
Institut für Architektur von Anwendungssystemen
Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3058

Planungsverfahren im scientific
Workflow Management

DianaPrzybylski

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Dimka Karastoyanova

Betreuer: Dipl.-Inf. Katharina Görlach

begonnen am: 13. Juli 2010

beendet am: 12. Januar 2011

CR-Klassifikation: H.4.1, I.2.9

Inhaltsverzeichnis

1 Einleitung 2
1.1 Einordnung in das Umfeld . 3
1.2 Motivation der Arbeit . 6
1.3 Zielsetzung der Arbeit . 6
1.4 Related Work . 8

2 Grundlagen 10
2.1 Web Service Description Language (WSDL) 10
2.2 Business Process Execution Language (BPEL) 10
2.3 Cloud Computing . 13
2.4 Planungsalgorithmen der künstlichen Intelligenz 14

3 Dynamische, verteilte Ausführung von BPEL-Prozessen 16
3.1 Allgemeiner Ablauf . 16
3.2 Berechnung der Datenkanten . 19
3.3 Fragmentierung . 21

3.3.1 Einführung . 22
3.3.2 Algorithmus . 23
3.3.3 Neufragmentierung . 31

3.4 Dynamisches Deployment . 31
3.4.1 Wiederholtes Dynamisches Deployment 33

3.5 Diskussion . 33

4 Implementierung 35
4.1 Benutzerschnittstelle . 35
4.2 Cloud Test-Umgebung . 36
4.3 Fragmentierung . 39
4.4 Planung . 43
4.5 Datenflussanalyse . 45

5 Zusammenfassung und Ausblick 47
5.1 Zusammenfassung der Ergebnisse . 47
5.2 Weiterführende Arbeiten und Ausblick . 48

A Anhang 50
A.1 Der Prozess ”auctionService“ . 50
A.2 Der Prozess ”shippingService“ . 53

1

Web Services, scientific Workflows und Cloud Computing sind wichtige,
aktuelle Forschungsgebiete ([1]). Die Ausführung von scientific Workflows
in einer Cloud hat den Vorteil der unbeschränkten Ressourcen durch die
Illusion unendlicher Rechenkapazität in der Cloud. Scientific Workflows, die
häufig Web Services aufrufen, können effizienter ausgeführt werden, wenn
diese großen Workflows in Teilprozesse (Fragmente) aufgeteilt werden, die
verteilt und dynamisch in der Cloud ausgeführt werden. Dies ist effizienter,
da auf eine Änderung der Infrastruktur reagiert werden kann, wenn es nötig
ist. Dies bedeutet entweder eine erneute Zuordnung eines Fragments ohne
Server auf einen anderen Server oder eine Refragmentierung eines zu großen
Fragments.

1 Einleitung

Scientific Workflows und die Nutzung von Clouds sind in der aktuellen Forschung wich-
tige Themengebiete [1]. Ein scientific Workflow ist ein spezieller Workflow, dessen cha-
rakteristische Merkmale die Berechnung eines wissenschaftlichen Problems und die lange
Ausführungsdauer sind. Cloud Computing stellt IT-Infrastrukturen (unter anderem Soft-
ware oder Ressourcen) vollautomatisch zur Verfügung, die eventuell über die ganze Welt
verteilt sind. Die Menge der Ressourcen beispielsweise kann dynamisch, der Nachfrage
entsprechend, angepasst werden. Aufgrund der Eigenschaften von scientific Workflows
ist es sinnvoll, diese in einer Cloud auszuführen, da es möglich ist, immer die nötigen
Ressourcen bereitgestellt zu bekommen. Um eine optimale Ausführung des Workflows
in der Cloud zu gewährleisten, ist es sinnvoll, die Workflows in einem ersten Schritt in
kleinere Teilworkflows oder Fragmente zu zerlegen. Diese können dann durch Anwen-
dung eines Planungsalgorithmus aus dem Bereich der künstlichen Intelligenz auf die zur
Verfügung stehenden Ressourcen in der Cloud gemappt werden. Durch die Aufteilung
des Workflows und die Nutzung eines Planungsalgorithmus ist es insbesondere möglich,
das Deployment der Workflowteile dynamisch zu gestalten. Somit kann die Ausführung
des Workflows optimal den aktuell verfügbaren Ressourcen angepasst werden. Darüber
hinaus kann auf Veränderungen der Infrastruktur zeitnah reagiert werden, indem je nach
Veränderung der Infrastruktur neue Teilworkflows erstellt werden oder die bereits vor-
handenen neu gemappt werden.

In diesem Kapitel wird die Arbeit grob vorgestellt. In Abschnitt 1.1 werden die nötigen
Grundlagen kurz dargelegt, worauf die Motivation dieser Arbeit in Abschnitt 1.2 und
deren Zielsetzung in Abschnitt 1.3 folgen. Dieses Kapitel wird von verwandten Arbeiten
(Abschnitt 1.4) abgeschlossen. In Kapitel 2 werden die grundlegenden Themengebiete,
die für diese Arbeit benötigt werden, genau betrachtet. In dem darauf folgenden Ka-
pitel 3 wird Augenmerk auf die konzeptionelle Lösung gelegt, die unter anderem die
Fragmentierung und die verteilte, dynamische Ausführung enthält. In Kapitel 4 ist die
Umsetzung der konzeptionellen Lösung zu finden. Abschließend werden in Kapitel 5
die Arbeit und ihre Ergebnisse zusammengefasst und ein Ausblick auf weitere mögliche
Arbeiten geboten.

2

1.1 Einordnung in das Umfeld

Zur Beschreibung dieses Prozesses, muss zuerst ein grundlegendes Wissen vorhanden
sein. Um dieses zu erlangen, werden im Folgenden die wichtigsten Themengebiete kurz
erläutert. Diese Gebiete umfassen die Service Oriented Architecture, Workflows, Work-
flow Management und scientific Workflows sowie Business Process Execution Language
(BPEL) und Web-Service Definition Language (WSDL). Sie hängen folgendermaßen zu-
sammen: Ein Workflow wird im technischen Sinne durch BPEL und WSDL implemen-
tiert. WSDL implementiert darüber hinaus auch SOA. Außerdem werden die künstliche
Intelligenz und Cloud Computing kurz vorgestellt.

Service Oriented Architecture (SOA) ist ein Architekturmuster, das Service Ori-
ented Computing (SOC) realisiert. SOC stellt ein Paradigma dar, das Services benutzt.
Services sind Funktionen, die an Netzwerk-Adressen zur Verfügung gestellt werden.
Durch die plattformunabhängigen Standards, die bei den Services verwendet werden,
ist es möglich, den Service von verschiedensten Plattformen aus aufzurufen und dabei
zum Beispiel auch unterschiedliche Kommunikationsprotokolle zu benutzen. Die Web
Service Technologie ist ein Standard- und Technologie-Stack, der SOA unterstützt.

Um die Funktionsweise von SOA zu verstehen, ist das SOA Dreieck hilfreich. Dieses
ist in Abbildung 1 zu sehen. Der Service Requestor ist auf der Suche nach einem Service,
den er mit Hilfe der Service Discovery findet. Die Service Discovery kennt den Service
Provider, der zuvor seinen angebotenen Service öffentlich gemacht hat. Hat der Service
Requestor nun den passenden Service gefunden, kann er die Funktionen des Services
aufrufen und benutzen. Die Services und deren Funktionen werden beschrieben, so dass
das Ergebnis der Funktion einsichtig ist, die Umsetzung, die dahinter steht, bleibt aber
verborgen.

Abbildung 1: SOA Dreieck

SOA ist die Grundlage für Workflows und Workflow Management. SOA stellt
verteilte, heterogene Dienste (Services) zur Verfügung. Sie sind lose gekoppelt, was be-
deutet, dass die Anzahl der Annahmen, die zwei Parteien beim Informationsaustausch
übereinander machen (beispielsweise wie viele Parameter in welchen Datentypen an die
aufgerufene Funktion übergeben werden müssen), reduziert ist.

Diese Services werden durch einen Workflow kombiniert. Ein Workflow implementiert
in den meisten Fällen einen Geschäftsprozess durch einen Graphen ([2]). Eine mögliche
Anwendung von Workflows und Workflow Management ist der Einsatz im Geschäftsbe-
reich. Die Dienste des Unternehmens können mit Hilfe von Workflows kombiniert werden.

3

Workflows beschreiben Abläufe eines Unternehmens entlang der gesamten Wertschöpf-
ungskette. Der Steuerung der Ablauffolge wird somit durch das Workflow Management
automatisiert. Darüber hinaus besteht die Möglichkeit, Arbeitsschritte, die automatisch
durch Programme oder Services erledigt werden können, direkt aus dem Workflow auf-
zurufen und sie auszuführen.

Ein Workflow kann durch einen Graphen dargestellt werden. Dabei sind Knoten ein-
zelne Aufgaben, die beispielsweise während eines Geschäftsprozesses ausgeführt wer-
den müssen. Kanten stellen die Abhängigkeiten zwischen diesen Aufgaben dar. Knoten
können Aufgaben (sogenannte Aktivitäten) ganz unterschiedlicher Art sein. Beispiels-
weise kann eine Aktivität nur beinhalten, dass eine Meldung erscheinen oder ein Zugriff
auf ein Medium getätigt werden muss. Diese Aktivitäten können automatisch ausgeführt
werden. Im Gegensatz dazu stehen Aktivitäten, die nur durch Menschenhand erledigt
werden können.

Scientific Workflows sind spezielle Workflows, die Fragestellungen der Wissenschaft
behandeln; genauer gesagt Berechnungen durchführen. Ihre Kennzeichen sind, dass sie
im Allgemeinen langlaufende Workflows sind, die nur einmal instantiiert werden und die
Funktionen, die sie nutzen, Web Services sind. Darüber hinaus sind sie datenzentriert
und verarbeiten große Datenmengen.

Um die Unterschiede zwischen Workflows und Scientific Workflows nochmals hervor-
zuheben, muss das Augenmerk speziell auf das Deployment und die Instantiierung gelegt
werden. Bei einem Workflow kommt das Deployment zeitlich vor der Instantiierung, die
wiederum beliebig oft durchgeführt werden kann. Bei einem scientific Workflow findet
das Deployment auch einmal statt, er wird aber meist nur einmal ausgeführt.

Workflow Management (siehe Abbildung 2) beinhaltet die Modellierung, die IT-Ver-
feinerung, das Deployment, die Ausführung und die Überwachung und Analyse der Über-
wachungsergebnisse von Workflows [2].

Während der Modellierungphase wird ein Prozess modelliert, der den zu beschreiben-
den Ablauf abbildet. In den Modellierungsprozess fließen zusätzlich die Key Performan-
ce Indicators (KPIs) ein. Sie gliedern sich in die Kategorien Kosten, Zeit, Qualität und
Flexibilität und werden oft für Vergleiche durch Metriken benutzt. Der Modellierungs-
prozess geschieht meist nicht auf der IT-Ebene, weshalb eine IT-Verfeinerung benötigt
wird, die das Modell verfeinert und ergänzt. Ist dieser Prozess abgeschlossen, folgt das
Deployment und die Ausführung des Prozesses. Von diesem Workflow werden so viele
Instanzen, wie nötig, erzeugt und ausgeführt. Die Ausführung wird überwacht, um den
Workflow nach einer Analyse der Ergebnisse zu verbessern. Die dadurch gewonnenen
Erkenntnisse können in der Modellierungsphase mit einbezogen werden. Somit kann der
Workflow iterativ verbessert werden.

BPEL ist eine Sprache, die den Workflow implementiert. WSDL hingegen ist eine
Sprache, die als Interface gesehen werden kann. Sie definiert Web Services, spezifiziert
den Ort des Services und seine Operationen.

Die Künstliche Intelligenz ist ein Fachbereich, der sehr viele Facetten und Anwen-
dungsgebiete hat. Zur künstlichen Intelligenz gehören unter anderem die Gebiete der
Wahrnehmung und Verarbeitung von Informationen, Fortbewegung und Bewegungs-
abläufe sowie das Planen von Abläufen. Die Planung findet beispielsweise in Compu-

4

Abbildung 2: Der Business Process Model Lebenszyklus

terspielen Verwendung. Wenn man gegen einen Schachcomputer spielt, reagiert dieser
durch Anwendung eines Planungsalgorithmus. Er erkennt den Spielzug, hat somit eine
neue Ausgangssituation, um sein Ziel zu erreichen und wählt den besten nächsten Zug
aus einer Menge von gültigen Regeln aus. Auch bei Computerspielen, die Menschen si-
mulieren, werden diese Algorithmen benötigt, um ihr Verhalten möglichst real wirken
zu lassen.

Die Planung und alle anderen Gebiete der künstlichen Intelligenz finden ihre Anwen-
dung in dem wohl bekanntesten Beispiel der künstlichen Intelligenz: der Robotik. Auf
dem Gebiet der Robotik wird Forschung betrieben, die Roboter immer menschen-ähnli-
cher machen soll. Hierzu gehören außer der Wahrnehmung und der Motorik vor allem die
Fähigkeiten, Entscheidungen aufgrund von Tatsachen zu treffen und das Handeln an die-
sen Tatsachen auszurichten. Um dies zu ermöglichen, werden neben anderen Algorithmen
auch Planungsalgorithmen eingesetzt. Sie verwenden Annahmen, die die Ausgangssitua-
tion beschreiben und ein definiertes Ziel haben. Auf der Basis dieses Wissens erstellen
sie einen Plan, um das Ziel zu erreichen. Treten während der Ausführung des Plans un-
vorhergesehene Ereignisse auf, ist es dem Planer möglich, einen anderen Weg des Plans
einzuschlagen, der nicht Teil der ursprünglichen Lösung war. Durch diese dynamische
Änderung kann er auf das unvorhergesehene Ereignis reagieren. Diese spezielle Art der
Planung ist die stetige Planung, die die Arbeit überwacht, bis sie beendet ist.

Cloud Computing stellt IT-Infrastrukturen zur Verfügung [3]. Im Speziellen kön-
nen dies Rechen-Ressourcen sein. Diese sind über die ganze Welt verteilt und können
dynamisch an den Bedarf der Benutzer angepasst werden. Dies ist die unterste der drei
Ebenen, die es im Cloud Computing gibt. Sie wird ”Infrastructure as a Service“ genannt.
Die zwei weiteren Ebenen sind ”Platform as a Service“ und ”Software as as Service“.

Durch die Bereitstellung von Ressourcen können eigene Ressourcen eingespart werden.
Darüber hinaus steht immer die nötige Menge an Ressourcen in der Cloud zur Verfügung.

5

1.2 Motivation der Arbeit

Die charakteristische Eigenschaften von scientific Workflows, die in dieser Arbeit adres-
siert werden, ist die lange Ausführungsdauer und eine daraus resultierende lange Reser-
vierung oder Benutzung von Ressourcen. Diese Eigenschaft spricht für eine Aufteilung
des Workflows in kleinere Teile (Fragmente), um diese Fragmente verteilt ausführen zu
können. Durch eine verteilte Ausführung der Fragmente werden Ressourcen kürzer be-
nutzt und schneller wieder frei gegeben. Alle Fragmente können auf unterschiedlichen
Servern ausgeführt werden, wodurch eine parallele Ausführung unterstützt und eventuell
beschleunigt wird.

Durch die Verwendung eines Planungsalgorithmus der künstlichen Intelligenz während
der Ausführung von scientific Workflows wird diese flexibler gestaltet und somit opti-
miert. Das Deployment kann durch den Planungsalgorithmus dynamisch angewendet
und zum spätest möglichen Zeitpunkt ausgeführt werden. Es wird eine optimale Ver-
teilung der Workflowfragmente auf die zur Verfügung stehenden Server erreicht, da vor
jedem Deployment überprüft werden kann, ob sich die Infrastruktur so verändert hat,
dass neu fragmentiert und geplant oder nur neu geplant werden muss.

1.3 Zielsetzung der Arbeit

In dem nachfolgend beschriebenen Ablauf wird die Fragmentierung und das stetige Pla-
nen zur Ausführung eines scientific Workflows in einer Cloud kombiniert.

Abbildung 3: Zielsetzung der Arbeit: Für die Fragmentierung wird ein Workflow und
Infrastruktur-Informationen der Cloud benötigt. Anschließend folgt das
Deployment der Fragmente auf die Server der Cloud. Das Deployment
erfolgt dynamisch; bei Änderungen der Infrastruktur kann darauf reagiert
werden.

6

Zu Beginn steht die Modellierung eines Workflows mit einem Modellierungswerkzeug
(siehe Abbildung 3). Der Workflow ist hierbei durch eine BPEL- und eine oder mehrere
WSDL-Datei(en) beschrieben. Nun wird er durch eine Fragmentierung in Teile zerlegt,
die in einer Cloud ausgeführt werden sollen. Die Fragmentierung wird aufgrund der
Struktur der BPEL-Datei durchgeführt. Sie teilt den Prozess, der durch die BPEL-Datei
beschrieben wird, in kleinere Teilprozesse, die nur Sequenzen von Basis-Aktivitäten, ein-
zelne alternative Zweige oder Schleifenkörper des ursprünglichen Prozesses enthalten
können. Alle Basis-Aktivitäten, die während der Fragmentierung vorkommen, werden
unverändert in die Fragmente übernommen. Die Ausführungsreihenfolge der Aktivitäten
bleibt erhalten. Während der Fragmentierung werden die Vorgänger- und Nachfolgerfrag-
mente jedes einzelnen Fragments festgehalten, damit die Ausführungsreihenfolge gewähr-
leistet werden kann.

Eine Komponente, die erst während des dynamischen Deployments zum Tragen kommt,
koordiniert die Übertragung der benötigten Daten zwischen den Fragmenten. Diese Kom-
ponente ist in Abbildung 3 bei der Planung mit inbegriffen. Ist hierbei die Menge der
Übertragung größer als ein fester Schwellwert, müssen diese beiden Fragmente auf einem
Server ausgeführt werden, damit die Daten nicht übertragen werden müssen, sondern
nur auf einem Server benötigt werden.

Ist die Fragmentierung abgeschlossen, kann das Deployment gestartet werden (sie-
he Abbildung 3). Zu Beginn müssen Informationen über die Größe der zur Verfügung
stehenden Server der Cloud und die Größe der Fragmente eingeholt werden. Diese In-
formationen werden zum Mapping der Fragmente auf die Server benötigt. Während des
Mappings wird für jedes Fragment zuerst ein Server passender Größe gesucht. Ist dieser
nicht vorhanden, wird der Server mit dem größten freien Speicherplatz für das Mapping
herangezogen. Ist für jedes Fragment ein Server gefunden worden, kann das Deployment
gestartet werden. Um die Fragmente zu erstellen, muss eine Deployment-Einheit erstellt
werden. Diese enthält das Prozessfragment, die zugehörige(n) WSDL-Datei(en) und die
von diesem Fragment aufgerufenen Services. Diese Services bestehen wiederum aus einer
oder mehreren WSDL-Datei(en) und der Implementierung. Die Aufgaben des Deploy-
ments sind, die Deployment-Einheiten in der richtigen Reihenfolge dynamisch auf die
gemappten Server zu legen und zu instantiieren. Das dynamische Deployment endet,
wenn alle Deployment-Einheiten und somit der gesamte Prozess erfolgreich ausgeführt
worden sind. Die Umsetzung des dynamischen Deployments wird durch die Anwendung
eines stetigen Planungsalgorithmus umgesetzt, der dafür verantwortlich ist, dass alle
Fragmente in der richtigen Reihenfolge korrekt ausgeführt werden. Da der Prozess mehr-
mals instantiiert werden kann, kann es auch mehrere Instanzen der Fragmente geben.
Die Instanzen eines Fragments sind immer jeweils genau einem Prozess zugeordnet.

Es ist während des dynamischen Deployments möglich, dass sich die Infrastruktur
der Cloud verändert, zum Beispiel weil das dynamische Deployment sehr lange läuft.
In diesem Fall ist es möglich, dass sich die Verfügbarkeit der Server in der Cloud oder
deren Größe ändert. Wenn durch diese Änderung ein Fragment, das auf einen Server
gemappt wurde, nicht mehr auf diesem Server ausgeführt werden kann, muss die Größe
dieses Fragments erneut betrachtet werden. Ist diese größer als der Gesamtspeicher des
größten Servers, wird die Fragmentierung neu ausgelöst. Bei dieser Fragmentierung muss

7

darauf geachtet werden, dass das Fragment nun so aufgeteilt wird, dass die entstehenden
Fragmente kleiner als der Gesamtspeicher des größten Servers sind. Ist die Größe des
Fragments aber kleiner als der Gesamtspeicher des größten Servers, wird das dynamische
Deployment erneut ausgeführt, um für dieses Fragment einen anderen Server zu finden.

1.4 Related Work

Die bisherigen Ansätze in der Literatur befassen sich größtenteils nur mit der Frag-
mentierung oder Planung. Die Fragmentierung ist aus vielen verschiedenen Blickwinkeln
betrachtet worden. Diese Arbeiten werden in Kapitel 3.3.1 genauer beleuchtet.

In Arbeit [4] ist die Fragmentierung nicht mehr das Thema. Hier geht es um Dy-
namik in Workflows. Es soll möglich sein, auf Änderungen des Modells reagieren zu
können. Diese Änderungen müssen an den Workflows vorgenommen werden, bei denen
das Deployment schon stattgefunden hat. Dieser Workflow ist als Petri-Netz repräsen-
tiert. Auf Änderungen zu reagieren bedeutet, dass es Regionen im Workflow gibt, die
verändert werden müssen. Dazu werden diese Regionen identifiziert. Sie sollten so schnell
wie möglich durch die Regionen mit den enthaltenen Änderungen ersetzt werden. Eine
Gemeinsamkeit zu dieser Arbeit ist die Reaktion auf Änderungen. Eine Änderung hat
in den beiden Ansätzen aber unterschiedliche Auswirkungen. Dieser Ansatz reagiert bei
einer Änderung mit einer erneuten Planung oder Fragmentierung, wohingegen die Me-
thode aus [4] diese Änderung in alle bestehenden Workflows einbringt. Aus diesem Grund
können diese beiden Ansätze nicht verglichen werden und haben als einzige Gemeinsam-
keit die Reaktion auf Veränderungen.

Ansatz [5] wendet KI-Planungsverfahren auf Workflows an. Er bearbeitet Benutzeran-
fragen, die einen Zugriff auf autonome und heterogene Datenquellen benötigen. Die Um-
setzung besteht aus einem Mediator, der Zugriff auf diese Daten bietet. Der Zugriff
ist durch eine globale Anfragesprache möglich. In diesem Ansatz wird der Zugriff auf
verschiedene Datenquellen durch Anwendung eines Mediators aus der künstlichen Intel-
ligenz gewährleistet. Der Mediator, der in Ansatz [5] verwendet wird, hat Ähnlichkeit mit
einem Workflow Management System, da auch dieses heterogene Aufrufe bewerkstelligen
muss. Auch der Zugriff auf autonome und heterogene Datenquellen hat Ähnlichkeiten
mit SOA. Da aber keine Planungsalgorithmen verwendet werden, sondern ein Mediator
aus dem Bereich der künstlichen Intelligenz und auch keine Fragmentierung vorgenom-
men wird, sind mehr Unterschiede als Parallelen zu diesem Ansatz zu finden.

Im Folgenden werden die Ansätze betrachtet, die sich mit der Planung oder allge-
mein der künstlichen Intelligenz befassen und Ähnlichkeiten mit dem hier gewählten
Vorgehen haben. Der Algorithmus aus dem Ansatz von [6] fragmentiert einen Workflow
und führt ihn verteilt aus. Ein Workflow ist in einem oder mehreren Agenten gekap-
selt. Diese befinden sich an unterschiedlichen Standorten und kooperieren miteinander.
Für die Umsetzung wird eine Technik angewendet, die den Workflow fragmentiert und
die Fragmente in Agenten kapselt. Bei diesem Ansatz werden Agenten der künstlichen
Intelligenz verwendet. Eine Gemeinsamkeit ist in der Kapselung des Workflows in unter-
schiedliche Teile zu sehen. Da die Teile aber nicht aufgrund der Struktur des Workflows
hergestellt werden, sondern so, dass verwandte Aufgaben zusammengefasst werden, ist

8

der Algorithmus nicht mit der Fragmentierung dieser Arbeit zu vergleichen.
Pegasus [7] befasst sich auch mit der Fragmentierung und verteilter Ausführung von

Workflows. Es bearbeitet auf der Grundlage spezieller Verteilungs- und Ausführungs-
kriterien Aufgaben, die in Grids ausgeführt werden. Diese beiden Ansätze haben die
Ausführung, die durch eine Planung durchgeführt werden und die vorangestellte Frag-
mentierung gemeinsam. Die Ausführungsumgebung ist aber eine andere und der Frag-
mentierung liegen andere Regeln zugrunde.

Arbeit [8] fällt auf, da in diesem Ansatz Dynamik durch Planungsverfahren hinzu-
kommt. Der Ansatz plant die Ausführung eines Workflows, reagiert während der Aus-
führung auf Änderungen und plant gegebenenfalls neu. Hierzu werden die tatsächlichen
Ergebnisse eines Teilschritts mit den erwarteten Ergebnissen verglichen. Bei einem un-
erwarteten Ergebnis wird dieses analysiert. Ist das Ergebnis nicht akzeptabel, so wird
eine Neuplanung ausgelöst. Die in diesem Ansatz angewendeten Planungsalgorithmen
unterscheiden sich von diesen, die in diesem Ansatz Verwendung finden, da eine ande-
re Planungsaufgabe ausgeführt wird. Die gegebene Aufgabe wird mit Hilfe des partiell
ordnenden Planens und der Neuplanung gelöst. In dem hier angewendeten Ansatz wird
stetige Planung angewendet, um auf Änderungen der Infrastruktur reagieren zu können.
Darüber hinaus wird in dieser Arbeit keine vorangestellte Fragmentierung angewendet.

9

2 Grundlagen

In diesem Kapitel werden die nötigen Grundlagen betrachtet. Diese umfassen Web Ser-
vice Description Language (WSDL), Business Process Execution Language (BPEL),
Cloud Computing und die Planungsalgorithmen der künstlichen Intelligenz.

2.1 Web Service Description Language (WSDL)

WSDL wird benutzt, um Web Services zu definieren. In einer WSDL-Datei wird der
Ort des Web Services und die Operationen, die der Service bereitstellt, spezifiziert. Das
Dokument besitzt XML-Struktur und enthält eine Menge von Definitionen, die den Web
Service beschreiben. Diese Informationen sind abstrakt, die konkreten Informationen,
also die Implementierung der Services, sind beispielsweise in einer BPEL-Datei (BPEL
siehe Abschnitt 2.2) enthalten. Durch dieses Design ist die abstrakte Funktionalität von
den Details der Service Beschreibung getrennt. Die Hauptelemente sind:

• Types: hier werden die benötigten Datentypen definiert

• Message: die auszutauschenden Daten werden hier abstrakt definiert

• Operation: hier sind die abstrakten Aktionen aufgelistet, die vom diesem Service
unterstützt werden

• Port Type: Spezifikation der Menge der Operationen, die von einem Endpoint
(Punkt, beispielsweise ein Prozessor oder eine Entität, zu dem Nachrichten ge-
schickt werden können) unterstützt werden

• Binding: konkretes Protokoll und Datenformat, um einen Port Type zu implemen-
tieren

• Port: einzelner ”Endpoint“ der von einer Netzwerkadresse identifiziert wird, die
ein bestimmtes Binding unterstützt

• Service: Sammlung von (verwandten) Endpoints

2.2 Business Process Execution Language (BPEL)

Web Services Business Process Execution Language (BPEL) ist eine Sprache zur Spezifi-
kation des Verhaltens von Geschäftsprozessen. BPEL ist eine Kombination einer graph-
basierten und einer rechen-basierten Sprache, da BPEL aus den Sprachen IBM WSFL1

(graph-basierte Sprache) und Microsoft XLANG2 (rechen-basierte Sprache) entstanden
ist.

In BPEL gibt es strukturierte und nicht-strukturierte (oder Basis-)Aktivitäten. Diese
werden im Folgenden genauer erläutert. Die nicht-strukturierten Aktivitäten enthalten
keine anderen Aktivitäten.

1http://xml.coverpages.org/wsfl.html
2http://msdn.microsoft.com/en-us/library/aa577463%28v=bts.70%29.aspx

10

Zu ihnen gehören:

• receive: Receive empfängt eine Nachricht, die in einer Variablen gespeichert wird.
Receive kann eine neue Prozessinstanz instantiieren.

• reply: Reply versendet eine Nachricht. Diese Nachricht stellt die Antwort einer
synchronen Kommunikation dar und antwortet somit auf ein vorangegangenes Re-
ceive.

• invoke: Invoke wird benutzt, um einen Web Service aufzurufen. Typischerweise
ruft ein Invoke eine Operation des Services auf.

• assign: Assign weist einer Variablen einen Wert zu. Dieser kann in einem Assign
berechnet werden oder durch Manipulation einer anderen Variablen entstehen. Die
Operation hat einen from-Teil, der angibt von wo der Wert kopiert werden soll und
einen to-Teil, in dem steht, wohin der Wert geschrieben wird.

• empty: Empty ist ein Platzhalter und stellt eine leere Operation dar.

• exit: Diese Aktivität beendet den Prozess.

• throw: Throw signalisiert explizit interne Fehler eines Geschäftsprozesses.

• rethrow: Rethrow propagiert Fehler weiter, die in einem Fault Handler gefangen
wurden.

• wait: Verzögert die Ausführung für eine bestimmte definierte Zeitspanne oder bis
ein definierter Zeitpunkt erreicht ist.

Zu den strukturierten Aktivitäten gehören:

• Flow: Ein Flow ist ein Konstrukt, in dem mehrere Aktivitäten enthalten sein
können. Aktivitäten, die nicht durch Links verbunden sind, können parallel aus-
geführt werden. Aktivitäten, die mit Links verbunden sind, müssen in einer be-
stimmten Reihenfolge ausgeführt werden. Ein Link hat eine Source- oder Ur-
sprungsaktivität und eine Target- oder Zielaktivität. Eine Source ist eine ausge-
hende Kante einer Aktivität und Target eine eingehende Kante.

• Sequence: Aktivitäten, die in einer Sequence enthalten sind, müssen sequenziell
in der spezifizierten Reihenfolge ausgeführt werden. Es ist aber durchaus möglich,
dass eine Sequence beispielsweise einen Flow oder eine andere Aktivität enthält,
die wieder Aktivitäten enthalten, die parallel ausgeführt werden können.

• Scope: Ein Scope unterstützt den Kontext, der das Ausführungsverhalten der ent-
haltenen Aktivitäten beeinflusst.

• If: If ist eine Aktivität, das eine Alternative des möglichen Kontrollflusses her-
beiführt. Bei einem If gibt es zwei oder mehrere mögliche Pfade. Je nachdem, wie
die Bedingung, die an das If geknüpft ist, ausgewertet wird, wird ein bestimmter
Pfad zur Ausführung gewählt.

11

• Repeat Until: Repeat Until ist eine Schleife, die ausgeführt wird, bis die Abbruch-
bedingung wahr wird. Die Besonderheit bei dieser Schleife ist, dass die Abbruchbe-
dingung am Schleifenende überprüft wird. Aus diesem Grund wird sie mindestens
ein Mal ausgeführt.

• While: While ist eine Schleife, die ausgeführt wird, bis die Abbruchbedingung
wahr wird. Der Unterschied zu Repeat until besteht darin, dass die Abbruchbedin-
gung am Anfang des Schleifendurchlaufs ausgewertet wird. Es ist möglich, dass die
Schleife nicht ausgeführt wird, wenn die Abbruchbedingung zu Beginn schon als
wahr ausgewertet wird.

• For Each: Einer For Each Schleife kann sequenziell oder parallel ausgeführt wer-
den. Die Anzahl, wie oft der Körper ausgeführt wird, richtet sich nach einem de-
finierten Start- und Endwert. Wenn die Completion Condition wahr wird, kann
die Ausführung abgebrochen werden, obwohl der Endwert noch nicht erreicht ist.
Soll die For Each Schleife sequenziell ausgeführt werden, müssen alle Schleifen-
durchgänge nacheinander ausgeführt werden. Soll die Schleife aber parallel aus-
geführt werden, kann jeder Durchlauf einzeln und somit parallel zu den ande-
ren Durchläufen ausgeführt werden. Dies ist nur möglich, wenn sich die einzelnen
Durchläufe nicht gegenseitig beeinflussen und der Zählwert für jeden Schleifen-
durchgang korrekt gesetzt wird.

• Pick: Pick wartet darauf, dass ein Event eintrifft, das in einer Menge definierter
Events enthalten ist. Alle Events, die in der Menge enthalten sind, können eintref-
fen. Sobald das erste Event eingetroffen ist, werden alle weiteren Events ignoriert.
Das eingetroffene Event ist ausschlaggebend dafür, welche Aktivität angestoßen
wird. Somit ist eine Alternative aus allen möglichen Kontrollflüssen ausgewählt
worden.

BPEL beinhaltet weitere Konstrukte (Isolated Scopes, Message Exchange Handling, Er-
ror Handling, Compensation Handlers, Fault Handlers, Termination Handlers, Event
Handlers), die hier nicht beachtet werden.

In einem Prozess werden Aktivitäten in einer bestimmten Reihenfolge ausgeführt.
Dies ist der Kontrollfluss. Durch den Kontrollfluss sind die Aktivitäten miteinander
verbunden und müssen in der vorgeschriebenen Reihenfolge ausgeführt werden. Wenn
der Ablauf des Workflows in einem DAG dargestellt ist, sind die Kanten der Kontrollfluss
und die Knoten die Aktivitäten. Nun kann es bei der Navigation durch einen solchen
Graphen dazu kommen, dass die Bedingung einer Kante zu ”falsch“ ausgewertet wird. In
einem solchen Fall wird der oder die Knoten (bei Workflows auch Aktivitäten genannt)
unter Umständen nicht ausgeführt, die durch diese Kante aus erreichbar sind. Da bei
der Ausführung eines Knotens aber jede eingehende Kante ausgewertet wird, kann es
durchaus sein, dass folgende Knoten wieder ausgeführt werden, obwohl eine Kante als

”falsch“ ausgewertet wurde. Die Auswertung der eingehenden Kanten erfolgt nach einer
Bedingung. Ist diese Bedingung unter Berücksichtigung aller eingehenden Kantenwerte
falsch, wird der Knoten nicht ausgeführt. Ist die Bedingung hingegen wahr, wird er

12

ausgeführt. Aufgrund der Tatsache, dass für die Bestimmung, ob ein Knoten ausgeführt
wird oder nicht, alle Kanten ausgewertet werden müssen, muss abgewartet werden, bis
alle Kantenbedingungen einen Wert erhalten haben. Aus diesem Grund ist es sinnvoll
und für die weitere Ausführung des Geschäftsprozesses auch notwendig, ein ”falsch“
weiterzugeben, um alle folgenden Bedingungen auswerten zu können. Diese Methode
heißt Dead Path Elimination.

2.3 Cloud Computing

Cloud Computing stellt voll automatisiert IT-Infrastrukturen zur Verfügung. IT-Infra-
strukturen bezeichnen unter anderem Maschinen oder Programme, die den Betrieb von
beispielsweise Software ermöglichen. Die IT-Infrastruktur befindet sich unter der Ebene,
in der eine Software ausgeführt wird und trägt zur automatisierten Informationsver-
arbeitung bei. Diese Infrastruktur kann über alle Kontinente verteilt sein. Die Menge
von bereitgestellten Ressourcen kann ja nach Bedarf dynamisch angepasst werden. Sind
bestimmte Rechner momentan nicht Teil einer Cloud, die Cloud braucht aber mehr Res-
sourcen, können so viele Rechner wie nötig hinzugenommen werden. Auf diese Weise ste-
hen immer genügend Ressourcen zur Verfügung, sie müssen aber nicht ungenutzt in der
Cloud verbleiben, da sie in diesem Fall aus der Cloud entfernt werden würden. Dadurch
kann einem Nutzer die Bereitstellung von unendlichen Ressourcen vorgespielt werden.
Dies hat zur Folge, dass es keine Beschränkung der Ressourcen gibt und die geforderte
Menge von Ressourcen immer zur Verfügung gestellt werden kann. Dies ermöglicht eine
Einsparung der eigenen Ressourcen.

Falls in einer Cloud Anwendungssoftware zur Verfügung gestellt wird, ist diese stets
auf dem neusten Stand. Ein Benutzer muss nicht selbst ein Update installieren, sondern
nutzt in der Cloud immer die aktuelle Version. Die Nutzung der Cloud ist gebühren-
pflichtig, aber nur die Zeit der Nutzung muss bezahlt werden. Der Erwerb von Lizenzen
entfällt völlig. Dies bringt einen Kostenvorteil mit sich, da nur die tatsächliche Nutzung
berechnet wird.

Es gibt drei Typen von Clouds. Der erste hier aufgeführte Typ beschreibt die unterste
Ebene einer Pyramide. Diese Ebene stellt reine Ressourcen durch virtuelle Server zur
Verfügung, die nicht konfiguriert sind. Da diese Ebene Infrastruktur zu Verfügung stellt,
wird sie Infrastructure as a Service (IaaS) genannt. EC2 (Elastic Compute Cloud)
von Amazon gehört zu dieser Ebene von Clouds.

Die darüber liegende Ebene heißt Platform as a Service (PaaS). Hier wird eine
Anwendung erstellt und auf einen Server geladen. Der Server übernimmt die Aufteilung
zur Ausführung auf die physischen Rechner. Somit ist in dieser Ebene der Server schon
konfiguriert. Ein Beispiel für eine Cloud dieser Schicht ist force.com von Salesforce.com.

Die oberste Ebene ist Software as a Service (SaaS). In dieser Ebene wird ei-
ne komplette Software als Service zur Verfügung gestellt. Diese Software kann genutzt
werden, ohne dass diese auf dem eigenen Rechner installiert werden muss oder schon
installiert ist. Google mit GoogleDocs ist beispielsweise ein Anbieter dieser Ebene.

13

2.4 Planungsalgorithmen der künstlichen Intelligenz

Planen hat die Aufgabe, eine Folge von Aktionen zu finden, die ein definiertes Ziel er-
reicht. Um diese Aufgabe zu erfüllen, gibt es mehrere Ansätze (siehe Referenz [9]). Für
das Planen mit Zustandsraumsuche werden Vorbedingungen, Aktionen und Effekte
von Aktionen spezifiziert. Das Progressionsplanen geht dabei von einem Ausgangszu-
stand aus und ermittelt Aktionsfolgen anhand von Vorbedingungen und Effekten, bis
eine dieser Folgen den Zielzustand erreicht. Somit ist die Aufgabe gelöst. Bei einem
Regressionsplan hingegen wird von dem Endzustand aus rückwärts geplant. Dies hat
den Vorteil, dass auf diese Weise nur relevante Aktionen betrachtet werden. Bei dieser
Planungsart werden nur streng lineare Aktionsfolgen betrachtet, weswegen die Vorteile
der Problemzerlegung nicht genutzt werden können. Diese Vorteile kommen bei partiell
ordnendem Planen zum Tragen. Bei dieser Planungsart wird unabhängig an mehreren
Unterzielen gearbeitet, die anschließend kombiniert werden. So ergibt sich Flexibilität in
der Ausführung.

Das Planen mit Aussagenlogik plant mit dem Ansatz der Erfüllbarkeit eines lo-
gischen Satzes. Ein Modell, das den Satz erfüllt, weist allen Aktionen, die Teil einer
korrekten Lösung sind ”wahr“ zu.

Die bisher vorgestellten Planungsmöglichkeiten funktionieren in der Theorie, sind aber
in der Praxis nur bedingt anwendbar, da in der realen Welt zusätzliche Faktoren beachtet
werden müssen. Zu diesen Faktoren zählen die Dauer von Aktionen und die Ressourcen,
die für die Bearbeitung der Aktionen benötigt werden. In der realen Welt ist ein weite-
res Ziel, eine minimale Gesamtzeit der Ausführung zu erreichen. Um diesem Ziel seine
nötige Beachtung zu schenken, gibt es mehrere Ansätze. Ein Ansatz ist das Hierarchi-
sche Task-Netzwerk-Planen. Der ursprünglich problembeschreibende Plan wird als
Beschreibung der Aufgabe auf höchster Ebene betrachtet. Dieser Plan wird verfeinert, in-
dem die gegebene Aufgabe in Teilaufgaben zerlegt werden, bis diese Aufgaben nicht mehr
zerlegbar sind. Nun ist die niedrigste Ebene erreicht und eine Aktion ist eine partiell ge-
ordnete Menge. Während des Planens in nichtdeterministischen Domänen muss
ein Planungsagent seine Wahrnehmung nutzen. So kann er bei unerwarteten Vorgängen
den Plan verändern oder ihn ersetzen. Wenn die Unbestimmbarkeit während des Planens
begrenzt ist, kann sensorloses oder bedingtes Planen angewendet werden. Das sen-
sorlose Planen erzeugt standardmäßige Pläne, die ohne Wahrnehmung ausgeführt werden
können. Bedingtes Planen hingegen erzeugt einen bedingten Plan mit unterschiedlichen
Verzweigungen für die verschiedenen Möglichkeiten, die auftreten können. Ist die Unbe-
stimmbarkeit unbegrenzt kommt Ausführungsüberwachung und Neuplanung oder
eine stetiges Planen zur Bearbeitung der Aufgabe in Frage. Bei der Ausführungsüber-
wachung und Neuplanung wird zusätzlich eine Ausführungüberwachung verwendet, die
die aktuelle Situation bewertet. Macht der Zustand den Anschein, dass er erfolgreich wei-
tergeführt werden könnte, wird die Planung fortgeführt, sonst wird sie überarbeitet und
eventuell neu geplant. Das stetige Planen ist darauf ausgelegt, so lange zu arbeiten, bis
die Aufgabe erledigt ist. Der Planer ist hier in der Lage mit unerwarteten Umständen
in der Umgebung umzugehen und diese zu verarbeiten, einmal gesteckte Ziele wieder
aufzugeben und dazukommende Ziele hinzuzunehmen.

14

Das Multiagenten-Planen bringt die Planung auf eine neue Ebene. Es können meh-
rere Agenten in einer Umgebung zusammenarbeiten. Ein Agent nimmt die anderen Agen-
ten in sein Modell auf, ohne seine grundlegenden Algorithmen ändern zu müssen. Um
konstruktiv zu arbeiten, müssen sich die Agenten auf einen Plan einigen, der ausgeführt
werden soll. Die Agenten teilen die Aufgaben, die erledigt werden müssen, untereinander
auf. Dies wird durch Kommunikation erreicht. Arbeiten die Agenten nicht zusammen,
sind sie Konkurrenten. Hier stehen die Nutzenfunktionen der Agenten in Konkurrenz
zueinander.

15

3 Dynamische, verteilte Ausführung von BPEL-Prozessen

Dieses Kapitel beschäftigt sich mit der dynamischen, verteilten Ausführung von BPEL-
Prozessen. In Kapitel 3.1 wird der gesamte Ablauf beschrieben, um einen Überblick
über die gesamte Funktionalität zu geben. Darauf folgt eine detailliertere Darlegung der
Algorithmen, die die Datenflussanalyse (Abschnitt 3.2), die Fragmentierung (Abschnitt
3.3) und das dynamische Deployment (Abschnitt 3.4) umfassen. Abschließend wird dieser
Ansatz in Kapitel 3.5 diskutiert.

In diesem Rahmen ist es nicht möglich, das gesamte Spektrum von BPEL-Prozessen
zu betrachten. Darüber hinaus wird ein bestehender Algorithmus benutzt, der seinerseits
Einschränkungen verlangt.

Der betrachtete Workflow muss ein gerichteter azyklischer Graph (DAG) sein. Schlei-
fen werden gesondert behandelt. Eigentlich würde eine Schleife die Eigenschaften eines
DAG zerstören. In BPEL sind sie aber ein einziges Konstrukt, weshalb die Eigenschaften
des DAG gewahrt bleiben. Darüber hinaus muss das Bernstein Kriterium erfüllt sein, das
besagt, dass zwischen parallel ausgeführten Pfaden keine Datenkanten existieren dürfen.

3.1 Allgemeiner Ablauf

Diese Arbeit realisiert ein stetiges Planungsverfahren zur dynamischen, verteilten Aus-
führung von BPEL-Prozessen. Der Ablauf, in dem die Fragmentierung und das dyna-
mische Deployment enthalten ist, ist in Abbildung 4 zu sehen. Beginn des Planungs-

Abbildung 4: Stetige Planung zur dynamischen, verteilten Ausführung von BPEL-
Prozessen

16

verfahrens ist die Fragmentierung. Um sie auszuführen, muss eine BPEL-Datei ein-
gelesen werden und die WSDL-Datei(en) zur Verfügung stehen. Es werden Fragmente
auf Grundlage des BPEL-Prozesses erstellt, indem die einzelnen Aktivitäten, die in dem
Prozess vorhanden sind, genauer betrachtet werden und nach festgelegten Regeln in
kleinere Teile gruppiert werden. Dazu wird der BPEL-Prozess betrachtet. Dieser muss
azyklisch sein, da eine Datenanalyse nötig ist, die dies fordert. Der Prozess liegt als eine
BPEL-Datei vor. Diese kann alle Basis- und strukturierten Aktivitäten enthalten. Basis-
Aktivitäten werden bei der Fragmentierung direkt in die Fragmente übernommen. Ein
Flow wird nicht übernommen, bei diesem Konstrukt wird bei der Erstellung der Frag-
mente darauf geachtet, dass alle Aktivitäten, die nicht voneinander abhängen, parallel in
verschiedenen Fragmenten ausgeführt werden. Eine Sequence und ein Scope wird nicht
beachtet, nur die Ausführungsreihenfolge der enthaltenen Aktivitäten wird beibehalten.
Alle Schleifenkonstrukte ergeben ein Fragment, von dem aus alle Fragmente aufgerufen
werden, die den Schleifenkörper enthalten. Bei einer Alternative (If) oder einem Pick
sind diese in einem Fragment, von dem aus die Fragmente aufgerufen werden, die die
einzelnen Pfade enthalten. Die Bedingung der Alternative ist entscheidend dafür, welche
Fragmente aufgerufen werden.

Die erstellten Fragmente enthalten nur Basis-Aktivitäten, Alternativen, Pick oder
Schleifen des Ursprungsprozesses. Diese Aktivitäten sind durch eine Sequence in jedem
Fragment umschlossen. Die Fragmentierung wird in Kapitel 3.3 genauer betrachtet.

Nach der Fragmentierung kann mit dem dynamischen Deployment begonnen wer-
den. Dazu wird die von der Fragmentierung erstellte frag-Datei benötigt, Informationen
über die Infrastruktur und die Größe der Fragmente ausgelesen.
Die Server der Cloud werden unterteilt in:

• nicht verfügbare Server

• verfügbare Server

– aber kein freier Speicher mehr
– freier Speicher ist noch vorhanden

Ist ein Server verfügbar und frei, wird der gesamte Speicherplatz des Servers und der
momentan freie Speicherplatz ermittelt. Die Größe eines Servers wird exemplarisch für
Kriterien herangezogen, die bei der Auswahl eines Servers von Bedeutung sind. Der
Server muss also über genügend Speichervolumen verfügen, um für die Ausführung des
Fragments in Frage zu kommen. Die Größe ist nur von exemplarischer Bedeutung, da es
praktisch nicht möglich ist, dass ein Server zu wenig Speichervolumen für die Ausführung
eines Fragments eines scientific Workflows hat, da auch für die Ausführung des Gesamt-
prozesses genug Speicher zur Verfügung stand, dies aber wegen langen Rechenzeiten
unpraktisch ist. Es ist denkbar, diese Größe durch ein anderes Kriterium oder sogar
Mehrere zu ersetzen. Beispielsweise ist es möglich, durch Berechnungen den benötigten
Arbeitsspeicher zu ermitteln und mit dem des Servers abzugleichen. Zudem ist es vor-
stellbar, den vorhandenen externen Speicher zu betrachten, um eine Entscheidung treffen
zu können, wo Daten gespeichert werden sollen. Diese Möglichkeiten sprengen aber den

17

zeitlichen Rahmen dieser Arbeit, werden aus diesem Grund nicht eingehend betrachtet
und bleiben für die zukünftige Forschung offen.

Sind Infrastruktur-Informationen, die frag-Datei und die Größen der Fragmente nun
verfügbar, beginnt das Mapping der Fragmente auf die zur Verfügung stehenden freien
Server. Dabei wird zuerst ein Server mit exakt passender Größe gesucht. Ist ein sol-
cher nicht vorhanden, wird das Fragment auf den größten freien, verfügbaren Server
gemappt. Ist kein Server frei und verfügbar, der groß genug ist, wird analysiert, ob es
einen verfügbaren Server gibt, der aber beschäftigt ist. Ist dies der Fall, wird mit dem
Deployment des Fragments gewartet, bis dieser Server wieder frei ist. Gibt es auch einen
solchen Server nicht, bedeutet dies die Auslösung einer Neufragmentierung. Diese wird
in Kapitel 3.3.3 genauer betrachtet.

Das Deployment geschieht für jedes einzelne Fragment und wird genau dann gestar-
tet, wenn das vorhergehende Fragment in den Zustand ”run“ wechselt. Das dynamische
Deployment wird direkt nach dem Mapping gestartet, ohne davor beispielsweise den
Server zu reservieren. Da das Deployment und die zugehörige Auswahl des Servers ge-
startet wird, wenn das Fragment, dessen Deployment direkt vor dem aktuellen Fragment
durchgeführt wurde, in den Zustand ”run“ wechselt, bedeutet dies im Gegenzug, dass
bei Beginn der Ausführung eines Fragments, dieser Zustandswechsel das Zeichen für das
Deployment des darauf folgenden Fragments ist. Das (dynamische) Deployment wird
von einer stetigen Planung (siehe 2.4) übernommen, die sich darum kümmert, dass alle
Fragmente ausgeführt werden. Falls dies während der Ausführung zu Problemen führt,
löst diese Planung die Probleme und führt die restliche Ausführung entsprechend fort, so
dass am Ende der gesamte Prozess korrekt und vollständig ausgeführt wurde. Probleme,
die auftreten können, sind im folgenden Abschnitt beschrieben.

Ist ein Fragment auf einen Server gemappt worden und noch nicht im Zustand ”run“,
können Fehler auftreten. Es ist unter Anderem möglich, dass ein Server plötzlich nicht
mehr verfügbar ist, weil er zum Beispiel abgestürzt ist, oder dass er aufgrund einer ande-
ren Ausführung zu klein für die Ausführung des Fragments geworden ist. Im ersten Fall
muss ein neuer Server zur Ausführung gefunden werden. Es müssen also die Informatio-
nen über die Infrastruktur beachtet werden und das Deployment des Fragments wird neu
durchgeführt. Im zweiten Fall werden auch die Infrastrukturinformationen beobachtet
und abgewartet, bis ein passender Server zu Verfügung steht.

Obwohl durch diese Beschreibung eigentlich schon der komplette Ablauf dargelegt ist,
wurde hierbei aber noch kein Augenmerk auf das dynamische Deployment gelegt. Es
kommt zum Tragen, wenn die Fragmente auf die Server verteilt werden müssen. Wenn
zu einem Zeitpunkt für mehr als ein Fragment Server gesucht werden, beginnt die Su-
che nach einem Server bei dem größten Fragment. Hier wird angenommen, dass die
Ausführungsdauer proportional zur Größe des Fragments ist. Also braucht die Ausführ-
ung eines großen Fragments länger, als die eines Kleinen. Dadurch erhält die Zuteilung
eines Servers für große Fragmente mehr Bedeutung als für Kleine, da die Möglichkeit
besteht, dass während der Ausführung der großen Fragmente ein passender Server für
eventuell übrig gebliebene kleine Fragmente frei wird. Durch die verspätete Ausführung
und die kurze Dauer eines kleinen Fragments verzögert sich die Ausführung des kom-
pletten Workflows entweder gar nicht oder nur wenig. Bei der Auswahl eines passenden

18

Servers wird nun zuerst nach einem Server gesucht, der genau die geforderte Größe hat.
Ist ein solcher nicht vorhanden, wird das Fragment auf den größten freien verfügbaren
Server gemappt. Wird so bei der Vergabe der Server verfahren, bleiben im schlechtesten
Fall kleine Fragmente übrig. Möglicherweise können für diese Fragmente noch Server
gefunden werden, auf denen im gleichen Schritt zwar schon andere Fragmente gemappt
wurden, wo aber noch ausreichend Speicherplatz für ein kleines Fragment übrig geblieben
ist.

Im Folgenden werden die Fälle betrachtet, bei denen sich die Infrastruktur ver-
ändert. Eine Veränderung zieht, je nachdem, was sich verändert hat, unterschiedli-
che Maßnahmen nach sich. Die Infrastrukturinformationen beinhalten Angaben zu den
verfügbaren Servern und zu der Größe der Server. Verändert sich etwas, wird entweder
eine Neufragmentierung oder ein erneutes dynamisches Deployment ausgelöst. Dieser
Sachverhalt ist in Abbildung 5 dargestellt.

Abbildung 5: Auswirkung einer Änderung der Infrastruktur-Informationen: betrachtet
werden die Verfügbarkeit der Server und die Änderung der Größe der Ser-
ver.

Wenn eine Änderung der Infrastruktur vorliegt, muss als Erstes überprüft werden, ob
alle Fragmente auf einen verfügbaren freien Server gemappt sind. Ist dies der Fall, hat
die Änderung der Infrastruktur keine Auswirkungen. Gibt es jetzt aber ein Fragment,
das keinem Server mehr zugeteilt ist, weil dieser soeben weggefallen ist, muss die Frag-
mentgröße mit der Gesamtgröße des Serverspeichers verglichen werden. Ist die Größe des
Fragments größer als der gesamte Speicherplatz des größten Servers, so muss neu frag-
mentiert werden und dieses Fragment in kleinere Teile unterteilt werden. Ist dies nicht
der Fall, genügt ein erneutes dynamisches Deployment und das serverlose Fragment wird
auf einen anderen verfügbaren freien Server gemappt.

3.2 Berechnung der Datenkanten

Die Datenkanten zwischen den einzelnen Aktivitäten des BPEL-Prozesses müssen be-
rechnet werden, um Datenübertragungsmengen zwischen Fragmenten unter einem be-

19

stimmten Schwellwert zu halten. Um die Datenkanten zu berechnen, wird ein bestehender
Algorithmus benutzt. Er wird in Arbeit [10] beschrieben und ist in einer Diplomarbeit
[11] implementiert. Die Idee wird hier kurz beschrieben. Die Datenkanten werden durch
eine statische Analyse, die eine Tiefensuche durchführt, identifiziert, bei der Dead Path
Elimination (DPE) berücksichtigt wird. Für die Berechnung muss der Workflow das
Bernstein-Kriterium erfüllen, das besagt, dass in parallelen Zweigen nicht gleichzeitig
Schreiber und Leser einer Variablen vorkommen dürfen. Um die möglichen Schreiber,
die für das Erstellen der Datenkanten ausschlaggebend sind, zu berechnen, werden die
Schreiber in Kategorien eingeordnet, die den möglichen Zuständen einer schreibenden
Aktivität entsprechen. Diese drei Zustände sind im Folgenden aufgelistet:

• möglicher Schreiber: Ein möglicher Schreiber einer Variablen in einer Aktivität ist
ein Schreiber, dessen Daten diese Aktivität erreichen können.

• deaktivierter Schreiber: Ein deaktivierter Schreiber ist ein Schreiber, dessen Da-
ten von einem nachfolgenden Schreiber überschrieben werden. Der deaktivierte
Schreiber kann wieder zu einem möglichen Schreiber werden.

• ungültiger Schreiber: Ein Schreiber wird zu einem ungültigen Schreiber, wenn der
Wert, den er schreibt, immer von einem nachfolgenden Schreiber überschrieben
wird.

Um den Zustand einer schreibenden Aktivität zu speichern, benötigt man eine Tabelle
mit vier Spalten:

• erste Spalte: die Aktivität / der Link selbst

• zweite Spalte: die möglichen Schreiber

• dritte Spalte: die deaktivierten Schreiber

• vierte Spalte: Boolscher Wert, der angibt, ob die Aktivität tot sein könnte (ist
immer in dieser Spalte enthalten, sobald die Auswertung das erste Mal ergibt,
dass die Aktivität tot sein könnte).

Die ungültigen Schreiber müssen nicht gespeichert werden, da sie für die Bestimmung
der möglichen Schreiber nicht mehr in Frage kommen und somit auch für die zu identifi-
zierenden Datenkanten nicht mehr in Betracht gezogen werden müssen. Der Algorithmus
erstellt eine Tabelle, in der alle möglichen Schreiber einer Aktivität enthalten sind. Ab-
bildung 6 zeigt einen Graphen, an dem diese Analyse durchgeführt wird. Die Tabelle 3.2
ergibt sich durch diese Analyse. Die Aktivitäten 1 und 2 schreiben theoretisch in eine
Variable x. Nach Ausführung der Aktivität 1 wird die explizite Transition Condition
gesetzt. Wird aufgrund dieser Auswertung die Aktivität 2 nicht ausgeführt, ist nur die
erste Aktivität ein Schreiber und die zweite Aktivität ist tot. Wurde Aktivität 2 aber aus-
geführt, so ist Aktivität 1 ein deaktivierter Schreiber. Wenn Aktivität 6 x liest, kommen
beide Schreiber als mögliche Schreiber in Frage, da das Join vor dieser Aktivität ein OR

20

ist. Dies bedeutet, dass Aktivität 6 auch ausgeführt werden kann, wenn nur die Transi-
tion Condition zwischen Aktivität 5 und 6 als wahr ausgewertet wird. Wurde die zweite
Aktivität ausgeführt, ist sie der mögliche Schreiber. Ist hingegen nur die erste Aktivität
ausgeführt worden, ist sie der mögliche Schreiber. Da nicht bestimmt werden kann, durch
welchen Pfad die sechste Aktivität zur Ausführung angestoßen wurde, können auch keine
Rückschlüsse gezogen werden, welche der beiden ersten Aktivitäten ausgeführt wurde.
Somit müssen diese beiden Aktivitäten als mögliche Schreiber in Betracht kommen.

Abbildung 6: Prozess mit Join-Conditions: Aktivität 1 schreibt x (wx
1), Aktivität 2

schreibt x (wx
2), Aktivität 4 liest x (rx

1), Aktivität 6 liest x (rx
2). Die Verbin-

dung zwischen Aktivität 1 und 2 hat eine explizite Transition Condition
(link tc1), alle anderen Verbindungen haben eine Default Transition Con-
dition wahr (l). Der zweite Join ist ein OR.

Aktivität / Link Mögl. Schreiber Deakt. Schreiber evtl. tot
Aktivität 1 (wx

1) null null false
tc1 (zwischen A1 und A2) wx

1 null false
Aktivität 2 (wx

2) wx
1 null true

l1 (zwischen A2 und A4) wx
2 wx

1 false
Aktivität 3 (a1) null null false

l2 (zwischen A3 und A4) null null false
Aktivität 4 (rx

1) wx
2 wx

1 false
l3 (zwischen A4 und A6) wx

2 wx
1 false

Aktivität 5 (a2) null null false
l4 (zwischen A5 und A6) null null false

Aktivität 6 (rx
2) wx

1 , wx
2 null false

Mit Hilfe dieser Information ist es nach der Fragmentierung möglich, die Menge der
zwischen den Fragmenten zu übertragenden Daten zu erkennen. Dazu wurde eine Liste
erstellt, die die Fragmente und ihre enthaltenen Aktivitäten umfasst. Die erzeugte Tabel-
le zeigt also alle Abhängigkeiten zwischen den Schreibern und den Aktivitäten. Dadurch
ist eindeutig, zwischen welchen Fragmenten Daten übermittelt werden müssen.

3.3 Fragmentierung

Der hier verwendete Ansatz der Fragmentierung hat viele verwandte Ansätze in der
Literatur. Diese werden im nächsten Abschnitt beschrieben, um eine Grundlage für den
hier entwickelten Algorithmus zu schaffen. Der Algorithmus wird im darauf folgenden
Unterkapitel genau dargelegt.

21

3.3.1 Einführung

Es gibt viele Arbeiten, die sich mit der Fragmentierung beschäftigen. Die Arbeiten [12],
[10] und [13] untersuchen BPEL und leiten die Datenkanten her. Durch diese Herleitung
entsteht BPEL-D. BPEL-D steht für BPEL, das Datenkanten enthält.

Die Algorithmen von den Arbeiten [12] und [10] arbeiten beide mit BPEL3 (Spra-
che, die zur Spezifikation von ausführbaren Workflow-Modellen genutzt wird). Ziel der
beiden Ansätze ist die Berechnung von Datenkanten. Dazu wird der BPEL-Prozess tra-
versiert, eine statische Analyse auf den Daten durchgeführt und somit die Datenkanten
bestimmt. In Ansatz [10] ist die Idee des Algorithmus beschrieben, wohingegen Arbeit
[12] die Umsetzung beinhaltet. Diese Datenanalyse wird bei der Fragmentierung und
anschließenden Planung dieses Ansatzes benötigt und verwendet.

In Arbeit [13] wird ein anderer Algorithmus zur Berechnung von Datenkanten vorge-
stellt. Diese Analyse kann auf BPEL angewendet werden. Der verwendete Algorithmus
wird mit Hilfe eines Petri-Netzes verifiziert. Zu Beginn des Algorithmus wird ein CSSA
(Concurrent Single Static Assignment)-basierter Graph aufgestellt. Dieser enthält durch
die Transformation sowohl explizit den Kontroll- als auch den Datenfluss. Anschließend
sammelt der Algorithmus kommunikationsrelevanten Datenfluss und weist jedem CSSA-
Knoten eine Menge von Nachrichten-Abhängigkeiten zu.

Der Ansatz aus Arbeit [14] nimmt eine Fragmentierung eines Workflows anhand von
Swimlanes vor. Der Algorithmus arbeitet mit BPEL-D (siehe Referenz [10]). BPEL-D
ist einer Obermenge von BPEL. BPEL enthält Datenkanten zwischen Aktivitäten nur
implizit, wohingegen bei BPEL-D explizite Datenkanten vorhanden sind. Ist der Work-
flow fragmentiert, sind Datenkanten zerbrochen worden, die zwischen Aktivitäten verlie-
fen, die nun in verschiedenen Fragmenten sind. Diese Datenkanten werden durch einen
Nachrichtenaustausch und zusätzliche FaultHandler zwischen den Fragmenten wieder
hergestellt. Die Fragmentierung dieses Ansatzes wendet andere Fragmentierungsregeln
als die Fragmentierung dieser Arbeit an. Zusätzlich zu den unterschiedlichen Fragmen-
tierungsregeln verwendet der in Referenz [14] vorgestellte Ansatz für die Rekonstruktion
zerbrochener Datenkanten immer eine Datenübermittlung basierend auf Nachrichtenaus-
tausch. Der in dieser Arbeit angewendete Ansatz nutzt zwar auch Nachrichtenaustausch,
dieser wird aber nur zum Anstoßen der Berechnung von Fragmenten benutzt, die bei-
spielsweise in einem Schleifenfragment enthalten sind.

Die im Folgenden aufgeführten Arbeiten befassen sich mit der Fragmentierung bei
dezentraler Ausführung oder etwas vergleichbarem.

Ansatz [15] fragmentiert ein Petri-Netz zur verteilten Ausführung. Außerdem wird
eine dynamische Fragmentierung während der Ausführung vorgestellt. Die Fragmente
ergeben sich durch die Zerlegung eines Petri-Netzes aufgrund der zugrunde liegenden
Struktur. Es wird an jeder Verzweigung ein neues Fragment erstellt. Das Fragment, das
den ersten Pfad der Verzweigung enthält, endet erst am Ende des gesamten Graphen.
Die restlichen Pfade dieser Verzweigung ergeben jeweils ein Fragment, das bei der Zu-
sammenführung der Äste, die sich geteilt haben, wieder endet. Es wird eine Kombination
der statischen Fragmentierung und der dynamischen Fragmentierung zur Laufzeit vorge-

3http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html

22

schlagen. Die Arbeit betrachtet nur die einfachste Art eines Petri-Netzes, weil der Fokus
dieser Arbeit auf der strukturellen Partitionierung liegt und beachtet keine Datenflüsse.
Die Gemeinsamkeit zu dieser Arbeit ist die strukturelle Fragmentierung, der hier aber
andere Regeln zugrunde liegen.

Ein weiterer Ansatz ist in Referenz [16] dargestellt. Hier wird ein BPEL-Prozess zur
dezentralen Ausführung partitioniert. Die Aktivitäten des Prozesses werden in fixe und
portable Knoten eingeteilt, die unter Beachtung bestimmter Regeln zusammengefasst
werden. Diese Knoten können nun auf verschiedenen Servern, also nicht mehr zentral
auf dem Hauptserver, ausgeführt werden. Hier sind die Parallelen zu diesem Ansatz
deutlich. Der BPEL-Prozess wird unter Betrachtung der Struktur partitioniert, wobei
der partitionierte Prozess auf verschiedenen Servern ausgeführt wird.

Die Idee von Referenz [17] zielt auch auf eine dezentrale Ausführung eines Workflows
ab. Sie wird durch eine Fragmentierung erreicht, die die Koordinationslogik auf die ver-
schiedenen Teilnehmer verteilt. Die dezentrale Ausführung wird durch die Verwendung
von Tuplespace [18] umgesetzt. Der Einsatz von Tuplespace ermöglicht, dass alle Teile
des Workflows Zugriff auf Daten haben, die für die Ausführung nötig sind. Die Veri-
fikation des Ansatzes geschieht mit Hilfe von ”executable Workflow Netzen“ (EWFN)
und Petri-Netzen für die Modellierung. Das Augenmerk liegt hier auf der dezentralen
Ausführung, was zu dem Ansatz dieser Arbeit passt, bei [17] aber durch Tuplespace
ermöglicht wird.

Ansatz [19] nutzt Executable Workflow Networks (EWFN), um BPEL Prozesse ver-
teilt und dezentral auszuführen. Der Workflow wird aufgeteilt, so dass es zur gegebenen
Infrastruktur passt. Dieser Ansatz zielt auf die Orchestrierung von Workflows ab, also
die Auswertung des Kontrollflusses und die Ausführung der Aktivitäten. Diese ist nor-
malerweise zentral und wird hier dezentralisiert. Im Gegensatz zu dem hier vorgestellten
Ansatz wird dieser Workflow also nicht unter Beachtung seiner Struktur aufgeteilt, son-
dern unter Gesichtspunkten, die die Teilprozesse gut auf die Infrastruktur abbilden.
Durch diese Abbildung ist die dezentrale Ausführung gegeben.

[20] beschäftigt sich mit Workflows zur Modellierungzeit und Transaktionen. Bei die-
sem Ansatz wird kein großer Wert auf das zugrundeliegende Modell gelegt, sondern auf
Transaktionen. Es wird versucht, eine optimale Stratifizierung von globalen Transaktio-
nen zu erreichen. Eine Berechnung wird ausgeführt, die die Basisaktivitäten der globalen
Transaktion in Straten gruppiert. Dies geschieht basierend auf den Eigenschaften der
Transaktionen und der Ressourcen, die diese benutzen. Die Straten werden koordiniert,
damit die Semantik der ursprünglichen Transaktion gewahrt wird. Das Prinzip dieses Al-
gorithmus hat ein ähnliches Vorgehen wie der Ansatz dieser Arbeit, da die Koordination
der Straten vergleichbar mit der Koordination der Fragmente ist.

3.3.2 Algorithmus

Der als BPEL-Prozess gegebene Workflow wird in Teilstücke zerlegt. Diese Teilstücke
sind Teilprozesse des BPEL-Prozesses; alle Teilprozesse ergeben einen eigenständigen
Prozess. Aus diesem Grund sind alle Teilprozesse, die im Folgenden als Fragmente be-
zeichnet werden, nach dem gleichen Schema aufgebaut. Der Definitionsteil des Prozesses

23

ist in jeder Fragmentdatei zu finden, der Dateiname, der darin enthalten ist, ergibt sich
aus dem ursprünglichen Namen des Prozesses, der durch ”Part i“ ergänzt wird; wobei i
die Fragmentnummer ist, die auch im Namen der Fragmentdatei zu finden ist. Der Name
der Fragmentdatei lautet beim i-ten Fragment ”Fragment i.bpel“. Jede Fragmentdatei
enthält eine Sequenz, in der alle BPEL-Aktivitäten dieses Fragments enthalten sind.

Da sich alle Fragmente durch die Zerlegung des Ursprung-Prozesses berechnen las-
sen, hängen alle Fragmente logisch zusammen. Um ein bei der Ausführung äquivalentes
Verhalten zum Ursprungsprozess zu gewährleisten, wird die Navigation des Ursprungs-
prozesses auf die Ausführung der Fragmente übertragen. Die Navigation wird in zwei
Dateien gespeichert. Der Inhalt dieser Dateien ist identisch. Die Erzeugung und das
Format unterscheiden sich aber, weshalb beide Dateien benötigt werden. Die erste der
beiden Dateien hat die Endung ”frag“ und stellt ein Format speziell für den Export dar,
welches für den Austausch von Fragmenten und deren Navigation bereitgestellt wird.
Die zweite Datei hat die Endung ”plan“ und verwendet ein Format, das ausschließlich
zum internen Gebrauch bestimmt ist.

Die Dateien, die während der Fragmentierung mit der Endung ”plan“ und ”frag“
erstellt werden, enthalten eine Auflistung der erstellten Fragmente. Das Dateiformat ist
XML, weshalb alle Fragmente unter dem Wurzelelement ”Fragments“ zusammengefasst
sind. Die Informationen, die über jedes Fragment gespeichert werden, sind Folgende:

• der Verzeichnispfad, an dem die Fragmentdatei zu finden ist

• die Vorgänger des Fragments

• die Nachfolger des Fragments

• die Aktivitäten (Art und Name), die in dem Fragment enthalten sind

Diese Datei wird im gleichen Verzeichnis des zu fragmentierenden Prozesses gespeichert,
während für die erstellten Fragmente ein Ordner mit dem Namen ”Fragments“in diesem
Verzeichnis angelegt wird.

Um die Fragmente zu ermitteln, beginnt der Fragmentierungsalgorithmus am Anfang
der Prozessdatei und besucht alle Aktivitäten nacheinander. Der Algorithmus arbeitet
wie eine Tiefensuche, indem er zuerst alle in einer strukturierten Aktivität enthaltenen
Aktivitäten betrachtet, bevor er die nachfolgende Aktivität besucht. Die Eigenschaften
eines Fragments sind Folgende:

• es enthält keine anderen Fragmente, es sei denn sie werden von einem Fragment
aus mit einem invoke aufgerufen

• es überlappt nicht mit einem anderen Fragment

• es enthält nur Basis-Aktivitäten, eine Alternative (If) oder Schleifenkonstrukt

• es beginnt

– vor einem If oder Pick
– vor einem While oder Repeat Until

24

– vor einem For Each
– bei der ersten Basis-Aktivität in einer strukturierten Aktivität

• es endet

– vor Beginn einer strukturierten Aktivität
– vor Beginn eines If oder Pick
– vor Beginn eines While oder Repeat Until
– vor Beginn eines For Each
– wenn der Prozess keine folgenden Aktivitäten mehr enthält

Während der Fragmenterstellung wird anhand der Erstellungsreihenfolge der Frag-
mente deren Vorgänger und Nachfolger ermittelt. Während der Fragmenterstellung wer-
den alle gleichzeitig erstellten Fragmente gespeichert. Werden die nächsten Fragmente
erstellt, haben sie als Vorgänger die unmittelbar vorher gespeicherten Fragmente, die
nun nicht mehr gespeichert werden müssen. Alle Fragmente, bei denen diese Vorgänger
eingetragen werden, müssen als Nachfolger dieser Fragmente eingetragen werden. In Ab-
bildung 7 sind Rechtecke zu sehen, die Fragmente darstellen.

Abbildung 7: Workflow mit Fragmenten

Die folgende Tabelle enthält die Vorgänger und Nachfolger dieser Fragmente.

Fragment Vorgänger Nachfolger
Fragment 1 Fragment, das Knoten 0 enthält Fragment 1, Fragment 2
Fragment 2 Fragment 1 Fragment 4
Fragment 3 Fragment 1 Fragment 4
Fragment 4 Fragment 2, Fragment 3 Fragment, das Knoten 10 enthält

Die Arbeitsweise des Fragmentierungsalgorithmus wird im Folgenden näher beleuch-
tet. Wenn er auf Scope, Sequence oder Flow trifft, sind dies strukturierte Aktivitäten,
die mehrere Aktivitäten enthalten können. Wenn eine dieser Aktivitäten in einem Prozess
vorkommt, wird diese nicht beachtet. Es wird die erste Basis-Aktivität in diesen Akti-
vitäten gesucht. Ist diese gefunden, beginnt ein Fragment, in dem alle Basis-Aktivitäten
enthalten sind, bis wieder eine strukturierte Aktivität beginnt. Ein Flow hat in dieser
Betrachtung eine Sonderstellung. Hier muss unterschieden werden, ob der Flow Links

25

enthält, oder nicht. Alle Aktivitäten, die keine Links enthalten, ergeben je ein Fragment.
Aktivitäten, die Links enthalten, ergeben auch ein Fragment.

Bei If, Pick, While, Repeat Until oder For Each wird der Inhalt dieser Ak-
tivitäten in jeweils ein Fragment übernommen. Aktivitäten, die in diesen Konstrukten
enthalten sind, werden nach dem beschriebenen Algorithmus der jeweiligen Aktivität
auch in Fragmente unterteilt, die aber durch ein invoke aus diesem Fragment heraus
aufgerufen werden. Das invoke ist der Beginn einer synchronen Kommunikation. Dies
bedeutet, dass alle Fragmente, die von diesem aus aufgerufen werden, um ein receive zu
Beginn und ein reply am Ende des Fragments erweitert werden. Durch diese Erweiterung
enthalten Fragmente mit solchen Konstrukten zwar andere Fragmente, der Aufruf wird
aber von dem Konstrukt selbst übernommen.

Bei einem If muss für jeden möglichen Pfad ein Fragment erstellt werden, weil noch
nicht vorhergesagt werden kann, welches der Fragmente ausgeführt werden wird. Auf-
grund der Bedingung des If wird schließlich nur ein Pfad ausgewählt und somit nur ein
Fragment ausgeführt. Die Erstellung eines Fragments im Falle einer Alternative ist im
Folgenden zu sehen. In Folgenden ist das If im Ursprungs-Prozess dargestellt:

< i f >
<cond i t ion >

bpel : ge tVar iab leProper ty (’ shipRequest ’ ,
’ props : shipComplete ’)

</cond i t ion >

<sequence>
<invoke name=”invoke1 ”

partnerLink=”customer ”
opera t ion=”sh ipp ingNot i c e ”
inputVar iab l e=”sh ipNot i ce”>
<c o r r e l a t i o n s >

<c o r r e l a t i o n s e t=”shipOrder ” pattern=”reque s t ” />
</c o r r e l a t i o n s >

</invoke>
</sequence>

<e l s e >
<sequence>

<a s s i g n name=”as s i gn2”>
<copy>

<from>0</from>
<to>$itemsShipped </to>

</copy>
</ass ign >

</sequence>
</e l s e >

26

</ i f >

If nach der Fragmentierung. Das If ist in einem Fragment enthalten.

< i f >
<cond i t ion >

bpel : ge tVar iab leProper ty (’ shipRequest ’ ,
’ props : shipComplete ’)

</cond i t ion >
<sequence>

<invoke>
Fragment i

</invoke>
</sequence>

<e l s e >
<sequence>

<invoke>
Fragment i+1

</invoke>
</sequence>

</e l s e >
</ i f >

Pick wird wie ein If behandelt. Für jeden möglichen Pfad muss ein Fragment er-
stellt werden, da zu der Zeit, wenn die Fragmente erstellt werden, noch nicht klar ist,
welcher Pfad ausgeführt werden wird. Zur Ausführungszeit wird aber nur ein Fragment
tatsächlich ausgeführt, die anderen können ignoriert werden.

Repeat Until und While sind Schleifen, die in BPEL als ein Konstrukt betrachtet
werden. Somit sind die Eigenschaften eines gerichteten azyklischen Graphen gewahrt,
die durch eine Schleife zerstört worden wären. Als Folge dieser Interpretation dieser
Konstrukte wird für jedes ein Fragment erstellt. Der Unterschied zwischen den beiden
Schleifenarten, der darin liegt, dass Repeat Until (im Gegensatz zu While) auf jeden
Fall mindestens einmal ausgeführt wird, fällt bei der Fragmentierung nicht ins Gewicht.
Die Bedingung, die prüft, ob die Schleife ausgeführt wird, befindet sich im Fragment,
wodurch es nicht vorkommen kann, dass ein Fragment gar nicht ausgeführt wird, da die
Bedingung immer überprüft werden muss. Ist die Abbruchbedingung zu Beginn wahr,
wird zwar die Schleife nicht ausgeführt, das Fragment musste aber trotzdem den Wert
der Bedingung berechnen. Also können die beiden Schleifenarten äquivalent behandelt
werden. Aktivitäten, die in diesem Konstrukten enthalten sind, werden auch in Fragmen-
te unterteilt. Der Aufruf der Fragmente geschieht durch ein invoke nach dem gleichen
Prinzip, das bei einem If angewendet wird. Stellvertretend für alle Schleifen ist im Fol-
genden die Erstellung eines Fragments zu sehen, wenn der Algorithmus auf ein while
trifft. Im Folgenden ist das While im Ursprungs-Prozess zu sehen:

27

<while>
<cond i t ion >

$itemsShipped
&l t ;
bpe l : ge tVar iab leProper ty (’ shipRequest ’ ,
’ props : itemsTotal ’)

</cond i t ion >

<sequence>
<invoke name=”invoke2 ”

partnerLink=”customer ”
opera t ion=”sh ipp ingNot i c e ”
inputVar iab l e=”sh ipNot i ce”>

<c o r r e l a t i o n s >
<c o r r e l a t i o n s e t=”shipOrder ”

pattern=”reque s t ” />
</c o r r e l a t i o n s >

</invoke>

<a s s i g n name=”as s i gn4”>
<copy>

<from>
$itemsShipped
+
bpel : ge tVar iab leProper ty (’ sh ipNot ice ’ ,
’ props : itemsCount ’)

</from>
<to>$itemsShipped </to>

</copy>
</ass ign >

</sequence>
</while>

While nach der Fragmentierung. Das While ist in einem Fragment enthalten.

<while>
<cond i t ion >

$itemsShipped < bpel : ge tVar iab leProper ty (’ shipRequest ’ ,
’ props : itemsTotal ’)

</cond i t ion >
<sequence>

<invoke>
Fragment i

</invoke>
</sequence>

28

</while>

For Each hebt sich von den beiden vorigen Schleifenarten ab. Der Unterschied be-
steht darin, dass Schleifendurchgänge auch parallel ausgeführt werden können. Zusätzlich
können alle Schleifendurchgänge auch sequenziell, d. h. nacheinander ausgeführt werden.
Bei einer sequenziellen Ausführung wird ein Fragment erstellt, das eine analoge Struktur
zu allen anderen Schleifen besitzt.

In diesem Fragment werden Fragmente mit invoke aufgerufen, die in der Schleife aus-
geführt werden sollen. Bei der parallelen Ausführung wird berechnet, wie viele Fragmente
entstehen müssen, indem der Anfangswert der Schleife von dem Endwert, bei dem die
Schleife abgebrochen werden soll, abgezogen und Eins addiert wird. Der entsprechende
Zählerwert wird jedem Fragment mitgegeben. Alle diese Fragmente können nun parallel
und sequenziell ausgeführt werden. Nach jedem ausgeführten Fragment wird ein Frag-
ment aufgerufen, das die Completion Condition enthält. Ist diese erfüllt, werden die
restlichen Fragmente der Schleife nicht weiter ausgeführt.

Trifft der Algorithmus auf Basis-Aktivitäten nimmt er diese ohne jegliche Änderung in
das aktuelle Fragment auf. Basisaktivitäten sind neben Alternativen (If) und Schleifen-
konstrukten die einzige Art von Aktivitäten, die aus dem Ursprungsprozess übernommen
werden.

Eine exemplarische Fragmentierung ist im Folgenden in Abbildung 8 zu sehen. Es
wird der ”shippingService“-Prozess fragmentiert, der unter in der BPEL Spezifikation4 zu
finden ist. Zusätzlich sind im Anhang (A) die wichtigsten Auszüge aufgeführt. Es sind alle
Aktivitäten zu sehen, die im Ursprungsprozess enthalten sind. Durch die Fragmentierung,

Abbildung 8: Struktur des Prozesses shippingService

bei der Sequenzen und Flows nicht in die Fragmente übernommen werden, sind diese
auch nicht in den dünnen Rechtecken enthalten. Sie sind die erstellten Fragmente, die

4http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html

29

durchnummeriert sind. Das Fragment 2, das die Alternative (if und else) enthält, ruft im
jeweiligen Zweig das Fragment mit einem invoke auf, das im Bild darunter abgebildet ist
(Fragment 3 oder 4). Das Fragment 5, das das while-Konstrukt enthält, ruft das darunter
liegende Fragment 6 ebenfalls durch ein invoke auf.

In diesem Beispiel sieht die Auflistung der Vorgänger und Nachfolger folgendermaßen
aus:

Fragment Vorgänger Nachfolger
Fragment 1 keine Fragment 2
Fragment 2 Fragment 1 keine
Fragment 3 if keine
Fragment 4 if Fragment 5
Fragment 5 Fragment 4 Fragment 5
Fragment 6 while keine

Als Vorgänger taucht das jeweilige Konstrukt auf (Null wäre nicht geeignet, da diese
Fragmente sonst mit den Startfragmenten verwechselt werden könnten). Nachfolger des
jeweiligen Konstrukts (Schleife, If, Pick) ist das Fragment, das auf dieses folgt. Die
Fragmente innerhalb eines solchen Konstrukts werden nicht in der Vorgänger-/Nach-
folgerliste beachtet, da sie direkt aus dem Fragment des Konstrukts aufgerufen werden.

Aktivitäten, die nicht betrachtet werden, sind Isolated Scopes, Message Exchange
Handling, Error Handling, Compensation Handlers, Fault Handlers, Termination Hand-
lers, Event Handlers.

Aufgrund des Bernstein-Kriteriums, das für den zu fragmentierenden Workflow gelten
muss, ist garantiert, dass zwischen den parallelen Fragmenten, die bei der Fragmentie-
rung eines Flows mit Aktivitäten ohne Links oder eines parallelen For Each entstehen,
keine Kontroll- oder Datenflusskanten verlaufen. Diese Kanten kann es nur zwischen
Fragmenten geben, die aufeinander folgen. Ein anderer Schluss daraus ist, dass die Ver-
zweigung nach Knoten 2 in Abbildung 7 wieder zusammengehen muss, bevor die Ver-
zweigungen von Knoten 0 wieder zusammengeführt werden kann. Dadurch ist es möglich
so zu fragmentieren, dass Fragmente nach einer Verzweigung beginnen und vor einer
Zusammenführung wieder enden. Einige Fragmente sind in Abbildung 7 zu sehen. Sie
umfassen die enthaltenen Knoten und sind durch Rechtecke dargestellt.

Die Datenübermittlung zwischen den Fragmenten kann während der Fragmen-
terstellung noch nicht beachtet werden. Die Daten müssen zu den Servern übermittelt
werden, auf denen die Fragmente zu finden sind. Da zum Zeitpunkt der Fragmentierung
diese Zuordnung noch nicht durchgeführt wurde, kann auch noch nicht bestimmt wer-
den, wohin die Daten übermittelt werden müssen. Erst wenn diese Zuordnung gemacht
wird, kann auch die Übermittlung der Daten geplant werden. Dies hat zur Folge, dass die
Datenübermittlung erst während dem dynamischen Deployment vorgenommen werden
kann. Aus diesem Grund wird während des dynamischen Deployments überprüft, ob
zwischen Fragmenten auf unterschiedlichen Servern die Datenübertragungsmenge den
vorgegebenen Schwellwert übersteigt. Ist dies der Fall, werden beide Fragmente auf ei-
nem Server ausgeführt, um die Übermittlung der Datenzwischen verschiedenen Servern
zu vermeiden.

30

3.3.3 Neufragmentierung

Eine Neufragmentierung wird benötigt, wenn ein Fragment, das schon einem Server
zugeordnet war, nun keinem Server mehr zugeordnet ist und die Größe des Fragments
größer ist, als die Gesamtgröße des größten Servers. Würde nur nach einem neuen Server
gesucht werden, würde aufgrund der Größe keiner gefunden werden. Da das Fragment
also zu groß für die verfügbaren Server ist, muss es zerlegt werden, damit die entstehenden
Teile den Servern zugeordnet werden können.

Zu Beginn der Neufragmentierung muss überprüft werden, ob das Fragment überhaupt
weiter zerlegt werden kann. Dies wird anhand der enthaltenen Aktivitäten entschieden.
Handelt es sich um ein If, Pick, While, Repeat Until oder For Each, ist nur eine Aktivität
in diesem Fragment enthalten, die durch ein oder mehrere invokes alle auszuführenden
Aktivitäten des Konstrukts aufruft. Solche Aktivitäten können nicht weiter aufgeteilt
werden und die Neufragmentierung kann nicht ausgeführt werden. Es gibt nun keine
andere Möglichkeit als zu warten, bis wieder ein Server verfügbar wird, der groß genug
ist, um dieses Fragment auszuführen.

Ein Fragment kann weiter zerlegt werden, wenn die enthaltenen Aktivitäten Basisak-
tivitäten sind. Diese werden durch die vorhergehende Fragmentierung sequenziell aus-
geführt. Deshalb ist es möglich, die Aktivitäten in kleinere Fragmente zu unterteilen, die
wiederum sequenziell ausgeführt werden müssen. Wenn es bei dieser erneuten Fragmen-
tierung darum geht, wie viele Fragmente aus diesem einen erstellt werden sollen, können
die Größen des Fragments und des größten verfügbaren Server herangezogen werden. Ist
beispielsweise das Fragment genau doppelt so groß, wie der größte verfügbare Server,
müssen drei neue Fragmente erstellt werden. Auf den ersten Blick könnte man denken,
dass zwei Fragmente ausreichen würden. Dass dies aber nicht genug Fragmente sind, wird
deutlich, wenn man bedenkt, dass jedes der neuen Fragmente wieder ein eigenständiger
Prozess mit eigenen Prozessdefinitionen sein muss. Daher haben zwei Fragmente, die
aus einem entstanden sind, nicht die Hälfte der Größe des ursprünglichen Fragments,
sondern sind etwas größer.

Ist nun das ursprüngliche Fragment aufgeteilt, müssen die ”plan“ und ”frag“-Datei
angepasst werden. Alle Fragmente, die bis zu diesem Zeitpunkt erfolgreich ausgeführt
wurden, müssen entfernt werden, damit sie nicht erneut ausgeführt werden und die neu
erstellten Fragmente müssen hinzugefügt werden, damit der Prozess korrekt ausgeführt
werden kann. Anschließend muss die Planung auf Basis der neu erstellten ”plan“-Datei
neu angestoßen werden.

3.4 Dynamisches Deployment

Bei der Fragmentierung ist eine Datei mit der Endung ”plan“ erstellt worden. Diese
Datei ist Grundlage für die Planung. Sie enthält die gleichen Informationen wie die frag-
Datei, ist aber für den internen Gebrauch aufbereitet. Die Informationen, die aus dieser
Datei gebraucht und ausgelesen werden müssen, sind die Vorgänger und Nachfolger.
Zusätzlich werden weitere Informationen benötigt. In der folgenden Auflistung sind alle

31

Informationen aufgelistet, die für die Planung notwendig sind.

• Fragmentnummer und -größe

• Servernummer

• freier und gesamter Speicherplatz jedes Servers

• Anzahl der CPUs

Die Aufgaben der Planung sind:

• Fragmentnummer und -größe ermitteln und speichern

• Serverinformationen (siehe obere Auflistung) ermitteln und speichern

• Interessante Informationen der plan-Datei speichern (beispielsweise Vorgänger,
Nachfolger)

• Mapping der Fragmente auf die aktuell verfügbaren Server

• Dynamisches Deployment der Fragmente

Die zwei Hauptaufgaben des dynamischen Deployments sind das Mapping und das
Deployment. Das Mapping hat die Aufgabe, alle Fragmente den verfügbaren Servern
zuzuteilen. Dazu wird die Größe eines jeden Fragments mit dem freien Speicherplatz der
verfügbaren Server verglichen. Zuerst wird versucht, einen Server passender Größe zu fin-
den. Existiert dieser nicht, wird der Server mit dem größten freien Speicherplatz gesucht
und das Fragment diesem Server zugeteilt. Die Zuordnung der Server- und Fragment-
nummern wird in einer Tabelle gespeichert. Zusätzlich wird die Größe des Fragments
von der Servergröße abgezogen. Ist auf diesem Server noch Speicherplatz verfügbar, ist
es möglich, dass weitere Fragmente diesem Server zugeteilt werden. Bei dieser Zuteilung
ist es aber wichtig, dass die Anzahl der Fragmente, die parallel ausgeführt werden sollen,
nicht die Anzahl der CPUs auf dem Server übersteigen, da sie sonst nicht mehr parallel
ausgeführt werden können.

Das dynamische Deployment führt das Deployment und die gleichzeitige Instantiie-
rung der Fragmente aus. Zu Beginn werden alle Fragmente ausfindig gemacht, die keinen
Vorgänger haben. Von diesen Fragmenten werden nun die Nachfolger ermittelt, deren
dynamisches Deployment im nächsten Schritt ansteht. Dieser Vorgang wird so lange
ausgeführt, bis alle Fragmente ausgeführt wurden. Dies ist der Fall, wenn es kein Frag-
ment mehr gibt, das noch einen Nachfolger hat. Wenn das Deployment für ein Fragment
gestartet wird, muss davor eine Deployment-Einheit erstellt worden sein. Diese enthält
ein Betriebssystem, eine Engine und das Fragment selbst. Diese Deployment-Einheit
wird auf den Server kopiert, der während des Mappings ausgesucht wurde. Ist die Ein-
heit kopiert, wird sie instantiiert, sobald alle Vorgänger-Fragmente erfolgreich ausgeführt
wurden. Ist die Einheit das erste Fragment, das ausgeführt werden soll, kann es sofort
instantiiert und und die Berechnung gestartet werden.

32

Da erst während der Planung diese Zuordnung der Fragmente zu den verfügbaren Ser-
vern gemacht wird, kann auch erst zu diesem Zeitpunkt die Datenübermittlung geplant
werden. Hierzu werden alle Variablen, die übermittelt werden müssen, im Planer zwi-
schengespeichert, damit sie bei der Instantiierung der Fragmente mit übergeben werden
können. Werden die Daten von einem anderen Fragment benötigt, werden die Werte die-
ser Variablen dem Fragment übermittelt. Ist die Planung beendet und somit der Prozess
komplett ausgeführt, werden diese Daten gelöscht.

Bevor das dynamische Deployment ausgeführt wird, wird überprüft, ob die Datenüber-
tragungsmenge über einen bestimmten Schwellwert hinausgeht. Ist dies der Fall und die
betroffenen Fragmente sind auf verschiedene Server gemappt worden, muss anders ge-
mappt werden, nämlich so, dass diese Fragmente auf dem gleichen Server ausgeführt
werden. So ist das Problem der zu großen Datenübertragungsmenge zwischen Fragmen-
ten auf unterschiedlichen Servern behoben, da nun die Daten auf dem gleichen Server
gebraucht werden. In diesem Fall werden die Daten, die nur von den Fragmenten auf
diesem Server benötigt werden, nur dort zwischengespeichert.

3.4.1 Wiederholtes Dynamisches Deployment

Das erneute dynamische Deployment wird ausgelöst, wenn ein Fragment einem Server
zur Ausführung zugeordnet war und dieser Server nun nicht mehr verfügbar ist. Um zu
ermitteln, ob in dem spezifischen Fall das erneute dynamische Deployment die richtige
Wahl ist, wird die Größe des Fragments mit der Gesamtgröße des größten verfügbaren
Server verglichen. Ist das Fragment größer, muss es zerteilt werden und ein erneutes
dynamisches Deployment würde hier nichts nützen, da kein Server für das Fragment
gefunden werden würde. In diesem Fall muss eine Neufragmentierung gestartet werden.
Diese ist in Kapitel 3.3.3 beschrieben.

Ist das Fragment aber kleiner als die Gesamtgröße des größten verfügbaren Servers
reicht ein erneutes dynamisches Deployment aus. Das Mapping und alle Schritte, die auf
das Mapping folgen, werden zum wiederholten Mal ausgeführt. Somit ist sichergestellt,
dass das Fragment einem neuen Server zugeteilt wurde. Der Unterschied zu dem dyna-
mischen Deployment, das zu Beginn direkt nach der Fragmentierung ausgeführt wurde,
liegt darin, dass hier nicht für alle Fragmente ein Server gesucht wird, sondern nur für
das Fragment, das keinem Server mehr zugeteilt ist.

3.5 Diskussion

Die Fragmentierung und das dynamische Deployment werden aufgrund von Kriterien
durchgeführt, die in der Theorie zwar sinnvoll sind, in der Praxis aber durch praxisnahe-
re Kriterien ersetzt werden können. Beispielsweise kann der Server ausgewählt werden,
indem die Lage der zur Berechnung benötigten Daten mit in die Auswahl einbezogen
wird. Ein anderes Auswahlkriterium kann die Anzahl der CPUs sein. Müssen mehrere
parallele Fragmente Daten zu einem gemeinsamen nachfolgenden Fragment übertragen,
wobei die Datenübertragungsmenge zu groß ist, müssen alle Fragmente auf einem Server
ausgeführt werden. Hierbei kommt nur ein Server für die optimale Ausführung in Frage,

33

der genug CPUs hat, um alle parallelen Fragmente echt parallel auszuführen. Zusätzlich
muss die Größe des Arbeitsspeichers so groß sein, dass dadurch eine schnelle Berechnung
der Fragmente garantiert werden kann. Darüber hinaus kann bei der Auswahl von meh-
reren Servern beachtet werden, dass diese in verschiedenen Clustern liegen. Dies erhöht
die Quality of Services (QoS).

Die jetzige Umsetzung kann noch verbessert werden, indem die Datenübertragung
anders gestaltet wird. Die optimale Lösung wäre, dass die Daten direkt von dem Ser-
ver auf dem sie manipuliert oder erzeugt wurden auf den Server übermittelt werden,
auf dem sie von einem Nachfolger-Fragment benötigt werden. Dieser Ansatz lässt sich
wegen des dynamischen Deployments nicht ohne Hindernisse umsetzen. Da die Manipu-
lation oder Erzeugung der Daten schon fertiggestellt sein kann, bevor das Nachfolger-
fragment, das die Daten benötigt noch keinem Server zugeordnet ist und somit nicht
feststeht, wohin die Daten übermittelt werden sollen. Eine mögliche Lösung wäre, dass
das Nachfolgerfragment weiß, auf welchen Server die Vorgänger-Fragmente zu finden
sind und sich die Daten selbst besorgt. Da ein Schwellwert für die Datenübertragung
einmal festgelegt wird, muss dies für jede Cloud neu festgelegt werden, weil eventuell
andere Datenübertragungsmengen möglich sind. Da dies unflexibel und umständlich ist,
könnte die Datenübertragungsmenge dynamisch nach der verfügbaren Bandbreite be-
rechnet werden. Des Weiteren ist es denkbar, bei der Fragmentierung die Fragmente
unter zusätzlicher Berücksichtigung der Servergrößen zu erstellen. Dazu muss bekannt
sein, wie viel Speicherplatz eine Basisaktivität durchschnittlich hat. Mit dieser Informa-
tion kann die voraussichtliche Größe des Fragments berechnet werden und das Fragment
beendet werden, wenn es sonst zu groß für den größten Server wird.

Zusammenfassend ist die Fragmentierung sinnvoll, da das Fragment auf dem Server
dem bzw. einem Web Service, der aufgerufen wird, ausgeführt werden kann. Dies ist
sinnvoll, wenn die Datenübertragung zwischen einzelnen Fragmenten kostengünstiger ist
als der Aufruf des Web Services. Durch die Fragmentierung werden in die Ausführung
des scientific Workflows Zwischenschritte eingefügt. Dadurch wird es möglich, Zwischen-
ergebnisse der Berechnung zu kontrollieren. Bei Fehlern hat dies den Vorteil, dass die
Berechnung nicht komplett neu ausgeführt werden muss, sondern bei dem letzten Zwi-
schenergebnis wieder gestartet werden kann. Ist ein Fehler im Algorithmus vorhanden,
der korrigiert werden soll, kann er im betroffenen Fragment geändert werden. Um die
Berechnung erneut durchzuführen, kann auch in diesem Fall die Ausführung bei dem
geänderten Fragment gestartet werden.

Durch die Verwendung der stetigen Planung wird das Deployment dynamisch gestal-
tet. Es ist möglich, auf Änderungen sofort zu reagieren und dies ohne jeglichen mensch-
lichen Eingriff. Wenn diese Planung mit anderen Ansätzen kombiniert wird, die mit
Fehlerfällen des Prozesses umgehen können, kann ein scientific Workflow automatisch
und ohne menschliche Überwachung ausgeführt werden.

34

4 Implementierung

Die Arbeit dieser Diplomarbeit wird in zwei Eclipse-Plugins umgesetzt. Als Erstes wird
die Benutzerschnittstelle und die Cloud Test-Umgebung betrachtet. Anschließend werden
die Implementierungsdetails der Fragmentierung und der Planung dargelegt.

4.1 Benutzerschnittstelle

Die Benutzerschnittstelle ist Eclipse. Eclipse ist eine Entwicklungsumgebung, die er-
weiterbar ist. Das Herz von Eclipse besteht nur aus einer Plattform, die die grundlegende
Funktionalität für die Implementierung bereitstellt. Um weitere Funktionen bereitstellen
zu können, gibt es das Konzept der Plugins. Möchte man Zusatzfunktionalitäten nut-
zen, die bereits in Plugins zur Verfügung stehen, müssen die gewünschten Plugins nur
in Eclipse integriert werden. Zudem ist es möglich, selbst ein Plugin zu erstellen, das
Funktionalität anbietet, die es noch nicht gibt.

Diese Benutzerschnittstelle wird hier um Funktionalität erweitert, die in zwei Plugins
enthalten ist. Ein Plugin ist folgendermaßen aufgebaut: Es gibt eine Extension (Er-
weiterung), die zu dem von Eclipse angebotenen Extension Point (Erweiterungspunkt)
passt. Dies sind definierte Punkte, an denen es möglich ist, Eclipse zu erweitern. Das
Plugin setzt an diesem Punkt an und stellt neue Funktionalität zur Verfügung. Soll es
darüber hinaus auch noch möglich sein, das Plugin selbst zu erweitern, besteht auch die
Möglichkeit, dass das Plugin Extension Points anbietet. Ein Beispiel für die Erweiterung
von Eclipse durch einen Extension Point ist das Kontextmenü. Dieses kann durch neue
Menüeinträge erweitert werden, die durch Extensions beschrieben werden und zu dem
zugehörigen Extension Point passen.

Um die Funktionalität für die Fragmentierung und die Planung einzubringen, wird der
Extension Point ”org.eclipse.ui.popupMenus“ genutzt. Durch einen Rechtsklick auf die
BPEL-Datei öffnet sich ein Kontextmenü, das den Menüpunkt ”Fragmentation“ enthält.
Wird dieser ausgewählt, startet die Fragmentierung. Die Planung hingegen wird aus-
gelöst, wenn der Menüpunkt ”Planning“ im Kontextmenü der bei der Fragmentierung
erstellten plan-Datei ausgewählt wird.

Abbildung 9: Erweiterung von Eclipse

35

4.2 Cloud Test-Umgebung

Eucalyptus [21] ist eine Open Source Anwendung, um eine Cloud zu simulieren. Sie setzt
auf einem Hypervisor auf.

Ein Hypervisor ist eine Software zur Erstellung und Verwaltung von virtuellen Ma-
schinen. Es gibt zwei verschiedene Virtualisierungsmöglichkeiten. Die erste Möglichkeit
ist die Paravirtualisierung. Hier wird die Virtualisierung dadurch erreicht, dass die zur
Verfügung stehenden Ressourcen unter den virtuellen Maschinen aufgeteilt werden, und
jede virtuelle Maschine so arbeitet, als ob sie die Ressourcen für sich alleine hätte,
obwohl sie diese noch mit den anderen virtuellen Maschinen teilt. Bei der Vollvirtualisie-
rung werden die Ressourcen wirklich so unter den virtuellen Maschinen aufgeteilt, dass
jede virtuelle Maschine ihre eigenen Ressourcen besitzt. Je nach Rechner, auf dem die
Virtualisierung umgesetzt werden soll, wird eine Virtualisierungsmöglichkeit ausgewählt.
Besitzt ein Rechner beispielsweise nur eine CPU, ist nur die Paravirtualisierung möglich,
da bei einer Vollvirtualisierung für eine zweite virtuelle Maschine keine CPU mehr zur
Verfügung stehen würde. Unabhängig davon, welche Virtualisierungsmöglichkeit gewählt
wird, ist der Hypervisor für die Zuteilung der Ressourcen an die virtuellen Maschinen
zuständig. Er erstellt und löscht sie, kann sie hochfahren, herunterfahren oder anhal-
ten und sie nach einem Halt fortfahren lassen. Der Hypervisor verwaltet die Ressour-
cen, die auf einem Rechner zur Verfügung stehen und teilt sie den laufenden virtuellen
Maschinen je nach Bedarf zu. Dieser Mechanismus simuliert die Präsenz von mehre-
ren physikalischen Rechnern, obwohl nur ein physikalischer Rechner vorhanden ist. Der
Hauptrechner interagiert mit dem Hypervisor und wird ”dom0“ genannt. Zur Kommu-
nikation über ”ssh“ zwischen den virtuellen Maschinen und dem Hauptrechner werden
die Schnittstellen der Brücke ”br0“ und ”eth0“ benutzt. Dabei befindet sich ”br0“ auf
dem Hauptrechner und ”eth0“ ist die dazu passende Schnittstelle auf jedem einzelnen
Knoten.

In Abbildung 10 ist der Virtualisierungsmanager des Hypervisors Xen zu sehen. Es
sind alle virtuellen Maschinen mit ihren Namen aufgelistet, es ist zu sehen, wie viel
Prozent des zugeteilten Speichers und der CPU von den Maschinen genutzt wird. Über
diese Oberfläche ist es möglich, die virtuellen Maschinen zu starten, Details über sie zu
erfahren, neue virtuelle Maschinen zu erstellen und bestehende zu löschen. Neben dem
Hypervisor Xen ist KVM ein häufig verwendeter Hypervisor. Eucalyptus baut auf ihm
auf.

Mit Eucalyptus ist es möglich, eine Cloud zu simulieren, die Infrastruktur zur Ver-
fügung stellt. Dies ist möglich, da als Voraussetzung für Eucalyptus mit Hilfe eines Hy-
pervisors virtuelle Maschinen aufgesetzt sein müssen. Diese virtuellen Maschinen werden
von Eucalyptus genutzt, um ein oder mehrere Cluster zu erstellen, die eine Cloud dar-
stellen. Durch ein Kommandozeilenwerkzeug kann mit den Maschinen gearbeitet werden,
wie es auch bei einer realen Cloud der Fall ist. Die Anwendung bietet die Möglichkeit,
Informationen über die zur Verfügung stehenden Ressourcen zu erhalten. Eucalyptus
besteht aus fünf Komponenten, die im Folgenden aufgezählt und beleuchtet werden.

• Cloud Controller: Bietet Web-Interfaces an, bearbeitet Anfragen des Administra-
tors oder von Benutzern, führt Ressourcen-Zuordnungen durch und verwaltet die

36

Abbildung 10: Virtualisierungsmanager von Xen

Accounts.

• Walrus: Implementiert eine bucket-basierte Speicherung, die inner- und außerhalb
der Cloud verfügbar ist.

• Cluster Controller: Jedes Cluster benötigt einen Cluster Controller, der das Sche-
duling auf der Cluster-Ebene und die Netzwerkkontrolle übernimmt. Eine Cloud
kann mehrere Cluster enthalten, die Knoten enthalten. Es kann mehrere Cluster
geben, um die Quality of Service (QoS) zu steigern.

• Storage Controller: Jedes Cluster benötigt einen Storage Controller, der für die
blockweise Speicherung verantwortlich ist.

• Node Controller: Auf jedem Knoten muss ein Node Controller vorhanden sein,
der den Hypervisor kontrolliert. Jeder Knoten muss in einem Cluster der Cloud
enthalten sein.

Zum Testen dieser Arbeit wird eine Maschine verwendet, auf der ein Hypervisor und
Eucalyptus installiert ist. Es wird eine Single-Cluster Installation benutzt, bei der alle
Komponenten - mit Ausnahme des Node Controllers - auf einer Maschine platziert sind.
Die virtuellen Maschinen, die als Knoten (engl. Nodes) bezeichnet werden, haben nur
einen Node Controller. In Abbildung 11 ist die Architektur des zum Testen benutzten
Rechners zu sehen. Es wurden drei virtuelle Maschinen unterschiedlicher Größe erstellt.
Sie werden durch Eucalyptus verwaltet. Ihre Daten sind im Folgenden aufgelistet:

• Node1

37

Abbildung 11: Rechner-Architektur für Tests

– Hauptspeicher: 8 GB
– RAM: 256 MB
– Anzahl virtueller CPUs: 1

• Node2

– Hauptspeicher: 8 GB
– RAM: 320 MB
– Anzahl virtueller CPUs: 1

• Node3

– Hauptspeicher: 8 GB
– RAM: 384 MB
– Anzahl virtueller CPUs: 1

Um die Fragmentierung und die Planung effizient durchführen zu können, müssen In-
formationen der Infrastruktur zur Verfügung stehen. Wie in Kapitel 3.1 erläutert, wird
der freie und gesamte Speicherplatz der verfügbaren Server benötigt. Die Informationen
können bei Eucalyptus abgefragt werden. Der Befehl ”euca describe availability zones“
gibt eine Liste aus, die alle nötigen Informationen enthält. Diese Liste ist in Abbildung
12 zu sehen. Sie enthält alle virtuellen Maschinen. Diese sind nach Typen klassifiziert,
die etwas über die Größe der virtuellen Maschine aussagen. Die Spalte ”free“ gibt an, wie
viele virtuelle Maschinen (VMs) von einem Typ momentan verfügbar sind. Diese Typen
sind von Eucalyptus zur Klassifikation der Knoten eingeführt worden. Die Spalte ”max“
hingegen gibt Auskunft darüber, wie viele virtuelle Maschinen insgesamt zur Verfügung

38

stehen. Hierzu zählen auch die, die momentan beschäftigt sind. Darüber hinaus enthält
die Liste noch Informationen zu den einzelnen VM Typen, zu denen die Anzahl der CPUs,
der RAM und die Speichergröße gehören. Diese Informationen werden in unterschied-

Abbildung 12: Ausgabe des Befehls ”euca describe availability zones“

lichen Algorithmen des dynamischen Deployments benötigt. Das erste Mal, wenn auf
diese Angaben zugegriffen werden muss, ist vor Beginn der Fragmentierung. Das zweite
Mal geschieht der Zugriff auf diese Daten während des dynamischen Deployments und
weitere Zugriffe folgen, wenn neu fragmentiert oder neu geplant werden muss.

Eucalyptus selbst besitzt die Möglichkeit, einen Scheduling Algorithmus zu setzen,
der die zuvor erstellten Images (enthält ein Betriebssystem und die gewünschte Konfi-
guration samt aller nötigen Programme und Dateien) auf die zur Verfügung stehenden
Knoten der Cloud verteilt. Dieser Algorithmus kann in eucalyptus.conf (zu finden in
eucalyptus-1.6.2/etc/eucalyptus/) gesetzt werden, indem eine Variable auf den Namen
der Scheduling Strategie gesetzt wird. Diese Variable wird in der Funktion ”schedu-
le instance“ in eucalyptus-1.6.2/cluster/handlers.c aufgerufen, die den dazugehörenden
Algorithmus aufruft. In der Funktion, die diese Funktion aufruft, muss alle Funktiona-
lität dieser Arbeit - bis auf die eigentliche Scheduling Strategie - zu finden sein. Diese
Funktion ist ”doRunInstances“, die in der gleichen Datei zu finden ist. Eine Erweiterung,
die nicht vergessen werden darf, ist die Hinzunahme des neuen Werts der Enumeration,
die die möglichen Scheduling Strategien enthält. Diese Enumeration ist in eucalyptus-
1.6.2/cluster/handlers.h zu finden. In dieser Datei muss auch die Definition der neu
hinzugekommenen Scheduling Strategie aufgenommen werden, da diese in einer eigenen
Funktion implementiert sein muss.

4.3 Fragmentierung

Die Fragmentierung soll aus einer BPEL-Datei mehrere BPEL-Dateien erstellen. Um die
Fragmentierung auszulösen, kann über das Kontextmenü der bpel-Datei in Eclipse (siehe
Kapitel 4.1) der Punkt ”Fragmentierung“ ausgewählt werden (siehe Abbildung 13).

Dazu nutzt das Plugin den Extension Point ”org.eclipse.ui.popupMenus“. Um den
Workflow zu fragmentieren, wird in diesem Plugin die Eclipse-interne Repräsentation
Eclipse Modeling Framework (EMF) genutzt, die speziell für BPEL ausgelegt ist. Diese
Repräsentation ist ein Baum, der traviersiert werden kann. Die Ausgabe des Fragmentie-
rungsalgorithmus ist die frag- und die plan-Datei frag. Die plan-Datei ist der Einstiegs-
punkt für die Planung.

39

Abbildung 13: Start der Fragmentierung in Eclipse

40

Die Klassen der Fragmentierung und ihre Methoden sind im Folgenden aufgelistet:
Klasse Start: implementiert das Interface ”IActionDelegate“

• public void run(IAction action) ruft startFragmentation der Klasse Fragmentation
auf

• public void selectionChanged(IAction action, ISelection selection)

Klasse Fragmentation: implementiert die Fragmentierung

• protected static void startFragmentation (org.eclipse.bpel.model.Process pro, String
loc, String locFrag)
Stößt die Fragmentierung an und erstellt die frag- und plan-Datei. Die Metho-
den clearVariables(), die Hauptmethode fragment(process) und writeSuccessors()
werden dazu aufgerufen.

• private static void clearVariables()
Setzt alle Variablen zurück und wird von startFragmentation (org.eclipse.bpel.-
model.Process pro, String loc, String locFrag) aufgerufen.

• private static void fragment(ExtensibleElement element)
Hauptmethode der Fragmentierung, die von startFragmentation (org.eclipse.bpel.-
model.Process pro, String loc, String locFrag) aufgerufen wird. Führt die Fragmen-
tierung durch und ruft direkt oder indirekt alle weiteren Methoden auf.

• private static String fillFragFileHeader (org.eclipse.bpel.model.Process process)
Befüllt die frag-Datei mit dem Definitionsteil des Prozesses und wird von frag-
ment(ExtensibleElement element) aufgerufen.

• private static String makeInvoke (int counter)
Generiert das invoke, das ein anderes Fragment aufruft. Diese Methode wird von
fragment(ExtensibleElement element) aufgerufen.

• private static void makeFragFile (String ff)
Erschafft die bpel-Dateien für die einzelnen Fragmente. Wenn es noch keinen Ord-
ner gibt, der diese Fragmente enthalten soll, wird dieser ebenfalls erstellt. Der
Aufruf erfolgt durch closeFragFile().

• private static void openFragment ()
Diese Methode schreibt alle nötigen Informationen in die frag-Datei, wenn ein neu-
es Fragment beginnt. Dies beinhaltet den Aufruf der Methoden, die die Vorgänger
und Nachfolger des aktuellen Fragments schreiben. Der Aufruf erfolgt durch frag-
ment(ExtensibleElement element).

• private static void writePredecessors(Vector<String> fragPred)
Schreibt die Vorgänger des aktuellen Fragments und wird von openFragment ()
aufgerufen.

41

• private static void writeSuccessors(Vector<String> pred, int in)
Schreibt die Nachfolger von Fragmenten. Der Aufruf erfolgt durch writePredeces-
sors (Vector<String> fragPred).

• private static void writeSuccessors()
Schreibt die Nachfolger von Fragmenten, bei denen am Ende der Fragmentierung
noch kein Nachfolger eingetragen ist. Diese Methode wird von startFragmentation
(org.eclipse.bpel.model.Process pro, String loc, String locFrag) aufgerufen.

• private static void closeFragment()
Schließt ein Fragment. Der Aufruf erfolgt durch fragment(ExtensibleElement ele-
ment).

• private static void closeFragFile()
Schreibt eine frag-Datei. Der Aufruf erfolgt durch fragment(ExtensibleElement ele-
ment).

• protected static void handleRecursion(ExtensibleElement element)
regelt die Rekursion bei der Traversierung des Prozesses. Der Aufruf erfolgt durch
fragment(ExtensibleElement element).

Klasse Activities: behandelt alle Aktivitäten, die in die bpel-Datei eines Fragments
geschrieben werden. Alle Methoden werden von der Methode Fragmentation.fragment()
aufgerufen, abhängig davon welche Aktivität momentan in der Fragmentierung behan-
delt wird.

• protected static String handleAssign (ExtensibleElement element)

• protected static String handleReceive (ExtensibleElement element)

• protected static String handleInvoke (ExtensibleElement element)

• protected static String handleReply (ExtensibleElement element)

• protected static String handleWait (ExtensibleElement element)

• protected static String handleEmpty (ExtensibleElement element)

• protected static String handleThrow (ExtensibleElement element)

• protected static String handleRethrow (ExtensibleElement element)

• protected static String handleExit (ExtensibleElement element)

• protected static String handleWhile (ExtensibleElement element)

• protected static String handleRepeatUntil (ExtensibleElement element)

• protected static String handleIf (ExtensibleElement element)

• protected static String handlePick (ExtensibleElement element)

• protected static String handleForEach (ExtensibleElement element)

42

4.4 Planung

Für den Beginn der Planung kann man durch einen Rechtsklick auf die plan-Datei den
Punkt ”Planning“ auswählen (siehe Abbildung 14). Die Klassen der Planung und ihre

Abbildung 14: Start der Planung

Methoden sind im Folgenden aufgelistet:
Klasse Start: implementiert das Interface ”IActionDelegate“

• public void run(IAction action) ruft startPlanning der Klasse Planning auf

• public void selectionChanged(IAction action, ISelection selection)

Klasse Planning:

• protected static void startPlanning(IPath p) throws IOException
stößt die Planung an. Zu Beginn werden die Variablen zurückgesetzt, indem clear-
Variables() aufgerufen wird. Anschließend wird die frag-Datei durch readFragFile()
ausgelesen, der BPEL-Prozess für die Datenanalyse bestimmt, die Datenanalyse
ausgeführt (makeDataAnalysis(), readAnalysisResult()), die Größen der Fragmen-
te (sizeOfFragmentsToArray()) und Server gespeichert (serverInformationToAr-
ray()), das Mapping aufgerufen (mapping(fragmentSizes, 0)) und schließlich das
Deployment gestartet (deployment()).

• private static void clearVariables()
Alle Variablen werden zurückgesetzt.

43

• private static void sizeOfFragmentsToArray()
Die Größe der Fragmente wird ermittelt und gespeichert. Diese Methode wird
von startPlanning(IPath p) aufgerufen und ruft ihrerseits mergeSort(Comparable
<Integer> [][] a) auf.

• private static void serverInformationToArray() throws FileNotFoundException
Verfügbare Informationen über die Server der Cloud werden ausgelesen und ge-
speichert. Diese Methode wird von startPlanning(IPath p) aufgerufen.

• public static void mergeSort(Comparable <Integer> [][] a)
MergeSort Algorithmus. Er sortiert die Größen der Fragmente und ruft hierzu die
Methoden mergeSort(Comparable <Integer> [][] a, Comparable <Integer> [][]
tmpArray, int left, int right) und merge(Comparable <Integer> [][] a, Compara-
ble <Integer> [][] tmpArray, int leftPos, int rightPos, int rightEnd) auf. Dieser
Algorithmus wird von sizeOfFragmentsToArray() aufgerufen.

• private static void mergeSort (Comparable <Integer> [][] a, Comparable <Int-
eger> [][] tmpArray, int left, int right)
MergeSort Algorithmus

• private static void merge(Comparable <Integer> [][] a, Comparable <Integer>
[][] tmpArray, int leftPos, int rightPos, int rightEnd)
MergeSort Algorithmus

• private static void mapping(Comparable <Integer> [][] frags, int place)
Hier werden die Fragmente auf Server gemappt. Diese Methode ruft searchFittingS-
erver(Comparable <Integer> size), getBiggestServer(Comparable <Integer> size)
und writeToArray (Comparable <Integer> serverNumber, Comparable <Integer>
fragmentNumber, int i) auf und wird von startPlanning(IPath p) aufgerufen.

• private static void writeToArray (Comparable <Integer> serverNumber, Compa-
rable <Integer> fragmentNumber, int i)
Speichert das Ergebnis des Mappings und wird von mapping (Comparable <Int-
eger> [][] frags, int place) aufgerufen.

• private static Comparable <Integer> searchFittingServer(Comparable <Integer>
size)
Der Aufruf erfolgt durch mapping(Comparable <Integer> [][] frags, int place).
Ein verfügbarer Server passender Größe wird gesucht.

• private static Comparable <Integer> getBiggestServer(Comparable <Integer> si-
ze)
Der Aufruf erfolgt durch mapping(Comparable <Integer> [][] frags, int place).
Der größte verfügbare Server wird gesucht.

• private static void deployment()
Diese Methode wird von startPlanning() aufgerufen und stößt das Deployment an.

44

Dazu werden die Methoden deploy (String fragment) und eventuell startRefrag-
mentation(String fragment) oder rePlanning (int fragNumber) aufgerufen.

• private static void deploy (String fragment)
Der Aufruf erfolgt durch die Methode Deplpoyment(). Hier wird das Deployment
wird mit stetiger Planung durchgeführt. Es wird eventuell rePlanning (int frag-
Number) oder startRefragmentation(String fragment) aufgerufen. Die Methode
makeDeployXml (IPath bundle) wird zusätzlich genutzt.

• private static void makeDeployXml (IPath bundle)
Die Methode wird durch deploy (String fragment) aufgerufen. Sie erzeugt die Datei
deploy.xml für jedes Fragment.

• private static void readFragFile() throws IOException
Die Methode wird von startPlanning() aufgerufen, um aus der frag-Datei alle rele-
vante Informationen, wie Vorgänger und Nachfolger auszulesen und zu speichern.

• private static void writePredecessorsAndSuccessors (String fragment, boolean bool)
Diese Methode wird von readFragFile() aufgerufen und erneuert die Vorgänger und
Nachfolger, nachdem die plan-Datei neu eingelesen wurde.

• private static void rePlanning (int fragNumber)
Das erneute dynamische Deployment wird durchgeführt, indem ein neuer verfügba-
rer Server für das aktuelle Fragment gesucht wird. Diese Methode wird von deploy
(String fragment) oder deployment() aufgerufen.

Klasse Refragmenation: In dieser Klasse wird die erneute Fragmentierung behandelt.

• public static void startRefragmentation(String fragment)
Die Refragmentierung wird durch deploy (String fragment) oder deployment() ge-
startet. Diese Methode ruft refragment () auf.

• private static boolean refragment () throws IOException
Der Aufruf erfolgt durch startRefragmentation (String fragment). Die Methode
refragmentiert das aktuelle Fragment und die plan-Datei wird neu geschrieben. Um
den Definitionsteil der Fragmente zu erhalten, wird fillHeader (int k) aufgerufen.

• private static String fillHeader (int k) throws IOException
Diese Methode wird von refragment () aufgerufen und liest den Definitionsteil für
die neu erstellten Fragmente ein.

4.5 Datenflussanalyse

Dieser Algorithmus wird während des dynamischen Deployment verwendet, um zu über-
prüfen, ob alle Datenübertragungsmengen kleiner als der festgelegte Schwellwert (der de-
finiert wird) ist und um die Datenweiterleitung zwischen den Fragmenten gewährleisten
zu können. Der Algorithmus ist in Kapitel 3.2 genauer betrachtet worden, wird in Ar-
beit [10] beschrieben und in einer Diplomarbeit [11] implementiert. Der Algorithmus ist

45

seinerseits in einem Plugin enthalten, das für diese Arbeit in Eclipse integriert sein muss.
Die Verwendung des Plugins wird durch einen Aufruf der Hauptmethode eingeleitet.

Das Plugin erweitert Eclipse am Extension Point ”org.eclipse.core.runtime.applica-
tions“. Die Methode die aufgerufen wird, ist ”de.uni stuttgart.iaas.bpel d.algorithm.-
analysis.Process.analyzeProcessModel(process)“. Anschießend wird ”de.uni stuttgart.-
iaas.bpel d.algorithm.analysis.output()“ aufgerufen. Diese Methode wurde erweitert, so
dass sie die Ergebnisse der Analyse in eine Datei scheibt, die zur Benutzung wieder
eingelesen werden kann.

46

5 Zusammenfassung und Ausblick

In diesem Kapitel werden die Ansätze und die Ergebnisse der Arbeit in Abschnitt 5.1
skizziert, bevor in Kapitel 5.2 erörtert wird, welche Möglichkeiten es gibt, diese Arbeit
weiterzuführen.

5.1 Zusammenfassung der Ergebnisse

Der vorgestellte Algorithmus legt einen Grundstein, um die Gebiete des Workflow Mana-
gements und der künstlichen Intelligenz in einem Algorithmus zu nutzen und diese Nut-
zung weiter auszubauen. Der Vorteil ist, dass die Ausführung eines scientific Workflows
in Umgebungen, die ihre Infrastruktur ändern, durch die Verwendung einer Fragmen-
tierung und von Planungsalgorithmen effektiver und effizienter gestaltet werden kann.
Die Ursache liegt darin, dass die Fragmentgrößen an die verfügbaren Ressourcen dyna-
misch angepasst werden können und auch die Zuordnung zwischen den Fragmenten und
Servern dynamisch gestaltet ist.

Der Algorithmus führt eine Fragmentierung und verteilte, dynamische Ausführung von
BPEL-Prozessen wie folgt durch. Um einen BPEL-Prozess zu fragmentieren, muss dieser
ausführbar, also ohne syntaktische Fehler, sein. Darüber hinaus muss das Bernstein-
Kriterium gelten.

Die Fragmentierung erfolgt aufgrund der im Prozess enthaltenen Aktivitäten und de-
ren Reihenfolge. Alle Fragmente enthalten - außer einer umschließenden Sequence - nur
Basis-Aktivitäten, Schleifenkonstrukte, Alternativen oder Picks. Die Konstrukte Sco-
pe, Sequence und Flow des Ursprungsprozesses dienen nur der korrekten Erstellung der
Fragmente und alle Arten von Handlern werden nicht beachtet. Nur bei Fragmenten mit
enthaltenen Schleifenkonstrukten, Alternativen oder Picks kommen verschachtelte Frag-
mente vor. Alle diese Konstrukte sind in einem Fragment enthalten, dass keine weiteren
Aktivitäten des Ursprungsprozesses enthält. Alle Aktivitäten, die von diesen Konstruk-
ten ausgeführt werden sollen, sind in Fragmenten enthalten, die von dem Fragment mit
dem Konstrukt aus aufgerufen werden. Diese invokes, mit denen die enthaltenen Frag-
mente aufgerufen werden, werden während der Fragmentierung hinzugefügt. Die Ausga-
be der Fragmentierung sind alle Fragmente als BPEL-Dateien und zwei Dateien, die den
Ablauf der Fragmentierung beschreiben. Die frag-Datei wird zu Export-Zwecken erstellt,
wohingegen die plan-Datei für den internen Gebrauch bestimmt ist und Grundlage für
das dynamische, verteilte Deployment ist. Der Inhalt der beiden Dateien ist identisch,
nur die Erstellung unterschiedet sich. Sie enthalten eine Auflistung der Fragmente, deren
Speicherort und deren enthaltenen Aktivitäten sowie alle Vorgänger und Nachfolger der
einzelnen Fragmente.

Das verteilte, dynamische Deployment setzt auf der Fragmentierung auf, indem die
plan-Datei, die Größe der Fragmente und Informationen über die Infrastruktur der Cloud
eingelesen werden. Aufgrund dieser Daten wird zu Beginn ein Mapping durchgeführt, das
die Fragmente den verfügbaren Servern zur Ausführung zuordnet. Um das Deployment
durchzuführen, muss im nächsten Schritt eine Deployment-Einheit erstellt werden, die
alle nötigen Dateien enthält. Zu dieser Einheit gehört das Fragment selbst mit seiner bzw.

47

seinen WSDL-Datei(en) und einer deploy.xml, die zur Ausführung benötigt wird, ein
Betriebssystem und eine Engine, um das Fragment ausführen zu können. Ist diese Einheit
erstellt, kann sie auf den Server kopiert werden, auf dem sie ausgeführt werden soll. Ist
der Server in der Zwischenzeit nicht mehr verfügbar, weil er beispielsweise abgestürzt
ist, gibt es zwei Möglichkeiten für die weitere Ausführung des Fragments. Wenn es einen
Server gibt, dessen Größe ausreichend für die Ausführung des Fragments ist, wird nur
das Mapping und die nachfolgenden Schritte erneut ausgeführt. Gibt es aber keinen
Server, dessen gesamte Größe groß genug ist, muss das Fragment weiter zerlegt werden,
falls dies möglich ist. In diesem Fall wird eine Refragmentierung eingeleitet. Sind aus
diesem Fragment kleinere Teilfragmente entstanden, können diese alle nötigen Schritte,
bis hin zur Ausführung erneut durchlaufen. Ist eine weitere Aufteilung des Fragments
nicht möglich, muss gewartet werden, bis ein Server zur Verfügung steht, der für die
Ausführung dieses Fragments in Frage kommt.

Die Umsetzung dieser Idee erfolgt in einem Eclipse-Plugin, das das Kontext-Menü des
Navigators erweitert. Durch einen Rechtsklick auf die BPEL-Datei, die fragmentiert
werden soll, kann diese angestoßen werden. Durch einen Rechtsklick auf die plan-Datei
kann nach der Fragmentierung auch die Planung gestartet werden.

Der Algorithmus enthält die grundlegende Funktionalität. Durch die Unterstützung
von allen Basis-Aktivitäten, Flows, Sequenzen, Scopes, Alternativen (If), Picks und
Schleifen (While, Repeat Until, For Each) ist eine Fragmentierung und ein dynamisches
Deployment eines einfachen scientific Workflows möglich. Dieser Ansatz kann weiter aus-
gebaut werden, so dass auch alle Arten von Handlern unterstützt werden. Einschränkun-
gen, die sich bei diesem Ansatz - beispielsweise durch die Erfüllung des Bernsteinkriteri-
ums - ergeben, können verringert werden, wodurch der hier entwickelte Algorithmus auf
einem größeren Gebiet angewendet werden kann.

5.2 Weiterführende Arbeiten und Ausblick

Der Algorithmus kann durch eine Vielzahl von Ansätzen erweitert oder weiter verfeinert
werden. Wie durch die Nennung folgender Beispiele ersichtlich wird, hat der hier vor-
gestellte Ansatz Erweiterungsmöglichkeiten in vielen Bereichen. Daher ist dieser Ansatz
eine Grundlage, um weiter Forschung zu betreiben.

Ansätze zur Erweiterung könnten die Folgenden sein. Es wäre denkbar, eine manuelle
Fragmentierung und Teile des dynamischen Deployments manuell auszuführen. Dabei ist
der Benutzer nicht ganz auf sich allein gestellt, sondern erhält Unterstützung zur manuel-
len Bearbeitung. Im Falle der manuellen Fragmentierung würde eine Unterstützung Hilfe
bei der Erstellung der plan- und frag-Datei bedeuten. Dies ist möglich, wenn der Benut-
zer die Stelle markiert, an der fragmentiert werden soll und die so erstellten Fragmente
automatisch die richtige Nummerierung erhalten und dabei in die plan- und frag-Datei
aufgenommen werden. Bei einem manuellen dynamischen Deployment ist es beispielswei-
se möglich, den Benutzer auswählen zu lassen, welche Ressourcen er nutzen will. Diese
könnten eine Untermenge aller zur Verfügung stehender Ressourcen sein. Nach dieser
Auswahl wird das ausgewählte Bundle automatisch auf der Ressource ausgeführt. In
diesem Prozess muss der Benutzer zusätzlich durch die Vorgabe der Ausführungsreihen-

48

folge der Bundles unterstützt werden.
Auf der anderen Seite ist es sinnvoll, eine Ausführungsdauer im Voraus zu berech-

nen, um dem Benutzer eine Abschätzung der Ausführungsdauer zur Verfügung zu stel-
len. Dadurch kann der Benutzer darauf reagieren, falls ihm die Dauer zu lange ist. Die
Ausführungsdauer kann anhand des kritischen Zeitpfad berechnet werden, indem man
beispielsweise jeder Basis-Aktivität eine Dauer zuweist. Nachdem alle möglichen Pfade
durch den Workflow berechnet worden sind, ist der kritische Zeitpfad der Pfad, der die
längste Ausführungsdauer hat.

Ein weiteres Beispiel zur Erweiterung des Algorithmus stellt die Möglichkeit dar, den
Workflow vor Beginn der Fragmentierung auf Fehler zu untersuchen (Ansatz siehe Refe-
renz [22]). Bei diesem Ansatz wird vorausgesetzt, dass die Fragmentierung auf Basis von
ausführbaren Dateien durchgeführt wird, der Prozess also eine korrekte Syntax besitzt.
Der Prozess kann trotzdem auf Syntaxfehler untersucht werden. Darüber hinaus kann
die semantische Korrektheit des Prozesses überprüft werden. Beispielsweise durch sta-
tische Analysen kann der Prozess auf das Vorhandensein von Endlosschleifen überprüft
werden. Enthält der Workflow syntaktische oder semantische Fehler, ist die Ausführung
zwecklos, sie wird nicht gestartet und der Benutzer wird darüber informiert. Darüber
hinaus könnte der Workflow mit Hilfe von Kontroll- und Datenfluss und DPE optimiert
werden, indem Sequenzen, die nicht voneinander abhängen, parallel ausgeführt werden
können. Diese Erweiterung könnte durch einen Schalter an- und ausschaltbar sein und
durch eine partiell ordnende Planung realisiert sein.

Ein Beispiel, das nur die Erweiterung der Fragmentierung betrifft, ist die Ermittlung
von fixen und portablen Knoten eines Fragments, wie sie in dem Ansatz von [16] vorge-
stellt wird. Durch diesen Ansatz können einzelne Fragmente weiter zerteilt werden. Diese
Methode könnte statt der Neufragmentierung angewendet werden. In diesem Ansatz wird
diese Methode nicht verwendet, weil die Fragmentierung aufgrund der im Prozess ent-
haltenen Aktivitäten und der Struktur des Prozesses durchgeführt wird. Die Zuordnung
von portablen Knoten zu einem fixen Knoten hingegen beachtet nicht die Ausführungs-
reihenfolge, ermöglicht aber mehrere Möglichkeiten eine bestimmte portable Aktivität
zu einem fixen Knoten zuzuordnen.

49

A Anhang

A.1 Der Prozess
”

auctionService“

Als erstes Beispiel ist der Prozess ”auctionService“ gewählt worden, der sich in der
BPEL Spezifikation5 befindet. Der Quellcode der bpel- und wsdl-Datei ist hier nicht
erneut aufgeführt, er kann in der Spezifikation eingesehen werden.

Abbildung 15: Struktur von auctionService.bpel: In der linken Spalte sind die Akti-
vitäten mit den erstellten Fragmenten zu sehen. Die Fragmente, die als
oberstes Element eine Sequenz oder einen Flow enthalten, sind nur der
Übersichtlichkeit halber eingefügt. Diese Rechtecke stellen keines der er-
stellten Fragmente dar. Die rechte Spalte enthält die Namen der entspre-
chenden Aktivitäten. Ist kein Name neben einer Aktivität abgebilet, hat
diese keinen Namen.

<?xml v e r s i o n =”1.0” encoding=”ISO−8859−1” ?>
<Fragments>

<Fragment1>
<bpe lF i l e >

<”/home/ e c l i p s e /Workspace/ a u c t i o n S e r v i c e

5http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html

50

/Fragments/Fragment1 . bpe l”/>
</bpe lF i l e >
<A c t i v i t i e s >

<r e c e i v e : a c c e p t S e l l e r I n f o r m a t i o n/>
</A c t i v i t i e s >
<Predeces sor s >

<n u l l/>
</Predeces sor s >
<Successor s >

<Fragment3/>
</Succes sor s >

</Fragment1>

<Fragment2>
<bpe lF i l e >

<”/home/ e c l i p s e /Workspace/ a u c t i o n S e r v i c e
/Fragments/Fragment2 . bpe l”/>

</bpe lF i l e >
<A c t i v i t i e s >

<r e c e i v e : acceptBuyerInformat ion/>
</A c t i v i t i e s >
<Predeces sor s >

<n u l l/>
</Predeces sor s >
<Successor s >

<Fragment3/>
</Succes sor s >

</Fragment2>

<Fragment3>
<bpe lF i l e >

<”/home/ e c l i p s e /Workspace/ a u c t i o n S e r v i c e
/Fragments/Fragment3 . bpe l”/>

</bpe lF i l e >
<A c t i v i t i e s >

<a s s i g n : n u l l />
<invoke : r e g i s t e r A u c t i o n R e s u l t s/>
<r e c e i v e : r e c e i v eAuc t i onReg i s t r a t i on In f o rmat i on/>

</A c t i v i t i e s >
<Predeces sor s >

<Fragment1/>
<Fragment2/>

</Predeces sor s >
<Successor s >

51

<Fragment4/>
<Fragment5/>

</Succes sor s >
</Fragment3>

<Fragment4>
<bpe lF i l e >

<”/home/ e c l i p s e /Workspace/ a u c t i o n S e r v i c e
/Fragments/Fragment4 . bpe l”/>

</bpe lF i l e >
<A c t i v i t i e s >

<a s s i g n : n u l l />
<invoke : re spondToSe l l e r/>

</A c t i v i t i e s >
<Predeces sor s >

<Fragment3/>
</Predeces sor s >
<Successor s >

<n u l l/>
</Succes sor s >

</Fragment4>

<Fragment5>
<bpe lF i l e >

<”/home/ e c l i p s e /Workspace/ a u c t i o n S e r v i c e
/Fragments/Fragment5 . bpe l”/>

</bpe lF i l e >
<A c t i v i t i e s >

<a s s i g n : n u l l />
<invoke : respondToBuyer/>

</A c t i v i t i e s >
<Predeces sor s >

<Fragment3/>
</Predeces sor s >
<Successor s >

<n u l l/>
</Succes sor s >

</Fragment5>
</Fragments>

52

Abbildung 16: Struktur des Prozesses shippingService

A.2 Der Prozess
”

shippingService“

In Abbildung 16 ist erneut die Struktur des Prozesses dargestellt. Im Folgenden ist die
frag-Datei zu sehen.

<?xml v e r s i o n =”1.0” encoding=”UTF−8” ?>
<Fragments>

<Fragment1>
<bpe lF i l e >

<”/home/ e c l i p s e /Workspace/ s h i p p i n g S e r v i c e /
Fragments/Fragment1 . bpel”>

</bpe lF i l e >
<predecessorsFragment1>

<nul l >
</predecessorsFragment1>
<successorsFragment1>

<Fragment2>
</successorsFragment1>
<A c t i v i t i e s >

<r e c e i v e : r e c e i v e 1/>
</A c t i v i t i e s >

</Fragment1>

<Fragment2>
<bpe lF i l e >

<”/home/ e c l i p s e /Workspace/ s h i p p i n g S e r v i c e /
Fragments/Fragment2 . bpel”>

53

</bpe lF i l e >
<predecessorsFragment2>

<Fragment1>
</predecessorsFragment2>
<successorsFragment2>

<nul l >
</successorsFragment2>
<A c t i v i t i e s >

< I f : nu l l >
</A c t i v i t i e s >

</Fragment2>

<Fragment3>
<bpe lF i l e >

<”/home/ e c l i p s e /Workspace/ s h i p p i n g S e r v i c e /
Fragments/Fragment3 . bpel”>

</bpe lF i l e >
<predecessorsFragment3>

< i f >
</predecessorsFragment3>
<successorsFragment3>

<nul l >
</successorsFragment3>
<A c t i v i t i e s >

<a s s i g n : a s s i gn1/>
<invoke : invoke1/>

</A c t i v i t i e s >
</Fragment3>

<Fragment4>
<bpe lF i l e >

<”/home/ e c l i p s e /Workspace/ s h i p p i n g S e r v i c e /
Fragments/Fragment4 . bpel”>

</bpe lF i l e >
<predecessorsFragment4>

< i f >
</predecessorsFragment4>
<successorsFragment4>

<nul l >
</successorsFragment4>
<A c t i v i t i e s >

<a s s i g n : a s s i gn2/>
</A c t i v i t i e s >

</Fragment4>

54

<Fragment5>
<bpe lF i l e >

<”/home/ e c l i p s e /Workspace/ s h i p p i n g S e r v i c e /
Fragments/Fragment5 . bpel”>

</bpe lF i l e >
<predecessorsFragment5>

< i f >
</predecessorsFragment5>
<successorsFragment5>

<nul l >
</successorsFragment5>
<A c t i v i t i e s >

<whi le : nu l l >
</A c t i v i t i e s >

</Fragment5>

<Fragment6>
<bpe lF i l e >

<”/home/ e c l i p s e /Workspace/ s h i p p i n g S e r v i c e /
Fragments/Fragment6 . bpel”>

</bpe lF i l e >
<predecessorsFragment6>

<while>
</predecessorsFragment6>
<successorsFragment6>

<nul l >
</successorsFragment6>
<A c t i v i t i e s >

<a s s i g n : a s s i gn3/>
<invoke : invoke2/>
<a s s i g n : a s s i gn4/>

</A c t i v i t i e s >
</Fragment6>

</Fragments>

55

Literatur

[1] Brian Hayes. Cloud computing. Commun. ACM, 51(7):9–11, 2008.

[2] F. Leymann and D. Roller. Production Workflow, Concepts and Techniques. Pren-
tice Hall, Upper Saddle River, New Jersey 07458, 2000.

[3] A. Lenk et. al. What’s inside the cloud? an architectural map of the cloud landscape.
In ICSE Workshop on Software Engineering Challenges of Cloud ComputingVan-
couver, pages 23–31, Canada, 2009.

[4] C. Ellis and G. Rozenberg. Dynamic change within workflow systems. In COCS
’95: Proceedings of conference on Organizational computing systems, pages 10–21,
New York, NY, USA, 1995. ACM.

[5] R. Petzschmann. Entwicklung eines planungsalgorithmus für mediatorbasierte infor-
mationssysteme unter berücksichtigung eingeschränkter anfragemöglichkeiten. Mas-
ter’s thesis, Technische Universität Berlin, 2005.

[6] C. Reese, J. Ortmann, S. Offermann, D. Moldt, K. Lehmann, and T. Carl. Archi-
tecture for distributed agent-based workflows. pages 42–49, 2005.

[7] Gurmeet Singh Mei-Hui Su Ewa Deelman, Gaurang Mehta and Karan Vahi. Pega-
sus: Mapping Large-Scale Workflows to Distributed Resources. Springer, 2006.

[8] Hilmar Schuschel and Mathias Weske. Plaengine: Ein system zur planung und
ausführung von workflows. In BTW, pages 225–234, 2005.

[9] Stuard Russell and Peter Norvig. Künstliche Intelligenz: Ein moderner Ansatz.
Pearson Studium, München, 2007.

[10] Oliver Kopp, Rania Khalaf, and Frank Leymann. Deriving explicit data links in
ws-bpel processes. In Proceedings of the International Conference on Services Com-
puting, Industry Track, SCC 2008, pages 367–376. IEEE Computer Society, 2008.

[11] Sebastian Breier. Extended Data-flow Analysis on BPEL Processes. Diplomarbeit,
Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstech-
nik, Germany, Juli 2008.

[12] R. Khalaf, O. Kopp, and F. Leymann. Maintaining data dependencies across bpel
process fragments. In Bernd J. Krämer, Kwei-Jay Lin, and Priya Narasimhan,
editors, Service-Oriented Computing - ICSOC 2007, volume 4749 of LNCS, pages
207–219. Springer, 2007.

[13] Simon Moser, Axel Martens, Katharina Görlach, Wolfram Amme, and Artur God-
linski. Advanced Verification of Distributed WS-BPEL Business Processes Incor-
porating CSSA-based Data Flow Analysis. pages 98–105. IEEE Computer Society,
2007.

56

[14] Rania Khalaf and Frank Leymann. Role-based decomposition of business processes
using bpel. In ICWS ’06: Proceedings of the IEEE International Conference on Web
Services, pages 770–780, Washington, DC, USA, 2006. IEEE Computer Society.

[15] W.Tan and Y. Fan. Dynamic workflow model fragmentation for distributed execu-
tion. Comput. Ind., 58(5):381–391, 2007.

[16] M. G. Nanda, S. Chandra, and V. Sarkar. Decentralizing execution of composite
web services. In In OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications,
pages 170–187. ACM Press, 2004.

[17] D. Wutke, D. Martin, and F. Leymann. Model and infrastructure for decentralized
workflow enactment. In SAC ’08: Proceedings of the 2008 ACM symposium on
Applied computing, pages 90–94, New York, NY, USA, 2008. ACM.

[18] David Gelernter. Generative communication in linda. ACM Trans. Program. Lang.
Syst., 7(1):80–112, 1985.

[19] D. Martin, D. Wutke, and F. Leymann. A novel approach to decentralized work-
flow enactment. In EDOC ’08: Proceedings of the 2008 12th International IEEE
Enterprise Distributed Object Computing Conference, pages 127–136, Washington,
DC, USA, 2008. IEEE Computer Society.

[20] O. Danylevych, D. Karastoyanova, and F. Leymann. Optimal stratification of tran-
sactions. Internet and Web Applications and Services, International Conference on,
0:493–498, 2009.

[21] Daniel Nurmi, Richard Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil So-
man, Lamia Youseff, and Dmitrii Zagorodnov. The eucalyptus open-source cloud-
computing system. In CCGRID, pages 124–131, 2009.

[22] Jussi Vanhatalo, Hagen Völzer, and Frank Leymann. Faster and more focused
control-flow analysis for business process models through sese decomposition. In
ICSOC, pages 43–55, 2007.

[23] Wolfram Amme, Axel Martens, and Simon Moser. Advanced verification of distri-
buted ws-bpel business processes incorporating cssa-based data flow analysis. In-
ternational Journal of Business Process Integration and Management, 4(1):47–59,
2009.

[24] Ganna Monakova, Oliver Kopp, Frank Leymann, Simon Moser, and Klaus Schaefers.
Verifying business rules using an smt solver for bpel processes. International Journal
of Cooperative Information Systems (IJCIS), 17(3):259–282, 2008.

[25] Scott Callaghan, Ewa Deelman, Dan Gunter, Gideon Juve, Philip Maechling, Chri-
stopher Brooks, Karan Vahi, Kevin Milner, Robert Graves, Edward Field, David
Okaya, and Thomas Jordan. Scaling up workflow-based applications. J. Comput.
Syst. Sci., 76(6):428–446, 2010.

57

[26] Ewa Deelman. Grids and clouds: Making workflow applications work in heteroge-
neous distributed environments. International Journal of High Performance Com-
puting Applications, pages 1–15, 2009.

[27] Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, Bruce Berriman, Benja-
min P. Berman, and Philip Maechling. Scientific workflow applications on amazon
ec2. CoRR, abs/1005.2718, 2010.

[28] Paul T. Groth, Ewa Deelman, Gideon Juve, Gaurang Mehta, and G. Bruce Berri-
man. Pipeline-centric provenance model. CoRR, abs/1005.4457, 2010.

[29] Rizos Sakellariou, Henan Zhao, and Ewa Deelman. Mapping workflows on grid
resources: Experiments with the montage workflow. CoreGrid, pages 1–14, 2009.

[30] Christina Hoffa, Gaurang Mehta, Timothy Freeman, Ewa Deelman, Kate Keahey,
Bruce Berriman, and John Good. On the use of cloud computing for scientific work-
flows. 3rd International Workshop on Scientific Workflows and Business Workflow
Standards in e-Science (SWBES) in conjunction with Fourth IEEE International
Conference on e-Science (e-Science 2008), 2008.

[31] Gurmeet Singh, Carl Kesselman, and Ewa Deelman. Optimizing grid-based work-
flow execution. J. Grid Comput., 3(3-4):201–219, 2005.

[32] Jim Blythe, Ewa Deelman, and Yolanda Gil. Planning for workflow construction
and maintenance on the grid. ICAPS 2003 Workshop on Planning for Web Services,
2003.

[33] Ewa Deelman, James Blythe, Yolanda Gil, and Carl Kesselman. Pegasus: Planning
for execution in grids. GriPhyN technical report 2002-20, 2002.

[34] Yolanda Gil, Ewa Deelman, Jim Blythe, Carl Kesselman, and Hongsuda Tangmu-
narunkit. Artificial intelligence and grids: Workflow planning and beyond. IEEE
Intelligent Systems, 19(1):26–33, 2004.

[35] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Scott Koranda, Albert
Lazzarini, Gaurang Mehta, Maria Alessandra Papa, and Karan Vahi. Pegasus and
the pulsar search: From metadata to execution on the grid. In PPAM, pages 821–
830, 2003.

58

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Diana Przybylski)

59

