Institut fur Visualisierung und Interaktive Systeme
Universitat Stuttgart
Universitatsstralle 38
70569 Stuttgart
Germany

Studienarbeit Nr. 2452

Entwicklung einer Prasentation-Software fiir
grofRe, hochauflosende Displays

Eugen Mannweiler

Studiengang: Diplom Informatik

Priifer: Prof. Dr. Thomas Ertl
Betreuer: Dipl.-Inf. Christoph Muller
begonnen am: 13.01.2014

beendet am: 15.07.2014

CR-Klassifikation: C24,H52,1.34,1.71,1.7.2

Kurzfassung

In dieser Studienarbeit wird eine Pradsentationssoftware fiir sogenannte Powerwalls
entwickelt. Die erste Komponente ist ein Editor, der speziell auf hochaufl6sende
Powerwalls zugeschnitten ist und auf den herkémmlichen Desktop-Rechnern laufen soll.
Die von Microsoft angebotene Prasentationssoftware PowerPoint soll bei der
Entwicklung des Editors als Vorbild dienen. Die zweite Aufgabe dieser Arbeit ist die
Entwicklung einer Kommunikationskomponente, weil die Powerwall mit mehreren
Rechnern betrieben wird. Diese Komponente wird auf einem Client-Server-Modell
aufbauen. Der Server soll in der Lage sein, Anfragen mehrerer Clients gleichzeitig
bearbeiten zu konnen.

Inhaltverzeichnis

L 5 13 (S5 110 4 =R RR 5
| B & 10173 o 13T SO PSPPI 5
1.2 AufgabenstellUng..........cociiiiiiiiiiiiieiieee ettt et 6

B € 1y 1T I TS o LSRR 7
2.1 Usability auf kleinen DiSplays........ccceecuiieriieeiiieeiiieeiee et 7

2.1.1 Einfilhrung und Eingliederungcccccooviiriiiiiiniiieiecieceeee e 7
2.1.2 Moglichkeiten zur Verbesserung der Usability.........cccceeeveeviiieniiienciieeeieeeeiee 7
2.2 XAML ettt et ettt teenteeaeenteeneens 9
2.3 W PE e ettt ettt 10

K I 2110) OO SO PEOT U PSP UURUPRORPRPTORRRRRR 12
3.1 EditoroberflAChecoc.ooiiiiiiiiie e 12
3.2 Objekte erzeugen Und €ditieTeNeevuieriieiiieriieeiieeie ettt e e e aee e eeeens 13
3.3 Préasentation erstellenccoiiiiiiiiiiiiii e 13
3.4 Speichern uUnd Ladenccoeoiiiieiiiieiiecee et 14
3.5 USADIIIEY c.etieiieeiieie ettt et et et e e abeenbeeenneeraens 16

3.5.1 Panning und ZOOMccccueeieiieiiiieeiieeeiieeeieeesieeeseveeesaeeesaeesseeesseeesnseeennseeens 16
3.5.2 Verschachtelte MEniscccueeriiiiiiiiiiiieiie et 17
3.5.3 Anpassung der Bedienungsfliche der Anwendung an Fenstergrdfe................. 17

4 KommunikationSKOMPONENLENccccueeeiiiieiiiieciieceiie ettt eiee e evee e sveeesveeesaeeens 18
4.1 Aufbaustruktur einer Powerwall...........ccooiiiiiiiiiiiie e 18
4.2 Server-CHent-MoOdelcocuiiiiiiiieiiecieeeee ettt eae e 19
B3 SIVET .ttt ettt ettt et be e eeree 20
A4 CLHENT ittt et e a e et b e et b e e et e b e et e ebeesateebeen 21

5 ZUSAMMENTASSUNGeiiiieiiiieiieeiieetteeiie et ette et estteebeestteesbeesseeesseeseesnseeseesnseenseassseeseens 23

LIteraturVerZ@ICHINISccuviiiieiieeiieiie ettt ettt e et e st e et esab e e bt e s sbeenseeesseenseennnas 30

Abbildungsverzeichnis

Abbildung 1.1.1 Eine POWETWallccoiioiiiiieiiieiees ettt 5
Abbildung 2.1.2.1 Suche nach einer App mit Hilfe von Shortcuts...........cccocveeviiiciiiniiniieninnn. 8
Abbildung 2.1.2.2 WebTWig BrOWSETcccuviiiiiieiiiieciie ettt e 8
Abbildung 3.1.1 Uberblick der Layout-CONtainercocoevevveeeerereeeeerseeeeeeeeneeneesennenn. 12
Abbildung 3.2.1 ToolBar mit den Unterelementen............c.ceecveeeeiieeeieeniieecie e e 13
Abbildung 3.4.1 Name und Speicherort bestimmenc.cocveviieriieniienienie e 16
AbDbIlAUNG 3.5.1.1 ZOOMEN ...cccuvviieiiieeiieeeiie ettt et e et e e e e e etaeeetaeeesaeessseeessseeessseeennseeeas 17
Abbildung 4.1.1 Aufbaustruktur einer Powerwall mit dazugehérigen Komponenten............. 18
Abbildung 4.2.1 Ubersicht des Server-Client-Modells..............occoeeerereeereeeeeeeereeeeeenenenn, 19
Abbildung 6.1 EditoribersiChtcooouiiiiiiiieciie et 24
Abbildung 6.2 Objekte erzeugen und platZieren...........cccveeeieeriienieeiiienieeieeie e 25
Abbildung 6.3 Text und Objekte fOrmatierencccueeeeiieeiiieeiie e 26
Abbildung 6.4 Prasentation Seite 1/2........cceeoiiriieiiiiiiieiieeie ettt 27
Abbildung 6.5 Prasentation SEILE 2/2ccccuieeiuieeeiiieeeiieecieeeeree et e eireeereeesreeesreeesnseeesaveeens 28
Abbildung 6.6 Speichern und ladenoceeriiiiiiiiiiiiiee e 28
Abbildung 6.7 Name und Speicherort bestimmenccveeevieeiieeeiieeeiie e eeieeeevee e 29

Listingverzeichnis

Listing 2.2.1 Struktur einer XAMIL-Datei........cceevuieriieriiiiieeiieiieeie ettt 10
Listing 3.4.1 Rekonstruktion des Canvas mit Hilfe einer XAML-Datei..........cccccccvveeeveeennenn. 15
Listing 3.4.2 Alle Dateien in eine ZIP-Datei zusammentassencccceveeverieneenienveneenens 15
Listing 3.4.3 Fenster zum Speichern einer Dateilc.ccevveeeiieeiiieeiieecieeceeeeiee e 15
Listing 4.3.1 TCPLASTENETeeviiiiiieiieeieetieeie ettt ettt ettt e et e st e et eesabeenbeessbeenseeseseenseennnas 21
Listing 4.3.2 EINTCP/IP-SOCKET........cceiiieeiiieeiieecite ettt ettt ete et e e e e svee e snveeesnveeens 21

1 Einleitung

1.1 Hintergrund

Mit dem technologischen Fortschritt finden die groBen hochauflésenden Displays, die
sogenannten Powerwalls, in immer mehr Branchen praktischen Anwendung. Sie werden unter
anderem in der Autoindustrie zur Entwicklung neuer Autodesigns oder in Kontrollrdumen zur
Uberwachung von Kraftwerken eingesetzt. Die hohere Auflésung und die groBeren
physischen Ausmalfle sind zwei gemeinsame Eigenschaften solcher hochauflosender Displays.
Heutzutage wird eine Reihe von vernetzten Computern dazu verwendet, um das Gesamtbild
zu rendern und via mehrerer Projektoren, die jeweils mit einem Computer verbunden sind und
mit Bilddaten versorgt werden, anzuzeigen [1] [2]. Dadurch ist es meist nicht mdglich,
vorhandene Anwendungen, wie PowerPoint, direkt auf diesen Displays zu verwenden. Die
bendtigte Anwendungssoftware wird meist speziell fiir eine Anlage entwickelt, um von der
hohen Aufldsung zu profitieren. Die erzeugten Ausgaben werden von vorhandener Software
bestenfalls auf diese Auflosung hochskaliert. Dies verhindert jedoch die effektive Nutzung
der zur Verfiigung stehenden Pixel und resultiert in einem unschonen, pixeligen Bild.

In Abbildung 1.1.1 ist eine Powerwall zusehen. Sie wird mit Hilfe von 5 Projektoren, die
jeweils mit einem Rechner verbunden sind, dargestellt.

Abbildung 1.1.1 Eine Powerwall

Aufgrund der hohen Auflosung konnen sehr viele Informationen auf einmal dargestellt
werden. Hier lduft man Gefahr die Benutzer mit Informationen regelrecht zu iiberfluten,
sodass der Einsatz der Powerwall keinen Nutzen bringt. Hierflir miissen wichtige
Informationen leichter zu identifizieren sein. Dafiir konnen verschiedene Ansichten einer
Darstellung gleichzeitig angezeigt und miissen nicht einzeln aufgerufen werden, wie es beim
Desktop-Rechner der Fall ist [2]. AuBerdem erleichtert die Powerwall die Arbeit im Team,
indem sie die Prisentation fiir alle Teammitglieder gleichzeitig zugénglich macht. So kann ein
Team ihren Blick gemeinsam auf die Powerwall richten und nicht auf einen normalen
Desktop Display, dessen Grofle nur eine beschrinkte Anzahl an Leuten, die effektiv
mitarbeiten konnen, zulasst.

1.2 Aufgabenstellung

Die Aufgabe dieser Arbeit ist die Entwicklung einer Prasentationssoftware, nach dem Vorbild
von PowerPoint. Mit dieser Software soll der Benutzer in der Lage sein Prédsentationen fiir
hochauflosende Powerwalls, die mit mehreren Rechnern betrieben werden, zu erstellen. Die
zweil wichtigsten Bestandteile der Prasentationsoftware sind die Anzeigekomponente und der
Editor. Die Anzeigekomponente soll dem Benutzer das Anzeigen der Prisentationen auf
mehreren Rechnern(Cluster) ermdglichen. Mit Hilfe des Editors sollen diese Prisentationen
vorher auf einem Desktop-Rechner unter Beriicksichtigung der Usability angefertigt werden.

Die Anzeigekomponente soll, die von Clustern gestellte Gesamtauflosung, komplett
verwenden. Die Darstellung soll anhand von Vektorgrafiken der Windows Presentation
Foundation (WPF) ablaufen. Auflerdem soll die Komponente in der Lage sein, Text, Bilder
und einfache Vektorgrafiken darstellen zu konnen.

Die zweite wichtige Komponente ist der Editor. Mit ihm soll der Benutzer in der Lage sein,
hochauflosende Folien auf einem Desktop-Rechner erstellen zu konnen. Zur Verbesserung der
Usability sollen Konzepte untersucht werden, mit deren Hilfe die geringe Auflésung auf
einem Desktop-Rechner besser bewiltigt werden kann. AuBerdem soll ein Dateiformat
entwickelt werden, mit dessen Hilfe die Inhalte der Prasentation gespeichert werden kdnnen.

2 Grundlagen

2.1 Usability auf kleinen Displays

2.1.1 Einfiihrung und Eingliederung
Da der Powerwall-Editor bei der Erstellung einer Prédsentation auf den herkémmlichen

Desktop-Rechnern zum Einsatz kommt und erst die fertige Présentation auf die Powerwall
projiziert wird, entsteht das folgende Problem. Wie erstellt man Présentationen fiir eine
riesige Powerwall mit Hilfe herkommlicher Desktop-Rechnern. Die groflen Ausmafle der
Powerwall zwingen den vorhandenen Platz auf dem Desktop-Bildschirm optimal ausnutzen
zu wollen. Aber zuerst muss die Prisentation erstellt werden. Aufgrund der kleinen
Arbeitsfliche muss das Design des Editors so platzsparend wie moglich sein. Folglich muss
der Editor so konstruiert werden, dass die Usability aufgrund relativ geringer Grofle so wenig
wie moglich leidet. Eine dhnliche Ausgangslage hat man auch bei den sogenannten ,,small
devices*, wie zum Beispiel Smartphones. Dazu gibt es verschiedene Moglichkeiten, die man
auf den Editor anwenden kann, um Usability zu verbessern.

2.1.2 Maoglichkeiten zur Verbesserung der Usability
In diesen Unterabschnitt behandeln wir einige Methoden zur Verbesserung der Usability auf
kleinen Displays, wie Smartphones.

Ein Verfahren namens Scrolling ermdglicht eine bessere Ubersicht bei groBen Dokumenten.
Wenn der Inhalt eines Dokuments, einer Datei oder Darstellung nicht auf das Display passt,
kann man einen Teil der Information sichtbar darstellen. Die restlichen Informationen sind
demzufolge nicht sichtbar, aber sofort erreichbar und einsehbar, indem man nach unten oder
oben scrollt. Da man aber Scrolling generell vermeiden mdchte, wurden bessere Methoden
entwickelt [3].

Hierarchisches Menii mit Suboptionen ist bei mehreren Optionsmoglichkeiten iiblich. Man
kann diese Suboptionen gruppieren und unter einem Oberbegriff zusammenzufassen. Als
Obergriff nimmt man zum Beispiel ,,Einstellungen®“. Wenn man auf Einstellungen klickt,
erscheinen drei weitere Optionsmdglichkeiten, wie Sound, Video und Allgemein [3].

Einstellungen -> Sound
—>Video
- Allgemein

Dieser Ansatz eignet sich besonders gut bei der Erstellung von Meniileisten, da die
vorhandene Fliache begrenzt ist. Auf diese Weise gruppiert man alle wichtige Funktionen, wie
,Datei speichern®, , Datei 16schen“ oder ,neue Datei erstellen®, unter dem Oberbegriff
»Datei“. Bei Bedarf klickt der Benutzer die ,,Schaltfliche Datei“ an und die Optionen
erscheinen. Diese sind in der Zwischenzeit nicht sichtbar.

Page-Methode kann angewandt werden, falls eine Seite zu viele Informationen enthilt, um sie
vollstdndig anzuzeigen. Man kann die Information, dhnlich wie in einem Buch, auf mehrere
Seiten verteilen,. Bei der Suche nach den gesuchten Daten oder Informationen bléttern man
durch die vorhandenen Seiten durch, bis die benétigten Informationen gefunden sind [3]. So
eine Methode kann bei Informationslandschaften angewandt werden. Wéhrend dieser Arbeit

7

gab es Uberlegungen die hohe Auflsung der Powerwall auszunutzen, indem man zusitzlich
zur der Priasentation auch die Folienhistorie anzeigt. Dieser Ansatz wurde aufgrund geringer
Wichtigkeit nicht weiter verfolgt.

Shortcuts werden des Ofteren bei Adressbiichern angewandt. Wie bei einem Adressbuch auf
einem Smartphone, werden Kontakte mit Hilfe einer Scrollleiste dargestellt, falls die Anzahl
der Kontakte zu groB ist, um sie alle anzuzeigen. Fiir eine schnellere Navigation benutzt man
zusitzlich Shortcuts, d.h. wenn man den Buchstaben ,,P* anklickt, springt man direkt zu den
Kontakten, die mit dem ,,P“ anfangen. Auf diesem Weg eriibrigt sich das langwierige
Durchsuchen des ganzen Adressbuches [3]. Die folgende Abbildung zeigt, wie man mit Hilfe
von Shortcuts nach Informationen sucht.

S

» Safari

7 iapplications/Safan.app

= Spotify

System Preferences
= skl

Abbildung 2.1.2.1 Suche nach einer App mit Hilfe von Shortcuts [4]

Mit Hilfe einer Baumstruktur stellt WebTwig die Prisentation einer Web-Site dar. Dem
Benutzer werden am Anfang nur die Top-Knoten angezeigt. Durch das Anklicken eines dieser
Knoten werden die dazugehorigen Unterknoten sichtbar [3].

-

Dalriada Data Technology Index Page

Heareh f@zrig'

- Aeatures

Acerm aﬁd}?‘&bh’s}ﬁn Links -

Dalviada Exhubitions

Clvalriadas About Dallada

Abbildung 2.1.2.2 WebTwig Browser [3]

Eine weitere Moglichkeit ist Hashing. Wenn der Benutzer eine bestimmte Funktion aufrufen
will, wie ,,Call XYZ*, wird durch das Anklicken von ,,C* und ,,A* eine Liste von Ergebnissen
erstellt und angezeigt, wie ,,Call ABC*, ,,Call Doctor* und ,,Call XYZ* , aber auch ,,ABC

8

Call“. Man kann eine der vorgeschlagenen Optionen wihlen oder weiter mit der Eingabe
verfahren, bis die gesuchte Losung angezeigt wird [3].

Zooming ist eine einfache Losung, um grole Mengen an Informationen auf einem begrenzten
Display anzuzeigen. Durch das Zoomen verkleinert oder vergrofert man die dargestellten
Informationen. Der Nachteil ist, dass beim Zoomen die Schriftgrofle so klein werden kann,
das sie nicht mehr lesbar ist [3]. Um dieses Problem zu vermeiden, kann man eine Methode
namens Fisheye View anwenden. Dabei wird ein ausgewdéhlter Abschnitt detaillierter
dargestellt [5].

2.2 XAML

XAML (Extended Application Markup Language) ist eine deklarative Programmiersprache,
die auf XML basiert und somit auch an die gleichen strikten Regeln gebunden ist:

e FElementenbeschreibung erfolgt durch Tags. Jeder Tag ist eine Objekt-Instanziierung
und ergibt eine XML/Quellcode-Aquivalenz.

e Aufjedes Starttag muss zwingend ein Endtag folgen. Das ist wurde von XML geerbt.
¢ Die GroB3-/Kleinschreibung muss beriicksichtigt werden.
e Durch die Einschrinkung komplexer Typen konnen neue Typen definiert werden [6].

In dieser Arbeit wird XAML, um eine Benutzeroberfliche zu beschreiben, benutzt. Und so
konnte ein XAML-Code aussehen. In diesem Fall wird ein neues Fenster erstellen.

<Window x.:Class="“WpfApplicationl.mainWindow “
xmlins=“httpt://schemas.microsoft.com/winfx/2006/xaml/presentation
xmlins:x=" httpt://schemas.microsoft.com/winfx/2006/xaml “
Title="“MainWindow *“ Height="370" Width ‘545 “>
<Grid>

// Hier kann man weitere Steuerelemente einfiigen
// wie Buttons, Textboxen usw.

</Grid>
</Window>

Listing 2.2.1 Struktur einer XAML-Datei

Jede XAML-Datei enthilt eine Wurzel. Das heifit, dass diese Wurzel alle restlichen Elemente
einer XAML-Datei einschlieBt. Im oberen Beispiel heiflt dieses Wurzelelement Window. Um
eine bestimmte Darstellung sicherzustellen, konnen beim Wurzelelement zusitzliche Attribute
vordefiniert werden [7].

o _X:Class , gibt die Code-Behind-Datei an, die den C#-Code des aktuellen XAML-
Dokuments enthalt [7].*

e Mit xmlns werden zwei XML-Namespaces bekannt gegeben, damit die Elemente im
XAML-Code einwandfrei identifiziert werden konnen. Dieses Feature wurde von
XML iibernommen [7].“

e _Mit dem Attribut 7itle wird anschlieBend die Zeichenfolge beschrieben, die in der
Titelleiste des Fensters angezeigt wird, und Height und Width legen die Gesamthdhe
bzw. -breite des Fensters fest* [7] .

In der Wurzel sind alle Elemente aufgelistet, aus denen das Fenster besteht. Dazu gehoéren
Schaltflichen, Meniis, Textboxen und viele andere Elemente. Das Element Window kann nur
ein direkt untergeordnetes Element haben. In diesem Fall ist es das Element Grid. Dieses
Element ist ein Containersteuerclement und kann seinerseits mehrere Steuerelemente
aufnehmen, wie Buttons oder auch andere Elemente [7].

23 WPF

Unter WPF, kurz fiir Windows Presentation Foundation, versteht man eine Bibliothek fiir
Entwicklung grafischer Benutzeroberflichen. Diese Bibliothek ist ein Teil des .NET
Frameworks. Eine Vorgédngerversion von WPF ist Windows Forms. Windows Forms ist eine
Programmierschnittstelle zur Erstellung grafischer Benutzeroberflichen. In den folgenden
Abschnitten werden die Vorteile von WPF gegeniiber Windows Forms aufgezihlt und niher
erlautert [7].

Die Benutzeroberfliche wird mit XAML, kurz fiir eXtensible Application Markup Language,
beschrieben. Damit bewirkt man eine strikte Trennung zwischen dem Quellcode fiir
Prozeduren und Funktionen auf einer Seite und der Beschreibung der Benutzeroberfldche auf
der anderen Seite. Da XAML ziemlich michtig ist, hat der Anwender zahlreiche
Moglichkeiten, wie Objektdeklarierung, Beschreibung der Benutzeroberfldche, Verdnderung
der Benutzeroberflaiche zur Laufzeit, Eventhandling, Binding von selbsterstellten Elementen
[8]. Das kann zu einem umfangreichen XAML-Code fithren. Dadurch ist der reine Quellcode,
zum Beispiel C#-Code, iibersichtlicher, da mit ihm kompaktere Funktionen und Operationen
beschrieben werden. Die Benutzeroberfliche kann mit XAML erstellt werden. So erreicht
man eine Trennung zwischen der Oberflachenbeschreibung und Funktionalitét [7].

Um bessere Performance zu erreichen, unterstiitzen WPF-Anwendungen die 2D- und 3D-
Grafiken. Durch die Nutzung von DirectX wird ,,die Grafikkarte zur Berechnung der
grafischen Elemente herangezogen“. Dadurch wird die CPU entlastet und bessere
Performance bis zur einer gewissen Anzahl an visuellen Elementen erreicht [7].

Eine der stirksten Seiten der WPF sind die umfangreichen Datenbindungsmdglichkeiten. Ein
weiterer Vorteil ist, dass die WPF-Ausgabe vektorbasiert ist. Das heil3t, dass Grafiken mit
Hilfen von Vektoren dargestellt werden. Beim Anwenden von Vektorgrafik werden die
geometrischen Informationen liber Objekte gespeichert, im Gegensatz zur Pixelgrafik, bei
dem die Objekte aus einzelnen Bildpunkten bestehen. Das fiihrt dazu, dass beim Skalieren
von Objekten, die mit Vektorgrafik dargestellt werden, kein Qualitdtsverlust entsteht [7].

AuBerdem wurde mit Hilfe von WPF ein altes Problem der Windows Forms geldst. Friiher hat
sich das Ausgabefenster nicht automatisch an die Monitorauflosung angepasst, was im
schlimmsten Fall dazu fiihrte, dass einige Elemente der Benutzeroberfliche nicht mehr
sichtbar waren und so unerreichbar wurden [7]. ,,Das WPF-Grafiksystem verwendet
gerdteunabhingige Einheiten, um Auflosungs- und Gerdteunabhéingigkeit zu ermoglichen.
Jedes gerdteunabhédngige Pixel wird automatisch mit der Punkte pro Zoll (dots per inch, dpi)-
Einstellung des Systems skaliert. Dies ermoglicht WPF-Anwendungen eine ordnungsgeméle
Skalierung flir unterschiedliche dpi-Einstellungen und bewirkt, dass die Anwendung
automatisch dpi-Einstellungen beriicksichtigt™ [9].

10

WPF-Anwendungen unterstiitzen die Darstellung verschiedener Steuerelemente:

Schaltfliche: Buttons

Meniis: Menu und Toolbar
Auswahl: Combobox, Checkbox
Layouts: Canvas, Window, Viewbox
Eingabe: Textbox, RichTextbox
Medien: Image

Dialogfelder: OpenFileDialog, SaveFileDialog

11

3 Editor

3.1 Editoroberfliche

Ein zu entwickelnder Editor bendtigt am Anfang eine Editieroberfliche, auf der man
verschiedene Objekte, wie Rechtecke, Ellipsen oder Texte, frei positionieren kann. Dafiir
eignen sich die sogenannten Layout-Container, in denen jeweils mehrere Steuerelemente und
Objekte positioniert werden konnen. In der folgenden Abbildung sind einige Layout-
Container, die in WPF verfiigbar sind, abgebildet.

Layout- Kurzbeschreibung
Container

Canvas Die Steuerelemente werden an einer angegebenen Position in einer festgelegten Grofe angezeigt.
DockPanel Die Steuerelemente kénnen an den Randern angedockt werden.
Grid Dieser Container stellt eine tabellenartige Struktur zur Verfigung, in deren Zellen die einzelnen Controls

positioniert werden kdnnen.

StackPanel Die Steuerelemente werden vertikal oder horizontal angeordnet
(gestapelt).

UniformGrid Dieser Container stellt ein Raster aus gleich groBen Zellen dar.

WrapPanel Mit diesem Container werden die Controls vertikal oder horizontal angeordnet. Falls die Breite oder die
Héhe nicht ausreichen, werden die enthaltenen Steuerelemente in die ndchste Zeile umbrochen.

Abbildung 3.1.1 Uberblick der Layout-Container [7]

Aufgrund der Anforderungen an eine Editieroberfliche, wie das Einfligen, Ldschen
undVerschieben von Objekten, aber auch Moglichkeiten zur Verdnderung der GroBe zur
Laufzeit, ist das ,,Canvas® die bessere Option im Vergleich zur der anderen Mdoglichkeiten aus
der Abbildung 3.1.1. Mit Hilfe von ,,Canvas* kann man Objekte einfligen, bewegen und
editieren [7]. Und der wichtigste Vorteil des Canvas gegeniiber den anderen Containern, ist
die Moglichkeit der absoluten Positionierung. Absolute Positionierung erlaubt untergeordnete
Objekte relativ zum iibergeordnetem Element, in dem Fall Canvas, anordnen zu kdnnen [10].

Mit dem Aufruf Canvas.Children.Add(Objekt) tiigt man das Objekt in den Canvas-Container
ein. Die Objekte in Canvas haben vier Eigenschaften, die ihre Position innerhalb des Canvas
bestimmen, nidmlich Canvas.Left, Canvas.Right, Canvas.Top und Canvas.Bottom. Um
unerwiinschte Nebeneffekte zu vermeiden, ist es notig nur eins aus den Pérchen
Canvas.Left/Canvas.Right, und Canvas.Top/Canvas.Bottom zu setzen, wie zum Beispiel die
Kombination Canvas.Left/Canvas.Top [7]. Mit den Aufrufen Canvas.SetLeft(Objekt,X) und
Canvas.SetTop(Objekt,Y) positionieren wir das Objekt mit den (X,Y)- Koordinaten in Canvas.

Als ein Layout-Container bietet das Canvas keine Moglichkeiten zur Verschiebung,
Vergroferung oder Verkleinerung von Objekten zur Laufzeit, was bei einem Editor
Grundvoraussetzung ist. Um das zu ermoglichen, bendtigt man eine Hilfsklasse. Im Laufe der
Studienarbeit wurden zwei mogliche Losungen miteinander verglichen, ResizingAdorner-
Klasse [11] und DragCanvas-Klasse [12]. Beide Klassen ermdglichen das Verschieben von
Objekten innerhalb des Canvas zur Laufzeit, aber mit der DragCanvas-Klasse ist es nicht
moglich ein bestimmtes Objekt zu vergroern oder zu verkleinern. Bei einer
Préasentationsoftware wire die fehlende Féhigkeit zur GrdéBenverdnderung von Objekten
ziemlich gravierend. Aus diesem Grund verwendet dieser Editor die ResizingAdorner-Klasse,
welche sowohl das Verschieben von Objekten, als auch die Manipulation im Bezug auf die
GrofBe des Objekts ermdglicht.

12

Prisentationen fiir die Powerwall sind viel grofer, als bei den herkommlichen Desktop-
Rechner. Da der Benutzer diese aber dennoch auf dem Desktop-Rechner erstellt, wiirde das
Canvas die vorhandene BildschirmgroBle sprengen. Alle Informationen, die nicht auf dem
angezeigten Bildschirm passen, sind fiir den Benutzer automatisch nicht sichtbar und somit
nicht zuginglich. Als Losung fiir dieses Problemplatziert man das Canvas in einem
Steuerelement namens ,,ScrollViewer”. Dieser ,,ScrollViewer* erlaubt durch den Canvas zu
scrollen, wenn das Canvas zu grof3 fiir den Bildschirm ist. Diese Vorgehensweise dhnelt
Photoshop. Auch hier hat der Benutzer die Moglichkeit nach oben oder unten zu scrollen,
falls das Bild zu groB fiir den Bildschirm ist

3.2 Objekte erzeugen und editieren

Die Anforderung ist, dass der Editor in der Lage sein muss, unterschiedlich formatierte Texte,
Pixelgrafiken und einfache Vektorgrafiken (Linien, Rechtecke, usw.) verarbeiten zu kénnen.

Fiir eine Texteingabe und Textformatierung ist die einfachste Losung eine ,,TextBox*. Die
»lextBox“ erfiillt die Anforderungen und ist einfach zu implementieren. Mit den
Eigenschaften FontSize, FontFamily und Foreground lassen sich die Schriftgrofle, die
Schriftart und die Farbe des Textes verdndern. Die einfachen Vektorgrafiken sind mit der
Shape-Klasse darstellbar. Die Shape-Klasse enthélt weitere Unterklassen wie Ellipse,
Rectangel oder Line, mit deren Hilfe Linien, Rechtecke und Ellipsen gezeichnet werden
konnen. AuBerdem besitzt die Shape-Klasse, also folglich auch die Unterklassen,
verschiedene Eigenschaften, wie Farbe. Durch diese Bearbeitungsmoglichkeiten konnen die
Objekte an die Wiinsche des Benutzers angepasst werden. Um einfache Pixelgrafiken
darzustellen, bietet sich die Image-Klasse an. Mit dieser Klasse ist das Laden von folgenden
Bildtypen méglich: .bmp, .gif, .ico, .jpg, .png, .wdp und .tiff [13]. Durch das Offnen eines
Open-Image-Fensters und der Auswahl des Bildes wird das Bild als Quelle des Image-
Controls verwendet und im ,,Canvas‘ platziert.

Die Symbole fiir die jeweiligen Objekte werden in einer ,,ToolBar®, einem Container,
gespeichert. Durch das Anklicken werden dazugehorige Objekte im ,,Canvas® erstellt und
positioniert. Die Auswahl an SchriftgroBen, Schriftarten und Farben wird jeweils durch eine
,ComboBox*“ ermdglicht. So werden viele Moglichkeiten zur Manipulation von Objekte auf
einem kleinen Raum gebiindelt. Durch das Anklicken der bestimmten ,,ComboBox* werden
die Optionen in einem Scrollfenster préasentiert. Dieses Design orientiert sich an bekannte
Editoren wie PowerPoint.

-

AliceBlue

Abbildung 3.2.1 ToolBar mit den Unterelementen

3.3 Priasentation erstellen

Nachdem der Benutzer jetzt in der Lage ist, Objekte erstellen und auf die Editieroberfliche
platzieren zu konnen, ist der néchste Schritt die Erstellung einer kompletten Présentation. Bis
zu diesem Zeitpunkt hat man nur die Seite, die in ,,Canvas® dargestellt wird. Das Ziel ist aber,
das eine Prédsentation aus mehreren Seiten bestellt und daraus folgt, dass der Benutzer in der
Lage sein muss, neue Seiten erstellen, vor —und zuriickbldttern aber auch unerwiinschte Seiten
16schen zu kénnen.

13

Dafiir werden hier drei Moglichkeiten vorgestellt:
o Array
e ArrayListe
e Generische Liste

Ein Array kann eine bestimmte Menge an Elementen speichern. Die Elementen und die Grof3e
des Array miissen beim Initialisieren angegeben werden. Die Elemente konnen vordefinierte
Typen sein, wie String, Integer oder selbstdefinierte Typen, wie Person. Das Element kann
Canvas sein, wobei ein Canvas eine Seite der Prisentation darstellt. Der grofle Nachteil ist,
dass die GroBe vordefiniert sein muss und im Nachhinein nicht mehr verdndern kann.
Deswegen eignet sich ein Array in diesem Fall nicht, da es bessere Moglichkeiten gibt [14].

Die zweite Mdoglichkeit ist die Verwendung einer ArrayListe. Es ist ein Array, dessen Grof3e
der Benutzer dynamisch variieren kann. Somit ist eine ArrayListe einem Array {liberlegen, da
sie die gleichen Eigenschaften besitzt und den Nachteil festgeschriebener Grofe nicht mit sich
zieht. In einer ArrayListe konnen verschiedene Elemente gespeichert werden und sie miissen
nicht vom gleichen Typ sein [15].

Die letzte Methode ist das Benutzen einer generischen Liste, bei der aufgrund ihrer
dynamischen Grofle, die Moglichkeit besteht, zur Laufzeit neue Elemente hinzuzufiigen oder
zu entfernen. Sie unterstiitzt die Methoden ,,Durchsuchen® und ,,Bearbeiten. Im Vergleich
zur einer ArrayListe kann diese nur einen Typen enthalten. Da in diesem Fall man nur ein Typ
Canvas speichern will, ist es kein Nachteil. Die Vorteile einer generischen Liste gegeniiber
der ArrayListe liegen in der Performance und Typsicherheit. Wenn man als Element einen
Wertetyp verwendet, verschlechtern das Boxing und Unboxing die Performance der
ArrayListe [16].

Aus diesen Grund wird in diesem Fall die generische Liste, bei der das Element Canvas ist,
verwendet. Jedes Canvas entspricht einer Seite der Prasentation.

3.4 Speichern und Laden

Nachdem der Erstellung einer Prédsentation ist der nédchste Schritt diese zu speichern. Wie
speichert man jedoch den Inhalt einer Seite. Eine Moglichkeit wére eine List<Array[]> zu
machen, wobei in einem Array alle wichtigen Eigenschaften eines Objekts gespeichert wiren,
wie Typ, GroBe, Position usw. Somit wiirde ein Array genau einem Objekt entsprechen und
die Liste wire eine Kette aus Objekten, in der Reihenfolge, in der sie erstellt und eingefiigt
wurden. Der Vorteil dieser Vorgehensweise ist es, dass die beiden Typen List<> und Array[]
mit der DataContractSerializer-Klasse sofort in einen XML-Stream serialisiert und wieder
deserialisiert werden konnen [17]. Das wiirde bei einer moglichen Dateniibertragung als
XML-Stream die manuelle Implementierung eines Datenvertrags(engl. Data Contract)
ersparen. Das Problem besteht hiermit, dass man diesen Vorgang eigenstindig
implementieren muss. Man miisste viele Vorgdnge manuell erstellen, wie zum Beispiel jede
wichtige Eigenschaft in ein vorgesehenes Feld eintragen und nachher auch auslesen. Diese
List<Array[]> kann man als eine Text-Datei auf einem Speichermedium abspeichern. Hier
miisste man jedoch alles einzeln und manuell implementieren. Ein bessere Variante wire das
Abspeichern des Inhalt einer Seite als eine XAML-Datei. Dafiir gibt es schon implementierte

14

Methoden, wie XamlWriter.Save(Canvas, FileStream) [18]. So wird der Inhalt eines Canvas in
einen FileStream gespeichert. Ein FileStream, dem vorher ein Pfad {ibergeben wird, entspricht
einer Datei. Das Laden ist ebenfalls schon vordefiniert. Dafiir wird ein XML-Reader benutzt,
weil XAML-Reader keine Methode hat, mit der man direkt eine Datei laden kann. Aber
XAML kann mit der Methode ,,Load ,, aus einem XML-Reader einen Canvas fiillen [19].
Weil XAML auf XML basiert, entstehen syntaktisch keine Problem. So kann man auf die
vordefinierten Methode zuriickgreifen, was eine Zeitersparnis beim Implementieren von
Laden und Speichern einer Seite als eine XAML-Datei, bedeutet.

XmlReader rdr = XmlReader.Create(Dateipfad)
Canvas myCanvas = XamlReader.Load(rdr) as Canvas,

Listing 3.4.1 Rekonstruktion des Canvas mit Hilfe einer XAML-Datei

Doch wie kann man nicht nur eine Seite der Prisentation, sondern gleich mehrere Seiten
abspeichern? Aullerdem kann man die Pixelgrafiken nicht in einer XAML-Datei abspeichern,
da wird nur ein Verweis auf das Bild abgelegt. Das heilit, dass jedes Bild gesondert
abspeichert wird. Es biete sich an, alle XAML-Dateien und Bilddateien in eine ZIP-Datei
zusammenzufassen. Dafiir erstellt man eine neue ZIP-Datei und fiigt alle nétigen Datei, wie
XAML-Datei und Bilder ein und speichern diese ab, siche Listing 3.4.3. Beim Laden werden
die Daten entpackt, die Prédsentation rekonstruiert und die entpackten Dateien wieder
geloscht.

ZipFile zip = new ZipFile();
zip.AddFile(Pfad der einzelnen Dateien oder Bilder, Unterordner),
zip.Save(Pfad der Zip-Datei),

Listing 3.4.2 Alle Dateien in eine ZIP-Datei zusammenfassen

Nachdem die Mechanismen geklért sind, muss nur noch der Pfad und der Namen der ZIP-
Datei bestimmt werden. Dafiir eignet sich Microsoft. Win32.SaveFileDialog, welches
besonders benutzerfreundlich und leicht nachvollziehbar ist.

Microsoft. Win32.SaveFileDialog dlg = new Microsoft. Win32.SaveFileDialog(),
dlg.FileName = "result"; // Name der Datei

dlg.DefaultExt = ".zip"; // Format der Datei

dlg.Filter = "ZIP documents (.zip)|*.zip", // Filter fiir Formate

Listing 3.4.3 Fenster zum Speichern einer Datei

Die folgende Abbildung zeigt ein Fenster, welches sich dem Benutzer zum Speichern 6ffnet.

15

Speichern unter

Desktop durchsuchen

Organisieren ¥ Neuer Ordner B - (7]

m <5 SyTrCrTToTaTIcT =

- Favoriten ‘—

B Desktop N | Computer |
E eS| Systernordner

4 Downloads E

%3 Dropbox .
] Zuletat besucht g e
=l U b — L-‘ Systemordner

- Bibliotheken

Anwendungen
[Bilder { | Dateiordner
3 Dokumente
&) Musik axis2-16.2
B Videos <5 § | Dateiordner =
Dateiname: -
Dateityp: [Z[P documents (.zip) (*.zip) v]
“ Ordner ausblenden [Speichern] [Abbrechen]

Abbildung 3.4.1 Name und Speicherort bestimmen
3.5 Usability

3.5.1 Panning und Zoom
Da mit dem Editor Prisentation meistens so grofl werden konnen, dass sie nicht auf einen

Bildschirm passen, ist es notwendig, gewisse Techniken anzuwenden. Um trotz Platzmangel
effektiv arbeiten zu konnen

Mit dem Zoomen kann der Benutzer die Darstellung der aktuellen Seite der Présentation
vergroBern oder verkleinern. Die Objekte behalten ihre Eigenschaften, wie Hohe oder Breite,
damit sich der Benutzer, ohne miihseliges Scrollen, einen Gesamtiiberblick verschaffen kann.
Die Zoomreichweite liegt zwischen 1% und 100 % der Originalgrofe.

Unter Panning versteht man in diesem Fall, das automatische Verschieben der Scrollleisten,
wenn man den Mauszeiger in die gewiinschte Richtung bewegt. Bei einer sehr gro3en Seite
auf einem relativ kleinen Bildschirm ist es sehr miihselig ein Objekt {iber die gesamte Seite zu
verschieben. Wenn man das Ende des Bildschirms erreicht hat, muss man zuerst in die
gewiinschte Richtung scrollen, das Objekt wieder verschieben, solange bis man die richtige
Stelle erreicht hat. Mit Panning wird man automatisch in die Richtung gescrollt, in die man
das Objekt verschiebt oder den Mauszeiger bewegt. Der Editor kann das Panning mit
gedriickter ,,Leertaste ausfiihren.

16

Wb herver drackh Dalei Server dnsicht

AOS - H = Theie - B OEF b X AOE -0 W Tl = BOF 3 d X

A

Abbildung 3.5.1.1 Zoomen

3.5.2 Verschachtelte Meniis

Aufgrund des begrenzten Platzes auf der Benutzeroberfliche, miissen die
Bedienungsmoglichkeiten, wie Datei speichern, Datei laden usw., unter einem Oberbegriff
zusammengefasst werden. Beim Aufruf einer Schaltfliche, die als Oberbegriff fiir die
untergeordneten Funktionen fungiert, 6ffnet sich eine Schaltfliche mit Unterfunktionen.
Solange der Aufruf nicht erfolgt ist diese Schaltfliche nicht sichtbar. So wird der Platz fiir
wichtigere Elemente freigehalten, solange diese Optionsmoglichkeiten nicht aufgerufen
werden. Wenn man dann diese Optionen letztendlich einsehen und aufrufen will, klickt man
zum Beispiel auf die Schaltfliche Datei und es Offnet sich das Fenster mit mehreren
Optionen, wie Datei speichern, Datei 6ffnen oder Datei drucken, die aufgerufen werden
konnen. Solange jedoch die Prisentation erstellt wird, sind diese Optionen nicht sichtbar und
verbrauchen den wertvollen Platz auf einem Bildschirm nicht.

3.5.3 Anpassung der Bedienungsfliche der Anwendung an Fenstergrofe
Der Editor enthidlt viele Elemente wie Buttons, Meniis, Editierfliche(Canvas) oder

Texteingabefelder. Wenn man das Anwendungsfenster maximiert, mochte der Benutzer, dass
nur bestimmte Objekte mit vergroBert werden. Elemente wie Buttons oder Meniileisten sollen
ihre Originalgrof3e behalten und die Editierfldche, in der die Présentation erstellt werden soll,
soll automatisch an die FenstergroBe angepasst werden. Dadurch erhdlt man bei der
Maximierung des Anwendungsfensters mehr Editierfliche, was die Erstellung der
Prisentation einfacher macht.

17

4 Kommunikationskomponenten

4.1 Aufbaustruktur einer Powerwall

a ﬂ Projektoren

Powerwall

Steurungskontrolle

Abbildung 4.1.1 Aufbaustruktur einer Powerwall mit dazugehorigen Komponenten

In Abbildung 4.1.1 sieht man die Aufbaustruktur einer Powerwall mit dazugehorigen
Komponenten. Die Steuerungskontrolle sendet die Informationen an die Rechner. Diese
Informationen werden auf den Rechnern gerendert und mit Hilfe von Projektoren auf die
Powerwall projiziert. In dieser Arbeit lduft auf der Steuerungskontrolle der Server, mit dem
sich die Client, die auf den Rechnern laufen, verbinden konnen. Nachdem Informationen
gesendet sind, werden diese nach dem Rendern von den Projektoren auf die Powerwall

projiziert.

18

4.2

Server-Client-Model

| Datei laden

Datei sendean

Dabei empfangen und sichem

Ll

Daabei entpacken, Offset berechnen und anzeigen

wr -0er zuriickblattarn

wir -oder rurdckilBtlem

]

beenden

Client beenden

1 Sarver Sioppen :

_ [

Abbildung 4.2.1 Ubersicht des Server-Client-Modells

19

Der Server kann mit mehreren Clients kommunizieren [20]. Da jedoch jede einzelne Server-
Client-Verbindung gleich ist, zeigt die Abbildung 4.1.1 nur die Kommunikation mit einem
Client.

Wenn der Server gestartet wird, sucht der Benutzer die Prisentation aus, die zum Client
iibertragen werden soll. Falls sich ein oder mehrere Clients eine Verbindungsanfrage an den
Server schicken, antwortet er, indem er die Datei mit der Présentation iibertrdgt. Auf der
Clientseite wird die Datei empfangen und im eigenen Verzeichnis gespeichert. Danach
entpackt der Client die Prisentation, berechnet den Offset und zeigt die Prasentation an. Jetzt
kann man tber den Server Befehle an den Client senden. Diese Befehle dienen dazu, die
Prasentation auf der Clientseite durchzubléttern. Falls erwiinscht, kann der Befehl zur
Beendigung der Kommunikation gesendet werden. Nachdem Erhalt dieses Befehls wird die
Verbindung geschlossen und die Clientanwendung beendet. Auf der Serverseite beendet der
TcpListener den Lauschvorgang, entfernt alle Clientinformationen aus der Liste und ist dann
bereit erneut gestartet zu werden.

4.3 Server

Nachdem eine Présentation erstellt wurde, miisste diese an einen Client {ibertragen werden,
sodass sie dann an einer Powerwall angezeigt werden kann. Zuerst sind jedoch die
Moglichkeiten zur Netzwerkkommunikation zu betrachten. Es gibt zahlreiche Optionen, wie
TcpListener, Socket, WCF-Webservices, RCP usw. In dieser Arbeit hat man sich aufgrund
einfacher Netzwerkarchitektur auf zwei Optionen beschriankt. Auf der einen Seite hat man die
Klasse System.Net.Sockets.TcpListener, kurz TcpListener, auf der anderen Seite
System.Net.Sockets.Socket oder abgekiirzt Socket. Die beiden Varianten stellen eine Anzahl
an Methoden und Eigenschaften zur Netzwerkkommunikation bereit [21].

Die TcpListener-Klasse iiberwacht eingehende Verbindungsanfragen und nimmt diese an,
falls es erwiinscht ist. Man erstellt einen TcpListener, indem man ihm einen IPEndPoint
iibergibt. Dieser IPEndPoint besteht aus einer IP-Adresse und Portnummer. Man kann statt
einer bestimmten IP-Adresse eine Konstante Any iibergeben, dann hort der TepListener nicht
eine bestimmte [P-Adresse ab, sondern beliebig viele. Mit der Methode Start() beginnt der
TepListener nach den eingehenden Verbindungen zu lauschen. Diese Verbindungen werden
in eine Warteschleife verwiesen. Mit der Methode Stop() hort der TcpListener auf die
eingehenden Verbindungen zu iiberwachen. Mit BeginAcceptTcpClient() wird eine
Verbindung aufgerufen und dann aus der Warteschlange entfernt [22].

TcpListener lis = new TcpListener(IPAddress.Any, 2509);
lis.Start();
lis.BeginAcceptTcpClient(Parameter),

//mache was
lis.Stop()

Listing 4.3.1 TcpListener

Die Socket-Klasse kann entweder ein verbindungsorientiertes Protokoll, wie TCP benutzen
oder ein verbindungsloses Protokoll, wie UDP, verwenden. Mit einem
verbindungsorientierten Protokoll stellt die Socket-Klasse die Listen-Methode bereit, mit der
sich die eingehenden Verbindungen iiberwachen lassen konnen. Mit den Methoden Send oder
Receive konnen sie Daten senden. Beim verbindungslosen Protokoll ist keine

20

Uberwachungsmethode fiir eingehende Verbindungen nétig. Mit der Methode SendTo konnen
Daten gesendet werden [23].

Socket soc = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp),
soc.Listen();

Listing 4.3.2 EinTCP/IP-Socket

Beide Klassen eignen sich fiir die Konfiguration eines Servers. Der TcpListener ist jedoch bei
einfacher Netzwerkkommunikation, gemdll zahlreicher Erfahrungsberichte leichter im
Umgang.

4.4 Client

Auch beim Client hat man eine Wahl zwischen der Klasse Socket und der Klasse TcpClient.
Da die Wahl beim Server fiir TcpListener gefallen ist ist die Wahl der Klasse TcpClient eine
logische Konsequenz. Dadurch hat man eine bessere Anpassung zwischen Server und Client,
die beide auf dem TCP-Protokoll laufen.

Nachdem eine Verbindung zwischen Server und Client hergestellt wurde, stellt sich die Frage,
ob man die ganze Prisentation auf einmal {bertragt oder nur die aktuelle Folie der
Préasentation. Die Moglichkeit, nur die aktuelle Folie zu iibertragen, hat den Vorteil, dass man
am Anfang der Présentation nur aktuelle Folie libertrdgt und so die Sendelast relativ gering
hélt. Auflerdem lassen sich die Folien wéhrend der Pridsentation verdndern. Hier wird einem
die Option freigehalten, wihrend der Présentation wichtige Anmerkungen hinzuzufiigen oder
Fehler beseitigen zu konnen. Der Nachteil ist, dass jede Folie einzeln gesendet werden muss.
Bei groBeren Folien mit mehreren Bildern dauert es ldnger. Dadurch muss man im
schlimmsten Fall auf die nichste Folie warten, was den Fluss der Prisentation stort und die
Zuhorer unndtig ablenkt. Die andere Moglichkeit ist es ist die gesamte Pradsentation auf
einmal zu senden, wenn sich der Client mit dem Server verbindet. Der Nachteil besteht darin,
dass am Anfang eine grofere Sendelast anfillt, weil die gesamte Présentation auf einmal
gesendet wird. Auf der anderen Seite hat man den Vorteil, dass wihrend der Présentation
keine Folien gesendet werden miissen, sondern nur ein Befehl zum vor -oder zuriickblattern.
Das erlaubt die Sendelast wihrend der Pridsentation gering zu halten. Dadurch wirkt die
Prisentation fliissiger. Die Moglichkeit, die gesamte Prisentation auf einmal zu senden, ist in
diesem Fall besser, da die Powerwall nur zum Vorfiihren einer Prisentation benutzt wird und
nicht zum Erstellen einer. Die anféngliche groBere Sendelast wird durch die niedrigere
Sendelast wahrend der Priasentation ausgeglichen.

Weil die Powerwall aus mehreren Displays besteht und jedes Display genau einem Rechner
beziehungsweise Client entspricht, muss man dafiir sorgen, dass alle Displays zusammen ein
gemeinsames Bild zeigen und nicht den gleichen Ausschnitt. Dafiir wird ein Offset fiir jeden
Client definiert. Der Offset wird grof3er, je weiter sich der Display rechts im Gesamtverbund
der Displays befindet. Wenn sich die Clients in einer bestimmten Reihenfolge verbinden,
kann man anhand dieser Reihenfolge den Offset jeweils so berechnen, dass am Ende das
Gesamtbild korrekt wiedergegeben wird. Zum Beispiel wiirden sich die Clients von links nach
rechts mit dem Server verbinden, wiirde dem ersten Client der Offset = 0 und den weiteren
Client immer grofere Offsets zugewiesen. In diesem Fall ist die Reihenfolge der
Verbindungen zufillig. Somit fillt diese Moglichkeit aus. Die bessere Option wire, die
wichtigen Daten in einer Datei abzuspeichern. Bei der Darstellung der Prasentation wiirde der
Client auf diese Datei zugreifen und anhand bestimmter Kriterien, wie IP-Adresse oder Name,

21

den Offset fiir diesen Client bestimmen. Der Vorteil dieser Vorgehensweise ist, dass man nur
die Datei austauschen muss, um sich auf die neuen Konfigurationen einzustellen. Die
Notwendigkeit zur Quellcodemanipulation fillt aus.

22

S Zusammenfassung

Das Ziel dieser Studienarbeit war die Entwicklung einer Prasentationssoftware, die
speziell auf hochauflésende Powerwalls zugeschnitten ist. Der erste Teil der Aufgabe
bestand aus der Entwicklung eines Editors, mit dessen Hilfe eine Prasentation erstellt
werden kann. Diese Prasentation kann unterschiedlich formatierten Text, Pixelgrafiken
und einfache Vektorgrafiken (Linien, Quadrate, ..) enthalten. Die Objekte der
Prasentation konnen eingefiigt, positioniert und geloscht werden. Das verwendete
Dateiformat erlaubt die Speicherung aller Inhalte der Prdsentation in einer ZIP-Datei.
Fir die Kommunikation mit einer Powerwall enthalt der Editor eine Serverkomponente.
Diese ermdglicht, dass sich mehrere Clients, mit deren Hilfe man das Gesamtbild auf die
Powerwall projiziert, gleichzeitig verbinden konnen. Der Offset, der zur korrekten
Darstellung des Gesamtbildes fiir jeden einzelnen Client explizit berechnet werden soll,
wird in einer XML-Datei gespeichert. Beim Zeichnen der Prasentation greift jeder Client
auf die Datei zu und bestimmt anhand seines Rechnernamens seinen Offset. Das Bild
wird dann um diesen Offset versetzt, was zum korrekten Gesamtbild auf der Powerwall
filhrt.

23

Anhang

Im Anhang werden der Powerwalleditor und seinen Funktionen beschrieben. Es werden alle
Umgangsmoglichkeiten beschrieben und die Funktionsweise des Editors dem User erklrt.

Ubersicht

-

'’
B MainWindow == ﬂ

Datei Server Ansicht

AD@ = @ 10 = * AliceBlue - a « 2> + X | i 2

m

Abbildung 6.1 Editoriibersicht

In Abbildung 6.1 sieht man das Design des Editors. Mit Hilfe des Editors kann man
verschiedene Objekte, wie Ellipsen, Rechtecke erzeugen oder Linien zeichnen. Auflerdem ist
es moglich beliebig viele TextBoxen zu platzieren, um Texteingabe zu ermdglichen. Dieser
Text kann formatiert werden, indem man die TextgroBen oder Schriftart veréndert.
Desweiteren ist es moglich von der Festplatte ein oder mehrere Bilder in PNG-Format zu
laden. Alle diese Objekte konnen dann auf der Folie an der aus gewéhlten Position platziert
werden. Zuerst klickt man auf das gewlinschte Objekt und dann an die Position, an der das
Objekt positioniert werden soll. Falls ndtig kann man mit der Schaltfliche Neue Seite weitere
Folien erzeugen und so eine Pridsentation aufbauen. Unndtige Seiten konnen mit der
Schaltflache Seite l6schen entfernt werden. Weiterhin kann man mit den Schaltflichen Zuriick
und Vor durch die Prasentation bldttern. Unter dem Menli Menii - Datei 2 Speichern kann

die Prisentation persistent gespeichert werden und bei Bedarf im Menii = Datei = Offnen
wieder laden.

24

Objekte erzeugen

p
B MainWindow

Abbildung 6.2 Objekte erzeugen und platzieren

In Abbildung 6.2 sind Optionen zum Auswidhlen und Platzieren von Objekten rot markiert.
Von links nach rechts hat man folgende Optionen:

TextBox: In einer TextBox kann man Text eingeben und formatieren
Rechteck: Einen Rechteck erzeugen, platzieren und Grof3e verdndern
Ellipse: Eine Ellipse erzeugen, platzieren und GroB3e verdndern
Linie: Linie zeichnen

PNG-Bild: Ein Pixelbild in PNG-Format von einem Speichermedium laden und
platzieren

Diese Objekte konnen auf der Folie positioniert und danach an die Bediirfnisse des Users
angepasst werden, indem man sie an die richtige Stelle verschiebt und die Gré8e dndert.

In Abbildung 6.3 sieht man im blau markierten Bereich weitere Moglichkeiten zur
Formatierung. Von links nach rechts hat man folgende Optionen:

Textgrofe verdndern, gilt nur fiir TextBox
Schriftart verdndern, gilt nur fiir TextBox
Farbe verdndern, das gilt fiir TextBox und Objekte wie Rechteck oder Ellipse

25

Wie in Abbildung 6.3 zu sehen, kann man den Text formatieren, indem man Farbe,
Schriftgrofe und Schriftart d&ndert. Aber auch andere Objekte konnen modifiziert werden, wie
Abbildung anhand eines Rechtecks verdeutlicht.

~

B MainWindow

Datei Server Ansicht

AO®D - M Ilﬂl" T Coral 'Ia‘(")"'xlfz

T

H_k""--\..__
“‘\\Mﬂ-

m

Abbildung 6.3 Text und Objekte formatieren

Prisentation erstellen

Mit dem Powerwall-Editor hat man natiirlich auch die Moglichkeiten mehrere Seiten
innerhalb einer Prdsentation zu erstellen. Wie man in Abbildungen 6.4 und 6.5 sehen kann,
hat man folgende Optionen und Bearbeitungsmdoglichkeiten:

Zuriick: durch die Priasentation nach hinten bléttern

e Vor: durch die Priasentation nach vorne blittern
e Neue Seite: eine neue leere Seite wird am Ende der Priasentation eingefiigt

e Seite loschen: aktuelle Seite wird aus der Prasentation komplett entfernt, die gesamte
Seitenanzahl verringert sich um 1, AuBBer man hat die erste Seite ausgewdhlt, dann
wird nur der Inhalt geloscht und die Seitenzahl bleibt gleich.

o Seitenanzahl: aktuelle Seite und Gesamtanzahl an Seiten

Die Folien werden in einer Liste, die aus mehreren Canvas besteht, abgespeichert. Wenn man
durch diese Liste blittert, wird der Inhalt ausgewéhlter Seiten in einen Display-Canvas
geladen. Sobald man weiter bléttert, werden alle Verdnderungen abgespeichert und eine neue
Seite geladen. Mit der Schaltfliche Neue Seite wird ein neues Element am Ende der Liste
eingefligt. Dieses neue Element wird als neue leere Seite am Ende der Prdsentation

26

dargestellt. Bei Seite l6schen wird die Seite und das dazugehdrige Element aus der Liste
komplett entfernt.

”
B MainWindow

Datei Server Ansicht

AO® - &

Text hier eingeben

Text hier eingeben

Abbildung 6.4 Prisentation Seite 1/2

Datei Server Ansicht

AD® - B

Abbildung 6.5 Prisentation Seite 2/2

Speichern und Laden

Zum persistenten Abspeichern der Présentation geht man in der Meniileiste auf Datei 2
Speichern , siche Abbildung 6.6. Danach 6ffnet sich ein Fenster, indem man den Namen und
den Speicherort bestimmen kann, siche Abbildung 6.7.

_Dahﬁl Server Ansicht
Meu ... 18 = e Sans Serif ¥ ForestGreen + &3 € > + X |5, -

Offnen ..

Speichern

Drucken ...

Beenden

Abbildung 6.6 Speichern und laden

Die Prisentation besteht aus einer Liste und jedes Element dieser Liste entspricht einer Seite.
Beim Speichern wird jedes Element(beziechungsweise Seite in der Pridsentation) in eine
XAML-Datei umgewandelt. Diese XAML-Dateien werden alle in eine ZIP-Datei verpackt.
Alle Objekte wie Rechtecke oder Ellipsen sind in diesen XAML-Dateien enthalten. Die
einzige Ausnahme bilden die PNG-Bilder, bei welchen der Verweis auf das Bild gespeichert
wird, aber nicht das Bild selbst. Aufler dem Verweis werden auch die Position und Grof3e
abgespeichert. Damit werden die PNG-Bilder auch auf anderen PCs zur Verfligung gestellt
und explizit in die ZIP-Datei mitverpackt. Beim Offnen einer ZIP-Datei, die eine Prisentation
enthélt, werden die XAML-Dateien auf die Seiten gematched, die sie darstellen und die Bilder
werden dann neu verlinkt. Auerdem kann der Server im Meniipunkt Server gestartet und
wieder gestoppt werden. Im Meniipunkt Ansicht kann der Anwender Seitenansicht aufrufen
und FoliengroB3e bestimmen.

28

-

Organisieren » Meuer Ordner

SOOIy

'E:T Favoriten
- Dﬁktﬂp - Cumpu-ter
j Downloads Systemordner

Dropbox
%% Drop

B NE‘E‘W k

"5l Zuletzt besucht S =

e wstemordner
= i e .
|7 Bibliotheken Anwendungen

[Bilder l Dateiordner

Dokumente ,\

o' Musik j I axis2-16.2

B Videos = 4 Dateiordner

-

Dateiname: | (28]

-

Dateityp: | ZIP documents (zip) (*ip)

’

‘# Ordner ausblenden I Speichern

| | Abbrechen |

Abbildung 6.7 Name und Speicherort bestimmen

29

Literaturverzeichnis

[1]

[10]

[11]

T. Ni, G. S. Schmidt, O. G. Staadt, M. A. Livingston, R. Ball und R. May, ,,A Survey of
Large High-Resolution Display Technologies, in s IEEE Virtual Reality Conference,
Alexandria, 2006.

R. A. Ruddle, W. Fateen, D. Treanor, P. Sondergeld und P. Quirke, ,,Leveraging Wall-
sized High-Resolution Displays for Comparative Genomics Analyses of Copy Number

Variation,* in s IEEE Symposium on Biological Data Visualization, Atlanta, Georgia,
USA, 2013.

G. Buchanan, S. Farrant, M. Jones, H. Thimbleby, G. Marsden und M. Pazzani,
»Improving Mobile Internet Usability,” in s WWW1(0, Hong Kong, China, 2001.

Chris, ,,ifun,” ifun Apple-News seit 2001, 14 Méarz 2013. [Online]. Available:
http://www.ifun.de/apps-starten-suchen-und-vieles-mehr-der-mac-produktivitats-
boosteralfred-. [Zugriff am 13 Juni 2014].

G. W. Furnas, ,,Generalized Fisheye Views,* in s ACM Conference on Human Factors in
Computing Systems (CHI), Boston, Massachusetts, 1986.

H. S. Thompson, D. Beech, M. Maloney und N. Mendelsohn, ,,XML Schema Part 1:
Structures Second Edition,* W3C, 2004 Oktober 28. [Online]. Available:
http://www.w3.org/TR/xmlschema-1/. [Zugriff am 13 Juli 2014].

A. Kiihnle, Visual C# 2012. Das umfassende Handbuch, Bonn: Galileo Press, 2012.

W. Schmidt, ,,XAML Overview, Microsoft Developer Network, 23 April 2010.
[Online]. Available: http://msdn.microsoft.com/en-
us/library/cc189036%28VS.95%29.aspx. [Zugriff am 13 Juni 2014].

,Pixelausrichtung in WPF-Anwendungen, Microsoft Developer Network, November
2007. [Online]. Available: http://msdn.microsoft.com/de-
DE/dede/library/vstudio/aa970908%28v=vs.90%29.aspx. [Zugriff am 13 Juni 2014].

»~Exemplarische Vorgehensweise: Erstellen eines Layouts auf Grundlage der absoluten
Positionierung,* Microsoft Developer Network, November 2007. [Online]. Available:
http://msdn.microsoft.com/de-de/library/bb514508%28v=vs.90%29.aspx. [Zugriff am 13
Juni 2014].

D. Vuyka, ,,WPF. Simple adorner usage with drag and resize operations, Denis Vuyka
Research and Development, 15 Oktober 2007. [Online]. Available:
http://denisvuyka.wordpress.com/2007/10/15/wpf-simple-adorner-usage-with-drag-and-
resize-operations/. [Zugriff am 13 Juni 2014].

30

[12] Igkutikov, ,,Dragging Elements in a Canvas,* Code Project, 8 Juni 2012. [Online].
Available: http://www.codeproject.com/Articles/387977/Dragging-Elements-in-a-
Canvas. [Zugriff am 13 Juni 2014].

[13] ,,Image-Klasse,” Microsoft Developer Network, [Online]. Available:
http://msdn.microsoft.com/de-
de/library/system.windows.controls.image%28v=vs.110%29.aspx. [Zugriff am 13 Juni
2014].

[14] ,,Arrays,” Microsoft Developer Network, [Online]. Available:
http://msdn.microsoft.com/de-de/library/9b9dty7d.aspx. [Zugriff am 13 Juni 2014].

[15] ,,ArrayList-Klasse,* Microsoft Developer Network, [Online]. Available:
http://msdn.microsoft.com/de-
de/library/system.collections.arraylist%28v=vs.110%29.aspx. [Zugriff am 13 Juni 2014].

[16] ,,List<T>-Klasse,* Microsoft Developer Network, [Online]. Available:
http://msdn.microsoft.com/de-de/library/6sh2ey19%28v=vs.110%29.aspx. [Zugriff am
13 Juni 2014].

[17] Microsoft Developer Network, [Online]. Available: http://msdn.microsoft.com/de-
de/library/system.runtime.serialization.datacontractserializer%28v=vs.110%29.aspx.
[Zugriff am 13 Juni 2014].

[18] ,,XamlWriter-Klasse,* Microsoft Developer Network, [Online]. Available:
http://msdn.microsoft.com/de-
de/library/system.windows.markup.xamlwriter%28v=vs.110%29.aspx. [Zugriff am 13
Juni 2014].

[19] ,,XmlReader-Klasse,” Microsoft Developer Network, [Online]. Available:
http://msdn.microsoft.com/de-de/library/system.xml.xmlreader%28v=vs.110%29.aspx.
[Zugriff am 13 Juni 2014].

[20] S. Arouje, ,,Multi client Asynchronous TCP Server,” Sony Arouje Blog, [Online].
Available: http://sonyarouje.com/2011/11/25/multi-client-asynchronous-tcp-server/.
[Zugriff am 13 Juni 2014].

[21] ,,System.Net.Sockets-Namespace, Microsoft Developer Network, [Online]. Available:
http://msdn.microsoft.com/de-de/library/vstudio/system.net.sockets. [Zugriff am 13 Juni
2014].

[22] ,,TcpListener-Klasse, Microsoft Developer Network, [Online]. Available:
http://msdn.microsoft.com/de-de/library/vstudio/system.net.sockets.tcplistener. [Zugriff
am 13 Juni 2014].

[23] ,,Socket-Klasse,” Microsoft Developer Network, [Online]. Available:
http://msdn.microsoft.com/de-de/librarv/vstudio/svstem.net.sockets.socket. [Zugriff am

31

13 Juni 2014].

32

Erklarung

Ich versichere, diese Arbeit selbststindig verfasst zZu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt und alle wortlich oder sinngemaf
aus anderen Werken iibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen
Priifungsverfahrens.

Ich habe diese Arbeit bisher weder teilweise noch vollstindig verdffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren iiberein.

Stuttgart, den 15. Juli 2014

