
des Segments durch den gleichen Segmentfluss u; verschoben wird. Gleiches beim Glattheitsterm, m
steht fiir die Segmente und m fir die Normierung iiber die Anzahl der Nachbarn von Segment .
Die Differenz der Nachbarn zu ihrem zentralen Segment bilden schlussendlich den Glattheitsterm.

4.3.1 Minimierung

Die Minimierung lduft dhnlich ab wie noch bei der Baseline (siehe Abschnitt 3.4), mit dem Unterschied,
dass es nun diskret formuliert wurde und deshalb die Euler-Lagrange-Gleichung nicht ldnger benétigt
wird, sondern einfach differenziert werden kann. Was zu folgender Ableitung fiihrt:

1 & N, + N;
(4.3) 0= —/ Z(fgi(l"i"dl, y) — fri(x,9)) fi, (x + w) dedy + a——= Z (u; — uy)
|| Jou — N;-Nj
i JEN(I)
wobei der Faktor N+ I die Normalisierung ist, welche den Glattheitsterm mit steigender Anzahl

an Nachbarn heruntergew1chtet. Durch die Kettenregel entsteht das Produkt der dufleren Ablei-
tung des Datenterms, welcher mit der inneren Ableitung multipliziert wird. Gleiches gilt fiir den
Glattheitsterm.

4.3.2 Warping

Als nachstes wird die Gleichung fiir das Warping vorbereitet, indem zuerst ein Iterationsschema
eingefithrt wird und danach mit der Regel u**! = u* + du” ein Inkrement eingefithrt wird, welches
die kleinen Verschiebungen bestimmt. Am Ende wird alles in eine Coarse to fine Pyramide integriert
(siehe Abschnitt 3.6):

(4.4)

Nl—‘rN

1 > k+1 k+1 k+1
- q A St tub )=y i ook ) dady o S (uft bt

Y jen

Durch Anwendung der bereits angesprochenen Regel wird u**! durch die Inkrementelle Berechnung
ersetzt:

|Ql|/ Z (foi(z + (uf + duf),y) — fri(2,9)) foi, (x + uf, y) dxdy

(4.5)
Nl —+ N
+ aiNl : Nj] Z (ufC + duf — u? — duf)
JEN(I)
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4 Segmentationsgestiitzte Stereorekonstruktion

Nun bestehen alle Verschiebungen wieder komplett aus dem alten Zeitschritt und kénnen so zur
Berechnung des neuen u**! benutzt werden. Zuvor muss allerdings nach duy, linearisiert werden.
Dies geschieht durch die bereits bekannte Taylorreihe, welche um den Punkt (z + uf, y) entwickelt
wird:

(4.6) fo(z + (uf +dul),y) = folz + w,y) + (:r—l—ul + duf —:n—ul> (sz(x+ul, ))
y—y ny(a:—i—ul, )

was ausmultipliziert und in die obige Gleichung eingesetzt folgendem entspricht:

|Ql|/ Z fQZz ‘r+ul7 )dul +f21($+ul’ )_fli(x’y))f%z(x"’_ufvy) d.’L’dy

(47) Nfzt
N;+ N;
+aﬁ Z (uf + duj —u§ — dub)
JEN(I)

Im letzten Schritt kann die Gleichung auf die Bewegungstensor-Notation umgeformt werden:

1 3
= ] /Ql Z(fzz‘z (x4 uf, y)2duf + foi, (x +uf,y) foi, (x + uf, y)) dedy
i=1

(4.8)
N;+ N;
+aﬁ > (uf + dup —ulf — duf)
7Y jen
1 N+ N;
(4.9) 0= —/ Z deul + Ji9;) dxdy + -t Z (uf + duﬁk — ué“ — du?)
1 N, N,

JEN()

wobei das Integral durch die Summe ersetzt und mit der Farbe in den Bewegungstensor gezogen
werden kann:

A N;+ N
Jndul 4+ —Jia + QL Z (ufC + dufC —ub = duk)

(4.10) 0 = : ;
|Ql| Nie- Ny S5

\Ql\

mit dem Bewegungstensor Tensor:

@11 j:< Zia(Sha £25,) Zjexz?zlfzz-jmfm))
Zjel(zgzlf%jtf%jx) Zjez( ?:1f22ijt)
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4.3 Segmentierter Ansatz

Die hier erstellte Funktion ist bereits zuvor diskret formuliert worden (siehe Abschnitt 4.3), weshalb
an dieser Stelle auf eine Diskretisierung, wie es noch in der Baseline das Fall war, verzichtet und sie
direkt gel6st werden kann.

4.3.3 Losung

Die Losung des linearen Gleichungssystem lauft im Prinzip ahnlich ab, wie die pixelbasierte Variante.
Zuerst missen alle Terme, welche nichts mit du{€ zu tun haben auf die andere Seite gebracht werden,
dass die Form Az = b entsteht. Danach wird die Hauptdiagonale vom Rest getrennt und nach du}
umgestellt.

o N+ N; k ko k k
JEN(I)
ist aquivalent zu
(4. 13)
Nl + N. Nl + N lc ~ Nl + Nj
—Jnduf + o= N duf + o Yo duf = - a2 Y (- u))
|Ql| N;- N; NG Nl P |Ql| Nl-Nj JeN )

Anschlieflen wird noch nach du und auf den SOR-Léser umgestellt:

(4.14)
duf ™ = (1 — w)duf

N;+N k k k: Ni+N
( |Q”J12—|—Ozl ]ZJeN< +1+du o +1)+ 1\51 JZ]€N+(’U, +du _Uz))

[TRARE A IR

+w

4.3.4 Ergebnisse

Im folgenden Abschnitt sind die Ergebnisse fiir zwei Bilder, jeweils aus der Middlebury Testsequenz
Venus und Cones, welche mit dem bisherigen Algorithmus berechnet wurden.

47



4 Segmentationsgestiitzte Stereorekonstruktion

Abbildung 4.4: Links: Venus, Rechts: Cones

4.4 Subquadratischer Ansatz

Die Idee hinter dem subquadratischen Ansatz ist, den Einfluss von Ausreiflern zu verringern und die
Kanten besser zu erhalten. Wie in Abbildung 4.4 zu sehen ist, sind vereinzelt kleine schwarze Pixel
oder sehr helle zu erkennen, welche vom Algorithmus falsch zugeordnet wurden und eine zu kleine
sowieso zu grofle Verschiebung bedeuten. Um dies besser zu verhindern und ein gleichméfligeres
Bild zu erzeugen, wird nun eine Funktion eingefiihrt, welche das Energiefunktional nicht langer
quadratisch, sondern subquadratisch bestraft. Dies ist vergleichbar mit einer Funktion welche stirker
als linear, jedoch langsamer als eine quadratische Funktion ansteigt.

(4.15)

3 m
Z‘I/D ( / > (failw +uy) — frlz,y) dmdy) Z Z uj)?)
|Ql| z:1 =1

eN(

4.4.1 Funktion ¥

Die Funktion ¥ hat die Aufgabe, den Datenterm, sowie den Glattheitsterm subquadratisch zu
bestrafen. Aus diesem Grund werden beide als Argument an W iibergeben, welche folgende Form
hat:

(4.16) U(s%) =22 -([1 + =
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4.4 Subquadratischer Ansatz

wobei € ein weiterer Parameter in Daten- und Glattheitsterm ist. ¥ wird zwar auf beide Terme
angewendet, beide besitzen jedoch unterschiedliche ¢, da die Gré3enordnung der Argumente nicht
gleich sein muss.

Der grofie Unterschied zu der bisherigen Variante ist nun, dass bei Abweichung des Daten- oder
Glattheitsterm, die Energie direkt in die Hohe geschossen wére und all diese Pixel als mogliche
Treffer ausscheiden wiirden , da der jeweils andere Term, nicht die Moglichkeit hat diese auszuglei-
chen. Durch den Faktor, welcher mit ¥’ vorangestellt wird, werden diese hohen Energien herunter
gewichtet, sodass jeweils der andere Term dominieren kann.

4.4.2 Minimierung

Die Minimierung mit subquadratischer Bestrafungsfunktion verhalt sich fast identisch zur bereits
bekannten Minimierung des segmentbasierten Ansatzes. Zuerst wird mit der Kettenregel ¥ abgeleitet,
wobei die dulere Ableitung W’ als Faktor vorangestellt und danach das Argument von ¥ wie in
Abschnitt 4.3.1 differenziert wird.

(4.17)
3

0=0%h- (‘Qll‘ /Ql ;(f%(fﬁ +ug, y) — fri(x,y)) foi, (x4 u,y) dxdy) Nl N

>, Us(u

j JEN()

mit

1

1+ %

4.4.3 Warping

(4.18) W'(s%) =

Auch das Warping ist mit der segmentbasierten Version identisch, wobei nur ¥’ jeweils zum Zeit-
schritt & mitberechnet werden muss. Die Linearisierung und Integration in die Coarse-to-fine-
Pyramide ist hingegen genau wie in Abschnitt 4.3.2 zu berechnen.

3
0= [\IJ’ ( o / Z (foi(z + uk-&-l’ y) — fri(z,9)) foi, (x + uf,y) d:rdy)
(4.19) ] S =

Nl—i-N
AT .N,J D [WIF - (ut —ubth
L2 jenq
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4 Segmentationsgestiitzte Stereorekonstruktion

0= [Wp]* <|Ql|/ Z foi( + (uf + dup), y) — fri(z,y)) fai, (x + uf,y) dmdy)

(4.20)
N;+ N
ST (W G+ duf — b - )
P jen

Nun kann nach dul linearisiert und die Farbe mit dem Integral in den Bewegungstensor gezogen
werden.

(4.21)
N+ N
7]\; +N»] Z [\I/fg]k(uf + duf — u;“ - duf)
P jenq

N; + N;
4.22 :\If’k( d ) S U F (uf + duf — o — du®
( ) 0 [ D] |Ql|‘]11 ul + ‘Q”le Nl . N] jé%:(l)[ S] (ul + u u] ’U,])

4.4.4 Losung

Die Lésung ist analog zu der segmentierten Variante, einzig ¥’ muss ausmultipliziert und dann mit
den entsprechenden Termen auf die andere Seite gebracht werden.

N+ N;
(4.23) 0 =[] (]Ql’ Jiduy + ] J12> ]\7[7]\73] Z (W) (uf + duf — uf - d“?)
JeN()

N+ N+ N
\Ijlk J d \Ijlk J d \Ijlk d
|Ql|“ul+ NNZ uf + N, N ]ng:
(4.24)
1 N+ N;j
\I//k T /k Z (w — ;)
Doy NN &

duf™ = (1 — w)duf
Ni+N. uk L k+1 k+1
‘I’/Sk\s%l\‘h?"“pis@ NN, 2jen (U Tt duf T -
Tw \I/,k 1 J —|—\I’/k Ni+N ]Z
Do 11 SONN Ny L
Ni+N.
(Wg“ . ]Z]€N+(u +du —uf))
+ w

k1 1k Nz+

(4.25)
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4.5 Affiner Parametrisierungs Ansatz

4.4.5 Lagged-Nonlinearity-Ansatz

Da bei der Funktion ¥ durch die Ableitung die Flussvariable du; in den Nenner riickt, ist nicht langer
ein lineares Gleichungssystem, sondern ein nicht-lineares Gleichungssytem vorhanden, welches auf
die herkémmliche Weise nicht mehr gel6st werden kann. Deshalb wird das System als Serie von
linearen Gleichungssystemen gelost. Dies bedeutet, dass ¥’ jeweils zum alten Zeitpunkt k ausgewertet
wird, welches zwar nur eine ungenaue, jedoch ausreichende Losung ist, damit das Gleichungssystem
konvergiert. ¥’ hingt also immer etwas hinterher (lagged) und wird erst nach jeder Iteration auf den
neusten Stand gebracht. Erste Ergebnisse sind im folgenden Abschnitt zu finden.

4.4.6 Ergebnisse

Abbildung 4.5: Links: Venus, Rechts: Cones

4.5 Affiner Parametrisierungs Ansatz

Die néchste Idee war es eine Parametrisierung einzufiihren indem die Funktion u(x, y) auf eine affine
Form umgestellt wird. Realisiert wird dies durch eine Ebene der Form ax + by + ¢, welche fiir jedes
Segment erzeugt wird. Dies formuliert den Fluss allgemeiner und hat den Vorteil dass nicht langer
von einem konstanten Fluss innerhalb der Segmente ausgegangen wird, sondern von einem affinen.

4.5.1 Affine Parametrisierung

Um den Vorgang etwas genauer zu beschreiben, wird der Vorgang von der Bewegungstensor-Notation
umgeformt. Als erstes wird der Flussvektor w = (u, 1)? auf die affine Form umgestellt, indem u
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4 Segmentationsgestiitzte Stereorekonstruktion

durch ax + by + c ersetzt wird. Danach kann w in zwei Vektoren aufgespalten werden, wobei p die
Flussvariablen beinhaltet.

(4.26) w— u axr + by +c z y 1 0\
' 1 1 0 001
—_— —mm————

Dies kann nun in die Bewegunstensor-Notation eingesetzt werden. Um schlief3lich wieder die be-
kannte Form zu erhalten, wird der vordere Teil transponiert und anschliefend die beiden Vektoren
M7T und M in den Tensor hinein multipliziert.

’U{l—‘(‘b >

(4.27) wT Jw = (Mp)T J(Mp) = (pT MT)J(Mp) = p* Jp

wobei J fiir folgende Matrix steht:

222 fPyx f2z fofix

| SRy SR SRy fofw
CHT= e 2y 2 L
ftfa:x ftfxy ftfz ft2

Die Besonderheit im Gegensatz zu den bisherigen Ansétzen ist der, dass nun die Stelle des Pixel z, v,
Einfluss auf das Ergebnis hat. Durch Anwendung der Parametrisierung wird schlussendlich der finale
Ansatz erzeugt, welcher die letzte Stufe dieser Arbeit darstellt.

3
/ > (failx + (az; + by + ), y) — fu(w,y))le“dy)

9

1=

(4.29)

m

a; W(lﬂje;(l) \I’S((al B aj)2 + (bl - bj)2 + (Cl _ Cj)2)

m
(a,b,c) = Z Up (
=1
1
+
4.5.2 Minimierung
Die Minimierung hat sich in der Hinsicht geandert, dass nicht langer nur eine Gleichung vorhanden

ist, sondern gleich drei. Dies hat den Grund, dass der Fluss nicht mehr ausschlieilich durch u
beschrieben wird, sondern durch die Parameter a, b, c.
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4.5 Affiner Parametrisierungs Ansatz

Ableitung nach a:

=" \Ql\/ Z fai(x + (az + by, + ¢), y) dedy — fri(2,y))

(4.30) . /Q Z foi, (x + (ax; + by, + ¢),y) dxdy -

i=1
> Vs (a — aj)

Nl + N
Nl J JEN(I)

Ableitung nach b:

1 3
0=")- o] /Ql > (failz + (az; + by, + ), y) dwdy — fri(z,y))
izl

3
(431) - / Z foi, (x + (az; + by, + ¢),y) dedy - y

NZ—I—N
> W (b —by)
Nl I jenq)

Ableitung nach c:

1 3
0=Vp- o /Ql > (failz + (am; + by, + ), y) dody — fri(z,y))
i=1

3
(432) . / Z Joi, (x + (az; + by, + ¢),y) dedy

N N;
]\lr—i_ Z Uy - (¢ —¢j)
t J JEN(I)

(4.33) W = W' (J11a” + Joob?® + Ja3c? + 2J19ab + 2J13a¢ + 2Ja3bc + 2J1 40+ 2Ja4b + 2340 + Jug)

(4.34) \I/fg = \Il’((al — CL]‘)2 + (bl — bj)Q + (C[ — cj)2)
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4 Segmentationsgestiitzte Stereorekonstruktion

Zu beachten ist hier, dass im Datenterm drei mal die Kettenregel angewendet werden muss, wobei
zuerst U abgeleitet wird, dann fy, sowie fa , welche die Faktoren x und y jeweils erzeugt. Bei den
beiden ¥’ Funktionen wird das Argument jeweils in die Bewegungstensor-Notation umgeformt und
anschlieffend die affine Parametrisierung eingesetzt. Die Eintrage von J entsprechend dann der weiter
oben beschriebenen Art.

4.5.3 Warping

Das Warping hat sich in der Hinsicht ein wenig gedndert, dass nun bei 3 Gleichungen ein Inkrement
eingefithrt wird und zwar fur alle 3 Variablen a, b, c. Da sich die Ableitungen jedoch nur in dem
Faktor x, y und 1, sowie dem Glattheitsterm unterschieden, wird hier nur die Variante fiir a erldutert.
Die beiden Anderen kénnen dazu analog berechnet werden.

Im ersten Schritt wird ein Iterationsschema eingefiihrt, welches anschlieffend in die Coarse-to-Fine-
Pyramide eingesetzt wird, indem die Inkremente da, db und dc eingefithrt werden.

1 3
0="0%- o /Ql ;(f%(x + (azy + by + ¢) + (dax; + dby; + dc),y) dedy — f1(x,y))

(435) - / foi, (z + (azi + by, + ¢),y) dedy - @

Nl-i-N

Nl Z U - (a; + da; — aj — da;)

Y JEN()

Nun kann mit der Taylorreihe um den Punkt (z + (az + by + ¢)) nach da, db und dc linearisiert
werden.

(4.36)
fo(x + (az; 4+ by, + ¢) + (dax; + dby; + dc),y) = fo(x + (ax + by + ¢),y

)
4 z + (ax + by + ¢) + (daz + day + dec) —z — (ax + by +¢)\ [ fo,(z + (az + by + ¢),y)
y—y fo,(z + (ax + by + ¢),y)

was ausmultipliziert und in die alte Gleichung eingesetzt folgendes ergibt:

(4.37)
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4.5 Affiner Parametrisierungs Ansatz

1
OZ\I’/D"Q”/ Zleﬂ da+ fa,y - db+ fai, - dc+ fai(z + (az + by + ¢),y) — fri(z,y) dzdy)
"’fzt

3
: / Zf%. (z + (az; + by, + ¢),y) dedy - x

Nl—I-N

Z \IJ/ (a; + da; — a; — daj)
Ni - Nj JEN(D)

Multipliziert man die Gleichung aus und zieht das Integral mit der Farbe in den Bewegungstensor
erhilt man die finale Form der Ableitungen welche anschlieffend gel6st werden kann:

Fir da:
(4.38)
N N;
0= \IIID (Juda + Jlgdb + Jlgdc + J14) LTy + Z \Ifl CLl + da; — aj — da,j)
Fir db:
(4.39)
1 N N;
0=U" —(Jigda + Jaodb + Josde + Jog) + a2 + Z Wy - (b + db, — bj — dby)
Fir dc:
(4.40)
1 N N;
0= \I//D (Jlgda + J23db + J33dC + J34) LTy + Z \I// (c+de — dcj)
4.5.4 Losung

Alle drei Gleichungen werden nun gleichzeitig gelost und nach jedem Level geupdated. Auf der
letzten Ebene angekommen wird der Fluss wieder auf v mit © = ax + by + ¢ zuriickgemappt.

(4.41)
N+ N;
0= \I’/ |Ql|(J11da+J12db+J13dC—|-J14) ]\lf+N Z \I/S (a; + day —a; —da])
2N jeny
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4 Segmentationsgestiitzte Stereorekonstruktion

N+ N+ N,
Fudal + 0NN ok 4 kg ]\17+N Zda

i) D|Ql| N N; i &
4.42
1 N A~ N+ N;
= \If/k |Ql|( Jlgdbl 1]13d05C — J14) \I//k Nl N Z (CL[ — aj)
7 jeN()
(4.43)

daf™ = (1 — w)daf
. (‘I’g‘ﬁ( Jiadbf — Jizdef — Ja) + WEaRIRE Ty (@ + daft! - f“))

N;+N;
Vg + VaTrn? Yy 1

Ni+N;
. (\I/gc A}f JZJ€N+(a + da’ —af))

k1 1k Ni+N
\I/D|QZ|J11+\I/SO[N N] ZN

Die anderen beiden Gleichung sind analog zu da:

(4.44)

dbftt = (1 — w)dby
(w'kl(—JQQdal Tagdef — Joa) + Wha TR Y Nf(b;?“ +dbitt - bf“))
+

S o]
NiEN
U a2 + VEa gz Yo
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Erste Ergebnisse sind im folgenden abschnitt zu sehen.

56



4.5 Affiner Parametrisierungs Ansatz

4.5.5 Ergebnisse

Abbildung 4.6: Links: Venus, Rechts: Cones
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5 Evaluation

In der Evaluation werden die verschiedenen Entwicklungsschritte miteinander verglichen und analy-
siert. Als Test wurden Bilder des Middlebury Benchmarks verwendet, genauer die Bildersequenzen
von Venus, Tsukuba, Teddy und Cones. Dies sind computergenerierte Bilder, welche extra fiir den
Test eines Stereo Algorithmus entworfen wurden. Aus diesem Grund kann eine Ground Truth, welche
gleich etwas niher beschrieben wird, erstellt werden, welche die exakte Losung darstellt und mit
welcher der errechnete Fluss verglichen werden kann. Zunéchst folgt jedoch eine kleine Einfithrung
der Parameter, welche zur Erzeugung der Bilder verwendet wurden.

5.0.6 Alpha

Dieser Parameter ist bereits aus dem Funktional bekannt, er gewichtet den Glattheitsterm im Ver-
haltnis zum Datenterm. So kann entschieden werden, ob mehr auf exakte Farbwerte der Segmente
geachtet werden oder eher ein glattes Ergebnis vorliegen soll.

5.0.7 Sigma

Sigma steht fiir die Standardabweichung des Gauf3-Kern, mit welchem der Grad der Segmentierung
geregelt wird und gleichzeitig fiir die Vorverarbeitung der Glitte des Bildes steht. Anhand dieser
Segmentierung, wird der Startwert des Algorithmus festgelegt.

5.0.8 Iterationen

Dieser Wert steht fiir die Anzahl an Iterationen, bei welchem der Algorithmus zum Stillstand kommt
und die bisher errechnete Lésung an die nichste Ebene weitergegeben wird. Zum einen wurde ein
Parameter fiir die duflere Iteration definiert, welcher fiir den Lagged-Nonlinearity-Ansatz zustandig ist.
Nach jeder duBleren Iteration wird U’ angepasst und an den Loser tibergeben. Der zweite Parameter
steht fur die innere Iteration, welcher die Anzahl der Schritte des SOR-Losers bestimmt.

5.0.9 Omega

Omega gibt den Relaxationsparameter fiir den SOR-Solver an. Dieser wurde bei allen Lésungen auf
1.95 gesetzt.
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5 Evaluation

5.0.10 Epsilon

Epsilon steht fiir die beiden Parameter, mit welcher ¥ eingestellt werden kann. Durch ein kleines
Epsilon kann das Segment jeweils heruntergewichtet werden, wobei ein groler Wert mehr Fokus
darauf legt. Im Prinzip kann so neben Alpha noch etwas feiner gewichtet werden.

5.1 Ground Truth

Die Ground Truth ist ein separates Bild, welches bei dem Prozess mit eingelesen wird um die
berechnete Losung mit ihr zu vergleichen. Sie ist ein im voraus berechnetes Bild, welches zu 100% der
perfekten Losung entspricht. Da die Urspriinglichen Bilder computergeneriert sind, ist fiir jeden Pixel
der Fluss bekannt und kann in der Ground Truth durch einen Wert beschrieben werden. Durch die
Differenz dieses Wertes mit der berechneten Losung kann so schnell erkannt werden, ob der Fluss
stimmt oder nicht.

5.2 Okklusions Map

Die Okklusions Map ist ein binares Bild, welche alle Pixel schwarz markiert, welche vom Algorithmus
nicht berechnet werden kénnen. Durch den anderen Blickwinkel der beiden Kameras auf die Szene,
sind Bereiche nur auf einem der Bilder wiederzufinden, deshalb werden alle Pixel, welche nicht
gematched werden konnen, bei der Evaluation des Fehler nicht beriicksichtigt.

5.3 Bad Pixel Error

Als Testverfahren um die verschiedenen Lésungen zu evaluieren wurde der Bad Pixel Error verwendet.
Dieser nimmt die berechnete Losung und vergleicht diese Pixel fiir Pixel mit der Ground Truth, wobei
die Differenz kleiner als ein vorher bestimmter Threshold sein, muss um als korrekter Pixel erkannt
zu werden. Als Threshold wurde in allen Bilder der Wert 1 verwendet, was bedeutet, dass alle Pixel
die um mehr als 1 Pixel an der eigentliche Losung verschieden sind, als falsche Pixel markiert werden.
Der finale Fehler entsteht dann durch eine Prozentuale Angabe der falschen Pixel wobei 0% ein in
allen Belangen korrektes Bild angibt.

5.4 Vergleich

Im Folgenden Abschnitt werden alle Schritte, welche bis hin zum finalen Algorithmus benétigt
wurden, einzeln evaluiert und miteinander verglichen. Dazu wurden alle 4 Testsequenzen mit den
Algorithmen berechnet, welche anschlieflend mit dem Bad Pixel Error bewertet wurden. Anschlieflend
wird jeweils auf die Vor- und Nachteile der jeweiligen Varianten niher eingegangen.
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5.4 Vergleich

Abbildung 5.1: Oben Links: Venus Testsequenz, Oben Mitte: Grount Truth, Oben Rechts: Kon-
stanter Ansatz mit « = 75, 0 = 0.3 und einem Bad Pixel Error von 7.8%, Unten
Links: Robuster konstanter Ansatz mit o = 177, 0 = 0.3, €p = 0.05, €5 = 0.0017 und
einem Error von 3.39%, Unten Mitte: Affiner Ansatz mit o = 6493814, o = 0.3 und
einem Error von 8.7%, Unten Rechts: Robuster affiner Ansatz mit o = 237137, 0 =
0.3, ep = 0.05, €g = 0.00056 und einem Error von 5.6%

Bei der Venus Sequenz war vor allem der Bereich der Kanten und die Flache der Zeitungen zu beachten.
Zu erkennen ist, dass mit der konstanten Methode die Form der Zeitungen gut getroffen wurde,
jedoch die Kanten ein recht unscharfes Bild ergeben und zum Teil weiter unten auch miteinander
verschmelzen. Innerhalb der Zeitung gab es hauptsachlich bei der Schrift Probleme und die Flache
an sich war nicht so glatt wie erhofft. Durch den robusten konstanten Ansatz wurde das Problem
der unscharfen Kanten grofitenteils behoben. Das Bild ist allgemein schérfer, die Briicke zwischen
beiden Zeitungen ist verschwunden und auch die Flache besteht aus einem gleichméafiigerem Griin.
Der affine Ansatz hat sich im Vergleich mit der konstanten Variante nur marginal auf die Qualitat
ausgewirkt und ist an bestimmten Stellen etwas schlechter. Gerade bei diinnen Objekten wie der
Schrift kamen einige Fehler hinzu. Diese konnten allerdings durch die robuste ¥ Funktion wieder
zum Teil korrigiert werden.
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5 Evaluation

Abbildung 5.2: Oben Links: Tsukuba Testsequenz, Oben Mitte: Grount Truth, Oben Rechts:
Konstanter Ansatz mit «v = 153, ¢ = 0.3 und einem Bad Pixel Error von 13.2%, Unten
Links: Robuster konstanter Ansatz mit o = 649, 0 = 0.3, ¢p = 0.05, €5 = 0.0017 und
einem Error von 7.4%, Unten Mitte: Affiner Ansatz mit o = 4869674, o = 0.3 und
einem Error von 11.88%, Unten Rechts: Robuster affiner Ansatz mit o = 865964, o
=0.3, ep = 0.05, €5 = 0.00017 und einem Error von 7.2%

Bei der Tsukuba Sequenz bestand die Schwierigkeit darin, den gezeigten Objekten die richtige Tiefe
zuzuordnen, da viele Objekte durch ein anderes oder gleich mehrere Objekte verdeckt wurden.
Gerade der Bereich der Lampe mit der diinnen Halterung wurde oft nicht richtig erkannt, da dort
gleich drei verschiedene Tiefen innerhalb weniger Pixel auftreten. So hat der konstante Ansatz zwar
die Form der Lampe gut wiedergegeben, dabei aber die Tiefe an den Randern falsch zugeordnet.
Durch die Robustheit wurden die Kanten wieder glatter und die Flachen gleichméafiiger, dabei gingen
allerdings diinne Teile der Halterung verloren. Die affine Methode hat auch hier die etwas feineren
Objekte zuriickgebracht, leidet jedoch im Grof3en und Ganzen an den gleichen Fehlern wie bereits
die konstante Variante. Kombiniert mit der robusten W Funktion, erhalt man schliefilich wieder die
Glattheit aus dem robusten konstanten Ansatz mit dem Vorteil dass nun die diinnen Objekte besser
erhalten wurden. Teile die zuvor noch dem Tisch zugeordnet wurden, werden nun korrekt an der
Lampe platziert.
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5.4 Vergleich

Abbildung 5.3: Oben Links: Teddy Testsequenz, Oben Mitte: Grount Truth, Oben Rechts: Kon-
stanter Ansatz mit « = 86, o = 0.3 und einem Bad Pixel Error von 20.6%, Unten
Links: Robuster konstanter Ansatz mit o = 273, 0 = 0.3, €p = 0.05, €5 = 0.0017 und
einem Error von 14.3%, Unten Mitte: Affiner Ansatz mit o = 6493815, o = 0.3 und
einem Error von 22.2%, Unten Rechts: Robuster affiner Ansatz mit o = 273841, o =
0.3, €p = 0.05, €5 = 0.00056 und einem Error von 18.5% [SS03].

Die Teddy Testsequenz ist von den 4 evaluierten Bildern diejenige, welche allgemein den grofiten
Fehler hatte. Dies liegt daran, dass gerade im vorderen Bereich eine grofie Anzahl an okkludierten
Pixel zu finden sind, welche durch die schwarzen Bereiche der Ground Truth dargestellt werden. Der
konstante Ansatz hinterlasst dort ein sehr unscharfes Bild, wobei die Konturen des Baren und Teile
der Pflanzen noch zu erkennen sind. Die Kanten werden jedoch erst durch die robuste Variante wieder
etwas schérfer, wodurch der Kamin des Hauses besser dargestellt wird. Auch der Teddy kommt hier
besser zum Vorschein. Die affine Methode hat auch hier Einfluss auf die etwas kleineren Bereiche,
welche besser erhalten werden. Der Teddy der im konstanten Ansatz noch mit dem rechten Rand
verschmolzen war, ist nun deutlich im Bereich des Armes von ihm getrennt. Im finalen Ansatz wird
dies noch etwas fortgefiihrt. Hier werden Teile der Pflanze, welche zuvor noch ein grofer Fleck
waren, nun besser dargestellt und besser vom Hintergrund getrennt.
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5 Evaluation

Abbildung 5.4: Oben Links: Cones Testsequenz, Oben Mitte: Grount Truth, Oben Rechts: Kon-
stanter Ansatz mit o = 100, o = 0.3 und einem Bad Pixel Error von 13.9%, Unten
Links:Robuster konstanter Ansatz mit o = 421, 0 = 0.3, €p = 0.05, €5 = 0.0017 und
einem Error von 8.8%, Unten Mitte: Affiner Ansatz mit oo = 6493815, ¢ = 0.3 und
einem Error von 15.34%, Unten Rechts: Robuster affiner Ansatz mit «v = 273841, o
=0.3, ep = 0.05, €5 = 0.00017 und einem Error von 10.7% [SS03].

Cones besteht aus einer Menge kleiner Kegel, welche in vielen verschiedenen Tiefen platziert sind
und zum Teil sich gegenseitig verdecken. Eines der Probleme war die Tasse im rechten unteren
Bereich des Bildes. Die diinnen Bleistifte gingen leicht verloren und konnten von keinem der Ansétze
korrekt zugeordnet werden. Der konstante Ansatz konnte jedoch bereits viele der Kegel der richtigen
Tiefe zuordnen, leidet aber wie schon zuvor an unscharfen Kanten. Dies konnte durch den robusten
Ansatz zum Teil behoben werden, wobei besonders die Maske sehr gut getroffen wurde. Die beiden
affinen Ansitze bringen wieder die bereits Bekannten Vorteile mit sich, welche im hinteren Bereich
des Zaunes zu erkennen sind. Viele Holzlatten welche zuvor miteinander verschmolzen waren, sind
nun wieder zu erkennen.

Im Allgemeinen lésst sich tiber die einzelnen Varianten sagen, dass die subquadratische Bestra-
fungsfunktion einen sehr starken Einfluss auf das spatere Ergebnis hat. Die Kanten werden um
ein vielfaches schérfer und die Flachen gleichméfliger. Die affine Parametrisierung hat nur unter
bestimmten Voraussetzungen ein positiven Einfluss, zum einen wenn es um diinne und kleine Objekte
geht, die dadurch besser erhalten werden.
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5.5 Middlebury Benchmark

5.5 Middlebury Benchmark

Das Middlebury Benchmark [mid] ist eine Homepage der Computer Vision, welche es sich zur
Aufgabe gemacht hat, verschiedene entwickelte Algorithmen im Bereich des Stereo Matchings oder
des Optischen Flusses miteinander zu vergleichen. Zum Testen wurden mehrere auf das Problem
angepasste Testsequenzen entwickelt, welche die Schwierigkeiten des Alltags représentieren sollen.
Dort wird mithilfe der Ground Truth, Okklusions Map und anderen Statistiken eine Rangliste der
dort hochgeladenen Algorithmen erstellt. Um fiir ein faires Ergebnis zu sorgen, miissen allerdings
alle 4 Bilder mit den gleichen Parametern berechnet werden und diirfen nicht auf jedes Bild einzeln
angepasst sein.

LCDM+AdaptWat [68]| 146.9 | 5.98 148 7.84 143 22.2 145]14.5 152 15.4 152 35.9 151|20.8 152 27.3 150 38.3 151|8.90 137 17.2 136 20.0 130 19.5

STICA[15] 147.0|7.70 151 9.63 152 27.8 149]8.19 148 9.58 14840.3 152| 15.8 142 23 .2 144 37.7 150{9.80 130 17.8 130 28.7 150 19.7
YOUR METHOD | 147.8|7.47 1509.58 151 31.7 152|5.24 145 6.55 14533.2 149\ 18.3 140 26.6 140 36.8 148 10.8 144 20.2 146 25.8 148 19

Infection [10] 148.4 |7.95 1529.54 15028.9 151)4.41 142 5.53 142 31.7 148/ 17.7 146 25.1 14844 .4 152/ 14.3 140 21.3 148 38.0 151 20.7

Abbildung 5.5: Vergleich mit anderen Algorithmen der Middlebury Benchmark Homepage Von
links nach rechts: Tsukuba, Venus, Teddy, Cones

Bild 5.5 zeigt nun einen kleinen Ausschnitt dieser Rangliste, in welcher dieser Algorithmus gelb
gekennzeichnet ist. Die Wahl des Ansatzes fiel auf den robusten affinen Ansatz, da dieser das meiste
Potential der Algorithmen hat und allgemein zufriedenstellende Ergebnisse erzielt. Die erste Spalte
von links steht fiir den Rang, daneben ist die Analyse der Tsukuba Sequenz, gefolgt von Venus, Teddy
und Cones. Die letzte Spalte steht fiir den durchschnittlichen Bad Pixel Error aller Tests. Es wurden
3 Tests fiir jedes der Bilder durchgefiihrt. Von links nach rechts ist dies zum einen der Vergleich
mit einer Okklusions Map, bei welchem die Okkludierten Pixel nicht in den Fehler mit einflieflen.
Zum anderen ein Vergleich ohne Okklusions Map, bei der jeder Pixel Einfluss auf den Fehler hat,
okkludiert oder nicht. Der letzte Test war auf die Kanten der jeweiligen Bilder fokussiert, hier wurden
nur umliegende Bereich der Kanten gewertet. Zu erkennen ist, dass gerade bei den Kanten ein sehr
hoher Fehler erzielt wird, welcher auch die Hauptproblematik vieler anderen Verfahren ist. Durch
eine bessere Erhaltung der kanten, l4sst sich somit ein weit besseres Ergebnis erzielen.
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6 Zusammenfassung und Ausblick

Im letzten Kapitel dieser Arbeit werden die einzelnen Schritte des Algorithmus, sowie die Ergebnisse
noch einmal zusammengefasst. Dariiber hinaus wird im Ausblick etwas nédher auf die zukiinftige
Entwicklung eingegangen, sowie ein paar Moglichkeiten angesprochen, welche den Algorithmus
erweitern.

6.1 Zusammenfassung

Das Ziel dieser Arbeit war einen segmentationsgestiitzen Algorithmus zu entwerfen, welcher die
raumliche Tiefe mithilfe eines Optischen Fluss Ansatzes berechnet. Angefangen wurde mit einem
Orthoparallelen Kameraaufbau, welcher einzig Verschiebungen in der x-Achse zuldsst, worauf zuerst
der allgemeine Optische-Fluss-Ansatz auf Farbe und die angesprochene Stereoform umgestellt wurde,
welche als Baseline fiir die niachsten Schritte diente. Diese konnte darauf in einen segmentierten
Ansatz umgestellt werden, indem die Bilder zuvor mit der Wasserscheidentransformation segmentiert
und die Objekte geclustert wurden. Da es sich um ein Minimierungsproblem handelt, musste das
Funktional mithilfe des Euler-Lagrange Frameworks nach dem Fluss abgeleitet werden. Um jedoch
groflere Verschiebungen berechnen zu kénnen, wurde die Lineariserung bis in den numerischen
Teil hinausgezogert und alles in eine Warping-Strategie eingebaut, genauer gesagt in eine Coarse-
to-Fine-Pyramide integriert. Anschliefend wurde die Losung schrittweise fiir verschieden grof3e
Auflésungen berechnet, wobei mit der grobsten Auflésung begonnen wird und diese dann in die
nichsthohere Auflosung tibertragen wird. Dadurch wurden die groflen Verschiebung in viele Kleine
aufgeteilt. Danach wurde alles durch einen iterativen SOR-Loser berechnet. Dieser Ansatz konnte
mithilfe weiterer Konzepte allerdings verbessert werden. Das erste bestand darin, den Ansatz robuster
gegen Ausreifler zu machen, dies geschah durch die Funktion W, welche Fehler in der Zuordnung
nicht ldnger quadratisch sondern subquadratisch bestraft, worauf Ausreifler an Einfluss verloren.
Dies kam besonders der Erhaltung der Kanten zugute und erzeugte ein gleichmafligeres Bild. Der
letzte Schritt war die Umwandlung auf ein affines Modell, welches fiir jedes Segment eine Ebene mit
den Parametern a, b und ¢ berechnete und so den Fluss allgemeiner darstellte.

6.2 Ausblick

Die Richtung in die sich die Verfahren entwickeln geht klar zu den segmentierten Varianten, da viele
Einsatzgebiete solcher Algorithmen einen echtzeitfahigen Algorithmus voraussetzen, also eine schnel-
le Berechnung erfordern, worauf zur Not eine nicht zu 100% korrekte Losung in Kauf genommen wird.

67



6 Zusammenfassung und Ausblick

Nichtsdestotrotz bestehen durchaus weitere Moglichkeiten, die Ergebnisse zu verbessern und trotz-
dem eine schnellen Algorithmus zu bekommen. Der affine Ansatz kann durch weitere Gewichtungen
des Glattheitsterm besser auf die jeweiligen Parameter a, b, c angepasst werden, wodurch ein besseres
Ergebnis entsteht. Zudem kénnen Modifikationen am Datenterm vorgenommen werden, indem er
durch eine Gradientenkonstanz erweitert wird, welche Pixel trotz Anderung der Beleuchtung richtig
zuordnet. Eine weitere Moglichkeit wire einen besseren Segmentierungsalgorithmus zu verwenden,
wie den der Mean-Shift Segmentierung [CM02], welche nicht kantenbasiert, sondern regionsbasiert
ist. Der grofite Schritt wird allerdings durch die Erhaltung der Kanten erzielt, welche in diesem
Algorithmus die grofiten Schwachstellen sind. Der hier entwickelte Algorithmus bietet aber eine
solide Grundlage, welche in Zukunft weiter ausgebaut und auf verschiedene Anwendungsgebiete
angepasst werden kann.
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