Institut fiir Architektur von Anwendungssystemen
Universitat Stuttgart
UniversitatsstraBe 38

D-70569 Stuttgart

Diplomarbeit Nr. 3058

Planungsverfahren im scientific
Workflow Management

Diana Przybylski

Studiengang: Softwaretechnik

Priifer: Prof. Dr. Dimka Karastoyanova
Betreuer: Dipl.-Inf. Katharina Gérlach
begonnen am: 13. Juli 2010

beendet am: 12. Januar 2011

CR-Klassifikation: H4.1, 129

Inhaltsverzeichnis

1 Einleitung

1.1 Einordnung in das Umfeld oL
1.2 Motivation der Arbeit
1.3 Zielsetzung der Arbeit o
1.4 Related Work o .o
2 Grundlagen
2.1 Web Service Description Language (WSDL)
2.2 Business Process Execution Language (BPEL)
2.3 Cloud Computing
2.4 Planungsalgorithmen der kiinstlichen Intelligenz
3 Dynamische, verteilte Ausfithrung von BPEL-Prozessen
3.1 Allgemeiner Ablauf o o
3.2 Berechnung der Datenkanten
3.3 Fragmentierung
3.3.1 Einfihrung
3.3.2 Algorithmus
3.3.3 Neufragmentierung
3.4 Dynamisches Deployment
3.4.1 Wiederholtes Dynamisches Deployment
3.5 Diskussion
4 Implementierung
4.1 Benutzerschnittstelle oo oo
4.2 Cloud Test-Umgebung
4.3 Fragmentierung
4.4 Planung e e
4.5 Datenflussanalyse

5 Zusammenfassung und Ausblick
5.1 Zusammenfassung der Ergebnisse
5.2 Weiterfilhrende Arbeiten und Ausblick

A Anhang
A.1 Der Prozess ,auctionService*
A.2 Der Prozess ,shippingService* L.

10
10
10
13
14

16
16
19
21
22
23
31
31
33
33

35
35
36
39
43
45

47
47
48

Web Services, scientific Workflows und Cloud Computing sind wichtige,
aktuelle Forschungsgebiete ([1]). Die Ausfithrung von scientific Workflows
in einer Cloud hat den Vorteil der unbeschrinkten Ressourcen durch die
Illusion unendlicher Rechenkapazitéit in der Cloud. Scientific Workflows, die
hiufig Web Services aufrufen, kénnen effizienter ausgefithrt werden, wenn
diese groflen Workflows in Teilprozesse (Fragmente) aufgeteilt werden, die
verteilt und dynamisch in der Cloud ausgefiihrt werden. Dies ist effizienter,
da auf eine Anderung der Infrastruktur reagiert werden kann, wenn es notig
ist. Dies bedeutet entweder eine erneute Zuordnung eines Fragments ohne
Server auf einen anderen Server oder eine Refragmentierung eines zu grofien
Fragments.

1 Einleitung

Scientific Workflows und die Nutzung von Clouds sind in der aktuellen Forschung wich-
tige Themengebiete [1]. Ein scientific Workflow ist ein spezieller Workflow, dessen cha-
rakteristische Merkmale die Berechnung eines wissenschaftlichen Problems und die lange
Ausfiithrungsdauer sind. Cloud Computing stellt IT-Infrastrukturen (unter anderem Soft-
ware oder Ressourcen) vollautomatisch zur Verfiigung, die eventuell iiber die ganze Welt
verteilt sind. Die Menge der Ressourcen beispielsweise kann dynamisch, der Nachfrage
entsprechend, angepasst werden. Aufgrund der Eigenschaften von scientific Workflows
ist es sinnvoll, diese in einer Cloud auszufiithren, da es moglich ist, immer die nétigen
Ressourcen bereitgestellt zu bekommen. Um eine optimale Ausfiithrung des Workflows
in der Cloud zu gewéhrleisten, ist es sinnvoll, die Workflows in einem ersten Schritt in
kleinere Teilworkflows oder Fragmente zu zerlegen. Diese kénnen dann durch Anwen-
dung eines Planungsalgorithmus aus dem Bereich der kiinstlichen Intelligenz auf die zur
Verfiigung stehenden Ressourcen in der Cloud gemappt werden. Durch die Aufteilung
des Workflows und die Nutzung eines Planungsalgorithmus ist es insbesondere moglich,
das Deployment der Workflowteile dynamisch zu gestalten. Somit kann die Ausfithrung
des Workflows optimal den aktuell verfiigbaren Ressourcen angepasst werden. Dariiber
hinaus kann auf Verdnderungen der Infrastruktur zeitnah reagiert werden, indem je nach
Veréinderung der Infrastruktur neue Teilworkflows erstellt werden oder die bereits vor-
handenen neu gemappt werden.

In diesem Kapitel wird die Arbeit grob vorgestellt. In Abschnitt 1.1 werden die nétigen
Grundlagen kurz dargelegt, worauf die Motivation dieser Arbeit in Abschnitt 1.2 und
deren Zielsetzung in Abschnitt 1.3 folgen. Dieses Kapitel wird von verwandten Arbeiten
(Abschnitt 1.4) abgeschlossen. In Kapitel 2 werden die grundlegenden Themengebiete,
die fiir diese Arbeit benétigt werden, genau betrachtet. In dem darauf folgenden Ka-
pitel 3 wird Augenmerk auf die konzeptionelle Losung gelegt, die unter anderem die
Fragmentierung und die verteilte, dynamische Ausfithrung enthélt. In Kapitel 4 ist die
Umsetzung der konzeptionellen Losung zu finden. AbschlieBend werden in Kapitel 5
die Arbeit und ihre Ergebnisse zusammengefasst und ein Ausblick auf weitere mogliche
Arbeiten geboten.

1.1 Einordnung in das Umfeld

Zur Beschreibung dieses Prozesses, muss zuerst ein grundlegendes Wissen vorhanden
sein. Um dieses zu erlangen, werden im Folgenden die wichtigsten Themengebiete kurz
erlautert. Diese Gebiete umfassen die Service Oriented Architecture, Workflows, Work-
flow Management und scientific Workflows sowie Business Process Execution Language
(BPEL) und Web-Service Definition Language (WSDL). Sie hingen folgendermaflen zu-
sammen: Ein Workflow wird im technischen Sinne durch BPEL und WSDL implemen-
tiert. WSDL implementiert dariiber hinaus auch SOA. Auflerdem werden die kiinstliche
Intelligenz und Cloud Computing kurz vorgestellt.

Service Oriented Architecture (SOA) ist ein Architekturmuster, das Service Ori-
ented Computing (SOC) realisiert. SOC stellt ein Paradigma dar, das Services benutzt.
Services sind Funktionen, die an Netzwerk-Adressen zur Verfiigung gestellt werden.
Durch die plattformunabhéngigen Standards, die bei den Services verwendet werden,
ist es moglich, den Service von verschiedensten Plattformen aus aufzurufen und dabei
zum Beispiel auch unterschiedliche Kommunikationsprotokolle zu benutzen. Die Web
Service Technologie ist ein Standard- und Technologie-Stack, der SOA unterstiitzt.

Um die Funktionsweise von SOA zu verstehen, ist das SOA Dreieck hilfreich. Dieses
ist in Abbildung 1 zu sehen. Der Service Requestor ist auf der Suche nach einem Service,
den er mit Hilfe der Service Discovery findet. Die Service Discovery kennt den Service
Provider, der zuvor seinen angebotenen Service 6ffentlich gemacht hat. Hat der Service
Requestor nun den passenden Service gefunden, kann er die Funktionen des Services
aufrufen und benutzen. Die Services und deren Funktionen werden beschrieben, so dass
das Ergebnis der Funktion einsichtig ist, die Umsetzung, die dahinter steht, bleibt aber
verborgen.

Service

Requestor
Binden Finden
Service Service
Provider Verdffent- Discovery

lichen

Abbildung 1: SOA Dreieck

SOA ist die Grundlage fiir Workflows und Workflow Management. SOA stellt
verteilte, heterogene Dienste (Services) zur Verfiigung. Sie sind lose gekoppelt, was be-
deutet, dass die Anzahl der Annahmen, die zwei Parteien beim Informationsaustausch
iibereinander machen (beispielsweise wie viele Parameter in welchen Datentypen an die
aufgerufene Funktion iibergeben werden miissen), reduziert ist.

Diese Services werden durch einen Workflow kombiniert. Ein Workflow implementiert
in den meisten Féllen einen Geschéftsprozess durch einen Graphen ([2]). Eine mogliche
Anwendung von Workflows und Workflow Management ist der Einsatz im Geschéftsbe-
reich. Die Dienste des Unternehmens kénnen mit Hilfe von Workflows kombiniert werden.

Workflows beschreiben Ablaufe eines Unternehmens entlang der gesamten Wertschopf-
ungskette. Der Steuerung der Ablauffolge wird somit durch das Workflow Management
automatisiert. Dariiber hinaus besteht die Moglichkeit, Arbeitsschritte, die automatisch
durch Programme oder Services erledigt werden kénnen, direkt aus dem Workflow auf-
zurufen und sie auszufiihren.

Ein Workflow kann durch einen Graphen dargestellt werden. Dabei sind Knoten ein-
zelne Aufgaben, die beispielsweise wihrend eines Geschéftsprozesses ausgefithrt wer-
den miissen. Kanten stellen die Abhéingigkeiten zwischen diesen Aufgaben dar. Knoten
konnen Aufgaben (sogenannte Aktivititen) ganz unterschiedlicher Art sein. Beispiels-
weise kann eine Aktivitéit nur beinhalten, dass eine Meldung erscheinen oder ein Zugriff
auf ein Medium getétigt werden muss. Diese Aktivitdten konnen automatisch ausgefiihrt
werden. Im Gegensatz dazu stehen Aktivitdten, die nur durch Menschenhand erledigt
werden konnen.

Scientific Workflows sind spezielle Workflows, die Fragestellungen der Wissenschaft
behandeln; genauer gesagt Berechnungen durchfiithren. Thre Kennzeichen sind, dass sie
im Allgemeinen langlaufende Workflows sind, die nur einmal instantiiert werden und die
Funktionen, die sie nutzen, Web Services sind. Dariiber hinaus sind sie datenzentriert
und verarbeiten grofie Datenmengen.

Um die Unterschiede zwischen Workflows und Scientific Workflows nochmals hervor-
zuheben, muss das Augenmerk speziell auf das Deployment und die Instantiierung gelegt
werden. Bei einem Workflow kommt das Deployment zeitlich vor der Instantiierung, die
wiederum beliebig oft durchgefiihrt werden kann. Bei einem scientific Workflow findet
das Deployment auch einmal statt, er wird aber meist nur einmal ausgefiihrt.

Workflow Management (siche Abbildung 2) beinhaltet die Modellierung, die IT-Ver-
feinerung, das Deployment, die Ausfithrung und die Uberwachung und Analyse der Uber-
wachungsergebnisse von Workflows [2].

Wihrend der Modellierungphase wird ein Prozess modelliert, der den zu beschreiben-
den Ablauf abbildet. In den Modellierungsprozess flielen zusétzlich die Key Performan-
ce Indicators (KPIs) ein. Sie gliedern sich in die Kategorien Kosten, Zeit, Qualitit und
Flexibilitdt und werden oft fiir Vergleiche durch Metriken benutzt. Der Modellierungs-
prozess geschieht meist nicht auf der IT-Ebene, weshalb eine I'T-Verfeinerung benttigt
wird, die das Modell verfeinert und ergénzt. Ist dieser Prozess abgeschlossen, folgt das
Deployment und die Ausfithrung des Prozesses. Von diesem Workflow werden so viele
Instanzen, wie nétig, erzeugt und ausgefiihrt. Die Ausfithrung wird iiberwacht, um den
Workflow nach einer Analyse der Ergebnisse zu verbessern. Die dadurch gewonnenen
Erkenntnisse konnen in der Modellierungsphase mit einbezogen werden. Somit kann der
Workflow iterativ verbessert werden.

BPEL ist eine Sprache, die den Workflow implementiert. WSDL hingegen ist eine
Sprache, die als Interface gesehen werden kann. Sie definiert Web Services, spezifiziert
den Ort des Services und seine Operationen.

Die Kiinstliche Intelligenz ist ein Fachbereich, der sehr viele Facetten und Anwen-
dungsgebiete hat. Zur kiinstlichen Intelligenz gehtren unter anderem die Gebiete der
Wahrnehmung und Verarbeitung von Informationen, Fortbewegung und Bewegungs-
abldufe sowie das Planen von Abldufen. Die Planung findet beispielsweise in Compu-

Modellierung |
| Analyse | [IT Verfeinerung|
|Uberwachung | [Deployment |
N 7
| Ausfiihrung |

Abbildung 2: Der Business Process Model Lebenszyklus

terspielen Verwendung. Wenn man gegen einen Schachcomputer spielt, reagiert dieser
durch Anwendung eines Planungsalgorithmus. Er erkennt den Spielzug, hat somit eine
neue Ausgangssituation, um sein Ziel zu erreichen und wahlt den besten néchsten Zug
aus einer Menge von giiltigen Regeln aus. Auch bei Computerspielen, die Menschen si-
mulieren, werden diese Algorithmen bendtigt, um ihr Verhalten moglichst real wirken
zu lassen.

Die Planung und alle anderen Gebiete der kiinstlichen Intelligenz finden ihre Anwen-
dung in dem wohl bekanntesten Beispiel der kiinstlichen Intelligenz: der Robotik. Auf
dem Gebiet der Robotik wird Forschung betrieben, die Roboter immer menschen-dhnli-
cher machen soll. Hierzu gehoren auler der Wahrnehmung und der Motorik vor allem die
Fahigkeiten, Entscheidungen aufgrund von Tatsachen zu treffen und das Handeln an die-
sen Tatsachen auszurichten. Um dies zu ermdglichen, werden neben anderen Algorithmen
auch Planungsalgorithmen eingesetzt. Sie verwenden Annahmen, die die Ausgangssitua-
tion beschreiben und ein definiertes Ziel haben. Auf der Basis dieses Wissens erstellen
sie einen Plan, um das Ziel zu erreichen. Treten wiahrend der Ausfiihrung des Plans un-
vorhergesehene Ereignisse auf, ist es dem Planer moéglich, einen anderen Weg des Plans
einzuschlagen, der nicht Teil der urspriinglichen Losung war. Durch diese dynamische
Anderung kann er auf das unvorhergesehene Ereignis reagieren. Diese spezielle Art der
Planung ist die stetige Planung, die die Arbeit iiberwacht, bis sie beendet ist.

Cloud Computing stellt IT-Infrastrukturen zur Verfiigung [3]. Im Speziellen kon-
nen dies Rechen-Ressourcen sein. Diese sind iiber die ganze Welt verteilt und kénnen
dynamisch an den Bedarf der Benutzer angepasst werden. Dies ist die unterste der drei
Ebenen, die es im Cloud Computing gibt. Sie wird ,,Infrastructure as a Service“ genannt.
Die zwei weiteren Ebenen sind ,,Platform as a Service* und ,,Software as as Service*.

Durch die Bereitstellung von Ressourcen konnen eigene Ressourcen eingespart werden.
Dariiber hinaus steht immer die n6tige Menge an Ressourcen in der Cloud zur Verfiigung.

1.2 Motivation der Arbeit

Die charakteristische Eigenschaften von scientific Workflows, die in dieser Arbeit adres-
siert werden, ist die lange Ausfithrungsdauer und eine daraus resultierende lange Reser-
vierung oder Benutzung von Ressourcen. Diese Eigenschaft spricht fiir eine Aufteilung
des Workflows in kleinere Teile (Fragmente), um diese Fragmente verteilt ausfiihren zu
konnen. Durch eine verteilte Ausfithrung der Fragmente werden Ressourcen kiirzer be-
nutzt und schneller wieder frei gegeben. Alle Fragmente konnen auf unterschiedlichen
Servern ausgefithrt werden, wodurch eine parallele Ausfithrung unterstiitzt und eventuell
beschleunigt wird.

Durch die Verwendung eines Planungsalgorithmus der kiinstlichen Intelligenz wihrend
der Ausfiihrung von scientific Workflows wird diese flexibler gestaltet und somit opti-
miert. Das Deployment kann durch den Planungsalgorithmus dynamisch angewendet
und zum spétest moglichen Zeitpunkt ausgefithrt werden. Es wird eine optimale Ver-
teilung der Workflowfragmente auf die zur Verfiigung stehenden Server erreicht, da vor
jedem Deployment iiberpriift werden kann, ob sich die Infrastruktur so verdndert hat,
dass neu fragmentiert und geplant oder nur neu geplant werden muss.

1.3 Zielsetzung der Arbeit

In dem nachfolgend beschriebenen Ablauf wird die Fragmentierung und das stetige Pla-
nen zur Ausfithrung eines scientific Workflows in einer Cloud kombiniert.

Workflow-Modellierung Fragmentierung Planung
in ginem Modellierungstool, z.B. Eclipse R
Mapping
Far'e o IFragment 1 I o F1 1-D-|Ser\rer 4

4 toe
o Fragment 2 _ |Deployment-Einheit erstellenl

BPEL WSDL Deployment
¢ Deployment-Einheit
Servern
| Datenibertragung |
-~

Server 1 |
| - Server n
|[Engine] Infrastruktur- I|

Server 2)vlu Informationen ."
f
S~

Abbildung 3: Zielsetzung der Arbeit: Fiir die Fragmentierung wird ein Workflow und
Infrastruktur-Informationen der Cloud benétigt. Anschliefend folgt das
Deployment der Fragmente auf die Server der Cloud. Das Deployment
erfolgt dynamisch; bei Anderungen der Infrastruktur kann darauf reagiert
werden.

Zu Beginn steht die Modellierung eines Workflows mit einem Modellierungswerkzeug
(sieche Abbildung 3). Der Workflow ist hierbei durch eine BPEL- und eine oder mehrere
WSDL-Datei(en) beschrieben. Nun wird er durch eine Fragmentierung in Teile zerlegt,
die in einer Cloud ausgefithrt werden sollen. Die Fragmentierung wird aufgrund der
Struktur der BPEL-Datei durchgefiihrt. Sie teilt den Prozess, der durch die BPEL-Datei
beschrieben wird, in kleinere Teilprozesse, die nur Sequenzen von Basis-Aktivititen, ein-
zelne alternative Zweige oder Schleifenkérper des urspriinglichen Prozesses enthalten
konnen. Alle Basis-Aktivitidten, die wiahrend der Fragmentierung vorkommen, werden
unverdndert in die Fragmente iibernommen. Die Ausfithrungsreihenfolge der Aktivitéten
bleibt erhalten. Wahrend der Fragmentierung werden die Vorgénger- und Nachfolgerfrag-
mente jedes einzelnen Fragments festgehalten, damit die Ausfithrungsreihenfolge gewéhr-
leistet werden kann.

Eine Komponente, die erst wihrend des dynamischen Deployments zum Tragen kommt,
koordiniert die Ubertragung der bendtigten Daten zwischen den Fragmenten. Diese Kom-
ponente ist in Abbildung 3 bei der Planung mit inbegriffen. Ist hierbei die Menge der
Ubertragung groBer als ein fester Schwellwert, miissen diese beiden Fragmente auf einem
Server ausgefiihrt werden, damit die Daten nicht {ibertragen werden miissen, sondern
nur auf einem Server benttigt werden.

Ist die Fragmentierung abgeschlossen, kann das Deployment gestartet werden (sie-
he Abbildung 3). Zu Beginn miissen Informationen iiber die Grole der zur Verfiigung
stehenden Server der Cloud und die Gréfle der Fragmente eingeholt werden. Diese In-
formationen werden zum Mapping der Fragmente auf die Server benotigt. Wahrend des
Mappings wird fiir jedes Fragment zuerst ein Server passender Grofle gesucht. Ist dieser
nicht vorhanden, wird der Server mit dem grofiten freien Speicherplatz fiir das Mapping
herangezogen. Ist fiir jedes Fragment ein Server gefunden worden, kann das Deployment
gestartet werden. Um die Fragmente zu erstellen, muss eine Deployment-Einheit erstellt
werden. Diese enthélt das Prozessfragment, die zugehorige(n) WSDL-Datei(en) und die
von diesem Fragment aufgerufenen Services. Diese Services bestehen wiederum aus einer
oder mehreren WSDL-Datei(en) und der Implementierung. Die Aufgaben des Deploy-
ments sind, die Deployment-Einheiten in der richtigen Reihenfolge dynamisch auf die
gemappten Server zu legen und zu instantiieren. Das dynamische Deployment endet,
wenn alle Deployment-Einheiten und somit der gesamte Prozess erfolgreich ausgefiihrt
worden sind. Die Umsetzung des dynamischen Deployments wird durch die Anwendung
eines stetigen Planungsalgorithmus umgesetzt, der dafiir verantwortlich ist, dass alle
Fragmente in der richtigen Reihenfolge korrekt ausgefiihrt werden. Da der Prozess mehr-
mals instantiiert werden kann, kann es auch mehrere Instanzen der Fragmente geben.
Die Instanzen eines Fragments sind immer jeweils genau einem Prozess zugeordnet.

Es ist wihrend des dynamischen Deployments mdoglich, dass sich die Infrastruktur
der Cloud verdndert, zum Beispiel weil das dynamische Deployment sehr lange l&uft.
In diesem Fall ist es moglich, dass sich die Verfiigbarkeit der Server in der Cloud oder
deren Grofle dndert. Wenn durch diese Anderung ein Fragment, das auf einen Server
gemappt wurde, nicht mehr auf diesem Server ausgefiihrt werden kann, muss die Grofie
dieses Fragments erneut betrachtet werden. Ist diese grofler als der Gesamtspeicher des
grofiten Servers, wird die Fragmentierung neu ausgelost. Bei dieser Fragmentierung muss

darauf geachtet werden, dass das Fragment nun so aufgeteilt wird, dass die entstehenden
Fragmente kleiner als der Gesamtspeicher des grofiten Servers sind. Ist die Grofle des
Fragments aber kleiner als der Gesamtspeicher des grofiten Servers, wird das dynamische
Deployment erneut ausgefiihrt, um fiir dieses Fragment einen anderen Server zu finden.

1.4 Related Work

Die bisherigen Ansétze in der Literatur befassen sich grofitenteils nur mit der Frag-
mentierung oder Planung. Die Fragmentierung ist aus vielen verschiedenen Blickwinkeln
betrachtet worden. Diese Arbeiten werden in Kapitel 3.3.1 genauer beleuchtet.

In Arbeit [4] ist die Fragmentierung nicht mehr das Thema. Hier geht es um Dy-
namik in Workflows. Es soll méglich sein, auf Anderungen des Modells reagieren zu
konnen. Diese Anderungen miissen an den Workflows vorgenommen werden, bei denen
das Deployment schon stattgefunden hat. Dieser Workflow ist als Petri-Netz représen-
tiert. Auf Anderungen zu reagieren bedeutet, dass es Regionen im Workflow gibt, die
verindert werden miissen. Dazu werden diese Regionen identifiziert. Sie sollten so schnell
wie moglich durch die Regionen mit den enthaltenen Anderungen ersetzt werden. Eine
Gemeinsamkeit zu dieser Arbeit ist die Reaktion auf Anderungen. Eine Anderung hat
in den beiden Ansétzen aber unterschiedliche Auswirkungen. Dieser Ansatz reagiert bei
einer Anderung mit einer erneuten Planung oder Fragmentierung, wohingegen die Me-
thode aus [4] diese Anderung in alle bestehenden Workflows einbringt. Aus diesem Grund
konnen diese beiden Ansétze nicht verglichen werden und haben als einzige Gemeinsam-
keit die Reaktion auf Verédnderungen.

Ansatz [5] wendet KI-Planungsverfahren auf Workflows an. Er bearbeitet Benutzeran-
fragen, die einen Zugriff auf autonome und heterogene Datenquellen benétigen. Die Um-
setzung besteht aus einem Mediator, der Zugriff auf diese Daten bietet. Der Zugriff
ist durch eine globale Anfragesprache moglich. In diesem Ansatz wird der Zugriff auf
verschiedene Datenquellen durch Anwendung eines Mediators aus der kiinstlichen Intel-
ligenz gewihrleistet. Der Mediator, der in Ansatz [5] verwendet wird, hat Ahnlichkeit mit
einem Workflow Management System, da auch dieses heterogene Aufrufe bewerkstelligen
muss. Auch der Zugriff auf autonome und heterogene Datenquellen hat Ahnlichkeiten
mit SOA. Da aber keine Planungsalgorithmen verwendet werden, sondern ein Mediator
aus dem Bereich der kiinstlichen Intelligenz und auch keine Fragmentierung vorgenom-
men wird, sind mehr Unterschiede als Parallelen zu diesem Ansatz zu finden.

Im Folgenden werden die Ansitze betrachtet, die sich mit der Planung oder allge-
mein der kiinstlichen Intelligenz befassen und Ahnlichkeiten mit dem hier gewihlten
Vorgehen haben. Der Algorithmus aus dem Ansatz von [6] fragmentiert einen Workflow
und fithrt ihn verteilt aus. Ein Workflow ist in einem oder mehreren Agenten gekap-
selt. Diese befinden sich an unterschiedlichen Standorten und kooperieren miteinander.
Fiir die Umsetzung wird eine Technik angewendet, die den Workflow fragmentiert und
die Fragmente in Agenten kapselt. Bei diesem Ansatz werden Agenten der kiinstlichen
Intelligenz verwendet. Eine Gemeinsamkeit ist in der Kapselung des Workflows in unter-
schiedliche Teile zu sehen. Da die Teile aber nicht aufgrund der Struktur des Workflows
hergestellt werden, sondern so, dass verwandte Aufgaben zusammengefasst werden, ist

der Algorithmus nicht mit der Fragmentierung dieser Arbeit zu vergleichen.

Pegasus [7] befasst sich auch mit der Fragmentierung und verteilter Ausfithrung von
Workflows. Es bearbeitet auf der Grundlage spezieller Verteilungs- und Ausfiihrungs-
kriterien Aufgaben, die in Grids ausgefiihrt werden. Diese beiden Ansétze haben die
Ausfithrung, die durch eine Planung durchgefiihrt werden und die vorangestellte Frag-
mentierung gemeinsam. Die Ausfiihrungsumgebung ist aber eine andere und der Frag-
mentierung liegen andere Regeln zugrunde.

Arbeit [8] fillt auf, da in diesem Ansatz Dynamik durch Planungsverfahren hinzu-
kommt. Der Ansatz plant die Ausfithrung eines Workflows, reagiert wihrend der Aus-
fithrung auf Anderungen und plant gegebenenfalls neu. Hierzu werden die tatséichlichen
FErgebnisse eines Teilschritts mit den erwarteten Ergebnissen verglichen. Bei einem un-
erwarteten Ergebnis wird dieses analysiert. Ist das Ergebnis nicht akzeptabel, so wird
eine Neuplanung ausgelost. Die in diesem Ansatz angewendeten Planungsalgorithmen
unterscheiden sich von diesen, die in diesem Ansatz Verwendung finden, da eine ande-
re Planungsaufgabe ausgefithrt wird. Die gegebene Aufgabe wird mit Hilfe des partiell
ordnenden Planens und der Neuplanung geldst. In dem hier angewendeten Ansatz wird
stetige Planung angewendet, um auf Anderungen der Infrastruktur reagieren zu koénnen.
Dariiber hinaus wird in dieser Arbeit keine vorangestellte Fragmentierung angewendet.

2 Grundlagen

In diesem Kapitel werden die n6tigen Grundlagen betrachtet. Diese umfassen Web Ser-
vice Description Language (WSDL), Business Process Execution Language (BPEL),
Cloud Computing und die Planungsalgorithmen der kiinstlichen Intelligenz.

2.1 Web Service Description Language (WSDL)

WSDL wird benutzt, um Web Services zu definieren. In einer WSDL-Datei wird der
Ort des Web Services und die Operationen, die der Service bereitstellt, spezifiziert. Das
Dokument besitzt XML-Struktur und enthélt eine Menge von Definitionen, die den Web
Service beschreiben. Diese Informationen sind abstrakt, die konkreten Informationen,
also die Implementierung der Services, sind beispielsweise in einer BPEL-Datei (BPEL
siehe Abschnitt 2.2) enthalten. Durch dieses Design ist die abstrakte Funktionalitidt von
den Details der Service Beschreibung getrennt. Die Hauptelemente sind:

e Types: hier werden die bendtigten Datentypen definiert
o Message: die auszutauschenden Daten werden hier abstrakt definiert

e Operation: hier sind die abstrakten Aktionen aufgelistet, die vom diesem Service
unterstiitzt werden

e Port Type: Spezifikation der Menge der Operationen, die von einem Endpoint
(Punkt, beispielsweise ein Prozessor oder eine Entitit, zu dem Nachrichten ge-
schickt werden kénnen) unterstiitzt werden

e Binding: konkretes Protokoll und Datenformat, um einen Port Type zu implemen-
tieren

e Port: einzelner ,Endpoint“ der von einer Netzwerkadresse identifiziert wird, die
ein bestimmtes Binding unterstiitzt

e Service: Sammlung von (verwandten) Endpoints

2.2 Business Process Execution Language (BPEL)

Web Services Business Process Execution Language (BPEL) ist eine Sprache zur Spezifi-
kation des Verhaltens von Geschiftsprozessen. BPEL ist eine Kombination einer graph-
basierten und einer rechen-basierten Sprache, da BPEL aus den Sprachen IBM WSFL!
(graph-basierte Sprache) und Microsoft XLANG? (rechen-basierte Sprache) entstanden
ist.

In BPEL gibt es strukturierte und nicht-strukturierte (oder Basis-) Aktivitéten. Diese
werden im Folgenden genauer erldutert. Die nicht-strukturierten Aktivitéiten enthalten
keine anderen Aktivitéten.

"http://xml.coverpages.org/wsfl.html
2http:/ /msdn.microsoft.com/en-us/library /aa577463%28v=bts.70%29.aspx

10

Zu ihnen gehoren:

receive: Receive empfiangt eine Nachricht, die in einer Variablen gespeichert wird.
Receive kann eine neue Prozessinstanz instantiieren.

reply: Reply versendet eine Nachricht. Diese Nachricht stellt die Antwort einer
synchronen Kommunikation dar und antwortet somit auf ein vorangegangenes Re-
cetve.

invoke: Invoke wird benutzt, um einen Web Service aufzurufen. Typischerweise
ruft ein Invoke eine Operation des Services auf.

assign: Assign weist einer Variablen einen Wert zu. Dieser kann in einem Assign
berechnet werden oder durch Manipulation einer anderen Variablen entstehen. Die
Operation hat einen from-Teil, der angibt von wo der Wert kopiert werden soll und
einen to-Teil, in dem steht, wohin der Wert geschrieben wird.

empty: Empty ist ein Platzhalter und stellt eine leere Operation dar.
exit: Diese Aktivitdt beendet den Prozess.
throw: Throw signalisiert explizit interne Fehler eines Geschiéftsprozesses.

rethrow: Rethrow propagiert Fehler weiter, die in einem Fault Handler gefangen
wurden.

wait: Verzogert die Ausfithrung fiir eine bestimmte definierte Zeitspanne oder bis
ein definierter Zeitpunkt erreicht ist.

Zu den strukturierten Aktivititen gehoren:

Flow: Ein Flow ist ein Konstrukt, in dem mehrere Aktivititen enthalten sein
konnen. Aktivitdten, die nicht durch Links verbunden sind, kéonnen parallel aus-
gefithrt werden. Aktivitdten, die mit Links verbunden sind, miissen in einer be-
stimmten Reihenfolge ausgefiihrt werden. Ein Link hat eine Source- oder Ur-
sprungsaktivitdt und eine Target- oder Zielaktivitéit. Eine Source ist eine ausge-
hende Kante einer Aktivitdt und Target eine eingehende Kante.

Sequence: Aktivitdten, die in einer Sequence enthalten sind, miissen sequenziell
in der spezifizierten Reihenfolge ausgefiihrt werden. Es ist aber durchaus mdoglich,
dass eine Sequence beispielsweise einen Flow oder eine andere Aktivitdt enthélt,
die wieder Aktivitdten enthalten, die parallel ausgefithrt werden kénnen.

Scope: Ein Scope unterstiitzt den Kontext, der das Ausfithrungsverhalten der ent-
haltenen Aktivitdten beeinflusst.

If: If ist eine Aktivitdt, das eine Alternative des moglichen Kontrollflusses her-
beifiihrt. Bei einem If gibt es zwei oder mehrere mogliche Pfade. Je nachdem, wie
die Bedingung, die an das If gekniipft ist, ausgewertet wird, wird ein bestimmter
Pfad zur Ausfiihrung gewéhlt.

11

e Repeat Until: Repeat Until ist eine Schleife, die ausgefiihrt wird, bis die Abbruch-
bedingung wahr wird. Die Besonderheit bei dieser Schleife ist, dass die Abbruchbe-
dingung am Schleifenende tiberpriift wird. Aus diesem Grund wird sie mindestens
ein Mal ausgefiihrt.

o While: While ist eine Schleife, die ausgefithrt wird, bis die Abbruchbedingung
wahr wird. Der Unterschied zu Repeat until besteht darin, dass die Abbruchbedin-
gung am Anfang des Schleifendurchlaufs ausgewertet wird. Es ist moglich, dass die
Schleife nicht ausgefiihrt wird, wenn die Abbruchbedingung zu Beginn schon als
wahr ausgewertet wird.

e For Fach: Einer For Each Schleife kann sequenziell oder parallel ausgefiihrt wer-
den. Die Anzahl, wie oft der Korper ausgefiihrt wird, richtet sich nach einem de-
finierten Start- und Endwert. Wenn die Completion Condition wahr wird, kann
die Ausfithrung abgebrochen werden, obwohl der Endwert noch nicht erreicht ist.
Soll die For Each Schleife sequenziell ausgefiihrt werden, miissen alle Schleifen-
durchgéinge nacheinander ausgefithrt werden. Soll die Schleife aber parallel aus-
gefithrt werden, kann jeder Durchlauf einzeln und somit parallel zu den ande-
ren Durchldufen ausgefiihrt werden. Dies ist nur moglich, wenn sich die einzelnen
Durchldufe nicht gegenseitig beeinflussen und der Zdhlwert fiir jeden Schleifen-
durchgang korrekt gesetzt wird.

e Pick: Pick wartet darauf, dass ein Event eintrifft, das in einer Menge definierter
Events enthalten ist. Alle Events, die in der Menge enthalten sind, kénnen eintref-
fen. Sobald das erste Event eingetroffen ist, werden alle weiteren Events ignoriert.
Das eingetroffene Event ist ausschlaggebend dafiir, welche Aktivitdt angestoflen
wird. Somit ist eine Alternative aus allen moglichen Kontrollfliissen ausgewihlt
worden.

BPEL beinhaltet weitere Konstrukte (Isolated Scopes, Message Exchange Handling, Er-
ror Handling, Compensation Handlers, Fault Handlers, Termination Handlers, Event
Handlers), die hier nicht beachtet werden.

In einem Prozess werden Aktivitdten in einer bestimmten Reihenfolge ausgefiihrt.
Dies ist der Kontrollfluss. Durch den Kontrollfluss sind die Aktivitdten miteinander
verbunden und miissen in der vorgeschriebenen Reihenfolge ausgefiihrt werden. Wenn
der Ablauf des Workflows in einem DAG dargestellt ist, sind die Kanten der Kontrollfluss
und die Knoten die Aktivitdten. Nun kann es bei der Navigation durch einen solchen
Graphen dazu kommen, dass die Bedingung einer Kante zu ,,falsch“ ausgewertet wird. In
einem solchen Fall wird der oder die Knoten (bei Workflows auch Aktivitéten genannt)
unter Umstédnden nicht ausgefiihrt, die durch diese Kante aus erreichbar sind. Da bei
der Ausfiihrung eines Knotens aber jede eingehende Kante ausgewertet wird, kann es
durchaus sein, dass folgende Knoten wieder ausgefithrt werden, obwohl eine Kante als
,falsch* ausgewertet wurde. Die Auswertung der eingehenden Kanten erfolgt nach einer
Bedingung. Ist diese Bedingung unter Beriicksichtigung aller eingehenden Kantenwerte
falsch, wird der Knoten nicht ausgefiihrt. Ist die Bedingung hingegen wahr, wird er

12

ausgefiithrt. Aufgrund der Tatsache, dass fiir die Bestimmung, ob ein Knoten ausgefiihrt
wird oder nicht, alle Kanten ausgewertet werden miissen, muss abgewartet werden, bis
alle Kantenbedingungen einen Wert erhalten haben. Aus diesem Grund ist es sinnvoll
und fiir die weitere Ausfithrung des Geschiftsprozesses auch notwendig, ein ,falsch®
weiterzugeben, um alle folgenden Bedingungen auswerten zu konnen. Diese Methode
heiffit Dead Path Elimination.

2.3 Cloud Computing

Cloud Computing stellt voll automatisiert IT-Infrastrukturen zur Verfigung. IT-Infra-
strukturen bezeichnen unter anderem Maschinen oder Programme, die den Betrieb von
beispielsweise Software ermdglichen. Die IT-Infrastruktur befindet sich unter der Ebene,
in der eine Software ausgefithrt wird und triagt zur automatisierten Informationsver-
arbeitung bei. Diese Infrastruktur kann iiber alle Kontinente verteilt sein. Die Menge
von bereitgestellten Ressourcen kann ja nach Bedarf dynamisch angepasst werden. Sind
bestimmte Rechner momentan nicht Teil einer Cloud, die Cloud braucht aber mehr Res-
sourcen, konnen so viele Rechner wie notig hinzugenommen werden. Auf diese Weise ste-
hen immer geniigend Ressourcen zur Verfiigung, sie miissen aber nicht ungenutzt in der
Cloud verbleiben, da sie in diesem Fall aus der Cloud entfernt werden wiirden. Dadurch
kann einem Nutzer die Bereitstellung von unendlichen Ressourcen vorgespielt werden.
Dies hat zur Folge, dass es keine Beschrinkung der Ressourcen gibt und die geforderte
Menge von Ressourcen immer zur Verfiigung gestellt werden kann. Dies ermdglicht eine
Einsparung der eigenen Ressourcen.

Falls in einer Cloud Anwendungssoftware zur Verfiigung gestellt wird, ist diese stets
auf dem neusten Stand. Ein Benutzer muss nicht selbst ein Update installieren, sondern
nutzt in der Cloud immer die aktuelle Version. Die Nutzung der Cloud ist gebiihren-
pflichtig, aber nur die Zeit der Nutzung muss bezahlt werden. Der Erwerb von Lizenzen
entfiillt vollig. Dies bringt einen Kostenvorteil mit sich, da nur die tatséchliche Nutzung
berechnet wird.

Es gibt drei Typen von Clouds. Der erste hier aufgefiihrte Typ beschreibt die unterste
Ebene einer Pyramide. Diese Ebene stellt reine Ressourcen durch virtuelle Server zur
Verfiigung, die nicht konfiguriert sind. Da diese Ebene Infrastruktur zu Verfiigung stellt,
wird sie Infrastructure as a Service (IaaS) genannt. EC2 (Elastic Compute Cloud)
von Amazon gehort zu dieser Ebene von Clouds.

Die dariiber liegende Ebene heifit Platform as a Service (PaaS). Hier wird eine
Anwendung erstellt und auf einen Server geladen. Der Server iibernimmt die Aufteilung
zur Ausfithrung auf die physischen Rechner. Somit ist in dieser Ebene der Server schon
konfiguriert. Ein Beispiel fiir eine Cloud dieser Schicht ist force.com von Salesforce.com.

Die oberste Ebene ist Software as a Service (SaaS). In dieser Ebene wird ei-
ne komplette Software als Service zur Verfiigung gestellt. Diese Software kann genutzt
werden, ohne dass diese auf dem eigenen Rechner installiert werden muss oder schon
installiert ist. Google mit GoogleDocs ist beispielsweise ein Anbieter dieser Ebene.

13

2.4 Planungsalgorithmen der kiinstlichen Intelligenz

Planen hat die Aufgabe, eine Folge von Aktionen zu finden, die ein definiertes Ziel er-
reicht. Um diese Aufgabe zu erfiillen, gibt es mehrere Ansétze (siehe Referenz [9]). Fiir
das Planen mit Zustandsraumsuche werden Vorbedingungen, Aktionen und Effekte
von Aktionen spezifiziert. Das Progressionsplanen geht dabei von einem Ausgangszu-
stand aus und ermittelt Aktionsfolgen anhand von Vorbedingungen und Effekten, bis
eine dieser Folgen den Zielzustand erreicht. Somit ist die Aufgabe gelost. Bei einem
Regressionsplan hingegen wird von dem Endzustand aus riickwérts geplant. Dies hat
den Vorteil, dass auf diese Weise nur relevante Aktionen betrachtet werden. Bei dieser
Planungsart werden nur streng lineare Aktionsfolgen betrachtet, weswegen die Vorteile
der Problemzerlegung nicht genutzt werden kénnen. Diese Vorteile kommen bei partiell
ordnendem Planen zum Tragen. Bei dieser Planungsart wird unabhéngig an mehreren
Unterzielen gearbeitet, die anschliefend kombiniert werden. So ergibt sich Flexibilitéit in
der Ausfithrung,.

Das Planen mit Aussagenlogik plant mit dem Ansatz der Erfiillbarkeit eines lo-
gischen Satzes. Ein Modell, das den Satz erfiillt, weist allen Aktionen, die Teil einer
korrekten Losung sind ,, wahr“ zu.

Die bisher vorgestellten Planungsmdoglichkeiten funktionieren in der Theorie, sind aber
in der Praxis nur bedingt anwendbar, da in der realen Welt zusétzliche Faktoren beachtet
werden miissen. Zu diesen Faktoren zihlen die Dauer von Aktionen und die Ressourcen,
die fiir die Bearbeitung der Aktionen benétigt werden. In der realen Welt ist ein weite-
res Ziel, eine minimale Gesamtzeit der Ausfithrung zu erreichen. Um diesem Ziel seine
notige Beachtung zu schenken, gibt es mehrere Ansétze. Ein Ansatz ist das Hierarchi-
sche Task-Netzwerk-Planen. Der urspriinglich problembeschreibende Plan wird als
Beschreibung der Aufgabe auf hochster Ebene betrachtet. Dieser Plan wird verfeinert, in-
dem die gegebene Aufgabe in Teilaufgaben zerlegt werden, bis diese Aufgaben nicht mehr
zerlegbar sind. Nun ist die niedrigste Ebene erreicht und eine Aktion ist eine partiell ge-
ordnete Menge. Wahrend des Planens in nichtdeterministischen Domdnen muss
ein Planungsagent seine Wahrnehmung nutzen. So kann er bei unerwarteten Vorgédngen
den Plan veréindern oder ihn ersetzen. Wenn die Unbestimmbarkeit wihrend des Planens
begrenzt ist, kann sensorloses oder bedingtes Planen angewendet werden. Das sen-
sorlose Planen erzeugt standardméflige Pléne, die ohne Wahrnehmung ausgefiihrt werden
konnen. Bedingtes Planen hingegen erzeugt einen bedingten Plan mit unterschiedlichen
Verzweigungen fiir die verschiedenen Moglichkeiten, die auftreten konnen. Ist die Unbe-
stimmbarkeit unbegrenzt kommt Awusfiihrungsiiberwachung und Neuplanung oder
eine stetiges Planen zur Bearbeitung der Aufgabe in Frage. Bei der Ausfithrungsiiber-
wachung und Neuplanung wird zusétzlich eine Ausfiihrungiiberwachung verwendet, die
die aktuelle Situation bewertet. Macht der Zustand den Anschein, dass er erfolgreich wei-
tergefiithrt werden konnte, wird die Planung fortgefiihrt, sonst wird sie {iberarbeitet und
eventuell neu geplant. Das stetige Planen ist darauf ausgelegt, so lange zu arbeiten, bis
die Aufgabe erledigt ist. Der Planer ist hier in der Lage mit unerwarteten Umstédnden
in der Umgebung umzugehen und diese zu verarbeiten, einmal gesteckte Ziele wieder
aufzugeben und dazukommende Ziele hinzuzunehmen.

14

Das Multiagenten-Planen bringt die Planung auf eine neue Ebene. Es kénnen meh-
rere Agenten in einer Umgebung zusammenarbeiten. Ein Agent nimmt die anderen Agen-
ten in sein Modell auf, ohne seine grundlegenden Algorithmen dndern zu miissen. Um
konstruktiv zu arbeiten, miissen sich die Agenten auf einen Plan einigen, der ausgefiihrt
werden soll. Die Agenten teilen die Aufgaben, die erledigt werden miissen, untereinander
auf. Dies wird durch Kommunikation erreicht. Arbeiten die Agenten nicht zusammen,
sind sie Konkurrenten. Hier stehen die Nutzenfunktionen der Agenten in Konkurrenz
zueinander.

15

3 Dynamische, verteilte Ausfiihrung von BPEL-Prozessen

Dieses Kapitel beschéftigt sich mit der dynamischen, verteilten Ausfiihrung von BPEL-
Prozessen. In Kapitel 3.1 wird der gesamte Ablauf beschrieben, um einen Uberblick
iiber die gesamte Funktionalitéit zu geben. Darauf folgt eine detailliertere Darlegung der
Algorithmen, die die Datenflussanalyse (Abschnitt 3.2), die Fragmentierung (Abschnitt
3.3) und das dynamische Deployment (Abschnitt 3.4) umfassen. Abschlielend wird dieser
Ansatz in Kapitel 3.5 diskutiert.

In diesem Rahmen ist es nicht moglich, das gesamte Spektrum von BPEL-Prozessen
zu betrachten. Dariiber hinaus wird ein bestehender Algorithmus benutzt, der seinerseits
Einschrankungen verlangt.

Der betrachtete Workflow muss ein gerichteter azyklischer Graph (DAG) sein. Schlei-
fen werden gesondert behandelt. Eigentlich wiirde eine Schleife die Eigenschaften eines
DAG zerstoren. In BPEL sind sie aber ein einziges Konstrukt, weshalb die Eigenschaften
des DAG gewahrt bleiben. Dariiber hinaus muss das Bernstein Kriterium erfiillt sein, das
besagt, dass zwischen parallel ausgefithrten Pfaden keine Datenkanten existieren diirfen.

3.1 Aligemeiner Ablauf

Diese Arbeit realisiert ein stetiges Planungsverfahren zur dynamischen, verteilten Aus-
fiihrung von BPEL-Prozessen. Der Ablauf, in dem die Fragmentierung und das dyna-
mische Deployment enthalten ist, ist in Abbildung 4 zu sehen. Beginn des Planungs-

BFEL-Datei einlesen Fragmentierung [g
Iﬁl 9 9 =

frag-Datei erstellen

plan-Datei erstellen

Fragmente erstellen

(Ser\rerinfomationen einlesen denamisches Deployment]

(Fragmentgrd@.en einlesen]

Wenn ein oder mehrere Fragmente
keinem Server zugeteilt sind und die
Gréke des groiten Fragments groier
ist, als der Gesamtspeicherplatz des
graiten Servers, wird eine
MNeufragmentierung ausgeldst, sonst ein
erneutes dynamisches Deployment. é

Abbildung 4: Stetige Planung zur dynamischen, verteilten Ausfithrung von BPEL-
Prozessen

16

verfahrens ist die Fragmentierung. Um sie auszufiihren, muss eine BPEL-Datei ein-
gelesen werden und die WSDL-Datei(en) zur Verfiigung stehen. Es werden Fragmente
auf Grundlage des BPEL-Prozesses erstellt, indem die einzelnen Aktivitdten, die in dem
Prozess vorhanden sind, genauer betrachtet werden und nach festgelegten Regeln in
kleinere Teile gruppiert werden. Dazu wird der BPEL-Prozess betrachtet. Dieser muss
azyklisch sein, da eine Datenanalyse nétig ist, die dies fordert. Der Prozess liegt als eine
BPEL-Datei vor. Diese kann alle Basis- und strukturierten Aktivitéiten enthalten. Basis-
Aktivitdten werden bei der Fragmentierung direkt in die Fragmente iibernommen. Ein
Flow wird nicht iibernommen, bei diesem Konstrukt wird bei der Erstellung der Frag-
mente darauf geachtet, dass alle Aktivitidten, die nicht voneinander abhéngen, parallel in
verschiedenen Fragmenten ausgefiihrt werden. Eine Sequence und ein Scope wird nicht
beachtet, nur die Ausfiihrungsreihenfolge der enthaltenen Aktivitdten wird beibehalten.
Alle Schleifenkonstrukte ergeben ein Fragment, von dem aus alle Fragmente aufgerufen
werden, die den Schleifenkorper enthalten. Bei einer Alternative (If) oder einem Pick
sind diese in einem Fragment, von dem aus die Fragmente aufgerufen werden, die die
einzelnen Pfade enthalten. Die Bedingung der Alternative ist entscheidend dafiir, welche
Fragmente aufgerufen werden.

Die erstellten Fragmente enthalten nur Basis-Aktivitdten, Alternativen, Pick oder
Schleifen des Ursprungsprozesses. Diese Aktivitdten sind durch eine Sequence in jedem
Fragment umschlossen. Die Fragmentierung wird in Kapitel 3.3 genauer betrachtet.

Nach der Fragmentierung kann mit dem dynamischen Deployment begonnen wer-
den. Dazu wird die von der Fragmentierung erstellte frag-Datei benttigt, Informationen
iiber die Infrastruktur und die Grofle der Fragmente ausgelesen.

Die Server der Cloud werden unterteilt in:

e nicht verfiighbare Server

e verfiighare Server

— aber kein freier Speicher mehr
— freier Speicher ist noch vorhanden

Ist ein Server verfiighbar und frei, wird der gesamte Speicherplatz des Servers und der
momentan freie Speicherplatz ermittelt. Die Gréfle eines Servers wird exemplarisch fiir
Kriterien herangezogen, die bei der Auswahl eines Servers von Bedeutung sind. Der
Server muss also iiber geniigend Speichervolumen verfiigen, um fiir die Ausfithrung des
Fragments in Frage zu kommen. Die Grofle ist nur von exemplarischer Bedeutung, da es
praktisch nicht moéglich ist, dass ein Server zu wenig Speichervolumen fiir die Ausfithrung
eines Fragments eines scientific Workflows hat, da auch fiir die Ausfithrung des Gesamt-
prozesses genug Speicher zur Verfiigung stand, dies aber wegen langen Rechenzeiten
unpraktisch ist. Es ist denkbar, diese Grofle durch ein anderes Kriterium oder sogar
Mehrere zu ersetzen. Beispielsweise ist es moglich, durch Berechnungen den benétigten
Arbeitsspeicher zu ermitteln und mit dem des Servers abzugleichen. Zudem ist es vor-
stellbar, den vorhandenen externen Speicher zu betrachten, um eine Entscheidung treffen
zu konnen, wo Daten gespeichert werden sollen. Diese Moglichkeiten sprengen aber den

17

zeitlichen Rahmen dieser Arbeit, werden aus diesem Grund nicht eingehend betrachtet
und bleiben fiir die zukiinftige Forschung offen.

Sind Infrastruktur-Informationen, die frag-Datei und die Gréflen der Fragmente nun
verfiigbar, beginnt das Mapping der Fragmente auf die zur Verfiigung stehenden freien
Server. Dabei wird zuerst ein Server mit exakt passender Grofle gesucht. Ist ein sol-
cher nicht vorhanden, wird das Fragment auf den grofiten freien, verfiigbaren Server
gemappt. Ist kein Server frei und verfiigbar, der gro§ genug ist, wird analysiert, ob es
einen verfiigbaren Server gibt, der aber beschiftigt ist. Ist dies der Fall, wird mit dem
Deployment des Fragments gewartet, bis dieser Server wieder frei ist. Gibt es auch einen
solchen Server nicht, bedeutet dies die Auslosung einer Neufragmentierung. Diese wird
in Kapitel 3.3.3 genauer betrachtet.

Das Deployment geschieht fiir jedes einzelne Fragment und wird genau dann gestar-
tet, wenn das vorhergehende Fragment in den Zustand ,,run“ wechselt. Das dynamische
Deployment wird direkt nach dem Mapping gestartet, ohne davor beispielsweise den
Server zu reservieren. Da das Deployment und die zugehorige Auswahl des Servers ge-
startet wird, wenn das Fragment, dessen Deployment direkt vor dem aktuellen Fragment
durchgefithrt wurde, in den Zustand ,run® wechselt, bedeutet dies im Gegenzug, dass
bei Beginn der Ausfithrung eines Fragments, dieser Zustandswechsel das Zeichen fiir das
Deployment des darauf folgenden Fragments ist. Das (dynamische) Deployment wird
von einer stetigen Planung (siehe 2.4) iibernommen, die sich darum kiimmert, dass alle
Fragmente ausgefiihrt werden. Falls dies wiahrend der Ausfithrung zu Problemen fiihrt,
16st diese Planung die Probleme und fiihrt die restliche Ausfiihrung entsprechend fort, so
dass am Ende der gesamte Prozess korrekt und vollsténdig ausgefithrt wurde. Probleme,
die auftreten konnen, sind im folgenden Abschnitt beschrieben.

Ist ein Fragment auf einen Server gemappt worden und noch nicht im Zustand ,,run*,
konnen Fehler auftreten. Es ist unter Anderem mdoglich, dass ein Server plétzlich nicht
mehr verfiigbar ist, weil er zum Beispiel abgestiirzt ist, oder dass er aufgrund einer ande-
ren Ausfithrung zu klein fiir die Ausfithrung des Fragments geworden ist. Im ersten Fall
muss ein neuer Server zur Ausfithrung gefunden werden. Es miissen also die Informatio-
nen iiber die Infrastruktur beachtet werden und das Deployment des Fragments wird neu
durchgefiihrt. Im zweiten Fall werden auch die Infrastrukturinformationen beobachtet
und abgewartet, bis ein passender Server zu Verfiigung steht.

Obwohl durch diese Beschreibung eigentlich schon der komplette Ablauf dargelegt ist,
wurde hierbei aber noch kein Augenmerk auf das dynamische Deployment gelegt. Es
kommt zum Tragen, wenn die Fragmente auf die Server verteilt werden miissen. Wenn
zu einem Zeitpunkt fiir mehr als ein Fragment Server gesucht werden, beginnt die Su-
che nach einem Server bei dem grofiten Fragment. Hier wird angenommen, dass die
Ausfithrungsdauer proportional zur Gréfle des Fragments ist. Also braucht die Ausfiihr-
ung eines groflen Fragments ldnger, als die eines Kleinen. Dadurch erhélt die Zuteilung
eines Servers fiir grofle Fragmente mehr Bedeutung als fiir Kleine, da die Moglichkeit
besteht, dass wihrend der Ausfiihrung der groflen Fragmente ein passender Server fiir
eventuell iibrig gebliebene kleine Fragmente frei wird. Durch die verspétete Ausfithrung
und die kurze Dauer eines kleinen Fragments verzogert sich die Ausfithrung des kom-
pletten Workflows entweder gar nicht oder nur wenig. Bei der Auswahl eines passenden

18

Servers wird nun zuerst nach einem Server gesucht, der genau die geforderte Grofie hat.
Ist ein solcher nicht vorhanden, wird das Fragment auf den gréfften freien verfiigharen
Server gemappt. Wird so bei der Vergabe der Server verfahren, bleiben im schlechtesten
Fall kleine Fragmente iibrig. Moglicherweise kénnen fiir diese Fragmente noch Server
gefunden werden, auf denen im gleichen Schritt zwar schon andere Fragmente gemappt
wurden, wo aber noch ausreichend Speicherplatz fiir ein kleines Fragment iibrig geblieben
ist.

Im Folgenden werden die Félle betrachtet, bei denen sich die Infrastruktur ver-
dndert. Eine Verdnderung zieht, je nachdem, was sich verdndert hat, unterschiedli-
che Mafinahmen nach sich. Die Infrastrukturinformationen beinhalten Angaben zu den
verfiigharen Servern und zu der Gréfle der Server. Veréndert sich etwas, wird entweder
eine Neufragmentierung oder ein erneutes dynamisches Deployment ausgelost. Dieser
Sachverhalt ist in Abbildung 5 dargestellt.

alle Fragmente sind
verfugbaren Servern zugeteilt

J'ii/ \nein
noop GesamtgrofRRe des grofiten

verflgbaren Servers
< GroRe Fragment

ja / \rlein

erneute erneutes
Fragmentierung dynamisches
Deployment

Abbildung 5: Auswirkung einer Anderung der Infrastruktur-Informationen: betrachtet

werden die Verfiigharkeit der Server und die Anderung der Gréfe der Ser-
ver.

Wenn eine Anderung der Infrastruktur vorliegt, muss als Erstes iiberpriift werden, ob
alle Fragmente auf einen verfiigharen freien Server gemappt sind. Ist dies der Fall, hat
die Anderung der Infrastruktur keine Auswirkungen. Gibt es jetzt aber ein Fragment,
das keinem Server mehr zugeteilt ist, weil dieser soeben weggefallen ist, muss die Frag-
mentgrofie mit der Gesamtgrofle des Serverspeichers verglichen werden. Ist die Grofie des
Fragments grofler als der gesamte Speicherplatz des grofiten Servers, so muss neu frag-
mentiert werden und dieses Fragment in kleinere Teile unterteilt werden. Ist dies nicht
der Fall, geniigt ein erneutes dynamisches Deployment und das serverlose Fragment wird
auf einen anderen verfiigbaren freien Server gemappt.

3.2 Berechnung der Datenkanten

Die Datenkanten zwischen den einzelnen Aktivitdten des BPEL-Prozesses miissen be-
rechnet werden, um Dateniibertragungsmengen zwischen Fragmenten unter einem be-

19

stimmten Schwellwert zu halten. Um die Datenkanten zu berechnen, wird ein bestehender
Algorithmus benutzt. Er wird in Arbeit [10] beschrieben und ist in einer Diplomarbeit
[11] implementiert. Die Idee wird hier kurz beschrieben. Die Datenkanten werden durch
eine statische Analyse, die eine Tiefensuche durchfiihrt, identifiziert, bei der Dead Path
Elimination (DPE) beriicksichtigt wird. Fiir die Berechnung muss der Workflow das
Bernstein-Kriterium erfiillen, das besagt, dass in parallelen Zweigen nicht gleichzeitig
Schreiber und Leser einer Variablen vorkommen diirfen. Um die moglichen Schreiber,
die fiir das Erstellen der Datenkanten ausschlaggebend sind, zu berechnen, werden die
Schreiber in Kategorien eingeordnet, die den moéglichen Zusténden einer schreibenden
Aktivitdt entsprechen. Diese drei Zustinde sind im Folgenden aufgelistet:

e mdaglicher Schreiber: Ein moglicher Schreiber einer Variablen in einer Aktivitdt ist
ein Schreiber, dessen Daten diese Aktivitdt erreichen kénnen.

o deaktivierter Schreiber: Ein deaktivierter Schreiber ist ein Schreiber, dessen Da-
ten von einem nachfolgenden Schreiber {iberschrieben werden. Der deaktivierte
Schreiber kann wieder zu einem méglichen Schreiber werden.

o ungiiltiger Schreiber: Ein Schreiber wird zu einem ungiiltigen Schreiber, wenn der
Wert, den er schreibt, immer von einem nachfolgenden Schreiber iiberschrieben
wird.

Um den Zustand einer schreibenden Aktivitidt zu speichern, benttigt man eine Tabelle
mit vier Spalten:

erste Spalte: die Aktivitdt / der Link selbst

zweite Spalte: die moglichen Schreiber

dritte Spalte: die deaktivierten Schreiber

vierte Spalte: Boolscher Wert, der angibt, ob die Aktivitdt tot sein konnte (ist
immer in dieser Spalte enthalten, sobald die Auswertung das erste Mal ergibt,
dass die Aktivitét tot sein konnte).

Die ungiiltigen Schreiber miissen nicht gespeichert werden, da sie fiir die Bestimmung
der moglichen Schreiber nicht mehr in Frage kommen und somit auch fiir die zu identifi-
zierenden Datenkanten nicht mehr in Betracht gezogen werden miissen. Der Algorithmus
erstellt eine Tabelle, in der alle moglichen Schreiber einer Aktivitidt enthalten sind. Ab-
bildung 6 zeigt einen Graphen, an dem diese Analyse durchgefiihrt wird. Die Tabelle 3.2
ergibt sich durch diese Analyse. Die Aktivititen 1 und 2 schreiben theoretisch in eine
Variable x. Nach Ausfithrung der Aktivitdt 1 wird die explizite Transition Condition
gesetzt. Wird aufgrund dieser Auswertung die Aktivitdt 2 nicht ausgefiihrt, ist nur die
erste Aktivitit ein Schreiber und die zweite Aktivitit ist tot. Wurde Aktivitit 2 aber aus-
gefiihrt, so ist Aktivitit 1 ein deaktivierter Schreiber. Wenn Aktivitit 6 x liest, kommen
beide Schreiber als moégliche Schreiber in Frage, da das Join vor dieser Aktivitdt ein OR

20

ist. Dies bedeutet, dass Aktivitéit 6 auch ausgefithrt werden kann, wenn nur die Transi-
tion Condition zwischen Aktivitdt 5 und 6 als wahr ausgewertet wird. Wurde die zweite
Aktivitat ausgefiihrt, ist sie der mogliche Schreiber. Ist hingegen nur die erste Aktivitét
ausgefiithrt worden, ist sie der mogliche Schreiber. Da nicht bestimmt werden kann, durch
welchen Pfad die sechste Aktivitét zur Ausfithrung angestoflen wurde, kénnen auch keine
Riickschliisse gezogen werden, welche der beiden ersten Aktivitdten ausgefithrt wurde.
Somit miissen diese beiden Aktivitdten als mogliche Schreiber in Betracht kommen.

@ LS>\©

Abbildung 6: Prozess mit Join-Conditions: Aktivitdt 1 schreibt x (w{), Aktivitét 2
schreibt x (w}), Aktivitét 4 liest x (r7), Aktivitét 6 liest x (5). Die Verbin-
dung zwischen Aktivitdt 1 und 2 hat eine explizite Transition Condition
(link tcp), alle anderen Verbindungen haben eine Default Transition Con-
dition wahr (1). Der zweite Join ist ein OR.

Aktivitat / Link Mogl. Schreiber | Deakt. Schreiber | evtl. tot
Aktivitdt 1 (wf) null null false
tep (zwischen Al und A2) w? null false
Aktivitdt 2 (wd) w? null true
l1 (zwischen A2 und A4) wj wf false
Aktivitat 3 (aq) null null false
la (zwischen A3 und A4) null null false
Aktivitat 4 (rf) wj wf false
I3 (zwischen A4 und A6) wj wf false
Aktivitat 5 (a2) null null false
l4 (zwischen A5 und A6) null null false
Aktivitét 6 (rg) wi, wi null false

Mit Hilfe dieser Information ist es nach der Fragmentierung moglich, die Menge der
zwischen den Fragmenten zu iibertragenden Daten zu erkennen. Dazu wurde eine Liste
erstellt, die die Fragmente und ihre enthaltenen Aktivitdten umfasst. Die erzeugte Tabel-
le zeigt also alle Abhéngigkeiten zwischen den Schreibern und den Aktivitdten. Dadurch
ist eindeutig, zwischen welchen Fragmenten Daten iibermittelt werden miissen.

3.3 Fragmentierung

Der hier verwendete Ansatz der Fragmentierung hat viele verwandte Ansétze in der
Literatur. Diese werden im néchsten Abschnitt beschrieben, um eine Grundlage fiir den
hier entwickelten Algorithmus zu schaffen. Der Algorithmus wird im darauf folgenden
Unterkapitel genau dargelegt.

21

3.3.1 Einfiihrung

Es gibt viele Arbeiten, die sich mit der Fragmentierung beschéftigen. Die Arbeiten [12],
[10] und [13] untersuchen BPEL und leiten die Datenkanten her. Durch diese Herleitung
entsteht BPEL-D. BPEL-D steht fiir BPEL, das Datenkanten enthilt.

Die Algorithmen von den Arbeiten [12] und [10] arbeiten beide mit BPEL? (Spra-
che, die zur Spezifikation von ausfithrbaren Workflow-Modellen genutzt wird). Ziel der
beiden Ansétze ist die Berechnung von Datenkanten. Dazu wird der BPEL-Prozess tra-
versiert, eine statische Analyse auf den Daten durchgefithrt und somit die Datenkanten
bestimmt. In Ansatz [10] ist die Idee des Algorithmus beschrieben, wohingegen Arbeit
[12] die Umsetzung beinhaltet. Diese Datenanalyse wird bei der Fragmentierung und
anschlieenden Planung dieses Ansatzes bené6tigt und verwendet.

In Arbeit [13] wird ein anderer Algorithmus zur Berechnung von Datenkanten vorge-
stellt. Diese Analyse kann auf BPEL angewendet werden. Der verwendete Algorithmus
wird mit Hilfe eines Petri-Netzes verifiziert. Zu Beginn des Algorithmus wird ein CSSA
(Concurrent Single Static Assignment)-basierter Graph aufgestellt. Dieser enthilt durch
die Transformation sowohl explizit den Kontroll- als auch den Datenfluss. Anschlielend
sammelt der Algorithmus kommunikationsrelevanten Datenfluss und weist jedem CSSA-
Knoten eine Menge von Nachrichten-Abhéngigkeiten zu.

Der Ansatz aus Arbeit [14] nimmt eine Fragmentierung eines Workflows anhand von
Swimlanes vor. Der Algorithmus arbeitet mit BPEL-D (siehe Referenz [10]). BPEL-D
ist einer Obermenge von BPEL. BPEL enthilt Datenkanten zwischen Aktivitdten nur
implizit, wohingegen bei BPEL-D explizite Datenkanten vorhanden sind. Ist der Work-
flow fragmentiert, sind Datenkanten zerbrochen worden, die zwischen Aktivititen verlie-
fen, die nun in verschiedenen Fragmenten sind. Diese Datenkanten werden durch einen
Nachrichtenaustausch und zusétzliche FaultHandler zwischen den Fragmenten wieder
hergestellt. Die Fragmentierung dieses Ansatzes wendet andere Fragmentierungsregeln
als die Fragmentierung dieser Arbeit an. Zusétzlich zu den unterschiedlichen Fragmen-
tierungsregeln verwendet der in Referenz [14] vorgestellte Ansatz fiir die Rekonstruktion
zerbrochener Datenkanten immer eine Dateniibermittlung basierend auf Nachrichtenaus-
tausch. Der in dieser Arbeit angewendete Ansatz nutzt zwar auch Nachrichtenaustausch,
dieser wird aber nur zum Anstoflen der Berechnung von Fragmenten benutzt, die bei-
spielsweise in einem Schleifenfragment enthalten sind.

Die im Folgenden aufgefiihrten Arbeiten befassen sich mit der Fragmentierung bei
dezentraler Ausfilhrung oder etwas vergleichbarem.

Ansatz [15] fragmentiert ein Petri-Netz zur verteilten Ausfithrung. AuBerdem wird
eine dynamische Fragmentierung wihrend der Ausfiihrung vorgestellt. Die Fragmente
ergeben sich durch die Zerlegung eines Petri-Netzes aufgrund der zugrunde liegenden
Struktur. Es wird an jeder Verzweigung ein neues Fragment erstellt. Das Fragment, das
den ersten Pfad der Verzweigung enthilt, endet erst am Ende des gesamten Graphen.
Die restlichen Pfade dieser Verzweigung ergeben jeweils ein Fragment, das bei der Zu-
sammenfithrung der Aste, die sich geteilt haben, wieder endet. Es wird eine Kombination
der statischen Fragmentierung und der dynamischen Fragmentierung zur Laufzeit vorge-

3http://docs.oasis-open.org/wsbpel /2.0 /wsbpel-specification-draft.html

22

schlagen. Die Arbeit betrachtet nur die einfachste Art eines Petri-Netzes, weil der Fokus
dieser Arbeit auf der strukturellen Partitionierung liegt und beachtet keine Datenfliisse.
Die Gemeinsamkeit zu dieser Arbeit ist die strukturelle Fragmentierung, der hier aber
andere Regeln zugrunde liegen.

Ein weiterer Ansatz ist in Referenz [16] dargestellt. Hier wird ein BPEL-Prozess zur
dezentralen Ausfithrung partitioniert. Die Aktivitdten des Prozesses werden in fixe und
portable Knoten eingeteilt, die unter Beachtung bestimmter Regeln zusammengefasst
werden. Diese Knoten koénnen nun auf verschiedenen Servern, also nicht mehr zentral
auf dem Hauptserver, ausgefithrt werden. Hier sind die Parallelen zu diesem Ansatz
deutlich. Der BPEL-Prozess wird unter Betrachtung der Struktur partitioniert, wobei
der partitionierte Prozess auf verschiedenen Servern ausgefithrt wird.

Die Idee von Referenz [17] zielt auch auf eine dezentrale Ausfiihrung eines Workflows
ab. Sie wird durch eine Fragmentierung erreicht, die die Koordinationslogik auf die ver-
schiedenen Teilnehmer verteilt. Die dezentrale Ausfiithrung wird durch die Verwendung
von Tuplespace [18] umgesetzt. Der Einsatz von Tuplespace ermdoglicht, dass alle Teile
des Workflows Zugriff auf Daten haben, die fiir die Ausfithrung nétig sind. Die Veri-
fikation des Ansatzes geschieht mit Hilfe von ,executable Workflow Netzen“ (EWFN)
und Petri-Netzen fiir die Modellierung. Das Augenmerk liegt hier auf der dezentralen
Ausfithrung, was zu dem Ansatz dieser Arbeit passt, bei [17] aber durch Tuplespace
ermoglicht wird.

Ansatz [19] nutzt Executable Workflow Networks (EWFN), um BPEL Prozesse ver-
teilt und dezentral auszufithren. Der Workflow wird aufgeteilt, so dass es zur gegebenen
Infrastruktur passt. Dieser Ansatz zielt auf die Orchestrierung von Workflows ab, also
die Auswertung des Kontrollflusses und die Ausfithrung der Aktivititen. Diese ist nor-
malerweise zentral und wird hier dezentralisiert. Im Gegensatz zu dem hier vorgestellten
Ansatz wird dieser Workflow also nicht unter Beachtung seiner Struktur aufgeteilt, son-
dern unter Gesichtspunkten, die die Teilprozesse gut auf die Infrastruktur abbilden.
Durch diese Abbildung ist die dezentrale Ausfiihrung gegeben.

[20] beschéftigt sich mit Workflows zur Modellierungzeit und Transaktionen. Bei die-
sem Ansatz wird kein groer Wert auf das zugrundeliegende Modell gelegt, sondern auf
Transaktionen. Es wird versucht, eine optimale Stratifizierung von globalen Transaktio-
nen zu erreichen. Eine Berechnung wird ausgefiihrt, die die Basisaktivitéiten der globalen
Transaktion in Straten gruppiert. Dies geschieht basierend auf den Kigenschaften der
Transaktionen und der Ressourcen, die diese benutzen. Die Straten werden koordiniert,
damit die Semantik der urspriinglichen Transaktion gewahrt wird. Das Prinzip dieses Al-
gorithmus hat ein &hnliches Vorgehen wie der Ansatz dieser Arbeit, da die Koordination
der Straten vergleichbar mit der Koordination der Fragmente ist.

3.3.2 Algorithmus

Der als BPEL-Prozess gegebene Workflow wird in Teilstiicke zerlegt. Diese Teilstiicke
sind Teilprozesse des BPEL-Prozesses; alle Teilprozesse ergeben einen eigenstéindigen
Prozess. Aus diesem Grund sind alle Teilprozesse, die im Folgenden als Fragmente be-
zeichnet werden, nach dem gleichen Schema aufgebaut. Der Definitionsteil des Prozesses

23

ist in jeder Fragmentdatei zu finden, der Dateiname, der darin enthalten ist, ergibt sich
aus dem urspriinglichen Namen des Prozesses, der durch ,,Part_i“ ergénzt wird; wobei i
die Fragmentnummer ist, die auch im Namen der Fragmentdatei zu finden ist. Der Name
der Fragmentdatei lautet beim i-ten Fragment . Fragment_i.bpel“. Jede Fragmentdatei
enthélt eine Sequenz, in der alle BPEL-Aktivitéiten dieses Fragments enthalten sind.

Da sich alle Fragmente durch die Zerlegung des Ursprung-Prozesses berechnen las-
sen, hingen alle Fragmente logisch zusammen. Um ein bei der Ausfithrung dquivalentes
Verhalten zum Ursprungsprozess zu gewéhrleisten, wird die Navigation des Ursprungs-
prozesses auf die Ausfithrung der Fragmente iibertragen. Die Navigation wird in zwei
Dateien gespeichert. Der Inhalt dieser Dateien ist identisch. Die Erzeugung und das
Format unterscheiden sich aber, weshalb beide Dateien benétigt werden. Die erste der
beiden Dateien hat die Endung ,frag* und stellt ein Format speziell fiir den Export dar,
welches fiir den Austausch von Fragmenten und deren Navigation bereitgestellt wird.
Die zweite Datei hat die Endung ,,plan“ und verwendet ein Format, das ausschliellich
zum internen Gebrauch bestimmt ist.

Die Dateien, die wihrend der Fragmentierung mit der Endung ,plan“ und ,frag®
erstellt werden, enthalten eine Auflistung der erstellten Fragmente. Das Dateiformat ist
XML, weshalb alle Fragmente unter dem Wurzelelement ., Fragments“ zusammengefasst
sind. Die Informationen, die {iber jedes Fragment gespeichert werden, sind Folgende:

e der Verzeichnispfad, an dem die Fragmentdatei zu finden ist

e die Vorginger des Fragments

e die Nachfolger des Fragments

e die Aktivitdten (Art und Name), die in dem Fragment enthalten sind

Diese Datei wird im gleichen Verzeichnis des zu fragmentierenden Prozesses gespeichert,
wéhrend fiir die erstellten Fragmente ein Ordner mit dem Namen , Fragments“in diesem
Verzeichnis angelegt wird.

Um die Fragmente zu ermitteln, beginnt der Fragmentierungsalgorithmus am Anfang
der Prozessdatei und besucht alle Aktivitidten nacheinander. Der Algorithmus arbeitet
wie eine Tiefensuche, indem er zuerst alle in einer strukturierten Aktivitdt enthaltenen
Aktivitdten betrachtet, bevor er die nachfolgende Aktivitdt besucht. Die Eigenschaften
eines Fragments sind Folgende:

e es enthélt keine anderen Fragmente, es sei denn sie werden von einem Fragment
aus mit einem invoke aufgerufen

e es iiberlappt nicht mit einem anderen Fragment
e es enthilt nur Basis-Aktivitéten, eine Alternative (If) oder Schleifenkonstrukt

e es beginnt

— vor einem If oder Pick
— vor einem While oder Repeat Until

24

— vor einem For FEach

— bei der ersten Basis-Aktivitat in einer strukturierten Aktivitat

e cs endet

— vor Beginn einer strukturierten Aktivitat
— vor Beginn eines If oder Pick

— vor Beginn eines While oder Repeat Until
— vor Beginn eines For Fach

— wenn der Prozess keine folgenden Aktivitdten mehr enthélt

Waéhrend der Fragmenterstellung wird anhand der Erstellungsreihenfolge der Frag-
mente deren Vorgéinger und Nachfolger ermittelt. Wahrend der Fragmenterstellung wer-
den alle gleichzeitig erstellten Fragmente gespeichert. Werden die néchsten Fragmente
erstellt, haben sie als Vorgédnger die unmittelbar vorher gespeicherten Fragmente, die
nun nicht mehr gespeichert werden miissen. Alle Fragmente, bei denen diese Vorgénger
eingetragen werden, miissen als Nachfolger dieser Fragmente eingetragen werden. In Ab-
bildung 7 sind Rechtecke zu sehen, die Fragmente darstellen.

F2
F1 /@_*@ F4
D23 [0 -89
15 -® \

Abbildung 7: Workflow mit Fragmenten

Die folgende Tabelle enthilt die Vorgénger und Nachfolger dieser Fragmente.

Fragment Vorginger Nachfolger
Fragment 1 | Fragment, das Knoten 0 enthélt Fragment 1, Fragment 2
Fragment 2 Fragment 1 Fragment 4

Fragment 3 Fragment 1 Fragment 4

Fragment 4 Fragment 2, Fragment 3 Fragment, das Knoten 10 enthélt

Die Arbeitsweise des Fragmentierungsalgorithmus wird im Folgenden n#her beleuch-
tet. Wenn er auf Scope, Sequence oder Flow trifft, sind dies strukturierte Aktivititen,
die mehrere Aktivitdten enthalten konnen. Wenn eine dieser Aktivitdten in einem Prozess
vorkommt, wird diese nicht beachtet. Es wird die erste Basis-Aktivitit in diesen Akti-
vitédten gesucht. Ist diese gefunden, beginnt ein Fragment, in dem alle Basis-Aktivitidten
enthalten sind, bis wieder eine strukturierte Aktivitdt beginnt. Ein Flow hat in dieser
Betrachtung eine Sonderstellung. Hier muss unterschieden werden, ob der Flow Links

25

enthilt, oder nicht. Alle Aktivitéiten, die keine Links enthalten, ergeben je ein Fragment.
Aktivitdten, die Links enthalten, ergeben auch ein Fragment.

Bei If, Pick, While, Repeat Until oder For FEach wird der Inhalt dieser Ak-
tivitdten in jeweils ein Fragment iibernommen. Aktivitdten, die in diesen Konstrukten
enthalten sind, werden nach dem beschriebenen Algorithmus der jeweiligen Aktivitét
auch in Fragmente unterteilt, die aber durch ein invoke aus diesem Fragment heraus
aufgerufen werden. Das invoke ist der Beginn einer synchronen Kommunikation. Dies
bedeutet, dass alle Fragmente, die von diesem aus aufgerufen werden, um ein receive zu
Beginn und ein reply am Ende des Fragments erweitert werden. Durch diese Erweiterung
enthalten Fragmente mit solchen Konstrukten zwar andere Fragmente, der Aufruf wird
aber von dem Konstrukt selbst iibernommen.

Bei einem If muss fiir jeden moglichen Pfad ein Fragment erstellt werden, weil noch
nicht vorhergesagt werden kann, welches der Fragmente ausgefiihrt werden wird. Auf-
grund der Bedingung des If wird schlielich nur ein Pfad ausgewahlt und somit nur ein
Fragment ausgefiihrt. Die Erstellung eines Fragments im Falle einer Alternative ist im
Folgenden zu sehen. In Folgenden ist das If im Ursprungs-Prozess dargestellt:

<if>
<condition>
bpel:getVariableProperty (’shipRequest
"props:shipComplete ”)
</condition>

<sequence>
<invoke name="invokel”
partnerLink="customer”
operation="shippingNotice”
inputVariable="shipNotice”>
<correlations >
<correlation set="shipOrder’
</correlations>
</invoke>
</sequence>

)

pattern="request” />

<else>
<sequence>
<assign name="assign2”>
<copy>
<from>0</from>
<to>$itemsShipped </to>
</copy>
</assign>
</sequence>
</else>

26

</if>
If nach der Fragmentierung. Das If ist in einem Fragment enthalten.

<if>
<condition>
bpel:getVariableProperty (’shipRequest ’,
"props:shipComplete ”)
</condition>
<sequence>
<invoke>
Fragment_i
</invoke>
</sequence>

<else>
<sequence>
<invoke>
Fragment_i+1
</invoke>
</sequence>
</else>
</if>

Pick wird wie ein If behandelt. Fiir jeden moglichen Pfad muss ein Fragment er-
stellt werden, da zu der Zeit, wenn die Fragmente erstellt werden, noch nicht klar ist,
welcher Pfad ausgefiihrt werden wird. Zur Ausfiihrungszeit wird aber nur ein Fragment
tatséchlich ausgefiihrt, die anderen kénnen ignoriert werden.

Repeat Until und While sind Schleifen, die in BPEL als ein Konstrukt betrachtet
werden. Somit sind die Eigenschaften eines gerichteten azyklischen Graphen gewahrt,
die durch eine Schleife zerstort worden wéren. Als Folge dieser Interpretation dieser
Konstrukte wird fiir jedes ein Fragment erstellt. Der Unterschied zwischen den beiden
Schleifenarten, der darin liegt, dass Repeat Until (im Gegensatz zu While) auf jeden
Fall mindestens einmal ausgefiihrt wird, fillt bei der Fragmentierung nicht ins Gewicht.
Die Bedingung, die priift, ob die Schleife ausgefiihrt wird, befindet sich im Fragment,
wodurch es nicht vorkommen kann, dass ein Fragment gar nicht ausgefiihrt wird, da die
Bedingung immer iiberpriift werden muss. Ist die Abbruchbedingung zu Beginn wahr,
wird zwar die Schleife nicht ausgefiihrt, das Fragment musste aber trotzdem den Wert
der Bedingung berechnen. Also kénnen die beiden Schleifenarten dquivalent behandelt
werden. Aktivitéiten, die in diesem Konstrukten enthalten sind, werden auch in Fragmen-
te unterteilt. Der Aufruf der Fragmente geschieht durch ein invoke nach dem gleichen
Prinzip, das bei einem If angewendet wird. Stellvertretend fiir alle Schleifen ist im Fol-
genden die Erstellung eines Fragments zu sehen, wenn der Algorithmus auf ein while
trifft. Im Folgenden ist das While im Ursprungs-Prozess zu sehen:

27

<while>
<condition>
$itemsShipped
&1t
bpel:getVariableProperty (’shipRequest
"props:itemsTotal 7)
</condition>

<sequence>
<invoke name="invoke2”
partnerLink="customer”
operation="shippingNotice”
inputVariable="shipNotice”>
<correlations >
<correlation set="shipOrder”
pattern="request” />
</correlations >
</invoke>

<assign name="assign4”>
<copy>
<from>
$itemsShipped
+
bpel:getVariableProperty (’shipNotice ’,
"props:itemsCount ’)
</from>
<to>$itemsShipped </to>
</copy>
</assign>
</sequence>
</while>

While nach der Fragmentierung. Das While ist in einem Fragment enthalten.

<while>
<condition>
$itemsShipped < bpel:getVariableProperty (’shipRequest ’,
"props:itemsTotal 7)
</condition>
<sequence>
<invoke>
Fragment_i
</invoke>
</sequence>

28

</while>

For Each hebt sich von den beiden vorigen Schleifenarten ab. Der Unterschied be-
steht darin, dass Schleifendurchgénge auch parallel ausgefithrt werden kénnen. Zusétzlich
konnen alle Schleifendurchgénge auch sequenziell, d. h. nacheinander ausgefiihrt werden.
Bei einer sequenziellen Ausfithrung wird ein Fragment erstellt, das eine analoge Struktur
zu allen anderen Schleifen besitzt.

In diesem Fragment werden Fragmente mit invoke aufgerufen, die in der Schleife aus-
gefiihrt werden sollen. Bei der parallelen Ausfithrung wird berechnet, wie viele Fragmente
entstehen miissen, indem der Anfangswert der Schleife von dem Endwert, bei dem die
Schleife abgebrochen werden soll, abgezogen und Eins addiert wird. Der entsprechende
Zahlerwert wird jedem Fragment mitgegeben. Alle diese Fragmente kénnen nun parallel
und sequenziell ausgefithrt werden. Nach jedem ausgefiihrten Fragment wird ein Frag-
ment aufgerufen, das die Completion Condition enthélt. Ist diese erfiillt, werden die
restlichen Fragmente der Schleife nicht weiter ausgefiihrt.

Trifft der Algorithmus auf Basis-Aktivititen nimmt er diese ohne jegliche Anderung in
das aktuelle Fragment auf. Basisaktivitéten sind neben Alternativen (If) und Schleifen-
konstrukten die einzige Art von Aktivititen, die aus dem Ursprungsprozess iibernommen
werden.

Eine exemplarische Fragmentierung ist im Folgenden in Abbildung 8 zu sehen. Es
wird der ,,shippingService“-Prozess fragmentiert, der unter in der BPEL Spezifikation? zu
finden ist. Zusétzlich sind im Anhang (A) die wichtigsten Ausziige aufgefiihrt. Es sind alle
Aktivitdten zu sehen, die im Ursprungsprozess enthalten sind. Durch die Fragmentierung,

Sequence
Receive | 5
If Else
Sequence Sequence
Assign |3 Assign |4
Invoke While |5
Assign |6
Invoke
Assign

Abbildung 8: Struktur des Prozesses shippingService

bei der Sequenzen und Flows nicht in die Fragmente iibernommen werden, sind diese
auch nicht in den diinnen Rechtecken enthalten. Sie sind die erstellten Fragmente, die

“http://docs.oasis-open.org/wsbpel /2.0 /wsbpel-specification-draft.html

29

durchnummeriert sind. Das Fragment 2, das die Alternative (if und else) enthélt, ruft im
jeweiligen Zweig das Fragment mit einem invoke auf, das im Bild darunter abgebildet ist
(Fragment 3 oder 4). Das Fragment 5, das das while-Konstrukt enthélt, ruft das darunter
liegende Fragment 6 ebenfalls durch ein invoke auf.

In diesem Beispiel sieht die Auflistung der Vorgénger und Nachfolger folgendermaflien

aus:
Fragment | Vorginger | Nachfolger
Fragment 1 keine Fragment 2
Fragment 2 | Fragment 1 keine
Fragment 3 if keine
Fragment 4 if Fragment 5
Fragment 5 | Fragment 4 | Fragment 5
Fragment 6 while keine

Als Vorgénger taucht das jeweilige Konstrukt auf (Null wire nicht geeignet, da diese
Fragmente sonst mit den Startfragmenten verwechselt werden kénnten). Nachfolger des
jeweiligen Konstrukts (Schleife, If, Pick) ist das Fragment, das auf dieses folgt. Die
Fragmente innerhalb eines solchen Konstrukts werden nicht in der Vorginger-/Nach-
folgerliste beachtet, da sie direkt aus dem Fragment des Konstrukts aufgerufen werden.

Aktivitdten, die nicht betrachtet werden, sind Isolated Scopes, Message Exchange
Handling, Error Handling, Compensation Handlers, Fault Handlers, Termination Hand-
lers, Event Handlers.

Aufgrund des Bernstein-Kriteriums, das fiir den zu fragmentierenden Workflow gelten
muss, ist garantiert, dass zwischen den parallelen Fragmenten, die bei der Fragmentie-
rung eines Flows mit Aktivitdten ohne Links oder eines parallelen For Each entstehen,
keine Kontroll- oder Datenflusskanten verlaufen. Diese Kanten kann es nur zwischen
Fragmenten geben, die aufeinander folgen. Ein anderer Schluss daraus ist, dass die Ver-
zweigung nach Knoten 2 in Abbildung 7 wieder zusammengehen muss, bevor die Ver-
zweigungen von Knoten 0 wieder zusammengefiihrt werden kann. Dadurch ist es moglich
so zu fragmentieren, dass Fragmente nach einer Verzweigung beginnen und vor einer
Zusammenfiihrung wieder enden. Einige Fragmente sind in Abbildung 7 zu sehen. Sie
umfassen die enthaltenen Knoten und sind durch Rechtecke dargestellt.

Die Datentibermittlung zwischen den Fragmenten kann wihrend der Fragmen-
terstellung noch nicht beachtet werden. Die Daten miissen zu den Servern iibermittelt
werden, auf denen die Fragmente zu finden sind. Da zum Zeitpunkt der Fragmentierung
diese Zuordnung noch nicht durchgefithrt wurde, kann auch noch nicht bestimmt wer-
den, wohin die Daten iibermittelt werden miissen. Erst wenn diese Zuordnung gemacht
wird, kann auch die Ubermittlung der Daten geplant werden. Dies hat zur Folge, dass die
Dateniibermittlung erst wihrend dem dynamischen Deployment vorgenommen werden
kann. Aus diesem Grund wird wihrend des dynamischen Deployments iiberpriift, ob
zwischen Fragmenten auf unterschiedlichen Servern die Dateniibertragungsmenge den
vorgegebenen Schwellwert iibersteigt. Ist dies der Fall, werden beide Fragmente auf ei-
nem Server ausgefithrt, um die Ubermittlung der Datenzwischen verschiedenen Servern
zu vermeiden.

30

3.3.3 Neufragmentierung

Eine Neufragmentierung wird benétigt, wenn ein Fragment, das schon einem Server
zugeordnet war, nun keinem Server mehr zugeordnet ist und die Gréfle des Fragments
grofer ist, als die Gesamtgrofle des grofiten Servers. Wiirde nur nach einem neuen Server
gesucht werden, wiirde aufgrund der Grofle keiner gefunden werden. Da das Fragment
also zu grof fiir die verfiigharen Server ist, muss es zerlegt werden, damit die entstehenden
Teile den Servern zugeordnet werden kénnen.

Zu Beginn der Neufragmentierung muss tiberpriift werden, ob das Fragment {iberhaupt
weiter zerlegt werden kann. Dies wird anhand der enthaltenen Aktivitéiten entschieden.
Handelt es sich um ein If, Pick, While, Repeat Until oder For Fach, ist nur eine Aktivitit
in diesem Fragment enthalten, die durch ein oder mehrere invokes alle auszufithrenden
Aktivitdten des Konstrukts aufruft. Solche Aktivitdten konnen nicht weiter aufgeteilt
werden und die Neufragmentierung kann nicht ausgefiithrt werden. Es gibt nun keine
andere Moglichkeit als zu warten, bis wieder ein Server verfiigbar wird, der grof3 genug
ist, um dieses Fragment auszufiihren.

Ein Fragment kann weiter zerlegt werden, wenn die enthaltenen Aktivititen Basisak-
tivitdten sind. Diese werden durch die vorhergehende Fragmentierung sequenziell aus-
gefithrt. Deshalb ist es moglich, die Aktivitdten in kleinere Fragmente zu unterteilen, die
wiederum sequenziell ausgefiihrt werden miissen. Wenn es bei dieser erneuten Fragmen-
tierung darum geht, wie viele Fragmente aus diesem einen erstellt werden sollen, kénnen
die Grolen des Fragments und des grofiten verfiigharen Server herangezogen werden. Ist
beispielsweise das Fragment genau doppelt so grof}, wie der grofite verfiigbare Server,
miissen drei neue Fragmente erstellt werden. Auf den ersten Blick kénnte man denken,
dass zwei Fragmente ausreichen wiirden. Dass dies aber nicht genug Fragmente sind, wird
deutlich, wenn man bedenkt, dass jedes der neuen Fragmente wieder ein eigensténdiger
Prozess mit eigenen Prozessdefinitionen sein muss. Daher haben zwei Fragmente, die
aus einem entstanden sind, nicht die Hélfte der Grofle des urspriinglichen Fragments,
sondern sind etwas grofler.

Ist nun das urspriingliche Fragment aufgeteilt, miissen die ,plan“ und ,frag“-Datei
angepasst werden. Alle Fragmente, die bis zu diesem Zeitpunkt erfolgreich ausgefiihrt
wurden, miissen entfernt werden, damit sie nicht erneut ausgefiihrt werden und die neu
erstellten Fragmente miissen hinzugefiigt werden, damit der Prozess korrekt ausgefiihrt
werden kann. Anschliefend muss die Planung auf Basis der neu erstellten , plan“-Datei
neu angestoflen werden.

3.4 Dynamisches Deployment

Bei der Fragmentierung ist eine Datei mit der Endung ,plan“ erstellt worden. Diese
Datei ist Grundlage fiir die Planung. Sie enthélt die gleichen Informationen wie die frag-
Datei, ist aber fiir den internen Gebrauch aufbereitet. Die Informationen, die aus dieser
Datei gebraucht und ausgelesen werden miissen, sind die Vorgénger und Nachfolger.
Zuséatzlich werden weitere Informationen bendtigt. In der folgenden Auflistung sind alle

31

Informationen aufgelistet, die fiir die Planung notwendig sind.

Fragmentnummer und -gréfe

e Servernummer

freier und gesamter Speicherplatz jedes Servers
e Anzahl der CPUs
Die Aufgaben der Planung sind:
e Fragmentnummer und -gréfle ermitteln und speichern

e Serverinformationen (siehe obere Auflistung) ermitteln und speichern

Interessante Informationen der plan-Datei speichern (beispielsweise Vorginger,
Nachfolger)

Mapping der Fragmente auf die aktuell verfiigharen Server
e Dynamisches Deployment der Fragmente

Die zwei Hauptaufgaben des dynamischen Deployments sind das Mapping und das
Deployment. Das Mapping hat die Aufgabe, alle Fragmente den verfiigbaren Servern
zuzuteilen. Dazu wird die Grofle eines jeden Fragments mit dem freien Speicherplatz der
verfiigbaren Server verglichen. Zuerst wird versucht, einen Server passender Grofle zu fin-
den. Existiert dieser nicht, wird der Server mit dem gréfiten freien Speicherplatz gesucht
und das Fragment diesem Server zugeteilt. Die Zuordnung der Server- und Fragment-
nummern wird in einer Tabelle gespeichert. Zusétzlich wird die Grofle des Fragments
von der Servergrofie abgezogen. Ist auf diesem Server noch Speicherplatz verfiigbar, ist
es moglich, dass weitere Fragmente diesem Server zugeteilt werden. Bei dieser Zuteilung
ist es aber wichtig, dass die Anzahl der Fragmente, die parallel ausgefiihrt werden sollen,
nicht die Anzahl der CPUs auf dem Server iibersteigen, da sie sonst nicht mehr parallel
ausgefiihrt werden kénnen.

Das dynamische Deployment fiihrt das Deployment und die gleichzeitige Instantiie-
rung der Fragmente aus. Zu Beginn werden alle Fragmente ausfindig gemacht, die keinen
Vorgénger haben. Von diesen Fragmenten werden nun die Nachfolger ermittelt, deren
dynamisches Deployment im n#chsten Schritt ansteht. Dieser Vorgang wird so lange
ausgefiihrt, bis alle Fragmente ausgefiihrt wurden. Dies ist der Fall, wenn es kein Frag-
ment mehr gibt, das noch einen Nachfolger hat. Wenn das Deployment fiir ein Fragment
gestartet wird, muss davor eine Deployment-Einheit erstellt worden sein. Diese enthélt
ein Betriebssystem, eine Engine und das Fragment selbst. Diese Deployment-Einheit
wird auf den Server kopiert, der wihrend des Mappings ausgesucht wurde. Ist die Ein-
heit kopiert, wird sie instantiiert, sobald alle Vorgénger-Fragmente erfolgreich ausgefiihrt
wurden. Ist die Einheit das erste Fragment, das ausgefiihrt werden soll, kann es sofort
instantiiert und und die Berechnung gestartet werden.

32

Da erst wiahrend der Planung diese Zuordnung der Fragmente zu den verfiigharen Ser-
vern gemacht wird, kann auch erst zu diesem Zeitpunkt die Dateniibermittlung geplant
werden. Hierzu werden alle Variablen, die iibermittelt werden miissen, im Planer zwi-
schengespeichert, damit sie bei der Instantiierung der Fragmente mit {ibergeben werden
konnen. Werden die Daten von einem anderen Fragment benétigt, werden die Werte die-
ser Variablen dem Fragment iibermittelt. Ist die Planung beendet und somit der Prozess
komplett ausgefiihrt, werden diese Daten geldscht.

Bevor das dynamische Deployment ausgefiihrt wird, wird iiberpriift, ob die Dateniiber-
tragungsmenge iiber einen bestimmten Schwellwert hinausgeht. Ist dies der Fall und die
betroffenen Fragmente sind auf verschiedene Server gemappt worden, muss anders ge-
mappt werden, ndmlich so, dass diese Fragmente auf dem gleichen Server ausgefiihrt
werden. So ist das Problem der zu groflen Dateniibertragungsmenge zwischen Fragmen-
ten auf unterschiedlichen Servern behoben, da nun die Daten auf dem gleichen Server
gebraucht werden. In diesem Fall werden die Daten, die nur von den Fragmenten auf
diesem Server benétigt werden, nur dort zwischengespeichert.

3.4.1 Wiederholtes Dynamisches Deployment

Das erneute dynamische Deployment wird ausgelost, wenn ein Fragment einem Server
zur Ausfithrung zugeordnet war und dieser Server nun nicht mehr verfiigbar ist. Um zu
ermitteln, ob in dem spezifischen Fall das erneute dynamische Deployment die richtige
Wahl ist, wird die Grofle des Fragments mit der Gesamtgrofle des grofiten verfiigharen
Server verglichen. Ist das Fragment grofier, muss es zerteilt werden und ein erneutes
dynamisches Deployment wiirde hier nichts niitzen, da kein Server fiir das Fragment
gefunden werden wiirde. In diesem Fall muss eine Neufragmentierung gestartet werden.
Diese ist in Kapitel 3.3.3 beschrieben.

Ist das Fragment aber kleiner als die Gesamtgrofie des grofiten verfiigharen Servers
reicht ein erneutes dynamisches Deployment aus. Das Mapping und alle Schritte, die auf
das Mapping folgen, werden zum wiederholten Mal ausgefiihrt. Somit ist sichergestellt,
dass das Fragment einem neuen Server zugeteilt wurde. Der Unterschied zu dem dyna-
mischen Deployment, das zu Beginn direkt nach der Fragmentierung ausgefiihrt wurde,
liegt darin, dass hier nicht fiir alle Fragmente ein Server gesucht wird, sondern nur fiir
das Fragment, das keinem Server mehr zugeteilt ist.

3.5 Diskussion

Die Fragmentierung und das dynamische Deployment werden aufgrund von Kriterien
durchgefiihrt, die in der Theorie zwar sinnvoll sind, in der Praxis aber durch praxisnahe-
re Kriterien ersetzt werden konnen. Beispielsweise kann der Server ausgewéhlt werden,
indem die Lage der zur Berechnung benétigten Daten mit in die Auswahl einbezogen
wird. Ein anderes Auswahlkriterium kann die Anzahl der CPUs sein. Miissen mehrere
parallele Fragmente Daten zu einem gemeinsamen nachfolgenden Fragment iibertragen,
wobei die Dateniibertragungsmenge zu grof3 ist, miissen alle Fragmente auf einem Server
ausgefithrt werden. Hierbei kommt nur ein Server fiir die optimale Ausfithrung in Frage,

33

der genug CPUs hat, um alle parallelen Fragmente echt parallel auszufiithren. Zusétzlich
muss die Grofle des Arbeitsspeichers so grof} sein, dass dadurch eine schnelle Berechnung
der Fragmente garantiert werden kann. Dariiber hinaus kann bei der Auswahl von meh-
reren Servern beachtet werden, dass diese in verschiedenen Clustern liegen. Dies erhcht
die Quality of Services (QoS).

Die jetzige Umsetzung kann noch verbessert werden, indem die Dateniibertragung
anders gestaltet wird. Die optimale Losung wire, dass die Daten direkt von dem Ser-
ver auf dem sie manipuliert oder erzeugt wurden auf den Server iibermittelt werden,
auf dem sie von einem Nachfolger-Fragment bené6tigt werden. Dieser Ansatz lésst sich
wegen des dynamischen Deployments nicht ohne Hindernisse umsetzen. Da die Manipu-
lation oder Erzeugung der Daten schon fertiggestellt sein kann, bevor das Nachfolger-
fragment, das die Daten benétigt noch keinem Server zugeordnet ist und somit nicht
feststeht, wohin die Daten tibermittelt werden sollen. Eine mdgliche Losung wire, dass
das Nachfolgerfragment weif, auf welchen Server die Vorginger-Fragmente zu finden
sind und sich die Daten selbst besorgt. Da ein Schwellwert fiir die Dateniibertragung
einmal festgelegt wird, muss dies fiir jede Cloud neu festgelegt werden, weil eventuell
andere Dateniibertragungsmengen moglich sind. Da dies unflexibel und umsténdlich ist,
konnte die Dateniibertragungsmenge dynamisch nach der verfiigharen Bandbreite be-
rechnet werden. Des Weiteren ist es denkbar, bei der Fragmentierung die Fragmente
unter zusétzlicher Beriicksichtigung der Servergrofien zu erstellen. Dazu muss bekannt
sein, wie viel Speicherplatz eine Basisaktivitdt durchschnittlich hat. Mit dieser Informa-
tion kann die voraussichtliche Grofle des Fragments berechnet werden und das Fragment
beendet werden, wenn es sonst zu grof} fiir den grofiten Server wird.

Zusammenfassend ist die Fragmentierung sinnvoll, da das Fragment auf dem Server
dem bzw. einem Web Service, der aufgerufen wird, ausgefiihrt werden kann. Dies ist
sinnvoll, wenn die Dateniibertragung zwischen einzelnen Fragmenten kostengiinstiger ist
als der Aufruf des Web Services. Durch die Fragmentierung werden in die Ausfithrung
des scientific Workflows Zwischenschritte eingefiigt. Dadurch wird es moglich, Zwischen-
ergebnisse der Berechnung zu kontrollieren. Bei Fehlern hat dies den Vorteil, dass die
Berechnung nicht komplett neu ausgefiihrt werden muss, sondern bei dem letzten Zwi-
schenergebnis wieder gestartet werden kann. Ist ein Fehler im Algorithmus vorhanden,
der korrigiert werden soll, kann er im betroffenen Fragment gedndert werden. Um die
Berechnung erneut durchzufithren, kann auch in diesem Fall die Ausfiihrung bei dem
gednderten Fragment gestartet werden.

Durch die Verwendung der stetigen Planung wird das Deployment dynamisch gestal-
tet. Es ist moglich, auf Anderungen sofort zu reagieren und dies ohne jeglichen mensch-
lichen Eingriff. Wenn diese Planung mit anderen Ansétzen kombiniert wird, die mit
Fehlerféllen des Prozesses umgehen koénnen, kann ein scientific Workflow automatisch
und ohne menschliche Uberwachung ausgefiihrt werden.

34

4 Implementierung

Die Arbeit dieser Diplomarbeit wird in zwei Eclipse-Plugins umgesetzt. Als Erstes wird
die Benutzerschnittstelle und die Cloud Test-Umgebung betrachtet. Anschlieend werden
die Implementierungsdetails der Fragmentierung und der Planung dargelegt.

4.1 Benutzerschnittstelle

Die Benutzerschnittstelle ist Eclipse. Eclipse ist eine Entwicklungsumgebung, die er-
weiterbar ist. Das Herz von Eclipse besteht nur aus einer Plattform, die die grundlegende
Funktionalitét fiir die Implementierung bereitstellt. Um weitere Funktionen bereitstellen
zu konnen, gibt es das Konzept der Plugins. Mochte man Zusatzfunktionalitdten nut-
zen, die bereits in Plugins zur Verfiigung stehen, miissen die gewiinschten Plugins nur
in Eclipse integriert werden. Zudem ist es moglich, selbst ein Plugin zu erstellen, das
Funktionalitdt anbietet, die es noch nicht gibt.

Diese Benutzerschnittstelle wird hier um Funktionalitdt erweitert, die in zwei Plugins
enthalten ist. Ein Plugin ist folgendermaflen aufgebaut: Es gibt eine Extension (Er-
weiterung), die zu dem von Eclipse angebotenen Extension Point (Erweiterungspunkt)
passt. Dies sind definierte Punkte, an denen es moglich ist, Eclipse zu erweitern. Das
Plugin setzt an diesem Punkt an und stellt neue Funktionalitit zur Verfiigung. Soll es
dariiber hinaus auch noch moglich sein, das Plugin selbst zu erweitern, besteht auch die
Moglichkeit, dass das Plugin Extension Points anbietet. Ein Beispiel fiir die Erweiterung
von Eclipse durch einen Extension Point ist das Kontextmenii. Dieses kann durch neue
Meniieintrége erweitert werden, die durch Extensions beschrieben werden und zu dem
zugehorigen Extension Point passen.

Um die Funktionalitét fiir die Fragmentierung und die Planung einzubringen, wird der
Extension Point ,,org.eclipse.ui.popupMenus® genutzt. Durch einen Rechtsklick auf die
BPEL-Datei 6ffnet sich ein Kontextmenii, das den Meniipunkt ,, Fragmentation“ enthélt.
Wird dieser ausgewahlt, startet die Fragmentierung. Die Planung hingegen wird aus-
gelost, wenn der Meniipunkt ,, Planning® im Kontextmenii der bei der Fragmentierung
erstellten plan-Datei ausgewahlt wird.

Planung| [Fragmentierung| [Datenflussanalyse

Extension Point: Extension Point:
org.eclipse.ui.popupMenus org.eclipse.core.runtime.applications

Eclipse

Abbildung 9: Erweiterung von Eclipse

35

4.2 Cloud Test-Umgebung

Eucalyptus [21] ist eine Open Source Anwendung, um eine Cloud zu simulieren. Sie setzt
auf einem Hypervisor auf.

Ein Hypervisor ist eine Software zur Erstellung und Verwaltung von virtuellen Ma-
schinen. Es gibt zwei verschiedene Virtualisierungsmoglichkeiten. Die erste Moglichkeit
ist die Paravirtualisierung. Hier wird die Virtualisierung dadurch erreicht, dass die zur
Verfiigung stehenden Ressourcen unter den virtuellen Maschinen aufgeteilt werden, und
jede virtuelle Maschine so arbeitet, als ob sie die Ressourcen fiir sich alleine hitte,
obwohl sie diese noch mit den anderen virtuellen Maschinen teilt. Bei der Vollvirtualisie-
rung werden die Ressourcen wirklich so unter den virtuellen Maschinen aufgeteilt, dass
jede virtuelle Maschine ihre eigenen Ressourcen besitzt. Je nach Rechner, auf dem die
Virtualisierung umgesetzt werden soll, wird eine Virtualisierungsmoglichkeit ausgewéhlt.
Besitzt ein Rechner beispielsweise nur eine CPU, ist nur die Paravirtualisierung moglich,
da bei einer Vollvirtualisierung fiir eine zweite virtuelle Maschine keine CPU mehr zur
Verfiigung stehen wiirde. Unabhéngig davon, welche Virtualisierungsmoglichkeit gewéhlt
wird, ist der Hypervisor fiir die Zuteilung der Ressourcen an die virtuellen Maschinen
zustindig. Er erstellt und 16scht sie, kann sie hochfahren, herunterfahren oder anhal-
ten und sie nach einem Halt fortfahren lassen. Der Hypervisor verwaltet die Ressour-
cen, die auf einem Rechner zur Verfiigung stehen und teilt sie den laufenden virtuellen
Maschinen je nach Bedarf zu. Dieser Mechanismus simuliert die Prédsenz von mehre-
ren physikalischen Rechnern, obwohl nur ein physikalischer Rechner vorhanden ist. Der
Hauptrechner interagiert mit dem Hypervisor und wird ,,dom0* genannt. Zur Kommu-
nikation iiber ,,ssh* zwischen den virtuellen Maschinen und dem Hauptrechner werden
die Schnittstellen der Briicke ,,br0“ und ,,ethO“ benutzt. Dabei befindet sich , brO0“ auf
dem Hauptrechner und ,ethQ* ist die dazu passende Schnittstelle auf jedem einzelnen
Knoten.

In Abbildung 10 ist der Virtualisierungsmanager des Hypervisors Xen zu sehen. Es
sind alle virtuellen Maschinen mit ihren Namen aufgelistet, es ist zu sehen, wie viel
Prozent des zugeteilten Speichers und der CPU von den Maschinen genutzt wird. Uber
diese Oberfléche ist es moglich, die virtuellen Maschinen zu starten, Details tiber sie zu
erfahren, neue virtuelle Maschinen zu erstellen und bestehende zu 16schen. Neben dem
Hypervisor Xen ist KVM ein hdufig verwendeter Hypervisor. Eucalyptus baut auf ihm
auf.

Mit Eucalyptus ist es moglich, eine Cloud zu simulieren, die Infrastruktur zur Ver-
fligung stellt. Dies ist moglich, da als Voraussetzung fiir Eucalyptus mit Hilfe eines Hy-
pervisors virtuelle Maschinen aufgesetzt sein miissen. Diese virtuellen Maschinen werden
von Fucalyptus genutzt, um ein oder mehrere Cluster zu erstellen, die eine Cloud dar-
stellen. Durch ein Kommandozeilenwerkzeug kann mit den Maschinen gearbeitet werden,
wie es auch bei einer realen Cloud der Fall ist. Die Anwendung bietet die Moglichkeit,
Informationen iiber die zur Verfiigung stehenden Ressourcen zu erhalten. Eucalyptus
besteht aus fiinf Komponenten, die im Folgenden aufgezihlt und beleuchtet werden.

e Cloud Controller: Bietet Web-Interfaces an, bearbeitet Anfragen des Administra-
tors oder von Benutzern, fithrt Ressourcen-Zuordnungen durch und verwaltet die

36

Datei Editieren Anzeigen Hilfe

Anzeigen: Alle vituellen Maschinen :I

Name » (ID ‘Status ‘CPU usage |VCPUs ‘Memnry usage

= |ocalhost Xen Active 97.72 % i” 1 1.46 GB IE

Domain0 0 e Running 97.72% [{{ilill 1 10968 [k
nodel - @iShutoff 0.00% 1 256.00 MB | 0%
nod2 - @iShutef 0.00% 1 32000 MB| 0 % |

3 Running

5| o]

Abbildung 10: Virtualisierungsmanager von Xen

Accounts.

o Walrus: Implementiert eine bucket-basierte Speicherung, die inner- und auflerhalb
der Cloud verfiigbar ist.

e Cluster Controller: Jedes Cluster bendtigt einen Cluster Controller, der das Sche-
duling auf der Cluster-Ebene und die Netzwerkkontrolle tibernimmt. Eine Cloud
kann mehrere Cluster enthalten, die Knoten enthalten. Es kann mehrere Cluster
geben, um die Quality of Service (QoS) zu steigern.

e Storage Controller: Jedes Cluster bendtigt einen Storage Controller, der fiir die
blockweise Speicherung verantwortlich ist.

e Node Controller: Auf jedem Knoten muss ein Node Controller vorhanden sein,
der den Hypervisor kontrolliert. Jeder Knoten muss in einem Cluster der Cloud
enthalten sein.

Zum Testen dieser Arbeit wird eine Maschine verwendet, auf der ein Hypervisor und
Fucalyptus installiert ist. Es wird eine Single-Cluster Installation benutzt, bei der alle
Komponenten - mit Ausnahme des Node Controllers - auf einer Maschine platziert sind.
Die virtuellen Maschinen, die als Knoten (engl. Nodes) bezeichnet werden, haben nur
einen Node Controller. In Abbildung 11 ist die Architektur des zum Testen benutzten
Rechners zu sehen. Es wurden drei virtuelle Maschinen unterschiedlicher Gréfie erstellt.
Sie werden durch Eucalyptus verwaltet. Ihre Daten sind im Folgenden aufgelistet:

e Nodel

37

Cluster

Hauptrechner
Frontend

Eucalyptus-Cloud
Eucalyptus-CC

Virtuelle Maschine
Nodai

Eucalyptus-
NodeController

Virtuelle Maschine
MNode2

Eucalyptus-
ModeController

Virtuelle Maschine
MNodad

Eucalyptus-
MNodeController

Walrus
Storage Confroller

bri ethl eth eth i

e e e e e e e S S . s e . e e o e . e e . . e s S e .

Hypervisor

e —

Hardware

Abbildung 11: Rechner-Architektur fiir Tests

— Hauptspeicher: 8 GB
— RAM: 256 MB
— Anzahl virtueller CPUs: 1

e Node2

— Hauptspeicher: 8 GB
— RAM: 320 MB
— Anzahl virtueller CPUs: 1

e Node3

— Hauptspeicher: 8 GB
— RAM: 384 MB
— Anzahl virtueller CPUs: 1

Um die Fragmentierung und die Planung effizient durchfithren zu kénnen, miissen In-
formationen der Infrastruktur zur Verfiigung stehen. Wie in Kapitel 3.1 erlautert, wird
der freie und gesamte Speicherplatz der verfiigbaren Server benétigt. Die Informationen
konnen bei Eucalyptus abgefragt werden. Der Befehl , euca_describe_availability_zones“
gibt eine Liste aus, die alle notigen Informationen enthélt. Diese Liste ist in Abbildung
12 zu sehen. Sie enthiélt alle virtuellen Maschinen. Diese sind nach Typen klassifiziert,
die etwas iiber die Grofle der virtuellen Maschine aussagen. Die Spalte ,,free* gibt an, wie
viele virtuelle Maschinen (VMs) von einem Typ momentan verfiigbar sind. Diese Typen
sind von Eucalyptus zur Klassifikation der Knoten eingefiihrt worden. Die Spalte ,,max“
hingegen gibt Auskunft dariiber, wie viele virtuelle Maschinen insgesamt zur Verfiigung

38

stehen. Hierzu zéhlen auch die, die momentan beschiéiftigt sind. Dariiber hinaus enthélt
die Liste noch Informationen zu den einzelnen VM Typen, zu denen die Anzahl der CPUs,
der RAM und die Speichergrofie gehoren. Diese Informationen werden in unterschied-

AVAILABILITYZONE cluster 192 .168.1.65

AVAILABILITYZONE |- wm types free / max cpu ram disk
AVAILABILITYZONE |- ml.small pope / ooee 1 128 2
AVAILABILITYZONE |- €l .medium oore / ooeo 1 256 5
AVAILABILITYZONE |- ml.large aope / 0000 2 512 10
AVAILABILITYZONE |- ml.xlarge paEe / oo 2 1024 20
AVAILABILITYZONE |- cl.xlarge pope / ooee 4 2048 20

Abbildung 12: Ausgabe des Befehls ,,euca_describe_availability _zones*

lichen Algorithmen des dynamischen Deployments bendtigt. Das erste Mal, wenn auf
diese Angaben zugegriffen werden muss, ist vor Beginn der Fragmentierung. Das zweite
Mal geschieht der Zugriff auf diese Daten wihrend des dynamischen Deployments und
weitere Zugriffe folgen, wenn neu fragmentiert oder neu geplant werden muss.

Eucalyptus selbst besitzt die Moglichkeit, einen Scheduling Algorithmus zu setzen,
der die zuvor erstellten Images (enthilt ein Betriebssystem und die gewiinschte Konfi-
guration samt aller nétigen Programme und Dateien) auf die zur Verfiigung stehenden
Knoten der Cloud verteilt. Dieser Algorithmus kann in eucalyptus.conf (zu finden in
eucalyptus-1.6.2/etc/eucalyptus/) gesetzt werden, indem eine Variable auf den Namen
der Scheduling Strategie gesetzt wird. Diese Variable wird in der Funktion ,schedu-
le_instance® in eucalyptus-1.6.2/cluster/handlers.c aufgerufen, die den dazugehérenden
Algorithmus aufruft. In der Funktion, die diese Funktion aufruft, muss alle Funktiona-
litdt dieser Arbeit - bis auf die eigentliche Scheduling Strategie - zu finden sein. Diese
Funktion ist ,,doRunlInstances®, die in der gleichen Datei zu finden ist. Eine Erweiterung,
die nicht vergessen werden darf, ist die Hinzunahme des neuen Werts der Enumeration,
die die moglichen Scheduling Strategien enthélt. Diese Enumeration ist in eucalyptus-
1.6.2/cluster /handlers.h zu finden. In dieser Datei muss auch die Definition der neu
hinzugekommenen Scheduling Strategie aufgenommen werden, da diese in einer eigenen
Funktion implementiert sein muss.

4.3 Fragmentierung

Die Fragmentierung soll aus einer BPEL-Datei mehrere BPEL-Dateien erstellen. Um die
Fragmentierung auszul6sen, kann iiber das Kontextmenii der bpel-Datei in Eclipse (siehe
Kapitel 4.1) der Punkt , Fragmentierung® ausgewihlt werden (siche Abbildung 13).

Dazu nutzt das Plugin den Extension Point ,org.eclipse.ui.popupMenus“. Um den
Workflow zu fragmentieren, wird in diesem Plugin die Eclipse-interne Reprisentation
Eclipse Modeling Framework (EMF) genutzt, die speziell fiir BPEL ausgelegt ist. Diese
Reprisentation ist ein Baum, der traviersiert werden kann. Die Ausgabe des Fragmentie-
rungsalgorithmus ist die frag- und die plan-Datei frag. Die plan-Datei ist der Einstiegs-
punkt fiir die Planung.

39

Resource - SimpleFroc essHeloWorid.bpel - EChpse Platioim

File Edit Havigate Search Project Bun Window Halp
e @ @ @ Qe | £ |8 ilr % o0 o @]

= 0O & Helloword. bpel 22 =0
E%|s ~ 4 E HelloWara
» = Simplalmoke ® fuPartrerLinks & %
~ 2 SimplaProcess = main client
¥ deploy.xml -] ® Yariables LE
W input
HMew v b1 = output
=1 HelloWeald bpsle —_— B o =
B HelloWorldAtifact Dpen 3 = Assign & Corslation Sets # %
Copen With . N S % essage Exch % X
- 4] replyCutput
Cial4s .
Dbt s ’ i
awa from Context Sha#i+Ctd+Ak+D own
1 Tifi#
Reaname. .. F2
21 Impar...
&3 Expodt. .
= Rafrash F5
Oulling &3 Task
= ﬂ Validata
Shew in Pemale Systlems view
» [Parmer Links E FI'!|I|0I'I'1IW HiE-| B R X 2 ® 70
@ Vaiablss Bun As +
& Comelation Sats Debug As ¢]
Erafile As v
? Meflsagn Exchangss T X [Fiagin o
B
T meE Carngiarz With "
Replaze Wih 3
Source 3
WikiTest "
JPA Tocks v
J hid & Fropari=s Al+Enter J

Abbildung 13: Start der Fragmentierung in Eclipse

40

Die Klassen der Fragmentierung und ihre Methoden sind im Folgenden aufgelistet:
Klasse Start: implementiert das Interface ,,IActionDelegate

public void run(IAction action) ruft startFragmentation der Klasse Fragmentation
auf

public void selectionChanged(IAction action, ISelection selection)

Klasse Fragmentation: implementiert die Fragmentierung

protected static void startFragmentation (org.eclipse.bpel.model.Process pro, String
loc, String locFrag)

StoBt die Fragmentierung an und erstellt die frag- und plan-Datei. Die Metho-
den clearVariables(), die Hauptmethode fragment(process) und writeSuccessors()
werden dazu aufgerufen.

private static void clearVariables()
Setzt alle Variablen zuriick und wird von startFragmentation (org.eclipse.bpel.-
model.Process pro, String loc, String locFrag) aufgerufen.

private static void fragment(ExtensibleElement element)

Hauptmethode der Fragmentierung, die von startFragmentation (org.eclipse.bpel.-
model.Process pro, String loc, String locFrag) aufgerufen wird. Fiihrt die Fragmen-
tierung durch und ruft direkt oder indirekt alle weiteren Methoden auf.

private static String fillFragFileHeader (org.eclipse.bpel.model.Process process)
Befiillt die frag-Datei mit dem Definitionsteil des Prozesses und wird von frag-
ment(ExtensibleElement element) aufgerufen.

private static String makelnvoke (int counter)
Generiert das invoke, das ein anderes Fragment aufruft. Diese Methode wird von
fragment (ExtensibleElement element) aufgerufen.

private static void makeFragFile (String ff)

Erschafft die bpel-Dateien fiir die einzelnen Fragmente. Wenn es noch keinen Ord-
ner gibt, der diese Fragmente enthalten soll, wird dieser ebenfalls erstellt. Der
Aufruf erfolgt durch closeFragFile().

private static void openFragment ()

Diese Methode schreibt alle notigen Informationen in die frag-Datei, wenn ein neu-
es Fragment beginnt. Dies beinhaltet den Aufruf der Methoden, die die Vorgénger
und Nachfolger des aktuellen Fragments schreiben. Der Aufruf erfolgt durch frag-
ment(ExtensibleElement element).

private static void writePredecessors(Vector<String> fragPred)
Schreibt die Vorgénger des aktuellen Fragments und wird von openFragment ()
aufgerufen.

41

private static void writeSuccessors(Vector<String> pred, int in)
Schreibt die Nachfolger von Fragmenten. Der Aufruf erfolgt durch writePredeces-
sors (Vector<String> fragPred).

private static void writeSuccessors()

Schreibt die Nachfolger von Fragmenten, bei denen am Ende der Fragmentierung
noch kein Nachfolger eingetragen ist. Diese Methode wird von startFragmentation
(org.eclipse.bpel.model.Process pro, String loc, String locFrag) aufgerufen.

private static void closeFragment|()
Schliefit ein Fragment. Der Aufruf erfolgt durch fragment(ExtensibleElement ele-
ment).

private static void closeFragFile()
Schreibt eine frag-Datei. Der Aufruf erfolgt durch fragment(ExtensibleElement ele-
ment).

protected static void handleRecursion(ExtensibleElement element)
regelt die Rekursion bei der Traversierung des Prozesses. Der Aufruf erfolgt durch
fragment(ExtensibleElement element).

Klasse Activities: behandelt alle Aktivitdten, die in die bpel-Datei eines Fragments
geschrieben werden. Alle Methoden werden von der Methode Fragmentation.fragment|()
aufgerufen, abhéngig davon welche Aktivitdt momentan in der Fragmentierung behan-
delt wird.

protected static String handleAssign (ExtensibleElement element)
protected static String handleReceive (ExtensibleElement element)
protected static String handleInvoke (ExtensibleElement element)
protected static String handleReply (ExtensibleElement element)
protected static String handleWait (ExtensibleElement element)
protected static String handleEmpty (ExtensibleElement element)
protected static String handleThrow (ExtensibleElement element)
protected static String handleRethrow (ExtensibleElement element)
protected static String handleExit (ExtensibleElement element)
protected static String handleWhile (ExtensibleElement element)
protected static String handleRepeatUntil (ExtensibleElement element)
protected static String handlelf (ExtensibleElement element)
protected static String handlePick (ExtensibleElement element)

protected static String handleForEach (ExtensibleElement element)

42

4.4 Planung

Fiir den Beginn der Planung kann man durch einen Rechtsklick auf die plan-Datei den
Punkt ,Planning® auswéhlen (siehe Abbildung 14). Die Klassen der Planung und ihre

= Resource - shippingService/ShippingService.bpel - Eclipse Platform -2

FEile Edit Mavigate Search Project Bun Window Help

or B8 & [ar |2 o ur o oo o] a - (R
FW’ = B| £ auctionService bpel (52. ShippingService bpel & =8
=) q%‘ ey = <process name="shippingService” &
target! e="http://example. con/shipping/"
\ & auctionService xmlns="http://docs. vasis-open. org/wsbpel/2. 8/process/abstract”
xmlns:plt="http.//example. com/shipping/partnerLinkTypes/"
- & shippingSemvic—, y Iple. com/shipping/properties/” |
» (= Fragments le.com/shipping/ship. xsd"

S F tat Open F3 | com/shipping/interfaces/"
&l Fragmentaty - http://docs. oasis-open. org/wsbpel/2. 0/process/abstract/apll/2006/688" xmlns:bpel="http://docs.
@ shippingLT Open With s
://schemas. xmlsoap. org/wsdl/"
2 shippingPro| [Copy CHrI+C 2
2B shippingPT. iple. com/shipping/partnerl inkTypes/" />
2 ShippingSer| ¥ Delete DEIBtE | cchemas. xmlsoap. org/wsdl/"
[shippingser sdl”
B vector plan [0 ple. com/shipping/ interfaces/" />
» 1= Simplelinvake Moye.. ://schemas. xmlsoap. org/wsdl/"
p
Rename.. F2 jerties.wsdl”

» = SimpleProcess
3 Import..

% outine %2 |

- d 4 Expart.

T
&1 Refresh F5 - Dl

iple. com/shipping/properties/" />

tomer” partnerLinkType="plt:shippinglT" =

» [Partner Links
» ® Variables Validate 23 N\ B Prcb\ems}
+ & Correlation Se Show in Remote Systems view
RUN As
Debug As
Erofile As
Team
Compare With
Replace With
WikiText

JPA Tools

@ Hi ’lr?j T-S Properties Alt+Enter ’L_‘;d\p\umamewt %snippingsar\ P\ug-in Deve _ A7V : 1619%&_

?;"E,‘Li'u)tgﬁv=ﬁ

» Z Sequence
| Plug-in | Date

org.eclipse.bpel.valida; 30.11.10 16:16

[D

J 0e 5| Vectd

Abbildung 14: Start der Planung

Methoden sind im Folgenden aufgelistet:
Klasse Start: implementiert das Interface ,,JActionDelegate“

e public void run(IAction action) ruft startPlanning der Klasse Planning auf

e public void selectionChanged(IAction action, ISelection selection)
Klasse Planning:

e protected static void startPlanning(IPath p) throws IOException

stoft die Planung an. Zu Beginn werden die Variablen zuriickgesetzt, indem clear-
Variables() aufgerufen wird. Anschlieflend wird die frag-Datei durch readFragFile()
ausgelesen, der BPEL-Prozess fiir die Datenanalyse bestimmt, die Datenanalyse
ausgefiihrt (makeDataAnalysis(), readAnalysisResult()), die GréBen der Fragmen-
te (sizeOfFragmentsToArray()) und Server gespeichert (serverInformationToAr-
ray()), das Mapping aufgerufen (mapping(fragmentSizes, 0)) und schlieBlich das
Deployment gestartet (deployment()).

e private static void clearVariables()
Alle Variablen werden zuriickgesetzt.

43

private static void sizeOfFragmentsToArray/()

Die Grofle der Fragmente wird ermittelt und gespeichert. Diese Methode wird
von startPlanning(IPath p) aufgerufen und ruft ihrerseits mergeSort(Comparable
<Integer> [][] a) auf.

private static void serverInformationToArray() throws FileNotFoundException
Verfiighare Informationen iiber die Server der Cloud werden ausgelesen und ge-
speichert. Diese Methode wird von startPlanning(IPath p) aufgerufen.

public static void mergeSort(Comparable <Integer> [][] a)

MergeSort Algorithmus. Er sortiert die Grofien der Fragmente und ruft hierzu die
Methoden mergeSort(Comparable <Integer> [][] a, Comparable <Integer> |][|
tmpArray, int left, int right) und merge(Comparable <Integer> [][| a, Compara-
ble <Integer> [][] tmpArray, int leftPos, int rightPos, int rightEnd) auf. Dieser
Algorithmus wird von sizeOfFragmentsToArray() aufgerufen.

private static void mergeSort (Comparable <Integer> [][| a, Comparable <Int-
eger> [|[| tmpArray, int left, int right)
MergeSort Algorithmus

private static void merge(Comparable <Integer> [|[] a, Comparable <Integer>
[][] tmpArray, int leftPos, int rightPos, int rightEnd)
MergeSort Algorithmus

private static void mapping(Comparable <Integer> [][] frags, int place)

Hier werden die Fragmente auf Server gemappt. Diese Methode ruft searchFittingS-
erver(Comparable <Integer> size), getBiggestServer(Comparable <Integer> size)
und writeToArray (Comparable <Integer> serverNumber, Comparable <Integer>
fragmentNumber, int i) auf und wird von startPlanning(IPath p) aufgerufen.

private static void writeToArray (Comparable <Integer> serverNumber, Compa-
rable <Integer> fragmentNumber, int i)

Speichert das Ergebnis des Mappings und wird von mapping (Comparable <Int-
eger> [|[| frags, int place) aufgerufen.

private static Comparable <Integer> searchFittingServer(Comparable <Integer>
size)

Der Aufruf erfolgt durch mapping(Comparable <Integer> [|[] frags, int place).
Ein verfiigbarer Server passender Grofie wird gesucht.

private static Comparable <Integer> getBiggestServer(Comparable <Integer> si-
ze)

Der Aufruf erfolgt durch mapping(Comparable <Integer> | |[| frags, int place).
Der grofite verfiigbare Server wird gesucht.

private static void deployment()
Diese Methode wird von startPlanning() aufgerufen und stéfit das Deployment an.

44

Dazu werden die Methoden deploy (String fragment) und eventuell startRefrag-
mentation(String fragment) oder rePlanning (int fragNumber) aufgerufen.

e private static void deploy (String fragment)
Der Aufruf erfolgt durch die Methode Deplpoyment(). Hier wird das Deployment
wird mit stetiger Planung durchgefiihrt. Es wird eventuell rePlanning (int frag-
Number) oder startRefragmentation(String fragment) aufgerufen. Die Methode
makeDeployXml (IPath bundle) wird zusétzlich genutzt.

e private static void makeDeployXml (IPath bundle)
Die Methode wird durch deploy (String fragment) aufgerufen. Sie erzeugt die Datei
deploy.xml fiir jedes Fragment.

e private static void readFragFile() throws IOException
Die Methode wird von startPlanning() aufgerufen, um aus der frag-Datei alle rele-
vante Informationen, wie Vorginger und Nachfolger auszulesen und zu speichern.

e private static void writePredecessorsAndSuccessors (String fragment, boolean bool)
Diese Methode wird von readFragFile() aufgerufen und erneuert die Vorgéinger und
Nachfolger, nachdem die plan-Datei neu eingelesen wurde.

e private static void rePlanning (int fragNumber)
Das erneute dynamische Deployment wird durchgefiihrt, indem ein neuer verfiigba-
rer Server fiir das aktuelle Fragment gesucht wird. Diese Methode wird von deploy
(String fragment) oder deployment() aufgerufen.

Klasse Refragmenation: In dieser Klasse wird die erneute Fragmentierung behandelt.

e public static void startRefragmentation(String fragment)
Die Refragmentierung wird durch deploy (String fragment) oder deployment() ge-
startet. Diese Methode ruft refragment () auf.

e private static boolean refragment () throws IOException
Der Aufruf erfolgt durch startRefragmentation (String fragment). Die Methode
refragmentiert das aktuelle Fragment und die plan-Datei wird neu geschrieben. Um
den Definitionsteil der Fragmente zu erhalten, wird fillHeader (int k) aufgerufen.

e private static String fillHeader (int k) throws IOException
Diese Methode wird von refragment () aufgerufen und liest den Definitionsteil fiir
die neu erstellten Fragmente ein.

4.5 Datenflussanalyse

Dieser Algorithmus wird wahrend des dynamischen Deployment verwendet, um zu iiber-
priifen, ob alle Dateniibertragungsmengen kleiner als der festgelegte Schwellwert (der de-
finiert wird) ist und um die Datenweiterleitung zwischen den Fragmenten gewihrleisten
zu kénnen. Der Algorithmus ist in Kapitel 3.2 genauer betrachtet worden, wird in Ar-
beit [10] beschrieben und in einer Diplomarbeit [11] implementiert. Der Algorithmus ist

45

seinerseits in einem Plugin enthalten, das fiir diese Arbeit in Eclipse integriert sein muss.
Die Verwendung des Plugins wird durch einen Aufruf der Hauptmethode eingeleitet.

Das Plugin erweitert Eclipse am Extension Point , org.eclipse.core.runtime.applica-
tions“. Die Methode die aufgerufen wird, ist ,de.uni_stuttgart.iaas.bpel_d.algorithm.-
analysis.Process.analyzeProcessModel(process)“. Anschieflend wird , de.uni_stuttgart.-
iaas.bpel_d.algorithm.analysis.output()“ aufgerufen. Diese Methode wurde erweitert, so
dass sie die Ergebnisse der Analyse in eine Datei scheibt, die zur Benutzung wieder
eingelesen werden kann.

46

5 Zusammenfassung und Ausblick

In diesem Kapitel werden die Ansédtze und die Ergebnisse der Arbeit in Abschnitt 5.1
skizziert, bevor in Kapitel 5.2 erortert wird, welche Moglichkeiten es gibt, diese Arbeit
weiterzufithren.

5.1 Zusammenfassung der Ergebnisse

Der vorgestellte Algorithmus legt einen Grundstein, um die Gebiete des Workflow Mana-
gements und der kiinstlichen Intelligenz in einem Algorithmus zu nutzen und diese Nut-
zung weiter auszubauen. Der Vorteil ist, dass die Ausfithrung eines scientific Workflows
in Umgebungen, die ihre Infrastruktur &ndern, durch die Verwendung einer Fragmen-
tierung und von Planungsalgorithmen effektiver und effizienter gestaltet werden kann.
Die Ursache liegt darin, dass die Fragmentgrofien an die verfiigbaren Ressourcen dyna-
misch angepasst werden kénnen und auch die Zuordnung zwischen den Fragmenten und
Servern dynamisch gestaltet ist.

Der Algorithmus fiihrt eine Fragmentierung und verteilte, dynamische Ausfiihrung von
BPEL-Prozessen wie folgt durch. Um einen BPEL-Prozess zu fragmentieren, muss dieser
ausfiihrbar, also ohne syntaktische Fehler, sein. Dariiber hinaus muss das Bernstein-
Kriterium gelten.

Die Fragmentierung erfolgt aufgrund der im Prozess enthaltenen Aktivitdten und de-
ren Reihenfolge. Alle Fragmente enthalten - aufler einer umschliefenden Sequence - nur
Basis-Aktivitaten, Schleifenkonstrukte, Alternativen oder Picks. Die Konstrukte Sco-
pe, Sequence und Flow des Ursprungsprozesses dienen nur der korrekten Erstellung der
Fragmente und alle Arten von Handlern werden nicht beachtet. Nur bei Fragmenten mit
enthaltenen Schleifenkonstrukten, Alternativen oder Picks kommen verschachtelte Frag-
mente vor. Alle diese Konstrukte sind in einem Fragment enthalten, dass keine weiteren
Aktivitdten des Ursprungsprozesses enthilt. Alle Aktivitidten, die von diesen Konstruk-
ten ausgefiihrt werden sollen, sind in Fragmenten enthalten, die von dem Fragment mit
dem Konstrukt aus aufgerufen werden. Diese invokes, mit denen die enthaltenen Frag-
mente aufgerufen werden, werden wihrend der Fragmentierung hinzugefiigt. Die Ausga-
be der Fragmentierung sind alle Fragmente als BPEL-Dateien und zwei Dateien, die den
Ablauf der Fragmentierung beschreiben. Die frag-Datei wird zu Export-Zwecken erstellt,
wohingegen die plan-Datei fiir den internen Gebrauch bestimmt ist und Grundlage fiir
das dynamische, verteilte Deployment ist. Der Inhalt der beiden Dateien ist identisch,
nur die Erstellung unterschiedet sich. Sie enthalten eine Auflistung der Fragmente, deren
Speicherort und deren enthaltenen Aktivitdten sowie alle Vorgénger und Nachfolger der
einzelnen Fragmente.

Das verteilte, dynamische Deployment setzt auf der Fragmentierung auf, indem die
plan-Datei, die Grofle der Fragmente und Informationen iiber die Infrastruktur der Cloud
eingelesen werden. Aufgrund dieser Daten wird zu Beginn ein Mapping durchgefiihrt, das
die Fragmente den verfiighbaren Servern zur Ausfithrung zuordnet. Um das Deployment
durchzufiithren, muss im néchsten Schritt eine Deployment-Einheit erstellt werden, die
alle notigen Dateien enthélt. Zu dieser Einheit gehort das Fragment selbst mit seiner bzw.

47

seinen WSDL-Datei(en) und einer deploy.xml, die zur Ausfithrung benétigt wird, ein
Betriebssystem und eine Engine, um das Fragment ausfithren zu kénnen. Ist diese Einheit
erstellt, kann sie auf den Server kopiert werden, auf dem sie ausgefiihrt werden soll. Ist
der Server in der Zwischenzeit nicht mehr verfiigbar, weil er beispielsweise abgestiirzt
ist, gibt es zwei Moglichkeiten fiir die weitere Ausfithrung des Fragments. Wenn es einen
Server gibt, dessen Grofle ausreichend fiir die Ausfithrung des Fragments ist, wird nur
das Mapping und die nachfolgenden Schritte erneut ausgefiihrt. Gibt es aber keinen
Server, dessen gesamte Grofie grofl genug ist, muss das Fragment weiter zerlegt werden,
falls dies moglich ist. In diesem Fall wird eine Refragmentierung eingeleitet. Sind aus
diesem Fragment kleinere Teilfragmente entstanden, kénnen diese alle nétigen Schritte,
bis hin zur Ausfithrung erneut durchlaufen. Ist eine weitere Aufteilung des Fragments
nicht moglich, muss gewartet werden, bis ein Server zur Verfiigung steht, der fiir die
Ausfithrung dieses Fragments in Frage kommt.

Die Umsetzung dieser Idee erfolgt in einem Eclipse-Plugin, das das Kontext-Menii des
Navigators erweitert. Durch einen Rechtsklick auf die BPEL-Datei, die fragmentiert
werden soll, kann diese angestoflen werden. Durch einen Rechtsklick auf die plan-Datei
kann nach der Fragmentierung auch die Planung gestartet werden.

Der Algorithmus enthélt die grundlegende Funktionalitdt. Durch die Unterstiitzung
von allen Basis-Aktivitaten, Flows, Sequenzen, Scopes, Alternativen (If), Picks und
Schleifen (While, Repeat Until, For Each) ist eine Fragmentierung und ein dynamisches
Deployment eines einfachen scientific Workflows mdoglich. Dieser Ansatz kann weiter aus-
gebaut werden, so dass auch alle Arten von Handlern unterstiitzt werden. Einschrinkun-
gen, die sich bei diesem Ansatz - beispielsweise durch die Erfiillung des Bernsteinkriteri-
ums - ergeben, kénnen verringert werden, wodurch der hier entwickelte Algorithmus auf
einem grofleren Gebiet angewendet werden kann.

5.2 Weiterfiihrende Arbeiten und Ausblick

Der Algorithmus kann durch eine Vielzahl von Ansétzen erweitert oder weiter verfeinert
werden. Wie durch die Nennung folgender Beispiele ersichtlich wird, hat der hier vor-
gestellte Ansatz Erweiterungsmoglichkeiten in vielen Bereichen. Daher ist dieser Ansatz
eine Grundlage, um weiter Forschung zu betreiben.

Ansitze zur Erweiterung konnten die Folgenden sein. Es wire denkbar, eine manuelle
Fragmentierung und Teile des dynamischen Deployments manuell auszufiithren. Dabei ist
der Benutzer nicht ganz auf sich allein gestellt, sondern erhélt Unterstiitzung zur manuel-
len Bearbeitung. Im Falle der manuellen Fragmentierung wiirde eine Unterstiitzung Hilfe
bei der Erstellung der plan- und frag-Datei bedeuten. Dies ist moglich, wenn der Benut-
zer die Stelle markiert, an der fragmentiert werden soll und die so erstellten Fragmente
automatisch die richtige Nummerierung erhalten und dabei in die plan- und frag-Datei
aufgenommen werden. Bei einem manuellen dynamischen Deployment ist es beispielswei-
se moglich, den Benutzer auswéhlen zu lassen, welche Ressourcen er nutzen will. Diese
konnten eine Untermenge aller zur Verfiigung stehender Ressourcen sein. Nach dieser
Auswahl wird das ausgewéhlte Bundle automatisch auf der Ressource ausgefiihrt. In
diesem Prozess muss der Benutzer zusétzlich durch die Vorgabe der Ausfithrungsreihen-

48

folge der Bundles unterstiitzt werden.

Auf der anderen Seite ist es sinnvoll, eine Ausfithrungsdauer im Voraus zu berech-
nen, um dem Benutzer eine Abschéitzung der Ausfithrungsdauer zur Verfiigung zu stel-
len. Dadurch kann der Benutzer darauf reagieren, falls ihm die Dauer zu lange ist. Die
Ausfithrungsdauer kann anhand des kritischen Zeitpfad berechnet werden, indem man
beispielsweise jeder Basis-Aktivitit eine Dauer zuweist. Nachdem alle moglichen Pfade
durch den Workflow berechnet worden sind, ist der kritische Zeitpfad der Pfad, der die
langste Ausfithrungsdauer hat.

FEin weiteres Beispiel zur Erweiterung des Algorithmus stellt die Moglichkeit dar, den
Workflow vor Beginn der Fragmentierung auf Fehler zu untersuchen (Ansatz siehe Refe-
renz [22]). Bei diesem Ansatz wird vorausgesetzt, dass die Fragmentierung auf Basis von
ausfithrbaren Dateien durchgefiithrt wird, der Prozess also eine korrekte Syntax besitzt.
Der Prozess kann trotzdem auf Syntaxfehler untersucht werden. Dariiber hinaus kann
die semantische Korrektheit des Prozesses iiberpriift werden. Beispielsweise durch sta-
tische Analysen kann der Prozess auf das Vorhandensein von Endlosschleifen iiberpriift
werden. Enthélt der Workflow syntaktische oder semantische Fehler, ist die Ausfithrung
zwecklos, sie wird nicht gestartet und der Benutzer wird dariiber informiert. Dariiber
hinaus kénnte der Workflow mit Hilfe von Kontroll- und Datenfluss und DPE optimiert
werden, indem Sequenzen, die nicht voneinander abhéngen, parallel ausgefithrt werden
konnen. Diese Erweiterung konnte durch einen Schalter an- und ausschaltbar sein und
durch eine partiell ordnende Planung realisiert sein.

Ein Beispiel, das nur die Erweiterung der Fragmentierung betrifft, ist die Ermittlung
von fixen und portablen Knoten eines Fragments, wie sie in dem Ansatz von [16] vorge-
stellt wird. Durch diesen Ansatz kénnen einzelne Fragmente weiter zerteilt werden. Diese
Methode kénnte statt der Neufragmentierung angewendet werden. In diesem Ansatz wird
diese Methode nicht verwendet, weil die Fragmentierung aufgrund der im Prozess ent-
haltenen Aktivitdten und der Struktur des Prozesses durchgefiihrt wird. Die Zuordnung
von portablen Knoten zu einem fixen Knoten hingegen beachtet nicht die Ausfiihrungs-
reihenfolge, ermoglicht aber mehrere Moglichkeiten eine bestimmte portable Aktivitét
zu einem fixen Knoten zuzuordnen.

49

A Anhang

A.1 Der Prozess ,,auctionService"

Als erstes Beispiel ist der Prozess ,auctionService* gewihlt worden, der sich in der
BPEL Sperzifikation® befindet. Der Quellcode der bpel- und wsdl-Datei ist hier nicht
erneut aufgefiihrt, er kann in der Spezifikation eingesehen werden.

Sequence:
Flow:
- receive acceptSellerinformation
- receive acceptBuyerlnformation
Assign
Invoke registerBuyerResults
Receive receiveAuction-
RegistrationInformation
Flow:
- Sequence:
- Assign
- Invoke respondToSeller
- Sequence:
- Assign
- Invoke respondToBuyer

Abbildung 15: Struktur von auctionService.bpel: In der linken Spalte sind die Akti-
vitdten mit den erstellten Fragmenten zu sehen. Die Fragmente, die als
oberstes Element eine Sequenz oder einen Flow enthalten, sind nur der
Ubersichtlichkeit halber eingefiigt. Diese Rechtecke stellen keines der er-
stellten Fragmente dar. Die rechte Spalte enthélt die Namen der entspre-
chenden Aktivitdten. Ist kein Name neben einer Aktivitidt abgebilet, hat
diese keinen Namen.

<?xml version="1.0" encoding="1SO—-8859—-1" 7>
<Fragments>
<Fragmentl>
<bpelFile>
<” /home/eclipse /Workspace/auctionService

®http://docs.oasis-open.org/wsbpel /2.0 /wsbpel-specification-draft.html

50

/Fragments/Fragmentl. bpel”/>
</bpelFile>
<Activities>
<receive:acceptSellerInformation/>
</Activities >
<Predecessors>
<null/>
</Predecessors>
<Successors>
<Fragment3/>
</Successors>
</Fragment1>

<Fragment2>
<bpelFile>
<” /home/eclipse /Workspace/auctionService
/Fragments/Fragment2. bpel”/>
</bpelFile>
<Activities>
<receive:acceptBuyerInformation/>
</Activities >
<Predecessors>
<null/>
</Predecessors>
<Successors>
<Fragment3/>
</Successors>
</Fragment2>

<Fragment3>
<bpelFile>
<” /home/eclipse /Workspace/auctionService
/Fragments /Fragment3. bpel”/>
</bpelFile>
<Activities >
<assign:null/>
<invoke:registerAuctionResults/>
<receive:receiveAuctionRegistrationInformation/>
</Activities >
<Predecessors>
<Fragmentl/>
<Fragment2/>
</Predecessors>
<Successors>

o1

<Fragment4/>
<Fragment5/>
</Successors>
</Fragment3>

<Fragment4d>
<bpelFile>
<” /home/eclipse /Workspace/auctionService
/Fragments/Fragment4 . bpel”/>
</bpelFile>
<Activities>
<assign:null/>
<invoke:respondToSeller/>
</Activities >
<Predecessors>
<Fragment3/>
</Predecessors>
<Successors>
<null/>
</Successors>
</Fragment4>

<Fragment5>
<bpelFile>
<”/home/eclipse /Workspace/auctionService
/Fragments /Fragment5. bpel” />
</bpelFile>
<Activities>
<assign:null/>
<invoke:respondToBuyer/>
</Activities >
<Predecessors>
<Fragment3/>
</Predecessors>
<Successors>
<null/>
</Successors>
</Fragment5>
</Fragments>

92

Sequence

Receive |

If Else

Sequence Sequence

Assign |3 Assign 4

Invoke While |5
Assign |6
Invoke
Assign

Abbildung 16: Struktur des Prozesses shippingService

A.2 Der Prozess ,,shippingService*

In Abbildung 16 ist erneut die Struktur des Prozesses dargestellt. Im Folgenden ist die

frag-Datei zu sehen.

<?xml version="1.0" encoding="UTF-8" 7>

<Fragments>
<Fragment1>
<bpelFile>

<”/home/ eclipse /Workspace/shippingService/

Fragments/Fragmentl.bpel”>

</bpelFile>
<predecessorsFragmentl
<null>
</predecessorsFragment
<successorsFragmentl >
<Fragment2>

>

1>

</successorsFragmentl>

<Activities>
<receive:receivel />
</Activities >
</Fragmentl>

<Fragment2>
<bpelFile>

<” /home/eclipse /Workspace/shippingService/

Fragments/Fragment2. bpel”>

93

</bpelFile>
<predecessorsFragment2>
<Fragment1>
</predecessorsFragment2>
<successorsFragment2>
<null>
</successorsFragment2>
<Activities>
<If:null>
</Activities >

</Fragment2>

<Fragment3>

<bpelFile>

<” /home/eclipse /Workspace/shippingService/

Fragments/Fragment3. bpel”>

</bpelFile>
<predecessorsFragment3 >

<if>
</predecessorsFragment3>
<successorsFragment3>

<null>
</successorsFragment3>
<Activities>

<assign:assignl/>

<invoke:invokel />
</Activities >
</Fragment3>

<Fragment4d>
<bpelFile>

<”/home/ eclipse /Workspace/shippingService/

Fragments/Fragment4 . bpel”>

</bpelFile>
<predecessorsFragment4 >

<if>
</predecessorsFragment4 >
<successorsFragment4 >

<null>
</successorsFragment4>
<Activities>

<assign:assign2/>
</Activities >
</Fragment4>

54

<Fragment5>
<bpelFile>
<” /home/eclipse /Workspace/shippingService/
Fragments/Fragment5. bpel”>
</bpelFile>
<predecessorsFragmentb>
<if>
</predecessorsFragmentb>
<successorsFragmentb>
<null>
</successorsFragmentb>
<Activities >
<while:null>
</Activities >
</Fragment5>

<Fragment6>
<bpelFile>
<”/home/ eclipse /Workspace/shippingService/
Fragments/Fragment6 . bpel”>
</bpelFile>
<predecessorsFragment6 >
<while>
</predecessorsFragment6>
<successorsFragment6 >
<null>
</successorsFragment6 >
<Activities>
<assign:assign3/>
<invoke:invoke2/>
<assign:assign4/>
</Activities >
</Fragment6>
</Fragments>

95

Literatur

1]
2]

[3]

[10]

[11]

[12]

[13]

Brian Hayes. Cloud computing. Commun. ACM, 51(7):9-11, 2008.

F. Leymann and D. Roller. Production Workflow, Concepts and Techniques. Pren-
tice Hall, Upper Saddle River, New Jersey 07458, 2000.

A. Lenk et. al. What’s inside the cloud? an architectural map of the cloud landscape.
In ICSE Workshop on Software Engineering Challenges of Cloud ComputingVan-
couver, pages 23-31, Canada, 2009.

C. Ellis and G. Rozenberg. Dynamic change within workflow systems. In COCS
’95: Proceedings of conference on Organizational computing systems, pages 10-21,
New York, NY, USA, 1995. ACM.

R. Petzschmann. Entwicklung eines planungsalgorithmus fiir mediatorbasierte infor-
mationssysteme unter beriicksichtigung eingeschrinkter anfragemdoglichkeiten. Mas-
ter’s thesis, Technische Universitét Berlin, 2005.

C. Reese, J. Ortmann, S. Offermann, D. Moldt, K. Lehmann, and T. Carl. Archi-
tecture for distributed agent-based workflows. pages 42-49, 2005.

Gurmeet Singh Mei-Hui Su Ewa Deelman, Gaurang Mehta and Karan Vahi. Pega-
sus: Mapping Large-Scale Workflows to Distributed Resources. Springer, 2006.

Hilmar Schuschel and Mathias Weske. Plaengine: Ein system zur planung und
ausfithrung von workflows. In BTW, pages 225-234, 2005.

Stuard Russell and Peter Norvig. Kiinstliche Intelligenz: Ein moderner Ansatz.
Pearson Studium, Miinchen, 2007.

Oliver Kopp, Rania Khalaf, and Frank Leymann. Deriving explicit data links in
ws-bpel processes. In Proceedings of the International Conference on Services Com-
puting, Industry Track, SCC 2008, pages 367-376. IEEE Computer Society, 2008.

Sebastian Breier. Extended Data-flow Analysis on BPEL Processes. Diplomarbeit,
Universitdt Stuttgart, Fakultdt Informatik, Elektrotechnik und Informationstech-
nik, Germany, Juli 2008.

R. Khalaf, O. Kopp, and F. Leymann. Maintaining data dependencies across bpel
process fragments. In Bernd J. Kridmer, Kwei-Jay Lin, and Priya Narasimhan,
editors, Service-Oriented Computing - ICSOC 2007, volume 4749 of LNCS, pages
207-219. Springer, 2007.

Simon Moser, Axel Martens, Katharina Goérlach, Wolfram Amme, and Artur God-
lingki. Advanced Verification of Distributed WS-BPEL Business Processes Incor-
porating CSSA-based Data Flow Analysis. pages 98—105. IEEE Computer Society,
2007.

o6

[14]

Rania Khalaf and Frank Leymann. Role-based decomposition of business processes
using bpel. In ICWS °06: Proceedings of the IEEE International Conference on Web
Services, pages 770780, Washington, DC, USA, 2006. IEEE Computer Society.

W.Tan and Y. Fan. Dynamic workflow model fragmentation for distributed execu-
tion. Comput. Ind., 58(5):381-391, 2007.

M. G. Nanda, S. Chandra, and V. Sarkar. Decentralizing execution of composite
web services. In In OOPSLA ’0/: Proceedings of the 19th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications,
pages 170-187. ACM Press, 2004.

D. Wutke, D. Martin, and F. Leymann. Model and infrastructure for decentralized
workflow enactment. In SAC ’08: Proceedings of the 2008 ACM symposium on
Applied computing, pages 90-94, New York, NY, USA, 2008. ACM.

David Gelernter. Generative communication in linda. ACM Trans. Program. Lang.
Syst., 7(1):80-112, 1985.

D. Martin, D. Wutke, and F. Leymann. A novel approach to decentralized work-
flow enactment. In EDOC ’08: Proceedings of the 2008 12th International IEEE
Enterprise Distributed Object Computing Conference, pages 127-136, Washington,
DC, USA, 2008. IEEE Computer Society.

O. Danylevych, D. Karastoyanova, and F. Leymann. Optimal stratification of tran-
sactions. Internet and Web Applications and Services, International Conference on,
0:493-498, 2009.

Daniel Nurmi, Richard Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil So-
man, Lamia Youseff, and Dmitrii Zagorodnov. The eucalyptus open-source cloud-
computing system. In CCGRID, pages 124-131, 2009.

Jussi Vanhatalo, Hagen Voélzer, and Frank Leymann. Faster and more focused
control-flow analysis for business process models through sese decomposition. In
I1CS0C, pages 43-55, 2007.

Wolfram Amme, Axel Martens, and Simon Moser. Advanced verification of distri-
buted ws-bpel business processes incorporating cssa-based data flow analysis. In-
ternational Journal of Business Process Integration and Management, 4(1):47-59,
2009.

Ganna Monakova, Oliver Kopp, Frank Leymann, Simon Moser, and Klaus Schaefers.
Verifying business rules using an smt solver for bpel processes. International Journal
of Cooperative Information Systems (IJCIS), 17(3):259-282, 2008.

Scott Callaghan, Ewa Deelman, Dan Gunter, Gideon Juve, Philip Maechling, Chri-
stopher Brooks, Karan Vahi, Kevin Milner, Robert Graves, Edward Field, David
Okaya, and Thomas Jordan. Scaling up workflow-based applications. J. Comput.
Syst. Sci., 76(6):428-446, 2010.

o7

[26]

[27]

33]

[34]

Ewa Deelman. Grids and clouds: Making workflow applications work in heteroge-
neous distributed environments. International Journal of High Performance Com-
puting Applications, pages 1-15, 2009.

Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, Bruce Berriman, Benja-
min P. Berman, and Philip Maechling. Scientific workflow applications on amazon
ec2. CoRR, abs/1005.2718, 2010.

Paul T. Groth, Ewa Deelman, Gideon Juve, Gaurang Mehta, and G. Bruce Berri-
man. Pipeline-centric provenance model. CoRR, abs/1005.4457, 2010.

Rizos Sakellariou, Henan Zhao, and Ewa Deelman. Mapping workflows on grid
resources: Experiments with the montage workflow. CoreGrid, pages 1-14, 2009.

Christina Hoffa, Gaurang Mehta, Timothy Freeman, Ewa Deelman, Kate Keahey,
Bruce Berriman, and John Good. On the use of cloud computing for scientific work-
flows. 3rd International Workshop on Scientific Workflows and Business Workflow
Standards in e-Science (SWBES) in conjunction with Fourth IEEE International
Conference on e-Science (e-Science 2008), 2008.

Gurmeet Singh, Carl Kesselman, and Ewa Deelman. Optimizing grid-based work-
flow execution. J. Grid Comput., 3(3-4):201-219, 2005.

Jim Blythe, Ewa Deelman, and Yolanda Gil. Planning for workflow construction
and maintenance on the grid. ICAPS 2008 Workshop on Planning for Web Services,
2003.

Ewa Deelman, James Blythe, Yolanda Gil, and Carl Kesselman. Pegasus: Planning
for execution in grids. GriPhyN technical report 2002-20, 2002.

Yolanda Gil, Ewa Deelman, Jim Blythe, Carl Kesselman, and Hongsuda Tangmu-
narunkit. Artificial intelligence and grids: Workflow planning and beyond. [EEFE
Intelligent Systems, 19(1):26-33, 2004.

Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Scott Koranda, Albert
Lazzarini, Gaurang Mehta, Maria Alessandra Papa, and Karan Vahi. Pegasus and

the pulsar search: From metadata to execution on the grid. In PPAM, pages 821—
830, 2003.

o8

Erklarung

Hiermit versichere ich, diese Arbeit selbstindig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Diana Przybylski)

99

