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Abstract

Das Arithmetische Kodieren hat den Vorteil, nahe der Entropie komprimieren zu kénnen.
Das Verfahren besteht aus zwei Differenzengleichungen, deren Berechnung sequenziell ist.
Teilrechnungen konnen jedoch zusammengefasst und parallel berechnet werden.

In dieser Diplomarbeit wurde die Parallelisierung des Arithmetischen Kodierens in Hinblick
auf eine Hardware-Implementierung untersucht. Losungsvorschldge wurden analysiert und
gegeniibergestellt sowie ihre Gemeinsamkeiten herausgearbeitet.

Ein wesentlich einfacherer Algorithmus fiir die Skalierung wurde entwickelt und eine
Formel fiir die mindestens zu wéahlende Bit Breite erarbeitet. AbschliefSend wurde eine
VHDL Losung implementiert.

Abstract

The advantage of Arithmetic Coding is a compression rate close to the Entropy. The method
consists of two difference equations. Their calculation is of a sequential nature. Parts of them
can be combined and calculated in parallel.

In this diploma theses the parallelization of Arithmetic Coding has been examined with
focus on a hardware implementation. Different approaches for such parallelization were
analyzed and compared. The similarities have been worked out.

A simpler scaling algorithm has been presented and a formula for the minimum bit width
was developed. A VHDL solution has been implemented.






1 Einleitung

In der Informationsverarbeitung miissen grofie Datenmengen gespeichert und verwaltet wer-
den. Suchmaschinenhersteller wie beispielsweise GoogleTM, die Inhalte aus Internet-Seiten
fur ihre Suchanfragen speichern miissen, erreichen Index-Groflen von einer Trillion URLs
(1.000.000.000.000)". Soziale Netzwerke wie Facebook™ zihlen inzwischen 500 Millionen
registrierte Nutzer mit tiber 50 Billionen> Uploads, deren Daten bewiltigt und verwaltet
werden miissen. Es ist klar, dass man bei diesen Mengen nach moglichst effizienten Speicher-
methoden sucht. Hier spielt die Komprimierung eine grofie Rolle. Nicht nur der Platzbedarf
wiirde sinken und damit Kosten sparen, sondern selbst geringe Komprimierungsraten
wiirden ausreichen, um erhebliche Geschwindigkeitssteigerungen zu erreichen.

Wann immer Daten iibertragen werden, kann man den Durchsatz steigern, indem man fiir
den selben Informtionsgehalt weniger Bytes tibertragt. Das gilt nicht nur fiir Datentiber-
tragung von der Festplatte zum Computer, sondern ist allgemein giiltig. Es findet unter
anderem Anwendung in der Telekommunikationsbranche. Hier werden grofle Anstrengun-
gen unternommen, die Gesprache moglichst stark zu komprimieren, um die Bandbreite
besser zu nutzen.

Bei Anwendungen wie beispielsweise einer Hochgeschwindigkeitskamera, die sehr grof3e
Mengen an Daten produziert, ist man zusitzlich mit dem Problem konfrontiert, ob die Daten
in der geforderten Zeit tiberhaupt komprimiert werden kénnen. Man kann davon ausgehen,
dass eine stdarkere Komprimierung mehr Rechenzeit in Anspruch nehmen wird als eine
geringe.

Das Arithmetische Kodieren verspricht Komprimierungsraten nahe der Entropie. Die streng
sequenzielle Abarbeitung der Daten macht den Algorithmus jedoch sehr langsam. In die-
sem Zusammenhang wire es interessant zu wissen, ob man dieses Verfahren durch eine
Parallelisierung in Hardware beschleunigen kann, um es zum Beispiel in Mobiltelefonen
oder Hochgeschwindigkeitskameras einsetzen zu konnen. Dieser Frage werden wir in dieser
Arbeit nachgehen.

Gliederung

Es erschien mir sinnvoll, erst das Prinzip des Arithmetischen Kodierens zu erkldren und
dann dieses mit der Parallelisierung zu vertiefen. Zuerst wird die allgemeine Idee erklart.

Thttp:/ /googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
*http:/ /www.usatoday.com/tech/news/ 2010-07-21-facebook-hits-500-million-users_N.htm



1 Einleitung

Sind diese Grundlagen geschafft, kann man sich weiter Gedanken iiber die Parallelisierung
machen. Schliefilich flieffen die gewonnenen Erkenntnisse dann in die konkrete Umsetzung
ein.

Kapitel 2 — Arithmetisches Kodieren: Hier wird das Prinzip des sequenziellen Arithmeti-
schen Kodierens beschrieben und ein Algorithmus entwickelt.

Kapitel 3 — Parallelisierung: Ansédtze zur Parallelisierung des Algorithmus werden hier vor-
gestellt. Diese werden im Hinblick auf eine konkrete Hardware Implementierung hin
analysiert und gegentibergestellt. Die daraus gewonnenen Erkenntnisse bilden den
Kern dieser Diplomarbeit.

Kapitel 4 — Implementierung: Das Ergebnis der Analyse endet mit einer konkreten Imple-
mentierung in VHDL. In diesem Kapitel werden die einzelnen Module des Kodes im
Detail erklart.
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2 Arithmetisches Kodieren

2.1 Grundlagen

2.1.1 Motivation

Die Geschichte des Arithmetischen Kodierens ist eigentlich ziemlich interessant. Shannon
hat schon 1948 [Sha48] in einem Paper ein Verfahren erwéhnt, das die Verteilungsfunktion
fir eine Kodierung vorschldgt. Spater wurde es unter dem Namen Shannon-Fano Kode
bekannt. Peter Elias, der auch Fanos Vorlesung iiber Informationstheorie horte, entwickelte
eine rekursive Implementierung des Problems. Diese wurde jedoch nie verdffentlicht. Jelinek
entwickelte diese Idee in einem Anhang in seinem Buch, das 1968 erschien, weiter.

Der wirkliche Durchbruch gelang aber erst 1976 durch unabhédngige Erkenntnisse von Pasco
[Pas76] und Rissanen [Ris76]. Hier wurde erstmalig das Problem der endlichen Genauigkeit
gelost. Schliefilich erschienen aufgrund dieser Erkenntnisse Paper mit praktischen Implemen-
tierungen. Eine der bekanntesten davon ist die Referenzimplementierung von Witten, Neal
und Cleary [WNC87]. Wie wir sehen werden, vergingen wieder einige Jahre bis eine parallele
Implementierung erstmals von Jiang und Jones [JJ94] 1994 in einem Paper vorgeschlagen
wurde.

Was diese Geschichte so interessant macht, ist die Tatsache, dass das Prinzip zwar relativ
frith bekannt wurde, es jedoch sehr lange gedauert hat, bis man die Probleme, die dieses
Verfahren mit sich bringt, in den Griff bekommen hat. Eine andere Betrachtungsweise wire,
dass dieses Verfahren eher uninteressant ist und von keiner praktischen Bedeutung. Dann
wiirden sich auch weniger Menschen damit befassen und sich so die lange Geschichte
erkldren. Das ist nicht der Fall. Ganz im Gegenteil! Das Arithmetische Kodieren hat einige
Vorteile gegeniiber dem sehr umfassend behandelten Huffman Coding.

Welche Vorteile hat das Arithmetische Kodieren gegeniiber dem Huffman Coding?

Dazu benétigen wir erstmal ein paar Definitionen. Ich halte mich dabei an die Nomenklatur
und die Beispiele von K. Sayood [Say96].

Sei P(A) die Wahrscheinlichkeit, dass ein Ereignis A eintritt, dann ist die SELBSTINFORMATION
des Ereignisses A

i(A) = log, P(lA) = —log, P(A)

11



2 Arithmetisches Kodieren

Diese Definition kann man sich so vorstellen, dass ein Ereignis welches selten auftritt mehr
Informationsgehalt hat als eines welches hdufig vorkommt. Das entspricht auch der intuitiven
Auffassung von Informationsgehalt.

Beispiel 1. Seien K und Z die moglichen Ergebnisse eines Miinzwurfs. Dann gilt

und damit auch
1
i(K)=i(Z) = —logh(i) =1 bit

Wiirde man die Miinze unfair gestalten, so dass
7

P(K) = é und P(Z) =

dann ergibt sich daraus
i(K) = 3 bits, und i(Z) = 0.193 bits
O

Den Informationsgehalt eines Textes nennt man die ENTROPIE. Sie ist die Summe der einzel-
nen Informationsgehalte multipliziert mit der Wahrscheinlichkeit, mit der sie auftreten:

E=Y P(A)i(A;) = =) P(A)log, P(A))

Die Entropie stellt die untere Grenze einer Kompaktierung dar. In der Regel wird man diese
Grenze nur in Ausnahmefillen erreichen.

Das gentigt an dieser Stelle, um in einem Beispiel die Probleme des Huffman Codings zu
zeigen.

Beispiel 2. Gegeben sei ein Alphabet A = {a1, 43,43} mit den Wahrscheinlichkeiten P(a;) =
0.95, P(a3) = 0.02 und P(a;) = 0.03. Die Entropie ist also

—(0.951l0g, (0.95) + 0.03log, (0.03) + 0.02log, (0.02) = 0.3349

Einen Huffman Code fiir diese Quelle zeigt Tabelle 2.1

Die durchschnittliche Kodeldnge fiir diesen Kode ist 1-0.95+2-0.02+2-0.03 = 1.05
Bits/Symbol und damit 213% der Lange der Entropie. Das bedeutet, dass es mehr als doppelt
soviel Bits braucht wie die Entropie. Selbst wenn man die Symbole in Zweiergruppen
aufteilen wiirde, erhédlt man noch eine durchschnittliche Kodeldnge, die 72% tiber der
Entropie liegt.

Um noch bessere Kompaktierung zu erreichen, kann man noch gréfiere Gruppen zusammen-
fassen. Bei einer Gruppe von 8 Symbolen erreicht man akzeptable Werte. Das dazugehorige
Alphabet steigt aber zu einer Anzahl von 3% = 6561 Symbolen an. Hier sieht man, dass in
diesem Fall das Huffman Coding nicht mehr effizient ist.

O

12



2.1 Grundlagen

Symbol Kodewort

ai (0)
az 11
as 10

Tabelle 2.1: Huffman Code fiir einstellige Sybole

Symbol Wahrscheinlichkeit Kodewort

ajay 0.9025 (0}

a1ap 0.0190 111
a1as 0.0285 100
araq 0.0190 1101
arap 0.0004 110011
aras 0.0006 110001
asaq 0.0285 101
asa, 0.0006 110010
asas 0.0009 110000

Tabelle 2.2: Huffman Code fiir zweistellige Symbole

An diesem Beispiel wird klar, wo die Probleme beim Huffman Code liegen: Man erreicht
bessere Kompaktierung, wenn man Kodewdrter fiir Gruppen von Symbolen generiert. Doch
fiir lange Symbolgruppen muss man dann sehr viele Kodes erzeugen. Die zu erzeugenden
Kodes steigen exponentiell an.

Man kann das umgehen, indem man ein Kodewort fiir eine bestimmte Symbolsequenz
generiert. Genau das ist die Idee hinter dem Arithmetischen Kodieren.

Beim Arithmetischen Kodieren wird einer Symbolsequenz S = x1x2x3 ... genau eine Zahl
(oder Kode) zugewiesen. Die Linge der Sequenz ist |S| = n.

2.1.2 Prinzip

Um einer Symbolsequenz oder auch einer Buchstabensequenz eine eindeutige Zahl zuzuwei-
sen bedienen wir uns der Verteilungsfunktion einer diskreten Zufallsvariablen. Sei also ein
Ereignis a; € A einer Zufallsvariablen

X(ai) =1

13



2 Arithmetisches Kodieren

zugewiesen, wobei A = ay,4a;,a3...a, ein Alphabet ist. Damit gilt die Wahrscheinlichkeit,
dass X den Wert i annimmt:

P(X = i) = p(ai)

Das Zuweisen einer Wahrscheinlichkeit ist das zugrundeliegende Modell P fiir die Quelle.
Wir werden spiter sehen, dass diese Zuweisung grofien Einfluss auf die Kompressionsrate
haben wird.

Die Verteilungsfunktion ist dann als

E(i) = Y P(X=K) = ) p(a) (21)

definiert. Es gelte auflerdem, dass samtliche Ereignisse a; disjunkt sind und

Na;, = A

Nun aber endlich zu der grundlegenden Idee: Wir wollen erreichen, einer Sequenz einen
eindeutigen Wert zuzuweisen. Dafiir geht man folgendermafien vor:

Mit |A| = m ist Fy(m) = 1. Deshalb betrachten wir ein Intervall von [0,1). Wir nutzen die
Tatsache, dass in diesem Intervall unendlich viele irrationale Zahlen existieren und teilen
dieses Intervall in Teilintervalle aus der diskreten Verteilungsfunktion F(i). Wir weisen
jedem a; das Teilintervall:

[Fe(i—1),F(i)) fur i=1...m (2.2)

Zu.

F(n)
F«(n-1)

F(j)

‘m‘-m “m‘

Fi(k)
Fe(k-1)

F(3)
F.(2)

F(1)
F(0)

‘m‘ m‘m‘

Abbildung 2.1: Intervalleinteilung (obere Grenzen = F.(i))

Wird jetzt zum Beispiel als erstes das Symbol a; gelesen, weisen wir das Intervall [Fy(k —
1), Fx(k)) unserem Kode zu. Wir merken uns hierzu die untere Grenze F,(k — 1) und die
obere, offene Grenze Fy (k). Dann teilen wir dieses Intervall wieder in m Teilintervalle ein.

14



2.1 Grundlagen

Damit das Verhiltnis erhalten bleibt, miissen die neuen Grenzen durch die Lange des neuen
Intervalls geteilt werden. Lesen wir beispielsweise als ndchstes das Symbol 4; ein, wird dem
Kode das Intervall

Fx(k_l) +Fx(j_1) Fx(k_l) +Fx(j)>
Fx(k) _Px(k_l) ,Fx(k) _Fx(k_l)

(2.3)

zugewiesen.

F(n) —
Fln-1) 2]
F()

Fi(k) —
Fe(k-1) [ 2]

QERED
BERED

F(3)
F(2)

Fx(1)
F.(0)

EiED
CECES
D

Abbildung 2.2: Teilintervalleinteilung (obere Grenzen = Fy(i))

Beispiel 3. Gegeben sei ein Alphabet A = {ay,4a3,a3} mit P(a;) = 0.7, P(a2) = 0.1 und
P(a3) = 0.2. Die Gleichung (2.1) liefert F;(1) = 0.7, Fx(2) = 0.8 und F,(3) = 1.0. Falls nun
das Symbol a; kodiert werden soll, liegt das Intervall zwischen [0.0,0.7), fiir a, zwischen
[0.7,0.8) und entsprechend fiir a3 zwischen [0.8,1.0).

Angenommen wir lesen erst das Symbol a;. Dann liegt unser Kode zwischen den Werten
[0.0,0.7). Dieses Intervall wird gemaf der Gleichung (2.3) in die Teilintervalle [0.0,0.49),
[0.49,0.56) und [0.56,0.7) zerlegt. Wiirde als nichstes wieder das Symbol a; gelesen, dann
lage der Kode im Intervall [0.0,0.49), oder bei a; im Intervall [0.49,0.56) und bei a3 [0.56,0.7).

Und wieder wiirde man das Intervall aufteilen und fiir das nachste Symbol das entsprechen-
de Teilintervall wahlen. ¢

Das Zerlegen in Teilintervalle und Auswéhlen des Teilintervalls wiederholt man so lange,
bis die Quelle gelesen ist. Das letzte (Teil-)Intervall® bildet das Ergebnis der Kodierung.
Man muss sich aber nicht die untere und obere Grenze merken. Es reicht, eine beliebige
Zahl aus dem Intervall zu nehmen. Das ergibt sich aus der Tatsache, dass die Teilintervalle
voneinander disjunkt sind und sobald man irgendeine Zahl aus dem Intervall gewéhlt hat,
es kein anderes Intervall gibt, welches diese Zahl beinhaltet. Damit ist eindeutig festgelegt,
um welches Intervall es sich handelt. Aus praktischen Griinden wahlt man gerne die untere
Grenze, wie wir spdter sehen werden.

'Das erste Intervall wird in Teilintervalle zerlegt. Das dann ausgesuchte Teilintervall wird nun zum Intervall

15



2 Arithmetisches Kodieren

Um den mathematischen Weg der Kodegenerierung zu erldutern, wihlen wir hier die Mitte
des Intervalls und definieren dafiir folgende Rechenregel

i—1

To(a) = Y P(X = k) + %P(x i)

To(a) = i~ 1)+ 5P(x = ) (2.4)

Das T steht hier fiir das englische Wort «tag». Jetzt konnen wir jedem Symbol a; einen Kode
zuweisen.

Beispiel 4. Sei die Augenzahl eines sechsseitigen, fairen Wiirfels den Ereignissen
{1,2,3,4,5,6} zugewiesen. Dann gilt

P(X=i)=- fir i=12,...6

_ 1 1 1 1
T(1) = P(X = 0) + ;P(X =1) =0+ 5 - = = = = 00833
T.(2) = P(X = 1)+ sP(x=2) = 1+ L. 1 5
S e AR S R
2
_ 1 _
T,(3) = P(X =k)+ =P(X =3) = 0.4166
(3) = L P(X =)+ 3P(X=3)

Und so kann man auf einfache Weise fiir alle Ereignisse einen Kode zuweisen. ¢

Das Prinzip des Kodezuweisens kann man auf eine Sequenz von Ereignissen erweitern.
Hierzu wird zunéchst eine feste Ordnung der Symbole oder Ereignisse definiert:

x ZP + P (xi) (2-5)

y<x;

Dabei bedeutet y < x, dass das Ereignis y dem Symbol x vorangeht und das hochgestellte m
ist die Lange des Alphabets.

Beispiel 5. Wir benutzen wieder einen fairen Wiirfel und berechnen den Kode, der sich fiir
das Ereignis 1 3, also dass man zuerst eine 1, und im Anschluss eine 3 wiirfelt, ergibt.

T,(13) = P(X = 11) + P(X = 12) + %p(x — 13)

—1/36 + 136 +1/2(1/36)
=5/72

16



2.1 Grundlagen

In diesem Beispiel ist zu sehen, dass zur Berechnung der Sequenz der Lange n die Kodes
aller vorangehenden Sequenzen der Lange n — 1 benétigt werden. Das wére aber genauso
aufwendig als wenn man fiir das Huffman Coding die Wahrscheinlichkeiten aller moglichen
Symbole der Lange n berechnen wiirde. Im nédchsten Beispiel werden wir aber sehen, dass
dieses nicht notwendig ist.

Im Folgenden werden wir die mathematische Vorgehensweise zum Erstellen eines Kodes fiir
eine Sequenz kennenlernen.

Beispiel 6. Wir benutzen weiterhin den fairen, sechsseitigen Wiirfel und wollen jetzt eine
obere und untere Grenze des Intervalls fiir einen Kode fiir das Ereignis 3 2 2 berechnen.
Sind die Grenzen bekannt, kann man wie schon beschrieben eine beliebige Zahl aus diesem
Intervall benutzen, um daraus einen Kode zu generieren.

Das Ereigniss besteht darin, dass zuerst eine 3 dann eine 2 und schliefilich wieder eine 2
gewtirfelt wird. Wir bezeichnen die obere Grenze mit der Sequenzlinge n mit H, und die
untere Grenze mit L,,.

Wir betrachten das Ereignis 3, gehen gemafs Gleichung (2.2) vor und setzen i = 3. Die
Lange der Sequenz ist n = 1. Die Ereignisse sind laut Gleichung (2.5) in der Reihenfolge
{1,2,3,4,5,6} geordnet. Damit ist das Ereignis i — 1 = 2. Wir setzen ein:

Hy = F:(3), L1 =F(2)

Als néchstes lesen wir die 2. Die Sequenz ist x = 32. Die neuen Grenzen sind
Hy = F,(32), L, = F(31)

Die Berechnung dieser Werte geht folgendermafSen:

F.(32) =P(X = 11) + P(X = 12) + P(X = 13)... P(X = 16)+
P(X =21)+ P(X =22) + P(X =23)...P(X = 26)+
P(X =31) + P(X = 32)

Wenn i samtliche Ereignisse m beinhaltet — also in unserem Beispiel 1 bis 6 — dann gilt

P(X=ki)=) P(Xi1=kX,=1i) =P(X; =k)
i=1

m m
i=1

wobei X = X;X,. Wir kdnnen also schreiben

F.(32) = P(Xy = 1) 4+ P(X, = 2) + P(X = 31) + P(X = 32)
= F(2) + P(X = 31) + P(X = 32)

Weil die einzelnen Wiirfe unabhingige Ereignisse sind, gilt

P(X=31)=P(X=3)P(X =1)
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2 Arithmetisches Kodieren

und
P(X=32)=P(X=3)P(X=2)
Damit ergibt sich

P(X =31)+P(X =32) = P(X; = 3)(P(X, = 1) + P(X, = 2))
= P(X; = 3)E(2)

also in unserem Beispiel
P(X1=3) =F(3) — Fx(2)
konnen wir schreiben
P(X =31) + P(X = 32) = (Fx(3) — Fx(2)) - Fx(2)
oder
Fe(32) = Fx(2) + (Fx(3) — Fx(2)) - Fx(2)
oder auch
Hy = L1+ (Hy — L1) - Fc(2)
Auf gleiche Weise konnen wir zeigen, dass fiir die untere Grenze L, gilt
Fe(31) = Fx(2) + (Fx(3) — Fx(2)) - Fx(1)
oder

Ly=1L1+ (H] - Ll)Px(l)

Das dritte Symbol in diesem Beispiel ist wieder eine 2 und damit
Hs = F,(322), L3 = F¢(321)
Die gleiche Rechnung ergibt damit

F.(321) = Fx(31) + (Fx<32) — F(31)) 'Fx<1)

Fy(322) = Fy(31) + (Fx(32) — Fx(31)) - Fx(2)
oder

Ls=1L,+ (H2 — Lz) . Fx(l)

H; =Ly + (Hy — Lp) - F¢(2)

18



2.2 Kodierung als reelle Zahl

Die allgemeine Vorschrift fiir die Intervallbildung der Sequenz X = x;x2x3...x, sind die
Differenzengleichungen

Li=Li_1+ (Hifl — Lifl) . Fx(i — 1) (26)
Hi=Li_1+ (Hi-1 — Li—1) - F(i) (2.7)

Fiir die Berechnung der Grenzen mussten keine vereinigten Wahrscheinlichkeiten berechnet
werden. Es reicht also, die Verteilungsfunktion tiber das Alphabet zu kennen. Diese wird
wie schon erwdhnt durch das Modell gegeben. Fiir den Kode nimmt man nun eine Zahl aus
dem Intervall. Wir wiahlen wieder die Halfte
H, — L,

2

falls X = x1x0x3...x, ist.

Tx(X) =

2.2 Kodierung als reelle Zahl

Wir gehen jetzt etwas konkreter vor und wollen die Zeichenfolge SWISSLIMISS kodieren.
Dieses Beispiel ist aus [Salo8] entnommen. Die fiinf vorkommenden Symbole kénnen in
einer beliebigen Reihenfolge in eine Tabelle fiir die Wahrscheinlichkeiten gespeichert werden.
Die Funktion cuMm_couNT stehend fiir «cummulative count» wird mit

1
cum_count,, = ) |a;]
k=1
definiert.

Wie schon eingangs erwdhnt, entspricht diese Zuweisung dem Modell des Koders. Das
Modell fiir unser Beispiel ist in Tabelle 2.3 zusammengefasst.

Symbol Héufigkeit Wahrscheinlichkeit p; Fy(i —1) Fi(i) Intervall cum_count

ap = U 1 1/10=0.1 0.0 o1 [0.0,0.1) 1
ap =M 1 1/10=0.1 0.1 o2 [0.1,0.2) 2
a3 =1 2 2/10=0.2 0.2 0.4 [0.2,04) 4
ag =W 1 1/10=0.1 0.4 0.5 [0.4,05) 5
as =S 5 5/10=0.5 0.5 1.0 [0.5,1.0) 10

Tabelle 2.3: Modell fiir Zeichenfolge SWISSLIMISS

Wir benutzen die Gleichungen (2.6) und (2.7), um sequentiell H und L zu errechnen. Am
Anfang muss H mit 1 und L mit o initialisiert werden. Das bedeutet, am Anfang geht das
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2 Arithmetisches Kodieren

Intervall {iber die volle Breite. Erst nach Einlesen des ersten Symbols wird dieses Intervall
eingeschrankt.

Als néchstes haben wir das Symbol x; = S gelesen. Die neuen Grenzen errechnen sich mit
Ly =0+(1—-0)-F(4) =0+05=0.5
Hi =0+ (1-0) -F(5) =0+10=10
Das neue Intervall nach Einlesen von § ist [0.5,1.0). Wir fahren fort und lesen x, = W
L, =054 (1.0 -0.5) - F+(3) =05+0.5-04 = 0.70
H; =05+ (1.0 —05) - F,(4) =05+4+0.5-0.5=0.75
Das Intervall verkleinert sich weiter auf [0.70,0.75). Wir lesen x3 = I
L3 = 0.70 4 (0.75 — 0.70) - Fx(2) = 0.70+0.05- 0.2 = 0.71
H; =0.70+ (0.75 — 0.70) - Fx(3) = 0.70 + 0.05- 0.4 = 0.72

und so weiter bis das letzte Symbol x,, gelesen ist. Wir konnen gemaifs Gleichung (2.4) fiir
den Kode die Mitte des Intervalls nehmen, oder einfach die untere Grenze. Der Kode ist in
dem Fall 0.71753375.

2.3 Dekodierung als reelle Zahl

Die Dekodierung lauft analog zur Kodierung. Wir starten damit, dass wir L den Wert o und
H den Wert 1 zuweisen. Nach der Dekodierung des ersten Symbols erhalten wir

Ly =0+ (1—-0)-Fe(x;—1) = Fe(x; — 1)

Hy =04 (1—-0) - Fe(x1) = Fx(x1)
Mit anderen Worten heifit das, dass wir dasjenige x; suchen, welches im Intervall [Fy(x1 —

1), Fx(x1)) liegt. Der Kode von 0.71753375 liegt im Intervall von S = [0.5,1.0). Also ist das
gesuchte x; = S.

Wir wiederholen die Vorgehensweise und suchen x;.
L, =054 (1-0.5) F(x2—1) =05+0.5:F(x; — 1)
Hy; =05+ (1—-0.5) - Fy(x2) =0.54 0.5 F¢(x2)
Jetzt wahlen wir x, = W, denn
L, =05+405-F(3) =07 und H;=05+0.5-F(4) =0.75

Und das Intervall beinhaltet als einziges 0.71753375. Doch die Rechenregel ldsst sich vereinfa-
chen. Wir haben beim Kodieren zu L immer ein Teilintervall hinzuaddiert. Beim Dekodieren
konnen wir entsprechend dieses wieder abziehen, die Werte anpassen und erhalten so etwas
direkter das gesuchte x;. Wir ziehen L; vom Kode ab 0.71753375 — 0.5 = 0.21753375. Jetzt
wird dieser Kode durch die Intervalllinge von S geteilt, um es auf den urspriinglichen Wert
zu bringen 0.21753375/0.5 = 0.4350675. Jetzt sieht man direkt, dass dieser Wert im Intervall
W = [0.4,0.5) liegt. Diesen errechneten Wert (0.4350675) bezeichnen wir mit RANGE . Die
weitere Dekodierung ist in Tabelle 2.5 zusammengefasst.
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2.4 Beweis der Eindeutigkeit

Symbol Berechnung von H und L

0.0+ (1.0—-0.0)-0.5=0.5
0.0+ (1.0—0.0)-1.0=1.0
0.5+ (1.0—10.5)-0.4 = 0.70
0.5+ (1.0-10.5)-0.5 = 0.75
0.7+ (0.75—-0.7) - 0.2 = 0.71
0.7+ (0.75—-10.7) - 0.4 = 0.72
0.71+ (0.72—-10.71) - 0.5 = 0.715
0.71 + (0.72 — 0.71) -1.0 =0.72
0.715 + (0.72 — 0.715) -0.5 =0.7175
0.715+ (0.72 — 0.715) - 1.0 = 0.72
0.7175 + (0.72 — 0.7175) -0.0 = 0.7175
)
)
)
)
)
)
)
)
)

0.7175 4 (0.72 — 0.7175) - 0.1 = 0.71775

0.7175 + (0.71775 — 0.7175) - 0.1 = 0.717525

0.7175 + (0.71775 — 0.7175) - 0.2 = 0.717550

0.717525 + (0.71755 — 0.717525) - 0.2 = 0.717530

0.717525 + (0.71755 — 0.717525) - 0.4 = 0.717535

0.71753 + (0.717535 — 0.71753) - 0.5 = 0.7175325

0.71753 + (0.717535 — 0.71753) - 1.0 = 0.717535
0.7175325 + (0.717535 — 0.7175325) - 0.5 = 0.71753375

0.7175325 + (0.717535 — 0.7175325) - 1.0 = 0.717535

C
IO I IO IO IO I I DT T

Tabelle 2.4: Kodierung von SWISSLIMISS

2.4 Beweis der Eindeutigkeit

Sei Ty(x) eine Nummer im Intervall [0,1). Einen bindren Kode fiir diese Nummer kénnen

wir erhalten, indem wir die bindre Darstellung nehmen und auf I(x) = [log, (-~)] + 1 Bits

p(x)
beschrianken.

Wir erinnern uns, dass Ty (x) ein Kode fiir die Sequenz S ist. Um zu beweisen, dass | Tx(x) |, (x)
eindeutig ist, miissen wir lediglich zeigen, dass es im Intervall [Fy(x — 1), Fy(x)) liegt.

Durch das Runden von | Ty (x) |, gilt [ Tx(x) ]y < Tx(x). Damit ist

0 < To(x) = [Te(x) Jyy) < (2.8)

21(x)
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2 Arithmetisches Kodieren

i Symbol Kode - L; = /(H; — L;) = range

1 S 0.71753375-0.5 = 0.21753375 /0.5 = 0.4350675
2 W 0.4350675-0.4 = 0.0350675 /0.4 = 0.350675
3 I 0.350675-0.2 = 0.150675 /0.2 = 0.753375
4 S 0.753375-0.5 = 0.253375 /0.5 = 0.50675
5 S 0.50675-0.5 = 0.00675 /0.5 = 0.0135

6 U 0.0135-0.0 = 0.0135 /0.1 =0.135

7 M 0.135-0.1 = 0.035 /0.1 = 0.35

8 I 0.35-0.2 = 0.15 /0.2 = 0.75

9 S 0.75-0.5 = 0.25 /0.5 =0.5

10 S 0.5-0.5 = 0.0 /0.5 = 0.0

Tabelle 2.5: Dekodierung von SWISSLIMISS

Weil Ty (x) die Hélfte vom Intervall [Fy(x — 1), Fx(x)) ist, gilt

Ty(x) < Fe(x)
[T () |y <Tx(x) < Fx(x)
[ Te(x) ] () <Fx(x)

Jetzt miissen wir noch zeigen, dass | Ty (x) | i(x) = Fx(x —1). Mit

1 1
270 = g (11
1
zlogb(ﬁ)"‘l
1
25
_rlx)
2

Aus Gleichung (2.4) wissen wir

p(x) _ +
== Ty(x) — Fe(x—1)

und damit auch

_ 1

Te(x) — Fe(x—1) > oIe] (2.9)

Kombinieren wir Gleichung (2.8) und (2.9) erhalten wir

[ Te(x) Jiay > Fx(x = 1)
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2.5 Effizienz

Damit ist | Ty (x)], () eine eindeutige Reprasentierung von Ty (x).

Um jetzt zu zeigen, dass dieser Kode auch eindeutig dekodierbar ist, zeigen wir dass es ein
Prafix Kode ist. Das heisst, kein Kode ist Prafix eines anderen Kodes. Weil ein Prafix Kode
immer eindeutig dekodierbar ist, reicht es zu zeigen, dass | T:(x) ], ein Prafix Kode ist.

Falls x und y zwei verschiedene Sequenzen sind, wissen wir, dass | Ty(x) | I(x) und | T« (y) ], )

in zwei unterschiedlichen Intervallen [Fy(x — 1), Fy(x)) und [Fe(y — 1), Fy (y)) liegen. Falls
wir also zeigen konnen, dass fiir jede Sequenz x das Intervall [| Ty (x) | I(x LT X)) 21(x))

ganz in [Fy(x — 1), Fx(x)) liegt, kann x kein Préfix fiir einen anderen Kode sein.

Wir wissen bereits, dass | Tx(x) | i(x) > Fx(x —1). Was wir noch zeigen miissen ist
Fe(x) = [Te(0)]y > 2
und das gilt, weil:

Fe(x) — LTx(x)Jl(x) > Fe(x) — Tx(x)l(x)

px)
2
1

>

21(x)

2.5 Effizienz

Wir haben gezeigt, dass die Anzahl I(x) der bendotigten Bits um F,(x) eindeutig zu dekodie-
ren

1(x) = [togy (5)] +1

ist. I(x) ist die Zahl der benotigten Bits fiir die gesamte Sequenz x. Fiir die Sequenz der
Lange |x| = m gilt demnach

Lam =) p(x)I(x)
— L p() | logi ()1 +1]

<Y px) [logb (x))+1+1]

= =) p(x)log, p(x) +2)_p(x)
=E(x")+2

Weil die durchschnittliche Lange immer grofer als die Entropie ist, konnen wir fiir [(x) die
Grenzen

E(xm) <lIpm < E(xm) +2
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2 Arithmetisches Kodieren

festlegen. Die durchschnittliche Lange pro Symbol 4 ist ZA?’”. Durch Einsetzen gilt damit

E(x™) n 2
m

m
E(x )§1A<
m m

und mit E(x™) = mE(x) erhalten wir
2
E(X) < ZA < E(X) + %

Desto langer also die Lange m der Sequenz, desto ndher kommen wir an die Entropie.

2.6 Kodierung als begrenzte Festkommazahl

Je langer die Quelle, desto linger der Kode und damit umso hoher die Prézision. Die
derzeitigen Rechner sind sehr ineffizient, wenn es um Rechnungen beliebiger Genauigkeit
geht. Je langer die Quelle, desto linger der Kode und damit umso hoher die Prazision.
Man stelle sich eine Quelle von 1 MByte vor. Selbst bei einer Komprimierung auf die
Halfte wire das Teilen einer 500 kByte groflen Zahl sehr komplex und aufwendig. Das
war Jahrzehnte lang das Hindernis fiir eine praktische Verwendung des Arithmetischen
Kodierens. Pasco und Rissanen haben unabhingig voneinander das Problem geldst, indem sie
einen Algorithmus entwarfen, mit dem man mit einer begrenzten Festkommazahl dennoch
einen Kode generieren kann. Die Vorgehensweise, die hier vorgestellt wird, lehnt sich an die
von Witten [WNC87] an.

2.6.1 Abbildung auf Ganze Zahlen

Fiir das Arithmetische Kodieren verwendet man am besten Ganzzahl-Variablen (integer
Variable) statt Fliefkomma-Variablen (floating point Variable), weil in der Fliefkommaarith-
metik Genauigkeit verloren geht*>. Um moglichst den ganzen Bereich der Ganzzahl-Variablen
zu nutzen, bilden wir die o auf die o ab und die 1 auf die 0.9, denn 0.9 = 1. Diesen Bereich
kann man so erweitern, dass keine Dezimalstelle mehr notwendig wird. Das ergibt fiir eine
Ganzzahl-Variable die hochstmogliche darstellbare Zahl.

Beispiel 7. Eine integer Variable der Lange 4 kann im Dezimalsystem die Werte 0000. .. 9999
annehmen. 9999 ist der hochste Wert. In diesem Fall wiirde man also L = 0000 und H = 9999
setzen, um alle Moglichkeiten dieser Variablen zu nutzen.

Eine Variable mit der Bitbreite 4 kann im Dualsystem die Werte 0000y, . ..1111;, annehmen.
Wobei hier 1111, der hochste Wert ist. Analog ware hier L = 0000, und H = 1111. ¢

2Eine Ganzzahl-Variable kann mehr Werte annehmen als eine FlieSkomma-Variable derselben Bit Breite
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2.6 Kodierung als begrenzte Festkommazahl

Das tiefgestellte «b» bedeutet, dass die Zahl im Dualsystem geschrieben ist. In den Fallen,
an denen es nicht eindeutig ist in welchem System wir uns befinden, benutzen wir «d» fiir
dezimal oder «h» fiir hexadezimal.

Daraus ergibt sich die interessante Frage nach der Auswirkung, die das Abbilden von
unendlich vielen Zahlen auf eine endlich viele Menge auf den Algorithmus hat.

Wir definieren
7’1‘ = Hi — Li (2'10)

als die Intervalllinge range .

Wenn wir wie im Beispiel 7 Hy = 1111 setzen und damit das Intervall [Lo, Hy) berechnen,
kommt als Ergebnis

ro = Hp — Lp = 1111 — 0000 = 1111

heraus. Das entspricht aber nicht dem vollen Intervall. Dieser ist ndmlich 1.04 und Hy wurde
auf 0.94 abgebildet. Um dieser Tatsache nachzukommen, muss, falls mittels H die range
berechnet wird, noch 1, hinzuaddiert werden.

Das hat aber eine Auswirkung auf die zu wihlende Bit Breite. Fiir dasselbe Beispiel wiirde
bei einer Bit Breite von 4 Bits Hy = 1111 bei Addition von 1 ein Uberlauf stattfinden. Deshalb
muss man bei der Wahl der Bit Breite 1 Bit Puffer hinzuftigen.

Fiir die Berechnung von range schreiben wir
range;, = H; — L; +1

Wir wissen, dass Fy (i) die kumulative Verteilungsfunktion fiir 4; ist. Also folgt daraus

F(i) = % (2.11)
Weiter gilt

R
Wir setzen

high_count; = cum_count; (2.12)

und

step; = range;/total
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2 Arithmetisches Kodieren

Setzen wir die Gleichungen (2.10), (2.11), und (2.12) in Gleichung (2.7) ein, ergibt das

low_count;
Li=L,q+range, , - ———"*
' i1 88i-1 total
range;_q - low_count;
=Li1+ = l
total
range; - cum_count; ;
=L+ L Z
total
=1L, 1+ step; ;-cum_count; (2.13)
Und fiir H;

H; =L; 1+ step, ;-cum_count; —1 (2.14)

Man beachte hier die —1 bei H;. Wie schon erwdhnt wird H um 1 verringert, um die nach
oben offene Intervallgrenze darzustellen.

Weiterhin werden wir spéater sehen, dass es eine wichtige Rolle spielt, wann man durch
total teilt. Nun konnen wir uns dem Problem der endlichen Prédzision widmen.

2.6.2 Skalierung bei Uberlauf

Wenn man sich die Tabelle 2.4 anschaut, dann fallt auf, dass sobald eine der hoherwertigen
Ziffern bei L und H gleich sind, sich diese nicht mehr dndern. Die Erkldrung ist, dass sich
ein Intervall, sobald er einen Wertebereich eingenommen hat, diesen nicht mehr verlas-
sen kann. Bei jedem Schritt wird ein Intervall in Teilintervalle geteilt, die alle innerhalb
des (Ursprungs-)Intervalls liegen. Wenn also eine Stelle von links bei H und L gleich sind,
braucht man diese fiir die weitere Berechnung nicht und kann diese Ziffer als Kode heraus-
schieben. Wir nennen das hier — eher willkiirlich — den UBerLAUF 3. Im Dezimalsystem ist
das dann der Fall, wenn das Intervall um eine Zehnerpotenz kleiner geworden ist als der
urspriingliche Intervall; hier also ein Zehntel so grof8 wie vorher (10~! = 0.1). Sei B die Basis
des verwendeten Systems, dann ist die Skalierung bei Erreichen von sc durchfiihrbar. Die
Gleichung dafiir ist

sc = B!

Im Dualen System entspricht eine Stelle einer Zweierpotenz. Hier findet der Uberlauf bei
der Hilfte 2= = 0.5) des Ursprungs-Intervalls statt. Ist das hochstwertigste Bit von L und
H gleich, dann ist das Intervall nur noch halb so grofd wie urspriinglich. Das hochstwertigste
Bit kann als Kode nach links heraus geschoben werden. Fiir L wird von rechts eine 0 und
fir H eine 1 nach geschoben. Das hochstwertige Bit ist dann bei L und H gleich, wenn
beide Grenzen entweder in der unteren Halfte oder beide in der oberen Hilfte des Intervalls
liegen.

3vielleicht angelehnt an die Tatsache, dass der Wert nach links, also hoherwertig, tiberlduft
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2.6 Kodierung als begrenzte Festkommazahl

Jetzt konnen wir konkreter werden und zu einem Beispiel tibergehen, welches spéter auch
in Hardware realisiert werden wird. Dieses Beispiel soll den Anspruch haben, moglichst
klein zu sein und dennoch samtliche Félle abzudecken. Dieses Beispiel ist aus [BCKo2]
entnommen.

Beispiel 8. Ein Alphabet mit A = {a,b,c,d, e} sei gegeben. Wir wollen die Sequenz S =
abccedac kodieren. Dann ist |S| = total = 8.

Das Modell ergibt dann Tabelle 2.6

Symbol | tot_count | low_count | high_count
a; =a 2 0 2
a=Db 1 2 3
a3 =c¢ 3 3 6
ag=d 1 6 7
as =e 1 7 8

Tabelle 2.6: Modell fiir Zeichenfolge «abccedac»

Als Bit Breite wihlen wir 8 Bits und konnen somit die unteren 7 Bits fiir die Kodierung
nutzen. Das achte Bit ist nur fiir den Uberlauf. Fiir uns gilt also das siebte Bit als das oberste.
Zur besseren Lesbarkeit verwenden wir das Hexadezimalsystem und geben es andernfalls
explizit an. L und H werden nun mit

Lo = 005, = 00000000,
Hy =7F, = 01111111,

initialisiert. Wir lesen das erste Symbol a ein und erhalten mit den Formeln (2.13) und (2.14)

range, = 7F —00+1 =80

step, = 80/8 =10

L1 =00 + stepg - cum_county = 00+ 10-0 = 00

Hy =00+ step; - cum_count; —1=00+10-2—-1=20—-1=1F

Wir sehen, dass die oberen zwei Bits von H und L gleich sind (00),. Das sind also die ersten
zwei Kode Bits. Wir schieben diese raus und erhalten fiir L und H

Ly =00
Hy =3F
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Wir nennen diesen Vorgang die SKALIERUNG oder auch NORMALISIERUNG von L und H. Der
Algorithmus in C dafiir ist in Listing 2.1 prasentiert. Wir schieben L und H und zwei bits
nach links und fiigen jeweils 0 bzw. 1 nach.

Ly =00
H, = 7F

Jetzt lesen wir b ein und erhalten mit den Formeln (2.13) und (2.14)

range; =/7F —00+1 =80

step; =80/8 =10

Ly =00+ step; - cum_count; = 00+ 10-2 =20

H; =00 + step; - cum_count; —1=00+10-3-1=30—-1=2F

Wir sehen, dass die oberen drei Bits von H und L gleich sind (010),. Wir schieben diese raus
und erhalten fiir L und H

L, =00
Hy, =7F

Und so fahren wir fort. Der Kode fiir diese zwei Buchstaben ist 00010. {

2.6.3 Skalierung bei Unterlauf

Es kann passieren, dass sich das Intervall immer um die Mitte des Intervalls (range) ver-
kleinert. Dann bleibt L in der unteren und H in der oberen Hilfte des Intervalls. In diesem
Fall bleiben die oberen Bits gleich und eine Skalierung ist nicht moglich. Das fiihrt ir-
gend wann dazu, dass die Prdzision fiir das Kodieren nicht mehr reicht. Wir benennen
das — auch wieder willkiirlich — UNTERLAUF. 4 Dieses Problem des Unterlaufs 16st man
folgendermafsen:

Der Unterlauf entsteht nur, wenn L in der unteren Hilfte und H in der ober Hilfte des
Intervalls ist. Dann ist das hochste Bit von L gleich 0 und von H gleich 1. Sobald das
zweithdchste Bit von L Eins ist, und von H Null, ist das Intervall innerhalb der Grenzen des
zweiten und dritten Quadranten. Das heifst es konnte wieder skaliert werden, denn dann ist
es kleiner als die Halfte des urspriinglichen Intervalls. Wir erweitern das Intervall, indem
von L und H ein Viertel des Gesamt-Intervalls abziehen und dann verdoppeln. Allerdings
wissen wir noch nicht, in welche Halfte des Intervalls das Teil-Intervall fallen wird.

4im Gegensatz zum Uberlauf, 1duft der Wert hier nach rechts runter
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2.6 Kodierung als begrenzte Festkommazahl

1.Quadrant 2.Quadrant 3.Quadrant 4.Quadrant

BIT: 00... 01... 10... 1.

<—— halber Bereich ———=

Abbildung 2.3: Intervalleinteilung in Quadranten

Deshalb wird skaliert, und gleichzeitig ein Zdhler inkrementiert, der solange zahlt, bis wieder
eine Skalierung wegen eines Uberlaufs stattfindet. Erst hier wird dann wieder Kode generiert.
Falls die hochsten Bits Null waren wird hier eine Eins kodiert und dann werden so viele
Nullen wie der Zahler gezdhlt hat hinzugefiigt. Falls die hochsten Bits beide Eins waren,
wird eine Null und entsprechend dem Zihler so viele Eisen kodiert. Einen Beweis dafiir,
dass das in der Folge geht liefert E. Bodden M. Clasen und ]. Kneiss in [BCKoz2]. Wir wollen
diesen Vorgang zum besseren Verstandnis hier erkldren.

Wir benennen die einzelnen Skalierungen wiefolgt
E1 = Uberlauf Skalierung in der unteren Hélfte des Intervalls
E2 = Uberlauf Skalierung in der oberen Hilfte des Intervalls
E3 = Skalierung bei Unterlauf
Weiter soll g o f die hintereinander Ausfiihrung von f und danach g bedeuten.

Im Falle, dass sich das Intervall um die Mitte des Ursprungs Intervalls verkleinert entsteht die
Folge (E1)" o (E2) oder (E2)" o (E1) von Skalierungen. Aus der oben genannten Problematik
wiirden wir aber nicht Skalieren konnen, weil sich die oberen Bits nie gleichen. Mit der E3
Skalierung erreichen wir folgende Gleichheiten:

Elo (E3)" = (E2)" o (E1)
E20 (E3)" = (E1)" o (E2)

und koénnen 7 mal E3 skalieren, bis eine Uberlauf Skalierung eintritt, bei der dann der Kode
ausgegeben wird.
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2 Arithmetisches Kodieren

Beweis fiir den Algorithmus der Unterlauf Skalierung 1. Die Skalierungsfunktionen sehen
wiefolgt aus

F1 L _ 2L
H 2H
£ L _ 2L —1
H 2H -1
£3 L _ 2L —(1/2)
H 2H — (1/2)
Die erste Iteration ergibt
L 2-2L 22L
El1oE1l = =
2-(2L-1) — 22L -3 22L—22—1
E2 o0 E2 = =
(E20E2) <H> (2 (2H-1) — 1) (22H — 3) (22H —-22_1
2-(2L—-05)—05 2’L—15 221 —21 405
(E30E3) <H> (2 (2H —-0.5) — 0.5> <22H — 1.5) <22H 21405
und die n-te
L 2",
E1" =
ny _ nn
Eon L _ 2" —2" 4+ 1
H 2TH — 2" +1
a2 L on, —2m-14 05
E3 = _
H 2"H — 2" 1 +0.5
Einen Beweis fiir diese Folgerung liefert eine vollstindige Induktion. Mit
L 2"L —2"1405 2nHlL —2n 41
Elo (E3)" =E1 = .
(Elo (E3)") (H) (Z”H —onl g 0.5) (2"+1H —2n 4 (2.15)
L 2L ontlp _on 4 q
E2)" o E1 = (E2)" = .16
((E2)"e )<H> (E2) <2H) <2”+1H—2"+1 (2.16)

Damit gilt mit den Gleichungen (2.15) und (2.16)
Elo(E3)" = (E2)"oEl
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2.6 Kodierung als begrenzte Festkommazahl

Beispiel 9. Wir nehmen Beispiel 8 wieder auf und lesen als niachstes den Buchstaben c ein.

range, = 7F —00+1 =80

step, =80/8 =10

L3 = 00 + step, - cum_county = 00+ 10 -3 = 30 = 0011_0000,

Hs =00 + step, - cum_count3 —1=00+10-6 —1 =60 —1 = 5F = 0101_1111,

Die Bits 7 sind ungleich, aber Bit 6 ist bei L Eins und bei H Null. Das Intervall liegt im
zweiten und dritten Quadranten und kann skaliert werden. Wir merken uns, dass einmal fiir
den Unterlauf skaliert wurde.

L3 =30 —20 = 10 = 0001_0000,
H; = (5F —20) -2 = 7E = 1101_1110,

Bit 8 wird maskiert, und zu H noch 1 addiert:

Lz =20 = 0010_0000,
H; =7F =0101_1111,

Erst wenn eine Skalierung aufgrund eines Uberlaufs entsteht, wird der Kode generiert und
ausgegeben. ¢

Die Details kann man aus dem Algorithmus in C vom Listing 2.1 entnehmen.

Die vollstindige Kodierung ist in Tabelle 2.7 zusammengefasst. Der so erhaltene Kode ist
00010101001101111,,.
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2 Arithmetisches Kodieren

Listing 2.1 Algorithmus fiir Kodierung (Bit Breite 8)

for (;3;)
{
t1l = *low & 0x40; t2 = *xhigh & 0x40;
if ( t1 == t2 ) // check high bit
{ // overflow
if (t1>= 1) // high bit is 1
{
setbit (output, output_counter, 1);
while ( *udcount > 0 )
{
setbit (output, output_counter, 0);
(*udcount)--;

}
else
{
setbit (output, output_counter, 0);
while ( *udcount > 0 )
{
setbit (output, output_counter, 1);
(*udcount)--;

}
shift ( low, high );
}
else
{ // check for underflow
t1 = *xlow & 0x20; t2 = *high & 0x20;// second highest bit
if (t1 > t2 )

{
do { // shift low and high but no output
(*udcount)++; // underflow counter
*low = *low & Ox1f; // same as subtracting 20 as bit must be 1
*high = *high | 0x20; // same as adding 20 as bit must be 0
shift ( low, high );
tl = xlow & 0x20;
t2 = *high & 0x20;
} while ( t1 > t2 );
}
else
{ // no more shifting
break;
}
}
}
void shift ( unsigned short *low, unsigned short *high )
{
*low <<= 1;
*high <<= 1;
*high = *high | 0x01; // same as adding one
/* mask high bit as it’s not used for calculation */
*low = *low & Ox7f;
*high = *high & O0x7f;
}
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2 Arithmetisches Kodieren

2.7 Dekodierung als begrenzte Festkommazahl

Das Dekodieren als begrenzte Festkommazahl unterscheidet sich nicht wesentlich vom dem
im Kapitel 2.3 vorgestellten Verfahren. Hinzu kommt nur, dass man hier die Uberlauf- und
Unterlauf-Skalierungen berticksichtigen muss.

Beim Puffer buf, der den Kode enthilt, muss man beim links Schieben die ndchsten Bits
des Kodes nachschieben. Also anders als die festen Werte die Bei L und H nachgeschoben
werden.

Die Subtraktion von einem Quadranten bei der Unterlauf Skalierung kann man durch
einfache Bit Manipulation sowohl fiir L, H als auch buf ersetzen. Nur die oberen Bits sind
von Bedeutung. Wir lassen die unteren Bits weg und schreiben dafiir XXX - - -. Betrachten
wir als ersten den Fall L. Das Puffer-Bit ist eingeklammert, weil es fiir die Rechnung nicht
relevant ist.

(0)010- -, < L < (0)011 - - -

oder mit anderen Worten: L liegt im zweiten Quadranten. (siehe auch Bild 2.3 Damit ist das
zweithdchste Bit immer gesetzt. Das entspricht einem Viertel des Intervalls. Setzt man dieses
Bit auf 0, entspricht es dem Abzug von einem Viertel.

Fir H gilt
(0)100---, < H < (0)101-- -

oder mit anderen Worten: H liegt im dritten Quadranten. Zwar manipuliert eine Subtraktion
in der zweithochsten Stelle auch die hochste Stelle, diese wird aber bei der anschlieflenden
Multiplikation mit 2 raus geschoben und hat damit keine Relevanz. Wir kénnen also einfach
das zweithochste Bit von 0 auf 1 setzen.

Fiir buf ist die Betrachtung dhnlich. Der Wertebereich ist jedoch grofer:
(0)010 - - -5 < bufy, < (0)101- -

Wir haben aber gesehen, dass sowohl fiir L als auch fiir H das zweithochste Bit einfach
negiert wird. Diese Regel gilt also fiir den gesamten Bereich von buf. Wir konnen damit die
Subtraktion von einem Viertel so formulieren:

buf, = buf, xor (0)010 b

Wir verzichten an dieser Stelle auf ein Beispiel und zeigen den Algorithmus in Listing 2.2.
Das Ergebnis der Dekodierung ist in Tabelle 2.8 dargestellt.
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2.7 Dekodierung als begrenzte Festkommazahl

Listing 2.2 Algorithmus fiir Dekodierung (Bit Breite 8)

for (53)

{
t1l = *xlow & 0x4000;
t2 = *high & 0x4000;
if (t1 == t2)
{

}

// overflow
while ( *udcount > 0 )
{

(*udcount) --;

}
shift_d ( low, high, buf, output, output_counter );

else

{

}

// check for underflow

tl = *xlow & 0x20;

t2 = *high & 0x20;

if (t1 > t2)

{
*low = *xlow & Ox1f;
*high = *high | 0x20;
*buf = *buf ~ 0x20;
shift_d ( low, high, buf, output, output_counter );
(*udcount) ++;

}

else

{
// no more shifting
break;

void shift_d ( unsigned short *low, unsigned short *high,
unsigned short *buf, int *output, int *output_counter )

{
*low <<= 1;
*high <<= 1;
*high = *high | 0x01;
sbuf <<= 1;
*buf = *buf | output[ *output_counter ];

(*output_counter)++;

*low

= *low & Ox7f;

*high = *high & Ox7f;

*buf

= xbuf & 0x7f;
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3 Parallelisierung

Es wird zunehmend schwieriger, die Taktraten der Integrierten Schaltungen zu steigern.
Die immer dichter werdenden Schaltungen erreichen die theoretisch machbaren Grenzen.
Leckstrome werden zunehmend zum Problem. Die Rechenleistung der heutigen Rechner
lasst sich nicht mehr allein durch héhere Taktraten steigern.

Eine Moglichkeit, dennoch die Leistung zu steigern, ist das Parallelisieren. In Grofsrechen-
anlagen hat dieses Vorgehen schon lingst Einzug gehalten. Inzwischen findet dieser Trend
verstirkt Anwendung auch im PC. Moderne CPUs haben inzwischen acht Kerne und Intel
hat kiirzlich ein «clowd on chip» Prozessor mit 48 Kernen vorgestellt’. Grafikkarten werden
mittlerweile nicht nur zur Darstellung und Berechnung von Polygonen benutzt, sondern
vermehrt fiir allgemeine Berechnungen. Diese sogenannten GPGPU GENERAL-PURPOSE COM-
PUTING ON GRAPHICS PROCESSING UNIT mit hunderten von Kernen erreichen beeindruckende
Geschwindigkeitssteigerungen. Diese GPGPUs verarbeiten die Daten doppelt bis dreifsig
Mal schneller als eine herkémmliche CPU?.

Doch der wesentliche Punkt ist, dass diese Geschwindigkeitssteigerungen nur erreicht
werden konnen, wenn der zugrundeliegende Algorithmus auf die gegebene Architektur
parallelisierbar ist. Es ist also entscheidend, ob der Algorithmus parallelisierbar ist und wenn
ja, wie stark.

Dieser Frage wollen wir fiir das Arithmetische Kodieren nachgehen. Wie schon in Kapitel 2
(Arithmetisches Kodieren) erwdhnt, hat es sehr lange gedauert, bis hierzu etwas veroffentlicht
wurde. J. Jiang und S. Jones haben 1994 erstmals einen parallelen Algorithmus vorgeschlagen
[JJo4]. Nur wenige Papers sind danach zu diesem Thema verdffentlicht worden. Wir wollen
diese im Einzelnen vorstellen und hinsichtlich einer konkreten Umsetzung in Hardware
analysieren.

Thttp:/ /www.pcper.com/article.php?aid=825
http://code.google.com/p/pyrit/
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3 Parallelisierung

3.1 Parallelisierung nach J. Jiang und S. Jones

3.1.1 Einleitung

Dieses Paper ist das erste, das zum Thema Parallelisierung des Arithmetischen Kodierens
geschrieben wurde. In diesem Paper verwenden Jiang und Jones eine Vorwértskonvention
im Gegensatz zu einer Riickwértskonvention. Damit ist die Bezeichnung des Teilintervalls
gemeint. Bei unserer bisherigen Riickwértskonvention gilt

p(xi) = Fe(i) = (i = 1)
und bei einer Vorwértskonvention
p(xi) = F(i+1) = B (i)
Der Konsistenz wegen bleiben wir bei der Riickwértskonvention.

Wir nehmen die Differenzengleichungen 2.6 und 2.7

Li=Li1+ (Hi-1 —Li1) -F(i—1)
H; = Li1+ (Hi—1 — Li—1) - Fx(i)

Weil
ri = H,‘ — Ll‘
= [Li—1 + (Hi—1 — Li—1) - Fe(i)] = [Li—1 + (Hi—1 — Li—1) - Fx(i = 1)]
= (Hi-1 — Li—1) - (Fe(i) — F(i — 1))
=11 (Fe(i) — Fe(i—1))
=11+ p(x) G
und

Li=Li1+ (Hi-1 —Li1) -F(i—1)
=Li1+riq-F({i—1)

kann man die Gleichungen (2.6) und (2.7) etwas anders schreiben. Wir rechnen H nicht mehr
explizit aus, sondern nur noch L und die dazugehorige Lange des Teilintervalls 7;.

Li=Li1+riq1-F(i—1)

ri="Ti-1" P(xi)
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3.1 Parallelisierung nach J. Jiang und S. Jones

3.1.2 Prinzip

Wir nehmen zur Vereinfachung an, dass die Sequenz aus einer geraden Anzahl von Symbolen
besteht |S| = 2n. Eine ungerade Linge kann man leicht auf eine gerade erweitern.

Um den Algorithmus zu parallelisieren, verfolgen wir, die Ergebnisse der Berechnungen,
wenn man diese ausschreibt.

r1 =ro- p(xo)

ro=r1-p(x1) = (ro- p(xo)) - p(x1)

r3 =12 p(x2) = ((ro - p(x0)) - p(x1)) - p(x2)

ra =r3-p(x3) = (((ro- p(x0)) - p(x1)) - p(x2)) - p(x3)

ran =70 p(x0) - p(x1) - p(x2) - p(x3) ... p(x2n-1) (3-2)
Und fiir L

Ly = Lo+ro- F(0)

Ly = Li+r1- F(1)
= (Lo+7ro-F(0))+r - F(1)
= (Lo+7r0- Fx(0)) + 10 - p(x0) - Fx(1)
= Lo+ 10 Fx(0) +70- p(x0) - Fx(1)

Ly =Ly +rp- F(2)
= (Lo + 70+ Fx(0) +ro- p(x0) - Fx(1)) + 12+ Fx(2)
= (Lo +70- Fx(0) + 70 p(x0) - Fx(1)) + (r0 - p(x0)) - p(x1) - Fx(2)
= Lo+ 10+ Fx(0) + 70 p(x0) - Fx(1) 4+ 10 - p(x0) - p(x1) - Fx(2)

Lan = Lo+ 710 Fx(0) + 70 p(x0) - Fx(1) + 70 p(x0) - p(x1) - Fx(2)+
1o p(xo) - p(xq) ... p(xon—2) - Fx(2n —1) (3-3)

Wir teilen jetzt die Berechnungen (3.2) und (3.3) in zwei gleich grofse Abschnitte und
erhalten

r.n =10 p(x0) - p(x1) - P( ) p(x3) ... p(xn-1)
Lin=Lo+70- Fx(0) +70- p(x0) - Fx(1) + 70 p(x0) - p(x1) - Fx(2)+
. +ro-p(xo) - plx ) p(xn-1) - Fx(n—1)
und
P(nt1).2n = 10" P(Xns1) - P(Xns2) - p(Xns3) - p(Xnsa) - - p(x20-1)
Liys1).on = Lo+ 710 Fx(n+1)+
ro - p(xpg1) - Fe(n+2)+
ro - p(xns1) - p(Xn42) - Fe(n +3) +
+ 10 p(Xns1) - p(Xn42) - p(X2n—2) - Fx(2n = 1)
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3 Parallelisierung

Somit ist 7, nichts anderes als

Tl.n " T(n41).2n

= (3-4)

Wir schreiben L, nochmal komplett aus und fiigen zusammen

Loy =Lo + 70 - F(0) 4+ 70 p(x0) - Fx(1) + 70 - p(x0) - p(x1) - Fx(2) + ...
+ro-p(xo) - p(x1)... p(xn-1) Fe(n) +...
+1r0-p(x0) - p(x1) ... p(xn) - Fe(n+1) +..
+ 10 p(x0) - p(x1) ... p(xan—2) - F (2”—1)
:Ll..n + rn
(Fe(m+1)+... 470 p(xo) - p(x1) ... p(x2n—2) - Fx(2n — 1))

Wir erweitern die abgesetzte Zeile mit r

Loy =L1.n+ 710

(ro JFe(n+1)4+...+r0-p(xo) - p(x1) ... p(x20-2) - Fx(2n — 1)])
o

und erweitern noch mit L

Loy, =L1.4+71m

<L0 +ro-Fx(n+1)4+...4+r0-p(xo) - p(x1) ... p(x20—2) - Fx(2n —1)] — Lo)
1o

und erhalten

Lini1).20 — Lo)

Loy =L1.n+ 7110 < 7o

1.1(L(ns1).20 — Lo)
1o

:Ll..n +

(3-5)

Die Differenzengleichungen (3.5) und (3.4) ergeben die neue Rechenvorschrift fiir das Kodie-
ren. Setzen wir Ly = 0, erhalten wir

M- L(n+1)..2n

Loy :Ll..n + 0 (36)
T - r
Foy = l.n " " (n+1).2n (37)
To

Wir konnen Gleichung (3.2) und (3.3) immer weiter nach dieser Regel aufteilen, bis zum
Schluss nur noch ein Symbol kodiert werden muss. Die Formel fiir diese Kodierung ist
dann

Li=Lo+7rp- Fx(O)

11 =ro - p(xo)
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3.1 Parallelisierung nach J. Jiang und S. Jones

Weil Ly = 0 gilt
Ly =rg - Fx (0) (3-8)
1 =79 - p(xo) (3-9)

Wir konnen also zwei verschiedene Rechenvorschriften definieren. Eine zum Berechnen von
L und r, und eine um zwei Ls und rs zusammenzufiigen. In diesem Paper sprechen die
Autoren von einer BPE und einer GPE . Die BPEs berechnen ein L,, und r,, zum Symbol x;
und die GPE konkateniert die Berechnungen zu den Symbolen x; und x;.1. Das Ergebnis
dieser Zusammenfithrung wird mit der ndchsten Berechnung in einer weiteren Stufe zusam-
mengefiigt. Auf diese Weise kann man beliebig viele Symbole durch BPEs einlesen und in

(L,r) (L,r)
| |
BPE GPE

(F,(0), p(x;)) L,r) (Lyr,)

Abbildung 3.1: Basisformeln fiir Parallelisierung

einer baumartigen Struktur von GPEs zusammenfiigen. Abbildung 3.2 zeigt ein Beispiel mit
8 Symbolen. In der obersten GPE erhélt man dann das neue L und r. Es stellt sich nun die

Abbildung 3.2: Berechnungs-Baum fiir 8 Symbole

Frage, wie die Berechnung fortgefiihrt werden kann. Eine Moglichkeit wire, so viele BPEs
und GPEs zur Verfiigung zu stellen, wie es Symbole gibt. Dann wire die Lange des Textes
begrenzt und auflerdem wiirde die dafiir benotigte Prazision zu grofs werden, wie wir spéter
erfahren werden.

Ein anderer Ansatz ist, fiir die Berechnungen die Differenzengleichungen (3.4) und (3.5) statt
(3.6) und (3.7) fur die GPEs zu nehmen. Dann setzt man fiir Ly das zuvor errechnete L ein
und erhilt bei GPE7 das neue L und r, welches dann fiir den nachsten Schritt verwendet wird.
So kann man immer 8 Symbole gleichzeitig einlesen und den Vorgang durch eine parallele
Implementierung der Bausteine in

m = (log, k) +1
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3 Parallelisierung

Schritten berechnen. Dabei ist k die Anzahl der gleichzeitig eingelesenen Symbole. In
unserem Beispiel ist k = 8 und damit m = 4.

Eine weitere Moglichkeit ist, die vorhergehende Berechnung und die aktuelle aus der hochs-
ten BPE mit einer weiteren GPE zu konkatenieren. Wir wiirden also fiir die GPEs weiterhin die
Differenzengleichungen (3.6) und (3.7) verwenden, aber nach der hochsten GPE eine weitere
Stufe anbringen, die das vorangehende L und r mit dem der hochsten GPE zusammmenfiigt.
Das ist nichts anderes als das vorhergehende Ergebnis in einem weiteren Durchlauf in einer
ndchsten GPE wieder einzufiigen. Bild 3.3 zeigt das in unserem Beispiel.

Fiir den ersten Durchlauf muss dann fiir diese — nun hochste GPE — L = 0 und r = max_val
gesetzt werden. In unserem Beispiel GPES. Die Berechnung von L und r stiinden somit nach

Output

Abbildung 3.3: Berechnungs-Baum fiir 8 Symbole + Konkatenation

m = (log, k) + 2

Schritten fest.

3.1.3 Normalisierung

Nachdem nun die Berechnung schrittweise parallel durchgefiihrt werden kann, stellt sich
die Frage nach der erforderlichen Prazision. Im sequenziellen Fall wurde nach jedem
Berechnungsschritt die Normalisierung durchgefiihrt. Durch diese MafSinahme wurde effektiv
ein Uber- und Unterlauf verhindert.

J. Jiang und S. Jones schlagen dieses auch in ihrem Paper vor. Hiernach soll bei jeder GPE
eine lokale Skalierung stattfinden. Die auf der linken Seite anliegenden Werte bei einer GPE
entsprechen dem alten L und r. Von der rechten Seite wird mit L, und r, die Berechnung
fortgefiihrt. Das heifst, dass fiir die Werte an der rechten Seite die volle Prdzision vorhanden
sein muss. Die Autoren schlagen hierfiir einen Puffer vor, der mitgefiihrt wird und die Bits
puffert, die bei einer Skalierung herausgeschoben werden. Dieser Puffer wird der dartiber
liegenden GPE weitergegeben und fiir die Berechnung von L und r herangezogen. Somit
muss an der obersten GPE alle herausgeschobenen Bits berticksichtigt werden. Man hat hier
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3.2 Parallelisierung nach J. Supol und B. Melichar

also innerhalb der Baumstruktur — oder des parallelen Blocks — keine reale Skalierung
durchgefiihrt.

Wir koénnten also, anstatt nach jedem Schritt zu skalieren, die Berechnungen bis zur obersten
GPE durchrechnen und erst dann skalieren. Bei gentigender Prézision ist es egal, wann
man skaliert, solange Koder und Dekoder nach der gleichen Rechenregel vorgehen. Es ist
klar, dass eine hohere Prizision erforderlich sein wird, wenn man ldanger rechnet bis man
skaliert.

Diese Erkenntnis ermoglicht somit eine vollstandige Berechnung des parallelen Blocks und
im Anschluss die Normalisierung. Wir miissen hierfiir lediglich die Prazision erhohen
und kdnnen somit, ohne nach jedem Schritt auf die Normalisierung zu warten und ohne
zusitzliche Mafinahmen, zu Ende rechnen. Um wieviel die Prazision erhoht werden muss,
ist Gegenstand von Kapitel 3.4.2.

Die Normalisierung gestaltet sich hier wesentlich einfacher als die der Sequentiellen Vorge-
hensweise mit der Berechnung von L und H. Wir berechnen hier r direkt und kénnen dieses
auch direkt kontrollieren. Im Paper [JJo4] ist kein spezieller Algorithmus dafiir beschrie-
ben. Allein die Idee ist hier skizziert. Wir werden im Kapitel 3.5.2 noch einen Algorithmus
vorstellen und analysieren.

3.1.4 Stark unterschiedliche Haufigkeiten

Ein weiteres Problem konnte auftreten, wenn die Haufigkeiten der einzelnen Symbole sehr
unterschiedlich sind. Wenn also

3 i#j pjeA | plx)>pl)

Dann kann es passieren, dass sehr lange nicht skaliert wird. Vor allem dann nicht, wenn
zusitzlich p(x;) sehr nahe bei ry (dem Ursprungs-Intervall) liegt. Das kann zur Folge haben,
dass nach einiger Zeit auch hier die Pradzision nicht mehr ausreicht.

In diesem Paper wird als Losung ein Tausch der Reihenfolge der Symbole vorgeschlagen.
Das «end of file» Symbol wird als Puffer zur oberen Grenze des Intervalls gesetzt. Wir
werden diese Problematik in Kapitel 3.4.2 wieder aufnehmen.

3.2 Parallelisierung nach J. Supol und B. Melichar

3.2.1 Einleitung

Zehn Jahre nach der Veroffentlichung von [JJg4] haben Jan SuroL und Bok1voy MELICHAR in
einem Paper [SMos5] ein weiteres Verfahren zur Parallelisierung vorgeschlagen. Bei diesem
Verfahren gehen die Autoren davon aus, dass beliebig viele Prozessoren zur Verfiigung
stehen. Sie verwenden hierzu das Modell eines Exclusive Read Exclusive Write Parallel RAM
(EREW PRAM).
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3 Parallelisierung

Bei Ausnutzung voller Parallelitdt ergibt das eine Kodierung eines Textes S in log k Schritten,
wobei k = |S| bei Annahme, dass k Prozessoren zur Verfiigung stehen.

3.2.2 Prinzip

Wieder nehmen wir die Differenzen Gleichungen (2.6) und (2.7).

Li=Li1+ (Hji—1 —Li—1) - F(i—1)

Hi=Li_1+ (Hi—1 — Li—1) - Fx(i)
Wir setzen

LR; = (Hi—1 — Li—1) - Fx(i = 1) (3-10)

HR; = (Hi—1 — Li—1) - Fx(i)
und schreiben die Gleichungen (2.6) und (2.7) als

Li=L;_1+LR; (3.11)

Hi=1Li 1+ HR; (3.12)
Wenn wir nun (3.11) ausschreiben, erhalten wir

Li=Li_1+LR;j=L; »+LR;+LR;_4

=Lo+LR;+LR;_1+LR; »+...+LRg
i

LRy + Lo (3.13)
k=0

und weil Lo =0

i
Li=)_ LR
k=0
Entsprechend kann man das auch fiir Gleichung (3.12) berechnen und erhalt
i
H; =) HRi+ Hp
k=0
wobei Hj die oberste Grenze des Ursprungs Intervalls ist. Wir setzen nun
ri = Hi — Li

und erhalten aus Gleichung (3.10)

LR; =ri1-F(i—1)
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3.2 Parallelisierung nach J. Supol und B. Melichar

Wir erinnern uns an Gleichung (3.1) wonach

ri ="ri—1- P(xi)

und schreiben

LR; =ri_1-F(i—1)
=1ip-p(xi—1) - Fe(i—1)
=r1i3-p(xi2) - p(xi—1) - Fe(i—1)
=rig-p(xis) p(xi-2) - p(xi-1) - Fe(i — 1)
i—1
=ro- ([ [p(xx)) - Fx(i—1) (3.14)
k=0
wobei
Hp(xj) =1 i<0 (3.15)
=0

Wir setzen Gleichung (3.14) in (3.13) ein

i
Li:ZLRk+LO

k=1
i k=2
= kzl[ro : (1‘% p(x)) - Fe(k —1)] + Lo (3.16)
= 1=

beachte dass das innere Produkt jetzt mit j lauft, und weil die dufSere Summe bei k = 1
beginnt, darf das Produkt nur bis k — 2 laufen. Falls 7o = 1 und Ly = 0 gilt

i k=2
Li=) [(ITr(x)) - Fe(k=1)] (3.17)
k=1 j=0
und fir H
i k=2
Hi= Y [(TTr(x) - E(k)] (3.18)
k=1 j=0

wobei gelten soll
p(x;) =F(i):=0 fur i<0

Die Idee ist nun, die Produkte und Summen aus Gleichungen (3.17) und (3.18) parallel in
einem Baum auszurechnen.
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3 Parallelisierung

3.2.3 Beispiel

In diesem Paper wird das Beispiel aus Kapitel 2.2 berechnet. A = {S LW, I,M, I_I} und S =

{SwISsSLIMISS}

46

LR.1=0
HR ;=1

LRy = (HR_; —LR_q) Fe(xo—1 =05 —1 = as_y)
= 1‘Fx(4)
=1.0-05=0.5
HRop = (HR_1 — LR_1) - Fy(xo = a5 = as—g)
=1 Fx(S)
=10-1.0=1.0

LRy = (HRyp — LRy) - Fx(x1 —1=a4—1 = a3_1)
= (Hs — Ls) - Fx(3)
= p(as) - Fx(3)
=05-04=02
HRy = (HRg — LRy) - Fx(x1 = a4 = ag—y)
= (Hs — Ls) - Fx(4)
= p(as) - Fx(4)
=05-05=0.25

LRZ = (HR1 — LRl) . Fx(xz —-1= as — 1= ElzzM)
= (p(as) - Hy — p(as) - La) - Fx(2)
= plas) - p(xq) - Fx(2)
=0.5-0.1-02=0.01
HR2 = (HR1 — LRl) . FX(XZ = 613:1)
= (p(as) - Hy — p(x5) - Ls) - Fx(2)
= p(as) - p(xa) - Fx(2)
=05-0.1-04=0.02



3.2 Parallelisierung nach J. Supol und B. Melichar

LR3 = (HR2 — LRz) . Fx(X3 —1= as — 1= a4:w)
= (p(as) - p(as) - Hz — p(as) - p(as) - L3) - Fx(4)
= plas) - p(as) - p(as) - F(4)
=05-0.1-0.2-0.5=0.005

HR3 = (HRZ — LRZ) . FX(X3 = a5:S)
= (p(as) - p(as) - Hs — p(xs) - p(as) - L3) - Fx(5)
= plas) - p(as) - p(as) - Fx(5)
=05-01-02-1.0=0.01

Addieren wir jetzt die LRs zusammen, erhalten wir die zugehorigen Ls.

L1=0
Ly=0+05=05
L1 =0+05+02=07
L,=0+05+02+0.01 =0.71
Lz =0+0.5+0.2+0.01 +0.005 = 0.715

Diese Ergebnisse konnen wir mit Tabelle 2.4 vergleichen.

3.2.4 Parallelisierung

Die Parallelisierung geschieht dadurch, dass man die Multiplikation und die Addition der
LRs und Ls, beziehungsweise die der HRs und Hs in einer Baumstruktur anordnet.

@ = Multiplikation

L

Abbildung 3.4: Berechnungs-Baum LR fiir die ersten 4 Symbole

(%o) p(xy)  p(x;) F(x2)
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3 Parallelisierung

Dadurch ergibt sich eine rein rechnerische Abarbeitung in

m = (log, k) +1 (3.19)
Schritten. Auch hier ist k die Anzahl gleichzeitig eingelesener Buchstaben.

Anders als bei [JJg4] ist hier mehr Hardware notwendig um den Kode zu berechnen. Bei
dieser Struktur miissen saimtliche Folgen von LR_1, LR, LR ... LRy als Biume implementiert
werden um den Kode zu berechnen. Es sind also hier k Biume notwendig. Der hochste von
ihnen — der fiir LRy — hat dann die Tiefe von log, k.

Parallel zur Berechnung von LR kann die Addition zu L geschehen. Nach log, k Schritten
steht LRy fest und kann zu L;_; addiert werden. Deshalb der zuséitzliche Schritt in (3.19).

@ = Multiplikation L
@ = Addition

F(Xo-1)  p(xg)  E(xg p(xg)  P(xy) E(x5) p(xy)  E(x))
Abbildung 3.5: Berechnungs-Baum L fiir die ersten 4 Symbole

Allerdings wird nicht der vollstindige Baum fiir jedes L benétigt, wie man aus Abbildung
3.5 sehen kann. Zu dem hochsten Baum braucht man zusétzlich jeweils nur die Seiten mit

E(i).

Die Autoren sind in diesem Paper nicht auf Problematik eingegangen, wie man vorgehen
soll, wenn nicht unendlich viele Prozessoren zur Verfiigung stehen. Es ist in den seltensten
Féllen moglich einen Text komplett parallel auszurechnen. Deshalb muss man sich {iberlegen,
wie man schrittweise vorgeht.

Ein Vorschlag wiére, einen Parallelen Block fiir die Kodierung von k Symbolen zu entwerfen
und diesen dann Stiick fiir Stiick vorgehen zu lassen. Als Ergebnis stehen am obersten Knoten
dann L; und, als Intervall, LRy bereit. Ly wird bei der folgenden Iteration als Fy(xo — 1),
und LRy als Fy(xp) eingegeben. Bei den anderen Blattern werden die nidchsten Symbole,
beziehungsweise p(x;) eingegeben. Nach jedem Durchlauf werden also k — 1 Buchstaben
angehangt.

Fiir die Normalisierung berufen wir uns wieder auf die Tatsache, dass es keine Rolle spielt,
wann diese stattfindet, solange die Prazision hoch genug ist. Damit wird wie schon in Kapitel
3.1.3 besprochen die Skalierung erst nach dem Parallelen Block durchgefiihrt.
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3.3 Parallelisierung nach Horg-Yeong Lee, Leu-Shing Lan, Ming-Hwa Sheu und Chien-Hsing Wu

3.3 Parallelisierung nach Horg-Yeong Lee, Leu-Shing Lan,
Ming-Hwa Sheu und Chien-Hsing Wu

3.3.1 Einleitung

Im Paper [LLSW0g6] aus dem Jahr 1996 zeigen die Autoren eine Variante von der Implemen-
tierung von [JJ94]. Im Wesentlichen sind hier keine groflen Veranderungen oder Neuerungen
hinzugekommen. Vielmehr ist es eine andere Darstellung der bekannten Formel.

3.3.2 Prinzip

Wir nehmen Gleichung (3.17) und schreiben diese bis zu Ly, also 8 Symbole, aus.

7 k-2
Ly =Y ([Ip(x) - Fe(k—1)
k=1 j=0
=F¢(0) + p(x0) - Fx(1) + p(x0) - p(x1) - Fx(2) + p(x0) - p(x1) - p(x2) - Fx(3)
+p(x0) ...~ p(x3) - Fx(4) + p(x0) - ... - p(xa) - Fx(5)
+p(x0) ... p(xs) - Fx(6) + p(x0) - ... - p(x6) - Fx(7)
=[(Fx(0) + p(x0) - Fx(1)) +p(x0) - p(x1) - (Fx(2) + p(x2) - Fx(3))]
mul+add mul+add
+ p(xo) - p(x1) - p(x2) - p(x3)
[(Fx(4) + p(xa) - Fx(5)) +p(xa) - p(xs) - (Fx(6) + p(x6) - Fx(7))] (3.20)
mul+add mul+add

Die Idee ist, jetzt zwei verschiedene Einheiten zu konstruieren, die eine multipliziert zwei
Zahlen, die andere, in Gleichung (3.20) als «<add+mul» bezeichnet, multipliziert erst p(x;) mit
F.(i+1) und addiert dann F, (i — 1). Der zugehorige Baum ist in Abbildung 3.6 dargestellt.

c
range low
c=a*b C d=a+(b*c)
a b a b
d

R(1 HE] E(5) F(7

p(0)  p(1) p(2) p@3) KO pO) E2)  p(2) p(6) p(4)  p(5) F(4)  p(4) F(6) p(6)

Abbildung 3.6: Berechnungs-Baum
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3 Parallelisierung

3.4 Konklusion

Jetzt haben wir die Grundlagen fiir das sequenzielle Arithmetische Kodieren und die
Vorschldge fiir eine parallele Implementierung kennengelernt. Wir sind nun in der Lage eine
tiefere Analyse der vorgestellten Losungen vorzunehmen.

Bei dieser Analyse sind mir drei Probleme besonders aufgefallen. Diese sollen im Folgenden
besprochen werden und falls moglich Losungen vorgestellt werden, wie man damit umgehen
kann.

3.4.1 Gleichungen fiir Parallelisierung

Wir betrachten die Gleichung (3.2) und schreiben diese abkiirzt als

k
re=ro- | [p(x))
j=0
Diese Gleichung setzen wir in Gleichung (3.3) ein

L =Lg

—1
+1p- (rgp(xj)) - F(0)3
-

0
+10- (fgp(xj)) -F(1)
j=
1
+ro- ([ Tr(x)) - Fx(2)

j=0

2
+ro (1117(36]')) Fx(3)
j=

+ro- ([ Ip(x)))  Fe(n)

i k—2
=Lo+ ) [ro- ([ Tp(x)) - Fe(k = 1)]
k=1 j=0
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3.4 Konklusion

Das ist aber genau die Gleichung (3.16). Mit anderen Worten J. éupol und B. Melichar
benutzen die gleiche Gleichung die J. Jiang und S. Jones in der BPE verwenden. Allerdings
teilen sie die Gleichung nicht in weitere Teile. Auch [LLSW96] verwenden Gleichung (3.16).
Der Unterschied liegt allein in der Kombination von Gleichung (3.16), die der BPE entspricht
und (3.6) fiir die GPE.

Dabei haben [JJ94] und [SMos5] die Extremwerte der moglichen Kombinationen gezeigt. Bei
[JJo4] wurden die Bldtter — also die BPEs — so weit geteilt, bis nur noch ein Symbol zu
kodieren war. [SMos5] ging den Weg, am Blatt selbst, das entspricht der BPE, die Parallelitat
durch eine Baumstruktur zu erreichen.

Man kann jetzt einen Schritt weiter gehen und die beiden Ansitze kombinieren. Es wire zum
Beispiel moglich, BPEs nach Gleichung (3.16) zu implementieren und dann die Baumstruktur
in Abbildung 3.3 weiter zu nutzen .

—‘—> Output

GPE

_IlB

GPE
7

GPE s GPE

PE PE PE PE

G G G G
1 2 3 a
BPE BPE BPE BPE BPE BPE BPE BPE

1 2 3 4 5 6 7 8
TTTT TTTT TTTT TTTT TTTT TTTT TTTT TTTT
X X X X X

X X X
1 a 5 8  aasssssssssssssssasssas 25 28 29 32

Abbildung 3.7: Berechnungs-Baum fiir 32 Symbole

Abbildung 3.7 zeigt ein Beispiel bei dem die Blatter nach Gleichung (3.16) jeweils vierfach
parallel gerechnet werden. Die Ergebnisse werden dann mit Gleichung (3.6) zum Gesamter-
gebnis zusammengefiigt.

Der Vorteil dabei ist, dass fiir Gleichung (3.16) eine andere Architektur verwendet werden
kann als fiir Gleichung (3.6). Man konnte fiir die niedrigere Prédzision (BPE) vorhandene
Hardware, zum Beispiel CUDA, und fiir die hohe Prézision (GPE) dedizierte Hardware
implementieren.

3siehe Gleichung (3.15)

51



3 Parallelisierung

3.4.2 Prazision

Das grofite Problem bei der Arithmetischen Kodierung ist die notwendige Prazision. Wir
haben gesehen, dass bisher noch keine wirkliche Losung vorgeschlagen worden ist. Die in
[JJo4] vorgeschlagene Skalierung nach jedem Schritt hilft nicht weiter. Trotz der Skalierung
muss die Prazision bei der nédchsten Stufe in vollem Umfang eingerechnet werden. Die
anderen Papers sagen gar nichts zu der Problematik.

In Kapitel 3.1.3 wurde schon eine Variante vorgestellt, moglichst ohne viel zusatzlichen
Hardware Aufwand das Problem in den Griff zu bekommen. Wir konzentrieren uns des-
halb an dieser Stelle auf die Frage der Prazision, die notwendig ist, um diesem Vorschlag
nachzugehen.

Fiir eine praktische Implementierung wird das Intervall geméafs Kapitel 2.6.1 auf eine Ganze
Zahl abgebildet. Das Intervall von 0 bis zur hochstmoglichen Zahl nennen wir ry. Die kleinste
Einteilung ist damit 1/7y und ist zugleich die hochstmogliche Prazision. Es soll nun im
Folgenden darum gehen, die Bit Breite fiir 7y zu bestimmen.

Wir nennen nun total = tot und high_count, = f;. Dann ist p(a;) = tfo"t. Bemerkenswert

ist an dieser Stelle, dass tot nicht unbedingt die Lange des Textes ist, sondern der gekiirzte
Bruch von ) f;/Textlénge.

Beispiel 10. Sei A = {a,b,¢,d} und S = aaaabbcd. Dann gilt £ = 4, £, = 2, f3 = 1 und
f4 = 4. Weiter gilt tot = 8. Dann ist hier p(a;) =4/8 = 0.5.

Das wiirde aber auch gelten, wenn S = aaaabbcdaaaabbed. Die Reihenfolge spielt dabei keine
Rolle. Lediglich das Verhiltnis. ¢

Dann ist 1/tot die kleinste vorkommende Wahrscheinlichkeit. Um eindeutig Kodieren und
Dekodieren zu konnen muss also

ri>tot Vien

Als nichstes nehmen wir die Formeln fiir die GPE und BPE.
Fiir die Gleichung (3.9) gilt
r1=ro- p(xo)

i
tot

_]"0.
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3.4 Konklusion

Falls aber im schlechtesten Fall £; = 1 und damit die kleinste Wahrscheinlichkeit tibergeben
wird, dann muss r; > tot. Also kdnnen wir zeigen:

r1 > tot

ro * > tot

ro- —— > tot

> tot

ro > tot? (3.21)

Fiir Gleichung (3.8) ergibt sich fiir L keine direkte Einschrankung, weil fiir L mindestens Lo
als untere Schranke behalten wird. Trotzdem gilt

log, L < log, o
log, L < (log,r0) — 1

Im besten Fall ist L ein Bit kiirzer als . Hat man die Bit Breite von r kann man diese als obere
Grenze fiir L nehmen und als untere Grenze (log, r) — 1. In der Praxis wird man Register
der selben Breite implementieren und damit log, L = log, r setzen.

Betrachten wir nun die Gleichung (3.7)

ri-r
Yiv1 = 172 2 tot
1o
725 ot | wegen Gleichung (3.21)
tot? 8 8
r - 1
5 > tot | schlechtester Fall f; =1
tot
r>tot® | tot >0

Wir sehen also, dass nach jeder Iteration die Prédzision von r um 1/tot steigt. Sei p die
Anzahl paralleler Stufen, dann gilt fiir ein Bindres System

r; > tot?
und damit fiir die Bit Breite von 7;

log, i > log, tot”
> p-log, tot

Bit Breite fiir r 1. Sei p die Anzahl der parallelen Stufen in einem Baum, dann ist die
mindest erforderliche Bit Breite fiir alle r

log,r; > p-log,tot Vien (3.22)
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3 Parallelisierung

Analog kann das auch fiir die Gleichung (3.2) gezeigt werden.

Wir haben in Kapitel 3.1.4 schon die Problematik der extrem hohen Wahrscheinlichkeiten
angesprochen. Ich will an dieser Stelle ein paar Uberlegungen dazu skizzierenO

Sei1/70 = Pmin, Pmax = 1 — Pmin und o die Anzahl der Schritte, dann wird spatestens nach

0.5 = Prax
log 0.5 = log 4.«
log 0.5 = 0 - 1og pimax
o = |log 0.5/ 10g Pimax

Schritten skaliert. In einer parallelen Abarbeitung also erst nach
Opar = LU / PJ
Beispiel 11. Gegeben sei 7o = 8, ppin = 1/8 = pmax =7/8 und p = 4. Dann ist

o = |log0.5/10g7/8|

= |5.19]
=6
und
Opar = 16/p]
= [15] =2
O

Im Beispiel 11 sehen wir, dass der parallele Block zweimal durchlduft, ehe skaliert wird. Das
konnte bei zu niedriger Bit Breite von r zu einem Unterlauf fithren. Eine genauere Analyse
wire hier interessant, um herauszufinden ab welcher Rundung das Dekodieren fehl schlagt.
Mit grofserem tot steigt auch die erforderliche Bit Breite. Es ist denkbar, dass dadurch die
Rundungsfehler so klein gehalten werden, dass ein Dekodieren immer moglich bleibt.

Ich uiberlasse diese Problematik an dieser Stelle dem interessierten Leser und breche hier
ab.

3.4.3 Algorithmus fiir Skalierung

Eine weitere Erkenntnis konnen wir bei ndherer Betrachtung des Skalierens gewinnen. In
den Kapiteln 2.6.2 und 2.6.3 wurden die Grundlagen und Notwendigkeit der Skalierung
beschrieben. Hierzu wurden die Grenzen L und H benutzt. Die Verwendung von r statt
H vereinfacht die Skalierung drastisch. Die Einteilung in verschiedene Quadranten kann
ganzlich wegfallen. Wir betrachten allein die Grofie von r. Ist ¥ < 1/2 - rp, dann kann skaliert
werden.
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Das Skalieren verlduft analog des beschriebenen Verfahrens. L und r werden nach links
geschoben und das hochstwertigste, rauslaufende Bit von L als Kode gespeichert. Aller-
dings muss man einen Sonderfall betrachten: Falls L + > ry nach einer Skalierung gelten
wiirde, dann darf nicht skaliert werden. Der Algorithmus hierfiir ist in Algorithmus 3.1
beschrieben.

Algorithmus 3.1 Skalierung bei Verwendung von r

while r < (r9/2) do
Ttemp <— 7 - 2

Liemp <~ L -2
if Liemp > 70 then
5: Ltemp < Ltemp —To
if (temp + Ltemp) < 7o then
Kode + 1
L« Ltemp
r< T'temp
10: else
exit
end if
else
if (7temp + Ltemp) < 70 then
15: Kode +- 0
L« Ltemp
T 4 Ttemp
else
exit
20: end if
end if
T rtemp
L« Ltemp
end while

Den Kode kann man auch direkter bestimmen. Man sucht die signifikanteste «1» (rot)
in r. Diese Position bezeichnen wir mit j. Von dieser Bit-Position sucht man die nédchst
hoherwertigere Bit-Position i (gelb) in L, die erstmals den Wert «0» hat, wobei i > j sein muf.
Die MSB-Bits in Ly5_(j;1), unabhidngig vom Wert, entsprechen dem Kode.

Beispiel 12. ) und L haben eine Bit Breite von 16 Bits. Wir erhalten nach einem parallelen
Durchlauf die Werte L = 0410y, und r = 0090y,. Dann ist der herauszugebende Kode 000101y,
Siehe Abbildung 3.8

Falls wir die Werte L = 7836}, und r = 0016}, annehmen, ergibt sich der Kode 11110000y,.
Siehe hierzu Abbildung 3.9. ¢

Das Finden der Position i entspricht der Bedingung, dass sowohl L < rg als auch r + L < rg
gelten muss. Wie bei der E3 Skalierung muss man warten, bis die zu kodierende Stelle bei
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LSB
i

0
olololol1{ofol0l0l
Ol Olo[1[0{0l0l0]

@l Puffer Bit O Erste Null
O Kode B Hochste 1

Abbildung 3.8: direkte Bestimmung des Kodes fiir L = 0A10 und r = 0090

MSB LSB

15 i j 0
Low (111111110[0IO0[OjOf1[1[Of1[1]O]
range [@IO[O[O[O[OIO[OfO[OIOEM Of1[1]0}

Bl Puffer Bit O Erste Null
O Kode B Hochste 1

Abbildung 3.9: direkte Bestimmung des Kodes fiir L = 7836 und r = 0016

L stabil anliegt. Beim sequentiellen Vorgehen geschieht das, indem man erst dann Kode
Bits herausgibt, wenn man sicher in der unteren oder oberen Hilfte des Intervalls liegt. Im
Algorithmus 3.1 werden als Kode die Bits herausgegeben, die durch die Addition von r, L
nicht mehr beeinflussen konnen.

Das ist genau dann der Fall, wenn man solange bei L in Richtung most significant Bit geht,
bis die erste Null auftritt. An dieser Stelle steht sowohl bei L als auch bei 7 eine Null. Bei
einer Addition wird ab hier L nicht mehr beeinflusst, weil in r in Richtung most significant
Bit, nur noch Nullen folgen.

Man kann also nach dieser Methode die maximale Anzahl an Schleifendurchlaufe I auf
2 -log, I bei geeigneter Implementierung reduzieren.

Beispiel 13. Gegeben sei die Bit Breite log, r = 8. Wir bilden erst einen Prioritdtsenkoder
mit einer Maske. Wenn also x,, = 1 dann gilt x; = 1,i < m. Der Baum aus OR Gattern ist bis
zum vierten Bit in Abbildung 3.10 dargestellt. Nachdem die Maske in y fertig ist, konnen
wir mit XORs das hochste Bit bestimmen. Falls der Ubergang von 0 auf 1 an der Stelle (y4,Y3)
ist, dann ist z3 gesetzt. ¢
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3.5 Parallelisierung in Hardware

>=1 >=1

Abbildung 3.10: Prioritdtsenkoder OR-Baum

z71 z6 z5 z4 z3 z2 z1 z0

[=1][=1][=1][=1][ =1 | =1]| =1] | =1]

|_l
o

Abbildung 3.11: Bitbestimmung mit XOR Gattern

3.5 Parallelisierung in Hardware

Nach der Analyse soll nun als weiterer Bestandteil dieser Arbeit eine Realisierung in
Hardware erfolgen. Die Architektur ist nicht vorgegeben. Grundsitzlich besteht jetzt die
Moglichkeit, vorhandene Hardware zu verwenden, oder eine eigens fiir den Zweck zu
entwerfen. Bei der vorhandenen Hardware sind besonders die Grafikkarten interessant. Diese
bieten viel mehr parallele Prozessoren als eine herkommliche CPU. Wir beschranken uns
deshalb auf die Architektur einer Grafikkarte. Es wire nattirlich denkbar, auch Grofsrechner
mit vielen CPUs anzuschauen, aber wie wir sehen werden, treten hier dieselben Probleme
wie bei der Implementierung auf einer GPU. Fiir die dedizierte Hardware schauen wir uns
eine Implementierung in VHDL an.
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3 Parallelisierung

3.5.1 CUDA

Fiir eine Implementierung auf vorhandener Hardware nehmen wir eine GPU. Als Beispiel
benutzen wir die von Nvidia™ 2007 eingefithrte ComPUTE UNIFIED DEVICE ARCHITECTURE
kurz: CUDA.

Architektur

Die CUDA Architektur teilt sich auf in SYMETRIC MULTIPROCESSORS (SMs), Blocke und
Threads. Jede SM kann maximal aus 1024 Threads 4 bestehen, und aus maximal 8 Blocken.
Die Zuweisung der Threads zu den Blocken geschieht flexibel: Zum Beispiel 8 Blocke zu je
128 Threads, oder 4 Blocken je 256 Threads. Fiir eine GT200 die 30 SMs zu je 1024 Threads
hat, besteht so die Moglichkeit 30 - 1024 = 30720 Threads gleichzeitig abzuarbeiten.

Jeder Thread bearbeitet eine Berechnung. Die Threads werden durch einen Aufruf eines
sogenannten KERNEL gestartet. Davor miissen die Daten in den Kartenspeicher gebracht
werden. Sind die Threads zu grof3, konnen sie nicht in den Kartenspeicher gebracht werden
und damit nicht parallel gerechnet werden. Das geschieht zwar fiir den Nutzer transparent,
aber ohne Beachtung dieser Beschriankung geht man Geschwindigkeitsverluste ein. Threads
konnen intern synchronisiert werden. Auch hierdurch entstehen Geschwindigkeitsverluste.
Bei IF THEN ELSE Anweisungen geht der Kernel immer den IF, dann den ELSE Zweig durch
und entscheidet anschliefiend welcher ausgefiihrt wird. Das heifit, bei einer Abfrage von
acht verschiedenen Abzweigungen wird der Thread acht mal durchlaufen, obwohl nur ein
Zweig real berechnet werden miisste. Die Threads werden in Gruppen von 32 geteilt. Diese
Gruppen nennen sich Warps. Findet in einem solchen Warp eine IF THEN ELSE Abfrage
statt, warten alle Threads in diesem Warp bis beide Zweige durchlaufen sind.

Die Bit Breite der FlieSkomma Operationen ist bis zur G2oo 32 Bit. Bei der Ganzzahl-
Arithmetik sind es 64 Bit. Ab der COMPUTE CAPABILITY 1.3 sind 64 Bit Berechnungen auch
fur FlieBkomma Arithmetik moglich.

Implementierung

Durch die vielen Einschrankungen ist eine Verwendung solcher Architekturen relativ schwie-
rig. Die zwei Hauptprobleme sind die Geschwindigkeitsverluste beim Kernel Aufruf und
vor allem die Bit Breite der Register.

Vor jedem Kernel Aufruf miissen die Daten in den Grafikspeicher kopiert werden. Die Ergeb-
nisse werden in den Grafikspeicher geschrieben und miissen nach der Berechnung wieder
in den Hauptspeicher kopiert werden. Dieser Prozess ist sehr langsam. Mit Einfithrung
der Compute capability 2.0 kann die GPU vereinfacht auf den Hauptspeicher zugreifen.
Die schnellste Bearbeitung bleibt aber die auf dem eigenen Speicher. Nach jeder Parallelen

4COMPUTE CAPABILITY 1.2
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3.5 Parallelisierung in Hardware

Stufe miissten die Ergebnisse hin- und herkopiert werden um dann die néchste Stufe mit
den vorher berechneten Ergebnissen zu starten. Mit etwas mehr Aufwand kénnte man
das Problem umgehen, indem man maximal so viel Parallelitit implementiert, so dass sie
komplett in den Grafikspeicher hinein passt.

Selbst dann wiirde die vorhandene Bit Breite die Parallelitit einschranken. In einem deut-
schen Text tritt der Buchstabe x mit einer Wahrscheinlichkeit von 0.0003 auf >. Um diese
darzustellen braucht man tot = 1/0.0003 = 3333.3. Im Binidrsystem ergibt das

2% =3333.3
log(2¥) = log 3333.3
x = |log3333.3/ log2]
x =12 = log, tot

Bits. Und gemaf} Gleichung (3.22) konnen bei einer Bit Breite von r; = 64 Bits nur

log, r; > p-log, tot
64>p- logl7 tot
64 >p-12
[64/12] > p
52p

Parallele Stufen ohne fehlerhafte Dekodierung realisiert werden. Das heifst, trotz der vielen
Threads kénnen nur 2° = 32 gleichzeitig berechnet werden. Diese starke Einschrankung
macht diese Technologie ungeeignet fiir massive parallele Kodierungen.

Wie man diese Architektur trotzdem zum Vorteil nutzen kann wurde in Kapitel 3.4.1
vorgestellt.

3.5.2 VHDL

Der Implementierung in dedizierter Hardware sind weit weniger Beschrankungen unterlegen
als zum Beispiel in CUDA. Die Bit Breiten sind hier frei wahlbar und somit steigt auch der
Grad der moglichen Parallelitat. Trotz der geringen Beschrankungen von architektonischer
Seite ergeben sich aus Sicht der Algorithmen gewisse Einschrankungen die nicht unerheblich
sind.

Mit jeder parallelen Stufe kommen log, tot Bits zu der Bit Breite hinzu. Bei einer anfanglichen
Bit Breite von log, 7; = 16 ergeben sich nach 8 Stufen eine Bit Breite von 8 x 16 = 256 Bit.
Das Ergebnis einer Solchen Multiplikation nimmt 512 Bits in Anspruch. Die Berechnung
von solch grofler Bit Breiten sind sehr komplex und langsam. Der Aufwand steigt bei

5aus [Beug3]
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3 Parallelisierung

Multiplikationen quadratisch an. Es ist also fraglich, ob der Gewinn an paralleler Abarbeitung
die Geschwindigkeit des Multiplizierers kompensieren kann. Wenn nicht, wire auch hier eine
Analyse interessant, ab welcher Latenz des Multiplizierers eine zusétzliche Parallele Stufe
keine Geschwindigkeitssteigerung bringt. Bei exakter Berechnung von p(i) ist sogar noch
ein Dividierer notwendig. Die Hardware dazu ist komplexer als die eines Multiplizierers
und erschwert einen Geschwindigkeits-gewinn zusatzlich.

Es ist aus diesen Griinden ratsam, im zugrundeliegenden Modell, fiir tot Zweierpotenzen
zu wihlen und dabei eine etwas schlechtere Komprimierung in Kauf zu nehmen. Auf diese
Weise spart man sich einen Dividierer weil man leicht durch Zweierpotenzen mit Verschiebe-
Operationen teilen kann. Um wieviel schlechter man durch solche Rundungen wird, wire
Teil einer weiteren Analyse.

Algorithmus

Als nédchstes widmen wir uns der Frage, welche vor und Nachteile die besprochenen
Vorschldge haben.

J. Supol und B. Melichar Der Algorithmus von [SMos] hat die geringste Tiefe. Anders als
bei [JJo4], oder [LLSWg6] miissen die Knoten innerhalb des Baumes lediglich eine Ope-
ration durchfiihren. Bei den anderen Vorschldgen sind mindestens zwei Operationen
notwendig. Dadurch entstehen weitere Verzogerungen, weil zuerst auf das Ergebnis
der vorangegangenen Operation gewartet werden muss. Auf REGISTER TRANSFER LEVEL
(RTL) ist deshalb diese Losung die schnellste. Sie ldsst sich aber nicht so gut erweitern,
weil immer ein Teil-Baum der hochsten parallelen Stufe mehrfach verwendet wird. Nur
mit dieser Mehrfach-Verwendung sind grofse Einsparungen von Hardware moglich.

J. Jiang und S. Jones Bei dieser Losung steht die Modularisierung im Vordergrund. Sie
beinhaltet beide Differenzengleichungspaare fiir L und r. Die Gleichung (3.6) hat zwei
Operationen. Zuerst die Multiplikation, anschlieffend die Addition. Wie schon oben be-
schrieben entsteht damit eine Verzogerung auf RTL Ebene. Die starke Modularisierung
erlaubt durch einfaches Hinzufiigen von BPEs und GPEs die Parallelitdt zu erhohen.

Horg-Yeong Lee, Leu-Shing Lan, Ming-Hwa Sheu und Chien-Hsing Wu Diese Variante
bringt zu den oben genannten keine wesentliche Verbesserung. Die Knoten im Baum
haben wie in [JJgo4] zwei Operationen. Das fithrt auf RTL Ebene zu zusitzlichen Takten.
Die Erweiterbarkeit ist dhnlich komplex wie in [SMos] aber nicht so einfach wie in

[JJo4]

Die Entscheidung fiel auf die Variante von [JJg4]. Durch die klar gegliederte Modularisierung
lasst sich der Entwurf ohne grofien Aufwand erweitern. Anders als bei [SMo5], kommen
beide herausgearbeiteten Gleichungspaare (3.6), (3.7) und (3.13), (3.14) zur Anwendung.
Schliefdlich kann diese Architektur als einzige mit vorhandener Hardware kombiniert werden,
um die in Kapitel 3.4.1 vorgestellte Losung zu realisieren.
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4 Implementierung

Wir haben die Grundlagen des Arithmetischen Kodierens im Kapitel 2 kennengelernt. Diese
wurden im Kapitel 3 durch eine Analyse von Losungsvorschldgen zur Parallelisierung in
Hardware vertieft. Mit diesem Wissen sind wir in der Lage, eine reale Implementierung
anzugehen.

Mir der Umsetzung in Hardware sollen die gewonnenen Kenntnisse auf Korrektheit tiber-
priift und gleichzeitig die Machbarkeit gezeigt werden. Im Vordergrund steht, die Theorie in
einem leicht verstandlichen Beispiel umzusetzen. Ressourcen- und Laufzeitoptimierung sind
hier nachrangig. Dennoch ist der Kode so gestaltet, dass eine Erweiterung ohne grofieren
Aufwand moglich ist.

4.1 Referenz Beispiel

Fiir die Implementierung verwenden wir das in Kapitel 2.6.2 vorgestellte Beispiel. Der Vorteil
dieses Beispiels ist die geringe Komplexitit und die Abdeckung aller moglichen Pfade. Damit
konnen wir samtliche Teile der Hardware auf Korrektheit {iberpriifen.

Wir schauen uns Beispiel 8 nochmal an. Hier wurde beispielhaft eine Bit Breite von 8 genom-
men. Das ist fiir ein sequenzielles Vorgehen ausreichend. Fiir eine parallele Abarbeitung
miissen wir die Register verbreitern.

Das Alphabet des Beispiels besteht aus acht Buchstaben |A| = 8. Die kleinste auftretende
Wahrscheinlichkeit ist p,,;, = 1/tot. Mit tot = 8 ist pyi, = 1/8. Um tot im Dualen System
darzustellen sind log, tot = 3 Bits notwendig. Weil sich 4 Bits leichter in Hexadezimal
darstellen lassen, verwenden wir diese fiir unsere Implementierung, obwohl wir nur 3
brauchen. Dabei generieren wir hohe Redundanzen, aber wie schon eingangs erwéhnt, soll
es hier nicht um eine optimale Realisierung gehen.

Um die Struktur nicht unnotig komplex werden zu lassen, wihlen wir eine Parallelitdt von 4.
Das heift, 4 Buchstaben sollen gleichzeitig eingelesen und anschlieflend kodiert werden. Wir
setzen p = 4 und erhalten nach Gleichung (3.22)

log, r; > p-log, tot
> 4-log, tot
>4-4 wir nehmen 4 statt 3 (sieche oben)
> 16
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4 Implementierung

Wir brauchen also fiir ¥ und L eine Bit Breite von 16 Bits.

Die zu kodierende Sequenz ist S = abccedac. Die Baum-Struktur fiir eine vierfache Par-
allelisierung ist in Abbildung 4.1 dargestellt. Wir benutzen fortan fiir das Beispiel das
hexadezimale System, ansonsten geben wir die Basis explizit an.

(L
I
GPE,
! : ! 1
(Lyry)
f GPE,

GPE GPE,
BPE,| |[BPE,| |BPE,| |BPE,
I I I I
(low,, cum) (low,, cum,) (low,, cum,) (low;, cum,)

Abbildung 4.1: Berechnungs-Baum fiir 4 Symbole + Konkatenation

Um besser rechnen zu kénnen, nutzen wir nicht den vollen Bereich von r = FFFF aus und
schranken r auf 8000 ein. De facto stehen uns nur 15 Bits zur Verfiigung. Das hochstwertigste
16. Bit wird nur dann gesetzt, wenn der volle Bereich benutzt wird. Es dient auch als Puffer
fiir Berechnungen, die tiber den Bereich von ry hinausgehen. Dies tritt bei der Berechnung
des Kodes im Algorithmus 3.1 auf. In diesem Algorithmus kann L den Wert L = 2(rp — 1)
annehmen. L und r werden also mit L = 0 und r = 8000 initialisiert. Das gilt im Ubrigen
auch fiir die GPE4. Hier muss auf der linken Seite L; = 0 und r; = 8000 initialisiert werden.

Als Ergebniss der BPEs erhalten wir
BPE;

L=ry-Fi(xp—1=a—-1=0)
= 8000 - low_count,/tot
=8000-0/8
= 0000

r=ro-p(xo=a3 =0)/tot
= 8000 - tot_count,/tot
=8000-2/8
= 2000
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BPE,

BPE;

BPE,4

L=ryg-Fi(xy—1=a—-1=1)
= 8000 - low countj/tot
=8000-2/8
= 2000

r=rp-p(xy =ay=1)/tot
= 8000 - tot count,/tot
=8000-1/8
= 1000

L=ry-F(xp—1=a3—-1=2)
= 8000 - low count./tot
=8000-3/8
= 3000

r=rp-p(xa =a3 =23)/tot
= 8000 - tot count./tot
=8000-3/8
= 3000

L=ryg-F(xp—1=a3—-1=2)
= 8000 - low count./tot
=8000-3/8
= 3000

r=rp-p(xa =a3 =23)/tot
= 8000 - tot count./tot
=8000-3/8
= 3000

Und fiir die GPEs entsprechend
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GPE,
L=Li14+r-Ly/r
= 0+ 2000 - 2000/8000
= 0+ 4000000/8000
= 800

r=r1-12/79
= 2000 - 1000/8000
= 400

GPE,
L=1Ly+r-Ly/ro
= 3000 + 3000 - 3000/8000
= 3000 4 9000000/8000
= 4200

r=r1-172/70
= 3000 - 3000/8000
= 1200

GPE;3
L=Li+7r-Ly/r
= 800 + 400 - 4200/8000
= 3000 + 1080000/8000
= A10

r=ry-12/70
=400 -1200/8000
=90

GPE4
L=Li+r-L/r
=0+ 8000- A10/8000
= A10

r=ry-12/70

= 8000 - 90/8000
=90
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4.2 Struktur

L r L-2 r-2 Lyext  Tnext | output
0A10 0090 | 1420 0120 1420 0120 0
1420 0120 | 2840 0240 | 2840 0240
2840 0240 | 5080 0480 | 5080 0480
5080 0480 | A100 0900 | 2100 0900
2100 0900 | 4200 1200 | 4200 1200
4200 1200 | 8400 2400 | 0400 2400
0400 2400 | 0800 4800 | 0800 4800
> 4000

SO =R O = OO

Tabelle 4.1: Normalisierung

Die Werte L = A10 und r = 90 werden jetzt mit Algorithmus 3.1 normalisiert.

Fir 74emp erhalten wir 74y = 790 = 120 und fiir Liemp = A10-2 = 1420. Lteyp und
Ttemp + Liemp sind kleiner als rp. Als Kode wird somit eine o ausgegeben und die Werte von
Liemp beziehungsweise von 7y in L und r ibernommen. Die zweite und dritte Iteration
verlaufen analog.

Bei der dritten Iteration ist Ly, = 5080 -2 = A100 und damit grofser als 7g. Lienp wird
angepasst, indem wir rg = 8000 davon abziehen. Als Kode ergibt sich eine 1. Alles andere
verlauft wieder gleich. Hier sehen wir, warum nicht FFFF als ro gewéhlt wurde. Lyeyp kann
hier nur den Wert 8000 — 1 annehmen und passt deshalb bei Verdoppelung noch in FFFF
hinein (7FFF -2 = FFFE). Wiirden wir den Bereich noch um 1 erweitern, waren fiir die
Berechnung der Normalisierung grofiere Register notwendig.

Die vollstandige Normalisierung von L = 0A10 und r = 0090 ist in Tabelle 4.1 dargestellt.
Nach den ersten vier Buchstaben abcc ist also ein Kode von 0001010 ausgegeben, in L steht
0800 und in r steht 4800.

4.2 Struktur

Der Kodierer wird in 6 Module unterteilt: Incrementer, RAM, Parallel Loader, Parallel Koder,
Normalizer und Control Unit. Dadurch ist es einfacher, den Entwurf zu erweitern und zu
validieren. Simtliche Module sind als Moore-Zustandsautomaten implementiert.

Die Kodierung beginnt damit, dass Incrementer und RAM vier Symbole bereitstellen. Der
Parallel Loader wandelt diese anhand des implementierten Modells in Wahrscheinlichkeiten
tiir den Koder um. Der Parallel Koder kodiert diese und gibt das Ergebnis als L und r an den
Normalizer weiter. Dieser normalisiert L und r. Der daraus entstandene Datenstrom wird in
einen im Normalizer implementierten RAM geschrieben. Damit ist ein Durchlauf beendet.

Dieser Prozess lduft so lange, bis das terminate Signal vom Incrementer gesetzt wird.
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Die Abbildung 4.2 auf Seite 79 zeigt die angeschlossenen Module als Block-Schaltbild im
Gesamtentwurf.

4.3 Incrementer

Der Incrementer hat zwei Funktionen: zum Einen die Aktuelle Adresse fiir das RAM zu
liefern, zum Anderen das terminate Signal zu geben. Die Adresse wird entweder bei Setzen
des inc Signals hochgezahlt oder aber mit Setzen von load_addr mit der Adresse addr_in
geladen.

Anders aber als im Synchron Zahler SN74161 darf nicht bei jeder steigenden Taktflanke
gezdhlt werden. Er soll die Adresse einmal steigern, dann erst wieder auf erneutem Kom-
mando. Das wird mit dem en Signal gegeben. Sind inc und en gesetzt, wird die Adresse um
1 inkrementiert. Um erneut zu inkrementieren muss das en Signal erst auf o, dann wieder
auf 1 gesetzt werden.

Das terminate Signal gibt an, dass die letzte Adresse anliegt und das Modul nach dem
Kodieren dieser Symbole fertig ist. Es wére auch denkbar, statt einer festgelegten Linge
des Textes, ein eof' Symbol einzufithren. Das Terminate Signal wiirde dann nicht vom
Incrementer geliefert werden, sondern vom Parallel Loader, der nach Lesen von eof das
Terminate Signal setzt.

Die Funktionsweise kann man in Abbildung 4.3 sehen.

600.000 n
on L L 2000 300 400 soen
!
24 addr in[3:0] ( 0 X 5
e e g ||
1 ok JANAAAAAAAAAAAAAAAARAARAAAAAAAAAAAAAAAARAAAAAAAAAAAAAA AR AR
3
1 en i | \ \ \
Jé reset |
U"amc [ \ ‘
1 load_addr |
=] _
L‘éterminate 1
Ué addr_rdy =2 M ml M |
2§ addr_out[3:0] ( u 0 1 2 3 5

Abbildung 4.3: Incrementer Test Bench

lend of file

66



4.4 RAM

Name ‘ Typ ‘ Wert ‘ Beschreibung
en in 0 Wartezustand

1 Einheit aktiviert
reset in 1 addr_out="000

terminate=0

inc in 1 Adresse wird um 1 erhdht
load_addr | in 1 Addresse addr_in wird geladen
addr_in in 3:0 zu ladende Adresse
addr_rdy out |1 Adresse liegt an
addr_out out | 3:0 Adresse
terminate out |1 Endadresse erreicht

Tabelle 4.2: Incrementer Pins

4.4 RAM

Das RAM beinhaltet den zu kodierenden Text. Der Koder liest vier Symbole gleichzeitig ein.
Wir hatten fiir ein Symbol vier Bits reserviert. Die gesamte Datenbreite des RAM Moduls
muss also 4 - 4 = 16 Bits breit sein, um alle Daten parallel ausgeben zu kénnen.

Um eine Konvertierung zu sparen haben wir die Symbole als Zahlen in den Speicher
geschrieben. Fiir a=0, b=1, c=2, d=3 und e=4. Bei Adresse 0 ist also die Zahl 0122, gespeichert
und bei Adresse 1 4302;,, um die Folge abcc edac abzubilden. In unserem Beispiel werden im
ersten Durchlauf die Buchstaben abcc = 0122 von der Adresse o gelesen.

a
15 ax

igen
1
“‘2 we

|
|
|
93 addr[3:0] " 0 1 X 2 X 3 X 0 X 1 ¥ 2 ¥ 3 ¥ 0
|
|
|

o
S
S
3
<

22 din[15:0] 3333
24 dout(15:0] ( UuuU V0122 ¥ 4302 ¥ 0122 ¥ 3333 ¥ 0122 ¥ 4302 ¥ 0122 ¥ 3333 ¥ 0122

Abbildung 4.4: RAM Testbench

Die Testbench zum RAM Modul ist in Abbildung 4.4 abgebildet. Bei 60 ns ist das we Signal
gesetzt. In dem Fall liegt am Ausgang der Wert din an, der gleichzeitig in Speicherzelle 3
geschrieben wird.

4.5 Parallel Loader

Stehen die Symbole bereit, werden diese Daten fiir den Koder passend gewandelt. Das
geschieht im Modul Parallel Loader. Dieses Wandeln entspricht dem Anwenden eines
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Name ‘ Typ ‘ Wert ‘ Beschreibung

en in 0 Wartezustand
1 Einheit aktiviert
we in 1 din wird in addr geschrieben und
an dout weitergeleitet
addr_in | in 3:0 Adresse
din in 15:0 | Daten Eingang
dout out | 15:0 | Daten Ausgang

Tabelle 4.3: RAM Pins

Modells auf den Text. Ein grofier Vorteil des Arithmetischen Kodierens ist die einfache
Anderung des Modells im Algorithmus. In unserem Beispiel braucht man hier nur dieses
Modul dndern, um ein anderes Modell zu wéahlen. Man konnte hier beispielsweise ein
adaptives Modell benutzen.

Wir benutzen ein MARKOvV ORDER 0 Modell. Das heisst, dass die Wahrscheinlichkeiten vorher
bekannt sein miissen. Das haben wir in unserem Fall schon in Tabelle 2.6 dargestellt.

Die Zuordnung von tot_count und low_count zu den am Eingang liegenden Symbolen
wird tiber einen direkten Offset generiert. Die Symbole werden als die zu lesende Adresse
interpretiert. Die Werte von tot_count und low_count sind in zwei separaten ROM Baustein
Gruppen kodiert. Insgesamt sind also acht ROM Module notwendig. Das erscheint etwas
viel, ist jedoch fiir eine echte Parallelisierung unumgénglich. Durch die Verwendung von
Offsets werden fiir den Entwurf keine zusétzlichen Komparatoren benéttigt wie in [SMJ9g].

Beispiel 14. Das dritte Symbol sei ein c. Am Eingang din liegt an den Leitungen din(8..11)
der Wert 2 = ¢ an. Der Wert 2 wird als Adresse (Offset) an die jeweiligen ROM Bausteine fiir
low und tot angelegt. Die Werte 3 fiir tot und 3 fiir low werden als Ergebnisse an 1ow3 und
tot3 angelegt. ¢

Den vollstindigen Quellcode kann man in Listing 5.1 auf Seite 83 im Appendix einsehen.

’ Name ‘ Typ ‘ Wert ‘ Beschreibung

en in 0 Wartezustand

1 Einheit aktiviert
reset in 1 lowl ...low4="0000
din in 15:0 | Daten Eingang
rdy out |1 Daten liegen an
low 1...4 | out | 15:0 | low_count 1...4
tot1...4 | out 15:0 | total_count 1...4

Tabelle 4.4: Parallel Loader Pins
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4.6 Parallel Koder

UL e

1& en

1 reset

2 din[15:0]
2 1ow1[3:0]
24 1ow2[3:.0]
B4 1ow3[3:0]
24 low4[3:.0]
@4 tot1[3.0]
24 to12[3.0]
&4 tot3[3.0]
& totd[3.0]
1& rdy

1§ zustand
U‘g foige_z
l& load_reg_rdy
1% all_ray
U‘Q reset_rdy
UTQ rl_en

U!. rten

23 dlow1[3:0]
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Abbildung 4.5: Parallel Loader Testbench
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4.6 Parallel Koder

Der Parallel Koder bildet den in Abbildung 4.1 dargestellten Baum nach. Dieser besteht
ausschliefllich aus BPEs und GPEs.

4.6.1 BPE

Die Berechnungsgrundlage fiir die BPE sind die Gleichungen (3.8) und (3.9). Wir setzen
ro = range;, Fx(xo)

low

cum_count
tot

range - Fx(xp)

range -

tot

cum_count,

und p(xg) =

tot_count

tot

. Daraus ergibt sich
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und

range = range - p(xo)
tot_county

= range - ot

Weil range; = 8000 und tot = 8 kdnnen wir die Gleichungen schreiben als

cum_count,

low = range - tot
o

range

= ——— - cum_count,
tot

~ 8000
~ 8

= 1000 - cum_count,

-cum_count,

und entsprechend

tot_count,
range = range;: —— ———

tot
range

— I288% ¢4t _count,
tot

8000
8
= 1000 - tot_count,

-tot_count,

Die Bit Breite von cum_count und tot_count sind 4 Bits. Die Multiplikation mit 16 Bits
ergeben ein 20 Bit Ergebnis. Wir wissen, dass das Ergebnis hier immer innerhalb der von
uns gewdhlten Bit Breite von 16 bleiben wird, weil sowohl cum_count < tot als auch
tot_count < tot gilt. Beide Gleichungen koénnen in einer Stufe parallel berechnet werden.
Abbildung 4.6 zeigt den internen Aufbau der BPE.

. Multiplikation

low_count _4 4
20 16
1OW (5 )
1000 _18 )
BPE
tot_count _4 4
20
range g 5
8000 _16

Abbildung 4.6: Schematische BPE
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20.000 ns 1117.000 ns

oOns 50ns 100 ns i [150ns
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1

L e 1 1 /1 1 1 /e e o ml e
—@ O B O B I e T e I s
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reset i

11
@

Moy uuu
=i 1ow[15:0] Uuuu
26 crange[15:0] [S[V[V]Y] 0000 ' 1000

mn P
L@ rdy m !
H

Abbildung 4.7: Testbench fiir BPE

4.6.2 GPE

Die GPE ist etwas komplexer als die BPE. Die Gleichungen hierfiir sind (3.6) und (3.7). Diese
Formeln bringen zwei Ketten von L und r zusammen. Fiir das Modul gehen jeweils range;
und range,, beziehungsweise low; und low; in die Rechnung ein. Zusammen mit den
Annahmen aus Kapitel 4.6.1 BPE erhalten wir

range; - lowp

low = low; +
range
range; - lowp
=low + ———
! 8000

und fiir r
range — range; - range,
range,
_ range; - range,
- 8000

Wir sehen hier, warum es von Vorteil ist, fiir ry eine Zweierpotenz zu wihlen. So kann
die Division durch einfache Bitverschiebung umgesetzt werden, andernfalls wére hier ein
Ganzzahl-Dividierer notwendig.

Die Berechnung von low erfolgt in zwei Schritten. Erst die Multiplikation, dann die Addjition.
Die GPEs haben dadurch eine hohere Latenz als die BPEs. Den internen Aufbau sehen wir in
Abbildung 4.8.
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. Multiplikation O Addition
rangel _16|
(32..16)
low2 _16| 16 low
lowl _16
GPE
rangel _16]|
(32..16) 16 range
range2 _16| :
Abbildung 4.8: Schematische GPE
200.000 n
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(g i2{15:0] A 4200
2 r2115:0) ( 1200
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Gen |
Ué reset ‘
25 low[15:0] (X 0000 X 0al0
25 crange[15:0] (X 0000 0090
U‘} rdy = "7

Abbildung 4.9: Testbench fiir GPE

4.6.3 Der Koder

Jetzt werden BPEs und GPEs gemifd Abbildung 4.1 miteinander verbunden. Ein Steuerwerk
aktiviert nacheinander die einzelnen Stufen: zuerst BPE1-4, GPE1 und 2, GPE3 und schliefslich
GPE4.

Diese «Serialisierung» ist nicht notwendig. Die Schaltung ist ein rein kombinatorisches
Netzwerk. Falls man an dieser Stelle den schnellstmoglichen Durchsatz erreichen will, kann
man sich den langsten Pfad des Moduls ausrechnen lassen und diese Latenz warten.

Die genaue Verschaltung sehen wir in Abbildung 4.10 auf Seite 73. Das Technologieschaltnetz
ist in Spalten eingeteilt. Jeder Block in derselben Spalte wird parallel abgearbeitet. Man kann
hier gut erkennen, wie die BPEs in einer Stufe geschaltet sind. Es folgen die zwei parallelen
Stufen der GPEs und am Ende erhilt die oberste GPE (in der Abbildung ganz rechts) die
Werte r = range, und L = lowg aus der vorhergehenden Berechnung. Im «top_modul», der
obersten Entwurfsebene muss der Ausgang low und range zu L = lowp und r = range,
zuriickgefiihrt werden. Das entspricht der Verkettung der Berechnungen. Zu Beginn der
Rechnung miissen lowp mit 0 und range;, mit 8000 initialisiert werden.
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800.000 n
Ons 100 ns 200 ns 300 ns 400 ns 500ns A 600 ns 700 ns
35 low_count 1{3.0] (0) 7
0w count 21301 0 3
g IUW_LOUI <121 =/ e
25 low_count_3[3:.0] 0
Do count 41301 1% T T T T3
B low_count 430] (0 3
B tot_count_1[3:0] 0 1
MLk ok araan /0 1
B ot count 21301 (@ I
5§ tot_count_3(3:0] (0% 2
9 tot_count_4[3:0] 0 3
55 1ow0[15:0] X 0800
2§ crange0[15:0] 4800
1 i JnnpananRAnRAnARRAnARARRRA AR ARAnARARRRRAARnARARARRARARRAARAAAAARRARD
1§ reset 1 |
G en _ L
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24 crange 11501 R 0000 001h
@ crangeiis:l) o/
Abbildung 4.11: Testbench fiir Parallel Koder
Name ‘ Typ ‘ Wert ‘ Beschreibung
en in 0 Wartezustand
1 Einheit aktiviert
reset in 1 crange ='0000 0000 0000 0000
low ="0000 0000 0000 0000’
low count 1...4 | in 15:0 | low_count 1...4
totcount1...4 | in 15:0 | total count 1...4
rdy out |1 Daten liegen an
crange out 1 r
low out |1 L
crangeo out |1 r aus vorangehender Berechnung
lowo out |1 L aus vorangehender Berechnung

Tabelle 4.5: Parallel Koder Pins

4.7 Normalizer

Das ist der komplexeste Block der Schaltung. Der Normalizer hat hier zwei Funktionen:
Zum einen skaliert er L und r und generiert damit den Ausgangs-Strom, zum anderen hat
er auch das RAM fiir die Speicherung desselben. Wie alle anderen ist auch dieses Modul als
Moore Automat realisiert. Durch die Schleife ist das Modul kein kombinatorisches Netzwerk.
Jedoch wurde in Kapitel 3.4.3 eine Moglichkeit vorgestellt, wie das realisierbar wire.

Es gibt zwei verschiedene Abbruchbedingungen fiir die Schleife: eine falls (range > 2 =
4000) ist und die andere ist (Lowsemp + rangey,,, > ro = 8000). Im zuletzt genannten Fall
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diirfen die Register low und range nicht mit den Werten von lowmy und range,,,, gela-
den werden. Im Zustandsautomaten heifien diese Pfade z_all_rdy_norm beziehungsweise
z_exit_old_val_norm.

Das interne RAM Modul speichert die kodierten Daten. Es ist als 1 Bit RAM implementiert,
was die hohe Anzahl von Adress-Leitungen erkldrt. Im Zustand z_select_bit_norm wird
abgefragt, ob als Kode eine 0 oder 1 herausgegeben wird (Zeile 313 im Listing 5.2).

Tabelle 4.1 zeigt die Normalisierung von L = 0A10 und r = 0090. Das Ergebnis 0001010
wird seriell in den Speicher geschrieben. Nach dem ersten Durchlauf steht der RAM Zihler
mod_addr_out auf 7.

1400.737 ns

Ons ‘500 ns 1,000 ns 1,500 ns
mn o . HHHHHHFIHM:FIHHHHHI'\FIHHIMHMFIHHHF\IHHHHHHHHH'HHHHHHHHHHHHHHHHHHHHHHHHHHHHHF:HHI‘IHHHFIHHF:FIHHHFIHFIFIHHHHHMHHHHHHHHHHHFIHFII':FIHHHHHI'\HN“\HHHHHI'IHHHF:HHHFIHHHHHF;FIHHHHHHHI‘IFIHHHHHFIHHHFIHHI'IV'IHHHN
Hg clk JUUUUDUU LU UL LU0 LD U U U VUL dO UOuo a0 a0 Boo nuoou oy HouoDENU LD DUURUUDCU UL YUK YL DL T Y WO oy e uoo oo oo tuiouunUuou U LD UK E VR U D
1 reset M
1n T
U@ en J
24 range_in[15:0] 0000 0090
= 5600\ 5570
5 low_in[15:0] ( 0000 X vait
&4 range_out[15:0] 8000 X 0120 X 0240 X 0480 X 0900 X 1200 X 2400 X 4800
5 low_out[15:0] 0000 1420 2840 5080 2100 4200 X 0400 X 0800
-L% rdy ﬂ
@4 addr_in[7:0] 00
24 addr_out[7:0] N4 02 N 03 Y 04 Y 05 X 06 \ 07
1 zustand_norm X0 )OO0 XN HZ0 OO0 OO OO0 X wait for_
I folge z norm X7 0 XX XX M7z_o XX X7 Xz_o Y XM Xz_o XY MXz Xz_o Y X XX Xz_o Y)Y X¥{z wait for e
- folge_z norm \zouter o/ A AZ0 AA AN AZL AN ARZAZ O AN AANZL - AN AAZAZ0 - AR AR AZS AR Az Wall_Tor e
LL'; reset_rdy_norm
L rdyv norm I
~ig rdy_norm i
1% all_rdy_norm
1 P, n n n n n n n
@ loop_noim L IL I I Il Il il
‘L% shift_rdy_norm ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ
M e o m m m m m m m
L@ wall_for_write_norm L Il I L I'L I'L I L I L
1§ outputo_norm [ | | M
n N L | | | |
L@ outputl_norm I L I L
1% load_reg_rdy_norm ﬂ ﬂ ﬂ ﬂ H ﬂ H
U‘g exit ioad reg rdy norm H
[y mod_en — L] I L | L | L L I,
2§ mod_addr in[7:0] 00 01 02 03 04 05 X 06 07
& mod_addr_out[7:0] (uu X 00 X 01 X 02 X 03 X 04 X 05 X 06 X 0/
1§ raddr_en T M I I Il Il [l I1
_‘.—( r_addr_in[7:0] ¢ 00 X 01 X 02 X 03 X 04 X 05 X 06 X 07
1& r_low_out_en ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ
IIL r range out en I i i i i i i1 10
" I_range_out_ H i i i I I it IS
1% data_out L
1L gat — I /T [ [ — 1 [ — [
g Gat [ | L i L i L J L L i L i L
2§ trange[15:0] (UUUU Y} o120 ¥ 0240 0480 0900 )} 1200 ¥ 2400 4800
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Abbildung 4.12: Testbench fiir Normalizer mit L = 0A10 und r = 0090
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Name Typ ‘ Wert ‘ Beschreibung
en in 0 Wartezustand
1 Einheit aktiviert

reset in 1 addr_out ="0000 0000’
low_out ="0000 0000 0000 0000
range_out ='0000 0000 0000 0000’

addr_in in 7:0 erste Adresse zum Schreiben des
Ausgangs-Stroms fiir internes RAM

low_in in 15:0 | low aus Koder Block

range_in | in 15:0 | range aus Koder Block

rdy out |1 Daten liegen an

range_out | out | 1 normalisiertes r

low_out out |1 normalisiertes L

addr_out | out | 7:0 Adresse des internen RAMs nach
dem Schreiben des Ausgangs-
Stroms. Zeigt jetzt auf die nédchste
zu Schreibende Adresse.

Tabelle 4.6: Normalizer Pins

4.8 Control Unit

Das Steuerwerk hat die Aufgabe, die einzelnen Schritte in einer Abfolge zu steuern. Das
geschieht durch das einzelne Setzen und Loschen der Aktivierungs-Bits. Es bildet ein grofies
Ubergangsschaltnetz eines Moore Automaten. Ein Durchlauf geht vom Inkrementieren der
RAM Adresse bis zur fertigen Kodierung der gelesenen Symbole. Der Durchlauf ist in Zyklen

eingeteilt, die jeweils auf das ready Signal der einzelnen Module warten.

In dieser Form werden die Module eines nach dem anderen aktiviert und deaktiviert. Das
heift, dass jedes Modul pro Durchlauf nur einmal aktiviert ist. Man kann den Durchsatz
erhohen, indem man alle Module im gesamten Durchlauf aktiviert hilt. Die Steuereinheit
(Control Unit) wartet auf sémtliche ready Signale statt auf einzelne. Damit wird die Zyklus-
lange immer gleich lang. Pro Zyklus werden neue Daten eingelesen und ausgegeben. Somit

ist es moglich, pro Zyklus 4 Symbole zu kodieren.
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4 Implementierung

Name ‘ Typ ‘ Wert ‘ Beschreibung

reset_in in 1 reset out ="1’

addr_rdy in 1 Adresse aus Incrementer liegt an
load_addr_in in 1 lade Incrementer mit Adresse
normalizer_rdy | in 1 Normalizer fertig

par_coder_rdy | in 1 Parallel Koder fertig
terminate_in in 1 letzte Adresse erreicht
data_ram_en out 1 aktiviere RAM

incrementer_en | out 1 aktiviere Incrementer

inc_en out |1 Adresse inkrementieren

Tabelle 4.7: Control Unit Pins

4.9 Validierung und Synthese Ergebnisse

Fiir jedes Modul wurde eine Testbench geschrieben und die Ergebnisse mit dem Referenz-
beispiel verglichen. Das Timing der einzelnen Signale wurde durch die Gesamtenwurfs-
Testbench tiberpriift.

Das Synthese Ergebnis auf ein Xilinx Virtex 5 XC5VSX50T ist in Tabelle 4.8 zusammengefasst.

Device Utilization Summary
Slice Logic Utilization ‘ Used ‘ Available | Utilization
Number of Slice Registers 1,086 19,200 5%
Number used as Flip Flops 412
Number used as Latches 674
Number of Slice LUTs 507 19,200 2%
Number used as logic 479 19,200 2%
Number using O6 output only 478
Number using O5 output only 1
Number used as Memory 4 5,120 1%
Number used as Single Port RAM 4
Number using O6 output only 4
Number used as exclusive route-thru 24
Number of DSP48Es 8 32 25%

Tabelle 4.8: Synthese Ergebnis Xilinx Virtex 5 XC5VSX50T -1 FFT1136
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5 Zusammenfassung und Ausblick

Im Kapitel 2 — Arithmetisches Kodieren haben wir umfassend die Grundlagen des Arith-
metischen Kodierens behandelt. Wir haben gesehen, dass die Rechenvorschrift aus zwei
Differenzengleichungen ((2.6) und (2.7)) besteht. Die Losungen von Differenzen- und Diffe-
renzialgleichungen lassen sich nicht parallelisieren — obwohl Teile, vor allem bei Partiellen
Differenzialgleichungen, parallel berechnet werden kénnen. Eine besondere Problematik
des Algorithmus ist die dafiir benotigte unendliche Prédzision. Wir haben gesehen, dass
dieses Problem mit einer Skalierung gelost werden kann. Fine Implementierung in C des
Algorithmus wurde vorgestellt.

Den Kern der Arbeit bildete Kapitel 3 — Parallelisierung. Hier wurden aufbauend auf das
in Kapitel 2 eingefiihrte sequenzielle Vorgehen Ansitze fiir eine Parallelisierung gezeigt.
Wie schon oben erwdhnt wird nicht die Gleichung an sich parallelisiert, sondern Teile der
Berechnungen.

Eine Analyse vorhandener Losungen wurde durchgefiihrt. Wir konnten herausfinden, dass
alle hier vorgestellten Paper im Prinzip Varianten eines Algorithmus sind. Mit dieser Erkennt-
nis haben wir die Vor- und Nachteile, die sich daraus ergeben, gezeigt. Zum Beispiel bleibt
die Prézision fiir grofle Parallelitidt ein Problem. AufSerdem wurde ein Vorteil welches sich
aus den unterschiedlichen Gleichungen ergibt, ndmlich um verschiedene Architekturen zu
kombinieren, erldutert. Im Zusammenhang mit der Skalierung haben wir einen Algorithmus
entwickelt, der wesentlich einfacher ist als der in Kapitel 2. Es wurde skizziert, wie man
diesen durch geeignete Implementierung eines Prioritdtsencoder beschleunigen kann. Wir
haben eine Gleichung zur Berechnung der notigen Bit Breite herausgearbeitet. Mit dieser
Formel sind wir jetzt in der Lage, eine mindestens erforderliche Bit Breite fiir die Register
anhand gegebener Anforderungen zu berechnen.

Im Kapitel 4 — Implementierung wurde die Theorie anhand einer realen VHDL Imple-
mentierung verifiziert und eine Machbarkeit gezeigt. Details zu den Berechnungen, die
Auswirkungen auf die Implementierung haben, wurden besprochen.

5.1 Ausblick

Unsere einleitende Frage — ob sich das Arithmetische Kodieren durch Parallelisierung
beschleunigen ldsst — konnen wir bejahen. Einige Fragen, die sich im Verlauf der Arbeit
ergaben, blieben offen. Wir wollen ein paar davon an dieser Stelle wieder aufgreifen:
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5 Zusammenfassung und Ausblick

Mit steigender Anzahl an parallelen Stufen steigt die bendtigte Bit Breite. Multiplizierer in
grofSer Bit Breite sind langsam und komplex. Man konnte herausfinden, ab wann sich der
Aufwand nicht mehr lohnt.

Falls ein Symbol a extrem oft vorkommt und damit p(a) nahe bei rj liegt, wird lange nicht
skaliert. In Kapitel 3.4.2 wurde angesprochen, dass dies zu einem Unterlauf fithren kénnte.
Ob das tatsdchlich stattfindet, wiare Gegenstand weiterer Untersuchungen.

Bei einem Pipelining, der nach jedem Takt neue Symbole einliest, miissen die einzelnen
Pipeline-Stufen aus kombinatorischen Netzwerken bestehen. Die Sklalierung mit Schleifen-
konstruktion ist nicht rein kombinatorisch. Eine Losung, die Skalierung kombinatorisch zu
gestalten, ist die oben genannte mit Prioritdtsencoder. Man kann die vorgestellte Implemen-
tierung dahingehend erweitern.

Ein geeigneter Dekoder muss entworfen werden. Ob man hier einfach den Sequenziellen
Dekoder verwenden kann oder aber durch die unterschiedliche Rechnung im parallelen Fall
andere Rundungen entstehen und damit ein abgestimmter Dekoder notwendig wird, muss
analysiert werden.

Wir stellen hiermit fest, dass diese Arbeit nicht nur unsere Frage beantwortet, sondern eine
Ausgangsbasis und Grundlage fiir einige sehr interessante Nachforschungen bildet.
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Appendix

-- Company:
-- Engineer: Maximiliano Keller

-- Create Date: 15:59:05 10/25/2010

-- Design Name:

-- Module Name: parallel_loader - Behavioral
-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

-- Dependencies:

-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity parallel_loader is
Port ( clk : in STD_LOGIC;
en : in STD_LOGIC;
reset : in STD_LOGIC;
din : in STD_LOGIC_VECTOR (15 downto 0);
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5 Zusammenfassung und Ausblick

lowl : out STD_LOGIC_VECTOR (3 downto 0);
low2 : out STD_LOGIC_VECTOR (3 downto 0);
low3 : out STD_LOGIC_VECTOR (3 downto 0);
low4 : out STD_LOGIC_VECTOR (3 downto 0);
totl : out STD_LOGIC_VECTOR (3 downto 0);
tot2 : out STD_LOGIC_VECTOR (3 downto 0);
tot3 : out STD_LOGIC_VECTOR (3 downto 0);
tot4 : out STD_LOGIC_VECTOR (3 downto 0);
rdy : out STD_LOGIC);
end parallel_loader;

architecture Behavioral of parallel_loader is

type zustaende is ( z0, zl1l, z2, z3, z4, z5, z6, z7,
z_reset_rdy, z_end );

signal zustand, folge_z : zustaende := z0 ;
constant rom_lat : time := 13 ns;
constant reg_lat : time := 23 ns;
constant sig_lat : time := 5 ns;

signal load_reg_rdy : std_logic := ’0’;
signal all_rdy : std_logic := ’0’;

signal reset_rdy : std_logic := ’0’;
signal r_l_en : std_logic := ’0’;
signal r_t_en : std_logic := ’0’;

signal dlowl : std_logic_vector (3 downto 0);
signal dlow2 : std_logic_vector (3 downto 0);
signal dlow3 : std_logic_vector (3 downto 0);
signal dlow4 : std_logic_vector (3 downto 0);

signal dtotl : std_logic_vector (3 downto 0);
signal dtot2 : std_logic_vector (3 downto 0);
signal dtot3 : std_logic_vector (3 downto 0);
signal dtot4 : std_logic_vector (3 downto 0);

component tot_rom is
Port ( clk : in STD_LOGIC;
addr : in STD_LOGIC_VECTOR (2 downto 0);
dout : out STD_LOGIC_VECTOR (3 downto 0));
end component;

component low_rom is
Port ( clk : in STD_LOGIC;
addr : in STD_LOGIC_VECTOR (2 downto 0);
dout : out STD_LOGIC_VECTOR (3 downto 0));
end component;

component dff_4_bit is
Port ( d : in STD_LOGIC_VECTOR (3 downto 0);
clk : in STD_LOGIC;
reset : in STD_LOGIC;
ce : in STD_LOGIC;
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end

for
for
for

q : out STD_LOGIC_VECTOR (3 downto 0));
component ;

all: low_rom use entity work.low_rom ( Behavioral );
all: tot_rom use entity work.tot_rom ( Behavioral );
all: dff_4_bit use entity work.dff_4_bit ( Behavioral );

begin

r_1

1: dff_4_bit port map (

clk => clk,

ce => r_1l_en,

d => dlowl,
q => lowl,
reset => reset

)

r_12: dff_4_bit port map (

clk => clk,

ce => r_1l_en,
d => dlow2,

q => low2,
reset => reset

)

r_13: dff_4_bit port map (

clk => clk,

ce => r_1l_en,
d => dlow3,

q => low3,
reset => reset

)

r_14: dff_4_bit port map (

clk => clk,

ce => r_1_en,
d => dlow4,

q => low4,
reset => reset

)

r_tl: dff_4_bit port map (

clk => clk,

ce => r_t_en,
d => dtotl,

q => totl,
reset => reset

)

r_t2: dff_4_bit port map (

clk => clk,

ce => r_t_en,
d => dtot2,

q => tot2,
reset => reset
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147 )

r_t3: dff_4_bit port map (
clk => clk,
ce => r_t_en,
152 d => dtot3,
q => tot3,
reset => reset

)

157 r_t4: dff_4_bit port map (
clk => clk,
ce => r_t_en,
d => dtot4,
q => tot4,
162 reset => reset

)

lowl_out: low_rom port map (
clk => clk,
167 addr => din (2 downto 0),
dout => dlow4d
);

low2_out: low_rom port map (
172 clk => clk,
addr => din (6 downto 4),
dout => dlow3
)

177 low3_out: low_rom port map (
clk => clk,
addr => din (10 downto 8),
dout => dlow2

);
182
low4_out: low_rom port map (
clk => clk,
addr => din (14 downto 12),
dout => dlowl
187 )
totl_out: tot_rom port map (
clk => clk,
addr => din (2 downto 0),
192 dout => dtot4
);
tot2_out: tot_rom port map (
clk => clk,
197 addr => din (6 downto 4),
dout => dtot3
);

tot3_out: tot_rom port map (

86



202

207

212

217

222

227

232

237

242

247

252

5.1 Ausblick

clk => clk,

addr => din (10 downto 8),
dout => dtot2

)

tot4_out: tot_rom port map (
clk => clk,
addr => din (14 downto 12),
dout => dtotl

)3
z_speicher: process ( clk, en )
begin
if reset = ’1’ then zustand <= z0 after sig_lat;

elsif (clk’event and clk = ’1’) then
if en =21’ then
zustand <= folge_z;
else
zustand <= z_reset_rdy;
end if;
end if;
end process z_speicher;

ue_sn: process ( zustand, load_reg_rdy, all_rdy,
reset_rdy
)
begin
case zustand is
when z0 =>
folge_z <= z1;
when z1 =>
if load_reg_rdy = ’1’ then
folge_z <= z2 ;
end if;
when z2 =>
if all_rdy = ’1’ then
folge_z <= z_end;

end if;
when z_reset_rdy =>
if reset_rdy = ’1’ then
folge_z <= z1;
end if;

when others =>
folge_z <= folge_z;
end case;
end process ue_sn;

aus_sn: process ( zustand )
begin
case zustand is
when z0 => -- reset zustand, alles auf null
all_rdy <= ’0’ after sig_lat;
rdy <= ’0’ after sig_lat;
load_reg_rdy <= ’0’ after sig_lat;
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257 r_l_en <= ’0’ after sig_lat;
r_t_en <= ’0’ after sig_lat;

when z1 => -- lade register
reset_rdy <= ’0’ after sig_lat;
262 r_l_en <= ’1’ after sig_lat;
r_t_en <= ’1’ after sig_lat;
load_reg_rdy <= ’1’ after reg_lat;

when z2 => -- erste stage
267 r_l_en <= ’0’ after sig_lat;
r_t_en <= ’0’ after sig_lat;

load_reg_rdy <= ’0’ after reg_lat;
all_rdy <= ’1’ after sig_lat;

272
when z_reset_rdy =>
all_rdy <= ’0’ after sig_lat;
rdy <= ’0’ after sig_lat;
reset_rdy <= ’1’ after sig_lat;
277
when z_end =>
all_rdy <= ’0’ after sig_lat;
rdy <= ’1’ after sig_lat;
282 when others =>
end case;
end process aus_sn;
end Behavioral;
Listing 5.1: Parallel Loader Code
-- Company:
3 -- Engineer: Maximiliano Keller
-- Create Date: 14:32:56 10/26/2010
-- Design Name:
-- Module Name: normalizer - Behavioral
8 -- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
13 -- Dependencies:
-- Revision:
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-- Revision 0.01 - File Created
-- Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_arith.ALL;
use IEEE.STD_logic_unsigned.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity normalizer is

Port ( clk :
reset :

en :

in STD_LOGIC;
in STD_LOGIC;
in STD_LOGIC;

range_in : in std_logic_vector ( 15 downto 0 );
low_in : in std_logic_vector ( 15 downto 0 );
range_out : out std_logic_vector ( 15 downto 0 );
low_out : out std_logic_vector ( 15 downto 0 );

rdy :

addr_
addr_
end normalizer;

out STD_LOGIC;
in : in STD_LOGIC_VECTOR (7 downto 0);
out : out STD_LOGIC_VECTOR (7 downto 0));

architecture Behavioral of normalizer is

component output_module is

Port ( clk :
reset :

en :

data :
data_

rdy :

addr_
addr_

end component;

in STD_LOGIC;

in STD_LOGIC;
in STD_LOGIC;
in STD_LOGIC;
rdy : in STD_LOGIC;

out STD_LOGIC;
in : in STD_LOGIC_VECTOR (7 downto 0);
out : out STD_LOGIC_VECTOR (7 downto 0));

component dff_1_bit is
Port ( clk : in STD_LOGIC;

d :
q:

in STD_LOGIC;
out STD_LOGIC;

reset : in STD_LOGIC;
ce : in STD_LOGIC

)

end component;

component dff_8_bit is
Port ( clk : in STD_LOGIC;
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d : in STD_LOGIC_VECTOR (7 downto 0);
q : out STD_LOGIC_VECTOR (7 downto 0);
73 reset : in STD_LOGIC;
ce : in STD_LOGIC
)s

end component;

78 component dff_16_bit is
Port ( clk : in STD_LOGIC;
d : in STD_LOGIC_VECTOR (15 downto 0);
q : out STD_LOGIC_VECTOR (15 downto 0);
reset : in STD_LOGIC;
83 ce : in STD_LOGIC
)

end component;

type zustaende_norm is (

88 z_reset_norm, z_outer_loop_norm, z_loop_start_norm,
z_select_bit_norm, z_outputO_norm, z_outputl_norm,
z_next_iteration_norm, z_all_rdy_norm,
Z_exit_old_val_norm, z_wait_for_en_norm
);

93 signal zustand_norm, folge_z_norm : zustaende_norm := z_reset_norm ;

-- setting some arbitrary values for latencies
constant reset_lat : time := 13 ns;
constant add_lat : time := 23 ns;
98 constant sub_lat : time := 23 ns;
constant comp_lat : time := 23 ns;
constant sig_lat : time := 2 ns;
constant ram_lat : time := 2 ns;
constant load_lat : time := 12 ns;
103 constant inc_lat : time := 12 ns;
constant shift_lat : time := 12 ns;

signal reset_rdy_norm : std_logic := ’0’;
signal rdy_norm : std_logic := ’07;

108 signal all_rdy_norm : std_logic := ’07;
signal all_rdy_old_value_norm : std_logic :
signal loop_norm : std_logic := ’07;
signal shift_rdy_norm : std_logic := ’0’;
signal wait_for_write_norm : std_logic := ’0’;

113 signal outputO_norm : std_logic := ’0’;
signal outputl_norm : std_logic := ’0’;
signal load_reg_rdy_norm : std_logic := ’07;
signal exit_load_reg_rdy_norm : std_logic :

1]
o

-

70’;
118 signal mod_en : std_logic := ’0’;
signal mod_addr_in : std_logic_vector ( 7 downto 0 );

signal mod_addr_out : std_logic_vector ( 7 downto 0 );

signal r_addr_en : std_logic := ’0’;
123 signal r_addr_in : std_logic_vector ( 7 downto O );

signal r_low_out_en : std_logic := ’0°;
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signal
signal

signal
signal

signal
signal
signal
signal
signal
signal
signal

-- init

for all :
for all :
for all :
for all :

begin

output_

r_range_out_en : std_logic := ’0’;
gnd_sig : std_logic := ’0’; -- standard low

ram_en : std_logic := ’07;
ram_write_en : std_logic := ’0’;

data_out : std_logic;

data_out_rdy : std_logic;

trange : std_logic_vector ( 15 downto 0 );

tlow : std_logic_vector ( 15 downto 0 );

r_range_out : std_logic_vector ( 15 downto 0 );
r_low_out : std_logic_vector ( 15 downto 0 );
const_one : std_logic_vector ( 7 downto 0 ) := x"O1";

ialising ffs

dff_16_bit use entity work.dff_16_bit ( Behavioral );
dff_8_bit use entity work.dff_8_bit ( Behavioral );
dff_1_bit use entity work.dff_1_bit ( Behavioral );
output_module use entity work.output_module ( Behavioral );

module_1 : output_module port map ( clk => clk,

en => mod_en, reset => reset,

addr_in => mod_addr_in,
addr_out => mod_addr_out,
data => data_out, data_rdy => data_out_rdy,

rdy => wait_for_write_norm );

reg_addr : dff_8_bit port map ( d => r_addr_in, clk => clk,
ce => r_addr_en, reset => reset, q => mod_addr_in );

reg_low_out : dff_16_bit port map (d=>r_low_out, clk => clk,
ce => r_low_out_en, reset => gnd_sig, q => low_out );
-- no hard reset possible, load value

reg_range_out : dff_16_bit port map ( d => r_range_out, clk => clk,
ce => r_range_out_en, reset => gnd_sig, q => range_out );
-- no hard reset possible, load value

z_speicher: process ( clk, en )
begin
if reset = ’1’ then

zustand_norm <= z_reset_norm;

elsif (clk’event and clk = ’1’) then

if en =1’ then
zustand_norm <= folge_z_norm;
end if;

end if;
end process z_speicher;

ue_sn_norm: process (
reset_rdy_norm, loop_norm, shift_rdy_norm,
outputO_norm, outputl_norm, data_out_rdy,
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wait_for_write_norm, all_rdy_norm,

load_reg_rdy_norm, all_rdy_old_value_norm,

exit_load_reg_rdy_norm, rdy_norm,
zustand_norm, en )

begin

case zustand_norm is

92

when z_reset_norm =>
if reset_rdy_norm = ’1’ then
folge_z_norm <=
end if;

when z_outer_loop_norm =>
if loop_norm = ’1’ then
if wait_for_write_norm = ’0’ then
folge_z_norm
end if;
elsif all_rdy_norm = ’1’ then
folge_z_norm <= z_all_rdy_norm;
end if;

when z_loop_start_norm =>
if shift_rdy_norm = ’1’ then
folge_z_norm <=
end if;

when z_select_bit_norm =>

if outputl_norm = ’1’ then
folge_z_norm <=
elsif outputO_norm = ’1’ then

folge_z_norm <= z_outputO_norm;
end if;

when z_outputl_norm =>
if wait_for_write_norm = ’1’ then
folge_z_norm <=

z_outer_loop_norm;

-- reset wait_for_write_norm
<= z_loop_start_norm;

z_select_bit_norm;

z_outputl_norm;

Z_next_iteration_norm;

elsif all_rdy_old_value_norm =’1’ then
folge_z_norm <= z_exit_old_val_norm;

end if;

when z_outputO_norm =>
if wait_for_write_norm = 21’ then
folge_z_norm <=

Z_next_iteration_norm;

elsif all_rdy_old_value_norm =’1’ then
folge_z_norm <= z_exit_old_val_norm;

end if;

when z_next_iteration_norm =>

if load_reg_rdy_norm = ’1’ then
folge_z_norm <=
end if;

when z_all_rdy_norm => --
if exit_load_reg_rdy_norm = ’1’ then
folge_z_norm <=

z_outer_loop_norm;

new low and range will be loaded

z_exit_old_val_norm;
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end if;

when z_exit_old_val_norm =>
if rdy_norm = ’1’ then
folge_z_norm <= z_wait_for_en_norm;
end if;

when z_wait_for_en_norm =>
-- wait for en = 0 to reset rdy signal
if en = ’0’ then
folge_z_norm <= z_reset_norm;
end if;

when others =>
end case;

end process ue_sn_norm;
aus_sn_norm: process ( en, reset, zustand_norm )

case zustand_norm is
when z_reset_norm => -- entry point for en = 1

-- set low0 und range0 to default values
-- do not reset registers (0 values)
r_low_out <= x"0000" after sig_lat;
r_range_out <= x"8000" after sig_lat;
r_low_out_en <= ’1’ after sig_lat;
r_range_out_en <= ’1’ after sig_lat;

r_addr_in <= addr_in after sig_lat;
r_addr_en <= ’1’ after sig_lat;
-- set the initial values if en = 1
-- this will be done if in this state and
-- the en signal changes
if en = ’1’ then
trange <= range_in after sig_lat;
tlow <= low_in after sig_lat;
end if;
rdy_norm <= ’0’ after sig_lat;
all_rdy_norm <= ’0’ after sig_lat;
all_rdy_old_value_norm <= ’0’ after sig_lat;
exit_load_reg_rdy_norm <= ’0’ after sig_lat;

reset_rdy_norm <= ’1’ after load_lat; -- loading addr_ff

when z_outer_loop_norm =>

mod_en <= ’0’ after sig_lat;
r_low_out_en <= 0’ after sig_lat;
r_range_out_en <= ’0’ after sig_lat;
outputO_norm <= ’0’ after sig_lat;
outputl_norm <= ’0’ after sig_lat;
shift_rdy_norm <= ’0’ after shift_lat;
reset_rdy_norm <= ’0’ after sig_lat;
data_out_rdy <= ’0’ after sig_lat;
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load_reg_rdy_norm <= ’0’ after sig_lat;
r_addr_en <= ’0’ after sig_lat;

if trange <= x"4000" then
loop_norm <= ’1’ after comp_lat;
all_rdy_norm <= ’0’ after comp_lat;
else
all_rdy_norm <= ’1’ after comp_lat;
loop_norm <= ’0’ after comp_lat;
end if;

when z_loop_start_norm =>
loop_norm <= ’0’ after sig_lat;
all_rdy_norm <= ’0’ after sig_lat;

tlow <= tlow ( 14 downto 0 ) & ’0’;
trange <= trange ( 14 downto 0 ) & ’0’;

shift_rdy_norm <= ’1’ after shift_lat;

when z_select_bit_norm =>
shift_rdy_norm <= ’0’ after sig_lat;
if tlow (15) = ’1’ then -- would send 1
tlow <= ’0’ & tlow (14 downto 0) after sub_lat;
outputl_norm <= ’1’ after
( comp_lat + sub_lat );
else -- would send 0
outputO_norm <= ’1’ after comp_lat;
end if;

when z_outputl_norm =>
if ( tlow + trange ) <= x"8000" then -- send or exit?
mod_en <= ’1’ after sig_lat;
data_out_rdy <= ’1’ after sig_lat;
data_out <= ’1’ after sig_lat;

-- output_module will set the wait_for_write_rdy bit
else

all_rdy_old_value_norm <= ’1’ after sig_lat;
end if;

when z_outputO_norm =>
if ( tlow + trange ) <= x"8000" then -- send or exit?
mod_en <= ’1’ after sig_lat;
data_out_rdy <= ’1’ after sig_lat;
data_out <= ’0’ after sig_lat;

-- output_module will set the wait_for_write_rdy bit
else

all_rdy_old_value_norm <= ’1’ after sig_lat;
end if;

when z_next_iteration_norm =>
r_low_out <= tlow after sig_lat;
r_range_out <= trange after sig_lat;
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r_low_out_en <= ’1’ after sig_lat;
r_range_out_en <= ’1’ after sig_lat;

r_addr_en <= ’1’ after sig_lat;
r_addr_in <= mod_addr_out after sig_lat;

-- reset the wait_for_write_rdy signal by setting
-- data_rdy to ’0°’
data_out_rdy <= ’0’ after sig_lat;

load_reg_rdy_norm <= ’1’ after load_lat;

when z_all_rdy_norm =>
r_low_out <= tlow after sig_lat;
r_range_out <= trange after sig_lat;
r_low_out_en <= ’1’ after sig_lat;
r_range_out_en <= ’1’ after sig_lat;

exit_load_reg_rdy_norm <= ’1’ after load_lat;

when z_exit_old_val_norm =>
exit_load_reg_rdy_norm <= ’0’ after sig_lat;
rdy_norm <= ’1’ after sig_lat;

when z_wait_for_en_norm =>
rdy_norm <= ’0’ after sig_lat;

when others =>
end case;
end process aus_sn_norm;

rdy <= rdy_norm;
addr_out <= mod_addr_out;

end Behavioral;

Listing 5.2: Normalizer Code
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Verkettung zweier Funktionen

binaer

dezimal

hexadezimal

Ende des Beispiels

Alphabet

Wahrscheinlichkeit

Diskrete akkumulierte Verteilungsfunktion fur X =i
Sequenz

Laenge der Sequenz

Wahrscheinlichkeit

Entropie

Logarithmus Dualis (Logarithmus zur Basis 2)

Basis des Zahlensystems

Skalierungs Grenze

Gesamthaeufiggkeit

Frequenz von g;

Anzahl paralleler Stufen

Anzahl der Schritte ab der Skaliert wird

Anzahl der Schritte ab der Skaliert wird in paralleler Abarbeitung
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