
Institut für Parallele und Verteilte Systeme
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3070

Hardware Implementierung eines
parallelen Entropie Koders

Maximiliano Keller

Studiengang: Informatik

Prüfer: Prof. Dr.-Ing. Sven Simon

Betreuer: Dipl.-Inf. Simeon Wahl

begonnen am: 26. Juli 2010

beendet am: 25. Januar 2011

CR-Klassifikation: E4, B.2.1, F.2.0

Inhaltsverzeichnis

Abstract 7

1 Einleitung 9

2 Arithmetisches Kodieren 11
2.1 Grundlagen . 11

2.1.1 Motivation . 11

2.1.2 Prinzip . 13

2.2 Kodierung als reelle Zahl . 19

2.3 Dekodierung als reelle Zahl . 20

2.4 Beweis der Eindeutigkeit . 21

2.5 Effizienz . 23

2.6 Kodierung als begrenzte Festkommazahl . 24

2.6.1 Abbildung auf Ganze Zahlen . 24

2.6.2 Skalierung bei Überlauf . 26

2.6.3 Skalierung bei Unterlauf . 28

2.7 Dekodierung als begrenzte Festkommazahl . 34

3 Parallelisierung 37
3.1 Parallelisierung nach J. Jiang und S. Jones . 38

3.1.1 Einleitung . 38

3.1.2 Prinzip . 39

3.1.3 Normalisierung . 42

3.1.4 Stark unterschiedliche Häufigkeiten . 43

3.2 Parallelisierung nach J. Šupol und B. Melichar 43

3.2.1 Einleitung . 43

3.2.2 Prinzip . 44

3.2.3 Beispiel . 46

3.2.4 Parallelisierung . 47

3.3 Parallelisierung nach Horg-Yeong Lee, Leu-Shing Lan, Ming-Hwa Sheu und
Chien-Hsing Wu . 49

3.3.1 Einleitung . 49

3.3.2 Prinzip . 49

3.4 Konklusion . 50

3.4.1 Gleichungen für Parallelisierung . 50

3.4.2 Präzision . 52

3.4.3 Algorithmus für Skalierung . 54

3

3.5 Parallelisierung in Hardware . 57

3.5.1 CUDA . 58

Architektur . 58

Implementierung . 58

3.5.2 VHDL . 59

Algorithmus . 60

4 Implementierung 61
4.1 Referenz Beispiel . 61

4.2 Struktur . 65

4.3 Incrementer . 66

4.4 RAM . 67

4.5 Parallel Loader . 67

4.6 Parallel Koder . 69

4.6.1 BPE . 69

4.6.2 GPE . 71

4.6.3 Der Koder . 72

4.7 Normalizer . 74

4.8 Control Unit . 76

4.9 Validierung und Synthese Ergebnisse . 78

5 Zusammenfassung und Ausblick 81
5.1 Ausblick . 81

Appendix 83

Literaturverzeichnis 97

Zeichenliste 99

Stichwortverzeichnis 101

4

Abbildungsverzeichnis

2.1 Intervalleinteilung (obere Grenzen = Fx(i)) . 14

2.2 Teilintervalleinteilung (obere Grenzen = Fx(i)) 15

2.3 Intervalleinteilung in Quadranten . 29

3.1 Basisformeln für Parallelisierung . 41

3.2 Berechnungs-Baum für 8 Symbole . 41

3.3 Berechnungs-Baum für 8 Symbole + Konkatenation 42

3.4 Berechnungs-Baum LR für die ersten 4 Symbole 47

3.5 Berechnungs-Baum L für die ersten 4 Symbole 48

3.6 Berechnungs-Baum . 49

3.7 Berechnungs-Baum für 32 Symbole . 51

3.8 direkte Bestimmung des Kodes für L = 0A10 und r = 0090 56

3.9 direkte Bestimmung des Kodes für L = 7836 und r = 0016 56

3.10 Prioritätsenkoder OR-Baum . 57

3.11 Bitbestimmung mit XOR Gattern . 57

4.1 Berechnungs-Baum für 4 Symbole + Konkatenation 62

4.3 Incrementer Test Bench . 66

4.4 RAM Testbench . 67

4.5 Parallel Loader Testbench . 69

4.6 Schematische BPE . 70

4.7 Testbench für BPE . 71

4.8 Schematische GPE . 72

4.9 Testbench für GPE . 72

4.10 Technologie Block Parallel Koder . 73

4.11 Testbench für Parallel Koder . 74

4.12 Testbench für Normalizer mit L = 0A10 und r = 0090 75

4.13 Gesamtentwurf Testbench . 77

4.2 Gesamtentwurf . 79

5

Verzeichnis der Listings

2.1 Algorithmus für Kodierung (Bit Breite 8) . 32

2.2 Algorithmus für Dekodierung (Bit Breite 8) . 35

6

Abstract

Das Arithmetische Kodieren hat den Vorteil, nahe der Entropie komprimieren zu können.
Das Verfahren besteht aus zwei Differenzengleichungen, deren Berechnung sequenziell ist.
Teilrechnungen können jedoch zusammengefasst und parallel berechnet werden.

In dieser Diplomarbeit wurde die Parallelisierung des Arithmetischen Kodierens in Hinblick
auf eine Hardware-Implementierung untersucht. Lösungsvorschläge wurden analysiert und
gegenübergestellt sowie ihre Gemeinsamkeiten herausgearbeitet.

Ein wesentlich einfacherer Algorithmus für die Skalierung wurde entwickelt und eine
Formel für die mindestens zu wählende Bit Breite erarbeitet. Abschließend wurde eine
VHDL Lösung implementiert.

Abstract

The advantage of Arithmetic Coding is a compression rate close to the Entropy. The method
consists of two difference equations. Their calculation is of a sequential nature. Parts of them
can be combined and calculated in parallel.

In this diploma theses the parallelization of Arithmetic Coding has been examined with
focus on a hardware implementation. Different approaches for such parallelization were
analyzed and compared. The similarities have been worked out.

A simpler scaling algorithm has been presented and a formula for the minimum bit width
was developed. A VHDL solution has been implemented.

7

1 Einleitung

In der Informationsverarbeitung müssen große Datenmengen gespeichert und verwaltet wer-
den. Suchmaschinenhersteller wie beispielsweise GoogleTM, die Inhalte aus Internet-Seiten
für ihre Suchanfragen speichern müssen, erreichen Index-Größen von einer Trillion URLs
(1.000.000.000.000)1. Soziale Netzwerke wie FacebookTM zählen inzwischen 500 Millionen
registrierte Nutzer mit über 50 Billionen2 Uploads, deren Daten bewältigt und verwaltet
werden müssen. Es ist klar, dass man bei diesen Mengen nach möglichst effizienten Speicher-
methoden sucht. Hier spielt die Komprimierung eine große Rolle. Nicht nur der Platzbedarf
würde sinken und damit Kosten sparen, sondern selbst geringe Komprimierungsraten
würden ausreichen, um erhebliche Geschwindigkeitssteigerungen zu erreichen.

Wann immer Daten übertragen werden, kann man den Durchsatz steigern, indem man für
den selben Informtionsgehalt weniger Bytes überträgt. Das gilt nicht nur für Datenüber-
tragung von der Festplatte zum Computer, sondern ist allgemein gültig. Es findet unter
anderem Anwendung in der Telekommunikationsbranche. Hier werden große Anstrengun-
gen unternommen, die Gespräche möglichst stark zu komprimieren, um die Bandbreite
besser zu nutzen.

Bei Anwendungen wie beispielsweise einer Hochgeschwindigkeitskamera, die sehr große
Mengen an Daten produziert, ist man zusätzlich mit dem Problem konfrontiert, ob die Daten
in der geforderten Zeit überhaupt komprimiert werden können. Man kann davon ausgehen,
dass eine stärkere Komprimierung mehr Rechenzeit in Anspruch nehmen wird als eine
geringe.

Das Arithmetische Kodieren verspricht Komprimierungsraten nahe der Entropie. Die streng
sequenzielle Abarbeitung der Daten macht den Algorithmus jedoch sehr langsam. In die-
sem Zusammenhang wäre es interessant zu wissen, ob man dieses Verfahren durch eine
Parallelisierung in Hardware beschleunigen kann, um es zum Beispiel in Mobiltelefonen
oder Hochgeschwindigkeitskameras einsetzen zu können. Dieser Frage werden wir in dieser
Arbeit nachgehen.

Gliederung

Es erschien mir sinnvoll, erst das Prinzip des Arithmetischen Kodierens zu erklären und
dann dieses mit der Parallelisierung zu vertiefen. Zuerst wird die allgemeine Idee erklärt.

1http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
2http://www.usatoday.com/tech/news/ 2010-07-21-facebook-hits-500-million-users_N.htm

9

1 Einleitung

Sind diese Grundlagen geschafft, kann man sich weiter Gedanken über die Parallelisierung
machen. Schließlich fließen die gewonnenen Erkenntnisse dann in die konkrete Umsetzung
ein.

Kapitel 2 – Arithmetisches Kodieren: Hier wird das Prinzip des sequenziellen Arithmeti-
schen Kodierens beschrieben und ein Algorithmus entwickelt.

Kapitel 3 – Parallelisierung: Ansätze zur Parallelisierung des Algorithmus werden hier vor-
gestellt. Diese werden im Hinblick auf eine konkrete Hardware Implementierung hin
analysiert und gegenübergestellt. Die daraus gewonnenen Erkenntnisse bilden den
Kern dieser Diplomarbeit.

Kapitel 4 – Implementierung: Das Ergebnis der Analyse endet mit einer konkreten Imple-
mentierung in VHDL. In diesem Kapitel werden die einzelnen Module des Kodes im
Detail erklärt.

10

2 Arithmetisches Kodieren

2.1 Grundlagen

2.1.1 Motivation

Die Geschichte des Arithmetischen Kodierens ist eigentlich ziemlich interessant. Shannon
hat schon 1948 [Sha48] in einem Paper ein Verfahren erwähnt, das die Verteilungsfunktion
für eine Kodierung vorschlägt. Später wurde es unter dem Namen Shannon-Fano Kode
bekannt. Peter Elias, der auch Fanos Vorlesung über Informationstheorie hörte, entwickelte
eine rekursive Implementierung des Problems. Diese wurde jedoch nie veröffentlicht. Jelinek
entwickelte diese Idee in einem Anhang in seinem Buch, das 1968 erschien, weiter.

Der wirkliche Durchbruch gelang aber erst 1976 durch unabhängige Erkenntnisse von Pasco
[Pas76] und Rissanen [Ris76]. Hier wurde erstmalig das Problem der endlichen Genauigkeit
gelöst. Schließlich erschienen aufgrund dieser Erkenntnisse Paper mit praktischen Implemen-
tierungen. Eine der bekanntesten davon ist die Referenzimplementierung von Witten, Neal
und Cleary [WNC87]. Wie wir sehen werden, vergingen wieder einige Jahre bis eine parallele
Implementierung erstmals von Jiang und Jones [JJ94] 1994 in einem Paper vorgeschlagen
wurde.

Was diese Geschichte so interessant macht, ist die Tatsache, dass das Prinzip zwar relativ
früh bekannt wurde, es jedoch sehr lange gedauert hat, bis man die Probleme, die dieses
Verfahren mit sich bringt, in den Griff bekommen hat. Eine andere Betrachtungsweise wäre,
dass dieses Verfahren eher uninteressant ist und von keiner praktischen Bedeutung. Dann
würden sich auch weniger Menschen damit befassen und sich so die lange Geschichte
erklären. Das ist nicht der Fall. Ganz im Gegenteil! Das Arithmetische Kodieren hat einige
Vorteile gegenüber dem sehr umfassend behandelten Huffman Coding.

Welche Vorteile hat das Arithmetische Kodieren gegenüber dem Huffman Coding?

Dazu benötigen wir erstmal ein paar Definitionen. Ich halte mich dabei an die Nomenklatur
und die Beispiele von K. Sayood [Say96].

Sei P(A) die Wahrscheinlichkeit, dass ein Ereignis A eintritt, dann ist die Selbstinformation

des Ereignisses A

i(A) = logb
1

P(A)
= − logb P(A)

11

2 Arithmetisches Kodieren

Diese Definition kann man sich so vorstellen, dass ein Ereignis welches selten auftritt mehr
Informationsgehalt hat als eines welches häufig vorkommt. Das entspricht auch der intuitiven
Auffassung von Informationsgehalt.

Beispiel 1. Seien K und Z die möglichen Ergebnisse eines Münzwurfs. Dann gilt

P(K) = P(Z) =
1
2

und damit auch

i(K) = i(Z) = − logb(
1
2
) = 1 bit

Würde man die Münze unfair gestalten, so dass

P(K) =
1
8

und P(Z) =
7
8

dann ergibt sich daraus

i(K) = 3 bits, und i(Z) = 0.193 bits

♦

Den Informationsgehalt eines Textes nennt man die Entropie. Sie ist die Summe der einzel-
nen Informationsgehalte multipliziert mit der Wahrscheinlichkeit, mit der sie auftreten:

E = ∑ P(Ai)i(Ai) = −∑ P(Ai) logb P(Ai)

Die Entropie stellt die untere Grenze einer Kompaktierung dar. In der Regel wird man diese
Grenze nur in Ausnahmefällen erreichen.

Das genügt an dieser Stelle, um in einem Beispiel die Probleme des Huffman Codings zu
zeigen.

Beispiel 2. Gegeben sei ein Alphabet A = {a1, a2, a3} mit den Wahrscheinlichkeiten P(a1) =
0.95, P(a2) = 0.02 und P(a1) = 0.03. Die Entropie ist also

−(0.95 logb(0.95) + 0.03 logb(0.03) + 0.02 logb(0.02) = 0.3349

Einen Huffman Code für diese Quelle zeigt Tabelle 2.1

Die durchschnittliche Kodelänge für diesen Kode ist 1 · 0.95 + 2 · 0.02 + 2 · 0.03 = 1.05
Bits/Symbol und damit 213% der Länge der Entropie. Das bedeutet, dass es mehr als doppelt
soviel Bits braucht wie die Entropie. Selbst wenn man die Symbole in Zweiergruppen
aufteilen würde, erhält man noch eine durchschnittliche Kodelänge, die 72% über der
Entropie liegt.

Um noch bessere Kompaktierung zu erreichen, kann man noch größere Gruppen zusammen-
fassen. Bei einer Gruppe von 8 Symbolen erreicht man akzeptable Werte. Das dazugehörige
Alphabet steigt aber zu einer Anzahl von 38 = 6561 Symbolen an. Hier sieht man, dass in
diesem Fall das Huffman Coding nicht mehr effizient ist.

♦

12

2.1 Grundlagen

Symbol Kodewort

a1 0

a2 11

a3 10

Tabelle 2.1: Huffman Code für einstellige Sybole

Symbol Wahrscheinlichkeit Kodewort

a1a1 0.9025 0

a1a2 0.0190 111

a1a3 0.0285 100

a2a1 0.0190 1101

a2a2 0.0004 110011

a2a3 0.0006 110001

a3a1 0.0285 101

a3a2 0.0006 110010

a3a3 0.0009 110000

Tabelle 2.2: Huffman Code für zweistellige Symbole

An diesem Beispiel wird klar, wo die Probleme beim Huffman Code liegen: Man erreicht
bessere Kompaktierung, wenn man Kodewörter für Gruppen von Symbolen generiert. Doch
für lange Symbolgruppen muss man dann sehr viele Kodes erzeugen. Die zu erzeugenden
Kodes steigen exponentiell an.

Man kann das umgehen, indem man ein Kodewort für eine bestimmte Symbolsequenz
generiert. Genau das ist die Idee hinter dem Arithmetischen Kodieren.

Beim Arithmetischen Kodieren wird einer Symbolsequenz S = x1x2x3 . . . genau eine Zahl
(oder Kode) zugewiesen. Die Länge der Sequenz ist |S| = n.

2.1.2 Prinzip

Um einer Symbolsequenz oder auch einer Buchstabensequenz eine eindeutige Zahl zuzuwei-
sen bedienen wir uns der Verteilungsfunktion einer diskreten Zufallsvariablen. Sei also ein
Ereignis ai ∈ A einer Zufallsvariablen

X(ai) = i

13

2 Arithmetisches Kodieren

zugewiesen, wobei A = a1, a2, a3 . . . am ein Alphabet ist. Damit gilt die Wahrscheinlichkeit,
dass X den Wert i annimmt:

P(X = i) = p(ai)

Das Zuweisen einer Wahrscheinlichkeit ist das zugrundeliegende Modell P für die Quelle.
Wir werden später sehen, dass diese Zuweisung großen Einfluss auf die Kompressionsrate
haben wird.

Die Verteilungsfunktion ist dann als

Fx(i) =
i

∑
k=1

P(X = k) =
i

∑
k=1

p(ai) (2.1)

definiert. Es gelte außerdem, dass sämtliche Ereignisse ai disjunkt sind und

∩ai = A

Nun aber endlich zu der grundlegenden Idee: Wir wollen erreichen, einer Sequenz einen
eindeutigen Wert zuzuweisen. Dafür geht man folgendermaßen vor:

Mit |A| = m ist Fx(m) = 1. Deshalb betrachten wir ein Intervall von [0, 1). Wir nutzen die
Tatsache, dass in diesem Intervall unendlich viele irrationale Zahlen existieren und teilen
dieses Intervall in Teilintervalle aus der diskreten Verteilungsfunktion Fx(i). Wir weisen
jedem ai das Teilintervall:

[Fx(i− 1), Fx(i)) für i = 1 . . . m (2.2)

zu.

a

a

a

a

a

a

1

2

3

k

j

n

Fx (0)
Fx(1)

Fx(2)
Fx(3)

Fx(k-1)
Fx(k)

Fx (j)

Fx (n-1)
xF (n)

Abbildung 2.1: Intervalleinteilung (obere Grenzen = Fx(i))

Wird jetzt zum Beispiel als erstes das Symbol ak gelesen, weisen wir das Intervall [Fx(k−
1), Fx(k)) unserem Kode zu. Wir merken uns hierzu die untere Grenze Fx(k− 1) und die
obere, offene Grenze Fx(k). Dann teilen wir dieses Intervall wieder in m Teilintervalle ein.

14

2.1 Grundlagen

Damit das Verhältnis erhalten bleibt, müssen die neuen Grenzen durch die Länge des neuen
Intervalls geteilt werden. Lesen wir beispielsweise als nächstes das Symbol aj ein, wird dem
Kode das Intervall[

Fx(k− 1) + Fx(j− 1)
Fx(k)− Fx(k− 1)

,
Fx(k− 1) + Fx(j)
Fx(k)− Fx(k− 1)

)
(2.3)

zugewiesen.

a

a

a

a

a

a

1

2

3

k

j

n

Fx (0)
Fx(1)

Fx(2)
Fx(3)

Fx(k-1)
Fx(k)

Fx (j)

Fx (n-1)
xF (n)

a

a

a

a

a

a

1

2

3

k

j

n

a

a

a

a

a

a

1

2

3

k

j

n

Abbildung 2.2: Teilintervalleinteilung (obere Grenzen = Fx(i))

Beispiel 3. Gegeben sei ein Alphabet A = {a1, a2, a3} mit P(a1) = 0.7, P(a2) = 0.1 und
P(a3) = 0.2. Die Gleichung (2.1) liefert Fx(1) = 0.7, Fx(2) = 0.8 und Fx(3) = 1.0. Falls nun
das Symbol a1 kodiert werden soll, liegt das Intervall zwischen [0.0, 0.7), für a2 zwischen
[0.7, 0.8) und entsprechend für a3 zwischen [0.8, 1.0).

Angenommen wir lesen erst das Symbol a1. Dann liegt unser Kode zwischen den Werten
[0.0, 0.7). Dieses Intervall wird gemäß der Gleichung (2.3) in die Teilintervalle [0.0, 0.49),
[0.49, 0.56) und [0.56, 0.7) zerlegt. Würde als nächstes wieder das Symbol a1 gelesen, dann
läge der Kode im Intervall [0.0, 0.49), oder bei a2 im Intervall [0.49, 0.56) und bei a3 [0.56, 0.7).

Und wieder würde man das Intervall aufteilen und für das nächste Symbol das entsprechen-
de Teilintervall wählen. ♦

Das Zerlegen in Teilintervalle und Auswählen des Teilintervalls wiederholt man so lange,
bis die Quelle gelesen ist. Das letzte (Teil-)Intervall1 bildet das Ergebnis der Kodierung.
Man muss sich aber nicht die untere und obere Grenze merken. Es reicht, eine beliebige
Zahl aus dem Intervall zu nehmen. Das ergibt sich aus der Tatsache, dass die Teilintervalle
voneinander disjunkt sind und sobald man irgendeine Zahl aus dem Intervall gewählt hat,
es kein anderes Intervall gibt, welches diese Zahl beinhaltet. Damit ist eindeutig festgelegt,
um welches Intervall es sich handelt. Aus praktischen Gründen wählt man gerne die untere
Grenze, wie wir später sehen werden.

1Das erste Intervall wird in Teilintervalle zerlegt. Das dann ausgesuchte Teilintervall wird nun zum Intervall

15

2 Arithmetisches Kodieren

Um den mathematischen Weg der Kodegenerierung zu erläutern, wählen wir hier die Mitte
des Intervalls und definieren dafür folgende Rechenregel

T̄x(ai) =
i−1

∑
k=1

P(X = k) +
1
2

P(x = i)

T̄x(ai) = Fx(i− 1) +
1
2

P(x = i) (2.4)

Das T̄ steht hier für das englische Wort «tag». Jetzt können wir jedem Symbol ai einen Kode
zuweisen.

Beispiel 4. Sei die Augenzahl eines sechsseitigen, fairen Würfels den Ereignissen
{1, 2, 3, 4, 5, 6} zugewiesen. Dann gilt

P(X = i) =
1
6

für i = 1, 2, . . . 6

Mit der Gleichung (2.4) erhält man

T̄x(1) = P(X = 0) +
1
2

P(X = 1) = 0 +
1
2
· 1

6
=

1
12

= 0.0833

T̄x(2) = P(X = 1) +
1
2

P(X = 2) =
1
6
+

1
2
· 1

6
= 0.25

T̄x(3) =
2

∑
k=1

P(X = k) +
1
2

P(X = 3) = 0.4166

...

Und so kann man auf einfache Weise für alle Ereignisse einen Kode zuweisen. ♦

Das Prinzip des Kodezuweisens kann man auf eine Sequenz von Ereignissen erweitern.
Hierzu wird zunächst eine feste Ordnung der Symbole oder Ereignisse definiert:

T̄(m)
x (xi) = ∑

y<xi

P(y) +
1
2

P(xi) (2.5)

Dabei bedeutet y < x, dass das Ereignis y dem Symbol x vorangeht und das hochgestellte m
ist die Länge des Alphabets.

Beispiel 5. Wir benutzen wieder einen fairen Würfel und berechnen den Kode, der sich für
das Ereignis 1 3, also dass man zuerst eine 1, und im Anschluss eine 3 würfelt, ergibt.

T̄x(13) = P(X = 11) + P(X = 12) +
1
2

P(X = 13)

= 1/36 + 136 + 1/2(1/36)
= 5/72

16

2.1 Grundlagen

In diesem Beispiel ist zu sehen, dass zur Berechnung der Sequenz der Länge n die Kodes
aller vorangehenden Sequenzen der Länge n− 1 benötigt werden. Das wäre aber genauso
aufwendig als wenn man für das Huffman Coding die Wahrscheinlichkeiten aller möglichen
Symbole der Länge n berechnen würde. Im nächsten Beispiel werden wir aber sehen, dass
dieses nicht notwendig ist.

Im Folgenden werden wir die mathematische Vorgehensweise zum Erstellen eines Kodes für
eine Sequenz kennenlernen.

Beispiel 6. Wir benutzen weiterhin den fairen, sechsseitigen Würfel und wollen jetzt eine
obere und untere Grenze des Intervalls für einen Kode für das Ereignis 3 2 2 berechnen.
Sind die Grenzen bekannt, kann man wie schon beschrieben eine beliebige Zahl aus diesem
Intervall benutzen, um daraus einen Kode zu generieren.

Das Ereigniss besteht darin, dass zuerst eine 3 dann eine 2 und schließlich wieder eine 2

gewürfelt wird. Wir bezeichnen die obere Grenze mit der Sequenzlänge n mit Hn und die
untere Grenze mit Ln.

Wir betrachten das Ereignis 3, gehen gemäß Gleichung (2.2) vor und setzen i = 3. Die
Länge der Sequenz ist n = 1. Die Ereignisse sind laut Gleichung (2.5) in der Reihenfolge
{1, 2, 3, 4, 5, 6} geordnet. Damit ist das Ereignis i− 1 = 2. Wir setzen ein:

H1 = Fx(3), L1 = Fx(2)

Als nächstes lesen wir die 2. Die Sequenz ist x = 32. Die neuen Grenzen sind

H2 = Fx(32), L2 = Fx(31)

Die Berechnung dieser Werte geht folgendermaßen:

Fx(32) =P(X = 11) + P(X = 12) + P(X = 13) . . . P(X = 16)+
P(X = 21) + P(X = 22) + P(X = 23) . . . P(X = 26)+
P(X = 31) + P(X = 32)

Wenn i sämtliche Ereignisse m beinhaltet — also in unserem Beispiel 1 bis 6 — dann gilt

m

∑
i=1

P(X = ki) =
m

∑
i=1

P(X1 = k, X2 = i) = P(X1 = k)

wobei X = X1X2. Wir können also schreiben

Fx(32) = P(X1 = 1) + P(X2 = 2) + P(X = 31) + P(X = 32)
= Fx(2) + P(X = 31) + P(X = 32)

Weil die einzelnen Würfe unabhängige Ereignisse sind, gilt

P(X = 31) = P(X = 3)P(X = 1)

17

2 Arithmetisches Kodieren

und

P(X = 32) = P(X = 3)P(X = 2)

Damit ergibt sich

P(X = 31) + P(X = 32) = P(X1 = 3)(P(X2 = 1) + P(X2 = 2))
= P(X1 = 3)Fx(2)

Weil

P(X1 = i) = Fx(i)− Fx(i− 1)

also in unserem Beispiel

P(X1 = 3) = Fx(3)− Fx(2)

können wir schreiben

P(X = 31) + P(X = 32) = (Fx(3)− Fx(2)) · Fx(2)

oder

Fx(32) = Fx(2) + (Fx(3)− Fx(2)) · Fx(2)

oder auch

H2 = L1 + (H1 − L1) · Fx(2)

Auf gleiche Weise können wir zeigen, dass für die untere Grenze L2 gilt

Fx(31) = Fx(2) + (Fx(3)− Fx(2)) · Fx(1)

oder

L2 = L1 + (H1 − L1)Fx(1)

Das dritte Symbol in diesem Beispiel ist wieder eine 2 und damit

H3 = Fx(322), L3 = Fx(321)

Die gleiche Rechnung ergibt damit

Fx(321) = Fx(31) + (Fx(32)− Fx(31)) · Fx(1)
Fx(322) = Fx(31) + (Fx(32)− Fx(31)) · Fx(2)

oder

L3 = L2 + (H2 − L2) · Fx(1)
H3 = L2 + (H2 − L2) · Fx(2)

♦

18

2.2 Kodierung als reelle Zahl

Die allgemeine Vorschrift für die Intervallbildung der Sequenz X = x1x2x3 . . . xn sind die
Differenzengleichungen

Li = Li−1 + (Hi−1 − Li−1) · Fx(i− 1)
Hi = Li−1 + (Hi−1 − Li−1) · Fx(i)

(2.6)
(2.7)

Für die Berechnung der Grenzen mussten keine vereinigten Wahrscheinlichkeiten berechnet
werden. Es reicht also, die Verteilungsfunktion über das Alphabet zu kennen. Diese wird
wie schon erwähnt durch das Modell gegeben. Für den Kode nimmt man nun eine Zahl aus
dem Intervall. Wir wählen wieder die Hälfte

T̄x(X) =
Hn − Ln

2

falls X = x1x2x3 . . . xn ist.

2.2 Kodierung als reelle Zahl

Wir gehen jetzt etwas konkreter vor und wollen die Zeichenfolge SWISStMISS kodieren.
Dieses Beispiel ist aus [Sal08] entnommen. Die fünf vorkommenden Symbole können in
einer beliebigen Reihenfolge in eine Tabelle für die Wahrscheinlichkeiten gespeichert werden.
Die Funktion cum_count stehend für «cummulative count» wird mit

cum_countai =
i

∑
k=1
|ai|

definiert.

Wie schon eingangs erwähnt, entspricht diese Zuweisung dem Modell des Koders. Das
Modell für unser Beispiel ist in Tabelle 2.3 zusammengefasst.

Symbol Häufigkeit Wahrscheinlichkeit pi Fx(i− 1) Fx(i) Intervall cum_count

a1 = t 1 1/10=0.1 0.0 0.1 [0.0, 0.1) 1

a2 = M 1 1/10=0.1 0.1 0.2 [0.1, 0.2) 2

a3 = I 2 2/10=0.2 0.2 0.4 [0.2, 0.4) 4

a4 = W 1 1/10=0.1 0.4 0.5 [0.4, 0.5) 5

a5 = S 5 5/10=0.5 0.5 1.0 [0.5, 1.0) 10

Tabelle 2.3: Modell für Zeichenfolge SWISStMISS

Wir benutzen die Gleichungen (2.6) und (2.7), um sequentiell H und L zu errechnen. Am
Anfang muss H mit 1 und L mit 0 initialisiert werden. Das bedeutet, am Anfang geht das

19

2 Arithmetisches Kodieren

Intervall über die volle Breite. Erst nach Einlesen des ersten Symbols wird dieses Intervall
eingeschränkt.

Als nächstes haben wir das Symbol x1 = S gelesen. Die neuen Grenzen errechnen sich mit

L1 = 0 + (1− 0) · Fx(4) = 0 + 0.5 = 0.5
H1 = 0 + (1− 0) · Fx(5) = 0 + 1.0 = 1.0

Das neue Intervall nach Einlesen von S ist [0.5, 1.0). Wir fahren fort und lesen x2 = W

L2 = 0.5 + (1.0− 0.5) · Fx(3) = 0.5 + 0.5 · 0.4 = 0.70
H2 = 0.5 + (1.0− 0.5) · Fx(4) = 0.5 + 0.5 · 0.5 = 0.75

Das Intervall verkleinert sich weiter auf [0.70, 0.75). Wir lesen x3 = I

L3 = 0.70 + (0.75− 0.70) · Fx(2) = 0.70 + 0.05 · 0.2 = 0.71
H3 = 0.70 + (0.75− 0.70) · Fx(3) = 0.70 + 0.05 · 0.4 = 0.72

und so weiter bis das letzte Symbol xn gelesen ist. Wir können gemäß Gleichung (2.4) für
den Kode die Mitte des Intervalls nehmen, oder einfach die untere Grenze. Der Kode ist in
dem Fall 0.71753375.

2.3 Dekodierung als reelle Zahl

Die Dekodierung läuft analog zur Kodierung. Wir starten damit, dass wir L den Wert 0 und
H den Wert 1 zuweisen. Nach der Dekodierung des ersten Symbols erhalten wir

L1 = 0 + (1− 0) · Fx(x1 − 1) = Fx(x1 − 1)
H1 = 0 + (1− 0) · Fx(x1) = Fx(x1)

Mit anderen Worten heißt das, dass wir dasjenige x1 suchen, welches im Intervall [Fx(x1 −
1), Fx(x1)) liegt. Der Kode von 0.71753375 liegt im Intervall von S = [0.5, 1.0). Also ist das
gesuchte x1 = S.

Wir wiederholen die Vorgehensweise und suchen x2.

L2 = 0.5 + (1− 0.5) · Fx(x2 − 1) = 0.5 + 0.5 · Fx(x2 − 1)
H2 = 0.5 + (1− 0.5) · Fx(x2) = 0.5 + 0.5 · Fx(x2)

Jetzt wählen wir x2 = W, denn

L2 = 0.5 + 0.5 · Fx(3) = 0.7 und H2 = 0.5 + 0.5 · Fx(4) = 0.75

Und das Intervall beinhaltet als einziges 0.71753375. Doch die Rechenregel lässt sich vereinfa-
chen. Wir haben beim Kodieren zu L immer ein Teilintervall hinzuaddiert. Beim Dekodieren
können wir entsprechend dieses wieder abziehen, die Werte anpassen und erhalten so etwas
direkter das gesuchte xi. Wir ziehen L1 vom Kode ab 0.71753375− 0.5 = 0.21753375. Jetzt
wird dieser Kode durch die Intervalllänge von S geteilt, um es auf den ursprünglichen Wert
zu bringen 0.21753375/0.5 = 0.4350675. Jetzt sieht man direkt, dass dieser Wert im Intervall
W = [0.4, 0.5) liegt. Diesen errechneten Wert (0.4350675) bezeichnen wir mit range . Die
weitere Dekodierung ist in Tabelle 2.5 zusammengefasst.

20

2.4 Beweis der Eindeutigkeit

Symbol Berechnung von H und L

S L 0.0 + (1.0− 0.0) · 0.5 = 0.5
H 0.0 + (1.0− 0.0) · 1.0 = 1.0

W L 0.5 + (1.0− 0.5) · 0.4 = 0.70

H 0.5 + (1.0− 0.5) · 0.5 = 0.75

I L 0.7 + (0.75− 0.7) · 0.2 = 0.71

H 0.7 + (0.75− 0.7) · 0.4 = 0.72

S L 0.71 + (0.72− 0.71) · 0.5 = 0.715

H 0.71 + (0.72− 0.71) · 1.0 = 0.72

S L 0.715 + (0.72− 0.715) · 0.5 = 0.7175

H 0.715 + (0.72− 0.715) · 1.0 = 0.72

t L 0.7175 + (0.72− 0.7175) · 0.0 = 0.7175

H 0.7175 + (0.72− 0.7175) · 0.1 = 0.71775

M L 0.7175 + (0.71775− 0.7175) · 0.1 = 0.717525

H 0.7175 + (0.71775− 0.7175) · 0.2 = 0.717550

I L 0.717525 + (0.71755− 0.717525) · 0.2 = 0.717530

H 0.717525 + (0.71755− 0.717525) · 0.4 = 0.717535

S L 0.71753 + (0.717535− 0.71753) · 0.5 = 0.7175325

H 0.71753 + (0.717535− 0.71753) · 1.0 = 0.717535

S L 0.7175325 + (0.717535− 0.7175325) · 0.5 = 0.71753375

H 0.7175325 + (0.717535− 0.7175325) · 1.0 = 0.717535

Tabelle 2.4: Kodierung von SWISStMISS

2.4 Beweis der Eindeutigkeit

Sei T̄x(x) eine Nummer im Intervall [0, 1). Einen binären Kode für diese Nummer können
wir erhalten, indem wir die binäre Darstellung nehmen und auf l(x) = dlogb(

1
p(x))e+ 1 Bits

beschränken.

Wir erinnern uns, dass T̄x(x) ein Kode für die Sequenz S ist. Um zu beweisen, dass bT̄x(x)cl(x)
eindeutig ist, müssen wir lediglich zeigen, dass es im Intervall [Fx(x− 1), Fx(x)) liegt.

Durch das Runden von bT̄x(x)cl(x) gilt bT̄x(x)cl(x) ≤ T̄x(x). Damit ist

0 ≤ T̄x(x)− bT̄x(x)cl(x) <
1

2l(x)
(2.8)

21

2 Arithmetisches Kodieren

i Symbol Kode - Li = /(Hi − Li) = range

1 S 0.71753375-0.5 = 0.21753375 /0.5 = 0.4350675

2 W 0.4350675-0.4 = 0.0350675 /0.4 = 0.350675

3 I 0.350675-0.2 = 0.150675 /0.2 = 0.753375

4 S 0.753375-0.5 = 0.253375 /0.5 = 0.50675

5 S 0.50675-0.5 = 0.00675 /0.5 = 0.0135

6 t 0.0135-0.0 = 0.0135 /0.1 = 0.135

7 M 0.135-0.1 = 0.035 /0.1 = 0.35

8 I 0.35-0.2 = 0.15 /0.2 = 0.75

9 S 0.75-0.5 = 0.25 /0.5 = 0.5
10 S 0.5-0.5 = 0.0 /0.5 = 0.0

Tabelle 2.5: Dekodierung von SWISStMISS

Weil T̄x(x) die Hälfte vom Intervall [Fx(x− 1), Fx(x)) ist, gilt

T̄x(x) < Fx(x)
bT̄x(x)cl(x) <T̄x(x) < Fx(x)

bT̄x(x)cl(x) <Fx(x)

Jetzt müssen wir noch zeigen, dass bT̄x(x)cl(x) ≥ Fx(x− 1). Mit

1
2l(x)

=
1

2dlogb(
1

p(x))e+1

<
1

2logb(
1

p(x))+1

=
1

2 1
p(x)

=
p(x)

2

Aus Gleichung (2.4) wissen wir

p(x)
2

= T̄x(x)− Fx(x− 1)

und damit auch

T̄x(x)− Fx(x− 1) >
1

2l(x)
(2.9)

Kombinieren wir Gleichung (2.8) und (2.9) erhalten wir

bT̄x(x)cl(x) > Fx(x− 1)

22

2.5 Effizienz

Damit ist bT̄x(x)cl(x) eine eindeutige Repräsentierung von T̄x(x).

Um jetzt zu zeigen, dass dieser Kode auch eindeutig dekodierbar ist, zeigen wir dass es ein
Präfix Kode ist. Das heisst, kein Kode ist Präfix eines anderen Kodes. Weil ein Präfix Kode
immer eindeutig dekodierbar ist, reicht es zu zeigen, dass bT̄x(x)cl(x) ein Präfix Kode ist.

Falls x und y zwei verschiedene Sequenzen sind, wissen wir, dass bT̄x(x)cl(x) und bT̄x(y)cl(y)
in zwei unterschiedlichen Intervallen [Fx(x− 1), Fx(x)) und [Fx(y− 1), Fx(y)) liegen. Falls
wir also zeigen können, dass für jede Sequenz x das Intervall [bT̄x(x)cl(x), bT̄x(x)cl(x) + 2l(x))

ganz in [Fx(x− 1), Fx(x)) liegt, kann x kein Präfix für einen anderen Kode sein.

Wir wissen bereits, dass bT̄x(x)cl(x) > Fx(x− 1). Was wir noch zeigen müssen ist

Fx(x)− bT̄x(x)cl(x) > 2l(x)

und das gilt, weil:

Fx(x)− bT̄x(x)cl(x) > Fx(x)− T̄x(x)l(x)

=
p(x)

2

>
1

2l(x)

2.5 Effizienz

Wir haben gezeigt, dass die Anzahl l(x) der benötigten Bits um Fx(x) eindeutig zu dekodie-
ren

l(x) = dlogb(
1

p(x)
)e+ 1

ist. l(x) ist die Zahl der benötigten Bits für die gesamte Sequenz x. Für die Sequenz der
Länge |x| = m gilt demnach

lAm = ∑ p(x)l(x)

= ∑ p(x)
[
dlogb(

1
p(x)

)e+ 1
]

< ∑ p(x)
[

logb(
1

p(x)
) + 1 + 1

]
= −∑ p(x) logb p(x) + 2 ∑ p(x)

= E(xm) + 2

Weil die durchschnittliche Länge immer größer als die Entropie ist, können wir für l(x) die
Grenzen

E(xm) ≤ lAm < E(xm) + 2

23

2 Arithmetisches Kodieren

festlegen. Die durchschnittliche Länge pro Symbol lA ist lAm
m . Durch Einsetzen gilt damit

E(xm)

m
≤ lA <

E(xm)

m
+

2
m

und mit E(xm) = mE(x) erhalten wir

E(x) ≤ lA < E(x) +
2
m

Desto länger also die Länge m der Sequenz, desto näher kommen wir an die Entropie.

2.6 Kodierung als begrenzte Festkommazahl

Je länger die Quelle, desto länger der Kode und damit umso höher die Präzision. Die
derzeitigen Rechner sind sehr ineffizient, wenn es um Rechnungen beliebiger Genauigkeit
geht. Je länger die Quelle, desto länger der Kode und damit umso höher die Präzision.
Man stelle sich eine Quelle von 1 MByte vor. Selbst bei einer Komprimierung auf die
Hälfte wäre das Teilen einer 500 kByte großen Zahl sehr komplex und aufwendig. Das
war Jahrzehnte lang das Hindernis für eine praktische Verwendung des Arithmetischen
Kodierens. Pasco und Rissanen haben unabhängig voneinander das Problem gelöst, indem sie
einen Algorithmus entwarfen, mit dem man mit einer begrenzten Festkommazahl dennoch
einen Kode generieren kann. Die Vorgehensweise, die hier vorgestellt wird, lehnt sich an die
von Witten [WNC87] an.

2.6.1 Abbildung auf Ganze Zahlen

Für das Arithmetische Kodieren verwendet man am besten Ganzzahl-Variablen (integer
Variable) statt Fließkomma-Variablen (floating point Variable), weil in der Fließkommaarith-
metik Genauigkeit verloren geht2. Um möglichst den ganzen Bereich der Ganzzahl-Variablen
zu nutzen, bilden wir die 0 auf die 0 ab und die 1 auf die 0.9, denn 0.9 = 1. Diesen Bereich
kann man so erweitern, dass keine Dezimalstelle mehr notwendig wird. Das ergibt für eine
Ganzzahl-Variable die höchstmögliche darstellbare Zahl.

Beispiel 7. Eine integer Variable der Länge 4 kann im Dezimalsystem die Werte 0000 . . . 9999
annehmen. 9999 ist der höchste Wert. In diesem Fall würde man also L = 0000 und H = 9999
setzen, um alle Möglichkeiten dieser Variablen zu nutzen.

Eine Variable mit der Bitbreite 4 kann im Dualsystem die Werte 0000b . . . 1111b annehmen.
Wobei hier 1111b der höchste Wert ist. Analog wäre hier L = 0000b und H = 1111b. ♦

2Eine Ganzzahl-Variable kann mehr Werte annehmen als eine Fließkomma-Variable derselben Bit Breite

24

2.6 Kodierung als begrenzte Festkommazahl

Das tiefgestellte «b» bedeutet, dass die Zahl im Dualsystem geschrieben ist. In den Fällen,
an denen es nicht eindeutig ist in welchem System wir uns befinden, benutzen wir «d» für
dezimal oder «h» für hexadezimal.

Daraus ergibt sich die interessante Frage nach der Auswirkung, die das Abbilden von
unendlich vielen Zahlen auf eine endlich viele Menge auf den Algorithmus hat.

Wir definieren

ri = Hi − Li (2.10)

als die Intervalllänge range .

Wenn wir wie im Beispiel 7 H0 = 1111 setzen und damit das Intervall [L0, H0) berechnen,
kommt als Ergebnis

r0 = H0 − L0 = 1111− 0000 = 1111

heraus. Das entspricht aber nicht dem vollen Intervall. Dieser ist nämlich 1.0d und H0 wurde
auf 0.9d abgebildet. Um dieser Tatsache nachzukommen, muss, falls mittels H die range

berechnet wird, noch 1b hinzuaddiert werden.

Das hat aber eine Auswirkung auf die zu wählende Bit Breite. Für dasselbe Beispiel würde
bei einer Bit Breite von 4 Bits H0 = 1111 bei Addition von 1 ein Überlauf stattfinden. Deshalb
muss man bei der Wahl der Bit Breite 1 Bit Puffer hinzufügen.

Für die Berechnung von range schreiben wir

rangei = Hi − Li + 1

Wir wissen, dass Fx(i) die kumulative Verteilungsfunktion für ai ist. Also folgt daraus

Fx(i) =
high_counti

total
(2.11)

Weiter gilt

Fx(i− 1) =
high_counti−1

total
=

low_counti

total

Wir setzen

high_counti = cum_counti (2.12)

und

stepi = rangei/total

25

2 Arithmetisches Kodieren

Setzen wir die Gleichungen (2.10), (2.11), und (2.12) in Gleichung (2.7) ein, ergibt das

Li = Li−1 + rangei−1 ·
low_counti

total

= Li−1 +
rangei−1 · low_counti

total

= Li−1 +
rangei−1 · cum_counti−1

total

= Li−1 + stepi−1 · cum_counti−1 (2.13)

Und für Hi

Hi = Li−1 + stepi−1 · cum_counti − 1 (2.14)

Man beachte hier die −1 bei Hi. Wie schon erwähnt wird H um 1 verringert, um die nach
oben offene Intervallgrenze darzustellen.

Weiterhin werden wir später sehen, dass es eine wichtige Rolle spielt, wann man durch
total teilt. Nun können wir uns dem Problem der endlichen Präzision widmen.

2.6.2 Skalierung bei Überlauf

Wenn man sich die Tabelle 2.4 anschaut, dann fällt auf, dass sobald eine der höherwertigen
Ziffern bei L und H gleich sind, sich diese nicht mehr ändern. Die Erklärung ist, dass sich
ein Intervall, sobald er einen Wertebereich eingenommen hat, diesen nicht mehr verlas-
sen kann. Bei jedem Schritt wird ein Intervall in Teilintervalle geteilt, die alle innerhalb
des (Ursprungs-)Intervalls liegen. Wenn also eine Stelle von links bei H und L gleich sind,
braucht man diese für die weitere Berechnung nicht und kann diese Ziffer als Kode heraus-
schieben. Wir nennen das hier – eher willkürlich – den Überlauf

3. Im Dezimalsystem ist
das dann der Fall, wenn das Intervall um eine Zehnerpotenz kleiner geworden ist als der
ursprüngliche Intervall; hier also ein Zehntel so groß wie vorher (10−1 = 0.1). Sei B die Basis
des verwendeten Systems, dann ist die Skalierung bei Erreichen von sc durchführbar. Die
Gleichung dafür ist

sc = B−1

Im Dualen System entspricht eine Stelle einer Zweierpotenz. Hier findet der Überlauf bei
der Hälfte (2−1 = 0.5) des Ursprungs-Intervalls statt. Ist das höchstwertigste Bit von L und
H gleich, dann ist das Intervall nur noch halb so groß wie ursprünglich. Das höchstwertigste
Bit kann als Kode nach links heraus geschoben werden. Für L wird von rechts eine 0 und
für H eine 1 nach geschoben. Das höchstwertige Bit ist dann bei L und H gleich, wenn
beide Grenzen entweder in der unteren Hälfte oder beide in der oberen Hälfte des Intervalls
liegen.

3vielleicht angelehnt an die Tatsache, dass der Wert nach links, also höherwertig, überläuft

26

2.6 Kodierung als begrenzte Festkommazahl

Jetzt können wir konkreter werden und zu einem Beispiel übergehen, welches später auch
in Hardware realisiert werden wird. Dieses Beispiel soll den Anspruch haben, möglichst
klein zu sein und dennoch sämtliche Fälle abzudecken. Dieses Beispiel ist aus [BCK02]
entnommen.

Beispiel 8. Ein Alphabet mit A = {a, b, c, d, e} sei gegeben. Wir wollen die Sequenz S =
abccedac kodieren. Dann ist |S| = total = 8.

Das Modell ergibt dann Tabelle 2.6

Symbol tot_count low_count high_count

a1 = a 2 0 2

a2 = b 1 2 3

a3 = c 3 3 6

a4 = d 1 6 7

a5 = e 1 7 8

Tabelle 2.6: Modell für Zeichenfolge «abccedac»

Als Bit Breite wählen wir 8 Bits und können somit die unteren 7 Bits für die Kodierung
nutzen. Das achte Bit ist nur für den Überlauf. Für uns gilt also das siebte Bit als das oberste.
Zur besseren Lesbarkeit verwenden wir das Hexadezimalsystem und geben es andernfalls
explizit an. L und H werden nun mit

L0 = 00h = 00000000b

H0 = 7Fh = 01111111b

initialisiert. Wir lesen das erste Symbol a ein und erhalten mit den Formeln (2.13) und (2.14)

range0 = 7F− 00 + 1 = 80
step0 = 80/8 = 10
L1 = 00 + step0 · cum_count0 = 00 + 10 · 0 = 00
H1 = 00 + step0 · cum_count1 − 1 = 00 + 10 · 2− 1 = 20− 1 = 1F

Wir sehen, dass die oberen zwei Bits von H und L gleich sind (00)b. Das sind also die ersten
zwei Kode Bits. Wir schieben diese raus und erhalten für L und H

L1 = 00
H1 = 3F

27

2 Arithmetisches Kodieren

Wir nennen diesen Vorgang die Skalierung oder auch Normalisierung von L und H. Der
Algorithmus in C dafür ist in Listing 2.1 präsentiert. Wir schieben L und H und zwei bits
nach links und fügen jeweils 0 bzw. 1 nach.

L1 = 00
H1 = 7F

Jetzt lesen wir b ein und erhalten mit den Formeln (2.13) und (2.14)

range1 = 7F− 00 + 1 = 80
step1 = 80/8 = 10
L2 = 00 + step1 · cum_count1 = 00 + 10 · 2 = 20
H2 = 00 + step1 · cum_count2 − 1 = 00 + 10 · 3− 1 = 30− 1 = 2F

Wir sehen, dass die oberen drei Bits von H und L gleich sind (010)b. Wir schieben diese raus
und erhalten für L und H

L2 = 00
H2 = 7F

Und so fahren wir fort. Der Kode für diese zwei Buchstaben ist 00010. ♦

2.6.3 Skalierung bei Unterlauf

Es kann passieren, dass sich das Intervall immer um die Mitte des Intervalls (range) ver-
kleinert. Dann bleibt L in der unteren und H in der oberen Hälfte des Intervalls. In diesem
Fall bleiben die oberen Bits gleich und eine Skalierung ist nicht möglich. Das führt ir-
gend wann dazu, dass die Präzision für das Kodieren nicht mehr reicht. Wir benennen
das — auch wieder willkürlich — Unterlauf. 4 Dieses Problem des Unterlaufs löst man
folgendermaßen:

Der Unterlauf entsteht nur, wenn L in der unteren Hälfte und H in der ober Hälfte des
Intervalls ist. Dann ist das höchste Bit von L gleich 0 und von H gleich 1. Sobald das
zweithöchste Bit von L Eins ist, und von H Null, ist das Intervall innerhalb der Grenzen des
zweiten und dritten Quadranten. Das heißt es könnte wieder skaliert werden, denn dann ist
es kleiner als die Hälfte des ursprünglichen Intervalls. Wir erweitern das Intervall, indem
von L und H ein Viertel des Gesamt-Intervalls abziehen und dann verdoppeln. Allerdings
wissen wir noch nicht, in welche Hälfte des Intervalls das Teil-Intervall fallen wird.

4im Gegensatz zum Überlauf, läuft der Wert hier nach rechts runter

28

2.6 Kodierung als begrenzte Festkommazahl

1.Quadrant 2.Quadrant 3.Quadrant 4.Quadrant

00... 01... 10... 11...BIT:

halber Bereich

Abbildung 2.3: Intervalleinteilung in Quadranten

Deshalb wird skaliert, und gleichzeitig ein Zähler inkrementiert, der solange zählt, bis wieder
eine Skalierung wegen eines Überlaufs stattfindet. Erst hier wird dann wieder Kode generiert.
Falls die höchsten Bits Null waren wird hier eine Eins kodiert und dann werden so viele
Nullen wie der Zähler gezählt hat hinzugefügt. Falls die höchsten Bits beide Eins waren,
wird eine Null und entsprechend dem Zähler so viele Eisen kodiert. Einen Beweis dafür,
dass das in der Folge geht liefert E. Bodden M. Clasen und J. Kneiss in [BCK02]. Wir wollen
diesen Vorgang zum besseren Verständnis hier erklären.

Wir benennen die einzelnen Skalierungen wiefolgt

E1 = Überlauf Skalierung in der unteren Hälfte des Intervalls

E2 = Überlauf Skalierung in der oberen Hälfte des Intervalls
E3 = Skalierung bei Unterlauf

Weiter soll g ◦ f die hintereinander Ausführung von f und danach g bedeuten.

Im Falle, dass sich das Intervall um die Mitte des Ursprungs Intervalls verkleinert entsteht die
Folge (E1)n ◦ (E2) oder (E2)n ◦ (E1) von Skalierungen. Aus der oben genannten Problematik
würden wir aber nicht Skalieren können, weil sich die oberen Bits nie gleichen. Mit der E3
Skalierung erreichen wir folgende Gleichheiten:

E1 ◦ (E3)n = (E2)n ◦ (E1)
E2 ◦ (E3)n = (E1)n ◦ (E2)

und können n mal E3 skalieren, bis eine Überlauf Skalierung eintritt, bei der dann der Kode
ausgegeben wird.

29

2 Arithmetisches Kodieren

Beweis für den Algorithmus der Unterlauf Skalierung 1. Die Skalierungsfunktionen sehen
wiefolgt aus

E1

(
L
H

)
=

(
2L
2H

)

E2

(
L
H

)
=

(
2L− 1
2H − 1

)

E3

(
L
H

)
=

(
2L− (1/2)
2H − (1/2)

)

Die erste Iteration ergibt

(E1 ◦ E1)

(
L
H

)
=

(
2 · 2L
2 · 2H

)
=

(
22L
22H

)

(E2 ◦ E2)

(
L
H

)
=

(
2 · (2L− 1)− 1
2 · (2H − 1)− 1

)
=

(
22L− 3
22H − 3

)
=

(
22L− 22 − 1
22H − 22 − 1

)

(E3 ◦ E3)

(
L
H

)
=

(
2 · (2L− 0.5)− 0.5
2 · (2H − 0.5)− 0.5

)
=

(
22L− 1.5
22H − 1.5

)
=

(
22L− 21 + 0.5
22H − 21 + 0.5

)

und die n-te

E1n

(
L
H

)
=

(
2nL
2nH

)

E2n

(
L
H

)
=

(
2nL− 2n + 1
2nH − 2n + 1

)

E3n

(
L
H

)
=

(
2nL− 2n−1 + 0.5
2nH − 2n−1 + 0.5

)

Einen Beweis für diese Folgerung liefert eine vollständige Induktion. Mit

(E1 ◦ (E3)n)

(
L
H

)
= E1

(
2nL− 2n−1 + 0.5
2nH − 2n−1 + 0.5

)
=

(
2n+1L− 2n + 1
2n+1H − 2n + 1

)
(2.15)

((E2)n ◦ E1)

(
L
H

)
= (E2)n

(
2L
2H

)
=

(
2n+1L− 2n + 1
2n+1H − 2n + 1

)
(2.16)

Damit gilt mit den Gleichungen (2.15) und (2.16)

E1 ◦ (E3)n = (E2)n ◦ E1

30

2.6 Kodierung als begrenzte Festkommazahl

Beispiel 9. Wir nehmen Beispiel 8 wieder auf und lesen als nächstes den Buchstaben c ein.

range2 = 7F− 00 + 1 = 80
step2 = 80/8 = 10
L3 = 00 + step2 · cum_count2 = 00 + 10 · 3 = 30 = 0011_0000b

H3 = 00 + step2 · cum_count3 − 1 = 00 + 10 · 6− 1 = 60− 1 = 5F = 0101_1111b

Die Bits 7 sind ungleich, aber Bit 6 ist bei L Eins und bei H Null. Das Intervall liegt im
zweiten und dritten Quadranten und kann skaliert werden. Wir merken uns, dass einmal für
den Unterlauf skaliert wurde.

L3 = 30− 20 = 10 = 0001_0000b

H3 = (5F− 20) · 2 = 7E = 1101_1110b

Bit 8 wird maskiert, und zu H noch 1 addiert:

L3 = 20 = 0010_0000b

H3 = 7F = 0101_1111b

Erst wenn eine Skalierung aufgrund eines Überlaufs entsteht, wird der Kode generiert und
ausgegeben. ♦

Die Details kann man aus dem Algorithmus in C vom Listing 2.1 entnehmen.

Die vollständige Kodierung ist in Tabelle 2.7 zusammengefasst. Der so erhaltene Kode ist
00010101001101111b.

31

2 Arithmetisches Kodieren

Listing 2.1 Algorithmus für Kodierung (Bit Breite 8)
...

for (;;)

{

t1 = *low & 0x40; t2 = *high & 0x40;

if (t1 == t2) // check high bit

{ // overflow

if (t1 >= 1) // high bit is 1

{

setbit (output, output_counter, 1);

while (*udcount > 0)

{

setbit (output, output_counter, 0);

(*udcount)--;

}

}

else

{

setbit (output, output_counter, 0);

while (*udcount > 0)

{

setbit (output, output_counter, 1);

(*udcount)--;

}

}

shift (low, high);

}

else

{ // check for underflow

t1 = *low & 0x20; t2 = *high & 0x20;// second highest bit

if (t1 > t2)

{

do { // shift low and high but no output

(*udcount)++; // underflow counter

*low = *low & 0x1f; // same as subtracting 20 as bit must be 1

*high = *high | 0x20; // same as adding 20 as bit must be 0

shift (low, high);

t1 = *low & 0x20;

t2 = *high & 0x20;

} while (t1 > t2);

}

else

{ // no more shifting

break;

}

}

}

...

void shift (unsigned short *low, unsigned short *high)

{

*low <<= 1;

*high <<= 1;

*high = *high | 0x01; // same as adding one

/* mask high bit as it's not used for calculation */

*low = *low & 0x7f;

*high = *high & 0x7f;

}

32

2.6 Kodierung als begrenzte Festkommazahl

Sy
m

l
c

h
c

r
n
g

L i
H

i
K

dB
ts

Ü
L-

Lo
w

Ü
L-

H
ig

h
c
n
t

U
N

L-
Lo

w
U

N
L-

H
ig

h
a

0
2

1
0

0
0
0
0
0
0
0

[
0
]

0
0
1
1
1
1
1

[
1
F
]

0
0

0
0
0
0
0
0
0

[
0
]

1
1
1
1
1
1
1

[
7
F
]

0

b
2

3
1
0

0
1
0
0
0
0
0

[
2
0
]

0
1
0
1
1
1
1

[
2
F
]

0
1

0
0
0
0
0
0
0
0

[
0
]

1
1
1
1
1
1
1

[
7
F
]

0

c
3

6
C

0
1
1
0
0
0
0

[
3
0
]

1
0
1
1
1
1
1

[
5
7
]

1
0
1
0
0
0
0
0

[
2
0
]

1
1
1
1
1
1
1

[
7
F
]

c
3

6
9

1
0
0
0
1
0
0

[
4
4
]

1
1
0
0
1
1
1

[
6
7
]

1
0

0
0
0
0
1
0
0
0

[
8
]

1
0
0
1
1
1
1

[
4
F
]

e
7

8
9

1
0
0
0
1
1
1

[
4
7
]

1
0
0
1
1
1
1

[
4
F
]

1
0

0
0
1
1
1
0
0
0

[
3
8
]

1
1
1
1
1
1
1

[
7
F
]

0

d
6

7
9

1
1
0
1
1
1
1

[
6
E
]

1
1
1
0
1
1
0

[
7
6
]

1
1

0
1
1
1
0
0
0

[
3
8
]

1
0
1
1
0
1
1

[
5
B
]

1
0
1
1
0
0
0
0

[
3
0
]

1
1
1
0
1
1
1

[
7
7
]

a
0

2
9

0
1
1
0
0
0
0

[
3
0
]

1
0
0
0
0
0
1

[
4
1
]

3
0
0
0
0
0
0
0

[
0
0
]

1
0
0
0
1
1
1

[
4
7
]

c
2

3
9

0
0
1
1
0
1
1

[
1
B
]

0
1
1
0
1
0
1

[
3
5
]

0
1

1
1

0
1
1
0
1
1
0

[
3
6
]

1
1
0
1
0
1
1

[
3
B
]

0

re
st

1

Ta
be

ll
e

2.
7:

K
od

ie
ru

ng
vo

n
«a

bc
ce

da
c»

Sy
m

Sy
m

bo
l

l
c
l
o
w
_
c
o
u
n
t

h
c
h
i
g
h
_
c
o
u
n
t

L i
un

te
re

G
re

nz
e

de
s

In
te

rv
al

ls
be

im
Bu

ch
st

ab
en

i

H
i

ob
er

e
G

re
nz

e
de

s
In

te
rv

al
ls

be
im

Bu
ch

st
ab

en
i

K
dB

it
s

K
od

e
Bi

ts

Ü
L-

Lo
w

un
te

re
G

re
nz

e
de

s
In

te
rv

al
ls

na
ch

ei
ne

r
Ü

be
rl

au
f

Sk
al

ie
ru

ng

Ü
L-

H
ig

h
ob

er
e

G
re

nz
e

de
s

In
te

rv
al

ls
na

ch
ei

ne
r

Ü
be

rl
au

f
Sk

al
ie

ru
ng

cn
t

Z
äh

le
r

fü
r

U
nt

er
la

uf
Sk

al
ie

ru
ng

U
N

L-
Lo

w
un

te
re

G
re

nz
e

de
s

In
te

rv
al

ls
na

ch
ei

ne
r

U
nt

er
la

uf
Sk

al
ie

ru
ng

U
N

L-
H

ig
h

ob
er

e
G

re
nz

e
de

s
In

te
rv

al
ls

na
ch

ei
ne

r
U

nt
er

la
uf

Sk
al

ie
ru

ng

33

2 Arithmetisches Kodieren

2.7 Dekodierung als begrenzte Festkommazahl

Das Dekodieren als begrenzte Festkommazahl unterscheidet sich nicht wesentlich vom dem
im Kapitel 2.3 vorgestellten Verfahren. Hinzu kommt nur, dass man hier die Überlauf- und
Unterlauf-Skalierungen berücksichtigen muss.

Beim Puffer buf, der den Kode enthält, muss man beim links Schieben die nächsten Bits
des Kodes nachschieben. Also anders als die festen Werte die Bei L und H nachgeschoben
werden.

Die Subtraktion von einem Quadranten bei der Unterlauf Skalierung kann man durch
einfache Bit Manipulation sowohl für L, H als auch buf ersetzen. Nur die oberen Bits sind
von Bedeutung. Wir lassen die unteren Bits weg und schreiben dafür XXX · · · . Betrachten
wir als ersten den Fall L. Das Puffer-Bit ist eingeklammert, weil es für die Rechnung nicht
relevant ist.

(0)010 · · ·b ≤ L ≤ (0)011 · · ·b

oder mit anderen Worten: L liegt im zweiten Quadranten. (siehe auch Bild 2.3 Damit ist das
zweithöchste Bit immer gesetzt. Das entspricht einem Viertel des Intervalls. Setzt man dieses
Bit auf 0, entspricht es dem Abzug von einem Viertel.

Für H gilt

(0)100 · · ·b ≤ H ≤ (0)101 · · ·b

oder mit anderen Worten: H liegt im dritten Quadranten. Zwar manipuliert eine Subtraktion
in der zweithöchsten Stelle auch die höchste Stelle, diese wird aber bei der anschließenden
Multiplikation mit 2 raus geschoben und hat damit keine Relevanz. Wir können also einfach
das zweithöchste Bit von 0 auf 1 setzen.

Für buf ist die Betrachtung ähnlich. Der Wertebereich ist jedoch größer:

(0)010 · · ·b ≤ bufb ≤ (0)101 · · ·b

Wir haben aber gesehen, dass sowohl für L als auch für H das zweithöchste Bit einfach
negiert wird. Diese Regel gilt also für den gesamten Bereich von buf. Wir können damit die
Subtraktion von einem Viertel so formulieren:

bufb = bufb xor (0)010 · · ·b

Wir verzichten an dieser Stelle auf ein Beispiel und zeigen den Algorithmus in Listing 2.2.
Das Ergebnis der Dekodierung ist in Tabelle 2.8 dargestellt.

34

2.7 Dekodierung als begrenzte Festkommazahl

Listing 2.2 Algorithmus für Dekodierung (Bit Breite 8)
...

for (;;)

{

t1 = *low & 0x4000;

t2 = *high & 0x4000;

if (t1 == t2)

{

// overflow

while (*udcount > 0)

{

(*udcount)--;

}

shift_d (low, high, buf, output, output_counter);

}

else

{

// check for underflow

t1 = *low & 0x20;

t2 = *high & 0x20;

if (t1 > t2)

{

*low = *low & 0x1f;

*high = *high | 0x20;

*buf = *buf ^ 0x20;

shift_d (low, high, buf, output, output_counter);

(*udcount)++;

}

else

{

// no more shifting

break;

}

}

}

...

void shift_d (unsigned short *low, unsigned short *high,

unsigned short *buf, int *output, int *output_counter)

{

*low <<= 1;

*high <<= 1;

*high = *high | 0x01;

*buf <<= 1;

*buf = *buf | output[*output_counter];

(*output_counter)++;

*low = *low & 0x7f;

*high = *high & 0x7f;

*buf = *buf & 0x7f;

}

35

2 Arithmetisches Kodieren

S
l
c

h
c

b
u
f

r
g

L i
H

i
K

B
Ü

L-
Lo

w
Ü

L-
H

ig
h

c
n

U
N

L-
Lo

w
U

N
L-

H
ig

h
a

0
2

0
0
0
1
0
1
0
[
0
A
]

1
0

0
0
0
0
0
0
0
[
0
]

0
0
1
1
1
1
1
[
1
F
]

0
0

0
0
0
0
0
0
0
[
0
]

0
0
1
1
1
1
1
[
1
F
]

0

b
2

3
0
1
0
1
0
1
0
[
2
A
]

1
0

0
1
0
0
0
0
0
[
2
0
]

0
1
0
1
1
1
1
[
2
F
]

0
1

0
0
1
0
0
0
0
0
[
2
0
]

0
1
0
1
1
1
1
[
2
F
]

0

c
3

6
1
0
1
0
0
1
1
[
5
3
]

1
0

0
1
1
0
0
0
0
[
3
0
]

1
0
1
1
1
1
1
[
5
7
]

1
0
1
1
0
0
0
0
[
3
0
]

1
0
1
1
1
1
1
[
5
F
]

c
3

6
1
1
0
0
1
1
0
[
6
6
]

C
1
0
0
0
1
0
0
[
4
4
]

1
1
0
0
1
1
1
[
6
7
]

1
0

0
0
0
1
0
0
0
[
8
]

1
0
0
1
1
1
1
[
4
F
]

0

e
7

8
1
0
0
1
1
0
1
[
4
D
]

E
1
0
0
0
1
1
1
[
4
7
]

1
0
0
1
1
1
1
[
4
F
]

1
0

0
0
1
1
1
0
0
0
[
3
8
]

1
1
1
1
1
1
1
[
7
F
]

0

d
6

7
1
1
0
1
1
1
1
[
6
F
]

D
1
1
0
1
1
1
1
[
6
E
]

1
1
1
0
1
1
0
[
7
6
]

1
1

0
1
1
1
0
0
0
[
3
8
]

1
0
1
1
0
1
1
[
5
B
]

1
0
1
1
0
0
0
0
[
3
0
]

1
1
1
0
1
1
1
[
7
7
]

a
0

2
0
1
1
1
0
0
0
[
3
8
]

A
0
1
1
0
0
0
0
[
3
0
]

1
0
0
0
0
0
1
[
4
1
]

3
0
0
0
0
0
0
0
[
0
0
]

1
0
0
0
1
1
1
[
4
7
]

c
2

3
0
1
0
0
0
0
0
[
2
0
]

C
0
0
1
1
0
1
1
[
1
B
]

0
1
1
0
1
0
1
[
3
5
]

0
1

1
1

0

Ta
be

ll
e

2.
8:

D
ek

od
ie

ru
ng

vo
n

«a
bc

ce
da

c»

S
Sy

m
bo

l

l
c
l
o
w
_
c
o
u
n
t

h
c
h
i
g
h
_
c
o
u
n
t

b
u
f

Bu
ff

er
m

it
de

m
K

od
e

L i
un

te
re

G
re

nz
e

de
s

In
te

rv
al

ls
be

im
Bu

ch
st

ab
en

i

H
i

ob
er

e
G

re
nz

e
de

s
In

te
rv

al
ls

be
im

Bu
ch

st
ab

en
i

K
B

K
od

e
Bi

ts

Ü
L-

Lo
w

un
te

re
G

re
nz

e
de

s
In

te
rv

al
ls

na
ch

ei
ne

r
Ü

be
rl

au
f

Sk
al

ie
ru

ng

Ü
L-

H
ig

h
ob

er
e

G
re

nz
e

de
s

In
te

rv
al

ls
na

ch
ei

ne
r

Ü
be

rl
au

f
Sk

al
ie

ru
ng

cn
Z

äh
le

r
fü

r
U

nt
er

la
uf

Sk
al

ie
ru

ng

U
N

L-
Lo

w
un

te
re

G
re

nz
e

de
s

In
te

rv
al

ls
na

ch
ei

ne
r

U
nt

er
la

uf
Sk

al
ie

ru
ng

U
N

L-
H

ig
h

ob
er

e
G

re
nz

e
de

s
In

te
rv

al
ls

na
ch

ei
ne

r
U

nt
er

la
uf

Sk
al

ie
ru

ng

36

3 Parallelisierung

Es wird zunehmend schwieriger, die Taktraten der Integrierten Schaltungen zu steigern.
Die immer dichter werdenden Schaltungen erreichen die theoretisch machbaren Grenzen.
Leckströme werden zunehmend zum Problem. Die Rechenleistung der heutigen Rechner
lässt sich nicht mehr allein durch höhere Taktraten steigern.

Eine Möglichkeit, dennoch die Leistung zu steigern, ist das Parallelisieren. In Großrechen-
anlagen hat dieses Vorgehen schon längst Einzug gehalten. Inzwischen findet dieser Trend
verstärkt Anwendung auch im PC. Moderne CPUs haben inzwischen acht Kerne und Intel
hat kürzlich ein «clowd on chip» Prozessor mit 48 Kernen vorgestellt1. Grafikkarten werden
mittlerweile nicht nur zur Darstellung und Berechnung von Polygonen benutzt, sondern
vermehrt für allgemeine Berechnungen. Diese sogenannten GPGPU General-purpose com-
puting on Graphics Processing Unit mit hunderten von Kernen erreichen beeindruckende
Geschwindigkeitssteigerungen. Diese GPGPUs verarbeiten die Daten doppelt bis dreißig
Mal schneller als eine herkömmliche CPU2.

Doch der wesentliche Punkt ist, dass diese Geschwindigkeitssteigerungen nur erreicht
werden können, wenn der zugrundeliegende Algorithmus auf die gegebene Architektur
parallelisierbar ist. Es ist also entscheidend, ob der Algorithmus parallelisierbar ist und wenn
ja, wie stark.

Dieser Frage wollen wir für das Arithmetische Kodieren nachgehen. Wie schon in Kapitel 2

(Arithmetisches Kodieren) erwähnt, hat es sehr lange gedauert, bis hierzu etwas veröffentlicht
wurde. J. Jiang und S. Jones haben 1994 erstmals einen parallelen Algorithmus vorgeschlagen
[JJ94]. Nur wenige Papers sind danach zu diesem Thema veröffentlicht worden. Wir wollen
diese im Einzelnen vorstellen und hinsichtlich einer konkreten Umsetzung in Hardware
analysieren.

1http://www.pcper.com/article.php?aid=825

2http://code.google.com/p/pyrit/

37

3 Parallelisierung

3.1 Parallelisierung nach J. Jiang und S. Jones

3.1.1 Einleitung

Dieses Paper ist das erste, das zum Thema Parallelisierung des Arithmetischen Kodierens
geschrieben wurde. In diesem Paper verwenden Jiang und Jones eine Vorwärtskonvention
im Gegensatz zu einer Rückwärtskonvention. Damit ist die Bezeichnung des Teilintervalls
gemeint. Bei unserer bisherigen Rückwärtskonvention gilt

p(xi) = Fx(i)− Fx(i− 1)

und bei einer Vorwärtskonvention

p(xi) = Fx(i + 1)− Fx(i)

Der Konsistenz wegen bleiben wir bei der Rückwärtskonvention.

Wir nehmen die Differenzengleichungen 2.6 und 2.7

Li = Li−1 + (Hi−1 − Li−1) · Fx(i− 1)
Hi = Li−1 + (Hi−1 − Li−1) · Fx(i)

Weil

ri = Hi − Li

= [Li−1 + (Hi−1 − Li−1) · Fx(i)]− [Li−1 + (Hi−1 − Li−1) · Fx(i− 1)]
= (Hi−1 − Li−1) · (Fx(i)− Fx(i− 1))
= ri−1 · (Fx(i)− Fx(i− 1))
= ri−1 · p(xi) (3.1)

und

Li = Li−1 + (Hi−1 − Li−1) · Fx(i− 1)
= Li−1 + ri−1 · Fx(i− 1)

kann man die Gleichungen (2.6) und (2.7) etwas anders schreiben. Wir rechnen H nicht mehr
explizit aus, sondern nur noch L und die dazugehörige Länge des Teilintervalls ri.

Li = Li−1 + ri−1 · Fx(i− 1)
ri = ri−1 · p(xi)

38

3.1 Parallelisierung nach J. Jiang und S. Jones

3.1.2 Prinzip

Wir nehmen zur Vereinfachung an, dass die Sequenz aus einer geraden Anzahl von Symbolen
besteht |S| = 2n. Eine ungerade Länge kann man leicht auf eine gerade erweitern.

Um den Algorithmus zu parallelisieren, verfolgen wir, die Ergebnisse der Berechnungen,
wenn man diese ausschreibt.

r1 = r0 · p(x0)

r2 = r1 · p(x1) = (r0 · p(x0)) · p(x1)

r3 = r2 · p(x2) = ((r0 · p(x0)) · p(x1)) · p(x2)

r4 = r3 · p(x3) = (((r0 · p(x0)) · p(x1)) · p(x2)) · p(x3)

...
r2n = r0 · p(x0) · p(x1) · p(x2) · p(x3) . . . p(x2n−1) (3.2)

Und für L

L1 = L0 + r0 · Fx(0)
L2 = L1 + r1 · Fx(1)

= (L0 + r0 · Fx(0)) + r1 · Fx(1)
= (L0 + r0 · Fx(0)) + r0 · p(x0) · Fx(1)
= L0 + r0 · Fx(0) + r0 · p(x0) · Fx(1)

L3 = L2 + r2 · Fx(2)
= (L0 + r0 · Fx(0) + r0 · p(x0) · Fx(1)) + r2 · Fx(2)
= (L0 + r0 · Fx(0) + r0 · p(x0) · Fx(1)) + (r0 · p(x0)) · p(x1) · Fx(2)
= L0 + r0 · Fx(0) + r0 · p(x0) · Fx(1) + r0 · p(x0) · p(x1) · Fx(2)

...
L2n = L0 + r0 · Fx(0) + r0 · p(x0) · Fx(1) + r0 · p(x0) · p(x1) · Fx(2)+

. . . + r0 · p(x0) · p(x1) . . . p(x2n−2) · Fx(2n− 1) (3.3)

Wir teilen jetzt die Berechnungen (3.2) und (3.3) in zwei gleich große Abschnitte und
erhalten

r1..n = r0 · p(x0) · p(x1) · p(x2) · p(x3) . . . p(xn−1)

L1..n = L0 + r0 · Fx(0) + r0 · p(x0) · Fx(1) + r0 · p(x0) · p(x1) · Fx(2)+
. . . + r0 · p(x0) · p(x1) . . . p(xn−1) · Fx(n− 1)

und
r(n+1)..2n = r0 · p(xn+1) · p(xn+2) · p(xn+3) · p(xn+4) . . . p(x2n−1)

L(n+1)..2n = L0 + r0 · Fx(n + 1)+

r0 · p(xn+1) · Fx(n + 2)+
r0 · p(xn+1) · p(xn+2) · Fx(n + 3) + . . .
+ r0 · p(xn+1) · p(xn+2) . . . p(x2n−2) · Fx(2n− 1)

39

3 Parallelisierung

Somit ist r2n nichts anderes als

r2n =
r1..n · r(n+1)..2n

r0
(3.4)

Wir schreiben L2n nochmal komplett aus und fügen zusammen

L2n =L0 + r0 · Fx(0) + r0 · p(x0) · Fx(1) + r0 · p(x0) · p(x1) · Fx(2) + . . .
+ r0 · p(x0) · p(x1) . . . · p(xn−1) · Fx(n) + . . .
+ r0 · p(x0) · p(x1) . . . · p(xn) · Fx(n + 1) + . . .
+ r0 · p(x0) · p(x1) . . . · p(x2n−2) · Fx(2n− 1)

=L1..n + r1..n·
(Fx(n + 1) + . . . + r0 · p(x0) · p(x1) . . . p(x2n−2) · Fx(2n− 1))

Wir erweitern die abgesetzte Zeile mit r0

L2n =L1..n + r1..n(
r0 · [Fx(n + 1) + . . . + r0 · p(x0) · p(x1) . . . p(x2n−2) · Fx(2n− 1)]

r0

)
und erweitern noch mit L0

L2n =L1..n + r1..n(
L0 + [r0 · Fx(n + 1) + . . . + r0 · p(x0) · p(x1) . . . p(x2n−2) · Fx(2n− 1)]− L0

r0

)
und erhalten

L2n =L1..n + r1..n

(L(n+1)..2n − L0

r0

)
=L1..n +

r1..n(L(n+1)..2n − L0)

r0
(3.5)

Die Differenzengleichungen (3.5) und (3.4) ergeben die neue Rechenvorschrift für das Kodie-
ren. Setzen wir L0 = 0, erhalten wir

L2n =L1..n +
r1..n · L(n+1)..2n

r0
(3.6)

r2n =
r1..n · r(n+1)..2n

r0
(3.7)

Wir können Gleichung (3.2) und (3.3) immer weiter nach dieser Regel aufteilen, bis zum
Schluss nur noch ein Symbol kodiert werden muss. Die Formel für diese Kodierung ist
dann

L1 =L0 + r0 · Fx(0)
r1 =r0 · p(x0)

40

3.1 Parallelisierung nach J. Jiang und S. Jones

Weil L0 = 0 gilt

L1 =r0 · Fx(0) (3.8)
r1 =r0 · p(x0) (3.9)

Wir können also zwei verschiedene Rechenvorschriften definieren. Eine zum Berechnen von
L und r, und eine um zwei Ls und rs zusammenzufügen. In diesem Paper sprechen die
Autoren von einer BPE und einer GPE . Die BPEs berechnen ein Lxi und rxi zum Symbol xi
und die GPE konkateniert die Berechnungen zu den Symbolen xi und xi+1. Das Ergebnis
dieser Zusammenführung wird mit der nächsten Berechnung in einer weiteren Stufe zusam-
mengefügt. Auf diese Weise kann man beliebig viele Symbole durch BPEs einlesen und in

x i
(F (i), p(x))

BPE

(L , r)

1 1
(L , r)

2 2
(L , r)

GPE

(L , r)

Abbildung 3.1: Basisformeln für Parallelisierung

einer baumartigen Struktur von GPEs zusammenfügen. Abbildung 3.2 zeigt ein Beispiel mit
8 Symbolen. In der obersten GPE erhält man dann das neue L und r. Es stellt sich nun die

BPE
1

BPE
2

BPE
3

BPE
4

BPE
5

BPE
6

BPE
7

BPE
8

GPE
1

GPE
2

GPE
3

GPE
4

GPE
5

GPE
7

GPE
6

x x x x x x x x
87654321

Abbildung 3.2: Berechnungs-Baum für 8 Symbole

Frage, wie die Berechnung fortgeführt werden kann. Eine Möglichkeit wäre, so viele BPEs
und GPEs zur Verfügung zu stellen, wie es Symbole gibt. Dann wäre die Länge des Textes
begrenzt und außerdem würde die dafür benötigte Präzision zu groß werden, wie wir später
erfahren werden.

Ein anderer Ansatz ist, für die Berechnungen die Differenzengleichungen (3.4) und (3.5) statt
(3.6) und (3.7) für die GPEs zu nehmen. Dann setzt man für L0 das zuvor errechnete L ein
und erhält bei GPE7 das neue L und r, welches dann für den nächsten Schritt verwendet wird.
So kann man immer 8 Symbole gleichzeitig einlesen und den Vorgang durch eine parallele
Implementierung der Bausteine in

m = (logb k) + 1

41

3 Parallelisierung

Schritten berechnen. Dabei ist k die Anzahl der gleichzeitig eingelesenen Symbole. In
unserem Beispiel ist k = 8 und damit m = 4.

Eine weitere Möglichkeit ist, die vorhergehende Berechnung und die aktuelle aus der höchs-
ten BPE mit einer weiteren GPE zu konkatenieren. Wir würden also für die GPEs weiterhin die
Differenzengleichungen (3.6) und (3.7) verwenden, aber nach der höchsten GPE eine weitere
Stufe anbringen, die das vorangehende L und r mit dem der höchsten GPE zusammmenfügt.
Das ist nichts anderes als das vorhergehende Ergebnis in einem weiteren Durchlauf in einer
nächsten GPE wieder einzufügen. Bild 3.3 zeigt das in unserem Beispiel.

Für den ersten Durchlauf muss dann für diese — nun höchste GPE — L = 0 und r = max_val
gesetzt werden. In unserem Beispiel GPE8. Die Berechnung von L und r stünden somit nach

BPE
1

BPE
2

BPE
3

BPE
4

BPE
5

BPE
6

BPE
7

BPE
8

GPE
1

GPE
2

GPE
3

GPE
4

GPE
5

GPE
7

GPE
6

GPE
8

Output

x x x x x x x x
87654321

Abbildung 3.3: Berechnungs-Baum für 8 Symbole + Konkatenation

m = (logb k) + 2

Schritten fest.

3.1.3 Normalisierung

Nachdem nun die Berechnung schrittweise parallel durchgeführt werden kann, stellt sich
die Frage nach der erforderlichen Präzision. Im sequenziellen Fall wurde nach jedem
Berechnungsschritt die Normalisierung durchgeführt. Durch diese Maßnahme wurde effektiv
ein Über- und Unterlauf verhindert.

J. Jiang und S. Jones schlagen dieses auch in ihrem Paper vor. Hiernach soll bei jeder GPE

eine lokale Skalierung stattfinden. Die auf der linken Seite anliegenden Werte bei einer GPE
entsprechen dem alten L und r. Von der rechten Seite wird mit L2 und r2 die Berechnung
fortgeführt. Das heißt, dass für die Werte an der rechten Seite die volle Präzision vorhanden
sein muss. Die Autoren schlagen hierfür einen Puffer vor, der mitgeführt wird und die Bits
puffert, die bei einer Skalierung herausgeschoben werden. Dieser Puffer wird der darüber
liegenden GPE weitergegeben und für die Berechnung von L und r herangezogen. Somit
muss an der obersten GPE alle herausgeschobenen Bits berücksichtigt werden. Man hat hier

42

3.2 Parallelisierung nach J. Šupol und B. Melichar

also innerhalb der Baumstruktur — oder des parallelen Blocks — keine reale Skalierung
durchgeführt.

Wir könnten also, anstatt nach jedem Schritt zu skalieren, die Berechnungen bis zur obersten
GPE durchrechnen und erst dann skalieren. Bei genügender Präzision ist es egal, wann
man skaliert, solange Koder und Dekoder nach der gleichen Rechenregel vorgehen. Es ist
klar, dass eine höhere Präzision erforderlich sein wird, wenn man länger rechnet bis man
skaliert.

Diese Erkenntnis ermöglicht somit eine vollständige Berechnung des parallelen Blocks und
im Anschluss die Normalisierung. Wir müssen hierfür lediglich die Präzision erhöhen
und können somit, ohne nach jedem Schritt auf die Normalisierung zu warten und ohne
zusätzliche Maßnahmen, zu Ende rechnen. Um wieviel die Präzision erhöht werden muss,
ist Gegenstand von Kapitel 3.4.2.

Die Normalisierung gestaltet sich hier wesentlich einfacher als die der Sequentiellen Vorge-
hensweise mit der Berechnung von L und H. Wir berechnen hier r direkt und können dieses
auch direkt kontrollieren. Im Paper [JJ94] ist kein spezieller Algorithmus dafür beschrie-
ben. Allein die Idee ist hier skizziert. Wir werden im Kapitel 3.5.2 noch einen Algorithmus
vorstellen und analysieren.

3.1.4 Stark unterschiedliche Häufigkeiten

Ein weiteres Problem könnte auftreten, wenn die Häufigkeiten der einzelnen Symbole sehr
unterschiedlich sind. Wenn also

∃ i 6= j i, j ∈ A | p(xi)� p(xj)

Dann kann es passieren, dass sehr lange nicht skaliert wird. Vor allem dann nicht, wenn
zusätzlich p(xi) sehr nahe bei r0 (dem Ursprungs-Intervall) liegt. Das kann zur Folge haben,
dass nach einiger Zeit auch hier die Präzision nicht mehr ausreicht.

In diesem Paper wird als Lösung ein Tausch der Reihenfolge der Symbole vorgeschlagen.
Das «end of file» Symbol wird als Puffer zur oberen Grenze des Intervalls gesetzt. Wir
werden diese Problematik in Kapitel 3.4.2 wieder aufnehmen.

3.2 Parallelisierung nach J. Šupol und B. Melichar

3.2.1 Einleitung

Zehn Jahre nach der Veröffentlichung von [JJ94] haben Jan Šupol und Bořivoj Melichar in
einem Paper [SM05] ein weiteres Verfahren zur Parallelisierung vorgeschlagen. Bei diesem
Verfahren gehen die Autoren davon aus, dass beliebig viele Prozessoren zur Verfügung
stehen. Sie verwenden hierzu das Modell eines Exclusive Read Exclusive Write Parallel RAM
(EREW PRAM).

43

3 Parallelisierung

Bei Ausnutzung voller Parallelität ergibt das eine Kodierung eines Textes S in log k Schritten,
wobei k = |S| bei Annahme, dass k Prozessoren zur Verfügung stehen.

3.2.2 Prinzip

Wieder nehmen wir die Differenzen Gleichungen (2.6) und (2.7).

Li = Li−1 + (Hi−1 − Li−1) · Fx(i− 1)
Hi = Li−1 + (Hi−1 − Li−1) · Fx(i)

Wir setzen

LRi = (Hi−1 − Li−1) · Fx(i− 1) (3.10)
HRi = (Hi−1 − Li−1) · Fx(i)

und schreiben die Gleichungen (2.6) und (2.7) als

Li = Li−1 + LRi (3.11)
Hi = Li−1 + HRi (3.12)

Wenn wir nun (3.11) ausschreiben, erhalten wir

Li = Li−1 + LRi = Li−2 + LRi + LRi−1

= L0 + LRi + LRi−1 + LRi−2 + . . . + LR0

=
i

∑
k=0

LRk + L0 (3.13)

und weil L0 = 0

Li =
i

∑
k=0

LRk

Entsprechend kann man das auch für Gleichung (3.12) berechnen und erhält

Hi =
i

∑
k=0

HRk + H0

wobei H0 die oberste Grenze des Ursprungs Intervalls ist. Wir setzen nun

ri = Hi − Li

und erhalten aus Gleichung (3.10)

LRi = ri−1 · Fx(i− 1)

44

3.2 Parallelisierung nach J. Šupol und B. Melichar

Wir erinnern uns an Gleichung (3.1) wonach

ri = ri−1 · p(xi)

und schreiben

LRi = ri−1 · Fx(i− 1)
= ri−2 · p(xi−1) · Fx(i− 1)
= ri−3 · p(xi−2) · p(xi−1) · Fx(i− 1)
= ri−4 · p(xi−3) · p(xi−2) · p(xi−1) · Fx(i− 1)

...

= r0 · (
i−1

∏
k=0

p(xk)) · Fx(i− 1) (3.14)

wobei

i

∏
j=0

p(xj) = 1 i < 0 (3.15)

Wir setzen Gleichung (3.14) in (3.13) ein

Li =
i

∑
k=1

LRk + L0

=
i

∑
k=1

[r0 · (
k−2

∏
j=0

p(xj)) · Fx(k− 1)] + L0 (3.16)

beachte dass das innere Produkt jetzt mit j läuft, und weil die äußere Summe bei k = 1
beginnt, darf das Produkt nur bis k− 2 laufen. Falls r0 = 1 und L0 = 0 gilt

Li =
i

∑
k=1

[(
k−2

∏
j=0

p(xj)) · Fx(k− 1)] (3.17)

und für H

Hi =
i

∑
k=1

[(
k−2

∏
j=0

p(xj)) · Fx(k)] (3.18)

wobei gelten soll

p(xi) = Fx(i) := 0 für i < 0

Die Idee ist nun, die Produkte und Summen aus Gleichungen (3.17) und (3.18) parallel in
einem Baum auszurechnen.

45

3 Parallelisierung

3.2.3 Beispiel

In diesem Paper wird das Beispiel aus Kapitel 2.2 berechnet. A = {S,W,I,M,t} und S =
{SWISStMISS}

LR−1 = 0
HR−1 = 1

LR0 = (HR−1 − LR−1) · Fx(x0 − 1 = a5 − 1 = a4=W)

= 1 · Fx(4)
= 1.0 · 0.5 = 0.5

HR0 = (HR−1 − LR−1) · Fx(x0 = a5 = a5=S)

= 1 · Fx(5)
= 1.0 · 1.0 = 1.0

LR1 = (HR0 − LR0) · Fx(x1 − 1 = a4 − 1 = a3=I)

= (H5 − L5) · Fx(3)
= p(a5) · Fx(3)
= 0.5 · 0.4 = 0.2

HR1 = (HR0 − LR0) · Fx(x1 = a4 = a4=W)

= (H5 − L5) · Fx(4)
= p(a5) · Fx(4)
= 0.5 · 0.5 = 0.25

LR2 = (HR1 − LR1) · Fx(x2 − 1 = a3 − 1 = a2=M)

= (p(a5) · H4 − p(a5) · L4) · Fx(2)
= p(a5) · p(x4) · Fx(2)
= 0.5 · 0.1 · 0.2 = 0.01

HR2 = (HR1 − LR1) · Fx(x2 = a3=I)

= (p(a5) · H4 − p(x5) · L4) · Fx(2)
= p(a5) · p(x4) · Fx(2)
= 0.5 · 0.1 · 0.4 = 0.02

46

3.2 Parallelisierung nach J. Šupol und B. Melichar

LR3 = (HR2 − LR2) · Fx(x3 − 1 = a5 − 1 = a4=W)

= (p(a5) · p(a4) · H3 − p(a5) · p(a4) · L3) · Fx(4)
= p(a5) · p(a4) · p(a3) · Fx(4)
= 0.5 · 0.1 · 0.2 · 0.5 = 0.005

HR3 = (HR2 − LR2) · Fx(x3 = a5=S)

= (p(a5) · p(a4) · H3 − p(x5) · p(a4) · L3) · Fx(5)
= p(a5) · p(a4) · p(a3) · Fx(5)
= 0.5 · 0.1 · 0.2 · 1.0 = 0.01

...

Addieren wir jetzt die LRs zusammen, erhalten wir die zugehörigen Ls.

L−1 = 0
L0 = 0 + 0.5 = 0.5
L1 = 0 + 0.5 + 0.2 = 0.7
L2 = 0 + 0.5 + 0.2 + 0.01 = 0.71
L3 = 0 + 0.5 + 0.2 + 0.01 + 0.005 = 0.715

...

Diese Ergebnisse können wir mit Tabelle 2.4 vergleichen.

3.2.4 Parallelisierung

Die Parallelisierung geschieht dadurch, dass man die Multiplikation und die Addition der
LRs und Ls, beziehungsweise die der HRs und Hs in einer Baumstruktur anordnet.

p(x)p(x) F(x) p(x) F(x) p(x) p(x) p(x) F(x)0 0 0 1 2 0 1 2 2

LR LR LR1 2 3

xxx

LR 0

F(x - 1)0x

= Multiplikation

Abbildung 3.4: Berechnungs-Baum LR für die ersten 4 Symbole

47

3 Parallelisierung

Dadurch ergibt sich eine rein rechnerische Abarbeitung in

m = (logb k) + 1 (3.19)

Schritten. Auch hier ist k die Anzahl gleichzeitig eingelesener Buchstaben.

Anders als bei [JJ94] ist hier mehr Hardware notwendig um den Kode zu berechnen. Bei
dieser Struktur müssen sämtliche Folgen von LR−1, LR0, LR1 . . . LRk als Bäume implementiert
werden um den Kode zu berechnen. Es sind also hier k Bäume notwendig. Der höchste von
ihnen — der für LRk — hat dann die Tiefe von logb k.

Parallel zur Berechnung von LR kann die Addition zu L geschehen. Nach logb k Schritten
steht LRk fest und kann zu Lk−1 addiert werden. Deshalb der zusätzliche Schritt in (3.19).

p(x)p(x) F(x) p(x) F(x) p(x) F(x)0 0 0 1 2 2 2

LR 2 LR 3

xxx

L1

F(x - 1)0x

= Multiplikation

L2

L3

= Addition

Abbildung 3.5: Berechnungs-Baum L für die ersten 4 Symbole

Allerdings wird nicht der vollständige Baum für jedes L benötigt, wie man aus Abbildung
3.5 sehen kann. Zu dem höchsten Baum braucht man zusätzlich jeweils nur die Seiten mit
Fx(i).

Die Autoren sind in diesem Paper nicht auf Problematik eingegangen, wie man vorgehen
soll, wenn nicht unendlich viele Prozessoren zur Verfügung stehen. Es ist in den seltensten
Fällen möglich einen Text komplett parallel auszurechnen. Deshalb muss man sich überlegen,
wie man schrittweise vorgeht.

Ein Vorschlag wäre, einen Parallelen Block für die Kodierung von k Symbolen zu entwerfen
und diesen dann Stück für Stück vorgehen zu lassen. Als Ergebnis stehen am obersten Knoten
dann Lk und, als Intervall, LRk bereit. Lk wird bei der folgenden Iteration als Fx(x0 − 1),
und LRk als Fx(x0) eingegeben. Bei den anderen Blättern werden die nächsten Symbole,
beziehungsweise p(xi) eingegeben. Nach jedem Durchlauf werden also k− 1 Buchstaben
angehängt.

Für die Normalisierung berufen wir uns wieder auf die Tatsache, dass es keine Rolle spielt,
wann diese stattfindet, solange die Präzision hoch genug ist. Damit wird wie schon in Kapitel
3.1.3 besprochen die Skalierung erst nach dem Parallelen Block durchgeführt.

48

3.3 Parallelisierung nach Horg-Yeong Lee, Leu-Shing Lan, Ming-Hwa Sheu und Chien-Hsing Wu

3.3 Parallelisierung nach Horg-Yeong Lee, Leu-Shing Lan,
Ming-Hwa Sheu und Chien-Hsing Wu

3.3.1 Einleitung

Im Paper [LLSW96] aus dem Jahr 1996 zeigen die Autoren eine Variante von der Implemen-
tierung von [JJ94]. Im Wesentlichen sind hier keine großen Veränderungen oder Neuerungen
hinzugekommen. Vielmehr ist es eine andere Darstellung der bekannten Formel.

3.3.2 Prinzip

Wir nehmen Gleichung (3.17) und schreiben diese bis zu L7, also 8 Symbole, aus.

L7 =
7

∑
k=1

(
k−2

∏
j=0

p(xj)) · Fx(k− 1)

=Fx(0) + p(x0) · Fx(1) + p(x0) · p(x1) · Fx(2) + p(x0) · p(x1) · p(x2) · Fx(3)
+ p(x0) · . . . · p(x3) · Fx(4) + p(x0) · . . . · p(x4) · Fx(5)
+ p(x0) · . . . · p(x5) · Fx(6) + p(x0) · . . . · p(x6) · Fx(7)

=[(Fx(0) + p(x0) · Fx(1))︸ ︷︷ ︸
mul+add

+p(x0) · p(x1) · (Fx(2) + p(x2) · Fx(3))︸ ︷︷ ︸
mul+add

]

+ p(x0) · p(x1) · p(x2) · p(x3)

· [(Fx(4) + p(x4) · Fx(5))︸ ︷︷ ︸
mul+add

+p(x4) · p(x5) · (Fx(6) + p(x6) · Fx(7))︸ ︷︷ ︸
mul+add

] (3.20)

Die Idee ist, jetzt zwei verschiedene Einheiten zu konstruieren, die eine multipliziert zwei
Zahlen, die andere, in Gleichung (3.20) als «add+mul» bezeichnet, multipliziert erst p(xi) mit
Fx(i + 1) und addiert dann Fx(i− 1). Der zugehörige Baum ist in Abbildung 3.6 dargestellt.

range low

p(0) p(1) p(2) p(3) F(0) p(0) F(2) p(2)

F(3)F(1)

p(6) p(4) p(5) F(4) p(4)

F(5)

F(6) p(6)

F(7)x

x x

x xx

x

a b

c

c = a * b

a b

c

d

d= a + (b * c)

Abbildung 3.6: Berechnungs-Baum

49

3 Parallelisierung

3.4 Konklusion

Jetzt haben wir die Grundlagen für das sequenzielle Arithmetische Kodieren und die
Vorschläge für eine parallele Implementierung kennengelernt. Wir sind nun in der Lage eine
tiefere Analyse der vorgestellten Lösungen vorzunehmen.

Bei dieser Analyse sind mir drei Probleme besonders aufgefallen. Diese sollen im Folgenden
besprochen werden und falls möglich Lösungen vorgestellt werden, wie man damit umgehen
kann.

3.4.1 Gleichungen für Parallelisierung

Wir betrachten die Gleichung (3.2) und schreiben diese abkürzt als

rk = r0 ·
k

∏
j=0

p(xj)

Diese Gleichung setzen wir in Gleichung (3.3) ein

Li =L0

+ r0 · (
−1

∏
j=0

p(xj)) · Fx(0)3

+ r0 · (
0

∏
j=0

p(xj)) · Fx(1)

+ r0 · (
1

∏
j=0

p(xj)) · Fx(2)

+ r0 · (
2

∏
j=0

p(xj)) · Fx(3)

...

+ r0 · (
i−1

∏
j=0

p(xj)) · Fx(n)

=L0 +
i

∑
k=1

[r0 · (
k−2

∏
j=0

p(xj)) · Fx(k− 1)]

50

3.4 Konklusion

Das ist aber genau die Gleichung (3.16). Mit anderen Worten J. Šupol und B. Melichar
benutzen die gleiche Gleichung die J. Jiang und S. Jones in der BPE verwenden. Allerdings
teilen sie die Gleichung nicht in weitere Teile. Auch [LLSW96] verwenden Gleichung (3.16).
Der Unterschied liegt allein in der Kombination von Gleichung (3.16), die der BPE entspricht
und (3.6) für die GPE.

Dabei haben [JJ94] und [SM05] die Extremwerte der möglichen Kombinationen gezeigt. Bei
[JJ94] wurden die Blätter — also die BPEs — so weit geteilt, bis nur noch ein Symbol zu
kodieren war. [SM05] ging den Weg, am Blatt selbst, das entspricht der BPE, die Parallelität
durch eine Baumstruktur zu erreichen.

Man kann jetzt einen Schritt weiter gehen und die beiden Ansätze kombinieren. Es wäre zum
Beispiel möglich, BPEs nach Gleichung (3.16) zu implementieren und dann die Baumstruktur
in Abbildung 3.3 weiter zu nutzen .

BPE
1

BPE
2

BPE
3

BPE
4

BPE
5

BPE
6

BPE
7

BPE
8

GPE
1

GPE
2

GPE
3

GPE
4

GPE
5

GPE
7

GPE
6

GPE
8

Output

x
1

x
4

x
8

x x
28

x
25

x
32

x
295

Abbildung 3.7: Berechnungs-Baum für 32 Symbole

Abbildung 3.7 zeigt ein Beispiel bei dem die Blätter nach Gleichung (3.16) jeweils vierfach
parallel gerechnet werden. Die Ergebnisse werden dann mit Gleichung (3.6) zum Gesamter-
gebnis zusammengefügt.

Der Vorteil dabei ist, dass für Gleichung (3.16) eine andere Architektur verwendet werden
kann als für Gleichung (3.6). Man könnte für die niedrigere Präzision (BPE) vorhandene
Hardware, zum Beispiel CUDA, und für die hohe Präzision (GPE) dedizierte Hardware
implementieren.

3siehe Gleichung (3.15)

51

3 Parallelisierung

3.4.2 Präzision

Das größte Problem bei der Arithmetischen Kodierung ist die notwendige Präzision. Wir
haben gesehen, dass bisher noch keine wirkliche Lösung vorgeschlagen worden ist. Die in
[JJ94] vorgeschlagene Skalierung nach jedem Schritt hilft nicht weiter. Trotz der Skalierung
muss die Präzision bei der nächsten Stufe in vollem Umfang eingerechnet werden. Die
anderen Papers sagen gar nichts zu der Problematik.

In Kapitel 3.1.3 wurde schon eine Variante vorgestellt, möglichst ohne viel zusätzlichen
Hardware Aufwand das Problem in den Griff zu bekommen. Wir konzentrieren uns des-
halb an dieser Stelle auf die Frage der Präzision, die notwendig ist, um diesem Vorschlag
nachzugehen.

Für eine praktische Implementierung wird das Intervall gemäß Kapitel 2.6.1 auf eine Ganze
Zahl abgebildet. Das Intervall von 0 bis zur höchstmöglichen Zahl nennen wir r0. Die kleinste
Einteilung ist damit 1/r0 und ist zugleich die höchstmögliche Präzision. Es soll nun im
Folgenden darum gehen, die Bit Breite für r0 zu bestimmen.

Wir nennen nun total = tot und high_countai
= fi. Dann ist p(ai) =

fi
tot

. Bemerkenswert
ist an dieser Stelle, dass tot nicht unbedingt die Länge des Textes ist, sondern der gekürzte
Bruch von ∑ fi/Textlänge.

Beispiel 10. Sei A = {a, b, c, d} und S = aaaabbcd. Dann gilt f1 = 4, f2 = 2, f3 = 1 und
f4 = 4. Weiter gilt tot = 8. Dann ist hier p(a1) = 4/8 = 0.5.

Das würde aber auch gelten, wenn S = aaaabbcdaaaabbcd. Die Reihenfolge spielt dabei keine
Rolle. Lediglich das Verhältnis. ♦

Dann ist 1/tot die kleinste vorkommende Wahrscheinlichkeit. Um eindeutig Kodieren und
Dekodieren zu können muss also

ri ≥ tot ∀i ∈ n

Als nächstes nehmen wir die Formeln für die GPE und BPE.

Für die Gleichung (3.9) gilt

r1 = r0 · p(x0)

= r0 ·
fi

tot

52

3.4 Konklusion

Falls aber im schlechtesten Fall fi = 1 und damit die kleinste Wahrscheinlichkeit übergeben
wird, dann muss r1 ≥ tot. Also können wir zeigen:

r1 ≥ tot

r0 ·
fi

tot
≥ tot

r0 ·
1

tot
≥ tot

r0

tot
≥ tot

r0 ≥ tot2 (3.21)

Für Gleichung (3.8) ergibt sich für L keine direkte Einschränkung, weil für L mindestens L0
als untere Schranke behalten wird. Trotzdem gilt

logb L < logb r0

logb L ≤ (logb r0)− 1

Im besten Fall ist L ein Bit kürzer als r. Hat man die Bit Breite von r kann man diese als obere
Grenze für L nehmen und als untere Grenze (logb r)− 1. In der Praxis wird man Register
der selben Breite implementieren und damit logb L = logb r setzen.

Betrachten wir nun die Gleichung (3.7)

ri+1 =
r1 · r2

r0
≥ tot

r1 · r2

tot2 ≥ tot | wegen Gleichung (3.21)

r1 · 1
tot2 ≥ tot | schlechtester Fall fi = 1

r1 ≥ tot3 | tot > 0

Wir sehen also, dass nach jeder Iteration die Präzision von r um 1/tot steigt. Sei p die
Anzahl paralleler Stufen, dann gilt für ein Binäres System

ri ≥ totp

und damit für die Bit Breite von ri

logb ri ≥ logb tot
p

≥ p · logb tot

Bit Breite für r 1. Sei p die Anzahl der parallelen Stufen in einem Baum, dann ist die
mindest erforderliche Bit Breite für alle r

logb ri ≥ p · logb tot ∀i ∈ n (3.22)

53

3 Parallelisierung

Analog kann das auch für die Gleichung (3.2) gezeigt werden.

Wir haben in Kapitel 3.1.4 schon die Problematik der extrem hohen Wahrscheinlichkeiten
angesprochen. Ich will an dieser Stelle ein paar Überlegungen dazu skizzierenÖ

Sei 1/r0 = pmin, pmax = 1− pmin und σ die Anzahl der Schritte, dann wird spätestens nach

0.5 = pσ
max

log 0.5 = log pσ
max

log 0.5 = σ · log pmax

σ = blog 0.5/ log pmaxc

Schritten skaliert. In einer parallelen Abarbeitung also erst nach

σpar = bσ/pc

Beispiel 11. Gegeben sei r0 = 8, pmin = 1/8⇒ pmax = 7/8 und p = 4. Dann ist

σ = blog 0.5/ log 7/8c
= b5.19c
= 6

und

σpar = b6/pc
= b1.5c = 2

♦

Im Beispiel 11 sehen wir, dass der parallele Block zweimal durchläuft, ehe skaliert wird. Das
könnte bei zu niedriger Bit Breite von r zu einem Unterlauf führen. Eine genauere Analyse
wäre hier interessant, um herauszufinden ab welcher Rundung das Dekodieren fehl schlägt.
Mit größerem tot steigt auch die erforderliche Bit Breite. Es ist denkbar, dass dadurch die
Rundungsfehler so klein gehalten werden, dass ein Dekodieren immer möglich bleibt.

Ich überlasse diese Problematik an dieser Stelle dem interessierten Leser und breche hier
ab.

3.4.3 Algorithmus für Skalierung

Eine weitere Erkenntnis können wir bei näherer Betrachtung des Skalierens gewinnen. In
den Kapiteln 2.6.2 und 2.6.3 wurden die Grundlagen und Notwendigkeit der Skalierung
beschrieben. Hierzu wurden die Grenzen L und H benutzt. Die Verwendung von r statt
H vereinfacht die Skalierung drastisch. Die Einteilung in verschiedene Quadranten kann
gänzlich wegfallen. Wir betrachten allein die Größe von r. Ist r ≤ 1/2 · r0, dann kann skaliert
werden.

54

3.4 Konklusion

Das Skalieren verläuft analog des beschriebenen Verfahrens. L und r werden nach links
geschoben und das höchstwertigste, rauslaufende Bit von L als Kode gespeichert. Aller-
dings muss man einen Sonderfall betrachten: Falls L + r > r0 nach einer Skalierung gelten
würde, dann darf nicht skaliert werden. Der Algorithmus hierfür ist in Algorithmus 3.1
beschrieben.

Algorithmus 3.1 Skalierung bei Verwendung von r
while r ≤ (r0/2) do

rtemp ← r · 2
Ltemp ← L · 2
if Ltemp > r0 then

5: Ltemp ← Ltemp − r0
if (rtemp + Ltemp) < r0 then

Kode← 1
L← Ltemp
r ← rtemp

10: else
exit

end if
else

if (rtemp + Ltemp) < r0 then
15: Kode← 0

L← Ltemp
r ← rtemp

else
exit

20: end if
end if
r ← rtemp
L← Ltemp

end while

Den Kode kann man auch direkter bestimmen. Man sucht die signifikanteste «1» (rot)
in r. Diese Position bezeichnen wir mit j. Von dieser Bit-Position sucht man die nächst
höherwertigere Bit-Position i (gelb) in L, die erstmals den Wert «0» hat, wobei i > j sein muß.
Die MSB-Bits in L15...(i+1), unabhängig vom Wert, entsprechen dem Kode.

Beispiel 12. r0 und L haben eine Bit Breite von 16 Bits. Wir erhalten nach einem parallelen
Durchlauf die Werte L = 0A10h und r = 0090h. Dann ist der herauszugebende Kode 000101b.
Siehe Abbildung 3.8

Falls wir die Werte L = 7836h und r = 0016h annehmen, ergibt sich der Kode 11110000b.
Siehe hierzu Abbildung 3.9. ♦

Das Finden der Position i entspricht der Bedingung, dass sowohl L < r0 als auch r + L ≤ r0
gelten muss. Wie bei der E3 Skalierung muss man warten, bis die zu kodierende Stelle bei

55

3 Parallelisierung

0 0 0 0 0 0 0 10 1

1

0 0 0 0 0 0

0 0 0 00 0 0 0 0 0 0 0 110

Puffer Bit
Kode

Erste Null
Höchste 1

Low

range

MSB
15 0

LSB
ji

Abbildung 3.8: direkte Bestimmung des Kodes für L = 0A10 und r = 0090

0 0 0 0 0 0 0 10 0

1

0 0 0 1 1 0

0 1 1 00 1 1 1 0 0 0 1 100

Puffer Bit
Kode

Erste Null
Höchste 1

Low

range

MSB
15 0

LSB
ji

Abbildung 3.9: direkte Bestimmung des Kodes für L = 7836 und r = 0016

L stabil anliegt. Beim sequentiellen Vorgehen geschieht das, indem man erst dann Kode
Bits herausgibt, wenn man sicher in der unteren oder oberen Hälfte des Intervalls liegt. Im
Algorithmus 3.1 werden als Kode die Bits herausgegeben, die durch die Addition von r, L
nicht mehr beeinflussen können.

Das ist genau dann der Fall, wenn man solange bei L in Richtung most significant Bit geht,
bis die erste Null auftritt. An dieser Stelle steht sowohl bei L als auch bei r eine Null. Bei
einer Addition wird ab hier L nicht mehr beeinflusst, weil in r in Richtung most significant
Bit, nur noch Nullen folgen.

Man kann also nach dieser Methode die maximale Anzahl an Schleifendurchläufe l auf
2 · logb l bei geeigneter Implementierung reduzieren.

Beispiel 13. Gegeben sei die Bit Breite logb r = 8. Wir bilden erst einen Prioritätsenkoder
mit einer Maske. Wenn also xm = 1 dann gilt xi = 1, i < m. Der Baum aus OR Gattern ist bis
zum vierten Bit in Abbildung 3.10 dargestellt. Nachdem die Maske in y fertig ist, können
wir mit XORs das höchste Bit bestimmen. Falls der Übergang von 0 auf 1 an der Stelle (y4, y3)
ist, dann ist z3 gesetzt. ♦

56

3.5 Parallelisierung in Hardware

>=1

x7 x6

>=1

x5 x4

>=1

x3 x2

>=1

x1 x0

>=1 >=1

>=1

y0

>=1

x7 x6

>=1

x5 x4

>=1

x3 x2 x1

>=1 >=1

>=1

y1

>=1

x7 x6

>=1

x5 x4

>=1

x3 x2

>=1

>=1

y2

>=1

x7 x6

>=1

x5 x4 x3

>=1

>=1

y3

>=1

x7 x6

>=1

x5 x4

>=1

y4

Abbildung 3.10: Prioritätsenkoder OR-Baum

y7 y6 y5 y4 y3 y2 y1 y0'0'

=1 =1 =1 =1

z0z1z3z4z5

=1=1=1=1

z2z6z7

Abbildung 3.11: Bitbestimmung mit XOR Gattern

3.5 Parallelisierung in Hardware

Nach der Analyse soll nun als weiterer Bestandteil dieser Arbeit eine Realisierung in
Hardware erfolgen. Die Architektur ist nicht vorgegeben. Grundsätzlich besteht jetzt die
Möglichkeit, vorhandene Hardware zu verwenden, oder eine eigens für den Zweck zu
entwerfen. Bei der vorhandenen Hardware sind besonders die Grafikkarten interessant. Diese
bieten viel mehr parallele Prozessoren als eine herkömmliche CPU. Wir beschränken uns
deshalb auf die Architektur einer Grafikkarte. Es wäre natürlich denkbar, auch Großrechner
mit vielen CPUs anzuschauen, aber wie wir sehen werden, treten hier dieselben Probleme
wie bei der Implementierung auf einer GPU. Für die dedizierte Hardware schauen wir uns
eine Implementierung in VHDL an.

57

3 Parallelisierung

3.5.1 CUDA

Für eine Implementierung auf vorhandener Hardware nehmen wir eine GPU. Als Beispiel
benutzen wir die von NvidiaTM

2007 eingeführte Compute Unified Device Architecture

kurz: CUDA.

Architektur

Die CUDA Architektur teilt sich auf in Symetric Multiprocessors (SMs), Blöcke und
Threads. Jede SM kann maximal aus 1024 Threads 4 bestehen, und aus maximal 8 Blöcken.
Die Zuweisung der Threads zu den Blöcken geschieht flexibel: Zum Beispiel 8 Blöcke zu je
128 Threads, oder 4 Blöcken je 256 Threads. Für eine GT200 die 30 SMs zu je 1024 Threads
hat, besteht so die Möglichkeit 30 · 1024 = 30720 Threads gleichzeitig abzuarbeiten.

Jeder Thread bearbeitet eine Berechnung. Die Threads werden durch einen Aufruf eines
sogenannten Kernel gestartet. Davor müssen die Daten in den Kartenspeicher gebracht
werden. Sind die Threads zu groß, können sie nicht in den Kartenspeicher gebracht werden
und damit nicht parallel gerechnet werden. Das geschieht zwar für den Nutzer transparent,
aber ohne Beachtung dieser Beschränkung geht man Geschwindigkeitsverluste ein. Threads
können intern synchronisiert werden. Auch hierdurch entstehen Geschwindigkeitsverluste.
Bei IF THEN ELSE Anweisungen geht der Kernel immer den IF, dann den ELSE Zweig durch
und entscheidet anschließend welcher ausgeführt wird. Das heißt, bei einer Abfrage von
acht verschiedenen Abzweigungen wird der Thread acht mal durchlaufen, obwohl nur ein
Zweig real berechnet werden müsste. Die Threads werden in Gruppen von 32 geteilt. Diese
Gruppen nennen sich Warps. Findet in einem solchen Warp eine IF THEN ELSE Abfrage
statt, warten alle Threads in diesem Warp bis beide Zweige durchlaufen sind.

Die Bit Breite der Fließkomma Operationen ist bis zur G200 32 Bit. Bei der Ganzzahl-
Arithmetik sind es 64 Bit. Ab der compute capability 1.3 sind 64 Bit Berechnungen auch
für Fließkomma Arithmetik möglich.

Implementierung

Durch die vielen Einschränkungen ist eine Verwendung solcher Architekturen relativ schwie-
rig. Die zwei Hauptprobleme sind die Geschwindigkeitsverluste beim Kernel Aufruf und
vor allem die Bit Breite der Register.

Vor jedem Kernel Aufruf müssen die Daten in den Grafikspeicher kopiert werden. Die Ergeb-
nisse werden in den Grafikspeicher geschrieben und müssen nach der Berechnung wieder
in den Hauptspeicher kopiert werden. Dieser Prozess ist sehr langsam. Mit Einführung
der Compute capability 2.0 kann die GPU vereinfacht auf den Hauptspeicher zugreifen.
Die schnellste Bearbeitung bleibt aber die auf dem eigenen Speicher. Nach jeder Parallelen

4
compute capability 1.2

58

3.5 Parallelisierung in Hardware

Stufe müssten die Ergebnisse hin- und herkopiert werden um dann die nächste Stufe mit
den vorher berechneten Ergebnissen zu starten. Mit etwas mehr Aufwand könnte man
das Problem umgehen, indem man maximal so viel Parallelität implementiert, so dass sie
komplett in den Grafikspeicher hinein passt.

Selbst dann würde die vorhandene Bit Breite die Parallelität einschränken. In einem deut-
schen Text tritt der Buchstabe x mit einer Wahrscheinlichkeit von 0.0003 auf 5. Um diese
darzustellen braucht man tot = 1/0.0003 = 3333.3. Im Binärsystem ergibt das

2x = 3333.3

log(2x) = log 3333.3

x = blog 3333.3/ log 2c
x = 12 = logb tot

Bits. Und gemäß Gleichung (3.22) können bei einer Bit Breite von ri = 64 Bits nur

logb ri ≥ p · logb tot

64 ≥ p · logb tot

64 ≥ p · 12
d64/12e ≥ p

5 ≥ p

Parallele Stufen ohne fehlerhafte Dekodierung realisiert werden. Das heißt, trotz der vielen
Threads können nur 25 = 32 gleichzeitig berechnet werden. Diese starke Einschränkung
macht diese Technologie ungeeignet für massive parallele Kodierungen.

Wie man diese Architektur trotzdem zum Vorteil nutzen kann wurde in Kapitel 3.4.1
vorgestellt.

3.5.2 VHDL

Der Implementierung in dedizierter Hardware sind weit weniger Beschränkungen unterlegen
als zum Beispiel in CUDA. Die Bit Breiten sind hier frei wählbar und somit steigt auch der
Grad der möglichen Parallelität. Trotz der geringen Beschränkungen von architektonischer
Seite ergeben sich aus Sicht der Algorithmen gewisse Einschränkungen die nicht unerheblich
sind.

Mit jeder parallelen Stufe kommen logb tot Bits zu der Bit Breite hinzu. Bei einer anfänglichen
Bit Breite von logb ri = 16 ergeben sich nach 8 Stufen eine Bit Breite von 8 ∗ 16 = 256 Bit.
Das Ergebnis einer Solchen Multiplikation nimmt 512 Bits in Anspruch. Die Berechnung
von solch großer Bit Breiten sind sehr komplex und langsam. Der Aufwand steigt bei

5aus [Beu93]

59

3 Parallelisierung

Multiplikationen quadratisch an. Es ist also fraglich, ob der Gewinn an paralleler Abarbeitung
die Geschwindigkeit des Multiplizierers kompensieren kann. Wenn nicht, wäre auch hier eine
Analyse interessant, ab welcher Latenz des Multiplizierers eine zusätzliche Parallele Stufe
keine Geschwindigkeitssteigerung bringt. Bei exakter Berechnung von p(i) ist sogar noch
ein Dividierer notwendig. Die Hardware dazu ist komplexer als die eines Multiplizierers
und erschwert einen Geschwindigkeits-gewinn zusätzlich.

Es ist aus diesen Gründen ratsam, im zugrundeliegenden Modell, für tot Zweierpotenzen
zu wählen und dabei eine etwas schlechtere Komprimierung in Kauf zu nehmen. Auf diese
Weise spart man sich einen Dividierer weil man leicht durch Zweierpotenzen mit Verschiebe-
Operationen teilen kann. Um wieviel schlechter man durch solche Rundungen wird, wäre
Teil einer weiteren Analyse.

Algorithmus

Als nächstes widmen wir uns der Frage, welche vor und Nachteile die besprochenen
Vorschläge haben.

J. Šupol und B. Melichar Der Algorithmus von [SM05] hat die geringste Tiefe. Anders als
bei [JJ94], oder [LLSW96] müssen die Knoten innerhalb des Baumes lediglich eine Ope-
ration durchführen. Bei den anderen Vorschlägen sind mindestens zwei Operationen
notwendig. Dadurch entstehen weitere Verzögerungen, weil zuerst auf das Ergebnis
der vorangegangenen Operation gewartet werden muss. Auf Register Transfer Level

(RTL) ist deshalb diese Lösung die schnellste. Sie lässt sich aber nicht so gut erweitern,
weil immer ein Teil-Baum der höchsten parallelen Stufe mehrfach verwendet wird. Nur
mit dieser Mehrfach-Verwendung sind große Einsparungen von Hardware möglich.

J. Jiang und S. Jones Bei dieser Lösung steht die Modularisierung im Vordergrund. Sie
beinhaltet beide Differenzengleichungspaare für L und r. Die Gleichung (3.6) hat zwei
Operationen. Zuerst die Multiplikation, anschließend die Addition. Wie schon oben be-
schrieben entsteht damit eine Verzögerung auf RTL Ebene. Die starke Modularisierung
erlaubt durch einfaches Hinzufügen von BPEs und GPEs die Parallelität zu erhöhen.

Horg-Yeong Lee, Leu-Shing Lan, Ming-Hwa Sheu und Chien-Hsing Wu Diese Variante
bringt zu den oben genannten keine wesentliche Verbesserung. Die Knoten im Baum
haben wie in [JJ94] zwei Operationen. Das führt auf RTL Ebene zu zusätzlichen Takten.
Die Erweiterbarkeit ist ähnlich komplex wie in [SM05] aber nicht so einfach wie in
[JJ94]

Die Entscheidung fiel auf die Variante von [JJ94]. Durch die klar gegliederte Modularisierung
lässt sich der Entwurf ohne großen Aufwand erweitern. Anders als bei [SM05], kommen
beide herausgearbeiteten Gleichungspaare (3.6), (3.7) und (3.13), (3.14) zur Anwendung.
Schließlich kann diese Architektur als einzige mit vorhandener Hardware kombiniert werden,
um die in Kapitel 3.4.1 vorgestellte Lösung zu realisieren.

60

4 Implementierung

Wir haben die Grundlagen des Arithmetischen Kodierens im Kapitel 2 kennengelernt. Diese
wurden im Kapitel 3 durch eine Analyse von Lösungsvorschlägen zur Parallelisierung in
Hardware vertieft. Mit diesem Wissen sind wir in der Lage, eine reale Implementierung
anzugehen.

Mir der Umsetzung in Hardware sollen die gewonnenen Kenntnisse auf Korrektheit über-
prüft und gleichzeitig die Machbarkeit gezeigt werden. Im Vordergrund steht, die Theorie in
einem leicht verständlichen Beispiel umzusetzen. Ressourcen- und Laufzeitoptimierung sind
hier nachrangig. Dennoch ist der Kode so gestaltet, dass eine Erweiterung ohne größeren
Aufwand möglich ist.

4.1 Referenz Beispiel

Für die Implementierung verwenden wir das in Kapitel 2.6.2 vorgestellte Beispiel. Der Vorteil
dieses Beispiels ist die geringe Komplexität und die Abdeckung aller möglichen Pfade. Damit
können wir sämtliche Teile der Hardware auf Korrektheit überprüfen.

Wir schauen uns Beispiel 8 nochmal an. Hier wurde beispielhaft eine Bit Breite von 8 genom-
men. Das ist für ein sequenzielles Vorgehen ausreichend. Für eine parallele Abarbeitung
müssen wir die Register verbreitern.

Das Alphabet des Beispiels besteht aus acht Buchstaben |A| = 8. Die kleinste auftretende
Wahrscheinlichkeit ist pmin = 1/tot. Mit tot = 8 ist pmin = 1/8. Um tot im Dualen System
darzustellen sind logb tot = 3 Bits notwendig. Weil sich 4 Bits leichter in Hexadezimal
darstellen lassen, verwenden wir diese für unsere Implementierung, obwohl wir nur 3

brauchen. Dabei generieren wir hohe Redundanzen, aber wie schon eingangs erwähnt, soll
es hier nicht um eine optimale Realisierung gehen.

Um die Struktur nicht unnötig komplex werden zu lassen, wählen wir eine Parallelität von 4.
Das heißt, 4 Buchstaben sollen gleichzeitig eingelesen und anschließend kodiert werden. Wir
setzen p = 4 und erhalten nach Gleichung (3.22)

logb ri ≥ p · logb tot

≥ 4 · logb tot

≥ 4 · 4 wir nehmen 4 statt 3 (siehe oben)
≥ 16

61

4 Implementierung

Wir brauchen also für r und L eine Bit Breite von 16 Bits.

Die zu kodierende Sequenz ist S = abccedac. Die Baum-Struktur für eine vierfache Par-
allelisierung ist in Abbildung 4.1 dargestellt. Wir benutzen fortan für das Beispiel das
hexadezimale System, ansonsten geben wir die Basis explizit an.

BPE

GPE

1

1

BPE
2

BPE

GPE

3

2

BPE
4

GPE
3

GPE
4

(low , cum)0 0 (low , cum)1 1 (low , cum)2 2 (low , cum)3 3

(L, r)

(L , r)1 1

Abbildung 4.1: Berechnungs-Baum für 4 Symbole + Konkatenation

Um besser rechnen zu können, nutzen wir nicht den vollen Bereich von r = FFFF aus und
schränken r auf 8000 ein. De facto stehen uns nur 15 Bits zur Verfügung. Das höchstwertigste
16. Bit wird nur dann gesetzt, wenn der volle Bereich benutzt wird. Es dient auch als Puffer
für Berechnungen, die über den Bereich von r0 hinausgehen. Dies tritt bei der Berechnung
des Kodes im Algorithmus 3.1 auf. In diesem Algorithmus kann L den Wert L = 2(r0 − 1)
annehmen. L und r werden also mit L = 0 und r = 8000 initialisiert. Das gilt im Übrigen
auch für die GPE4. Hier muss auf der linken Seite L1 = 0 und r1 = 8000 initialisiert werden.

Als Ergebniss der BPEs erhalten wir

BPE1

L = r0 · Fx(x0 − 1 = a1 − 1 = 0)
= 8000 · low_counta/tot
= 8000 · 0/8
= 0000

r = r0 · p(x0 = a1 = 0)/tot
= 8000 · tot_counta/tot
= 8000 · 2/8
= 2000

62

4.1 Referenz Beispiel

BPE2

L = r0 · Fx(x1 − 1 = a2 − 1 = 1)
= 8000 · low countb/tot
= 8000 · 2/8
= 2000

r = r0 · p(x1 = a2 = 1)/tot
= 8000 · tot countb/tot
= 8000 · 1/8
= 1000

BPE3

L = r0 · Fx(x2 − 1 = a3 − 1 = 2)
= 8000 · low countc/tot
= 8000 · 3/8
= 3000

r = r0 · p(x2 = a3 = 3)/tot
= 8000 · tot countc/tot
= 8000 · 3/8
= 3000

BPE4

L = r0 · Fx(x2 − 1 = a3 − 1 = 2)
= 8000 · low countc/tot
= 8000 · 3/8
= 3000

r = r0 · p(x2 = a3 = 3)/tot
= 8000 · tot countc/tot
= 8000 · 3/8
= 3000

Und für die GPEs entsprechend

63

4 Implementierung

GPE1

L = L1 + r1 · L2/r0

= 0 + 2000 · 2000/8000
= 0 + 4000000/8000
= 800

r = r1 · r2/r0

= 2000 · 1000/8000
= 400

GPE2

L = L1 + r1 · L2/r0

= 3000 + 3000 · 3000/8000
= 3000 + 9000000/8000
= 4200

r = r1 · r2/r0

= 3000 · 3000/8000
= 1200

GPE3

L = L1 + r1 · L2/r0

= 800 + 400 · 4200/8000
= 3000 + 1080000/8000
= A10

r = r1 · r2/r0

= 400 · 1200/8000
= 90

GPE4

L = L1 + r1 · L2/r0

= 0 + 8000 · A10/8000
= A10

r = r1 · r2/r0

= 8000 · 90/8000
= 90

64

4.2 Struktur

L r L · 2 r · 2 Lnext rnext output
0A10 0090 1420 0120 1420 0120 0
1420 0120 2840 0240 2840 0240 0
2840 0240 5080 0480 5080 0480 0
5080 0480 A100 0900 2100 0900 1
2100 0900 4200 1200 4200 1200 0
4200 1200 8400 2400 0400 2400 1
0400 2400 0800 4800 0800 4800 0

> 4000

Tabelle 4.1: Normalisierung

Die Werte L = A10 und r = 90 werden jetzt mit Algorithmus 3.1 normalisiert.

Für rtemp erhalten wir rtemp = r · 90 = 120 und für Ltemp = A10 · 2 = 1420. Ltemp und
rtemp + Ltemp sind kleiner als r0. Als Kode wird somit eine 0 ausgegeben und die Werte von
Ltemp beziehungsweise von rtemp in L und r übernommen. Die zweite und dritte Iteration
verlaufen analog.

Bei der dritten Iteration ist Ltemp = 5080 · 2 = A100 und damit größer als r0. Ltemp wird
angepasst, indem wir r0 = 8000 davon abziehen. Als Kode ergibt sich eine 1. Alles andere
verläuft wieder gleich. Hier sehen wir, warum nicht FFFF als r0 gewählt wurde. Ltemp kann
hier nur den Wert 8000− 1 annehmen und passt deshalb bei Verdoppelung noch in FFFF
hinein (7FFF · 2 = FFFE). Würden wir den Bereich noch um 1 erweitern, wären für die
Berechnung der Normalisierung größere Register notwendig.

Die vollständige Normalisierung von L = 0A10 und r = 0090 ist in Tabelle 4.1 dargestellt.
Nach den ersten vier Buchstaben abcc ist also ein Kode von 0001010 ausgegeben, in L steht
0800 und in r steht 4800.

4.2 Struktur

Der Kodierer wird in 6 Module unterteilt: Incrementer, RAM, Parallel Loader, Parallel Koder,
Normalizer und Control Unit. Dadurch ist es einfacher, den Entwurf zu erweitern und zu
validieren. Sämtliche Module sind als Moore-Zustandsautomaten implementiert.

Die Kodierung beginnt damit, dass Incrementer und RAM vier Symbole bereitstellen. Der
Parallel Loader wandelt diese anhand des implementierten Modells in Wahrscheinlichkeiten
für den Koder um. Der Parallel Koder kodiert diese und gibt das Ergebnis als L und r an den
Normalizer weiter. Dieser normalisiert L und r. Der daraus entstandene Datenstrom wird in
einen im Normalizer implementierten RAM geschrieben. Damit ist ein Durchlauf beendet.

Dieser Prozess läuft so lange, bis das terminate Signal vom Incrementer gesetzt wird.

65

4 Implementierung

Die Abbildung 4.2 auf Seite 79 zeigt die angeschlossenen Module als Block-Schaltbild im
Gesamtentwurf.

4.3 Incrementer

Der Incrementer hat zwei Funktionen: zum Einen die Aktuelle Adresse für das RAM zu
liefern, zum Anderen das terminate Signal zu geben. Die Adresse wird entweder bei Setzen
des inc Signals hochgezählt oder aber mit Setzen von load_addr mit der Adresse addr_in

geladen.

Anders aber als im Synchron Zähler SN74161 darf nicht bei jeder steigenden Taktflanke
gezählt werden. Er soll die Adresse einmal steigern, dann erst wieder auf erneutem Kom-
mando. Das wird mit dem en Signal gegeben. Sind inc und en gesetzt, wird die Adresse um
1 inkrementiert. Um erneut zu inkrementieren muss das en Signal erst auf 0, dann wieder
auf 1 gesetzt werden.

Das terminate Signal gibt an, dass die letzte Adresse anliegt und das Modul nach dem
Kodieren dieser Symbole fertig ist. Es wäre auch denkbar, statt einer festgelegten Länge
des Textes, ein eof1 Symbol einzuführen. Das Terminate Signal würde dann nicht vom
Incrementer geliefert werden, sondern vom Parallel Loader, der nach Lesen von eof das
Terminate Signal setzt.

Die Funktionsweise kann man in Abbildung 4.3 sehen.

addr_out[3:0]

Abbildung 4.3: Incrementer Test Bench

1end of file

66

4.4 RAM

Name Typ Wert Beschreibung

en in 0 Wartezustand
1 Einheit aktiviert

reset in 1 addr_out=’000’
terminate=0

inc in 1 Adresse wird um 1 erhöht
load_addr in 1 Addresse addr_in wird geladen
addr_in in 3:0 zu ladende Adresse
addr_rdy out 1 Adresse liegt an
addr_out out 3:0 Adresse
terminate out 1 Endadresse erreicht

Tabelle 4.2: Incrementer Pins

4.4 RAM

Das RAM beinhaltet den zu kodierenden Text. Der Koder liest vier Symbole gleichzeitig ein.
Wir hatten für ein Symbol vier Bits reserviert. Die gesamte Datenbreite des RAM Moduls
muss also 4 · 4 = 16 Bits breit sein, um alle Daten parallel ausgeben zu können.

Um eine Konvertierung zu sparen haben wir die Symbole als Zahlen in den Speicher
geschrieben. Für a=0, b=1, c=2, d=3 und e=4. Bei Adresse 0 ist also die Zahl 0122h gespeichert
und bei Adresse 1 4302h, um die Folge abcc edac abzubilden. In unserem Beispiel werden im
ersten Durchlauf die Buchstaben abcc = 0122 von der Adresse 0 gelesen.

dout[15:0] UUUU 0122 4302 0122 3333 0122 4302 0122 3333 0122

0 ns 20 ns 40 ns 60 ns 80 ns 100 ns 120 ns 140 ns

Abbildung 4.4: RAM Testbench

Die Testbench zum RAM Modul ist in Abbildung 4.4 abgebildet. Bei 60 ns ist das we Signal
gesetzt. In dem Fall liegt am Ausgang der Wert din an, der gleichzeitig in Speicherzelle 3

geschrieben wird.

4.5 Parallel Loader

Stehen die Symbole bereit, werden diese Daten für den Koder passend gewandelt. Das
geschieht im Modul Parallel Loader. Dieses Wandeln entspricht dem Anwenden eines

67

4 Implementierung

Name Typ Wert Beschreibung

en in 0 Wartezustand
1 Einheit aktiviert

we in 1 din wird in addr geschrieben und
an dout weitergeleitet

addr_in in 3:0 Adresse
din in 15:0 Daten Eingang
dout out 15:0 Daten Ausgang

Tabelle 4.3: RAM Pins

Modells auf den Text. Ein großer Vorteil des Arithmetischen Kodierens ist die einfache
Änderung des Modells im Algorithmus. In unserem Beispiel braucht man hier nur dieses
Modul ändern, um ein anderes Modell zu wählen. Man könnte hier beispielsweise ein
adaptives Modell benutzen.

Wir benutzen ein Markov Order 0 Modell. Das heisst, dass die Wahrscheinlichkeiten vorher
bekannt sein müssen. Das haben wir in unserem Fall schon in Tabelle 2.6 dargestellt.

Die Zuordnung von tot_count und low_count zu den am Eingang liegenden Symbolen
wird über einen direkten Offset generiert. Die Symbole werden als die zu lesende Adresse
interpretiert. Die Werte von tot_count und low_count sind in zwei separaten ROM Baustein
Gruppen kodiert. Insgesamt sind also acht ROM Module notwendig. Das erscheint etwas
viel, ist jedoch für eine echte Parallelisierung unumgänglich. Durch die Verwendung von
Offsets werden für den Entwurf keine zusätzlichen Komparatoren benötigt wie in [SMJ99].

Beispiel 14. Das dritte Symbol sei ein c. Am Eingang din liegt an den Leitungen din(8..11)
der Wert 2 ≡ c an. Der Wert 2 wird als Adresse (Offset) an die jeweiligen ROM Bausteine für
low und tot angelegt. Die Werte 3 für tot und 3 für low werden als Ergebnisse an low3 und
tot3 angelegt. ♦

Den vollständigen Quellcode kann man in Listing 5.1 auf Seite 83 im Appendix einsehen.

Name Typ Wert Beschreibung

en in 0 Wartezustand
1 Einheit aktiviert

reset in 1 low1 . . . low4=’0000’
din in 15:0 Daten Eingang
rdy out 1 Daten liegen an
low 1. . . 4 out 15:0 low_count 1. . . 4

tot 1. . . 4 out 15:0 total_count 1. . . 4

Tabelle 4.4: Parallel Loader Pins

68

4.6 Parallel Koder

dtot4[3:0] U 2 1 3 2 1

0 ns 50 ns 100 ns 150 ns 200 ns

Abbildung 4.5: Parallel Loader Testbench

4.6 Parallel Koder

Der Parallel Koder bildet den in Abbildung 4.1 dargestellten Baum nach. Dieser besteht
ausschließlich aus BPEs und GPEs.

4.6.1 BPE

Die Berechnungsgrundlage für die BPE sind die Gleichungen (3.8) und (3.9). Wir setzen
r0 = range0, Fx(x0) =

cum_count
tot

und p(x0) =
tot_count

tot
. Daraus ergibt sich

low = range0 · Fx(x0)

= range0 ·
cum_countx

tot

69

4 Implementierung

und

range = range0 · p(x0)

= range0 ·
tot_countx

tot

Weil range0 = 8000 und tot = 8 können wir die Gleichungen schreiben als

low = range0 ·
cum_countx

tot

=
range0
tot

· cum_countx

=
8000

8
· cum_countx

= 1000 · cum_countx

und entsprechend

range = range0 ·
tot_countx

tot

=
range0
tot

· tot_countx

=
8000

8
· tot_countx

= 1000 · tot_countx

Die Bit Breite von cum_count und tot_count sind 4 Bits. Die Multiplikation mit 16 Bits
ergeben ein 20 Bit Ergebnis. Wir wissen, dass das Ergebnis hier immer innerhalb der von
uns gewählten Bit Breite von 16 bleiben wird, weil sowohl cum_count ≤ tot als auch
tot_count ≤ tot gilt. Beide Gleichungen können in einer Stufe parallel berechnet werden.
Abbildung 4.6 zeigt den internen Aufbau der BPE.

low_count

tot_count

1000

8000

low

range

4

16

4

16

20

20

(20..4)

(18..3)

16

16

BPE

4

4

Multiplikation

Abbildung 4.6: Schematische BPE

70

4.6 Parallel Koder

Abbildung 4.7: Testbench für BPE

4.6.2 GPE

Die GPE ist etwas komplexer als die BPE. Die Gleichungen hierfür sind (3.6) und (3.7). Diese
Formeln bringen zwei Ketten von L und r zusammen. Für das Modul gehen jeweils range1
und range2, beziehungsweise low1 und low2 in die Rechnung ein. Zusammen mit den
Annahmen aus Kapitel 4.6.1 BPE erhalten wir

low = low1 +
range1 · low2

range0

= low1 +
range1 · low2

8000

und für r

range =
range1 · range2

range0

=
range1 · range2

8000

Wir sehen hier, warum es von Vorteil ist, für r0 eine Zweierpotenz zu wählen. So kann
die Division durch einfache Bitverschiebung umgesetzt werden, andernfalls wäre hier ein
Ganzzahl-Dividierer notwendig.

Die Berechnung von low erfolgt in zwei Schritten. Erst die Multiplikation, dann die Addition.
Die GPEs haben dadurch eine höhere Latenz als die BPEs. Den internen Aufbau sehen wir in
Abbildung 4.8.

71

4 Implementierung

range1

low2 low16

(32..16)

16

GPE

16

low1 16

range1

range2 16

(32..16)

16

16 range

Multiplikation Addition

Abbildung 4.8: Schematische GPE

rdy

Abbildung 4.9: Testbench für GPE

4.6.3 Der Koder

Jetzt werden BPEs und GPEs gemäß Abbildung 4.1 miteinander verbunden. Ein Steuerwerk
aktiviert nacheinander die einzelnen Stufen: zuerst BPE1-4, GPE1 und 2, GPE3 und schließlich
GPE4.

Diese «Serialisierung» ist nicht notwendig. Die Schaltung ist ein rein kombinatorisches
Netzwerk. Falls man an dieser Stelle den schnellstmöglichen Durchsatz erreichen will, kann
man sich den längsten Pfad des Moduls ausrechnen lassen und diese Latenz warten.

Die genaue Verschaltung sehen wir in Abbildung 4.10 auf Seite 73. Das Technologieschaltnetz
ist in Spalten eingeteilt. Jeder Block in derselben Spalte wird parallel abgearbeitet. Man kann
hier gut erkennen, wie die BPEs in einer Stufe geschaltet sind. Es folgen die zwei parallelen
Stufen der GPEs und am Ende erhält die oberste GPE (in der Abbildung ganz rechts) die
Werte r = range0 und L = low0 aus der vorhergehenden Berechnung. Im «top_modul», der
obersten Entwurfsebene muss der Ausgang low und range zu L = low0 und r = range0
zurückgeführt werden. Das entspricht der Verkettung der Berechnungen. Zu Beginn der
Rechnung müssen low0 mit 0 und range0 mit 8000 initialisiert werden.

72

4.6 Parallel Koder

a
n
d
2
b
2

s
ta
g
e
1
_
rd
y
_
a
n
d
0
0
0
2
_
im
p
_
s
ta
g
e
1
_
rd
y
_
a
n
d
0
0
0
2
1

I0I1

O

a
n
d
2
b
2

s
ta
g
e
2
_
rd
y
_
a
n
d
0
0
0
2
_
im
p
_
s
ta
g
e
2
_
rd
y
_
a
n
d
0
0
0
2
1

I0I1

O

a
n
d
2
b
2

s
ta
g
e
3
_
rd
y
_
a
n
d
0
0
0
1
_
im
p
_
s
ta
g
e
3
_
rd
y
_
a
n
d
0
0
0
1
1

I0I1

O

a
n
d
2
b
1

s
ta
g
e
3
_
rd
y
_
a
n
d
0
0
0
0
_
im
p
_
s
ta
g
e
3
_
rd
y
_
a
n
d
0
0
0
0
1

I0I1

O

a
n
d
2
b
2

s
ta
g
e
4
_
rd
y
_
a
n
d
0
0
0
1
_
im
p
_
s
ta
g
e
4
_
rd
y
_
a
n
d
0
0
0
1
1

I0I1

O

a
n
d
2
b
1

s
ta
g
e
4
_
rd
y
_
a
n
d
0
0
0
0
_
im
p
_
s
ta
g
e
4
_
rd
y
_
a
n
d
0
0
0
0
1

I0I1

O

a
n
d
4

s
ta
g
e
1
_
rd
y
_
a
n
d
0
0
0
0
_
im
p
_
s
ta
g
e
1
_
rd
y
_
a
n
d
0
0
0
0
1

I0

I1I2

I3

O

a
n
d
2

s
ta
g
e
2
_
rd
y
_
a
n
d
0
0
0
0
_
im
p
_
s
ta
g
e
2
_
rd
y
_
a
n
d
0
0
0
0
1

I0I1

O

o
r4
b
4

s
ta
g
e
1
_
rd
y
_
o
r0
0
0
1
_
im
p
_
s
ta
g
e
1
_
rd
y
_
o
r0
0
0
1
1

I0I1I2I3

O

o
r2
b
2

s
ta
g
e
2
_
rd
y
_
o
r0
0
0
1
_
im
p
_
s
ta
g
e
2
_
rd
y
_
o
r0
0
0
1
1

I0I1

O

o
r2

s
ta
g
e
1
_
rd
y
_
o
r0
0
0
2
_
im
p
_
s
ta
g
e
1
_
rd
y
_
o
r0
0
0
2
1

I0I1

O

o
r2

s
ta
g
e
2
_
rd
y
_
o
r0
0
0
2
_
im
p
_
s
ta
g
e
2
_
rd
y
_
o
r0
0
0
2
1

I0I1

O

o
r2

s
ta
g
e
3
_
rd
y
_
o
r0
0
0
1
_
im
p
_
s
ta
g
e
3
_
rd
y
_
o
r0
0
0
1
1

I0I1

O

o
r2

s
ta
g
e
4
_
rd
y
_
o
r0
0
0
1
_
im
p
_
s
ta
g
e
4
_
rd
y
_
o
r0
0
0
1
1

I0I1

O

v
c
c

X
S
T
_
V
C
C

P

a
n
d
2

I0I1

O

in
v

s
ta
g
e
1
_
rd
y
_
n
o
t0
0
0
1
_
im
p
_
s
ta
g
e
1
_
rd
y
_
n
o
t0
0
0
1
1

I
O

in
v

s
ta
g
e
2
_
rd
y
_
n
o
t0
0
0
1
_
im
p
_
s
ta
g
e
2
_
rd
y
_
n
o
t0
0
0
1
1

I
O

in
v

s
ta
g
e
3
_
rd
y
_
n
o
t0
0
0
1
_
im
p
_
s
ta
g
e
3
_
rd
y
_
n
o
t0
0
0
1
1

I
O

in
v

s
ta
g
e
4
_
rd
y
_
n
o
t0
0
0
1
_
im
p
_
s
ta
g
e
4
_
rd
y
_
n
o
t0
0
0
1
1

I
O

o
r3

a
ll_
rd
y
_
o
r0
0
0
0
_
im
p
_
a
ll_
rd
y
_
o
r0
0
0
0
1

I0

I1

I2

O

L
P
M
_
L
A
T
C
H
_
8
8

re
s
e
t_
rd
y

D

G
a
te

Q

L
P
M
_
L
A
T
C
H
_
8
9

s
ta
g
e
1
_
rd
y

D

G
a
te

Q

L
P
M
_
L
A
T
C
H
_
9
0

s
ta
g
e
2
_
rd
y

D

G
a
te

Q

L
P
M
_
L
A
T
C
H
_
9
3

s
ta
g
e
3
_
rd
y

D

G
a
te

Q

L
P
M
_
L
A
T
C
H
_
1
0
4

s
ta
g
e
4
_
rd
y

D

G
a
te

Q

L
P
M
_
L
A
T
C
H
_
1
0
5

a
ll_
rd
y

D

G
a
te

Q

n
o
r6

fo
lg
e
_
z
_
a
n
d
0
0
0
6
_
im
p
_
fo
lg
e
_
z
_
a
n
d
0
0
0
6
1

I0

I1I2

I3

I4

I5

O

a
n
d
2
b
1

I0I1

O

o
r3

b
p
e
1
_
e
n
_
o
r0
0
0
0
_
im
p
_
b
p
e
1
_
e
n
_
o
r0
0
0
0
1

I0

I1

I2

O

o
r7

fo
lg
e
_
z
_
o
r0
0
0
1
_
im
p
_
fo
lg
e
_
z
_
o
r0
0
0
1
1

I0

I1I2I3I4I5

I6

O

L
P
M
_
L
A
T
C
H
_
1
0
2

b
p
e
1
_
e
n

D

G
a
te

Q o
r3

g
p
e
1
_
e
n
_
o
r0
0
0
0
_
im
p
_
g
p
e
1
_
e
n
_
o
r0
0
0
0
1

I0

I1

I2

O

g
n
d

X
S
T
_
G
N
D

G

in
v

fo
lg
e
_
z
_
n
o
t0
0
0
1
_
im
p
_
fo
lg
e
_
z
_
n
o
t0
0
0
1
1

I
O

b
p
e

b
p
e
1

c
lk e
n

re
s
e
t

lo
w
_
c
o
u
n
t(
3
:0
)

to
t_
c
o
u
n
t(
3
:0
)

rd
y

lo
w
(1
5
:0
)

c
ra
n
g
e
(1
5
:0
)

b
p
e

b
p
e
2

c
lk e
n

re
s
e
t

lo
w
_
c
o
u
n
t(
3
:0
)

to
t_
c
o
u
n
t(
3
:0
)

rd
y

lo
w
(1
5
:0
)

c
ra
n
g
e
(1
5
:0
)

L
P
M
_
L
A
T
C
H
_
9
2

g
p
e
1
_
e
n

D

G
a
te

Q

b
p
e

b
p
e
3

c
lk e
n

re
s
e
t

lo
w
_
c
o
u
n
t(
3
:0
)

to
t_
c
o
u
n
t(
3
:0
)

rd
y

lo
w
(1
5
:0
)

c
ra
n
g
e
(1
5
:0
)

b
p
e

b
p
e
4

c
lk e
n

re
s
e
t

lo
w
_
c
o
u
n
t(
3
:0
)

to
t_
c
o
u
n
t(
3
:0
)

rd
y

lo
w
(1
5
:0
)

c
ra
n
g
e
(1
5
:0
)

o
r3

g
p
e
3
_
e
n
_
o
r0
0
0
0
_
im
p
_
g
p
e
3
_
e
n
_
o
r0
0
0
0
1

I0

I1

I2

O

L
P
M
_
L
A
T
C
H
_
9
4

fo
lg
e
_
z

D
(6
:0
)

G
a
te

Q
(6
:0
)

g
p
e

g
p
e
1

c
lk e
n

re
s
e
t

l1
(1
5
:0
)

r1
(1
5
:0
)

l2
(1
5
:0
)

r2
(1
5
:0
)

rd
y

lo
w
(1
5
:0
)

c
ra
n
g
e
(1
5
:0
)

g
p
e

g
p
e
2

c
lk e
n

re
s
e
t

l1
(1
5
:0
)

r1
(1
5
:0
)

l2
(1
5
:0
)

r2
(1
5
:0
)

rd
y

lo
w
(1
5
:0
)

c
ra
n
g
e
(1
5
:0
)

L
P
M
_
L
A
T
C
H
_
1
0
3

g
p
e
3
_
e
n

D

G
a
te

Q

L
P
M
_
D
F
F
_
6
0

z
u
s
ta
n
d

D
(6
:0
)

A
c
s
t

C
lk

C
lk
E
n

Q
(6
:0
)

o
r3

g
p
e
4
_
e
n
_
o
r0
0
0
0
_
im
p
_
g
p
e
4
_
e
n
_
o
r0
0
0
0
1

I0

I1

I2

O

g
p
e

g
p
e
3

c
lk e
n

re
s
e
t

l1
(1
5
:0
)

r1
(1
5
:0
)

l2
(1
5
:0
)

r2
(1
5
:0
)

rd
y

lo
w
(1
5
:0
)

c
ra
n
g
e
(1
5
:0
)

L
P
M
_
L
A
T
C
H
_
9
1

g
p
e
4
_
e
n

D

G
a
te

Q

o
r2

rd
y
_
o
r0
0
0
0
_
im
p
_
rd
y
_
o
r0
0
0
0
1

I0I1

O

a
n
d
2

I0I1

O

g
p
e

g
p
e
4

c
lk e
n

re
s
e
t

l1
(1
5
:0
)

r1
(1
5
:0
)

l2
(1
5
:0
)

r2
(1
5
:0
)

rd
y

lo
w
(1
5
:0
)

c
ra
n
g
e
(1
5
:0
)

L
P
M
_
L
A
T
C
H
_
2

rd
y

D

G
a
te

Q

p
a
r_
c
o
d
e
r:
1

In
s
t_
p
a
r_
c
o
d
e
r

c
ra
n
g
e
0
(1
5
:0
)

lo
w
_
c
o
u
n
t_
1
(3
:0
)

lo
w
_
c
o
u
n
t_
2
(3
:0
)

lo
w
_
c
o
u
n
t_
3
(3
:0
)

lo
w
_
c
o
u
n
t_
4
(3
:0
)

lo
w
0
(1
5
:0
)

to
t_
c
o
u
n
t_
1
(3
:0
)

to
t_
c
o
u
n
t_
2
(3
:0
)

to
t_
c
o
u
n
t_
3
(3
:0
)

to
t_
c
o
u
n
t_
4
(3
:0
)

c
lk e
n

re
s
e
t

c
ra
n
g
e
(1
5
:0
)

lo
w
(1
5
:0
)

rd
y

A
bb

il
du

ng
4.

10
:T

ec
hn

ol
og

ie
Bl

oc
k

Pa
ra

lle
lK

od
er

73

4 Implementierung

crange[15:0]

Abbildung 4.11: Testbench für Parallel Koder

Name Typ Wert Beschreibung

en in 0 Wartezustand
1 Einheit aktiviert

reset in 1 crange =’0000 0000 0000 0000’
low =’0000 0000 0000 0000’

low count 1. . . 4 in 15:0 low_count 1. . . 4

tot count 1. . . 4 in 15:0 total_count 1. . . 4

rdy out 1 Daten liegen an
crange out 1 r
low out 1 L
crange0 out 1 r aus vorangehender Berechnung
low0 out 1 L aus vorangehender Berechnung

Tabelle 4.5: Parallel Koder Pins

4.7 Normalizer

Das ist der komplexeste Block der Schaltung. Der Normalizer hat hier zwei Funktionen:
Zum einen skaliert er L und r und generiert damit den Ausgangs-Strom, zum anderen hat
er auch das RAM für die Speicherung desselben. Wie alle anderen ist auch dieses Modul als
Moore Automat realisiert. Durch die Schleife ist das Modul kein kombinatorisches Netzwerk.
Jedoch wurde in Kapitel 3.4.3 eine Möglichkeit vorgestellt, wie das realisierbar wäre.

Es gibt zwei verschiedene Abbruchbedingungen für die Schleife: eine falls (range > r0
2 =

4000) ist und die andere ist (lowtemp + rangetemp > r0 = 8000). Im zuletzt genannten Fall

74

4.7 Normalizer

dürfen die Register low und range nicht mit den Werten von lowtemp und rangetemp gela-
den werden. Im Zustandsautomaten heißen diese Pfade z_all_rdy_norm beziehungsweise
z_exit_old_val_norm.

Das interne RAM Modul speichert die kodierten Daten. Es ist als 1 Bit RAM implementiert,
was die hohe Anzahl von Adress-Leitungen erklärt. Im Zustand z_select_bit_norm wird
abgefragt, ob als Kode eine 0 oder 1 herausgegeben wird (Zeile 313 im Listing 5.2).

Tabelle 4.1 zeigt die Normalisierung von L = 0A10 und r = 0090. Das Ergebnis 0001010
wird seriell in den Speicher geschrieben. Nach dem ersten Durchlauf steht der RAM Zähler
mod_addr_out auf 7.

4800

0800

4800

0800

Abbildung 4.12: Testbench für Normalizer mit L = 0A10 und r = 0090

75

4 Implementierung

Name Typ Wert Beschreibung

en in 0 Wartezustand
1 Einheit aktiviert

reset in 1 addr_out =’0000 0000’
low_out =’0000 0000 0000 0000’
range_out =’0000 0000 0000 0000’

addr_in in 7:0 erste Adresse zum Schreiben des
Ausgangs-Stroms für internes RAM

low_in in 15:0 low aus Koder Block
range_in in 15:0 range aus Koder Block
rdy out 1 Daten liegen an
range_out out 1 normalisiertes r
low_out out 1 normalisiertes L
addr_out out 7:0 Adresse des internen RAMs nach

dem Schreiben des Ausgangs-
Stroms. Zeigt jetzt auf die nächste
zu Schreibende Adresse.

Tabelle 4.6: Normalizer Pins

4.8 Control Unit

Das Steuerwerk hat die Aufgabe, die einzelnen Schritte in einer Abfolge zu steuern. Das
geschieht durch das einzelne Setzen und Löschen der Aktivierungs-Bits. Es bildet ein großes
Übergangsschaltnetz eines Moore Automaten. Ein Durchlauf geht vom Inkrementieren der
RAM Adresse bis zur fertigen Kodierung der gelesenen Symbole. Der Durchlauf ist in Zyklen
eingeteilt, die jeweils auf das ready Signal der einzelnen Module warten.

In dieser Form werden die Module eines nach dem anderen aktiviert und deaktiviert. Das
heißt, dass jedes Modul pro Durchlauf nur einmal aktiviert ist. Man kann den Durchsatz
erhöhen, indem man alle Module im gesamten Durchlauf aktiviert hält. Die Steuereinheit
(Control Unit) wartet auf sämtliche ready Signale statt auf einzelne. Damit wird die Zyklus-
länge immer gleich lang. Pro Zyklus werden neue Daten eingelesen und ausgegeben. Somit
ist es möglich, pro Zyklus 4 Symbole zu kodieren.

76

4.8 Control Unit

lo
a
d
_a
d
d
r_
e
n

0
u
s

1
u
s

1
u
s

2
u
s

2
u
s

3
u
s

3
u
s

4
u
s

w
ri
te
_d
a
ta
_e
n

1
9

4
u
s

5
u
s

5
u
s

6
u
s

6
u
s

7
u
s

7
u
s

8
u
s

A
bb

il
du

ng
4.

13
:G

es
am

te
nt

w
ur

f
Te

st
be

nc
h

77

4 Implementierung

Name Typ Wert Beschreibung

reset_in in 1 reset out =’1’
addr_rdy in 1 Adresse aus Incrementer liegt an
load_addr_in in 1 lade Incrementer mit Adresse
normalizer_rdy in 1 Normalizer fertig
par_coder_rdy in 1 Parallel Koder fertig
terminate_in in 1 letzte Adresse erreicht
data_ram_en out 1 aktiviere RAM
incrementer_en out 1 aktiviere Incrementer
inc_en out 1 Adresse inkrementieren

Tabelle 4.7: Control Unit Pins

4.9 Validierung und Synthese Ergebnisse

Für jedes Modul wurde eine Testbench geschrieben und die Ergebnisse mit dem Referenz-
beispiel verglichen. Das Timing der einzelnen Signale wurde durch die Gesamtenwurfs-
Testbench überprüft.

Das Synthese Ergebnis auf ein Xilinx Virtex 5 XC5VSX50T ist in Tabelle 4.8 zusammengefasst.

Device Utilization Summary
Slice Logic Utilization Used Available Utilization

Number of Slice Registers 1,086 19,200 5%
Number used as Flip Flops 412

Number used as Latches 674

Number of Slice LUTs 507 19,200 2%
Number used as logic 479 19,200 2%

Number using O6 output only 478

Number using O5 output only 1

Number used as Memory 4 5,120 1%
Number used as Single Port RAM 4

Number using O6 output only 4

Number used as exclusive route-thru 24

Number of DSP48Es 8 32 25%

Tabelle 4.8: Synthese Ergebnis Xilinx Virtex 5 XC5VSX50T -1 FFT1136

78

4.9 Validierung und Synthese Ergebnisse

g
n
d

X
S
T
_
G
N
D

G
d
a
ta
_
ra
m

In
s
t_
d
a
ta
_
ra
m

c
lk e
n

w
e

a
d
d
r(
3
:0
)

d
in
(1
5
:0
)

d
o
u
t(
1
5
:0
)

in
c
re
m
e
n
te
r2

In
s
t_
in
c
re
m
e
n
te
r2

c
lk e
n

re
s
e
t

in
c

lo
a
d
_
a
d
d
r

a
d
d
r_
in
(3
:0
)

te
rm

in
a
te

a
d
d
r_
rd
y

a
d
d
r_
o
u
t(
3
:0
)

p
a
r_
c
o
d
e
r

In
s
t_
p
a
r_
c
o
d
e
r

c
ra
n
g
e
0
(1
5
:0
)

lo
w
_
c
o
u
n
t_
1
(3
:0
)

lo
w
_
c
o
u
n
t_
2
(3
:0
)

lo
w
_
c
o
u
n
t_
3
(3
:0
)

lo
w
_
c
o
u
n
t_
4
(3
:0
)

lo
w
0
(1
5
:0
)

to
t_
c
o
u
n
t_
1
(3
:0
)

to
t_
c
o
u
n
t_
2
(3
:0
)

to
t_
c
o
u
n
t_
3
(3
:0
)

to
t_
c
o
u
n
t_
4
(3
:0
)

c
lk e
n

re
s
e
t

c
ra
n
g
e
(1
5
:0
)

lo
w
(1
5
:0
)

rd
y

p
a
ra
lle
l_
lo
a
d
e
r

In
s
t_
p
a
ra
lle
l_
lo
a
d
e
r

c
lk e
n

re
s
e
t

d
in
(1
5
:0
)

rd
y

lo
w
1
(3
:0
)

lo
w
2
(3
:0
)

lo
w
3
(3
:0
)

lo
w
4
(3
:0
)

to
t1
(3
:0
)

to
t2
(3
:0
)

to
t3
(3
:0
)

to
t4
(3
:0
)

a
c
_
s
w

In
s
t_
a
c
_
s
w

a
d
d
r_
rd
y

c
lk

lo
a
d
_
a
d
d
r_
in

n
o
rm

a
li
z
e
r_
rd
y

p
a
r_
c
o
d
e
r_
rd
y

p
a
r_
lo
a
d
e
r_
rd
y

re
s
e
t_
in

te
rm

in
a
te
_
in

d
a
ta
_
ra
m
_
e
n

in
c
re
m
e
n
te
r_
e
n

in
c
_
e
n

lo
a
d
_
a
d
d
r_
o
u
t

n
o
rm

a
li
z
e
r_
e
n

p
a
r_
c
o
d
e
r_
e
n

p
a
r_
c
o
d
e
r_
re
s
e
t

p
a
r_
lo
a
d
e
r_
e
n

re
s
e
t_
o
u
t

te
rm

in
a
te
_
o
u
t

n
o
rm

a
liz
e
r

In
s
t_
n
o
rm

a
liz
e
r

a
d
d
r_
in
(7
:0
)

lo
w
_
in
(1
5
:0
)

ra
n
g
e
_
in
(1
5
:0
)

c
lk e
n

re
s
e
t

a
d
d
r_
o
u
t(
7
:0
)

lo
w
_
o
u
t(
1
5
:0
)

ra
n
g
e
_
o
u
t(
1
5
:0
)

rd
y

to
p
_
m
o
d
u
le
:1

to
p
_
m
o
d
u
le

a
d
d
r_
in
(3
:0
)

c
lk

lo
a
d
_
a
d
d
r

re
s
e
t

n
o
rm

_
a
d
d
r_
o
u
t(
7
:0
)

te
rm

in
a
te

A
bb

il
du

ng
4.

2:
G

es
am

te
nt

w
ur

f

79

5 Zusammenfassung und Ausblick

Im Kapitel 2 – Arithmetisches Kodieren haben wir umfassend die Grundlagen des Arith-
metischen Kodierens behandelt. Wir haben gesehen, dass die Rechenvorschrift aus zwei
Differenzengleichungen ((2.6) und (2.7)) besteht. Die Lösungen von Differenzen- und Diffe-
renzialgleichungen lassen sich nicht parallelisieren — obwohl Teile, vor allem bei Partiellen
Differenzialgleichungen, parallel berechnet werden können. Eine besondere Problematik
des Algorithmus ist die dafür benötigte unendliche Präzision. Wir haben gesehen, dass
dieses Problem mit einer Skalierung gelöst werden kann. Eine Implementierung in C des
Algorithmus wurde vorgestellt.

Den Kern der Arbeit bildete Kapitel 3 – Parallelisierung. Hier wurden aufbauend auf das
in Kapitel 2 eingeführte sequenzielle Vorgehen Ansätze für eine Parallelisierung gezeigt.
Wie schon oben erwähnt wird nicht die Gleichung an sich parallelisiert, sondern Teile der
Berechnungen.

Eine Analyse vorhandener Lösungen wurde durchgeführt. Wir konnten herausfinden, dass
alle hier vorgestellten Paper im Prinzip Varianten eines Algorithmus sind. Mit dieser Erkennt-
nis haben wir die Vor- und Nachteile, die sich daraus ergeben, gezeigt. Zum Beispiel bleibt
die Präzision für große Parallelität ein Problem. Außerdem wurde ein Vorteil welches sich
aus den unterschiedlichen Gleichungen ergibt, nämlich um verschiedene Architekturen zu
kombinieren, erläutert. Im Zusammenhang mit der Skalierung haben wir einen Algorithmus
entwickelt, der wesentlich einfacher ist als der in Kapitel 2. Es wurde skizziert, wie man
diesen durch geeignete Implementierung eines Prioritätsencoder beschleunigen kann. Wir
haben eine Gleichung zur Berechnung der nötigen Bit Breite herausgearbeitet. Mit dieser
Formel sind wir jetzt in der Lage, eine mindestens erforderliche Bit Breite für die Register
anhand gegebener Anforderungen zu berechnen.

Im Kapitel 4 – Implementierung wurde die Theorie anhand einer realen VHDL Imple-
mentierung verifiziert und eine Machbarkeit gezeigt. Details zu den Berechnungen, die
Auswirkungen auf die Implementierung haben, wurden besprochen.

5.1 Ausblick

Unsere einleitende Frage — ob sich das Arithmetische Kodieren durch Parallelisierung
beschleunigen lässt — können wir bejahen. Einige Fragen, die sich im Verlauf der Arbeit
ergaben, blieben offen. Wir wollen ein paar davon an dieser Stelle wieder aufgreifen:

81

5 Zusammenfassung und Ausblick

Mit steigender Anzahl an parallelen Stufen steigt die benötigte Bit Breite. Multiplizierer in
großer Bit Breite sind langsam und komplex. Man könnte herausfinden, ab wann sich der
Aufwand nicht mehr lohnt.

Falls ein Symbol a extrem oft vorkommt und damit p(a) nahe bei r0 liegt, wird lange nicht
skaliert. In Kapitel 3.4.2 wurde angesprochen, dass dies zu einem Unterlauf führen könnte.
Ob das tatsächlich stattfindet, wäre Gegenstand weiterer Untersuchungen.

Bei einem Pipelining, der nach jedem Takt neue Symbole einliest, müssen die einzelnen
Pipeline-Stufen aus kombinatorischen Netzwerken bestehen. Die Sklalierung mit Schleifen-
konstruktion ist nicht rein kombinatorisch. Eine Lösung, die Skalierung kombinatorisch zu
gestalten, ist die oben genannte mit Prioritätsencoder. Man kann die vorgestellte Implemen-
tierung dahingehend erweitern.

Ein geeigneter Dekoder muss entworfen werden. Ob man hier einfach den Sequenziellen
Dekoder verwenden kann oder aber durch die unterschiedliche Rechnung im parallelen Fall
andere Rundungen entstehen und damit ein abgestimmter Dekoder notwendig wird, muss
analysiert werden.

Wir stellen hiermit fest, dass diese Arbeit nicht nur unsere Frage beantwortet, sondern eine
Ausgangsbasis und Grundlage für einige sehr interessante Nachforschungen bildet.

82

Appendix

--

2 -- Company:

-- Engineer: Maximiliano Keller

--

-- Create Date: 15:59:05 10/25/2010

-- Design Name:

7 -- Module Name: parallel_loader - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

12 --

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

17 -- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

22

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

27 -- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

32 entity parallel_loader is

Port (clk : in STD_LOGIC;

en : in STD_LOGIC;

reset : in STD_LOGIC;

din : in STD_LOGIC_VECTOR (15 downto 0);

83

5 Zusammenfassung und Ausblick

37 low1 : out STD_LOGIC_VECTOR (3 downto 0);

low2 : out STD_LOGIC_VECTOR (3 downto 0);

low3 : out STD_LOGIC_VECTOR (3 downto 0);

low4 : out STD_LOGIC_VECTOR (3 downto 0);

tot1 : out STD_LOGIC_VECTOR (3 downto 0);

42 tot2 : out STD_LOGIC_VECTOR (3 downto 0);

tot3 : out STD_LOGIC_VECTOR (3 downto 0);

tot4 : out STD_LOGIC_VECTOR (3 downto 0);

rdy : out STD_LOGIC);

end parallel_loader;

47

architecture Behavioral of parallel_loader is

type zustaende is (z0, z1, z2, z3, z4, z5, z6, z7,

z_reset_rdy, z_end);

52 signal zustand, folge_z : zustaende := z0 ;

constant rom_lat : time := 13 ns;

constant reg_lat : time := 23 ns;

constant sig_lat : time := 5 ns;

57

signal load_reg_rdy : std_logic := '0';

signal all_rdy : std_logic := '0';

signal reset_rdy : std_logic := '0';

62 signal r_l_en : std_logic := '0';

signal r_t_en : std_logic := '0';

signal dlow1 : std_logic_vector (3 downto 0);

signal dlow2 : std_logic_vector (3 downto 0);

67 signal dlow3 : std_logic_vector (3 downto 0);

signal dlow4 : std_logic_vector (3 downto 0);

signal dtot1 : std_logic_vector (3 downto 0);

signal dtot2 : std_logic_vector (3 downto 0);

72 signal dtot3 : std_logic_vector (3 downto 0);

signal dtot4 : std_logic_vector (3 downto 0);

component tot_rom is

Port (clk : in STD_LOGIC;

77 addr : in STD_LOGIC_VECTOR (2 downto 0);

dout : out STD_LOGIC_VECTOR (3 downto 0));

end component;

component low_rom is

82 Port (clk : in STD_LOGIC;

addr : in STD_LOGIC_VECTOR (2 downto 0);

dout : out STD_LOGIC_VECTOR (3 downto 0));

end component;

87 component dff_4_bit is

Port (d : in STD_LOGIC_VECTOR (3 downto 0);

clk : in STD_LOGIC;

reset : in STD_LOGIC;

ce : in STD_LOGIC;

84

5.1 Ausblick

92 q : out STD_LOGIC_VECTOR (3 downto 0));

end component;

for all: low_rom use entity work.low_rom (Behavioral);

for all: tot_rom use entity work.tot_rom (Behavioral);

97 for all: dff_4_bit use entity work.dff_4_bit (Behavioral);

begin

r_l1: dff_4_bit port map (

102 clk => clk,

ce => r_l_en,

d => dlow1,

q => low1,

reset => reset

107);

r_l2: dff_4_bit port map (

clk => clk,

ce => r_l_en,

112 d => dlow2,

q => low2,

reset => reset

);

117 r_l3: dff_4_bit port map (

clk => clk,

ce => r_l_en,

d => dlow3,

q => low3,

122 reset => reset

);

r_l4: dff_4_bit port map (

clk => clk,

127 ce => r_l_en,

d => dlow4,

q => low4,

reset => reset

);

132

r_t1: dff_4_bit port map (

clk => clk,

ce => r_t_en,

d => dtot1,

137 q => tot1,

reset => reset

);

r_t2: dff_4_bit port map (

142 clk => clk,

ce => r_t_en,

d => dtot2,

q => tot2,

reset => reset

85

5 Zusammenfassung und Ausblick

147);

r_t3: dff_4_bit port map (

clk => clk,

ce => r_t_en,

152 d => dtot3,

q => tot3,

reset => reset

);

157 r_t4: dff_4_bit port map (

clk => clk,

ce => r_t_en,

d => dtot4,

q => tot4,

162 reset => reset

);

low1_out: low_rom port map (

clk => clk,

167 addr => din (2 downto 0),

dout => dlow4

);

low2_out: low_rom port map (

172 clk => clk,

addr => din (6 downto 4),

dout => dlow3

);

177 low3_out: low_rom port map (

clk => clk,

addr => din (10 downto 8),

dout => dlow2

);

182

low4_out: low_rom port map (

clk => clk,

addr => din (14 downto 12),

dout => dlow1

187);

tot1_out: tot_rom port map (

clk => clk,

addr => din (2 downto 0),

192 dout => dtot4

);

tot2_out: tot_rom port map (

clk => clk,

197 addr => din (6 downto 4),

dout => dtot3

);

tot3_out: tot_rom port map (

86

5.1 Ausblick

202 clk => clk,

addr => din (10 downto 8),

dout => dtot2

);

207 tot4_out: tot_rom port map (

clk => clk,

addr => din (14 downto 12),

dout => dtot1

);

212

z_speicher: process (clk, en)

begin

if reset = '1' then zustand <= z0 after sig_lat;

elsif (clk'event and clk = '1') then

217 if en ='1' then

zustand <= folge_z;

else

zustand <= z_reset_rdy;

end if;

222 end if;

end process z_speicher;

ue_sn: process (zustand, load_reg_rdy, all_rdy,

reset_rdy

227)

begin

case zustand is

when z0 =>

folge_z <= z1;

232 when z1 =>

if load_reg_rdy = '1' then

folge_z <= z2 ;

end if;

when z2 =>

237 if all_rdy = '1' then

folge_z <= z_end;

end if;

when z_reset_rdy =>

if reset_rdy = '1' then

242 folge_z <= z1;

end if;

when others =>

folge_z <= folge_z;

end case;

247 end process ue_sn;

aus_sn: process (zustand)

begin

case zustand is

252 when z0 => -- reset zustand, alles auf null

all_rdy <= '0' after sig_lat;

rdy <= '0' after sig_lat;

load_reg_rdy <= '0' after sig_lat;

87

5 Zusammenfassung und Ausblick

257 r_l_en <= '0' after sig_lat;

r_t_en <= '0' after sig_lat;

when z1 => -- lade register

reset_rdy <= '0' after sig_lat;

262 r_l_en <= '1' after sig_lat;

r_t_en <= '1' after sig_lat;

load_reg_rdy <= '1' after reg_lat;

when z2 => -- erste stage

267 r_l_en <= '0' after sig_lat;

r_t_en <= '0' after sig_lat;

load_reg_rdy <= '0' after reg_lat;

all_rdy <= '1' after sig_lat;

272

when z_reset_rdy =>

all_rdy <= '0' after sig_lat;

rdy <= '0' after sig_lat;

reset_rdy <= '1' after sig_lat;

277

when z_end =>

all_rdy <= '0' after sig_lat;

rdy <= '1' after sig_lat;

282 when others =>

end case;

end process aus_sn;

end Behavioral;

Listing 5.1: Parallel Loader Code

--

-- Company:

3 -- Engineer: Maximiliano Keller

--

-- Create Date: 14:32:56 10/26/2010

-- Design Name:

-- Module Name: normalizer - Behavioral

8 -- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

13 -- Dependencies:

--

-- Revision:

88

5.1 Ausblick

-- Revision 0.01 - File Created

-- Additional Comments:

18 --

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_arith.ALL;

23 use IEEE.STD_logic_unsigned.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

28

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

33

entity normalizer is

Port (clk : in STD_LOGIC;

reset : in STD_LOGIC;

en : in STD_LOGIC;

38 range_in : in std_logic_vector (15 downto 0);

low_in : in std_logic_vector (15 downto 0);

range_out : out std_logic_vector (15 downto 0);

low_out : out std_logic_vector (15 downto 0);

rdy : out STD_LOGIC;

43 addr_in : in STD_LOGIC_VECTOR (7 downto 0);

addr_out : out STD_LOGIC_VECTOR (7 downto 0));

end normalizer;

architecture Behavioral of normalizer is

48

component output_module is

Port (clk : in STD_LOGIC;

reset : in STD_LOGIC;

en : in STD_LOGIC;

53 data : in STD_LOGIC;

data_rdy : in STD_LOGIC;

rdy : out STD_LOGIC;

addr_in : in STD_LOGIC_VECTOR (7 downto 0);

addr_out : out STD_LOGIC_VECTOR (7 downto 0));

58 end component;

component dff_1_bit is

Port (clk : in STD_LOGIC;

d : in STD_LOGIC;

63 q : out STD_LOGIC;

reset : in STD_LOGIC;

ce : in STD_LOGIC

);

end component;

68

component dff_8_bit is

Port (clk : in STD_LOGIC;

89

5 Zusammenfassung und Ausblick

d : in STD_LOGIC_VECTOR (7 downto 0);

q : out STD_LOGIC_VECTOR (7 downto 0);

73 reset : in STD_LOGIC;

ce : in STD_LOGIC

);

end component;

78 component dff_16_bit is

Port (clk : in STD_LOGIC;

d : in STD_LOGIC_VECTOR (15 downto 0);

q : out STD_LOGIC_VECTOR (15 downto 0);

reset : in STD_LOGIC;

83 ce : in STD_LOGIC

);

end component;

type zustaende_norm is (

88 z_reset_norm, z_outer_loop_norm, z_loop_start_norm,

z_select_bit_norm, z_output0_norm, z_output1_norm,

z_next_iteration_norm, z_all_rdy_norm,

z_exit_old_val_norm, z_wait_for_en_norm

);

93 signal zustand_norm, folge_z_norm : zustaende_norm := z_reset_norm ;

-- setting some arbitrary values for latencies

constant reset_lat : time := 13 ns;

constant add_lat : time := 23 ns;

98 constant sub_lat : time := 23 ns;

constant comp_lat : time := 23 ns;

constant sig_lat : time := 2 ns;

constant ram_lat : time := 2 ns;

constant load_lat : time := 12 ns;

103 constant inc_lat : time := 12 ns;

constant shift_lat : time := 12 ns;

signal reset_rdy_norm : std_logic := '0';

signal rdy_norm : std_logic := '0';

108 signal all_rdy_norm : std_logic := '0';

signal all_rdy_old_value_norm : std_logic := '0';

signal loop_norm : std_logic := '0';

signal shift_rdy_norm : std_logic := '0';

signal wait_for_write_norm : std_logic := '0';

113 signal output0_norm : std_logic := '0';

signal output1_norm : std_logic := '0';

signal load_reg_rdy_norm : std_logic := '0';

signal exit_load_reg_rdy_norm : std_logic := '0';

118 signal mod_en : std_logic := '0';

signal mod_addr_in : std_logic_vector (7 downto 0);

signal mod_addr_out : std_logic_vector (7 downto 0);

signal r_addr_en : std_logic := '0';

123 signal r_addr_in : std_logic_vector (7 downto 0);

signal r_low_out_en : std_logic := '0';

90

5.1 Ausblick

signal r_range_out_en : std_logic := '0';

128 signal gnd_sig : std_logic := '0'; -- standard low

signal ram_en : std_logic := '0';

signal ram_write_en : std_logic := '0';

133 signal data_out : std_logic;

signal data_out_rdy : std_logic;

signal trange : std_logic_vector (15 downto 0);

signal tlow : std_logic_vector (15 downto 0);

signal r_range_out : std_logic_vector (15 downto 0);

138 signal r_low_out : std_logic_vector (15 downto 0);

signal const_one : std_logic_vector (7 downto 0) := x"01";

-- initialising ffs

for all : dff_16_bit use entity work.dff_16_bit (Behavioral);

143 for all : dff_8_bit use entity work.dff_8_bit (Behavioral);

for all : dff_1_bit use entity work.dff_1_bit (Behavioral);

for all : output_module use entity work.output_module (Behavioral);

begin

148

output_module_1 : output_module port map (clk => clk,

en => mod_en, reset => reset,

addr_in => mod_addr_in,

addr_out => mod_addr_out,

153 data => data_out, data_rdy => data_out_rdy,

rdy => wait_for_write_norm);

reg_addr : dff_8_bit port map (d => r_addr_in, clk => clk,

ce => r_addr_en, reset => reset, q => mod_addr_in);

158

reg_low_out : dff_16_bit port map (d => r_low_out, clk => clk,

ce => r_low_out_en, reset => gnd_sig, q => low_out);

-- no hard reset possible, load value

163 reg_range_out : dff_16_bit port map (d => r_range_out, clk => clk,

ce => r_range_out_en, reset => gnd_sig, q => range_out);

-- no hard reset possible, load value

z_speicher: process (clk, en)

168 begin

if reset = '1' then

zustand_norm <= z_reset_norm;

elsif (clk'event and clk = '1') then

if en ='1' then

173 zustand_norm <= folge_z_norm;

end if;

end if;

end process z_speicher;

178 ue_sn_norm: process (

reset_rdy_norm, loop_norm, shift_rdy_norm,

output0_norm, output1_norm, data_out_rdy,

91

5 Zusammenfassung und Ausblick

wait_for_write_norm, all_rdy_norm,

load_reg_rdy_norm, all_rdy_old_value_norm,

183 exit_load_reg_rdy_norm, rdy_norm,

zustand_norm, en)

begin

case zustand_norm is

188 when z_reset_norm =>

if reset_rdy_norm = '1' then

folge_z_norm <= z_outer_loop_norm;

end if;

193 when z_outer_loop_norm =>

if loop_norm = '1' then

if wait_for_write_norm = '0' then -- reset wait_for_write_norm

folge_z_norm <= z_loop_start_norm;

end if;

198 elsif all_rdy_norm = '1' then

folge_z_norm <= z_all_rdy_norm;

end if;

when z_loop_start_norm =>

203 if shift_rdy_norm = '1' then

folge_z_norm <= z_select_bit_norm;

end if;

when z_select_bit_norm =>

208 if output1_norm = '1' then

folge_z_norm <= z_output1_norm;

elsif output0_norm = '1' then

folge_z_norm <= z_output0_norm;

end if;

213

when z_output1_norm =>

if wait_for_write_norm = '1' then

folge_z_norm <= z_next_iteration_norm;

elsif all_rdy_old_value_norm ='1' then

218 folge_z_norm <= z_exit_old_val_norm;

end if;

when z_output0_norm =>

if wait_for_write_norm = '1' then

223 folge_z_norm <= z_next_iteration_norm;

elsif all_rdy_old_value_norm ='1' then

folge_z_norm <= z_exit_old_val_norm;

end if;

228 when z_next_iteration_norm =>

if load_reg_rdy_norm = '1' then

folge_z_norm <= z_outer_loop_norm;

end if;

233 when z_all_rdy_norm => -- new low and range will be loaded

if exit_load_reg_rdy_norm = '1' then

folge_z_norm <= z_exit_old_val_norm;

92

5.1 Ausblick

end if;

238 when z_exit_old_val_norm =>

if rdy_norm = '1' then

folge_z_norm <= z_wait_for_en_norm;

end if;

243 when z_wait_for_en_norm =>

-- wait for en = 0 to reset rdy signal

if en = '0' then

folge_z_norm <= z_reset_norm;

end if;

248

when others =>

end case;

end process ue_sn_norm;

253

aus_sn_norm: process (en, reset, zustand_norm)

begin

case zustand_norm is

when z_reset_norm => -- entry point for en = 1

258 -- set low0 und range0 to default values

--

-- do not reset registers (0 values)

r_low_out <= x"0000" after sig_lat;

r_range_out <= x"8000" after sig_lat;

263 r_low_out_en <= '1' after sig_lat;

r_range_out_en <= '1' after sig_lat;

r_addr_in <= addr_in after sig_lat;

r_addr_en <= '1' after sig_lat;

268 -- set the initial values if en = 1

-- this will be done if in this state and

-- the en signal changes

if en = '1' then

trange <= range_in after sig_lat;

273 tlow <= low_in after sig_lat;

end if;

rdy_norm <= '0' after sig_lat;

all_rdy_norm <= '0' after sig_lat;

all_rdy_old_value_norm <= '0' after sig_lat;

278 exit_load_reg_rdy_norm <= '0' after sig_lat;

reset_rdy_norm <= '1' after load_lat; -- loading addr_ff

when z_outer_loop_norm =>

283 mod_en <= '0' after sig_lat;

r_low_out_en <= '0' after sig_lat;

r_range_out_en <= '0' after sig_lat;

output0_norm <= '0' after sig_lat;

output1_norm <= '0' after sig_lat;

288 shift_rdy_norm <= '0' after shift_lat;

reset_rdy_norm <= '0' after sig_lat;

data_out_rdy <= '0' after sig_lat;

93

5 Zusammenfassung und Ausblick

load_reg_rdy_norm <= '0' after sig_lat;

r_addr_en <= '0' after sig_lat;

293

if trange <= x"4000" then

loop_norm <= '1' after comp_lat;

all_rdy_norm <= '0' after comp_lat;

else

298 all_rdy_norm <= '1' after comp_lat;

loop_norm <= '0' after comp_lat;

end if;

when z_loop_start_norm =>

303 loop_norm <= '0' after sig_lat;

all_rdy_norm <= '0' after sig_lat;

tlow <= tlow (14 downto 0) & '0';

trange <= trange (14 downto 0) & '0';

308

shift_rdy_norm <= '1' after shift_lat;

when z_select_bit_norm =>

shift_rdy_norm <= '0' after sig_lat;

313 if tlow (15) = '1' then -- would send 1

tlow <= '0' & tlow (14 downto 0) after sub_lat;

output1_norm <= '1' after

(comp_lat + sub_lat);

else -- would send 0

318 output0_norm <= '1' after comp_lat;

end if;

when z_output1_norm =>

if (tlow + trange) <= x"8000" then -- send or exit?

323 mod_en <= '1' after sig_lat;

data_out_rdy <= '1' after sig_lat;

data_out <= '1' after sig_lat;

-- output_module will set the wait_for_write_rdy bit

328 else

all_rdy_old_value_norm <= '1' after sig_lat;

end if;

when z_output0_norm =>

333 if (tlow + trange) <= x"8000" then -- send or exit?

mod_en <= '1' after sig_lat;

data_out_rdy <= '1' after sig_lat;

data_out <= '0' after sig_lat;

338 -- output_module will set the wait_for_write_rdy bit

else

all_rdy_old_value_norm <= '1' after sig_lat;

end if;

343 when z_next_iteration_norm =>

r_low_out <= tlow after sig_lat;

r_range_out <= trange after sig_lat;

94

5.1 Ausblick

r_low_out_en <= '1' after sig_lat;

r_range_out_en <= '1' after sig_lat;

348

r_addr_en <= '1' after sig_lat;

r_addr_in <= mod_addr_out after sig_lat;

-- reset the wait_for_write_rdy signal by setting

353 -- data_rdy to '0'

data_out_rdy <= '0' after sig_lat;

load_reg_rdy_norm <= '1' after load_lat;

358 when z_all_rdy_norm =>

r_low_out <= tlow after sig_lat;

r_range_out <= trange after sig_lat;

r_low_out_en <= '1' after sig_lat;

r_range_out_en <= '1' after sig_lat;

363

exit_load_reg_rdy_norm <= '1' after load_lat;

when z_exit_old_val_norm =>

exit_load_reg_rdy_norm <= '0' after sig_lat;

368 rdy_norm <= '1' after sig_lat;

when z_wait_for_en_norm =>

rdy_norm <= '0' after sig_lat;

373 when others =>

end case;

end process aus_sn_norm;

rdy <= rdy_norm;

378 addr_out <= mod_addr_out;

end Behavioral;

Listing 5.2: Normalizer Code

95

Literaturverzeichnis

[BCK02] E. Bodden, M. Clasen, J. Kneis. Arithmetische Kodierung. 2002. (Zitiert auf den
Seiten 27 und 29)

[Beu93] A. Beutelspacher. Kryptologie. Vieweg, Braunschweig, 3 edition, 1993. (Zitiert auf
Seite 59)

[JJ94] Jiang, Jones. Parallel Design of Arithmetic Coding. IEEPCDT: IEE Proceedings on
Computers and Digital Techniques, 141, 1994. (Zitiert auf den Seiten 11, 37, 43, 48,
49, 51, 52 und 60)

[LLSW96] H.-Y. Lee, L.-S. Lan, M.-H. Sheu, C.-H. Wu. A parallel architecture for arithmetic
coding and its VLSI implementation. In Circuits and Systems (CAS), volume 3,
pp. 1309–1312. IEEE, 1996. doi:10.1109/MWSCAS.1996.593169. (Zitiert auf den
Seiten 49, 51 und 60)

[Pas76] R. Pasco. Source coding algorithms for fast data compression. Ph.D. thesis, Stanford
University, Palo Alto, CA, 1976. (Zitiert auf Seite 11)

[Ris76] J. Rissanen. Generalized Kraft Inequality and Arithmetic Coding. IBM Journal of
Research and Development, 20(3):198–203, 1976. (Zitiert auf Seite 11)

[Sal08] D. Salomon. A Concise Introduction to Data Compression. Undergraduate topics in
computer science. Springer-Verlag, pub-SV:adr, 2008. (Zitiert auf Seite 19)

[Say96] K. Sayood. Introduction to Data Compression. Morgan Kaufmann, 1996. (Zitiert auf
Seite 11)

[Sha48] C. E. Shannon. A mathematical theory of communication. bstj, 27:379–423 &
623–656, 1948. (Zitiert auf Seite 11)

[SM05] Supol, Melichar. Arithmetic Coding in Parallel. IJFCS: International Journal of
Foundations of Computer Science, 16, 2005. (Zitiert auf den Seiten 43, 51 und 60)

[SMJ99] C. F.-T. S. Mahapatra, J.L. Nunez, S. Jones. Parallel implementation of a multial-
phabet arithmetic coding algorithm. Data Compression: Methods and Implementations
(Ref. No. 1999/150), IEE Colloquium, pp. 9/1 – 9/5, 1999. (Zitiert auf Seite 68)

[WNC87] I. H. Witten, R. M. Neal, J. G. Cleary. Arithmetic Coding for Data Compression.
Communications of the ACM, 30(6):520–540, 1987. (Zitiert auf den Seiten 11 und 24)

Alle URLs wurden zuletzt am 01.01.2011 geprüft.

97

Zeichenliste

T̄x zugewiesene Nummer (engl.: tag). Hier die Mitte des Intervalls H − L
◦ Verkettung zweier Funktionen

b binaer

d dezimal

h hexadezimal
♦ Ende des Beispiels
A Alphabet
P Wahrscheinlichkeit
Fx(i) Diskrete akkumulierte Verteilungsfunktion fur X = i
S Sequenz
|S| Laenge der Sequenz
p Wahrscheinlichkeit
E Entropie
logb Logarithmus Dualis (Logarithmus zur Basis 2)
B Basis des Zahlensystems
sc Skalierungs Grenze
tot Gesamthaeufiggkeit
fi Frequenz von ai
p Anzahl paralleler Stufen
σ Anzahl der Schritte ab der Skaliert wird
σpar Anzahl der Schritte ab der Skaliert wird in paralleler Abarbeitung

99

Stichwortverzeichnis

BPE, 41

Cumulative Count, 19

Entropie, 12

GPE, 41

GPGPU, 37

range, 20, 25

Register Transfer Level, 60

Selbstinformation, 11

Skalierung, 28

Überlauf, 26

Unterlauf, 28

101

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Maximiliano Keller)

	Abstract
	1 Einleitung
	2 Arithmetisches Kodieren
	2.1 Grundlagen
	2.1.1 Motivation
	2.1.2 Prinzip

	2.2 Kodierung als reelle Zahl
	2.3 Dekodierung als reelle Zahl
	2.4 Beweis der Eindeutigkeit
	2.5 Effizienz
	2.6 Kodierung als begrenzte Festkommazahl
	2.6.1 Abbildung auf Ganze Zahlen
	2.6.2 Skalierung bei Überlauf
	2.6.3 Skalierung bei Unterlauf

	2.7 Dekodierung als begrenzte Festkommazahl

	3 Parallelisierung
	3.1 Parallelisierung nach J. Jiang und S. Jones
	3.1.1 Einleitung
	3.1.2 Prinzip
	3.1.3 Normalisierung
	3.1.4 Stark unterschiedliche Häufigkeiten

	3.2 Parallelisierung nach J. Šupol und B. Melichar
	3.2.1 Einleitung
	3.2.2 Prinzip
	3.2.3 Beispiel
	3.2.4 Parallelisierung

	3.3 Parallelisierung nach Horg-Yeong Lee, Leu-Shing Lan, Ming-Hwa Sheu und Chien-Hsing Wu
	3.3.1 Einleitung
	3.3.2 Prinzip

	3.4 Konklusion
	3.4.1 Gleichungen für Parallelisierung
	3.4.2 Präzision
	3.4.3 Algorithmus für Skalierung

	3.5 Parallelisierung in Hardware
	3.5.1 CUDA
	Architektur
	Implementierung

	3.5.2 VHDL
	Algorithmus

	4 Implementierung
	4.1 Referenz Beispiel
	4.2 Struktur
	4.3 Incrementer
	4.4 RAM
	4.5 Parallel Loader
	4.6 Parallel Koder
	4.6.1 BPE
	4.6.2 GPE
	4.6.3 Der Koder

	4.7 Normalizer
	4.8 Control Unit
	4.9 Validierung und Synthese Ergebnisse

	5 Zusammenfassung und Ausblick
	5.1 Ausblick

	Appendix
	Literaturverzeichnis
	Zeichenliste
	Stichwortverzeichnis

