Institute of Parallel and Distributed Systems
University of Stuttgart
Universitatsstra3e 38

D-70569 Stuttgart

Diplomarbeit Nr. 3078

Maximization of resource
utilization through dynamic
provisioning and deprovisioning
in the cloud

Florian Fritz
Course of Study: Software Engineering
Examiner: Prof. Dr. Bernhard Mitschang
Supervisor: Dipl.-Inf. Frank Wagner
Commenced: September 01, 2010
Completed: March 17, 2011

CR-Classification: C.24,H3.2,H34

Abstract

The amount of data companies have to manage daily increases drastically from year to year.
Whenever work is done information gets created related to a business process. Companies
are legally bound to keep record of all their business activities to be able to provide evidence
in case of lawsuits. In case of a lawsuit all data relevant to the case has to be collected, put
on hold, be reviewed and produced. Lawsuits that require data to be discovered are not
rare. According to survey of [Fulio] in 2010 16% of the consulted companies had over 50
lawsuites commenced against them.

To reduce the amount of documents that have to be reviewed, documents should not be
kept longer than the company is legally bound to. But this management is not an easy task.
Companies need to introduce big content management systems that need to cope with great
amounts of data. To do so huge expenses into IT infrastructure have to be made and complex
systems need to be managed. With the advent of the cloud computing paradigm the costs of
these software systems could be decreased drastically.

IBM is working on a project to provide Electronic Archiving Management as a service using
existing Electronic Content Management systems. This service provides means to reliably
store documents that are not used in active business processes anymore. Documents are
stored until the customer is not legally bound to keep the documents anymore. They are
being full text indexed to be easily discovered for litigation cases.

This thesis gives an introduction into Electronic Content Management, Cloud Computing
and Multitenancy to provide the basics for this project. After introducing a modeling
concept based on Tivoli Service Automation Manager’s Service Definitions. The existing
software components are examined on their capabilities on multitenancy and segregated
into manageable resources. The dependencies of the software components are then being
examined and an automatic deployment process is developed. With this deployment process
it is possible to reduce the time needed to deploy a new installation from weeks to less than
two hours.

Contents

1 Introduction
1.1 Cloud computing
1.1.1 Cloud Characteristics
1.1.2 ServiceModels L o
1.1.3 Deploymentmodels
1.1.4 Examples of Cloud Computing Services
Computing Cloud Services
Storage Cloud Services
1.2 Enterprise Content Management
1.2.1 Document Management 0L
1.2.2 Records Management
1.2.3 Electronic Archiving Management
2 Motivation
2.1 Multitenancy L
2.1.1 Layers of separation oL
Executiontier o o
Datatier
2.1.2 Concerns of Multitenancy
Isolation
Security
Customizability o
Maintainability o o
Recovery
2.2 Electronic Archiving Management as a Service
3 Archive Cloud Service
3.1 FileNet Content Engine
3.2 FileNet Records Manager
33 Workplace XT
3.4 ContentSearch Engine,
3.5 eDiscovery Manager
3.6 Archive Cloud Portal

11
12
12
13
14
14
14
16
16
18
19
20

23
23
24
24
25
26
26
27
27
27
28
28

29
30
30
31
31
31
31

4 Service Modeling 33

4.1 Introduction in Tivoli Service Automation Manager 34
4.2 Service Definition L L 35
4.2.1 Structural Service Model L. 35
Maximo Classification L. 36

Relations between Topology Nodes 36

Topology Node Cardinalities 37

Resource Allocation Templates 38

4.2.2 Operational Service Model, 38
Mapping of Input and Output 38
Preparation Workflow 39

4.3 ServiceOfferings L 40
4.4 Modeling Concepts 42
4.4.1 Structural Modeling o L o 42

4.4.2 Operational Modeling 43
Management Plans L oL 43

Data Flow e 44

5 Implementation 45
5.1 Archive Cloud Service Software Stack 45
5.2 Analysis of the software components 45
52.1 Storage 46
Description 46
Multitenancy L o L 46

Structure 46

5.2.2 Database Management System 47
Description 47
Multitenancy 48

Structure 48

5.2.3 Application Server L L o 49
Description 49
Multitenancy L 51

Structure 51

5.2.4 Directory Server o o 52
Description 52
Multitenancy L L 52

Structure 52

525 FileNetCE 53
Description 53
Multitenancy L L 53

Structure 53

52.6 FileNetaddons 54

Description 54

Structure 54

5.27 Portal 55
Description 55

Structure 55

5.2.8 Completetopology 56

5.3 Provisioning Workflow o L oL 58
53.1 Middlewarebasics L o oo 59

5.3.2 Middleware configuration o 0L 60

53.3 FileNetCEand RM 62

5.3.4 Enduser applications 00 L. 64

6 Conclusion and Outlook 67
Bibliography 69

List of Figures

1.1
1.2

1.3

4.1
4.2
43
4-4
4.5
4.6
4.7

4.9
4.10

5.1
5.2
53
54
55
5.6
57
5.8
59
5.10
5.11
5.12
513
5-14
5-15

Different cloud service models 13
Activitiesin ECM 17
Role of ECM in an Enterprise System 18
Execution tier isolationlevels Lo L 25
Archive Cloud Service software components 30
CCMPRAStack oo e 33
TSAM User Interfaces 35
Service Definition - Overview 36
Structural Service Model Lo 37
Service Definition - ManagementPlan 39
Service Definition - Input/Output Mapping 40
Service Request Processing Workflow 41
Structural Model Example oo 43
Operational Model Example 43
DataFlow Model Example 44
Storage topology 47
IBM DB2 HADR Configuration 48
Database Management System topology 49
Websphere ND concept 50
Application Server topology Lo 51
WebSphere DataSources topology 52
Directory Server Topologies 53
FileNet CE topology 54
FileNet addon topology 55
Archive Cloud Portal topology 56
Complete topology separated in 5 services 57
Deployment Flow 58
Data Mapping: FileSets, Organizational Unit, WebSphere Cluster 60
Data Mapping: Databases, JDBC Provider 61
Data Mapping: DataSources, Security Domain 62

5.16 Data Mapping: FileNet Content Engine, FileNet P8 Domain 63

5.17 Data Mapping: Records Manager, ObjectStores 64
5.18 Data Mapping: Workplace XT, Archive Cloud Portal 65
5.19 Data Mapping: Content Search Engine, eDiscovery Manager. 66

1 Introduction

The amount of data companies have to manage daily increases drastically from year to year.
Whenever work is done information gets created related to a business process. Companies
are legally bound to keep record of all their business activities to be able to provide evidence
in case of lawsuits. In case of a lawsuit all data relevant to the case has to be collected, put
on hold, be reviewed and produced. According to [Diroy] the costs to review one gigabyte
of data can run up to $2000.

The legal department of the company DuPont assessed their three-year process to respond
to one single discovery request. For this request 75 million pages of text had to be reviewed.
It was found out that 50% of the documents were kept beyond its retention period and
therefore should not have been reviewed. The costs of reviewing these outdated documents
summed up to $12 million. [Foco7] states about the discovery process that:

" According to multiple studies, this legal process of exchanging and reviewing information
represents approximately 75% to 90% of all litigation costs.”

Lawsuits that require data to be discovered are not rare. According to survey of [Fulio] in
2010 16% of the consulted companies had over 50 lawsuites commenced against them.

It can easily be seen that a better management of the companies information can reduce the
expenses on litigation cases tremendously. Documents should not be kept longer than the
company is legally bound to. But this management is not an easy task. Companies need to
introduce big content management systems that need to cope with great amounts of data.
To do so, huge expenses into IT infrastructure have to be made and complex systems need to
be managed.

With the advent of the cloud computing paradigm the costs of these software systems could
be decreased. By hosting the applications for multiple customers on one system the hardware
resource utilization can be increased. Usually servers in data centers have an utilization of
5% to 20% to be able to cope with peak loads. Having multiple customers with different
workload distribution can lead to a more stable resource consumption and the difference
between average and peak load can be reduced. This will save hardware costs and enable an
application provider to reduce its charges.

This thesis is part of a project that will provide an Electronic Archiving Management system
as a cloud service. The rest of this chapter presents the technical fields, the project is based

11

1 Introduction

on. At first the basics of cloud computing are described. After that an introduction into
enterprise content management will be given. Chapter 2 provides an insight in the concepts
of multitenancy. After that chapter 3 introduces the Archive Cloud Service project of IBM®.
Chapter 4 presents a service automation software and will define a modeling language for
deployment automation. Chapter 5 decomposes the Archive Cloud Service into manageable
components and describes the deployment process of these components.

1.1 Cloud computing

According to Google Trends' the term cloud computing has become popular in the computer
science area within the last three years. Being used in marketing campaigns by several
companies however has created various understandings of what cloud computing actually is.
Cloud computing is tried to be sold as a brand new technology, but in fact it is just a new
paradigm including many old concepts of providing software to a customer. The following
subsections will present a commonly accepted definition of cloud computing by the National
Institute of Standards and Technology (NIST). It is separated in three parts. The first part
describes basic characteristics of cloud computing. The second part presents different service
models of cloud computing and the third part how they can be deployed.

1.1.1 Cloud Characteristics

The Cloud model of the National Institute of Standards and Technology [MGog] describes
five essential characteristics:

On-demand self-service A customer is able to request a services without any human inter-
action needed on the side of the provider.

Broad network access The services are available over network and can be consumed with
"heterogeneous thin or thick client platforms”.

Resource pooling The provider manages a pool of “physical and virtual resources, that are
dynamically assigned and reassigned according to consumer demand”. There is a "sense of
location independence”, the customer has no control over how the resources are assigned
and where they come from. The customer might however be able to specify the country,
state or data center in which his service should be provided.

Rapid elasticity Depending on the demands of the customer, additional resources can be
provisioned and deprovisioned to quickly scale in and out. Resources appear to be
unlimited and can be purchased at any time or quantity.

Thttp://trends.google.com

12

http://trends.google.com

1.1 Cloud computing

Measured Service To optimize the utilization of resources in a cloud system, providers
use metering capabilities to control the resource allocation. Metering is also used to
determine the amount of resources used by a tenant for billing.

1.1.2 Service Models

Cloud computing services can be delivered on different layers. The National Institute of
Standards and Technology [MGog] defines three service models. These are Infrastructure as
a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS).

Software as a Service

SaaS
= Platform as a Service
(1]
&
2 PaaS
w
g
11
=]
Infrastructure as a Service
laaS

Horizontal integration

<

Figure 1.1: Different cloud service models [SSW1o0]

laaS is defined as providing “processing, storage, networks and other fundamental computing
resources” to the customer. The customer himself is responsible for deploying operating
systems and applications. The underlying hardware can not be controlled by him. He only
requests the desired amount of resources, how they are provided is transparently managed
by the cloud provider.

In the PaaS model the customer is provided with an infrastructure in which applications
can be deployed. These applications are created provider specific with certain programming
languages and tools. The customer has knowledge or control over the underlying servers,
operating systems or storage. The control is limited to the “deployed applications and possibly
application hosting environment configuration”.

SaaS is a model in which the customer does not deploy any software in the cloud infrastruc-
ture. He is provided with a functionality that is “accessible from various client devices through a

13

1 Introduction

thin client interface”. Access to the cloud infrastructure is limited to “user specific application
and configuration settings”.

1.1.3 Deployment models

Cloud infrastructures can be used by different groups of users. The cloud definition of NIST
names 4 different deployment models, namely Private Cloud, Community Cloud, Public
Cloud and Hybrid Cloud.

Private Clouds are used by one single company. These clouds can be operated by the
company itself or by a third party. They can be located on or off premise.

Community Clouds are shared between multiple organizations with “shared concerns (e.g.,
mission, security requirements, policy, and compliance considerations)”. Like Private Clouds,
Community Clouds may be managed by a third party or the organizations themselves
and it may be on or off premise.

Public Clouds are available for the “general public or a large industry group” and is owned by
an organization that is selling cloud services.

Hybrid Clouds describe the composition of multiple clouds that are bound together by data
or application. E.g for means of load balancing.

1.1.4 Examples of Cloud Computing Services
As described in 1.1 there are different models of service. For each of these models there are
several providers. Cloud offerings can be divided into two categories, computing clouds,

that focus on running applications and storage clouds that focus on storing high amounts of
data. This section provides a brief overview of the most popular cloud service providers.

Computing Cloud Services

Computing Clouds Services are services that provide reliable and scalable computing power
on a pay per use basis. This section will describe four different service offerings.

14

1.1 Cloud computing

Amazon EC2 is the most popular Infrastructure as a Service provider. With this service the
customer can dynamically provision EC2 Instances. An EC2 Instance is a set of virtualized
hardware. On this virtual hardware the customer deploys virtual machines with an operating
system and the desired software stack. There are no limitations on the software that can be
used.

This is a very low level approach cloud offering. Because the EC2 Instances are very
application specific it is not possible to offer scalability and failover at the service layer. The
customer himself has to build a high available software system, that tolerates the failure of
single EC2 Instances.

The pricing model of EC2 is based on EC2 Instances per hour. There are different virtual
hardware configurations with respect to memory size, CPUs, storage size and 1/O perfor-
mance. Each configuration has a cost per hour, regardless of their utilization. This way
running one EC2 Instance for 1000 hours costs the same as running 1000 EC2 Instances for 1
hour.

To efficiently use this cloud service the used software has to be able to quickly adapt to
changes of the resource demand by rapidly scaling both up and down.JAFG*o9]

Microsoft Azure is a Platform as a Service solution. The customer can deploy applications
into an application framework, that supports scalability and failovers. But the applications
have to be specifically developed for this framework.

This approach allows the customer to develop scalable applications without having to cope
with low level problems like data base availability and performance. Used machines are
defined with declarative descriptions. They contain what kind of machines are needed, how
they are connected and how they can be replicated. The platform is then able to scale these
resources up and down as needed.

The pricing is based on an instance per hour concept.[AFG*o9]

Google App Engine is also a Platform as a Service system. It is however more restrictive
in its application than Microsoft Azure. Google App Engine is a framework exclusively for
web applications. Applications have to be developed specifically for this framework, which
enforces a strict separation of a stateless computation tier and a stateful storage tier. It also
requires the application to be request-reply based.

These enforcements lead to a highly scalable and high available application that manages its
resources automatically. The application developer does not have to consider any of these
issues. [AFG T o9]

The pricing of Google App Engine is very flexible. The customer only has to pay for the
CPU hours, bandwidth, storage and sent emails that are actually used. [Goo]

15

1 Introduction

Google Apps and Salesforce are popular providers of Software as a Service solutions.
They both provide many business management applications integrated into each other.
Typical examples are email, Content Management, Customer Relationship Management or
Human Resource Management.

Pricing is usually done on an application per user per month basis.

Storage Cloud Services

Storage Cloud Services provide a secure, reliable and scalable data storage. Customers do
not have to cope with data replication, backups or performance of the storage. As the data
is mostly needed within Computing Cloud Services their providers usually offer storage
solutions as well. The storage solutions of the providers mentioned above are: Amazon S3,
Microsoft Azure Storage and Google Storage.

The pricing of all providers are based on storage in gigabyte per month, bandwidth usage
and number of requests.

1.2 Enterprise Content Management

This section provides an introduction in the field of Enterprise Content Management (ECM).
Companies produce a lot of content every day. [Pro1oa] describes content as information
about a document that is provided in electronic systems. This information contains the
content of a document, its layout and metadata about it. [Pro10a] describes three kinds of
content:

structured content Data that is provided in a known layout, like formated datasets from a
database. Data, layout and metadata can be completely separated.

weakly structured content Data that contains layout or metadata in a not standard form
within itself. Examples for this content are text documents and presentations.

unstructured content Data that contains content, layout and metadata within itself. The
information within this data can not be accessed directly. For example images, videos
or sound files.

Independent of the form the content is provided it contains knowledge. This knowledge
has to be carefully managed. The existence of the knowledge within the company alone
is not enough. It has to be made available when and where needed. ECM describes the
technologies used to manage this knowledge. The Association for Information and Image
Management (AIIM) defines ECM as:

16

1.2 Enterprise Content Management

"Enterprise Content Management (ECM) is the strategies, methods and tools used to
capture, manage, store, preserve, and deliver content and documents related to organiza-
tional processes. ECM tools and strategies allow the management of an organization’s
unstructured information, wherever that information exists.” [All]

Figure 1.2 gives an insight about all the tasks related to capture, manage, store, preserve and
deliver content.

Fat Client | Enabling | Web Client ‘ other Devices

| Web Content Management | Re Ositoﬂes g

Collaboration P O

3 [Digital Asset Management I | Storage | o0

é l E-Mail Management I) | Long-Term Archival _| g

= [Records M t] Business [BackupTRecovery | &

ecords Managemen
g Process]
| &
Document Management l Manageme nt

= s | [ContentIntegration | |
=l | Indexing RE S| Search /Retieval] |5
2 2 S 3
@ [Categorization] » Workflow | | Syndication | o N

y [Cocaizaton]

3 Z

: :

© | Publish |
EA
PKI Electronic User Management | User Rights A
Signature Directory Service | Management DRM Firewall
| Entry Exit |

Figure 1.2: Activities in ECM [Kamo6]

The capture component contains all tasks required to aquire content ranging from scanning
paper documents to categorizing and indexing them. The manage component deals with
the management, processing and using of content. The task of the store component is to
temporarily store, search and retrieve content. Unlike the store component the preserve
component deals with the longtime archiving of content and its backups using various
storage solution. The deliver component has to ensure security for the content and also
transform and distribute it.

The focus of this thesis is on the manage and the preserve component. The manage
components Document Management and Records Management which are most relevant
in this project as well as the preserve component will be described in detail later in this
chapter.

17

1 Introduction

E-Business
Applications

Workflow ‘ Collaboration

Integration

Enterprise
Content
Management

Data Warehousing | Web Content
Mining Management

Doc Mgmt
Imaging

File
System

Domino Exchange RDMS Infrastructure

Figure 1.3: Role of ECM in an Enterprise System [Kamo6]

Figure 1.3 displays the role of ECM within a modern company. Together with Enterprise
Application Integration (EAI) it builds the middle ware for all areas of management like
Enterprise Resource Planing (ERP), Accounts Payable and Accounts Receivable (AP/AR),
Records Management/Archiving (RM/A), Customer Relationship Management (CRM) and
Human Resources Management (HRM).

1.2.1 Document Management

The application area of Document Management describes the management of documents
and their life cycle. A document management system has to manage data in different
formats from different sources that are stored into a storage hierarchy with version and
history management. In contrast to an archiving solution documents can be modified,
combined with other documents and be attached with informations about their status. The
application area of Document Management describes the management of documents and
their life cycle. A document management system has to manage data in different formats
from different sources that are stored into a storage hierarchy with version and history
management. In contrast to an archiving solution documents can be modified, combined
with other documents and be attached with informations about their status.

A Document Management System manages the creation, modification and archiving of a
document by adding meta information about the business processes it is being used in.

18

1.2 Enterprise Content Management

Compound documents, that consist of different information sources like text, data, images,
audio, videos or links are getting more and more relevant. Examples for this kind of
documents are encyclopedias, training materials or manuals. They allow keeping relevant
information gathered together in the context they belong to.

Dealing with big amounts of data an intelligent storage hierarchy has to be used, that stores
the document depending on their access speed and frequency as well as the cost of storage.
This storage hierarchy may contain memory storing, hard drives or tapes, where memory is
the fastest and most expensive and tapes are the slowest but cheapest storage.[Pro1ob]

1.2.2 Records Management

While the purpose of Document Management Systems is to provide easy access to documents
throughout a company to collaborate, the purpose of a Records Management System is to
document “statutory, requlatory fiscal or operational activities within the organization” [Roe1o].
The central element of Records Management is the record. The International Organization
for Standardization (ISO) defines records in the ISO 15489 standard:

"Record: Information created, received, and maintained as evidence and information
by an organization or person, in pursuance of legal obligations or in the transaction of
business”

Records Management enables a company to control “the creation, receipt, maintenance, use
and disposition of records”. This way records can be used as reliable evidence for all business
activities. In case of legal investigations a company is legally bound to provide all evidence
of a legal case, this is hardly possible without systematic records management.

According to [ISOo1] records management within a company includes:
e setting policies and standards

e assigning responsibilities and authorities

establishing and promulgating procedures and guidelines

e providing a range of services relating to the management and use of records

e designing, implementing and administering specialized systems for managing records
e integrating records management into business systems and processes

Introducing records management into a company is not an easy task. All policies and
procedures have to be analyzed about their authenticity, reliability, integrity and usability.

For a record to be authentic it has to be provable what the purpose of the record was as well
as when and by whom it was created. To be reliable it has to fully and accurately describe
the related business activity. For the integrity of a record policies and procedures have to

19

1 Introduction

specify what additions or annotations can be made to a record as well as who is authorized
to do so. Every change made to a record has to be explicitly indicated and be traceable. A
usable record can easily be located, retrieved, presented and interpreted. A record should
therefore contain all information needed to understand the business activity as well as links
to all related information to it.

1.2.3 Electronic Archiving Management

Electronic Archive Management (EAM) is a part of Records Management, that only deals
with archiving records that are not part of active processes anymore. As mentioned before
records have to be stored for a certain amount of time depending on their type. In the United
States these retention periods are regulated by the sarbanes oxley act. Some examples for
these retention periods are [Baloy]:

3 Years Employment Applications

5 Years Invoices to Customers, Invoices from Vendors, Purchase Orders

7 Years AP/AR Ledgers, Payroll Records & Tax Returns, Inventories of Products
Permanent Bank Statements, Contracts & leases, Legal correspondence

For these time periods the documents have to be stored in a way that they can quickly be
discovered and retrieved for litigation cases.

Compared to a regular Records Management system an EAM system has different workload
characteristics. While a Records Management system has to deal with a lot of living
documents, that are retrieved and change their contents and statuses, an EAM system deals
with documents that usually don’t change. An EAM systems task is to store and index all
records to make them discoverable in case of an investigation.

According to [MKW™og] the goals of an EAM system are:

"The designing of an EAM system must put major focus on the performance and scale
aspect such to efficiently handle an unknown and variable number of documents, ingested
at highly variable rates by a possibly very large population of end users or principals.”

That means an EAM system has to cope with highly irregular ingestion processes and still
provide an acceptable performance. Ingesting a record requires several steps with different
resource requirements:

Extract The first step of archiving data is identifying the data source and extract the relevant
data according to the archiving rules. This data source could be a Records Management
System.

20

1.2 Enterprise Content Management

Identify After extracting the data from the data source unique identifiers for each document
has to be generated by using hashing algorithms.

De-duplicate Using the identifiers from before duplicates are being searched and eliminated.
Only documents that are not already in the archive are being stored.

Classify In this step documents are being classified by their content or metadata. Document
classes specify access rights and retention policies for the documents.

Decompose This step decomposes documents that consist of multiple data parts like headers,
bodies and attachments.

Transcode In this step components of the previous step are transcoded into plain text
representations of its content.

Annotate Using linguistic methods the document is enriched with annotations describing
the document to prepare it for full text indexing.

Transform & Archive After these steps the document the document is enriched with all
needed information and can be stored into the archive. In some cases the document
might be transformed into other formats like HTML or PDF for convenience.

21

2 Motivation

ECM systems as described in 1.2 are complex software systems, that have to cope with
huge amounts of content being created every day and ingested into the system. However
the usage of the system varies a lot. In business hours a lot of documents will be created,
retrieved or changed. There might also be peak hours with workload multiple times higher
than the average. Having to be able to provide a good service even in these peak times,
makes it necessary to provide huge amounts of processing power. This processing power
however is mostly unused.

Being a critical part in organizations the ECM system has strict requirements concerning
availability and disaster recovery. This means that the system has to be available all the time
providing a good service and even in case of a destroyed data center no data loss can be
tolerated.

To build a system that fits these requirements, high amounts of know how and infrastructure
are needed. Both know how and infrastructure are expensive, especially for a company that
does not focus on IT. This company therefore has to buy know how and infrastructure, that
does not provide a direct business value and is not needed elsewhere.

This thesis is part of a project of the IBM, which wants to provide an ECM solution in a SaaS
service model (see chapter 1.1). The customer does not have to deal with any hardware or
software anymore he only orders a service that he can integrate into his business.

The next sections will describe the concept of multitenancy and how it is enabling this
project.

2.1 Multitenancy

An important concept for Software as a Service is multitenancy. In a multitenant environment
multiple customers or tenants share parts of the software they consume. This is done in
order to reduce the cost of operation per tenant compared to hosting a software environment
for each tenant.

Multitenancy has no direct benefit for customers. It has however the indirect benefit for
the customer that it reduces the cost for the service provider, who is then able to provide

23

2 Motivation

a service at a lower price due to economy of scale. Multitenancy is accepted by customers
because the cost reduction outweighs the disadvantages of shared resources.

The next sections describe how resources can be shared between tenants and what special
concerns have to be addressed doing so.

2.1.1 Layers of separation

In multitenancy the “software must appear to each tenant as if he was the sole tenant of the
application” [MMLPog]. Therefore the tenants have to be segregated at some part of the
application providing each tenant with his own data. This separation can be performed
at many different levels of the application. [MKW*o9] differentiates between two tiers of
tenant separation, execution tier and data tier.

Execution tier

In the execution tier there are four different levels of isolation (Figure 2.1) between the
tenants.

Application level There is only one application deployed. All software components are
shared between the tenants. The isolation logic is implemented within the application.
There is only one login mechanism that determines which tenant the user is from and
provides the respective data.

Middleware level Tenants get their own deployment of the application. All applications are
deployed into a shared middleware. This middleware might consist of application
servers, database servers or directory servers. Each application connects to tenant
specific data sources.

Operating System level In this level of isolation tenants only share operation systems. The
used middleware and applications are deployed per tenant.

Virtual machine level In an isolation on virtual machine level tenants don’t share any soft-
ware at all. Every tenant gets separate virtual machines including the whole software
stack. Tenants only share the hardware running the virtual machines.

From the first to the last layer the isolation level increases. Higher isolation leads to higher
data security and less performance interdependence between the tenants. It also reduces the
complexity of customizing the service for the tenant.

On the downside the increased isolation level also increases resource requirements by adding
more and more overhead to the system, compared to the actual application of the tenant.
Every piece of software that is additionally deployed needs resources to be deployed and

24

2.1 Multitenancy

Application Level Middleware Level OS Level VM Level

T1:T2:T3 TH

Application i—I:I D
|
|
|

Middleware

|
Operating System ‘
|

Hardware

Figure 2.1: Execution tier isolation levels

executed as well as operational resources for maintenance like deploying, configuring,
updating and undeploying.

In many cases an isolation on application level is not possible to implement due to legacy
software that is being used, which is not capable of supporting multitenancy.

Data tier

The data tier defines the isolation on the data storage. There are also four levels of isolation:

Shared database tables Tenants share the same database tables. Tenant specific data is
isolated by a tenant id. To prevent one tenant to be able to access the data of other
tenants views on database tables and data encryption can be used.

Shared database Tenants share the same database but do not use shared database tables.
Every tenant gets an own set of tables grouped together in a database schema. Data
security can be provided by Access Control Lists(ACL) and data encryption.

Shared database server Tenants have individual databases, that are hosted on one database
server. All database tables of a tenant run within his own database. ACLs and data
encryption can be used for data protection.

Separate database servers On this level of isolation each tenant gets an individual installa-
tion of a database server.

These isolation tiers increase in isolation from top to bottom, but they decrease their perfor-
mance. According to [CCWo6] an approach with shared database tables is able to support
more tenants with less servers. The shared database approach is appropriate for applications
with only few databases per tenant. It allows to host more tenants than a shared database
server approach. A disadvantage of both shared database approaches is, that backup and

25

2 Motivation

restore mechanisms for the database are relatively complicated. It is not possible to simply
restore the whole database backup into the running system. It has to be restored into a
separate database so that the tenant specific data can be isolated and restored into the
running system. This includes identifying the tenant specific data in both versions of the
database, deleting all data from the running system and replacing them with the backed up
version.

The shared database server approach makes it easier to backup and restore data and offer a
good data isolation. But on the downside this approach has relatively high hardware costs
because databases have a certain overhead. Every database for example has own buffer pools
that need memory. There are are also limitations on how many databases a server does
support.

In the separate database server setup no resources are shared. It offers the maximum level of
data separation but also the highest resource cost.

In the ECM environment data is not necessarily stored only into databases, but also in file
systems. The tier level for data isolation can also be adapted to mass storage devices:

Shared folders Tenants have files in shared folders.
Shared file system Tenants have their own folders but within a shared file system.
Shared hard drives Tenants have their own file systems but on shared hard drives.

Separate hard drives Tenants have their own dedicated hard drives.

These tiers increase their isolation level from top to bottom but it increases the overhead in
managing them. A higher isolation leads to easier backup and recovery as well as destruction
of data. When a tenant decides to quit a service all of his data has to be removed reliably
without a possibility of recovery.

2.1.2 Concerns of Multitenancy

Even though multitenancy has a lot of benefits, there are also some issues that need to be
addressed.

Isolation

When software and hardware instances are shared between multiple tenants, it is possible to
save hardware costs by balancing the load of all tenants. But due to limited resources it is
possible that one tenant consumes so much resources, that other tenants Quality of Service
(QoS) is reduced. In some cases it might even be possible to bring down the whole service.

26

2.1 Multitenancy

Security

Security is a very big issue in multitenancy environments. Special effort has to be put into
protecting the data of one tenant from the other tenants. For example how can you make
sure that a user of one tenant cannot access the portal of a second tenant.

Customizability

Sharing applications reduces the effort to maintain a service, but it also reduces its customiz-
ability. Many tenants may want to adapt the service to their own needs. This might start
with simple graphical changes to the user interface for corporate identity reasons. But also
changes to business processes and database schemas could be desired. [MMLPog] describes
three basic patterns to implement customizability in multitenant applications.

Single instance One instance of the application is shared between all tenants. That means
that the same workflow using the same code on the same infrastructure is used by
several tenants [MMLPog]. Therefore no tenant specific configuration is possible.

Single configurable instance All tenants share one instance of the application that is con-
tigurable. Whenever the application gets invoked, it is customized at run-time for the
invoking tenant. This customization data is stored per tenant in configuration files or
configuration entries in a database.

Multiple instances In this pattern for each tenant an instance of the application is deployed.
This pattern allows best customization per tenant, but also the most operational effort.
For every tenant new code has to be deployed, configured and maintained.

The first two patterns with the single instance require early consideration of configurability
in the development process. The application has to be developed as multitenant applications.
The third pattern allows to provide non multitenant application as a multitenant service.

Maintainability

Running only one instance of an application reduces the effort to update its version a lot. But
in some cases it might not be desirable to update the instance for all tenants at the same time.
Upgrades of software always bear a risk of introducing new errors to a system. If only few
tenants suffer from an error in the actual version of the application and most of the tenants
don’t, applying a patch for this problem to all tenants could lead to more problems.

27

2 Motivation

Recovery

The more multitenant applications share the harder it will get to backup and restore tenant
specific data. As mentioned before, it is easier to backup and restore a whole database than
tables or even rows. It is also necessary for the system to support online backup and restore
for a tenant. This means that the software has not to be halted to perform maintenance.
Halting an application for a planned maintenance task in a single tenant environment might
be tolerable, but in a system that is used by hundreds or thousands of tenants a downtime
to perform maintenance for one tenant is not acceptable.

2.2 Electronic Archiving Management as a Service

Having examined the idiosyncrasies of Electronic Archiving Management systems and the
capabilities of Cloud Computing and Multitenancy, it can be said that it seems to be possible
and feasible to provide an Electronic Archiving Management solution as a service.

A limitation for such a service could be the network bandwidth that has to be provided to
service all customers. Since this is only an archiving solution that deals with records that
are not part of active business processes any more, retrieval operations are not very likely.
According to [MKW ' 0g] 80% of the workload are produced by the ingestion process and
most of the documents will never be retreived. Compared to a common Enterprise Content
Management System the bandwidth requirements are relatively low.

It is being assumed that the workload of multiple customers is relatively random and that
peak loads of multiple customers are unlikely to appear at the same time. According to the
law of large numbers the utilization should get smoothened and the effect of load peaks be
reduced.

Having a relatively stable workload, a provider for an Electronic Archiving Service could
reduce the expenses on hardware to provide a service to customers at a cost that could
overcome the concerns of multitenancy mentioned in chapter 2.1.

28

3 Archive Cloud Service

The Archive Cloud Service is a project of the IBM which aims to provide a Compliance
Archive Management System as a cloud service. The novelty of this approach is not the
service that is provided, but the way it is provided. Existing Enterprise Content Management
applications are used to provide a pay-per-use archiving solution.

In traditional ECM solutions, the customer buys hardware and software and has to install,
configure and maintain the system himself. This leads to very high initial hardware costs as
well costs for software licenses. Installing systems will either cost a lot of work or a lot of
money when a third party is commissioned to do it.

In the Archive Cloud Service Model the customer does not have to cope with hardware
or software acquisition or their sizing. The customer just selects his service by providing
several Service Level Agreements like documents ingested per day and a maximum time
to retrieve a document. These agreements are then signed together with a contract. After
that the service will be immediately provisioned for the customer. When the provisioning is
completed the customer will be notified and given access to the system.

The Archive Cloud Service does not try to provide a complete ECM solution to the customer.
It focuses on the archiving of records (see chapter 1.2.3). The customers are assumed to
already have a working Content Management System that is integrated into their business
processes. The Archive Cloud Service provides a complementary service to that system, that
deals with the long term archiving of documents that are not longer active.

The customer loads documents that are not used in business processes anymore into the
Archive Cloud Service to have them reliably stored and indexed in case of litigation cases.
In such cases it is possible to easily discover and retrieve all documents required. When
documents reach the end of their retention period they are automatically deleted.

Since IBM already has a wide variety of ECM products no new applications have to be
developed for the archiving itself. To ease the use of the system however a web portal will be
developed, that reduces the complexity of the system configuration. The following sections
will describe the software products that provide the Archive Cloud Service (see Figure 3.1).
The infrastructure components for Directory Server (Tivoli® Directory Server), Database
Management System (DB2®), Storage (GPFS™) and Application Server (WebSphere® Appli-
cation Server, IBM HTTP Server) are described in more detail in chapter 5.2. All applications
described below run within a WebSphere Application Server environment.

29

3 Archive Cloud Service

HTTP Server

WorkplaceXT Arch’i;I:ﬁ(a::Oud E D M CS E

WebSphere Application Server

| |
| |
| |
| FileNet RM FileNet CE |
| |
| |
| |

GPFS

Figure 3.1: Archive Cloud Service software components

3.1 FileNet Content Engine

FileNet Content Engine (FileNet CE) is an extensible ECM system (see 1.2) by IBM. It provides
the basic component of the Archive Cloud Service. It uses an object oriented repository that
supports management of customer-defined business objects. It allows to define relationships
between objects and manage their life cycle.

There are several addons for FileNet CE to extend its capabilities to support Records
Management or integrate it with office solutions like Microsoft Office or Lotus® Quickr®.
In the Archive Cloud Service the extensions Workplace XT, FileNet Records Manager and
eDiscovery Manager will be used.

3.2 FileNet Records Manager

FileNet Records Manager (FileNet RM) enhances the FileNet Content Engine with capa-
bilities of Records Management (see chapter 1.2.2). This contains automating the lifecycle
process of records and enforcing compliance policies on them. It prevents records from
being accidentally destroyed or altered while they are still needed for business purposes.
[ZABT09]

30

3.3 Workplace XT

3.3 Workplace XT

Workplace XT is a user frontend for the FileNet Content Engine. It is a web based application
that exposes content related functionality to the user. He can ingest documents into the
FileNet Content Engine, declare documents as records and retrieve documents.

3.4 Content Search Engine

The Content Search Engine (CSE) creates full text indexes of ingested documents for eDis-
covery.

3.5 eDiscovery Manager

The eDiscovery Manager (EDM) is a tool for electronic discovery. It allows “authorized IT and
legal users [...] to search, cull, hold and export case-relevant documents” [ZCF*og].

3.6 Archive Cloud Portal

The Archive Cloud Portal provides an easier to use interface to the archiving solution. It
combines all required administration functions of the included applications. This way there
is one central point to manage the Archive Cloud Service. It provides the functionality
to manage access control, document classification and archiving processes. The portal
centralizes only administrative tasks to work with the archived documents and to discover
documents for litigation cases Workplace XT and eDiscovery Manager are used.

31

4 Service Modeling

To be able to provide a service as described in chapter 3 operational efforts have to be
reduced to a minimum. Every human interaction leads to higher costs, higher probability of
an error and slower reaction times. IBM is working on a reference architecture that is able to
manage complex data center automation tasks. This reference architecture is called Common
Cloud Management Platform (CCMP).

Figure 4.1 shows a cloud management middleware stack based on the CCMP reference
architecture. The Tivoli Service Automation layer deploys and manages Services into the
Virtualized Infrastructure Layer that can serve different workloads. [BSWS*10]

Workloads Web, Collaboration
and Infrastructure
= Service measurement

= Service reporting

N Technol

= Usage accounting ng;:;;hr:::ed
= Auditing and controls e

Scale Out Capable

Lower Quality of Service
""""""""" R

Tivoli Service —— N E — ™\
Automation M T'.:n o TSAM v7.2 Service Service TPM TUAM
Layer lonitoring Request Mgr Autom?tmn Provisioning

= Automate process
of instantiating and
managing a
distributed 1T
environment.

Orchestration workflows

i
i

i

i

Mg Mgr. Usage i

Reports !

Tivoli Process Automation Engine !

!

Billing '

i

Service S i
Automation i
i

]

i

i

1

i

i

=
~
o
[}
=

User Interface

Templates

End to End Service Management

Virtualized

Infrastructure Layer! as umc [nim| System p/ SUN HMO System z
= Virtualized resources : 3 ;
= Virtualized aggregation ;
—] Hypervisor
(2VM)

= Physical infrastructure

VM Partition
VM Partition
VM Partition
VM Partition

Hypervisor

” (KVM, VMware, Xen)
Storage H Netwark Storage H Network Storage

Hypervisor
(PowerVM)

Network

Figure 4.1: CCMP RA Stack [BSWS*10]
The scope of this thesis is the deployment of services and will therefore concentrate on the

Tivoli Service Automation Manager (TSAM or TivSAM) part of that Service Automation
Layer. Monitoring and metering will not be investigated here.

33

4 Service Modeling

The following sections describe the service model of TSAM. Based on that a modeling
language is created to model the Archive Cloud Service described in chapter 3.

4.1 Introduction in Tivoli Service Automation Manager

To manage big landscapes of IT infrastructure IBM developed the Tivoli Service Automation
Manager. It implements the whole service life cycles with a service oriented approach. All
assets within a deployment of a service are modeled within its Service Definition. This
Service Definition contains information about the hardware and software requirements as
well as how they need to be installed.

TSAM is a component for the Tivoli Process Automation Engine implementing a data model,
workflows and applications to manage IT services. TSAM itself manages all processes of the
service life cycle. These processes contain approval workflows for deployment, modification
or undeployment of services. It also manages the reservation of resources and the steps
needed to deploy a service. To execute provisioning operations it uses the Tivoli Provisioning
Manager (TPM).

All hardware and software assets are managed within the Tivoli Change and Configuration
Data Base (CCMDB). It contains the state of the IT landscape with all deployed services and
their components as well as the hardware resources that are unused so far.

There are four graphical interfaces to TSAM for different user groups. An Administration
UL, Offering Catalog UI, Tivoli Service Request Manager (SRM) Admin UI and TPM Admin
UL With its Administration Ul it is possible to access all the TSAM specific functions. This
Ul is meant to be used by administrators, operators and designers.

To enable end users to control TSAM the Tivoli Service Request Manager can be put in front
of TSAM. SRM allows exposing a certain set of functionality to the end user in form of
offerings in the SRM offering catalog. In this Offering Catalog UI end users can request and
manage their services. These service offerings can be administrated in the SRM Admin UL

All of the aforementioned products can be integrated into existing applications via the
Maximo Enterprise Adapter (MEA) or an REST interface.

The following sections describe how services are modeled within TSAM using Service
Definitions and how they are offered to the customer using Service Offerings. This model
will be used in the next chapter to break the Archive Cloud Service down into manageable
resources.

34

4.2 Service Definition

End Users

External Ul
(e.g. Web 2.0)

l

MEA / REST Interface

t

Tivoli Service Automation
= Manager

Tivoli
Provisioning
Manager

Tivoli Service Request
Management

Service Designers, Service Operators,
Administrators

Figure 4.2: TSAM User Interfaces [SIKD " 10]

4.2 Service Definition

A service in TSAM is modeled with Service Definitions. A Service Definition is an abstract
model of a provided service. It describes what hardware and software requirements the
service has and how they can be installed and configured. A Service Definition is separated
into two parts, a structural and an operational model (see Figure 4.3).

The structural model describes what pieces of software are needed for the service and what
attributes and operations they support. The operational model describes in what order the
operations have to be executed to fulfill a management goal like deploying the service.

How these two models work in detail is explained in the next sections.

4.2.1 Structural Service Model

The structural service model describes components and the relationship between the compo-
nents of a service. Each component is modeled with a Service Topology Node. A Topology

node is a generic object that does not contain information about the type of component
that it represents. Types of components are modeled with Maximo Classifications. These

35

4 Service Modeling

n..m 1 ~ 1 A —0

N, |8 [i@ ' Build Plan
T o|

’N]_. Management Plans
4

Structural Model Operational Model

Service Definition
Figure 4.3: Service Definition - Overview [BSWS 10]

classifications are shared system wide and can be reused in all Service Definitions. Topology
Nodes on the other hand are defined explicitly for a Service Definition.

The level of granularity a service is modeled in depends on the scope of the service. For
example, a model for automating the management of WebSphere clusters will contain
elements such as WebSphere Nodes and Application Server Instance, or logical entities like
a Cell and a Cluster, but it will in most cases not handle elements at or below the operating
system layer, these are more or less taken as a prerequisite.

The structural Service Definition may contain both topology nodes that are managed by
TSAM processes as well as static nodes, that are not managed by TSAM but are used by the
service. For example a WebSphere cluster could use a DBMS that is managed by TSAM or
one that is set up manually.

Maximo Classification

A classification defines the attributes a Topology Node has. For instance a classification
could be HTTP Server with attributes like Installation Directory, Administrator user name or
HTTP port. When a topology node is classified as an HTTP Server it inherits all attribute
definitions from its classification.

Relations between Topology Nodes

The structure of a service is defined with a tree of topology nodes. A node can have multiple
child nodes but only one parent node. This relationship corresponds to a containment
relationship. For instance “A WebSphere Cell, for example, consists of (it contains) an HTTP
server, a Deployment Manager, one or more Managed Nodes, and it can define clusters” [SIKD 10]

4.2 Service Definition

DBEMS

WebSphere Cell SaTver
k 4
—
IBM HTTP &Q?Spr:;‘i WebSphere WebSphere Database
Server pioy! Managed Node Cluster Instance
Manager
e -
1.* 71 *\ -
. 2 - -
T
Application T e \]f’_ s 3
Server Instance Resource Resource
| Allocation | Allocation
Template | Template |

“Linux x86" “AlX pSeries”
\ s\

Figure 4.4: Structural Service Model [SIKD* 10]

According to [SIKD*10] almost all environments can be structured in a hierarchical way.
This dependency is modeled with a solid arrow in Figure 4.4.

Additionally to this strictly hierarchical containment relationship custom relationships
can be defined. These relationships can model service specific semantics. For instance
a WebSphere Cluster has a relationship to all its Application Server Instances. But are
modeled in the parent-child relationship as children of the WebSphere Managed Node. The
additional relationships can be used to easier navigate through the topology model within
the operational model.

Topology Node Cardinalities

In a Service Definition it is possible to define the cardinality of Topology Nodes. This means
that a Topology Node can be deployed multiple times within an instance. For every Topology
Node a minimum and maximum cardinality is configured. The default of these values is
one. In some cases it might be desirable to only define a Topology node once with all its
attributes, operations and dependencies and increase or decrease its cardinality on demand.
For example the WebSphere Cell in Figure 4.4 can contain an infinite number of WebSphere
Managed Nodes.

37

4 Service Modeling

Resource Allocation Templates

Another element of the topology model are Resource Allocation Templates. They are used to
describe the relationship between a Topology Node and IT resources and is therefore only
needed for nodes that have direct hardware requirements. For example a WebSphere Node,
including its WebSphere Application Server requires a server with enough memory and
an operating system, to be installed on. A WebSphere Cell in contrast does not have direct
IT resource requirements. A Resource Allocation Template might contain requirements on
hardware components like minimum memory and CPU requirements as well as requirements
on software that is installed, like their versions.

When a service is instantiated, the Resource Allocation Templates are used to find fitting
resources, the applications can be deployed onto. Topology nodes can have different Resource
Allocation Templates for different environments. For example different operating systems.
For each operating system requirements can be defined(Figure 4.4)

4.2.2 Operational Service Model

The Operational Service Model contains the processes necessary to modify a service instance.
This could be instantiating the whole service or adding and removing components. For each
modification task it contains a Management Plan.

These Management Plans describe the steps necessary to fulfill the management goal. These
steps are implemented with Topology Node Operations. A Topology Node Operation relates
to a Topology Node like a Management Plan to a Service Definition. It modifies the state of
a Topology Node like installing or configuring software components. Figure 4.5 displays
the relation between topology nodes (purple), Topology Node Operations (green) and a
Management Plan (white).

Like the attributes of a Topology Node its operations are defined within its Maximo Classifi-
cation. The implementation of an operation is done with Maximo Job Plans. There are some
default Job Plans for example to invoke TPM workflows or custom scripts.

Mapping of Input and Output

Another important part of the Management Plans is the mapping of input and output data. A
Management Plan Task has a specified interface defining which input and output parameter
it has. But it is not defined where the data comes from and where it has to be stored after the
execution. To define this data flow Input Mappings and Output Mappings have to be created.
Input Mappings are executed immediately before a Management Plan Task to collect and
provide the data needed. Output Mappings are executed immediately after a task execution
and manage the storing of output data.

38

4.2 Service Definition

Create
Filesystem

O

Create
Virtual
Server

O

Acquire
Network
Address

O

Figure 4.5: Service Definition - Management Plan [SIKD ' 10]

The most common way to manage the input and output data is to store them in topology node
attributes. Other options are constants, user input requests through a GUI or parameters
that have been passed to the Service Request.

Figure 4.6 shows how input and output mapping works. The Aquire Network Address tasks
retrieve a hostname and an IP address from a pool. That data is then stored within the
Topology Node of the corresponding Virtual Server. The Create Virtual Server tasks then
retrieve this data and data about memory and CPU size of the virtual machine. This data is
then used to deploy a virtual machine with a TPM workflow.

Preparation Workflow

The processing of a Management Plan always has two phases. A preparation phase and an
execution phase. In the preparation phase a Maximo Workflow is executed, that gathers all
relevant data, prepares the Topology Model and requests all required approvals.

The Management Plan is analyzed for required input data. For instance, if it has to be
executed on a selected Topology Node, the user that requested the Management Plan
execution will have to select it.

When the execution of the Management Plan results in new components being installed, the
preparation workflow will create the required Topology Nodes. A preparation workflow for
the management plan shown in Figure 4.5 will have to perform the following steps.

39

4 Service Modeling

Create
Virtual
Server

Acquire
Network
Address

Hostname / IP Pool TPM

Figure 4.6: Service Definition - Input/Output Mapping [SIKD " 10]

Acquire
Network
Address

Having a cardinality of 1..n for the Virtual Server node, the requester has to select the number
of servers he wants to create. Also it might be necessary to provide more data about the server
configuration like the amount of memory and CPUs, if they have not been predetermined
within the Topology Model. After retrieving all information about the resource requirements
of the Virtual Servers the resources can be reserved on physical machines. At this point the
jobplan is ready for execution, but depending on the configuration its execution has to be
approved by an administrator first. If so, an approval request for the administrator is created.
When approved the Management Plan will be executed.

4.3 Service Offerings

The Service Definitions described above are only abstract templates of a software service.
To be used they have to be instantiated first. There are two ways of instantiating a Service
Definition. The first way is to use the TSAM interface directly. This however is deprecated
because it bypasses the common TPAe way of using Service Requests. Also using TSAM
directly would require the end-user to understand the technical details of it. To simplify
requesting of a service Service Offerings are used.

40

4.3 Service Offerings

Service Offerings are put on top of a Service Definition and only expose their external
functionality provided by the Management Plans. Service Offerings are implemented using
the Tivoli Service Request Manager. With it Service Offerings can be defined and provided
using Offering Catalogs. An Offering Catalog is a set of Service Offerings that can be
provided to certain user groups. For example there could be a group of software testers. For
this group there could be an Offering Catalog that offers Service Offerings to deploy, update
or undeploy a testing system.

Whenever an end-user requests a service from the Offering Catalog (Catalog Request) a
Service Request is created. To request a service a form has to be filled out with all required
parameters. The created Service Request consists of a Fulfillment Manager Approval
Workflow, which contains all necessary approval steps and the Management Plan it should
execute. When the execution of the Management Plan is approved, it is sent to TSAM for its
fulfillment.

To be executed by TSAM the Service Request contains the ID of the Management Plan to be
executed as well as parameters for the name of the new service instance as well as the ID of
the service Definition and its revision or the ID of an existing service instance.

Accept
Extension

Decline Custom
»| Extension Decllqe
Extension

Custom
Accept
Extension

.

o= -5

Custom
Pre-Approval
Extension
+

Pre-Approval Approve or
Extension Auto-Approve
Subprocess
[+] [+]

Figure 4.7: Service Request Processing Workflow [SIKD* 10]

The Service Request Workflow (Figure 4.7) consists of several sub workflows of which the
custom extensions are optional:

Custom Pre-Approval Extension This extension allows for customer specific preparation
steps, like validation the resources for a request.

Pre-Approval Extension This extension is for Service Definition and Management Plan
related preparation. For example a Service Definition Instance might be created and
the needed resources reserved. Because the Service Request might be declined, the
created Service Definition instance is referred to as Draft Service Instance.

41

4 Service Modeling

Approve or Auto-Approve Subprocess This process manages the approval of a Service Re-
quest. Depending on the system property pmrdp.enable.autoapproval the request will be
automatically approved or has to be approved by the TSAM Cloud Administrator role.

Accept Extension This extension is executed when the Service Request has been approved.
It executes further preparations to continue with the TSAM processing.

Custom Accept Extension This extension allows for customer specific preparations to con-
tinue with the TSAM processing after the approval.

Decline Extension This extension is executed when the Service Request has been declined.
It is used to clean up the Draft Service Instance and resource reservations.

Custom Decline Extension This extension allows for customer specific cleanup operations
to be executed when the Service Request is declined.

4.4 Modeling Concepts

As described in the previous section [SIKD"10] uses different graphical modeling languages
for Service Definitions. Since there is no tool for the modeling I will adapt the concepts of
the modeling into the common modeling languages Unified Modeling Language (UML) and
Business Process Modeling Notation (BPMN). Both languages are assumed to be known and
not further described.

The following sections introduce the modeling languages that are used for the structural and
operational description of a Service Definition.

4.4.1 Structural Modeling

To model the hierarchy of Topology nodes I decided to use UML Class Diagrams. To describe
the modeling concept I remodeled the example from Figure 4.4 within introduced language
(see Figure 4.8).

To represent a Topology Node I use a UML Class element without its operation and attribute
fields, because they are not relevant for their structural hierarchy. The Directed Association
describes the strong consists of (contains) relation, from every Topology Node only one of
these relations can originate.

The Dependency describes the weaker relationship between Topology Nodes. In my model
Topology Nodes that contains another Topology Node will always be placed under its
contained Topology Node. This way all arrows will always point upwards. To make the
graphics better to read the constraint, that arrows will always originate from the top of a
Class box and end on the bottom of a Class box, has been added.

42

4.4 Modeling Concepts

£ Database Instance = Application Server Instance

] pBMS server

= IBM HTTP Server = WebSphere Deployment Manager [WebSphere Managed Node [WebSphere Cluster

* *
*

Q WebSphere Cell

Figure 4.8: Structural Model Example

Cardinality is depicted using multiplicity of Directed Associations containing the amount of
instances of Topology Nodes. A WebSphere Cell can contain multiple WebSphere Clusters,
WebSphere Managed Nodes and HTTP Servers. A WebSphere Managed Node can contain
multiple Application Server Instances.

4.4.2 Operational Modeling
To model the Operational Model BPMN Models and UML Class Diagrams are being used.

The BPMN Model describes the steps of a Management Plan and a UML Class Diagram
describes the input and output mapping of operations.

Management Plans

In Figure 4.9 my representation of the Management Plan in Figure 4.6 is depicted. The
relationship between a Management Plan Task and a Topology Node Operation is not
modeled within this diagram and will be considered in the Data Flow Diagram.

Create Project Acquire Network Address Create Virtual Server Create FileSystem

Figure 4.9: Operational Model Example

43

4 Service Modeling

Data Flow

The diagram in Figure 4.10 shows the modeling of the data input and output of the Topology
Node Operations. To model a Topology Node the notation of a UML Class is used. Arrows
indicate the input and output data of operations. The beginning of an arrow indicates where

data originates, the head of the arrow indicates where the data goes.

In the case shown in Figure 4.10 the acquireNetworkAddress operation puts data in the
Hostname and IP Address attribute of the Virtual Servers. The data itself is generated within
the operation. The createVirtualServer operation uses all four attributes of the Virutal Server
Topology Node Instance to physically deploy a virtual server in the environment. The data
for Memory Size and Number of CPUs is set when instantiating the Topology Model in the

preparation phase of the Management Plan (see chapter 4.2.2).

Q Virtual Server 1

[Eg Hostname

[Eg IP Address

[Eg Memory Size

[Eg; Number of CPUs

f.;"_‘;. acquireNetworkAddress ()
§2, createVirtualServer ()

Figure 4.10: DataFlow Model Example

44

Q Virtual Server 2

[Eg Hostname

[EE IP Address

[Eg Memory Size

[Eg; Number of CPUs

f.;"_‘;. acquireNetworkAddress ()
§2, createVirtualServer ()

5 Implementation

In this chapter the modeling of the Archive Cloud Service for TSAM will be described. Due
to time issues of the TSAM installation only the segregation into topology nodes and the

implementation of automation steps will be presented. An integration of this model within
TSAM will be done after this thesis.

5.1 Archive Cloud Service Software Stack

The Archive Cloud Service as described in chapter 3 is provided by several applications.
The central part is the FileNet Content Engine. It provides a Repository for storing and
managing documents. This Content Engine is extended by the FileNet Records Manager to
declare documents as records. The Workplace XT application is the web frontend of FileNet.
It can be used to manage FileNet.

The FileNet P8 Content Search Engine is used to create full text indices of the stored
documents. These full text indices are used by the eDiscovery Manager to search for
documents.

All these applications run within a WebSphere Application Server environment. For user and
group management the Tivoli Directory Server is used. The IBM DB2 database management
system is used for the Databases. All data is stored on a GPFS file system.

5.2 Analysis of the software components

To segregate the software stack into manageable resources, the applications have to be
separated into simple disjoint black boxes that are reduced to their exposed attributes and
functionalities. These black boxes are not only applications but also logical structures within
applications, e.g. data bases within a DBMS. They will be implemented as topology nodes
within TSAM.

In the following sections all layers of the software stack described in chapter 3 are decon-
structed into components. These components are analyzed on their multitenancy capabilities.
The description of the components is divided into three parts a basic description of the

45

5 Implementation

component, an analyzation on the multitenancy capabilities and a structural description to
model the component for TSAM.

After the description of the structural model of the components the process of deploying a
new tenant is described. Using the operational modeling concept described in chapter 4.4.

5.2.1 Storage
Description

The most basic component in our stack is the storage component. All our data is stored on
a cluster file system (GPFS). In this component model only storage for data is considered.
Application data like binaries and configurations are stored on the cluster as well. Most
file systems support files, folders and file system objects such as soft and hard links. GPFS
additionally supports file system objects called FileSets. FileSets behave like file systems but
can be mounted within the file system and therefore allow administrative operations at a
finer granularity.

Multitenancy

Multitenancy is supported in this layer. As described in chapter 2.1 tenants could share
folders, file systems or hard drives. Assuming that all of these possibilities would have the
same usage within the system, because all of these concepts will have a path to their storage
location, in the end only security and operational issues have to be considered. The concept
of FileSets is not a part of the four tiers described in chapter 2.1, but concerning isolation it
shares the level of a file system. We assume that the security of a FileSet is sufficient enough
for our use case and decide to let tenants share the hard drives the FileSets are stored on.

Structure

Our application needs three separate locations to store data. We will use one FileSet per
storage location.

WAS_FileSet In this storage area WebSphere data will be stored. This contains configurations
of the applications as well as the data of FileNet Content Engine’s Object Stores.

DB2Data_FileSet In this FileSet the data files for the databases will be stored.

DB2Log_FileSet This FileSet stores the transaction logs of DB2.

46

5.2 Analysis of the software components

Figure 5.1 shows the topology nodes needed for storage element of the Archive Cloud
Service. The GPFS Cluster component is a logical representation of everything needed to
provide a GPFS Cluster system. This GPFS Cluster hosts the three FileSets. According to the
modeling concept in chapter 4.4 the relationship is modeled with a directed association.

=] was _Fileset = DB2Data_FileSet E DB2Log_FileSet

] GPFS Cluster

Figure 5.1: Storage topology

5.2.2 Database Management System
Description

For the DBMS a DB2 HADR (High Availability Disaster Recovery) solution is used (see
Figure 5.2). This configuration consists of two sites. The primary site consists of two servers
that run in an active/passive pattern to achieve high availability. Both servers share the
necessary resources like their IP address, mount point and database. In case of a failure of
the active server, the passive server can take over immediately.

The second site contains a standby server for disaster recovery. While the primary site
communicates with the client application, the standby site is only keeping itself in sync with
the primary site by applying the transactions from its log buffer to the own database. If the
primary site fails, the standby site can take over the operation within half a minute.

47

5 Implementation

Shared
Storage

s =~
Tivoli System Automation (TSA) Cluster
Domain
Shared
NODE1 Resources NODE2
5 (Wirtual IR 5
dbZinst1 Mount point db2inst1
(Active) HDE:z (Passive)
database)
1
1
\ ¥

~
HADR Standby Server
NODE3

dbZinst3
(Standby)

Figure 5.2: IBM DB2 HADR Configuration [Suno7y]

This configuration also allows rolling updates by updating one of the servers at a time and
therefore stay operating all the time.

Multitenancy

As described in chapter 2.1 there are 4 tiers of database sharing ranging from shared tables to
separate database servers. Using legacy software that requires multiple separate databases,
we decided to use one shared instance of a database management system.

Structure

Figure 5.3 displays the Topology Nodes and their dependencies needed for the database
element of the service. On the lower left hand side you can see the DB2 HADR Cluster. For
simplification reasons the cluster is not modeled in full detail, containing different sites and
servers. The DB2 HADR Cluster is needed by the DB2 Instance. The DB2 instance is a logical
component, that is able to accept database connections and hosts databases.

5.2 Analysis of the software components

=
£ DB2 Database per ObjectStore and GCD
Q DB2 Instance Q DB2Data_FileSet Q DB2Log_FileSet

=] DB2 HADR Cluster

Figure 5.3: Database Management System topology

According to chapter 4.4 UML Dependencies are used to describe weaker relationships than
with Directed Association.

The cardinality of the DB2 Database is described in the UML Note. In our environment we
need multiple databases. There is one database needed for every ObjectStore within FileNet
CE. Another database called Global Configuration Database is needed by FileNet CE for it’s
configuration.

A DB2 Database needs a DB2 Instance to be executed in and storage areas to store both the
data and the transaction logs.

5.2.3 Application Server
Description

As application server for our environment we use a WebSphere Application Server Network
Deployment (WebSphere ND). Application servers are runtime environments for Java En-
terprise Edition (Java EE) applications. WebSphere ND is an application server system that
allows to span cluster over multiple servers.

Figure 5.4 shows the components of a WebSphere ND deployment. The Application Server
is the primary runtime component. This is where the Java EE Application is actually
executed. A WebSphere Node is an administrative grouping of Application Servers within
one operating system instance. There can be multiple nodes within one operating system
but a node can not be spanned over multiple operating systems. Nodes consist of a Node
Agent and one or more Application Servers. The Node Agent manages the configuration of
the Application Servers and deploys applications on them.

49

5 Implementation

Integrated Solutions
Console

4 Deployment

Node Agent
Manager
Application
Server v
Node01 / Node Agent
Server

Application Node03
Server
Node02
Cell
System A| ‘ System B

WebSphere Application Server V7.0 Network
Deployment envirnnmenlj

AN

Figure 5.4: WebSphere ND concept [AHP*09]

WebSphere Cells group multiple WebSphere Nodes into a single administrative domain.
WebSphere Cells are administered with the WebSphere Deployment Manager. The Deploy-
ment Manager communicates with the Node Agents to manage the application servers
within the respective WebSphere Node. The Deployment Manager can manage multiple
WebSphere Nodes but a WebSphere Node can only be administered by one Deployment
Manager. A master configuration of all WebSphere Nodes is stored within the Deployment
Manager and is replicated onto all Application Servers when changed.

The Deployment Manager can not only administer Application Servers but also HTTP
Servers. HTTP Servers are not part of the actual WebSphere deployment, but they can also
be configured. All requests to WebSphere applications are first directed to HTTP Servers.
If the request does not require dynamic content, it can be responded by the HTTP Server
directly. If not the request is forwarded to a WebSphere Application Server. To configure this
request forwarding HTTP Server plugin configurations are used. The Deployment Manager
is capable of automatically generating and propagating these plugins for its managed
applications.

WebSphere ND compared to a normal WebSphere deployment allows to span clusters (not
shown on Figure 5.4) over multiple WebSphere Nodes. Using these, a Java EE application
can be deployed over multiple virtual or physical computers. That leads to an automatic
load balancing and failover capabilities. Which leads to a scalable and high available runtime
environment.

50

5.2 Analysis of the software components

Multitenancy

The WebSphere ND environment allows different levels of Multitenancy. Applications
of tenants could be placed on the same within the same WebSphere Cluster, on separate
WebSphere Clusters but within the same WebSphere Cell or the applications can be deployed
on completely disjoint WebSphere ND deployments. In the case of disjoint WebSphere
Clusters in the same WebSphere Cell there is also the option to either share WebSphere
Nodes between Clusters or not.

For our solution we decided to give each tenant their dedicated WebSphere Clusters. These
clusters however will be spanned over shared WebSphere Nodes.

Structure
In Figure 5.5 the structure of our WebSphere environment is depicted. As described above

there is a WebSphere Cell with its Deployment Manager, multiple HTTP Servers and multiple
WebSphere Managed Nodes with their WebSphere Application Servers.

For our software Stack we need three WebSphere Clusters. How applications are distributed
among the clusters is described later in this chapter. All three clusters are part of a WebSphere
Security Domain. This Security Domain configures the security settings for the applications
within the clusters.

g Websphere Security Domain

Q WebSphere Cluster FileNet Q WebSphere Cluster Portal Q WebSphere Cluster EDM

= WebSphere App Server Q HTTP Server Q WebSphere Deployment Manager

Q WebSphere Managed Node
= WebSphere Cell

Figure 5.5: Application Server topology

To enable the FileNet Content Engine to communicate with its databases, JDBC DataSources
are needed (see Figure 5.6). Because FileNet CE is the only application with access to the

51

5 Implementation

databases the DataSources are added only to the scope of the WebSphere Cluster for the
FileNet application. The DataSources use a JDBC Provider to connect to the DB2 Database.

For every ObjectStore and the Global Configuration Database of FileNet CE a pair of DB2
Database and DataSource is created. DataSource and JDBC Provider as modeled here are
logical elements that represent both a transactional and non-transactional DataSource and
JDBC Provider each.

=
per Objectstore and GCD E patasource

£ pB2 Database] JpBC Provider

Q WebSphere Cluster FileNet

Figure 5.6: WebSphere DataSources topology

5.2.4 Directory Server

Description

The directory server is the central component for user and group management for all
deployed applications. In this setup the Tivoli Directory Server is used. Within this directory

server an organizational unit is created. It contains technical users for example a user,
applications use to connect to the Directory Server as well as customer created users.

Multitenancy
Tivoli Directory Server supports multitenancy by using Organizational Units with separate

Access Control Lists (ACL). This way only users from an Organizational Unit are able to
access the data within it.

Structure

Figure 5.7 displays the directory server components. It contains a Topology Node for the
Tivoli Directory Server which represents all hard and software resources needed to provide

52

5.2 Analysis of the software components

a directory service just like the DB2 HADR solution this could contain multiple servers. This
server is needed by the Organizational Unit(OU) that is created within it.

Q Tivoli Directory Server - OU

Q Tivoli Directory Server

Figure 5.7: Directory Server Topologies

5.2.5 FileNet CE
Description

FileNet Content Engine is the core application of the Archive Cloud service. It provides
the object repositories used by all other applications. These object repositories are called
ObjectStores in the FileNet terminology. Object Stores reside within the P8 Domain, the basic
element of FileNet CE. The domain contains the configuration of the Directory Server and a
mapping between roles within FileNet and groups within TDS.

Multitenancy

FileNet Content Engine could support Multitenancy by using one FileNet P8 Domain per
tenant. Having concerns about security and maintenance issues with this approach however
it was not further investigated.

It was decided to give every customer his own instance of the application. Since the FileNet
Content Engine is needed by all components described from now on, Multitenancy will not
be addressed anymore.

Structure

As depicted on Figure 5.8 The FileNet Content Engine is deployed into the WebSphere
Cluster FileNet. It uses DataSources to connect to the necessary databases. FileNet itself
needs access to the GCD and its ObjectStores need access to their databases. Besides the
databases the ObjectStores need access to the WAS_FileSet to store their data in.

The ObjectStores reside within the FileNet P8 Domain. This domain needs the Organizational
Unit on the Tivoli Directory Server for for users and group management.

53

5 Implementation

Q ObjectStore

Q P8 Domain
ObjectStores

= FileNet CE

GCD

Q WAS FileSet Q DataSource

Q WebSphere Cluster FileNet Q Tivoli Directory Server - OU

Figure 5.8: FileNet CE topology

5.2.6 FileNet addons
Description

In FileNet CE addons can be installed to extend its functionality. In our deployment we
install the Workplace XT extension and the Records Manager extension. On top of that
Content Search Engine and eDiscovery Manager are installed.

Workplace XT provides a web interface to the features of FileNet CE. The Records Manager
extension adds records management support (see 1.2.2) The Content Search Engine can create
full text indices of documents and the eDiscovery Manager is used to discover documents
for litigation cases.

Structure

All four applications are Java EE applications that are installed into the WebSphere cluster of
FileNet. The Records Management capability of Records Manager is installed into the P8
Domain and can be used by ObjectStores later on. The Content Search Engine is installed
separately and then configured to be used by the P8 Domain. The eDiscovery Manager
discovers documents and records within FileNet CE and Records Manager.

54

5.2 Analysis of the software components

Q EDM Q Content Search Engine
Q WorkplaceXT Q Records Manager
Q P8 Domain
K FileNet CE
Q WebSphere Cluster FileNet Q WebSphere Cluster EDM

Figure 5.9: FileNet addon topology

5.2.7 Portal
Description

The Archive Cloud Portal is a Java EE application. It provides a subset of the FileNet and
Records Manager functionality and therefore needs access to both applications.

Structure

The Archive Cloud Portal is deployed into its own WebSphere Application Cluster. It accesses
FileNet CE and Records Manager over their APIs to work with the ObjectStores.

55

5 Implementation

Q Archive Cloud Portal

Q Records Manager

] FileNet CE

Q WebSphere Cluster FileNet Q WebSphere Cluster Portal

Figure 5.10: Archive Cloud Portal topology

5.2.8 Complete topology

Considering all the dependencies described in the previous sections a complete topology
model can be created (see Figure 5.11). It can be separated in a tenant specific and a
multitenant part. The lower part of Figure 5.11, labeled with the rectangle, is the multitenant
part.

5.2 Analysis of the software components

Q WorkplaceXT Q Content Search Engine Q EDM Q Archive Cloud Portal

E ObjectStore

Q Records Manager

Q P8 Domain

] FileNet cE

Q DataSource

= Websphere Security Domain

[JpBC Provider
Q DB2 Database
Q WebSphere Cluster Q WebSphere Cluster Q WebSphere Cluster
FileNet EDM Portal
] DB2Data_FileSet = pB2Log Fileset & was Fileset
Q Tivoli Directory Server - OU

= Tivoli Directory Server =] GPFS Cluster £ pB2Instance g WebSphere

App Server
= DB2 HADR Cluster E HTTP Server [] Websphere g WebSphere

Managed Node Deployment Manager

Q WebSphere Cell

Figure 5.11: Complete topology separated in 5 services

I decided to separate the topology into five separate managed services. Four of these services
are static and provide the necessary middleware. These services are Tivoli Directory Server,
GPFS Cluster, DB2 HADR Cluster and WebSphere ND. Each of these services aim to provide
an automatically scaling middleware service. The fifth service is the Archive Cloud Service
that is provisioned for every tenant.

57

5 Implementation

5.3 Provisioning Workflow

This section describes steps necessary to provision the Archive Cloud Service for a tenant as
well as their data dependencies.

Setup TDS OU
Q <Eﬂ> Create FileSets @
Create WebSphere Clusters
create DB2 Databases

/'{E create JDBC Provider @ create DataSources @

create WebSphere SecurityDomain

install FileNet CE create P8Domain install Records Manager create ObjectStores

install ACP

/\ install EDM /\
P @® -0

install WorkplaceXT

install CSE

Figure 5.12: Deployment Flow

58

5.3 Provisioning Workflow

Based on the dependencies depicted in Figure 5.11 a deployment process can be modeled.
The deployment process will be modeled as a build plan for TSAM. TSAM itself does not
define a graphical modeling language for deployment processes. To model the process I will
use the Business Process Modeling Notation(BPMN).

The deployment process can be separated into 4 parts (see Figure 5.12). The first part sets up
basic components for the middleware. The second part configures the middleware to make
it ready for application deployment. In the third part the FileNet and Records Manager are
deployed and configured to provide the repositories. The last part deploys all applications
working with the FileNet CE.

All these parts of the deployment are described in detail within the next sections. The
Input and Output mapping will be modeled according to chapter 4.4. This section does
not describe all parameters required for each step, but only the ones that are important to
understand the dependencies.

As described in chapter 4.2.2 the Topology Model will be created in a preparation workflow.
This workflow will generate most of the information in the Topology Nodes. This information
is then used to create a representation of the Topology Node within the infrastructure.

The following sections will be separated into the four horizontal sections within the complete
deployment flow depicted in Figure 5.12.

5.3.1 Middleware basics

This part of the deployment consists of 3 parallel steps as depicted in Figure 5.12.

One step is creating all necessary elements within the Tivoli Directory Server. First an
Organizational Unit has to be created. In this Organizational Unit multiple users and groups
are created. There are several administrative and user groups for FileNet CE, Records
Manager, Archive Cloud Service and EDM. Additionally administrative users are created for
configuring the applications later on.

To create this Organizational Unit an operation on the Tivoli Directory Server is executed.
This operation will need information about the Distinguished Names (DN) of the base, users
and groups, as well as a user to connect to it and some technical users that are required by
other applications later on.

59

5 Implementation

£ DB2Data FileSet =] WebSphere Cluster Portal
g path g name
Q Tivoli Directory Server - OU [Eg clusterID
£ DB2Log_FileSet Ei baseDN
5 path EE ;:LS;,\D‘N E webSphere Cluster FileNet
[Eg bindUser g name
H was _FileSet [technicalUsersAndGroups g clusterID
5§ path
[WebSphere Cluster EDM
= GPFS Cluster E Tivoli Directory Server [Eg name
[Eg host [Eg clusterlD
5 createFileset () (53 administrativeUser
i setupOU ()

= WebSphere Deployment Manager
[Eg host

[Eg administrativeUser

§3 createCluster ()

3 create)DBCProvider ()

§3 createSecurityDomain ()

% createDataSource ()

Figure 5.13: Data Mapping: FileSets, Organizational Unit, WebSphere Cluster

The createFileSets task creates the FileSets WAS_FileSet, DB2Data_FileSet, DB2Log_FileSet
described in 5.2.1. It also sets their system users and groups and creates the folder structure
needed in later deployment steps. To create the FileSets an operation on the GPFS Cluster is
called. This operation needs the path of each FileSet, where it should be created.

The createWebSphereClusters task creates WebSphere Clusters and adds member nodes to
it. After that the Object Cache Instance is configured for each cluster. A Data Replication
Domain is defined for all clusters and an administrative WebSphere user is created. To
perform this operation on the WebSphere Deployment Manager the names of the clusters
have to be provided. The selection of the nodes that are added to the cluster are considered
to be part of the operational logic within the WebSphere ND Service and are not further
considered here. When a cluster is created, its ID within WebSphere is stored into the clusters
Topology Node to reference it again later.

After these basic preparation steps the middleware can be configured for the application
deployment.

5.3.2 Middleware configuration

This part of the deployment contains four tasks (see Figure 5.13 and Figure 5.14). Three of
these tasks can be executed in parallel.

Create DB2 Databases creates all necessary databases for the Object Stores and the Global
Configuration Database of FileNet. Creating the databases includes tuning their parameters,

60

5.3 Provisioning Workflow

creating their buffer pools and table spaces and configuring the access control. The operation
to create a database is executed on the DB2 Instance node. To create a database it needs the
name of the Database and the storage locations to store the database files and the location to
store the database transaction logs at.

The next step that can be executed parallel to the previous one is to create the JDBC Provider.
The JDBC Provider in this model as already mentioned in the beginning of this chapter
actually consists of two JDBC Providers. one for a transactional database connection and one
for a non-transactional database connection. The JDBC Provider is created by the WebSphere
Deployment Manager. To create it it requires the ID of the WebSphere Cluster the provider
should be created in and the name of the provider. Details about the driver to be used for the
provider are not modeled here. When the JDBC Provider is created its ID within WebSphere
is saved for further reference into the Topology Node.

= DB2 Database £ WebSphere Cluster FileNet
Eg name [Eg name
55 clusterlD
£ DB2Data_FileSet
[Eg path Q JDBC Provider
Eg name

. (S5 providerlD
£ DB2Log_FileSet

[Eg path
Q WebSphere Deployment Manager
! DB2 Instance Eg host
[Cg administrativeUser
[Eg host

§3 createCluster ()

§% create)DBCProvider ()
{2 createSecurityDomain ()
{% createDataSource ()

[Eg administrativeUser
4% createDatabase ()

Figure 5.14: Data Mapping: Databases, JDBC Provider

After setting up the databases and the JDBC providers the DataSources can be created. Again
the DataSource Topology Node represents both the transactional and non-transactional
DataSources required to connect to the database. The DataSources are created by the
WebSphere Deployment Manager. To create a DataSource it needs ID of the cluster in which
the DataSource should be created. Additionally it needs information about how to access
the database. This information consists of the host of the DB2 Instance, the JDBC provider to
use and the name of the database.

In parallel to the other tasks a WebSphere Security Domain is created. It sets the security
settings for all three WebSphere Clusters and sets up the Tivoli Directory Server Organiza-
tional Unit as the user realm. Also an administrative user within WebSphere is created. The

61

5 Implementation

Security Domain is again created by the Deployment Manager. To do so it requires the IDs
of the WebSphere Clusters. To access the Organizational Unit it requires the bind user and
the host of the directory server. The baseDN of the Organizational Unit defines the realm of
the Security Domain. It also needs information about the administrative user to create and
the name of the Security Domain.

Q WebSphere Cluster FileNet

[Eg name

Q DataSource
[Eg name

Q DB2 Database

[Eg name

Q DB2 Instance
[Eg host
[Eg administrativeUser
{3 createDatabase ()

Q JDBC Provider
[Eg name

Q WebSphere Deployment Manager
[Eg host

[Eg administrativeUser

2 createCluster ()

{2 create)DBCProvider ()

ﬁ% createSecurityDomain ()

{f& createDataSource ()

= Websphere Security Domain

Eg name
[Eg administrativeUser

Q Tivoli Directory Server - OU

[Eg baseDN

[Eg usersDN

[Eg groupsDN

[Eg bindUser

[Eg; technicalUsersAndGroups

Q Tivoli Directory Server

[Eg host
[Eg administrativeUser
42, setupOU ()

Q WebSphere Cluster EDM

[Eg name

Q WebSphere Cluster Portal

[Eg name

Figure 5.15: Data Mapping: DataSources, Security Domain

5.3.3 FileNet CE and RM

This part of the development sequentially deploys the FileNet Content Engine, creates
a FileNet P8 Domain, installs the Records Manager into the Domain and creates Object

Stores.

62

5.3 Provisioning Workflow

Before the FileNet Content Engine can be deployed it has to be configured. To do so,
configuration files have to be put into the WAS_FileSet, the installation therefore needs its
path. The configuration needs the DataSource for the Global Configuration Database.

The logic of installing a FileNet Content Engine is provided within the FileNet CE Topology
Node. To deploy the application access to the WebSphere Deployment Manager is needed
and the ID of the Cluster to deploy the application in.

After deploying and starting the application the FileNet P8 Domain can be created. So far
this is still a manual task, but upgrading to a newer version should enable automatization
of this task. To create the domain one has to connect to the FileNet Content Engine and
input the configuration of the Tivoli Directory Server. This contains access to the server and
configuration of the users and groups.

E] wAS_FileSet
55 path

Q DataSource
[Eg name

Q WebSphere Cluster FileNet
[E@ name
[E5 clusterlD

Q WebSphere Deployment Manager
[Eg host
[Eg administrativeUser
§% createCluster ()
&2 createJDBCProvider ()
ﬁ% createSecurityDomain ()
% createDataSource ()

E! FileNet CE
[Eg ApplicationName
=g ContextRoots
&2 installFileNetCE ()
2 createP8Domain ()

Q P8 Domain
Eg name
&5 createObjectStore ()

Q Tivoli Directory Server
[Eg host
[Eg administrativeUser
&2 setupOU ()

Q Tivoli Directory Server - OU
[Eg baseDN
[Eg usersDN
[Eg groupsDN
[Eg bindUser
[Eg technicalUsersAndGroups

Figure 5.16: Data Mapping: FileNet Content Engine, FileNet P8 Domain

When the FileNet P8 Domain is ready to be used, the Records Manager can be installed. Just
like the FileNet Content Engine some configuration files have to be created and put into
the WAS_FileSet. These configuration files define the access to the FileNet Content Engine.
When the configuration is generated, the Records Manager application can be deployed into

63

5 Implementation

the WebSphere Cluster. After starting the application the Records Manager addon has to be
installed into the FileNet P8 Domain, to make it usable within FileNet Content Engine.

Eventually the FileNet ObjectStores can be created and configured. Just like the FileNet P8
Domain this step has to be done manually for now. For every ObjectStore to be created the
DataSources have to be provided to access the necessary databases. Since content is not only
stored in databases, a file system path has to be provided, where files can be stored. When
the storage is configured, access rights have to be configured using the groups that were
created within the Organizational Unit in the Tivoli Directory Server.

Q Tivoli Directory Server - OU

E FileNet CE [Eg baseDN
[Eg usersDN

[Eg groupsDN
[Eg bindUser
[Eg technicalUsersAndGroups

[Eg ApplicationName
[ContextRoots

&3 installFileNetCE ()
{f&, createP8Domain ()

E| WAS FileSet
g path Q DataSource
[Eg name
Q WebSphere Cluster FileNet
[Eg name Q ObjectStore
[Eg name
Q Records Manager £l P8 Domain
5@ name g name
g contextRoot 4%, createObjectStore ()

3 installRecordsManager ()

Figure 5.17: Data Mapping: Records Manager, ObjectStores

5.3.4 End user applications

When all ObjectStores are ready to be used the end user applications can be installed. All
applications can be installed in parallel. Figure 5.18 and Figure 5.19 show the required
resources to install them.

The Archive Cloud Portal is installed into its own WebSphere Cluster using the WebSphere
Deployment Manager (see Figure 5.18). The configuration files are stored in the WAS_FileSet.
It requires the context roots of FileNet CE to connect to it and and own ObjectStore to store
further configuration in.

64

5.3 Provisioning Workflow

The Workplace XT application is installed into the same WebSphere Cluster as the FileNet
Content Engine (see Figure 5.18). It also stores its configuration into the WAS_FileSet.

= FileNet CE

[Eg ApplicationName
[Eg ContextRoots

43 installFileNetCE ()
ﬁ'?) createP8Domain ()

Q WebSphere Cluster FileNet

[Eg name
[Eg clusterID

E] was FileSet
[Eg path

Q WebSphere Deployment Manager

[Eg host

[Eg administrativeUser

&2 createCluster () Q WebSphere Cluster Portal
% createJDBCProvider () [Eg name

4% createSecurityDomain () [Cg clusterlD

ffé createDataSource ()

Q WorkplaceXT Q Archive Cloud Portal
[Eg name Eg name
[Eg ContextRoot [Eg ContextRoot
43 installWorkplaceXT () % installACP ()

Figure 5.18: Data Mapping: Workplace XT, Archive Cloud Portal

The Content Search Engine is installed into the WebSphere Cluster EDM using the WebSphere
Deployment Manager (see Figure 5.19). Its configuration is stored in the WAS_FileSet. When
the application is installed the P8 Domain has to be configured to use it as search engine.
After that index areas have to be set up for the ObjectStores that shall be indexed.

The eDiscovery Manager is installed into the WebSphere Cluster EDM using the WebSphere
Deployment Manager (see Figure 5.19). Its configuration resides in the WAS_FileSet. The
configuration contains the information necessary to connect to the FileNet Content Engine.

65

5 Implementation

Q P8 Domain
Cg name
{2, createObjectStore ()

Q ObjectStore

Cg name

= WAS FileSet
[Eg; path

Q WebSphere Deployment Manager
[Eg host
[Eg; administrativeUser
% createCluster ()
% create)JDBCProvider ()
{2 createSecurityDomain ()
2 createDataSource ()

Q WebSphere Cluster EDM

[Eg name
Cg clusterID

Q Content Search Engine
[Eg ApplicationName
Eg ContextRoot
42, installCSE ()

E FileNet CE
[Eg ApplicationName
[Eg ContextRoots
42 installFileNetCE ()
42, createP8Domain ()

=l ebm
[Eg ApplicationName
=g ContextRoot

42, installEDM ()

Figure 5.19: Data Mapping: Content Search Engine, eDiscovery Manager

66

6 Conclusion and Outlook

In this thesis an Electronic Archive Management system has been analyzed and decomposed
into managable resources to enable automatic provisioning. Before addressing the decompo-
sition the basics of Cloud Computing have been presented and an insight into Electronic
Content Management has been given. The topics Document Management and Records
Management have been discussed in more detail and based on that Electronic Archiving
Management has been defined.

After providing the fundamental concepts, the concept of multitenancy has been examined.
Doing so, layers of tenant isolation have been introduced and concerns about shared resources
have been addressed.

Based on these informations the Archive Cloud Service project of IBM has been introduced
and its software components have been presented.

To address the automatic provisioning task the Tivoli Service Automation Manager and its
concepts of Service Definitions have been introduced. These Service Definitions based on
their operational and structural model of software services has been taken as foundation to
introduce a modeling concept for our Archive Cloud Service.

Using the introduced modeling concept the Archive Cloud Service’s software components
have been analyzed and decomposed into Topology Nodes. Then the multitenancy capabili-
ties of these Topology Nodes have been examined. Based on the multitenancy capabilities
the service has been devided into five separate services. Four of these services provide the
necessary middleware and are shared between all tenants. These services cope with tasks
within the scope of High Availability, Desaster Recovery and Scalability. The fifth service is
the Archiving Cloud Service itself which is provisioned per tenant. This service deals with
provisioning, deprovisioning, configuring and updating of software components.

Having not been able to implement the presented architecture due to complications in
the system setup, no results on the resource utilization side can be provided. Having
implemented most of the operational part of the service using scripts, the time needed to
provision a tenant could be reduced from several days or weeks below two hours.

The segregation of the software stack into multiple services could not only provide the
middleware for the Archive Cloud Service but could be used for all kinds of enterprise
applications.

67

6 Conclusion and Outlook

Based on the results of this thesis other concerns of the Archive Cloud Service will be
discussed in other thesises. The automated scaling of the middleware services based on
performance metrics will be presented in a thesis working in the area of monitoring and
metering. Techniques of data replication will be reviewed in another thesis.

68

Bibliography

[AFG*o9]

[AHP " 09]

[ATT]

[Balo7]

[BSWS™* 10]

[CCWob]

[Diro7]

[Foco7]

[Ful1o]

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, M. Zaharia. Above the Clouds: A
Berkeley View of Cloud Computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, 2009. URL http://www.eecs.
berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html. (Cited on page 15)

A. Agopyan, H. Huebler, T. Puah, T. Schulze, D. S. Vilageliu, M. Keen. WebSphere
Application Server V7.0 - Concepts, Planning and Design. IBM, 2009. (Cited on

page 50)

AIIM. What is Enterprise Content Management (ECM)? URL http://www.aiim.
org/What-is-ECM-Enterprise-Content-Management. (Cited on page 17)

D. Balovich. Sarbanes-Oxley Document Retention And Best Practices, 2007.
URL http://www.creditworthy.com/3jm/articles/cw90507.html. (Cited on
page 20)

G. Breiter, B. Schmidt-Wesche, B. Snitzer, G. Widmayer, J. Whitmore,]. Vil-
lareal, M. Behrendt, R. Caponigro, R. Chang, S. Pappe, T. Weinmann,
X. Chotteau. IBM Cloud Computing & Common Cloud Management
Platform Reference Architecture (CC & CCMP RA) 1.0, 2010. URL http:
//www.iaas.uni-stuttgart.de/lehre/vorlesung/2010_ws/vorlesungen/
smcc/materialien/Gerd%20Breiter/20CCMPforCloudCourse201011. pdf.

(Cited on pages 33 and 36)

E. Chong, G. Carraro, R. Wolter. Multi-Tenant Data Architecture, 2006. URL http:
//msdn.microsoft.com/en-us/library/aa479086.aspx. (Cited on page 25)

B. Dirking. Lowering E-Discovery Costs Through Enterprise Records and Reten-
tion Management, 2007. (Cited on page 11)

FocalPoint Securities, LLC. eDiscovery: The Ongoing Shift to Fortune 500 Clients
- A Look at Trends and Major Players in the Legal Vertical, 2007. (Cited on

page 11)

Fulbright & Jaworski L.L.P. 7th Annual Litigation Trends Survey Report, 2010.
(Cited on pages 3 and 11)

69

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.aiim.org/What-is-ECM-Enterprise-Content-Management
http://www.aiim.org/What-is-ECM-Enterprise-Content-Management
http://www.creditworthy.com/3jm/articles/cw90507.html
http://www.iaas.uni-stuttgart.de/lehre/vorlesung/2010_ws/vorlesungen/smcc/materialien/Gerd%20Breiter%20CCMPforCloudCourse201011.pdf
http://www.iaas.uni-stuttgart.de/lehre/vorlesung/2010_ws/vorlesungen/smcc/materialien/Gerd%20Breiter%20CCMPforCloudCourse201011.pdf
http://www.iaas.uni-stuttgart.de/lehre/vorlesung/2010_ws/vorlesungen/smcc/materialien/Gerd%20Breiter%20CCMPforCloudCourse201011.pdf
http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://msdn.microsoft.com/en-us/library/aa479086.aspx

Bibliography

[Goo]

[ISOo1]

[Kamob]

[MGoog]

[MKW*o9]

[MMLPog]

[Pro1oa]

[Pro1ob]

[Roe10]

[SIKD " 10]

[SSW10]

[Suno7y]

70

Google App Engine - Billing and Budgeting Resources. URL http://code.
google.com/intl/en-US/appengine/docs/billing.html. (Cited on page 15)

ISO15489 - Information and documentation - Records Management, 2001. (Cited
on page 19)

D. U. Kampffmeyer. ECM. Project Consult Unternehmensberatung Kampffmeyer,
2006. (Cited on pages 17 and 18)

P. Mell, T. Grance. The NIST Definition of Cloud Computing v15, 2009. (Cited
on pages 12 and 13)

C. Mega, K. Krebs, F. Wagner, N. Ritter, B. Mitschang. CMaaS - Content
Management as a Service, 2009. (Cited on pages 20, 24 and 28)

R. Mietzner, A. Metzger, F. Leymann, K. Pohl. Variability modeling to support
customization and deployment of multi-tenant-aware Software as a Service
applications. In Proceedings of the 2009 ICSE Workshop on Principles of Engineering
Service Oriented Systems, PESOS "09, pp. 18-25. 2009. URL http://dx.doi.org/
10.1109/PES0S.2009.5068815. (Cited on pages 24 and 27)

Project Consult. Content Management, 2010. URL http://www.
project-consult.de/ecm/wissen/themen/cm. (Cited on page 16)

Project Consult. Document Management, 2010. URL http://wuw.
project-consult.de/ecm/wissen/themen/dm. (Cited on page 19)

D. Roe. 6 Ways Document Management and Records Management
Differ, 2010. URL http://www.cmswire.com/cms/document-management/
6-ways-document-management-and-records-management-differ-006454. php.

(Cited on page 19)

T. Spatzier, M. Iligner-Kurz, H. Daur, F. Triebel, C. Bachhuber-Haller, S. Rodet,
R. Schulze, A. Janta, H. Eissler. Tivoli Service Automation Manager - Solution Guide
v1.99, 2010. (Cited on pages 35, 36, 37, 39, 40, 41 and 42)

K. Stanoevska-Slabeva, T. Wozniak. Cloud Basics - An Introduction to Cloud
Computing. In Grid and Cloud Computing, pp. 47-61. Springer Berlin Heidel-
berg, 2010. URL http://dx.doi.org/10.1007/978-3-642-05193-7_4. (Cited

on page 13)

G. Sundaram. Implement DB2 high availability disaster recovery in a
Tivoli System Automation cluster domain, 2007. URL http://www.ibm.com/
developerworks/data/library/techarticle/dm-0704sundaram/index.html.
(Cited on page 48)

http://code.google.com/intl/en-US/appengine/docs/billing.html
http://code.google.com/intl/en-US/appengine/docs/billing.html
http://dx.doi.org/10.1109/PESOS.2009.5068815
http://dx.doi.org/10.1109/PESOS.2009.5068815
http://www.project-consult.de/ecm/wissen/themen/cm
http://www.project-consult.de/ecm/wissen/themen/cm
http://www.project-consult.de/ecm/wissen/themen/dm
http://www.project-consult.de/ecm/wissen/themen/dm
http://www.cmswire.com/cms/document-management/6-ways-document-management-and-records-management-differ-006454.php
http://www.cmswire.com/cms/document-management/6-ways-document-management-and-records-management-differ-006454.php
http://dx.doi.org/10.1007/978-3-642-05193-7_4
http://www.ibm.com/developerworks/data/library/techarticle/dm-0704sundaram/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0704sundaram/index.html

Bibliography

[ZABTo9] W.-D. Zhu, R. Aitchison, E. Bonner, H. C. Mendez, R. Rathgeber, A. Yadav,
H. Yessayan. Understanding IBM FileNet Records Manager, 2009. (Cited on

page 30)

09 -D. Zhu, K. Cole, A. Fowler, M. Kirchner, B. J. Mcdowell, C. Snow, M. Winter,
[ZCFto9] W.-D. Zhu, K. Cole, A. Fowler, M. Kirchner, B.]. Mcdowell, C. S M. Wi
M. Worel. FileNet P8 Platform and Architecture, 2009. (Cited on page 31)

All links were last followed on March 15, 2011.

71

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no

stage was any collaboration entered into
with any other party.

(Florian Fritz)

	1 Introduction
	1.1 Cloud computing
	1.1.1 Cloud Characteristics
	1.1.2 Service Models
	1.1.3 Deployment models
	1.1.4 Examples of Cloud Computing Services
	Computing Cloud Services
	Storage Cloud Services

	1.2 Enterprise Content Management
	1.2.1 Document Management
	1.2.2 Records Management
	1.2.3 Electronic Archiving Management

	2 Motivation
	2.1 Multitenancy
	2.1.1 Layers of separation
	Execution tier
	Data tier

	2.1.2 Concerns of Multitenancy
	Isolation
	Security
	Customizability
	Maintainability
	Recovery

	2.2 Electronic Archiving Management as a Service

	3 Archive Cloud Service
	3.1 FileNet Content Engine
	3.2 FileNet Records Manager
	3.3 Workplace XT
	3.4 Content Search Engine
	3.5 eDiscovery Manager
	3.6 Archive Cloud Portal

	4 Service Modeling
	4.1 Introduction in Tivoli Service Automation Manager
	4.2 Service Definition
	4.2.1 Structural Service Model
	Maximo Classification
	Relations between Topology Nodes
	Topology Node Cardinalities
	Resource Allocation Templates

	4.2.2 Operational Service Model
	Mapping of Input and Output
	Preparation Workflow

	4.3 Service Offerings
	4.4 Modeling Concepts
	4.4.1 Structural Modeling
	4.4.2 Operational Modeling
	Management Plans
	Data Flow

	5 Implementation
	5.1 Archive Cloud Service Software Stack
	5.2 Analysis of the software components
	5.2.1 Storage
	Description
	Multitenancy
	Structure

	5.2.2 Database Management System
	Description
	Multitenancy
	Structure

	5.2.3 Application Server
	Description
	Multitenancy
	Structure

	5.2.4 Directory Server
	Description
	Multitenancy
	Structure

	5.2.5 FileNet CE
	Description
	Multitenancy
	Structure

	5.2.6 FileNet addons
	Description
	Structure

	5.2.7 Portal
	Description
	Structure

	5.2.8 Complete topology

	5.3 Provisioning Workflow
	5.3.1 Middleware basics
	5.3.2 Middleware configuration
	5.3.3 FileNet CE and RM
	5.3.4 End user applications

	6 Conclusion and Outlook
	Bibliography

