Institut fiir Architektur von Anwendungssystemen

Universitat Stuttgart
Universitatsstra3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3079

Entwicklung eines Frameworks
zur Verwaltung von abstrakten
Sichten auf BPEL Prozesse

Jiayang Cai
Studiengang: Informatik
Prufer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. David Schumm
begonnen am: 27.Juli 2010
beendet am: 26. Januar 2011

CR-Klassifikation: D.2.2,H4.1, H5.2

Inhaltsverzeichnis

1.

Einleitung

1.1. Motivation
1.2. Zielsetzung
1.3. Aufbauder Arbeit L

Grundlagen und Technologien

2.1. WebServices e
21.1. WSDL
2.1.2. SOAP o e

2.2. Business Process Execution Language
2.2.1. Orchestration L L
2.2.2. Workflow Engine L L L o
2.2.3. Abstrakte Sicht auf BPEL-Prozess (Business Process View)

2.3. Eingesetzte Technologien und Frameworks
2.3.1. Java Servlet Technologie
2.3.2. JavaServer Pages
2.3.3. JavaServer Faces 2.0 Framework
2.3.4. Hibernate Framework
2.3.5. Spring Framework 0 0 L
2.3.6. Apache Strutsz Framework 0 0L
2.3.7. Apache Axis2 Framework

Konzept und Entwurf

3.1. Konzeptund Architektur0 .

3.2 Entwurf. . ..o
3.2.1. Anwendungsmodellierung oL
3.2.2. Transformation Services Architektur.
3.2.3. Transformation Services Client (View Designer)

3.3. Business Process View Template
3.3.1. View Template Design
3.3.2. View Template Bereitstellung
3.3.3. View Template Anwenden

Implementierung

4.1. Datenbanktabellen

42. WebClient e
4.2.1. View Services Manager

10
10
11
13
14
14
15
18
20
20
20
23
24
27
29
30

33

33
35
35
44
45
47
47

48

49
49
51
51

Inhaltsverzeichnis

4.2.2. View Transformator
4.2.3. RulesDesigner
4.2.4. View Administrator Lo Lo oo
4.3. Prozess Transformation Service
4.3.1. Operationen L
4.3.2. WSDL . . .
4.4. Services Anwendung und Verwaltungo 0 L
4.4.1. Bereitstellung von Services oo o0 oL
4.4.2. Kombination von Services L.
4.4.3. BPEL-Projekt Erzeugen und Deployment
4.4.4. BPEL-Prozess Ausfithren
4.5. Business Process View Template

. Zusammenfassung und Ausblick

5.1. Zusammenfassung
5.2. Ausblick

Literaturverzeichnis

A. Anhang

A.1. Prozess View Template - Testbeispiele
A.2. Der Screenshot der Prozess View Verwaltungsplattform

Abbildungsverzeichnis

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

3.1.
3.2.
3:3
3.4.
3:5-

4.1.
4.2.
4.3.
4.4.

A.1.

A.2.
Az,

A..

WSDL Definition und Komponenten aus [WCL o5]
Apache ODE Architektur und Komponenten
Rules Dokument Definition und Komponenten
Interaktion zwischen JSP Seite und JSP Container
Detaillierte Hibernate-Architektur aus [GKE10]
Ein Uberblick von Spring Framework aus [RJt10]

Business Prozess View Verwaltung Architektur
Anwendungsfalldiagramm von der webbasierten Verwaltungsplattform
Serviceorientierte Business Prozess Transformation Services Architektur
Sequenzdiagramm von der Transformation Services Anwendung
Beispieldarstellung der View Template Anwendung

Schematische Darstellung vom View Services Manager
Das Webinterface fiir die Datenabgabe
Der erzeugter BPEL-Prozess fiir die Sequenz in der Auflistung 4.5
Die grafische Darstellung dieser Prozess View Template und deren Prinzip . .

Prozess View Vorlage fiir die Elimination von dem PostPressManagement-
Subprozess
Der Geschiftsprozess von dem Druckerei
Der Geschéftsprozess von dem Druckerei nach die Elimination von dem
PostPressManagement-Subprozess
Prozess View Services Manager und Designer

Verzeichnis der Listings

4.1.
4.2.
4.3.

4-4.
4.5.
4.6.
4.7.
4.8.
4.9.

A.1.

Die SQL-Ausdriicke fiir die Erzeugung der Datenbanktabellen 50
Das vorerst initialisierte Rules Dokument 53
Das Rules Dokument nach der Parametrisierung und dem Hinzufiigen einer

Anweisung L 53
Die mehrfach geschachtelten Logikausdriicke in dem Rules Dokument 55
Das erzeugte XML Dokument nach der Operationsauswahl und Datenabgabe 61
Das erzeugte deploy.xml Dokument fiir die Sequenz in der Auflistung 4.5 . . . 66
Die erzeugte Abfragenachricht zur Apache ODE Prozess Management API . . 67

Die erzeugte SOAP-Nachricht aus den Zwischendokument in der Auflistung 4.5 69
Die SOAP-Antwortnachricht zu der Auflistung 4.8 70

Das deploy.xml Dokument fiir die Prozess View Template in der Abbildung A.1 77

Danksagung

An dieser Stelle mochte ich mich bei meinem Betreuer Dipl.-Inf. David Schumm bedanken,
der mich wahrend meiner Studienarbeit und Diplomarbeit betreut hat und mich bei der
Erstellung, Formulierung, Korrektur dieser Arbeiten immer Rede und Antwort stand. Ich
mochte mich bei den Kommilitonen und den Lernpartnern bedanken, die mir in meinen
Informatikstudium an der Uni Stuttgart geholfen haben. Weiterhin mochte ich mich bei
Professor Dr. Frank Leymann und Jun.-Prof. Dr.-Ing. Dimka Karastoyanova fiir die bedeu-
tungsvollen Veranstaltungen bedanken, die mich in die Themengebiete Softwarearchitektur
und Workflow-Management eingefiihrt haben.

Besonders bedanken mochte ich mich aber bei meinen Eltern, ohne die dieses Studium in
Deutschland nie moglich gewesen wére. Bei meiner Bruder mochte ich mich fiir die stindige
Ermunterung und Unterstiitzung bedanken. Zudem mdochte ich bei meiner Freundin danken,
die mich immer unterstiitzt und mir den Riicken gestarkt hat.

1. Einleitung

Seit Anfang der goer Jahre hat sich Geschiftsprozessmanagement als fester Bestandteil
der Anwendungssystem- und Organisationsgestaltung in der Praxis etabliert [GSVRo4].
Es wird in der Wissenschaft und Industrie stindig erforscht, einen agilen und effizienten
Geschiftsprozess in den Unternehmen zu gewéhrleisten und zu optimieren. Ein besser pas-
sender Geschiftsprozess bringt den Unternehmen langfristig mehr Erfolg und strategische
Vorteile bzw. die grofite Konkurrenzkompetenz in der Branche und beste Geschéftsorien-
tierung fiir ein nachhaltiges Unternehmenswachstum. Das Geschéftsprozessmanagement
umfasst alle Tatigkeiten, die sich auf den Geschéftsprozess beziehen, sowie das Identifizieren,
Modellieren, Dokumentieren, Durchfiihren, Uberwachen, Analysieren und die kontinuierli-
che Verbesserung von Geschiftsprozessen. Der Geschiftsprozess ist heutzutage wegen den
vielfdltigen Kundenanforderungen und stindige Geschéftsverwandlungen bzw. die Neupro-
duktentwicklung sehr kompliziert. In dieser Arbeit diskutieren wir nicht dariiber sowie wie
man das Geschiftsprozessmanagement in den Unternehmen besser durchfiihren und welche
Softwarewerkzeug und Methode sollen die Prozessexperte anwenden. Wir betrachten die
Geschiftsprozess-Transformation, die ein niitzliches Instrument fiir die Komplexitatsredu-
zierung beim Prozess Engineering ist.

1.1. Motivation

Wie stellt man es an einen Geschiftsprozess in einem Grofkonzern z.B in der Ol- und Gasin-
dustrie zu analysieren und zu verbessern? In solch einer Branche ist der Geschéftsprozess ein
Kernfaktor fiir den Unternehmenserfolg. Der Geschiftsprozess greift auf die verschiedenen
Standorten auf verschiedenen Kontinenten und auf Arbeitsgruppen bzw. Projektmitarbeitern
in unterschiedenen Funktionssegmenten zu. Die Komplexitit des Geschéftsprozess ist streng
abhingig von dem Grad der Detaillierung und der Verflechtung von den Subprozessen.
Da eine Komplexitdtsreduzierung besonders gefordert ist, werden in der Industrie viele
geschiftliche Ansitze dafiir erstellt und veroffentlicht, die nach den entsprechenden Bran-
chenmerkmalen und Geschiftsverhalten z.B in Bank und Automobile spezifiziert sind. In
der Arbeit [SLS10] wurde eine grundlegende Methode »Process View« fiir die Komplexi-
tatsreduzierung und Prozesstransformation herausgegeben, mit der die ungewollten Details
eines Prozess behoben und der Prozess auf das gewiinschten Anwendungsziel abstrahieren
und transformieren konnen. Prozess View Transformation ist eine XML-basierte Metho-
de fiir die spezifizierte Transformation einer durch eine Prozessbeschreibungssprache z.B
WS-BPEL [AAA " 07] erstellten Geschiftsprozess. Er generiert eine definierte Sicht auf den

1.2. Zielsetzung

Gesamtgeschiaftsprozess fiir die Benutzer. Der in den Arbeiten [Cai1o][Strog] entwickelte
Prototyp und Implementierungskonzept fiir Prozess View Transformation zeigt eine stirke
Abstraktionsfahigkeit an. Es wird in dieser Diplomarbeit dieses Modell vervollstandigt und
gegebenenfalls weiterentwickelt.

1.2. Zielsetzung

Um eine Prozess View Transformation zu erstellen benotigt man bisher die Kenntnisse der
Rules-Sprache und Verarbeitungsprinzipien, eine Konsole-basierte Jar-Anwendung, wie in
die Arbeite [Cai1o][Strog] bietet wenige komfortable Benutzerfreundlichkeit und bewirkt
die hohe Komplexitit der Prozessabstraktion. Eine Webanwendung fiir die flexible Pro-
zesstransformation wird in dieser Diplomarbeit entwickelt. Es wird dafiir gefordert, eine
Webservices-basierte Verwaltungsplattform fiir die vereinfachte Konstruktion der Prozessab-
straktion zu realisieren, ein interaktiver Rules-Designer wird fiir ein anschauliches Editieren
von Rules Dokument entwickelt, ohne eine manuelle Erstellung zu benétigen. Dieses entwor-
fene Framework richtet sich an eine serviceorientierter Architektur und stiitzt eine flexible
Erstellung von Prozess View Transformation Vorlagen, die selbst als Webservices fiir die
definierte Prozesstransformation und als Anwendungsziel zur Verfligung gestellt werden
konnen.

1.3. Aufbau der Arbeit

Die vorliegende Arbeit gliedert sich wie folgt in fiinf Kapiteln:

Kapitel 1 - Einleitung In diesem Kapitel wird in das Themengebiet Business Prozess View
und die Aufgabestellung der Diplomarbeit eingefiihrt, die Motivation und Zielsetzung
werden dabei erklrt.

Kapitel 2 - Grundlagen und Technologien Die grundlegende Theorien in Webservices,
Workflows und die technische Ansdtze bzw. angewandten Frameworks in der Weban-
wendungsentwicklung werden in diesem Kapitel vorgestellt, die fiir die technische
Implementierung der praktische Aufgabe der Arbeit notwendig sind.

Kapitel 3 - Konzept und Entwurf In diesem Kapitel werden die Konzeption und der erstellte
Entwurf fiir die Entwicklung der Plattform bzw. des Frameworks zur Verwaltung von
abstrakten Sichten auf BPEL-Prozess erldutert.

Kapitel 4 - Implementierung Die praktische Implementierung und einige Anwendungsfalle
der Verwaltungsplattform fiir abstrakte Sichten werden in diesem Kapitel in Details
erlautert.

1.3. Aufbau der Arbeit

Kapitel 5 - Zusammenfassung und Ausblick In dem letzten Kapitel der Arbeit wird die
Schlussfolgerung dieser Diplomarbeit kurz zusammengefasst und einen Ausblick bzw.
die mogliche Verwandlung vom Thema »Business Process View« in den kiinftigen
Anwendungsaspekten gegeben.

2. Grundlagen und Technologien

In diesem Kapitel werden die wichtigen und grundlegenden Theorien in Web Services und
die eingesetzte Technologien aus dem JEE-Umfeld vermittelt, auf denen diese Diplomar-
beit basiert. Die fundamentale Definition und Prinzipien in den Themengebiet von Web
Services und entsprechende Standardisierungen werden zuerst erldutert. Die theoretischen
Grundlagen der Business Process Execution Language aus [OASoy] und des Business Pro-
cess View aus [Strog] [Caizo] werden kurz erkldrt. Die Technologien und Entwurfsmuster
im JEE-Umfeld werden vorgestellt, die in der praktischen Arbeit bei der Realisierung der
Webanwendung und der Integration des Frameworks angewendet wurde.

2.1. Web Services

Web Services werden heutzutage als die beste und effizienteste Implementierungsmetho-
de von Service-orientierten Architekturen betrachtet und weiterhin vom World Wide Web
Consortium (W3C) als eine informationstechnische Standardlésung gepflegt. Eine vollstan-
dige Definition von Web Services wird in [BHM*o4] von W3C fiir die kiinftige bessere
Zusammenarbeit und Weiterentwicklung wie folgt vereinbart:

A Web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed using HI'TP with an XML
serialization in conjunction with other Web-related standards.

Web Services sind nicht eine allein stehende Technologie, es ist ein Biindnis von mehreren
Spezifikationen und Standards fiir die verschiedenen klassifizierten Funktionsschichten. Die
Web Services Gemeinde * entwickelt zusammen mit den Experten und fiihrenden industriel-
len Partnern in der IT-Branche die Technologien, um die Kompetenz und Anwendbarkeit von
Web Services zu verbreiten und zu verstarken. Webservice strebt die beste Zusammenarbeits-
tahigkeit und hochste Plattform-Unabhangigkeit in der realen Anwendungsentwicklung und
Systemintegration an, eine schematische Illustration von der entwickelten Spezifikationen
des Webservice-Stack konnen in [WCL " o5, Kapitel 3.1] gefunden werden, die die verschie-
denen konkreten Funktionen in der serviceorientierten Geschiftsanwendungsentwicklung
realisieren und erweitern konnen. Solche stindig betreuten Spezifikationen definieren die

Thttp:/ /www.w3.org/2002/ws/

10

2.1. Web Services

Nachrichtenformate, Transportprotokolle und Beschreibung der vereinbarten Servicequalitat
usw., um eine beste Interoperationalitdt in der Web Services Welt zu realisieren.

2.1.1. WSDL

Die Web Services Description Language (WSDL) 1.1 ? ist eine standardisierte Spezifikation
bzw. eine XML-basierte Metasprache fiir eine operative Beschreibung von Webservice. WSDL
spielt eine entscheide Rolle bei der praktischen Implementierung von Web Services Konzep-
ten und des SOA-Paradigma. In der Softwareentwicklung und in der unternehmensweiten
Anwendungsintegration sind die gemeinsame Vereinbarung und Einhaltung auf den durch
WSDL definierte Servicestand und spezifizierte Qualitdtsbeschreibung bei der Analyse- und
Designphase sehr sinnvoll, weil es eine flexible, dynamische, lose-gekoppelte Anbindung fiir
die Anwendungen in eine interaktive und sich standig verdnderte Umgebung schafft.

WSDL Definition

ﬁ

t Mod
Messages
(]
Port Type
[Operation]

Binding

Message Format and Protocol

Abbildung 2.1.: WSDL Definition und Komponenten aus [WCL" 05]

Ein WSDL Dokument beschreibt einen veroffentlichten Service fiir die Serviceanwender,
mit den erwiinschten Nachrichtenformaten, die verfiigbaren Operationen zu aufrufen, die
Lokalisierung des Services und die Transportprotokolle fiir die Interaktion werden festgesetzt.

http:/ /www.w3.org/TR/wsdl

11

2.1. Web Services

Die Serviceanwender konnen wegen dieser operativen Beschreibung den Service effizient
und problemlos benutzen. Eine von Anwendern erstelltes WSDL Dokument ist fiir die
Serviceanbieter einen Serviceauftrag. Die Anwender beschreiben detaillierte die eignen
Anforderung an die Funktion und Kommunikation des Service bzw. Dienstleistung in einem
WSDL Dokument. Das WSDL Dokument in Web Services ist deswegen eine neutrale und
funktionale Beschreibungsvermittler in der heterogen Infrastruktur der reale Welt.

Ein anschauliches Blockdiagramm in der Abbildung 2.1 stellt die WSDL Dokumentdefinition
und die spezifische Konzeption dar. Ein WSDL Dokument beinhaltet typischerweise zwei
definierte Beschreibungen wie in der obige Abbildung, einen abstrakte Beschreibungsteil und
einen exakten Beschreibungsteil. In dem abstrakten Beschreibungsteil wird eine allgemeine
Definition von Web Services gegeben, es stellt die Funktionalitdt und Anwendbarkeit von
Web Services durch die assoziierte Operationen und die entsprechend erwiinschte oder
generierte Nachrichten dar, ohne eine detaillierte Angabe fiir die Aufrufmethode bzw. das
verfiigbare Transportprotokoll und den genau Endpunkt zu beschreiben. In den dreidimen-
sionalen Beschreibungskoordinaten (Was-Wie-Wo) bedeckt die abstrakte Beschreibungsteil
die Was-Dimension. Im exakten Beschreibungsteil des WSDL Dokument werden die genauen
Hinweise fiir das Aufrufen und die Implementierung von Web Services gegeben. Die Wie-
Dimension wird durch die <binding> Element in WSDL beschrieben, die Wo-Dimension in
den Koordinaten wird durch das <service> Element im exakten Beschreibungsteil dargestellt.
Eine aufgelistete Kurzfassung der Kernelemente in der WSDL Spezifikation Version 1.1 wird
im folgenden Abschnitten erstellt.

Types Im XML Element <types> werden die Datentypen und Datenstruktur der assoziierten
Parts bzw. Bausteinen in den ausgetauschte Nachrichtenformaten beschrieben. Die
Anwendungsbedeutung und Syntax von <types> ist identisch mit dem <schema>
Element im XML Schema (XSD) 3.

Message Das <message> Element beinhaltet eine oder mehrere logische Parts bzw. Nach-
richtenbausteine. Jeder Part des Nachrichtenelement wird mit dem entsprechenden
Typenelement in einem Typendefinitionssystem assoziiert. Dadurch beschreibt es den
logisch abstrakten Kontext der ausgetauschten Nachrichten. Wenn eine Nachricht
durch RPC (Remote Procedure Call) Transportprotokoll ausgetauscht wird, sind die
Parts im Nachrichtenelement sind die bedeutungsvollen Parametern fiir die Eingabe
und Ausgabe des Operationsaufruf.

Operation Im XML Element <operation> in WSDL wird eine abstrakte Kurzbeschreibung der
Operationen oder der verfiigbaren Implementierungsaktionen aus den Web Services ge-
geben. Jede Operation im WSDL Dokument hat einen eigenen eindeutigen Namen und
enthdlt die spezifizierten Eingangs- und Ausgangsnachrichten bzw. Fehlermeldungen
bei einem fehlgeschlagene Operationsaufruf. Es werden in der Implementierung vier
Arten von Operation in den Endpunkt realisiert: Der Endpunkt bekommt eine Nach-
richt und gibt keine Riickmeldung, der Endpunkt generiert eine entsprechende Antwort
fir die ankommende Nachricht, der Endpunkt sendet eine urspriinglich Anfrage und
wartet auf die Antwort oder signalisiert nur die Verbreitung einen Bescheid.

Shttp:/ /www.w3.org/TR/xmlschema-o/

12

2.1. Web Services

Port Type Ein <portType> Element ist eine Menge von einer oder mehreren <operation>
Elementen, die in einem Webservice implementiert sind und in einer bestimmten
klassifizierten Sorte angeliefert werden. In einem WSDL Dokument kénnen mehrere
<portType>Elementen spezifiziert werden.

Binding Im <binding> Element werden eine aufgeklarte Beschreibung von den Nachrich-
tenformaten eines Operationsaufruf eines bestimmten <portType> Elements und das
entsprechende detaillierte Transportprotokoll definiert. In einem <binding> Element
muss genau ein einziges Transportprotokoll spezifiziert werden.

Port Ein <port> Element beschreibt einen Endpunkt fiir ein bestimmtes <binding> Element
in WSDL. Es wird darin eine Netzwerkadresse z.B <soap:address> fiir SOAP-Binding
oder Objektzugang fiir den Zugriff und Datenaustausch angegeben. Innen ist ein
<port> Element welches nur eine Zugriffsadresse spezifiziert.

Service In einem <service> Element in WSDL werden alle <port> Elementen zusammen
gruppiert. Es erfasst alle verfiigbaren Zugriffsadressen und die spezifizierten aufrufba-
ren Endpunkte in Web Services.

Die in dieser Arbeit angewendete WSDL Spezifikation ist die Version 1.1, eine weiterentwi-
ckelte WSDL von Version 2.0 wird in dieser Arbeit nicht diskutiert. Die neuen Verwandlungen
und Komponenten-Modelle der neusten Version konnen in den entsprechende W3C Weblinks
4 gefunden werden.

2.1.2. SOAP

SOAP steht jetzt ab den Version 1.2 5 nicht mehr fiir eine urspriinglich Abkiirzung von
»Simple Object Access Protocol«, sondern ist der Name des fundamentalen Nachrichten-
Framework fiir Web Services. Die spezifiziert das XML-basierten Format und das Verar-
beitungsmodell der abgeschickte Nachrichten zum Kommunizieren in Web Services. Eine
SOAP-Nachricht ist ein wie eine Versandtasche konstruiertes Strukturformat, die neben
dem Transportieren von relevante Daten durch mehrere besondere Funktionen wie z.B die
Zielnavigation und die Servicequalitdtsbeschreibung erweiterbar ist. Durch den Austauschen
von SOAP-Nachrichten zwischen Service-Anbieter, Service-Anwender und den Vermittlern
werden Web Services in einem lose gekoppelte Verfahren in verschiedene Implementierungs-
plattformen und Netzwerksprotokollen fiir den Transport aufgerufen und ausgefiihrt. SOAP
ist dabei eine der grundlegenden Spezifikationen im Web Services Stack.

4http:/ /www.w3.org/TR/wsdl20/
Shttp:/ /www.w3.org/TR/soap12-parto/

13

2.2. Business Process Execution Language

2.2. Business Process Execution Language

Web Services-Business Process Execution Language kurz als WS-BPEL © ist eine von OASIS
(Organization for the Advancement of Structured Information Standards) 7 standardisierte
Beschreibungssprache fiir die Modellierung, Simulation und das Analysieren von den auf
Web Services basierten Geschiaftsprozessen. WS-BEPL spezifiziert die erweiterbare XML-
basierte Aufbaustruktur und geschiftliche Interaktionsprotokolle fiir die Erstellung von
ausfithrbaren und von abstrakten Geschiftsprozessen. Die Web Services und deren Funktio-
nalitdten werden importiert oder exportiert durch die Interfaces in den BPEL-Prozessen und
den entsprechenden Transportprotokollen. WS-BPEL Spezifikation steht aber nicht allein, es
ist verbunden mit weiteren XML-basierte Spezifikationen wie WSDL 1.1, XML Schema 1.0,
XPath 1.0, XSLT 1.0 and Infoset. Eine genaue technische Spezifikation von WS-BEPL Version
2.0 wurde in Dokumentation [AAA"o7] detailliert vorgestellt. Fiir eine ausfiihrliche Erkla-
rung von WS-BPEL und den neu entwickelten Merkmalen kénnen die weiteren Ressourcen
und Dokumentationen in den OASIS BPEL technische Committee Webprisenz 8 gefunden
werden.

2.2.1. Orchestration

Orchestration steht fiir einen ausfiihrbaren Geschéftsprozess durch die Komposition von
Web Services. In den Geschiftsprozessen werden die interne und externe Web Services
aufgerufen. Eine Orchestration beschreibt die Interaktionen zwischen den Web Services in
einem Geschéftsprozess auf der Nachrichtenebene, den Durchldufen und die zugeordnete
Ausfiihrung der Interaktionen werden ebenfalls darin definiert. Die Interaktionen zwischen
mehreren Applikationen und Plattformen bilden einen langlaufenden und transaktionalen
Geschiftsprozess ab, solche eine Orchestration wird aber durch einzelne Teilnehmer ver-
glichen mit der »Choreography« kontrolliert und geschlossen. Eine Choreography besteht
zwischen den Teilnehmern in einem Geschéftsprozess. Jeder Teilnehmer kommuniziert mit
dem Prozess entsprechend seiner Rolle, die er im ganzen Geschiftsprozess dabei spielt
und nach der er behandelt. Der ganze Geschiftsprozess resultiert durch das Zusammen-
spiel und die Interaktionen von alle Teilnehmern. Eine standardisierte Spezifikation von
Choreogrphy 9 konnen in W3C unter dem Name »Web Services Choreography Description
Language« gefunden werden. Eine wesentlicher Unterschied einer Orchestration ist, dass sie
einen Prozessflow zwischen Web Services und der interne geschiftliche Logiken darstellt
und zu einem einzigen Hauptteilnehmer gehort. In dieser Arbeit wird nur die Aspekte in
Orchestration und deren Implementierungssprache WS-BEPL betrachtet und verwendet. Fiir
eine ausfiihrliche Erkldrung zwischen den Orchestration und Choreography kénnen die
Dokumenten [AAA"o7], [KBRLo5] genutzt wenden.

®http:/ /docs.oasis-open.org/wsbpel /2.0/OS /wsbpel-v2.0-OS.html
7http:/ /www.oasis-open.org/home/index.php

8http:/ /www.oasis-open.org /committees /wsbpel /

Shttp:/ /www.w3.org/TR/ws-cdl-10/

14

2.2. Business Process Execution Language

2.2.2. Workflow Engine

Eine Workflow Engine ist die Laufzeit-Komponente in einem Workflow-Management System.
Eine Worklow Engine steuert, ausfiihrt und tiberwachte die Instanzen des eingesetzten
Geschiftsprozessen zusammen mit der verbundene Datenbank aus. Eine Workflow Engine
wird in der Praxis fiir den Aufbau einer Plattform genutzt, um die in WS-BPEL modellierte
Servicesequenz fiir die Prozesstransformation im Server ausfithren und selber als Web
Services aufrufbar sein zu kénnen. Es werden in den folgenden Abschnitten die in dieser
Arbeit angewendete Workflow Engine Apache ODE und seine Architektur erklart.

Apache ODE

Apache ODE (Orchestration Director Engine) '© ist eine auf Java implementierte frei lizen-
zierte Workflow-Engine fiir die Ausfithrung der durch standardisierte WS-BPEL erstellten
Geschiftsprozessen. ODE verwaltet die definierte Geschéftslogik im Prozess und die Kom-
munikation zwischen den eingesetzten BPEL-Prozessen und Web Services. Er schickt die
SOAP-Nachrichten ab und empfingt die entsprechende SOAP-Nachricht-Antwort. Die
in den BPEL-Prozess spezifizierte Operationsaufrufen, Datenmanipulation und Fehlerbe-
handlung werden in Apache ODE implementiert und tiberwacht. Die aus Web Services
kompositionierte transaktionellen kurzlebigen BPEL-Prozess oder langlebige Prozesse fiir
eine lang laufend Geschéftsapplikation sind ebenfalls in ODE implementierbar.

Neben der Standardfunktion fiir die Ausfithrung von BPEL-Prozessen werden die weiteren
Merkmale angeliefert, die besonders fiir die Entwicklung und Management von eingesetzten
BPEL-Prozessen geeignet sind, z.B die vollstindige Management-API wird als Webservice
angeboten. Diese API fragt den ODE Server iiber den Zustand des BPEL-Prozesses und der
Instanzen ab. Es wird in der Arbeit diese Anwendung benutzt, um den aktuell Zustand der
aus WS-BPEL erstellten Servicesequenz ebenfalls als BPEL-Prozess zu befragen. Es ist in
der Tat vor den Prozessaufrufen wichtig zu wissen, ob die Prozesse im ODE Server bereits
erfolgreich eingesetzt, fehlerfrei kompiliert und zur Verfiigung gestellt wurde.

In Abbildung 2.2 wird eine schematische Darstellung der Apache ODE Architektur und die
entsprechenden kommunizierenden Artefakte bzw. Akteuren gegeben. Diese ist prinzipiell
entlehnt aus dem Weblink ™ angezeigt. Die verschiedenen teilnehmenden lose-gekoppelte
Systemmodule in ODE und die Interaktion zwischen die Kernkomponenten werden im
Folgenden erklart.

ohttp:/ /ode.apache.org/
"Thttp:/ /ode.apache.org/architectural-overview.html

15

2.2. Business Process Execution Language

BPEL Process,
WSDL,
deploy.xml

v
ODE BPEL
Compiler

A

v

ODE BPEL Engine Runtime

JACOB A h
e Persistency of Execution pache W
eb
State ODE
e Concurrency Integration
e Navigation

Services

ODE Data Access Objects

+

Abbildung 2.2.: Apache ODE Architektur und Komponenten

Die Kernkomponenten der Apache ODE Architektur sind die drei lose gekoppelte Module
in der obigen Abbildung dargestellte Objekten, sowie ODE BPEL Compiler, ODE BPEL
Engine Runtime und ODE Integration Schnittstelle. Die ODE Runtime-Engine besteht aus
den zwei Unterkomponenten ODE DAO (Data Access Objects) und JACOB (Java Concurrent
Objects), mit denen die Datenmanipulation und Prozessausfiihrung in ODE realisiert werden
konnen. Die Funktionen in ODE wurden dadurch klar moduliert und mit einander minimal
verkniipft. Das realisiert wiederum eine flexible Montage fiir eine vielfdltige Funktionalitat
des Workflowmanagement-System aus verschiedene Modulen, in denen die einzige und
eigenstandige Funktion implementiert wurde.

Der ODE BPEL Compiler konvertiert alle eingesetzte Artefakte sowie den BPEL-Prozess, die
entsprechende WSDL-Dateien, XML Schemen und deploy.xml. Ein speziales Datenformat
fiir das BPEL Engine Runtime Modul wird generiert. Diese Datei wird durch den Name
des BPEL-Prozess Dokument mit der Namenserweiterung ».cbp« identisch benannt. Beim
Kompilieren werden die Analyse und Validierung des BPEL-Prozess gegen die standar-
disierte WS-BPEL Spezifikation durchgefiihrt. Fehlermeldungen signalisieren falsche oder
unvollstindige WS-BPEL Syntax und Semantik. In der generierten Datei wird es ein speziales
Objektmodell beschrieben, welches eine strukturelle Gemeinsamkeit mit dem eingesetzte
BPEL-Prozess besitzt. Durch die Hauptkonstruktor-Klasse »BpelC« und weitere Generator-

16

2.2. Business Process Execution Language

Klassen und APIs fiir verschiedene Strukturen in den BPEL-Prozess und WSDL Dokument
wird fiir das BEPL Engine Modul ein lesbares und ausfiihrbares Modell transformiert. Tech-
nische Details des BPEL Compiler und deren Implementierung wird in dieser Arbeit wegen
der Komplexitit nicht weiter gefiihrt. Motivierte Leser wenden sich an die verwendeten
Quellcodes von BPEL Compiler *2.

Das ODE BPEL Engine Runtime Modul ist das Kernmodul der ODE Laufzeitumgebung,
die fiir die Ausfiihrung von den kompilierten BPEL-Prozessen zustidndig ist. Die Ausfiih-
rung von verschiedene BPEL Strukturen bzw. Aktivititen werden in der BPEL Eingne
Prozesslaufzeitumgebung implementiert. In diesem Engine Modul liegen zwei relevante
Unterkomponenten JACOB (Java Concurrent Objects) und ODE DAO. Weil die Prozessaus-
fithrung und Kommunikation sich in einer nicht zuverldssig Netzwerkumgebung finden, soll
die Laufzeitumgebung sollen dabei eine Persistenz-Aufforderung fiir die Instanzen besorgen,
um die Prozessausfithrung in einem sicheren und verlustfreien Verfahren durchfiihren zu
konnen. Das ODE DAO-Modul beschiftigt sich mit dieser Aufgabe. Die Unterkomponente
ODE DAO (Data Access Objects) im BPEL Engine Runtime Modul soll die Interaktion zwi-
schen der BPEL Engine und der extern verbundenen relationalen Datenbank vermitteln und
die entsprechende Objektpersistenz bzw. die Datenbehandlungen in der Prozessausfiihrung
realisieren. Typischerweise wird dabei eine relationalen Datenbank wie z.B in dieser Arbeit
MySQL Datenbankserver 3 genutzt. ODE DAO wird meistens realisiert durch OpenJPA 4,
eine eigene frei lizenzierte Implementierung fiir Java Persistenz API in Apache Software
Fundament. Die ODE ODA unterstiitzt dabei die alltdgliche Emissionen von BPEL Engine.
Die Zustandsinformationen und ausgetauschten Nachrichten in der Prozessausfithrung
werden in der relationalen Datenbank gespeichert. ODE DAO nutzt die Durchfithrungsna-
vigation und Datenzugriffen auf alle Informationen, die durch alle kompilierte eingesetzte
BPEL-Prozess und die Kommunikation mit den Auflenwelt erzeugt werden. Die BPEL Engine
verfolgt und iiberwacht die Aktivierung von jeder erzeugter Instanz des eingesetzten Prozess,
navigiert die kommenden und hinausgehenden Nachrichten fiir die Prozessinstanzen durch
das Korrelation-Set, weist die Input und Output aus den Variablen und Partnerlinks fiir
die Instanz und entsprechende Aktivitdt hin und synchronisiert insbesondere der Status
der ausgefiihrten Instanz mit dem aktuellem Ausfiihrungszustand in der Jacob virtuellen
Laufzeitumgebung.

Die Durchfithrung von BPEL Basisaktivititen und strukturellen Aktivitdten fiir jede In-
stanz der Prozessausfiihrung werden in der Unterkomponente Jacob (Java Concurrent
Objects) Framework implementiert. Jacob bietet einen Thread-unabhédngigen Gleichzeitigkeit-
Mechanismus fiir die parallele Prozessausfithrung und eine effizientes Verfahren fiir die
strukturierte Unterbrechung der Prozessausfithrung und die Realisierung der Persistenz
des aktuell ausgefiihrten Zustands in der Jacob virtuelle Laufzeitumgebung. Eine techni-
sche Erkldarung der entsprechende Konzeptionen und Implementierungsmechanismus in
Jacob konnen auf den Weblinks *> gefunden werden, es wird darin sorgfiltig mit BPEL
Beispielstruktur anschaulich aufgeklart.

2http:/ /svn.apache.org/repos/asf/ode/trunk/bpel-compiler/src/main/java/org/apache/ode/bpel /compiler/
Bhttp:/ /www.mysql.de/downloads/mysql/

4http:/ /openjpa.apache.org/

15http:/ /ode.apache.org/jacob.html

17

2.2. Business Process Execution Language

Das ODE BPEL Engine Runtime Modul implementiert die komplexe geschéftliche Logik, die
mehrmals oder standig das Kommunizieren mit der AufSenwelt verlangen. Um eine flexibele
Interaktion zwischen dem Engine Runtime Modul und der Aufienwelt zu realisieren, es wird
eine ODE Integration Schnittstelle montiert und gekoppelt. Im aktuellem Stand werden zwei
Integrationsschnittstellem sowie Kommunikationskanile zur Prozesslaufzeit fiir Apache
Axis2 1 {iber das Web Services HTTP Transportprotokoll und serviceorientierte JBI (Java
Business Integration) '7 iiber eine Enterprise-Nachrichtenbus geliefert.

2.2.3. Abstrakte Sicht auf BPEL-Prozess (Business Process View)

Der Geschiftsprozess eines Unternehmens stellt die Kernkompetenz in der Strategieebene
in der entsprechenden Branche und die unternehmensweite geschéftliche Tatigkeit in der
Organisation dar. Eine gut strukturierter und flexibler Geschéftsprozess lasst die Unter-
nehmen schnell ihre gewinnorientierte Geschiften und Unternehmensstrategien an eine
Krise anpassen konnen. Die Modifizierung und Analyse des bestehende Geschiftsprozess in
einem Mittelstindischen Unternehmen sind bereits schon eine komplexe Aufgabe, weil die
Geschiftsprozesse wegen den vielfdltigen Anforderungen viele Aktivititen beinhalten (wenn
es nicht in einer hoch-abstrakte Ebene optimiert wird) und aus mehreren Subprozessen bzw.
verschiedenen geschéftlichen Funktionsgebieten integriertet werden. Eine abstrakte Sicht auf
Geschiftsprozesse bzw. »Business Process View« sollen dabei helfen, dass die Komplexitat
eines Prozesses in ein entsprechend betrachteten Dimension reduziert werden kénnen, um
eine schnell Analyse und effektive Weiterverarbeitung der Prozessen zu begiinstigen.

Eine Abstraktion auf Prozessen steht fiir eine erwiinschte Transformation des bestehender
Prozessmodells, dieser Mechanismus wurde durch Angabe von den operative Anweisungen
bzw. Regeln implementiert. Eine erweiterbare XML-basierte Regelsprache fiir die Prozess-
transformation wurde in der Diplomarbeit [Strog] erstellt und in der Studienarbeit [Cai1o]
vervollstandigt. In Abbildung 2.3 sind die Definition und die schematisch Aufbauprinzipien
der Regelsprache fiir die Prozesstransformation dargestellt. Die Regelsprache besteht aus
der allgemeinen Parametrisierung und den Regeln bzw. Ausweisungen.

6http:/ /ws.apache.org/axis2/
7http:/ /jcp.org/about]ava/communityprocess/final /jsr208 /index.html

18

2.2. Business Process Execution Language

Rules Document Definition

Parameter
[aggregateOpaque] [Cleaning J
Rule n
actions N
targets
T

Abbildung 2.3.: Rules Dokument Definition und Komponenten

Ein vollstindiges Reglement-Dokument fiir jede reguldre Prozesstransformation besteht
aus zwei Komponenten wie in der obige Abbildung 2.3. Eine vorliegende Anweisung fiir
die Weiterverarbeitung und Bereinigung des Prozesses nach der Transformation wird im
Parameterblock spezifiziert. Es werden in der momentanen Applikationsversion zwei Para-
metrisierungen geliefert. Nach der Angabe der entsprechenden Parametrisierungen werden
eine Menge von Regeln bzw. Anweisungen sequenziell in dem XML-basierte Reglement
platziert. Es konnen einzelne oder mehrere Regeln je nach den Anforderung spezifiziert
werden. Jede Anweisung besteht aus den erwiinschten Aktionen und der Identifizierung des
Zielobjektes durch den Aktivitdtsname, die Typisierung und weitere Informationen. Fiir eine
ausfiihrliche Erklarung der Parametrisierung und dem Aufbau einer Anweisung konnen sich
an die Arbeit [Cai1o, Seite 27, 28, 29] wenden. Es wurde dabei eine detaillierte Beschreibung
fur die Anwendungsprinzipien und die Zusammensetzung einer Anweisung spezifiziert.

In der Arbeit wurde WS-BEPL Version 2.0 als die grundlegende Spezifikation fiir die Model-
lierung von Geschéftsprozess unter Einsatz des Werkzeugs Eclipse BPEL Designer *® benutzt,
die erstellte Prozesstransformation und deren ausfiihrbare Webapplikation. Die aufrufbare
Web Services fiir die Prozesstransformation basieren auch auf den durch WS-BEPL 2.0 im-
plementierten Prozessen. Es ist notwendig, vor der Anwendung der Prozesstransformation
diese grundlegenden Voraussetzung fiir die Basisprozesse zu beachten.

Bhttp:/ /www.eclipse.org/bpel /

19

2.3. Eingesetzte Technologien und Frameworks

2.3. Eingesetzte Technologien und Frameworks

2.3.1. Java Servlet Technologie

Ein Java Servlet ' ist ein in Java geschriebenes Server-seitiges Programm, das die auf dem
HTTP-Protokoll basierten Anfragen aus dem Webbrowser verarbeitet und die entsprechen-
den Antworten zuriick senden kann. Durch Servlets kénnen dynamische Inhalte fiir den
Webbrowser generiert werden. Solche Servlets bzw. Java-Klasses werden als niitzliche Web-
Komponenten zum dynamische Ereugen von Webseiten auf verschiedenen Webservern
wegen der Unabhidngigkeit von der Laufzeitumgebung erfolgreich genutzt. Ein Servlet und
deren Lebensablauf sowie Initialisierung und Loschung von Servlet-Instanzen werden durch
einen Servlet-Container bzw. eine Servlet-Engine verwaltet. Die Reaktion zwischen Servlet
und Webclient wird durch den Servlet-Container in einen Anfrage-Antworten-Mechanismus
implementiert. Der Servlet-Contianer wird in eine, Webserver oder Applikationsserver stan-
dig integriert, um den HTTP-basierten Nachrichtenaustausch iiber das Internet zu realisieren
und weitere Anforderungen, wie Sicherheit und Effizienz zu gewédhrleisten. Eine ausfiihrliche
Erklarung und bisher neueste Spezifikation der Java Servlet Technologie wurden in [Morog]
bekannt gegeben.

2.3.2. JavaServer Pages

JavaServer Pages (JSP) 2 ist eine von Sun Microsystems entwickelte Webprogrammiersprache,
mit der gleichzeitig die statische und auch dynamische Webinhalte auf dem Webserver fiir
den Webclient generiert werden. Eine JSP Seite besteht aus zwei Module: Ein Teil erzeugt die
statischen Inhalte, sowie Inhalte aus anderen Webprogrammiersprachen fiir den Webbrowser.
Dieser Teil vererbt das gleiche Darstellungsprinzip und die gleiche Grammatik wie HTML
oder WML. Im anderen Teil sind alle JSP Sprachelementen, die die dynamischen Inhalte fiir
die Webclient erzeugen konnen.

Eine JSP Seite behandelt jeweils die Anfragen des Webclients gleich wie ein Servlet. Die
JSP Technologie basiert auf der Java Servlet Technologie, deswegen sind die Lebensabladufe
und Implementierungsprinzipien einer JSP Seite sehr identisch mit einem Servlet. Wenn
eine JSP Seite aufgerufen wird, dann tiberpriift der Webcontainer bzw. JSP Container das
Servlet von dieser JSP Seite. Wenn das Servlet veraltet ist, dann wird der JSP Container
transformiert, die JSP Seite nach einen Servlet-Klasse und compiliert den entsprechenden
Java-Code. Die Methoden im Servlet werden dann aufgerufen, um die Anfragen vom
Webclient automatisch zu verarbeiten und eine dynamisch erzeugte Information fiir die
Webbrowser zu generieren.

Aufler den statischen Daten fiir die Vorlage in den JSP Seiten werden drei Typen von
Elementen abgegrenzt. Eine Erklarung von dem jeweiligen Typ wird im Folgenden kurz
zusammengefasst:

http:/ /www.oracle.com/technetwork/java/index-jsp-135475.html
*%http:/ /java.sun.com/products/jsp/

20

2.3. Eingesetzte Technologien und Frameworks

Anweisungen Die Anweisungen in den JSP Seiten beschreiben die globale Informationen
fiir die Transformationsphase. Es liefert den relevante Kontext und die Konfiguration
fir den JSP-Compiler an. Dazu gehort z.B, das verbundene externe Dokument und
die Bekanntgabe von entsprechenden Tag-Bibliotheken. Die Anweisungen verdndern
den Datenstrom der Antworten iiberhaupt nicht. In JSP stehen es drei Gruppe von
Anweisungen, wie die ,<page>" Anweisung, die ,<taglib>” Anweisung und die
,<include>" Anweisung zur Verfiigung.

Aktionen Durch die Aktionen werden die zahlreichen Verarbeitungsmethoden fiir die Web-
programmierer spezifiziert. Die Aktionen einer JSP Seiten konnten den Datenstrom
der Antworten verdandern, oder die Objekte des Webservers erzeugen und modifizie-
ren. In JavaServer Pages 2.2 werden viele standardisierte Aktionen in XML-Format
angeboten. Es wird auch eigene Aktionen fiir die spezifizierte Anwendung durch
Erweiterungsmechanismen erstellt. Mit Standardaktionen kénnen eine Instanz von Java
Beans im Webserver durch , <jsp:useBean>" aufgerufen und durch ,<jsp:setProperty>”,
»<jsp:getProperty>" die Informationen von Beans verarbeiten werden. Mit tibertrag-
baren Tag-Bibliotheken konnen viele neue Aktionen und Funktionalitdten in den JSP
Seiten angewendet werden, wenn die komplizierten Funktionen und Parameter fiir die
Aktionen bereits als ,<tag>" Datei realisiert und zur Verfiigung gestellt wurden. Solche
erweiterten Tag-Bibliotheken kénnen durch die ,<taglib>” Anweisung und weitere
Attribute sowie Uniform Resource Identifier (URI) in den JSP Seiten verfiigbar gemacht
werden.

Skript Elemente Skript Elemente in den JSP Seiten manipulieren die Objekten im Webser-
ver und fiihren die Berechnungen sowie Methoden von Java Objekte durch, um die
dynamischen Informationen fiir die Anfragen zu erzeugen. In JSP 2.0 werden es drei
Typen von Skript Elementen sowie ,<declarations>”", ,<scriptlets>” und , <expressi-
ons>" erstellt. Durch die Deklaration werden die Variable und Methoden der JSP Seite
vereinbart. AufSerdem werden alle Deklarationen fiir die Anwendung von weiteren
Skript Elementen initialisiert, erst wenn die JSP Seite erst initialisiert wird. Das Ele-
ment , <scriptlets>" ist ein kleines Codefragment, welches bei der Verarbeitung von
Anfragen ausgefiihrt wird. Es kann den Datenstrom der Antworten und Java-Objekte
im Webserver in entsprechenden Situationen manipulieren. Eine , <expressions>" in
einer JSP Seite wird bei der Verarbeitung von Anfragen ausgewertet und das Ergebnis
wird als Zeichenkette fiir den Output in ein JspWriter Objekt konvertiert. Die Zeichen-
kette sowie das Resultat von ,<expressions>" werden dann direkt in die JSP Seiten
zur Darstellung eingefiigt. Nach JSP 2.1 wird durch die Sprache sowie , <Expression
Language>" eine Alternative fiir die Skript Element angeboten. Die Ausdriicke in den
JSP Seiten werden ausgewertet und ebenfalls in eine Zeichenkette als dynamisches
Resultat fiir den Webclient umgewandelt.

Eine ausfiihrliche Erklarung und die bisher neueste Spezifikation von JSP Elementen und
weitere Erweiterungen sowie Ausdrucks-Sprachen und Tag-Bibliotheken wurden in [PDog]
bekannt gegeben.

21

2.3. Eingesetzte Technologien und Frameworks

JSP Container JSP Page

Init event | jsplnit

<%!
public void jsplnit()...

public void jspDestroy()...

[

Request jspService %>

Response
<html>
This is the response..
</html>

Destroy event : jspDestroy
REQUEST PROCESSING PHASE TRANSLATION PHASE

Abbildung 2.4.: Interaktion zwischen JSP Seite und JSP Container

In der Transformationsphase einer JSP Seite werden alle Elemente in einer JSP Seite durch
zwei verschiedene Methoden verarbeitet. Die statischen Elemente werden direkt in Code
transformiert und in den Datenstrom fiir die Antworten geschrieben. Die JSP Elemente wer-
den je nach Typ unterschiedlich behandelt. Die Anweisungen werden fiir die Webcontainer
eingelesen, um die Transformation und Ausfiihrung von JSP Seiten zu kontrollieren. Die
Skript Elemente werden in der Servlet-Klasse einer JSP Seite transportiert, um den Zugriff
und die Manipulation von Java-Objekt zu realisieren. Alle Ausdriicke werden als Parameter
fiir die JSP Ausdruck-Auswerter konvertiert. Die Aktionen einer JSP Seite werden in den
entsprechenden Aufruf von Methoden in JavaBeans compiliert.

Nach erfolgreicher Transformation und Compilieren der JSP Seite wird die Servlet-Klasse
der JSP Seite durch den JSP Container verwaltet und implementiert. Die Abbildungen 2.4
aus [PDog] stellt das Implementierungsprinzip des JSP Container dar. Die Lebensabldufe der
Servlet-Klasse der JSP Seite wird mit den gleichen Prinzip wie in der Java Servlet Technologie
behandelt. Wenn eine JSP Seite aufgerufen wird und keine entsprechende Servlet-Klasse
existiert, dann ladet der JSP-Container ladet die Servlet-Klasse von JSP Seite nach. Dabei
wird eine Instanz der Servlet-Klasse durch den Aufruf der jsplnit Methode initialisiert.
Der JSP-Container kann mehrfach die jspService Methode aufrufen, um die Java Objekte
im Webserver zu manipulieren und entsprechende Datenstrome zu generieren. Der JSP-
Container ruft die jspDestroy Methode auf, wenn die Servlet-Klasse nicht mehr brauchbar
ist.

22

2.3. Eingesetzte Technologien und Frameworks

2.3.3. JavaServer Faces 2.0 Framework

JavaServer Faces (JSF) ' ist ein auf MVC-Designmuster basiertes Benutzeroberfldche-
Framework fiir die Entwicklung von Java-basierten Webanwendungen. Das JSF Frame-
work konzentriert sich auf den vereinfachten Aufbau von reichhaltigen und handlichen
User-Interface fiir Webapplikation durch die angebotenen UI-Komponenten. Der Entwickler
montiert die wiederverwendbare UI-Komponenten in die Webseite und bindet die Ul-
Komponenten mit der entsprechende Datenressource auf, die aufgerufene oder ausgelosten
Events und Funktionen werden auf der Serverseite programmiert.

Eine JSF UI-Komponente ist ein einheitlicher Strukturblock in der Webseite zur Generierung
eines JSF interaktives Interface fiir die Webbenutzern. Dieses interaktive Interface kann eine
einfache Eingabe sowie ein paar Knopfe oder die Textfeldern sein, es kann allerdings auch
ein kompliziertes Interface durch zusammengesetzte Strukturen, wie die Baumstruktur oder
Tabellen dargestellt sein. Um das interaktive Interface und die unterliegende Datenmodelle
mit den assoziierten Java-Objekte zu verbinden und aufzurufen, werden in JSF konnen es
durch die Ausdriicke und Angaben durch entsprechende JavaBeans realisiert. Neben dem in-
teraktiven Interface werden auch zusitzliche Funktionspakete, wie Datentyp-Konvertierung
und Eingabe-Validierung entwickelt und geliefert.

Das auf JSF Framewrok basierte interaktive Interface einer Webseite wird als ein »View« fiir ei-
ne besondere Abfrage oder Antwort durch den Zusammenbau der UI-Komponenten erstellt.
Eine »View« in der Prasentations-Schicht ist ein hierarchischer Aufbau von Java-Klassen in
einer Baumstruktur, die die teilnehmenden UI-Komponenten zur Prasentation implementie-
ren und navigieren. Alle Komponenten in der Baumstruktur werden miteinander assoziiert,
jede «View« der UI-Komponenten einer Facette wird dann durch die Wurzelkomponente
instanziiert.

Neben der abstrakte Grundklasse fiir UI-Komponenten sowie »UIComponent« werden auch
in JSF solche konkreten UI-Komponenten entwickelt, die den alltagliche Anforderungen
des Webclients erfiillen konnen. Eine detaillierte grafische Auflistung der standardisierten
Komponenten kénnen in der Dokumentation [BKog, Kapitel 4] gefunden werden. In JSF
generiert es fiir das interaktive Interface in Webseiten die Events. Nach der Aktivierung
von Ereignisses werden die Events behandelt und die entsprechenden Antworten zur UI-
Komponente in »View« zur Darstellung abgeschickt.

Das Implementierungsmodel fiir Events in JSF ist sehr dhnlich wie die Implementierungsme-
thode in gdngigen Benutzeroberflichen-Anwendungspakete z.B das Swing Framework in
JDK. Der Empfanger der Events wirdn registriert und durch entsprechende Events aktiviert.
Der Empféanger ruft die spezifizierten Java-Klassen auf, um die unterliegende geschiftliche
Logik zu implementieren. In den UI-Komponenten und deren Subklassen wird das Event
herausgegeben, welches eine mafigebliche Zustandsverdnderung in der Anwendung besagt.
Diese Nachricht wird dann im zentralen Register verbreitet, in dem viele Empfangern sich
angemeldet haben, welche einen bestimmten Eventtyp zu verarbeiten wollen. Es kann zu
dem Fall kommen,dass die Events in einer Schlange fiir einen Empfanger bereitstehen.

*Thttps:/ /javaserverfaces.dev.java.net/

23

2.3. Eingesetzte Technologien und Frameworks

2.3.4. Hibernate Framework

Hibernate ** ist ein leistungsfahiges und flexibeles Programmiermodell fiir die Persistenz
und Anfragen von Datenressourcen, mit der die Java-Objekte und deren Attribute in ei-
ne Applikation mit den relationale Datenschemen von Datenbank zusammen abgebildet
werden, um die Entwicklungskosten und aufwéandige Programmierung zu vermindern.
Die Kernaufgabe von Hibernate ist die effiziente Abbildung zwischen Objektorientierter
Programmierung und relationaler Datenbank, es verkniipft die Java-Klassen sowie Plain Old
Java Objects (POJO) mit den Datentabellen. Die jeweiligen Datentypen von Java Objekten
werden mit entsprechende Datentypen der SQL Datenbank verbunden.

Neben der Objekt/Relation Abbildung bietet Hibernate weitere effiziente Funktionalitdten
fiir die Datenabfrage an, die den Entwicklungsaufwand von Anwendung und Datenbank
deutlichen verbessert. Die Datenabfragen durch jeweils tiberfliissige Codierung von SQL
und Java Database Connectivity (JDBC) sind wegen hdufigen Aufrufen von Datenzugrif-
fen aufwandiger. Hibernate realisiert ein verbessertes Implementierungsprinzip fiir solche
Tatigkeiten, die standige mit Persistenz von Datenressourcen zu tun haben. Der grofse Teil
der Codierung durch SQL-Ausdriicke und JDBC fiir die Datenverarbeitung wird durch ent-
sprechende Mapping-Metadaten von Hibernate realisiert und die relevanten Interaktionen
zwischen Anwendung und Datenbank werden transaktional verwaltet.

Persistenz Hibernate wird als eine kompetente Losung fiir Persistenz von Objekt und
Datenressourcen in Applikation betrachtet und weiterentwickelt. Unter Persistenz in
dieser Arbeit versteht man die theoretische langfristige Einbehaltung eines Datenzu-
stand des Objektes nach der Erzeugen durch ein Programm oder Java-Klasse. Der
aktuelle Zustand eines Objekts wird verfiigbar fiir weitere Prozesse, die diesen Infor-
mationszustand des erzeugten Objekts in einem bestimmtem Zeitraum weiter benutzen
wollen. Solche Objekte und Datenressourcen in Applikation bzw. der gespeicherte
Informationszustand beispielsweise im Cache konnen durch Aufrufen von spezielle
Methoden geloscht werden. In dieser Arbeit wird die physikalische Persistenz aus
Datenbankmanagementsystem nicht diskutiert.

Hibernate vermindert die wiederholte Codierungen zwischen Applikationsfunktionen und
Datenbankzugriffen. Die Softwareentwickler konzentrieren sich auf die relevante Aufgaben
der Geschiftslogik von Applikationen und benutzen bekannte Programmiermuster, um die
Datenverarbeitung und Datenabfrage effizienter zu realisieren. Die Anwendungsmoglichkeit
von Hibernate hdngt nicht von den Softwareentwicklungsparadigma bzw. den Entwurfsstra-
tegien ab. Es zeigt sich eine grofie Einsatzfahigkeiten fiir populdre Anwendungssysteme in
alle Branchen, die besonders mit grofSen und deutlich hdufiger verarbeiteten Datenmengen
umgehen und dabei eine hohere Datenintegritdt gewéhrleisten miissen. Eine Weiterent-
wicklung von bereits bestehenden Datenschemen in der Datenbank oder eine Entwicklung
von einem neuem Geschiftsanwendungssystem wird dabei deutlich beschleunigt durch die
Einsatz von Hibernate sowie die Objekt/Relation abgebildete Persistenz-Losung zwischen
Anwendungsschicht und Datenschicht.

2?http:/ /www.hibernate.org/

24

2.3. Eingesetzte Technologien und Frameworks

SessionFactory

Session Transaction

TransactionFactory ionProvider

Abbildung 2.5.: Detaillierte Hibernate-Architektur aus [GKE10]

Hibernate schweifst die zwei verschiedene Reprasentationen von Daten in Anwendungs-
entwicklung und Datenbankmodellierung zusammen. Die Kompetenzen von beiden Seiten
werden nicht von dieser hinzugefiigten Klebeschicht beschddigt und verlangsamt, sondern
werden durch bessere Mechanismen optimiert . Die Abbildung 2.5 stellt diese Klebeschicht
zwischen der Applikation und der Datenbank graphisch dar. Die wichtigen Komponenten
aus Hibernate und ein Uberblick werden danach kurz gegeben. Eine ausfiihrliche Funkti-
onsbeschreibung von relevanten Bauelementen in Hibernate konnen in [GKE10] gefunden
werden.

SessionFactory Eine Session Fabrik wird in Hibernate durch die Konfigurationsdatei bei der
Instanziierung erzeugt. Es wird fiir eine einzelne Anwendung und eine einzelne Daten-
bank nur eine Session Fabrik spezifiziert. Eine Session Fabrik besitzt Threadsicherheit.
Die Ausfiithrung wird durch den gleichzeitigen Aufrufen von anderen Programmen
nicht behindert. Alle Sessions und die Erfassungsarbeit von Metadaten werden durch
die Session Fabrik zur Laufzeit erzeugt und verwaltet. Die Eigenschaften von Session
Fabrik sind nach den Instanziierung in Konfigurationszeit unveranderbar. Durch das
SchliefSen einer Session Fabrik werden alle Ressourcen in einen sekunddren Cache und
die Anbindungen der Datenpools befreit.

Session Eine Session ist eine kurzfristige Konversation zwischen der Applikation und
der Datenpersistenz in Hibernate. Die Anbindung mit Datenbank durch JDBC und
Datenabfragen durch SQL-Ausdriicke wird in jeder Session von Hibernate verpackt.
Die transaktionale Anforderung der Datenverarbeitung wird in der Session gesichert

2.3. Eingesetzte Technologien und Frameworks

und kontrolliert. Der gesamte Persistenz-Kontext von Java-Objekt wird in der Session
zwangsweise in einem primitive Cache gespeichert. In einer Hibernate-Session werden
die relevanten Operationen fiir die Modifizierung und Persistenz von Java-Objekten
angeboten. Das Durchsuchen der richtigen Objektidentitdt und der entsprechend
assoziierter Instanz der Session im Cache sollen dabei die korrekte Persistenz des
Informationszustand des jeweiligen Objektes navigieren und sichern.

Persistent objects Das Java-Objekt und die Kollektion von Objekten, die den Persistenz-
Kontext bzw. die »Hibernate Annotations« und die geschéftliche Anwendungsfunktio-
nen beinhalten, werden eindeutig assoziiert durch genau eine Session-Instanz. Nach
der Datenverarbeitung und den Funktionsaufrufen des Persistenz-Objekts wird die
assoziierte Session abgeschlossen, um den aktuellen Informationszustand des Java-
Objekts zu speichern und fiir die weitere Verarbeitung von anderen Programmen und
Prozessen in der Anwendung freizuschalten.

Transient and detached objects Die Persistenz-Objekte werden nach dem Abschliefien der
assoziierten Session losgelost. Solche friithere Persistenz-Objekte werden dann »deta-
ched objects« geworden, die mit keiner Session und Instanz mehr verbunden sind und
keinen Persistenz-Kontext mehr besitzen. Die Java-Objekte werden durch Java-Klasse in-
itialisiert und als kurzlebige Objekte wie »Transient objects« im Cache gespeichert. Das
gilt fiir Objekte, die nicht als Persistenz-Objekte durch Hibernate behandelt werden.

Fiir die Objekt/Relation Abbildung braucht Hibernate die Metadaten, die die Transforma-
tion von Informationsreprasentation aus Java-Objekt in eine relationale Reprasentation in
Datenbankschicht navigieren und leiten. »Hibernate Annotations« sind in das Java-Objekt
bzw. direkt vor die Codezeile der Java-Klasse durch das »@« Zeichen und weitere Attribute
unmittelbar kommentierte Metadaten. In »Hibernate Annotations« kénnen zwei verschiede-
ne Kommentierungs-Prinzipien klassifiziert werden. Entweder durch die objektorientierte
Modellierung, in der die Eigenschaften von Objektklasse und die Beziehung zwischen meh-
rere Objektklassen kommentiert werden, oder nach den Datenschemen in den Tabellen,
welche die entsprechende Spalte und Index bzw. den Schliissel im Java-Objekte durch einen
Kommentar abgebildet werden. Es kénnen in der Praxis die beide Prinzipien gemischt
angewendet werden.

In EJB 3.0 bietet neben den Annotationen noch ein neue Methode, den »XML deployment
descriptor« als eine weitere Moglichkeit an, mit der die durch »Java Persistenz Annotation
(JPA)« vorbereiteten kommentierten Metadaten in der Java-Klasse tiberschreiben oder aus-
getauscht werden kénnen. Die Eigenschaften und die Assoziationen der Java-Klassen, wie
»Entity« im Persistenz-Kontext konnen durch den »XML deployment descriptor« einfach
bei der Stationierung von Metadaten bedeckt werden. Im Dokument [Ber1o] kénnen eine
detaillierte Spezifikation zusammen mit ausfiihrlichen Codebeispiele von verschiedene Kom-
mentierungen bzw. Metadaten und die Anwendung der entsprechenden Attributen in JPA
tiir die Persistenz-Klassen gefunden werden.

26

2.3. Eingesetzte Technologien und Frameworks

2.3.5. Spring Framework

Das Spring Framework 23 ist eine Java-basierte Plattform fiir die Entwicklung von unterneh-
mensweiten leichtgewichtigen Anwendungen zusammen mit den géngigen JEE-Technologien.
Es bietet kompakte Grundbausteine und eine umfassende Infrastruktur zur Unterstiitzung
aller moglichen Java-Anwendungen an. Das Spring Framework beschéftigt sich mit der
Infrastruktur und der Wiederverwendbarkeit von den Applikationskomponenten in der
Enterprise-Anwendung. Durch die Anwendung von Spring kénnen die Softwareentwick-
ler bei der Entwicklungsphase unabhingig erst mit der Programmierung von POJOs bzw.
der Datenmodellierung fiir der Datenbank anfangen und dann die Geschiftslogik sowie
Services und deren Implementierungen als Java-Beans mit entsprechende Metadaten in
den Anwendungscontainer konfigurieren, ohne die Java-Beans und Klassen angreifende zu
durchdriangen bzw. assoziieren.

Das Spring Framework beinhaltet vielen Merkmale und Funktionen, die in mehrere Mo-
dule und Programmpakete klassifiziert werden. Die relevanten Module in Spring sind die
Kerncontainer, »Data Access/Integration«, das Webmodul, »Aspect Oriented Programming",
Instrumentation und Testmodule. Diese sind graphisch in der Abbildung 2.6 aus Spring
Dokumentation [R] 10, Seite 3] schematisch dargestellt. Die nachfolgende Erklirungen von
Modulen und Funktionen des Spring Frameworks werden im Grofiteil theoretische aus
Dokumentation [R]*10] fiir einen unkomplizierter Einfithrung in die Themen personlich
zusammengefasst. Die Leser konnen sich an die Dokumentation und weitere online Artikeln
24 wenden, um ein technisch vertieftes Verstehen des Spring Frameworks zu erzielen. Aufier
den Modulen und der Architektur sind noch zwei weitere relevante Konzeptionen aus Spring
Framework zur Vorstellung notwendig. Sie werden dann in den folgenden Abschnitten fiir
einen technischen Uberblick kurz zusammengefasst.

Inversion of Control Das ist eine umgekehrte Methode fiir das Aufrufen von Komponen-
ten in dem Programm, ohne die direkt Initialisierung, Erzeugung, Verdrahtung und
Verwaltung des Objektes durch das Hauptprogramm. Die Konfigurationsaufgabe von
allen verbundenen Objekten in den Komponenten werden durch die aufien Container
in Spring Framework geliefert und verwaltet. Dabei nimmt das Spring Framework
die Rolle des Hauptprogramms ein und kiimmert sich um den Lebenszyklus des
Objektes. Es wird dabei geholfen, um die Kopplung und strenge Abhéngigkeit zwi-
schen Komponenten zu verringern. Die alle Nachschlagen von zielte Komponenten
und Konfigurieren des Applikationskontextes werden ins Container gezogen. Durch
das Verfahren »Dependency injection« sind Container verantwortlich fiir die Konfi-
guration und Verdrahtung von Komponenten. Eine konkrete Implementierung der
Konfiguration und Verdrahtung werden in die Klassen eingespritzt. Ohne eine grofie
Codeverdanderung der Klassen werden der verbundene Kontext und die Verdrahtung
in den Container verdndert und neu konfiguriert.

Aspektorientierte Programmierung Das ist ein weiteres Programmierparadigma mit Unter-
schieden gegeniiber der Objektorientierten Programmierung, durch den die funktionale

23http:/ /www.springsource.org/
*4http:/ /www.springsource.org/documentation

27

2.3. Eingesetzte Technologien und Frameworks

Aspekten der Softwareanwendung methodische separiert werden und um sie getrennte
zu entwickeln und zu testen. Ein Aspekt hier ist die eigenstdndige Funktionsanfor-
derung in der Anwendung, die nicht als ein komplettes und relativ selbstandiges
Modul in der OOP entwickelt wird. Ein Aspekt wird sich in der ganzen Anwen-
dung einen querschnittlich Belang bezeichnet, weil er nicht modularisiert wird. Eine
Logging-Funktion z.B. greift auf alle Module einer Anwendung zu. In der aspekt-
orientierten Programmierung werden solche Aspekte als syntaktische Strukturen in
der Anwendungsentwicklung im Bezug modularisiert und dann mit den restlichen

Funktionsmodulen verwoben.

Spring Framework Runtime

Data Access/Integration

Web (MVC / Remoting)

JDBC ORM Web Servlet
OXM IMS
Portlet Struts
Transactions
AOP Aspects Instrumentation
Core Container
Beans Core Context Expression
Language

Test

Abbildung 2.6.: Ein Uberblick von Spring Framework aus [R] " 10]

Der Spring Kerncontainer beinhaltet die vier fundamentalen Module, wie in der obige
Abbildung angezeigt. Das Kern- und Beansmodul sind die grundsétzliche Funktionspakete
des Framworks. Die Hauptfunktionen sowie die »Inversion of Control« und deren Imple-
mentierungsmethode »Dependency Injection« werden darin angeboten und verwaltet. Das
org.springframework.beans.factory Paket unterstiitzt die Verwaltung und Manipulation von
Beans. Das Kontextmodul baut die Funktionalitidten von Kern- und Beansmodul in einem
framework-orientierte Stil weiter aus, es bietet die Anpassung fiir die Internationalisierung

28

2.3. Eingesetzte Technologien und Frameworks

und das Ressourcen-Aufladen neben der ererbten Funktionen aus dem Beansmodul an. Das
Ausdriicksprache-Modul realisiert die Anfrage und das Manipulieren von Java Objekten
zur Laufzeit und ist ein erweitertes Paket von »unified expression language« aus der JSP-
Spezifikation. Es konnen das Datenobjekt und die Methodenklasse und deren Merkmale
durch die Methoden »Setter« und »Getter« ausgewertet, abgeholt und aufgerufen werden.
Die Objekte werden bereits im Kerncontainer registriert, das erwiinschte Objekt wird dann
durch die Ausdriicke wieder erstellt.

In der Datenzugriffs und -Integrationsschicht befinden sich die Module fiir JDBC, OR-
Mapping, OXM, Java Messaging Service (JMS) und Transaktionsmanagementmodell des
Spring Frameworks. Es werden auch die Funktionspakete fiir die MVC-Designmuster ba-
sierten Webanwendungsentwicklung und Entwicklungsplattform-Integration sowie das
Webmodul und die Module fiir Web-Servlet, Web-Struts, Web-Portlet in Spring entwickelt.
Test ist eine wichtige Arbeitsphase in der geschéftlichen Anwendungsentwicklung, das
unterliegende Testmodul im Spring Framework unterstiitzt dabei zwei Verfahren mit ent-
sprechenden Testpaketen und Objekten zur Testkonfiguration. Die Einheitstest und die
Integrationstest durch die Tools z.B, JUnit und TestNG werden die Qualitdt von Anwendung
in verschiedene Dimensionen verbessern und sichern. Fiir die ausfiihrlichere Spezifikation
und Erkldrung von den weiteren Merkmalen und Funktionen im Spring Framework kénnen
umfangreich in [R]"10] gefunden werden. Es wird in dieser Arbeit nicht alle Merkmale und
Technologie im Spring Framwork aufler die relevante Konzeptionen weiter vorgestellt und
diskutiert.

2.3.6. Apache Struts2 Framework

Apache Struts2 2> ist ein elegantes und erweiterbares Framework fiir die Entwicklung,
Stationierung und Wartung von auf Java-basierenden geschiftlichen Webanwendungen.
Durch den Einsatz von Web Frameworks und Entwicklungsplattformen werden die meist
identischen Aufgaben in der Webanwendungsentwicklung automatisiert und den Entwick-
lern wird dabei geholfen, sich auf die wichtigen Aufgabe bzw. die geschiftliche Logik der
Geschiftsanwendung und anderer relevanter Funktionsanforderungen, wie Datensicherheit
und Robustheit zu konzentrierten. Apache Struts2 befolgt und implementiert bekannte
Designmuster fiir die Webanwendungsentwicklung, wie z.B. Model-View-Controller. Die
Prasentations-Schicht in der Webanwendungsarchitektur werden durch JSP-Technologie
und konfigurierbare Ul-Tags von Strutsz realisiert. Die Antworten auf die entsprechende
Abfrage werden durch die Aktion sowie den »Controller« generiert und zum Webclient
versendet. Die Abfragen und inhaltliche Parameter des Webclients werden in Struts2 gefiltert
und zum néchsten »Dispatcher« weitergeleitet. Struts2 kontrolliert diesen Vorgang tiber
mehrere Verteiler bis zur richtigen Aktionsklasse. Die Parameter und Abfragen werden
schrittweise durch den »Interceptor« abgefangen. Er kann die Eingaben validieren und nach
den erfolgreiche Aufrufen von Aktionsklasse weiter verarbeiten bzw. protokollieren. In den
Aktion wird die entsprechende geschéftliche Kommunikation und Aufrufe von Prozeduren

2Shttp:/ /struts.apache.org/2.x/index.html

29

2.3. Eingesetzte Technologien und Frameworks

zwischen der Datenbank und POJO Klassen ausgefiihrt und die Antworten als Ergebnis
zum Webclient zuriickgeschickt.

Struts2 bietet viele allgemeine XML-Elementtypen, wie »Iags« an, die vielféltige Funktionen
in den JSP-Page schaffen kann. Die generischen Tags kontrollieren beim den Rendering
von JSP-Page den Ausfithrungsprozessen. Es werden dabei die Daten und Parameter in
den Aktionsklassen oder JavaBeans ausgewertet, modifiziert und ausgeholt fiir das HTML-
Rendering. Mit dem Tag »Form« konnen in Struts2 die verschiedenen Daten einfacher
eingegeben werden. Die entsprechende Datenverarbeitung durch die Aktionsklasse wird
in den Attributen des Tag-Element durch die Angabe von Aktionsname spezifiziert und
annotiert. Mit dem Tag »Property« kénnen die Variablen durch Aufruf von einer »Getter«
Methode in Aktionsklasse ihr Inhalt ausgewertet und fiir die Webprasentation abgeholt
werden. Die Ul-Tags in Struts2z sind unterscheiden sich von den generische Tags. Ul-Tags
werden dabei genutzt, um die Daten in einer reichhaltigen HTML-Prédsentation anzuzeigen,
die von verschiedenen Themen und Darstellungsstilen abhdngig sind.

Eine Aktion in Struts2 zu erzeugen schliefst drei Schritten ein: Als erstes die Abbildung
zwischen Aktion und Klassen, dann die Navigation fiir die Resultate und letztlich die
Implementierung von der Geschiftslogik. Eine Aktion handelt in der Rolle »Controller« im
obengenannte MVC-Designmuster. Die geschiftliche Logik wird in der Aktionsklasse oder in
anderen durch diese Aktion aufgerufene Klassen durchgefiihrt. Jede Aktion in Struts2 besitzt
einen eindeutigen Namen, welcher durch Angabe vom Klassenpfad auf die entsprechende
Klasse abgebildet wird. Die Resultate der Aktionen werden in einer bestimmte JSP-Page
sowie im »View« prasentiert. Dabei wird auf die nachfolgende Darstellungswebseite durch
die Aktion navigiert. Fiir jede Aktion wird eine Dokumentation in der Konfigurationsdatei
»struts.xml« angegeben. Die Implementierungslogik muss weiter in der Aktionsklasse reali-
siert werden. Darin wird mindestens eine ausfiihrbare Methode mit spezifizierter Funktion
und vordefinierter Zeichenkette-Ausgabe definiert. Die generische Aufgabe der Aktionen
ist die Verarbeitung von Eingabedaten. Dazu arbeiten die Aktionsklassen und »Tags« in
Struts2 zusammen, um die Daten zwischen Prasentations-Schicht und Geschiftslogik zu
transportieren. Durch Angabe und Assoziation von Aktionsname und Merkmal in den »Tags«
Elementen werden die Aktionsklasse nach der Abgabe automatisch die Daten und Werte fiir
die Eigenschaft in JavaBeans durch die »Setter« Methode weiterleiten. Eine Datenspeicherung
und -Persistenz konnen auch innerhalb einer Aktionsklasse implementiert werden.

2.3.7. Apache Axis2 Framework

Apache Axisz % ist ein auf dem urspriinglichen Apache Axis basierte und weiterentwickelte
Web Services Engine der dritten Generation. Es macht die Implementierung von Web
Services effizienter und das eigene Framework sowie die Infrastruktur modularisierter.
Auflerdem sorgt es fiir die Konzentration und Orientierung auf XML-Konzepte in der
Programmierung und Realisierung von Web Services strebt die Apache Axisz2 auch an.
Die entworfene Architektur von Axis2 unterstiitzt dabei die hohere Erweiterbarkeit und

2http:/ /ws.apache.org/axis2/

30

2.3. Eingesetzte Technologien und Frameworks

Kompatibilitit fiir die Addition von neue Modulen, die einen erneute Funktion oder Merkmal
tiir Sicherheit und Zuverlassigkeit ausweiten konnen, um die vielfdltigen und gestiegenen
Kommunikationsanforderungen zwischen Web Services und Anwendungsbenutzern zu
erfiillen.

Die Kernaufgabe von Apache Axis2 ist die Java-basierte Verarbeitung und Transformation
von XML-basierten SOAP-Nachrichten zwischen dem Service-Aufrufer und dem Service-
Anbieter. Die Verarbeitungsgeschwindigkeit und die Effizienz des Speicherverbrauchen des
Speichers sind sehr hoch durch die angewendete neue XML-Verarbeitungsprinzipien im Ver-
gleich zu den vorangegangenen Web Services Engins, wie Apache Axis oder Apache SOAP
Projekte. Mit Axis2 konnen komplexe SOAP Nachrichten gesendet, erhalten und verarbeitet
werden. Die Implementierungsklassen von Web Services konnen durch die vordefinierte
Spezifikation in der WSDL Datei automatisch gefiihrt und dann die entsprechenden Web Ser-
vices in Server einfacher produzieren werden. Neben der lose gekoppelten Modularisierung
werden weitere Tools zur Unterstiitzung der Entwicklung des Web Services z.B, WSDL2Java
und Java2WSDL entwickelt. Dadurch werden der Entwurf und die Implementierung von
Web Services erleichtert. Um einen hohe Interoperationalitdt in der Werservices-Welt zu er-
reichen und zu unterstiitzen, werden viele technische Spezifikationen und Empfehlungen z.B
WS-Security, WS-ReliableMessaging, WS-Addressing, WS-Coordination vorgestellt und wei-
terentwickelt. Diese fordern grofie Funktionalitdt und flexible Kombinationsmoglichkeiten
fiir die Verarbeitung von SOAP Nachrichten. Die strukturelle Modularisierung von Apache
Axis2 kann sich schnell an diese Anforderung anpassen und neue Module reibungslos in
den Nachrichten-Verarbeitungsprozess sowie den verbundenen SOAP-Kanal integrieren.

Die in Axisz angewandte XML-Objektmodell sowie AXIOM (AXIs Object Model) 7 verbes-
sert die Verarbeitungsproduktivitit innerhalb der inhaltlich Recherchen von XML-basierte
Nachrichten sowie die Reprdsentation des Infosets im XML Dokument. Es benutzt den
»Ziehen« Mechanismus in der Erzeugung von XML-Objekten und basiert in der technischen
Implementierung auf die StAX (Streaming API for XML) 28 Parser. Es passiert immer in den
Alltag, dass die SOAP-Nachrichten extrem grofs sind und informationell dicht eingebunden
in unsere Geschéftsanwendung sind. Eine komplette Reprasentation des XML-Dokuments
im Arbeitsspeicher oder Cache ist nicht mehr sinnvoll und verursacht ein Kapazitatspro-
blem und fiihrt zur Verlangsamung. Der StAx Parser kontrolliert diese Reprédsentation
und verzogert das Darstellungsereignis des XML-Dokument. Es wird ein unnétiges Ein-
lesen von ungebrauchten Informationen vermieden. Z.B bei weiterem Transportieren von
SOAP-Nachrichten wird in diesem Fall nur die Kopfteile der SOAP-Nachrichten ohne den
Hauptteil der SOAP Nachrichten auf die Informationen untersucht. Dadurch wird Kapazitat
auf dem Webserver gespart. Eine technische Analyse der Kapazitit und Geschwindigkeit
von XML-Parser konnen in [Teaos] gefunden werden. Es zeigt einen deutlichen Vorteil beim
Einlesen und bei der Untersuchung von XML Dokumenten ohne die Anforderung fiir die
Modifikation des Dokuments gegeniiber anderen XML Parser.

Ein miiheloser Einstieg in Axis2 und viele neue Funktionen und entsprechende Beschrei-
bungen von Apache Axis2 sowie die »SOAP Processing Model and Pipeline«, »Message

*7http:/ /ws.apache.org/commons/axiom/
Bhttp:/ /jcp.org/en/jsr/detail?id=173

31

2.3. Eingesetzte Technologien und Frameworks

Exchange Patterns« und »Axis2 Data Binding« konnen in der Projektweblink % online
gefunden werden.

29http:/ /ws.apache.org/axis2/articles.html

32

3. Konzept und Entwurf

Im vorliegenden Kapitel wird auf das erstellte Konzept und den Entwurf fiir die Realisierung
der Verwaltungsplattform eingegangen. Die grundlegende Konzeption und die abstrahierte
Architektur fiir den Entwurf und die Implementierung werden im ersten Abschnitt 3.1
vorgestellt. In der Praxisarbeit wird eine Webanwendung fiir die Prozess View Transformation
auf den Webservices-Konzepten basierend weiterentwickelt. Der spezifizierte Entwurf und
die zugehorigen Module werden im zweiten Abschnitt 3.2 erldutert. Im Abschnitt 3.3 werden
das innerhalb der Arbeit erstellte Neukonzept fiir den Prozess View vorgestellt, mit dem
eine benutzerdefinierte Prozess View Vorlage kombiniert und ausgefiihrt werden kann.

3.1. Konzept und Architektur

Ein durch Java EE Version 5 als Programmiersprache implementiertes Jar-Paket fiir die kon-
solenbasierte Durchfiihrung der Prozess View Transformation wurde bereits entwickelt. Eine
grundlegende Idee ist die Entwicklung einer Webanwendung, die dieses Jar-Paket hauptsach-
lich fiir die Realisierung der Prozesstransformation nutzt und die weitere Anforderungen
z.B hohe Modularitdt und Bedienbarkeit erfiillen kann.

Die Webanwendung realisiert ein benutzerfreundliches User-Interface fiir die Prozesstrans-
formation. Es bietet ein einfaches Abgeben des Prozessdokuments bzw. des BPEL-Prozess
und des entsprechenden Rules-Dokument. Ein verarbeitender Prozess wird nach der Durch-
fithrung der Prozesstransformation auf der Serverseite z.B in Tomcat generiert und im den
Browser prasentiert. Es wird ebenfalls unterstiitzt, dass nach dem Prozesshochladen die
verfiigbare View-Funktionen in [Cai10] flexible benutzt werden kann.

Neben dem BPEL-Prozess ist das Rules-Dokument ein kritisches Artefakt. Konventionell
wird das Rules-Dokument manuell handwerklich erstellt. Es wird ebenso tiiberlegt diese
Produktivitiat zu erhohen. Ein webbasierter Editor fiir das Rules-Dokument soll entwickelt
werden, dessen realisierbare Funktionalitdt sich an der kompletten Spezifikation in der
Arbeit [Strog] richten soll.

Die jeweils durchgefiihrte Transformation wird auf der Serverseite fiir den Administrator
protokolliert. Die Anwendung registriert neben den abgegebenen Daten, den Prozessen und
Rules auch die Datumsinformation. Es erschafft dem Administrator eine Datenbasis fiir die
Performance-Analyse und Fehlerprotokollierung. Es kann wegen der schnellen Steigerung
der Kapazitdtsanforderung eine Datenabschaffung durch den Administrator durchgefiihrt
werden.

33

3.1. Konzept und Architektur

Es wird in der Arbeit die Konzeption von Prozess View erweitertet. Es entwickelt ein neues
Anwendungsszenario fiir Prozesstransformation. Die bestehende View-Funktionen in [Cai10]
werden als aufrufbarer Webservices fiir Prozess View implementiert und veroffentlicht. Die
grundlegende Operation und Zielnavigation werden ebenfalls als Webservices realisierbar.
Die Webanwendung bietet die verschiedenen Webservices fiir die Prozesstransformation an.
Alle verfiigbaren Webservices werden zentral verwaltet und stellen eine Servicebasis fiir die
Konstruktion von komplexen Sichten auf BPEL-Prozesse bereit.

Transform Rules
Manager Designer

.

View Services
Manager

Administration

(JSF 2.0)

Web Client (Browser)

v

Web Application Server (Apache Tomcat) External
Application Server

Transformation Transformation Webservices Engine Workflow Engine

Services Registry Services (Apache Axis2) (Apache ODE) <>
Transformation

Services

v

Data Access, O/R Mapping (Hibernate)

Database
(MysQL)

Abbildung 3.1.: Business Prozess View Verwaltung Architektur

Die Abbildung 3.1 zeigt die Mehrschichtarchitektur der Webanwendung fiir die Implemen-
tierung. In der untersten Schicht liegt eine relationale Datenbank wie z.B MySQL. Dort wird
jede Prozesstransformation der Serverseite der Webanwendung gespeichert und protokolliert.
Das angewandte Persistenz-Framework wie z.B Hibernate fiir die Datenzugriffe bietet eine
bessere Performance als andere Datenbankschnittstellen-API z.B JDBC. Es erzeugt das Daten-
objekt und manipuliert es ohne eine explizite Programmierung von SQL-Ausdriicken. In der
Applikationsschicht liegt die Webanwendung. Sie beinhaltet das Kernmodul fiir die Prozess-
transformation und fiir die als Webservices implementierte, zentral registrierte Prozess View
Services. Sie arbeitet zusammen mit der Webservices Engine fiir die Servicekommunikation
und mit der Workflow Engine fiir die Erzeugung des WS-BPEL basierten Webservices. Die
Prasentationsschicht besteht aus vier unterteilten Web-Interfaces fiir die Benutzer und den
Administrator.

34

3.2. Entwurf

3.2. Entwurf

In diesem Abschnitt werden die entworfenen Anwendungsmodelle und -Diagramme der
Webanwendung beschreiben. Der View Services Manager und die erstellte View Services
Architektur werden wegen dem Kerngewicht in der Arbeit detaillierter erklart.

3.2.1. Anwendungsmodellierung
Es wird zuerst ein Anwendungsmodell fiir eine webbasierte Prozess View Verwaltungs-
plattform in der Entwurfsphase erstellt. Sie dient als eine Basis fiir die Entwicklung des

User-Interfaces und der gestiitzten logischen Funktionen. Im Anwendungsfalldiagramm 3.2
sind die erforderlichen Hauptanwendungsfélle und die beteiligten Akteuren strukturiert

dargestellt.
Fules hochladen Rules designen

BPEL-Prozess hochladen

Wiew-Funktionen aufrufen

Transformation ausfithren

Service WESDL upload

Services Sequenz ausfihren

Services Sequenz Deployment

Service auswihlen
Yiews Manager ausloggen %

Admin

Services Sequenz download

View Manager einloggen

Transformation itern lesen

Transformation itern [dschen

Abbildung 3.2.: Anwendungsfalldiagramm von der webbasierten Verwaltungsplattform

35

3.2. Entwurf

Die einzelnen Begriffe des Diagramms werden kurzgefasst erklart, um dem Leser einen
einfaches Verstandnis des Diagramm zu schaffen und eine klare und nicht {iberlappende
Klassifizierung der Anwendungsfille zu gliedern.

View-Funktionen Die View-Funktionen sind die zwei bereits feststehenden Funktionen
Fokussierung und Subprozesseliminieren fiir eine vordefinierte Prozesstransformation.
Durch das Hochladen der entsprechenden Parametern werden dann diese Funktionen
aufgerufen und die Prozesstransformationen werden durchgefiihrt.

Transformation Transformation sind die Prozesstransformation, die durch das Hochladen
des BPEL-Prozess und des Rules Dokuments generiert wird. Dieser Vorgang wird von
dem Benutzer ausgelost.

Services Sequenz Services Sequenz ist hier eine aus einer einzigen Operation oder aus
mehreren Operationen sequenzielle, kombinierte Warteschlange von der spater ein
kompletter BPEL-Prozess erstellt wird.

View Manager View Manager ist hier das zentrale Webinterface fiir die Datenbanktabelle, in
der alle existierenden Datensitzen in der Registrierung angezeigt werden. Es ist aber
nur fiir den Administrator zugédnglich.

Transformation Item Transformation Item ist hier der gespeicherte Datensatz in der Regis-
trierung. Er resultiert von den durchgefiihrten Anwendungsinstanzen der Prozess-
transformation. In jedem Transformation Item werden die relevanten Artefakte wie
der BPEL-Prozess, das abgegebenen Rules Dokument, das View-Ergebnis und die
assoziierte Zusatzinformationen registriert.

Alle entworfenen Anwendungsfille werden im Folgenden jeweils einzeln beschreiben:

Anwendungsfall 1: BPEL-Prozess hochladen

Aktoren:
Der Benutzer
Vorbedingung:

Die Seite , View Transformer” im Webinterface wird durch den Klick angezeigt und
darin wird ein Subinterface ,BPEL-Process Upload” angezeigt.

Regularer Ablauf:

1. Der Benutzer kopiert den kompletten Quellcode des BPEL-Prozesses ins Textfenster.
2. Der Benutzer klickt den Button ,,submit”.

Nachbedingung:

Der BPEL-Prozess wird hochgeladen, gespeichert und steht fiir die Prozesstransforma-
tion bereit.

36

3.2. Entwurf

Alternative Ablaufe:

Keinen

Anwendungsfall 2: Rules hochladen

Aktoren:
Der Benutzer
Vorbedingung:

Der BPEL-Prozess ist bereits hochgeladen und das navigierte Subinterface , Rules
Dokument Upload” wird angezeigt.

Regularer Ablauf:

1. Der Benutzer kopiert den kompletten Quellcode des Rules Dokuments ins Textfenster.
2. Der Benutzer klickt den Button ,,submit the rules”.

Nachbedingung:

Die Prozesstransformation wird durchgefiihrt und das Ergebnis wird in dem Subinter-
face , Transformation Result” angezeigt.

Alternative Ablaufe:

1. Das Subinterface , Transformation Result” wird nach jeder Prozesstransformation
angezeigt.

2. Der Benutzer klickt auf den Button ,new rules copy”, um das Subinterface ,Rules
Dokument Upload” zu erreichen.

Anwendungsfall 3: Rules Design

Aktoren:
Der Benutzer
Vorbedingung:

Das Subinterface ,,Rules Dokument Upload” in der Seite , View Transformer” wird
angezeigt.

Regulédrer Ablauf:

1. Der Benutzer klickt auf den Button ,rules generator”.

2. Das Editor-Interface , Rules Designer” wird angezeigt.

3. Der Benutzer editiert interaktiv das Rules Dokument durch das Klicken auf die
Tasten.

37

3.2. Entwurf

Nachbedingung:

Das Rules Dokument wird interaktiv editiert, gespeichert und steht fiir die Prozess-
transformation bereit.

Alternative Ablaufe:

1. Der Benutzer klickt auf das Webinterface ,Rules Designer”.

2. Das Subinterface im ,, Rules Designer” wird angezeigt und der Benutzer klick auf
den Button ,,Rule Design!”.

3. Das Editor-Interface ,Rules Designer” wird angezeigt.

4. Der Benutzer editiert interaktiv das Rules Dokument durch das Klicken auf die
Tasten.

Anwendungsfall 4: View-Funktionen aufrufen

Aktoren:
Der Benutzer
Vorbedingung:

Der BPEL-Prozess ist bereits hochgeladen und das Subinterface ,,Rules Dokument
Upload” wird angezeigt.

Regulérer Ablauf:

1. Der Benutzer klickt auf den Button ,view funktion” und dann wird die verfiigbare
View-Funktion im Navigation-Subinterface angezeigt.

2. Der Benutzer wiahlt die Funktion aus und gibt die erforderlichen Daten ein.

3. Der Benutzer klickt auf den Button ,submit”.

Nachbedingung:

Die Prozesstransformation bzw. die View-Funktion wird durchgefiihrt und das Ergeb-
nis wird im Subinterface , Transformation Result” angezeigt.

Alternative Ablaufe:

1. Das Subinterface , Transformation Result” wird nach jeder Prozesstransformation
angezeigt.

2. Der Benutzer klickt auf den Button ,,View functions”, um die Subinterfaces ,Call
Focus Function” und , Call Remove Fragment Function” zu erreichen.

38

3.2. Entwurf

Anwendungsfall 5: Transformation ausfiihren

Aktoren:
Der Benutzer
Vorbedingung:

Der BPEL-Prozess ist bereits hochgeladen, das Rules Dokument bereits editiert und
das Subinterface ,Rules Designer” wird angezeigt.

Regulérer Ablauf:
1. Der Benutzer klickt auf den Button ,,rules submit and transform”.
Nachbedingung:

Die Prozesstransformation wird durchgefiihrt und das Ergebnis wird in dem Subinter-
face ,Transformation Result” angezeigt.

Alternative Ablaufe:

1. Nach dem Hochladen des Rules Dokuments wird die Prozesstransformation auto-
matisch durchgefiihrt.

2. Nach dem Hochladen der Parametrisierung im View-Funktionen-Interface wird die
Prozesstransformation automatisch durchgefiihrt.

Anwendungsfall 6: Service WSDL hochladen

Aktoren:

Der Benutzer
Vorbedingung:

Das Webinterface ,Services Manager” wird angezeigt.
Regulérer Ablauf:

1. Der Benutzer klickt auf den Weblink im Subinterface ,Services Import”.

2. Der Benutzer sucht das lokale WSDL Dokument fiir die generierte Webseite aus und
klickt auf den Button ,upload the wsdl file to server”.

3. Der Benutzer klickt auf den Kommandolink ,Services list update”.

Nachbedingung:

Das lokale Rules-Dokument wird hochgeladen und die Services darin werden durch-
sucht und dann in der Servicetabelle aufgelistet.

Alternative Ablaufe:

Keine

39

3.2. Entwurf

Anwendungsfall 7: Service auswéahlen

Aktoren:
Der Benutzer
Vorbedingung:

Das Webinterface , Services Manager” wird angezeigt und es stehen bereits die Services
zur Verfiigung.

Regulérer Ablauf:

1. Der Benutzer klickt auf den Kommandolink in dem Subinterface ,Begin View
Design”, um eine neue Konstruktion zu initialisieren.

2. Der Benutzer klickt auf den Kommandolink ,parameters” in dem Subinterface
»Services List” und es wird eine neue Webseite generiert.

3. Der Benutzer gibt die entsprechenden Daten ein.

4. Der Benutzer klickt auf den Button ,Save the parameter inputs”.

Nachbedingung:
Der Services wurde ausgewdhlt und die eingegebene Daten werden gespeichert.
Alternative Ablaufe:

Keine

Anwendungsfall 8: Services Sequenz Deployment

Aktoren:
Der Benutzer
Vorbedingung:

Das Webinterface , Services Manager” wird angezeigt und es ist bereits mindestens ein
Service ausgewdhlt in dem Subinterface ,, Execute the called services sequence”.

Regulédrer Ablauf:
1. Der Benutzer klickt auf den Kommandolink ,Deploy the sequence process”.
Nachbedingung:

Die Services-Sequenz wird als ein komplettes BPEL-Projekt umgesetzt und in den
Apache ODE bereitgestellt, kompiliert und aktiviertet.

Alternative Ablaufe:

Keine

40

3.2. Entwurf

Anwendungsfall 9: Services Sequenz ausfithren

Aktoren:
Der Benutzer
Vorbedingung:

Das Webinterface ,Services Manager” wird angezeigt und es wurde bereits eine
assoziierte Services-Sequenz in Apache ODE deployt.

Regulérer Ablauf:

1. Der Benutzer checkt den Status des BPEL-Projekts durch den Klick auf den Kom-
mandolink ,, Check Status” im Subinterface ,Status of the deployed process”.

2. Wenn der Prozess in den Apache ODE bereits aktiviert ist, dann klickt der Benutzer
klickt auf den Kommandolink , Invoke the active process”.

3. Wenn es sich ,in processing, please wait” meldet, dann checkt der Benutzer den
Status in einen Moment spiter aus.

Nachbedingung:

Der Prozess bzw. die Services-Sequenz wurde durchgefiihrt und das Ergebnis wird in
dem Subinterface ,Result of services transformation” angezeigt.

Alternative Ablaufe:

Keine

Anwendungsfall 10: Services Sequenz download

Aktoren:
Der Benutzer
Vorbedingung:

Das Webinterface ,Services Manager” wird angezeigt und der identifizierte Prozess
wurde bereits erfolgreich durchgefiihrt.

Regulérer Ablauf:

1. Der Benutzer klickt auf den Kommandolink ,Deployed process download”.
Nachbedingung:

Das in Apache ODE deployte BPEL-Projekt wird komplett heruntergeladen.
Alternative Ablaufe:

Keine

41

3.2. Entwurf

Anwendungsfall 11: View Manager einloggen

Aktoren:

Der Administrator
Vorbedingung:

Das Login Interface wird angezeigt.
Reguléarer Ablauf:

1. Der Administrator gibt den korrekten Benutzername und Password ein.
2. Der Administrator klickt auf den Button ,submit”.

Nachbedingung:
Das Webinterface , Process View Manager” wird angezeigt.
Alternative Ablaufe:

Keine

Anwendungsfall 12: View Manager ausloggen

Aktoren:
Der Administrator
Vorbedingung:

Der Administrator ist erfolgreich eingeloggt und das Webinterface ,Process View
Manager” wird angezeigt.

Regulédrer Ablauf:
1. Der Administrator klickt auf den Button , Logout”.
Nachbedingung:

Der Administrator ist erfolgreich ausgeloggt und das Login Webinterface wird ange-
zeigt.

Alternative Ablaufe:

Keine

42

3.2. Entwurf

Anwendungsfall 13: Transformation Item lesen

Aktoren:
Der Administrator
Vorbedingung:

Der Administrator ist erfolgreich eingeloggt und das Tabelleninterface ,Process View
Manager” wird angezeigt.

Regulérer Ablauf:

1. Der Administrator klickt den Weblink ,show details” in der entsprechend
gewiinschten Zeile in den Tabellen an.

Nachbedingung:

Die assoziierte Informationen wie der BPEL-Prozess, das Rules Dokument und das
View Ergebnis werden in einem neuen Fenster angezeigt.

Alternative Ablaufe:

Keine

Anwendungsfall 14: Transformation ltem l6schen

Aktoren:
Der Administrator
Vorbedingung:

Der Administrator ist erfolgreich eingeloggt und das Tabelleninterface , Process View
Manager” wird angezeigt.

Regulérer Ablauf:

1. Der Administrator klickt den Button ,delete” in die entsprechenden Zeile in der
Tabellen an.
2. Der Administrator bestétigt diesen Vorgang durch den Klick auf ,,OK”.

Nachbedingung:
Diese registrierte Transformation wird in den Tabellen gel6scht.
Alternative Ablaufe:

1. Der Administrator klickt den Button ,Remove”, um alle registrierten Transforma-
tionen in den Tabellen zu vernichten (Ein kompletter Datenverlust muss manuell
vorgesorgt werden) .

2. Der Administrator bestdtigt diesen Vorgang durch den Klick auf ,,OK”.

43

3.2. Entwurf

3.2.2. Transformation Services Architektur

In der Arbeit wird die Realisierung und Verwaltung des Prozesstransformation-Webservices
als die Kernaufgabe und Vertiefungsthema gerichtet. Es wird darin betrachtet und getes-
tet, wie grof die realistische Anwendbarkeit und technische Durchfiihrbarkeit sein wird,
wenn man die entwickelte Prozesstransformations-Technologie auf das Webservices-Konzept
umsetzten will. Es wird die bereits funktionierende View-Funktionen als aufrufbaren Webser-
vices mit entsprechender Parametrisierung implementiert. Die Abbildung 3.3 zeigt eine
schematische Architektur fiir die Verwaltung und Anwendung der elementaren Prozess-
transformation, die in der Arbeit erstellt werden. Jeder Webservice fiir die Transformation
des Prozessmodells wird in eine zentralen Servicebasis registriert.

Transformationsservices

mit WSDL beschrieben Services von andern Anbietern

S

v

Prozess Viewergebnis
J% ﬁ Datenbank J%E

Abbildung 3.3.: Serviceorientierte Business Prozess Transformation Services Architektur

Um die unterstiitzte Funktionalitét fiir die Prozesstransformation in der Verwaltungsplatt-
form zu erweitern, wird ein Mechanismus unterstiitzt, mit dem mogliche Services fiir Prozess
View aus anderen Organisation oder Partnern in diese Plattform integriert werden konnen.
Das verfiigbare externe WSDL-Dokument wird manuell in die Servicebase importiert. Der

44

3.2. Entwurf

implementierte ausfithrbare Transformation Services wird in allen WSDL-Dokumenten in
der Servicebase sowie die Services Registrierung in der Anwendung werden sorgtaltig durch-
sucht und in die Auswahllist hinzugefiigt. Ein komfortables User-Interface fiir eine flexible
Konstruktion bzw. Kombination einer Services-Sequenz wird in den weiteren Abschnit-
ten 3.2.3 entworfen und spezifiziert. Der Benutzer kann mehrere Prozesstransformationen
sequenziell kombinieren, um eine komplizierte Sicht auf den BPEL-Prozess zu erzeugen.
Es wird ein weiterer Mechanismus bzw. Losung herausgegeben, mit dem die Ausfithrung
dieser definierte Transformation-Reihenfolge gewédhrleistet und effizienter implementiert
wird. Er soll automatisch die Zielprozess Dokumente in der Datenbank abholen und in
der benutzerdefinierten Reihenfolge transformieren. Die Schritte , T1”, ,T2” bis ,Tn” in der
Abbildung 3.3 sind die vom Benutzer ausgewihlten Prozess Transformation Ablaufschritte,
die sequenziell selbststindig in dem Verwaltungsplattform-Backend ausgefiihrt werden
sollen.

In dem Sequenzdiagramm 3.4 werden die Benutzerinteraktion und die Prozessabldufe
tiir die Serviceanwendung in der Verwaltungsplattform spezifiziert. Es wird darin jeder
erforderlicher Verarbeitungsschritt fiir eine sequenzielle Konstruktion einer Sicht auf BPEL-
Prozesse detailliert illustriert.

‘ServicesManager‘ ‘ViewServicesRegistrv‘ ‘FlowExecute‘ ‘ViewSer\riceExecute‘ ‘SequenceDownload‘

services|nitialized() callServicesList()

servicesList

serviceslist

!
selectService(), input(data, parameters) —Services Flow— | I ! !
| H | |
+ | | |
| |

|
listOfSelectedServicesAndinputData
\
R
1

|
1 1

invoke(instancelD) | |
|

1
executeWorkList{listOfSelectedServices) a
L 7 invoke(service)

T
|

i

| viewResult

1

|
viewResult
)

viewResult

1 I
| 1 | |
| ' | |
! ZipFileOfBPELProcessProject | !
—_—-L | e e L -
] [l i]
|
1 I 1
| | |
1 I 1

Abbildung 3.4.: Sequenzdiagramm von der Transformation Services Anwendung

3.2.3. Transformation Services Client (View Designer)
Die Kernaufgabe in dieser Arbeit ist die Entwicklung eines Prozess View Designer, die das

Webservices-basierte Kombinieren von Prozesstransformationen sequentiell realisiert. In den
vorherigen Abschnitten ist die Gesamtarchitektur fiir die Implementierung dargestellt. Um

45

3.2. Entwurf

diese Verwaltungsplattform fiir den View Designer zu aufbauen, wurden in den Entwurfs-
phase der praktische Arbeit vier Arbeitspakten wie folgt spezifiziert. Die fiir die relevanten
Verarbeitungsschritten in Transformation Services Client verantwortlich sind.

Services Auflisten

Die Auflistung aller verfligbaren Prozesstransformation-Services fiir die Benutzer ist der
erste Arbeitsschritt der Verwaltungsplattform. Die in der Arbeit erstellten Services bzw. die
Operationen fiir Prozess View werden in WSDL Dokumenten beschrieben und sind bereits
in das Service-Register bzw. in einem Ordner gespeichert. Ein Service-Finder durchsucht
die unterstiitzten Services und deren unterliegenden Operationen sowie die entsprechende
Parametrisierung in den WSDL Dokumenten und listet sie in eine Service-Tabelle fiir
den Benutzern zur Verfligung auf. Zur Addition eines neuen Prozess View Service fiir
die Verwaltungsplattform soll es optional durch das Hochladen eines WSDL Dokuments
realisiert werden.

Services Kombination

Die in der Tabelle aufgelisteten Services und die dazu gehorenden Operationen konnen
ausgewdhlt werden, um die implementierte Aktion fiir Prozess View zu anwenden. Es soll
in eine weiteres Dateninterface nach die Auswahl iibergefiihrt werden, in dem die entspre-
chenden Daten wie der Prozess, die Rules und die Parametern fiir die Operationen eingeben
werden konnen. In der Praxis wird in einer Prozesstransformation nicht nur eine einzelne
Operation aufgerufen. Die Benutzern konnen mehrere Aktionen sequenziell verbinden, um
eine komplexe Transformation zu erzeugen. Es sollte darin dieser Mechanismus unterstiitzt
werden, mit dem die nacheinander liegenden Operationen sequenziell ohne Datenverlust
verkniipft werden. Ein flexibles Auswechseln zwischen den Operationen hilft eine erforderli-
che Modifikation in einem kleinen Teile der Sequenz. Die erzeugte Kombination und die
eingegebenen Daten sollen eindeutig fiir die spétere Verarbeitung assoziiert werden, d.h, alle
Informationen fiir jede Kombinationsinstanz werden in einem eindeutig (z.B, durch einen
Zeitstempel) identifiziertem XML-Dokument strukturell gespeichert.

Services Deployment

Nach dem erfolgreichen Kombinieren des Services und der Dateneingabe resultiert iden-
tifizierbares XML-Dokument. In diesem Schritt soll ein BPEL-Projekt erzeugt werden, die
diese Services Kombination implementieren kann. In der Praxisarbeit soll automatisch ein
eindeutiger Ordner unter dem Apache ODE Dokumentpfad »WEB-INF/processes/ « erstellt
werden, welcher ein vollstindiges BPEL-Projekt ist. Ein BPEL-Projekt beinhaltet den BEPL-
Prozess, das WSDL Dokument von sich selbst, die weiteren beteiligten WSDL Dokumente
des Prozess View Services und das deploy.xml Dokument. Neben dem Kopieren von den
beteiligten WSDL Dokumenten ins BPEL-Projekt werden die anderen drei XML-Dokument

46

3.3. Business Process View Template

wie der eigentliche BPEL-Prozess, das eigene WSDL Dokument und deploy.xml automatisch
aus dem identifizierten XML-Dokument generiert. Der Apache ODE Server checkt den neu
erstellten Ordner und kompiliert ihn. Nach einem erfolgreichen und fehlerfreien Kompilieren
ist der BPEL-Prozess aktiviert und bereitgestellt.

Services Ausfiihren

Vor dem Ausfiithren des Services wird ein Statuscheck fiir die Instanz durchgefiihrt. Der
Benutzer fragt dabei tiber die Management-API von Apache ODE den Prozessstatus ab, ob
der gewiinschte Prozess bereits aktiviert ist. Nach einer positiven Abstimmung wird ein
Aufruf des aktivierten BPEL-Prozess implementiert. Die assoziierten Daten fiir den Aufruf
wird aus dem obigen identifizierten XML-Dokument abgeholt. Es generiert automatisch eine
operativen SOAP Nachricht und schickt sie zu der Zugriffsadresse des Services ab. Nach
einer sequenzielle Prozesstransformationen wird eine Antwort fiir den Benutzer erstellt
und der verarbeitete XML-basierte BPEL-Prozess in dem User-Interface prasentiert. Ein
Herunterladen des ganzen BPEL-Projekts wird unterstiitzt.

3.3. Business Process View Template

Business Process View Template besteht in dieser Arbeit fiir eine Prozess View Vorlage, die
einen aus den aufgerufenen Transformation Services kombinierte Sequenz ist und selbst als
wiederverwendbarer Webservices verdffentlicht werden kann. Eine Prozess View Vorlage
realisiert eine benutzerdefinierte Sicht auf den Geschiftsprozess neben der entsprechenden
Parametrisierung. In die Prozess View Vorlage wird ein spezifizierter Verarbeitungsprozess
fiir das definierte Anwendungsziel und Abstraktionssinn beschrieben, die von dem konkreten
Anwendungsszenario und der konkreten Geschiftsprozesseigenschaften abhingig sein
konnen. Es soll auch implementierbar sein, dass man eine abstraktere Prozess View Vorlage
fiir eine Geschéftsprozess Transformation fiir die verschiedene Geschiftsbranchen erstellen
und anwenden will.

3.3.1. View Template Design

Vor der Konstruktion der Prozess View Vorlage wird zuerst der abstrahierte Verarbei-
tungsprozess sequenziell modelliert. Die in der Arbeit entwickelten View-Funktionen als
Webservices konnen zusammengesetzt werden, um eine Vorlage fiir die benutzerdefinierte
Sicht auf BPEL-Prozesse zu erstellen. Es konnen auch die grundlegenden Webservices ver-
wendet werden, welche als ein einzelner Schritt in dem Verarbeitungsprozess betrachtet wird.
Eine komplexe Vorlage kann aus anderen elementaren Prozess View Vorlagen zusammen
komponiert werden. Eine Vorlage zu designen wird durchgefiihrt ohne eine Datenabgabe
bzw. ohne das Hochladen des Prozesses. Dies wird immer stidrker durch den entsprechende
Kombinationskontext und Anwendungsziel bestimmt.

47

3.3. Business Process View Template

3.3.2. View Template Bereitstellung

Eine erstellte Prozess View Vorlage wird in den Apache ODE Server erfolgreich kompiliert
und als aufrufbarer Webservice bereit gestellt. Um dieser Vorlage anzuwenden wird nur das
WSDL Dokument in dem Vorlage-Projekt gebraucht. Das zu der Vorlage gehdrende BPEL-
Projekt wird heruntergeladen und das darin liegende WSDL Dokument von die Prozess
View Vorlage wird zum Services Auflisten importiert, dann wird es als ein elementarer
Service registriert.

3.3.3. View Template Anwenden

Die Anwendung der Prozess View Vorlage wird einfach durch Service Auswahl und die
entsprechende Parametrisierung realisiert. Es wird in der Arbeit so implementiert, dass alle
Geschaftsprozess-bezogenen Daten fiir die Prozesstransformation beim Aufrufen gemeinsam
in dem User-Interface einmal eingetragen werden. In der folgende Abbildung 3.5 wird
beispielsweise ein View Template angezeigt. Diese Prozess View Vorlage soll die existierenden
spezifischen annotierten Aktivitdten in dem Prozess bereinigen. Die griine Aktivitdten in
den Prozess sind die speziell klassifizierten Tatigkeiten im individuellen Prozesskontext.

View Template

Eingabe | Die spezifische | Ausgabe

:> sl Eints ;>
Aktivitaten in ‘
Prozess I&chen
/

() - die gewdhnliche Aktivitzt

6 --- die spezifische annotierte Aktivit&t

Abbildung 3.5.: Beispieldarstellung der View Template Anwendung

48

4. Implementierung

Im vorliegenden Kapitel wird die praktische Umsetzungen der im vorherigen Kapitel erklar-
ten Konzepte und Entwiirfen beschrieben. Es wird im ersten Abschnitt 4.1 die unterliegende
Datenbankimplementierung erldutert. Im Abschnitt 4.2 wird das entworfene Webinterface
und deren gegliederte Unterinterfaces fiir den Benutzer als eine webbasierte Verwaltungs-
plattform entwickelt. Das Kernkonzept der Arbeit, also die umgesetzten Transformation
Services werden in dem Abschnitt 4.3 detailliert erldutert. Die Servicebasis fiir die technische
Realisierung folgt in dem folgenden Abschnitt 4.4 bietet. Das neu erstellte Konzept der
Prozess View Vorlage wird in dem Abschnitt 4.5 fiir eine praxisorientierte Anwendungsmog-
lichkeit vertiefter diskutiert.

4.1. Datenbanktabellen

Es wird in der Arbeit vorgenommen, alle ausgefiihrte Prozesstransformation in der Verwal-
tungsplattform zu protokollieren. Es werden darin die einfachen Datenschemen erstellt, um
die assoziierten Daten, wie der BPEL-Prozess, das Rules Dokument, das Ergebnis und die
Datumsinformation in eine relationale Datenbank, wie das hier angewendete MySQL detail-
liert und gut strukturiert zu speichern. In der Auflistung 4.1 werden die SQL-Ausdriicke
fiir die Erzeugung solcher Datentabellen fiir die Verwaltungsplattform gezeigt. Es bestehen
insgesamt drei Tabellen in der Datenbank, die die verschiedenen Anwendungsfunktionen
tiir Datenobjektpersistenz realisieren.

Die Tabelle transformlist ist die zentrale Transformation Registrierung auf der Serverseite fiir
die webbasierte Verwaltungsplattform. Es bietet vier Varianten fiir die Prozesstransformation
in der Webanwendung. Die entsprechende Information der angewendeten Variante wird
in der Spalte [info] registriert. Die Prozesstransformation durch Hochladen eines Rules-
Dokuments wird es als vorgegebenes Verfahren , Default” protokolliert. Die Aufrufe der
View-Funktionen wird als , Call view function” protokolliert. Das interaktive Editieren eines
Rules-Dokuments wird als ,Rules design” protokolliert und die Prozesstransformation durch
die umgesetzten Transformation Services wird als , Call view service” protokolliert. Der
Datentyp in den weiteren Spalten [process], [rules], [view] werden als LONGTEXT definiert,
weil der Geschiftsprozess, das generierter Ergebnis und das Rules Dokument in den Praxis
sehr grof3 sein konnen.

In der Tabelle servicesbean werden die verfiigbaren Transformation Services fiir die Verwal-
tungsplattform gespeichert. Die in dem WSDL Dokument beschriebenen Services und die

49

4.1. Datenbanktabellen

detaillierte Parametrisierung werden ausgezogen und in den assoziierten Spalten dauerhaft
registriert. Die relevanten Daten, wie Name und Datentyp jedes Parameters fiir die Operation
werden in der Spalte [parameters] fiir das Services Auswahlen textuell gespeichert.

Listing 4.1 Die SQL-Ausdriicke fiir die Erzeugung der Datenbanktabellen

create database processViewData;
use processViewData;

CREATE TABLE ‘processViewData‘. ‘transformlist® (
‘transform_ID¢ INTEGER NOT NULL AUTO_INCREMENT,
‘info¢ LONGTEXT,

‘process‘ LONGTEXT,

‘rules‘ LONGTEXT,

‘view‘ LONGTEXT,

‘date‘ TEXT,

PRIMARY KEY USING BTREE(‘transform_ID¢)

);

CREATE TABLE ‘processViewData‘. ‘servicesbean‘ (
‘number ¢ INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
‘name ¢ LONGTEXT,

‘operation‘ LONGTEXT,

‘output‘ LONGTEXT,

‘parameters‘ LONGTEXT,

‘request‘ LONGTEXT,

‘response‘ LONGTEXT,

PRIMARY KEY USING BTREE(‘number‘)

)3

CREATE TABLE ‘processViewData‘. ‘parametersbean‘ (
‘id¢ INTEGER NOT NULL AUTO_INCREMENT,
‘datatyp‘ LONGTEXT,

‘instance‘ LONGTEXT,

‘operation‘ LONGTEXT,
‘previousServiceAsInput‘ TINYINT,
‘request‘ LONGTEXT,

‘response‘ LONGTEXT,

‘service‘ LONGTEXT,

‘value‘ LONGTEXT,

PRIMARY KEY (‘id‘)

Die Tabelle parametersbean ist ein zeitweiliger Speicherort fiir die eingegebenen Daten
in der Webservicekonzept-basierten Verwaltungsplattform. Die darin gespeicherten Daten
bzw. die aufgerufene Operation und die eingegebenen Parameterwerten fiir jede eindeutige
Konstruktionsinstanz werden in ein entsprechend identifiziertes XML-Dokument strukturiert
transformiert. Die assoziierte Daten in dieser Tabelle werden dann wieder geltscht. Es
ist auch fiir den unabhéngigen gleichzeitig Zugriff der verteilten Benutzer nacheinander
gesorgt.

50

4.2. Web Client

Die in der Datenbank benotigen Tabellen werden in der Anwendung als persistente Entity
Typen durch den Hibernate EntityManager API Version 3.5 zusammen mit den Hibernate
Annotations verwaltet und operiertet. Diese API beinhaltet einen Operationsset fiir die
transaktionale Manipulation auf der persistenten Datenobjekte, z.B das Erstellen einer
neuen persistenten Objektinstanz, das Modifizieren Objektinstanz, das Entfernen und das
Durchfiihren einer Objektanfrage.

4.2. Web Client

In diesem Abschnitt wird die praktische Entwicklung eines webbasierten Benutzerinterface
und die logische Funktionen in der Anwendungsschicht erldutert. Das Benutzerinterface in
der Verwaltungsplattform ist in vier Webinterfaces unterteilt. Eine detaillierte Erklarung fiir
jedes gegliederte Webinterface wird im Folgenden schrittweise gegeben.

4.2.1. View Services Manager

Das View Services Manager Webinterface ist das zentralen User-Interface der Verwaltungs-
plattform. Es wird wiederum in die verschiedenen Subfenstern bzw. Subfunktionen unterteilt.
Die komplette Benutzerfunktionen werden sich innerhalb dieses Workbereich befinden. Das
Webinterface ist fiir den Benutzer anschaulich und selbst erklédrbar. Bevor die Anwendung
gestartet wird, ist eine Initialisierung fiir eine neue Designsession erforderlich. In der Abbil-
dung 4.1 ist die Designsession in dem View Services Manager schematisch dargestellt.

EXECUTE THE CALLED SERYICES SEQUENCE
SERYICES LIST - SERVICE SELECTION AND PARAMETERS INPUT

Sequential list of all called transform services with its parameters

List of all available sery transformation: Instance ID: viewDesign_20110105_003455258
Step 1: No. The called Operation

Select Operation(s)

I Input Move Up Remaove
ns

. . - ~ activityOmitByNarme rodify rerr
Service Operation Select Service
2 activityOpaqueByMarne rnodify &)
processViewService activityAddTagByMName parameters
B 3 viewClean modify Mowve up rermove

processViewService activityAddTagByTag arameters
process\WiewService activityAddTagByType

processiiewService activityOmitByharme

processWiewsService activityOmitByTag \(,A

processWiewService activityOmitByType parameters QQ'Q

processViewService activityOpaqueByMame arameters QW

process\WiewService activityOpaqueByTag ‘:5?

processiiewService activityOpaqueByType

processWiewService activity SetattributeToByName Deploy in Step 3: Invoke BPEL-Prozess

(Bereitgestellt als

055 Aiache ODE ‘;> I"ii ii“iii

Services list update

Abbildung 4.1.: Schematische Darstellung vom View Services Manager

51

4.2. Web Client

Eine tabellarische Auflistung der verfiigbare View Services sowie die rechte Tabelle ,SER-
VICES LIST” in der obigen Abbildung 4.1 befinden sich im Mittelbereich des Webclients.
Beim Rendering der JSP-Seite werden die Datensitzen, wie die umgesetzten Services und
die darin unterstiitzten Operationen bzw. die entsprechenden Parametern aus der Daten-
banktabelle servicesbean abgeholt und in dem Subfenster fiir die Anzeige der Servicebasis
aufgelistet. Durch den Klick auf den Kommandolink , parameters” in der Zeile der Service-
list wird das Webinterface fiir die Datenabgaben des ausgewéhlten Services generiert und
navigiert.

Nach jedem Service Auswihlen und der Datenabgaben werden der aufgerufene Service in
dem unteren Subfenster fiir die Anzeige der ausgewdhlten Service-Sequenz hinzugefiigt
und sequenziell aufgelistet, wie die linke Tabelle in der Abbildung 4.1. Es wird dabei ein
flexibler Positionswechsel und Modifizierung der Servicedaten unterstiitzt. Durch den Klick
auf den Kommandolink , Deploy the sequence process” wird die Sequenz in ein kompaktes
BPEL-Projekt umgewandelt und in den Apache ODE auf der Serverseite bereitgestellt.

In dem links positionierten, kleinen Fenster fiir den Statuscheck des BPEL-Prozesses werden
zwei Kommandolinks angeboten. Der Benutzer klickt auf den Kommandolink ,Check
Status”, um den aktuellen Zustand des Prozesses zu befragen. Dabei wird in manchen
Falle z.B, bei zu vielen Benutzerabfragen, der deployte Prozess langsamer verarbeitet und
verzogert. Nach einem aktivem Signal klickt der Benutzer auf den Kommandolink ,Invoke
the activ process” und die Durchfithrung der Prozesstransformation wird automatisch
erzeugt.

Das Ergebnis wird dann in dem Textfenster textuell angezeigt und das ganze assoziierte
BPEL-Projekt wird zum Herunterladen bereitgestellt. Ein Screenshot vom View Services
Manager Webinterface wird in der Abbildung A.4 im Anhang gefunden. Die detaillierte
Erklarung der grundlegenden Implementierungstechnik und die logischen Funktionen fiir
das View Services Manager Webinterface werden in dem Abschnitt 4.4 schrittweise weiter
diskutiert.

4.2.2. View Transformator

Ein View Transformator Webinterface soll die Arbeit der Durchfiihrung einer Prozess-
transformation erleichtern. Es ersetzt den Aufwand bei der Anwendung des durch Java
implementierten konsolenbasierten Programmpaket. Eine Prozesstransformation wird relativ
einfach durchgefiihrt durch das Hochladen der beiden beteiligten Dokumente, also des
BPEL-Prozess und des Rules Dokument. Es werden darin auch die zwei bereits bestehen-
den View-Funktionen Fokus-Funktion und Teilprozesseliminierung aus der Arbeit [Cai1o0]
implementiert.

4.2.3. Rules Designer

Ein interaktives webbasiertes Editor-Interface wird erstellt fiir das flexible Erzeugen eines
Rules Dokument. Der Benutzer kann das Rules Dokument individuell durch das Klicken

52

4.2. Web Client

auf die Tasten komfortabel erstellen. In dem Benutzerfenster werden der vordefinierte
Funktionsbutton wie folgt bereitgestellt. Nach der Initialisierung eines Rules Dokuments wird
das Wurzelelement ,<tns:rules>” und die entsprechenden Attributen wie in die Auflistung
4.2 anzeigt automatisch vor erzeugt.

Listing 4.2 Das vorerst initialisierte Rules Dokument

<?xml version="1.0" encoding="UTF-8"7>

<tns:rules xmlns:tns="http://wuw.eclipse.org/bpel/views/rules"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://www.eclipse.org/bpel/views/rules Rules.xsd"
name="rulesGenerator">

</tns:rules>

Parametrisierung

Es wird zu erst die erforderliche allgemeine Parametrisierung fiir das Aggregat und die
Bereinigung des Prozesses nach der Prozesstransformation spezifiziert. Nach der Selektion
des entsprechenden booleschen Wertes werden die Angaben durch den Klick auf den Button
,set parameters” bestatigt.

Rule hinzufligen

Durch den Klick auf den Button ,,add a rule” wird eine Anweisung neben dem eingetipptem
eindeutigem Name in das Rules Dokument erstellt. Es wird ein funktionales aber unvollstan-
diges Dokument (Ohne eine genaue Angabe der gewtinschten Aktionen und Zielnavigation
bzw. Zielselektion) in der Auflistung 4.3 angezeigt. Danach werden die Parametrisierung
und eine Testanweisung fiir die Prozesstransformation eingegebenen.

Listing 4.3 Das Rules Dokument nach der Parametrisierung und dem Hinzufiigen einer
Anweisung

<?xml version="1.0" encoding="UTF-8"7>
<tns:rules xmlns:tns="http://wuw.eclipse.org/bpel/views/rules"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="rulesGenerator"
xsi:schemaLocation="http://www.eclipse.org/bpel/views/rules Rules.xsd">
<parameter>
<aggregate value="true"/>
<cleaning value="true"/>
</parameter>
<rule apply="true" name="test">
<actions/>
<targets/>
</rule>
</tns:rules>

53

4.2. Web Client

Rule entfernen

Eine Aktion fiir die Entfernung einer Anweisung wird niitzlich, wenn man das erstellte
Rules Dokument modifizieren will. Durch die Angabe eines bereits stehenden und eindeutig
identifizierten Name wird darin die entsprechende Anweisung komplett ausgeldscht.

Rule wéhlen

Eine Aktion fiir die Selektion einer Anweisung ist auch benutzbar, wenn man nur ein paar
Details in einer Anweisung modifizieren will. Durch die Angabe eines bereits bestehenden
und eindeutig identifizierten Name wird darin die entsprechende Anweisung ausgewahlt.
Eine detaillierte Modifikation wird durch die folgende Aktion gestiitzt.

Aktion hinzufligen und entfernen

Die entworfen fiinf Aktionen ,<actionOmit>", ,,<actionOpaque>", , <actionSetAttributeTo>",
,<addPreserve>" und , <addTag>" werden ausgewdhlt, um die erstellte Anweisung und
deren Funktionalitdt zu vervollstandigen. Durch den Klick auf die Tasten und die Angabe
von den entsprechenden Parameterwerten konnen die Aktionen in die bestimmte Anweisung
hinzugefiigt oder entferntet werden.

Zielobjektselektion hinzufiigen und entfernen

Die drei Basisverfahren zur Zielobjektnavigation ,<tag>", ,<attribute>” und ,<type>" wer-
den unterstiitzt. Durch den Klick auf die Tasten und die Angabe von den entsprechenden
Parameterwerten konnen die Ausdriicke fiir die Zielobjektselektion zu einer bestimmten
Anweisung sequenziell hinzugefiigt oder entferntet werden. Um die rekursive logische
Kombination durch ,,<and>", ,<or>" und ,<not>" zu implementieren, wurde ein Mecha-
nismus entwickelt, welcher eindasen Aufmachen und SchliefSen eines logische Operator
realisiert. Damit wird ein beliebig geschachtelter logischer Ausdruck korrekt und strukturiert
erstellt. In der Auflistung 4.4 wird ein Testbeispiel eines Logikausdrucks angezeigt. Darin
wird jeder logischer Operator mit einem eindeutigen Namen und der Status-Signalisierung
gekennzeichnet. Eine neu hinzugefiigte Zielobjektnavigation wird in den am tiefsten ertffne-
ten Logikoperator bzw. in dieser Situation in den , <not>" Operator eingefiigt. Von dieser
Erweiterung wird die vorhandene Prozesstransformation nicht beeinflusst.

54

4.2. Web Client

Listing 4.4 Die mehrfach geschachtelten Logikausdriicke in dem Rules Dokument

<?xml version="1.0" encoding="UTF-8"7>
<tns:rules xmlns:tns="http://www.eclipse.org/bpel/views/rules"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="rulesGenerator"
xsi:schemalocation="http://www.eclipse.org/bpel/views/rules Rules.xsd">
<parameter>
<aggregate value="true"/>
<cleaning value="true"/>
</parameter>
<rule apply="true" name="test">
<actions>
<actionOmit/>
</actions>
<targets>
<and id="1" status="open">
<tag tagName="Stuttgart"/>
<or id="2" status="closed">
<tag tagName="Ulm"/>
<tag tagName="Heidelberg"/>
</or>
<not id="3" status="open">
<tag tagName="Mannheim"/>
</not>
</and>
</targets>
</rule>
</tns:rules>

4.2.4. View Administrator

In der Verwaltungsplattform wird ein User-Interface fiir den Administrator erstellt. Darin
werden alle gespeicherten Prozesstransformationen auf dem Datenbanktabelle transformlist
in den Webclient aufgelistet. Der Administrator kann die detaillierten Informationen tiber den
abgegebenen BPEL-Prozess, das Rules Dokument und die resultierte Prozesssicht von jeder
Transformation lesen und analysieren. Um diese Funktion in dem Interface zu realisieren,
wird dafiir das JSF 2.0 Frameworks angewendet. Eine Kollektion transformationList vom
managt JavaBean transformationBean wird beim Rendering der JSP-Seite alle gespeicherten
Instanzen durch eine Getter Methode sammeln. Durch die Anwendung der JSF-Tag dataTable
werden alle abgeholten Datensitzen aus der Kollektion tabellarisch angezeigt. Das Tag-
Element dataScroller in der JSF Komponente Tomahawk aus dem Apache MyFaces Projekt
unterstiitzt eine Navigation in Datenkomponenten bzw. in einer Datentabelle durch Scrollen.
Die genaue Informationen wird dann durch den navigierten Kommandolink ,Show Details”
abgefragt.

55

4.3. Prozess Transformation Service

4.3. Prozess Transformation Service

In diesem Abschnitt werden der in der Arbeit implementierte Transformation Service fiir das
BPEL-basierte Prozessmodell vorgestellt. Die technischen Details jeder Operation werden
schematische erklart und alle umgesetzten Transformation Services sollen eine Funktionsbase
fur die Verwaltungsplattform schaffen.

4.3.1. Operationen

Es wird in der Arbeit die grundlegenden Elementaroperationen und die bereits entwickelte
View-Funktionen als verfiigbare Webservices fiir die Prozesstransformation umgesetzt. In den
Tabellen 4.1 und 4.2 werden alle aufrufbaren Operation aufgelistet und das entsprechende
Anwendungsszenario werden kurz zusammengefasst.

Operation ‘ Beschreibung ‘
activityAddTagByName Tag-Information addieren nach dem Name
activityAddTagByTag Tag-Information addieren nach der Tag-Infos
activityAddTagByType Tag-Information addieren nach der Type
activityOmitByName Aktivitatsloschung nach dem Name
activityOmitByTag Aktivitatsloschung nach der Tag-Infos
activityOmitByType Aktivitatsloschung nach der Type
activityOpaqueByName Undurchsichtig machen nach dem Name
activityOpaqueByTag Undurchsichtig machen nach der Tag-Infos
activityOpaqueByType Undurchsichtig machen nach der Type

activitySetAttrbuteToByName

Attribute modifizieren nach dem Name

activitySetAttrbuteToByTag

Attribute modifizieren nach der Tag-Infos

activitySetAttrbuteToByType

Attribute modifizieren nach der Type

activitySetPreservedByName

Aufbewahrt machen nach dem Name

activitySetPreservedByTag

Aufbewahrt machen nach der Tag-Infos

activitySetPreservedByType

Aufbewahrt machen nach der Type

processInput

Prozess hochladen

viewClean

Der Ergebnisprozess bereinigen

Tabelle 4.1.: Die als Webservices implementierte Elementaroperationen

56

4.4. Services Anwendung und Verwaltung

Operation Beschreibung

processViewFocusOnActivty | Fokussieren in den Prozess

processViewRemoveFragment | Teilprozesseliminieren

transformByRules Prozesstransformation zum gegebenen Rules Dokument

Tabelle 4.2.: Die als Webservices implementierte View-Funktionen

Eine logische Kombination durch ,and”, ,,or” und ,not” fiir die Zielobjektselektion in der
Operation werden im aktuellen Stand dieser Arbeit nicht unterstiitzt. Es besteht noch diese
Erweiterungsmoglichkeit, um die Zielobjektnavigation in der Operation zu vervollstandi-
gen.

4.3.2. WSDL

Alle aufrufbaren Operationen im Transformation Service werden in einem WSDL Dokument
beschrieben. Dieses Dokument wird erstellt z.B durch den Aufruf unter diesem Weblink *
nach einer erfolgreichen Anwendungsinstallation auf dem Tomcat Webserver. Das WSDL
Dokument ist eines der relevanten Artefakte fiir den kompletten Konstruktionsablauf in der
Webservicekonzept-basierten Verwaltungsplattform.

4.4. Services Anwendung und Verwaltung

In diesem Abschnitt werden die technischen Implementierungsdetails und die grundlegen-
den Logikfunktionen fiir das View Services Manager Webinterface vorgestellt. Das Kerngebiet
der Arbeit liegt bei der Implementierung des View Services Managers. Es richtet sich an einen
Webservices-basiertes Anwendungsaspekt fiir die Transformation des Prozessmodelles

4.4.1. Bereitstellung von Services

Die in den vorherigen Abschnitten erkldrten Services bzw. Operationen werden in der
Verwaltungsplattform als eine zentrale Funktionsbasis bereitgestellt. Auf dem Anwendungs-
server wird ein spezieller Ordner unter dem Name ,,importedWSDL" fiir die Lagerung des
relevanten WSDL Dokumentes erstellt. Ein individuelles Hochladung eines gewiinschten
externen WSDL Dokuments wird optional durch den Kommandolink ,Services Import”
unterstiitzt. Es wird vorgenommen. Nach einer erfolgreich Installation wird das WSDL
Dokument , processViewService.wsdl” initiativ automatisch in die Lagerung gespeichert.
Beim erstmaligen Aufruf des View Services Managers ist die Servicelist des Webclients leer

Thttp:/ /localhost:8080/processViewWebAnwendung/services/processViewService?wsdl

57

4.4. Services Anwendung und Verwaltung

und besitzt keine verfiigbaren Operationen in der entsprechenden assoziierten Datenbank-
tabelle servicesbean. Druch Klick auf den Kommandolink , Services list update” wird das
Durchsuchen von allen verfiigbaren Services und darin liegenden Operationen durchgefiihrt.
Es werden die Services und Operationen in der Datenbanktabelle vollstindig gespeichert .
Der durchgefiihrte Verarbeitungsablauf ist wie folgt gegliedert.

Schritt 1: Dokument finden

Die Methode servicesListUpdate() durchsucht die XML-basierten Dokumente in dem Ord-
ner ,importedWSDL” rekursiv. Wenn der Dokumentname mit ,,.wsdl” endet, wird die
DOM-Baumstruktur in den Zwischenspeichern analysiert und extrahiert. Die spateren Ar-
beitsschritte basieren auf diesem DOM-Baum.

Schritt 2: Service finden

Die Methode findServiceName() wird jeweils nach der jeweils Erstellung des DOM-Baum
ausgelost. Sie zielt auf das XML-Element ,,<wsdl:service>” ab und holt den Wert aus dem
Attribut ,name”. Der Servicename wird dann assoziiert mit der Spalte ,name” in der
Datenbanktabelle sevicesbean .

Schritt 3: Operation finden

Es wird in dem WSDI Dokument eine Reihe von Operationen beschrieben. Die Methode
findeServiceOperation() durchsucht die allen XML-Elemente ,<wsdl:operation>" innerhalb
des Elements ,, <wsdl:portType>" und extrahiert den Wert aus dem Attribut ,name”. Der
Operationsname wird in der Spalte ,,operation” der Tabelle gespeichert.

Schritt 4: Eingabeparametern finden

Nach jeder erfolgreichen Registrierung einer Operation miissen die entsprechenden Pa-
rametern herausgefunden werden. Unter dem Element , <wsdl:operation>" werden die
Nachrichtenformate fiir die Eingabe und Ausgabe definiert. Die Methode passt die verfiig-
baren Elemente ,, <wsdl:message>" im WSDL Dokument mit den Werten in dem Attribut
,message” in den Elementen , <wsdl:input>" an. In dem zusammengepassten Element
,<wsdl:message>" werden das Unterelement ,<wsdl:part>" und dessen Attribut , element”
weiter analysiert. In dem WSDL Dokument werden die XML Schema Elemente fiir jeden
Datentypen spezifiziert. Die Methode findet die Datenstruktur und den entsprechenden
Datentyp fiir jeden Eingabeparameter heraus. Solche Informationen werden dann in der
Spalte , parameters” der Datenbanktabelle sevicesbean textuell registriert.

58

4.4. Services Anwendung und Verwaltung

Schritt 5: Ausgabeparametern finden

Die Datenstruktur und die vordefinierten Datentypen fiir die Ausgabeparameter in
,<wsdl:output>" fiir jede Operation wird dann wie im oben beschriebenen Verfahren durch-
sucht. Die Information, wie Ausgabeparameter und Datentyp werden dann in der Spalte
,output” gespeichert. Es wird in der Arbeit in den meisten Fillen die Zeichenketten , retrun
(xs:string)” in der Spalte gespeichert. Neben den Parameterinformation werden die Nach-
richtennamen, wie die Werte aus dem Attribut , message” der Elemente ,<wsdl:input>" und
,<wsdl:output>" auch genutzt. Sie werden in den Spalten , request” und ,response” in der
Tabelle fiir jede assoziierte Operation registriert. Solche Informationen werden unverzichtbar
verlangt im spateren Anwendungskontext.

Schritt 6: Datensatz speichern

Um den Datensatz von jeder Operation in den Service zu speichern, wird in der Arbeit das
Spring Framework und Hibernate Framwork zusammen angewendet. Es wird eine JavaBean
,servicesBean” erstellt, in der alle relevanten Operationsinformationen als Eigenschaften defi-
niert werden. Durch ein paar Setter-Methoden und die Funktion ,EntityManager.persist()”
wird der Datensatz in der Datenbanktabelle sevicesbean gespeichert. Nach frm alle beschrie-
benen Arbeitsschritte ausgefiihrt wurden, wird eine vollstindige Datenbanktabelle erstellt
und als Servicebase fiir das Webinterface ,Service Auflisten” bereitgestellt.

4.4.2. Kombination von Services

Vor der Auswahl des bereitgestellten Services wird eine neue und eindeutige Identifizierung
fur die Konstruktion initialisiert. Der Benutzer klickt auf , Click here for initialize a new
view design”, dann wird eine Instanz-ID mit dem Name des ,viewDesign” und mit einem
exakten aktuellen Zeitstempel erzeugt. Nach einer sequenziellen Auswahl der Operation
resultiert eine Services-Sequenz. In der Arbeit wird dieser Vorgang in einem identifizierbaren
XML-Dokument unter dem Namen der entsprechenden Instanz-ID représentiert.

Operation wahlen

Durch den Klick auf den Kommandolink , parameters” wird die entsprechende Operati-
on ausgewdhlt und der in der Spalte , parameters” assoziierten Datensatz in der Tabelle
sevicesbean wird abgeholt. Die gespeicherten Zeichenketten werden dann analysiert. Die
Anwendung extrahiert die Parameter und erzeugt die Datensédtzen in den Datenbanktabelle
paramertsbean ohne die entsprechende Dateneintragung. Nach einer erfolgreiche Operati-
onsselektion wird auf das Webinterface fiir die Datenabgaben navigiert.

59

4.4. Services Anwendung und Verwaltung

Daten abgeben

Im Webinterface fiir die Datenabgabe wird eine Instanz-bezogene Tabelle wie in der Abbil-
dung 4.2 angezeigt. In der nun die Spalten ,datatyp”, ,value” und ,previousServiceAsInput”
aus der Tabelle paramertsbean dargestellt sind. Die anderen Spalten werden automatisch
durch die assoziierte Information aus der Tabelle sevicesbean und der aktuellen Instanz-
Session gefiillt.

Configure the parameters for the selected transform service:
Instance IT: viewDesign 20101211 190249548

Service Name: processViewService|

Service Operation: processViewFocusOnActivity

Operation Reply (Output): return (xs:string)

Operation Parameters (Tnput):

Parameter Value Set output of previous service as input
process (Zssthng) (Default value as False, as True by Click) [
natne {¥s:string) (Default value as False, as True by Click) [
predecessorPath (xsint) (Default value as False, as True by Click) [
successorPath (zsint) (Default value as False, as True by Click) [

I Sawve the parameter inputs I

Abbildung 4.2.: Das Webinterface fiir die Datenabgabe

Es wird also angenommen, dass es bei der ersten Auswahl der Spalte ,Set output of previous
service as input” nicht selektiert wird muss. Diese Spalte dient als Kombinationspunkt
zwischen den nacheinander ausgewéhlten Operationen. Eine boolesche Bewertung fiir
jede folgende Operation ist dringend erforderlich, um den Ergebnisprozess der vorherigen
Operation als eigenen Eingabeprozess zu bestimmen.

60

4.4. Services Anwendung und Verwaltung

Zwischendokument erzeugen

Durch den Klick auf den Button ,,Save the parameter inputs” nach der Datenabgabe wird
das Instanz-bezogene und eindeutig identifizierte XML-Dokument in dem spezialen Ordner
sinputData” in der Verwaltungsplattform erzeugt. Die Anwendung liest die Instanz-bezogene
Datensédtzen aus der Tabelle paramertsbean und erzeugt das entsprechenden XML-basierte
Dokument. Die bezogenen Datensédtze werden nach der Erzeugung des XML Dokuments
dann nicht weiter in der Tabelle paramertsbean gespeichert. In der Auflistung 4.5 wird ein
Beispiel des erzeugten XML-Dokuments angezeigt.

Listing 4.5 Das erzeugte XML Dokument nach der Operationsauswahl und Datenabgabe
<input name="viewDesign_20101211_194951105">

<service name="processViewService" operation="activityOmitByName" time="20101211_195346634">
<request name="activityOmitByNameRequest">
<process previous="false" type="string">
<!-- DruckereiWorkflow BPEL Process [Generated by the Eclipse BPEL Designer] -->
<!-- Date: Mon Nov 22 15:16:56 CET 2010 -—>
<bpel:process name="DruckereiWorkflow"
targetNamespace="http://eclipse.org/bpel/sample"
suppressJoinFailure="yes"
xmlns:tns="http://eclipse.org/bpel/sample"
xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

---die detaillierte Prozessdefinition wird hier ausgeldscht.---

</bpel:process>

</process>
<activityName previous="false" type="string">Cutting</activityName>
</request>
<response name="activityOmitByNameResponse"/>
</service>

<service name="processViewService" operation="activityOpaqueByName"
time="20101211_195406863">
<request name="activityOpaqueByNameRequest">
<process previous="true" type="string"/>
<activityName previous="false" type="string">Binding</activityName>
</request>
<response name="activityOpaqueByNameResponse"/>
</service>

</input>

Zwischendokument modifizieren

Die in dem XML-Dokument reprisentierte Services-Sequenz wird in dem Webinterface
,Services Sequenz” tabellarisch angezeigt. Es werden darin ein paar Funktionen unterstiitzt,
um die eingelegte Sequenz und das assoziierte XML-Dokument leicht modifizieren und

61

4.4. Services Anwendung und Verwaltung

anpassen zu konnen. Dazu gehort z.B die eingetragenen Daten zu verdndern, die aus-
gewihlte Operation zu l6schen und die zwei nebeneinander positionierten Operationen
auszuwechseln.

4.4.3. BPEL-Projekt Erzeugen und Deployment

In diesem Abschnitt wird die automatische Erzeugung des vollstindigen BPEL-Projekts in
der Apache ODE beschrieben. Alle folgenden Arbeitsschritte sollen nach dem Klick auf den
Kommandolink , Deploy the sequenz process” nacheinander durchgefiihrt werden.

Schritt 1: BPEL Ordner erzeugen

Es wird zuerst ein Projektordner unter dem gleichen Name wie die eindeutig assoziierte
Instanz-ID erzeugt. Dieser Ordner liegt in dem deployten Apache ODE Pfad, wie ,,ode/WEB-
INF/processes”. Das vorhanden WSDL Dokument ,processViewService.wsdl” aus dem
Ordner , importedWSDL” wird in den Projektordner kopiert. Die weiteren relevanten Arte-
fakte fiir ein vollstindiges BPEL-Projekt werden dann generiert.

Schritt 2: BPEL-Prozess erzeugen

Der BPEL-Prozess fiir jede eindeutige Konstruktionsinstanz wird zusammen durch das
WSDL Dokument ,,processViewService.wsdl” und dem assoziierten Zwischendokument fiir
die Service-Sequenz in den Ordner ,inputData” automatisch produziert. Dieser Arbeits-
vorgang wird in der Methode generateBPELFile() durchgefiihrt. Jede erforderliche Struktur,
wie die XML-Elemente in dem BPEL-Prozess werden nacheinander in einem vordefinierten
Prozessstil sequentiell generiert. In der Abbildung 4.3 ist der produzierte BPEL-Prozess fiir
die definierte Sequenz in der Auflistung 4.5 grafisch dargestellt.

Der Mechanismus fiir die Erzeugung des BPEL-Prozesses und des WSDL Dokuments sind
die Kernaufgabe in der Implementierungsphase. Das Implementierungskonzept basiert auf
der Spezifikationen von WS-BPEL Version 2.0 und WSDL Version 1.1 bei der Erstellung
solcher Artefakte. Die in dem Zwischendokument in Reihe definierten Operationsaufrufen
werden in die BPEL-Struktur ,,<bpel:flow>" umgesetzt. Jede aufgerufene Operation wird als
eine eindeutige identifizierte Aktivitit ,<bpel:invoke>" im BPEL-Prozess implementiert. Die
Parameteriibergabe wird durch die ebenfalls eindeutig identifizierte Aktivitat ,<bpel:assign>"
realisiert.

62

4.4. Services Anwendung und Verwaltung

main
& | receivelnput

= Assign-processiiewService-20101211 19555667 1 -activity OmitByMarne
|

AU
<§> invoke-processviewaeryice-20101211 19555667 1 -ackiviby OmitByiame
1

RV
= Assign-processiiewsService-20101211 195556761 -activibyOpagueByMName
|

N
& invoke-processyiewservice-20101 21 1195556761 -ackivityOpagueByhame

= PrepareCutput

3| replyCutput

@

Abbildung 4.3.: Der erzeugter BPEL-Prozess fiir die Sequenz in der Auflistung 4.5

Schritt 3: WSDL Dokument erzeugen

Das spezifiziertes WSDL Dokument wird dann durch die Methode generateProcessWSDL()
aus einem vollstindigen BPEL-Prozess produziert. Das erzeugte WSDL Dokument fiir die
Sequenz in der Auflistung 4.5 wird im Folgenden veranschaulicht.

<?xml version="1.0" encoding="UTF-8"7>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:nsl="http://processView.com" xmlns:p="http://wuw.w3.org/2001/XMLSchema"
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://wuw.processView.com/viewDesign_20101211_194951105"
name="viewDesign_20101211_194951105"
targetNamespace="http://wuw.processView.com/viewDesign_20101211_194951105">
<types>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="http://www.processView.com/viewDesign_20101211_194951105">
<element name="viewDesign_20101211_194951105Request">
<complexType>
<sequence>

63

4.4. Services Anwendung und Verwaltung

<element minOccurs="0" name="process_20101211_195346634"
nillable="true" type="string" />

<element minOccurs="0" name="activityName_20101211_195346634"
nillable="true" type="string" />

<element minOccurs="0" name="activityName_20101211_195406863"
nillable="true" type="string" />

</sequence>
</complexType>
</element>
<element name="viewDesign_20101211_194951105Response">
<complexType>
<sequence>
<element minOccurs="Q" name="result" nillable="true" type="string" />
</sequence>
</complexType>
</element>
</schema>
</types>

<import location="processViewService.wsdl" namespace="http://processView.com" />
<plnk:partnerLinkType
name="processViewService-20101211195556671-activityOmitByNamePartnerLinkType">
<plnk:role
name="processViewService-20101211195556671-activityOmitByNameProvider"
portType="nsl:processViewServicePortType">
</plnk:role>
</plnk:partnerLinkType>
<plnk:partnerLinkType

name="processViewService-20101211195556761-activityOpaqueByNamePartnerLinkType">

<plnk:role
name="processViewService-201012111955656761-activityOpaqueByNameProvider"
portType="nsl:processViewServicePortType">

</plnk:role>

</plnk:partnerLinkType>

<message name="viewDesign_20101211_194951105RequestMessage">
<part element="tns:viewDesign_20101211_194951105Request" name="payload" />

</message>

<message name="viewDesign_20101211_194951105ResponseMessage">
<part element="tns:viewDesign_20101211_194951105Response" name="payload" />

</message>

<message
name="processViewService-20101211195556671-activityOmitByNameRequest">
<part element="nsl:activityOmitByName" name="parameters" />

</message>

<message
name="processViewService-20101211195556671-activityOmitByNameResponse">
<part element="nsl:activityOmitByNameResponse" name="parameters" />

</message>

<message
name="processViewService-20101211195556761-activityOpaqueByNameRequest">
<part element="nsl:activityOpaqueByName" name="parameters" />

</message>

<message
name="processViewService-20101211195556761-activityOpaqueByNameResponse">
<part element="nsl:activityOpaqueByNameResponse" name="parameters" />

</message>

64

4.4. Services Anwendung und Verwaltung

<portType name="viewDesign_20101211_194951105">
<operation name="process">
<input message="tns:viewDesign_20101211_194951105RequestMessage" />
<output message="tns:viewDesign_20101211_194951105ResponseMessage" />
</operation>
</portType>
<plnk:partnerLinkType name="viewDesign_20101211_194951105">
<plnk:role name="viewDesign_20101211_194951105Provider"
portType="tns:viewDesign_20101211_194951105" />
</plnk:partnerLinkType>
<binding name="viewDesign_20101211_194951105Binding"
type="tns:viewDesign_20101211_194951105">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="process">
<soap:operation soapAction="http://eclipse.org/bpel/sample/process" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>
<service name="viewDesign_20101211_194951105">
<port binding="tns:viewDesign_20101211_194951105Binding"
name="viewDesign_20101211_194951105Port">
<soap:address
location="http://localhost:8080/0de/processes/viewDesign_20101211_194951105" />
</port>
</service>
</definitions>

Schritt 4: deploy.xml erzeugen
In der Methode generateDeployXML() wird das XML Dokument , deploy.xml” automatisch

erstellt. Die relevanten Elemente sind hier ,<provide>”, ,<invoke>" und das entsprechende
Unterelement ,,<service>".

65

4.4. Services Anwendung und Verwaltung

Listing 4.6 Das erzeugte deploy.xml Dokument fiir die Sequenz in der Auflistung 4.5

<?xml version="1.0" encoding="UTF-8"7>
<deploy xmlns="http://www.apache.org/ode/schemas/dd/2007/03"
xmlns:nsl="http://processView.com" xmlns:sample="http://eclipse.org/bpel/sample"
xmlns:tns="http://wuw.processView.com/viewDesign_20101211_194951105">
<process name="tns:viewDesign_20101211_194951105">
<active>true</active>
<retired>false</retired>
<process-events generate="all"/>
<provide partnerLink="client">
<service name="tns:viewDesign_20101211_194951105"
port="viewDesign_20101211_194951105Port" />
</provide>
<invoke
partnerLink="processViewService-20101211195556671-activityOmitByNamePartnerLink">
<service name="nsl:processViewService" port="processViewServiceHttpSoapllEndpoint"/>
</invoke>
<invoke
partnerLink="processViewService-201012111955656761-activityOpaqueByNamePartnerLink">
<service name="nsl:processViewService" port="processViewServiceHttpSoapl1Endpoint"/>
</invoke>
</process>
</deploy>

In diese Methode werden die assoziierten Servicenamen und Port in dem WSDL Dokument
,processViewService.wsdl” herausgefunden. Die aufgerufenen ,partnerLink” werden aus
dem generierten BPEL-Prozess unter dem XML Element ,<bpel:partnerLinks>" automatisch
extrahiert.

Schritt 5: BPEL-Prozess kompilieren

Apache ODE erkennt das neue generierte BPEL-Projekt selbstandig. Der ODE Server priift
den BPEL-Prozess syntaktisch und semantisch und kompiliert ihn. Es wird dann eine
CBP-Datei in dem BPEL-Projekt erfolgreich erzeugt.

4.4.4. BPEL-Prozess Ausfiihren

In der letzte Phase wird der deployte BPEL-Prozess als Webservices aufgerufen. Die abgegebe-
ne Daten sowie der Geschiftsprozess und die Parameter werden vom Prozess Transformation
Service verarbeitet. Natiirlich werden die kompletten Arbeitsschritte voll automatisch auf
der Serverseite durchgefiihrt. Der Benutzer muss nur den Status abfragen und klickt auf den
Kommandolink ,Invoke the active process”, um diesen Vorgang auszuldsen. Die relevante
Arbeiten sind hier die Erzeugung einer absendbaren SOAP-Nachricht aus dem Zwischendo-
kument und die Verarbeitung der Antwort. Dieser Abschnitt bezieht sich hauptséachlich auf
die Implementierung eines komplexen Webservices-Klient.

66

4.4. Services Anwendung und Verwaltung

Schritt 1: Status checken

Apache ODE bietet eine Prozess Management API an, welche die auf den deployten BPEL-
Prozess und erzeugten Prozessinstanz bezogenen Managementfunktion unterstiitzt. Die
API wird als einen Webservice Interface implementiert. Darin werden sechs Operation
spezifiziert, mit denen deployte Prozesses und die Instanzen abgefragt und die Zustande im
Apache ODE manipuliert werden kdnnen. Das WSDL Dokument der Prozess Management
API kurz ,,pmapi.wsdl” kénnen unter diesen Weblinks ? gefunden werden. Es wird in der
Arbeit die Operation , listProcesses” angewendet, um die detaillierte Information iiber einen
spezifizierten BPEL-Prozess durch eine Prozessnamensfilterung abzufragen. Die erzeugte
SOAP-Nachricht wird in der Auflistung 4.7 angezeigt.

Listing 4.7 Die erzeugte Abfragenachricht zur Apache ODE Prozess Management API

<soap:Envelope xzmlns:soap="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:pmap="http://www.apache.org/ode/pmapi">
<soap:Header/>
<soap:Body>
<pmap:listProcesses>
<filter>name=viewDesign_20101212_160941250*</filter>
</pmap:listProcesses>
</soap:Body>
</soap:Envelope>

Die detaillierte Information vom deploytem BPEL-Prozesses sind in der folgenden Auflis-
tung ausfiihrlich dargestellt. Das Programm sucht die aktuelle Konstruktionsinstanz bzw.
die angepasste Prozess-ID ,<ns:pid>" heraus. Der Prozesszustand wird in dem Element
,<ns:status>" angezeigt, z.B als ACTIVE signalisiert. Dieser komplette Serviceaufruf und die
Antwortverarbeitung werden in der Methode statusCheck() implementiert.

<soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
<soapenv:Body>
<axis2ns2:listProcessesResponse xmlns:axis2ns2="http://www.apache.org/ode/pmapi">
<process-info-list>
<ns:process-info xmlns:ns="http://www.apache.org/ode/pmapi/types/2006/08/02/">
<ns:pid>
{http://wuw.processView.com/viewDesign_20101212_160941250}viewDesign_20101212_160941250-10
</ns:pid>
<ns:status>ACTIVE</ns:status>
<ns:version>10</ns:version>
<ns:definition-info>
<ns:process-name
xmlns:view="http://www.processView.com/viewDesign_20101212_160941250">
view:viewDesign_20101212_160941250
</ns:process-name>
</ns:definition-info>

http:/ /svn.apache.org/repos/asf/ode/trunk/axis2/src/main/wsdl/pmapi.wsdl

67

4.4. Services Anwendung und Verwaltung

<ns:deployment-info>
<ns:package>viewDesign_20101212_160941250</ns:package>
<ns:document>viewDesign_20101212_160941250.bpel</ns:document>
<ns:deploy-date>2010-12-12T16:32:35.687+01:00</ns:deploy-date>
<ns:deployer/>
</ns:deployment-info>
<ns:instance-summary>
<ns:instances state="ACTIVE" count="0"/>
<ns:instances state="COMPLETED" count="0"/>
<ns:instances state="ERROR" count="0"/>
<ns:instances state="FAILED" count="0"/>
<ns:instances state="SUSPENDED" count="0"/>
<ns:instances state="TERMINATED" count="0"/>
</ns:instance-summary>
<ns:properties/>
<ns:endpoints/>
<ns:documents>
<ns:document>
<ns:name>processViewService.wsdl</ns:name>
<ns:type>http://schemas.xmlsoap.org/wsdl/</ns:type>
<ns:source>file:/C:/Dokumente und
Einstellungen/cai/Desktop/apache-tomcat-6.0.26/
webapps/ode/WEB-INF/processes/viewDesign_20101212_160941250/
processViewService.wsdl
</ns:source>
</ns:document>
<ns:document>
<ns:name>viewDesign_20101212_160941250.bpel</ns:name>
<ns:type>http://schemas.xmlsoap.org/ws/2004/03/business-process/</ns:type>
<ns:source>file:/C:/Dokumente und
Einstellungen/cai/Desktop/apache-tomcat-6.0.26/
webapps/ode/WEB-INF/processes/viewDesign_20101212_160941250/
viewDesign_20101212_160941250.bpel
</ns:source>
</ns:document>
<ns:document>
<ns:name>viewDesign_20101212_160941250.cbp</ns:name>
<ns:type>http://www.fivesight.com/schemas/2005/12/19/CompiledBPEL</ns:type>
<ns:source>file:/C:/Dokumente und
Einstellungen/cai/Desktop/apache-tomcat-6.0.26/
webapps/ode/WEB-INF/processes/viewDesign_20101212_160941250/
viewDesign_20101212_160941250.cbp
</ns:source>
</ns:document>
<ns:document>
<ns:name>viewDesign_20101212_160941250.wsd1</ns:name>
<ns:type>http://schemas.xmlsoap.org/wsdl/</ns:type>
<ns:source>file:/C:/Dokumente und
Einstellungen/cai/Desktop/apache-tomcat-6.0.26/
webapps/ode/WEB-INF/processes/viewDesign_20101212_160941250/
viewDesign_20101212_160941250.wsdl
</ns:source>
</ns:document>
</ns:documents>
</ns:process-info>

68

4.4. Services Anwendung und Verwaltung

</process-info-list>
</axis2ns2:listProcessesResponse>
</soapenv:Body>
</soapenv:Envelope>

Schritt 2: SOAP-Nachrichten erzeugen

Nach dem aktivierten Signal wird der BPEL-Prozess als aufrufbarer Webservices bereit-
gestellt. Der Benutzer klickt auf den Kommandolink , Invoke the active process” und 16st
diese Aktion aus. Das Programm erzeugt automatisch eine SOAP-Nachricht aus dem as-
soziierten Zwischendokument in dem Ordner ,inputData”. Das WSDL Dokument in dem
BPEL-Projekt wird analysiert, die Variablen werden durchgesucht und als Input-Parameter
in die SOAP-Nachricht hinzugefiigt. Dann wird die entsprechende Datenabgabe aus dem
Zwischendokument abgeholt und in die assoziierten Parametern als Wertzuweisung einge-
tragen.

Listing 4.8 Die erzeugte SOAP-Nachricht aus den Zwischendokument in der Auflistung 4.5

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:view="http://www.processView.com/viewDesign_20101211_194951105">
<soap:Header/>
<soap:Body>
<view:viewDesign_20101211_194951105Request
xmlns:view="http://www.processView.com/viewDesign_20101211_194951105">
<view:process_20101211_195346634>
<!
>
<! >
<bpel:process name="DruckereiWorkflow"
targetNamespace="http://eclipse.org/bpel/sample"
suppressJoinFailure="yes"
xmlns:tns="http://eclipse.org/bpel/sample"
xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

---die detaillierte Prozessdefinition wird hier ausgeldscht.---

</bpel:process>
</view:process_20101211_195346634>
<view:activityName_20101211_195346634>Cutting</view:activityName_20101211_195346634>
<view:activityName_20101211_195406863>Binding</view:activityName_20101211_195406863>
</view:viewDesign_20101211_194951105Request>
</soap:Body>
</soap:Envelope>

Die obige SOAP-Nachricht wird automatisch zusammen aus dem WSDL Dokument in dem
BPEL-Projekt und dem assoziierten Zwischendokument in der Auflistung 4.5 generiert. Das

69

4.4. Services Anwendung und Verwaltung

Programm sendet diese SOAP-Nachricht zu dem BPEL-Prozess in der Apache ODE, in der
er als ein aufrufbarer Web Services kompiliert und bereitgestellt wird.

Schritt 3: Antworten abholen

Nach der erfolgreichen Transformation soll der Ergebnisprozess zurtiick geschickt werden.
Das Ergebnis in der SOAP-Antwort, wie in der Auflistung 4.9 wird dann extrahiert und in
dem Webinterface angezeigt. Es wird in der Arbeit die Fehlermeldung auch fiir den Benutzer
angezeigt, wenn der Fehler innerhalb der Prozesstransformation generiert wurde.

Listing 4.9 Die SOAP-Antwortnachricht zu der Auflistung 4.8

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>
<viewDesign_20101211_194951105Response
xmlns="http://wuw.processView.com/viewDesign_20101211_194951105">
<tns:result xmlns:tns="http://www.processView.com/viewDesign_20101211_194951105">

<! >
<! >
<bpel:process name="DruckereiWorkflow"
targetNamespace="http://eclipse.org/bpel/sample"
suppressJoinFailure="yes"
xmlns:tns="http://eclipse.org/bpel/sample"
xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

——-die detaillierte Prozessdefinition nach Transformation wird hier
ausgeldéscht.-——-

</bpel:process>

</tns:result>
</viewDesign_20101211_194951105Response>
</soapenv:Body>
</soapenv:Envelope>

Schritt 4: BPEL-Projekt herunterladen

Das ganzes BPEL-Projekt wird durch den Klick auf den Kommandolink , Deployed process
download” heruntergeladen. Das Projekt und darin liegende Artefakte werden als ein
komplettes ZIP-File komprimiert.

70

4.5. Business Process View Template

4.5. Business Process View Template

In diesem Abschnitt wird die Prozess View Vorlage fiir eine hohere Anwendbarkeit vertieft
tiberlegt. Die Implementierbarkeit und technische Umsetzbarkeit werden ebenfalls getestet.
Es wird aber nur eine grobe Idee in dieser Arbeit vorgestellt.

Es wurde in der Praxisarbeit diese Unterstiitzung zu der Prozess View Vorlage implementiert.
Ein erstellter Prototyp der Prozess View Vorlage wird hier als einen benutzerdefinierte Elimi-
nierung eines kritischen Bereichs oder Pfads in einem Geschéftsprozess angewendet, wie in
der Abbildung 4.4 schematisch angezeigt. Es besteht eigentlich aus zwei Schritten in der Vor-
lage. In der Abbildung A.1 ist diese Vorlage als ein BPEL-Prozess grafisch dargestellt. Damit
konnen der Geschiftsprozess in einem Massenverfahren zu einer bestimmten Zielsetzung
hin transformiert werden. Der Benutzer gibt den Geschéftsprozess und die Parameter zu
einer flexibler Definition eines kritischen Pfads fiir den ersten Schritt ,, Focus on a subprocess”
ein. Der zweite Schritt , Remove the subprocess” wird folgend selbstandig durchgefiihrt. Eine
anschauliches Testbeispiel wird in der Abbildungen A.2 und A.3 angezeigt. Darin werden
die geschiftlichen Tatigkeiten fiir die Definition eines Druckweiterverarbeitungsprozess in
einer Druckerei, wie der rotlich eingefarbten Bereich ausgeloscht.

A

4 \, ; Step 1:
r T T Focus on a
.| subprocess 4
I A '
<
A Step 2:
¥ v N\ Remove the ’
T 7T T @ subprocess I\

GO

Abbildung 4.4.: Die grafische Darstellung dieser Prozess View Template und deren Prinzip

71

5. Zusammenfassung und Ausblick

In diesem Kapitel werden die Ergebnisse der Diplomarbeit kurz zusammengefasst und
mit der primdren Zielsetzungen verglichen. Ein Blick in die Zukunft, die bestehenden
Verbesserungsmoglichkeiten und die betroffenen Probleme fiir die Business Prozess View
werden ebenfalls betrachtet und im Kontext der aktuellen Rahmenbedingung und dem
heutigen Technikstand fiir eine starkere Anwendungskompetenz untersucht.

5.1. Zusammenfassung

Die Aufgabe in dieser Diplomarbeit ist die Entwicklung einer webbasierten Verwaltungsplatt-
form fiir die benutzerdefinierte Prozesstransformation und die komfortable Konstruktion
einer Sicht auf einen BPEL-Prozesses. Eine Applikation fiir die Prozesstransformation wurde
bereits erstellt. Diese kann nach der Eingabe des BPEL-Prozesses und der XML-basierten
Rulessprache tiber die Konsole das Prozessmodell transformieren. In der entworfenen Ver-
waltungsplattform wird diese Applikation integriert und ein benutzerfreundlicher Webclient
dafiir entwickelt, welcher in die vier Webinterface sowie View Designer und Manager, View
Transformer, Rules Designer und View Administrator gegliedert ist. Die genutzten Frame-
works fiir die Entwicklung einer Webanwendung in Mehrschichtenarchitektur werden in der
Praxis umgesetzt und gegenseitig integriert.

Die elementarenn Operationen und die spezifizierten Funktionen fiir die Prozesstransforma-
tion werden in der Arbeit als aufrufbares Webservices Interface umgesetzt. Sie stellen eine
zentrale Funktionsbasis fiir das View Designer und Manager dar. Damit ist die individuelle
Konstruktion der Prozesstransformation implementierbar. Der Benutzer wahlt die verfiig-
baren Operationen und kombiniert sie nacheinander. Die resultierende Sequenz wird zu
einem ausfiihrbaren BPEL-Prozess umgewandelt. Dieser vordefinierter Verarbeitungspro-
zess mit den Konstruktionsinstanz-bezogene Daten wird auf der Serverseite automatisch
durchgefiihrt und das vollstandige BPEL-Projekt wird zum Herunterladen bereitgestellt.

Die Webservice-basierte Konstruktion der benutzerdefinierten Prozesstransformation ist
das hauptsdchliche Praxisergebnis der Diplomarbeit. Es wird in der Webapplikation als
Kernmodul betreut und bietet parallel eine hohere Erweiterbarkeit. Extern entwickelte
Prozess Transformation Services konnen in dieser Plattform durch Hochladen des entspre-
chendes WSDL Dokumentes integriert werden. Die vielféltig angebotenen Funktionalitidten
der Servicebasis werden dadurch verstiarkt. Die konstruierte Services-Sequenz kann als
eine wiederverwendbare Prozess View Vorlage fiir eine spezifizierte Prozessabstraktion in
Rahmen eines Massenverfahrens wieder in die Plattform importiert werden.

72

5.2. Ausblick

5.2. Ausblick

Business Prozess View zeigt bereits seine grofie Kompetenz in der Geschéftsprozesstrans-
formation. Seine Fahigkeit zur Prozessabstraktion und zum Verbergen der kritischen In-
formationen, wie z.B der geschéftsdaten-bezogenem Aktivitdtskontext oder die spezielle
Geschiftsregelung beinhaltetende Prozesssemantik in dem simulierten Geschéftsprozesses
wird weiterhin vervollstandigt und standig verbessert. Kiinftig soll die Anwendungsvision
in dem Gebiet der Business Prozess View weiter skaliert werden. Das Konzept der Pro-
zess View Vorlage wiire ein niitzlicher Ausgangspunkt, in dem die umgesetzten einfachen
Transformation Services strukturell zusammengesetzt werden und damit ein eigener wie-
derverwendbarer Verarbeitungsmechanismus auf den Geschéftsprozess erstellt wird. Eine
betroffene Anforderung ist die technische Umsetzbarkeit solcher elementaren und effektiven
Operationsservices als grundsitzliche Bauelemente fiir die funktional stdrkere Prozess View
Vorlage.

Daneben wire die Ausfiihrbarkeit des Ergebnisprozesses nach der Prozesstransformation
eine ausstehende Aufgabe. Im Verlauf der Diplomarbeit wurde diese Anforderung sowie
die Simulierbarkeit des abstrahierten Prozesses wegen der resultierenden Hochkomplexitat
vernachléssigt. Dies bezieht sich weder auf die Prozessabstraktion noch auf die entsprechen-
den assoziierten Geschiftsdaten. Eine neue Losung sollte dazu erstellt und implementiert
werden, um den abstrahierten Prozesses ebenfalls korrekt simulieren und analysieren zu
konnen.

73

Literaturverzeichnis

[AAAT07]

[Ber1o]

[BHM " 04]

[BKog]

[Cai1o]

[GKE10]

[GSVRo4]

[KBRLo5]

[Morog]

[OASo7]

A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford, Y. Goland,
A. Guizar, N. Kartha, et al. Web services business process execution language
version 2.0. OASIS Standard, 11, 2007. (Zitiert auf den Seiten 7 und 14)

E. Bernard. Hibernate Annotations Reference Guide 3.5.1-Final, 2010. URL
http://docs. jboss.org/hibernate/stable/annotations/reference/en/
pdf/hibernate_reference.pdf. (Zitiert auf Seite 26)

D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, D. Orchard.
Web Services Architecture, W3C Working Group Note 11 February 2004. World
Wide Web Consortium, article available from: http://www. w3. org/TR/ws-arch, 2004.
(Zitiert auf Seite 10)

E. Burns, R. Kitain. JavaServer Faces Specification. Sun Microsystems Inc. Santa
Clara, 2009. (Zitiert auf Seite 23)

J. Cai. Abstrakte Sichten auf BPEL Prozesse. Studienarbeit: Univer-
sitdt Stuttgart, Institut fiir Architektur von Anwendungssystemen, 2010.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=STUD-2250&engl=0. (Zitiert auf den Seiten 8, 10, 18, 19, 33, 34
und 52)

M. R. A-E. B. Gavin King, Christian Bauer, S. Ebersole. Hibernate Reference Docu-
mentation 3.5.1-Final, 2010. URL http://docs. jboss.org/hibernate/stable/
core/reference/en/pdf/hibernate_reference.pdf. (Zitiert auf den Seiten 4
und 25)

M. Gaitanides, R. Scholz, A. Vrohlings, M. Raster. Prozessmanagement: Konzepte,
Umsetzungen und Erfahrungen des Reengineering. C. Hanser, 1994. (Zitiert auf
Seite 7)

N. Kavantzas, D. Burdett, G. Ritzinger, Y. Lafon. Web services choreography
description language version 1.0, w3c candidate recommendation. World Wide
Web Consortium, pp. 1020051109, 2005. (Zitiert auf Seite 14)

R. Mordani. Java Servlet Specification Version 3.0. Sun Microsystems, Inc., 2009.
(Zitiert auf Seite 20)

OASIS. Web services business process execution language version 2.0. URL:
http://docs. oasis-open. org/wsbpel/2.0/OS/wsbpel-v2. 0-OS. html, 2007. (Zitiert auf
Seite 10)

74

http://docs.jboss.org/hibernate/stable/annotations/reference/en/pdf/hibernate_reference.pdf
http://docs.jboss.org/hibernate/stable/annotations/reference/en/pdf/hibernate_reference.pdf
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=STUD-2250&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=STUD-2250&engl=0
http://docs.jboss.org/hibernate/stable/core/reference/en/pdf/hibernate_reference.pdf
http://docs.jboss.org/hibernate/stable/core/reference/en/pdf/hibernate_reference.pdf

Literaturverzeichnis

[PDog] M. R. K.-m. C. Pierre Delisle, Jan Luehe. JavaServer Pages Specification. Version
2.2. Sun Microsystems, Inc., 2009. (Zitiert auf den Seiten 21 und 22)

[PPo8] M. Papazoglou, M. Papazoglou. Web services: principles and technology. Addison-
Wesley, 2008.

[R]"10] K. D. Rod Johnson, Juergen Hoeller, et al. The Spring Framework-Reference Docu-
mentation 3.0, 2010. URL http://static.springsource.org/spring/docs/3.0.
x/spring-framework-reference/pdf/spring-framework-reference.pdf. (Zi-
tiert auf den Seiten 4, 27, 28 und 29)

[SLS10] D. Schumm, F. Leymann, A. Streule. Process Viewing Patterns. In Proceedings
of the 14th IEEE International EDOC Conference, EDOC 2010, 25-29 October 2010,
Vitéria, Brazil, pp. 89—98. IEEE Computer Society, 2010. doi:10.1109/EDOC.2010.16.
(Zitiert auf Seite 7)

[Stroog] A. Streule. Abstract Views on BPEL Processes. Diplomarbeit, Universitdt Stuttgart,
Fakultédt Informatik, Elektrotechnik und Informationstechnik, Germany, 2009.
(Zitiert auf den Seiten 8, 10, 18 und 33)

[Teaos] J. W. S. P. Team. Streaming APIs for XML Parsers, August 2005. URL http://
java.sun.com/performance/reference/whitepapers/StAX-1_0.pdf. (Zitiert
auf Seite 31)

[WCL"o05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. Ferguson. Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging and More. Prentice Hall PTR Upper Saddle River, NJ, USA,
2005. (Zitiert auf den Seiten 4, 10 und 11)

Alle URLs wurden zuletzt am 20.12.2010 gepriift.

75

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/pdf/spring-framework-reference.pdf
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/pdf/spring-framework-reference.pdf
http://java.sun.com/performance/reference/whitepapers/StAX-1_0.pdf
http://java.sun.com/performance/reference/whitepapers/StAX-1_0.pdf

A. Anhang

A.1. Prozess View Template - Testbeispiele

main
0 | receivelnput

= Assign-processiewservice-20110113141510954-processViewFocusOndckivity
|

L%
<§> invoke-processyiewIervice-201101 13141510954-processiiewFocusCOndckivity
|

e
= Assign-processiiewservice-2011011314151 1078-processYiewRemoveFragment

|

U
<§> imvoke-processyiewservice-201101 1314151 1078-processhiewR emoveFragment

= PrepareCutput

i | rephyutput

®

Abbildung A.1.: Prozess View Vorlage fiir die Elimination von dem PostPressManagement-
Subprozess

76

A.1. Prozess View Template - Testbeispiele

Listing A.1 Das deploy.xml Dokument fiir die Prozess View Template in der Abbildung A.1

<?xml version="1.0" encoding="UTF-8"7>
<deploy xmlns="http://www.apache.org/ode/schemas/dd/2007/03"
xmlns:nsl="http://processView.com" xmlns:sample="http://eclipse.org/bpel/sample"
xmlns:tns="http://www.processView.com/viewDesign_20110113_141421125">
<process name="tns:viewDesign_20110113_141421125">
<active>true</active>
<retired>false</retired>
<process-events generate="all" />
<provide partnerLink="client">
<service name="tns:viewDesign_20110113_141421125"
port="viewDesign_20110113_141421125Port" />
</provide>
<invoke
partnerLink="processViewService-20110113141510984-processViewFocusOnActivityPartnerLink">
<service name="nsl:processViewService" port="processViewServiceHttpSoapllEndpoint"
/>
</invoke>
<invoke
partnerLink="processViewService-20110113141511078-processViewRemoveFragmentPartnerLink">
<service name="nsl:processViewService" port="processViewServiceHttpSoapllEndpoint"

/>
</invoke>
</process>
</deploy>

Der erzeugt entsprechend BPEL-Prozess fiir die Prozess View Template in der Abbil-
dung A.1:

<?xml version="1.0" encoding="UTF-8"7>
<bpel:process xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
xmlns:nsi="http://processView.com"
xmlns:tns="http://www.processView.com/viewDesign_20110113_141421125"
name="viewDesign_20110113_141421125" suppressJionFailure="yes"
targetNamespace="http://www.processView.com/viewDesign_20110113_141421125">
<bpel:import importType="http://schemas.xmlsoap.org/wsdl/"
location="viewDesign_20110113_141421125.wsdl"
namespace="http://processView.com/viewDesign_20110113_141421125" />
<bpel:partnerLinks>
<bpel:partnerLink myRole="viewDesign_20110113_141421125Provider"
name="client" partnerLinkType="tns:viewDesign_20110113_141421125" />
<bpel:partnerLink
name="processViewService-20110113141510984-processViewFocusOnActivityPartnerLink"
partnerLinkType="tns:processViewService-20110113141510984-processViewFocusOnActivityPartnerLinkType"
partnerRole="processViewService-20110113141510984-processViewFocusOnActivityProvider"
portType="nsl:processViewServicePortType" />
<bpel:partnerLink
name="processViewService-20110113141511078-processViewRemoveFragmentPartnerLink"
partnerLinkType="tns:processViewService-20110113141511078-processViewRemoveFragmentPartnerLinkType"
partnerRole="processViewService-20110113141511078-processViewRemoveFragmentProvider"
portType="ns1:processViewServicePortType" />

77

A.1. Prozess View Template - Testbeispiele

</bpel:partnerLinks>
<bpel:variables>
<bpel:variable messageType="tns:viewDesign_20110113_141421125RequestMessage"
name="input" />
<bpel:variable messageType="tns:viewDesign_20110113_141421125ResponseMessage"
name="output" />
<bpel:variable messageType='"nsl:processViewFocusOnActivityRequest"
name="processViewService-20110113141510984-processViewFocusOnActivityRequest" />
<bpel:variable messageType="nsl:processViewFocusOnActivityResponse"
name="processViewService-20110113141510984-processViewFocusOnActivityResponse" />
<bpel:variable messageType="nsl:processViewRemoveFragmentRequest"
name="processViewService-20110113141511078-processViewRemoveFragmentRequest" />
<bpel:variable messageType='"nsl:processViewRemoveFragmentResponse"
name="processViewService-20110113141511078-processViewRemoveFragmentResponse" />
</bpel:variables>
<bpel:sequence name="main">
<bpel:receive createlnstance="yes" name="receivelnput"
operation="process" partnerLink="client"
portType="tns:viewDesign_20110113_141421125"
variable="input" />
<bpel:flow name="Servicesflow">
<bpel:links>
<bpel:link name="link1" />
<bpel:link name="1ink3" />
<bpel:link name="link2" />
</bpel:links>
<bpel:assign
name="Assign-processViewService-20110113141510984-processViewFocusOnActivity"
validate="no">
<bpel:copy>
<bpel:from>
<bpel:literal xml:space="preserve'">
<proc:processViewFocusOnActivity
xmlns:proc="http://processView.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<proc:process />
<proc:name />
<proc:predecessorPath />
<proc:successorPath />
</proc:processViewFocusOnActivity>
</bpel:literal>
</bpel:from>
<bpel:to part="parameters"
variable="processViewService-20110113141510984-processViewFocusOnActivityRequest"
/>
</bpel:copy>
<bpel:copy>
<bpel:from part="payload" variable="input">
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[tns:process_20110113_141459234]]></bpel:query>
</bpel:from>
<bpel:to part="parameters"
variable="processViewService-20110113141510984-processViewFocusOnActivityRequest">

78

A.1. Prozess View Template - Testbeispiele

<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[ns1:process]]></bpel:query>
</bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from part="payload" variable="input">
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[tns:name_20110113_141459234]]1></bpel:query>
</bpel:from>
<bpel:to part="parameters"
variable="processViewService-20110113141510984-processViewFocusOnActivityRequest">
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[ns1:name]]></bpel:query>
</bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from part="payload" variable="input">
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[tns:predecessorPath_20110113_141459234]]></bpel:query>
</bpel:from>
<bpel:to part="parameters"
variable="processViewService-20110113141510984-processViewFocusOnActivityRequest">
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[ns1:predecessorPath]]></bpel:query>
</bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from part="payload" variable="input">
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[tns:successorPath_20110113_141459234]]></bpel:query>
</bpel:from>
<bpel:to part="parameters"
variable="processViewService-20110113141510984-processViewFocusOnActivityRequest">
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[ns1:successorPath]]></bpel:query>
</bpel:to>
</bpel:copy>
<bpel:sources>
<bpel:source linkName="link1" />
</bpel:sources>
</bpel:assign>
<bpel:invoke
inputVariable="processViewService-20110113141510984-processViewFocusOnActivityRequest"
name="invoke-processViewService-20110113141510984-processViewFocusOnActivity"
operation="processViewFocusOnActivity"
outputVariable="processViewService-20110113141510984-processViewFocusOnActivityResponse"
partnerLink="processViewService-20110113141510984-processViewFocusOnActivityPartnerLink"
portType="nsl:processViewServicePortType">

79

A.1. Prozess View Template - Testbeispiele

<bpel:targets>
<bpel:target linkName="link1" />
</bpel:targets>
<bpel:sources>
<bpel:source linkName="1ink2" />
</bpel:sources>
</bpel:invoke>
<bpel:assign
name="Assign-processViewService-20110113141511078-processViewRemoveFragment"
validate="no">
<bpel:copy>
<bpel:from>
<bpel:literal xml:space="preserve'">
<proc:processViewRemoveFragment
xmlns:proc="http://processView.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<proc:process />
<proc:fragment />
</proc:processViewRemoveFragment>
</bpel:literal>
</bpel:from>
<bpel:to part="parameters"
variable="processViewService-20110113141511078-processViewRemoveFragmentRequest"
/>
</bpel:copy>
<bpel:copy>
<bpel:from part="payload" variable="input">
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[tns:process_20110113_141508125]11></bpel:query>
</bpel:from>
<bpel:to part="parameters"
variable="processViewService-20110113141511078-processViewRemoveFragmentRequest">
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[ns1:process]]></bpel:query>
</bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from part="parameters"
variable="processViewService-20110113141510984-processViewFocusOnActivityResponse">
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[/*/text ()]1]1></bpel:query>
</bpel:from>
<bpel:to part="parameters"
variable="processViewService-20110113141511078-processViewRemoveFragmentRequest">
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[ns1:fragment]]></bpel:query>
</bpel:to>
</bpel:copy>
<bpel:targets>
<bpel:target linkName="1link2" />
</bpel:targets>

8o

A.1. Prozess View Template - Testbeispiele

<bpel:sources>
<bpel:source linkName="1ink3" />
</bpel:sources>
</bpel:assign>
<bpel:invoke
inputVariable="processViewService-20110113141511078-processViewRemoveFragmentRequest"
name="invoke-processViewService-20110113141511078-processViewRemoveFragment"
operation="processViewRemoveFragment"
outputVariable="processViewService-20110113141511078-processViewRemoveFragmentResponse"
partnerLink="processViewService-20110113141511078-processViewRemoveFragmentPartnerLink"
portType="nsl:processViewServicePortType">
<bpel:targets>
<bpel:target linkName="1ink3" />
</bpel:targets>
</bpel:invoke>
</bpel:flow>
<bpel:assign name="PrepareQOutput" validate="no">
<bpel:copy>
<bpel:from>
<bpel:literal xml:space="Preserve'">
<tns:viewDesign_20110113_141421125Response
xmlns:tns="http://www.processView.com/viewDesign_20110113_141421125">
<tns:result />
</tns:viewDesign_20110113_141421125Response>
</bpel:literal>
</bpel:from>
<bpel:to part="payload" variable="output" />
</bpel:copy>
<bpel:copy>
<bpel:from part="parameters"
variable="processViewService-20110113141511078-processViewRemoveFragmentResponse">
<bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[/*/text ()]11></bpel:query>
</bpel:from>
<bpel:to part="payload" variable="output">
<bpel:query querylLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[tns:result]]></bpel:query>
</bpel:to>
</bpel:copy>
</bpel:assign>
<bpel:reply name="replyOutput" operation="process"
partnerLink="client" portType="tns:viewDesign_20110113_141421125"
variable="output" />
</bpel:sequence>
<bpel:import importType="http://schemas.xmlsoap.org/wsdl/"
location="processViewService.wsdl" namespace="http://processView.com" />
</bpel:process>

Der erzeugt entsprechend WSDL Dokument fiir die Prozess View Template in der Abbil-
dung A.1:

<?xml version="1.0" encoding="UTF-8"7>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:nsil="http://processView.com" xmlns:p="http://www.w3.org/2001/XMLSchema"

81

A.1. Prozess View Template - Testbeispiele

xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.processView.com/viewDesign_20110113_141421125"
name="viewDesign_20110113_141421125"
targetNamespace="http://www.processView.com/viewDesign_20110113_141421125">
<types>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="http://www.processView.com/viewDesign_20110113_141421125">
<element name="viewDesign_20110113_141421125Request">
<complexType>
<sequence>
<element minOccurs="0" name="process_20110113_141459234"
nillable="true" type="string" />
<element minOccurs="0" name="name_20110113_141459234"
nillable="true" type="string" />
<element minOccurs="0" name="predecessorPath_20110113_141459234"
nillable="true" type="int" />
<element minOccurs="0" name="successorPath_20110113_141459234"
nillable="true" type="int" />
<element minOccurs="0" name="process_20110113_141508125"
nillable="true" type="string" />

</sequence>
</complexType>
</element>
<element name="viewDesign_20110113_141421125Response">
<complexType>
<sequence>
<element minOccurs="0" name="result" nillable="true" type="string" />
</sequence>
</complexType>
</element>
</schema>
</types>

<import location="processViewService.wsdl" namespace="http://processView.com" />
<plnk:partnerLinkType
name="processViewService-20110113141510984-processViewFocusOnActivityPartnerLinkType">
<plnk:role
name="processViewService-20110113141510984-processViewFocusOnActivityProvider"
portType="nsl:processViewServicePortType">
</plnk:role>
</plnk:partnerLinkType>
<plnk:partnerLinkType
name="processViewService-20110113141511078-processViewRemoveFragmentPartnerLinkType">
<plnk:role
name="processViewService-20110113141511078-processViewRemoveFragmentProvider"
portType="ns1l:processViewServicePortType">
</plnk:role>
</plnk:partnerLinkType>
<message name="viewDesign_20110113_141421125RequestMessage">
<part element="tns:viewDesign_20110113_141421125Request" name="payload" />
</message>
<message name="viewDesign_20110113_141421125ResponseMessage">
<part element="tns:viewDesign_20110113_141421125Response" name="payload" />
</message>

82

A.1. Prozess View Template - Testbeispiele

<message
name="processViewService-20110113141510984-processViewFocusOnActivityRequest">
<part element="nsl:processViewFocusOnActivity" name="parameters" />
</message>
<message
name="processViewService-20110113141510984-processViewFocusOnActivityResponse">
<part element="nsl:processViewFocusOnActivityResponse" name="parameters" />
</message>
<message
name="processViewService-20110113141511078-processViewRemoveFragmentRequest">
<part element="nsl:processViewRemoveFragment" name="parameters" />
</message>
<message
name="processViewService-20110113141511078-processViewRemoveFragmentResponse">
<part element="nsl:processViewRemoveFragmentResponse" name="parameters" />
</message>
<portType name="viewDesign_20110113_141421125">
<operation name="process">
<input message="tns:viewDesign_20110113_141421125RequestMessage" />
<output message="tns:viewDesign_20110113_141421125ResponseMessage" />
</operation>
</portType>
<plnk:partnerLinkType name="viewDesign_20110113_141421125">
<plnk:role name="viewDesign_20110113_141421125Provider"
portType="tns:viewDesign_20110113_141421125" />
</plnk:partnerLinkType>
<binding name="viewDesign_20110113_141421125Binding"
type="tns:viewDesign_20110113_141421125">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="process">
<soap:operation soapAction="http://eclipse.org/bpel/sample/process" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>
<service name="viewDesign_20110113_141421125">
<port binding="tns:viewDesign_20110113_141421125Binding"
name="viewDesign_20110113_141421125Port">
<soap:address
location="http://localhost:8080/ode/processes/viewDesign_20110113_141421125" />
</port>
</service>
</definitions>

A.1. Prozess View Template - Testbeispiele

Print Shop

& recsivePrintJob
1
sl
= AssigrPrintlab
]
b
<& printlobCalculation
1
she
= AssignCalculation
1
RS
& clientConfirmation
1
sk
= AssignConfirmedPrintJob
I

A3 L S U
<§> PrePressManagement <§> PressManagemnent <9 PostPressManagement <§> CenkerAdministrationandDataStored
1
R — £ = LS
= assignInputToProcessing = aAssigninputToProduction = aAssignInputToPostpress = assignclientandPrintJobData
l_\‘./
& textGrafikProcessing
-
= AssignInputToRIP
=
& riP
S
= AssigninputTolmposition
=
& Imposition
S
= AssignInputToProofing
L
& proofing
e
= AssignPracfingTocClient
L
& dlientProofingConfirmation
S
= #AssianInputTolTP
Ly
& crp
A
= assigninputDatasndPlate
00O
& machinePreSetting
=
= assignIinputandPlateToPrint
|_\‘./
<5>prlr|tMachme
=
= AssignPrintedlobToga
~
& Quality control
S
= AssignlnputDatasndPrintedProducts

N
Cutting

[= assignInputAndprintedProducts{cutted)]

[= AssignInputandPrintedProductsibinded)]

& productsLogistics
= assignInputData

& Re-Calculation
1
L
= AssignDatasndPrintJob
]
b
<& PrintJobsuccesd

Abbildung A.z2.: Der Geschéftsprozess von dem Druckerei

A.1. Prozess View Template - Testbeispiele

= Print Shop

o2 | receivePrintJob
1
e
= AssignPrintJob
1
LUd
& printIobCaloulation
1

b

= AssignCalculation
1
L L
& clientConfirmation
1

b

= assignConfirmedPrintJob
|

R L U
& PrePressManagement & PressManagement & CenteradministrationandDatastored
p— 1]
L L R
= AssignInputToProcessing = AssignInputToProduction = #assignClientandPrinklobData
)
& texbGrafikProcessing
2
= AssignInputToRIFP
S
& RIF
2
= AssignInpukToImposition
S
<§> Imnposikion
@
= AssignInputToProofing
@
<5> proofing
S
= AssignProofingToClient
o
<§> clientProofingZonfirmation
S
= AssignInputTol TP
=
& TP
=
= AssignInputDatasndPlate
| I
=
& machinePreSetting
b
= AssignInputAandPlateToPrink
RS
& printMachine
e
= AssignPrintedJobToOs
e
<‘5> Cuality control
S

= assignInputDatasandPrintedProducts
L

& Re-Calculation
]

R

= aAssignDatasandPrintJob
1

b
& PrintJobSucceed

©
Abbildung A.3.: Der Geschéftsprozess von dem Druckerei nach die Elimination von dem
PostPressManagement-Subprozess

A.2. Der Screenshot der Prozess View Verwaltungsplattform

A.2. Der Screenshot der Prozess View Verwaltungsplattform

Business Process View For WS-BPEL

SERYICES MANAGER VYIEW TRANSFORMER RULES DESIGNER ADMINISTRATOR HELP

SERY¥ICES IMPORT SERYICES LIST - SERYICE SELECTION AND PARAMETERS INPUT
Import a new WDl
docurnent for add the new List of all available services for process transformation:
services into the Services
Manager. Instance ID: viewDesign_20101125_ 172019656
BEGIN ¥IEW DESIGN Service Operation Select Service
Click here for initialize a processViewService activityAddTagByMame parameters
new view design . . -
processWiewService activityAddTagByTag pararneters
NAYIGATOR processWiewService activityAddTagByType parameters
About DASIS WS-BEPEL processWiewService activity OrmitByMarne parameters
Documents and Links processWiewservice activityOmitByTag parameters
processWiewsService activityOmitByType parameters
processWiewService activityOpagueByName parameters
processviewService activityOpagueByTag parameters
processWiewService activityOpagueByType parameters

process¥iewService activitySetattributeToByMame 5 oreters

123

Services list update

EXECUTE THE CALLED SER¥ICES SEQUEMCE

Sequential list of all called transform services with its parameters:

Instance ID: viewDesign_20101125_172019656

Mo. The called Operation Input Move Up Remove
1 activityomitByMName modify Move up remove
2 activityOpagueByName modify Move up rerove

Deploy the sequence process

Abbildung A.4.: Prozess View Services Manager und Designer

86

STATUS OF DEPLOYED PROCESS

Instance ID:
viewDesign_20101125_172019656

Check Status
Process Status:

If the deployed process is ACTIVE in apache
ode server, you can invoke the process with
the input data by click the nether button,

Invoke the active process

RESULT OF SERYICES TRANSFORMATION

Download the deployed
wiewDesign_20101125_172019656 BPEL
process of the all executed transform services
on source process by using archestration of
the services into a file folder of the
corrsponding artfacts,

Deployed process download

Erklarung

Hiermit versichere ich, diese Arbeit selbstindig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Jiayang Cai , am 20.12.2010)

	1 Einleitung
	1.1 Motivation
	1.2 Zielsetzung
	1.3 Aufbau der Arbeit

	2 Grundlagen und Technologien
	2.1 Web Services
	2.1.1 WSDL
	2.1.2 SOAP

	2.2 Business Process Execution Language
	2.2.1 Orchestration
	2.2.2 Workflow Engine
	2.2.3 Abstrakte Sicht auf BPEL-Prozess (Business Process View)

	2.3 Eingesetzte Technologien und Frameworks
	2.3.1 Java Servlet Technologie
	2.3.2 JavaServer Pages
	2.3.3 JavaServer Faces 2.0 Framework
	2.3.4 Hibernate Framework
	2.3.5 Spring Framework
	2.3.6 Apache Struts2 Framework
	2.3.7 Apache Axis2 Framework

	3 Konzept und Entwurf
	3.1 Konzept und Architektur
	3.2 Entwurf
	3.2.1 Anwendungsmodellierung
	3.2.2 Transformation Services Architektur
	3.2.3 Transformation Services Client (View Designer)

	3.3 Business Process View Template
	3.3.1 View Template Design
	3.3.2 View Template Bereitstellung
	3.3.3 View Template Anwenden

	4 Implementierung
	4.1 Datenbanktabellen
	4.2 Web Client
	4.2.1 View Services Manager
	4.2.2 View Transformator
	4.2.3 Rules Designer
	4.2.4 View Administrator

	4.3 Prozess Transformation Service
	4.3.1 Operationen
	4.3.2 WSDL

	4.4 Services Anwendung und Verwaltung
	4.4.1 Bereitstellung von Services
	4.4.2 Kombination von Services
	4.4.3 BPEL-Projekt Erzeugen und Deployment
	4.4.4 BPEL-Prozess Ausführen

	4.5 Business Process View Template

	5 Zusammenfassung und Ausblick
	5.1 Zusammenfassung
	5.2 Ausblick

	Literaturverzeichnis
	A Anhang
	A.1 Prozess View Template - Testbeispiele
	A.2 Der Screenshot der Prozess View Verwaltungsplattform

