
Institut für Parallele und Verteilte Systeme
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3060

Laufzeitrekonfiguration
modularisierter Overlaynetze

Christoph Schlameuß

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Kurt Rothermel

Betreuer: Dr. Boris Koldehofe

begonnen am: 22. Juli 2010

beendet am: 21. Januar 2011

CR-Klassifikation: C.2.2, C.2.4, C.2.5

Inhaltsverzeichnis

1 Einleitung 1

2 Grundlagen und Stand der Technik 5
2.1 Overlaynetze . 5

2.1.1 Overlaystruktur . 5

2.1.2 Lastbalancierung . 6

2.2 P2P-Systeme . 8

2.2.1 Chord . 9

2.2.2 Content Addressable Network (CAN) . 11

2.2.3 P2P-System API . 13

2.3 Anwendungen von P2P-Systemen . 14

2.3.1 Distributed Hash Tables (DHT) . 14

2.3.2 Publish/Subscribe-Systeme . 15

3 Problembeschreibung und Abgrenzung zu anderen Arbeiten 21
3.1 Szenario . 21

3.2 Herausforderungen . 22

3.3 Problembeschreibung . 22

3.3.1 Abhängigkeit vom verwendeten Overlaynetz 23

3.4 Abgrenzung zu anderen Arbeiten . 23

3.4.1 Verschmelzen gleichartiger Overlaynetze 23

3.4.2 Overlaynetze mit variabler Struktur . 24

4 Vorbedingungen für die Transformation 27
4.1 Systemmodell . 27

4.2 Kriterium und Ablauf der Transformation . 28

4.2.1 Kriterium für die Transformation . 28

4.2.2 Ablauf der Transformation . 28

4.3 Vergleich von Chord und CAN . 29

4.4 Architektur . 30

4.5 Adresstransformation . 31

4.5.1 Raumfüllende Kurven . 32

4.5.2 Sequenzielle Raumkurve . 32

III

4.5.3 Hilbert-Kurve . 33

4.5.4 Optimale Raumkurven . 33

4.5.5 Eignung der Raumkurven für die Transformation 34

5 Konzepte für die Transformation 37
5.1 Naive Transformationsmethoden . 37

5.1.1 Direktes Überführen der Knoten . 38

5.1.2 Teile und Herrsche . 39

5.1.3 Nebenläufige Neukonstruktion . 40

5.2 Transformation mit Hilfe eines Hybridnetzwerkes 43

5.2.1 Ansatz . 43

5.2.2 Ablauf der Tansformation . 43

5.2.3 Nachbarsuche . 48

5.2.4 Routing . 51

5.2.5 Optimierung des Zustandes in der Transformation 54

5.2.6 Aufwandsabschätzung . 55

5.2.7 Auswirkung auf Publish/Subscribe-Systeme 56

5.2.8 Dauerhafter Betrieb im Transformationszustand 57

5.3 Vergleich der vorgestellten Transformationen . 58

5.3.1 Vergleich der prognostizierten Aufwände 58

5.3.2 Eignung der verschiedenen Ansätze . 59

6 Bewertung 61
6.1 PeerSim . 61

6.2 Aufbau der Simulation . 62

6.2.1 Bestandteile der Simulation . 63

6.2.2 Implementierung der Simulation . 64

6.3 Ergebnisse der Simulation . 65

6.3.1 Komplexität . 66

6.3.2 Routingperformance . 68

6.3.3 Lastbalancierung . 69

6.3.4 Einfluss der raumfüllenden Kurve . 71

6.3.5 Problem der paarweisen Optimierung . 72

7 Fazit 75

Literaturverzeichnis 79

IV

Abbildungsverzeichnis

2.1 Overlaynetz mit zugehörigem Underlaynetzwerk 5

2.2 Unstrukturiertes Overlaynetz (ON) . 7

2.3 Strukturiertes Overlaynetz (SON) . 7

2.4 Struktur eines Chord-Netzwerks . 10

2.5 Struktur eines Content Addressable Network in zwei Dimensionen 12

2.6 Anordnung von Schlüssel/Wert-Paaren in einer DHT 15

2.7 Publish/Subscribe-System mit Sendern (S), Themen (T) und Klienten (K) . . . 16

4.1 Protokollstack für die Transformation . 30

4.2 Beispiele für verschiedene Raumkurven . 32

4.3 Sequenzielle 2D-Raumkurve . 33

4.4 Sequenzielle 3D-Raumkurve . 33

4.5 2D-Hilbert-Kurve . 34

4.6 3D-Hilbert-Kurve . 34

5.1 Koexistenz von Chord- und CAN-Netzwerken 38

5.2 Transformation durch Teilen und Zusammenführen 40

5.3 Nebenläufig betriebene Chord- und CAN-Netzwerke 41

5.4 Zuständigkeit im Hybridnetzwerk . 44

5.5 Verbindungen im Hybridnetzwerk . 44

5.6 Fehlerhaft (links) und korrekt (rechts) konstruierte Bereiche im Transformati-
onsprotokoll . 45

5.7 Transformation mit Hilfe eines Hybridnetzwerkes 46

5.8 Nachbarn eines Chord-Knotens . 49

5.9 Nachbarn eines CAN-Bereichs . 49

5.10 Zyklus im Routingpfad des Transformationsprotokolls 52

5.11 Verbessertes Routing im Transformationsprotokoll 52

6.1 Protokollstack in der Simulation . 62

6.2 Zahl der Transformationsnachrichten für die Transformation 66

6.3 Nicht zugestellte Nachrichten der verwendeten Algorithmen 69

6.4 Routingperformance der verwendeten Algorithmen 69

6.5 Variation der Optimierungsparameter . 70

6.6 Variation der CAN-Dimensionen . 71

6.7 Zahl der Ids und Id-Bereiche während der Transformation unter Nutzung
verschiedener Raumfüllender Kurven . 72

V

6.8 Knotengrade und Zahl der Transformationsnachrichten während der Trans-
formation unter Nutzung verschiedener Raumfüllender Kurven 73

6.9 Kombinationsproblem der Id-Bereiche . 73

Tabellenverzeichnis

5.1 Gesamtaufwände der verschiedenen Transformationsmethoden (ohne Inhalt-
stransfer) pro Knoten . 58

5.2 Aufwände der verschiedenen Transformationsmethoden 60

6.1 Prognostizierte Aufwände für die Transformation von 200 Knoten 67

Verzeichnis der Listings

2.1 Minimale Schnittstelle eines P2P-Systems . 13

5.1 Algorithmus für Transformation mit Hilfe eines Hybridnetzwerkes 46

5.2 Algorithmen zum Start und Stop der Transformation 47

5.3 Routingalgorithmus . 51

5.4 Modifizierter Routingalgorithmus . 53

5.5 Rankingfunktion für VProtocole . 54

VI

Verzeichnis der Listings

Begriff Erklärung
Anwendungsschicht Oberste Schicht der Internetarchitektur.
API Application Programming Interface: Die Programmierschnittstelle

einer Anwendung zur Anbindung anderer Programme.
CAN Content Addressable Network: Ein strukturiertes P2P-System auf

Basis eines d-dimensionalen kartesischen Identifierraums.
Chord Ringbasiertes strukturiertes P2P-System.
DHT Distributed Hash Table: Konzept zur verteilten Speicherung von Infor-

mationen. Hierbei werden auf jedem Knoten mehrere Schlüssel/Wert-
Paare hinterlegt. Um einen bestimmten Schlüssel zu finden muss zum
zuständigen Knoten geroutet werden, der den entsprechenden Wert
liefern kann.

Gossip Verfahren zum Informationsaustausch zwischen Peers. Hierbei wer-
den Informationen auf jeweiligem Peer aggregiert und an Nachbarn/-
Kontakte weitergegeben (epidemische Verbreitung von Informatio-
nen).

Grid-Computing Ein Netzwerk, in dem die Ressourcen auf verschiedene Standorte
verteilt sind.

Hash Unidirektionale Abbildung mit fester Länge beliebiger Eingabewerte,
meist in Form von Bitstrings, dienen zur effizienten Unterscheidung
von einzelnen Werten.

Knoten Bezeichnet einen Teilnehmer innerhalb eines Netzwerkes (Node).
Lookup Eine Suchoperation nach Informationen, Schlüsseln oder Werten in-

nerhalb eines Netzwerkes.
MP Message Passing: Kommunikation mehrerer Teilnehmer eines Netz-

werkes durch Senden und Empfang von Nachrichten.
MQ Message Queuing: Nachrichtenverteilsystem in Netztwerken.
Netzwerkschicht Schicht der Internetarchitektur, die die Kommunikation über andere

Knoten und somit indirekte Kommunikation erlaubt.
Netzwerklast Belastung eines Netzwerkes durch Informationsaustausch in Form

von Suchfunktionen.
P2P Peer-to-Peer: Kommunikationsparadigma, bei dem die Endsysteme in

Netzwerken direkt miteinander kommunizieren und jeder Teilnehmer
die gleichen Rollen übernimmt.

Partitionierung Aufteilung eines Raums oder Systems in verschiedene, abgeschlossene
Bereiche ohne Verbindung untereinander.

Publish/Subscribe Kommuikationsparadigma zur Nachrichtenweiterleitung basierend
auf dem Observer Pattern.

Routing Vorgang innerhalb eines Netzwerkes, die Verbindung zweier Teilneh-
mer zu finden und Pakete weiterzuleiten.

RPC Remote Procedure Call: Ausführung von Prozeduren auf entfernten
Systemen.

VII

Verzeichnis der Listings

Begriff Erklärung
SPoF Single Point Of Failure: Komponente eines verteilten Systems, welche,

bei Ausfall der Komponente, die Funktion des gesamten Systems
unterbricht.

SON Structured Overlay Network: Overlaynetzwerk mit durch einen ver-
teilten Algorithmus festgelegten Verbindungen.

Takeover Node Teilnehmer eines P2P-Systems, der die Funktion eines ausfallenden
Knotens übernimmt, so bald dessen fehlen erkannt wird.

Vermittlungsschicht Schicht der Internetarchitektur, welche Verbindungen schaltet und
einzelne Datenpakete zwischen verbundenen Knoten weiterleitet.

VIII

Zusammenfassung

Viele aktuelle Publish/Subscribe-Systeme verwenden Overlaynetze um ihre Funktion zu
erfüllen. Hierbei ändert sich die Belastung der Systeme im Betrieb. In dieser Arbeit werden
Verfahren entwickelt, die die Topologie strukturierter Overlaynetze transformieren, um die
Leistungsfähigkeit der überliegenden Services zu verbessern. Hierzu wird eine dies ermögli-
chende Systemarchitektur vorgestellt, in die alle benötigten Module eingebettet werden. Diese
Umfassen eine Indirektionsmechanismus, eine Adresstransformation sowie die tatsächliche
Transformation. Konkret wird das Konzept am Beispiel der Transformation zwischen Chord-
und CAN-Netzwerken erarbeitet. Für die Adresstranformation werden hierfür verschiede-
ne raumfüllende Kurven, auf ihre Eignung zur Abbildung zwischen den verschiedenen
Id-Räumen untersucht. Im Kernteil der Arbeit wird eine Transformation mit Hilfe eines Hy-
bridnetzes erarbeitet, die die Transformation ohne Unterbrechung der Arbeitsfähigkeit und
nur geringer Erhöhung des Arbeitsaufwands leisten kann. Um die Leistungsfähigkeit dieses
Ansatzes nachzuweisen wird dieser einer nebenläufigen Neukonstruktion gegenübergestellt.
Abschließend wird die grundsätzliche Umsetzbarkeit der erarbeiteten und vorgestellten
Verfahren in einer experimentellen Evaluation nachgewiesen.

IX

Kapitel 1

Einleitung

Im heutigen Internet haben viele Funktionalitäten wie Multicast oder Quality of Service (QoS)
keine ausreichende Verbreitung erreicht, um effektiv von Applikationen genutzt zu werden.
Es besteht jedoch die Möglichkeit, entsprechende Services auf der Applikationsschicht zu
implementieren. Um diese Services betreiben zu können, sind keine Investitionen in die Infra-
struktur notwendig, da die im heutigen Internet durchgehend angebotenen verlustbehafteten,
paketorientierten Kommunikationskanäle hierfür ausreichend sind. Zudem können diese
Services ohne Modifikationen an der verbindenden Netzwerkstruktur zugänglich gemacht
werden, da die für die Services benötigten Protokolle nur in der Applikationsdomäne auf
den teilnehmenden Endsystemen implementiert werden müssen. Somit können viele ver-
schiedenartige Systeme ausgebracht, erprobt und als Produktivsysteme verwendet werden,
ohne vorher langwierige Standardisierungsprozesse durchlaufen zu müssen. Die hierbei ent-
stehenden Overlaynetze (ON) sind nicht auf das Client/Server-Paradigma begrenzt, sondern
beruhen oft auf dem P2P-Paradigma oder hybriden Formen der beiden Paradigmen. Diese
Overlaynetze können zudem durch spezielle Protokolle in ihrer Formgebung beeinflusst
werden und so strukturierte Overlaynetze (SON) bilden.

Die hierbei gebildete Netzwerktopologie ist ausschlaggebend für ihre Eigenschaften in Hin-
blick auf Weiterleitung, Lastmanagement und Fairness. Je nach Verwendungszweck des
Netzwerkes werden spezifische Vorzüge der vorliegenden Topologie ausgenutzt. Die hierbei
ausschlaggebenden Vorzüge können beispielsweise der lokale Zustand, der zu erwartende
Netzwerkdurchmesser oder das Clustering sein. Ändert sich während der Nutzung eines
Netzwerkes die Art der Nutzung, ist es von Vorteil, die Topologie des Netzwerkes anzupas-
sen, um so andere Eigenschaften der Topologie hervor zu bringen oder zuvor bestehende
Eigenschaften zum Tragen zu bringen. Auslöser für die Änderung der Nutzungsart sind
beispielsweise das Hinzufügen oder Entfernen von Inhalten, Verschiebungen in deren Po-
pularität, Änderungen in der Menge der beteiligten Knoten, Mobilität von Knoten oder
Änderungen in den überlagerten Services oder Applikationen.

Publish/Subscribe-Systeme dienen dazu, Nachrichten von N Sendern an M Empfänger
ohne zeitliche Kopplung weiterzuleiten. Einige dieser Systeme setzen wiederum auf struk-
turierten Overlaynetzwerken auf. Hierbei wirkt sich die Netzwerkstruktur stark auf die
Effizienz überlagerter Publish/Subscribe-Systeme aus. Die entgegengesetzte Einflussnahme

1

1 Einleitung

des Publish/Subscribe-Systems auf das Overlaynetz gestaltet sich hierbei jedoch schwierig,
da diese durch das verwendete Protokoll vorgegeben ist. Hierzu muss folglich die Variabilität
der Overlaynetze erhöht werden, in dem entweder dynamisch rekonfigurierbare Protokolle
zum Aufbau verwendet werden oder das verwendete Protokoll selbst müsste austauschbar
sein.

In Verlauf dieser Arbeit werden Lösungsansätze für eine Topologietransformation von
Overlaynetzen erarbeitet und evaluiert, die auf dem Austausch der unterliegenden Protokolle
beruhen. Konkret wird hierbei gezeigt, wie unterschiedliche Overlaystrukturen im Betrieb
ineinander überführt werden können, um die Effizienz aufgesetzter Services, wie etwa
Publish/Subscribe-Systemen, zu erhöhen.

Neben einer Architektur für diesen Zweck und verschiedenen naiven Ansätzen, mit denen
eine solche Transformation durchgeführt werden kann, wird die Nutzung eines hybriden
Netzes zur Transformation erläutert, den primitiven Ansätzen gegenübergestellt und be-
wertet. Jedoch soll hierbei nicht nur eine rekonfigurierbare Topologie entstehen, sondern
vielmehr ein vollständiges Umschalten auf ein anderes Overlayprotokoll ermöglicht werden.
Besondere Rücksicht wird hierbei auf die Erhaltung der natürlichen Lokalität der Knoten
genommen, indem eine geeignete Adresstransformation verwendet wird. Dies vermindert
zum Einen den Änderungsbedarf der verwalteten Daten und zum Anderen die Zahl der
aufrechtzuerhaltenden Verbindungen zu Nachbarknoten. Weiterhin wird aufgezeigt, welche
Gegebenheiten hierbei für die Erleichterung und Beschleunigung der Transformation genutzt
werden können.

Als Ausgangspunkte der Transformationen dienen die ursprünglichen Vorschläge für SONs,
auf denen der Großteil der heute verwendeten strukturierten Overlaynetze basiert. Die-
se sind Pastry [RD01], Tapestry [ZKJ01], Chord [SMK+

01] und das Content-Addressable
Network (CAN) [RFH+

01]. Während Pastry, Tapestry und Chord im Wesentlichen auf ei-
ner Ringstruktur basieren, ist CAN auf einem d-dimensionalen Raum aufgebaut. Dieser
strukturelle Unterschied zwischen Ring und Raum bietet die komplexesten Unterschiede
in Hinsicht auf die Organisation des Id-Raums und somit der daraus folgenden Nachbar-
schaftsbeziehungen im Overlaynetz. Hiermit bietet die Transformation zwischen den, durch
diese beiden Protokolle gebildeten Topologien, die größte Komplexität und somit ebenfalls
das größte Optimierungspotential. Zusätzlich bieten diese Topologien das größte Potential
für einen überlagerten Service, die resultierenden Änderungen in der Netzwerktopologie,
zur Verbesserung der Serviceperformance.

Weitere Optimierungsmöglichkeiten ergeben sich durch die Partitionierung des Schlüssel-
raums der SONs in verschiedenartige Bereiche mit jeweils eigenem Routing. So kann die
Lokalität und das Clustering in den einzelnen Bereichen gezielter als bisher gesteuert werden.
Um hierbei eine jederzeit eindeutige Zuständigkeit zu gewährleisten, wird eine statische,
bidirektionale Abbildung zwischen den verschiedenen Schlüsselräumen genutzt.

Im Kernteil dieser Arbeit wird eine Systemarchitektur vorgeschlagen, die einen variableren
Umgang mit der aufgebauten Topologie erlaubt. In diese Architektur werden Schrittwei-
se die, für die geplante Transformation benötigten, Elemente integriert. Die entwickelten

2

Elemente sind vorrangig eine Adresstransformation mit Hilfe von verschiedenen raumfül-
lenden Kurven und einige Transformationsmethoden. Hierbei werden zunächst einige naive
Transformationsmethoden betrachtet. Diese umfassen ein direktes überführen der Knoten
in ein anderes Protokoll und die Zerlegung des Netzes und Lösung der Transformation
und Nachbarsuche in kleinen, später wiederzuvereinenden Teilnetzen. Außerdem aus den
weiter vertieften Ansätzen, der sequenziellen Neukonstruktion des Zielnetzes, nebenläu-
fig zum Ausgangsnetz und dem hier unterstützten Ansatz, die Knoten zunächst in eine
hybride Zwischenstruktur zu überführen, in dieser alle Informationen für das Zielnetz
zusammenzustellen und zu diesem überzugehen.

Zum Abschluss der Arbeit werden die erarbeiteten und vorgeschlagenen Verfahren und
Algorithmen experimentell validiert und bewertet.

Aufbau der Arbeit

In Kapitel 2 werden einige thematische Grundlagen gelegt, sowie ein Zusammenhang zu
bereits bestehenden Arbeiten hergestellt und zusätzlich in Kapitel 3 weiter abgegrenzt.
In Kapitel 4 werden Grundlagen für die Transformation gelegt. Im Anschluss beschreibt
Kapitel 5 das prinzipielle Vorgehen bei der Transformation von verschiedenen Overlays.
Hierbei werden auch konkrete Kriterien und Vorgehensweisen für die Transformation erörtert.
Kapitel 6 beschreibt die Evaluationsmethoden und -ergebnisse der erarbeiteten Verfahren.
Kapitel 7 beinhaltet eine allgemeine Bewertung der praktischen Eignung der erarbeiteten
Verfahren sowie einen Ausblick auf eine mögliche Weiterführung dieser Arbeit.

3

Kapitel 2

Grundlagen und Stand der Technik

In diesem Abschnitt werden die grundlegenden Begrifflichkeiten und Systeme, die im
Zusammenhang mit dieser Arbeit stehen, erläutert.

2.1 Overlaynetze

Overlaynetze sind virtuelle Netzwerke, die oberhalb der Netzwerkschicht definiert sind.
Hierbei sind die Netzwerkknoten nur durch das von der Netzwerkschicht bereitgestellte
Netzwerk verbunden. Auf der Schicht des Overlaynetzwerks werden eigenständige Nach-
barschaftsbeziehungen definiert, die das Overlaynetz bilden. Somit wird das Netzwerk
der Netzwerkschicht zum Underlaynetzwerk. Bei der Traversierung der Verbindungen im
Overlaynetz werden hierdurch im Normalfall mehrere Verbindungen auf der Netzwerk-
schicht traversiert. Ein einfaches Overlaynetz und das zugehörige Underlaynetzwerk sind in
Abbildung 2.1 dargestellt. Die verschiedenen Overlaynetze sind hierbei durch die Art ihres
Aufbaus und ihre daraus resultierende Struktur definiert.

Overlay

Underlay

Abbildung 2.1: Overlaynetz mit zugehörigem Underlaynetzwerk

2.1.1 Overlaystruktur

Es gibt verschiedene Möglichkeiten, funktionsfähige Overlaystrukturen zu erzeugen. Hierbei
werden unstrukturierte (ON) und strukturierte (SON) Overlaynetze unterschieden. Der

5

2 Grundlagen und Stand der Technik

entscheidende Unterschied besteht in der Regulierung des Aufbaus des Overlaynetzes.
Hieraus lassen sich verschiedene Topologien mit spezifischen Eigenschaften erzeugen. Die
wichtigsten der erzeugten Eigenschaften sind der Netzwerkdurchmesser, die Verteilung des
Knotengrades im Netzwerk und die Identifier-Zuordnung der Knoten.

In unstrukturierten ONs werden die Verbindungen zufällig durch den Aufbau des Netz-
werkes bestimmt. Soweit keine weiteren Maßnahmen zur Strukturierung des Netzwerks
ergriffen werden, entsteht hierdurch eine Potenzverteilung1 des Knotengrades der Knoten
[BA99]. Diese zeichnet sich durch viele Knoten mit niedrigem Grad und wenige Knoten mit
hohem Grad aus. Der Grad eines Knotens ist durch die von ihm gehaltenen Verbindungen
zu anderen Knoten bestimmt. Durch den zufälligen Aufbau der ONs entsteht zwar typi-
scherweise ein relativ geringer Netzwerkdurchmesser, dieser kann jedoch nachweislich nicht
garantiert werden. Weiterhin kann in ONs keine Zuständigkeit der Knoten für bestimmte
Schlüssel festgelegt werden, da ein einzelner Knoten seine Position im Overlaynetz nicht
ohne weiteres exakt bestimmen kann. Somit können auch keine verlässlichen Aussagen über
den Suchaufwand beziehungsweise den Sucherfolg getroffen werden. Abbildung 2.2 zeigt
ein solches unstrukturiertes Netzwerk.

Im Gegensatz hierzu sind der Knotengrad und die Position im Overlaynetz der einzelnen
Knoten in SONs generell festgelegt. Dies gelingt, indem streng kontrolliert wird, zu welchen
anderen Knoten im Netz Verbindungen auf- oder abgebaut werden. Hierdurch werden gezielt
Overlaynetze geschaffen, die einen niedrigen Netzwerkdurchmesser und ein hohes Clustering
aufweisen. Hierdurch kann, unter Verwendung dies ausnutzender Routingmechanismen,
die Terminierung von Nachrichtenzustellungen, wie beispielsweise Suchanfragen, garantiert
werden kann.

Auf den so entstehenden Overlaynetzen können wiederum verschiedene Services aufgesetzt
werden. Abschnitt 2.3 beschreibt einige dieser Anwendungen. Diese sind beispielsweise
Distributed-Hash-Tables, mit deren Hilfe große Informationsmengen gespeichert werden
können, oder Publish/Subscribe-Systeme, die der effizienten Informationsweiterleitung
dienen. Abbildung 2.3 zeigt exemplarisch ein solches strukturiertes Netzwerk. Konkrete
Implementierungen hiervon sind beispielsweise Chord (siehe Abschnitt 2.2.1) und CAN
(siehe Abschnitt 2.2.2).

Die besonderen Eigenschaften von Overlaynetzen sind im Folgenden näher beschrieben.

2.1.2 Lastbalancierung

Da in P2P-Systemen jeder Teilnehmer an der Aufrechterhaltung der Funktion des Netzwerkes
beteiligt ist, ist es wichtig, diesen Aufwand auf die einzelnen Teilnehmer zu verteilen.
Hierbei existieren im Allgemeinen zwei Ansätze dies zu tun. Zum einen kann der Aufwand
gleichmäßig auf alle Knoten des Netzwerkes aufgeteilt werden. Durch die gleichmäßige
Verteilung der Aufgaben und Inhalte wird ein Netzwerk toleranter gegen Ausfälle einzelner
Teilnehmer. Dies gilt ebenso für gezielte Angriffe auf das Netzwerk, da kein Knoten eine

1Power-law-distribution

6

2.1 Overlaynetze

Abbildung 2.2: Unstrukturiertes Overlay-
netz (ON)

Abbildung 2.3: Strukturiertes Overlaynetz
(SON)

besonders wichtige Rolle für das Netzwerk übernimmt, kann dem Netzwerk durch das
Ausschalten einzelner Knoten kein ernsthafter Schaden entstehen.

Zum anderen kann der Aufwand fair, entsprechend den Ressourcen, die den jeweiligen Kno-
ten zur Verfügung stehen, verteilt werden. Hierdurch wird dafür gesorgt, dass Knoten, die
beispielsweise über eine bessere Anbindung verfügen, mehr Transferaufwand tragen. Dieses
Konzept lässt sich ebenso auf andere Ressourcen, wie etwa die verfügbare Rechenleistung
oder den verfügbaren Speicherplatz, übertragen. In einigen Systemen kommen hierbei auch
geografische Aspekte zum Einsatz.

Der Begriff der Netzwerklast kann in Hinsicht auf verschiedene Gesichtspunkte betrachtet
werden, wie die folgenden Abschnitte zeigen.

Knotengrad

In strukturierten Overlaynetzwerken ist der Knotengrad im Allgemeinen direkt durch das
verwendete Protokoll vorgegeben. Abweichungen hiervon treten nur in geringem Umfang
in SONs auf und sind im Allgemeinen durch unregelmäßige Id-Verteilungen verursacht.
Hierbei unterhält ein Knoten üblicherweise mehr Verbindungen zu seiner direkten oder
nahen Nachbarschaft im Id-Raum. Auf diesem Verhalten begründet sich die Funktions-
weise der in den Overlays üblicherweise verwendeten Routingmechanismen. Dies steht
im Gegensatz zu unstrukturierten Overlaynetzen, in denen sich durch das Wachsen des
Netzes typischerweise Knoten mit sehr vielen Nachbarn, also sehr vielen Verbindungen im
Overlaynetz, herausbilden.

7

2 Grundlagen und Stand der Technik

Verteilung der Inhalte

Jeder sich, am Overlaynetz beteiligte Knoten sollte für ähnlich viele Inhalte verantwortlich
sein, um die eingesetzten Ressourcen gleichmäßig zu verteilen. Um dies zu gewährleisten,
wird eine Gleichverteilung der Inhalte über den gesamten verwendeten Schlüsselraum
angenommen. Somit kann eine Gleichverteilung der Inhalte erreicht werden, in dem jeder
Teilnehmer für einen ähnlich großen Teil des Schlüsselraums verantwortlich ist. Als Folge
hiervon verbessert sich die Robustheit des Systems, indem durch den Ausfall einzelner
Knoten nicht übermäßig viele Inhalte verloren gehen. Auch im oben beschrieben Sinne
faire Systeme können durch die Größe des verwalteten Schlüsselraums beeinflusst werden.
So können besser ausgestatteten Knoten größere Anteile des Schlüsselraums unterstellt
werden.

Belastung durch Suche

Die Belastung durch Suchoperationen (Lookups), Nachrichtenweiterleitung und Routingauf-
gaben sollte ebenfalls auf die teilnehmenden Knoten verteilt werden. Zusätzlich sollten an
den einzelnen Operationen möglichst wenig verschiedene Knoten beteiligt sein. Hierdurch
wird ebenfalls aktiv Überlastungen einzelner Knoten vorgebeugt, da nicht das gesamte
Netz von Suchanfragen betroffen ist. In unstrukturierten Overlaynetzen ist dies oft der am
wenigsten beeinflussbare Gesichtspunkt, wenn garantiert werden soll, dass alle im Netz
enthaltenen Ergebnisse gefunden werden.

2.2 P2P-Systeme

Peer-to-Peer-Systeme (P2P-Systeme) basieren auf der direkten Kommunikation der Teilneh-
mer untereinander. Dies steht im Gegensatz zur Kommunikation in Client/Server-Systemen,
in denen nur zwischen Client und Server kommuniziert wird. Das P2P-Paradigma ermög-
licht es somit, Ressourcen der teilnehmenden Endsysteme zu nutzen. Das Ziel hierbei ist
es, den Aufwand und somit die Kosten zum Betrieb des Systems automatisch auf die
einzelnen Teilnehmer zu verteilen. Die Fairness und Selbstorganisation stellen neben der
Aufrechterhaltung der Funktionsfähigkeit und Konnektivität des Netzwerkes die zentra-
len Attribute der verschiedenen P2P-Systeme dar. Dies wird unter anderem auch durch
Konzepte wie das Grid-Computing erreicht, P2P-Systeme sind im Gegensatz hierzu jedoch
auf wesentlich höhere Ausfallraten ausgelegt. Sie sind also von Grund auf fehlertolerant
aufgebaut. Hierdurch können, in Hinsicht auf Anbindung, Uptime und andere Ressourcen,
auch unzuverlässige Peers als Teilnehmer genutzt werden. Hierzu werden in den einzelnen
P2P-Systemen Redundanzen vorgesehen bzw. durch Replikation hinzugefügt.

P2P-Systeme bilden selbstständig fehlertollerante und vielen Fällen sich selbst entwickelnde
Overlaynetzwerke. Hierbei sind von vorn herein alle Teilnehmer gleichgestellt (Peers). Dies
wird nur in einigen hierarchischen P2P-Systemen aufgebrochen, in denen stärkere und
zuverlässige Peers mehr Verantwortung für das Netz übernehmen.

8

2.2 P2P-Systeme

Heutige P2P-Systeme bieten je nach ihrem Einsatzzweck eine Vielfalt von Eigenschaften, wie
etwa effiziente Suche nach Inhalten, Rangequeries, Persistenz der gespeicherten Daten, Na-
mensauflösung, Authentifizierung und Anonymität. Sie können für die Umsetzung verschie-
denster Konzepte, wie etwa Nachrichtenaustausch (Message Passing), Remote Procedure
Call (RPC), Nachrichten Warteschlangen (Message Queuing), DHT und Publish/Subscribe,
eingesetzt werden.

P2P-Systeme können aus nur wenigen Teilnehmern oder aus mehreren tausend Knoten
mit Teilnehmern in der ganzen Welt bestehen, sind also besonders skalierbar. Sie werden
dazu genutzt, Netzwerkservices auf der Anwendungsschicht zu realisieren. Jedoch bringt
dies einen erhöhten Kommunikationsaufwand gegenüber der Realisierung auf der Vermitt-
lungsschicht mit sich. Mit der ansteigenden Zahl solcher Systeme, die simultan betrieben
werden, steigt auch der nötige Kommunikationsaufwand, um die Funktion der Overlay-
netze aufrecht zu erhalten. Dies ist vor allem der Fall, wenn mehrere Overlaynetze vom
gleichen Endsystem genutzt werden sollen. Es kann also von Vorteil sein, diese recht kleinen
Netzwerke und somit auch die enthaltenen/verwalteten Informationen miteinander zu
verschmelzen. Eine Möglichkeit hierfür wäre es, auf dem Endsystem Informationen über
potentielle Nachbarknoten und Verbindungen in lokalen Repositories zu verbinden und in
mehreren Overlaynetzwerken simultan zu nutzen. Dieser Ansatz wird von Waldhost et al. in
[WBH+

08] verfolgt.

Neben den Bemühungen, die verwalteten Informationen und somit den lokalen Zustand
zu minimieren, wird versucht, die verwendeten Overlaynetze in sich wandlungsfähiger zu
gestalten. Im Allgemeinen unterscheiden sich die Overlaynetze in der Topologie, die durch
das verwendete Protokoll gebildet und aufrecht erhalten wird.

Der Begriff des P2P-Systems beinhaltet keine Aussage, ob es über eine definierte Struktur
verfügt oder nicht. Jedoch lassen sich, wie in Abschnitt 2.1.1 bereits erwähnt, belastbare
Aussagen über die Netzqualitäten oft nur in strukturierten P2P-Systemen treffen.

Im Folgenden werden die für diese Arbeit relevanten P2P-Systeme Chord und CAN detaillier-
ter vorgestellt. Dies sind zwei der ursprünglich vier Vorschläge für strukturierte P2P-Systeme,
die um das Jahr 2001 entwickelt wurden. Diese sind Pastry [RD01], Tapestry [ZKJ01], Chord
[SMK+

01] und das Content-Addressable Network (CAN) [RFH+
01]. Im Anschluss wird die

Allgemeine von solchen Systemen bereitgestellte Schnittstelle erklärt.

2.2.1 Chord

Chord [SMK+
01] ist ein ringbasiertes strukturiertes P2P-System, dass 2001 von Stoica et al.

vorgestellt wurde. Hiermit ist Chord eines der ersten strukturierten P2P-Systeme, dass den
Aufbau effizienter Overlaynetze ermöglicht. Es stehen Implementierungen in verschiedenen
Sprachen und mit verschiedensten Erweiterungen zur Verfügung. Hierdurch hat Chord
einen sehr hohen Bekanntheitsgrad und somit eine weite Verbreitung gefunden.

9

2 Grundlagen und Stand der Technik

Die Position auf dem Ring wird durch einen für jeden Knoten einmaligen Identifikator (auf
dem Intervall [0, K[) bestimmt. Hierbei unterhält jeder Knoten Verbindungen zu seinen di-
rekten Nachfolgern auf dem Ring. Der direkte Nachfolger wird zwingend benötigt und stellt
die minimale Randbedingung zum Routing im Netz dar. Die weiteren Nachfolger dienen
zur Absicherung gegen Knotenausfälle der direkten Nachfolger, also zur Stabilisierung des
Rings nach Knotenausfällen. Eine zusätzliche Verbindung wird zum Vorgänger auf dem Ring
gehalten. Um die Suchpfade zu verkürzen, unterhält jeder Knoten zusätzlich Verbindungen
(Shortcuts) zu logN weiteren Knoten in quadratisch steigender Entfernung im Identifierraum.
Hierbei ist jeder Knoten für seinen eigenen sowie alle bis zu seinem Nachfolger folgenden
Identifier zuständig.

Während die Existenz und die Korrektheit der direkten Nachfolger streng kontrolliert werden
muss, um ein korrektes Routing zu gewährleisten, muss die Korrektheit der Shortcuts nicht
sonderlich kontrolliert werden, da diese nur zur sicheren Verkürzung des Routingpfades
verwendet werden, das Netz aber auch ohne sie Routingfähig bleibt. Somit führen Fehler in
der Distanz der Shortcuts nicht zu Routingfehlern, solange das Überspringen des gesuchten
Identifiers verhindert wird.

Üblich sind Identifierlängen von N = 128 Bit. Hieraus resultieren 2N , also 2128 Identifier und
somit maximal ebenso viele Teilnehmer.2

Abbildung 2.4 zeigt die Ringstruktur (links) sowie einen einfachen Lookup (rechts) auf dem
Chord-Ring.

Lookup

Zuständigkeitsbereich
des Knotens Ziel ID

Verbindungen

X

Abbildung 2.4: Struktur eines Chord-Netzwerks

Routing

Nachrichten werden von jedem Knoten an den dem Ziel am nächsten liegenden Knoten
weitergeleitet, ohne hierbei über den gesuchten Identifier hinaus zu springen. Setzt man nun

2ca. 340 Sextillionen oder 340 ∗ 1036

10

2.2 P2P-Systeme

voraus, dass jeder Knoten nur seinen direkten Nachfolger kennt, würde sich eine mittlere
Distanz von N/2 für das Routing auf dem Ring ergeben. Zudem stellt das Routing auf
der Oberfläche des Rings die grundlegende Funktionalität des Routings sicher. Durch die
Nutzung der bereits erwähnten Shortcuts lässt sich die Routingdistanz im Mittel auf logN
verkürzen.

Stabilisierung

Jeder Knoten führt zyklisch einen Stabilisierungsalgorithmus aus, der in Abbildung ??
dargestellt ist. Dieser gewährleistet die Integrität des Rings, indem überprüft wird, ob
sich zwischen dem jeweiligen Knoten und seinem Nachfolger ein neuer Knoten befindet.
Ist dies der Fall, wird dieser in den Ring integriert in dem der neue Knoten in beiden
Protokollinstanzen als successor beziehungsweise predecessor abgelegt wird.

2.2.2 Content Addressable Network (CAN)

Das Content Addressable Network (CAN) [RFH+
01] wurde von Ratnasamy et al. im Jahr

2001 vorgestellt. Hiermit wurde es etwa zeitgleich mit Chord vorgestellt und wird seit dem
erweitert und weiterentwickelt.

CANs fassen den Id-Bereich als d-dimensionalen kartesischen Koordinatenraum auf. In
diesem Bereich unterhalten die Teilnehmer im Optimalfall 2 ∗ D Verbindungen zu Nachbar-
knoten. Jeweils eine Verbindung in jeder Richtung in jeder Dimension. Dennoch handelt es
sich um ein strukturiertes P2P-System mit niedrigem und nahezu konstantem Knotengrad.
Nicht alle Knoten verfügen über diesen konstanten Knotengrad, da die Zahl der Nachbarn
einiger Bereiche durch unterschiedliche Partitionierung der Bereiche nicht konstant ist, also
eine ungleichmäßige Verteilung der Teilnehmer im Id-Bereich.

Abbildung 2.5 zeigt beispielhaft die Struktur eines CAN-Netzwerkes in zwei Dimensio-
nen, das mit acht Protokollinstanzen besetzt ist, sowie die Teilung des Id-Bereiches eines
Teilnehmers, wie sie beim Hinzufügen von Knoten auftritt. Hierbei wird der Id-Bereich
bei jeder Teilung in einer weiteren Dimension aufgeteilt. Das Optimum stellen hierbei ein
quadratischer (D = 2), kubischer (D = 3) usw. Id-Bereich dar. Ist dies nicht der Fall, steigt
die Zahl der Nachbarn entsprechend der Zahl der aneinander grenzenden Id-Bereiche an.

Um einen neuen Knoten dem Netzwerk hinzuzufügen, tritt ein Knoten des Netzwerkes
die Hälfte seines Zuständigkeitsbereichs und seiner Daten an den neuen Knoten ab. Die
Nachbarschaft, also die Informationen über die Nachbarn des Knotens, kann ebenfalls über-
nommen werden. Im Anschluss hieran müssen die Nachbarn über den neuen Knoten und
somit die neuen Zuständigkeiten benachrichtigt werden, um die Konsistenz des Netzwerkes
zu erhalten.

Durch die so gebildete Teilung des Id-Raums in d-dimensionale Bereiche eignet sich CAN
besonders für Bereichsabfragen über mehrere Dimensionen. Hierdurch werden im Vergleich

11

2 Grundlagen und Stand der Technik

0

1
VID 0

VID 00

VID 01

Abbildung 2.5: Struktur eines Content Addressable Network in zwei Dimensionen

zu anderen P2P-Systemen relativ wenige Knoten betroffen, was den gesamten Kommunikati-
onsaufwand reduziert.

Knotenausfälle

Damit das Netzwerk routingfähig bleibt, wenn Teilnehmer das Netzwerk verlassen, ist für
jeden Bereich ein Takeover Node definiert. Dieser übernimmt den frei gewordenen Id-Bereich,
sobald das Fehlen des ausgefallenen Knotens festgestellt wird. Der Takeover Node ist als
der Knoten mit der geringsten Differenz in der Virtual Node Id (VID) des ausgefallenen
Knotens definiert. Die VID ist bestimmt durch die vorhergehenden Partitionen, durch die
der jeweilige Id-Bereich zustande gekommen ist. Die VIDs bilden den Partitionierungsbaum
des CAN.

Hat ein Knoten zuvor einen Bereich von einem anderen Knoten übernommen und soll nun
den Beitritt eines neuen Knotens behandeln, wird einer der Bereiche abgegeben, anstatt den
Bereich weiter zu partitionieren.

Routing

In CAN-Netzwerken können verschiedene Routingverfahren angewandt werden. Im Allge-
meinen werden Nachrichten im Netzwerk geometrisch in Richtung des Ziels weitergeleitet.
Hierdurch wird in einem gleichmäßig belegten CAN eine durchschnittliche Länge der
Routingpfade von (d/4)(n1/d) erreicht. Jedoch bestehen auch bei Fehlstellen, aufgrund
von Knotenausfällen, im Netzwerk oft mehrere alternative Routingpfade zum jeweiligen

12

2.2 P2P-Systeme

Zielknoten. CAN verfügt also bereits über eine integrierte Redundanz, was den Bedarf an
zusätzlicher Redundanz etwa durch Replikation des Netzwerkes reduziert.

Eine genauere Betrachtung der möglichen Routingverfahren findet sich in [PEFK09].

2.2.3 P2P-System API

Alle P2P-Systeme stellen höheren Schichten relativ einfache Programmierschnittstellen (APIs)
zur Verfügung, um über das System zu kommunizieren, oder Services darauf aufzusetzen.
Diese stellen somit eine Abstraktion des erbrachten Services dar.

Die bereitgestellte Schnittstelle besteht aus mindestens drei Methoden. Dieses beinhaltet in
jedem Fall eine Methode zum Senden von Nachrichten über das P2P-System, sowie eine
Methode zum Empfangen von Nachrichten. Die Argumente der Methoden sind jeweils eine
zu sendende oder zu empfangene Nachricht (message) sowie eine Id (id) beziehungsweise
einen Schlüssel als Ziel oder Ursprung der Nachricht. Zum Senden einer Nachricht kann
ein optionaler Netzknoten (nextHop) angegeben werden, falls bereits ein guter Kandidat,
für den anstehenden Routingvorgang bekannt ist. Die dritte Methode wird vor allem von
komplexeren Services genutzt. Diese wird jeweils aufgerufen, bevor eine Nachricht zu einem
anderen Knoten weitergeleitet wird. Als Argumente werden die zu weiterleitende Nachricht
(message), die Ziel-Id (id) und Informationen (nextHop) über den nächsten Knoten übergeben.
Sie dient einerseits dazu Informationen über weitergeleitete Nachrichten an überlagerte
Schichten weiterzuleiten, andererseits kann an dieser Stelle von höheren Schichten Einfluss
auf die versendeten Nachrichten genommen werden, wie etwa deren Inhalt oder Ziel zu
verändern.

Abbildung 2.1 zeigt die minimale Schnittstelle eines P2P-Systems.

route(id, message, nextHop)

forward(id, message, nextHop)

5 deliver(id, message)

Listing 2.1: Minimale Schnittstelle eines P2P-Systems

Zusätzliche Methoden sind je nach verwendetem P2P-System möglich. Hierzu sei auf
die weiterführende Lektüre verwiesen [DZD+

03]. Unter anderm unternehmen Dabek et al.
hierbei bemühungen, ebenfalls eine einheitliche Schnittstelle für den Zugriff auf spezifischere
Routinginformationen zu nehmen.

Die Empfangs- sowie Weiterleitungsmethoden sind hierbei über Events oder CallBacks
implementiert, werden also im Allgemeinen nicht direkt aus dem überliegenden Service
aufgerufen, sondern vor Gebrauch registriert und später von Seiten des unterliegenden P2P-
Systems aufgerufen. Alternativ können diese auch als blockierende Methoden ausgeführt
werden, die die Ausführung erst nach dem Empfang einer Nachricht fortführen.

13

2 Grundlagen und Stand der Technik

Eine Besonderheit bietet hierbei die Empfangsfunktion. Diese liefert alle Nachrichten, für
die der jeweilige Knoten verantwortlich ist, also nicht nur die direkt an ihn adressierten
Nachrichten, an den überliegenden Service aus.

Wird die route-Methode aufgerufen, wird die hierbei übergebene Nachricht an das P2P-
System weitergeleitet. Dieses ermittelt daraufhin entsprechend des genutzten Routingver-
fahrens den nächsten Knoten auf dem Routingpfad des P2P-Systems. Vor der Weiterleitung
der Nachricht über die unterliegenden Netzwerkschichten wird die forward-Methode auf-
gerufen. Sofern die Ausführung weitergeführt wird, wird die Nachricht an den nächsten
Knoten weitergeleitet. Auf diesem wird wiederum der nächste Knoten auf dem Routingpfad
ermittelt, die forward-Methode aufgerufen und die Nachricht schlussendlich weitergeleitet.
Dies wird so lange wiederholt, bis der für die Ziel-Id zuständige Knoten erreicht ist. Auf
diesem wird die deliver-Methode aufgerufen und somit die Nachricht an den zuständigen
Knoten zugestellt.

In Abschnitt 2.3.2 wird beschrieben, wie die hier vorgestellte Schnittstelle verwendet werden
kann, um ein einfaches Publsih/Subscribe-System aufzubauen.

2.3 Anwendungen von P2P-Systemen

Auf den verschiedenen P2P-Systemen und somit auf den hierdurch gebildeten Overlaynetzen
können verschiedene Services oder Anwendungen aufgesetzt werden. Einige hiervon werden
in diesem Abschnitt beschrieben.

Die einzelnen Services können hierbei verschiedenste Komplexitäten aufweisen. Dies beginnt
bei relativ simplen Speicherlösungen, wie den weiter unten erläuterten Distributed Hash
Tables. Es lassen sich aber auch aufwändigere Services, wie Publish/Subscribe-Systeme in
verschiedenen Ausprägungen, realisieren.

2.3.1 Distributed Hash Tables (DHT)

Einer der direktesten Services, der sich mit P2P-Systemen bereitstellen lässt sind die Dis-
tributed Hash Tables (DHT). Sie repräsentieren einen der grundlegenden Services, die
von P2P-Netzwerken zur Verfügung gestellt werden können und auch wiederum als Sub-
strat für verschiedene andere Services dienen kann. Sie dienen dazu, Daten in Form von
Schlüssel/Wert-Paaren in verteilten Systemen zu speichern.

Um Werte aus der DHT abzurufen, muss der entsprechende Schlüssel bekannt sein. Um
die Schlüssel festzulegen, unter denen die Nutzdaten oder Werte abgelegt werden, gibt
es verschiedene Verfahrensweisen. Es kann der Hash der Nutzdaten berechnet werden,
um diese zu hinterlegen. Um diese abzurufen, muss jedoch entweder der Hash oder der
abgelegte Wert und die verwendete Hashfunktion bekannt sein. Hierdurch wird eine direkte
Suche nach Inhalten erschwert. Wird diese Funktionalität benötigt, kann beispielsweise der
Hash über den Dateinamen oder über Tags der Datei gebildet werden. Damit die Nutzdaten

14

2.3 Anwendungen von P2P-Systemen

unter mehreren Begriffen gefunden werden können, ist es gegebenenfalls notwendig, sie
mehrfach unter mehreren Hashes in die DHT einzufügen oder im Fall der Suche mehrere
Suchanfragen zu stellen.

Auf welchem Netzwerkknoten ein Schlüssel/Wert-Paar abgelegt wird, ist abhängig vom
verwendeten Schlüssel. Hierzu wird der Schlüssel als Id im, unter der DHT liegenden,
P2P-Netzwerk aufgefasst. Beim Einfügen wird das Schlüssel/Wert-Paar, entsprechend der
Regeln des P2P-Netzwerkes, an den zuständigen Knoten weitergeleitet und auf diesem
gespeichert.

Erreicht nun im Rahmen der Suche eine Anfrage den zuständigen Knoten, kann der den
zugehörigen Wert beziehungsweise die Nutzdaten an den anfragenden Knoten übermitteln.
Auf diese Weise können nahezu beliebige Daten in den Systemen hinterlegt werden. Abbil-
dung 2.6 zeigt exemplarisch die Anordnung von Schlüssel/Wert-Paaren in einer DHT.

1

2

n

Hash 1.0

Hash 1.n

Hash 2.0

Hash 2.n

Hash n.0

Hash n.n

Hash DatenHash DatenHash Daten

Hash DatenHash DatenHash Daten

Hash DatenHash DatenHash Daten

Hash Daten

Abbildung 2.6: Anordnung von Schlüssel/Wert-Paaren in einer DHT

2.3.2 Publish/Subscribe-Systeme

Einen komplexeren Service als die DHTs stellen die Publish/Subscribe-Systeme dar. Diese
realisieren einen zeitlich transparenten Nachrichtendienst. Hierbei können beliebige Sender
Nachrichten an Gruppen von Empfängern zustellen. Der Leistungsumfang ähnelt hiermit
einem zeitlich entkoppelten Multicast. Gemeinsam haben die beiden Systeme, dass sie auf
den gleichen von den P2P-Systemen bereitgestellten Schnittstellen (API) aufbauen.

In Publish/Subscribe-Systemen wird zwischen den Sendern, die die Nachrichten senden,
den Klienten, die die Nachrichten empfangen, und den Brokern, die ein Netzwerk bilden,
um die Nachrichten an die Klienten weiter zu leiten, unterschieden. Die Nachrichten, die
über das System verteilt werden sollen werden auf verschiedene Themen verteilt. Damit
ein Klient Nachrichten zu einem Thema empfangen kann, muss er sich hierzu beim Broker
registrieren. Abbildung 2.7 zeigt exemplarisch ein Publish/Subscribe-System. Genauer
können die Systeme nach der Art der möglichen Subscriptions an den Brokern unterschieden
werden.

15

2 Grundlagen und Stand der Technik

Die einfachste Form von Publish/Subscribe-Systemen sind themenbasierte Systeme (Channel-
based). In diesen Systemen können verschiedene Kanäle abonniert werden und schließlich
auf dem Klienten gefiltert werden. Hierbei werden unter Umständen zu viele Nachrichten an
die Klienten weitergeleitet, dies kann durch die mangelnde Feingranularität nicht verhindert
werden.

Feinere Abstufungen können in inhaltsbasierten Systemen (Content-based) über zusätzliche
Filter auf den Brokern realisiert werden. Dies ist vor allem von Bedeutung, wenn nicht ein
einzelner Broker sondern ein Netzwerk von kooperierenden Brokern verwendet wird. Der
Vorteil dieser Technik liegt in den Optimierungsmöglichkeiten für die Nachrichtenweiterlei-
tung zwischen den Teilnehmern.

S1

Sn

K1

K2

K3

Kn

T1

Tn

Broker

Abbildung 2.7: Publish/Subscribe-System mit Sendern (S), Themen (T) und Klienten (K)

Es gibt zwei unterschiedliche Ansätze, die vorgestellten Publish/Subscribe-Systeme dynami-
scher zu gestalten. Hierzu wird davon ausgegangen, dass nicht nur ein Broker im System
vorhanden ist, sondern eine Vielzahl von Brokern, die einen gemeinsamen Dienst zur Verfü-
gung stellen. Die Broker sind hierzu untereinander und mit den Klienten in einer verteilten
Struktur miteinander verbunden. Diese kann im primitiven Fall von außen durch stati-
sche Verbindungen vorgegeben sein. Eleganter ist jedoch ein dynamischer Ansatz, bei dem
die Broker ihre Kommunikationsbeziehungen eigenständig anpassen. Zwei verschiedene
Ansätze spielen hierbei eine Rolle.

Ausgehend von dem beschriebenen Verbund von Brokern kann die Administration der
Verbindungen und Weiterleitungen unter den Brokern automatisiert werden. Hierzu wird
im einfachsten Fall ein Verteilbaum unter den Brokern aufgebaut und ständig schrittweise
optimiert. In komplexeren Systemen kommen auch dynamischere Netzwerke zum Einsatz,
durch deren Nutzung der erzeugte Nachrichtenoverhead weiter verringert wird, da weniger
Nachrichten an daran nicht interessierten Knoten weitergeleitet werden. Die hierbei fälschlich
übertragenen und zugestellten Nachrichten werden als False Positives bezeichnet. Es wird
stets versucht, diese auf ein Minimum zu begrenzen. Dies ist möglich durch den Abgleich
der auf den Brokern vorliegenden Abonnements (Subscriptions) auf den verschiedenen
Kanälen. Verschiedene Möglichkeiten hierfür werden in [JMW+

08] aufgezeigt. Je nach
der verwendeten Granularität lässt sich dies weiter optimieren. Hierdurch steigt jedoch

16

2.3 Anwendungen von P2P-Systemen

zwangsläufig der Administrationsaufwand beziehungsweise der Kommunikationsaufwand
für die Administration an.

Andere Ansätze machen sich die hiervon unabhängig entwickelten Overlaynetze zunut-
ze. Zunächst werden einige Möglichkeiten hierzu vorgestellt. Mit Hilfe der bereits in Ab-
schnitt 2.3.1 vorgestellten und von den Overlaynetzwerken bereitgestellte DHT-Funktionalität
lassen sich ebenfalls Publish/Subscribe-Systeme realisieren. Ebenso ist es möglich, ein
Publish/Subscribe-System auf der vorgestellten P2P-System API aufzusetzen. Dieses Vor-
gehen wird in Abschnitt 2.3.2 erläutert. Abschnitt 2.3.2 zeigt wie auch ein inhaltsbasierter
Publish/Subscribe-Dienst auf strukturierten P2P-Systemen gestaltet werden kann.

Im Folgenden werden einige konkrete Systeme genauer beschrieben.

Scribe

Ein konkretes System, das dies auf Basis von Pastry[RD01] leistet, ist Scribe von Rowstron et
al. [RKCD01]. Das Ziel des Systems ist es, einen effizienten und skalierbaren themenbasierten
Publish/Subscribe-Dienst zur Verfügung zu stellen. Unterstützt wird hierbei zwar lediglich
ein Best-Effort-Dienst, die Durchsetzung von geordneten Nachrichtenströmen kann aber auf
höheren Schichten realisiert werden. Realisiert wird dies durch quellbasierte Verteilbäume
entlang des Pastry-Netzwerkes, unter Nutzung der bereits vorgestellten P2P-System API.

Voraussetzung ist, dass alle Sender und Klienten dem Overlaynetz beitreten, um über dieses
kommunizieren zu können. Die Rolle der Broker wird von allen Knoten im Netzwerk
gemeinsam übernommen, das heißt, es werden keine dedizierten Broker-Systeme mehr
benötigt. Während des Betriebs des Systems kann jeder Knoten neue Themen erstellen,
indem er dieses abonniert oder eine Nachricht an dieses sendet. Hierzu wird dem Thema
eine Id zugewiesen und eine entsprechende Nachricht in Richtung des zuständigen Knotens
geroutet. Hierbei speichert jeder Knoten, den die Nachricht passiert die Themen-Id sowie
seinen direkten Nachbarn, in Richtung des Initiators. Hierzu wird die forward-Methode der
P2P-System API genutzt. Dieser Vorgang wird weitergeführt, bis der zuständige Knoten
oder ein Koten, dem das Thema bereits bekannt ist, erreicht wird. Der zuständige Knoten,
und damit die Wurzel des Weiterleitungsbaums, ist, der entsprechend der Pastry-Vorgabe
zuständige Knoten, also der Knoten mit der zur Themen-Id ähnlichsten Id. So bildet sich für
jedes Thema ein eigenständiger Verteilbaum.

Dieses Vorgehen folgt dem Vorbild des Reverse-Path-Forwarding (RPF), mit dem Multicast-
bäume aufgebaut werden können. Ebenso lässt sich dieser Ansatz auf andere strukturierte
P2P-Systeme übertragen.

CAN-basiertes Publish/Subscribe

Ratnasamy et al. beschreiben eine Möglichkeit, Multicastdienste mit Hilfe von mehreren
Instanzen von CAN-Netzwerken bereitzustellen [RHKS01]. Die beschriebene Art des Multi-
casts ist äquivalent zu themenbasiertem Publish/Subscribe. Anders als die in Abschnitt 2.3.2

17

2 Grundlagen und Stand der Technik

vorgestellte Methode werden bei diesem Verfahren keine quellbasierten Verteilbäume auf-
gebaut. Jedes der Themen im erzeugten Publish/Subscribe-System wird durch eine eigene
mini-CAN-Netzwerkinstanz repräsentiert. Um eine Nachricht in einem Themenkanal zu
versenden, muss diese lediglich in der entsprechenden mini-CAN-Netzwerkinstanz ge-
flutet werden. Um ein Thema zu abonnieren muss analog hierzu der entsprechenden
mini-CAN-Netzwerkinstanz beigetreten werden. Jede mini-CAN-Netzwerkinstanz stellt eine
Multicastgruppe dar.

Um einem unbekannten Thema beitreten zu können, wird neben den themenspezifischen
Netzwerkinstanzen eine weitere Instanz eingeführt. In dieser werden unter Nutzung der
DHT-Funktionalität Verbindungsdaten zu Kontaktknoten in den Themeninstanzen unter
den entsprechenden Themen-Ids abgelegt. Somit kann also jeder Knoten, der Teil des
Verwaltungsnetzwerkes ist, Knoten in den themenspezifischen Netzwerkinstanzen erreichen
und diesen beitreten.

Das hier beschriebene Vorgehen lässt sich, abgesehen von der CAN-spezifischen Optimierung,
auf die Nutzung anderer strukturierter P2P-Systeme übertragen.

Optimiertes fluten von CAN-Netzwerken

Für die themenspezifischen CAN-Netzwerkinstanzen wird weiterhin ein optimierter Flu-
tungsalgorithmus vorgeschlagen. Dieser nutzt die kartesische Beschaffenheit des aufgespann-
ten Id-Raums aus.

Der Vorgang folgt den folgenden vier Prinzipien: Der initiale Sender der Nachricht leitet
diese an alle seine Nachbarn weiter. Jeder folgende Knoten, der die Nachricht über eine
Verbindung in der Dimension d empfängt, leitet diese auf allen Verbindungen in den
Dimensionen < d weiter. Eine Nachricht wird maximal über die Hälfte der Ausdehnung
einer Dimension in einer Richtung weitergeleitet. Kein Knoten leitet die gleiche Nachricht
ein zweites Mal weiter.

Der hier beschriebene Algorithmus stellt eine der topologiespezifischen Besonderheiten dar,
durch deren Ausnutzung es von Vorteil sein kann, die Netzwerktopologie zu rekonfigurie-
ren.

Content-basierte Publish/Subscribe-Systeme

Die nächste Verfeinerung, ausgehend von themenbasierten Publish/Subscribe, sind die
inhaltsbasierten Publish/Subscribe-Systeme. Diese bieten neben den Themen weitere Verfei-
nerungsmöglichkeiten der Nachrichtenströme. Wie ein inhaltsbasierter Publish/Subscribe-
Dienst auf Basis beliebiger strukturierter P2P-Systeme aufgebaut werden kann beschreibt
Baldoni et al. [BMVV05].

Die Klassifikation der einzelnen Nachrichten erfolgt mit Hilfe eines d-dimensionalen At-
tributvektors. Die enthaltenen Attribute sind durch ihren Namen und ihren Typ definiert.

18

2.3 Anwendungen von P2P-Systemen

Abonnements in diesem System bestehen aus einer Konjunktion von Beschränkungen auf
den Attributen. Hierbei kann sowohl die Existenz, sowie der Wertebereich der einzelnen At-
tribute eingeschränkt werden. Werden hierbei disjunkte Beschränkungen verwendet, können
diese als getrennte Abonnements aufgefasst werden.

Zum Betrieb des Systems werden nun zwei aufeinander abgestimmte Abbildungsfunktionen
benötigt. Die erste bildet jede Nachricht auf eine Menge von Rendezvous-Ids ab, während
die zweite die Abonnements auf die Mengen von Rendezvous-Ids abbildet. Mit Hilfe dieser
Abbildungen können nun die Abonnements auf den die jeweiligen Rendezvous-Ids ver-
waltenden Knoten ablegen. Nachrichten werden ihrerseits ebenfalls an ihre betreffenden
Rendezvous-Ids weitergeleitet und können auf den zuständigen Knoten mit Hilfe der Abon-
nements endgültig gefiltert werden. Hierdurch können sie, entsprechend der Abonnements,
an die Abonnenten weitergeleitet werden.

Für die zur Zuordnung verwendeten Abbildungen und dem Speichern der Abonnements
kommen verschiedene Strategien in Frage. Beim Atttibute-Split wählt der Abonnement
einen der Rendezvous-Knoten und hinterlegt sein Abonnement nur auf diesem. Hierdurch
wird zum einen Mehrfachzustellungen der Nachrichten vorgebeugt zum anderen kann die
Last so besser auf die verschiedenen Knoten verteilt werden. Beim Key Space-Split werden
die verwendeten Ids in kleinere Bereiche aufgeteilt, die jeweils ein Attribut repräsentieren.
Hierdurch wird die Zahl der Rendezvous-Knoten stark eingeschränkt. Beim Selective-Attribute
wird das Attribut mit dem höchsten Einschränkungspotential bestimmt. Im Anschluss wird
das Abonnement auf dem entsprechenden Rendezvous-Knoten gespeichert. Der Erfolg
dieser Methode beruht auf dem Grad der stärksten Einschränkung innerhalb der einzelnen
Abonnements.

Um dies umzusetzen, wird, wie bei anderen Publish/Subscribe-Systemen auch, oberhalb
des genutzten P2P-Systems ein zusätzlicher Abstraktionslayer erzeugt. Dieser stellt die
Funktionalität überlagerten Systemen zur Verfügung.

19

Kapitel 3

Problembeschreibung und Abgrenzung

zu anderen Arbeiten

In diesem Kapitel wird ein Szenario und eine hierin eingebettete Problemstellung vorgestellt.
Hierzu werden die entsprechenden Randbedingungen und Herausforderungen aufgezeigt.
Zusätzlich wird eine Abgrenzung zu verwandten Arbeiten vorgenommen.

3.1 Szenario

Die verschiedenen Varianten der heute genutzten Publish/Subscribe-Systeme nutzen ent-
sprechend ihrem Aufbau verschiedene Vorteile der unterliegenden Topologie. Dies ist darin
begründet, dass die Publish/Subscribe-Systeme die Verbindungen unter ihren Teilnehmern,
entsprechend der Verbindungen und Nachbarschaftsbeziehungen im genutzten Overlaynetz,
aufbauen. So entstehen je nach System entsprechende Verteilbäume oder -netze.

Im Betrieb dieser Systeme werden in jeder Komponente Änderungen vorgenommen. Dies
geschieht durch das Beitreten und Austreten von Teilnehmern in und aus den Systemen.
Ähnlich wirken sich mobile Geräte aus, die nicht dauerhaft im Netz vertreten sind oder
deren Verbindungsparameter sich ändern können. Außerdem ändert sich, während des
ausgedehnten Betriebs des Systems, die Popularität der verwalteten Themen. Hier durch
ändert sich der Nachrichtenfluss und das Nachrichtenaufkommen im gesamten System.

Des Weiteren soll für die zukünftige Nutzung ermöglicht werden, den Vorgaben aus höheren
Schichten und komplexeren Services, zu entsprechen und hierzu Modifikationen an dem
verwendeten Overlaynetz vorzunehmen. Hierbei sind insbesondere eventuelle Sicherheits-
anforderungen an zukünftige Systeme zu bedenken, um sensible Nachrichtenströme auf
bestimmte Teile von Firmennetzwerken zu begrenzen. Zusätzlich benötigt das verwendete
Publish/Subscribe-System ein strukturiertes Underlay.

Im Weiteren Verlauf wird davon ausgegangen, dass die oben genannten Änderungen im
Umfeld des verwendeten Publish/Subscribe-Systems erkannt werden und hieraus ein Bedarf

21

3 Problembeschreibung und Abgrenzung zu anderen Arbeiten

abgeleitet wird, die Overlaytopologie zu ändern. Dieser wird dann an das genutzte P2P-
System weitergeleitet.

3.2 Herausforderungen

An die beabsichtigten Transformationen werden einige zusätzliche Anforderungen gestellt,
die eine optimale Lösung für die Transformation erfüllen muss.

Die Transformation soll zwischen den strukturierten P2P-Systemen Chord und CAN statt-
finden. Die wichtigste Herausforderung ist hierbei die durchgehende Funktionsfähigkeit
des Systems. Die Transformation soll also für überlagerte Systeme transparent ablaufen.
Hierzu gehört auch, dass das Netzwerk während der Transformation nicht partitioniert oder
anderweitig über die Maße in Mitleidenschaft gezogen wird.

Um einen möglichst großen Nutzen aus der Transformation zu ziehen muss die Transfor-
mation eine möglichst geringe Nachrichtenkomplexität aufweisen. Auch die Dauer muss
überschaubar sein, um möglichst schnell einen Vorteil aus der Transformation zu ziehen.

Einhergehend mit der durchgängigen Funktionsfähigkeit des Netzwerkes kann es zusätzlich
von Vorteil sein, das verwendete Netzwerk nicht komplett zu transformieren, sondern die
Transformation in ihrem Verlauf zu stoppen, um so einzelne Bereiche mit verschiedenen
Eigenschaften in einem gemeinsamen Netzwerk zu schaffen. Diese Möglichkeit muss ein
optimaler Algorithmus unterstützen.

Die konkreten Lösungsmöglichkeiten für diese Herausforderungen werden in Kapitel 4

beziehungsweise Kapitel 5 behandelt.

3.3 Problembeschreibung

Der Kernteil dieser Arbeit beschäftigt sich mit der Topologieanpassung und somit der
Transformation zwischen einem Chord- in ein CAN-Netzwerk. Um dies zu ermöglichen
müssen zuerst die signifikanten und relevanten Unterschiede und Gemeinsamkeiten der
beiden Topologien ermittelt werden. Hierzu werden zunächst die Vorbedingungen für eine
Rekonfiguration des Overlaynetzes erarbeitet. Sind diese ermittelt, muss ein Weg gefunden
werden, um Einfluss auf die Konstruktionsmechanismen der durch die P2P-Systeme entste-
henden Overlaynetze zu nehmen. Um dies zu ermöglichen wird zusätzlich eine angepasste
Systemarchitektur benötigt, die den Austausch, oder das Umschalten zwischen verschie-
denen Protokollen auf einer Netzwerkschicht, ohne Unterbrechung der Funktionalität des
Systems, gewährleisten kann. Im Anschluss muss die Topologie der Netzwerke angeglichen
werden und ein Weg gefunden werden, die in den Netzwerken enthaltenen Daten zu trans-
ferieren. Mit dem Transfer der Daten muss ebenfalls die Funktionalität des überliegenden
Publish/Subscribe-Systems übertragen werden.

22

3.4 Abgrenzung zu anderen Arbeiten

3.3.1 Abhängigkeit vom verwendeten Overlaynetz

Entsprechend dem aufgestellten Szenario werden im Folgenden nur die Overlaybasierten
Publish/Subscribe-Systeme näher betrachtet.

Unabhängig davon, ob Verteilbäume, optimiertes Fluten oder andere Mechanismen den
einzelnen Publish/Subscribe-Systemen zugrunde liegen spielt die tatsächliche Ausprägung
der verwendeten Overlaynetze eine große Rolle. Werden Verteilbäume genutzt, werden diese
typischerweise entlang der Verbindungen im Overlaynetz aufgespannt. In Systemen, wie
dem in Abschnitt 2.3.2 vorgestellten optimierten CAN-Multicast, werden Besonderheiten der
Topologien ausgenutzt.

In Zukunft ist es reizvoll, verschiedene Ansätze abhängig von den aktuellen Gegebenheiten
miteinander zu verknüpfen. Um die Flexibilität der Publish/Subscribe-Systeme zu steigern,
muss also die Struktur des Overlaynetzes, auf dem sie aufgebaut sind, rekonfiguriert werden.
Um dies zu erreichen, können die im Netzwerk enthaltenen Knoten ihre Identifier und
somit ihre Position im Overlaynetz anpassen. Hierdurch würden jedoch bereits aufgebaute
und genutzte Verteilstrukturen überliegender Services beinträchtigt oder zerstört werden.
Der bessere Ansatz ist es, dies nicht durch die Änderung der Ids, sondern durch die
Rekonfiguration der gesamten Overlaystruktur, also durch den gezielten Auf- und Abbau
von Nachbarschaftsbeziehungen, zu erreichen.

Die hierfür geforderte Flexibilität und Modularität ist ein logischer Schluss aus der Entste-
hung der heutigen Overlaynetze. Diese wurden erschaffen, um Mängel der unterliegenden
Netzwerke auszugleichen und die Kooperation vieler einzelner Netzwerkknoten zu erleich-
tern. Heute werden die bestehenden Overlaynetze weiter verfeinert. Dies gilt besonders für
die Klasse der P2P-Systeme.

3.4 Abgrenzung zu anderen Arbeiten

Da diese Arbeit nicht der erste Versuch ist, Overlays in ihrer Struktur zu beeinflussen werden
an dieser Stelle verwandte und bereits bestehende Themen kurz erwähnt und von dem hier
verfolgen Ansatz abgegrenzt.

Hierbei ist zu erwähnen, dass aufgrund der relativ hohen Aktualität der Entwicklung
von strukturierten Overlaynetzen und Publish/Subscribe-Systemen, nur in begrenztem
Umfang relevante Vorarbeiten zur Verfügung stehen. Dies bezieht sich insbesondere auf die
Transformation zwischen heterogenen strukturierten Overlaynetzen.

3.4.1 Verschmelzen gleichartiger Overlaynetze

Es wurden bereits diverse Aufwände unternommen um gleichartige Netzwerke zu verei-
nigen oder zu stabilisieren. Dies ist vor allem nach Störungen der Netzwerke, wie etwa
Partitionierungen oder massive Knotenausfälle nötig. Ghodsi et al. zeigen beispielsweise,

23

3 Problembeschreibung und Abgrenzung zu anderen Arbeiten

wie Gossiping-Algorithmen genutzt werden können, um ringbasierte SONs effizient zu stabi-
lisieren [GHW07]. Erläutert wird dies am Beispiel von Chord. Auch Shafaat et al. behandeln
ebenfalls die Stabilisierung und Verschmelzung von ringbasierten SONs nach Partitionie-
rungen [SGH07]. Diese Stabilisierungen können ebenfalls dazu genutzt werden, um zuvor
getrennt aufgebaute Netzwerke effizienter zusammenzuführen und zu einem Verbundnetz
zu vereinigen. Jedoch wird, durch die hier verwendeten Verfahren, kein Zusammenführen
heterogener Netzwerke unterstützt.

Ebenso existieren schon einige Bemühungen, um einzelne Systeme effizienter aufzubauen.
Diese Ansätze können durchaus für die Nutzung innerhalb einiger, der später vorgestellten
Transformationsmechanismen genutzt werden, um das Verhalten weiter zu verbessern. Abe-
rer et al. beschäftigen sich in diesem Zusammenhang mit der effizienten, selbstorganisierten
Erstellung von SONs [ADHS05]. Hierbei werden bessere Ergebnisse erzielt, als durch einen
sequenziellen Aufbau der jeweiligen Systeme.

3.4.2 Overlaynetze mit variabler Struktur

In der Vergangenheit wurden Overlaynetze oft als unstrukturierte Netze aufgebaut, de-
ren Topologie sich, je nach Bedarf, frei anpassen lässt ohne dass hierbei auf besondere
Randbedingungen geachtet werden muss.

In Broker basierten Publish/Subscribe-Systemen ist es gängige Praxis, die Overlayverbindun-
gen zwischen den einzelnen Knoten möglichst effizient zu Nutzen, um unnöten Overhead,
etwa durch ein Fluten der Netzwerke zu vermeiden. Einige Ansätze gehen darüber hinaus,
in dem sie aktiv Einfluss auf die verwendete Overlaytopologie nehmen.

Kumar et al. reorganisieren Overleynetze entsprechend der von überliegenden
Publish/Subscribe-Systemen erzeugten Nachrichtenströmen[KCC+

05]. Hierzu nut-
zen sie eine SQL-ähnliche Beschreibungssprache, um die beinhalteten Nachrichtenströme zu
beschreiben. Auf dieser Grundlage optimieren sie den Verlauf der Nachrichtenströme in
Hinsicht auf deren Charakteristika und den zur Verfügung stehenden Verbindungen im
Overlaynetz.

Ähnlich gehen Baldoni et al. vor, um die Struktur des Baumbasierten Publish/Subscribe-
Systems SIENA auf einem bestehenden Overlay zu optimieren[BBQV07]. Hierzu führen die
Broker einen verteilten, selbstorganisierten Optimierungsgalgorithmus ein, der in der Lage
ist die verwendete Overlaytopologie schrittweise zu rekonfigurieren.

Die in den bisher genannten Ansätzen verwendeten Overlays sind jedoch stets unstrukturiert.
Diese Ansätze gehen also nicht auf zusätzliche Randbedingungen ein, die etwa durch
strukturierte P2P-Systeme an die aufgebauten Overlaynetze gestellt werden.

Neben den bereits vorgestellten Netzwerken existieren ebenfalls Overlaynetze mit variabler
Struktur, die gegen definierte Strukturen konvergieren können.

Ein, die Transformation in den Mittelpunkt stellender Ansatz ist T-Man [JB04] von Jelasi-
ty et al. Hierbei wird ein Verfahren vorgeschlagen, wie die Topologie von Overlaynetzen,

24

3.4 Abgrenzung zu anderen Arbeiten

entsprechend einer gegebenen Bewertungsfunktion in eine Zieltopologie transformiert wer-
den kann. Die Funktion wird hierbei genutzt um die in Frage kommenden Nachbarn zu
bewerten. Um Informationen über teilnehmende Knoten im Netzwerk zu verbreiten werden
Gossiping-Algorithmen genutzt. So kann letztendlich die durch die Bewertungsfunktion
vorgegebene Struktur des Overlaynetzes geformt werden. Hierzu werden die einzelnen Kno-
ten mit immer neuen Nachbarkandidaten versorgt und wählen hieraus die, entsprechend
der Bewertungsfunktion, optimalen Nachbarn aus. So bildet sich letztendlich die durch
die Bewertungsfunktion vorgegebene, Netzwerktopologie heraus, indem die Knoten lokal
sortiert werden.

Hierdurch ist nahezu jede Topologie, wie beispielsweise Linien, Ringe, Tori oder Bäume,
erzeugbar. Jedoch bleibt es schwierig, korrekte und haltbare Aussagen über die Qualität der
Topologie zu treffen, solange sich diese noch im Aufbau befindet.

Dieses Vorgehen eignet sich zwar prinzipiell für die Transformation, es muss aber zusätz-
licher Aufwand betrieben werden, um das nicht weiter spezifizierte Verhalten während
der Transformation vorhersagbar zu gestalten. Während dieser Zeit ist das Netzwerk also
im eigentlichen Sinne nicht stukturiert. Ebenso beinhaltet dies kein Verfahren mit dem
nach der Transformation endgültig auf eine einfache Implementierung des Zielprotokolls
umgeschaltet werden kann.

Der umgekehrte Ansatz wird von Tariq et al. verfolgt [TKKR09]. Es wird gezeigt, wie
Nachrichtenverteilsysteme auf Topologieänderungen in unterlagerten Schichten reagieren
können, um eine gleichbleibende Servicequalität zu gewährleisten. Hierzu wird in den
Abonierungsprozess eingegriffen, um Verteilbäume höherer Kapazität und geringerer Latenz
zu bilden.

Grenzt man das Vorgehen auf die Nutzung strukturierter Overlaynetzte und Modifikationen
an der Overlaystruktur ein, so muss eine bisher nicht betriebene Art der Tranformation
realisiert werden, um die gesteckten Ziele zu erreichen.

25

Kapitel 4

Vorbedingungen für die

Transformation

In diesem Kapitel werden weitere Grundlagen erarbeitet um die folgenden Transformatio-
nen zu ermöglichen. Diese umfassen auch die betrachtete Systemumgebung sowie deren
Einschränkungen.

Dafür werden zunächst die Unterschiede zwischen den Overlaystrukturen aufgezeigt. Im
Anschluss daran wird eine Architektur für den Umgang mit transformierbaren Netzwerken
vorgeschlagen. In diese werden die nötigen Transformationskomponenten eingefügt und
erläutert. Hierzu zählen Kriterien für die Transformation, die benötigte Adresstransforma-
tion. Die eigentlichen Transformationskomponenten und Vorgehen werden in Kapitel 5

behandelt.

4.1 Systemmodell

Für die Gültigkeit dieser Arbeit werden einige Voraussetzungen angenommen, die die Gül-
tigkeit und den Bearbeitungsumfang einschränken sollen. Die erste und wichtigste Annahme
ist, dass alle Knoten in den betrachteten Overlaynetzwerken paarweise über ein bestehendes
Underlaynetzwerk kommunizieren. Dies gilt, solange keine Partitionierungen des Overlay-
netzwerkes betrachtet werden. In Folge dessen werden die vorgeschlagenen Protokolle nur
auf der Applikationsschicht betrachtet und somit auch nur auf dieser modelliert. Außerdem
wird das Bootstrapping der Netzwerke nicht betrachtet. Es wird davon ausgegangen, dass die
verwendeten Netze bereits aufgebaut sind und mindestens ein aktiver Netzwerkteilnehmer,
beispielsweise durch Tracker oder andere out-of-band-Protokolle, bekannt ist. Für einige
der betrachteten Verfahren wird zusätzlich davon ausgegangen, dass die Knoten, anders als
in realen Netzwerken beziehungsweise dem Internet, über FIFO-Kommunikationskanäle
kommunizieren.

27

4 Vorbedingungen für die Transformation

Zusätzlich wird festgelegt, dass im Rahmen dieser Arbeit nur Transformationen zwischen
Systemen durchgeführt werden, die auf Id-Räumen mit gleicher Bitlänge ihrer Bezeichner
basieren. Die Zahl der verwalteten Ids muss also übereinstimmen.

Im Verlauf dieser Arbeit wird der Begriff der Verbindung relativ frei verwendet. Gemeint ist
hiermit, keine tatsächlich bestehende Verbindung im Sinne einer TCP-Verbindung, sondern
lediglich die Bekanntheit der Adressdaten des Zielknotens der Verbindung. Für diese Art
von Verbindung ist es also hinreichend, wenn der Zielknoten bekannt ist und prinzipiell
kontaktiert werden kann. Das Bestehen einer solchen Verbindung muss daher sporadisch
durch Testnachrichten geprüft werden, falls sonst keine Kommunikation stattfindet.

4.2 Kriterium und Ablauf der Transformation

In diesem Abschnitt werden der generelle Ablauf der Transformation sowie die Detektion
des Transformationsbedarfs eingehender betrachtet.

4.2.1 Kriterium für die Transformation

Im Wesentlichen gibt es zwei Möglichkeiten für ein auslösendes Kriterium für die Transfor-
mation. Zum einen kann die Notwendigkeit der Transformation außerhalb des Protokolls
festgestellt werden. Dies kann sowohl aus der unterliegenden Komponente auf dem Proto-
kollstack, also aus dem Bereich der Middleware, in der ggf. mehr Informationen über die
native Netzwerkstruktur vorliegen, kommen. Ebenso kann der Transformationsbedarf in
der überlagerten Applikation festgestellt werden, etwa um auf bevorstehende Änderungen
in der Netzwerknutzung oder -auslastung zu reagieren. Zum anderen kann das Protokoll,
sobald es im Transformationszustand betrieben wird, auf Basis der über seine direkten
Nachbarn vorliegenden Informationen sein Zielprotokoll anpassen, um die vorliegende
Netzwerksituation zu optimiren.

Im Folgenden wird davon ausgegangen, dass die Transformation der Netzwerktopologie
von außen ausgelöst wird. Nach dem Start der Transformation auf einem beliebigen Knoten
wird die Transformationsnachricht im gesamten Netzwerk geflutet.

4.2.2 Ablauf der Transformation

Das generelle Vorgehen um eine fest definierte Overlaystruktur in eine andere, ebenfalls fest
definierte Overlaystruktur zu überführen umfasst die folgenden Schritte.

Als Grundlage der Transformation muss eine leistungsfähige Architektur zur Verfügung
stehen, die den Austausch, beziehungsweise die Änderung, der sich auf dem Protokollstack
befindenden Protokolle ermöglicht. Des Weiteren muss dafür Sorge getragen werden, dass
die Zuständigkeitsbereiche der einzelnen Knoten, über den Zeitraum der gesamten Trans-
formation, klar definiert sind. Damit dies gewährleistet werden kann, ist eine eindeutige,

28

4.3 Vergleich von Chord und CAN

bidirektionale Adresstransformation nötig. Diese kann abhängig von der, für die Transforma-
tion verwendete Protokollpaarung, unterschiedlich ausfallen. Um Einfluss auf den Verlauf
der Transformation zu nehmen werden Mechanismen benötigt, um die Transformation
einzuleiten, auszubreiten, gegebenenfalls zu steuern und schließlich zu beenden, falls diese
nicht selbstterminierend ausgeführt ist.

Hierauf aufbauend werden geeignete Transformationsmechanismen benötigt, die nach Mög-
lichkeit die in Abschnitt 3.2 gestellten Anforderungen erfüllen.

4.3 Vergleich von Chord und CAN

Da im Verlauf dieser Arbeit vor allem die Transformation der beiden, in dieser Arbeit
relevanten P2P-Systeme Chord und CAN, betrachtet wird, ist es zweckmäßig zuerst einen
Blick auf die relevanten Unterschiede und Gemeinsamkeiten der beiden Systeme zu werfen.

Generell ist hierbei anzumerken, dass es sich um zwei rivalisierende Ansätze handelt, struk-
turierte P2P-Systeme aufzubauen. Beide Systeme erzeugen, streng strukturierte Overlaynetze
mit logarithmischem Netzwerkdurchmesser. Jedoch beruhen sie auf grundlegend verschiede-
nen Ansätzen. Dadurch sind die Systeme auf verschiedenen Koordinaten- oder Id-Räumen
aufgebaut. Im Endeffekt bedeutet dies, dass eine Chord-Id lediglich über zwei benachbarte
Ids verfügt, dies sind bei CAN, abhängig von der Anzahl der Dimensionen, 2 ∗ D Nachbar-
Ids. Betrachtet man jedoch den zum Netzwerkbetrieb benötigten lokalen Zustand, also
im Wesentlichen die Routingtabellen, so benötigt CAN nur etwa 2 ∗ D Routingeinträge,
während Chord üblicherweise log N Einträge in der Routingtabelle hält. Zum Ausgleich des
Dimensionsunterschieds der Id-Räume können raumfüllende Kurven verwendet werden.
Dieses Vorgehen wird in Abschnitt 4.5 behandelt.

Der signifikante Unterschied zwischen den beiden Systemen ist jedoch die Bestimmung
der Nachbarknoten. In Chord kann für jeden Nachbarknoten die einfache hinreichende
Bedingung angegeben werden, dass der Knoten für eine der Finger-Ids zuständig sein muss.
Dies gilt für alle Nachbarknoten mit Ausnahme der Successor-Liste, die aber sehr einfach zu
ermitteln ist.

Wie schon erwähnt verfügt CAN im Gegensatz zu Chord üblicherweise über weniger
Nachbarn. Diese Nachbarn sind jedoch in ihrer Gesamtheit wesentlich schwerer zu finden.
Zwar können alle Ids, die von den Nachbarn verwaltet werden müssen, berechnet werden,
dies ist aber eine sehr große Anzahl. Somit gilt zwar für die Nachbarn generell die gleiche
hinreichende Bedingung wie für die Chord-Nachbarn, allerdings sind dies bedingt durch
die Geometrie des Identifierraums extrem viele Ids, für die nur wenige Nachbarknoten
zuständig sind. Bei einem regulären Beitritt zu einem CAN-Netzwerk wird dieses Problem
umgangen, da dem Knoten, der einen Teil eines Bereichs abgibt, alle Nachbarn bekannt sind.
Einige Methoden zum Umgang mit diesem Problem finden sich in Abschnitt 5.2.3.

Während die Einträge in der Routingtabelle von Chord jeweils als unidirektionale Verbindun-
gen anzusehen sind, entsprechen die Einträge in den CAN-Routingtabellen bidirektionalen

29

4 Vorbedingungen für die Transformation

Verbindungen. Es muss also zu jedem Eintrag in der Routingtabelle eines Knotens ein
entsprechend komplementärer Eintrag in der Routingtabelle des Zielknotens existieren.

Im Hinblick auf eine Transformation wirft der Übergang zu Chord wesentlich weniger
Probleme auf. Dies ist der Fall, da der hier genutzte direkt verkettete Ring eine sehr ein-
fache Invariante darstellt. CAN hingegen benötigt Verbindungen zu allen seinen direkten
Nachbarn.

4.4 Architektur

Um die Topologie des Overlaynetzwerkes zu ändern, muss entweder ein Protokoll verwendet
werden, das von sich aus eine variable Topologie unterstützt oder es muss ein zusätzlicher
Indirektionsmechanismus verwendet werden, um das verwendete Protokoll während des
Betriebs zu wechseln. Abbildung 4.1 zeigt den Aufbau der vorgeschlagenen modularen Archi-
tektur des Protokollstacks. Hierbei sind beide erwähnten Möglichkeiten vorgesehen, durch
die Einfluss auf die Topologie der durch die Protokolle gebildeten Netzwerke genommen
werden kann.

Netzwerk

CanProtocolHybridProtocol ChordProtocol

Service

HybridTransport

SFC

Abbildung 4.1: Protokollstack für die Transformation

Dieser Aufbau hat den Vorteil, dass nur minimale Modifikationen am Ausgangs- und Ziel-
protokoll vorgenommen werden müssen. Diese Änderungen beschränken sich auf einen
Mechanismus, um die jeweils genutzten Routingtabellen auszulesen und zu füllen. Je nach-
dem, ob das Protokoll als Ausgangs- oder Zielprotokoll genutzt wird. Die Funktionsweise
der Protokolle wird nicht beeinflusst.

Die zentralen, neu eingeführten Elemente auf dem Protokollstack sind der HybridTransport
und das HybridProtocol. Der HybridTransport umschließt die zu nutzenden Protokolle, wird
also jeweils zwischen überlagertem Service und Protokoll sowie zwischen Protokoll und
unterliegenden Netzwerkschichten eingefügt. Für nicht-transformierende Protokolle agiert
der HybridTransport transparent. Damit die Nachrichten in dem gekapselten Protokoll kor-
rekt behandelt werden muss unter Umständen ein Adresstransformationen vorgenommen

30

4.5 Adresstransformation

werden. Zu diesem Zweck enthält der HybridTransport ein spezielles Modul, dass ihm dies
ermöglicht. Dieses Modul ist als raumfüllende Kurve (SFC) in ihm eingebettet.

Aus Sicht eines normalen, nicht-transformierenden Protokolls müssen aus diesem Grund
keine besonderen Gegebenheiten beachtet werden. Um dies zu ermöglichen, stellt der
HybridTransport die entsprechenden APIs für die Protokolle zur Verfügung.

Das HybridProtocol ist der entscheidende Baustein, durch den die Transformation durchge-
führt wird. Hierzu unterstützt es eine variable Topologie und reorganisiert diese entspre-
chend der beabsichtigten Transformation. Der HybridProtocol-Block steht hierbei stellvertre-
tend für verschiedene unidirektional oder bidirektional ausgeführte Transformationsproto-
kolle. Typischerweise unterstützt ein HybridProtocol aber nur die Transformation zwischen
zwei nicht-transformierenden Protokollen.

Um optimale Ergebnisse zu erzielen, muss für jede Protokollpaarung, zwischen denen
die Topologien transformiert werden sollen, eine entsprechend angepasste Transformation
vorgenommen werden. Hierdurch sind gegebenenfalls auch spezifische auslösende Kriterien
für die Protokollpaarungen nötig.

Durch die Transparenz und integrierte Adresstransformation gegenüber nicht transformie-
renden Protokollen sind weitere Anwendungen der vorgestellten Architektur denkbar. So
könnten Netzwerkknoten, die mit dieser Architektur ausgestattet sind druchaus mit Knoten
einen Verbund bilden, die nur über den herkömmlichen Aufbau verfügen. Jedoch müssen
hierbei gegebenenfalls weitere Randbedingungen beachtet werden. So muss der Aufbau der
ausgetauschten Nachrichten entsprechend abgestimmt sein, oder zumindest transformiert
werden können. Gegebenenfalls muss auf den Knoten, die die vorgeschlagene Architektur
verwenden, ein speziell angepasstes Routing verwendet werden, um Zyklen zu vermeiden.

Unter dieser Voraussetzung können heterogene Netzwerke gebildet werden. Eine weitere
wichtige Eigenschaft, die hierdurch erzeugt wird, ist die Eignung für ein inkrementelles
Ausbringen der vorgeschlagenen Architektur. Hierdurch könnten Systeme im laufenden
Betrieb, Knoten für Knoten umgestellt werden.

4.5 Adresstransformation

Um vor, nach und während der Transformation klare Zuständigkeiten der einzelnen Knoten
für die einzelnen Ids zu erhalten und zu gewährleisten, ist eine jederzeit nachvollziehbare,
bidirektionale und eindeutige Abbildung der verschiedenen Id-Repräsentationen unterein-
ander notwendig. Besonderes Augenmerk erfordert hierbei die Mehrdimensionalität des
CAN-Protokolls. Hierfür werden raumfüllende Kurven verwendet, welche in Abschnitt 4.5.1
genauer erläutert werden. Es ist wichtig, die bestehende Lokalität zu erhalten, um die Menge
der zu transferierenden Ids für jeden Knoten zu minimieren und bestehende Nachbarschafts-
beziehungen weiter verwenden zu können. Die Lokalität ist ausschlaggebend da die in dieser
Arbeit relevanten Protokolle die Gemeinsamkeit aufweisen, dass jedem Knoten mehr Knoten
in seiner nahen Nachbarschaft bekannt sind, als weiter entfernte Knoten. Dies gilt auch für
das Chord- und CAN-Protokoll.

31

4 Vorbedingungen für die Transformation

4.5.1 Raumfüllende Kurven

Raumfüllende Kurven (space-filling-curves) werden benutzt, um eine Abbildung zwischen
multidimensionalen und eindimensionalen Räumen zu schaffen. Hierbei wird, entsprechend
der jeweiligen Konstruktionsregel, eine kontinuierliche Kurve durch den multidimensiona-
len Raum gelegt. Die Position auf der Kurve entspricht somit der jeweiligen Position im
Raum. Die verschiedenen bekannten raumfüllenden Kurven unterscheiden sich, bedingt
durch ihren Verlauf, in ihrer Auswirkung auf die Lokalität der einzelnen Punkte auf der
Kurve beziehungsweise im Raum. Die Lokalität beschreibt die Ähnlichkeit zwischen der
Nachbarschaft der Punkte auf der Kurve und der Punkte im Raum. Liegen also Punkte im
Raum nahe beieinander, folgt daraus, dass sie auch auf der Raumkurve nahe beieinander
liegen. Detailliertere Betrachtungen einiger raumfüllender Kurven [MAK02] und rekursi-
ver Eigenschaften von raumfüllender Kurven [ARR+

97] können der Literatur entnommen
werden.

Viele der Kurven sind rekursiv aufgebaut, lassen sich also wie Fraktale stufenweise stets
weiter verfeinern. Einige Beispiele für diese Kurven sind die Hilbert-Kurve, Peano-Kurve,
Gray-Kurve, E-Kurve und die Z-Kurve. Diese sind in Abbildung 4.2 dargestellt.

Für eine bessere Unterstützung verschiedener Transformationen wird auch in der Simulation
und Evaluierung eine Austauschbarkeit der verwendeten Raumkurven vorgesehen.

Hilbert-Kurve Z-KurvePeano-Kurve E-KurveGray-Kurve

Abbildung 4.2: Beispiele für verschiedene Raumkurven

4.5.2 Sequenzielle Raumkurve

Die sequenzielle Raumkurve ist die einfachste Möglichkeit, eine raumfüllende Kurve zu
erzeugen. Hierbei füllt die Kurve sequenziell eine Dimension nach der anderen. Hierdurch
entsteht eine primitive Raumkurve, die zwar nicht frei von Sprüngen, jedoch sehr einfach zu
implementieren ist. Um diese Kurve zu erzeugen, werden die Koordinaten der einzelnen
Dimensionen zusammengefügt.

[112233445566778899]1D =̂ [112233, 445566, 778899]3D

Abbildung 4.3 und Abbildung 4.4 zeigen die entstehende Kurve beispielhaft.

Es sind zwar auch sequenzielle Raumkurven ohne Sprünge konstruierbar, aber deren pro-
grammgestützte Konstruktion ist nicht derart eindeutig und einfach, darum wird hier diese
Raumkurve vorgestellt und verwendet.

32

4.5 Adresstransformation

Abbildung 4.3: Sequenzielle
2D-Raumkurve

Abbildung 4.4: Sequenzielle
3D-Raumkurve

4.5.3 Hilbert-Kurve

Die Hilbert-Kurve ist eine rekursiv konstruierte raumfüllende Kurve, die schon im Jahre
1891 von David Hilbert entdeckt wurde. Sie lässt sich ebenfalls in die zeitgleich entdeckten
Peano-Kurven einordnen. Im Gegensatz zur bereits vorgestellten sequenziellen Raumkurve
ist die Hilbert-Kurve stetig, enthält also, abgesehen von den Übergängen an den Rändern
des Id-Raumes, keine Sprünge. Außerdem zeichnet sie sich durch einen wesentlich besseren
Erhalt der Lokalität, also der Nachbarschaft, der einzelnen Punkte im Raum bzw. auf der
Kurve aus, was die beabsichtigte Id-Transformation erleichtert. Punkte, die auf der Kurve
nahe beieinander liegen, liegen also auch im Raum nahe beieinander. Für ausführlichere
Betrachtungen zu diesem Thema wird auf [MAK02] verwiesen.

Die Implementierung der Hilbert-Kurve ist allerdings um einiges aufwändiger. Einen Ansatz
hierzu liefert [SLP09] und [But06].

Abbildung 4.5 und Abbildung 4.6 zeigen die entstehende Kurve beispielhaft.

Im Allgemeinen stellt die Hilbert-Kurve eine wesentlich elegantere Lösung der Adresstrans-
formation als die sequenzielle Raumkurve dar.

4.5.4 Optimale Raumkurven

Neben den generischen Raumkurven, die geordnet und nach mathematischen Vorgaben
den Raum, mehr oder weniger, gleichmäßig füllen, sind auch Raumkurven denkbar, die
weniger auf das gleichmäßige Füllen des Raums sondern an der Optimierung der Nachbar-
schaftsbeziehungen ausgerichtet sind. Obwohl für einzelne Netzwerkstrukturen optimale
Raumkurven existieren, die entsprechende Nachbarschaftsbeziehungen gewährleisten, dass

33

4 Vorbedingungen für die Transformation

Abbildung 4.5: 2D-Hilbert-Kurve Abbildung 4.6: 3D-Hilbert-Kurve

keine oder nur wenige, zusätzliche Verbindungen aufgebaut werden müssen, sind diese nur
für diese eine oder wenige Knotenverteilungen optimal.

Algorithmen zur Verwaltung und Steuerung der Netzwerke müssen mit verschiedenen
Verteilungen der teilnehmenden Knoten zurechtkommen. Eine optimierte Raumkurve kann
aber nicht für alle Knotenverteilungen optimal sein. Um für jede Transformation eine neue
optimale Raumkurve zu nutzen, müsste zumindest die aktuelle Knotenverteilung bekannt
sein, was wiederum eine meistens nicht gegebene globale Sicht voraussetzen würde. Solange
dies der Fall ist, ist die Nutzung einer optimierten Raumkurve wenig sinnvoll.

4.5.5 Eignung der Raumkurven für die Transformation

Durch die Betrachtung der verschiedenen raumfüllenden Kurven stellt sich die Frage, welche
Raumkurven sich besonders für die Übersetzung der verwendeten Identifier und somit
für die geplante Transformation der Overlaynetze eignen. Hierzu können vor allem drei
Kriterien betrachtet werden.

Die Kurve sollte einfach zu berechnen und zu handhaben sein. Außerdem ist es vorteilhaft
für die Transformation, wenn Adressen, die auf der Kurve nahe beieinander liegen, auch im
Raum nahe beieinander liegen. Hierdurch wird die Lokalität beziehungsweise die Nachbar-
schaft der Knoten weniger Veränderungen unterworfen. Von großer Bedeutung ist außerdem
die Übertragbarkeit des Konstruktionsprinzips der Raumkurven auf mehrere Dimensionen.
Ist dies nicht oder nur unter großem Aufwand der Fall, können Overlaynetze wie CAN,
in denen die Relationen zwischen den Dimensionen eine große Rolle spielen, nur schwer
unterstützt werden.

Die im weiteren Verlauf dieser Arbeit relevanten Raumkurven wurden bereits genauer
beschrieben. Diese speziellen Kurven wurden auf Grund ihrer einfachen Berechenbarkeit im

34

4.5 Adresstransformation

Fall der sequenziellen Raumkurve, beziehungsweise ihrer guten Eignung für das Transfor-
mationsergebnis im Fall der Hilbert-Kurve ausgewählt. Aus den Ergebnissen von [MAK02]
kann gefolgert werden, dass sich die Hilbert-Kurve im Hinblick auf Sprunghaftigkeit und
Kontinuität am besten für die in dieser Arbeit beabsichtigte Transformation eignet.

35

Kapitel 5

Konzepte für die Transformation

In diesem Kapitel werden Möglichkeiten behandelt, um verschiedene Overlaystrukturen
ineinander zu überführen. Diese werden in die bereits erläuterte Architektur eingefügt. Um
einen Überblick über die Möglichkeiten zu geben, werden zunächst einige naive Transfor-
mationsmethoden erläutert. In Abbildung 5.2 wird schließlich ein Ansatz vertieft und im
Anschluss zu den naiven Transformationsmethoden in Relation gesetzt.

Dabei wird das allgemeine Vorgehen für die Transformation am Beispiel der Hin- und
Rücktransformation zwischen den Protokollen Chord und CAN beschrieben. Da die Über-
legungen in dieser Arbeit auf einem modularen Aufbau der Transformation basieren sind
andere Transformationsprotokolle mit abweichenden Ansätzen denkbar. Dies ist besonders
dann der Fall, wenn dabei eine Transformation zwischen anderen Protokollen ermöglicht
werden soll.

5.1 Naive Transformationsmethoden

Für die konkrete Durchführung der Transformation sind verschiedene Vorgehensweisen
möglich. Hier wird zunächst ein generischer Ansatz beschrieben. Im Anschluss hieran wird
ein optimierter Ansatz durch die Nutzung eines Hybridnetzwerkes erläutert. Diese beiden
Ansätze werden anschließend in Abschnitt 6 bewertet und diskutiert.

Aus Gründen der Überschaubarkeit und Wiederverwendbarkeit bietet sich eine Aufteilung
auf dedizierte und austauschbare Module für unidirektionale Transformationen an. Diese
sollten sowohl das Transformationskriterium als auch die eigentlichen Transformationsfunk-
tionalitäten enthalten.

Zunächst werden in diesem Abschnitt einige naive Ansätze für die Transformation erläutert.
Hierbei werden ebenso die grundlegenden Annahmen sowie auch die sich dabei ergebenden
Probleme weiter vertieft.

37

5 Konzepte für die Transformation

5.1.1 Direktes Überführen der Knoten

Der direkteste Lösungsansatz ist es, jeden einzelnen Knoten sequenziell aus dem Ausgangs-
netzwerk in das Zielnetzwerk zu überführen. Der Knoten, der die Transformation auslöst,
initialisiert hierbei das Zielnetzwerk. Entsprechend der Gestalt des Ausgangs- und Ziel-
netzwerkes muss hierbei gegebenenfalls die Id mit der in Abschnitt 4.5 schon behandelten
Methode transformiert werden. Im weiteren Verlauf der Transformation verlässt jeder wei-
tere Knoten das Ausgangsnetzwerk und tritt dem Zielnetzwerk bei. Die von den Knoten
verwalteten Nutzdaten verbleiben zunächst auf den jeweiligen Knoten und werden erst nach
Abschluss der Transformation auf ihre neuen Knoten transferiert.

Hierdurch ist es allerdings nicht ohne Weiteres möglich, während der Transformation
Anfragen an das Netzwerk zu stellen. Wird dies dennoch versucht müssen insgesamt vier
Lookups gestellt werden, jeweils zwei Anfragen an jedes der beiden Teilnetzwerke, von
denen jeweils eine die originale und eine die transformierte Id nutzt. Hierbei steigen sowohl
Netzwerklast durch die erhöhte Zahl der Anfragen als auch der Berechnungsaufwand auf
den teilnehmenden Knoten, da es gegebenenfalls nicht ausreicht die Nutzdaten nur mit Hilfe
der Id abzugleichen.

Zusätzlich kann dieser Ansatz erweitert werden, um eine partielle Transformation des
Netzwerkes zu ermöglichen. In dieser könnten mehrere verschiedene Netzwerktopologien
kooperativ betrieben werden.

Hierzu müsste allerdings global bekannt sein wo die Grenze für die Transformation verläuft,
da ansonsten nicht sichergestellt werden kann dass der für die angefragte Id zuständi-
ge Knoten das ihm übergebene Adressformat behandeln kann. Wird dies vorausgesetzt,
muss die Kommunikation dennoch über Gatewayknoten umgeleitet werden, denen die
Adressabbildung möglich ist. Dies würde jedoch zu einer starken Mehrbelastung oder sogar
Überlastung einzelner Netzwerkknoten führen. Diese beispielhafte Situation während der
Transformation wird in Abbildung 5.1 gezeigt.

Chord CAN

direkter
Lookup

umgeleitete
Lookups

direkter
Lookup

SPoF

Abbildung 5.1: Koexistenz von Chord- und CAN-Netzwerken

38

5.1 Naive Transformationsmethoden

Um diese Situation zu entschärfen, muss eine Hierarchie von Vertretern oder Gatewayknoten
aufgebaut werden. Diese übernehmen beziehungsweise steuern die Kommunikation und
Adressumwandlung zwischen den einzelnen Netzwerkteilen. So lässt sich die Last auf die
individuellen Knoten reduzieren. In jedem Fall sind aber die an dieser Hierarchie beteiligten
Knoten einer Mehrbelastung unterworfen, was die Fairness stark beeinträchtigt.

5.1.2 Teile und Herrsche

Ausgehend von dem Ansatz, das Problem in mehrere kleinere, leichter zu lösende Probleme
aufzuteilen und so leichter beherrschbar zu machen, kann das Netz getreu dem Motto „Teile
und Herrsche“ transformiert werden. Folgende vier Schritte sind dafür nötig.

Im ersten Schritt wird das Netzwerk in X kleinere Bereiche aufgeteilt. Dies kann durch
begrenztes Fluten oder Coloring-Algorithmen erreicht werden. Alternativ kann auch der Initi-
alknoten die Teilung explizit vornehmen und diese mit Hilfe einer Transformationsnachricht
verbreiten.

Im Anschluss hieran muss in jedem Bereich die absolute Sicht hergestellt werden. Hierzu wür-
den sich unter anderem Gossipingverfahren eignen, mit denen die benötigten Informationen
in O(log n) Schritten verbreitet werden können.

Im nächsten Schritt kann aus jedem der X Bereiche eine kleine Instanz des Zielnetzwerkes
gebildet werden. Der Aufbau dieser Instanz kann sehr gut optimiert werden, da jeder Knoten
über die absolute Sicht in seinem Bereich verfügt. Im Falle eines CAN-Zielnetzwerkes
kann jeder Knoten seine position im CAN-Partitionierungsbaum errechnen. Durch die
Positionen in diesem kann jeder Knoten seine Ausdehnung und Posion bestimmen und seine
individuelle Routingtabelle auf dieser Grundlage füllen. In Chord-Netzwerken reicht hierbei
eine bloße Sortierung der Knoten aus um die hinreichende Invariante zu gewährleisten.

Im letzten Schritt werden die in den vorherigen Schritten erzeugten Bereiche wieder mitein-
ander verschmolzen. Das Vorgehen muss hierzu an den Typ des jeweiligen Zielnetzwerkes
angepasst werden. Das Verschmelzen der Bereiche kann optimiert werden, indem jeder
Bereich zunächst ein Netzwerk auf einer Teilmenge des gesamten Id-Raums aufbaut. Dem
entsprechend können optimierte Verfahren entwickelt werden um die Netzwerke effizien-
ter zu verschmelzen. Auf diesem Gebiet wurden bereits verschiedene Anstrengungen zu
verschiedenen Netzwerken unternommen, die als Ansatzpunkte hierfür dienen können.
[Dat07, DA06, MJB05, SGH07] Abbildung 5.2 zeigt die drei Zustände der optimierten Trans-
formation von einem CAN-Netzwerk in ein Chord-Netzwerk unter der Nutzung von fünf
kleinen Chord-Netzwerken.

Die folgenden Probleme mit diesem Lösungsansatz haben zu dessen Ausschluss geführt:
Ein Problem an diesem Ansatz ist die Größe und Anzahl der Bereiche optimal festzulegen.
Bei der Nutzung zu vieler Bereiche steigt der Aufwand zur Verschmelzung der einzelnen
Bereiche stark an. Werden zu wenige Bereiche genutzt, steigt der Aufwand zur Herstellung
der absoluten Sichten in den Bereichen ebenso stark an. Ein weiteres hiermit zusammenhän-
gendes Problem ist die Wahl der Grenzen zwischen den Bereichen. Für den Fall, dass diese

39

5 Konzepte für die Transformation

20 10

30 20

50 4040 30

10 0

↔ ↔

CAN

60 0

10

2030

50

Chord

Abbildung 5.2: Transformation durch Teilen und Zusammenführen

statisch vorgegeben sind, ist die ganze Transformation sehr unflexibel. Werden die Bereiche
dynamisch gehandhabt steigt der Koordinations- und damit Kommunikationsaufwand. Das
dritte Hauptproblem umfasst die Problemstellung des Verschmelzens verschiedener Bereiche
in bestimmten Netzwerken. Im konkreten Fall betrifft dies das Verschmelzen von mehreren
CAN-Netzwerken. Entsprechend treten Probleme auf, wenn CAN-Knoten für mehrere Berei-
che verantwortlich sind oder sich ein Bereich nicht auf einen eindimensionalen Bereich auf
dem Chord-Ring reduzieren lässt.

Weiterhin kann es bei dieser Lösung zu Problemen führen, die globale Sicht in einem Bereich
herzustellen, wenn Knoten das Netzwerk verlassen oder betreten, sofern die Transformation
noch nicht abgeschlossen ist.

5.1.3 Nebenläufige Neukonstruktion

Bei dieser Transformationsmethode wird das Zielnetzwerk nebenläufig zum Ausgangs-
netzwerk aufgebaut und betrieben. Während dieser Zeit werden alle Anfragen weiter an
das Ausgangsnetzwerk gestellt. Das neue Netzwerk übernimmt die Funktion erst, wenn
alle Informationen komplett transferiert wurden, d. h. wenn alle Schlüssel/Wert-Paare im
Ausgangs- und im Zielnetzwerk vorhanden sind. Obwohl alle Änderungen an Inhalten sowie
beitretende und verlassende Knoten in beiden Netzwerken behandelt werden, müssen alle
Anfragen vom Ausgangsnetzwerk bearbeitet werden.

Im Einzelnen folgt dieser Vorgang den folgenden Schritten: Sobald ein Knoten die Transfor-
mation beginnt, initialisiert dieser eine Instanz des Zielnetzwerkes. In diesem Netzwerk ist
der Initialknoten für den gesamten Identifierraum zuständig. Daraufhin wird das Netzwerk
mit Transformationsnachrichten geflutet.

Zur Ausbreitung der Transformationswelle wird der Echo-Algorithmus [Tel00] verwendet.
Dieser erreicht mit einer Hinwelle alle Knoten und initialisiert hierbei die Transformation
auf allen Knoten. Jeder Knoten den die Transformationsnachricht erreicht tritt dem Ziel-
netzwerk bei. Als Kontaktknoten wird hierfür der Vorgänger aus der Transformationswelle
verwendet, außerdem ist dieser durch die Nutzung des Echo Algorithmus den einzelnen

40

5.1 Naive Transformationsmethoden

Knoten schon bekannt. So wird verhindert, dass einzelne Knoten dadurch überlastet werden.
Zusätzlich wird eine Rückwelle ausgelöst die genau dann über die Knoten zurück läuft,
wenn der Beitrittsvorgang im Zielnetzwerk abgeschlossen ist. Als Ergebnis hiervon kommt
die Rückwelle beim Initialknoten an, wenn alle Knoten dem Zielnetzwerk beigetreten sind.
Zu diesem Zeitpunkt existieren Ausgang- und Zielnetzwerk simultan auf allen Knoten
in ihrer finalen Topologie. Jedoch enthält das Zielnetzwerk bisher keine Nutzdaten, also
Schlüssel/Wert-Paare. Um diese zu übertragen, wird eine weitere Transformationsnachricht
über den, mit dem Echo-Algorithmus implementierten, Weiterleitungsbaum gesendet. Jeder
Knoten, den diese Transformationsnachricht erreicht, fügt alle seine Schlüssel/Wert-Paare
dem Zielnetzwerk hinzu.

Bei diesem Vorgang werden für alle Interaktionen mit dem Zielnetzwerk und mit der in Ab-
schnitt 4.5 behandelten Adresstransformation neu erzeugte Ids verwendet. Die Zuständigkeit
für einen Großteil der Inhalte wird so auf andere Knoten verschoben. Folglich müssen auch
die entsprechenden Schlüssel/Wert-Paare nicht nur lokal sondern über das Netzwerk auf
andere Knoten übertragen werden. Der Abschluss der Nutzdatenübertragung löst wiederum
eine Rückwelle aus, mit deren Eintreffen das Ausgangsnetzwerk verlassen werden kann.

Abschnitt 5.3 zeigt die beiden nebenläufig betriebenen Netzwerke und die Protokollinstanzen,
die auf den gleichen Knoten ausgeführt werden.

Chord CAN

Abbildung 5.3: Nebenläufig betriebene Chord- und CAN-Netzwerke

Obwohl dieser Ansatz bereits viele der gestellten Anforderungen erfüllt, kann er negati-
ve Auswirkungen auf die Leistung überlagerter Dienste haben. Wird beispielsweise ein
Publish/Subscribe-System betrieben das auf Verteilbäumen basiert, müssen die Verteilbäume
vollkommen neu aufgebaut werden.

41

5 Konzepte für die Transformation

Aufwandsabschätzung Chord↔ CAN

Da dieser Ansatz im Folgenden als Referenz dienen soll, wird der hierfür benötigte Aufwand
in Hinsicht auf die Nachrichtenkomplexität nochmals genauer abgeschätzt. Der Aufwand für
diese Transformationsmethode setzt sich aus den folgenden Bestandteilen zusammen: Aus-
schlaggebend ist hierbei dass bis zum Abschluss des Informationstransfers beide Netzwerke
simultan betrieben werden müssen. Zusätzlich müssen für die Dauer der Transformation
beide Netzwerke aufrecht erhalten werden, hierdurch fällt der entsprechende Kommunikati-
onsaufwand für beide Netzwerke an.

Es sei n die Anzahl der Knoten und e die Anzahl der Kanten beziehungsweise Nachbar-
schaftsbeziehungen.

Um die Transformation einzuleiten wird die Hinwelle des Echo-Algorithmus genutzt. Zur
Durchführung des Algorithmus senden alle Knoten eine Nachricht über ihre inzidenten
Kanten. Dies Entspricht 2e Nachrichten für die Hinwelle. Ausgenommen ist hiervon jeweils
die Aktivierungskante. Dadurch werden −n Nachrichten weniger versendet. Wiederum die
Ausnahme hiervon bildet der initiale Knoten, der Nachrichten über alle seiner inzidenten
Kanten sendet, also +1. Insgesamt entspricht dies 2e− n+ 1 Nachrichten für die Anwendung
des Echo-Algorithmus, dies entspricht einer Hin- und einer Rückwelle. Hiervon werden im
Verlauf der Transformation zwei Wellen, also 4e− 2n + 2 Nachrichten benötigt.

Für den Beitritt in das neue Netzwerk werden im Mittel
n−1
∑

i=1
2 + log i Nachrichten benötigt,

um den geeigneten Knoten für den Beitritt im neuen Netzwerk zu finden. Dies entspricht
einer Nachricht für den Beginn des Beitritts, einer für die Übertragung der Beitrittsdaten
und der mittleren Routingdistanz über die bereits beigetretenen Knoten.

Anschließend werden abhängig vom Protokoll des Zielnetzwerkes weitere Nachrichten für
den Aufbau und die Validierung der Routingtabelle des Zielnetzwerkes benötigt. Für Chord
als Zielprotokoll sind dies im Mittel log2 n Nachrichten pro Knoten für den direkten Lookup
der Nachbarn. Für CAN als Zielprotokoll sind dies mindestens d/2 Nachrichten pro Knoten
für das Informieren der Nachbarn des neu beigetretenen Knotens. Hieraus ergeben sich
n ∗ log2 n beziehungsweise n ∗ d/2 Nachrichten für die gesamte Transformation.

Um die Transformation zu komplettieren müssen noch die Schlüssel/Wert-Paare auf die
im neuen Netzwerk zuständigen Knoten übertragen werden. Hierzu muss zunächst der
Partnerknoten durch einen zusätzlichen Lookup ermittelt werden. Hierzu werden n ∗ log n
Nachrichten benötigt. Und noch einmal n Nachrichten für die Übertragung selbst.

Beim Vergleich der Hin- und Rücktransformation unterscheidet sich lediglich der Aufwand
für den Aufbau und die Validierung der Routingtabelle. Im Fall von CAN findet der Aufbau
der Routingtabelle auf dem beitretenden Knoten in einem Schritt statt. Zusätzlich fallen
Nachrichten für das Informieren der Hälfte der Nachbarknoten an. Die anderen Aufwände
unterscheiden sich nicht signifikant.

Weitere Betrachtungen zur Komplexität finden sich in Abschnitt 5.3.1.

42

5.2 Transformation mit Hilfe eines Hybridnetzwerkes

5.2 Transformation mit Hilfe eines Hybridnetzwerkes

Dieser optimierte Ansatz beruht auf dem Grundsatz möglichst viele Informationen aus
dem Ausgangsnetzwerk wiederzuverwenden und auch auf dem bereits verworfenen Ansatz
der direkten Überführung der Knoten aus Abschnitt 5.1.1. Besonders die bereits bestehen-
den Routingtabellen sollen wiederverwendet werden, da hiervon viele Einträge auch im
Zielnetzwerk benötigt werden.

5.2.1 Ansatz

Um den lokalen Zustand möglichst klein zu gestalten werden die Protokolle nicht nebenläufig
betrieben, sondern werden möglichst nahtlos ineinander überführt. Damit hierbei keine
Informationen verloren gehen werden diese in das jeweils folgende Protokoll übernommen.

Zunächst werden für jeden teilnehmenden Knoten drei Zustände eingeführt, in denen jeweils
nur ein Protokoll zurzeit auf dem jeweiligen Knoten betrieben wird. Diese beschreiben den
Betrieb des Ausgangsprotokolls vor der Transformation (pre), den Betrieb des Transformati-
onsprotokolls während der Transformation (trans) und den Betrieb des Zielprotokolls nach
der Transformation (post).

Auch unter Nutzung dieses Ansatzes ist eine Id-Transformation mit Hilfe der Hilbert-
Kurve vorgesehen, jedoch ist diese nur nötig, wenn sich der Kommunikationspartner in
einem anderen Transformationszustand befindet. Hierdurch und durch die Nutzung der in
Abschnitt 4.4 vorgestellten Architektur, wird der unabhängige Betrieb der Protokolle in den
Zuständen pre und post ermöglicht. Der Unterschied zu den anderen vorgestellten Verfahren
liegt darin, dass die Id-Transformation erst mit dem Wechsel des genutzten Protokolls
stattfindet.

Innerhalb des hybriden Transformationsprotokolls müssen die Zuständigkeit und der
Id-Verlauf definiert werden. Hierzu werden einige Vorgaben aus den Chord- und CAN-
Protokollen verwendet. Die Zuständigkeit für bestimmte Id-Bereiche wird von Chord ab-
geleitet, jedoch werden hieraus einzelne Bereiche gebildet, wie sie in CAN üblich sind.
Als Konsequenz hieraus entstehen auf jedem Knoten mehrere Bereiche die sich dadurch
auszeichnen, dass sie von einem Teil der verwendeten Raumkurve stetig durchlaufen werden.
Abbildung 5.4 zeigt einige Knoten auf einem, entsprechend der Hilbert-Kurve verlaufenden
Chord-Ring und deren Zuständigkeit für die einzelnen Ids. Das Routing basiert entsprechend
der Bereichsdefinition ebenfalls auf dem CAN-Protokoll und wird in Abschnitt 5.2.4 weiter
erläutert. Abbildung 5.5 zeigt die potentiellen Verbindungen eines Bereichs im hybriden
Protokoll.

5.2.2 Ablauf der Tansformation

Um die optimierte Transformation durchzuführen, müssen folgende Aktionen auf jedem
Knoten ausgeführt werden. Zuerst muss die Transformation initialisiert werden. Hierzu geht

43

5 Konzepte für die Transformation

0

Abbildung 5.4: Zuständigkeit im
Hybridnetzwerk

0 N

Abbildung 5.5: Verbindungen im
Hybridnetzwerk

der Initialknoten in den trans Zustand über und sendet eine Transformationsnachricht an
seine Nachbarn.

Die Transformationsnachricht enthält neben dem Vorgänger im Transformationsbaum auch
das Zielprotokoll sowie das verwendete Transformationsprotokoll. Das Transformations-
protokoll wiederum ist abhängig vom Zielprotokoll und sammelt alle, für den Betrieb des
Zielprotokolls benötigten, Routingtabelleneinträge. Der Übergang von pre zu trans findet,
wie auch bei der nebenläufigen Transformation, durch den Echo-Algorithmus[Tel00] statt.
Konkret breitet sich die Transformationswelle hierbei epidemisch aus. Zum Zustandsüber-
gang zählt ebenfalls die Initialisierung des Transformationsprotokolls auf dem jeweiligen
Knoten. Hierzu müssen sowohl die Id als auch der Zuständigkeitsbereich ermittelt werden.
Der Aufwand hierfür ist vor allem von der für die Adresstransformation verwendeten Raum-
kurve abhängig. Um den Zuständigkeitsbereich zu beschreiben werden mehrere virtuelle
Protokollknoten (VProtocol) innerhalb des Protokolls verwaltet. Diese beschreiben rechteckige
Bereiche und überspannen einen kontinuierlichen Bereich auf der Raumkurve. In Abbil-
dung 5.6 sind ein fehlerhafter und ein korrekt aufgebauter Bereich dargestellt. Zusätzlich
werden alle Routinginformationen, über die der Anfangsprotokollknoten verfügt, in die
jeweiligen VProtocole übernommen.

Im Fall der Transformation vom CAN- zum Chord-Protokoll ist zusätzlich das Vorhalten
einer Chord-Routingtabelle vorgesehen. Dies ist nur dann nötig wenn eine möglichst rei-
bungslose Transformation ins Chord-Netzwerk ermöglicht werden soll. Dies wird später
weiter erläutert.

Nach der Initialisierung des Transformationsprotokolls wird mit der Suche der im Zielpro-
tokoll benötigten Nachbarn begonnen. Die verschiedenen Vorgehensweisen hierzu werden
in Abschnitt 5.2.3 erläutert. Sobald alle benötigten Nachbarn gefunden sind kann die Rück-
welle des Echo-Algorithmus gestartet beziehungsweise fortgesetzt werden. Die Blätter des

44

5.2 Transformation mit Hilfe eines Hybridnetzwerkes

Abbildung 5.6: Fehlerhaft (links) und korrekt (rechts) konstruierte Bereiche im
Transformationsprotokoll

Transformationsbaums senden hierbei in regelmäßigen Abständen den Fortschritt ihrer
Transformation und Optimierung über den Transformationsbaum zum Initialknoten.

In diesem Fall wird mit der Optimierung des lokalen Zustands fortgefahren. Der lokale Zu-
stand kann bei Verwendung von regelmäßigen Transformationsnachrichten schon optimiert
werden bevor alle Nachbarn bekannt sind. Falls es hierbei zur Migration von VProtocolen
kommt muss der neue Knoten die entsprechenden Nachbarn suchen. Die Optimierung des
lokalen Zustands wird in Abschnitt 5.2.5 eingehender beschrieben.

Der Fortschritt und die Terminierung der Transformation wird durch die regelmäßigen Sta-
tusnachrichten vom Initialknoten erkannt. Hierbei ist kein spezielles Verfahren zur Wahrung
der Kausalität der Beobachtung (Doppelzählverfahren) nötig, da das Terminierungsattribut
als stabil angenommen wird. Auch der Grad der Optimierung wird auf Grund des ange-
wandten Verfahrens als stabil angenommen. Der Grad der Optimierung, der hierbei durch
das Aggregat der Rankingwerte definiert ist, kann also nicht sinken. Der Initiator kann die
Transformation beenden, sobald alle Knoten über die hierfür erforderlichen Nachbarschafts-
informationen verfügen und lediglich noch Optimierungen vorgenommen werden.

Zu diesem Zeitpunkt oder nach Überschreiten einer Optimierungs- oder Zeitschwelle kann
der Initialknoten das Ende des Vorgangs einleiten, indem er eine weitere Transformations-
nachricht mit Hilfe des Echo-Algorithmus aussendet. Durch die entsprechende Rückwelle
kann die Terminierung des gesamten Vorgangs festgestellt werden.

Dieser Vorgang ist am Beispiel einer Transformation von Chord nach CAN in Abbildung 5.7
dargestellt. Hierbei ist zu beachten, dass Knoten im CAN für mehrere Bereiche verantwortlich
sein können. Die Transformation findet von Chord (links) über verschiedene Transforma-
tionsstufen bis hin zum Endprodukt der Transformation (rechts) zu CAN statt. Dies wird
durch den Schritt der Optimierung, der in Abschnitt 5.2.5 beschrieben wird, verbessert.

Transformationsalgorithmus

Abbildung 5.1 und Abbildung 5.2 zeigen die allgemeine algorithmische Vorgehensweise
um die Transformation aus Sicht eines einzelnen Knotens durchzuführen. Aus Gründen der
Verständlichkeit wurden hierbei einige Vereinfachungen vorgenommen.

45

5 Konzepte für die Transformation

Chord (pre) Hybrid (trans) CAN (post)

Abbildung 5.7: Transformation mit Hilfe eines Hybridnetzwerkes

Die dem Knoten neu zugestellten Nachrichten laufen hierbei in der Methode processEvent auf.
Hier wird eine erste Unterscheidung der vorzunehmenden Aufgaben getroffen. Während in
processTransformation alle die Transformation betreffenden Aktionen durchgeführt werden,
finden die sonstigen, üblicherweise bei Eintreffen einer Nachricht, ausgeführten Aktionen in
processEventLocal statt. Im Weiteren werden nur die Transformationsspezifischen Aktionen
weiter behandelt.

processEvent(message)
// do transformation specific event processing
processTransformation(message)
// do node specific event processing

5 processEventLocal(message)

processTransformation(message)
// if message is a transformation message
if (message IS TransformationMessage) {

10 // prevent cycles - only start same transformation once
if (message.transformationStatus IS NOT HybridTransport.transformationStatus) {

if (message.TransformationStatus IS trans) {
// initilize transformation
startTransformation(message)

15 } else if (message.TransformationStatus IS post) {
// stop transformation
finishTransformation(message)

}
}

20 }
// in every case check if any useable contained information and optimize local state
filterNeededIds(message)
optimizeLocalState()

Listing 5.1: Algorithmus für Transformation mit Hilfe eines Hybridnetzwerkes

Für die Transformation ist generell jede empfangene Nachricht von Interesse, da jede Nach-
richt Informationen über bisher unbekannte Knoten enthalten kann. Nach dem Empfang
von Nachrichten wird außerdem der lokale Zustand optimiert. Dies wird am Ende der

46

5.2 Transformation mit Hilfe eines Hybridnetzwerkes

processTransformation Methode für jede Nachricht geprüft. Abgesehen von dieser Ausnahme
sind für die Transformation im Weiteren nur die Transformationsnachrichten von Inter-
esse. Wird eine Transformationsnachricht mit einem vom lokalen Zustand abweichenden
Transformationsstatus empfangen, wird die Transformation lokal gestartet beziehungsweise
beendet.

Im letzten Schritt, also nach dem Starten oder Stoppen der Transformation, werden neue
Transformationsnachrichten erstellt und an alle Nachbarn, ausgenommen des Senders
der auslösenden Nachricht, weitergeleitet. Hierdurch wird der Transformationsbaum,
entsprechend des Echo-Algorithmus aufgebaut.

startTransformation(message)
// set target protocol id
id = sfc.translate(preProtocol.id)
// copy neighbor information

5 getNeighborInformation(preProtocol)

// start transformation on transport layer
transport.startTransformation(message)

10 // forward transformation message
forwardMessage(message)

// prepare id search
setUpNeededIds()

15 filterNeededIds(neighbors)

// start timers - only once every CHALLANGE_TIME do
startActiveSearchTimer(0, CHALLANGE_TIME)
startMutualOptimisationTimer(0, CHALLANGE_TIME)

20

finishTransformation(message)
// stop timers
stopActiveSearchTimer()
stopMutualOptimisationTimer()

25

// set target protocol id
toProtocol.id = id
// copy neighbor information
setNeighborInformation(pastProtocol)

30

// forward transformation message
forwardMessage(message)

// stop transformation on transport layer
35 transport.finishTransformation(message)

forwardMessage(message)
// forward to all neighbors except transformation parent and save parent
transformationParent = message.sender

40 foreach (Node n IN neighbors) {
if (n IS NOT transformationParent) {

TransformationMessage msg = new TransformationMessage(node, n.protocol.id)

47

5 Konzepte für die Transformation

msg.tStatus = message.tStatus
transport.send(n, msg)

45 }
}

Listing 5.2: Algorithmen zum Start und Stop der Transformation

Zum Starten und Ausbreiten der Transformation wird die Methode startTransformation ge-
nutzt. Entsprechend des vorgestellten Vorgehens wird nun die Id des HybridProtokolls gesetzt.
Hierbei muss die bereits behandelte Id-Transformation angewendet werden. Außerdem wer-
den die Routinginformationen sowie die verwalteten Inhalte aus dem Ausgangsprotokoll in
das Transformationsprotokoll übertragen. Im Anschluss hieran kann das HybridProtokoll die
weitere Kommunikation übernehmen. Hierzu wird die Transformation im HybridTransport
(this.ht) gestartet, woraufhin alle zukünftig eintreffenden Pakete an das HybridProtokoll wei-
tergeleitet werden. Zuvor wurden nur die Transformationsnachrichten an das HybridProtokoll
weitergeleitet.

Zusätzlich wird die aktive Suche nach bisher nicht bekannten, aber benötigten Knoten
initialisiert. Die Suche wird hierbei durch einen Timer gesteuert, der erst am Ende der
Transformation gestoppt wird und bis zu diesem Zeitpunkt alle CHALLANGE_TIME neu auf-
gerufen wird. Der erste Aufruf erfolgt allerdings sofort. Entsprechend wird die Nachbarsuche
und Optimierung zum Beenden der Transformation gestoppt. Mit welchen Mechanismen
die Nachbarn gefunden werden können wird in Abschnitt 5.2.3 beschrieben. Ähnlich wie
die Suche nach Nachbarn wird hier auch die gegenseitige Optimierung des Zustands der
Knoten gestartet. Die zugehörigen Mechanismen werden in Abschnitt 5.2.5 beschrieben.

Analog hierzu ist der Ablauf in der Methode finishTransformation. In dieser wird das Ziel-
protokoll vorbereitet, in dem die Id und notwendigen Routingeinträge und damit die
Nachbarschaftsbeziehungen transferiert werden. Zuvor wird jedoch die Nachbarsuche sowie
die gegenseitige Optimierung ausgehend von dem aktuellen Knoten gestoppt.

5.2.3 Nachbarsuche

Eines der zentralen Probleme dieses Ansatzes ist die Ermittlung der Nachbarn im Zielnetz-
werk. Bei anderen Ansätzen wird dieses Problem umgangen, indem der jeweilige Beitrittsme-
chanismus des Netzwerkes verwendet wird. In jedem Fall muss zunächst festgestellt werden,
welche Ids von den Nachbarn verwaltet werden.

Dabei sind verschiedene Vorgehensweisen denkbar. Der direkteste Ansatz hierzu ist der
Lookup der in Frage kommenden Ids. Hierzu muss eine überschaubare Zahl von potentiellen
Nachbar-Ids vorliegen. Ist dies nicht der Fall können Gossiping-Algorithmen eingesetzt
werden, mit deren Hilfe die Knoten des Transformationsnetzwerks Informationen über ihre
Nachbarknoten austauschen können. Hierdurch kann das Problem der Nachbarsuche mit
logarithmischem Aufwand gelöst werden. Alternativ zu den beiden erwähnten Möglichkeiten
können spezifisch auf das Zielnetzwerk und deren Besonderheiten abgestimmte Verfahren
genutzt werden.

48

5.2 Transformation mit Hilfe eines Hybridnetzwerkes

Chord Nachbarsuche

Die Suche der Nachbarn in einem Chord-Netzwerk folgt strengen Regeln und kann genau
vorausbestimmt werden. Hierdurch kann die Nützlichkeit von direkten Lookups bewertet
werden.

Abbildung 5.8 zeigt die Nachbarn eines Chord-Knotens. Diese können ausgehend von der Id
X des jeweiligen Knotens berechnet werden. Hierbei sind die Nachbarn in der Finger-Liste
als die Knoten definiert, die für die Ids x + 2i mit i = 0.. log N verantwortlich sind. Zusätzlich
werden die S = SuccessorListSize nächsten Knoten auf dem Ring benötigt.

Teil der Successor-Liste

n=0
n=1

n=2

n=3n id
0 X + 1
1 X + 2
2 X + 4
3 X + 8

id=X

Id-Bereich 0..16

Abbildung 5.8: Nachbarn eines Chord-
Knotens

Abbildung 5.9: Nachbarn eines CAN-
Bereichs

Hiermit ergeben sich log N + S Ids, für die Lookups durchgeführt werden müssen. Dies lässt
sich ein wenig durch die Nutzung der Überschneidung zwischen Finger-Liste und Successor-
Liste reduzieren. Für Werte aus realen Netzwerken lassen sich folgende Werte annehmen. Für
die Größe des Identifierraums N = 2128 und S = 8 für die Länge der Successor-Liste ergibt
sich die Zahl der Lookups zu log 2128 + 8 = 136. Für ein Netz mit 1.000 Knoten würden also
136.000 Lookups benötigt werden, damit alle Knoten ihre Routingtabellen füllen können.

Jedoch benötigt das Chord-Protokoll zum Beginn des Betriebs nur die hinreichende Invarian-
te, welche besagt dass der nächste Knoten auf dem Ring bekannt sein muss. Um dennoch
eine gewisse Ausfallsicherheit zu gewährleisten sollte zumindest die Successor-Liste gefüllt
werden. Hierdurch würden für ein Netz mit 1.000 Knoten 8.000 Lookups benötigt werden.
Die weiteren Lookups dienen nurnoch der Optimierung des Routings nach der Transforma-
tion und müssen nicht der Berechnungsvorschrift entsprechen. Also kann die Finger-Liste
mit den sortierten Einträgen aus der Routingtabelle des Ausgangsprotokolls gefüllt werden.
Diese können dann im regulären Betrieb des Chord-Protokolls aktualisiert und berechnet
werden.

49

5 Konzepte für die Transformation

Sofern mehr Lookups als nötig im Laufe der Transformation durchgeführt werden sollen, um
die Qualität des Zielnetzwerkes zu verbessern, müssen sowohl eine Chord-Finger-Tabelle,
sowie eine Chord-Successor-Tabelle im Transformationsprotokoll vorgehalten werden. Ist
dies nicht der Fall ist eine Chord-Successor-Tabelle ausreichend. Die Successor-Tabelle kann
beim Zustandswechsel mit Hilfe der zur Verfügung stehenden Daten befüllt werden.

CAN Nachbarsuche

Die Komplexität des CAN-Identifier-Raums verursacht bei der Nachbarsuche einige Schwie-
rigkeiten. Hierdurch ist es nicht praktikabel eine Liste von benötigten Ids zu erstellen und
diese den bereits bekannten Nachbarn zuzuordnen, wie es bei Chord ohne weiteres möglich
ist.

Abbildung 5.9 zeigt die potentiellen Nachbarn eines CAN-Bereiches in zwei und drei
Dimensionen. Um alle benötigten Ids zu errechnen müsste die vollständige Hülle um
alle Id-Bereiche des Knotens berechnet und aufgelistet werden. Genauer berechnet sich
die Zahl der Ids aus dem Produkt der Ausdehnung des Id-Bereichs in jeder Dimension

plus zwei. Dies entspricht NumId = 2 ∗
D
∏
d
(Bd + 2) und steigt mit zunehmender Zahl der

verwendeten Dimensionen exponentiell an. Dies steht jedoch in einem sehr großen Verhältnis
zur tatsächlichen Zahl der Nachbarn, die bei 2 ∗D liegt. Also ist es nicht erfolgsversprechend
für jede Kandidaten-Id einen Lookup durchzuführen. Die entstehende Liste kann durch die
bereits bekannten Nachbarn zwar stark eingeschränkt werden, jedoch bleibt typischerweise
eine große Anzahl der Ids unbelegt.

Eine Option hiermit umzugehen wäre sequenziell nur für wenige der Ids Lookups durchzu-
führen, die Ergebnisse in die Nachbarliste einzufügen und die benötigten Ids hiernach neu
zu berechnen. Beim sequenziellen Aufbau eines CAN-Netzwerkes tritt dies nicht auf, da die
Tatsache ausgenutzt wird, dass dem aufgeteilten Knoten alle benötigten Nachbarn bereits
bekannt sind. Es müssen also lediglich die Nachbarn des neuen Knotens benachrichtigt
werden, damit diese den neuen Knoten in ihre Routingtabelle aufnehmen.

Auch das zuvor bei der Untersuchung des Chord-Protokolls vorgeschlagene Verzichten
auf eine komplett gefüllte Routingtabelle und ist unter Nutzung des CAN-Protokolls nicht
möglich, da ein Fehlen von Nachbarn nicht ohne weiteres toleriert werden kann.

Eine speziell auf die vorliegende CAN-Topologie abgestimmte Methode, die Nachbarn eines
Bereiches zu finden, begründet sich auf dem im CAN-Protokoll vorgesehenen Verfahren um
das Netzwerk nach Knotenausfällen wiederherzustellen. Hierfür können die alternativen
Routingpfade traversiert werden, die normalerweise genutzt werden, um das Netzwerk von
ausgefallenen Knoten zu heilen.

In einem CAN-Netzwerk kann hierfür der Partitionierungsbaum genutzt werden. Dieser steht
während der Transformation nicht zur Verfügung, kann jedoch zumindest näherungsweise
aus der Größe und Position des Id-Bereiches ermittelt werden. Im Rahmen dieser Arbeit
wird dieser nicht verwendet und nicht konstruiert.

50

5.2 Transformation mit Hilfe eines Hybridnetzwerkes

Ein anderer Weg alternative Routingpfade zu finden, um sie zu traversieren, besteht darin
umgedrehte Lookups durchzuführen. Hierzu werden Nachrichten mit dem eigentlichen
Quellknoten als Ziel an einen bekannten, entfernten Knoten zum normalen Routing überge-
ben. Durch die Aufzeichnung und Auswertung des Routingpfades, auf dem die Nachricht
zurück zum Quellknoten geroutet wird, können neue Knoten und somit neue Nachbarkan-
didaten ermittelt werden.

5.2.4 Routing

Die vorgeschlagene Vorgehensweise für die Transformation baut in jedem Fall auf der
Wiederverwendung und Weiternutzung der bisherigen Nachbarn auf. Da diese bereits am
Anfang der Transformation zur Verfügung stehen und im Rahmen des Greedy-Routings
genutzt werden können, sollte sich eine Routingperformance im Bereich des Ausgansnetzes
ergeben. Diese liegt sowohl im Fall von Chord, wie auch im Fall von CAN bei log2n.

Die Adresstransformation kann sich jedoch negativ auf das Routing auswirken. Denn durch
diese werden die Positionen aller Knoten im Id-Raum geändert. Da geeignete Adresstrans-
formationen jedoch die Identifier und somit auch die entsprechenden Knoten einigermaßen
gleichmäßig über den Id-Raum verteilen, sollte dies das Routing nicht zu sehr beeinträchti-
gen.

Durch Greedy-Forwarding der Nachrichten kann hierbei bereits ein einigermaßen stabiles
Routing erreicht werden, ohne zusätzliche Maßnahmen zu ergreifen. Hierbei wird jede
Nachricht an den Nachbarn weitergeleitet, der dem Ziel der Nachricht geometrisch
am nächsten liegt. Im Zustand trans muss jedoch zusätzlich ein angepasstes Routing
verwendet werden, da durch einen stark unterschiedlichen Transformationszustand der
beteiligten Knoten, Zyklen in den Routingpfaden auftreten können. Abbildung 5.10

zeigt eine beispielhafte Situation in der dies der Fall ist. Hierbei ist der Zielknoten Z
markiert. Dass sich alle Kommunikationspartner eines Knotens, der sich im Zustand
trans befindet, ebenfalls im Zustand trans befinden lässt sich einfach mit Hilfe der hier
vorausgesetzten FIFO-Kommunikationskanälen sicherstellen. Abbildung 5.3 zeigt den
angewandten Routingmechanismus.

route(message)
foreach(n IN neighbors)

if (distance(n, message.target) < distance(nextHop, message.target))
nextNode = n

5 forward(message, message.target, nextHop)

Listing 5.3: Routingalgorithmus

Wenn das Ziel der weiterzuleitenden Nachricht aus Sicht des Startknotens, der nur über
Chord-Verbindungen verfügt, vor dem Startknoten auf dem virtuellen Chord Ring liegt, kann
dieser nicht direkt erreicht werden. Darum wird die Nachricht zunächst an den dem Ziel am
nächsten liegenden Knoten weitergeleitet. Dies ist der in der Abbildung der untere rechte
Knoten, da dieser dem Ziel am nächsten liegt. Dieser leitet die Nachricht aber aufgrund seiner

51

5 Konzepte für die Transformation

Nachbarschaftsbeziehungen wieder in Richtung des Startknotens. Sobald der Startknoten
erreicht ist, ist der Zyklus geschlossen. Von hier aus würde die Nachricht weiter im Kreis
geleitet werden, wenn keine weiteren Vorkehrungen getroffen werden.

Z

Abbildung 5.10: Zyklus im
Routingpfad des
Transformationsprotokolls

Z

Abbildung 5.11: Verbessertes Routing im
Transformationsprotokoll

Verbesserter Routingalgorithmus

Um mit allen auftretenden Situationen umgehen zu können wird der folgende Routingme-
chanismus vorgeschlagen.

Da erwartet wird, dass die meisten Nachrichten ihr Ziel nach wie vor auf kurzen Pfaden
erreichen, wird der genutzte Algorithmus im Allgemeinen beibehalten und nur um ein
Ausnahmebehandlung ergänzt. Hierzu werden zwei Aspekte benötigt. Zum einen wird
ein Mechanismus zum Erkennen, der gegebenenfalls entstehenden Zyklen, benötigt. Zum
anderen muss ein weiterer Mechanismus vorgesehen werden, um nach Erkennung von
Zyklen, aus diesen auszubrechen.

Der einfachste Weg einen Zyklus im Routingpfad einer Nachricht zu erkennen, ist es den
Pfad der Nachricht aufzuzeichnen. Hierdurch würden jedoch alle, nicht nur die in Zyklen
geleiteten Nachrichten gesondert bearbeitet werden müssen. Einfacher ist es, wenn alle
Knoten die einmaligen Ids der in letzter Zeit weitergeleiteten Nachrichten speichert. In
diesem Fall kann ein Zyklus erkannt werden, in dem ein doppeltes Weiterleiten der gleichen
Nachricht detektiert und darauf reagiert wird.

Um das Ausbrechen aus dem Zyklus zu gewährleisten kommen verschiedene Möglichkeiten
in Betracht. Hierbei kann zwischen allgemein gültigen und speziell auf die bestehende Topo-
logie angepassten Methoden unterschieden werden. Spezielle Methoden erreichen hier durch

52

5.2 Transformation mit Hilfe eines Hybridnetzwerkes

das Nutzen von Besonderheiten der jeweiligen Topologie oft bessere Ergebnisse, müssen
jedoch dementsprechend angepasst werden. Darum wird hier ein allgemeingültiger Ansatz
bevorzugt, da die tatsächlichen topologischen Gegebenheiten sich während der Transforma-
tion im Wandel befinden. Zusätzlich müssen so keine Änderungen am Routingmechanismus
vorgenommen werden, um weitere Protokolle in der Transformation zu unterstützen.

Sobald ein Zyklus auf dem Routingpfad erkannt wird, wird die weitere Weiterleitung ver-
hindert. Zunächst wird für alle weiteren Weiterleitungen dieser Nachricht die Aufzeichnung
der Route, also der passierten Knoten aktiviert. Ist dies vorgesehen, ist es ausreichend ein
entsprechendes Flag in der Nachricht zu setzen, wodurch im Folgenden der Routingpfad
aufgezeichnet wird und das angepasste Routing verwendet wird.

Der angepasste Routingmechanismus ist wie der ursprüngliche Routingmechanismus einfach
gehalten. Hierzu wird ein Ausschluss der bereits beschrittenen Routingpfade vorgenommen,
indem ausgehend von allen dem jeweiligen Knoten bekannten Nachbarn, zunächst alle
in dem bisherigen Routingpfad der Nachricht vorkommenden Knoten entfernt werden.
Im Anschluss wird mit Hilfe der verbleibenden Nachbarn wieder das bereits erläutere
Greedy Routing ausgeführt. Sind hierbei keine Nachbarn mehr übrig, wurde die Nachricht
also bereits von allen Nachbarn weitergeleitet, wird diese an den Vorgänger auf dem
Routingpfad zurückgegeben. Somit beschreibt dieser Algorithmus eine Tiefensuche auf dem
Overlaynetzwerk.

Abbildung 5.4 zeigt die Detektion von Zyklen, sowie den angewandten Routingalgorithmus
nach der Erkennung eines Zyklus auf dem Routingpfad.

duplicateMessageDetected(message)
if (message.uid IN this.routedMessages)

message.alternativeRouting = true;

5 alternativeRoute(message)
notUsedNeighbors = (neighbors - message.route)
foreach(n IN notUsedNeighbors)

if (distance(n, message.target) < distance(nextHop, message.target))
nextHop = n

10 if (nextNode IS NOT DEFINED)
nextNode = message.route.last

message.route.add(this)
forward(message, message.target, nextHop)

Listing 5.4: Modifizierter Routingalgorithmus

Abbildung 5.11 zeigt die Anwendung des verbesserten Routingalgorithmus in der gleichen
Situation. Hierbei wird zuerst, der durch das normale Greedy-Forwarding entstehende
Routingpfad beschritten. Sobald der Zyklus erkannt wird, wird dieser durchbrochen und
das Routing auf dem alternativen Routingpfad zu Ende geführt.

Durch den hier vorgestellten Algorithmus lassen sich die Routingprobleme relativ einfach für
eine weite Bandbreite von Anfangs- und Zielprotokollen lösen. Hierbei steigt die Länge der
Routingpfade, im Vergleich zum nicht modifizierten Routingmechanismus, voraussichtlich

53

5 Konzepte für die Transformation

leicht an. Jedoch werden hierbei keine der Knoten außerordentlich mehr belastet. Das
heißt, die Belastung des Netzes durch die Nachrichtenweiterleitung steigt an, wird aber
gleichmäßig verteilt.

5.2.5 Optimierung des Zustandes in der Transformation

Der lokale Zustand des Transformationsprotokolls umfasst alle zum jeweiligen Knoten gehö-
renden VProtocol sowie gegebenenfalls die zusätzlichen Routingtabellen für das Zielnetzwerk.
Die zusätzlichen Routingtabellen für das Zielnetzwerk eignen sich nicht für die Optimierung.
Somit bleiben zwei Möglichkeiten, den lokalen Zustand in der Transformation zu optimieren,
bestehen.

Zum einen kann versucht werden die Zahl der VProtocole zu verringern, indem auf dem
Knoten befindliche VProtocole miteinander vereint werden. Zum anderen können VProto-
cole auf andere oder von anderen Knoten migriert werden, sofern eine Verbesserung des
Gesamtzustandes erreicht wird.

Um dies zu erreichen wird zuerst eine Rankingfunktion für die VProtocole eingeführt, die
die Bewertung dieser erlaubt. Abbildung 5.5 zeigt die Rankingfunktion.

rankingValue(space)
value = 0
value += G0 * space.content.length
value += G1 * space.length

5 value += G2 * space.length.bitCount
value += G3 * space.getProportionValue(space)
return Round(value)

getProportionValue(space)
10 long avg = 0

double value = 0.0
foreach (d IN dimensions)

avg += space.length(d)
avg = avg / dimensions

15 foreach (d IN dimensions)
value += Math.abs(space.length(d) - avg);

value = value / avg
return value

Listing 5.5: Rankingfunktion für VProtocole

Die Rankingfunktion beinhaltet die Zahl der verwalteten Inhalte, von dem VProtocol gehalte-
nen Ids, sowie Größenordnung des Id-Bereiches (entspricht dem Logarithmus der Anzahl der
gehaltenen Ids). Zusätzlich wird ein Maß für die Geometrie des Id-Bereichs erhoben. Dieses
bevorzugt möglichst gleiche Ausmaße in jeder Dimension. Im Endeffekt wird ein möglichst
großer und gleichmäßig geformter Id-Bereich den höchsten Rankingwert erhalten.

Die ermittelten Werte werden gewichtet und auf einen Ganzzahlwert gerundet, um die
Vergleichbarkeit zu vereinfachen.

54

5.2 Transformation mit Hilfe eines Hybridnetzwerkes

Mit Hilfe der Rankingfunktion kann der lokale Zustand mit quadratischem Vergleichsauf-
wand minimiert werden. Hierzu werden die Knoten im Folgenden paarweise betrachtet.
Optimiert werden soll der Zustand auf den Knoten A und B. Jeder Knoten verfügt über
VProtocole A1, A2 beziehungsweise B1. So werden die VProtocole zu Testzwecken paar-
weise verschmolzen, sofern dies möglich ist. Was nur der Fall ist, wenn die VProtocole
direkt aneinander grenzen. Im Folgenden sei es für A2 und B1 möglich. Wenn nun gilt
RA2 + RB1 <= RA2+B1 so bleiben A2 und B1 verschmolzen und werden auf den Knoten B
migriert. Faktisch muss hierfür nur A2 migriert werden.

Bei dieser Optimierung wird darauf geachtet, dass jeder Knoten nach der Optimierung über
einen möglichst ähnlichen Rankingwert, jedoch mindestens über einen Id-Bereich verfügt.

Zusätzlich kann die Rankingfunktion um den Grad der Wiederverwendung der bekannten
Verbindungen erweitert werden. Hiermit würde sich der Rankingwert jedoch abhängig
vom Knoten, auf den das VProtocol migriert wird, berechnen. Dies erhöht den Berech-
nungsaufwand für die Optimierung um den Faktor zwei, begünstigt aber auch eine bessere
Optimierung.

Neben der Anpassung und Erweiterung der Rankingfunktion kann die Optimierung um ein
mehrdimensionales Zusammenfügen der einzelnen Bereiche erweitert werden. Dies betrifft
ein Auflösen des paarweisen Verschmelzens beziehungsweise Optimierens zu Gunsten
höherwertiger Zusammenführungen. Dies ist vor allem mit steigender Komplexität der
Id-Bereiche von Vorteil. Die Komplexität der Id-Bereiche ist wiederum von der Zahl, der für
den Id-Raum verwendeten Dimensionen, abhängig.

Besonderheitden der CAN→Chord-Transformation

Bei der Transformation vom CAN- zum Chord-Protokoll fällt die Berechnung des Ranking-
wertes für die einzelnen VProtocole besonders einfach aus.

Hierbei muss lediglich die Größe der Id-Bereiche und gegebenenfalls die Anzahl der In-
halte beachtet werden. Somit spielen die Gewichtungsparameter G0 und G1 hierbei die
übergeordnete Rolle.

Besonderheitden der Chord→CAN-Transformation

Bei der Transformation von Chord zu CAN finden alle Parameter der Rankingfuntion
Anwendung.

5.2.6 Aufwandsabschätzung

Ähnlich der Aufwandsabschätzung für die Transformation durch nebenläufige Neukonstruk-
tion in Abschnitt 5.1.3 wird hier der Aufwand für die geplante Transformation in Hinsicht
auf die Nachrichtenkomplexität abgeschätzt.

55

5 Konzepte für die Transformation

Auch hier sei n die Anzahl der Knoten und e die Anzahl der Kanten beziehungsweise
Nachbarschaftsbeziehungen.

Für die Einleitung der Transformation und den Aufbau des Transformationsbaums sind
unter Zuhilfenahme des Echo Algorithmus 2e− n+ 1 Nachrichten nötig. Zusätzlich muss der
Aufwand für die Suche der benötigten Nachbarn ermittelt werden. Bei der Transformation
in ein Chord-Netzwerk sind dies s + log n Nachrichten pro Knoten, wobei s für die Länge
der Successor Liste steht. Hierbei ist eine Wiederverwendung der bestehenden Nachbarn
jedoch noch nicht berücksichtigt. Hierdurch lässt sich die Zahl der tatsächlich benötigten
Nachrichten weiter reduzieren. Im Folgenden wird davon ausgegangen, dass hierbei min-
destens 2 Nachbarn wiederverwendet werden können. Dies gilt falls die Hilbert-Kurve oder
eine andere sprungfreie raumfüllende Kurve, für die Transformation verwendet wird. Soll
durch die Transformation ein CAN-Netzwerk erzeugt werden, ist die Abschätzung weitaus
schwieriger. Im Folgenden wird davon ausgegangen, dass die Nachbarsuche mit durch log n
Nachrichten pro Knoten abgeschlossen werden kann.

Diese sind abhängig von der Zahl der Nachbarn, die während der Transformation kontaktiert
werden können. Je nach verwendeten Protokollen und dem Fortschritt der Transformation
bewegt sich die Zahl der Nachbarn zwischen d/2 und log n+ d/2. Dies ergibt sich aus den zu
Beginn der Transformation zur Verfügung stehenden, sowie den im Verlauf dazugewonnen
Nachbarn.

Um die Optimierung abzuschließen wird davon ausgegangen, dass alle Nachbarn kontaktiert
werden. Dies ist gegebenenfalls mehrfach nötig, jedoch wird davon ausgegangen, dass die
Optimierung nach log n Optimierungsrunden abgeschlossen ist. Da ein Knoten maximal
über log n + d/2 Nachbarn verfügt, ergibt sich der Optimierungsaufwand zu log n ∗ (log n +
d/2).

Für die Optimierung selbst werden pro Optimierungsschritt 2 Nachrichten benötigt um
die zur Optimierung benötigten Informationen auszutauschen, sowie k Nachrichten um
die Inhalte zu transferieren. Für das Gesamtnetz ergibt sich hieraus ein Aufwand von
n ∗ (2 + k) ∗ log n Nachrichten.

Für die Überwachung der Transformation und somit für die Feststellung der Terminierung
fällt ein Mehrfaches der Größe des Transformationsbaumes, also x ∗ (n− 1) Nachrichten
an. Hierbei fällt jeweils nur der Aufwand für die Rückwelle des Echo Algorithmus an, da
ausgehend von den Blättern des Transformationsbaum regelmäßige Fortschrittsnachrichten
gesendet werden. Zum Beenden der Transformation fällt nochmals der Aufwand für die
volle Ausführung des Echo Algorithmus an, also 2e− n + 1. Somit wird sichergestellt, dass
jeder Knoten die Transformation beendet hat.

Weitere Betrachtungen zur Komplexität finden sich in Abschnitt 5.3.1.

5.2.7 Auswirkung auf Publish/Subscribe-Systeme

Die Transformation mit Hilfe eines Hybridnetzes wirkt sich während der Transformation rela-
tiv wenig auf überlagerte Services aus. Dies ist darin begründet, dass bis zum Abschluss des

56

5.2 Transformation mit Hilfe eines Hybridnetzwerkes

Transformationsvorgangs keine, bereits bestehenden Verbindungen verworfen werden. Dies
findet erst mit der finalen Umstellung, der gesamten Kommunikation auf das Zielprotokoll,
statt. Hierdurch können während der Transformation fast alle bestehenden Verteilbäume
oder ähnliche von überlagerten Services aufgebaute Strukturen erhalten bleiben. Allerdings
nur, wenn die Adressen innerhalb der, an das P2P-System gestellten, Anfragen entspre-
chend transformiert wurden. Dies kann für die Services transparent im HybridTransport
geschehen.

Die Ausnahme von dieser Regel wird erst, durch die Optimierung der Netzwerkstruktur,
geschaffen. Hierbei werden erstmals Id-Bereiche zwischen den einzelnen Knoten migriert
und somit auch überlagerte Systeme beeinflusst. Durch diese Migrationen betroffene Ver-
teilstrukturen müssten in diesen Fällen neu aufgebaut werden. Bei Wahl einer geeigneten
Adressabbildung kann hierbei vermieden werden, dass alle Verteilstrukturen neu aufgebaut
werden müssen, wie dies zum Teil bei anderen Ansätzen der Fall ist.

Durch die angewandte Praktik, die Verbindungen während der Transformation nur zu
vermehren, steigt gezwungenermaßen das Clustering, also der Grad der Bekanntheit in
der Nachbarschaft im Netzwerk an. Jedoch kann dieses zuvor durch die Anwendung der
Adresstransformation und die damit einhergehende Änderung der Beschaffenheit des Id-
Raumes, vermindert werden.

5.2.8 Dauerhafter Betrieb im Transformationszustand

Neben dem Betrieb des Transformationsprotokolls für die Dauer der Transformation ist
auch ein dauerhaftes Verbleiben im Transformationsprotokoll denkbar. Die hierbei erreichte
Leistung hängt von der konkreten Ausprägung des Transformationsprotokolls ab. Also vom
verwendeten Anfangs- und Zielprotokoll.

Geht man nun noch von einer weiteren Variabilisierung des Transferprotokolls, sowie
einigen zusätzlichen Modifikationen aus, lässt sich ein stabiles Netz erschaffen, das von
verschiedenen heterogenen Bereichen zusammengesetzt ist. Um dies umzusetzen werden
die Folgenden bisher nicht vorgesehenen Bestandteile benötigt.

Wichtigster Bestandteil ist ein Mechanismus, um die verschiedenen Bereiche voneinander
abzutrennen. Dafür ist es ausreichend, die jeweiligen Id-Bereiche, in denen ein bestimmtes
Protokoll aufrechterhalten wird, absolut bekannt zu machen. Dies kann initial beim Wechsel
in den Transformationsmodus geschehen und später inkrementell angepasst werden.

Da das Transformationsprotokoll nicht nur für eine begrenzte Zeitspanne betrieben werden
soll, muss die Performance des Systems verbessert werden. Hierzu müssen vor allem
geeignete und optimierte Routingverfahren angewandt werden, um die Belastung des
Systems zu vermindern.

57

5 Konzepte für die Transformation

5.3 Vergleich der vorgestellten Transformationen

In diesem Abschnitt werden die Transformation durch nebenläufige Neukonstruktion aus
Abschnitt 5.1.3 und die Transformation mit Hilfe eines Hybridnetzwerkes aus Abschnitt 5.2
miteinander verglichen.

Der relevanteste Unterschied zwischen den beiden Ansätzen, ist die Fähigkeit der Transfor-
mation mit Hilfe eines Hybridnetzes, die Lokalität einzelner Knoten zu erhalten. Hierdurch
werden Informationen, die im Ausgangsnetz vorhanden sind und im Zielnetz benötigt
werden nicht verworfen und neu ermittelt, sondern direkt weiterverwendet.

Ein weiterer Aspekt, ist der Grad der möglichen Variationsmöglichkeiten und des Modifi-
kationspotentials. Während der nebenläufige Neuaufbau über den gesamten Ablauf, kaum
Einflussmöglichkeiten bietet, sind diese unter dem Einfluss eines Hybridnetzes zahlreich.
Hierbei können verschiedene Aspekte variiert werden. Hierzu zählen beispielsweise das
während der Transformation angewandte Routingprotokoll und die konkrete Ausprägung
der verwendeten Optimierung der Id-Bereiche. Beide Ansätze lassen sich beeinflussen, in
dem die verwendete Adresstransformation variiert wird.

5.3.1 Vergleich der prognostizierten Aufwände

Abbildung 5.2 zeigt nochmals die erwarteten Aufwände für die verschiedenen Transforma-
tionen.

Um die Aussage dieser Abschätzung weiter zu konkretisieren, werden diese aggregiert.
Hierbei entspricht e dem mittleren Knotengrad, also e = log n bei der Transformation vom
Chord- ins CAN-Netzwerk. Und e = d/2 bei der Transformation vom CAN- ins Chord-
Netzwerk. Hierbei ergibt sich für jeden Knoten während der nebenläufigen Neukonstruktion
ein Aufwand von etwa log n + e + d/2 + 3. Für die Transformation mit Hilfe eines Hybrid-
netzes werden log n + log2 n + e + 3 Nachrichten benötigt. Bei diesen Betrachtungen sind
die Aufwände für die Übertragung der gespeicherten Inhalte nicht eingerechnet, da diese je
nach Nutzungsweise des Systems variieren.

Nebenläufige Neukon-
struktion

Transformation durch
Hybridnetz

Chord→CAN 2 log n + d/2 + 3 2 log n + log2 n + 3
CAN→Chord log n + d + 3 log n + log2 n + d/2 + 3

Tabelle 5.1: Gesamtaufwände der verschiedenen Transformationsmethoden (ohne Inhalt-
stransfer) pro Knoten

Auf Basis der Gesamtaufwände pro Knoten kann die Zahl der benötigten Nachrichten
berechnet werden. Die Berechnung der Gesmtaufwände ist in Abbildung 5.1 nochmals
zusammengefasst. Für ein Chord-Netz mit 1.000 Knoten ergeben sich je nach gewählter

58

5.3 Vergleich der vorgestellten Transformationen

Transformationsmethode etwa 13.000 beziehungsweise 18.000 Nachrichten bei der Nutzung
von 8 Dimensionen. Entsprechend würden für eine Rücktransformation 14.000 beziehungs-
weise 19.000 Nachrichten anfallen. Analog berechnen sich die Werte für große Netze, hier
mit 100.000 Teilnehmern zu 1.700.000, 3.800.000, 1.600.000 und 3.700.000 Nachrichten.

Nach den hier ermittelten Nachrichtenzahlen benötigt der bloße Transformationsvorgang
durch nebenläufige Neukonstruktion etwa ein Viertel beziehungsweise in großen Netzen
die Hälfte der Nachrichten. Jedoch müssen nach der Konstruktion des Netzes die gesamten
Inhalte in das neue Netz migriert werden. Um zu entscheiden, welche Transformations-
methode vorzuziehen ist sind somit weitere Informationen nötig. Generell lässt sich aber
festhalten, dass größere Netze besser durch nebenläufige Neukonstuktion errichtet werden
können, während starkt genutzte, also mit vielen Daten belegte Netze besser durch ein
Hybridnetz transformiert werden können.

5.3.2 Eignung der verschiedenen Ansätze

Aus den bisherigen Betrachtungen lassen sich bestimmte Randbedingungen festlegen, wobei
die Stärken und Schwächen der beiden behandelten Verfahren ausschlaggebend für deren
Eignung sind. Hierzu wird ein Szenario angenommen, in dem der Bedarf zur Transformation
von einem überlagerten Publish/Subscribe-System festgestellt wird.

Ausgehend von diesem Szenario, eignet sich die nebenläufige Neukonstruktion vor allem für
Fälle, in denen die Zahl der unterschiedlichen Inhalte, also Themen und somit Verteilstruktu-
ren, relativ klein ist, während die Zahl der Abonnenten jedes Themas relativ hoch ist. Wenn
das Publish/Subscribe-System also vor allem auf einigen großen Verteilstrukturen entlang
des Overlaynetzes beruht. Dies ist der Fall, da in einer solchen Situation in beiden Syste-
men, mit einer sehr hohen Wahrscheinlichkeit, die entsprechenden Verteilbäume zumindest
teilweise neu aufgebaut werden müssen, da die zuvor im Overlay genutzten Verbindun-
gen im Zielnetz nicht vorhanden sind. Somit wird der Hauptnachteil der nebenläufigen
Neukonstruktion ausgeglichen.

Entsprechend eignet sich eine Belastung des Publish/Subscribe-Systems mit Themen, mit
niedriger Popularität, also kleinen Verteilbäumen, besonders für die Transformation mit
Hilfe eines Hybridnetzes. Hierbei kommt die Stärke des Ansatzes am besten zum Tragen, da
der Anteil der nicht zu modifizierenden Verteilbäume hierbei am höchsten ist.

59

5 Konzepte für die Transformation

N
ebenläufige

N
eukonstruktion

Transform
ation

durch
H

ybridnetz

pro
K

noten
∑

pro
K

noten
∑

H
in-

und
R

ückw
elle

e
+

1
2e−

n
+

1
e
+

1
2e−

n
+

1

N
achbarsuche

C
hord→

C
A

N
-

-
log

n
n
∗

log
n

C
A

N
→

C
hord

-
-

s
+

log
n
−

2
n
∗
(s
+

log
n
−

2)

B
eitritt

zum
N

etz
2
+

log
n

n−
1

∑i=
1

2
+

log
i

-
-

A
ufbau,V

alidierung
der

R
outingtabelle

C
hord→

C
A

N
d/

2
n
∗

d/
2

-
-

C
A

N
→

C
hord

log
2n

n
∗

log
2n

-
-

Ü
bertragen

der
Schlüssel/W

er-
te

Paare
bzw

.O
ptim

ierung
log

n
+

k
n
∗
(log

n
+

k)
log

n
∗
(log

n
+

d/
2)

n
∗
(log

n
∗
(log

n
+

d/
2))

notw
endige

W
ellen

2
2

Tabelle
5.

2:A
ufw

ände
der

verschiedenen
Transform

ationsm
ethoden

60

Kapitel 6

Bewertung

In diesem Kapitel wird die Leistungsfähigkeit des entwickelten Algorithmus durch die
Beschreibung einiger durchgeführter Experimente gezeigt.

6.1 PeerSim

Um die Experimente durchzuführen, mit denen die Leistungsfähigkeit der entwickelten
Protokolle bewertet werden kann, wird der Simulator Peersim [JMJV] verwendet. Peersim
wurde an der University of Bologna entwickelt und bietet sowohl einen zyklus- wie auch
einen eventgetriebenen Betriebsmodus.

Peersim besteht aus einem Verbund verschiedener Netzwerkkomponenten, die per Konfigu-
rationsdateien zu einer kompletten Simulation zusammengefügt werden können. Hierbei
stehen für die einzelnen Komponenten Java Interfaces zur Verfügung. Somit können eigene
Protokolle relativ einfach implementiert und evaluiert werden.

Wichtige Komponenten werden hierbei durch die folgenden Interfaces realisiert.

Node

Die einzelnen Knoten des simulierten Netzwerkes. Die Knoten beinhalten jeweils den
gleichen Protokollstack, der in der Konfiguration festgelgegt wird.

Protocol

Die in den Knoten enthaltenen Protokolle können je nach Simulationstyp CDProtocol oder
EDProtocol sein. CDProtocol enthält Anweisungen, die in jedem Zyklus ausgeführt werden
sollen. EDProtocol enthält Anweisungen für die Reaktion auf Events.

61

6 Bewertung

Linkable

Diese Komponente definiert ein Overlaynetz, in dem es Zugriff auf die Topologie gewährt.
Hiermit ist es eines der wichtigen Interfaces, die zur Erstellung eines Protokolls implementiert
werden müssen.

Control

Um während der Simulation Beobachtungen anzustellen oder Einfluss auf das simulierte
Netz zu nehmen, werden die Control-Komponenten verwendet. Diese werden, unabhängig
vom Netz, zyklisch Ausgeführt, haben aber zugriff auf dieses. So ist es möglich aktuelle
Netzparameter und -werte zu erfassen, aggregieren und für die Auswertung abzuspeichern,
und so den aktuellen Simulationszustand zu erfassen. Andererseits ist es auch Möglich, in
den Betrieb des Netzes einzugreifen und beispielsweise Nachrichten an einzelne Netzkonten
zu senden. Diese Möglichkeit wird im Folgenden genutzt, um Netzwerklast zu erzeugen
und die Transformation zu steuern.

6.2 Aufbau der Simulation

Der Aufbau der Simulation orientiert sich an der in Abschnitt 4.4 vorgestellten Architek-
tur. Die Simulation ist ereignisgesteuert implementiert. Um dies innerhalb des Peersim-
Simulators zu ermöglichen, müssen die Protokolle das Interface peersim.edsim.EDProtocol
implementieren. Abschnitt 6.1 zeigt den in der Simulation verwendeten Protokollstack. Dieser
orientiert sich stark an der in Abschnitt 4.4 vorgeschlagenen Architektur (Abbildung 4.1).

UnreliableTransport

CanProtocolHybridProtocol ChordProtocol

ServiceControl

HybridTransport

UniformRandomTransport

Abbildung 6.1: Protokollstack in der Simulation

Der HybridTransport implementiert die Schnittstellen Protocol und Linkable. Das HybridProtocol
implementiert die Schnittstelle Protocol und ist somit im Großen und Ganzen wie die
Ausgangs- und Endprotokolle aufgebaut. Abweichend hiervon ist die Kommunikation mit

62

6.2 Aufbau der Simulation

dem HybridTransport vorgesehen und fester Bestandteil des geplanten Ablaufs. Für nicht-
transformierende Protokolle ist der HybridTransport transparent und muss nicht weiter
beachtet werden.

6.2.1 Bestandteile der Simulation

Die Simulation ist aus den hier im Folgenden näher beschriebenen Bausteinen aufgebaut:

HybridTransport

Der HybridTransport dient im Wesentlichen dem Zweck, die eingehenden und ausgehenden
Nachrichten der Knoten abhänging vom Transformationsstatus des Knotens auf eines der
Protokolle umzuleiten. Hierfür werden die entsprechenden Interfaces implementiert. Diese
sind peersim.transport.Transport für die Kommunikation mit tieferen Schichten sowie peer-
sim.core.Linkable und peersim.edsim.EDProtocol für die Kommunikation mit höheren Schichten.
Hierzu wird der Transformationsstatus des Knotens gehalten und kann auch von anderen
Komponenten, die diesen benötigen, abgefragt werden.

Eine weitere Aufgabe dieses Protokolls ist es, die Zieladressen der Nachrichten, wie in
Abschnitt 4.5 beschrieben, mit Hilfe einer raumfüllenden Kurve in das benötigte Format
zu konvertieren. Dies ist notwendig, damit das auf dem Knoten aktuell aktive Protokoll
eingehende Nachrichten auch ohne Kenntnis der Transformation verarbeiten kann.

HybridProtocol

Das HybridProtocol ist der zentrale Baustein, durch den die Transformation ermöglicht
wird. Das Protokoll nutzt die Daten aus der Routingtabelle des Ausgangsprotokolls und
komplettiert diese, um am Ende der Transformation die Routingtabelle des Zielprotokolls zu
füllen.

Zusätzlich muss ein angepasstes Routing verwendet werden, um Zyklen in den Routingpfa-
den während der Transformation zu vermeiden.

ChordProtocol und CanProtocol

Das ChordProtocol und das CanProtocol sind einfache Implementierungen des Chord- bezie-
hungsweise des CAN-Protokolls. Die beiden Protokolle wurden bereits in Abschnitt 2.2.1
und Abschnitt 2.2.2 vorgestellt und in Abschnitt 4.3 miteinander verglichen. Als Besonderheit
bieten beide Protokolle die Möglichkeit, die genutzte Id sowie die Nachbarn auszulesen,
beziehungsweise neu zu setzen. Beim ChordProtocol betrifft dies sowohl die Knoten in der
Successor-Liste sowie die in der Fingertabelle. Im Falle des CanProtocols muss beachtet
werden, dass ein Knoten bzw. eine Protokollinstanz für mehrere Id-Bereiche verantwortlich

63

6 Bewertung

sein kann, wodurch auch zusätzliche Nachbarschaftsbeziehungen übernommen werden
müssen.

Hiermit sind die Anforderungen erfüllt, um das ChordProtocol sowohl als Anfangs- als auch
als Endprotokoll zu nutzen.

UnreliableTransport

Der UnreliableTransport implementiert die Schnittstelle peersim.transport.Transport und bietet
die Möglichkeit, eine Droprate für die ausgetauschten Nachrichten zu definieren. So kann der
in realen Netzwerken eintretende Nachrichtenverlust auf einfache Weise simuliert werden.

Nachrichtenverluste müssen in der Simulation beachtet werden, da diese durch die Ver-
wendung des Internetprotokolls (IP) üblich sind. Hierbei werden im Rahmen der Random
Early Detection (RED) zufällig einzelne Pakete verworfen. Der Anteil der zu verwerfenden
Pakete ist abhängig von der Auslastung des Knotens, der passiert werden soll. Hierdurch
wird bei Nutzung des Transmission Control Protocols (TCP) die Paketrate der einzelnen
Verbindungen reguliert.

Das Verhalten des UnreliableTransports stellt zwar keine absolut realistische Verhaltensweise
von echten Netzwerken dar, genügt aber, um grundlegende Aussagen über die Störanfällig-
keit der untersuchten Verfahren und Protokolle zu treffen. Um eine vollständigere Simulation
zu ermöglichen, müsste die Simulation die unterliegende Topologie sowie deren Auslastung
beinhalten, was außerhalb des Betrachtungsrahmens dieser Arbeit liegt.

UniformRandomTransport

Der UniformRandomTransport bietet die Möglichkeit, zufällige Verzögerungen auf einem
festgelegten Intervall für die Weiterleitung der Nachrichten zu simulieren. Hierdurch wer-
den einfache Betrachtungen des Zeitaufwands für die Transformationsvorgänge ermöglicht.
Ähnlich dem Verhalten bei der Simulation des Nachrichtenverlustes ist auch diese eine
starke Vereinfachung. Auch hier müsste für eine weiterreichende Simulation die unterlie-
gende Topologie in die Simulation aufgenommen werden, was ebenfalls außerhalb des
Betrachtungsrahmens dieser Arbeit liegt.

6.2.2 Implementierung der Simulation

Für die Simulation müssen einige allgemeine Werte festgelegt werden. Die hier festgelegten
Werte gelten soweit als nicht anders beschrieben. Hierbei handelt es sich vor allem um die
Zahl, der in der Simulation verwendeten Knoten. Diese wird für die Simulation mit 200

Knoten pro Netzwerk festgelegt. Des Weiteren wird die Länge der verwendeten Identifier auf
16-Bit festgelegt. Dies entspricht zwar nicht den in der Realität genutzten Werten, schränkt
aber den Berechnungs- und Speicheraufwand stark ein, ohne hierbei zu viel Aussagekraft der

64

6.3 Ergebnisse der Simulation

ermittelten Ergebnisse zu verlieren. Dies ist nötig, da sich die Optimierung der Id-Bereiche
vorläufig nur durch eine sehr rechenlastige Implementierung lösen ließ.

Zusätzlich sind einige protokollspezifische Werte notwendig. Beim CAN-Protokoll wird der
Identifier auf 4 Dimensionen aufgeteilt, die jeweils eine Identifierlänge von 4 Bit nutzen. Die
Chord-Successor-Liste, die die Redundanz des Protokolls beeinflusst, wird auf 8 festgelegt.

Einige Aspekte wurden zu Simulationszwecken vereinfacht oder auf die Simulationsum-
gebung angepasst. Einer dieser Aspekte ist der lokale Zustand. Hierbei wird, anders als
bisher vorgesehen, nicht nur ein Protokoll auf dem Protokollstack betrieben, sondern alle im
Verlauf der Simulation benötigten Protokolle werden während der ganzen Simulation im
Speicher gehalten. Hiervon ist aber zu jedem Zeitpunkt nur eines der betreffenden Protokolle
aktiv (gilt nur für die eigentlichen Protokolle, nicht die zusätzlichen Transportschichten und
Services). Dies wird durch den bereits erläuterten HybridTransport gesteuert.

Die Auslösung der Transformation erfolgt mit Hilfe eines speziellen Controls. Dieser Transfor-
mationStarter sendet zum konfigurierbaren Startzeitpunkt der Transformation eine einzelne
Transformationsnachricht an einen zufällig ausgewählten Knoten des Netzwerkes. Von hier
an übernehmen, die innerhalb der Protokolle für die Ausbreitung der Transformationsinfor-
mationen zuständigen Mechanismen das weitere Vorgehen.

Um die Netzwerklast während der Simulation zu erzeugen gibt es im Peersim-Simulator
generell zwei Möglichkeiten. Zum Einen kann ein Service auf dem Protokollstack ausgeführt
werden der seinerseits wiederum andere Protokolle als Underlay nutzt indem die APIs dieser
Protokolle genutzt werden. Um Aktionen des Services auszulösen wird ein Control verwendet.
Zum Anderen kann direkt ein Control verwendet werden, um Nachrichten ins Netzwerk
einzugeben, von wo aus diese an ihr Ziel weitergeleitet werden. Durch die Wahl zufälliger
Start- und Endpunkte der Nachrichten sowie eine ausreichende Anzahl von Nachrichten
wird eine gleichmäßige Nachrichtenbelastung im Netzwerk erzeugt.

Für die Ermittlung der im Folgenden vorgestellten Werte wird ebenfalls ein Control genutzt.
In diesem Fall werden allerdings keine Nachrichten an die Knoten versendet, sondern es
wird auf die Methoden der Protokolle zugegriffen, um die jeweiligen Werte zu ermitteln.

6.3 Ergebnisse der Simulation

In diesem Abschnitt werden die in der Simulation ermittelten Ergebnisse in Auszügen darge-
stellt und erläutert. Um Aussagen über die Leistungsfähigkeit der entwickelten Verfahren zu
machen, wird im Folgenden die Transformation durch ein Hybridnetzwerk aus Abschnitt 5.2
evaluiert. Hierzu wird auch die erbrachte Leistung mit der nebenläufigen Neukonstruktion
aus Abschnitt 5.1.3 verglichen.

Des Weiteren wird diese Evaluation auf die interessantere der beiden möglichen Transforma-
tionsrichtungen eingeschränkt. Es wird also nur die Transformation von einem Chord- in ein
CAN-Netzwerk betrachtet.

65

6 Bewertung

Da im Rahmen dieser Arbeit nicht alle Aspekte hinreichend simuliert werden konnten,
aber stark von den ermittelten Simulationsergebnissen abhängig sind, werden zusätzlich
weitergehende Schlussfolgerungen aus den Simulationsergebnissen gezogen.

6.3.1 Komplexität

Das wesentliche Attribut der Transformation stellen die verschiedenen Arten der Kom-
plexität dar. Hierbei ist es möglich, die Nachrichtenkomplexität, also die Zahl der für die
Transformation benötigten Nachrichten zu betrachten. Dies geschieht in Abschnitt 6.3.1.

Alternativ kann für einige Anwendungen der Zeitaufwand der Transformation ermittelt
werden. Dies geschieht in Abschnitt 6.3.1.

Nachrichtenkomplexität

Bei der Evaluation des Nachrichtenaufwands werden verschiedene Bereiche der Transfor-
mation betrachtet. Zum Einen kann die Zahl der für die Transformation selbst benötigten
Nachrichten, wie etwa die Transformations-, Beitritts- und Routingnachrichten gezählt
werden. Zum Anderen kann die Zahl, der im Zuge der Transformation zu migrierenden
Schlüssel/Wert-Paare, also die Zahl der Inhalte, die nicht weiter auf dem gleichen Knoten
gespeichert werden können, gezählt werden. Diese zweite Betrachtung findet im Rahmen
der Fairnessbetrachtungen in Abschnitt 6.3.3 statt.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000
nodes in trans (hybrid)

nodes in post (concurrent)
hybrid tmsg

concurrent tmsg

Abbildung 6.2: Zahl der Transformationsnachrichten für die Transformation

Abbildung 6.2 zeigt die Zahl der während der Transformation durch ein Hybridnetz ver-
sendeten Transformationsnachrichten, sowie die bei der nebenläufigen Neukonstruktion

66

6.3 Ergebnisse der Simulation

versendeten Transformationsnachrichten. Die Zeitachse ist hierbei auf ein gleichzeitiges Ende
der beiden Transformationsvoränge skaliert.

Hierbei sind die drei Phasen der Transformation mit Hilfe eines Hybridnetzes sehr gut zu
erkennen. In diesen Phasen wird die Transformation ausgebreitet, optimiert und schließlich
beendet. Die Übergänge zwischen den Phasen finden nach dem Versand von 3.300, 4.600

und 7.400 Transformationsnachrichten statt. Unterlegt ist dies mit der Transformationswelle
des nebenläufigen Neuaufbaus. Diese ist zwar über den gesamten Bereich flacher, jedoch
enthält diese nicht die Nachrichten für die Migration, beziehungsweise den Neuaufbau,
der im Netz gespeicherten Daten. Die hier simulierte Transformation konvergiert nach
dem versenden von 3.200 Transformationsnachrichten. Auf Grund der in weiten Teilen
unveränderten Zuständigkeitsbereichen, weist das durch die Transformation durch das
Hybridnetz entstandene Netz, deutlich weniger Migrationsbedarf auf.

Der Grund, dass die Transformation durch das Hybridnetz mehrere hundert Transformati-
onsnachrichten mehr benötigt, um alle Knoten in den Transformationszustand zu überführen,
findet sich in der zu diesem Zeitpunkt bereits begonnen gegenseitigen Optimierung. Dies ist
bereits möglich, da von FIFO-Kanälen ausgegangen wird, wodurch kein Knoten in direkten
Kontakt mit einem Knoten treten kann, der nicht sich nicht im Transformationszutand befin-
det. Um dies zu gewährleisten wird, nach dem Empfang einer Transformationsnachricht,
unverzüglich die Transformation lokal begonnen und weiter ausgebreitet.

Vergleich mit dem prognostizierten Aufwand

Abbildung 6.1 zeigt die anhand der in Abbildung 5.3.1 vorgestellten Abschätzungen ermit-
telten Erwartungswerte für die simulierte Transformation.

Nebenläufige Neukon-
struktion

Transformation durch
Hybridnetz

Chord→CAN 1.920 2.580

CAN→Chord 1.860 2.520

Tabelle 6.1: Prognostizierte Aufwände für die Transformation von 200 Knoten

Den abgeschätzen Nachrichtenzahlen stehen etwa 3.200 beziehungsweise 7.400 Nachrichten
gegenüber. Hiermit liegt der Aufwand für die nebenläufige Neukonstruktion durchaus in
der abgeschätzten Größenordnung, wenn auch etwas zu niedrig angesetzt. Der Aufwand
für die Transformation durch ein Hybridnetz benötigt in der Simulation jedoch etwa die
dreifache Zahl der prognostizierten Transformationsnachrichten.

Für dieses stark erhöhte Nachrichtenaufkommen sind zwei Aspekte verantwortlich. Zum
einen findet hierbei bereits die gegenseitige Optimierung der Bereiche statt. Hierbei werden
Bereiche auf andere Knoten migriert, wofür ebenfalls Transformationsnachrichten verwendet
werden. Dieser zusätzliche Aufwand wird mit der Formel n ∗ (log n ∗ (log n + d/2)) zu 1.980

67

6 Bewertung

Nachrichten für 200 Teilnehmer abgeschätzt. Wird dies berücksichtigt, liegt auch dieser
Transformationsaufwand wesentlich näher am prognostizierten Bereich. Dieses kann durch
den zweiten Aspekt erklärt werden. Ausschlaggebend ist hierfür der unzureichende Grad
der Optimierung. Hierdurch entstehen ungünstig geformte Id-Bereiche, die mehr Nachbarn
als nötig aufweisen. Somit steigt der Koordinierungs- und Kommunikationsaufwand.

Zeitaufwand

Die Betrachtung des Zeitaufwands ist abgesehen von einer grundsätzlichen Relevanz für die
Verwendbarkeit nur in recht wenigen Szenarien von Wichtigkeit. Dies ist vor allem immer
dann der Fall, wenn das verbindende Netzwerk nicht ausgelastet ist und die vermittelten
Nachrichtenpakete nicht bezahlt werden müssen. Dies entspricht im Allgemeinen dem
Betrieb innerhalb von Firmennetzwerken.

Darum wird hier nur eine begrenzte theoretische Betrachtung des Zeitaufwandes vorgenom-
men. Ausschlaggebend sind hierbei die Ergebnisse in Abschnitt 6.3.1 sowie der Grad der
Parallelisierung des Transformationsvorgangs. Zusätzlich wird im Folgenden eine mittlere
Latenz der für die Nachrichtenweiterleitung von T angenommen.

Um die Parallelisierbarkeit zu ermitteln wird an die Ergebnisse der Aufwandsabschätzung
angeknüpft. Hierbei sind sowohl die Wellen des Transformationsstarts und -stopps wie auch
die für die Optimierung benötigten Durchgänge ausschlaggebend. Für die Transformati-
onswellen wird eine Ausbreitungsdauer von jeweils T ∗ log n angenommen. Dies folgt aus
dem mittleren Netzwerkdurchmesser, der sequenziell durchschritten werden muss um alle
Knoten zu erreichen. Mit der jeweiligen Antwortwelle wird also 2T ∗ log n pro Ausführung
des Echo-Algorithmus benötigt.

Für die Optimierung wurden im Rahmen der Aufwandsabschätzung log n Runden angenom-
men. Diese können in sich parallel ausgeführt werden. Die einzelnen Optimierungsrunden
wiederum müssen sequenziell durchgeführt werden. Für eine Optimierungsrunde werden
2T benötigt.

Aus den angestellten Betrachtungen folgt ein Zeitaufwand für die gesamte Transformation
unter Nutzung eines Hybridnetzes von 6T ∗ log n.

6.3.2 Routingperformance

In diesem Abschnitt werden die in der Simulation ermittelten Werte für die Routingperfor-
mance betrachtet. Hierbei wurde sowohl die Leistungsfähigkeit ohne spezielle Vorkehrungen
sowie mit einem an die Probleme angepassten Routing ermittelt.

Abbildung 6.3 zeigt die erzielte Routingqualität unter Verwendung des Greedy-Forwardings.
Hierzu wurde das Netzwerk vom Chord-Protokoll in das Transformationsprotokoll überführt
und ohne weitere Optimierung betrieben. Hierbei erreichen etwa 95% der Nachrichten ihren
Zielknoten innerhalb von 20 Hops. Diese TTL wurde eingeführt, um das Netz nicht unnötig

68

6.3 Ergebnisse der Simulation

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1
fail rate (adv routing)

fail rate

Abbildung 6.3: Nicht zugestellte Nach-
richten der verwendeten
Algorithmen

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18
max # hops (adv routing)

max # hops
mean # hops (adv routing)

mean # hops

Abbildung 6.4: Routingperformance der
verwendeten Algorithmen

duch nicht zustellbare Nachrichten zu belasten. Unter Verwendung des in Abschnitt 5.2.4
vorgestellten verbesserten Algorithmus treten keine Nachrichtenverluste mehr auf.

Abbildung 6.4 zeigt die hierbei erzielte Routingperformance in Form der benötigten Pfad-
längen. Erwartungsgemäß steigt hierbei die durchschnittliche und maximale Länge der
Routingpfade, unter Verwendung des verbesserten Routungalgorithmus, an.

6.3.3 Lastbalancierung

In Abschnitt 2.1.2 wurden bereits verschiedene Arten der Lastbalancierung erläutert. Diese
werden hier unter Zuhilfenahme der Ergebnisse der Simulation nochmals betrachtet.

Belastung durch Suche

Die Belastung durch die Suche ähnelt sehr der Betrachtung des Routings in Abschnitt 6.3.2.
Darum wurde hierfür keine erneute Simulation durchgeführt.

Aus den Betrachtungen des Routings lässt sich unter Zuhilfenahme der Annahme, dass die
Lookups gleichmäßig über den Id-Raum verteilt werden, die Belastung durch die Suche
schlussfolgern. Hierbei wird klar, dass bedingt durch den verwendeten Routingalgorithmus,
verlängerte Routingpfade entstehen. Hiermit steigt auch die Gesamtbelastung des Netzes
durch die Suche proportional zur Verlängerung der Routingpfade an.

Verteilung der Inhalte

Ausgehend von einer Gleichverteilung der Inhalte ergibt sich die Verteilung dieser direkt
aus der Größe der von den einzelnen Knoten vor, während und nach der Transformation

69

6 Bewertung

verwalteten Id-Bereiche. Aus den entsprechenden Differenzen lässt sich der benötigte Migra-
tionsaufwand für die Schlüssel/Wert-Paare herleiten. Zusätzlich kann die Effektivität der
Optimierung sehr gut an diesen Werten abgelesen werden.

Abbildung 6.5 zeigt hierbei die Zahl der auf den Knoten gehaltenen Id-Bereiche sowie Ids
unter Variation der Optimierungsparameter. Die Erste Variante (1) gewichtet die Ausprägung,
also die Geometrie, des jeweiligen Id-Bereiches besonders hoch, während in der zweiten
Variante (2) die Zahl der Ids höher bewertet wird. Die oberen beiden Kurven zeigen die
mittlere Zahl der von den Knoten gehaltenen Ids, während die unteren beiden Kurven die
durchschnittliche Zahl der gehaltenen Id-Bereiche zeigen.

 0

 100

 200

 300

 400

 500

 600
mean # id-spaces (1)
mean # id-spaces (2)

mean # ids (1)
mean # ids (2)

Abbildung 6.5: Variation der Optimierungsparameter

Durch die Variation der Optimierungsparameter ergeben sich einige Abweichungen im
Verlauf der Transformation. Diese betreffen jedoch nur den Bereich der Startphase der
Transformation, in der die einzelnen Konten in den Transformationszustand überführt
werden. Da die gegenseitige Optimierung zu diesem Zeitpunkt bereits aktiv ist, kann
ein Ansteigen und anschließendes leichtes Abfallen der durchschnittlichen Größe der Id-
Bereiche beobachtet werden. Mit fortschreitendem Verlauf nähern sich die betrachteten
Durchschnittswerte einander an. In beiden Fällen ist das Optimierungspotential jedoch sehr
schnell erschöpft. Der Grund hierfür wird in Abschnitt 6.3.5 eingehender behandelt.

Abbildung 6.6 zeigt den Einfluss der verwendeten CAN-Dimensionen auf die Transformation.
Auch hier zeigen die oberen beiden Kurven die mittlere Zahl der von den Knoten gehaltenen
Ids, während die unteren beiden Kurven die durchschnittliche Zahl der gehaltenen Id-
Bereiche zeigen.

Abweichend von dem zuvor beschriebenen Abläufen kann hier beobachtet werden, wie die
höhere Dimensionalität des Id-Raums, in den die Knoten eingebettet werden dazu genutzt
wird, um die Optimierung zu unterstützen. Dies begründet sich in der größeren Auswahl an

70

6.3 Ergebnisse der Simulation

 0

 100

 200

 300

 400

 500

 600
mean # id-spaces 4D
mean # id-spaces 2D

mean # ids 4D
mean # ids 2D

Abbildung 6.6: Variation der CAN-Dimensionen

Nachbarn mit ähnlichen Id-Verantwortlichkeiten und somit mehr geeigneten Kandidaten für
die gegenseitige Optimierung.

6.3.4 Einfluss der raumfüllenden Kurve

Der Einfluss der für die Id-Transformation verwendeten raumfüllenden Kurven begründet
sich durch die Veränderungen in der Erhaltung der Lokalität.

Untersucht wurde der Unterschied zwischen der Nutzung der sequenziellen Raumkurve
sowie der Hilbert-Kurve. Beide wurden in Abschnitt 4.5.1 eingehend erläutert.

Hierbei überrascht es nicht, dass unter Nutzung der Hilbert-Kurve bessere Ergebnisse in der
Optimierung erzielt werden, als unter Nutzung der sequenziellen Raumkurve. Auch hier ist
der Grund, ähnlich dem Sachverhalt der gesteigerten Dimensionalität auf die höhere Lokalität
zurückzuführen. Ähnliche Ids, die auf der eindimensionalen Kurve nahe beieinander liegen,
liegen also auch im Raum nahe beieinander. Hieraus folgt der Aufbau, für die Optimierung,
erfolgversprechender Nachbarschaftsbeziehungen.

Abbildung 6.8 zeigt die entsprechenden Knotengrade und versendeten Transformations-
nachrichten. Die oberen Kurven zeigen den mittleren Knotengrad, während die steigenden
Kurven die Zahl der versendeten Transformationsnachrichten beschreibt. Durch die Ver-
knüpfung der Informationen aus beiden Betrachtungen wird deutlich, dass die Nutzung
der Hilbert-Kurve sich auch auf den entstehenden Knotengrad auswirkt. Da dieser während
der Transformation bedingt durch das verwendete Transformationskonzept nur, durch das
hinzufügen von im Zielnetz benötigten Nachbarn, steigt und mehr neue Nachbarn benötigt
werden, erhöht sich, als Folge hieraus der durchschnittliche Knotengrad. Zusätzlich müssen

71

6 Bewertung

 0

 100

 200

 300

 400

 500

 600
mean # id-spaces (hilbert)

mean # id-spaces (seq)
mean # ids (hilbert)

mean # ids (seq)

Abbildung 6.7: Zahl der Ids und Id-Bereiche während der Transformation unter Nutzung
verschiedener Raumfüllender Kurven

mehr Transformationsnachrichten versendet werden, um die benötigten Nachbarn zu finden.
Ebenso müssen während der ganzen Transformation mehr Transformationsnachrichten
versendet werden, um diese zu steuern.

6.3.5 Problem der paarweisen Optimierung

Aus den angestellten Untersuchungen geht hervor, dass die Transformation mit Hilfe eines
Hybridnetzes funktionsfähig ist. Jedoch werden auch die noch vorhandenen Probleme in der
Umsetzung deutlich. Das hierbei massivste Problem ist die mangelnde Vereinigung der auf
den Knoten befindlichen Id-Bereiche. Diese sind zwar zusammenhängend, jedoch gelingt
es durch den verwendeten Algorithmus nicht diese zusammenzufügen. Der Hauptgrund
hierfür ist das verwendete paarweise Verbinden der Bereiche. Dies ist bisher sowohl lokal,
als auch während der gegenseitigen Optimierung, mit anderen Knoten, der Fall.

Durch diese Praxis bilden sich jedoch Mengen von Bereichen, auf den Knoten, die nicht weiter
paarweise verbunden werden können. Abbildung 6.9 zeigt einige Situation beispielhaft, in
denen drei Id-Bereiche abgebildet sind, die zwar zu oder zu viert, aber nicht paarweise
kombiniert werden können.

Hierbei ist jeder der drei abgebildeten Komplexe offensichtlich kombinierbar. Ebenso of-
fensichtlich kann dies ein paarweise arbeitender Algorithmus, wie der in dieser Evaluation
verwendete, aber nicht leisten. Für zukünftige Umsetzungen muss also besonders Augen-
merk auf die Verbesserung der Optimierungsmechanismen gelegt werden, um diesen auch
höherwertigere Kombinationen zu ermöglichen.

72

6.3 Ergebnisse der Simulation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

mean node degree (hilbert)
mean node degree (seq)

tmsg (hilbert)
tmsg (seq)

Abbildung 6.8: Knotengrade und Zahl der Transformationsnachrichten während der Trans-
formation unter Nutzung verschiedener Raumfüllender Kurven

Abbildung 6.9: Kombinationsproblem der Id-Bereiche

73

Kapitel 7

Fazit

Overlaybasierte Publish/Subscribe-Systeme bauen die von ihnen genutzten Verteilstrukturen
entlang der Verbindungen im unterlagerten Overlay auf. Nach signifikanten Änderungen in
der Belastung dieser Systeme kann die Leistungsfähigkeit dieser durch die Rekonfiguration
des Overlays erhöht werden.

Hierfür wurden im Rahmen dieser Arbeit, ausgehend von dem Ansatzpunkt, die Topologie
strukturierter Overlaynetze zu rekonfigurieren um diese so besser an die Bedürfnisse der auf
ihnen aufgesetzen Services anzupassen, verschiedene Transformationsverfahren entwickelt.
Als Ausgangs- und Endpunkte der Transformation wurden die Protokolle Chord und
CAN gewählt, da diese sehr unterschiedliche Topologien aufweisen. Dieser strukturelle
Unterschied macht die Transformation besonders reizvoll.

Um diese auf die Overlaynetze anzuwenden wurde eine modularisierte Systemarchitektur
vorschlagen. Mit Hilfe dieser wurden die erforderlichen Module ermittelt, konzeptioniert
und umgesetzt.

Diese sind im Einzelnen: Ein Indirektionsmechanismus, der eine höhere Flexibilität im
Umgang mit mehreren simultan oder abwechselnd verwendeten Protokollen erhöht. Eine
bidirektionale Adressabbildung, zur Kompensation verschiedenartiger Id-Räume. In diesem
Zusammenhang wurden die Eignung und die Komplexität verschiedener raumfüllender
Kurven, in Hinsicht auf ihre Nutzung und Auswirkungen in der Transformation, betrachtet.
Hierbei wurden eine sequenzielle Raumkurve, sowie die Hilbert-Kurve für die weitere Ver-
wendung ausgewählt. Im Kernteil wurden Transformationsprotokolle, die in Kombination
oder im Austausch mit den verwendeten Anfangs- und Zielprotokollen verwendet werden,
entwickelt. Hierzu wurden zunächst verschiedene Ansätze im Groben diskutiert. Zwei kon-
kurrierende Ansätze wurden weiter vertieft. Hierbei handelt es sich um die nebenläufige
Neukonstruktion eines Netzwerkes, sowie die Transformation mit Hilfe eines Hybridnet-
zes. Für diese wurden in diesem Rahmen ein eigener Optimierungs- und ein angepasster
Routingalgorithmus entwickelt.

Nach der Weiterentwicklung und Abschätzung, der für die Verfahren benötigten Aufwän-
de, wurde eine simulationsgestützte Evaluation durchgeführt. In dieser konnten viele der
prognostizierten Eigenschaften nachgewiesen werden. Jedoch wurden hierbei auch einige

75

7 Fazit

Probleme des Optimierungsalgorithmus festgestellt und erläutert. Da dieser verschiedene
Id-Bereiche nur paarweise zusammenfügen kann, konvergiert die Optimierung der Kno-
tenzustände während der Transformation unerwartet früh. Trotz seiner eingeschränkten
Leistungsfähigkeit hat sich dieser außerdem als ausgesprochen rechenlastig herausgestellt.

Hieraus muss geschlussfolgert werden, dass die vorgestellten und evaluierten Verfahren,
obwohl beide die Transformation in einer kontrollierten Umgebung leisten können, noch
nicht praxistauglich sind.

Für die Eignung der jeweiligen Verfahren, für verschiedene Situationen, können einige
Grundaussagen festgehalten werden. Die Transformation durch eine nebenläufige Neukon-
struktion des Zielnetzwerkes eignet sich besonders für große Netze, mit vielen Teilnehmern.
Jedoch leidet dieser Ansatz sehr unter der im Netzwerk vorhandenen Datenlast. Sind also
viele Daten in dem betreffenden Netzwerk gespeichert oder sind viele Verteilbäume über
dem Netzwerk aufgespannt, lässt die Leistungsfähigkeit stark nach.

Die Transformation mit Hilfe eines Hybridnetzes leidet hingegen eher unter der Zahl der
Teilnehmer im Netzwerk. Dies ist dem Umstand geschuldet, dass hierbei keine optimierten
Beitrittsalgorithmen oder Ähnliches genutzt werden können um die Komplexität zu redu-
zieren. Jedoch ist die Zahl der zu migrierenden Inhalte wesentlich geringer, da dies nur im
Rahmen der gegenseitigen Optimierung stattfindet.

Ein weiteres Plus für die Transformation mit Hilfe eines Hybridnetzes sind die bisher nicht
ausgeschöpften Optimierungspotentiale. Die Optimierungspotentiale betreffen sowohl den
Routingalgorithmus, besonders jedoch den gegenseitigen Optimierungsalgorithmus. Dieser
muss dringend in Hinsicht auf auf komplexere Kombinationsmöglichkeiten verschiedener
Id-Bereiche erweitert werden. Zusätzlich muss der insgesamt benötigte Rechenaufwand
durch einen geschickteren Umgang mit den vorliegenden Daten verbessert werden.

Durch diese Verbesserungen kann, mit Hilfe der Transformation durch ein Hybridnetz, ein
Zielnetz erzeugt und genutzt werden, dass dem Ausgangsnetz relativ ähnlich ist, jedoch
andere Charakterisika aufweist, die sich wiederum auf die hierauf aufbauenden Services
auswirken.

In zukünftigen overlaybasierten Systemen spielt die Topologie des Overlays und deren
Rekonfigurationsmöglichkeiten eine entscheidende Rolle für die Effizienz und die erbrachte
Leistung der Systeme. Mit entsprechenden Möglichkeiten ausgestattete Systeme können
wesentlich effizienter auf Veränderungen reagieren, als Systeme, die keine Möglichkeit haben
ihr verwendetes Overlay anzupassen.

Um die in dieser Arbeit angestellten Betrachtungen und Annahmen weiter zu validieren, ist
es sinnvoll die bereits in der Evaluationsphase angestellten Bemühungen fortzuführen. Die
hierbei ermittelten Ergebnisse können in die Weiterentwicklung der bisherigen Vorgehens-
weisen einfließen. Besonderes Augenmerk muss hierbei auf Aussagen über die Robustheit
der verwendeten Verfahren gelegt werden. Hierzu zählen das Verhalten unter Churn, geziel-
ten und ungezielten Angriffen und schließlich auch kompletten Partitionierungen des zu
transformierenden Netzwerkes. Zusätzlich können das verwendete Routingprotokoll und die
Optimierung der Zuständigkeit der Knoten weiteren Untersuchungen unterzogen werden.

76

Auch die Erweiterung des Ansatzes um zusätzliche Overlaystrukturen und P2P-Systeme
kann ein Weiterentwicklungspunkt sein.

Ebenso interessant sind die tatsächlichen Auswirkungen auf die, auf den betrachteten
Overlaynetzwerken aufgesetzten, Publish/Subscribe-Systeme. Hierüber konnten bis zu
diesem Zeitpunkt keine Evaluierungen durchgeführt werden. Es kann untersucht werden,
ob sich die erwarteten Eigenschaften der erzeugten Netzwerke wie prognostiziert ausnutzen
lassen, um die Leistungsfähigkeit zu erhöhen.

In dieser Arbeit wurden Grundlagen geschaffen, um ansonsten recht starre strukturierte
Overlays in ihrer Gestalt zu beeinflussen. Dies kann genutzt werden um die Bandbreite der
Reaktionsmechanismen zu erhöhen, die Services, die auf strukturierten Overlays basieren,
zur Verfügung stehen. Aus diesen Reaktionsmechanismen können Strategien entwickelt
werden, mit deren Hilfe in Zukunft auf die Leistung ansonsten einschränkenden Belastungs-
änderungen der Systeme zu reagieren.

77

Literaturverzeichnis

[ADHS05] Aberer, K. ; Datta, A. ; Hauswirth, M. ; Schmidt, R.: Indexing data-oriented
overlay networks. In: Proceedings of the 31st international conference on Very large
data bases VLDB Endowment, 2005, S. 696 (Zitiert auf Seite 24)

[ARR+
97] Asano, T. ; Ranjan, D. ; Roos, T. ; Welzl, E. ; Widmayer, P.: Space-filling curves

and their use in the design of geometric data structures. In: Theoretical Computer
Science 181 (1997), Nr. 1, S. 3–15 (Zitiert auf Seite 32)

[BA99] Barabási, A.L. ; Albert, R.: Emergence of scaling in random networks. In:
Science 286 (1999), Nr. 5439, S. 509 (Zitiert auf Seite 6)

[BBQV07] Baldoni, R. ; Beraldi, R. ; Querzoni, L. ; Virgillito, A.: Efficient publish/-
subscribe through a self-organizing broker overlay and its application to SIENA.
In: The Computer Journal 50 (2007), Nr. 4, S. 444. – ISSN 0010–4620 (Zitiert auf
Seite 24)

[BMVV05] Baldoni, R. ; Marchetti, C. ; Virgillito, A. ; Vitenberg, R.: Content-based
publish-subscribe over structured overlay networks. In: Distributed Computing
Systems, 2005. ICDCS 2005. Proceedings. 25th IEEE International Conference on IEEE,
2005. – ISBN 0769523315, S. 437–446 (Zitiert auf Seite 18)

[But06] Butz, AR: Alternative algorithm for Hilbert’s space-filling curve. In: Computers,
IEEE Transactions on 100 (2006), Nr. 4, S. 424–426. – ISSN 0018–9340 (Zitiert auf
Seite 33)

[DA06] Datta, A. ; Aberer, K.: The challenges of merging two similar structured
overlays: A tale of two networks. In: Self-Organizing Systems (2006), S. 7–22

(Zitiert auf Seite 39)

[Dat07] Datta, A.: Merging intra-planetary index structures: decentralized bootstrapping
of overlays. In: First International Conference on Self-Adaptive and Self-Organizing
Systems, 2007. SASO’07, 2007, S. 109–118 (Zitiert auf Seite 39)

[DZD+
03] Dabek, F. ; Zhao, B. ; Druschel, P. ; Kubiatowicz, J. ; Stoica, I.: Towards a

common API for structured peer-to-peer overlays. In: Peer-to-Peer Systems II
(2003), S. 33–44 (Zitiert auf Seite 13)

79

Literaturverzeichnis

[GHW07] Ghodsi, A. ; Haridi, S. ; Weatherspoon, H.: Exploiting the synergy between
gossiping and structured overlays. In: ACM SIGOPS Operating Systems Review 41

(2007), Nr. 5, S. 66 (Zitiert auf Seite 24)

[JB04] Jelasity, M. ; Babaoglu, O.: T-Man: Fast gossip-based construction of large-
scale overlay topologies. In: University of Bologna, Department of Computer Science,
UBLCS-2004-7, Bologna, Italy (2004) (Zitiert auf Seite 24)

[JMJV] Jelasity, Márk ; Montresor, Alberto ; Jesi, Gian P. ; Voulgaris, Spyros: The
Peersim Simulator. – http://peersim.sf.net (Zitiert auf Seite 61)

[JMW+
08] Jaeger, M.A. ; Muhl, G. ; Werner, M. ; Parzyjegla, H. ; Heiss, H.U.: Algorithms

for Reconfiguring Self-Stabilizing Publish/Subscribe Systems. In: Autonomous
Systems-Self-Organization, Management, and Control: Proceedings of the 8th Interna-
tional Workshop Held at Shanghai Jiao Tong University, Shanghai, China, October 6-7,
2008 Springer Verlag, 2008. – ISBN 1402088884, S. 135 (Zitiert auf Seite 16)

[KCC+
05] Kumar, V. ; Cooper, B.F. ; Cai, Z. ; Eisenhauer, G. ; Schwan, K.: Resource-aware

distributed stream management using dynamic overlays. In: Distributed Compu-
ting Systems, 2005. ICDCS 2005. Proceedings. 25th IEEE International Conference on
IEEE, 2005. – ISBN 0769523315, S. 783–792 (Zitiert auf Seite 24)

[MAK02] Mokbel, M.F. ; Aref, W.G. ; Kamel, I.: Performance of multi-dimensional space-
filling curves. In: Proceedings of the 10th ACM international symposium on Advances
in geographic information systems ACM, 2002, S. 149–154 (Zitiert auf den Seiten 32,
33 und 35)

[MJB05] Montresor, A. ; Jelasity, M. ; Babaoglu, O.: Chord on demand. (2005) (Zitiert
auf Seite 39)

[PEFK09] Popescu, A. ; Erman, D. ; Fiedler, M. ; Kouvatsos, D.: Routing in Content
Addressable Networks: Algorithms and Performance. In: 20th ITC-Specialist
Seminar IEEE, 2009 (Zitiert auf Seite 13)

[RD01] Rowstron, A. ; Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Middleware 2001 Springer, 2001,
S. 329–350 (Zitiert auf den Seiten 2, 9 und 17)

[RFH+
01] Ratnasamy, S. ; Francis, P. ; Handley, M. ; Karp, R. ; Schenker, S.: A scalable

content-addressable network. In: Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications ACM, 2001, S.
172 (Zitiert auf den Seiten 2, 9 und 11)

[RHKS01] Ratnasamy, S. ; Handley, M. ; Karp, R. ; Shenker, S.: Application-level mul-
ticast using content-addressable networks. In: Networked Group Communication
(2001), S. 14–29 (Zitiert auf Seite 17)

[RKCD01] Rowstron, A. ; Kermarrec, A.M. ; Castro, M. ; Druschel, P.: SCRIBE: The
design of a large-scale event notification infrastructure. In: Networked Group
Communication (2001), S. 30–43 (Zitiert auf Seite 17)

80

Literaturverzeichnis

[SGH07] Shafaat, T.M. ; Ghodsi, A. ; Haridi, S.: Handling network partitions and
mergers in structured overlay networks. (2007) (Zitiert auf den Seiten 24 und 39)

[SLP09] Stevens, RJ ; Lehar, AF ; Preston, FH: Manipulation and presentation of
multidimensional image data using the Peano scan. In: Pattern Analysis and
Machine Intelligence, IEEE Transactions on (2009), Nr. 5, S. 520–526. – ISSN 0162–
8828 (Zitiert auf Seite 33)

[SMK+
01] Stoica, I. ; Morris, R. ; Karger, D. ; Kaashoek, M.F. ; Balakrishnan, H.: Chord:

A scalable peer-to-peer lookup service for internet applications. In: Proceedings
of the 2001 conference on Applications, technologies, architectures, and protocols for
computer communications ACM, 2001, S. 149–160 (Zitiert auf den Seiten 2 und 9)

[Tel00] Tel, G.: Introduction to distributed algorithms. Cambridge University Press, 2000. –
194–196 S. – ISBN 0521794838 (Zitiert auf den Seiten 40 und 44)

[TKKR09] Tariq, M.A. ; Koldehofe, B. ; Koch, G.G. ; Rothermel, K.: Providing probabili-
stic latency bounds for dynamic publish/subscribe systems. In: Kommunikation
in Verteilten Systemen (KiVS) Springer, 2009, S. 155–166 (Zitiert auf Seite 25)

[WBH+
08] Waldhorst, Oliver ; Blankenhorn, Christian ; Haage, Dirk ; Holz, Ralph ;

Koch, Gerald ; Koldehofe, Boris ; Lampi, Fleming ; Mayer, Christoph ; Mies,
Sebastian: Spontaneous Virtual Networks: On the Road towards the Internet’s
Next Generation. In: it- Information Technology Special Issue on Next Generation In-
ternet 50 (2008), Dezember, Nr. 6. http://www.informatik.uni-stuttgart.de/
cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2008-18&engl=0 (Zitiert auf Seite 9)

[ZKJ01] Zhao, B.Y. ; Kubiatowicz, J. ; Joseph, A.D.: Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. In: Computer 74 (2001), S. 11–20

(Zitiert auf den Seiten 2 und 9)

Alle URLs zuletzt am 14.01.2011 geprüft.

81

http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2008-18&engl=0
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2008-18&engl=0

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Christoph Schlameuß)

	1 Einleitung
	2 Grundlagen und Stand der Technik
	2.1 Overlaynetze
	2.1.1 Overlaystruktur
	2.1.2 Lastbalancierung

	2.2 P2P-Systeme
	2.2.1 Chord
	2.2.2 Content Addressable Network (CAN)
	2.2.3 P2P-System API

	2.3 Anwendungen von P2P-Systemen
	2.3.1 Distributed Hash Tables (DHT)
	2.3.2 Publish/Subscribe-Systeme

	3 Problembeschreibung und Abgrenzung zu anderen Arbeiten
	3.1 Szenario
	3.2 Herausforderungen
	3.3 Problembeschreibung
	3.3.1 Abhängigkeit vom verwendeten Overlaynetz

	3.4 Abgrenzung zu anderen Arbeiten
	3.4.1 Verschmelzen gleichartiger Overlaynetze
	3.4.2 Overlaynetze mit variabler Struktur

	4 Vorbedingungen für die Transformation
	4.1 Systemmodell
	4.2 Kriterium und Ablauf der Transformation
	4.2.1 Kriterium für die Transformation
	4.2.2 Ablauf der Transformation

	4.3 Vergleich von Chord und CAN
	4.4 Architektur
	4.5 Adresstransformation
	4.5.1 Raumfüllende Kurven
	4.5.2 Sequenzielle Raumkurve
	4.5.3 Hilbert-Kurve
	4.5.4 Optimale Raumkurven
	4.5.5 Eignung der Raumkurven für die Transformation

	5 Konzepte für die Transformation
	5.1 Naive Transformationsmethoden
	5.1.1 Direktes Überführen der Knoten
	5.1.2 Teile und Herrsche
	5.1.3 Nebenläufige Neukonstruktion

	5.2 Transformation mit Hilfe eines Hybridnetzwerkes
	5.2.1 Ansatz
	5.2.2 Ablauf der Tansformation
	5.2.3 Nachbarsuche
	5.2.4 Routing
	5.2.5 Optimierung des Zustandes in der Transformation
	5.2.6 Aufwandsabschätzung
	5.2.7 Auswirkung auf Publish/Subscribe-Systeme
	5.2.8 Dauerhafter Betrieb im Transformationszustand

	5.3 Vergleich der vorgestellten Transformationen
	5.3.1 Vergleich der prognostizierten Aufwände
	5.3.2 Eignung der verschiedenen Ansätze

	6 Bewertung
	6.1 PeerSim
	6.2 Aufbau der Simulation
	6.2.1 Bestandteile der Simulation
	6.2.2 Implementierung der Simulation

	6.3 Ergebnisse der Simulation
	6.3.1 Komplexität
	6.3.2 Routingperformance
	6.3.3 Lastbalancierung
	6.3.4 Einfluss der raumfüllenden Kurve
	6.3.5 Problem der paarweisen Optimierung

	7 Fazit
	Literaturverzeichnis

