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Kurzfassung

Diese Studienarbeit beschéftigt sich mit der fehlertoleranten Losung von partiellen Differentialglei-
chungen (PDE). Untersucht werden Verfahren die auf der Diinngitter-Kombinationstechnik beruhen.
Anhand von zwei PDEs, dem Laplace Problem und der Advektionsgleichung wird untersucht wie sich
ein Fehlerausfall einer Teillosung auf den Fehler der Kombinationstechnik auswirkt. Des Weiteren
werden Ansitze wie die Neuberechnung von kleineren Teillosungen, die Richardson-Extrapolation
und deren Verkniipfung mit der Kombinationstechnik untersucht. Die dazu notigen Methoden werden
in das Dinngitter-Framework SG++ implementiert.
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1. Einleitung

1.1. Motivation

Computergestiitzte Simulationen spielen in den Ingenieurs- und Naturwissenschaften eine wichtige
Rolle. Simulationen ersetzen oder erginzen klassische Experimente dort, wo sie nicht durchfiithrbar,
zu gefihrlich oder zu teuer sind. Anwendungen finden sie z. B. bei der Untersuchung von Erdbeben,
in der Astronomie, in der Medizin zur Erforschung von Proteinen oder in der Strémungssimulation.
Fiir den Rechenaufwand spielen die konkrete Modellierung, sowie die raumliche und zeitliche Diskre-
tisierung eine Rolle. Um auch feinskalige oder hochdimensionale Probleme zu 16sen ist ein enormer
Rechenaufwand nétig. [BZBP13]

So ist seit lingerem eine steigende Nachfrage nach immer hoherer Rechenleistung zu beobachten. Die
Top500 [Top] Liste, ist ein im halbjahrlichen Rhythmus aufgestelltes Ranking der schnellsten Rechner
im High Performance Computing. Ihr ldsst sich ein exponentielles Wachstum der Rechenleistung
entnehmen. Stand in der ersten Liste von 1993 der CM-5 mit 1024 Cores und einer gemessenen
Rechenleistung von ca. 59.7 GFlop/s an der Spitze, so sind es bei der Nr. 1 in der aktuellen Liste
vom November 2013, dem Tianhe-2 (MilkyWay-2) - TH-IVB-FEP, rund 33, 87 PFlop/s und tber drei
Millionen Cores.

Durch die stindige Zunahme der Komplexitat der Systeme erhoht sich die Wahrscheinlichkeit,
dass irgendeine der vielen Komponenten ausfillt. Einen guten Uberblick tiber Untersuchungen zur
Fehlerhaufigkeit, deren Ursachen und den Techniken fehlertoleranter Systeme liefern Egwutuoha,
Levy, Selic und Chen [ELSC13]. Haufige Fehlerquellen seien neben Hardwarefehlern vor allem
Softwarefehler und Benutzerinteraktionen, wie z. B. der Austausch von Hardware.

Des Weiteren stellt sich die Frage wie Fehler tiberhaupt erkannt werden kénnen. Diese Arbeit wird sich
nicht mit diesen Fragen beschiftigen, genauso wenig wie mit den Themen redundanter Hardware oder
den verschiedenen Rollback-Recovery Verfahren. Hier seien an dieser Stelle nur kurz die Checkpoint-
Restart Verfahren erwahnt zu denen sich ein Einstieg in [ELSC13] findet.

Checkpoint-Restart Verfahren basieren darauf, dass in regelméafligen Zeitabstdnden der Zustand
eines parallelen Programms gesichert wird. Werden Fehler diagnostiziert, werden einzelne Prozesse
oder die ganze Anwendung angehalten und eine altere Sicherung wieder eingespielt, von der aus
die Berechnung weiter erfolgt. Damit diese Verfahren anwendbar sind, muss der Checkpoint die
Sicherung eines fehlerfreien Zustandes sein, also insbesondere vor Auftreten von Fehlern erfolgen.

Die ,Mean Time To Failure® (MTTF) ist die durchschnittliche Zeit bis zum Auftreten des ersten Fehlers.
Bei Systemen die repariert werden spricht man auch von der ,Mean Time Between Failures“ (MTBF)
also dem Erwartungswert der Zeit zwischen zwei aufeinander folgenden Fehlern. Die Fehlerrate ist der
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Kehrwert des MTBF. Untersuchungen nach [BS06] zeigen, dass die Fehlerrate ungefihr proportional
mit der Anzahl der Prozessoren steigt.

Dies bestitigt auch folgende Uberlegung:

Unter der Annahme ein Fehler einer Komponente wiirde zu einem ganzen Systemausfall fithren und
alle MTBF hitten eine obere Schranke ¢ € R gilt folgendes:

Seien X1, -+, Xy, n € N die Komponenten eines Systems und Mj, - -- , M,,,n € N die zugehorigen
MTBF Werte. Fiir alle i € {1,...,n} gelte M; < ¢ € R". Seien \; = ﬁ?i € {1,...,n} die
zugehorigen Fehlerraten. Dann gilt fiir das ganze System

1 1 1 1

- 1
C

n . = n 1
A i=1 )‘Z i=1 M,

c
nt n
Capello, Geist, Gropp, Kale, Kramer und Snir prognostizieren, dass mit den zukiinftigen Exascale
Systemen, Checkpoint-Restart Verfahren nicht mehr funktionieren werden, da die Zeit fiir Sicherung
und Wiederherstellung die Mean Time To Failure des Gesamtsystems iibersteigen wird [GKKS09].

Folglich miissen neue Verfahren gefunden werden, welche die effiziente Nutzung zukiinftiger Systeme
ermoglichen.

1.2. Aufgabenstellung

Diese Studienarbeit beschéftigt sich mit der fehlertoleranten Losung von partiellen Differentialglei-
chungen (PDE) mittels der Diinngitter-Kombinationstechnik [GSZ92].

Bei der numerischen Losung von PDEs wie z. B. bei den Finite Elemente Methoden wird der Definiti-
onsbereich D der gesuchten Losung f durch ein Gitter diskretisiert. Die Approximation f ist dann z.
B. ein stiickweise polynomieller und numerisch berechneter Interpolant von f, mit den Gitterpunkten
als Stiitzstellen.

Erfullt f bestimmte Anforderungen, wie z.B. beschriankte zweite gemischte Ableitungen, dann
konvergiert die Approximation f, bei feiner werdender Diskretisierung, beziiglich der £” Normen,
gegen f. Fir einen d-dimensionalen Definitionsbereich D und 0 < p < oo ist die £P Norm definiert
durch:

» Iplf(@D)|Pd2 fir 0 <p< oo
£l = . )
maxzep |[f(7)] fir p=o0

Werden isotrope volle Gitter verwendet, so liegt der Berechnungsaufwand, falls f geniigend glatt ist,
If — fllz2 und || f — f|| s unter eine Schranke € zu bekommen fiir & € R* in O(e~*?) [BG04]. Die
Komplexitat steigt also exponentiell mit der Anzahl der Dimensionen des Problems. Dies nennt man
auch den Fluch der Dimensionalitit [Bel61].

10
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Ist f gentigend glatt, so konnen sogenannte Diinne Gitter [Zen91], mit einem Aufwand von

(@) (6_0‘ * |log, e|ﬁ*(d71)), fir a, B € RT verwendet werden. Dabei hiingen o und 3 von dem Poly-
nomgrad der d-dimensionalen Basisfunktionen ab, naheres dazu kann in [BG04] nachgelesen werden,

d. h. der Aufwand wichst also in Abhéngigkeit von der Dimension wesentlich langsamer.

Dunne Gitter sind allerdings, aufgrund ihrer hierarchischen und rekursiven Struktur, algorithmisch
schwerer handzuhaben als anisotrope volle Gitter. Bei der Diinngitter-Kombinationstechnik wird eine
Linearkombination der Approximationslésungen f7, [ € L, aus den zugehérigen Funktionsrdumen

5
V7, I € L verwendet um die Dinngitter-Losung zu approximieren'. Diese hat ein leicht schlechteres
Konvergenzverhalten als dass der diinnen Gitter, aber es konnen zumindest Standardalgorithmen
verwendet werden. [Pf110]

Ein weiterer Vorteil der Diinngitter-Kombinationstechnik ist die einfachere Parallelisierung. So kénnen
die Losungen auf den anisotropen vollen Gittern unabhingig voneinander berechnet werden, was
den Kommunikations- und Synchronisationsaufwand erheblich verringert. Fallt eine Teillsung aus,
so konnen erfolgreich berechnete Teillosungen weiter verwendet werden. Um dies zu gew#hrleisten
konnen etwa neue Koeffizienten fiir die Linearkombination berechnet oder kleinere Teillosungen
interpoliert oder nachberechnet werden.

Zur Analyse der Fehler beschrankt sich diese Arbeit in Kapitel 2 erst einmal auf die ,Truncated
Combination Technique® wie sie z.B. in [HH14] [BBNS12] und [BP12] verwendet werden.

Anhand von zwei PDEs, dem Laplace Problem und der Advektionsgleichung wird untersucht wie sich
ein Fehlerausfall einer Teillosung auf den Fehler der ,Truncated Combination Technique® auswirkt.
Des Weiteren werden Ansatze wie die Neuberechnung von kleineren Teilldsungen, die Richardson-
Extrapolation und deren Verkniipfung mit der Kombinationstechnik untersucht. Die dazu nétigen
Methoden werden in das Dunngitter-Framework SG++ [Pfl10] implementiert, welches im Rahmen
einer Dissertation von Dirk Pfliiger, entstanden ist und in der Abteilung Simulation grofler Systeme,
des Institutes fiir Parallele und Verteilte Systeme, an der Universitat Stuttgart weiterentwickelt wird.

Grundlage der Studienarbeit ist der Artikel ,Robust Solutions to PDEs with multiple grids“ von
Brendan Harding und Markus Hegland [HH14].

'Dies ist nur bei bestimmten Problemen méglich. Diinngitter-Kombinationstechnik und Diinnes Gitter sind a priori nicht
gleich [HGC07]. Insbesondere kénnen fiir ein Problem die Diinnen Gitter gegen die Losung konvergieren, wahrend die
Diinngitter-Kombinationstechnik nicht konvergiert. Fiir Beispiele dazu siehe [Gar04].

11
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Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Definitionen, Versuchsaufbau und Ergebnisse: Hier werden werden, die in der Ar-
beit verwendeten Begriffe wie die Diinngitter-Kombinationstechnik oder die Truncated Combi-
nation Technique definiert. Es werden Fehlerabschitzungen betrachtet und das Konzept der
multivariaten Richardson-Extrapolation und ihrer Verkniipfung mit der Kombinationstechnik
erldutert. Es werden Verfahren zur Berechnung einer neuen Linearkombination, falls Teil-
l6sungen ausfallen, vorgestellt und die Simulationsergebnisse fiir den Fehler verschiedener
Linearkombinationen betrachtet.

Kapitel 3 — Implementierung fehlertoleranter Verfahren in SG++ und Ergebnisse: Hier wird
die Implementierung von verschiedenen Verfahren zur Berechnung einer neuen Linearkombi-
nation, falls Teillosungen ausfallen, skizziert und die Simulationsergebnisse fiir deren Fehler
betrachtet. Am Ende des Kapitels wir noch ein Ausblick gegeben.

Kapitel 4 — Zusammenfassung fasst die Ergebnisse der Arbeit zusammen.

12



2. Definitionen, Versuchsaufbau und
Ergebnisse

Fast alle Definitionen in diesem Kapitel sind [HH14], [HH12] und [Pfl10] entnommen und die Nota-
tion ist weitgehend dhnlich. Hier sei gleich ein Problem benannt: Wir werden ein paar Notationen
verwenden, welche mathematisch nicht ganz korrekt sind. So sprechen wir z. B. von Levelvektoren
und Normen auf Levelvektoren ohne eine Vektorraum zu definieren und verwenden die dafir tiblich
Notation fir Vektoren und Normen.

2.1. Gitter, Funktionsraume und Diinngitter-Kombinationstechnik

Definition 2.1.1 (Levelvektoren, Normen, Ordnungsrelation) Ein Levelvektor T sei ein Element
aus N& und fiir allen € Ng definieren wir 7 € N4 durch

Fiir einen Levelvektor | = (I1,...,1q) € N¢ definieren wir die 1-Norm und die Maximumsnorm durch
. d
7, =2
k=1

HTHOO =max{ly,...,la}

wobei die 1-Norm auch Levelsumme genannt wird. Des Weiteren definieren wir eine Ordnungsrelation
auf Levelvektoren durch

VT, X eN?: (Tg Xevke{l,.. . d:l g)\k)

Die Addition ist die komponentenweise Addition und die Subtraktion wird definiert durch
T-X= (max{ly — A1,0},...,max{lg — A\g,0})

und eine zweistellige Verkniipfung A durch

VT, X e Nt (T AN = (min{ly, A1}, ..., min{ly, )\d}))

Des Weiteren definieren wir fir [, A € Ny

LAXN= () AN

13
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0 1 0 1

Abbildung 2.1.: Ein isotropes volles Gitter (links), ein anisotropes volles Gitter (rechts)

Definition 2.1.2 (Volles Gitter) Sei 7= (I1,...,1q) € N¢ ein Levelvektor und fiir beliebiges | € Ng
bezeichne ) = {kh; | k € {0,1,2,3,...,2!}} eine Diskretisierung des Einheitsintervalls mit h; := 27",
Dann definieren wir ein Gitter auf dem d-dimensionalen Einheitswiirfel [0, 1]d durch:

QT:thXlex---XQld

Seily =ly = ... =143 =mn € Ny, dann heif§t Q3 isotrop. Andernfalls heifit (27 anisotrop.
Seien T, ;\) € Ng mit QT - Q;: gegeben, dann sprechen wir auch davon, dass QT ,grober® als Q;: und

QX’ wfeiner®als QT sei.

Definition 2.1.3 (Raum stiickweiser linearer Funktionen) Passend zum Gitter () definieren wir

den zugehorigen Raum der stiickweise linearen Funktionen auf [0, 1]d als:

VT::span{ngﬁ:it:O,...,th,tzl,...,d}

3

wobei ¢ - die iiblichen d-linearen Basisfunkionen (Hut-Funktionen) sind. Sei 7 €0, 1]d so definieren
wir

d
o7 > (7) = H b iy, (1)
k=1

0}

- —
Seien |, \ € Ng mit QT C Q;:, dann sprechen wir auch davon, dass V7 »grober® als V3 und Vs
feiner® als V7 sei.

mit
o (x) = max { 1 - |2z —i

Theorem 2.1.4 Offensichtlich gilt
DVILANENy: (1< A& O COy)
i) VI, X eNg: (T <X &0y CO3)

14



2.1. Gitter, Funktionsraume und Dinngitter-Kombinationstechnik

iii) VI,A € Ng : ;N Q2 = Q0
W) VI, X eENE:Qr N0y =7 3
Beweis i) ,= “Seil < \, dann gilt 22l e N. Istk € No, k < 2! dann folgt daraus, dass k * Al e

{ 0,1,...,2* } ist. Nun gilt

xeﬁpﬁﬂke{or”,?}:x:k*QJ:: Ex 2l oA
————
=ue{0,1,..,2* }
= Ju € {0,...,2)‘}:$:u*27)‘<:>x652,\
und somit €); C (.

,=“Seil > \. Wihle nun etwax € O mitx = 270 = 2271272 Aus | > A folgt oAl ¢ N und
damit auch 2*~" ¢ { 0,...,2* } Nun gilt x ¢ Q) und somit Q ¢ Q).

ii) SeienT,XENg.Danngilt:Tg X 2&h vk e {1,....d} : lx < A\g <i:)>Vk‘ e{l,...,d} : , C
O, = szl Q, C szl Qx, 2é>;2 QT cQ

X
iii) Sei 0.B.d.A. 1 < X dann gilt nach i) ; C Qy und damit 0y N Q) = Q. Des Weiteren gilt
I A X =min{l,\} =1 und damit Q, \ = = QN Qy
iv) Sei L
Il X A=k = (kl,...,kd) = (min{ll,)\l},...,min{ld,)\d})
Dann gilt nach iii)
VUE{I,...,d}:Qku:QluﬁQ/\u
und somit fiir jedes ¥ = (x1,...,1q) € Qp
Z=(x1,...,0q) €QreVuec{l,....d} z,eQ, ©Vuec{l,...,d} z,€, N,
eVue{l,...,d} (zu€eU, Nzy€y,) S Vuell,...;d} z,€, ANVue{l,...,d}
@E}’GQT/\EIEQX@E:’EQTHQX

und damitQ—l> N QX’ = QT}J"

Fir die Funktionsraume V7 lassen sich analoge Aussagen zeigen.

Definition 2.1.5 (hierarchische Inkremente) Die hierarchischen Inkremente W+ sind gegeben
durch:

d
Wg = Vg VIi£T Ve=Wead Vo o
t=1

! —eét

wobei é; der Einheitsvektor entlang der t-ten Achse ist, sodass also & € N A ||E7], = L A e, = 1 gilt.
Nun gilt:

15

Ty € Q,\u
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Abbildung 2.2.: Die Diinngitter-Kombinationstechnik in 2D fiir n = 4. Die einzelnen Teilgitter
(links) und die Kombination (rechts). Die auf den rot dargestellten Gittern berech-
neten Approximationslosungen werden addiert (Koeffizient +1), die auf den blau
dargestellten Gittern berechneten Approximationslésungen werden subtrahiert (Ko-
effizient -1). Die Menge der Gitterpunkte in der Kombination ist die Vereinigung der
Gitterpunkte der einzelnen anisotropen vollen Gitter. Die Koeffizienten der Kom-
binationstechnik konnen aus der Vereinigung der roten Gitter nach dem Prinzip
von Inklusion und Exklusion gewonnen werden. Die Summe der Koeffizienten der
Diinngitter-Kombinationstechnik ist 1.

Definition 2.1.6 (Diinngitter-Kombinationstechnik) Fiir alle T e N4 bezeichne f7 die Appro-
ximationslésung der exakten Losung f in V7. Sei d die Dimension des Definitionsbereiches von f. Sei

n € N, dann heifst

q=0 1

fﬁ(x)i=Z(—1)q< ) Y. (@)
||T||1:n+d—1—q
T<T
die Diinngitter-Kombinationstechnik. Mit zugehérigem Diinngitter-Funktionsraum:
Vi = vr= & vy

ntd—1 | 7], <n+d—1

7]l o0 <
(oo}

Definition 2.1.7 (Verallgemeinerte Kombinationstechnik) Die Diinngitterkombinationstechnik
lasst sich auch verallgemeinern zu

(@)=Y cpf7(2)

=
lel

wobei L C N gilt und cy €R, T € L die Koeffizienten der Kombinationstechnik sind. Wir definieren
das zugehdorige Gitter durch
QL = U Q—l’

16
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und den zugehorigen Funktionsraum als

VTGL:(CTER/\fTEVT)}:ZVTZ S Vvp=pwy
TeL XeA

Temax L

Vi = { Z cpf7(2)

Tel

mit
maxLi={ T € L|vX € L\{T}3k: N <y |

und — — — —
A:{)\EN(C“VZ emaxL: A < l}

Des Weiteren bezeichnen wir mit
#(fr) = |L|

die Anzahl der Teillosungen einer Kombinationstechnik.

Da fr, eine hoffentlich bessere, Approximation von f sein soll, und die Teillésungen f, Tel
bereits Approximationen von f waren, sind wir nur an Linearkombinationen interessiert fur die
gilt, dass die Summe » 7., c7 der Koeffizienten 1 ergibt. Um die Kombination auch in der Praxis
berechnen zu kénnen, muss des Weiteren die Anzahl der Teilldsungen endlich sein.

2.2. Truncated Combination Technique

[HH14] und [BBNS12] verwenden unterschiedliche Notationen fiir die Truncated Combination Tech-
nique. Wir werden hier beide darstellen, wobei die Darstellung nach Benk et al. fiir unsere Definition
der Diinngitter-Kombinationstechnik angepasst wird. Die Notation von Harding und Hegland wird
verwendet um die Ergebnisse dieser Arbeit besser mit mit den Ergebnissen in [HH14] vergleichen
zu konnen, sie wird verallgemeinert und anschlieflend eine eigene allgemeinere Fehlerabschiatzung
gemacht.

Definition 2.2.1 (Truncated Combination Technique (T-CT) nach [BBNS12]) Sei 7 = (r1,...,7q)
undn € N gegeben, dann definieren wir die Truncated Combination Technique durch:

= d—1 N
fa ()= Z(—l)q< ) > (@)
4=0 LA L

Teillosungen die aus Funktionsrdumen stammen bei welchen die zugrunde liegenden Gitter nicht in
jeder Dimension eine gewisse Mindestauflosung besitzen werden also aus der Kombinationstechnik
ausgeschlossen.
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2. Definitionen, Versuchsaufbau und Ergebnisse

Definition 2.2.2 (Truncated Combination Technique (T-CT) nach [HH14]) [HH14] definiert
die Truncated Combination Technique in 2D durch

t t—1
it .
f(11712) = Z f(ll+a,12+t—a) - Z f(ll+a,12+t—1—a)
a=0 a=0
und in 3D durch
t t—1 t—2
7t .
f(l17l2,l3) = Z f(ll+a:lz+5,13+t*a*ﬁ)_2 Z f(11+04712+5713+t*1*a*5)+ Z f(ll+a:lz+ﬁ,ls+t*2*a*ﬁ)
a+p5=0 a+B=0 a+B=0

mit
¢ t t—a
a+p=0 a=0 =0
Wobei ab jetzt die Klammern um die Levelvektoren bei Funktionen, Funktionsrdaumen und Gittern der
einfacheren Schreibbarkeit wegen oft weggelassen werden. Es gilt also fi, 1, == f(, 1,) etc.

Wir sehen, dass die beiden Definitionen fiir n +2 — 1 =1y + Iy +t und 7 = (r1,72) = (I1,l2) in 2D
und firn +3—1=1; +ly+Il3+tund ¥ = (r1,72,73) = (I1,12,13) in 3D gleich sind. Wir kénnen
also die Notation von Harding et al. verallgemeinern zu:

Definition 2.2.3 (Erweiterung von Definition 2.2.2)
fto._ el — o
17 = f” T||,+t—d+1 — _Z 33
AEA

fur eine bestimmte Menge von Levelvektoren A.

Theorem 2.2.4 Die Anzahl der Teillosungen der Kombinationstechnik ist fiir eine feste Anzahl Dimen-
sionen und einen festen Parameter t konstant:

Vd e Nvt € NoJe e NV 1 € N§ : #(fb) = ¢

Beweis Seien d die Anzahl der Dimensionen und t fest. Nun gilt folgendes:

o B e =

fT_f||T||1+t—d+1_Z( 1) ( q ) L f3(T)

q=0 X =17l +t=a

N

Die Anzahl der Terme der ersten Summe ist konstant d. Sei ¢ nun fest. Bei der zweiten Summe werden nur
— —

Levelvektoren mit einer Levelsumme von H l Hl -+t —q welche gréfler als | sind betrachtet. Dies entspricht

demt — q maligen Inkrementieren von | und somit dem Ziehen mit Zuriicklegen ohne Reihenfolge. Ist
t < q so ist die zweite Summe leer. Ist t > q so ist die Anzahl der Summanden der zweiten Summe

d+t—q—1
t—q

und damit konstant. Fiir ¢ = 0 ist die zweite Summe nicht leer, dad +t —1 > 0 undt >= 0 gilt. Damit
haben wir mindestens eine Teillosung und #(ft—l») ist konstant.
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2.2. Truncated Combination Technique

BRI R % R
2000000000300 AL 2000000080000
20000000003000 A R
nra 2000000080000
YRR AR A VAR AR
s s v YA n
4 700000000040707 4 4 200000000000
IR 2000000080000
AT Yy Y A, N
WL Ay A R B G G
200000000030000000050 2000000080000 7577
2000000003000 0007 5000000010000 7507
vy vd vy v R eng vy wnmy
VAR AR O RO o, aasa VAR AR O, g 0, s
2000000007 700080000000057 A R e Ay
VR 5 o s s i 2 VR R e vy
P o A A R e Ay
A Ay YAy s Yy vy AT, s YTy (v Py VoY,
W s Oy s s A s s A v vy
P o Ay R ey Ay
L ey 750000057 A L e Ay
A e A xRz Az
A2 222 AR, A A, R AR A2 AR, AR 12222, Ao,
R R A A A R e Ay
I oy e ey A L o A v
P o A A R e Ay
20000825003200000000080000422277 20000000008202040020082222922077)

Abbildung 2.3.: Links ist f323 zu sehen. Falls die Teillosung f5 3 oder fy 3 ausfallt kann die Kombina-
tion f35 + f44 — f34 verwendet werden (Mitte). Falls f4 4 ausféllt kann z.B. f35
oder f5 3 verwendet werden. Es kann aber auch die kleinere Teillosung f3 3 nachbe-
rechnet, und die Kombination f3 5 + f5 3 — f3 3 (rechts) verwendet werden. Die blau,
von links unten nach rechts oben, schraffierten Quadrate deuten die hierarchischen
Inkremente W;, ;, der Kombinationen an und die rot, von links oben nach rechts
unten, schraffierten Quadrate, die hierarchischen Inkremente, die im Vergleich zur
Vollgitterlosung f, , fehlen.

Sei t € Ny nun fest, dann betrachten wir nun Kombinationen der Form f» mit l =

(n—t,n—t,...,n—t)und n —t > 0. Diese haben nicht nur konstant viele Telllosungen was
die Untersuchung hinsichtlich dem Ausfall einzelner Teillosungen im Gegensatz zur klassischen
Diinngitter-Kombinationstechnik vereinfacht, sondern sind auch invariant beziiglich einer Permutati-
on der Indizes, haben somit also eine gewisse ,Symmetrie®.

In der Arbeit werden folgende Fille naher betrachtet:

f~721—2,n—2 :fan,n + fnfl,nfl + fn,nf2
- fnf2,n71 - fnfl,nf2 (2.1)

37377173 :fn—S,n + fn—2,n—1 + fn—17n—2 + fn,n—3

- fn—3,n—1 - fn—2,n—2 - fn—l,n—3 (2-2)

From—on—2 =fa-2m—2n+ fa2nmn—2 + fan—2n-2
+ fo—2n—-1m-1+ facin—2n-1+ fo—in—1,n-2
—2fn—2mn-2n-1—2fn—2n-1,n-2 — 2fn—1,n—2n—2
+ fa—2n—2n-2 (2.3)

19



2. Definitionen, Versuchsaufbau und Ergebnisse

[HH14] nimmt fiir ein einzelnes anisotropes volles Gitter die Fehlerentwicklung
€l ls = [ = funto = Cr(lu)hy, + Ca(hu,)Ry, + D(huy, hu,) B, Ry, (2.4)

an den Gitterpunkten in 2D an. Dabei gelte, dass C' von Ry, z1 und x2, C2 von hy,, 21 und 2 und
D von hy,, hi,, 1 und x5 abhéngig ist. Ferner seien |C1], |C2| und | D| durch eine positive Konstante
k beschrankt.

5

Unter diesen Bedingungen zeigt [HH14] dass
f = Fooned] < 2600+ O ((RE)?) (25)

gilt und die Konvergenz des Fehlers von ffz—t,n—t von der gleichen Ordnung wie die des Fehlers
der Vollgitterlésung f, ,, ist, wobei der Polynomgrad der d-polynomialen Basisfunktionen p — 1
entspricht!. Fiir den 3D Fall wird unter Annahme der Fehlerexpansion

€l oty = = fiaaas = C1(huy)h] + Ca(hyy)h, + Cs(hg)hi,
+ Dl(hh , th)hZ hi + Dg(hll, hlg)h?1 hﬁ + Dg(hb, hlS)hZ hﬁ;
+ E(hll, hiy, hl3)hi hi hi (2.6)

eine Abschétzung fir den Fehler von ffht’n,m,t durch ‘f — ffht’n,tm,t‘ < 3kh? + O ((hgf)
angegeben. Dabei seien wiederum |C1|, |Cy|, |Cs], |D1|,|D2l, | D3| und | E| durch eine positive Kon-
stante x beschrinkt und von den Koordinaten des Gitterpunktes sowie den jeweiligen Maschenweiten
hi,, hi, und h;, abhéngig.

Fallt eine Losung aus Gleichung 2.1 aus. So kann die neue Kombinationstechnik g,, wie folgt gebildet

werden:

fon—2+ fa—in-1 — fn—in—2 flr einen Fehler bei f, 2, oder f,_2,-1
9n =\ fn—2n + fu—1n-1 — fn—2n—1 fir einen Fehler bei f,, 2 oder f,_1,-2

frnn—2 oder fn_o, fir einen Fehler bei f,_1,-1

Unter Annahme der Fehlerexpansion in Gleichung 2.4 zeigt [HH14] fiir g,,, dass der Fehler immer
noch in O(h?) liegt. Tritt bei einer der Teilldsungen aus fg,&n,g oder aus f3727n72,n72 ein Fehler
auf so bemerken Harding et al., dass fiir die entsprechenden Kombinationen im Fehlerfall der Betrag
des Fehlers ebenfalls in O(h2) sei.

Da wir spater viele verschiedene Falle betrachten werden, wollen wir fiir schwéchere Bedingungen
eine nicht notwendigerweise kleinste obere Schranke beweisen.

Wir nehmen nun folgende Fehlerexpansion an.

'Bungartz et. al. verwenden hier direkt fiir p den Polynomgrad [BG04]
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2.3. Verfahren fir das Berechnen einer Kombination im Fehlerfall

er=f—Jfr= > Cr () [T M, (2.7)

KeP({1,2,....d})\{0} keK

Dabei sei d die Anzahl der Dimension und fiir eine beliebige Menge M bezeichne P (M) die Potenz-
menge von M. Ck sei von den Maschenweiten /;, , k € K und den Koordinaten des Gitterpunktes
abhingig. Des Weiteren existiere eine positive Konstante « so dass VK € P({1,2,...,d}) \ {0} :
|ICk| < k.

Theorem 2.2.5 Seienp € N, d € N undt € Ny beliebig aber fest, es gelte Gleichung (2.7) und sei
(K, )nen eine beliebige Folge von Linearkombinationen von Teillésungen mit

Kn= . cfr

TeLn
mitVn € N : L, C N{. Des Weiteren gelte
VneNVT €Ly, : (H H <dx(n—1t)+ pAmax{n —t0} < T Aler| <y)

fiir u € No und v € R" beliebig aber fest und
Vn e N Z cp =1 (*)

Teln

dann gilt
|f — Knl € O(h7)

Beweis Sei M = P({1,2,...,d}) \ {0}, sein € N beliebig aber fest, dann gilt fiir alle TelL,

IR EADICRARE | ARSI | =D D | () Sl
KeM keK KeM keK KeM keK KeM
=r > 2IPRKP = 4w 2] 4 O (h2) = RhE + O (h2F)
KeM

wobei fiir den Falln < t die Definition von h,,_; auf h,,_; = 21" erweitert wird. Nun folgt

*

!f—Kn\z‘f— S el B = < Y ler(F - ) <v Y (R + 0 ()

TeL, Teln TeL, Teln
<v (&l +0 () azi:o (‘”Z‘ 1) - u(d:'u>fih£+(’) (n2r)

2.3. Verfahren fir das Berechnen einer Kombination im Fehlerfall

Fallen Teill6sungen aus so verwenden Harding und Hegland in [HH12] und [HH14] folgende Strate-
gien zur Berechnung einer neuen Linearkombination von Teillésungen.
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2. Definitionen, Versuchsaufbau und Ergebnisse

Definition 2.3.1 (Pro_]ektlonsoperatoren) Sei V' die Menge aller Funktionen von [0,1]? nach R.
Dann bezeichne fiir einen Levelvektor Te Nd, PV — V7 den zugehdrigen linearen Projektionsope-
rator. Sei L C Nd ein Downset, d.h. es gelte

vT,XeNg;(TeLAXgT;»XeL)

dann bezeichne
Pp:V =V, Pp=1-[[(1-Pp)
TelL

Sei A C Ng dann bezeichne | A C Ng das kleinste Downset, das A enthdlt.

[HH12] und [Heg01] halten fest, dass fiir die Verkettung zweier Projektionsoperatoren

PypPs = P3Py =Py, 3

gilt, und somit der lineare Operator Py, sich auch schreiben lésst als

Pp=1- ][] (1-Pp) Zc—»P—» (2.8)

TEmaxL T €L

Haben wir also fiir beliebiges L C N¢ eine beliebige Linearkombination " - 7er, €7 /7 und fallen
Teillésungen f+ fiir X €A C L aus, dann entfernen wir nun die entsprechenden Telllosungen
welche aus den Funktionsrdumen stammen, welche feiner als ein beliebiges V3 fiir X € A sind.

Seinun K = { T eL| V7\> cA: 5\) f T } dann liefert P| i uns eine neue Kombinationstechnik,
welche die ausgefallenen Losungen nicht enthalt, dabei miissen eventuell neue kleinere Teill6sungen,
d. h. aus groberen Funktionsrdumen, nachberechnet werden.

Beispiel:

Sei die Diinngitter-Kombinationstechnik f{ wie in Abbildung 2.4 gegeben und es falle die Teillosung
f2,3 aus. Wir entfernen zusitzlich f3 3 und f2 4 undes giltnun K = {(1,5), (4,2), (5,1),(1,4),(3,2), (4,1)}
und damit max | K = {(1,5), (4,2), (5,1)} und damit

Pr=1- I (-pp)
TEmaXi,K

=1-((1-Pas) (1~ Pun) (1~ Pow))

=1- (1 — Pas) — Paz) = Py + Pus)Pagz) + Pas s + Paz L) — P(1,5>P<4,2>P<5,1>)
= Pus) + Pag) + By — Pas)Paz) — Paus s — Pu2 Py + PaslaPe

= Pus) + Paz + s — Paz — Pay = Pay + Pay

= Pus) + Pz + s — Paz) — Pay

Fallt in der Kombination f’r%—Z,n—Q = fa—2nt fn-1n—1+fun—2—fan—2.n—1—fn—1n—2 beispielsweise
frn—1n—1 aus so liefert uns dieselbe Technik die Kombination f;,—2, + fnn—2 — fn—2n—2, welche
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2.3. Verfahren fir das Berechnen einer Kombination im Fehlerfall

+

O N W k= Ot O
O N W = Ot O

01 2 3 4 5 6 01 2 3 4 5 6

Abbildung 2.4.: Die Berechnung der neuen Linearkombination nach dem Inklusions- und Exklusi-
onsprinzip. Links ist die urspriingliche Kombination zu sehen, rot markiert ist die
ausgefallene Teillosung. Rechts ist die neu berechnete Linearkombination zu sehen,
die Teillosungen f7 mit ¥ € max J K sind in roter Farbe markiert.

dem Fall 5 in Anhang A.1 entspricht. Die neue Teillosung f,,—2,,—2 kann neuberechnet oder z. B.
durch eine Projektion von f,,—2 , auf V;,_2 ,_o approximiert werden.

Wir sehen, dass dieses Verfahren dem Prinzip der Inklusion und Exklusion aus der Mengenlehre auf
den Gittern 22 mit % € max J K entspricht.

Eine andere Moglichkeit ist, durch geschickte Anpassung der Koeffizienten der Kombinationstechnik
ohne die Berechnung neuer Teillssungen oder Interpolation auszukommen, wie sie etwa in [HH14]
fiir die T-CTs f2_, -2 f3 n—g und 2, n—2,n—2 untersucht wird. Fallt in 2, n—o beispielsweise
frn—2.n—1 aus, so kann die Kombmatlon

fnfl,nfl + fn,n72 - fnfl,n72
gebildet werden.

Die dritte Moglichkeit ist, eine ausgefallene Teillosung durch eine Projektion einer Teillssung aus
einem feineren Funktionsraum zu ersetzen. Fallt in f7372,n72 beispielsweise f;,—2,,—1 aus, so kann
eine neue Kombination mit

fn—2,n + fn—l,n—l + fn,n—2 - Pn—?,n—lfn—Q,n - fn—l,n—?
gebildet werden.

Um den Fehler einer Kombination zu messen verwenden wir die diskrete £! Norm. Sei f € V die
exakte Losung einer PDE und [, eine Linearkombination von Teillosungen, dann berechnen wir den
Fehler fiir beliebiges Xe N¢ in V3 durch

If=folly= > 1£(@) = fu(@)] (2.9)

TeQy

Bei der Bewertung obiger vorgestellter Verfahren muss einerseits betrachtet werden wie grof§ der
Fehler der neu erhaltenen Linearkombination ist und dies in Relation zum Aufwand fiir ihren Erhalt
gesetzt werden.

23



2. Definitionen, Versuchsaufbau und Ergebnisse

Wir wollen nun das Verfahren der Approximation einer ausgefallenen Teillosung durch Interpolation
mit dem obigen Verfahren zur Berechnung der Koeffizienten einer neuen Linearkombination und
der Neuberechnung kleinerer Teillosungen hinsichtlich der Laufzeit vergleichen. Zugunsten der
Interpolationslésung nehmen wir an, diese wiirde keinen zusatzlichen Aufwand verursachen und
zeigen, dass sogar unter dieser Annahme und den Ergebnissen in Abschnitt 2.5 fiir den Fehler, die
Neuberechnung der Koeffizienten, zumindest fiir die in Abschnitt 2.4 beschriebenen PDEs die bessere
Strategie darzustellen scheint, und werden deswegen diese neben der Richardson-Extrapolation, siehe
dazu auch Abschnitt 2.6, fiir unsere Implementierung in Kapitel 3 wéhlen.

Der Aufwand fir das Verfahren mit den Projektionsoperatoren setzt sich aus der Berechnung der
Koeffizienten und aus der Neuberechnung evtl. kleinerer Teillosungen zusammen.

Bisher haben wir T-CT’s der Form ft—» mit [, = (n—t,n—t,...,n—t)und n — ¢t > 0 fur festes
t € Ny betrachtet. Die Summe der Anzahl der Gitterpunkte der einzelnen Teillosungen liegt wie
bei der Vollgitterlosung f,, ,, in O(h;, %), und der Fehler liegt, genauso wie bei fi, ,, falls die exakte
Losung der PDE geniigend glatt ist, in O(hP). Beide sind also in gleicher Weise von dem Fluch der
Dimensionalitit betroffen [HH14]. In der Praxis bieten sich daher T-CTs der Form ff fur einen
festen Levelvektor 7 oder etwa fiir 7 = (n/2,n/2,...,n/2) an [BP12]. Fiir diese werden auch die
Algorithmen in SG++, wie in Kapitel 3 dargestellt, implementiert.

Deswegen schitzen wir nun den Aufwand fiir die Berechnung der Koeffizienten einer neuen Li-
nearkombination fiir die Diinngitter-Kombinationstechnik (!) ab. Fiir die Anzahl der Teillosungen
der Diinngitter-Kombinationstechnik f; = Y7, ¢7f7 gilt: |L| € O((logh, 1)) = O(nt™1)
[Pfl10].

Sei K = { Tel \ YXeA: X y s 7 }, wobei A C L die Menge der Levelvektoren der ausgefallenen
Teillosungen sei. Aus max | K = max K C K C L folgt jmax K| = |max | K| < |K| < |L| €
O(n4=1) und damit max | K| € O(n?~') und | K| € O(n¢~!). Wiirden wir jetzt einfach naiv wie
oben das Distributivgesetz auf das Produkt [T7 . (1 — P7) anwenden, hatten wir (’)(20("d_1))
viele Summanden.

Aber es gilt

Vi elK: HTHl <ntd-1= LK< (@n+dco(n)

Zerlegen wir also das Produkt rekursiv in

H (1_PT):(1_PF) H (I—PT)

TEmaXiK TEmaXJ,K\{?}

schon vereinfacht

und vereinfachen wir nach jedem Schritt Ausdriicke der Form P Py gleich zu Py > und fassen diese
zusammen, so haben wir also eine Rekursionstiefe in O(n%~!) mit jeweils maximal O(n?) vielen

Additionen und Multiplikationen.
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2.3. Verfahren fir das Berechnen einer Kombination im Fehlerfall

Die Betrage aller Koeffizienten sind in jedem Rechenschritt durch O (2m”d_1 , fur eine Konstante
m > 0 beschrankt. Jede Multiplikation und Addition von Koeffizienten hat also héchstens einen
Aufwand von O ((nd*1)2>.

Ein Levelvektor \ = (A1, ..., Aq) besteht aus d Komponenten mit jeweils O(log(n)) Bits. Seien zwei
Levelvektoren X\ — (A,...,Aqg) und % = (k1,...,kq) gegeben. Fur alle i € {1,...,d} lasst sich
min{\;, k; }, z. B. durch stellenweises Vergleichen, mit einem Aufwand in O(log(n)) berechnen und
damit liegt der Aufwand fiir die Berechnung von X Ak in O(d *log(n)). Fir die Bestimmung von
K und dann max K = max | K liefert ein paarweiser Vergleich der O(n9~1)

jeweils einen Aufwand von O (d * log(n) * (nd_1)2>.

vielen Levelvektoren

Wir haben héchstens O(n?) viele Daten mit einer Grofe in O (nd_1> fiir Koeffizienten und Level-
vektoren, damit ist der Speicherplatz polynomiell in n beschriankt und damit auch in polynomieller
Zeit ein Zugriff moglich.

Wir haben unter anderem mindestens eine Teillosung aus f erfolgreich berechnet, denn sonst ist
obiges Verfahren nicht sinnvoll anwendbar. Fiir alle Teillosungen aus f; gilt, dass die Anzahl der
Gitterpunkte in ©(2") liegt. Mit einem optimalen Loser, der eine lineare Komplexitit in der Anzahl
der Gitterpunkte hat, haben wir also ebenfalls einen Aufwand in €(2"). Sei nun also A,, der Aufwand
fiir die Berechnung der Koeflizienten und B,, der Aufwand fiir das Berechnen der Teilldsungen, dann

lim =" =0 (2.11)

Der Aufwand fiir das Berechnen der Koeffizienten fillt also, im Vergleich zum Aufwand fiir die
Berechnung der Teillosung asymptotisch kaum ins Gewicht und wird deswegen vernachléssigt. Fiir
den Speicherbedarf gilt die gleiche Aussage.

Nun muss nur noch der Aufwand fiir das Berechnen neuer Teillosungen abgeschatzt werden. Sei
I¢ = { I eNt|n—d< H l Hl gn}, Jd = { [ € N? | HlH1 Sn} und fiir einen beliebigen

Levelvektor | € N4 bezeichne Q7| die Menge der Gitterpunkte von 7. Dann beweisen Harding
und Hegland, dass fiir den Quotient aus den Summen der Gitterpunkte

Ln= 3 [97] und M, = > Q7]
lerg Tng
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2. Definitionen, Versuchsaufbau und Ergebnisse

der Grenzwert

. M,—L, 1
T}Lngo 7 =501 (2.12)

gilt. [HH12]

Das Verfahren bei einem Ausfall von Teillosungen einfach alle Teillésungen auf feineren Gittern
zu verwerfen und die Linearkombination, wie obgn beschrieben zu Eerechnen fuhrt dazu, dass fur
alle neu zu berechnenden Teillosungen f mit k € N4 gilt, dass k in J¢ \ I liegt. Fithren wir
eine Indexverschiebung um d — 1 durch, so kénnen wir obige Grenzwertbetrachtungen auf unsere
Definition der Diinngitter-Kombinationstechnik in Definition 2.1.6 iibertragen.

Harding und Hegland schlagen vor alle kleineren Teillésungen, unabhéngig davon ob sie gebraucht
werden, gleich im Voraus mitzuberechnen [HH12]. Unter der Annahme eines optimalen Losers mit
einer Komplexitit die linear in der Anzahl der Gitterpunkte ist und unter Beriicksichtigung von
Gleichung 2.11 und 2.12 ergibt sich bereits fiir d = 2 die Prognose, dass sich das Verfahren fiir grofle n,
falls fir den Fehler e,, im Vergleich zu dem Fehler é,, fiir das Verfahren einer Interpolation e,, < %én
gilt, lohnt.

2.4. Beschreibung der PDEs und der Testprogramme

In dieser Arbeit untersuchen wir zwei PDEs. Zum einen das Laplace Problem Af = 0 in 2 Di-
% auf [0, 1)* und in 3 Dimensionen

mit der exakten Losung f(z,y, z) = sin(wz) sin(wy)w auf [0, 1]°, jeweils mit Dirichlet

Randbedingungen. Wir diskretisieren mit Finiten Elementen zweiter Ordnung und verwenden ein
CG-Verfahren als Loser.

mensionen mit der exakten Losung f(x,y) = sin(7my)

Die zweite PDE ist die Advektionsgleichung %{ + @ *Vf=0mit @ = (1,1), der exakten Losung
f(z,y,t) = sin(2n(x — t)) sin(27(y — t)) auf [0, 1]? und periodischen Randbedingungen in 2D und
mit @ = (1,1, 1), der exakten Losung f(z,y,t) = sin(27(z — t)) sin(27(y — t)) sin(27w(z — t)) auf
[0, 1]? und periodischen Randbedingungen in 3D. Wir starten mit jeweils einer Anfangsbedingung
zum Zeitpunkt ¢ = 0 und 16sen das Problem auf jedem Gitter bis zum Zeitpunkt ¢ = 0.5, ganz am
Ende wird die Kombinationslosung gebildet. Fiir die Zeitschritte wird ein Runge-Kuttaverfahren
vierter Ordnung und eine Diskretisierung 1. Ordnung fiir die Raumkoordinaten verwendet.

Die Advektionsgleichung beschreibt beispielsweise den Transport eine gelosten Stoffes in einer
Flissigkeit durch eine Strémung. Das Laplace Problem entspricht dem stationéren Fall der homogenen
Wirmeleitungsgleichung.

Abbildung 2.5 zeigt die Struktur der Programme fiir die Untersuchungen der beiden PDEs. Fiir die
Parallelisierung wurde die MPI Implementierung MPICH2 in Version 1.4.1 verwendet. Um die beiden
PDEs zu losen verwenden wir DUNE (Distributed and Unified Numerics Environment) [PB], mit
den DUNE-Core Modules in Version 2.2 und DUNE-FEM [dev10] in Version 1.30. Das Diinngitter-
Framework SG++ liefert uns die Tools um die Kombinationstechnik zu realisieren. Dort sind bereits
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2.5. Ergebnisse der Kombinationstechnik

die Klassen CombiSchemeBasis und ParallelCombiGrid vorhanden. Die Basisklasse CombiScheme-
Basis ist in Abbildung 3.1 dargestellt. Sie ist im wesentlichen ein Container fiir die Levelvektoren
und Koeffizienten einer Kombination )4 cLCT J7 welche in den Member Variablen levels_vector_
und cofficients_ gespeichert werden. Uber die einzelnen Methoden kénnen die Koeffizienten bzw.
die Levelvektoren gesetzt oder gelesen werden. Der Konstruktor von ParallelCombiGrid bekommt
ein Objekt der Klasse CombiSchemeBasis tibergeben. Er alloziert mehrdimsionale Arrays welche
die Funktionswerte der einzelnen Teillssungen f7, 7 € L anden jeweiligen Gitterpunkten der
zugehorigen Gitter (27 speichern und stellt Methoden zur Auswertung der Linearkombination auf

[0, 1]% bereit.

Die Klassen Transport und Poisson hangen von den DUNE Bibliotheken ab und basieren auf den
Beispielen in [dev10]. Diese wurden fiir unsere spezifische Problemstellung angepasst und 16sen
die entsprechenden PDE’s fiir eine gewéahlte Diskretisierung. Uber Konfigurationsdateien werden
Einstellungen wie etwa die maximale Schrittweite des Runge-Kutta Verfahrens oder der Wert fiir das
Residuum festgelegt ab dem der CG-Léoser abbricht.

Die Klasse createSchemes liefert uns fiir ein n € N die Levelvektoren und Koeflizienten der T-CTs,
der Richardson-Extrapolationen (siehe Abschnitt 2.6), der Verkniipfung beider Techniken (siehe
Abschnitt 2.7) und der Kombinationen falls eine Teilldsung ausfillt. Im Anhang sind alle untersuchten
Kombinationen aufgelistet. Des Weiteren liefert sie die Information auf welchem Gitter der Fehler
berechnet werden soll und wie ggf. interpoliert werden soll.

In der ,combiutils.hpp® sind die Funktionen fiir die Kommunikation der Prozesse, die Berechnung des
Fehlers auf einem Raum V7 und Interpolationen implementiert.

Die Einsprungspunkte fiir die beiden Programme fiir das Laplace bzw. das Advektionsproblem,
befinden sich in den Dateien ,,combi_laplace.cpp® bzw. ,combi_transport.cpp®.

2.5. Ergebnisse der Kombinationstechnik

Wir betrachten nun im Falle der T-CTs fg,z,n,% f3737n,3, und ffb,Q’n,Q?n,z, verschiedene Kombi-
nationen falls genau eine Teillosung ausfillt. Aus Theorem 2.2.5 folgt, dass wir fiir alle untersuchten
Kombinationen, wie sie im Anhang aufgelistet werden, fiir das Laplace-Gleichung eine Konvergenz
in O(h2) und fiir die Advektionsgleichung in O(h,,) erwarten. Der Fehler wird in allen Ergebnissen
dieser Arbeit wie in Gleichung 2.9 dargestellt berechnet.

Abbildung 2.6 zeigt den Fehler fiir die Laplace-Gleichung in 2D fiir die Vollgitterlosung f;, », fg—Q,n—?
und verschiedene Kombinationen nach einem Ausfall einer Teillosung der T-CT fiir n € {5,...,10}.
Zu erkennen ist, dass sich wie erwartet bei allen Kombinationen, mit der Halbierung der Maschenweite,
gleichzeitig der Fehler ungefahr viertelt und sich die Fehler der einzelnen Kombinationen ndherungs-
weise um einen konstanten Faktor unterscheiden. Der schlechteste Fall ist die Fehlerkombination 3,
die aus nur einer Teillosung, namlich f, ,—2, besteht.

Die Fehler fiir die Kombinationen fr%—?,n—Q (case 0) und fr,—2. + frn—2 — fn—2,n—2 (case 5) liegen
sehr nahe an der, der Vollgitterlosung f;, ,,. Ein Grund dafiir ist, dass wie Abbildung 2.3 zeigt, nur die
hierarchischen Inkremente W, ,,, W;,_1 , und W, ,_1 bzw. zusatzlich W;,_1 ,_1 fehlen, wihrend z. B.
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Abbildung 2.5.: Schematische Darstellung des Aufbaus der Programme fiir die Untersuchungen der
Fehler verschiedener Linearkombinationen von Teillsungen.
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2.5. Ergebnisse der Kombinationstechnik

l1avgerror

Abbildung 2.6.:
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Dargestellt sind die Fehler bei der Losung der Laplace-Gleichung mit der Kombi-
nationstechnik f,%,zm# und den Linearkombinationen wie sie in Anhang A.1 auf
Seite 53 beschrieben sind, falls eine Teillsung ausfillt. Fiir alle Félle wird der Fehler

auf V), , berechnet.
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Abbildung 2.7.: Dargestellt sind die Fehler bei der Lésung der Advektionsgleichung mit der Kombi-
nationstechnik f,%_z,n_Q und den Linearkombinationen wie sie in Anhang A.1 auf
Seite 53 beschrieben sind, falls eine Teillosung ausfallt. Fiir alle Félle wird der Fehler

auf V,, ,, berechnet.
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2. Definitionen, Versuchsaufbau und Ergebnisse

in Fall 2 die Anzahl der fehlenden hierarchischen Inkremente in O(n) liegt. Des Weiteren sind auch
die einzelnen Beitrige der fehlenden hierarchischen Inkremente in Fall 0 und 5 vergleichsweise klein.
Dies liegt daran, dass fiir die Beitrage der hierarchischen Inkremente beziiglich der £°° Norm die
Abschatzungen in [Zen91] gelten, und diese also mit steigender Levelsumme gegen 0 konvergieren.
Wihrend in Fall 0 und 5 die Levelsumme der fehlenden hierarchischen Inkremente nach unten durch
2n — 2 abgeschatzt werden kann, fehlt in Fall 2 etwa auch W, 1 mit verhéltnismaflig hohem Beitrag.
Dass die beiden besten Félle tatsachlich einen leicht geringeren Fehler als den der Vollgitterlosung
fn,n haben, lasst sich vermutlich auf Besonderheiten des Problems und des verwendeten numerischen
Verfahrens zuriickfithren. Dass die exakte Losung nicht symmetrisch ist ldsst sich auch aus einem
Vergleich der Fehler fiir die Kombinationen 1 und 2 bzw. 3 und 4 ablesen, deren Levelvektoren jeweils
bis auf eine Permutation der Indizes identisch sind.

Fallt f,_2, aus so kann entweder Kombination 1 mit f,, ,—2 + fr—1,n—1 — fn—1,n—2 oder Kom-
bination 3 mit f, ,_2 verwendet werden. Fallt f, ,_2 aus so kann entweder Kombination 2 mit
fn—2;n + fn—1n—1 — fan—2,n—1 oder Kombination 4 mit f,_» , verwendet werden. In beiden Fallen
sind die Linearkombinationen mit jeweils drei Teillosungen die bessere Wahl.

Fallt beispielsweise f,,_2,—1 aus, so kann aus den verbleibenden Teillosungen entweder die Kombi-
nation 1 mit f,, ,—2 + fr—1,n—1 — fn—1,n—2 gebildet werden oder aber eine der beiden Teillésungen
frn—2n oder f,_1,_1, wie in den beiden Fallen 6 und 10, in V,,_2 ,_1 projiziert werden. Fiir einen
Ausfall von f,,_1 2 lassen sich analog die Kombinationen 2, 7, und 11 bilden. Dabei ist zu sehen, dass
in drei der vier Interpolationsfille der Fehler sogar schlechter ist als die entsprechende alternative
Kombination mit nur drei Teillosungen. Auch der Aufwand fiir eine Interpolation spricht gegen diese,
im Vergleich zu den Féllen 1 und 2 bei denen nur die Koeffizienten der Linearkombination angepasst
werden miissen.

Da der Fehler davon abhingt, welche Teillosung fiir die Projektion verwendet wird, wirft dies die Frage
auf, wie fiir eine beliebige PDE entsprechende Teillosungen ausgewahlt werden. Liegen keine anderen
Informationen vor, so ist es naheliegend fiir einen Ausfall von f,,_2 ,—1 etwa die Linearkombination
%(fn—Q,n + fn—1,n—1), wie in Fall 12, und fir einen Ausfall von f,,_1 ,,—2 die Linearkombination
%( fa—1n—1+ fnn—2), wie in Fall 13, fiir eine Projektion zu verwenden. Dies kann etwa auch auf be-
liebige intakte Teillosungen, aus den zugehorigen feineren Funktionsraumen, in beliebiger Dimension
erweitert werden.

In unserem Fall entspricht der Fehler der Kombination 12 dabei ungefahr dem arithmetischen Mittel
der Fehler der Kombinationen 6 und 10, und der Fehler von Kombination 13 ungefahr dem arithmeti-
schen Mittel der Fehler der Kombinationen 7 und 11. Damit sind beide schlechter als die jeweiligen
Kombinationen 1 und 2 mit jeweils drei Teillosungen. Sowohl bei Ausfall von f,,_2 ,—1 als auch von
frn—1,n—2 wiren jeweils noch die Félle 3 und 4 denkbar gewesen. Diese sind aber noch schlechter als
alle obigen aufgezahlten Kombinationen im Fehlerfall.

Zuletzt wollen wir noch einen Fehler bei f;,_1,_1 betrachten. Méglich sind hier wieder die
Fille 3 und 4 mit jeweils einer Teillosung. Weitere Moglichkeiten sind Kombination 5 mit
fn—?,n + fn,n—Z - fn—?,n—Z Kombination 8 mit fn—2,n + fn,n—? - Pn—2,n—2fn—2,n oder Kombinati-
on 9 mit f,_2, + fnn—2 — Pn—2n—2fnn—2. Erstaunlicherweise ist die Kombination f,,_s , sogar
geringfiigig besser als die beiden Interpolationsfille. Der Fehler von Kombination 5 ist ungefihr um
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2.6. Richardson-Extrapolation

den Faktor 8 besser, als der Fehler der beiden Kombinationen 8 und 9, dafiir muss aber die Teillosung
frn—2n—2 berechnet werden.

Abbildung 2.7 zeigt analog die Fehler fiir die Vollgitterlosung fy, »., fg,mn& und die oben besproche-
nen Kombinationen fiir die Advektionsgleichung. Da die exakte Losung sin(27(x —t)) sin(27(y —t))
ist, sind die Ergebnisse fiir Kombinationen, deren Levelvektoren bis auf eine Permutation der Indizes
identisch sind, gleich und nicht in dem Plot enthalten. Die Resultate entsprechen weitgehend den
Ergebnissen fiir die Laplace-Gleichung. So sind die Félle 0 und 5 die besten und die Interpolationsfalle
schneiden schlechter ab, als die entsprechenden Kombinationen mit nur drei Teilldsungen bzw. mit
der Neuberechnung der kleineren Teillosung f,,—2 ,,—2. Unterschiedlich ist, dass sich bei Halbierung
der Maschenweite, wie erwartet, der Fehler ungeféhr halbiert und dass die Vollgitterlosung f, ,,
erkennbar besser als alle anderen Kombinationen abschneidet.

Fiir die T-CT fg—Q,n—Q aus fiinf Teillosungen haben wir relativ ausfiihrlich die einzelnen Falle aufge-
z&hlt, andere Kombinationen bei Ausfall einer Teilldsung wiaren durchaus moglich gewesen. Da die
T-CT fg’_&n_g) aus sieben Teillosungen und die T-CT f3_21n_2,n_2 aus zehn Teillosungen besteht
und fiir diese noch mehr Moglichkeiten denkbar sind, wollen wir hier nicht mehrere Dutzend Fallun-
terscheidungen machen und schlieffen diesen Abschnitt mit der Bemerkung, dass die Abbildungen
A1, A2, A5, und A.6 fiir das Advektionsproblem und das Laplace Problem in 2D und 3D ebenfalls
die erwartete Fehlerabnahme zeigen. Fiir das Laplace Problem im Fall der T-CT ff;,&n,g, zeigt sich
ein etwas besseres Abschneiden der beiden Kombinationen mit Projektionsoperatoren.

Den Ergebnissen und den Betrachtungen in Abschnitt 2.3 lasst sich nun entnehmen, dass die Interpo-
lation im Vergleich zur Neuberechnung von Koeffizienten und kleinerer Teillosungen, die schlechtere
Strategie zu sein scheint.

2.6. Richardson-Extrapolation

In Theorem 2.2.5 haben wir obere Schranken, aber keine untere Schranke fiir den Fehler bewiesen.
Die Idee der Richardson-Extrapolation ist es, durch geeignete Wahl der Koeffizienten einer Linear-
kombination von Teilldsungen ein besseres Fehlerverhalten zu erreichen. Dabei wird ausgenutzt, dass
sich die ersten Terme der Fehlerexpansion aufheben.

[HH14] geht dazu in 2D von einem punktweisen Fehler von

0 0, 29,072 0.2p7.2
€01, = f— fl1,l2 =eP hﬁ +e phi + e*P hllp +e phl2p + - (2.13)

aus, wobei die Funktionen ™™ nur von Koordinaten des Gitterpunktes abhéngen.

Sei L = { Te N¢ | H TH1 =n } Wir verallgemeinern die Fehlerexpansion in 2.13 nun zu

d o0 S d
ot (S ) (£ £ ST o9

j=1 k=2Xerd  u=l

wobei die Terme ¢/ und e* wieder nur von den Koordinaten des Gitterpunktes abhiangig sind.
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Abbildung 2.8.: Dargestellt sind die Fehler bei der Losung der Laplace-Gleichung mit der Richardson-
Extrapolation auf V,,_3 ,_3. Die einzelnen Fille sind in Anhang A.4 auf Seite 55
beschrieben. Der Fehler fiir f,, , wird auf'V, ,, und fiir alle anderen Félle auf V,,_3 ,,_3
berechnet.

Bei der klassischen Richardson-Extrapolation werden zwei Teillosungen durch die Formel

2P 1
ow _ 1P(n,n,...,n)f(n+1,n+1,...,n+1) + 1_ 9 f(n,n,...,n)

kombiniert. Wobei P, ,,, .. ») die Projektion bzw. Interpolation wie in Definition 2.3.1 bezeichnet.

Harding schlagt, statt der klassischen, die multivariate Richardson-Extrapolation vor. Diese hat
besonders in hoheren Dimensionen und bei Extrapolationen héherer Ordnung einen geringeren
Aufwand pro Nutzen [BGR94]. Sei z.B. die Kombination fg,m,z gegeben, so suchen wir nun
Koeffizienten so dass folgende Gleichung gilt:

alfn72,n + a?fnfl,nfl + CL3fn,an + a4fn72,n71 + a5fn71,n72 = f + 061070 + 060,]2 + O(hip)
(2.15)

was zu dem Gleichungssystem

a1 +ax+az+as+as=1
a1hﬁ_2 + GQhZ_l + aghﬁ + a4hﬁ_2 + a5hﬁ_1 =0
a1hﬁ + aghﬁ,I + aghﬁ72 + a4hﬁ,1 + a5hﬁ,2 =0

fithrt.[HH14]

Da Gleichung 2.13 nur an den Gitterpunkten gilt, ist die Ausloschung der ersten Fehlerterme im
Allgemeinen auch nur auf dem grofiten gemeinsamen Gitter garantiert [HH14]. Dies deckt sich auch
mit den Ergebnissen der Experimente. So zeigt Abbildung 2.8, die Abnahme des Fehlers um den Faktor
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Abbildung 2.9.: Dargestellt sind die Fehler bei der Losung der Laplace-Gleichung mit der Richardson-
Extrapolation auf V,, ,,. Die einzelnen Fille sind in Anhang A.4 auf Seite 55 beschrie-
ben. Fiir alle Falle wird der Fehler auf V/, ,, berechnet.

16 bei Halbierung von h,,, falls auf V;,_3 ,_3 extrapoliert und um einen Faktor 4 in Abbildung 2.9,
falls auf V;, ,, extrapoliert wird.

Das obige lineare Gleichungsystem ist unterbesetzt, eine Moglichkeit die zusétzlichen Freiheitsgrade
los zu werden, wire noch zusatzliche Gleichungen z. B. die Symmetriebedingungen a; = a3 und
a4 = a5 hinzuzufiigen, eine andere Moglichkeit wire weitere Fehlerterme zu eliminieren. In héheren
Dimensionen verschéarft sich das Problem noch. [HH14]

Ein weiteres Problem bei der Verwendung aller Teillosungen ist im Falle einer Truncated Combination
Technique von der Form fn? , dass auf €27, und bei der klassischen Diinngitter-Kombinationstechnik
sogar auf {2(1 1 1) extrapoliert werden wiirde, so dass im Allgemeinen fiir alle anderen Punkte keine
Ausloschung der Fehlerterme eintritt, und der Aufwand fiir eine verbesserte Konvergenz dadurch ins
Leere l4uft, dass sie an den meisten Punkten nicht gilt.

Deswegen versuchen wir wie folgt mit (d+1) Teilldsungen auszukommen:

,l;d)} QNgmitl;::(n,n,...,n)undfﬁrkz 1seiln_,::l;:+e_/;,

wobei e € N& A ||ez]l; = 1 A exy, = 1, d. h. ey, ist der Einheitsvektor entlang der k-ten Achse, gilt.

Seinun L,, = {l;:,l;:,

Wir wollen nun die Koeffizienten a7, T e L,, so bestimmen das folgende Gleichung erfillt ist:

d
Y apfr(@)=f+ O(h2P) + ZOej

Tely j=1

Nun kénnen wir ein lineares Gleichungssystem aufstellen.
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Es gilt also a—~>=1- d * 23—: und a;— = 23—: fur 1 < k < d. So bekommen wir z.B. fiir p=2 in
no nE

2D die Kombination

4 4 )
Pn,nfn-l—l,n + *Pn,nfn,n—s—l - 7fn,n (2-16)
3 3 3
und in 3D die Kombination
4 4 4
gpn,n,nfn-l-l,n,n + § n,n,nfn,n—l—l,n + g n,n,nfn,n,n+l - 3fn,n,n (2~17)

Der Vorteil, dieser Auswahl von Teillésungen fiir die Richardson-Extrapolation ist, dass sie fiir jedes
beliebige d durchfiihrbar ist. Fallen bei einer Kombinationstechnik Losungen aus, so kann Gleichung
2.16 bzw. 2.17 verschoben werden [HH14, vgl. ], so dass die ausgefallenen Teilldsungen nicht verwendet
werden. Beispiele sind Fall 6, 7 und 8 aus Abbildung 2.8 oder die Félle 1 bis 4 aus Abbildung A.7
Wir haben genau (d+1) Teillssungen fiir (d+1) Gleichungen verwendet und das Gleichungssystem ist
eindeutig l9sbar. Im Gegensatz zur klassischen Kombinationstechnik ersparen wir uns den Aufwand
die Teilldsung f(y41,n1,.. 1) mit (2"*1 + 1)? Unbekannten zu l6sen und ersetzen sie durch d
Teillosungen mit jeweils nur (2" + 1)4=1(27*+1 4+ 1) Unbekannten.

Sei a,, die Anzahl der Punkte der klassischen Richardson-Extrapolation und b,, die obiger Kombination
dann gilt fiir den Grenzwert des Quotienten:

n—oo by, n—00 d(2n + 1)d*1(2n+1 + 1) + (2n + 1)d n—00 (2n + 1)d*1(d(2n+1 + 1) + (2n + 1))

o (2n+1 4 1)d i (2n+1 4 1)d71 i 1 (2n+1 4 1) d-1
1m = 11m = 11m

T noo (90 4 l)dfl(d +1)(2nF1 41)  nooo (2n 4 1)d*1(d +1) nocd+1\ (27 +1)

2d—1

d+1
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2.7. Verknlpfung von einfacher Kombinationstechnik und Richardson-Extrapolation

In den Abbildungen 2.10, 2.11, A.3, A4, A.7, und A.8 sind die weiteren Ergebnisse fiir die Richardson-
Extrapolation in 2D und 3D fiir Advektions- und Laplace-Gleichung dargestellt.

2.7. Verknupfung von einfacher Kombinationstechnik und
Richardson-Extrapolation

[HH14] schlagt eine Verkniipfung der multivariaten Richardson-Extrapolation mit der Kombinations-
technik vor.

Sei fNrQL—Z,n—2 gegeben p = 1 und f5727n72 = _2Pn—2,n—2fn—2,n + 5Pn—2,n—2fn—1,n—1 -
2P, _2 -2 fnn—2 eine Extrapolation auf V,,_s ,,_2, so liefert die Kombination

PLffsz,nf2 + (f~7372,n72 - Pn—Q,n—an—Zn—Q)

, wobei PL, f 5, die bilineare Interpolation auf den Diinngitterraum von fg—?,n—Q ist, mit L =
{(li,12) € N? | I + 12 < 2n — 2 Aly,ls < n}, eine Approximation zweiter Ordnung fiir V;,—2 o
und eine Approximation erster Ordnung auf

( @ Wn,lg) @( @ Wn—l,b) @< @ I/Vh,n) @( @ I/Vll,n—l)
1o<n—2 lo<n—1 11<n—2 h<n—-2

Fallen Teillosungen aus so verwendet [HH14] im Fehlerfall folgende Kombination

Prgn_on—o+ (9 — Po—21n—29L)

wobei 9272,7172 eine Extrapolation von erfolgreich berechneten Teillosungen auf V,,_2,,_2 und gy,
eine Kombination von erfolgreich berechneten Teilldsungen ist.[HH14]

In den Abbildungen 2.10 und 2.11 sind fiir die Advektionsgleichung in 2D die Fehler der Vollgit-
terlosung f, ,,, als auch die der Richardson-Extrapolation und der kombinierten Technik fiir einen
Ausfall von Teillsungen aus fﬁ,lnﬂ bzw. f273,n73 zu sehen. Der Fehler der kombinierten Technik
wird immer in dem Diinngitterraum ausgerechnet, welcher von den Funktionsraumen der noch
intakten Teilldsungen aufgespannt wird. Wir sehen, dass der Fehler geringfiigig schlechter als der,
der Richardson-Extrapolation ist. Dies entspricht nicht ganz den Ergebnissen aus [HH14] in welchen
der Fehler der kombinierten Technik geringfiigig besser als der, der Richardson-Extrapolation ist.
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Abbildung 2.10.: Dargestellt sind die Fehler bei der Losung der Advektionsgleichung fiir Linearkom-
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binationen nach einem Ausfall von Teillosungen aus f,%727n72. Die einzelnen Félle
sind in Anhang A.5 auf Seite 56 beschrieben. Fall 0 und Fall 1 sind Richardson-
Extrapolationen auf V;,_s ,,_o und ihr Fehler wird auf V;,_ ,_2 berechnet. Fall 2
und 3 entsprechen der Kombination der Richardson-Extrapolation auf V;,_o ,_2
und der einfachen Linearkombination und ihre Fehler werden auf dem Raum V7,
mit L wie im Anhang beschrieben, berechnet. Der Fehler der Vollgitterldsung f, ,,
wird auf V;, ,, berechnet.



2.7. Verknlpfung von einfacher Kombinationstechnik und Richardson-Extrapolation

1 T T T T fuu
case 0
case 1 -
case % e
case
0.1 === case 4
case 5 ———-
—
o
=
< 0.01 ¢
>
=
0.001
0.0001 . L L L
5 6 7 8 9 10

Abbildung 2.11.: Dargestellt sind die Fehler bei der Losung der Advektionsgleichung fiir Linear-
kombinationen nach einem Ausfall von Teilldsungen aus f273’n73. Die einzelnen
Falle sind in Anhang A.6 auf Seite 57 beschrieben. Fall 0, 1 und 2 sind Richardson-
Extrapolationen auf V;,_3,,—3 und ihr Fehler wird auf V,,_3 ,,_3 berechnet. Fall 3,
4 und 5 entsprechen der Kombination der Richardson-Extrapolation auf V;,_3 ,_3
und der einfachen Linearkombination und ihre Fehler werden auf dem Raum V7,
mit L wie im Anhang beschrieben, berechnet. Der Fehler der Vollgitterlosung fy,
wird auf V,, ,, berechnet.
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3. Implementierung fehlertoleranter Verfahren
in SG++ und Ergebnisse

In diesem Kapitel soll die Implementierung von Verfahren zur Berechnung einer neuen Linearkombi-
nation, falls Teillosungen bei der Berechnung von T-CTs der Form f, ausfallen, und die Ergebnisse
fiir deren Fehler dargestellt werden.

In Abbildung 3.1 auf der nichsten Seite ist die Klasse CombiFaultRecoveryScheme dargestellt. Diese
wurde von der Klasse CombiSchemeBasis abgeleitet, welche wie in Abschnitt 2.4 bereits beschrieben,
die Koeffizienten und Levelvektoren einer Linearkombination kapselt. CombiFaultRecoveryScheme
hat zwei Konstruktoren. Der erste erzeugt T-CTs der Form

d—1 d—1 B
> <—1>q< ) S
| 7| =tevelSumme—q

q

minLevelsST

Wollen wir also f;; nach Definition 2.1.6 erhalten, so miissen wir den Konstruktor also durch ,Com-
biFaultRecoveryScheme (dim, n+d-1, 1)“ aufrufen.

Der zweite Konstruktor erzeugt T-CTs der Form flt» mit l: =(n—t,n—t,...,n—t).Dadie Klasse
von CombiSchemeBasis abgeleitet ist, lasst sich jede beliebige andere Linearkombination tiber die
Methoden updateScheme und SetCoef setzen.

Fallen nun Teillésungen aus, so konnen tiber die Methoden faultRecoveryFast, faultRecoverySlow,
faultRecoveryBlock und faultRecoveryRichardson, neue Kombinationen berechnet werden. Dazu
miissen allen Methoden iiber den Parameter failedGrids die Indizes der Levelvektoren in der Member-
variablen levels_vector_ iibergeben werden, deren zugehorigen Teillosungen ausgefallen sind. Die
Methoden berechnen, dann die neue Linearkombination und diese resultiert in einer entsprechenden
Anpassung der beiden Attribute levels_vector_ und coeflicients_.

Da die Diinngitter-Kombinationstechnik f;; aus O (nd_l) Teillésungen besteht, gibt es fiir jede der

Methoden O <2C”d_1) verschiedene Fille, fur eine Konstante ¢ > 0. Diese konnen selbst fiir kleine
n nicht mehr alle durchprobiert werden. Statt dessen werden, wie in Algorithmus 3.1 dargestellt,
fiir jede Levelsumme zwischen 9 und 13, bei einem Ausfall von ein bis vier zufillig ausgewahlten
Teillosungen, fiir jedes Verfahren die Fehler fiir eine gewisse Anzahl an Samples berechnet, und deren
Durchschnitt gebildet.

faultRecoveryfast berechnet die neue Linearkombination durch das Prinzip der Inklusion und Exklu-
sion wie bereits in Abschnitt 2.3 beschrieben. Der Fehler fir die Diinngitter-Kombinationstechnik
liegt, falls die exakte Losung f geniigend glatt, in O(h2n?~1) [Pfl10]. Die Ergebnisse fir f¢ und die
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3. Implementierung fehlertoleranter Verfahren in SG++ und Ergebnisse

CombiSchemeBasis

#levels_vector_: std::vector<std::vector <int»
#cofficients : std::vector<double>

+getDim(): int

+getNrSapces(): int

+getLevel(in i:int): const std::vector<int>&

+getLevels(): const std::vector<std::vector<int> >&
+getCoef{(in i:int): double

+setCoef(in newCoef: std::vector<double> )
+std::vector<double> getCoef()

+updateScheme(in levelsNew :std::vector<std::vector<int> > ,
in coefistd::vector<double> ): std::vector<int>

CombiFaultRecoveryScheme

+CombiFaultRecoveryScheme(in dim:int,in levelSumme:int,

in minLevels:const std::vector<int> &)
+CombiFaultRecoveryScheme(in dim:int,in level:int,

in t:int)

+faultRecoveryFast(in failedGrids:const std::vector<int> &): bool
+faultRecoveryBlock(in failedGrids:const std::vector<int> &,

in center:const bool): bool

+faultRecoverySlow(in failedGrids:const std::vector<int> &,

in tryWithoutRecalculation:const bool): bool
+faultRecoveryRichardson(in failedGrids:const std::vector<int> &,
in p:const int,out errorGrid:std::vector<int> &): bool
#gradeAnisotropy(in level vectors:std::vector<std::vector<int> > & ): double

Abbildung 3.1.: CombiFaultRecoverScheme
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Algorithmus 3.1 Algorithmus zur Messung der Fehler der implementierten Methoden

procedure TEST
solutions < calculateAllSolutionsWithLevelSumFrom9To13()
for all levelSum € {9,...,13} do
for all amountFaultyGrids € {1,...,4} do
forallm € METHODS do
error(m) < 0
successfullyCalculated(m) < 0
end for
for all samples € {1,...,level Sum * amount FaultyGrids} do
failedGrids <— getRandomFaultyGrids(level Sum, amount FaultyGrids)
forallm € METHODS do
CombiFaultRecoveryScheme cF RS(2, levelsum, {1,1})
success <— cFRS.calcNewSchemeWithMethod(. . .)
if success then
successfullyCalculated(m) + success fullyCalculated(m) + 1
error(m) < calcErrorFromCombinationWithMethod(. .. ) + error(m)

end if

end for

end for

forallm e METHODS do
error(m) — successfz;lzoc’r((zﬁl)dated(m)
saveToFILE(level Sum,m,error(m))

end for

end for
end for

end procedure

entsprechenden Linearkombination bei Ausfillen von Teillosungen sind in Abbildung 3.2 zu sehen
und verhalten sich so wie wir es fiir eine Konvergenz in O(h2n9~!) erwarten wiirden.

Hierbei fillt auf, dass bei Ausfall einer Teillosung nicht alle Teillésungen aus den zugehorigen feineren
Funktionsrdumen verworfen werden mussen. Dies nutzt die Methode faultRecoverySlow aus. In
dem Beispiel der Diinngitter-Kombinationstechnik ff, wie in Abschnitt 2.3 beschrieben, hatten bei
einem Ausfall der Teillésung fo 3 das Entfernen von einer der beiden Teillosungen f3 3 und fo 4
ausgereicht. Da wir 2 Teillésungen verworfen hatten, wiirden wir in diesem Fall einen grofieren Fehler
der neu berechneten Kombination erwarten, als fur die neu berechneten Kombinationen, falls wir nur
eine Teillosung verwerfen wiirden. So bemerkt [HH12], dass es im Allgemeinen, in d Dimensionen,
passieren kann, dass viele hundert Teillosungen zu viel verworfen werden und sich das Problem
dementsprechend verschérft.

Sei nun eine Kombination f, = > 7., c7f7 gegeben und sei A C L die Menge der Le-
velvektoren der ausgefallenen Teillosungen. faultRecoverySlow berechnet nun die Menge K =

{ Tel ] IXNeA: X < T } der Levelvektoren aller Teillosungen, aus den zugehoérigen feineren
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3. Implementierung fehlertoleranter Verfahren in SG++ und Ergebnisse
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Abbildung 3.2.: Das Laplace Problem wird in 2D fiir die Diinngitter-Kombinationstechnik f gelost.
Die Ergebnisse fiir die Fehler, der mit der Methode faultRecoveryFast berechne-
ten Linearkombinationen, werden fiir einen Ausfall von bis zu vier Teilldsungen
dargestellt. Fiir alle Falle wird der Fehler auf V,, ,, berechnet.

Funktionsrdumen, und versucht so wenig Teillosungen zu verwerfen wie moglich. Dazu wird fir alle
M € P(K), eine neue Linearkombination durch Py, sy berechnet und tiberpriift ob die Bedingung

N
VA € A : ey = 0 erfilllt ist, also keine der ausgefallenen Teillssungen in der neu berechneten
Linearkombination verwendet wird. Unter diesen Losungen wird diejenige ausgewahlt, welche eine
minimale Anzahl an Teillosungen verwirft. Gibt es mehrere derartige Linearkombinationen wird
diejenige ausgewdhlt, welche moglichst ,,isotrcip“ ist. Sei eine Linearkombination f¢ = > zcq c7 /7
gegeben, dann wird die Bewertungsfunktion ¢( f¢) minimiert, welche durch

~ 1

o(fc) = > leglo(fz)

geG |C§>| 7€eq

mit

N gl \?
7)== o J%Ed}(gz ! ) (3.1)

gegeben ist. Ist die Bewertungsfunktion fiir mehrere Linearkombination gleich wird eine beliebige
ausgewahlt.

Wir berechnen also fiir jeden Levelvektor § € G, als Vektor in R™ aufgefasst, einen gewichteten
euklidischen Abstand ¢(¢) zum Vektor %7 ||96l|1 e %) und haben damit ein Metrik fiir die
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Anisotropie des Gitters {23. Die Idee dahinter, ist dass Teilldsungen, zu den zugehérigen stark aniso-
tropen Gittern, fiir dieselben relativ schlechte Approximationen liefern, vgl. dazu etwa Gleichung 2.7,
2.13, 2.14 oder etwa [BP12]. Diese werden durch die Bewertungsfunktion ,bestraft®. Die Gewichtung
der einzelnen Teillosungen wird auch in der Bewertungsfunktion beriicksichtigt und damit nicht
automatisch Linearkombinationen mit vielen Teillosungen verworfen werden, wird ein gewichtetes
arithmetisches Mittel gebildet.

Hat der Parameter tryWithoutRecalculation den Wert true, wird versucht eine Kombination, nach
obigen Kriterien, zu finden fiir die keine neuen Teillosungen berechnet werden werden miissen. Wird
eine solche nicht gefunden ist die Losung dieselbe, wie fiir den Fall, dass fiir tryWithoutRecalculation
false iibergeben worden wiére.

Hier sei gleich erwéhnt, dass der Aufwand fiir die Berechnung von faultRecoverySlow auch wirklich
langsam ist. Sei d die Dimension unseres Problems. Die klassische Diinngitter-Kombinationstechnik

fe=fl = Zl:eLn cl:fl: mit n € N bestehen z.B. aus Levelvektoren [, mit n < HZ”H1 <
n + d — 1. Fallt also eine Teilldsung fi mit |||, = n A M € L, aus, so gilt fiir die Menge Kz =

{ fr | l: €L, Anm< l: } der Teillosungen, aus den zugehorigen feineren Funktionsraumen,

d—1 _ _
K| = <d+ 1 1) = (25_ 11> (3.2)

q=0 9

Ist die Wahrscheinlichkeit fiir den Ausfall der einzelnen Teillosungen fl‘,: mit l_T: € Loundn € N
unabhéngig und zum Parameter g € [0, 1] Bernoulli verteilt, so gilt fiir den Erwartungswert der Anzahl
der ausgefallenen Teillosungen E(X) = ¢ |L,|. Allerdings ist dies noch optimistisch geschétzt. Denn
eigentlich hangt die Ausfallwahrscheinlichkeit auf einem Knoten von der Zeitdauer der Berechnung
ab und mit n wachst auch der Aufwand die einzelnen Teill6sungen fl:, l: € Ly, zu berechnen, so dass
die Ausfallwahrscheinlichkeit ¢ unter anderem von n abhéngig ist. Dies bedeutet, dass wir eventuell
mit einer oberen Schranke fiir den Aufwand im average case (!) von faultRecoverySlow rechnen

2lK |C”d71) fur eine Konstante ¢ abgeschitzt werden kann.

missen, welche nach unten durch € (
Aufgrund der Vollstandigkeit wurde dieses Verfahren dennoch imlementiert und dessen Ergebnisse

in den Abbildungen 3.3 und 3.4 dargestellt.

Die Ergebnisse legen ebenfalls eine Konvergenz in O (h%nd_1> nahe. Beide Ergebnisse sind nahezu
identisch. Dies liegt daran, dass das Verfahren der Inklusion und Exklusion auf Gittern, wie in
Abschnitt 2.3 beschrieben, nach einem Ausfall von Teillosungen aus f,; in 2D nur dann keine neuen
Levelvektoren produziert, falls sich alle verworfenen Teillosungen an den ,Enden® der ,Diagonalen®,
vgl. dazu etwa Abbildung 2.2, befinden und die Wahrscheinlichkeit dafiir mit wachsendem n fallt.
Im Vergleich zu faultRecoveryFast sind die Ergebnisse leicht besser, dafiir ist der Aufwand aber
auch grofler. Beide langsamen Verfahren benétigten in 2D, genauso wie faultRecoverFast, fiir die
Berechnung der Fehlerkombination in allen Féllen unter Verwendung eines Prozesses auf einem
Rechner mit ,Intel Xeon E7540 “ Prozessoren, eine durchschnittliche CPU Time von weit unter einer
Sekunde. Dabei wurde die CPU Time mit ,clock_gettime (CLOCK_PROCESS_CPUTIME_ID, & ts)“ aus
der C++ Standardbibliothek gemessen. Fiir faultRecoveryFast war dies auch in 3D der Fall, wihrend
fiir faulRecoverySlow in 3D bereits fiir die Levelsumme 9 und vier ausgefallenen Teillosungen eine
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3. Implementierung fehlertoleranter Verfahren in SG++ und Ergebnisse
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Abbildung 3.3.: Das Laplace Problem wird in 2D fiir die Diinngitter-Kombinationstechnik f gelost.
Fir einen Ausfall von bis zu vier Teillosungen werden mit der Methode faultReco-
verySlow neue Linearkombinationen berechnet. Fiir alle Félle wird der Fehler auf
Vi, berechnet.

CPU Time in der Groflenordnung von mehreren Minuten gemessen wurde, so dass diese Messungen
abgebrochen wurden.

Die Methode faultRecoveryRichardson bekommt neben dem Paramter failedGrids, noch die Ordnung
der Diskretisierung iiber den Parameter p tibergeben und berechnet eine multivariate Richardson-

Extrapolation aus d+1 Teill6sungen wie in Abschnitt 2.6 beschrieben. Sei also L = { E)), l_l), el l_d) } -

N4 und fiir & > 1 sei l_;; = E+e_k', wobei &, € NAA||ez|l; = 1Aer, = 1, d.h. e, ist der Einheitsvektor
entlang der k-ten Achse, gilt. Nun wird durch Bestimmung von E; die Kombinationstechnik so
gewahlt, dass keine ausgefallene Teillosung fiir die Extrapolation verwendet wird. Es wird also eine
Art ,Referenz-Linearkombination® solange verschoben, bis eine passende Losung gefunden ist. Unter
denjenigen Linearkombinationen, die diese Eigenschaft erfiillen, werden diejenigen gew#hlt, welche

H lo Hl maximieren und unter diesen wiederum eine derjenigen ausgewahlt welche Gleichung 3.1,

wie in Algorithmus 3.2 dargestellt, minimiert. Im Parameter errorGrid wird E)), d. h. der Levelvektor
fiir das Gitter zuriick gegeben auf dem die Fehlerausloschung der ersten Terme der Fehlerexpansion
auftritt.

Bei der Vollgitterlosung f,, ,, oder T-CTs der Form f(tn_t,n_t) wiirden wir fir die klassische bzw.
multivariate Richardson-Extrapolation, welche fiir eine Teillssung f(;, 1,) die Fehlerterme die von hfl
und hi abhingig sind ausl6scht, einen Fehler in O(hip ) erwarten. Fiir die, wie oben beschrieben,
berechneten Richardson-Extrapolationen, nach einem Ausfall von Teilldsungen der Diinngitter-
Kombinationstechnik f;; wiirden wir also dementsprechend erwarten, dass der durchschnittliche

Fehler tiber alle Samples in O(h?) liegt.

Die Ergebnisse von faultRecoveryRichardson sind in der Abbildung 3.5 dargestellt. Die Ergebnisse
entsprechen im Groben dem Erwarteten, wobei im Plot auch Spriinge zu erkennen sind.
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Abbildung 3.4.: Das Laplace Problem wird in 2D fiir die Diinngitter-Kombinationstechnik f gelost.
Fiir einen Ausfall von bis zu vier Teillosungen werden mit der Methode faultReco-
verySlow neue Linearkombinationen berechnet. Dabei wird versucht ohne neue
Levelvektoren auszukommen. Fiir alle Falle wird der Fehler auf V,, ,, berechnet.
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Abbildung 3.5.: Das Laplace Problem wird in 2D fiir die Diinngitter-Kombinationstechnik f gelost.

Fiir einen Ausfall von bis zu vier Teillosungen werden mit der Methode faultRe-
coveryRichardson neue Linearkombinationen berechnet. Fiir alle Fille, d. h. fir
jedes Sample wurde der Fehler auf dem Funktionsraum ausgerechnet, in welches
extrapoliert wurde.
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3. Implementierung fehlertoleranter Verfahren in SG++ und Ergebnisse

Algorithmus 3.2 Bestimmung einer Richardson-Extrapolation nach einem Ausfall von Teillosungen

procedure FAULTRECOVERYRICHARDSON( failedGrids,p, out errorGrid)
levelsum < n
success < false
while levelsum < n+d—1do
minGrade < DOUBLE_MAX
grade <—_>DOUBLE_MAX
for all [y € levels _vector_do
if HEHI == levelsum then
for all g{l,...,d} do
lg < lo+eg

end for N
valid < isValid(lo,...1q) // Existieren alle Teillosungen ?
if valid then

grade getGrade(E;, cee l_(;)
if grade < minGrade then
minGrade < gmd_e)

result < (E)), ey lg)
success <— true
end if
end if
end if
end for
levelsum < levelsum + 1
end while
updateCombiFaultRecoveryScheme(result, (1 — d * %, %, . %))

. —>
errorGrid < [y
return success
end procedure

Als letztes wurde noch ein Verfahren implementiert, dass,fihnlich_)wie bei der Methode faultRecove-
ryRichardson, durch Verschiebung von T-CTs der Form f;-» mitl, = (n—t,n—t,...,n —t)eine
Linearkombination im Fehlerfall berechnet. Dabei, wird zuerst ¢ maximiert und dann Gleichung 3.1
minimiert. Uber den Parameter center kann eine zuldssige Linearkombination so eingeschriankt wer-
den, dass sie zentriert wird, d. h. es werden fiir jede Levelsumme die Menge der intakten Teillosungen
bestimmt welche die kleinste Anisotropie, nach Gleichung 3.1, aufweisen und mindestens eine dieser
Teillosungen muss in der neu berechneten Linearkombination enthalten sein.

Die Ergebnisse sind in den Abbildungen 3.6 und 3.7 dargestellt. Diese Methode liefert im Vergleich zu
den anderen Verfahren eine wesentlich schlechtere Konvergenz, da zu viele Gitter verworfen werden.
Zudem ist die Komplexitat ahnlich hoch wie im Falle von faultRecoverySlow und war bereits in 3D,
deswegen nicht mehr anwendbar.
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Abbildung 3.6.: Das Laplace Problem wird in 2D fiir die Diinngitter-Kombinationstechnik f gelost.
Fiir einen Ausfall von bis zu vier Teillosungen werden mit der Methode faultRecove-
ryBlock, center=false neue Linearkombinationen berechnet. Fiir alle Falle wird der
Fehler auf V;, ;,, berechnet.

Die Riickgabewerte der Methoden geben an, ob die neue Kombination erfolgreich berechnet werden
konnte. So kann z. B. bei faultRecoveryRichardson der Fall eintreten, dass keine zuléssige Transla-
tion der ,Referenz-Linearkombination® gefunden werden konnte oder bei faultRecoveryFast, dass
nach dem Verwerfen feinerer Teilldsungen keine mehr iibrig sind. Ist dies der Fall, so werden die
Membervariablen fiir Levelvektor und Koeffizientenvektor nicht modifiziert.

3.1. Ansatze zur Verbesserung der Verfahren

In diesem Abschnitt sollen einige Vorschlage zur Verbesserung obiger Verfahren gemacht werden,
welche aufgrund der beschrankten Bearbeitungszeit dieser Arbeit nlcht untersucht wurden. Fallen
bei einer Kombinationstechnik f1, = > 7., c7 f7 die Telllosungen XeA C L aus, so miissen wie

bereits besprochen nicht alle feineren Teillésungen f mit keK= { l €L| INEA:N <1 }

verworfen werden. Statt wie in Kapitel 3 fiir alle Mengen M € P(K) K) die neue Linearkombination
durch P| 1\ ) zu berechnen und zu tberpriifen ob die Bedingung VX €A cy = 0 erfullt ist,
kann der Suchraum auch eingeschrénkt werden, und dadurch, statt einer exponentlellen, wieder
eine polynomielle Komplexitét in n erreicht werden. Eine Moglichkeit wire z. B. solange sukzessive
Teillosungen zu entfernen bis die Bedingung VX EA: ¢y = 0 erfiillt ist. Wir hitten dann also eine

Menge {M1, My, ..., My} mit My C My C --- C My C K und M; = {1?1)} fl'ireinla> € K, so
dass fur alle 1 < ¢ < t gilt: M1 = M; U { ki1 } mit k; 41 € K\ U§:1 { l;; } Fur die Wahl der

Teillosung IZ welche im i-ten Schritt entfernt wird, sind prinzipiell auch Heuristiken denkbar. Die
Anzahl der Schritte ist dabei fiir eine Diinngitter-Kombinationstechnik f¢ durch O(n?~1) beschrankt
und unter Beriicksichtigung des Aufwandes fiir die Berechnung der Koeffizienten wie in Abschnitt
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Abbildung 3.7.: Das Laplace Problem wird in 2D fiir die Diinngitter-Kombinationstechnik f gelost.
Fiir einen Ausfall von bis zu vier Teillosungen werden mit der Methode faultRecove-
ryBlock, center=true neue Linearkombinationen berechnet. Fiir alle Félle wird der
Fehler auf V;, ,, berechnet.

2.3 beschrieben ist der Gesamtaufwand polynomiell in n beschrankt. Unter der Annahme, dass die
Anzahl der verworfenen Teillgsungen ein Schéitzung fiir die Verschlechterung des Fehlers gegeniiber
der urspriinglichen Linearkombination ist, wiirden wir hier erwarten schlechter als die Methode
faultRecoverySlow abzuschneiden.

Eine zweite Moglichkeit, die unabhéngig davon unter gewissen Bedingungen méglich ist, ist lokal
nach Teillssungen zu suchen, die verworfen werden. Fir die Verkettung Pp> P> = Pp> | > zweler
Projektionsoperatoren Pl_f und Pl—2> giltly > 11 Alp <o,

— - —

Seiennunz.B.)Tl),)Tg)eAgegeben,esgelteK1 :{TGL | A1 <1 },ng{ l EL|)T2)§ 7}
und sei des Weiteren K1 N Ky = (), dann gilt

Vki € KiVks € KoV T € L: (PpPg = PPy # Py; APpPg = PpPr #£ Pz)  (33)

Dies bedeutet, dass sich das Entfernen bzw. Hinzufiigen von Teillosungen fi> mit 1?2’ € K> nicht
auf den nach Gleichung 2.8 berechneten Koeffizienten ¢y der zugehdrigen Teillssung f5> auswirkt,

genauso wie sich auch das Entfernen bzw. Hinzufiigen von Teillssungen f;> mit H € K nicht auf
den nach Gleichung 2.8 berechneten Koeffizienten ¢y der zugehérigen Teillosung f5> auswirkt. Eine
mogliche Strategie wire also die Menge A der Levelvektoren ausgefallenener Teillosungen wie folgt
zu partitionieren : Sei also A = U::ﬂ\z’ und firl <i<tsei K; = { T €L | Elj\) e\ 7\) < T}
und es gelte K; N K; = ) fur alle¢ # j mit 1 < 4,j < ¢. Dann konnen die Anzahl der ausge-
fallenen Teillosungen fiir jedes K;,i € {1,...,t} unabhingig von einander gegebenenfalls unter
Beachtung von Gleichung 3.1 minimiert werden. Die neu berechnete Linearkombination entspricht
der, welche auch die Methode faultRecoverySlow liefert, allerdings kann sich der Rechenaufwand
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auch gegebenenfalls sogar verschlechtern, etwa dann wenn die Partition aus genau einem Element
besteht.

Eine andere Moglichkeit wére, eine Richardson-Extrapolation die auch Fehlerterme hoherer Ord-
nung ausloscht gegebenenfalls unter Verwendung der Verkniipfung mit der Kombinationstechnik zu

verwenden.
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4. Zusammenfassung

In dieser Arbeit wurden Verfahren zur fehlertoleranten Losung von partiellen Differentialgleichungen
mittels Linearkombinationen von Teillésungen auf anisotropen vollen Gittern untersucht. Dabei
wurden im Wesentlichen die Ergebnisse aus [HH14] nachvollzogen.

Zuerst wurden die benétigten Definition wie die Diinngitter-Kombinationstechnik oder die Truncated
Combination Technique und Fehlerabschiatzungen eingefithrt. Fir das Laplace Problem und die Ad-
vektionsgleichung wurden in 2D und 3D, unter Verwendung von Truncated Combination Techniques
mit einer konstanten Anzahl an Teillésungen untersucht wie sich ein Ausfall einer Teillosung auf den
Fehler der Kombinationstechnik auswirkt.

Die grundlegende Idee ist dabei, dass bei einem Ausfall einer Teillosung der Kombinationstechnik
diese angepasst werden kann. So konnten etwa einzelne Teillosungen verworfen werden und dabei die
Koeffzienten der Linearkombination angepasst werden oder eine ausgefallene Teillosung durch eine
Interpolation approximiert werden. Eine andere Moglichkeit war noch nicht verwendete Teillésungen
zu berechnen oder diese durch eine Interpolation zu erhalten.

Dabei wurde festgestellt, dass sich die Interpolationen hinsichtlich des Kosten/ Nutzen Verhéltnisses
nicht lohnten und es besser war vorsorglich alle kleineren Teilldsungen im Voraus zu berechnen und
diese bei Bedarf zu verwenden.

In Abschnitt 2.6 wurde dann die Idee der multivariaten Richardson-Extrapolation erldutert, welche
darauf basiert Charakteristika von Fehlerexpansionen auszunutzen, welche unter bestimmten Vor-
raussetzungen fiir bestimmte PDEs gelten, um durch Ausléschung von Fehlertermen eine bessere
Konvergenz zu erreichen und die Ergebnisse fiir diese dargestellt. In Abschnitt 2.7 wurde dann die
Verkniipfung beider Verfahren erlautert, welche eine Approximation héherer Ordnung auf einem
groberen und eine Approximation geringerer Ordnung auf einem feineren Gitter aufweist.

Zum Schluss wurden in Kapitel 3, die Implementierung, von Verfahren zur Berechnung einer neuen
Linearkombination von Teillosungen im Fehlerfall, anhand der vorherigen Ergebnisse, in das Diinn-
gitter Framework SG++ vorgestellt. Dabei wurde festgestellt, dass das Verwerfen von allen feineren
Teillosungen und die anschlieffende Berechnung einer neuen Kombination durch das Prinzip von
Inklusion und Exklusion, sowie die Richardson-Extrapolation die besten Ergebnisse lieferten.
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A. Anhang

A.1. Kombinationen nach einem Fehler in f2_,

case 0: fp—2n + fu—1n—1+ fan—2— fn—2n—1 — fu—1n—2

case 1: fppn—2+ fu—in—1 — fa—1,n—2

case 2: fp—2n + fu—1n-1 — fn—2n—1

case 3 : frn—2

case 4: f,_op

case 5: fn—opn + fann—2— fan—2n—2

case 6 : fru_2n + fnin-1+ fun—2— Pu—2n-1fn—2n — fa—1n—2

case 7: frn—2n + fu—1n-1+ fan—2 — fn—2mn-1 — Pocin—2fnn-2

case 8: fr_2n + fan—2 — Ph—opn—2fn—2n

case 9: fnon + fan-—2— Poon-2fan2

case 10 : fn_Q,n + fn_l,n_l + fn,n—2 - Pn—?,n—lfn—l,n—l - fn—l,n—2

case 11: fropn+ fancin-1+ fan—2— fo2n1—Poin2fn-1n1

case 12: fro_o5 + foo1n-1 + fan—2 — Po-2n-1(3(fa—2n + fac1n-1)) = faoim—2
case 13: fo—op + foo1m—1+ fan—2 — fa—2m—1 — Pocin—2(3(factn—1 + frn—2))

A.2. Kombinationen nach einem Fehler in fgf&H

case 0: fr—3n + frn—2n—1+ fo—tn—2+ fan-3— fan-3n-1— fn—2n-—2— fa—1n-3
case 1: fn—2,n—1 + fn—l,n—Q + fn,n—3 - fn—2,n—2 - fn—l,n—3

case 2: fn3n+ fn—2n-1+ fu-1n-—2— fa3n-1— fn2n-2

case 3: fn_1n—2+ fan-3— fu-1n-3

case 4: frn3n+ fnon-1+ fa3n-1

case 5: fn,37n + fnfz’nfl + fnfl,n72 + fn,n—3 - Pn73,n71fn73,n - fn72,n72 - fnfl,n73
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A. Anhang

M | ' ' ' full ——
i case
case % *
case o
0001 ¥ 1 case 3
i case 4
* caseg .
§ 0.0001 F . *® | case a
- L IS *
&h T e
% ™~ %
g le-05 \\\\\ . i
\\\\\ g *
T~ e
le-06 | 1
\\\\ b
le-07 L L I I
5 6 7 8 9 10
n

Abbildung A.1.: Dargestellt sind die Fehler bei der Lésung der Laplace-Gleichung mit der Kom-
binationstechnik fg,&n,:ﬂ und den Linearkombinationen wie sie in Anhang A.2
beschrieben sind, falls eine Teillosung ausfallt. Fiir alle Falle wird der Fehler auf
Vi,n berechnet.
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Abbildung A.2.: Dargestellt sind die Fehler bei der Losung der Advektionsgleichung mit der Kom-
binationstechnik fng_g,n_g) und den Linearkombinationen wie sie in Anhang A.2
beschrieben sind, falls eine Teillosung ausfallt. Fiir alle Félle wird der Fehler auf
Vi,n berechnet.
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A.3. Kombinationen nach einem Fehler in fg_Q n—o Mit Richardson Extrapolation p=2
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Abbildung A.3.: Dargestellt sind die Fehler bei der Losung der Laplace-Gleichung mit der Richardson-
Extrapolation auf V,,_2 ,,_2. Die einzelnen Fille sind in Anhang A.3 beschrieben.
Der Fehler fir f, , wird auf V,, ,, und fiir alle anderen Falle auf V,, _5 ,,_o berechnet.

case 6: fn73,n + fn72,n71 + fnfl,nf2 + fn,nfS - fn73,n71 - fn72,n72 - Pnfl,nfon,nfS
full: £,

A.3. Kombinationen nach einem Fehler in f5_2’n_2 mit Richardson
Extrapolation p=2

case 0: =28 fr 0 + 2 f 11+ 2 fan—2 + fa—2n-1 + fa-in—2
case lz%fn_gjn + %fn—l,n—l + %fn,n—2

case 2: 3 fn1n-1 + 3 fan—2 + 3 fa-1n-2

case 3: %fn—z,n + %fnfl,nfl + ?fnf&nfl

case 4: %fn—?,n + 2cﬁofn,n—% +7T17fn—2,n—1 + %an—l,n—Z

A.4. Kombinationen nach einem Fehler in fgfg,nfg) mit Richardson
Extrapolation p=2

case 0: _47654fn—3,n + %fn—&n—l + %fn—l,n—Q + %fn,n—l’» + fn—3,n—1 + fn—2,n—2 + fn—l,n—3
case 1: %anf&n + %fnflnfl + %fnfl,an + %fn,n%%

case 2: 7Tl6fn—2,n—1 + 2jgfn—l,n—2 + %wfn,n—ii + fn—2,n—2 + fn—l,n—3
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Abbildung A.4.: Dargestellt sind die Fehler bei der Losung der Laplace-Gleichung mit der Richardson-
Extrapolation auf V;, ,,. Die einzelnen Falle sind in Anhang A.3 beschrieben. Fiir
alle Falle wird der Fehler auf V/, ,, berechnet.

case 3: 30 fr 50+ 2 fron1+ 9 fain—2 + fo-sm—1+ fa—2n-2
case 4: 3 fr—on—1+ L facin—2 + 5 frn—s

case 5: G fu—sn + o fo—2n—1 + G Sa—1n—2

case 6: 3 fn—1n—2 + 3fan—3+ 3 fa-1n-3

case 7: 5 fa—2n—1 + 3 fo—1m—2 + P fa-2.n—2

case 8: %fn—&n + %fn—ln—l + ?fn—&n—l

A.5. Kombinationen nach einem Fehler in fg_Q,n_Q mit Richardson
Extrapolation und verknupfter Technik p=1

case 0: _2Pn—2,n—2fn—2,n + 5Pn—2,n—2fn—1,n—l - 2Pn—2,n—2fn,n—2
case 1: 2Pn—2,n—2fn—2,n + 2Pn—2,n—2fn—l,n—1 - 3Pn—2,n—2fn—2,n—1

case 2: PLPn—Q,n—2(_2fn—2,n + 5fn—1,n—1 - 2fn,n—2) + fTQLfQ’an - Pn—2,n—2 272@72 mit L =
{ (Tl— 27”)7 (n_ 17” - 1),(77,,7’1— 2) }

case 3: PLPn—2,n—2(2fn—2,n + 2fn—1,n—1 - 3fn—2,n—1) + (fn—2,n + fn—l,n—l - fn—2,n—1)
- n—2,n—2(fn—2,n + fn—l,n—l - fn—2,n—l) mit L = { (n - 27”)7 (n - 1)” - 1) }
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A.6. Kombinationen nach einem Fehler in ff{_&n_g mit Richardson Extrapolation und verknUpfter
Technik p=1

A.6. Kombinationen nach einem Fehler in fgfg,nfg) mit Richardson
Extrapolation und verknipfter Technik p=1

case 0: P,_3 . 3(—2fn—3n + 5fn—2n—1 — 2fn—1,n—2)
case 1: Pn73,n73(2fn73,n + 2fn72,n71 - 3fn73,n71)
case 2: Pn—3,n—3(2fn—2,n—1 + 2fn—1,n—2 - 3fn—2,n—2)

case 3: Pr.P,_3,-3(—2fpn—3n 4+ 5fn—2n-1 —2fn—1n-2)
+ (fn—?),n + fn—2,n—1 - fn—l,n—2 - fn—3,n—1 - fn—2,n—2)
- n—3,n—3(fn—3,n + fn—2,n—1 - fn—l,n—2 - fn—3,n—1 - fn—2,n—2)

mitL={(n-3,n),(n—2,n—-1),(n—1,n—-2)}

case 4: PLPn—3,n—3(2fn—3,n + 2fn—2,n—1 - 3fn—3,n—1) + (fn—?:,n + fn—2,n—1 - fn—S,n—l)
= Po3n-3(fn-3n+ fa—2n-1— fn-3n-1)

mit L={(n—-3,n),(n—2,n—-1)}

case 5: PPy _31-3(2fn—2n-1+2fn—1n—2 — 3fn—2n-2) + (fn—2n—1 + fncin—2 — fa—2.n—2)
- n73,n73(fn72,n71 + fnfl,an - fn72,n72)

mitL={(n—2,n—1),(n—1,n—2)}

A.7. Kombinationen nach einem Fehler in f5_2’n_27n_2
full: f, 0
case 0:

fan,nf2,n + fn72,n,nf2 + fn,an,nf2 + fn72,n71,n71 + fnfl,an,nfl + fnfl,nfl,an

_2fn72,n72,n71 - 2fn72,n71,n72 - 2fn71,n72,n72 + fnf2,n72,n72

case 1:

0fn—2,n—2,n + fn—2,n,n—2 + fn,n—Q,n—Q + fn—Q,n—l,n—l + fn—l,n—Q,n—l + fn—l,n—l,n—Q

—1fn—2n-2n-1—2fn—2n-1n-2 — 2fn—1n—2n-2 + fn—2n—2n—2

case 4:

fn—2,n—2,n + fn—2,n,n—2 + fn,n—2,n—2 + Ofn—Q,n—l,n—l + fn—l,n—27n—1 + fn—l,n—17n—2
—1fn—2n-2n-1—1fn—2n-1n-2—2fn—1n—2n-2+ fn—2n—2n-2
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A. Anhang

l1avgerror

Abbildung A.5.:

l1avgerror

Abbildung A.6.:
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Dargestellt sind die Fehler bei der Losung der Laplace-Gleichung mit der Kombi-
nationstechnik f~272,n72,n72 und den Linearkombinationen wie sie in Anhang A.7
beschrieben sind, falls eine Teillosung ausfallt. Fiir alle Falle wird der Fehler auf
Vi.n.n berechnet.
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Dargestellt sind die Fehler bei der Losung der Advektionsgleichung mit der Kombi-
nationstechnik f3_2’n_2,n_2 und den Linearkombinationen wie sie in Anhang A.7
beschrieben sind, falls eine Teillosung ausfallt. Die Berechnung der Vollgitterlosung
frn,n ist zu rechenaufwindig und wurde nicht berechnet. Fiir alle Félle wird der
Fehler auf V;, , , berechnet.



A.8. Kombinationen nach einem Fehler in fg_zm_Q n—o Mit Richardson Extrapolation p=2
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Abbildung A.7.: Dargestellt sind die Fehler bei der Losung der Laplace-Gleichung mit der Richardson-
Extrapolation auf V,,_2 ,,_2 ,,—2. Die einzelnen Flle sind in Anhang A.8 beschrieben.
Der Fehler fir f;, ,, ,, wird auf V;, ,, ,, und fiir alle anderen Falle auf V;,_2 ,,_2 2
berechnet.

case 7:
fn—2,n—2,n + fn—2,n,n—2 + fn,n—2,n—2 + Ofn—?,n—l,n—l + Ofn—l,n—Q,n—l + fn—l,n—l,n—?
+0fn—2,n—2,n—1 - 1fn—2,n—1,n—2 - 1fn—1,n—2,n—2 - 1fn—2,n—2,n—2
case 10:

fn—2,n—2,n + fn—2,n,n—2 + fn,n—2,n—2 + fn—2,n—1,n—1 + Ofn—l,n—2,n—1 + fn—l,n—l,n—2

_1fn—2,n—2,n—1 - 1fn—2,n—1,n—2 - 2fn—17n—2,n—2 + 0fn—2,n—2,n—2

A.8. Kombinationen nach einem Fehler in fﬁ_m_m_? mit
Richardson Extrapolation p=2

case 0: _?8fn72,n72,n + _?8fn72,n,n72 + _?8fn,n72,n72 + %fnflnfl,nfl + %fnfl,nfznfl + %fnfl,nfl,an
case 1: %fn—l,n—ln—? + %fn—2,n—l,n—2 + %fn—2,n—2,n—1 - 3fn—2,n—2,n—2

case 2: %fn—l,n—ln—l + %fn—ln—l,n—l + %fn—ln—?,n - 3fn—2,n—2,n—1

case 3: %fnfl,nfl,an + %fan,n,nf2 + %fnfznfl,nfl - 3fn72,n71,n72

4 4 4
case 4: gfn,n—27n—2 + §fn—1,n—1,n—2 + gfn—l,n—Z,n—l - 3fn—1,n—2,n—2
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Abbildung A.8.: Dargestellt sind die Fehler bei der Losung der Advektionsgleichung mit der
Richardson-Extrapolation auf V,,_2 ;,_2 ,—2. Die einzelnen Flle sind in Anhang A.9
beschrieben. Die Berechnung der Vollgitterlosung fy, 5,  ist zu rechenaufwandig,
deswegen entspricht ,ref” dem Fall 0 aus Anhang A.6, die Fehler fiir Fall 0 und Fall
1 werden auf V,,_9 ,,_2 ,—2 berechnet.

A.9. Kombinationen nach einem Fehler in f3_27n_2’n_2 mit
Richardson Extrapolation p=1

case 0: 2fn72,n72,n71 + 2fn72,n71,n72 + 2fn71,n72,n72 - 5fn72,n72,n72

case 1: 2fn—2,n—2,n + 2fn—2,n—1,n—1 + 2fn—1,n—2,n—1 - 5fn—2,n—2,n—1
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