
Institut für Parallele und Verteilte Systeme
Abteilung Simulation großer Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Studienarbeit Nr. 2445

Fehlertolerante Lösung von PDEs
mit der

Dünngitter-Kombinationstechnik

Amir Abdelaziz

Studiengang: Informatik

Prüfer/in: Jun.-Prof. Dr. rer. nat. Dirk Pflüger

Betreuer/in: M. Sc. Mario Heene

Beginn am: 2. Dezember 2013

Beendet am: 3. Juni 2014

CR-Nummer: G.1.8

Kurzfassung

Diese Studienarbeit beschäftigt sich mit der fehlertoleranten Lösung von partiellen Differentialglei-

chungen (PDE). Untersucht werden Verfahren die auf der Dünngitter-Kombinationstechnik beruhen.

Anhand von zwei PDEs, dem Laplace Problem und der Advektionsgleichung wird untersucht wie sich

ein Fehlerausfall einer Teillösung auf den Fehler der Kombinationstechnik auswirkt. Des Weiteren

werden Ansätze wie die Neuberechnung von kleineren Teillösungen, die Richardson-Extrapolation

und deren Verknüpfung mit der Kombinationstechnik untersucht. Die dazu nötigen Methoden werden

in das Dünngitter-Framework SG++ implementiert.

3

Inhaltsverzeichnis

1. Einleitung 9
1.1. Motivation . 9

1.2. Aufgabenstellung . 10

2. Definitionen, Versuchsaufbau und Ergebnisse 13
2.1. Gitter, Funktionsräume und Dünngitter-Kombinationstechnik 13

2.2. Truncated Combination Technique . 17

2.3. Verfahren für das Berechnen einer Kombination im Fehlerfall 21

2.4. Beschreibung der PDEs und der Testprogramme . 26

2.5. Ergebnisse der Kombinationstechnik . 27

2.6. Richardson-Extrapolation . 31

2.7. Verknüpfung von einfacher Kombinationstechnik und Richardson-Extrapolation . . . 35

3. Implementierung fehlertoleranter Verfahren in SG++ und Ergebnisse 39
3.1. Ansätze zur Verbesserung der Verfahren . 47

4. Zusammenfassung 51

A. Anhang 53
A.1. Kombinationen nach einem Fehler in f̃2

n−2,n−2 . 53

A.2. Kombinationen nach einem Fehler in f̃3
n−3,n−3 . 53

A.3. Kombinationen nach einem Fehler in f̃2
n−2,n−2 mit Richardson Extrapolation p=2 . . 55

A.4. Kombinationen nach einem Fehler in f̃3
n−3,n−3 mit Richardson Extrapolation p=2 . . 55

A.5. Kombinationen nach einem Fehler in f̃2
n−2,n−2 mit Richardson Extrapolation und

verknüpfter Technik p=1 . 56

A.6. Kombinationen nach einem Fehler in f̃3
n−3,n−3 mit Richardson Extrapolation und

verknüpfter Technik p=1 . 57

A.7. Kombinationen nach einem Fehler in f̃2
n−2,n−2,n−2 57

A.8. Kombinationen nach einem Fehler in f̃2
n−2,n−2,n−2 mit Richardson Extrapolation p=2 59

A.9. Kombinationen nach einem Fehler in f̃2
n−2,n−2,n−2 mit Richardson Extrapolation p=1 60

Literaturverzeichnis 61

5

Abbildungsverzeichnis

2.1. Gitter . 14

2.2. Dünngitter-Kombinationstechnik . 16

2.3. Truncated Combination Technique f̃ t
n−t,n−t und Fehlerfälle 19

2.4. Inklusion Exklusion . 23

2.5. Programme für die Untersuchungen der Fehler . 28

2.6. Ergebnisplot: Fehler bei der Lösung der Laplace-Gleichung mit f̃2
n−2,n−2 29

2.7. Ergebnisplot: Fehler bei der Lösung der Advektionsgleichung mit f̃2
n−2,n−2 29

2.8. Ergebnisplot: Fehler bei der Lösung der Laplace-Gleichung mit der Richardson-

Extrapolation auf Vn−3,n−3 . 32

2.9. Ergebnisplot: Fehler bei der Lösung der Laplace-Gleichung mit der Richardson-

Extrapolation auf Vn,,n . 33

2.10. Ergebnisplot: Fehler bei der Lösung der Advektionsgleichung mit Richardson-

Extrapolation und ihrer Verknüpfung mit der Kombinationstechnik, f̃2
n−2,n−2 36

2.11. Ergebnisplot: Fehler bei der Lösung der Advektionsgleichung mit Richardson-

Extrapolation und ihrer Verknüpfung mit der Kombinationstechnik, f̃3
n−3,n−3. 37

3.1. CombiFaultRecoveryScheme . 40

3.2. Ergebnisplot: Laplace Problem 2D faultRecoveryFast 42

3.3. Ergebnisplot: Laplace Problem 2D faultRecoverySlow mit Neuberechnung 44

3.4. Ergebnisplot: Laplace Problem 2D faultRecoverySlow ohne Neuberechnung 45

3.5. Ergebnisplot: Laplace Problem 2D faultRecoveryRichardson 45

3.6. Ergebnisplot: Laplace Problem 2D faultRecoveryBlock keine Zentrierung 47

3.7. Ergebnisplot: Laplace Problem 2D faultRecoveryBlock mit Zentrierung 48

A.1. Ergebnisplot: Fehler bei der Lösung der Laplace-Gleichung mit f̃3
n−3,n−3 54

A.2. Ergebnisplot: Fehler bei der Lösung der Advektionsgleichung mit f̃3
n−3,n−3 54

A.3. Ergebnisplot: Fehler bei der Lösung der Laplace-Gleichung mit der Richardson-

Extrapolation auf Vn−2,n−2 . 55

A.4. Ergebnisplot: Fehler bei der Lösung der Laplace-Gleichung mit der Richardson-

Extrapolation auf Vn,,n . 56

A.5. Ergebnisplot: Fehler bei der Lösung der Laplace-Gleichung mit f̃2
n−2,n−2,n−2 58

A.6. Ergebnisplot: Fehler bei der Lösung der Advektionsgleichung mit f̃2
n−2,n−2,n−2 . . . 58

A.7. Ergebnisplot: Fehler bei der Lösung der Laplace-Gleichung mit der Richardson-

Extrapolation auf Vn−2,n−2,n−2 . 59

A.8. Ergebnisplot: Fehler bei der Lösung der Advektionsgleichung mit der Richardson-

Extrapolation auf Vn−2,n−2,n−2 . 60

6

Verzeichnis der Algorithmen

3.1. Algorithmus zur Messung der Fehler der implementierten Methoden 41

3.2. Bestimmung einer Richardson-Extrapolation nach einem Ausfall von Teillösungen . . 46

7

1. Einleitung

1.1. Motivation

Computergestützte Simulationen spielen in den Ingenieurs- und Naturwissenschaften eine wichtige

Rolle. Simulationen ersetzen oder ergänzen klassische Experimente dort, wo sie nicht durchführbar,

zu gefährlich oder zu teuer sind. Anwendungen finden sie z. B. bei der Untersuchung von Erdbeben,

in der Astronomie, in der Medizin zur Erforschung von Proteinen oder in der Strömungssimulation.

Für den Rechenaufwand spielen die konkrete Modellierung, sowie die räumliche und zeitliche Diskre-

tisierung eine Rolle. Um auch feinskalige oder hochdimensionale Probleme zu lösen ist ein enormer

Rechenaufwand nötig. [BZBP13]

So ist seit längerem eine steigende Nachfrage nach immer höherer Rechenleistung zu beobachten. Die

Top500 [Top] Liste, ist ein im halbjährlichen Rhythmus aufgestelltes Ranking der schnellsten Rechner

im High Performance Computing. Ihr lässt sich ein exponentielles Wachstum der Rechenleistung

entnehmen. Stand in der ersten Liste von 1993 der CM-5 mit 1024 Cores und einer gemessenen

Rechenleistung von ca. 59.7 GFlop/s an der Spitze, so sind es bei der Nr. 1 in der aktuellen Liste

vom November 2013, dem Tianhe-2 (MilkyWay-2) - TH-IVB-FEP, rund 33, 87 PFlop/s und über drei

Millionen Cores.

Durch die ständige Zunahme der Komplexität der Systeme erhöht sich die Wahrscheinlichkeit,

dass irgendeine der vielen Komponenten ausfällt. Einen guten Überblick über Untersuchungen zur

Fehlerhäufigkeit, deren Ursachen und den Techniken fehlertoleranter Systeme liefern Egwutuoha,

Levy, Selic und Chen [ELSC13]. Häufige Fehlerquellen seien neben Hardwarefehlern vor allem

Softwarefehler und Benutzerinteraktionen, wie z. B. der Austausch von Hardware.

DesWeiteren stellt sich die Frage wie Fehler überhaupt erkannt werden können. Diese Arbeit wird sich

nicht mit diesen Fragen beschäftigen, genauso wenig wie mit den Themen redundanter Hardware oder

den verschiedenen Rollback-Recovery Verfahren. Hier seien an dieser Stelle nur kurz die Checkpoint-

Restart Verfahren erwähnt zu denen sich ein Einstieg in [ELSC13] findet.

Checkpoint-Restart Verfahren basieren darauf, dass in regelmäßigen Zeitabständen der Zustand

eines parallelen Programms gesichert wird. Werden Fehler diagnostiziert, werden einzelne Prozesse

oder die ganze Anwendung angehalten und eine ältere Sicherung wieder eingespielt, von der aus

die Berechnung weiter erfolgt. Damit diese Verfahren anwendbar sind, muss der Checkpoint die

Sicherung eines fehlerfreien Zustandes sein, also insbesondere vor Auftreten von Fehlern erfolgen.

Die „Mean Time To Failure“ (MTTF) ist die durchschnittliche Zeit bis zum Auftreten des ersten Fehlers.

Bei Systemen die repariert werden spricht man auch von der „Mean Time Between Failures“ (MTBF)

also dem Erwartungswert der Zeit zwischen zwei aufeinander folgenden Fehlern. Die Fehlerrate ist der

9

1. Einleitung

Kehrwert des MTBF. Untersuchungen nach [BS06] zeigen, dass die Fehlerrate ungefähr proportional

mit der Anzahl der Prozessoren steigt.

Dies bestätigt auch folgende Überlegung:

Unter der Annahme ein Fehler einer Komponente würde zu einem ganzen Systemausfall führen und

alle MTBF hätten eine obere Schranke c ∈ R+
gilt folgendes:

Seien X1, · · · , Xn, n ∈ N die Komponenten eines Systems und M1, · · · , Mn, n ∈ N die zugehörigen

MTBF Werte. Für alle i ∈ {1, . . . , n} gelte Mi ≤ c ∈ R+
. Seien λi = 1

Mi
, i ∈ {1, . . . , n} die

zugehörigen Fehlerraten. Dann gilt für das ganze System

M = 1
λ

= 1∑n
i=1 λi

= 1∑n
i=1

1
Mi

≤ 1
n1

c

= c

n

Capello, Geist, Gropp, Kale, Kramer und Snir prognostizieren, dass mit den zukünftigen Exascale

Systemen, Checkpoint-Restart Verfahren nicht mehr funktionieren werden, da die Zeit für Sicherung

und Wiederherstellung die Mean Time To Failure des Gesamtsystems übersteigen wird [GKKS09].

Folglich müssen neue Verfahren gefunden werden, welche die effiziente Nutzung zukünftiger Systeme

ermöglichen.

1.2. Aufgabenstellung

Diese Studienarbeit beschäftigt sich mit der fehlertoleranten Lösung von partiellen Differentialglei-

chungen (PDE) mittels der Dünngitter-Kombinationstechnik [GSZ92].

Bei der numerischen Lösung von PDEs wie z. B. bei den Finite Elemente Methoden wird der Definiti-

onsbereich D der gesuchten Lösung f durch ein Gitter diskretisiert. Die Approximation f̃ ist dann z.

B. ein stückweise polynomieller und numerisch berechneter Interpolant von f , mit den Gitterpunkten

als Stützstellen.

Erfüllt f bestimmte Anforderungen, wie z. B. beschränkte zweite gemischte Ableitungen, dann

konvergiert die Approximation f̃ , bei feiner werdender Diskretisierung, bezüglich der Lp
Normen,

gegen f . Für einen d-dimensionalen Definitionsbereich D und 0 < p ≤ ∞ ist die Lp
Norm definiert

durch:

∥f∥pLp :=


∫

D|f(#»x)|pd #»x für 0 < p <∞
max #»x ∈D |f(#»x)| für p =∞

Werden isotrope volle Gitter verwendet, so liegt der Berechnungsaufwand, falls f genügend glatt ist,

∥f − f̃∥L2 und ∥f − f̃∥L∞ unter eine Schranke ϵ zu bekommen für α ∈ R+
inO(ϵ−αd) [BG04]. Die

Komplexität steigt also exponentiell mit der Anzahl der Dimensionen des Problems. Dies nennt man

auch den Fluch der Dimensionalität [Bel61].

10

1.2. Aufgabenstellung

Ist f genügend glatt, so können sogenannte Dünne Gitter [Zen91], mit einem Aufwand von

O
(
ϵ−α ∗ |log2 ϵ|β∗(d−1)

)
, für α, β ∈ R+

verwendet werden. Dabei hängen α und β von dem Poly-

nomgrad der d-dimensionalen Basisfunktionen ab, näheres dazu kann in [BG04] nachgelesen werden,

d. h. der Aufwand wächst also in Abhängigkeit von der Dimension wesentlich langsamer.

Dünne Gitter sind allerdings, aufgrund ihrer hierarchischen und rekursiven Struktur, algorithmisch

schwerer handzuhaben als anisotrope volle Gitter. Bei der Dünngitter-Kombinationstechnik wird eine

Linearkombination der Approximationslösungen f #»
l ,

#»

l ∈ L, aus den zugehörigen Funktionsräumen

V #»
l ,

#»

l ∈ L verwendet um die Dünngitter-Lösung zu approximieren
1
. Diese hat ein leicht schlechteres

Konvergenzverhalten als dass der dünnen Gitter, aber es können zumindest Standardalgorithmen

verwendet werden. [Pfl10]

Einweiterer Vorteil der Dünngitter-Kombinationstechnik ist die einfachere Parallelisierung. So können

die Lösungen auf den anisotropen vollen Gittern unabhängig voneinander berechnet werden, was

den Kommunikations- und Synchronisationsaufwand erheblich verringert. Fällt eine Teillösung aus,

so können erfolgreich berechnete Teillösungen weiter verwendet werden. Um dies zu gewährleisten

können etwa neue Koeffizienten für die Linearkombination berechnet oder kleinere Teillösungen

interpoliert oder nachberechnet werden.

Zur Analyse der Fehler beschränkt sich diese Arbeit in Kapitel 2 erst einmal auf die „Truncated

Combination Technique“ wie sie z. B. in [HH14] [BBNS12] und [BP12] verwendet werden.

Anhand von zwei PDEs, dem Laplace Problem und der Advektionsgleichung wird untersucht wie sich

ein Fehlerausfall einer Teillösung auf den Fehler der „Truncated Combination Technique“ auswirkt.

Des Weiteren werden Ansätze wie die Neuberechnung von kleineren Teillösungen, die Richardson-

Extrapolation und deren Verknüpfung mit der Kombinationstechnik untersucht. Die dazu nötigen

Methoden werden in das Dünngitter-Framework SG++ [Pfl10] implementiert, welches im Rahmen

einer Dissertation von Dirk Pflüger, entstanden ist und in der Abteilung Simulation großer Systeme,

des Institutes für Parallele und Verteilte Systeme, an der Universität Stuttgart weiterentwickelt wird.

Grundlage der Studienarbeit ist der Artikel „Robust Solutions to PDEs with multiple grids“ von

Brendan Harding und Markus Hegland [HH14].

1

Dies ist nur bei bestimmten Problemen möglich. Dünngitter-Kombinationstechnik und Dünnes Gitter sind a priori nicht

gleich [HGC07]. Insbesondere können für ein Problem die Dünnen Gitter gegen die Lösung konvergieren, während die

Dünngitter-Kombinationstechnik nicht konvergiert. Für Beispiele dazu siehe [Gar04].

11

1. Einleitung

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Definitionen, Versuchsaufbau und Ergebnisse: Hier werden werden, die in der Ar-

beit verwendeten Begriffe wie die Dünngitter-Kombinationstechnik oder die Truncated Combi-

nation Technique definiert. Es werden Fehlerabschätzungen betrachtet und das Konzept der

multivariaten Richardson-Extrapolation und ihrer Verknüpfung mit der Kombinationstechnik

erläutert. Es werden Verfahren zur Berechnung einer neuen Linearkombination, falls Teil-

lösungen ausfallen, vorgestellt und die Simulationsergebnisse für den Fehler verschiedener

Linearkombinationen betrachtet.

Kapitel 3 – Implementierung fehlertoleranter Verfahren in SG++ und Ergebnisse: Hier wird

die Implementierung von verschiedenen Verfahren zur Berechnung einer neuen Linearkombi-

nation, falls Teillösungen ausfallen, skizziert und die Simulationsergebnisse für deren Fehler

betrachtet. Am Ende des Kapitels wir noch ein Ausblick gegeben.

Kapitel 4 – Zusammenfassung fasst die Ergebnisse der Arbeit zusammen.

12

2. Definitionen, Versuchsaufbau und
Ergebnisse

Fast alle Definitionen in diesem Kapitel sind [HH14], [HH12] und [Pfl10] entnommen und die Nota-

tion ist weitgehend ähnlich. Hier sei gleich ein Problem benannt: Wir werden ein paar Notationen

verwenden, welche mathematisch nicht ganz korrekt sind. So sprechen wir z. B. von Levelvektoren

und Normen auf Levelvektoren ohne eine Vektorraum zu definieren und verwenden die dafür üblich

Notation für Vektoren und Normen.

2.1. Gitter, Funktionsräume und Dünngitter-Kombinationstechnik

Definition 2.1.1 (Levelvektoren, Normen, Ordnungsrelation) Ein Levelvektor
#»

l sei ein Element
aus Nd

0 und für alle n ∈ N0 definieren wir #»n ∈ Nd
0 durch

#»n := (n, n, . . . , n)

Für einen Levelvektor
#»

l = (l1, . . . , ld) ∈ Nd
0 definieren wir die 1-Norm und die Maximumsnorm durch

∥∥∥ #»

l
∥∥∥

1
:=

d∑
k=1

lk

∥∥∥ #»

l
∥∥∥

∞
:= max{l1, . . . , ld}

wobei die 1-Norm auch Levelsumme genannt wird. Des Weiteren definieren wir eine Ordnungsrelation
auf Levelvektoren durch

∀ #»

l ,
#»

λ ∈ Nd
0 :
(

#»

l ≤ #»

λ ⇔ ∀k ∈ {1, . . . , d} : lk ≤ λk

)
Die Addition ist die komponentenweise Addition und die Subtraktion wird definiert durch

#»

l − #»

λ := (max{l1 − λ1, 0}, . . . , max{ld − λd, 0})

und eine zweistellige Verknüpfung ⋏ durch

∀ #»

l ,
#»

λ ∈ Nd
0 :
(

#»

l ⋏
#»

λ := (min{l1, λ1}, . . . , min{ld, λd})
)

Des Weiteren definieren wir für l, λ ∈ N0

l ⋏ λ := (l) ⋏ (λ)

13

2. Definitionen, Versuchsaufbau und Ergebnisse

0 1

1

0 1

1

Abbildung 2.1.: Ein isotropes volles Gitter (links), ein anisotropes volles Gitter (rechts)

Definition 2.1.2 (Volles Gitter) Sei
#»

l = (l1, . . . , ld) ∈ Nd
0 ein Levelvektor und für beliebiges l ∈ N0

bezeichne Ωl = {khl | k ∈ {0, 1, 2, 3, . . . , 2l}} eine Diskretisierung des Einheitsintervalls mit hl := 2−l.
Dann definieren wir ein Gitter auf dem d-dimensionalen Einheitswürfel [0, 1]d durch:

Ω #»
l

:= Ωl1 × Ωl2 × · · · × Ωld

Sei l1 = l2 = . . . = ld = n ∈ N0, dann heißt Ω #»
l isotrop. Andernfalls heißt Ω #»

l anisotrop.

Seien
#»

l ,
#»

λ ∈ Nd
0 mit Ω #»

l ⊆ Ω #»
λ gegeben, dann sprechen wir auch davon, dass Ω #»

l „gröber“ als Ω #»
λ und

Ω #»
λ „feiner“ als Ω #»

l sei.

Definition 2.1.3 (Raum stückweiser linearer Funktionen) Passend zumGitterΩ #»
l definieren wir

den zugehörigen Raum der stückweise linearen Funktionen auf [0, 1]d als:

V #»
l

:= span
{

ϕ #»
l ,

#»
i : it = 0, . . . , 2lt , t = 1, . . . , d

}
wobei ϕ #»

l ,
#»
i die üblichen d-linearen Basisfunkionen (Hut-Funktionen) sind. Sei #»x ∈ [0, 1]d so definieren

wir

ϕ #»
l ,

#»
i (#»x) :=

d∏
k=1

ϕlk,ik
(xk)

mit
ϕl,i (x) := max

{
1−

∣∣∣2lx− i
∣∣∣ , 0

}
Seien

#»

l ,
#»

λ ∈ Nd
0 mit Ω #»

l ⊆ Ω #»
λ , dann sprechen wir auch davon, dass V #»

l „gröber“ als V #»
λ und V #»

λ
„feiner“ als V #»

l sei.

Theorem 2.1.4 Offensichtlich gilt

i) ∀l, λ ∈ N0 : (l ≤ λ⇔ Ωl ⊆ Ωλ)

ii) ∀ #»

l ,
#»

λ ∈ Nd
0 :
(

#»

l ≤ #»

λ ⇔ Ω #»
l ⊆ Ω #»

λ

)

14

2.1. Gitter, Funktionsräume und Dünngitter-Kombinationstechnik

iii) ∀l, λ ∈ N0 : Ωl ∩ Ωλ = Ωl⋏λ

iv) ∀ #»

l ,
#»

λ ∈ Nd
0 : Ω #»

l ∩ Ω #»
λ = Ω #»

l ⋏
#»
λ

Beweis i) „⇒“ Sei l ≤ λ, dann gilt 2λ−l ∈ N. Ist k ∈ N0, k ≤ 2l dann folgt daraus, dass k ∗ 2λ−l ∈{
0, 1, . . . , 2λ

}
ist. Nun gilt

x ∈ Ωl ⇔ ∃k ∈
{

0, . . . , 2l
}

: x = k ∗ 2−l = k ∗ 2λ−l︸ ︷︷ ︸
=u∈{ 0,1,...,2λ }

∗2−λ

⇒ ∃u ∈
{

0, . . . , 2λ
}

: x = u ∗ 2−λ ⇔ x ∈ Ωλ

und somit Ωl ⊆ Ωλ.

„⇐“ Sei l > λ. Wähle nun etwa x ∈ Ωl mit x = 2−l = 2λ−l2−λ. Aus l > λ folgt 2λ−l /∈ N und
damit auch 2λ−l /∈

{
0, . . . , 2λ

}
. Nun gilt x /∈ Ωλ und somit Ωl ⊈ Ωλ.

ii) Seien
#»

l ,
#»

λ ∈ Nd
0. Dann gilt:

#»

l ≤ #»

λ
2.1.1⇔ ∀k ∈ {1, . . . , d} : lk ≤ λk

i)⇔ ∀k ∈ {1, . . . , d} : Ωlk ⊆
Ωλk
⇔
∏d

k=1 Ωlk ⊆
∏d

k=1 Ωλk

2.1.2⇔ Ω #»
l ⊆ Ω #»

λ

iii) Sei o.B.d.A. l ≤ λ dann gilt nach i) Ωl ⊆ Ωλ und damit Ωl ∩ Ωλ = Ωl. Des Weiteren gilt
l ⋏ λ = min{l, λ} = l und damit Ωl⋏λ = Ωl = Ωl ∩ Ωλ

iv) Sei
#»

l ⋏
#»

λ = #»

k = (k1, . . . , kd) = (min{l1, λ1}, . . . , min{ld, λd})

Dann gilt nach iii)
∀u ∈ {1, . . . , d} : Ωku = Ωlu ∩ Ωλu

und somit für jedes #»x = (x1, . . . , xd) ∈ Ω #»
k

#»x = (x1, . . . , xd) ∈ Ω #»
k ⇔ ∀u ∈ {1, . . . , d} xu ∈ Ωku ⇔ ∀u ∈ {1, . . . , d} xu ∈ Ωlu ∩ Ωλu

⇔ ∀u ∈ {1, . . . , d} (xu ∈ Ωlu ∧ xu ∈ Ωλu)⇔ ∀u ∈ {1, . . . , d} xu ∈ Ωlu ∧ ∀u ∈ {1, . . . , d} xu ∈ Ωλu

⇔ #»x ∈ Ω #»
l ∧

#»x ∈ Ω #»
λ ⇔

#»x ∈ Ω #»
l ∩ Ω #»

λ

und damit Ω #»
l ∩ Ω #»

λ = Ω #»
l ⋏

#»
λ .

Für die Funktionsräume V #»
l lassen sich analoge Aussagen zeigen.

Definition 2.1.5 (hierarchische Inkremente) Die hierarchischen Inkremente W #»
l sind gegeben

durch:

W #»0 = V #»0 ∀ #»

l ̸= #»0 V #»
l = W #»

l ⊕
d∑

t=1
V #»

l − #»et

wobei #»et der Einheitsvektor entlang der t-ten Achse ist, sodass also #»et ∈ Nd
0 ∧ ∥ #»et∥1 = 1 ∧ ett = 1 gilt.

Nun gilt:

Vn =
n⊕

l1=0
· · ·

n⊕
ld=0

W #»
l =

⊕
∥ #»

l ∥∞≤n

W #»
l

15

2. Definitionen, Versuchsaufbau und Ergebnisse

l1

l2

l1 = 1

l2 = 1

l1 = 2

l2 = 2

l1 = 3

l2 = 3

l1 = 4

l2 = 4

0 1

1

0 1

1

0 1

1

0 1

1

Abbildung 2.2.: Die Dünngitter-Kombinationstechnik in 2D für n = 4. Die einzelnen Teilgitter

(links) und die Kombination (rechts). Die auf den rot dargestellten Gittern berech-

neten Approximationslösungen werden addiert (Koeffizient +1), die auf den blau

dargestellten Gittern berechneten Approximationslösungen werden subtrahiert (Ko-

effizient -1). Die Menge der Gitterpunkte in der Kombination ist die Vereinigung der

Gitterpunkte der einzelnen anisotropen vollen Gitter. Die Koeffizienten der Kom-

binationstechnik können aus der Vereinigung der roten Gitter nach dem Prinzip

von Inklusion und Exklusion gewonnen werden. Die Summe der Koeffizienten der

Dünngitter-Kombinationstechnik ist 1.

Definition 2.1.6 (Dünngitter-Kombinationstechnik) Für alle
#»

l ∈ Nd
0 bezeichne f #»

l die Appro-
ximationslösung der exakten Lösung f in V #»

l . Sei d die Dimension des Definitionsbereiches von f . Sei
n ∈ N, dann heißt

f c
n (#»x) :=

d−1∑
q=0

(−1)q

(
d− 1

q

) ∑
∥ #»

l ∥1=n+d−1−q
#»1 ≤ #»

l

f #»
l (#»x)

die Dünngitter-Kombinationstechnik. Mit zugehörigem Dünngitter-Funktionsraum:

V s
n :=

∑
∥ #»

l ∥1=n+d−1
#»1 ≤ #»

l

V #»
l =

⊕
∥ #»

l ∥1≤n+d−1
∥ #»

l ∥∞≤n

W #»
l

Definition 2.1.7 (Verallgemeinerte Kombinationstechnik) Die Dünngitterkombinationstechnik
lässt sich auch verallgemeinern zu

fL (#»x) =
∑
#»
l ∈L

c #»
l f #»

l (#»x)

wobei L ⊆ Nd
0 gilt und c #»

l ∈ R,
#»

l ∈ L die Koeffizienten der Kombinationstechnik sind. Wir definieren
das zugehörige Gitter durch

ΩL :=
⋃

#»
l ∈L

Ω #»
l

16

2.2. Truncated Combination Technique

und den zugehörigen Funktionsraum als

VL :=

 ∑
#»
l ∈L

c #»
l f #»

l (#»x)

∣∣∣∣∣∣ ∀ #»

l ∈ L :
(
c #»

l ∈ R ∧ f #»
l ∈ V #»

l

)  =
∑
#»
l ∈L

V #»
l =

∑
#»
l ∈max L

V #»
l =

⊕
#»
λ ∈Λ

W #»
λ

mit
max L :=

{
#»

l ∈ L | ∀ #»

λ ∈ L \ { #»

l }∃k : λk < lk
}

und
Λ =

{
#»

λ ∈ Nd
0 | ∀

#»

l ∈ max L : #»

λ ≤ #»

l
}

Des Weiteren bezeichnen wir mit
#(fL) := |L|

die Anzahl der Teillösungen einer Kombinationstechnik.

Da fL, eine hoffentlich bessere, Approximation von f sein soll, und die Teillösungen f #»
l ,

#»

l ∈ L
bereits Approximationen von f waren, sind wir nur an Linearkombinationen interessiert für die

gilt, dass die Summe

∑
#»
l ∈L c #»

l der Koeffizienten 1 ergibt. Um die Kombination auch in der Praxis

berechnen zu können, muss des Weiteren die Anzahl der Teillösungen endlich sein.

2.2. Truncated Combination Technique

[HH14] und [BBNS12] verwenden unterschiedliche Notationen für die Truncated Combination Tech-

nique. Wir werden hier beide darstellen, wobei die Darstellung nach Benk et al. für unsere Definition

der Dünngitter-Kombinationstechnik angepasst wird. Die Notation von Harding und Hegland wird

verwendet um die Ergebnisse dieser Arbeit besser mit mit den Ergebnissen in [HH14] vergleichen

zu können, sie wird verallgemeinert und anschließend eine eigene allgemeinere Fehlerabschätzung

gemacht.

Definition 2.2.1 (Truncated Combination Technique (T-CT) nach [BBNS12]) Sei #»r = (r1, . . . , rd)
und n ∈ N gegeben, dann definieren wir die Truncated Combination Technique durch:

f
#»r

n (#»x) :=
d−1∑
q=0

(−1)q

(
d− 1

q

) ∑
∥ #»

l ∥1=n+d−1−q

∧ #»r ≤ #»
l

f #»
l (#»x)

Teillösungen die aus Funktionsräumen stammen bei welchen die zugrunde liegenden Gitter nicht in

jeder Dimension eine gewisse Mindestauflösung besitzen werden also aus der Kombinationstechnik

ausgeschlossen.

17

2. Definitionen, Versuchsaufbau und Ergebnisse

Definition 2.2.2 (Truncated Combination Technique (T-CT) nach [HH14]) [HH14] definiert
die Truncated Combination Technique in 2D durch

f̃ t
(l1,l2) :=

t∑
α=0

f(l1+α,l2+t−α) −
t−1∑
α=0

f(l1+α,l2+t−1−α)

und in 3D durch

f̃ t
(l1,l2,l3) :=

t∑
α+β=0

f(l1+α,l2+β,l3+t−α−β)−2
t−1∑

α+β=0
f(l1+α,l2+β,l3+t−1−α−β)+

t−2∑
α+β=0

f(l1+α,l2+β,l3+t−2−α−β)

mit
t∑

α+β=0
:=

t∑
α=0

t−α∑
β=0

Wobei ab jetzt die Klammern um die Levelvektoren bei Funktionen, Funktionsräumen und Gittern der
einfacheren Schreibbarkeit wegen oft weggelassen werden. Es gilt also fl1,l2 := f(l1,l2) etc.

Wir sehen, dass die beiden Definitionen für n + 2− 1 = l1 + l2 + t und #»r = (r1, r2) = (l1, l2) in 2D

und für n + 3− 1 = l1 + l2 + l3 + t und #»r = (r1, r2, r3) = (l1, l2, l3) in 3D gleich sind. Wir können

also die Notation von Harding et al. verallgemeinern zu:

Definition 2.2.3 (Erweiterung von Definition 2.2.2)

f̃ t
#»
l

:= f
#»
l
∥ #»

l ∥1+t−d+1 =
∑
#»
λ ∈Λ

c #»
λ f #»

λ

für eine bestimmte Menge von Levelvektoren Λ.

Theorem 2.2.4 Die Anzahl der Teillösungen der Kombinationstechnik ist für eine feste Anzahl Dimen-
sionen und einen festen Parameter t konstant:

∀d ∈ N∀t ∈ N0∃c ∈ N∀ #»

l ∈ Nd
0 : #(f̃ t

#»
l
) = c

Beweis Seien d die Anzahl der Dimensionen und t fest. Nun gilt folgendes:

f̃ t
#»
l

= f
#»
l
∥ #»

l ∥1+t−d+1 =
d−1∑
q=0

(−1)q

(
d− 1

q

) ∑
∥ #»

λ ∥1=∥ #»
l ∥1+t−q

∧ #»
l ≤ #»

λ

f #»
λ (#»x)

Die Anzahl der Terme der ersten Summe ist konstant d. Sei q nun fest. Bei der zweiten Summe werden nur
Levelvektoren mit einer Levelsumme von

∥∥∥ #»

l
∥∥∥

1
+t−q welche größer als

#»

l sind betrachtet. Dies entspricht

dem t− q maligen Inkrementieren von
#»

l und somit dem Ziehen mit Zurücklegen ohne Reihenfolge. Ist
t < q so ist die zweite Summe leer. Ist t ≥ q so ist die Anzahl der Summanden der zweiten Summe(

d + t− q − 1
t− q

)
und damit konstant. Für q = 0 ist die zweite Summe nicht leer, da d + t− 1 ≥ 0 und t >= 0 gilt. Damit
haben wir mindestens eine Teillösung und #(f̃ t

#»
l
) ist konstant.

18

2.2. Truncated Combination Technique

0
0

1

1

2

2

3

3

4

4

5

5

6

6

0
0

1

1

2

2

3

3

4

4

5

5

6

6

0
0

1

1

2

2

3

3

4

4

5

5

6

6

Abbildung 2.3.: Links ist f̃2
3,3 zu sehen. Falls die Teillösung f5,3 oder f4,3 ausfällt kann die Kombina-

tion f3,5 + f4,4 − f3,4 verwendet werden (Mitte). Falls f4,4 ausfällt kann z. B. f3,5
oder f5,3 verwendet werden. Es kann aber auch die kleinere Teillösung f3,3 nachbe-

rechnet, und die Kombination f3,5 +f5,3−f3,3 (rechts) verwendet werden. Die blau,
von links unten nach rechts oben, schraffierten Quadrate deuten die hierarchischen

Inkremente Wl1,l2 der Kombinationen an und die rot, von links oben nach rechts

unten, schraffierten Quadrate, die hierarchischen Inkremente, die im Vergleich zur

Vollgitterlösung fn,n fehlen.

Sei t ∈ N0 nun fest, dann betrachten wir nun Kombinationen der Form f̃ t
#»
ln

mit

#»

ln =
(n− t, n− t, . . . , n− t) und n − t ≥ 0. Diese haben nicht nur konstant viele Teillösungen, was

die Untersuchung hinsichtlich dem Ausfall einzelner Teillösungen im Gegensatz zur klassischen

Dünngitter-Kombinationstechnik vereinfacht, sondern sind auch invariant bezüglich einer Permutati-

on der Indizes, haben somit also eine gewisse „Symmetrie“.

In der Arbeit werden folgende Fälle näher betrachtet:

f̃2
n−2,n−2 =fn−2,n + fn−1,n−1 + fn,n−2

− fn−2,n−1 − fn−1,n−2 (2.1)

f̃3
n−3,n−3 =fn−3,n + fn−2,n−1 + fn−1,n−2 + fn,n−3

− fn−3,n−1 − fn−2,n−2 − fn−1,n−3 (2.2)

f̃2
n−2,n−2,n−2 =fn−2,n−2,n + fn−2,n,n−2 + fn,n−2,n−2

+ fn−2,n−1,n−1 + fn−1,n−2,n−1 + fn−1,n−1,n−2

− 2fn−2,n−2,n−1 − 2fn−2,n−1,n−2 − 2fn−1,n−2,n−2

+ fn−2,n−2,n−2 (2.3)

19

2. Definitionen, Versuchsaufbau und Ergebnisse

[HH14] nimmt für ein einzelnes anisotropes volles Gitter die Fehlerentwicklung

ϵl1,l2 := f − fl1,l2 = C1(hl1)hp
l1

+ C2(hl2)hp
l2

+ D(hl1 , hl2)hp
l1

hp
l2

(2.4)

an den Gitterpunkten in 2D an. Dabei gelte, dass C1 von hl1 , x1 und x2, C2 von hl2 , x1 und x2 und

D von hl1 , hl2 , x1 und x2 abhängig ist. Ferner seien |C1|, |C2| und |D| durch eine positive Konstante

κ beschränkt.

Unter diesen Bedingungen zeigt [HH14] dass∣∣∣f − f̃ t
n−t,n−t

∣∣∣ ≤ 2κhp
n +O

(
(hp

n)2
)

(2.5)

gilt und die Konvergenz des Fehlers von f̃ t
n−t,n−t von der gleichen Ordnung wie die des Fehlers

der Vollgitterlösung fn,n ist, wobei der Polynomgrad der d-polynomialen Basisfunktionen p − 1
entspricht

1
. Für den 3D Fall wird unter Annahme der Fehlerexpansion

ϵl1,l2,l3 := f − fl1,l2,l3 = C1(hl1)hp
l1

+ C2(hl2)hp
l2

+ C3(hl3)hp
l3

+ D1(hl1 , hl2)hp
l1

hp
l2

+ D2(hl1 , hl3)hp
l1

hp
l3

+ D3(hl2 , hl3)hp
l2

hp
l3

+ E(hl1 , hl2 , hl3)hp
l1

hp
l2

hp
l3

(2.6)

eine Abschätzung für den Fehler von f̃ t
n−t,n−t,n−t durch

∣∣∣f − f̃ t
n−t,n−t,n−t

∣∣∣ ≤ 3κhp
n + O

(
(hp

n)2
)

angegeben. Dabei seien wiederum |C1| , |C2| , |C3| , |D1| , |D2| , |D3| und |E| durch eine positive Kon-

stante κ beschränkt und von den Koordinaten des Gitterpunktes sowie den jeweiligen Maschenweiten

hl1 , hl2 und hl3 abhängig.

Fällt eine Lösung aus Gleichung 2.1 aus. So kann die neue Kombinationstechnik gn wie folgt gebildet

werden:

gn =


fn,n−2 + fn−1,n−1 − fn−1,n−2 für einen Fehler bei fn−2,n oder fn−2,n−1

fn−2,n + fn−1,n−1 − fn−2,n−1 für einen Fehler bei fn,n−2 oder fn−1,n−2

fn,n−2 oder fn−2,n für einen Fehler bei fn−1,n−1

Unter Annahme der Fehlerexpansion in Gleichung 2.4 zeigt [HH14] für gn, dass der Fehler immer

noch in O(hp
n) liegt. Tritt bei einer der Teillösungen aus f̃3

n−3,n−3 oder aus f̃2
n−2,n−2,n−2 ein Fehler

auf so bemerken Harding et al., dass für die entsprechenden Kombinationen im Fehlerfall der Betrag

des Fehlers ebenfalls in O(hp
n) sei.

Da wir später viele verschiedene Fälle betrachten werden, wollen wir für schwächere Bedingungen

eine nicht notwendigerweise kleinste obere Schranke beweisen.

Wir nehmen nun folgende Fehlerexpansion an.

1

Bungartz et. al. verwenden hier direkt für p den Polynomgrad [BG04]

20

2.3. Verfahren für das Berechnen einer Kombination im Fehlerfall

ϵ #»
l

:= f − f #»
l =

∑
K∈P({1,2,...,d})\{∅}

CK(· · ·)
∏

k∈K

hp
lk

(2.7)

Dabei sei d die Anzahl der Dimension und für eine beliebige Menge M bezeichne P(M) die Potenz-
menge von M . CK sei von den Maschenweiten hlk , k ∈ K und den Koordinaten des Gitterpunktes

abhängig. Des Weiteren existiere eine positive Konstante κ so dass ∀K ∈ P({1, 2, . . . , d}) \ {∅} :
|CK | ≤ κ.

Theorem 2.2.5 Seien p ∈ N, d ∈ N und t ∈ N0 beliebig aber fest, es gelte Gleichung (2.7) und sei
(Kn)n∈N eine beliebige Folge von Linearkombinationen von Teillösungen mit

Kn =
∑

#»
l ∈Ln

c #»
l f #»

l

mit ∀n ∈ N : Ln ⊆ Nd
0. Des Weiteren gelte

∀n ∈ N∀ #»

l ∈ Ln :
(∥∥∥ #»

l
∥∥∥

1
≤ d ∗ (n− t) + µ ∧

»

max{n− t, 0} ≤ #»

l ∧
∣∣c #»

l

∣∣ ≤ ν
)

für µ ∈ N0 und ν ∈ R+ beliebig aber fest und

∀n ∈ N
∑

#»
l ∈Ln

c #»
l = 1 (⋆)

dann gilt
|f −Kn| ∈ O (hp

n)

Beweis Sei M = P({1, 2, . . . , d}) \ {∅}, sei n ∈ N beliebig aber fest, dann gilt für alle
#»

l ∈ Ln

∣∣f − f #»
l

∣∣ =

∣∣∣∣∣∣
∑

K∈M

CK(· · ·)
∏

k∈K

hp
lk

∣∣∣∣∣∣ ≤
∑

K∈M

κ
∏

k∈K

hp
lk
≤ κ

∑
K∈M

∏
k∈K

hp
n−t ≤ κ

∑
K∈M

h
|K|p
n−t

= κ
∑

K∈M

2t|K|ph|K|p
n = d ∗ κ ∗ 2tphp

n +O
(
h2p

n

)
= κ̃hp

n +O
(
h2p

n

)
wobei für den Fall n < t die Definition von hn−t auf hn−t = 2t−n erweitert wird. Nun folgt

|f −Kn| =

∣∣∣∣∣∣f −
∑

#»
l ∈Ln

c #»
l f #»

l

∣∣∣∣∣∣ (⋆)=

∣∣∣∣∣∣
∑

#»
l ∈Ln

c #»
l (f − f #»

l)

∣∣∣∣∣∣ ≤
∑

#»
l ∈Ln

∣∣c #»
l (f − f #»

l)
∣∣ ≤ ν

∑
#»
l ∈Ln

(
κ̃hp

n +O
(
h2p

n

))

≤ ν
(
κ̃hp

n +O
(
h2p

n

)) µ∑
a=0

(
d + a− 1

a

)
= ν

(
d + µ

µ

)
κ̃hp

n +O
(
h2p

n

)

2.3. Verfahren für das Berechnen einer Kombination im Fehlerfall

Fallen Teillösungen aus so verwenden Harding und Hegland in [HH12] und [HH14] folgende Strate-

gien zur Berechnung einer neuen Linearkombination von Teillösungen.

21

2. Definitionen, Versuchsaufbau und Ergebnisse

Definition 2.3.1 (Projektionsoperatoren) Sei V die Menge aller Funktionen von [0, 1]d nach R.
Dann bezeichne für einen Levelvektor

#»

l ∈ Nd
0, P #»

l : V → V #»
l den zugehörigen linearen Projektionsope-

rator. Sei L ⊆ Nd
0 ein Downset, d.h. es gelte

∀ #»

l ,
#»

λ ∈ Nd
0 :
(

#»

l ∈ L ∧ #»

λ ≤ #»

l ⇒ #»

λ ∈ L
)

dann bezeichne
PL : V → VL, PL = 1−

∏
#»
l ∈L

(1− P #»
l)

Sei Λ ⊆ Nd
0 dann bezeichne ↓ Λ ⊆ Nd

0 das kleinste Downset, das Λ enthält.

[HH12] und [Heg01] halten fest, dass für die Verkettung zweier Projektionsoperatoren

P #»
l P #»

λ = P #»
λ P #»

l = P #»
l ⋏

#»
λ

gilt, und somit der lineare Operator PL sich auch schreiben lässt als

PL = 1−
∏

#»
l ∈max L

(1− P #»
l) =

∑
#»
l ∈L

c #»
l P #»

l (2.8)

Haben wir also für beliebiges L ⊆ Nd
0 eine beliebige Linearkombination

∑
#»
l ∈L c #»

l f #»
l und fallen

Teillösungen f #»
λ für

#»

λ ∈ Λ ⊆ L aus, dann entfernen wir nun die entsprechenden Teillösungen,

welche aus den Funktionsräumen stammen, welche feiner als ein beliebiges V #»
λ für

#»

λ ∈ Λ sind.

Sei nun K =
{

#»

l ∈ L | ∀ #»

λ ∈ Λ : #»

λ ≰ #»

l
}
dann liefert P↓K uns eine neue Kombinationstechnik,

welche die ausgefallenen Lösungen nicht enthält, dabei müssen eventuell neue kleinere Teillösungen,

d. h. aus gröberen Funktionsräumen, nachberechnet werden.

Beispiel:

Sei die Dünngitter-Kombinationstechnik f c
4 wie in Abbildung 2.4 gegeben und es falle die Teillösung

f2,3 aus.Wir entfernen zusätzlich f3,3 und f2,4 und es gilt nunK = {(1, 5), (4, 2), (5, 1), (1, 4), (3, 2), (4, 1)}
und damit max ↓ K = {(1, 5), (4, 2), (5, 1)} und damit

P↓K = 1−
∏

#»
l ∈max↓K

(
1− P #»

l

)
= 1−

((
1− P(1,5)

) (
1− P(4,2)

) (
1− P(5,1)

))
= 1−

(
1− P(1,5) − P(4,2) − P(5,1) + P(1,5)P(4,2) + P(1,5)P(5,1) + P(4,2)P(5,1) − P(1,5)P(4,2)P(5,1)

)
= P(1,5) + P(4,2) + P(5,1) − P(1,5)P(4,2) − P(1,5)P(5,1) − P(4,2)P(5,1) + P(1,5)P(4,2)P(5,1)

= P(1,5) + P(4,2) + P(5,1) − P(1,2) − P(1,1) − P(4,1) + P(1,1)

= P(1,5) + P(4,2) + P(5,1) − P(1,2) − P(4,1)

Fällt in der Kombination f̃2
n−2,n−2 = fn−2,n+fn−1,n−1+fn,n−2−fn−2,n−1−fn−1,n−2 beispielsweise

fn−1,n−1 aus so liefert uns dieselbe Technik die Kombination fn−2,n + fn,n−2 − fn−2,n−2, welche

22

2.3. Verfahren für das Berechnen einer Kombination im Fehlerfall

0
0

1

1

2

2

3

3

4

4

5

5

6

6

0
0

1

1

2

2

3

3

4

4

5

5

6

6

Abbildung 2.4.: Die Berechnung der neuen Linearkombination nach dem Inklusions- und Exklusi-

onsprinzip. Links ist die ursprüngliche Kombination zu sehen, rot markiert ist die

ausgefallene Teillösung. Rechts ist die neu berechnete Linearkombination zu sehen,

die Teillösungen f #»
k mit

#»

k ∈ max ↓ K sind in roter Farbe markiert.

dem Fall 5 in Anhang A.1 entspricht. Die neue Teillösung fn−2,n−2 kann neuberechnet oder z. B.

durch eine Projektion von fn−2,n auf Vn−2,n−2 approximiert werden.

Wir sehen, dass dieses Verfahren dem Prinzip der Inklusion und Exklusion aus der Mengenlehre auf

den Gittern Ω #»
k mit

#»

k ∈ max ↓ K entspricht.

Eine andere Möglichkeit ist, durch geschickte Anpassung der Koeffizienten der Kombinationstechnik

ohne die Berechnung neuer Teillösungen oder Interpolation auszukommen, wie sie etwa in [HH14]

für die T-CTs f̃2
n−2,n−2, f̃3

n−3,n−3 und f̃2
n−2,n−2,n−2 untersucht wird. Fällt in f̃2

n−2,n−2 beispielsweise

fn−2,n−1 aus, so kann die Kombination

fn−1,n−1 + fn,n−2 − fn−1,n−2

gebildet werden.

Die dritte Möglichkeit ist, eine ausgefallene Teillösung durch eine Projektion einer Teillösung aus

einem feineren Funktionsraum zu ersetzen. Fällt in f̃2
n−2,n−2 beispielsweise fn−2,n−1 aus, so kann

eine neue Kombination mit

fn−2,n + fn−1,n−1 + fn,n−2 − Pn−2,n−1fn−2,n − fn−1,n−2

gebildet werden.

Um den Fehler einer Kombination zu messen verwenden wir die diskrete L1
Norm. Sei f ∈ V die

exakte Lösung einer PDE und fL eine Linearkombination von Teillösungen, dann berechnen wir den

Fehler für beliebiges

#»

λ ∈ Nd
0 in V #»

λ durch

∥f − fL∥1 =
∑

#»x ∈Ω #»
λ

|f(#»x)− fL(#»x)| (2.9)

Bei der Bewertung obiger vorgestellter Verfahren muss einerseits betrachtet werden wie groß der

Fehler der neu erhaltenen Linearkombination ist und dies in Relation zum Aufwand für ihren Erhalt

gesetzt werden.

23

2. Definitionen, Versuchsaufbau und Ergebnisse

Wir wollen nun das Verfahren der Approximation einer ausgefallenen Teillösung durch Interpolation

mit dem obigen Verfahren zur Berechnung der Koeffizienten einer neuen Linearkombination und

der Neuberechnung kleinerer Teillösungen hinsichtlich der Laufzeit vergleichen. Zugunsten der

Interpolationslösung nehmen wir an, diese würde keinen zusätzlichen Aufwand verursachen und

zeigen, dass sogar unter dieser Annahme und den Ergebnissen in Abschnitt 2.5 für den Fehler, die

Neuberechnung der Koeffizienten, zumindest für die in Abschnitt 2.4 beschriebenen PDEs die bessere

Strategie darzustellen scheint, und werden deswegen diese neben der Richardson-Extrapolation, siehe

dazu auch Abschnitt 2.6, für unsere Implementierung in Kapitel 3 wählen.

Der Aufwand für das Verfahren mit den Projektionsoperatoren setzt sich aus der Berechnung der

Koeffizienten und aus der Neuberechnung evtl. kleinerer Teillösungen zusammen.

Bisher haben wir T-CT’s der Form f̃ t
#»
ln
mit

#»

ln = (n− t, n− t, . . . , n− t) und n − t ≥ 0 für festes

t ∈ N0 betrachtet. Die Summe der Anzahl der Gitterpunkte der einzelnen Teillösungen liegt wie

bei der Vollgitterlösung fn,n in O(h−d
n), und der Fehler liegt, genauso wie bei fn,n, falls die exakte

Lösung der PDE genügend glatt ist, in O(hp
n). Beide sind also in gleicher Weise von dem Fluch der

Dimensionalität betroffen [HH14]. In der Praxis bieten sich daher T-CTs der Form f
#»r

n für einen

festen Levelvektor
#»r oder etwa für

#»r = (n/2, n/2, . . . , n/2) an [BP12]. Für diese werden auch die

Algorithmen in SG++, wie in Kapitel 3 dargestellt, implementiert.

Deswegen schätzen wir nun den Aufwand für die Berechnung der Koeffizienten einer neuen Li-

nearkombination für die Dünngitter-Kombinationstechnik (!) ab. Für die Anzahl der Teillösungen

der Dünngitter-Kombinationstechnik f c
n =

∑
#»
l ∈L c #»

l f #»
l gilt: |L| ∈ O((log h−1

n)d−1) = O(nd−1)
[Pfl10].

Sei K =
{

#»

l ∈ L | ∀ #»

λ ∈ Λ : #»

λ ≰ #»

l
}
, wobeiΛ ⊆ L die Menge der Levelvektoren der ausgefallenen

Teillösungen sei. Aus max ↓ K = max K ⊆ K ⊆ L folgt |max K| = |max ↓ K| ≤ |K| ≤ |L| ∈
O(nd−1) und damit |max ↓ K| ∈ O(nd−1) und |K| ∈ O(nd−1). Würden wir jetzt einfach naiv wie

oben das Distributivgesetz auf das Produkt

∏
#»
l ∈max↓K(1− P #»

l) anwenden, hätten wir O(2O(nd−1))
viele Summanden.

Aber es gilt

∀ #»

l ∈↓ K :
∥∥∥ #»

l
∥∥∥

1
≤ n + d− 1⇒ |↓ K| ≤ (n + d)d ∈ O

(
nd
)

Zerlegen wir also das Produkt rekursiv in

∏
#»
l ∈max↓K

(1− P #»
l) = (1− P #»

k)

 ∏
#»
l ∈max↓K\{ #»

k }

(1− P #»
l)


︸ ︷︷ ︸

schon vereinfacht

und vereinfachen wir nach jedem Schritt Ausdrücke der Form P #»
λ P #»

k gleich zu P #»
λ⋏

#»
k und fassen diese

zusammen, so haben wir also eine Rekursionstiefe in O(nd−1) mit jeweils maximal O(nd) vielen
Additionen und Multiplikationen.

24

2.3. Verfahren für das Berechnen einer Kombination im Fehlerfall

Die Beträge aller Koeffizienten sind in jedem Rechenschritt durch O
(
2mnd−1

)
, für eine Konstante

m > 0 beschränkt. Jede Multiplikation und Addition von Koeffizienten hat also höchstens einen

Aufwand von O
(
(nd−1)2)

.

Ein Levelvektor

#»

λ = (λ1, . . . , λd) besteht aus d Komponenten mit jeweilsO(log(n)) Bits. Seien zwei

Levelvektoren

#»

λ = (λ1, . . . , λd) und #»

k = (k1, . . . , kd) gegeben. Für alle i ∈ {1, . . . , d} lässt sich
min{λi, ki}, z. B. durch stellenweises Vergleichen, mit einem Aufwand in O(log(n)) berechnen und

damit liegt der Aufwand für die Berechnung von

#»

λ ⋏
#»

k in O(d ∗ log(n)). Für die Bestimmung von

K und dann max K = max ↓ K liefert ein paarweiser Vergleich der O(nd−1) vielen Levelvektoren

jeweils einen Aufwand von O
(
d ∗ log(n) ∗ (nd−1)2)

.

Wir haben höchstens O(nd) viele Daten mit einer Größe in O
(
nd−1

)
für Koeffizienten und Level-

vektoren, damit ist der Speicherplatz polynomiell in n beschränkt und damit auch in polynomieller

Zeit ein Zugriff möglich.

Wir haben unter anderem mindestens eine Teillösung aus f c
n erfolgreich berechnet, denn sonst ist

obiges Verfahren nicht sinnvoll anwendbar. Für alle Teillösungen aus f c
n gilt, dass die Anzahl der

Gitterpunkte in Ω(2n) liegt. Mit einem optimalen Löser, der eine lineare Komplexität in der Anzahl

der Gitterpunkte hat, haben wir also ebenfalls einen Aufwand in Ω(2n). Sei nun also An der Aufwand

für die Berechnung der Koeffizienten und Bn der Aufwand für das Berechnen der Teillösungen, dann

gilt:

An

Bn
∈
O
(
nd
)
∗ O

(
nd−1

)
∗
(
O(d ∗ log(n)) +O

((
nd−1

)2
))
∗ O(nc) +O

(
d ∗ log(n) ∗ (nd−1)2)

Ω(2n)
(2.10)

für eine Konstante c ∈ N und damit gilt:

lim
n→∞

An

Bn
= 0 (2.11)

Der Aufwand für das Berechnen der Koeffizienten fällt also, im Vergleich zum Aufwand für die

Berechnung der Teillösung asymptotisch kaum ins Gewicht und wird deswegen vernachlässigt. Für

den Speicherbedarf gilt die gleiche Aussage.

Nun muss nur noch der Aufwand für das Berechnen neuer Teillösungen abgeschätzt werden. Sei

Id
n :=

{
#»

l ∈ Nd | n− d <
∥∥∥ #»

l
∥∥∥

1
≤ n

}
, Jd

n :=
{

#»

l ∈ Nd |
∥∥∥ #»

l
∥∥∥

1
≤ n

}
und für einen beliebigen

Levelvektor

#»

l ∈ Nd
0 bezeichne

∣∣Ω #»
l

∣∣
die Menge der Gitterpunkte von Ω #»

l . Dann beweisen Harding

und Hegland, dass für den Quotient aus den Summen der Gitterpunkte

Ln =
∑

#»
l ∈Id

n

∣∣Ω #»
l

∣∣ und Mn =
∑

#»
l ∈Jd

n

∣∣Ω #»
l

∣∣

25

2. Definitionen, Versuchsaufbau und Ergebnisse

der Grenzwert

lim
n→∞

Mn − Ln

Ln
= 1

2d − 1 (2.12)

gilt. [HH12]

Das Verfahren bei einem Ausfall von Teillösungen einfach alle Teillösungen auf feineren Gittern

zu verwerfen und die Linearkombination, wie oben beschrieben zu berechnen führt dazu, dass für

alle neu zu berechnenden Teillösungen f #»
k mit

#»

k ∈ Nd
0 gilt, dass

#»

k in Jd
n \ Id

n liegt. Führen wir

eine Indexverschiebung um d− 1 durch, so können wir obige Grenzwertbetrachtungen auf unsere

Definition der Dünngitter-Kombinationstechnik in Definition 2.1.6 übertragen.

Harding und Hegland schlagen vor alle kleineren Teillösungen, unabhängig davon ob sie gebraucht

werden, gleich im Voraus mitzuberechnen [HH12]. Unter der Annahme eines optimalen Lösers mit

einer Komplexität die linear in der Anzahl der Gitterpunkte ist und unter Berücksichtigung von

Gleichung 2.11 und 2.12 ergibt sich bereits für d = 2 die Prognose, dass sich das Verfahren für große n,
falls für den Fehler en im Vergleich zu dem Fehler ẽn für das Verfahren einer Interpolation en < 3

4 ẽn

gilt, lohnt.

2.4. Beschreibung der PDEs und der Testprogramme

In dieser Arbeit untersuchen wir zwei PDEs. Zum einen das Laplace Problem ∆f = 0 in 2 Di-

mensionen mit der exakten Lösung f(x, y) = sin(πy) sinh(π(1−x))
sinh(π) auf [0, 1]2 und in 3 Dimensionen

mit der exakten Lösung f(x, y, z) = sin(πz) sin(πy) sinh(√
2π(1−x))

sinh(π) auf [0, 1]3, jeweils mit Dirichlet

Randbedingungen. Wir diskretisieren mit Finiten Elementen zweiter Ordnung und verwenden ein

CG-Verfahren als Löser.

Die zweite PDE ist die Advektionsgleichung
∂f
∂t + #»a ∗ ∇f = 0 mit

#»a = (1, 1), der exakten Lösung

f(x, y, t) = sin(2π(x− t)) sin(2π(y − t)) auf [0, 1]2 und periodischen Randbedingungen in 2D und

mit
#»a = (1, 1, 1), der exakten Lösung f(x, y, t) = sin(2π(x− t)) sin(2π(y − t)) sin(2π(z − t)) auf

[0, 1]3 und periodischen Randbedingungen in 3D. Wir starten mit jeweils einer Anfangsbedingung

zum Zeitpunkt t = 0 und lösen das Problem auf jedem Gitter bis zum Zeitpunkt t = 0.5, ganz am
Ende wird die Kombinationslösung gebildet. Für die Zeitschritte wird ein Runge-Kuttaverfahren

vierter Ordnung und eine Diskretisierung 1. Ordnung für die Raumkoordinaten verwendet.

Die Advektionsgleichung beschreibt beispielsweise den Transport eine gelösten Stoffes in einer

Flüssigkeit durch eine Strömung. Das Laplace Problem entspricht dem stationären Fall der homogenen

Wärmeleitungsgleichung.

Abbildung 2.5 zeigt die Struktur der Programme für die Untersuchungen der beiden PDEs. Für die

Parallelisierung wurde die MPI Implementierung MPICH2 in Version 1.4.1 verwendet. Um die beiden

PDEs zu lösen verwenden wir DUNE (Distributed and Unified Numerics Environment) [PB], mit

den DUNE-Core Modules in Version 2.2 und DUNE-FEM [dev10] in Version 1.30. Das Dünngitter-

Framework SG++ liefert uns die Tools um die Kombinationstechnik zu realisieren. Dort sind bereits

26

2.5. Ergebnisse der Kombinationstechnik

die Klassen CombiSchemeBasis und ParallelCombiGrid vorhanden. Die Basisklasse CombiScheme-

Basis ist in Abbildung 3.1 dargestellt. Sie ist im wesentlichen ein Container für die Levelvektoren

und Koeffizienten einer Kombination

∑
#»
l ∈L c #»

l f #»
l welche in den Member Variablen levels_vector_

und cofficients_ gespeichert werden. Über die einzelnen Methoden können die Koeffizienten bzw.

die Levelvektoren gesetzt oder gelesen werden. Der Konstruktor von ParallelCombiGrid bekommt

ein Objekt der Klasse CombiSchemeBasis übergeben. Er alloziert mehrdimsionale Arrays welche

die Funktionswerte der einzelnen Teillösungen f #»
l ,

#»

l ∈ L an den jeweiligen Gitterpunkten der

zugehörigen Gitter Ω #»
l speichern und stellt Methoden zur Auswertung der Linearkombination auf

[0, 1]d bereit.

Die Klassen Transport und Poisson hängen von den DUNE Bibliotheken ab und basieren auf den

Beispielen in [dev10]. Diese wurden für unsere spezifische Problemstellung angepasst und lösen

die entsprechenden PDE’s für eine gewählte Diskretisierung. Über Konfigurationsdateien werden

Einstellungen wie etwa die maximale Schrittweite des Runge-Kutta Verfahrens oder der Wert für das

Residuum festgelegt ab dem der CG-Löser abbricht.

Die Klasse createSchemes liefert uns für ein n ∈ N die Levelvektoren und Koeffizienten der T-CTs,

der Richardson-Extrapolationen (siehe Abschnitt 2.6), der Verknüpfung beider Techniken (siehe

Abschnitt 2.7) und der Kombinationen falls eine Teillösung ausfällt. Im Anhang sind alle untersuchten

Kombinationen aufgelistet. Des Weiteren liefert sie die Information auf welchem Gitter der Fehler

berechnet werden soll und wie ggf. interpoliert werden soll.

In der „combiutils.hpp“ sind die Funktionen für die Kommunikation der Prozesse, die Berechnung des

Fehlers auf einem Raum V #»
l und Interpolationen implementiert.

Die Einsprungspunkte für die beiden Programme für das Laplace bzw. das Advektionsproblem,

befinden sich in den Dateien „combi_laplace.cpp“ bzw. „combi_transport.cpp“.

2.5. Ergebnisse der Kombinationstechnik

Wir betrachten nun im Falle der T-CTs f̃2
n−2,n−2, f̃3

n−3,n−3, und f̃2
n−2,n−2,n−2, verschiedene Kombi-

nationen falls genau eine Teillösung ausfällt. Aus Theorem 2.2.5 folgt, dass wir für alle untersuchten

Kombinationen, wie sie im Anhang aufgelistet werden, für das Laplace-Gleichung eine Konvergenz

in O(h2
n) und für die Advektionsgleichung in O(hn) erwarten. Der Fehler wird in allen Ergebnissen

dieser Arbeit wie in Gleichung 2.9 dargestellt berechnet.

Abbildung 2.6 zeigt den Fehler für die Laplace-Gleichung in 2D für die Vollgitterlösung fn,n, f̃
2
n−2,n−2

und verschiedene Kombinationen nach einem Ausfall einer Teillösung der T-CT für n ∈ {5, . . . , 10}.
Zu erkennen ist, dass sich wie erwartet bei allen Kombinationen, mit der Halbierung derMaschenweite,

gleichzeitig der Fehler ungefähr viertelt und sich die Fehler der einzelnen Kombinationen näherungs-

weise um einen konstanten Faktor unterscheiden. Der schlechteste Fall ist die Fehlerkombination 3,

die aus nur einer Teillösung, nämlich fn,n−2, besteht.

Die Fehler für die Kombinationen f̃2
n−2,n−2 (case 0) und fn−2,n + fn,n−2 − fn−2,n−2 (case 5) liegen

sehr nahe an der, der Vollgitterlösung fn,n. Ein Grund dafür ist, dass wie Abbildung 2.3 zeigt, nur die

hierarchischen Inkremente Wn,n, Wn−1,n und Wn,n−1 bzw. zusätzlich Wn−1,n−1 fehlen, während z. B.

27

2. Definitionen, Versuchsaufbau und Ergebnisse

«source»

combi_laplace.cpp

«source»

combi_transport.cpp

«file»

MakeFile

«source»

combiUtils.hpp

Poisson Transport

SG++

combiSchemeBasis

createSchemes

ParallelCombiGrid

DUNE

«file»

parameters

«file»

parameters

Abbildung 2.5.: Schematische Darstellung des Aufbaus der Programme für die Untersuchungen der

Fehler verschiedener Linearkombinationen von Teillösungen.

28

2.5. Ergebnisse der Kombinationstechnik

1e-07

1e-06

1e-05

0.0001

0.001

0.01

5 6 7 8 9 10

l
1
a
v
g
e
r
r
o
r

n

full

case 0

case 1

case 2

case 3

case 4

case 5

case 6

case 7

case 8

case 9

case 10

case 11

case 12

case 13

Abbildung 2.6.: Dargestellt sind die Fehler bei der Lösung der Laplace-Gleichung mit der Kombi-

nationstechnik f̃2
n−2,n−2 und den Linearkombinationen wie sie in Anhang A.1 auf

Seite 53 beschrieben sind, falls eine Teillösung ausfällt. Für alle Fälle wird der Fehler

auf Vn,n berechnet.

0.001

0.01

0.1

1

5 6 7 8 9 10

l
1
a
v
g
e
r
r
o
r

n

full

case 0

case 1

case 3

case 5

case 6

case 8

case 10

case 12

Abbildung 2.7.: Dargestellt sind die Fehler bei der Lösung der Advektionsgleichung mit der Kombi-

nationstechnik f̃2
n−2,n−2 und den Linearkombinationen wie sie in Anhang A.1 auf

Seite 53 beschrieben sind, falls eine Teillösung ausfällt. Für alle Fälle wird der Fehler

auf Vn,n berechnet.

29

2. Definitionen, Versuchsaufbau und Ergebnisse

in Fall 2 die Anzahl der fehlenden hierarchischen Inkremente in O(n) liegt. Des Weiteren sind auch

die einzelnen Beiträge der fehlenden hierarchischen Inkremente in Fall 0 und 5 vergleichsweise klein.

Dies liegt daran, dass für die Beiträge der hierarchischen Inkremente bezüglich der L∞
Norm die

Abschätzungen in [Zen91] gelten, und diese also mit steigender Levelsumme gegen 0 konvergieren.

Während in Fall 0 und 5 die Levelsumme der fehlenden hierarchischen Inkremente nach unten durch

2n− 2 abgeschätzt werden kann, fehlt in Fall 2 etwa auch Wn,1 mit verhältnismäßig hohem Beitrag.

Dass die beiden besten Fälle tatsächlich einen leicht geringeren Fehler als den der Vollgitterlösung

fn,n haben, lässt sich vermutlich auf Besonderheiten des Problems und des verwendeten numerischen

Verfahrens zurückführen. Dass die exakte Lösung nicht symmetrisch ist lässt sich auch aus einem

Vergleich der Fehler für die Kombinationen 1 und 2 bzw. 3 und 4 ablesen, deren Levelvektoren jeweils

bis auf eine Permutation der Indizes identisch sind.

Fällt fn−2,n aus so kann entweder Kombination 1 mit fn,n−2 + fn−1,n−1 − fn−1,n−2 oder Kom-

bination 3 mit fn,n−2 verwendet werden. Fällt fn,n−2 aus so kann entweder Kombination 2 mit

fn−2,n + fn−1,n−1 − fn−2,n−1 oder Kombination 4 mit fn−2,n verwendet werden. In beiden Fällen

sind die Linearkombinationen mit jeweils drei Teillösungen die bessere Wahl.

Fällt beispielsweise fn−2,n−1 aus, so kann aus den verbleibenden Teillösungen entweder die Kombi-

nation 1 mit fn,n−2 + fn−1,n−1 − fn−1,n−2 gebildet werden oder aber eine der beiden Teillösungen

fn−2,n oder fn−1,n−1, wie in den beiden Fällen 6 und 10, in Vn−2,n−1 projiziert werden. Für einen

Ausfall von fn−1,n−2 lassen sich analog die Kombinationen 2, 7, und 11 bilden. Dabei ist zu sehen, dass

in drei der vier Interpolationsfälle der Fehler sogar schlechter ist als die entsprechende alternative

Kombination mit nur drei Teillösungen. Auch der Aufwand für eine Interpolation spricht gegen diese,

im Vergleich zu den Fällen 1 und 2 bei denen nur die Koeffizienten der Linearkombination angepasst

werden müssen.

Da der Fehler davon abhängt, welche Teillösung für die Projektion verwendet wird, wirft dies die Frage

auf, wie für eine beliebige PDE entsprechende Teillösungen ausgewählt werden. Liegen keine anderen

Informationen vor, so ist es naheliegend für einen Ausfall von fn−2,n−1 etwa die Linearkombination

1
2(fn−2,n + fn−1,n−1), wie in Fall 12, und für einen Ausfall von fn−1,n−2 die Linearkombination

1
2(fn−1,n−1 + fn,n−2), wie in Fall 13, für eine Projektion zu verwenden. Dies kann etwa auch auf be-

liebige intakte Teillösungen, aus den zugehörigen feineren Funktionsräumen, in beliebiger Dimension

erweitert werden.

In unserem Fall entspricht der Fehler der Kombination 12 dabei ungefähr dem arithmetischen Mittel

der Fehler der Kombinationen 6 und 10, und der Fehler von Kombination 13 ungefähr dem arithmeti-

schen Mittel der Fehler der Kombinationen 7 und 11. Damit sind beide schlechter als die jeweiligen

Kombinationen 1 und 2 mit jeweils drei Teillösungen. Sowohl bei Ausfall von fn−2,n−1 als auch von

fn−1,n−2 wären jeweils noch die Fälle 3 und 4 denkbar gewesen. Diese sind aber noch schlechter als

alle obigen aufgezählten Kombinationen im Fehlerfall.

Zuletzt wollen wir noch einen Fehler bei fn−1,n−1 betrachten. Möglich sind hier wieder die

Fälle 3 und 4 mit jeweils einer Teillösung. Weitere Möglichkeiten sind Kombination 5 mit

fn−2,n + fn,n−2 − fn−2,n−2 Kombination 8 mit fn−2,n + fn,n−2 − Pn−2,n−2fn−2,n oder Kombinati-

on 9 mit fn−2,n + fn,n−2 − Pn−2,n−2fn,n−2. Erstaunlicherweise ist die Kombination fn−2,n sogar

geringfügig besser als die beiden Interpolationsfälle. Der Fehler von Kombination 5 ist ungefähr um

30

2.6. Richardson-Extrapolation

den Faktor 8 besser, als der Fehler der beiden Kombinationen 8 und 9, dafür muss aber die Teillösung

fn−2,n−2 berechnet werden.

Abbildung 2.7 zeigt analog die Fehler für die Vollgitterlösung fn,n, f̃
2
n−2,n−2 und die oben besproche-

nen Kombinationen für die Advektionsgleichung. Da die exakte Lösung sin(2π(x− t)) sin(2π(y− t))
ist, sind die Ergebnisse für Kombinationen, deren Levelvektoren bis auf eine Permutation der Indizes

identisch sind, gleich und nicht in dem Plot enthalten. Die Resultate entsprechen weitgehend den

Ergebnissen für die Laplace-Gleichung. So sind die Fälle 0 und 5 die besten und die Interpolationsfälle

schneiden schlechter ab, als die entsprechenden Kombinationen mit nur drei Teillösungen bzw. mit

der Neuberechnung der kleineren Teillösung fn−2,n−2. Unterschiedlich ist, dass sich bei Halbierung

der Maschenweite, wie erwartet, der Fehler ungefähr halbiert und dass die Vollgitterlösung fn,n

erkennbar besser als alle anderen Kombinationen abschneidet.

Für die T-CT f̃2
n−2,n−2 aus fünf Teillösungen haben wir relativ ausführlich die einzelnen Fälle aufge-

zählt, andere Kombinationen bei Ausfall einer Teillösung wären durchaus möglich gewesen. Da die

T-CT f̃3
n−3,n−3 aus sieben Teillösungen und die T-CT f̃2

n−2,n−2,n−2 aus zehn Teillösungen besteht

und für diese noch mehr Möglichkeiten denkbar sind, wollen wir hier nicht mehrere Dutzend Fallun-

terscheidungen machen und schließen diesen Abschnitt mit der Bemerkung, dass die Abbildungen

A.1, A.2, A.5, und A.6 für das Advektionsproblem und das Laplace Problem in 2D und 3D ebenfalls

die erwartete Fehlerabnahme zeigen. Für das Laplace Problem im Fall der T-CT f̃3
n−3,n−3, zeigt sich

ein etwas besseres Abschneiden der beiden Kombinationen mit Projektionsoperatoren.

Den Ergebnissen und den Betrachtungen in Abschnitt 2.3 lässt sich nun entnehmen, dass die Interpo-

lation im Vergleich zur Neuberechnung von Koeffizienten und kleinerer Teillösungen, die schlechtere

Strategie zu sein scheint.

2.6. Richardson-Extrapolation

In Theorem 2.2.5 haben wir obere Schranken, aber keine untere Schranke für den Fehler bewiesen.

Die Idee der Richardson-Extrapolation ist es, durch geeignete Wahl der Koeffizienten einer Linear-

kombination von Teillösungen ein besseres Fehlerverhalten zu erreichen. Dabei wird ausgenutzt, dass

sich die ersten Terme der Fehlerexpansion aufheben.

[HH14] geht dazu in 2D von einem punktweisen Fehler von

ϵl1,l2 = f − fl1,l2 = ep,0hp
l1

+ e0,php
l2

+ e2p,0h2p
l1

+ e0,2ph2p
l2

+ · · · (2.13)

aus, wobei die Funktionen em,n
nur von Koordinaten des Gitterpunktes abhängen.

Sei Ld
n =

{
#»

l ∈ Nd
0 |
∥∥∥ #»

l
∥∥∥

1
= n

}
. Wir verallgemeinern die Fehlerexpansion in 2.13 nun zu

ϵ #»
l = f − f #»

l =

 d∑
j=1

ejhp
lj

+

 ∞∑
k=2

∑
#»
λ ∈Ld

k

e
#»
λ

d∏
u=1

hλup
lu

 (2.14)

wobei die Terme ej
und e

#»
λ
wieder nur von den Koordinaten des Gitterpunktes abhängig sind.

31

2. Definitionen, Versuchsaufbau und Ergebnisse

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

5 6 7 8 9 10

l
1
a
v
g
e
r
r
o
r

n

full

case 0

case 1

case 2

case 3

case 4

case 5

case 6

case 7

case 8

Abbildung 2.8.: Dargestellt sind die Fehler bei der Lösung der Laplace-Gleichung mit der Richardson-

Extrapolation auf Vn−3,n−3. Die einzelnen Fälle sind in Anhang A.4 auf Seite 55

beschrieben. Der Fehler für fn,n wird aufVn,n und für alle anderen Fälle aufVn−3,n−3
berechnet.

Bei der klassischen Richardson-Extrapolation werden zwei Teillösungen durch die Formel

2p

2p − 1P(n,n,...,n)f(n+1,n+1,...,n+1) + 1
1− 2p

f(n,n,...,n)

kombiniert. Wobei P(n,n,...,n) die Projektion bzw. Interpolation wie in Definition 2.3.1 bezeichnet.

Harding schlägt, statt der klassischen, die multivariate Richardson-Extrapolation vor. Diese hat

besonders in höheren Dimensionen und bei Extrapolationen höherer Ordnung einen geringeren

Aufwand pro Nutzen [BGR94]. Sei z. B. die Kombination f̃2
n−2,n−2 gegeben, so suchen wir nun

Koeffizienten so dass folgende Gleichung gilt:

a1fn−2,n + a2fn−1,n−1 + a3fn,n−2 + a4fn−2,n−1 + a5fn−1,n−2 = f + 0ep,0 + 0e0,p +O(h2p
n)
(2.15)

was zu dem Gleichungssystem

a1 + a2 + a3 + a4 + a5 = 1
a1hp

n−2 + a2hp
n−1 + a3hp

n + a4hp
n−2 + a5hp

n−1 = 0
a1hp

n + a2hp
n−1 + a3hp

n−2 + a4hp
n−1 + a5hp

n−2 = 0

führt.[HH14]

Da Gleichung 2.13 nur an den Gitterpunkten gilt, ist die Auslöschung der ersten Fehlerterme im

Allgemeinen auch nur auf dem größten gemeinsamen Gitter garantiert [HH14]. Dies deckt sich auch

mit den Ergebnissen der Experimente. So zeigt Abbildung 2.8, die Abnahme des Fehlers um den Faktor

32

2.6. Richardson-Extrapolation

1e-07

1e-06

1e-05

0.0001

0.001

0.01

5 6 7 8 9 10

l
1
a
v
g
e
r
r
o
r

n

full

case 0

case 1

case 2

case 3

case 4

case 5

case 6

case 7

case 8

Abbildung 2.9.: Dargestellt sind die Fehler bei der Lösung der Laplace-Gleichung mit der Richardson-

Extrapolation auf Vn,n. Die einzelnen Fälle sind in Anhang A.4 auf Seite 55 beschrie-

ben. Für alle Fälle wird der Fehler auf Vn,n berechnet.

16 bei Halbierung von hn, falls auf Vn−3,n−3 extrapoliert und um einen Faktor 4 in Abbildung 2.9,

falls auf Vn,n extrapoliert wird.

Das obige lineare Gleichungsystem ist unterbesetzt, eine Möglichkeit die zusätzlichen Freiheitsgrade

los zu werden, wäre noch zusätzliche Gleichungen z. B. die Symmetriebedingungen a1 = a3 und

a4 = a5 hinzuzufügen, eine andere Möglichkeit wäre weitere Fehlerterme zu eliminieren. In höheren

Dimensionen verschärft sich das Problem noch. [HH14]

Ein weiteres Problem bei der Verwendung aller Teillösungen ist im Falle einer Truncated Combination

Technique von der Form f
#»r

n , dass auf Ω #»r , und bei der klassischen Dünngitter-Kombinationstechnik

sogar auf Ω(1,1,...,1) extrapoliert werden würde, so dass im Allgemeinen für alle anderen Punkte keine

Auslöschung der Fehlerterme eintritt, und der Aufwand für eine verbesserte Konvergenz dadurch ins

Leere läuft, dass sie an den meisten Punkten nicht gilt.

Deswegen versuchen wir wie folgt mit (d+1) Teillösungen auszukommen:

Sei nun Ln =
{

»

ln0 ,
»

ln1 , . . . ,
»

lnd

}
⊆ Nd

0 mit

»

ln0 = (n, n, . . . , n) und für k ≥ 1 sei

»

lnk
= # »

ln0 + #»ek,

wobei
#»ek ∈ Nd

0 ∧ ∥ #»ek∥1 = 1 ∧ ekk = 1, d. h. ek ist der Einheitsvektor entlang der k-ten Achse, gilt.

Wir wollen nun die Koeffizienten a #»
l ,

#»

l ∈ Ln so bestimmen das folgende Gleichung erfüllt ist:

∑
#»
l ∈Ln

a #»
l f #»

l (#»x) = f +O(h2p
n) +

d∑
j=1

0ej

Nun können wir ein lineares Gleichungssystem aufstellen.

33

2. Definitionen, Versuchsaufbau und Ergebnisse



1 1 1 . . . 1 1 1
1
2p 0

1
2p 1 0

.
.
.

.

.

.

1 1
2p 0

1
2p 0


⇒



1 1 1 . . . 1 1 1
1−2p

2p −1
1−2p

2p 0 −1
.
.
.

.

.

.

0 1−2p

2p −1
1−2p

2p −1



⇒



1 1 1 . . . 1 1 1
1 2p

2p−1
1 0 2p

2p−1
.
.
.

.

.

.

0 1 2p

2p−1
1 2p

2p−1



Es gilt also a # »
ln0

= 1− d ∗ 2p

2p−1 und a # »
lnk

= 2p

2p−1 für 1 ≤ k ≤ d. So bekommen wir z. B. für p=2 in

2D die Kombination

4
3Pn,nfn+1,n + 4

3Pn,nfn,n+1 −
5
3fn,n (2.16)

und in 3D die Kombination

4
3Pn,n,nfn+1,n,n + 4

3Pn,n,nfn,n+1,n + 4
3Pn,n,nfn,n,n+1 − 3fn,n,n (2.17)

Der Vorteil, dieser Auswahl von Teillösungen für die Richardson-Extrapolation ist, dass sie für jedes

beliebige d durchführbar ist. Fallen bei einer Kombinationstechnik Lösungen aus, so kann Gleichung

2.16 bzw. 2.17 verschobenwerden [HH14, vgl.], so dass die ausgefallenen Teillösungen nicht verwendet

werden. Beispiele sind Fall 6, 7 und 8 aus Abbildung 2.8 oder die Fälle 1 bis 4 aus Abbildung A.7

Wir haben genau (d+1) Teillösungen für (d+1) Gleichungen verwendet und das Gleichungssystem ist

eindeutig lösbar. Im Gegensatz zur klassischen Kombinationstechnik ersparen wir uns den Aufwand

die Teillösung f(n+1,n+1,...,n+1) mit (2n+1 + 1)d
Unbekannten zu lösen und ersetzen sie durch d

Teillösungen mit jeweils nur (2n + 1)d−1(2n+1 + 1) Unbekannten.

Sei an die Anzahl der Punkte der klassischen Richardson-Extrapolation und bn die obiger Kombination

dann gilt für den Grenzwert des Quotienten:

lim
n→∞

an

bn
= lim

n→∞
(2n+1 + 1)d + (2n + 1)d

d(2n + 1)d−1(2n+1 + 1) + (2n + 1)d
= lim

n→∞
(2n+1 + 1)d + (2n + 1)d

(2n + 1)d−1(d(2n+1 + 1) + (2n + 1))

≥ lim
n→∞

(2n+1 + 1)d

(2n + 1)d−1(d + 1)(2n+1 + 1)
= lim

n→∞
(2n+1 + 1)d−1

(2n + 1)d−1(d + 1)
= lim

n→∞
1

d + 1

(
(2n+1 + 1)
(2n + 1)

)d−1

= 2d−1

d + 1

34

2.7. Verknüpfung von einfacher Kombinationstechnik und Richardson-Extrapolation

In den Abbildungen 2.10, 2.11, A.3, A.4, A.7, und A.8 sind die weiteren Ergebnisse für die Richardson-

Extrapolation in 2D und 3D für Advektions- und Laplace-Gleichung dargestellt.

2.7. Verknüpfung von einfacher Kombinationstechnik und
Richardson-Extrapolation

[HH14] schlägt eine Verknüpfung der multivariaten Richardson-Extrapolation mit der Kombinations-

technik vor.

Sei f̃2
n−2,n−2 gegeben p = 1 und fe

n−2,n−2 = −2Pn−2,n−2fn−2,n + 5Pn−2,n−2fn−1,n−1 −
2Pn−2,n−2fn,n−2 eine Extrapolation auf Vn−2,n−2, so liefert die Kombination

PLfe
n−2,n−2 + (f̃2

n−2,n−2 − Pn−2,n−2f̃n−2,n−2)

, wobei PLfe
n−2,n−2 die bilineare Interpolation auf den Dünngitterraum von f̃2

n−2,n−2 ist, mit L =
{(l1, l2) ∈ N2 | l1 + l2 ≤ 2n− 2 ∧ l1, l2 ≤ n}, eine Approximation zweiter Ordnung für Vn−2,n−2
und eine Approximation erster Ordnung auf ⊕

l2≤n−2
Wn,l2

⊕
 ⊕

l2≤n−1
Wn−1,l2

⊕
 ⊕

l1≤n−2
Wl1,n

⊕
 ⊕

l1≤n−2
Wl1,n−1


Fallen Teillösungen aus so verwendet [HH14] im Fehlerfall folgende Kombination

PLge
n−2,n−2 + (gL − Pn−2,n−2gL)

wobei ge
n−2,n−2 eine Extrapolation von erfolgreich berechneten Teillösungen auf Vn−2,n−2 und gL

eine Kombination von erfolgreich berechneten Teillösungen ist.[HH14]

In den Abbildungen 2.10 und 2.11 sind für die Advektionsgleichung in 2D die Fehler der Vollgit-

terlösung fn,n, als auch die der Richardson-Extrapolation und der kombinierten Technik für einen

Ausfall von Teillösungen aus f̃2
n−2,n−2 bzw. f̃3

n−3,n−3 zu sehen. Der Fehler der kombinierten Technik

wird immer in dem Dünngitterraum ausgerechnet, welcher von den Funktionsräumen der noch

intakten Teillösungen aufgespannt wird. Wir sehen, dass der Fehler geringfügig schlechter als der,

der Richardson-Extrapolation ist. Dies entspricht nicht ganz den Ergebnissen aus [HH14] in welchen

der Fehler der kombinierten Technik geringfügig besser als der, der Richardson-Extrapolation ist.

35

2. Definitionen, Versuchsaufbau und Ergebnisse

0.0001

0.001

0.01

0.1

1

5 6 7 8 9 10

l
1
a
v
g
e
r
r
o
r

n

full

case 0

case 1

case 2

case 3

Abbildung 2.10.: Dargestellt sind die Fehler bei der Lösung der Advektionsgleichung für Linearkom-

binationen nach einem Ausfall von Teillösungen aus f̃2
n−2,n−2. Die einzelnen Fälle

sind in Anhang A.5 auf Seite 56 beschrieben. Fall 0 und Fall 1 sind Richardson-

Extrapolationen auf Vn−2,n−2 und ihr Fehler wird auf Vn−2,n−2 berechnet. Fall 2

und 3 entsprechen der Kombination der Richardson-Extrapolation auf Vn−2,n−2
und der einfachen Linearkombination und ihre Fehler werden auf dem Raum VL,

mit L wie im Anhang beschrieben, berechnet. Der Fehler der Vollgitterlösung fn,n

wird auf Vn,n berechnet.

36

2.7. Verknüpfung von einfacher Kombinationstechnik und Richardson-Extrapolation

0.0001

0.001

0.01

0.1

1

5 6 7 8 9 10

l
1
a
v
g
e
r
r
o
r

n

full

case 0

case 1

case 2

case 3

case 4

case 5

Abbildung 2.11.: Dargestellt sind die Fehler bei der Lösung der Advektionsgleichung für Linear-

kombinationen nach einem Ausfall von Teillösungen aus f̃3
n−3,n−3. Die einzelnen

Fälle sind in Anhang A.6 auf Seite 57 beschrieben. Fall 0, 1 und 2 sind Richardson-

Extrapolationen auf Vn−3,n−3 und ihr Fehler wird auf Vn−3,n−3 berechnet. Fall 3,

4 und 5 entsprechen der Kombination der Richardson-Extrapolation auf Vn−3,n−3
und der einfachen Linearkombination und ihre Fehler werden auf dem Raum VL,

mit L wie im Anhang beschrieben, berechnet. Der Fehler der Vollgitterlösung fn,n

wird auf Vn,n berechnet.

37

3. Implementierung fehlertoleranter Verfahren
in SG++ und Ergebnisse

In diesem Kapitel soll die Implementierung von Verfahren zur Berechnung einer neuen Linearkombi-

nation, falls Teillösungen bei der Berechnung von T-CTs der Form f
#»r

n ausfallen, und die Ergebnisse

für deren Fehler dargestellt werden.

In Abbildung 3.1 auf der nächsten Seite ist die Klasse CombiFaultRecoveryScheme dargestellt. Diese

wurde von der Klasse CombiSchemeBasis abgeleitet, welche wie in Abschnitt 2.4 bereits beschrieben,

die Koeffizienten und Levelvektoren einer Linearkombination kapselt. CombiFaultRecoveryScheme

hat zwei Konstruktoren. Der erste erzeugt T-CTs der Form

d−1∑
q=0

(−1)q

(
d− 1

q

) ∑
∥ #»

l ∥1=levelSumme−q

minLevels≤ #»
l

f #»
l (#»x)

Wollen wir also f c
n nach Definition 2.1.6 erhalten, so müssen wir den Konstruktor also durch „Com-

biFaultRecoveryScheme (dim, n+d-1,

#»1)“ aufrufen.

Der zweite Konstruktor erzeugt T-CTs der Form f̃ t
#»
ln

mit

#»

ln = (n− t, n− t, . . . , n− t). Da die Klasse
von CombiSchemeBasis abgeleitet ist, lässt sich jede beliebige andere Linearkombination über die

Methoden updateScheme und SetCoef setzen.

Fallen nun Teillösungen aus, so können über die Methoden faultRecoveryFast, faultRecoverySlow,

faultRecoveryBlock und faultRecoveryRichardson, neue Kombinationen berechnet werden. Dazu

müssen allen Methoden über den Parameter failedGrids die Indizes der Levelvektoren in der Member-

variablen levels_vector_ übergeben werden, deren zugehörigen Teillösungen ausgefallen sind. Die

Methoden berechnen, dann die neue Linearkombination und diese resultiert in einer entsprechenden

Anpassung der beiden Attribute levels_vector_ und coefficients_.

Da die Dünngitter-Kombinationstechnik f c
n aus O

(
nd−1

)
Teillösungen besteht, gibt es für jede der

Methoden O
(
2cnd−1

)
verschiedene Fälle, für eine Konstante c > 0. Diese können selbst für kleine

n nicht mehr alle durchprobiert werden. Statt dessen werden, wie in Algorithmus 3.1 dargestellt,

für jede Levelsumme zwischen 9 und 13, bei einem Ausfall von ein bis vier zufällig ausgewählten

Teillösungen, für jedes Verfahren die Fehler für eine gewisse Anzahl an Samples berechnet, und deren

Durchschnitt gebildet.

faultRecoveryfast berechnet die neue Linearkombination durch das Prinzip der Inklusion und Exklu-

sion wie bereits in Abschnitt 2.3 beschrieben. Der Fehler für die Dünngitter-Kombinationstechnik

liegt, falls die exakte Lösung f genügend glatt, in O(h2
nnd−1) [Pfl10]. Die Ergebnisse für f c

n und die

39

3. Implementierung fehlertoleranter Verfahren in SG++ und Ergebnisse

CombiFaultRecoveryScheme

+CombiFaultRecoveryScheme(in dim:int,in levelSumme:int,

in minLevels:const std::vector<int> &)

+CombiFaultRecoveryScheme(in dim:int,in level:int,

in t:int)

+faultRecoveryFast(in failedGrids:const std::vector<int> &): bool

+faultRecoveryBlock(in failedGrids:const std::vector<int> &,

in center:const bool): bool

+faultRecoverySlow(in failedGrids:const std::vector<int> &,

in tryWithoutRecalculation:const bool): bool

+faultRecoveryRichardson(in failedGrids:const std::vector<int> &,

in p:const int,out errorGrid:std::vector<int> &): bool

#gradeAnisotropy(in level_vectors:std::vector<std::vector<int> > &): double

CombiSchemeBasis

#levels_vector_: std::vector<std::vector <int»

#cofficients_: std::vector<double>

+getDim(): int

+getNrSapces(): int

+getLevel(in i:int): const std::vector<int>&

+getLevels(): const std::vector<std::vector<int> >&

+getCoef(in i:int): double

+setCoef(in newCoef: std::vector<double>)

+std::vector<double> getCoef()

+updateScheme(in levelsNew :std::vector<std::vector<int> > ,

in coef:std::vector<double>): std::vector<int>

Abbildung 3.1.: CombiFaultRecoverScheme

40

Algorithmus 3.1 Algorithmus zur Messung der Fehler der implementierten Methoden

procedure test
solutions← calculateAllSolutionsWithLevelSumFrom9To13()
for all levelSum ∈ {9, . . . , 13} do

for all amountFaultyGrids ∈ {1, . . . , 4} do
for all m ∈METHODS do

error(m)← 0
successfullyCalculated(m)← 0

end for
for all samples ∈ {1, . . . , levelSum ∗ amountFaultyGrids} do

failedGrids← getRandomFaultyGrids(levelSum, amountFaultyGrids)
for all m ∈METHODS do

CombiFaultRecoveryScheme cFRS(2, levelsum, {1, 1})
success← cFRS.calcNewSchemeWithMethod(. . .)
if success then

successfullyCalculated(m)← successfullyCalculated(m) + 1
error(m)← calcErrorFromCombinationWithMethod(. . .) + error(m)

end if
end for

end for
for all m ∈METHODS do

error(m)← error(m)
successfullyCalculated(m)

saveToFile(levelSum,m,error(m))
end for

end for
end for

end procedure

entsprechenden Linearkombination bei Ausfällen von Teillösungen sind in Abbildung 3.2 zu sehen

und verhalten sich so wie wir es für eine Konvergenz in O(h2
nnd−1) erwarten würden.

Hierbei fällt auf, dass bei Ausfall einer Teillösung nicht alle Teillösungen aus den zugehörigen feineren

Funktionsräumen verworfen werden müssen. Dies nützt die Methode faultRecoverySlow aus. In

dem Beispiel der Dünngitter-Kombinationstechnik f c
4 , wie in Abschnitt 2.3 beschrieben, hätten bei

einem Ausfall der Teillösung f2,3 das Entfernen von einer der beiden Teillösungen f3,3 und f2,4
ausgereicht. Da wir 2 Teillösungen verworfen hatten, würden wir in diesem Fall einen größeren Fehler

der neu berechneten Kombination erwarten, als für die neu berechneten Kombinationen, falls wir nur

eine Teillösung verwerfen würden. So bemerkt [HH12], dass es im Allgemeinen, in d Dimensionen,

passieren kann, dass viele hundert Teillösungen zu viel verworfen werden und sich das Problem

dementsprechend verschärft.

Sei nun eine Kombination fL =
∑

#»
l ∈L c #»

l f #»
l gegeben und sei Λ ⊂ L die Menge der Le-

velvektoren der ausgefallenen Teillösungen. faultRecoverySlow berechnet nun die Menge K ={
#»

l ∈ L | ∃ #»

λ ∈ Λ : #»

λ ≤ #»

l
}
der Levelvektoren aller Teillösungen, aus den zugehörigen feineren

41

3. Implementierung fehlertoleranter Verfahren in SG++ und Ergebnisse

0.00000

0.00000

0.00000

0.00001

0.00010

8 8.5 9 9.5 10 10.5 11 11.5 12

l
1
a
v
g
e
r
r
o
r

n

0

1

2

3

4

Abbildung 3.2.: Das Laplace Problem wird in 2D für die Dünngitter-Kombinationstechnik f c
n gelöst.

Die Ergebnisse für die Fehler, der mit der Methode faultRecoveryFast berechne-

ten Linearkombinationen, werden für einen Ausfall von bis zu vier Teillösungen

dargestellt. Für alle Fälle wird der Fehler auf Vn,n berechnet.

Funktionsräumen, und versucht so wenig Teillösungen zu verwerfen wie möglich. Dazu wird für alle

M ∈ P(K), eine neue Linearkombination durch P↓(L\M) berechnet und überprüft ob die Bedingung

∀ #»

λ ∈ Λ : c #»
λ = 0 erfüllt ist, also keine der ausgefallenen Teillösungen in der neu berechneten

Linearkombination verwendet wird. Unter diesen Lösungen wird diejenige ausgewählt, welche eine

minimale Anzahl an Teillösungen verwirft. Gibt es mehrere derartige Linearkombinationen wird

diejenige ausgewählt, welche möglichst „isotrop“ ist. Sei eine Linearkombination fG =
∑

#»g ∈G c #»g f #»g

gegeben, dann wird die Bewertungsfunktion ϕ̃(fG) minimiert, welche durch

ϕ̃(fG) := 1∑
#»g ∈G |c #»g |

∑
#»g ∈G

|c #»g |ϕ(f #»g)

mit

ϕ(f #»g) := 1
∥g∥1

√√√√ ∑
i∈{1,...d}

(
gi −

∥g∥1
d

)2
(3.1)

gegeben ist. Ist die Bewertungsfunktion für mehrere Linearkombination gleich wird eine beliebige

ausgewählt.

Wir berechnen also für jeden Levelvektor
#»g ∈ G, als Vektor in Rn

aufgefasst, einen gewichteten

euklidischen Abstand ϕ(#»g) zum Vektor

(
∥g∥1

d ,
∥g∥1

d , . . . ,
∥g∥1

d

)
und haben damit ein Metrik für die

42

Anisotropie des Gitters Ω #»g . Die Idee dahinter, ist dass Teillösungen, zu den zugehörigen stark aniso-

tropen Gittern, für dieselben relativ schlechte Approximationen liefern, vgl. dazu etwa Gleichung 2.7,

2.13, 2.14 oder etwa [BP12]. Diese werden durch die Bewertungsfunktion „bestraft“. Die Gewichtung

der einzelnen Teillösungen wird auch in der Bewertungsfunktion berücksichtigt und damit nicht

automatisch Linearkombinationen mit vielen Teillösungen verworfen werden, wird ein gewichtetes

arithmetisches Mittel gebildet.

Hat der Parameter tryWithoutRecalculation den Wert true, wird versucht eine Kombination, nach

obigen Kriterien, zu finden für die keine neuen Teillösungen berechnet werden werden müssen. Wird

eine solche nicht gefunden ist die Lösung dieselbe, wie für den Fall, dass für tryWithoutRecalculation

false übergeben worden wäre.

Hier sei gleich erwähnt, dass der Aufwand für die Berechnung von faultRecoverySlow auch wirklich

langsam ist. Sei d die Dimension unseres Problems. Die klassische Dünngitter-Kombinationstechnik

f c
n = f

#»1
n =

∑
#»
ln∈Ln

c #»
ln

f #»
ln

mit n ∈ N bestehen z. B. aus Levelvektoren

#»

ln mit n ≤
∥∥∥ #»

ln
∥∥∥

1
≤

n + d− 1. Fällt also eine Teillösung f #»m mit ∥ #»m∥1 = n ∧ #»m ∈ Ln aus, so gilt für die Menge K #»m ={
f #»

ln
| #»

ln ∈ Ln ∧ #»m ≤ #»

ln
}
der Teillösungen, aus den zugehörigen feineren Funktionsräumen,

|K #»m| =
d−1∑
q=0

(
d + q − 1

q

)
=
(

2d− 1
d− 1

)
(3.2)

Ist die Wahrscheinlichkeit für den Ausfall der einzelnen Teillösungen f #»
ln
mit

#»

ln ∈ Ln und n ∈ N
unabhängig und zum Parameter q ∈ [0, 1] Bernoulli verteilt, so gilt für den Erwartungswert der Anzahl
der ausgefallenen Teillösungen E(X) = q |Ln|. Allerdings ist dies noch optimistisch geschätzt. Denn

eigentlich hängt die Ausfallwahrscheinlichkeit auf einem Knoten von der Zeitdauer der Berechnung

ab und mit n wächst auch der Aufwand die einzelnen Teillösungen f #»
ln

,
#»

ln ∈ Ln zu berechnen, so dass

die Ausfallwahrscheinlichkeit q unter anderem von n abhängig ist. Dies bedeutet, dass wir eventuell

mit einer oberen Schranke für den Aufwand im average case (!) von faultRecoverySlow rechnen

müssen, welche nach unten durch Ω
(
2|K|cnd−1

)
für eine Konstante c abgeschätzt werden kann.

Aufgrund der Vollständigkeit wurde dieses Verfahren dennoch imlementiert und dessen Ergebnisse

in den Abbildungen 3.3 und 3.4 dargestellt.

Die Ergebnisse legen ebenfalls eine Konvergenz in O
(
h2

nnd−1
)
nahe. Beide Ergebnisse sind nahezu

identisch. Dies liegt daran, dass das Verfahren der Inklusion und Exklusion auf Gittern, wie in

Abschnitt 2.3 beschrieben, nach einem Ausfall von Teillösungen aus f c
n in 2D nur dann keine neuen

Levelvektoren produziert, falls sich alle verworfenen Teillösungen an den „Enden“ der „Diagonalen“,

vgl. dazu etwa Abbildung 2.2, befinden und die Wahrscheinlichkeit dafür mit wachsendem n fällt.

Im Vergleich zu faultRecoveryFast sind die Ergebnisse leicht besser, dafür ist der Aufwand aber

auch größer. Beide langsamen Verfahren benötigten in 2D, genauso wie faultRecoverFast, für die

Berechnung der Fehlerkombination in allen Fällen unter Verwendung eines Prozesses auf einem

Rechner mit „Intel Xeon E7540 “ Prozessoren, eine durchschnittliche CPU Time von weit unter einer

Sekunde. Dabei wurde die CPU Time mit „clock_gettime (CLOCK_PROCESS_CPUTIME_ID, & ts)“ aus

der C++ Standardbibliothek gemessen. Für faultRecoveryFast war dies auch in 3D der Fall, während

für faulRecoverySlow in 3D bereits für die Levelsumme 9 und vier ausgefallenen Teillösungen eine

43

3. Implementierung fehlertoleranter Verfahren in SG++ und Ergebnisse

0.00000

0.00000

0.00000

0.00001

0.00010

8 8.5 9 9.5 10 10.5 11 11.5 12

l
1
a
v
g
e
r
r
o
r

n

0

1

2

3

4

Abbildung 3.3.: Das Laplace Problem wird in 2D für die Dünngitter-Kombinationstechnik f c
n gelöst.

Für einen Ausfall von bis zu vier Teillösungen werden mit der Methode faultReco-

verySlow neue Linearkombinationen berechnet. Für alle Fälle wird der Fehler auf

Vn,n berechnet.

CPU Time in der Größenordnung von mehreren Minuten gemessen wurde, so dass diese Messungen

abgebrochen wurden.

Die Methode faultRecoveryRichardson bekommt neben dem Paramter failedGrids, noch die Ordnung

der Diskretisierung über den Parameter p übergeben und berechnet eine multivariate Richardson-

Extrapolation aus d+1Teillösungenwie in Abschnitt 2.6 beschrieben. Sei alsoL =
{

#»

l0 ,
#»

l1 , . . . ,
#»

ld
}
⊆

Nd
0 und für k ≥ 1 sei

#»

lk = #»

l0 + #»ek , wobei
#»ek ∈ Nd

0∧∥ #»ek∥1 = 1∧ekk = 1, d. h. ek ist der Einheitsvektor

entlang der k-ten Achse, gilt. Nun wird durch Bestimmung von

#»

l0 die Kombinationstechnik so

gewählt, dass keine ausgefallene Teillösung für die Extrapolation verwendet wird. Es wird also eine

Art „Referenz-Linearkombination“ solange verschoben, bis eine passende Lösung gefunden ist. Unter

denjenigen Linearkombinationen, die diese Eigenschaft erfüllen, werden diejenigen gewählt, welche∥∥∥ #»

l0
∥∥∥

1
maximieren und unter diesen wiederum eine derjenigen ausgewählt welche Gleichung 3.1,

wie in Algorithmus 3.2 dargestellt, minimiert. Im Parameter errorGrid wird

#»

l0 , d. h. der Levelvektor
für das Gitter zurück gegeben auf dem die Fehlerauslöschung der ersten Terme der Fehlerexpansion

auftritt.

Bei der Vollgitterlösung fn,n oder T-CTs der Form f̃ t
(n−t,n−t) würden wir für die klassische bzw.

multivariate Richardson-Extrapolation, welche für eine Teillösung f(l1,l2) die Fehlerterme die von hp
l1

und hp
l2
abhängig sind auslöscht, einen Fehler in O(h2p

n) erwarten. Für die, wie oben beschrieben,

berechneten Richardson-Extrapolationen, nach einem Ausfall von Teillösungen der Dünngitter-

Kombinationstechnik f c
n würden wir also dementsprechend erwarten, dass der durchschnittliche

Fehler über alle Samples in O(hp
n) liegt.

Die Ergebnisse von faultRecoveryRichardson sind in der Abbildung 3.5 dargestellt. Die Ergebnisse

entsprechen im Groben dem Erwarteten, wobei im Plot auch Sprünge zu erkennen sind.

44

0.00000

0.00000

0.00000

0.00001

0.00010

8 8.5 9 9.5 10 10.5 11 11.5 12

l
1
a
v
g
e
r
r
o
r

n

0

1

2

3

4

Abbildung 3.4.: Das Laplace Problem wird in 2D für die Dünngitter-Kombinationstechnik f c
n gelöst.

Für einen Ausfall von bis zu vier Teillösungen werden mit der Methode faultReco-

verySlow neue Linearkombinationen berechnet. Dabei wird versucht ohne neue
Levelvektoren auszukommen. Für alle Fälle wird der Fehler auf Vn,n berechnet.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

8 8.5 9 9.5 10 10.5 11 11.5 12

l
1
a
v
g
e
r
r
o
r

n

0

1

2

3

4

Abbildung 3.5.: Das Laplace Problem wird in 2D für die Dünngitter-Kombinationstechnik f c
n gelöst.

Für einen Ausfall von bis zu vier Teillösungen werden mit der Methode faultRe-

coveryRichardson neue Linearkombinationen berechnet. Für alle Fälle, d. h. für

jedes Sample wurde der Fehler auf dem Funktionsraum ausgerechnet, in welches

extrapoliert wurde.

45

3. Implementierung fehlertoleranter Verfahren in SG++ und Ergebnisse

Algorithmus 3.2 Bestimmung einer Richardson-Extrapolation nach einem Ausfall von Teillösungen

procedure faultRecoveryRichardson(failedGrids,p, out errorGrid)
levelsum← n
success← false
while levelsum ≤ n + d− 1 do

minGrade← DOUBLE_MAX
grade← DOUBLE_MAX
for all

#»

l0 ∈ levels_vector_ do
if
∥∥∥ #»

l0
∥∥∥

1
== levelsum then

for all k ∈ {1, . . . , d} do
#»

lk ←
#»

l0 + e #»
k

end for
valid← isValid(#»

l0 , . . .
#»

ld) // Existieren alle Teillösungen ?

if valid then
grade← getGrade(#»

l0 , . . . ,
#»

ld)
if grade < minGrade then

minGrade← grade
result← (#»

l0 , . . . ,
#»

ld)
success← true

end if
end if

end if
end for
levelsum← levelsum + 1

end while
updateCombiFaultRecoveryScheme(result, (1− d ∗ 2p

2p−1 , 2p

2p−1 , . . . , 2p

2p−1))
errorGrid← #»

l0
return success

end procedure

Als letztes wurde noch ein Verfahren implementiert, dass, ähnlich wie bei der Methode faultRecove-

ryRichardson, durch Verschiebung von T-CTs der Form f̃ t
#»
ln
mit

#»

ln = (n− t, n− t, . . . , n− t) eine
Linearkombination im Fehlerfall berechnet. Dabei, wird zuerst t maximiert und dann Gleichung 3.1

minimiert. Über den Parameter center kann eine zulässige Linearkombination so eingeschränkt wer-

den, dass sie zentriert wird, d. h. es werden für jede Levelsumme die Menge der intakten Teillösungen

bestimmt welche die kleinste Anisotropie, nach Gleichung 3.1, aufweisen und mindestens eine dieser

Teillösungen muss in der neu berechneten Linearkombination enthalten sein.

Die Ergebnisse sind in den Abbildungen 3.6 und 3.7 dargestellt. Diese Methode liefert im Vergleich zu

den anderen Verfahren eine wesentlich schlechtere Konvergenz, da zu viele Gitter verworfen werden.

Zudem ist die Komplexität ähnlich hoch wie im Falle von faultRecoverySlow und war bereits in 3D,

deswegen nicht mehr anwendbar.

46

3.1. Ansätze zur Verbesserung der Verfahren

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

8 8.5 9 9.5 10 10.5 11 11.5 12

l
1
a
v
g
e
r
r
o
r

n

0

1

2

3

4

Abbildung 3.6.: Das Laplace Problem wird in 2D für die Dünngitter-Kombinationstechnik f c
n gelöst.

Für einen Ausfall von bis zu vier Teillösungen werden mit der Methode faultRecove-

ryBlock, center=false neue Linearkombinationen berechnet. Für alle Fälle wird der

Fehler auf Vn,n berechnet.

Die Rückgabewerte der Methoden geben an, ob die neue Kombination erfolgreich berechnet werden

konnte. So kann z. B. bei faultRecoveryRichardson der Fall eintreten, dass keine zulässige Transla-

tion der „Referenz-Linearkombination“ gefunden werden konnte oder bei faultRecoveryFast, dass

nach dem Verwerfen feinerer Teillösungen keine mehr übrig sind. Ist dies der Fall, so werden die

Membervariablen für Levelvektor und Koeffizientenvektor nicht modifiziert.

3.1. Ansätze zur Verbesserung der Verfahren

In diesem Abschnitt sollen einige Vorschläge zur Verbesserung obiger Verfahren gemacht werden,

welche aufgrund der beschränkten Bearbeitungszeit dieser Arbeit nicht untersucht wurden. Fallen

bei einer Kombinationstechnik fL =
∑

#»
l ∈L c #»

l f #»
l die Teillösungen

#»

λ ∈ Λ ⊆ L aus, so müssen wie

bereits besprochen nicht alle feineren Teillösungen f #»
k mit

#»

k ∈ K =
{

#»

l ∈ L | ∃ #»

λ ∈ Λ : #»

λ ≤ #»

l
}

verworfen werden. Statt wie in Kapitel 3 für alle Mengen M ∈ P(K) die neue Linearkombination

durch P↓(L\M) zu berechnen und zu überprüfen ob die Bedingung ∀ #»

λ ∈ Λ : c #»
λ = 0 erfüllt ist,

kann der Suchraum auch eingeschränkt werden, und dadurch, statt einer exponentiellen, wieder

eine polynomielle Komplexität in n erreicht werden. Eine Möglichkeit wäre z. B. solange sukzessive

Teillösungen zu entfernen bis die Bedingung ∀ #»

λ ∈ Λ : c #»
λ = 0 erfüllt ist. Wir hätten dann also eine

Menge {M1, M2, . . . , Mt} mit M1 ⊊ M2 ⊊ · · · ⊊ Mt ⊆ K und M1 =
{

#»

k1
}
für ein

#»

k1 ∈ K , so

dass für alle 1 ≤ i < t gilt: Mi+1 = Mi ∪
{

»

ki+1
}
mit

»

ki+1 ∈ K \
⋃i

j=1

{
#»

kj

}
. Für die Wahl der

Teillösung

#»

ki welche im i-ten Schritt entfernt wird, sind prinzipiell auch Heuristiken denkbar. Die

Anzahl der Schritte ist dabei für eine Dünngitter-Kombinationstechnik f c
n durchO(nd−1) beschränkt

und unter Berücksichtigung des Aufwandes für die Berechnung der Koeffizienten wie in Abschnitt

47

3. Implementierung fehlertoleranter Verfahren in SG++ und Ergebnisse

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

8 8.5 9 9.5 10 10.5 11 11.5 12

l
1
a
v
g
e
r
r
o
r

n

0

1

2

3

4

Abbildung 3.7.: Das Laplace Problem wird in 2D für die Dünngitter-Kombinationstechnik f c
n gelöst.

Für einen Ausfall von bis zu vier Teillösungen werden mit der Methode faultRecove-

ryBlock, center=true neue Linearkombinationen berechnet. Für alle Fälle wird der

Fehler auf Vn,n berechnet.

2.3 beschrieben ist der Gesamtaufwand polynomiell in n beschränkt. Unter der Annahme, dass die

Anzahl der verworfenen Teillösungen ein Schätzung für die Verschlechterung des Fehlers gegenüber

der ursprünglichen Linearkombination ist, würden wir hier erwarten schlechter als die Methode

faultRecoverySlow abzuschneiden.

Eine zweite Möglichkeit, die unabhängig davon unter gewissen Bedingungen möglich ist, ist lokal

nach Teillösungen zu suchen, die verworfen werden. Für die Verkettung P #»
l1

P #»
l2

= P #»
l1⋏

#»
l2
zweier

Projektionsoperatoren P #»
l1
und P #»

l2
gilt

#»

l1 ≥
#»

l1 ⋏
#»

l2 ≤
#»

l2 .

Seien nun z. B.

»

λ1,
»

λ2 ∈ Λ gegeben, es gelte K1 =
{

#»

l ∈ L | # »

λ1 ≤
#»

l
}

, K2 =
{

#»

l ∈ L | # »

λ2 ≤
#»

l
}

und sei des Weiteren K1 ∩K2 = ∅, dann gilt

∀ #»

k1 ∈ K1∀
#»

k2 ∈ K2∀
#»

l ∈ L :
(
P #»

l P #»
k1

= P #»
k1

P #»
l ̸= P # »

λ2
∧ P #»

l P #»
k2

= P #»
k2

P #»
l ̸= P # »

λ1

)
(3.3)

Dies bedeutet, dass sich das Entfernen bzw. Hinzufügen von Teillösungen f #»
k2

mit

#»

k2 ∈ K2 nicht

auf den nach Gleichung 2.8 berechneten Koeffizienten c # »
λ1

der zugehörigen Teillösung f # »
λ1

auswirkt,

genauso wie sich auch das Entfernen bzw. Hinzufügen von Teillösungen f #»
k1

mit

#»

k1 ∈ K1 nicht auf

den nach Gleichung 2.8 berechneten Koeffizienten c # »
λ2

der zugehörigen Teillösung f # »
λ2

auswirkt. Eine

mögliche Strategie wäre also die Menge Λ der Levelvektoren ausgefallenener Teillösungen wie folgt

zu partitionieren : Sei also Λ =
⋃̇t

i=1Λi und für 1 ≤ i ≤ t sei Ki =
{

#»

l ∈ L | ∃ #»

λ ∈ Λi : #»

λ ≤ #»

l
}

und es gelte Ki ∩ Kj = ∅ für alle i ̸= j mit 1 ≤ i, j ≤ t. Dann können die Anzahl der ausge-

fallenen Teillösungen für jedes Ki, i ∈ {1, . . . , t} unabhängig von einander gegebenenfalls unter

Beachtung von Gleichung 3.1 minimiert werden. Die neu berechnete Linearkombination entspricht

der, welche auch die Methode faultRecoverySlow liefert, allerdings kann sich der Rechenaufwand

48

3.1. Ansätze zur Verbesserung der Verfahren

auch gegebenenfalls sogar verschlechtern, etwa dann wenn die Partition aus genau einem Element

besteht.

Eine andere Möglichkeit wäre, eine Richardson-Extrapolation die auch Fehlerterme höherer Ord-

nung auslöscht gegebenenfalls unter Verwendung der Verknüpfung mit der Kombinationstechnik zu

verwenden.

49

4. Zusammenfassung

In dieser Arbeit wurden Verfahren zur fehlertoleranten Lösung von partiellen Differentialgleichungen

mittels Linearkombinationen von Teillösungen auf anisotropen vollen Gittern untersucht. Dabei

wurden im Wesentlichen die Ergebnisse aus [HH14] nachvollzogen.

Zuerst wurden die benötigten Definition wie die Dünngitter-Kombinationstechnik oder die Truncated

Combination Technique und Fehlerabschätzungen eingeführt. Für das Laplace Problem und die Ad-

vektionsgleichung wurden in 2D und 3D, unter Verwendung von Truncated Combination Techniques

mit einer konstanten Anzahl an Teillösungen untersucht wie sich ein Ausfall einer Teillösung auf den

Fehler der Kombinationstechnik auswirkt.

Die grundlegende Idee ist dabei, dass bei einem Ausfall einer Teillösung der Kombinationstechnik

diese angepasst werden kann. So konnten etwa einzelne Teillösungen verworfen werden und dabei die

Koeffzienten der Linearkombination angepasst werden oder eine ausgefallene Teillösung durch eine

Interpolation approximiert werden. Eine andere Möglichkeit war noch nicht verwendete Teillösungen

zu berechnen oder diese durch eine Interpolation zu erhalten.

Dabei wurde festgestellt, dass sich die Interpolationen hinsichtlich des Kosten/ Nutzen Verhältnisses

nicht lohnten und es besser war vorsorglich alle kleineren Teillösungen im Voraus zu berechnen und

diese bei Bedarf zu verwenden.

In Abschnitt 2.6 wurde dann die Idee der multivariaten Richardson-Extrapolation erläutert, welche

darauf basiert Charakteristika von Fehlerexpansionen auszunutzen, welche unter bestimmten Vor-

raussetzungen für bestimmte PDEs gelten, um durch Auslöschung von Fehlertermen eine bessere

Konvergenz zu erreichen und die Ergebnisse für diese dargestellt. In Abschnitt 2.7 wurde dann die

Verknüpfung beider Verfahren erläutert, welche eine Approximation höherer Ordnung auf einem

gröberen und eine Approximation geringerer Ordnung auf einem feineren Gitter aufweist.

Zum Schluss wurden in Kapitel 3, die Implementierung, von Verfahren zur Berechnung einer neuen

Linearkombination von Teillösungen im Fehlerfall, anhand der vorherigen Ergebnisse, in das Dünn-

gitter Framework SG++ vorgestellt. Dabei wurde festgestellt, dass das Verwerfen von allen feineren

Teillösungen und die anschließende Berechnung einer neuen Kombination durch das Prinzip von

Inklusion und Exklusion, sowie die Richardson-Extrapolation die besten Ergebnisse lieferten.

51

A. Anhang

A.1. Kombinationen nach einem Fehler in f̃ 2
n−2,n−2

case 0 : fn−2,n + fn−1,n−1 + fn,n−2 − fn−2,n−1 − fn−1,n−2

case 1 : fn,n−2 + fn−1,n−1 − fn−1,n−2

case 2 : fn−2,n + fn−1,n−1 − fn−2,n−1

case 3 : fn,n−2

case 4: fn−2,n

case 5: fn−2,n + fn,n−2 − fn−2,n−2

case 6 : fn−2,n + fn−1,n−1 + fn,n−2 − Pn−2,n−1fn−2,n − fn−1,n−2

case 7 : fn−2,n + fn−1,n−1 + fn,n−2 − fn−2,n−1 − Pn−1,n−2fn,n−2

case 8 : fn−2,n + fn,n−2 − Pn−2,n−2fn−2,n

case 9 : fn−2,n + fn,n−2 − Pn−2,n−2fn,n−2

case 10 : fn−2,n + fn−1,n−1 + fn,n−2 − Pn−2,n−1fn−1,n−1 − fn−1,n−2

case 11 : fn−2,n + fn−1,n−1 + fn,n−2 − fn−2,n−1 − Pn−1,n−2fn−1,n−1

case 12 : fn−2,n + fn−1,n−1 + fn,n−2 − Pn−2,n−1(1
2(fn−2,n + fn−1,n−1))− fn−1,n−2

case 13 : fn−2,n + fn−1,n−1 + fn,n−2 − fn−2,n−1 − Pn−1,n−2(1
2(fn−1,n−1 + fn,n−2))

A.2. Kombinationen nach einem Fehler in f̃ 3
n−3,n−3

case 0: fn−3,n + fn−2,n−1 + fn−1,n−2 + fn,n−3 − fn−3,n−1 − fn−2,n−2 − fn−1,n−3

case 1: fn−2,n−1 + fn−1,n−2 + fn,n−3 − fn−2,n−2 − fn−1,n−3

case 2: fn−3,n + fn−2,n−1 + fn−1,n−2 − fn−3,n−1 − fn−2,n−2

case 3: fn−1,n−2 + fn,n−3 − fn−1,n−3

case 4: fn−3,n + fn−2,n−1 + fn−3,n−1

case 5: fn−3,n + fn−2,n−1 + fn−1,n−2 + fn,n−3 − Pn−3,n−1fn−3,n − fn−2,n−2 − fn−1,n−3

53

A. Anhang

1e-07

1e-06

1e-05

0.0001

0.001

0.01

5 6 7 8 9 10

l
1
a
v
g
e
r
r
o
r

n

full

case 0

case 1

case 2

case 3

case 4

case 5

case 6

Abbildung A.1.: Dargestellt sind die Fehler bei der Lösung der Laplace-Gleichung mit der Kom-

binationstechnik f̃3
n−3,n−3 und den Linearkombinationen wie sie in Anhang A.2

beschrieben sind, falls eine Teillösung ausfällt. Für alle Fälle wird der Fehler auf

Vn,n berechnet.

0.001

0.01

0.1

1

5 6 7 8 9 10

l
1
a
v
g
e
r
r
o
r

n

full

case 0

case 1

case 3

case 5

Abbildung A.2.: Dargestellt sind die Fehler bei der Lösung der Advektionsgleichung mit der Kom-

binationstechnik f̃3
n−3,n−3 und den Linearkombinationen wie sie in Anhang A.2

beschrieben sind, falls eine Teillösung ausfällt. Für alle Fälle wird der Fehler auf

Vn,n berechnet.

54

A.3. Kombinationen nach einem Fehler in f̃2
n−2,n−2 mit Richardson Extrapolation p=2

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

5 6 7 8 9 10

l
1
a
v
g
e
r
r
o
r

n

full

case 0

case 1

case 2

case 3

case 4

Abbildung A.3.: Dargestellt sind die Fehler bei der Lösung der Laplace-Gleichungmit der Richardson-

Extrapolation auf Vn−2,n−2. Die einzelnen Fälle sind in Anhang A.3 beschrieben.

Der Fehler für fn,n wird auf Vn,n und für alle anderen Fälle auf Vn−2,n−2 berechnet.

case 6: fn−3,n + fn−2,n−1 + fn−1,n−2 + fn,n−3 − fn−3,n−1 − fn−2,n−2 − Pn−1,n−3fn,n−3

full: fn,n

A.3. Kombinationen nach einem Fehler in f̃ 2
n−2,n−2 mit Richardson

Extrapolation p=2

case 0:
−16

9 fn−2,n + 23
9 fn−1,n−1 + −16

9 fn,n−2 + fn−2,n−1 + fn−1,n−2

case 1:
−4
9 fn−2,n + 17

9 fn−1,n−1 + 4
9fn,n−2

case 2:
4
3fn−1,n−1 + 4

3fn,n−2 + −5
3 fn−1,n−2

case 3:
4
3fn−2,n + 4

3fn−1,n−1 + −5
3 fn−2,n−1

case 4:
20
6 fn−2,n + 20

6 fn,n−2, +−17
6 fn−2,n−1 + −17

6 fn−1,n−2

A.4. Kombinationen nach einem Fehler in f̃ 3
n−3,n−3 mit Richardson

Extrapolation p=2

case 0:
−64
45 fn−3,n + 19

45fn−2,n−1 + 19
45fn−1,n−2 + −64

45 fn,n−3 + fn−3,n−1 + fn−2,n−2 + fn−1,n−3

case 1:
−2
9 fn−3,n + 13

18fn−2,n−1 + 13
18fn−1,n−2 + −2

9 fn,n−3

case 2:
−16

9 fn−2,n−1 + 23
9 fn−1,n−2 + −16

9 fn,n−3 + fn−2,n−2 + fn−1,n−3

55

A. Anhang

1e-07

1e-06

1e-05

0.0001

0.001

0.01

5 6 7 8 9 10

l
1
a
v
g
e
r
r
o
r

n

full

case 0

case 1

case 2

case 3

case 4

Abbildung A.4.: Dargestellt sind die Fehler bei der Lösung der Laplace-Gleichungmit der Richardson-

Extrapolation auf Vn,n. Die einzelnen Fälle sind in Anhang A.3 beschrieben. Für

alle Fälle wird der Fehler auf Vn,n berechnet.

case 3:
−16

9 fn−3,n + 23
9 fn−2,n−1 + −16

9 fn−1,n−2 + fn−3,n−1 + fn−2,n−2

case 4:
−4
9 fn−2,n−1 + 17

9 fn−1,n−2 + −4
9 fn,n−3

case 5:
−4
9 fn−3,n + 17

9 fn−2,n−1 + −4
9 fn−1,n−2

case 6:
4
3fn−1,n−2 + 4

3fn,n−3 + −5
3 fn−1,n−3

case 7:
4
3fn−2,n−1 + 4

3fn−1,n−2 + −5
3 fn−2,n−2

case 8:
4
3fn−3,n + 4

3fn−2,n−1 + −5
3 fn−3,n−1

A.5. Kombinationen nach einem Fehler in f̃ 2
n−2,n−2 mit Richardson

Extrapolation und verknüpfter Technik p=1

case 0: −2Pn−2,n−2fn−2,n + 5Pn−2,n−2fn−1,n−1 − 2Pn−2,n−2fn,n−2

case 1: 2Pn−2,n−2fn−2,n + 2Pn−2,n−2fn−1,n−1 − 3Pn−2,n−2fn−2,n−1

case 2: PLPn−2,n−2(−2fn−2,n + 5fn−1,n−1 − 2fn,n−2) + f̃2
n−2,n−2 − Pn−2,n−2f̃2

n−2,n−2 mit L =
{ (n− 2, n), (n− 1, n− 1), (n, n− 2) }

case 3: PLPn−2,n−2(2fn−2,n + 2fn−1,n−1 − 3fn−2,n−1) + (fn−2,n + fn−1,n−1 − fn−2,n−1)
− Pn−2,n−2(fn−2,n + fn−1,n−1 − fn−2,n−1) mit L = { (n− 2, n), (n− 1, n− 1) }

56

A.6. Kombinationen nach einem Fehler in f̃3
n−3,n−3 mit Richardson Extrapolation und verknüpfter

Technik p=1

A.6. Kombinationen nach einem Fehler in f̃ 3
n−3,n−3 mit Richardson

Extrapolation und verknüpfter Technik p=1

case 0: Pn−3,n−3(−2fn−3,n + 5fn−2,n−1 − 2fn−1,n−2)

case 1: Pn−3,n−3(2fn−3,n + 2fn−2,n−1 − 3fn−3,n−1)

case 2: Pn−3,n−3(2fn−2,n−1 + 2fn−1,n−2 − 3fn−2,n−2)

case 3: PLPn−3,n−3(−2fn−3,n + 5fn−2,n−1 − 2fn−1,n−2)
+ (fn−3,n + fn−2,n−1 − fn−1,n−2 − fn−3,n−1 − fn−2,n−2)
− Pn−3,n−3(fn−3,n + fn−2,n−1 − fn−1,n−2 − fn−3,n−1 − fn−2,n−2)

mit L = { (n− 3, n), (n− 2, n− 1), (n− 1, n− 2) }

case 4: PLPn−3,n−3(2fn−3,n + 2fn−2,n−1 − 3fn−3,n−1) + (fn−3,n + fn−2,n−1 − fn−3,n−1)
− Pn−3,n−3(fn−3,n + fn−2,n−1 − fn−3,n−1)

mit L = { (n− 3, n), (n− 2, n− 1) }

case 5: PLPn−3,n−3(2fn−2,n−1 + 2fn−1,n−2 − 3fn−2,n−2) + (fn−2,n−1 + fn−1,n−2 − fn−2,n−2)
− Pn−3,n−3(fn−2,n−1 + fn−1,n−2 − fn−2,n−2)

mit L = { (n− 2, n− 1), (n− 1, n− 2) }

A.7. Kombinationen nach einem Fehler in f̃ 2
n−2,n−2,n−2

full: fn,n,n

case 0:

fn−2,n−2,n + fn−2,n,n−2 + fn,n−2,n−2 + fn−2,n−1,n−1 + fn−1,n−2,n−1 + fn−1,n−1,n−2

−2fn−2,n−2,n−1 − 2fn−2,n−1,n−2 − 2fn−1,n−2,n−2 + fn−2,n−2,n−2

case 1:

0fn−2,n−2,n + fn−2,n,n−2 + fn,n−2,n−2 + fn−2,n−1,n−1 + fn−1,n−2,n−1 + fn−1,n−1,n−2

−1fn−2,n−2,n−1 − 2fn−2,n−1,n−2 − 2fn−1,n−2,n−2 + fn−2,n−2,n−2

case 4:

fn−2,n−2,n + fn−2,n,n−2 + fn,n−2,n−2 + 0fn−2,n−1,n−1 + fn−1,n−2,n−1 + fn−1,n−1,n−2

−1fn−2,n−2,n−1 − 1fn−2,n−1,n−2 − 2fn−1,n−2,n−2 + fn−2,n−2,n−2

57

A. Anhang

1e-06

1e-05

0.0001

0.001

0.01

5 5.5 6 6.5 7 7.5 8

l
1
a
v
g
e
r
r
o
r

n

full

case 0

case 1

case 4

case 7

case 10

Abbildung A.5.: Dargestellt sind die Fehler bei der Lösung der Laplace-Gleichung mit der Kombi-

nationstechnik f̃2
n−2,n−2,n−2 und den Linearkombinationen wie sie in Anhang A.7

beschrieben sind, falls eine Teillösung ausfällt. Für alle Fälle wird der Fehler auf

Vn,n,n berechnet.

0.001

0.01

0.1

1

5 5.5 6 6.5 7 7.5 8

l
1
a
v
g
e
r
r
o
r

n

case 0

case 1

case 4

case 7

case 10

Abbildung A.6.: Dargestellt sind die Fehler bei der Lösung der Advektionsgleichung mit der Kombi-

nationstechnik f̃2
n−2,n−2,n−2 und den Linearkombinationen wie sie in Anhang A.7

beschrieben sind, falls eine Teillösung ausfällt. Die Berechnung der Vollgitterlösung

fn,n,n ist zu rechenaufwändig und wurde nicht berechnet. Für alle Fälle wird der

Fehler auf Vn,n,n berechnet.

58

A.8. Kombinationen nach einem Fehler in f̃2
n−2,n−2,n−2 mit Richardson Extrapolation p=2

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

5 5.5 6 6.5 7 7.5 8

l
1
a
v
g
e
r
r
o
r

n

full

case 0

case 1

case 2

case 3

case 4

Abbildung A.7.: Dargestellt sind die Fehler bei der Lösung der Laplace-Gleichungmit der Richardson-

Extrapolation auf Vn−2,n−2,n−2. Die einzelnen Fälle sind in Anhang A.8 beschrieben.
Der Fehler für fn,n,n wird auf Vn,n,n und für alle anderen Fälle auf Vn−2,n−2,n−2
berechnet.

case 7:

fn−2,n−2,n + fn−2,n,n−2 + fn,n−2,n−2 + 0fn−2,n−1,n−1 + 0fn−1,n−2,n−1 + fn−1,n−1,n−2

+0fn−2,n−2,n−1 − 1fn−2,n−1,n−2 − 1fn−1,n−2,n−2 − 1fn−2,n−2,n−2

case 10:

fn−2,n−2,n + fn−2,n,n−2 + fn,n−2,n−2 + fn−2,n−1,n−1 + 0fn−1,n−2,n−1 + fn−1,n−1,n−2

−1fn−2,n−2,n−1 − 1fn−2,n−1,n−2 − 2fn−1,n−2,n−2 + 0fn−2,n−2,n−2

A.8. Kombinationen nach einem Fehler in f̃ 2
n−2,n−2,n−2 mit

Richardson Extrapolation p=2

case 0:
−8
9 fn−2,n−2,n + −8

9 fn−2,n,n−2 + −8
9 fn,n−2,n−2 + 11

9 fn−2,n−1,n−1 + 11
9 fn−1,n−2,n−1 + 11

9 fn−1,n−1,n−2

case 1:
4
3fn−1,n−2,n−2 + 4

3fn−2,n−1,n−2 + 4
3fn−2,n−2,n−1 − 3fn−2,n−2,n−2

case 2:
4
3fn−1,n−2,n−1 + 4

3fn−2,n−1,n−1 + 4
3fn−2,n−2,n − 3fn−2,n−2,n−1

case 3:
4
3fn−1,n−1,n−2 + 4

3fn−2,n,n−2 + 4
3fn−2,n−1,n−1 − 3fn−2,n−1,n−2

case 4:
4
3fn,n−2,n−2 + 4

3fn−1,n−1,n−2 + 4
3fn−1,n−2,n−1 − 3fn−1,n−2,n−2

59

A. Anhang

0.0001

0.001

0.01

0.1

5 5.5 6 6.5 7 7.5 8

l
1
a
v
g
e
r
r
o
r

n

ref

case 0

case 1

Abbildung A.8.: Dargestellt sind die Fehler bei der Lösung der Advektionsgleichung mit der

Richardson-Extrapolation auf Vn−2,n−2,n−2. Die einzelnen Fälle sind in Anhang A.9

beschrieben. Die Berechnung der Vollgitterlösung fn,n,n ist zu rechenaufwändig,

deswegen entspricht „ref“ dem Fall 0 aus Anhang A.6, die Fehler für Fall 0 und Fall

1 werden auf Vn−2,n−2,n−2 berechnet.

A.9. Kombinationen nach einem Fehler in f̃ 2
n−2,n−2,n−2 mit

Richardson Extrapolation p=1

case 0: 2fn−2,n−2,n−1 + 2fn−2,n−1,n−2 + 2fn−1,n−2,n−2 − 5fn−2,n−2,n−2

case 1: 2fn−2,n−2,n + 2fn−2,n−1,n−1 + 2fn−1,n−2,n−1 − 5fn−2,n−2,n−1

60

Literaturverzeichnis

[BBNS12] J. Benk, H.-J. Bungartz, A.-E. Nagy, S. Schraufstetter. Variants of the Combination Tech-

nique for Multi-Dimensional Option Pricing. Progress in Industrial Mathematics at ECMI
2010, S. 231–237, 2012. doi:10.1007/978-3-642-25100-9_27. URL http://dx.doi.org/10.

1007/978-3-642-25100-9_27. (Zitiert auf den Seiten 11 und 17)

[Bel61] R. E. Bellman. Adaptive control processes: a guided tour. Princeton Univ. Pr., Princeton, NJ,

1961. (Zitiert auf Seite 10)

[BG04] H.-J. Bungartz, M. Griebel. Sparse grids. ANU, 13:147, 2004. doi:10.1017/s0962492904000182.
URL http://dx.doi.org/10.1017/S0962492904000182. (Zitiert auf den Seiten 10, 11

und 20)

[BGR94] H. Bungartz, M. Griebel, U. Rüde. Extrapolation, Combination, And Sparse Grid Techniques

For Elliptic Boundary Value Problems, 1994. (Zitiert auf Seite 32)

[BP12] J. Benk, D. Pflüger. Hybrid Parallel Solutions of the Black-Scholes PDE with the Truncated

Combination Technique. In Proceedings of the HPCS conference, S. 678–683, 2012. (Zitiert
auf den Seiten 11, 24 und 43)

[BS06] G. A. G. Bianca Schroeder. A large-scale study of failures in highperformance computing

systems, 2006. (Zitiert auf Seite 10)

[BZBP13] H.-J. Bungartz, S. Zimmer, M. Buchholz, D. Pflüger. Modellbildung
und Simulation: Eine anwendungsorientierte Einführung (eXamen.press)
(German Edition). Springer Spektrum, 2013. URL http://www.

amazon.com/Modellbildung-Simulation-anwendungsorientierte-Einf%

C3%BChrung-eXamen-press-ebook/dp/B00FZFKTCE%3FSubscriptionId%

3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%

3D2025%26creative%3D165953%26creativeASIN%3DB00FZFKTCE. (Zitiert auf Seite 9)

[dev10] T. D.-F. developers. Introduction to Dune-Fem. Abteilung für Angewandte Mathematik,

Universität Freiburg, Hermann-Herder-Str. 10, D-79104 Freiburg, Germany, 2010. URL

http://dune.mathematik.uni-freiburg.de/doc/dune-fem-howto-1.3.0.pdf. (Zi-

tiert auf den Seiten 26 und 27)

[ELSC13] I. P. Egwutuoha, D. Levy, B. Selic, S. Chen. A survey of fault tolerance mechanisms

and checkpoint/restart implementations for high performance computing systems. J
Supercomput, 65(3):1302–1326, 2013. doi:10.1007/s11227-013-0884-0. URL http://dx.doi.
org/10.1007/s11227-013-0884-0. (Zitiert auf Seite 9)

61

http://dx.doi.org/10.1007/978-3-642-25100-9_27
http://dx.doi.org/10.1007/978-3-642-25100-9_27
http://dx.doi.org/10.1017/S0962492904000182
http://www.amazon.com/Modellbildung-Simulation-anwendungsorientierte-Einf%C3%BChrung-eXamen-press-ebook/dp/B00FZFKTCE%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3DB00FZFKTCE
http://www.amazon.com/Modellbildung-Simulation-anwendungsorientierte-Einf%C3%BChrung-eXamen-press-ebook/dp/B00FZFKTCE%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3DB00FZFKTCE
http://www.amazon.com/Modellbildung-Simulation-anwendungsorientierte-Einf%C3%BChrung-eXamen-press-ebook/dp/B00FZFKTCE%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3DB00FZFKTCE
http://www.amazon.com/Modellbildung-Simulation-anwendungsorientierte-Einf%C3%BChrung-eXamen-press-ebook/dp/B00FZFKTCE%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3DB00FZFKTCE
http://www.amazon.com/Modellbildung-Simulation-anwendungsorientierte-Einf%C3%BChrung-eXamen-press-ebook/dp/B00FZFKTCE%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3DB00FZFKTCE
http://dune.mathematik.uni-freiburg.de/doc/dune-fem-howto-1.3.0.pdf
http://dx.doi.org/10.1007/s11227-013-0884-0
http://dx.doi.org/10.1007/s11227-013-0884-0

Literaturverzeichnis

[Gar04] J. Garcke. Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten
dünnen Gittern. Dissertation, Institut für Numerische Simulation, Rheinische Fried-

rich–Wilhelms–Universität Bonn, 2004. (Zitiert auf Seite 11)

[GKKS09] A. Geist, S. Kale, B. Kramer, M. Snir. Toward exascale resilience, 2009. (Zitiert auf Seite 10)

[GSZ92] M. Griebel, M. Schneider, C. Zenger. A Combination Technique For The Solution Of Sparse

Grid Problems, 1992. (Zitiert auf Seite 10)

[Heg01] M. Hegland. Adaptive Sparse Grids, 2001. (Zitiert auf Seite 22)

[HGC07] M. Hegland, J. Garcke, V. Challis. The combination technique and some generalisations.

Linear Algebra and its Applications, 420(2-3):249–275, 2007. doi:10.1016/j.laa.2006.07.014.
URL http://dx.doi.org/10.1016/j.laa.2006.07.014. (Zitiert auf Seite 11)

[HH12] B. Harding, M. Hegland. A robust combination technique. ANZIAM Journal, 2012. (Zitiert
auf den Seiten 13, 21, 22, 26 und 41)

[HH14] B. Harding, M. Hegland. Robust Solutions to PDEs with Multiple Grids. In J. Garcke,

D. Pflüger, Herausgeber, Sparse Grids and Applications - Munich 2012, Band 97 von Lec-
ture Notes in Computational Science and Engineering, S. 171–193. Springer International
Publishing, 2014. doi:10.1007/978-3-319-04537-5_7. URL http://dx.doi.org/10.1007/

978-3-319-04537-5_7. (Zitiert auf den Seiten 11, 13, 17, 18, 20, 21, 23, 24, 31, 32, 33, 34,

35 und 51)

[PB] A. D. C. E. R. K. M. N. M. O. O. S. Peter Bastian, Markus Blatt. The Distributed and Unified
Numerics Environment (DUNE) Grid Interface HOWTO. URL http://www.dune-project.

org/dune.html. (Zitiert auf Seite 26)

[Pfl10] D. Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. Dissertation,
2010. (Zitiert auf den Seiten 11, 13, 24 und 39)

[Top] Top500. http://www.top500.org/statistics/perfdevel/. (Zitiert auf Seite 9)

[Zen91] C. Zenger. Sparse Grids. In W. Hackbusch, Herausgeber, Parallel Algorithms for Partial
Differential Equations, Band 31 von Notes on Numerical Fluid Mechanics, S. 241–251. Vieweg,
1991. (Zitiert auf den Seiten 11 und 30)

Alle URLs wurden zuletzt am 02. 06. 2014 geprüft.

62

http://dx.doi.org/10.1016/j.laa.2006.07.014
http://dx.doi.org/10.1007/978-3-319-04537-5_7
http://dx.doi.org/10.1007/978-3-319-04537-5_7
http://www.dune-project.org/dune.html
http://www.dune-project.org/dune.html

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich

habe keine anderen als die angegebenen Quellen benutzt und

alle wörtlich oder sinngemäß aus anderen Werken übernommene

Aussagen als solche gekennzeichnet. Weder diese Arbeit noch

wesentliche Teile daraus waren bisher Gegenstand eines anderen

Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-

se noch vollständig veröffentlicht. Das elektronische Exemplar

stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Aufgabenstellung

	2 Definitionen, Versuchsaufbau und Ergebnisse
	2.1 Gitter, Funktionsräume und Dünngitter-Kombinationstechnik
	2.2 Truncated Combination Technique
	2.3 Verfahren für das Berechnen einer Kombination im Fehlerfall
	2.4 Beschreibung der PDEs und der Testprogramme
	2.5 Ergebnisse der Kombinationstechnik
	2.6 Richardson-Extrapolation
	2.7 Verknüpfung von einfacher Kombinationstechnik und Richardson-Extrapolation

	3 Implementierung fehlertoleranter Verfahren in SG++ und Ergebnisse
	3.1 Ansätze zur Verbesserung der Verfahren

	4 Zusammenfassung
	A Anhang
	A.1 Kombinationen nach einem Fehler in 2D f2
	A.2 Kombinationen nach einem Fehler in 2D f3
	A.3 Kombinationen nach einem Fehler in 2D f2 mit Richardson Extrapolation p=2
	A.4 Kombinationen nach einem Fehler in 2D f3 mit Richardson Extrapolation p=2
	A.5 Kombinationen nach einem Fehler in 2D f2 mit Richardson Extrapolation und verknüpfter Technik p=1
	A.6 Kombinationen nach einem Fehler in 2D f3 mit Richardson Extrapolation und verknüpfter Technik p=1
	A.7 Kombinationen nach einem Fehler in 3D f2
	A.8 Kombinationen nach einem Fehler in 3D f2 mit Richardson Extrapolation p=2
	A.9 Kombinationen nach einem Fehler in 3D f2 mit Richardson Extrapolation p=1

	Literaturverzeichnis

