
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3079

Entwicklung eines Frameworks
zur Verwaltung von abstrakten

Sichten auf BPEL Prozesse

Jiayang Cai

Studiengang: Informatik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: Dipl.-Inf. David Schumm

begonnen am: 27. Juli 2010

beendet am: 26. Januar 2011

CR-Klassifikation: D.2.2, H.4.1, H.5.2



Inhaltsverzeichnis

1. Einleitung 7
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2. Zielsetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3. Aufbau der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. Grundlagen und Technologien 10
2.1. Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1. WSDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2. SOAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2. Business Process Execution Language . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1. Orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2. Workflow Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3. Abstrakte Sicht auf BPEL-Prozess (Business Process View) . . . . . . . . 18

2.3. Eingesetzte Technologien und Frameworks . . . . . . . . . . . . . . . . . . . . . 20

2.3.1. Java Servlet Technologie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2. JavaServer Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3. JavaServer Faces 2.0 Framework . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4. Hibernate Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.5. Spring Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.6. Apache Struts2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.7. Apache Axis2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. Konzept und Entwurf 33
3.1. Konzept und Architektur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2. Entwurf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1. Anwendungsmodellierung . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2. Transformation Services Architektur . . . . . . . . . . . . . . . . . . . . . 44

3.2.3. Transformation Services Client (View Designer) . . . . . . . . . . . . . . 45

3.3. Business Process View Template . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1. View Template Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2. View Template Bereitstellung . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3. View Template Anwenden . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4. Implementierung 49
4.1. Datenbanktabellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2. Web Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1. View Services Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2



Inhaltsverzeichnis

4.2.2. View Transformator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.3. Rules Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.4. View Administrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3. Prozess Transformation Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1. Operationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2. WSDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4. Services Anwendung und Verwaltung . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1. Bereitstellung von Services . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2. Kombination von Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.3. BPEL-Projekt Erzeugen und Deployment . . . . . . . . . . . . . . . . . . 62

4.4.4. BPEL-Prozess Ausführen . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5. Business Process View Template . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5. Zusammenfassung und Ausblick 72
5.1. Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2. Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Literaturverzeichnis 74

A. Anhang 76
A.1. Prozess View Template - Testbeispiele . . . . . . . . . . . . . . . . . . . . . . . . 76

A.2. Der Screenshot der Prozess View Verwaltungsplattform . . . . . . . . . . . . . 86

3



Abbildungsverzeichnis

2.1. WSDL Definition und Komponenten aus [WCL+
05] . . . . . . . . . . . . . . . . 11

2.2. Apache ODE Architektur und Komponenten . . . . . . . . . . . . . . . . . . . . 16

2.3. Rules Dokument Definition und Komponenten . . . . . . . . . . . . . . . . . . 19

2.4. Interaktion zwischen JSP Seite und JSP Container . . . . . . . . . . . . . . . . . 22

2.5. Detaillierte Hibernate-Architektur aus [GKE10] . . . . . . . . . . . . . . . . . . 25

2.6. Ein Überblick von Spring Framework aus [RJ+10] . . . . . . . . . . . . . . . . . 28

3.1. Business Prozess View Verwaltung Architektur . . . . . . . . . . . . . . . . . . 34

3.2. Anwendungsfalldiagramm von der webbasierten Verwaltungsplattform . . . . 35

3.3. Serviceorientierte Business Prozess Transformation Services Architektur . . . . 44

3.4. Sequenzdiagramm von der Transformation Services Anwendung . . . . . . . . 45

3.5. Beispieldarstellung der View Template Anwendung . . . . . . . . . . . . . . . . 48

4.1. Schematische Darstellung vom View Services Manager . . . . . . . . . . . . . . 51

4.2. Das Webinterface für die Datenabgabe . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3. Der erzeugter BPEL-Prozess für die Sequenz in der Auflistung 4.5 . . . . . . . 63

4.4. Die grafische Darstellung dieser Prozess View Template und deren Prinzip . . 71

A.1. Prozess View Vorlage für die Elimination von dem PostPressManagement-
Subprozess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.2. Der Geschäftsprozess von dem Druckerei . . . . . . . . . . . . . . . . . . . . . . 84

A.3. Der Geschäftsprozess von dem Druckerei nach die Elimination von dem
PostPressManagement-Subprozess . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.4. Prozess View Services Manager und Designer . . . . . . . . . . . . . . . . . . . 86

4



Verzeichnis der Listings

4.1. Die SQL-Ausdrücke für die Erzeugung der Datenbanktabellen . . . . . . . . . 50

4.2. Das vorerst initialisierte Rules Dokument . . . . . . . . . . . . . . . . . . . . . . 53

4.3. Das Rules Dokument nach der Parametrisierung und dem Hinzufügen einer
Anweisung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4. Die mehrfach geschachtelten Logikausdrücke in dem Rules Dokument . . . . 55

4.5. Das erzeugte XML Dokument nach der Operationsauswahl und Datenabgabe 61

4.6. Das erzeugte deploy.xml Dokument für die Sequenz in der Auflistung 4.5 . . . 66

4.7. Die erzeugte Abfragenachricht zur Apache ODE Prozess Management API . . 67

4.8. Die erzeugte SOAP-Nachricht aus den Zwischendokument in der Auflistung 4.5 69

4.9. Die SOAP-Antwortnachricht zu der Auflistung 4.8 . . . . . . . . . . . . . . . . 70

A.1. Das deploy.xml Dokument für die Prozess View Template in der Abbildung A.1 77

5



Danksagung

An dieser Stelle möchte ich mich bei meinem Betreuer Dipl.-Inf. David Schumm bedanken,
der mich während meiner Studienarbeit und Diplomarbeit betreut hat und mich bei der
Erstellung, Formulierung, Korrektur dieser Arbeiten immer Rede und Antwort stand. Ich
möchte mich bei den Kommilitonen und den Lernpartnern bedanken, die mir in meinen
Informatikstudium an der Uni Stuttgart geholfen haben. Weiterhin möchte ich mich bei
Professor Dr. Frank Leymann und Jun.-Prof. Dr.-Ing. Dimka Karastoyanova für die bedeu-
tungsvollen Veranstaltungen bedanken, die mich in die Themengebiete Softwarearchitektur
und Workflow-Management eingeführt haben.

Besonders bedanken möchte ich mich aber bei meinen Eltern, ohne die dieses Studium in
Deutschland nie möglich gewesen wäre. Bei meiner Bruder möchte ich mich für die ständige
Ermunterung und Unterstützung bedanken. Zudem möchte ich bei meiner Freundin danken,
die mich immer unterstützt und mir den Rücken gestärkt hat.

6



1. Einleitung

Seit Anfang der 90er Jahre hat sich Geschäftsprozessmanagement als fester Bestandteil
der Anwendungssystem- und Organisationsgestaltung in der Praxis etabliert [GSVR94].
Es wird in der Wissenschaft und Industrie ständig erforscht, einen agilen und effizienten
Geschäftsprozess in den Unternehmen zu gewährleisten und zu optimieren. Ein besser pas-
sender Geschäftsprozess bringt den Unternehmen langfristig mehr Erfolg und strategische
Vorteile bzw. die größte Konkurrenzkompetenz in der Branche und beste Geschäftsorien-
tierung für ein nachhaltiges Unternehmenswachstum. Das Geschäftsprozessmanagement
umfasst alle Tätigkeiten, die sich auf den Geschäftsprozess beziehen, sowie das Identifizieren,
Modellieren, Dokumentieren, Durchführen, Überwachen, Analysieren und die kontinuierli-
che Verbesserung von Geschäftsprozessen. Der Geschäftsprozess ist heutzutage wegen den
vielfältigen Kundenanforderungen und ständige Geschäftsverwandlungen bzw. die Neupro-
duktentwicklung sehr kompliziert. In dieser Arbeit diskutieren wir nicht darüber sowie wie
man das Geschäftsprozessmanagement in den Unternehmen besser durchführen und welche
Softwarewerkzeug und Methode sollen die Prozessexperte anwenden. Wir betrachten die
Geschäftsprozess-Transformation, die ein nützliches Instrument für die Komplexitätsredu-
zierung beim Prozess Engineering ist.

1.1. Motivation

Wie stellt man es an einen Geschäftsprozess in einem Großkonzern z.B in der Öl- und Gasin-
dustrie zu analysieren und zu verbessern? In solch einer Branche ist der Geschäftsprozess ein
Kernfaktor für den Unternehmenserfolg. Der Geschäftsprozess greift auf die verschiedenen
Standorten auf verschiedenen Kontinenten und auf Arbeitsgruppen bzw. Projektmitarbeitern
in unterschiedenen Funktionssegmenten zu. Die Komplexität des Geschäftsprozess ist streng
abhängig von dem Grad der Detaillierung und der Verflechtung von den Subprozessen.
Da eine Komplexitätsreduzierung besonders gefordert ist, werden in der Industrie viele
geschäftliche Ansätze dafür erstellt und veröffentlicht, die nach den entsprechenden Bran-
chenmerkmalen und Geschäftsverhalten z.B in Bank und Automobile spezifiziert sind. In
der Arbeit [SLS10] wurde eine grundlegende Methode »Process View« für die Komplexi-
tätsreduzierung und Prozesstransformation herausgegeben, mit der die ungewollten Details
eines Prozess behoben und der Prozess auf das gewünschten Anwendungsziel abstrahieren
und transformieren können. Prozess View Transformation ist eine XML-basierte Metho-
de für die spezifizierte Transformation einer durch eine Prozessbeschreibungssprache z.B
WS-BPEL [AAA+

07] erstellten Geschäftsprozess. Er generiert eine definierte Sicht auf den

7



1.2. Zielsetzung

Gesamtgeschäftsprozess für die Benutzer. Der in den Arbeiten [Cai10][Str09] entwickelte
Prototyp und Implementierungskonzept für Prozess View Transformation zeigt eine stärke
Abstraktionsfähigkeit an. Es wird in dieser Diplomarbeit dieses Modell vervollständigt und
gegebenenfalls weiterentwickelt.

1.2. Zielsetzung

Um eine Prozess View Transformation zu erstellen benötigt man bisher die Kenntnisse der
Rules-Sprache und Verarbeitungsprinzipien, eine Konsole-basierte Jar-Anwendung, wie in
die Arbeite [Cai10][Str09] bietet wenige komfortable Benutzerfreundlichkeit und bewirkt
die hohe Komplexität der Prozessabstraktion. Eine Webanwendung für die flexible Pro-
zesstransformation wird in dieser Diplomarbeit entwickelt. Es wird dafür gefordert, eine
Webservices-basierte Verwaltungsplattform für die vereinfachte Konstruktion der Prozessab-
straktion zu realisieren, ein interaktiver Rules-Designer wird für ein anschauliches Editieren
von Rules Dokument entwickelt, ohne eine manuelle Erstellung zu benötigen. Dieses entwor-
fene Framework richtet sich an eine serviceorientierter Architektur und stützt eine flexible
Erstellung von Prozess View Transformation Vorlagen, die selbst als Webservices für die
definierte Prozesstransformation und als Anwendungsziel zur Verfügung gestellt werden
können.

1.3. Aufbau der Arbeit

Die vorliegende Arbeit gliedert sich wie folgt in fünf Kapiteln:

Kapitel 1 - Einleitung In diesem Kapitel wird in das Themengebiet Business Prozess View
und die Aufgabestellung der Diplomarbeit eingeführt, die Motivation und Zielsetzung
werden dabei erklärt.

Kapitel 2 - Grundlagen und Technologien Die grundlegende Theorien in Webservices,
Workflows und die technische Ansätze bzw. angewandten Frameworks in der Weban-
wendungsentwicklung werden in diesem Kapitel vorgestellt, die für die technische
Implementierung der praktische Aufgabe der Arbeit notwendig sind.

Kapitel 3 - Konzept und Entwurf In diesem Kapitel werden die Konzeption und der erstellte
Entwurf für die Entwicklung der Plattform bzw. des Frameworks zur Verwaltung von
abstrakten Sichten auf BPEL-Prozess erläutert.

Kapitel 4 - Implementierung Die praktische Implementierung und einige Anwendungsfälle
der Verwaltungsplattform für abstrakte Sichten werden in diesem Kapitel in Details
erläutert.

8



1.3. Aufbau der Arbeit

Kapitel 5 - Zusammenfassung und Ausblick In dem letzten Kapitel der Arbeit wird die
Schlussfolgerung dieser Diplomarbeit kurz zusammengefasst und einen Ausblick bzw.
die mögliche Verwandlung vom Thema »Business Process View« in den künftigen
Anwendungsaspekten gegeben.

9



2. Grundlagen und Technologien

In diesem Kapitel werden die wichtigen und grundlegenden Theorien in Web Services und
die eingesetzte Technologien aus dem JEE-Umfeld vermittelt, auf denen diese Diplomar-
beit basiert. Die fundamentale Definition und Prinzipien in den Themengebiet von Web
Services und entsprechende Standardisierungen werden zuerst erläutert. Die theoretischen
Grundlagen der Business Process Execution Language aus [OAS07] und des Business Pro-
cess View aus [Str09] [Cai10] werden kurz erklärt. Die Technologien und Entwurfsmuster
im JEE-Umfeld werden vorgestellt, die in der praktischen Arbeit bei der Realisierung der
Webanwendung und der Integration des Frameworks angewendet wurde.

2.1. Web Services

Web Services werden heutzutage als die beste und effizienteste Implementierungsmetho-
de von Service-orientierten Architekturen betrachtet und weiterhin vom World Wide Web
Consortium (W3C) als eine informationstechnische Standardlösung gepflegt. Eine vollstän-
dige Definition von Web Services wird in [BHM+

04] von W3C für die künftige bessere
Zusammenarbeit und Weiterentwicklung wie folgt vereinbart:

A Web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.

Web Services sind nicht eine allein stehende Technologie, es ist ein Bündnis von mehreren
Spezifikationen und Standards für die verschiedenen klassifizierten Funktionsschichten. Die
Web Services Gemeinde 1 entwickelt zusammen mit den Experten und führenden industriel-
len Partnern in der IT-Branche die Technologien, um die Kompetenz und Anwendbarkeit von
Web Services zu verbreiten und zu verstärken. Webservice strebt die beste Zusammenarbeits-
fähigkeit und höchste Plattform-Unabhängigkeit in der realen Anwendungsentwicklung und
Systemintegration an, eine schematische Illustration von der entwickelten Spezifikationen
des Webservice-Stack können in [WCL+

05, Kapitel 3.1] gefunden werden, die die verschie-
denen konkreten Funktionen in der serviceorientierten Geschäftsanwendungsentwicklung
realisieren und erweitern können. Solche ständig betreuten Spezifikationen definieren die

1http://www.w3.org/2002/ws/

10



2.1. Web Services

Nachrichtenformate, Transportprotokolle und Beschreibung der vereinbarten Servicequalität
usw., um eine beste Interoperationalität in der Web Services Welt zu realisieren.

2.1.1. WSDL

Die Web Services Description Language (WSDL) 1.1 2 ist eine standardisierte Spezifikation
bzw. eine XML-basierte Metasprache für eine operative Beschreibung von Webservice. WSDL
spielt eine entscheide Rolle bei der praktischen Implementierung von Web Services Konzep-
ten und des SOA-Paradigma. In der Softwareentwicklung und in der unternehmensweiten
Anwendungsintegration sind die gemeinsame Vereinbarung und Einhaltung auf den durch
WSDL definierte Servicestand und spezifizierte Qualitätsbeschreibung bei der Analyse- und
Designphase sehr sinnvoll, weil es eine flexible, dynamische, lose-gekoppelte Anbindung für
die Anwendungen in eine interaktive und sich ständig veränderte Umgebung schafft.

WSDL Definition

Abstract Model

Concrete Model

Types

Messages

Port Type

Part

Operation

Binding

Message Format and Protocol

Services

Port

Abbildung 2.1.: WSDL Definition und Komponenten aus [WCL+
05]

Ein WSDL Dokument beschreibt einen veröffentlichten Service für die Serviceanwender,
mit den erwünschten Nachrichtenformaten, die verfügbaren Operationen zu aufrufen, die
Lokalisierung des Services und die Transportprotokolle für die Interaktion werden festgesetzt.

2http://www.w3.org/TR/wsdl

11



2.1. Web Services

Die Serviceanwender können wegen dieser operativen Beschreibung den Service effizient
und problemlos benutzen. Eine von Anwendern erstelltes WSDL Dokument ist für die
Serviceanbieter einen Serviceauftrag. Die Anwender beschreiben detaillierte die eignen
Anforderung an die Funktion und Kommunikation des Service bzw. Dienstleistung in einem
WSDL Dokument. Das WSDL Dokument in Web Services ist deswegen eine neutrale und
funktionale Beschreibungsvermittler in der heterogen Infrastruktur der reale Welt.

Ein anschauliches Blockdiagramm in der Abbildung 2.1 stellt die WSDL Dokumentdefinition
und die spezifische Konzeption dar. Ein WSDL Dokument beinhaltet typischerweise zwei
definierte Beschreibungen wie in der obige Abbildung, einen abstrakte Beschreibungsteil und
einen exakten Beschreibungsteil. In dem abstrakten Beschreibungsteil wird eine allgemeine
Definition von Web Services gegeben, es stellt die Funktionalität und Anwendbarkeit von
Web Services durch die assoziierte Operationen und die entsprechend erwünschte oder
generierte Nachrichten dar, ohne eine detaillierte Angabe für die Aufrufmethode bzw. das
verfügbare Transportprotokoll und den genau Endpunkt zu beschreiben. In den dreidimen-
sionalen Beschreibungskoordinaten (Was-Wie-Wo) bedeckt die abstrakte Beschreibungsteil
die Was-Dimension. Im exakten Beschreibungsteil des WSDL Dokument werden die genauen
Hinweise für das Aufrufen und die Implementierung von Web Services gegeben. Die Wie-
Dimension wird durch die <binding> Element in WSDL beschrieben, die Wo-Dimension in
den Koordinaten wird durch das <service> Element im exakten Beschreibungsteil dargestellt.
Eine aufgelistete Kurzfassung der Kernelemente in der WSDL Spezifikation Version 1.1 wird
im folgenden Abschnitten erstellt.

Types Im XML Element <types> werden die Datentypen und Datenstruktur der assoziierten
Parts bzw. Bausteinen in den ausgetauschte Nachrichtenformaten beschrieben. Die
Anwendungsbedeutung und Syntax von <types> ist identisch mit dem <schema>
Element im XML Schema (XSD) 3.

Message Das <message> Element beinhaltet eine oder mehrere logische Parts bzw. Nach-
richtenbausteine. Jeder Part des Nachrichtenelement wird mit dem entsprechenden
Typenelement in einem Typendefinitionssystem assoziiert. Dadurch beschreibt es den
logisch abstrakten Kontext der ausgetauschten Nachrichten. Wenn eine Nachricht
durch RPC (Remote Procedure Call) Transportprotokoll ausgetauscht wird, sind die
Parts im Nachrichtenelement sind die bedeutungsvollen Parametern für die Eingabe
und Ausgabe des Operationsaufruf.

Operation Im XML Element <operation> in WSDL wird eine abstrakte Kurzbeschreibung der
Operationen oder der verfügbaren Implementierungsaktionen aus den Web Services ge-
geben. Jede Operation im WSDL Dokument hat einen eigenen eindeutigen Namen und
enthält die spezifizierten Eingangs- und Ausgangsnachrichten bzw. Fehlermeldungen
bei einem fehlgeschlagene Operationsaufruf. Es werden in der Implementierung vier
Arten von Operation in den Endpunkt realisiert: Der Endpunkt bekommt eine Nach-
richt und gibt keine Rückmeldung, der Endpunkt generiert eine entsprechende Antwort
für die ankommende Nachricht, der Endpunkt sendet eine ursprünglich Anfrage und
wartet auf die Antwort oder signalisiert nur die Verbreitung einen Bescheid.

3http://www.w3.org/TR/xmlschema-0/

12



2.1. Web Services

Port Type Ein <portType> Element ist eine Menge von einer oder mehreren <operation>
Elementen, die in einem Webservice implementiert sind und in einer bestimmten
klassifizierten Sorte angeliefert werden. In einem WSDL Dokument können mehrere
<portType>Elementen spezifiziert werden.

Binding Im <binding> Element werden eine aufgeklärte Beschreibung von den Nachrich-
tenformaten eines Operationsaufruf eines bestimmten <portType> Elements und das
entsprechende detaillierte Transportprotokoll definiert. In einem <binding> Element
muss genau ein einziges Transportprotokoll spezifiziert werden.

Port Ein <port> Element beschreibt einen Endpunkt für ein bestimmtes <binding> Element
in WSDL. Es wird darin eine Netzwerkadresse z.B <soap:address> für SOAP-Binding
oder Objektzugang für den Zugriff und Datenaustausch angegeben. Innen ist ein
<port> Element welches nur eine Zugriffsadresse spezifiziert.

Service In einem <service> Element in WSDL werden alle <port> Elementen zusammen
gruppiert. Es erfasst alle verfügbaren Zugriffsadressen und die spezifizierten aufrufba-
ren Endpunkte in Web Services.

Die in dieser Arbeit angewendete WSDL Spezifikation ist die Version 1.1, eine weiterentwi-
ckelte WSDL von Version 2.0 wird in dieser Arbeit nicht diskutiert. Die neuen Verwandlungen
und Komponenten-Modelle der neusten Version können in den entsprechende W3C Weblinks
4 gefunden werden.

2.1.2. SOAP

SOAP steht jetzt ab den Version 1.2 5 nicht mehr für eine ursprünglich Abkürzung von
»Simple Object Access Protocol«, sondern ist der Name des fundamentalen Nachrichten-
Framework für Web Services. Die spezifiziert das XML-basierten Format und das Verar-
beitungsmodell der abgeschickte Nachrichten zum Kommunizieren in Web Services. Eine
SOAP-Nachricht ist ein wie eine Versandtasche konstruiertes Strukturformat, die neben
dem Transportieren von relevante Daten durch mehrere besondere Funktionen wie z.B die
Zielnavigation und die Servicequalitätsbeschreibung erweiterbar ist. Durch den Austauschen
von SOAP-Nachrichten zwischen Service-Anbieter, Service-Anwender und den Vermittlern
werden Web Services in einem lose gekoppelte Verfahren in verschiedene Implementierungs-
plattformen und Netzwerksprotokollen für den Transport aufgerufen und ausgeführt. SOAP
ist dabei eine der grundlegenden Spezifikationen im Web Services Stack.

4http://www.w3.org/TR/wsdl20/
5http://www.w3.org/TR/soap12-part0/

13



2.2. Business Process Execution Language

2.2. Business Process Execution Language

Web Services-Business Process Execution Language kurz als WS-BPEL 6 ist eine von OASIS
(Organization for the Advancement of Structured Information Standards) 7 standardisierte
Beschreibungssprache für die Modellierung, Simulation und das Analysieren von den auf
Web Services basierten Geschäftsprozessen. WS-BEPL spezifiziert die erweiterbare XML-
basierte Aufbaustruktur und geschäftliche Interaktionsprotokolle für die Erstellung von
ausführbaren und von abstrakten Geschäftsprozessen. Die Web Services und deren Funktio-
nalitäten werden importiert oder exportiert durch die Interfaces in den BPEL-Prozessen und
den entsprechenden Transportprotokollen. WS-BPEL Spezifikation steht aber nicht allein, es
ist verbunden mit weiteren XML-basierte Spezifikationen wie WSDL 1.1, XML Schema 1.0,
XPath 1.0, XSLT 1.0 and Infoset. Eine genaue technische Spezifikation von WS-BEPL Version
2.0 wurde in Dokumentation [AAA+

07] detailliert vorgestellt. Für eine ausführliche Erklä-
rung von WS-BPEL und den neu entwickelten Merkmalen können die weiteren Ressourcen
und Dokumentationen in den OASIS BPEL technische Committee Webpräsenz 8 gefunden
werden.

2.2.1. Orchestration

Orchestration steht für einen ausführbaren Geschäftsprozess durch die Komposition von
Web Services. In den Geschäftsprozessen werden die interne und externe Web Services
aufgerufen. Eine Orchestration beschreibt die Interaktionen zwischen den Web Services in
einem Geschäftsprozess auf der Nachrichtenebene, den Durchläufen und die zugeordnete
Ausführung der Interaktionen werden ebenfalls darin definiert. Die Interaktionen zwischen
mehreren Applikationen und Plattformen bilden einen langlaufenden und transaktionalen
Geschäftsprozess ab, solche eine Orchestration wird aber durch einzelne Teilnehmer ver-
glichen mit der »Choreography« kontrolliert und geschlossen. Eine Choreography besteht
zwischen den Teilnehmern in einem Geschäftsprozess. Jeder Teilnehmer kommuniziert mit
dem Prozess entsprechend seiner Rolle, die er im ganzen Geschäftsprozess dabei spielt
und nach der er behandelt. Der ganze Geschäftsprozess resultiert durch das Zusammen-
spiel und die Interaktionen von alle Teilnehmern. Eine standardisierte Spezifikation von
Choreogrphy 9 können in W3C unter dem Name »Web Services Choreography Description
Language« gefunden werden. Eine wesentlicher Unterschied einer Orchestration ist, dass sie
einen Prozessflow zwischen Web Services und der interne geschäftliche Logiken darstellt
und zu einem einzigen Hauptteilnehmer gehört. In dieser Arbeit wird nur die Aspekte in
Orchestration und deren Implementierungssprache WS-BEPL betrachtet und verwendet. Für
eine ausführliche Erklärung zwischen den Orchestration und Choreography können die
Dokumenten [AAA+

07], [KBRL05] genutzt wenden.

6http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
7http://www.oasis-open.org/home/index.php
8http://www.oasis-open.org/committees/wsbpel/
9http://www.w3.org/TR/ws-cdl-10/

14



2.2. Business Process Execution Language

2.2.2. Workflow Engine

Eine Workflow Engine ist die Laufzeit-Komponente in einem Workflow-Management System.
Eine Worklow Engine steuert, ausführt und überwachte die Instanzen des eingesetzten
Geschäftsprozessen zusammen mit der verbundene Datenbank aus. Eine Workflow Engine
wird in der Praxis für den Aufbau einer Plattform genutzt, um die in WS-BPEL modellierte
Servicesequenz für die Prozesstransformation im Server ausführen und selber als Web
Services aufrufbar sein zu können. Es werden in den folgenden Abschnitten die in dieser
Arbeit angewendete Workflow Engine Apache ODE und seine Architektur erklärt.

Apache ODE

Apache ODE (Orchestration Director Engine) 10 ist eine auf Java implementierte frei lizen-
zierte Workflow-Engine für die Ausführung der durch standardisierte WS-BPEL erstellten
Geschäftsprozessen. ODE verwaltet die definierte Geschäftslogik im Prozess und die Kom-
munikation zwischen den eingesetzten BPEL-Prozessen und Web Services. Er schickt die
SOAP-Nachrichten ab und empfängt die entsprechende SOAP-Nachricht-Antwort. Die
in den BPEL-Prozess spezifizierte Operationsaufrufen, Datenmanipulation und Fehlerbe-
handlung werden in Apache ODE implementiert und überwacht. Die aus Web Services
kompositionierte transaktionellen kurzlebigen BPEL-Prozess oder langlebige Prozesse für
eine lang laufend Geschäftsapplikation sind ebenfalls in ODE implementierbar.

Neben der Standardfunktion für die Ausführung von BPEL-Prozessen werden die weiteren
Merkmale angeliefert, die besonders für die Entwicklung und Management von eingesetzten
BPEL-Prozessen geeignet sind, z.B die vollständige Management-API wird als Webservice
angeboten. Diese API fragt den ODE Server über den Zustand des BPEL-Prozesses und der
Instanzen ab. Es wird in der Arbeit diese Anwendung benutzt, um den aktuell Zustand der
aus WS-BPEL erstellten Servicesequenz ebenfalls als BPEL-Prozess zu befragen. Es ist in
der Tat vor den Prozessaufrufen wichtig zu wissen, ob die Prozesse im ODE Server bereits
erfolgreich eingesetzt, fehlerfrei kompiliert und zur Verfügung gestellt wurde.

In Abbildung 2.2 wird eine schematische Darstellung der Apache ODE Architektur und die
entsprechenden kommunizierenden Artefakte bzw. Akteuren gegeben. Diese ist prinzipiell
entlehnt aus dem Weblink 11 angezeigt. Die verschiedenen teilnehmenden lose-gekoppelte
Systemmodule in ODE und die Interaktion zwischen die Kernkomponenten werden im
Folgenden erklärt.

10http://ode.apache.org/
11http://ode.apache.org/architectural-overview.html

15



2.2. Business Process Execution Language

ODE BPEL Engine Runtime

          

Datenbank 

ODE Data Access Objects

                     JACOB

· Persistency of Execution 

State

· Concurrency

· Navigation

BPEL Process, 

WSDL, 

deploy.xml

ODE BPEL 

Compiler

Web 

Services

Apache 

ODE 

Integration

Abbildung 2.2.: Apache ODE Architektur und Komponenten

Die Kernkomponenten der Apache ODE Architektur sind die drei lose gekoppelte Module
in der obigen Abbildung dargestellte Objekten, sowie ODE BPEL Compiler, ODE BPEL
Engine Runtime und ODE Integration Schnittstelle. Die ODE Runtime-Engine besteht aus
den zwei Unterkomponenten ODE DAO (Data Access Objects) und JACOB (Java Concurrent
Objects), mit denen die Datenmanipulation und Prozessausführung in ODE realisiert werden
können. Die Funktionen in ODE wurden dadurch klar moduliert und mit einander minimal
verknüpft. Das realisiert wiederum eine flexible Montage für eine vielfältige Funktionalität
des Workflowmanagement-System aus verschiedene Modulen, in denen die einzige und
eigenständige Funktion implementiert wurde.

Der ODE BPEL Compiler konvertiert alle eingesetzte Artefakte sowie den BPEL-Prozess, die
entsprechende WSDL-Dateien, XML Schemen und deploy.xml. Ein speziales Datenformat
für das BPEL Engine Runtime Modul wird generiert. Diese Datei wird durch den Name
des BPEL-Prozess Dokument mit der Namenserweiterung ».cbp« identisch benannt. Beim
Kompilieren werden die Analyse und Validierung des BPEL-Prozess gegen die standar-
disierte WS-BPEL Spezifikation durchgeführt. Fehlermeldungen signalisieren falsche oder
unvollständige WS-BPEL Syntax und Semantik. In der generierten Datei wird es ein speziales
Objektmodell beschrieben, welches eine strukturelle Gemeinsamkeit mit dem eingesetzte
BPEL-Prozess besitzt. Durch die Hauptkonstruktor-Klasse »BpelC« und weitere Generator-

16



2.2. Business Process Execution Language

Klassen und APIs für verschiedene Strukturen in den BPEL-Prozess und WSDL Dokument
wird für das BEPL Engine Modul ein lesbares und ausführbares Modell transformiert. Tech-
nische Details des BPEL Compiler und deren Implementierung wird in dieser Arbeit wegen
der Komplexität nicht weiter geführt. Motivierte Leser wenden sich an die verwendeten
Quellcodes von BPEL Compiler 12.

Das ODE BPEL Engine Runtime Modul ist das Kernmodul der ODE Laufzeitumgebung,
die für die Ausführung von den kompilierten BPEL-Prozessen zuständig ist. Die Ausfüh-
rung von verschiedene BPEL Strukturen bzw. Aktivitäten werden in der BPEL Eingne
Prozesslaufzeitumgebung implementiert. In diesem Engine Modul liegen zwei relevante
Unterkomponenten JACOB (Java Concurrent Objects) und ODE DAO. Weil die Prozessaus-
führung und Kommunikation sich in einer nicht zuverlässig Netzwerkumgebung finden, soll
die Laufzeitumgebung sollen dabei eine Persistenz-Aufforderung für die Instanzen besorgen,
um die Prozessausführung in einem sicheren und verlustfreien Verfahren durchführen zu
können. Das ODE DAO-Modul beschäftigt sich mit dieser Aufgabe. Die Unterkomponente
ODE DAO (Data Access Objects) im BPEL Engine Runtime Modul soll die Interaktion zwi-
schen der BPEL Engine und der extern verbundenen relationalen Datenbank vermitteln und
die entsprechende Objektpersistenz bzw. die Datenbehandlungen in der Prozessausführung
realisieren. Typischerweise wird dabei eine relationalen Datenbank wie z.B in dieser Arbeit
MySQL Datenbankserver 13 genutzt. ODE DAO wird meistens realisiert durch OpenJPA 14,
eine eigene frei lizenzierte Implementierung für Java Persistenz API in Apache Software
Fundament. Die ODE ODA unterstützt dabei die alltägliche Emissionen von BPEL Engine.
Die Zustandsinformationen und ausgetauschten Nachrichten in der Prozessausführung
werden in der relationalen Datenbank gespeichert. ODE DAO nutzt die Durchführungsna-
vigation und Datenzugriffen auf alle Informationen, die durch alle kompilierte eingesetzte
BPEL-Prozess und die Kommunikation mit den Außenwelt erzeugt werden. Die BPEL Engine
verfolgt und überwacht die Aktivierung von jeder erzeugter Instanz des eingesetzten Prozess,
navigiert die kommenden und hinausgehenden Nachrichten für die Prozessinstanzen durch
das Korrelation-Set, weist die Input und Output aus den Variablen und Partnerlinks für
die Instanz und entsprechende Aktivität hin und synchronisiert insbesondere der Status
der ausgeführten Instanz mit dem aktuellem Ausführungszustand in der Jacob virtuellen
Laufzeitumgebung.

Die Durchführung von BPEL Basisaktivitäten und strukturellen Aktivitäten für jede In-
stanz der Prozessausführung werden in der Unterkomponente Jacob (Java Concurrent
Objects) Framework implementiert. Jacob bietet einen Thread-unabhängigen Gleichzeitigkeit-
Mechanismus für die parallele Prozessausführung und eine effizientes Verfahren für die
strukturierte Unterbrechung der Prozessausführung und die Realisierung der Persistenz
des aktuell ausgeführten Zustands in der Jacob virtuelle Laufzeitumgebung. Eine techni-
sche Erklärung der entsprechende Konzeptionen und Implementierungsmechanismus in
Jacob können auf den Weblinks 15 gefunden werden, es wird darin sorgfältig mit BPEL
Beispielstruktur anschaulich aufgeklärt.

12http://svn.apache.org/repos/asf/ode/trunk/bpel-compiler/src/main/java/org/apache/ode/bpel/compiler/
13http://www.mysql.de/downloads/mysql/
14http://openjpa.apache.org/
15http://ode.apache.org/jacob.html

17



2.2. Business Process Execution Language

Das ODE BPEL Engine Runtime Modul implementiert die komplexe geschäftliche Logik, die
mehrmals oder ständig das Kommunizieren mit der Außenwelt verlangen. Um eine flexibele
Interaktion zwischen dem Engine Runtime Modul und der Außenwelt zu realisieren, es wird
eine ODE Integration Schnittstelle montiert und gekoppelt. Im aktuellem Stand werden zwei
Integrationsschnittstellem sowie Kommunikationskanäle zur Prozesslaufzeit für Apache
Axis2

16 über das Web Services HTTP Transportprotokoll und serviceorientierte JBI (Java
Business Integration) 17 über eine Enterprise-Nachrichtenbus geliefert.

2.2.3. Abstrakte Sicht auf BPEL-Prozess (Business Process View)

Der Geschäftsprozess eines Unternehmens stellt die Kernkompetenz in der Strategieebene
in der entsprechenden Branche und die unternehmensweite geschäftliche Tätigkeit in der
Organisation dar. Eine gut strukturierter und flexibler Geschäftsprozess lasst die Unter-
nehmen schnell ihre gewinnorientierte Geschäften und Unternehmensstrategien an eine
Krise anpassen können. Die Modifizierung und Analyse des bestehende Geschäftsprozess in
einem Mittelständischen Unternehmen sind bereits schon eine komplexe Aufgabe, weil die
Geschäftsprozesse wegen den vielfältigen Anforderungen viele Aktivitäten beinhalten (wenn
es nicht in einer hoch-abstrakte Ebene optimiert wird) und aus mehreren Subprozessen bzw.
verschiedenen geschäftlichen Funktionsgebieten integriertet werden. Eine abstrakte Sicht auf
Geschäftsprozesse bzw. »Business Process View« sollen dabei helfen, dass die Komplexität
eines Prozesses in ein entsprechend betrachteten Dimension reduziert werden können, um
eine schnell Analyse und effektive Weiterverarbeitung der Prozessen zu begünstigen.

Eine Abstraktion auf Prozessen steht für eine erwünschte Transformation des bestehender
Prozessmodells, dieser Mechanismus wurde durch Angabe von den operative Anweisungen
bzw. Regeln implementiert. Eine erweiterbare XML-basierte Regelsprache für die Prozess-
transformation wurde in der Diplomarbeit [Str09] erstellt und in der Studienarbeit [Cai10]
vervollständigt. In Abbildung 2.3 sind die Definition und die schematisch Aufbauprinzipien
der Regelsprache für die Prozesstransformation dargestellt. Die Regelsprache besteht aus
der allgemeinen Parametrisierung und den Regeln bzw. Ausweisungen.

16http://ws.apache.org/axis2/
17http://jcp.org/aboutJava/communityprocess/final/jsr208/index.html

18



2.2. Business Process Execution Language

Rules Document Definition

Parameter

aggregateOpaque Cleaning

Rule

actions

targets

actionOmit actionOpaque
actionSetAttri-

buteTo
addPreserve addTag

and or not

tag attribute type

Abbildung 2.3.: Rules Dokument Definition und Komponenten

Ein vollständiges Reglement-Dokument für jede reguläre Prozesstransformation besteht
aus zwei Komponenten wie in der obige Abbildung 2.3. Eine vorliegende Anweisung für
die Weiterverarbeitung und Bereinigung des Prozesses nach der Transformation wird im
Parameterblock spezifiziert. Es werden in der momentanen Applikationsversion zwei Para-
metrisierungen geliefert. Nach der Angabe der entsprechenden Parametrisierungen werden
eine Menge von Regeln bzw. Anweisungen sequenziell in dem XML-basierte Reglement
platziert. Es können einzelne oder mehrere Regeln je nach den Anforderung spezifiziert
werden. Jede Anweisung besteht aus den erwünschten Aktionen und der Identifizierung des
Zielobjektes durch den Aktivitätsname, die Typisierung und weitere Informationen. Für eine
ausführliche Erklärung der Parametrisierung und dem Aufbau einer Anweisung können sich
an die Arbeit [Cai10, Seite 27, 28, 29] wenden. Es wurde dabei eine detaillierte Beschreibung
für die Anwendungsprinzipien und die Zusammensetzung einer Anweisung spezifiziert.

In der Arbeit wurde WS-BEPL Version 2.0 als die grundlegende Spezifikation für die Model-
lierung von Geschäftsprozess unter Einsatz des Werkzeugs Eclipse BPEL Designer 18 benutzt,
die erstellte Prozesstransformation und deren ausführbare Webapplikation. Die aufrufbare
Web Services für die Prozesstransformation basieren auch auf den durch WS-BEPL 2.0 im-
plementierten Prozessen. Es ist notwendig, vor der Anwendung der Prozesstransformation
diese grundlegenden Voraussetzung für die Basisprozesse zu beachten.

18http://www.eclipse.org/bpel/

19



2.3. Eingesetzte Technologien und Frameworks

2.3. Eingesetzte Technologien und Frameworks

2.3.1. Java Servlet Technologie

Ein Java Servlet 19 ist ein in Java geschriebenes Server-seitiges Programm, das die auf dem
HTTP-Protokoll basierten Anfragen aus dem Webbrowser verarbeitet und die entsprechen-
den Antworten zurück senden kann. Durch Servlets können dynamische Inhalte für den
Webbrowser generiert werden. Solche Servlets bzw. Java-Klasses werden als nützliche Web-
Komponenten zum dynamische Ereugen von Webseiten auf verschiedenen Webservern
wegen der Unabhängigkeit von der Laufzeitumgebung erfolgreich genutzt. Ein Servlet und
deren Lebensablauf sowie Initialisierung und Löschung von Servlet-Instanzen werden durch
einen Servlet-Container bzw. eine Servlet-Engine verwaltet. Die Reaktion zwischen Servlet
und Webclient wird durch den Servlet-Container in einen Anfrage-Antworten-Mechanismus
implementiert. Der Servlet-Contianer wird in eine, Webserver oder Applikationsserver stän-
dig integriert, um den HTTP-basierten Nachrichtenaustausch über das Internet zu realisieren
und weitere Anforderungen, wie Sicherheit und Effizienz zu gewährleisten. Eine ausführliche
Erklärung und bisher neueste Spezifikation der Java Servlet Technologie wurden in [Mor09]
bekannt gegeben.

2.3.2. JavaServer Pages

JavaServer Pages (JSP) 20 ist eine von Sun Microsystems entwickelte Webprogrammiersprache,
mit der gleichzeitig die statische und auch dynamische Webinhalte auf dem Webserver für
den Webclient generiert werden. Eine JSP Seite besteht aus zwei Module: Ein Teil erzeugt die
statischen Inhalte, sowie Inhalte aus anderen Webprogrammiersprachen für den Webbrowser.
Dieser Teil vererbt das gleiche Darstellungsprinzip und die gleiche Grammatik wie HTML
oder WML. Im anderen Teil sind alle JSP Sprachelementen, die die dynamischen Inhalte für
die Webclient erzeugen können.

Eine JSP Seite behandelt jeweils die Anfragen des Webclients gleich wie ein Servlet. Die
JSP Technologie basiert auf der Java Servlet Technologie, deswegen sind die Lebensabläufe
und Implementierungsprinzipien einer JSP Seite sehr identisch mit einem Servlet. Wenn
eine JSP Seite aufgerufen wird, dann überprüft der Webcontainer bzw. JSP Container das
Servlet von dieser JSP Seite. Wenn das Servlet veraltet ist, dann wird der JSP Container
transformiert, die JSP Seite nach einen Servlet-Klasse und compiliert den entsprechenden
Java-Code. Die Methoden im Servlet werden dann aufgerufen, um die Anfragen vom
Webclient automatisch zu verarbeiten und eine dynamisch erzeugte Information für die
Webbrowser zu generieren.

Außer den statischen Daten für die Vorlage in den JSP Seiten werden drei Typen von
Elementen abgegrenzt. Eine Erklärung von dem jeweiligen Typ wird im Folgenden kurz
zusammengefasst:

19http://www.oracle.com/technetwork/java/index-jsp-135475.html
20http://java.sun.com/products/jsp/

20



2.3. Eingesetzte Technologien und Frameworks

Anweisungen Die Anweisungen in den JSP Seiten beschreiben die globale Informationen
für die Transformationsphase. Es liefert den relevante Kontext und die Konfiguration
für den JSP-Compiler an. Dazu gehört z.B, das verbundene externe Dokument und
die Bekanntgabe von entsprechenden Tag-Bibliotheken. Die Anweisungen verändern
den Datenstrom der Antworten überhaupt nicht. In JSP stehen es drei Gruppe von
Anweisungen, wie die „<page>” Anweisung, die „<taglib>” Anweisung und die
„<include>” Anweisung zur Verfügung.

Aktionen Durch die Aktionen werden die zahlreichen Verarbeitungsmethoden für die Web-
programmierer spezifiziert. Die Aktionen einer JSP Seiten könnten den Datenstrom
der Antworten verändern, oder die Objekte des Webservers erzeugen und modifizie-
ren. In JavaServer Pages 2.2 werden viele standardisierte Aktionen in XML-Format
angeboten. Es wird auch eigene Aktionen für die spezifizierte Anwendung durch
Erweiterungsmechanismen erstellt. Mit Standardaktionen können eine Instanz von Java
Beans im Webserver durch „<jsp:useBean>” aufgerufen und durch „<jsp:setProperty>”,
„<jsp:getProperty>” die Informationen von Beans verarbeiten werden. Mit übertrag-
baren Tag-Bibliotheken können viele neue Aktionen und Funktionalitäten in den JSP
Seiten angewendet werden, wenn die komplizierten Funktionen und Parameter für die
Aktionen bereits als „<tag>” Datei realisiert und zur Verfügung gestellt wurden. Solche
erweiterten Tag-Bibliotheken können durch die „<taglib>” Anweisung und weitere
Attribute sowie Uniform Resource Identifier (URI) in den JSP Seiten verfügbar gemacht
werden.

Skript Elemente Skript Elemente in den JSP Seiten manipulieren die Objekten im Webser-
ver und führen die Berechnungen sowie Methoden von Java Objekte durch, um die
dynamischen Informationen für die Anfragen zu erzeugen. In JSP 2.0 werden es drei
Typen von Skript Elementen sowie „<declarations>”, „<scriptlets>” und „<expressi-
ons>” erstellt. Durch die Deklaration werden die Variable und Methoden der JSP Seite
vereinbart. Außerdem werden alle Deklarationen für die Anwendung von weiteren
Skript Elementen initialisiert, erst wenn die JSP Seite erst initialisiert wird. Das Ele-
ment „<scriptlets>” ist ein kleines Codefragment, welches bei der Verarbeitung von
Anfragen ausgeführt wird. Es kann den Datenstrom der Antworten und Java-Objekte
im Webserver in entsprechenden Situationen manipulieren. Eine „<expressions>” in
einer JSP Seite wird bei der Verarbeitung von Anfragen ausgewertet und das Ergebnis
wird als Zeichenkette für den Output in ein JspWriter Objekt konvertiert. Die Zeichen-
kette sowie das Resultat von „<expressions>” werden dann direkt in die JSP Seiten
zur Darstellung eingefügt. Nach JSP 2.1 wird durch die Sprache sowie „<Expression
Language>” eine Alternative für die Skript Element angeboten. Die Ausdrücke in den
JSP Seiten werden ausgewertet und ebenfalls in eine Zeichenkette als dynamisches
Resultat für den Webclient umgewandelt.

Eine ausführliche Erklärung und die bisher neueste Spezifikation von JSP Elementen und
weitere Erweiterungen sowie Ausdrucks-Sprachen und Tag-Bibliotheken wurden in [PD09]
bekannt gegeben.

21



2.3. Eingesetzte Technologien und Frameworks

JSP Container

Init event

Request

Response

Destroy event

JSP Page

<%!

public void jspInit()...

public void jspDestroy()...

%>

<html>

This is the response..

</html>

jspInit

jspService

jspDestroy

REQUEST PROCESSING PHASE TRANSLATION PHASE

Abbildung 2.4.: Interaktion zwischen JSP Seite und JSP Container

In der Transformationsphase einer JSP Seite werden alle Elemente in einer JSP Seite durch
zwei verschiedene Methoden verarbeitet. Die statischen Elemente werden direkt in Code
transformiert und in den Datenstrom für die Antworten geschrieben. Die JSP Elemente wer-
den je nach Typ unterschiedlich behandelt. Die Anweisungen werden für die Webcontainer
eingelesen, um die Transformation und Ausführung von JSP Seiten zu kontrollieren. Die
Skript Elemente werden in der Servlet-Klasse einer JSP Seite transportiert, um den Zugriff
und die Manipulation von Java-Objekt zu realisieren. Alle Ausdrücke werden als Parameter
für die JSP Ausdruck-Auswerter konvertiert. Die Aktionen einer JSP Seite werden in den
entsprechenden Aufruf von Methoden in JavaBeans compiliert.

Nach erfolgreicher Transformation und Compilieren der JSP Seite wird die Servlet-Klasse
der JSP Seite durch den JSP Container verwaltet und implementiert. Die Abbildungen 2.4
aus [PD09] stellt das Implementierungsprinzip des JSP Container dar. Die Lebensabläufe der
Servlet-Klasse der JSP Seite wird mit den gleichen Prinzip wie in der Java Servlet Technologie
behandelt. Wenn eine JSP Seite aufgerufen wird und keine entsprechende Servlet-Klasse
existiert, dann ladet der JSP-Container ladet die Servlet-Klasse von JSP Seite nach. Dabei
wird eine Instanz der Servlet-Klasse durch den Aufruf der jspInit Methode initialisiert.
Der JSP-Container kann mehrfach die jspService Methode aufrufen, um die Java Objekte
im Webserver zu manipulieren und entsprechende Datenströme zu generieren. Der JSP-
Container ruft die jspDestroy Methode auf, wenn die Servlet-Klasse nicht mehr brauchbar
ist.

22



2.3. Eingesetzte Technologien und Frameworks

2.3.3. JavaServer Faces 2.0 Framework

JavaServer Faces (JSF) 21 ist ein auf MVC-Designmuster basiertes Benutzeroberfläche-
Framework für die Entwicklung von Java-basierten Webanwendungen. Das JSF Frame-
work konzentriert sich auf den vereinfachten Aufbau von reichhaltigen und handlichen
User-Interface für Webapplikation durch die angebotenen UI-Komponenten. Der Entwickler
montiert die wiederverwendbare UI-Komponenten in die Webseite und bindet die UI-
Komponenten mit der entsprechende Datenressource auf, die aufgerufene oder ausgelösten
Events und Funktionen werden auf der Serverseite programmiert.

Eine JSF UI-Komponente ist ein einheitlicher Strukturblock in der Webseite zur Generierung
eines JSF interaktives Interface für die Webbenutzern. Dieses interaktive Interface kann eine
einfache Eingabe sowie ein paar Knöpfe oder die Textfeldern sein, es kann allerdings auch
ein kompliziertes Interface durch zusammengesetzte Strukturen, wie die Baumstruktur oder
Tabellen dargestellt sein. Um das interaktive Interface und die unterliegende Datenmodelle
mit den assoziierten Java-Objekte zu verbinden und aufzurufen, werden in JSF können es
durch die Ausdrücke und Angaben durch entsprechende JavaBeans realisiert. Neben dem in-
teraktiven Interface werden auch zusätzliche Funktionspakete, wie Datentyp-Konvertierung
und Eingabe-Validierung entwickelt und geliefert.

Das auf JSF Framewrok basierte interaktive Interface einer Webseite wird als ein »View« für ei-
ne besondere Abfrage oder Antwort durch den Zusammenbau der UI-Komponenten erstellt.
Eine »View« in der Präsentations-Schicht ist ein hierarchischer Aufbau von Java-Klassen in
einer Baumstruktur, die die teilnehmenden UI-Komponenten zur Präsentation implementie-
ren und navigieren. Alle Komponenten in der Baumstruktur werden miteinander assoziiert,
jede «View« der UI-Komponenten einer Facette wird dann durch die Wurzelkomponente
instanziiert.

Neben der abstrakte Grundklasse für UI-Komponenten sowie »UIComponent« werden auch
in JSF solche konkreten UI-Komponenten entwickelt, die den alltägliche Anforderungen
des Webclients erfüllen können. Eine detaillierte grafische Auflistung der standardisierten
Komponenten können in der Dokumentation [BK09, Kapitel 4] gefunden werden. In JSF
generiert es für das interaktive Interface in Webseiten die Events. Nach der Aktivierung
von Ereignisses werden die Events behandelt und die entsprechenden Antworten zur UI-
Komponente in »View« zur Darstellung abgeschickt.

Das Implementierungsmodel für Events in JSF ist sehr ähnlich wie die Implementierungsme-
thode in gängigen Benutzeroberflächen-Anwendungspakete z.B das Swing Framework in
JDK. Der Empfänger der Events wirdn registriert und durch entsprechende Events aktiviert.
Der Empfänger ruft die spezifizierten Java-Klassen auf, um die unterliegende geschäftliche
Logik zu implementieren. In den UI-Komponenten und deren Subklassen wird das Event
herausgegeben, welches eine maßgebliche Zustandsveränderung in der Anwendung besagt.
Diese Nachricht wird dann im zentralen Register verbreitet, in dem viele Empfängern sich
angemeldet haben, welche einen bestimmten Eventtyp zu verarbeiten wollen. Es kann zu
dem Fall kommen,dass die Events in einer Schlange für einen Empfänger bereitstehen.

21https://javaserverfaces.dev.java.net/

23



2.3. Eingesetzte Technologien und Frameworks

2.3.4. Hibernate Framework

Hibernate 22 ist ein leistungsfähiges und flexibeles Programmiermodell für die Persistenz
und Anfragen von Datenressourcen, mit der die Java-Objekte und deren Attribute in ei-
ne Applikation mit den relationale Datenschemen von Datenbank zusammen abgebildet
werden, um die Entwicklungskosten und aufwändige Programmierung zu vermindern.
Die Kernaufgabe von Hibernate ist die effiziente Abbildung zwischen Objektorientierter
Programmierung und relationaler Datenbank, es verknüpft die Java-Klassen sowie Plain Old
Java Objects (POJO) mit den Datentabellen. Die jeweiligen Datentypen von Java Objekten
werden mit entsprechende Datentypen der SQL Datenbank verbunden.

Neben der Objekt/Relation Abbildung bietet Hibernate weitere effiziente Funktionalitäten
für die Datenabfrage an, die den Entwicklungsaufwand von Anwendung und Datenbank
deutlichen verbessert. Die Datenabfragen durch jeweils überflüssige Codierung von SQL
und Java Database Connectivity (JDBC) sind wegen häufigen Aufrufen von Datenzugrif-
fen aufwändiger. Hibernate realisiert ein verbessertes Implementierungsprinzip für solche
Tätigkeiten, die ständige mit Persistenz von Datenressourcen zu tun haben. Der große Teil
der Codierung durch SQL-Ausdrücke und JDBC für die Datenverarbeitung wird durch ent-
sprechende Mapping-Metadaten von Hibernate realisiert und die relevanten Interaktionen
zwischen Anwendung und Datenbank werden transaktional verwaltet.

Persistenz Hibernate wird als eine kompetente Lösung für Persistenz von Objekt und
Datenressourcen in Applikation betrachtet und weiterentwickelt. Unter Persistenz in
dieser Arbeit versteht man die theoretische langfristige Einbehaltung eines Datenzu-
stand des Objektes nach der Erzeugen durch ein Programm oder Java-Klasse. Der
aktuelle Zustand eines Objekts wird verfügbar für weitere Prozesse, die diesen Infor-
mationszustand des erzeugten Objekts in einem bestimmtem Zeitraum weiter benutzen
wollen. Solche Objekte und Datenressourcen in Applikation bzw. der gespeicherte
Informationszustand beispielsweise im Cache können durch Aufrufen von spezielle
Methoden gelöscht werden. In dieser Arbeit wird die physikalische Persistenz aus
Datenbankmanagementsystem nicht diskutiert.

Hibernate vermindert die wiederholte Codierungen zwischen Applikationsfunktionen und
Datenbankzugriffen. Die Softwareentwickler konzentrieren sich auf die relevante Aufgaben
der Geschäftslogik von Applikationen und benutzen bekannte Programmiermuster, um die
Datenverarbeitung und Datenabfrage effizienter zu realisieren. Die Anwendungsmöglichkeit
von Hibernate hängt nicht von den Softwareentwicklungsparadigma bzw. den Entwurfsstra-
tegien ab. Es zeigt sich eine große Einsatzfähigkeiten für populäre Anwendungssysteme in
alle Branchen, die besonders mit großen und deutlich häufiger verarbeiteten Datenmengen
umgehen und dabei eine höhere Datenintegrität gewährleisten müssen. Eine Weiterent-
wicklung von bereits bestehenden Datenschemen in der Datenbank oder eine Entwicklung
von einem neuem Geschäftsanwendungssystem wird dabei deutlich beschleunigt durch die
Einsatz von Hibernate sowie die Objekt/Relation abgebildete Persistenz-Lösung zwischen
Anwendungsschicht und Datenschicht.

22http://www.hibernate.org/

24



2.3. Eingesetzte Technologien und Frameworks

Database

Application

SessionFactory

TransactionFactory ConnectionProvider

Session Transaction

JNDI JDBC JTA

Persistent
Objects

Transient Objects

Abbildung 2.5.: Detaillierte Hibernate-Architektur aus [GKE10]

Hibernate schweißt die zwei verschiedene Repräsentationen von Daten in Anwendungs-
entwicklung und Datenbankmodellierung zusammen. Die Kompetenzen von beiden Seiten
werden nicht von dieser hinzugefügten Klebeschicht beschädigt und verlangsamt, sondern
werden durch bessere Mechanismen optimiert . Die Abbildung 2.5 stellt diese Klebeschicht
zwischen der Applikation und der Datenbank graphisch dar. Die wichtigen Komponenten
aus Hibernate und ein Überblick werden danach kurz gegeben. Eine ausführliche Funkti-
onsbeschreibung von relevanten Bauelementen in Hibernate können in [GKE10] gefunden
werden.

SessionFactory Eine Session Fabrik wird in Hibernate durch die Konfigurationsdatei bei der
Instanziierung erzeugt. Es wird für eine einzelne Anwendung und eine einzelne Daten-
bank nur eine Session Fabrik spezifiziert. Eine Session Fabrik besitzt Threadsicherheit.
Die Ausführung wird durch den gleichzeitigen Aufrufen von anderen Programmen
nicht behindert. Alle Sessions und die Erfassungsarbeit von Metadaten werden durch
die Session Fabrik zur Laufzeit erzeugt und verwaltet. Die Eigenschaften von Session
Fabrik sind nach den Instanziierung in Konfigurationszeit unveränderbar. Durch das
Schließen einer Session Fabrik werden alle Ressourcen in einen sekundären Cache und
die Anbindungen der Datenpools befreit.

Session Eine Session ist eine kurzfristige Konversation zwischen der Applikation und
der Datenpersistenz in Hibernate. Die Anbindung mit Datenbank durch JDBC und
Datenabfragen durch SQL-Ausdrücke wird in jeder Session von Hibernate verpackt.
Die transaktionale Anforderung der Datenverarbeitung wird in der Session gesichert

25



2.3. Eingesetzte Technologien und Frameworks

und kontrolliert. Der gesamte Persistenz-Kontext von Java-Objekt wird in der Session
zwangsweise in einem primitive Cache gespeichert. In einer Hibernate-Session werden
die relevanten Operationen für die Modifizierung und Persistenz von Java-Objekten
angeboten. Das Durchsuchen der richtigen Objektidentität und der entsprechend
assoziierter Instanz der Session im Cache sollen dabei die korrekte Persistenz des
Informationszustand des jeweiligen Objektes navigieren und sichern.

Persistent objects Das Java-Objekt und die Kollektion von Objekten, die den Persistenz-
Kontext bzw. die »Hibernate Annotations« und die geschäftliche Anwendungsfunktio-
nen beinhalten, werden eindeutig assoziiert durch genau eine Session-Instanz. Nach
der Datenverarbeitung und den Funktionsaufrufen des Persistenz-Objekts wird die
assoziierte Session abgeschlossen, um den aktuellen Informationszustand des Java-
Objekts zu speichern und für die weitere Verarbeitung von anderen Programmen und
Prozessen in der Anwendung freizuschalten.

Transient and detached objects Die Persistenz-Objekte werden nach dem Abschließen der
assoziierten Session losgelöst. Solche frühere Persistenz-Objekte werden dann »deta-
ched objects« geworden, die mit keiner Session und Instanz mehr verbunden sind und
keinen Persistenz-Kontext mehr besitzen. Die Java-Objekte werden durch Java-Klasse in-
itialisiert und als kurzlebige Objekte wie »Transient objects« im Cache gespeichert. Das
gilt für Objekte, die nicht als Persistenz-Objekte durch Hibernate behandelt werden.

Für die Objekt/Relation Abbildung braucht Hibernate die Metadaten, die die Transforma-
tion von Informationsrepräsentation aus Java-Objekt in eine relationale Repräsentation in
Datenbankschicht navigieren und leiten. »Hibernate Annotations« sind in das Java-Objekt
bzw. direkt vor die Codezeile der Java-Klasse durch das »@« Zeichen und weitere Attribute
unmittelbar kommentierte Metadaten. In »Hibernate Annotations« können zwei verschiede-
ne Kommentierungs-Prinzipien klassifiziert werden. Entweder durch die objektorientierte
Modellierung, in der die Eigenschaften von Objektklasse und die Beziehung zwischen meh-
rere Objektklassen kommentiert werden, oder nach den Datenschemen in den Tabellen,
welche die entsprechende Spalte und Index bzw. den Schlüssel im Java-Objekte durch einen
Kommentar abgebildet werden. Es können in der Praxis die beide Prinzipien gemischt
angewendet werden.

In EJB 3.0 bietet neben den Annotationen noch ein neue Methode, den »XML deployment
descriptor« als eine weitere Möglichkeit an, mit der die durch »Java Persistenz Annotation
(JPA)« vorbereiteten kommentierten Metadaten in der Java-Klasse überschreiben oder aus-
getauscht werden können. Die Eigenschaften und die Assoziationen der Java-Klassen, wie
»Entity« im Persistenz-Kontext können durch den »XML deployment descriptor« einfach
bei der Stationierung von Metadaten bedeckt werden. Im Dokument [Ber10] können eine
detaillierte Spezifikation zusammen mit ausführlichen Codebeispiele von verschiedene Kom-
mentierungen bzw. Metadaten und die Anwendung der entsprechenden Attributen in JPA
für die Persistenz-Klassen gefunden werden.

26



2.3. Eingesetzte Technologien und Frameworks

2.3.5. Spring Framework

Das Spring Framework 23 ist eine Java-basierte Plattform für die Entwicklung von unterneh-
mensweiten leichtgewichtigen Anwendungen zusammen mit den gängigen JEE-Technologien.
Es bietet kompakte Grundbausteine und eine umfassende Infrastruktur zur Unterstützung
aller möglichen Java-Anwendungen an. Das Spring Framework beschäftigt sich mit der
Infrastruktur und der Wiederverwendbarkeit von den Applikationskomponenten in der
Enterprise-Anwendung. Durch die Anwendung von Spring können die Softwareentwick-
ler bei der Entwicklungsphase unabhängig erst mit der Programmierung von POJOs bzw.
der Datenmodellierung für der Datenbank anfangen und dann die Geschäftslogik sowie
Services und deren Implementierungen als Java-Beans mit entsprechende Metadaten in
den Anwendungscontainer konfigurieren, ohne die Java-Beans und Klassen angreifende zu
durchdrängen bzw. assoziieren.

Das Spring Framework beinhaltet vielen Merkmale und Funktionen, die in mehrere Mo-
dule und Programmpakete klassifiziert werden. Die relevanten Module in Spring sind die
Kerncontainer, »Data Access/Integration«, das Webmodul, »Aspect Oriented Programming",
Instrumentation und Testmodule. Diese sind graphisch in der Abbildung 2.6 aus Spring
Dokumentation [RJ+10, Seite 3] schematisch dargestellt. Die nachfolgende Erklärungen von
Modulen und Funktionen des Spring Frameworks werden im Großteil theoretische aus
Dokumentation [RJ+10] für einen unkomplizierter Einführung in die Themen persönlich
zusammengefasst. Die Leser können sich an die Dokumentation und weitere online Artikeln
24 wenden, um ein technisch vertieftes Verstehen des Spring Frameworks zu erzielen. Außer
den Modulen und der Architektur sind noch zwei weitere relevante Konzeptionen aus Spring
Framework zur Vorstellung notwendig. Sie werden dann in den folgenden Abschnitten für
einen technischen Überblick kurz zusammengefasst.

Inversion of Control Das ist eine umgekehrte Methode für das Aufrufen von Komponen-
ten in dem Programm, ohne die direkt Initialisierung, Erzeugung, Verdrahtung und
Verwaltung des Objektes durch das Hauptprogramm. Die Konfigurationsaufgabe von
allen verbundenen Objekten in den Komponenten werden durch die außen Container
in Spring Framework geliefert und verwaltet. Dabei nimmt das Spring Framework
die Rolle des Hauptprogramms ein und kümmert sich um den Lebenszyklus des
Objektes. Es wird dabei geholfen, um die Kopplung und strenge Abhängigkeit zwi-
schen Komponenten zu verringern. Die alle Nachschlagen von zielte Komponenten
und Konfigurieren des Applikationskontextes werden ins Container gezogen. Durch
das Verfahren »Dependency injection« sind Container verantwortlich für die Konfi-
guration und Verdrahtung von Komponenten. Eine konkrete Implementierung der
Konfiguration und Verdrahtung werden in die Klassen eingespritzt. Ohne eine große
Codeveränderung der Klassen werden der verbundene Kontext und die Verdrahtung
in den Container verändert und neu konfiguriert.

Aspektorientierte Programmierung Das ist ein weiteres Programmierparadigma mit Unter-
schieden gegenüber der Objektorientierten Programmierung, durch den die funktionale

23http://www.springsource.org/
24http://www.springsource.org/documentation

27



2.3. Eingesetzte Technologien und Frameworks

Aspekten der Softwareanwendung methodische separiert werden und um sie getrennte
zu entwickeln und zu testen. Ein Aspekt hier ist die eigenständige Funktionsanfor-
derung in der Anwendung, die nicht als ein komplettes und relativ selbständiges
Modul in der OOP entwickelt wird. Ein Aspekt wird sich in der ganzen Anwen-
dung einen querschnittlich Belang bezeichnet, weil er nicht modularisiert wird. Eine
Logging-Funktion z.B. greift auf alle Module einer Anwendung zu. In der aspekt-
orientierten Programmierung werden solche Aspekte als syntaktische Strukturen in
der Anwendungsentwicklung im Bezug modularisiert und dann mit den restlichen
Funktionsmodulen verwoben.

Spring Framework Runtime

Test

Core Container

Beans Core Context
Expression
Language

AOP InstrumentationAspects

Data Access/Integration Web (MVC / Remoting)

Transactions

OXM JMS

JDBC ORM

Portlet Struts

Web Servlet

Abbildung 2.6.: Ein Überblick von Spring Framework aus [RJ+10]

Der Spring Kerncontainer beinhaltet die vier fundamentalen Module, wie in der obige
Abbildung angezeigt. Das Kern- und Beansmodul sind die grundsätzliche Funktionspakete
des Framworks. Die Hauptfunktionen sowie die »Inversion of Control« und deren Imple-
mentierungsmethode »Dependency Injection« werden darin angeboten und verwaltet. Das
org.springframework.beans.factory Paket unterstützt die Verwaltung und Manipulation von
Beans. Das Kontextmodul baut die Funktionalitäten von Kern- und Beansmodul in einem
framework-orientierte Stil weiter aus, es bietet die Anpassung für die Internationalisierung

28



2.3. Eingesetzte Technologien und Frameworks

und das Ressourcen-Aufladen neben der ererbten Funktionen aus dem Beansmodul an. Das
Ausdrücksprache-Modul realisiert die Anfrage und das Manipulieren von Java Objekten
zur Laufzeit und ist ein erweitertes Paket von »unified expression language« aus der JSP-
Spezifikation. Es können das Datenobjekt und die Methodenklasse und deren Merkmale
durch die Methoden »Setter« und »Getter« ausgewertet, abgeholt und aufgerufen werden.
Die Objekte werden bereits im Kerncontainer registriert, das erwünschte Objekt wird dann
durch die Ausdrücke wieder erstellt.

In der Datenzugriffs und -Integrationsschicht befinden sich die Module für JDBC, OR-
Mapping, OXM, Java Messaging Service (JMS) und Transaktionsmanagementmodell des
Spring Frameworks. Es werden auch die Funktionspakete für die MVC-Designmuster ba-
sierten Webanwendungsentwicklung und Entwicklungsplattform-Integration sowie das
Webmodul und die Module für Web-Servlet, Web-Struts, Web-Portlet in Spring entwickelt.
Test ist eine wichtige Arbeitsphase in der geschäftlichen Anwendungsentwicklung, das
unterliegende Testmodul im Spring Framework unterstützt dabei zwei Verfahren mit ent-
sprechenden Testpaketen und Objekten zur Testkonfiguration. Die Einheitstest und die
Integrationstest durch die Tools z.B, JUnit und TestNG werden die Qualität von Anwendung
in verschiedene Dimensionen verbessern und sichern. Für die ausführlichere Spezifikation
und Erklärung von den weiteren Merkmalen und Funktionen im Spring Framework können
umfangreich in [RJ+10] gefunden werden. Es wird in dieser Arbeit nicht alle Merkmale und
Technologie im Spring Framwork außer die relevante Konzeptionen weiter vorgestellt und
diskutiert.

2.3.6. Apache Struts2 Framework

Apache Struts2
25 ist ein elegantes und erweiterbares Framework für die Entwicklung,

Stationierung und Wartung von auf Java-basierenden geschäftlichen Webanwendungen.
Durch den Einsatz von Web Frameworks und Entwicklungsplattformen werden die meist
identischen Aufgaben in der Webanwendungsentwicklung automatisiert und den Entwick-
lern wird dabei geholfen, sich auf die wichtigen Aufgabe bzw. die geschäftliche Logik der
Geschäftsanwendung und anderer relevanter Funktionsanforderungen, wie Datensicherheit
und Robustheit zu konzentrierten. Apache Struts2 befolgt und implementiert bekannte
Designmuster für die Webanwendungsentwicklung, wie z.B. Model-View-Controller. Die
Präsentations-Schicht in der Webanwendungsarchitektur werden durch JSP-Technologie
und konfigurierbare UI-Tags von Struts2 realisiert. Die Antworten auf die entsprechende
Abfrage werden durch die Aktion sowie den »Controller« generiert und zum Webclient
versendet. Die Abfragen und inhaltliche Parameter des Webclients werden in Struts2 gefiltert
und zum nächsten »Dispatcher« weitergeleitet. Struts2 kontrolliert diesen Vorgang über
mehrere Verteiler bis zur richtigen Aktionsklasse. Die Parameter und Abfragen werden
schrittweise durch den »Interceptor« abgefangen. Er kann die Eingaben validieren und nach
den erfolgreiche Aufrufen von Aktionsklasse weiter verarbeiten bzw. protokollieren. In den
Aktion wird die entsprechende geschäftliche Kommunikation und Aufrufe von Prozeduren

25http://struts.apache.org/2.x/index.html

29



2.3. Eingesetzte Technologien und Frameworks

zwischen der Datenbank und POJO Klassen ausgeführt und die Antworten als Ergebnis
zum Webclient zurückgeschickt.

Struts2 bietet viele allgemeine XML-Elementtypen, wie »Tags« an, die vielfältige Funktionen
in den JSP-Page schaffen kann. Die generischen Tags kontrollieren beim den Rendering
von JSP-Page den Ausführungsprozessen. Es werden dabei die Daten und Parameter in
den Aktionsklassen oder JavaBeans ausgewertet, modifiziert und ausgeholt für das HTML-
Rendering. Mit dem Tag »Form« können in Struts2 die verschiedenen Daten einfacher
eingegeben werden. Die entsprechende Datenverarbeitung durch die Aktionsklasse wird
in den Attributen des Tag-Element durch die Angabe von Aktionsname spezifiziert und
annotiert. Mit dem Tag »Property« können die Variablen durch Aufruf von einer »Getter«
Methode in Aktionsklasse ihr Inhalt ausgewertet und für die Webpräsentation abgeholt
werden. Die UI-Tags in Struts2 sind unterscheiden sich von den generische Tags. UI-Tags
werden dabei genutzt, um die Daten in einer reichhaltigen HTML-Präsentation anzuzeigen,
die von verschiedenen Themen und Darstellungsstilen abhängig sind.

Eine Aktion in Struts2 zu erzeugen schließt drei Schritten ein: Als erstes die Abbildung
zwischen Aktion und Klassen, dann die Navigation für die Resultate und letztlich die
Implementierung von der Geschäftslogik. Eine Aktion handelt in der Rolle »Controller« im
obengenannte MVC-Designmuster. Die geschäftliche Logik wird in der Aktionsklasse oder in
anderen durch diese Aktion aufgerufene Klassen durchgeführt. Jede Aktion in Struts2 besitzt
einen eindeutigen Namen, welcher durch Angabe vom Klassenpfad auf die entsprechende
Klasse abgebildet wird. Die Resultate der Aktionen werden in einer bestimmte JSP-Page
sowie im »View« präsentiert. Dabei wird auf die nachfolgende Darstellungswebseite durch
die Aktion navigiert. Für jede Aktion wird eine Dokumentation in der Konfigurationsdatei
»struts.xml« angegeben. Die Implementierungslogik muss weiter in der Aktionsklasse reali-
siert werden. Darin wird mindestens eine ausführbare Methode mit spezifizierter Funktion
und vordefinierter Zeichenkette-Ausgabe definiert. Die generische Aufgabe der Aktionen
ist die Verarbeitung von Eingabedaten. Dazu arbeiten die Aktionsklassen und »Tags« in
Struts2 zusammen, um die Daten zwischen Präsentations-Schicht und Geschäftslogik zu
transportieren. Durch Angabe und Assoziation von Aktionsname und Merkmal in den »Tags«
Elementen werden die Aktionsklasse nach der Abgabe automatisch die Daten und Werte für
die Eigenschaft in JavaBeans durch die »Setter« Methode weiterleiten. Eine Datenspeicherung
und -Persistenz können auch innerhalb einer Aktionsklasse implementiert werden.

2.3.7. Apache Axis2 Framework

Apache Axis2
26 ist ein auf dem ursprünglichen Apache Axis basierte und weiterentwickelte

Web Services Engine der dritten Generation. Es macht die Implementierung von Web
Services effizienter und das eigene Framework sowie die Infrastruktur modularisierter.
Außerdem sorgt es für die Konzentration und Orientierung auf XML-Konzepte in der
Programmierung und Realisierung von Web Services strebt die Apache Axis2 auch an.
Die entworfene Architektur von Axis2 unterstützt dabei die höhere Erweiterbarkeit und

26http://ws.apache.org/axis2/

30



2.3. Eingesetzte Technologien und Frameworks

Kompatibilität für die Addition von neue Modulen, die einen erneute Funktion oder Merkmal
für Sicherheit und Zuverlässigkeit ausweiten können, um die vielfältigen und gestiegenen
Kommunikationsanforderungen zwischen Web Services und Anwendungsbenutzern zu
erfüllen.

Die Kernaufgabe von Apache Axis2 ist die Java-basierte Verarbeitung und Transformation
von XML-basierten SOAP-Nachrichten zwischen dem Service-Aufrufer und dem Service-
Anbieter. Die Verarbeitungsgeschwindigkeit und die Effizienz des Speicherverbrauchen des
Speichers sind sehr hoch durch die angewendete neue XML-Verarbeitungsprinzipien im Ver-
gleich zu den vorangegangenen Web Services Engins, wie Apache Axis oder Apache SOAP
Projekte. Mit Axis2 können komplexe SOAP Nachrichten gesendet, erhalten und verarbeitet
werden. Die Implementierungsklassen von Web Services können durch die vordefinierte
Spezifikation in der WSDL Datei automatisch geführt und dann die entsprechenden Web Ser-
vices in Server einfacher produzieren werden. Neben der lose gekoppelten Modularisierung
werden weitere Tools zur Unterstützung der Entwicklung des Web Services z.B, WSDL2Java
und Java2WSDL entwickelt. Dadurch werden der Entwurf und die Implementierung von
Web Services erleichtert. Um einen hohe Interoperationalität in der Werservices-Welt zu er-
reichen und zu unterstützen, werden viele technische Spezifikationen und Empfehlungen z.B
WS-Security, WS-ReliableMessaging, WS-Addressing, WS-Coordination vorgestellt und wei-
terentwickelt. Diese fordern große Funktionalität und flexible Kombinationsmöglichkeiten
für die Verarbeitung von SOAP Nachrichten. Die strukturelle Modularisierung von Apache
Axis2 kann sich schnell an diese Anforderung anpassen und neue Module reibungslos in
den Nachrichten-Verarbeitungsprozess sowie den verbundenen SOAP-Kanal integrieren.

Die in Axis2 angewandte XML-Objektmodell sowie AXIOM (AXIs Object Model) 27 verbes-
sert die Verarbeitungsproduktivität innerhalb der inhaltlich Recherchen von XML-basierte
Nachrichten sowie die Repräsentation des Infosets im XML Dokument. Es benutzt den
»Ziehen« Mechanismus in der Erzeugung von XML-Objekten und basiert in der technischen
Implementierung auf die StAX (Streaming API for XML) 28 Parser. Es passiert immer in den
Alltag, dass die SOAP-Nachrichten extrem groß sind und informationell dicht eingebunden
in unsere Geschäftsanwendung sind. Eine komplette Repräsentation des XML-Dokuments
im Arbeitsspeicher oder Cache ist nicht mehr sinnvoll und verursacht ein Kapazitätspro-
blem und führt zur Verlangsamung. Der StAx Parser kontrolliert diese Repräsentation
und verzögert das Darstellungsereignis des XML-Dokument. Es wird ein unnötiges Ein-
lesen von ungebrauchten Informationen vermieden. Z.B bei weiterem Transportieren von
SOAP-Nachrichten wird in diesem Fall nur die Kopfteile der SOAP-Nachrichten ohne den
Hauptteil der SOAP Nachrichten auf die Informationen untersucht. Dadurch wird Kapazität
auf dem Webserver gespart. Eine technische Analyse der Kapazität und Geschwindigkeit
von XML-Parser können in [Tea05] gefunden werden. Es zeigt einen deutlichen Vorteil beim
Einlesen und bei der Untersuchung von XML Dokumenten ohne die Anforderung für die
Modifikation des Dokuments gegenüber anderen XML Parser.

Ein müheloser Einstieg in Axis2 und viele neue Funktionen und entsprechende Beschrei-
bungen von Apache Axis2 sowie die »SOAP Processing Model and Pipeline«, »Message

27http://ws.apache.org/commons/axiom/
28http://jcp.org/en/jsr/detail?id=173

31



2.3. Eingesetzte Technologien und Frameworks

Exchange Patterns« und »Axis2 Data Binding« können in der Projektweblink 29 online
gefunden werden.

29http://ws.apache.org/axis2/articles.html

32



3. Konzept und Entwurf

Im vorliegenden Kapitel wird auf das erstellte Konzept und den Entwurf für die Realisierung
der Verwaltungsplattform eingegangen. Die grundlegende Konzeption und die abstrahierte
Architektur für den Entwurf und die Implementierung werden im ersten Abschnitt 3.1
vorgestellt. In der Praxisarbeit wird eine Webanwendung für die Prozess View Transformation
auf den Webservices-Konzepten basierend weiterentwickelt. Der spezifizierte Entwurf und
die zugehörigen Module werden im zweiten Abschnitt 3.2 erläutert. Im Abschnitt 3.3 werden
das innerhalb der Arbeit erstellte Neukonzept für den Prozess View vorgestellt, mit dem
eine benutzerdefinierte Prozess View Vorlage kombiniert und ausgeführt werden kann.

3.1. Konzept und Architektur

Ein durch Java EE Version 5 als Programmiersprache implementiertes Jar-Paket für die kon-
solenbasierte Durchführung der Prozess View Transformation wurde bereits entwickelt. Eine
grundlegende Idee ist die Entwicklung einer Webanwendung, die dieses Jar-Paket hauptsäch-
lich für die Realisierung der Prozesstransformation nutzt und die weitere Anforderungen
z.B hohe Modularität und Bedienbarkeit erfüllen kann.

Die Webanwendung realisiert ein benutzerfreundliches User-Interface für die Prozesstrans-
formation. Es bietet ein einfaches Abgeben des Prozessdokuments bzw. des BPEL-Prozess
und des entsprechenden Rules-Dokument. Ein verarbeitender Prozess wird nach der Durch-
führung der Prozesstransformation auf der Serverseite z.B in Tomcat generiert und im den
Browser präsentiert. Es wird ebenfalls unterstützt, dass nach dem Prozesshochladen die
verfügbare View-Funktionen in [Cai10] flexible benutzt werden kann.

Neben dem BPEL-Prozess ist das Rules-Dokument ein kritisches Artefakt. Konventionell
wird das Rules-Dokument manuell handwerklich erstellt. Es wird ebenso überlegt diese
Produktivität zu erhöhen. Ein webbasierter Editor für das Rules-Dokument soll entwickelt
werden, dessen realisierbare Funktionalität sich an der kompletten Spezifikation in der
Arbeit [Str09] richten soll.

Die jeweils durchgeführte Transformation wird auf der Serverseite für den Administrator
protokolliert. Die Anwendung registriert neben den abgegebenen Daten, den Prozessen und
Rules auch die Datumsinformation. Es erschafft dem Administrator eine Datenbasis für die
Performance-Analyse und Fehlerprotokollierung. Es kann wegen der schnellen Steigerung
der Kapazitätsanforderung eine Datenabschaffung durch den Administrator durchgeführt
werden.

33



3.1. Konzept und Architektur

Es wird in der Arbeit die Konzeption von Prozess View erweitertet. Es entwickelt ein neues
Anwendungsszenario für Prozesstransformation. Die bestehende View-Funktionen in [Cai10]
werden als aufrufbarer Webservices für Prozess View implementiert und veröffentlicht. Die
grundlegende Operation und Zielnavigation werden ebenfalls als Webservices realisierbar.
Die Webanwendung bietet die verschiedenen Webservices für die Prozesstransformation an.
Alle verfügbaren Webservices werden zentral verwaltet und stellen eine Servicebasis für die
Konstruktion von komplexen Sichten auf BPEL-Prozesse bereit.

Database

(MySQL)

Web Application Server (Apache Tomcat)

Web Client (Browser)

Administration

(JSF 2.0)

Transform

Manager

Rules 

Designer

Transformation 

Services

Transformation 

Services Registry

Data Access, O/R Mapping (Hibernate)

View Services 

Manager

Process View Console Application

Workflow Engine

(Apache ODE)

Webservices Engine 

(Apache Axis2)

External 

Application Server

Transformation 

Services

Abbildung 3.1.: Business Prozess View Verwaltung Architektur

Die Abbildung 3.1 zeigt die Mehrschichtarchitektur der Webanwendung für die Implemen-
tierung. In der untersten Schicht liegt eine relationale Datenbank wie z.B MySQL. Dort wird
jede Prozesstransformation der Serverseite der Webanwendung gespeichert und protokolliert.
Das angewandte Persistenz-Framework wie z.B Hibernate für die Datenzugriffe bietet eine
bessere Performance als andere Datenbankschnittstellen-API z.B JDBC. Es erzeugt das Daten-
objekt und manipuliert es ohne eine explizite Programmierung von SQL-Ausdrücken. In der
Applikationsschicht liegt die Webanwendung. Sie beinhaltet das Kernmodul für die Prozess-
transformation und für die als Webservices implementierte, zentral registrierte Prozess View
Services. Sie arbeitet zusammen mit der Webservices Engine für die Servicekommunikation
und mit der Workflow Engine für die Erzeugung des WS-BPEL basierten Webservices. Die
Präsentationsschicht besteht aus vier unterteilten Web-Interfaces für die Benutzer und den
Administrator.

34



3.2. Entwurf

3.2. Entwurf

In diesem Abschnitt werden die entworfenen Anwendungsmodelle und -Diagramme der
Webanwendung beschreiben. Der View Services Manager und die erstellte View Services
Architektur werden wegen dem Kerngewicht in der Arbeit detaillierter erklärt.

3.2.1. Anwendungsmodellierung

Es wird zuerst ein Anwendungsmodell für eine webbasierte Prozess View Verwaltungs-
plattform in der Entwurfsphase erstellt. Sie dient als eine Basis für die Entwicklung des
User-Interfaces und der gestützten logischen Funktionen. Im Anwendungsfalldiagramm 3.2
sind die erforderlichen Hauptanwendungsfälle und die beteiligten Akteuren strukturiert
dargestellt.

Abbildung 3.2.: Anwendungsfalldiagramm von der webbasierten Verwaltungsplattform

35



3.2. Entwurf

Die einzelnen Begriffe des Diagramms werden kurzgefasst erklärt, um dem Leser einen
einfaches Verständnis des Diagramm zu schaffen und eine klare und nicht überlappende
Klassifizierung der Anwendungsfälle zu gliedern.

View-Funktionen Die View-Funktionen sind die zwei bereits feststehenden Funktionen
Fokussierung und Subprozesseliminieren für eine vordefinierte Prozesstransformation.
Durch das Hochladen der entsprechenden Parametern werden dann diese Funktionen
aufgerufen und die Prozesstransformationen werden durchgeführt.

Transformation Transformation sind die Prozesstransformation, die durch das Hochladen
des BPEL-Prozess und des Rules Dokuments generiert wird. Dieser Vorgang wird von
dem Benutzer ausgelöst.

Services Sequenz Services Sequenz ist hier eine aus einer einzigen Operation oder aus
mehreren Operationen sequenzielle, kombinierte Warteschlange von der später ein
kompletter BPEL-Prozess erstellt wird.

View Manager View Manager ist hier das zentrale Webinterface für die Datenbanktabelle, in
der alle existierenden Datensätzen in der Registrierung angezeigt werden. Es ist aber
nur für den Administrator zugänglich.

Transformation Item Transformation Item ist hier der gespeicherte Datensatz in der Regis-
trierung. Er resultiert von den durchgeführten Anwendungsinstanzen der Prozess-
transformation. In jedem Transformation Item werden die relevanten Artefakte wie
der BPEL-Prozess, das abgegebenen Rules Dokument, das View-Ergebnis und die
assoziierte Zusatzinformationen registriert.

Alle entworfenen Anwendungsfälle werden im Folgenden jeweils einzeln beschreiben:

Anwendungsfall 1: BPEL-Prozess hochladen

Aktoren:

Der Benutzer

Vorbedingung:

Die Seite „View Transformer” im Webinterface wird durch den Klick angezeigt und
darin wird ein Subinterface „BPEL-Process Upload” angezeigt.

Regulärer Ablauf:

1. Der Benutzer kopiert den kompletten Quellcode des BPEL-Prozesses ins Textfenster.
2. Der Benutzer klickt den Button „submit”.

Nachbedingung:

Der BPEL-Prozess wird hochgeladen, gespeichert und steht für die Prozesstransforma-
tion bereit.

36



3.2. Entwurf

Alternative Abläufe:

Keinen

Anwendungsfall 2: Rules hochladen

Aktoren:

Der Benutzer

Vorbedingung:

Der BPEL-Prozess ist bereits hochgeladen und das navigierte Subinterface „Rules
Dokument Upload” wird angezeigt.

Regulärer Ablauf:

1. Der Benutzer kopiert den kompletten Quellcode des Rules Dokuments ins Textfenster.
2. Der Benutzer klickt den Button „submit the rules”.

Nachbedingung:

Die Prozesstransformation wird durchgeführt und das Ergebnis wird in dem Subinter-
face „Transformation Result” angezeigt.

Alternative Abläufe:

1. Das Subinterface „Transformation Result” wird nach jeder Prozesstransformation
angezeigt.
2. Der Benutzer klickt auf den Button „new rules copy”, um das Subinterface „Rules
Dokument Upload” zu erreichen.

Anwendungsfall 3: Rules Design

Aktoren:

Der Benutzer

Vorbedingung:

Das Subinterface „Rules Dokument Upload” in der Seite „View Transformer” wird
angezeigt.

Regulärer Ablauf:

1. Der Benutzer klickt auf den Button „rules generator”.
2. Das Editor-Interface „Rules Designer” wird angezeigt.
3. Der Benutzer editiert interaktiv das Rules Dokument durch das Klicken auf die
Tasten.

37



3.2. Entwurf

Nachbedingung:

Das Rules Dokument wird interaktiv editiert, gespeichert und steht für die Prozess-
transformation bereit.

Alternative Abläufe:

1. Der Benutzer klickt auf das Webinterface „Rules Designer”.
2. Das Subinterface im „Rules Designer” wird angezeigt und der Benutzer klick auf
den Button „Rule Design!”.
3. Das Editor-Interface „Rules Designer” wird angezeigt.
4. Der Benutzer editiert interaktiv das Rules Dokument durch das Klicken auf die
Tasten.

Anwendungsfall 4: View-Funktionen aufrufen

Aktoren:

Der Benutzer

Vorbedingung:

Der BPEL-Prozess ist bereits hochgeladen und das Subinterface „Rules Dokument
Upload” wird angezeigt.

Regulärer Ablauf:

1. Der Benutzer klickt auf den Button „view funktion” und dann wird die verfügbare
View-Funktion im Navigation-Subinterface angezeigt.
2. Der Benutzer wählt die Funktion aus und gibt die erforderlichen Daten ein.
3. Der Benutzer klickt auf den Button „submit”.

Nachbedingung:

Die Prozesstransformation bzw. die View-Funktion wird durchgeführt und das Ergeb-
nis wird im Subinterface „Transformation Result” angezeigt.

Alternative Abläufe:

1. Das Subinterface „Transformation Result” wird nach jeder Prozesstransformation
angezeigt.
2. Der Benutzer klickt auf den Button „View functions”, um die Subinterfaces „Call
Focus Function” und „Call Remove Fragment Function” zu erreichen.

38



3.2. Entwurf

Anwendungsfall 5: Transformation ausführen

Aktoren:

Der Benutzer

Vorbedingung:

Der BPEL-Prozess ist bereits hochgeladen, das Rules Dokument bereits editiert und
das Subinterface „Rules Designer” wird angezeigt.

Regulärer Ablauf:

1. Der Benutzer klickt auf den Button „rules submit and transform”.

Nachbedingung:

Die Prozesstransformation wird durchgeführt und das Ergebnis wird in dem Subinter-
face „Transformation Result” angezeigt.

Alternative Abläufe:

1. Nach dem Hochladen des Rules Dokuments wird die Prozesstransformation auto-
matisch durchgeführt.
2. Nach dem Hochladen der Parametrisierung im View-Funktionen-Interface wird die
Prozesstransformation automatisch durchgeführt.

Anwendungsfall 6: Service WSDL hochladen

Aktoren:

Der Benutzer

Vorbedingung:

Das Webinterface „Services Manager” wird angezeigt.

Regulärer Ablauf:

1. Der Benutzer klickt auf den Weblink im Subinterface „Services Import”.
2. Der Benutzer sucht das lokale WSDL Dokument für die generierte Webseite aus und
klickt auf den Button „upload the wsdl file to server”.
3. Der Benutzer klickt auf den Kommandolink „Services list update”.

Nachbedingung:

Das lokale Rules-Dokument wird hochgeladen und die Services darin werden durch-
sucht und dann in der Servicetabelle aufgelistet.

Alternative Abläufe:

Keine

39



3.2. Entwurf

Anwendungsfall 7: Service auswählen

Aktoren:

Der Benutzer

Vorbedingung:

Das Webinterface „Services Manager” wird angezeigt und es stehen bereits die Services
zur Verfügung.

Regulärer Ablauf:

1. Der Benutzer klickt auf den Kommandolink in dem Subinterface „Begin View
Design”, um eine neue Konstruktion zu initialisieren.
2. Der Benutzer klickt auf den Kommandolink „parameters” in dem Subinterface
„Services List” und es wird eine neue Webseite generiert.
3. Der Benutzer gibt die entsprechenden Daten ein.
4. Der Benutzer klickt auf den Button „Save the parameter inputs”.

Nachbedingung:

Der Services wurde ausgewählt und die eingegebene Daten werden gespeichert.

Alternative Abläufe:

Keine

Anwendungsfall 8: Services Sequenz Deployment

Aktoren:

Der Benutzer

Vorbedingung:

Das Webinterface „Services Manager” wird angezeigt und es ist bereits mindestens ein
Service ausgewählt in dem Subinterface „ Execute the called services sequence”.

Regulärer Ablauf:

1. Der Benutzer klickt auf den Kommandolink „Deploy the sequence process”.

Nachbedingung:

Die Services-Sequenz wird als ein komplettes BPEL-Projekt umgesetzt und in den
Apache ODE bereitgestellt, kompiliert und aktiviertet.

Alternative Abläufe:

Keine

40



3.2. Entwurf

Anwendungsfall 9: Services Sequenz ausführen

Aktoren:

Der Benutzer

Vorbedingung:

Das Webinterface „Services Manager” wird angezeigt und es wurde bereits eine
assoziierte Services-Sequenz in Apache ODE deployt.

Regulärer Ablauf:

1. Der Benutzer checkt den Status des BPEL-Projekts durch den Klick auf den Kom-
mandolink „ Check Status” im Subinterface „Status of the deployed process”.
2. Wenn der Prozess in den Apache ODE bereits aktiviert ist, dann klickt der Benutzer
klickt auf den Kommandolink „Invoke the active process”.
3. Wenn es sich „in processing, please wait” meldet, dann checkt der Benutzer den
Status in einen Moment später aus.

Nachbedingung:

Der Prozess bzw. die Services-Sequenz wurde durchgeführt und das Ergebnis wird in
dem Subinterface „Result of services transformation” angezeigt.

Alternative Abläufe:

Keine

Anwendungsfall 10: Services Sequenz download

Aktoren:

Der Benutzer

Vorbedingung:

Das Webinterface „Services Manager” wird angezeigt und der identifizierte Prozess
wurde bereits erfolgreich durchgeführt.

Regulärer Ablauf:

1. Der Benutzer klickt auf den Kommandolink „Deployed process download”.

Nachbedingung:

Das in Apache ODE deployte BPEL-Projekt wird komplett heruntergeladen.

Alternative Abläufe:

Keine

41



3.2. Entwurf

Anwendungsfall 11: View Manager einloggen

Aktoren:

Der Administrator

Vorbedingung:

Das Login Interface wird angezeigt.

Regulärer Ablauf:

1. Der Administrator gibt den korrekten Benutzername und Password ein.
2. Der Administrator klickt auf den Button „submit”.

Nachbedingung:

Das Webinterface „Process View Manager” wird angezeigt.

Alternative Abläufe:

Keine

Anwendungsfall 12: View Manager ausloggen

Aktoren:

Der Administrator

Vorbedingung:

Der Administrator ist erfolgreich eingeloggt und das Webinterface „Process View
Manager” wird angezeigt.

Regulärer Ablauf:

1. Der Administrator klickt auf den Button „Logout”.

Nachbedingung:

Der Administrator ist erfolgreich ausgeloggt und das Login Webinterface wird ange-
zeigt.

Alternative Abläufe:

Keine

42



3.2. Entwurf

Anwendungsfall 13: Transformation Item lesen

Aktoren:

Der Administrator

Vorbedingung:

Der Administrator ist erfolgreich eingeloggt und das Tabelleninterface „Process View
Manager” wird angezeigt.

Regulärer Ablauf:

1. Der Administrator klickt den Weblink „show details” in der entsprechend
gewünschten Zeile in den Tabellen an.

Nachbedingung:

Die assoziierte Informationen wie der BPEL-Prozess, das Rules Dokument und das
View Ergebnis werden in einem neuen Fenster angezeigt.

Alternative Abläufe:

Keine

Anwendungsfall 14: Transformation Item löschen

Aktoren:

Der Administrator

Vorbedingung:

Der Administrator ist erfolgreich eingeloggt und das Tabelleninterface „Process View
Manager” wird angezeigt.

Regulärer Ablauf:

1. Der Administrator klickt den Button „delete” in die entsprechenden Zeile in der
Tabellen an.
2. Der Administrator bestätigt diesen Vorgang durch den Klick auf „OK”.

Nachbedingung:

Diese registrierte Transformation wird in den Tabellen gelöscht.

Alternative Abläufe:

1. Der Administrator klickt den Button „Remove”, um alle registrierten Transforma-
tionen in den Tabellen zu vernichten (Ein kompletter Datenverlust muss manuell
vorgesorgt werden) .
2. Der Administrator bestätigt diesen Vorgang durch den Klick auf „OK”.

43



3.2. Entwurf

3.2.2. Transformation Services Architektur

In der Arbeit wird die Realisierung und Verwaltung des Prozesstransformation-Webservices
als die Kernaufgabe und Vertiefungsthema gerichtet. Es wird darin betrachtet und getes-
tet, wie groß die realistische Anwendbarkeit und technische Durchführbarkeit sein wird,
wenn man die entwickelte Prozesstransformations-Technologie auf das Webservices-Konzept
umsetzten will. Es wird die bereits funktionierende View-Funktionen als aufrufbaren Webser-
vices mit entsprechender Parametrisierung implementiert. Die Abbildung 3.3 zeigt eine
schematische Architektur für die Verwaltung und Anwendung der elementaren Prozess-
transformation, die in der Arbeit erstellt werden. Jeder Webservice für die Transformation
des Prozessmodells wird in eine zentralen Servicebasis registriert.

Datenbank

Prozess

Auswahlliste + Funktionale Beschreibung + Parameter (Rich Client)

T 1 T 2 T n

Zentrale Registrierung im Application Server

Viewergebnis

Transformationsservices
 mit WSDL beschrieben

Services von andern Anbietern

Abbildung 3.3.: Serviceorientierte Business Prozess Transformation Services Architektur

Um die unterstützte Funktionalität für die Prozesstransformation in der Verwaltungsplatt-
form zu erweitern, wird ein Mechanismus unterstützt, mit dem mögliche Services für Prozess
View aus anderen Organisation oder Partnern in diese Plattform integriert werden können.
Das verfügbare externe WSDL-Dokument wird manuell in die Servicebase importiert. Der

44



3.2. Entwurf

implementierte ausführbare Transformation Services wird in allen WSDL-Dokumenten in
der Servicebase sowie die Services Registrierung in der Anwendung werden sorgfältig durch-
sucht und in die Auswahllist hinzugefügt. Ein komfortables User-Interface für eine flexible
Konstruktion bzw. Kombination einer Services-Sequenz wird in den weiteren Abschnit-
ten 3.2.3 entworfen und spezifiziert. Der Benutzer kann mehrere Prozesstransformationen
sequenziell kombinieren, um eine komplizierte Sicht auf den BPEL-Prozess zu erzeugen.
Es wird ein weiterer Mechanismus bzw. Lösung herausgegeben, mit dem die Ausführung
dieser definierte Transformation-Reihenfolge gewährleistet und effizienter implementiert
wird. Er soll automatisch die Zielprozess Dokumente in der Datenbank abholen und in
der benutzerdefinierten Reihenfolge transformieren. Die Schritte „T1”, „T2” bis „Tn” in der
Abbildung 3.3 sind die vom Benutzer ausgewählten Prozess Transformation Ablaufschritte,
die sequenziell selbstständig in dem Verwaltungsplattform-Backend ausgeführt werden
sollen.

In dem Sequenzdiagramm 3.4 werden die Benutzerinteraktion und die Prozessabläufe
für die Serviceanwendung in der Verwaltungsplattform spezifiziert. Es wird darin jeder
erforderlicher Verarbeitungsschritt für eine sequenzielle Konstruktion einer Sicht auf BPEL-
Prozesse detailliert illustriert.

Abbildung 3.4.: Sequenzdiagramm von der Transformation Services Anwendung

3.2.3. Transformation Services Client (View Designer)

Die Kernaufgabe in dieser Arbeit ist die Entwicklung eines Prozess View Designer, die das
Webservices-basierte Kombinieren von Prozesstransformationen sequentiell realisiert. In den
vorherigen Abschnitten ist die Gesamtarchitektur für die Implementierung dargestellt. Um

45



3.2. Entwurf

diese Verwaltungsplattform für den View Designer zu aufbauen, wurden in den Entwurfs-
phase der praktische Arbeit vier Arbeitspakten wie folgt spezifiziert. Die für die relevanten
Verarbeitungsschritten in Transformation Services Client verantwortlich sind.

Services Auflisten

Die Auflistung aller verfügbaren Prozesstransformation-Services für die Benutzer ist der
erste Arbeitsschritt der Verwaltungsplattform. Die in der Arbeit erstellten Services bzw. die
Operationen für Prozess View werden in WSDL Dokumenten beschrieben und sind bereits
in das Service-Register bzw. in einem Ordner gespeichert. Ein Service-Finder durchsucht
die unterstützten Services und deren unterliegenden Operationen sowie die entsprechende
Parametrisierung in den WSDL Dokumenten und listet sie in eine Service-Tabelle für
den Benutzern zur Verfügung auf. Zur Addition eines neuen Prozess View Service für
die Verwaltungsplattform soll es optional durch das Hochladen eines WSDL Dokuments
realisiert werden.

Services Kombination

Die in der Tabelle aufgelisteten Services und die dazu gehörenden Operationen können
ausgewählt werden, um die implementierte Aktion für Prozess View zu anwenden. Es soll
in eine weiteres Dateninterface nach die Auswahl übergeführt werden, in dem die entspre-
chenden Daten wie der Prozess, die Rules und die Parametern für die Operationen eingeben
werden können. In der Praxis wird in einer Prozesstransformation nicht nur eine einzelne
Operation aufgerufen. Die Benutzern können mehrere Aktionen sequenziell verbinden, um
eine komplexe Transformation zu erzeugen. Es sollte darin dieser Mechanismus unterstützt
werden, mit dem die nacheinander liegenden Operationen sequenziell ohne Datenverlust
verknüpft werden. Ein flexibles Auswechseln zwischen den Operationen hilft eine erforderli-
che Modifikation in einem kleinen Teile der Sequenz. Die erzeugte Kombination und die
eingegebenen Daten sollen eindeutig für die spätere Verarbeitung assoziiert werden, d.h, alle
Informationen für jede Kombinationsinstanz werden in einem eindeutig (z.B, durch einen
Zeitstempel) identifiziertem XML-Dokument strukturell gespeichert.

Services Deployment

Nach dem erfolgreichen Kombinieren des Services und der Dateneingabe resultiert iden-
tifizierbares XML-Dokument. In diesem Schritt soll ein BPEL-Projekt erzeugt werden, die
diese Services Kombination implementieren kann. In der Praxisarbeit soll automatisch ein
eindeutiger Ordner unter dem Apache ODE Dokumentpfad »WEB-INF/processes/« erstellt
werden, welcher ein vollständiges BPEL-Projekt ist. Ein BPEL-Projekt beinhaltet den BEPL-
Prozess, das WSDL Dokument von sich selbst, die weiteren beteiligten WSDL Dokumente
des Prozess View Services und das deploy.xml Dokument. Neben dem Kopieren von den
beteiligten WSDL Dokumenten ins BPEL-Projekt werden die anderen drei XML-Dokument

46



3.3. Business Process View Template

wie der eigentliche BPEL-Prozess, das eigene WSDL Dokument und deploy.xml automatisch
aus dem identifizierten XML-Dokument generiert. Der Apache ODE Server checkt den neu
erstellten Ordner und kompiliert ihn. Nach einem erfolgreichen und fehlerfreien Kompilieren
ist der BPEL-Prozess aktiviert und bereitgestellt.

Services Ausführen

Vor dem Ausführen des Services wird ein Statuscheck für die Instanz durchgeführt. Der
Benutzer fragt dabei über die Management-API von Apache ODE den Prozessstatus ab, ob
der gewünschte Prozess bereits aktiviert ist. Nach einer positiven Abstimmung wird ein
Aufruf des aktivierten BPEL-Prozess implementiert. Die assoziierten Daten für den Aufruf
wird aus dem obigen identifizierten XML-Dokument abgeholt. Es generiert automatisch eine
operativen SOAP Nachricht und schickt sie zu der Zugriffsadresse des Services ab. Nach
einer sequenzielle Prozesstransformationen wird eine Antwort für den Benutzer erstellt
und der verarbeitete XML-basierte BPEL-Prozess in dem User-Interface präsentiert. Ein
Herunterladen des ganzen BPEL-Projekts wird unterstützt.

3.3. Business Process View Template

Business Process View Template besteht in dieser Arbeit für eine Prozess View Vorlage, die
einen aus den aufgerufenen Transformation Services kombinierte Sequenz ist und selbst als
wiederverwendbarer Webservices veröffentlicht werden kann. Eine Prozess View Vorlage
realisiert eine benutzerdefinierte Sicht auf den Geschäftsprozess neben der entsprechenden
Parametrisierung. In die Prozess View Vorlage wird ein spezifizierter Verarbeitungsprozess
für das definierte Anwendungsziel und Abstraktionssinn beschrieben, die von dem konkreten
Anwendungsszenario und der konkreten Geschäftsprozesseigenschaften abhängig sein
können. Es soll auch implementierbar sein, dass man eine abstraktere Prozess View Vorlage
für eine Geschäftsprozess Transformation für die verschiedene Geschäftsbranchen erstellen
und anwenden will.

3.3.1. View Template Design

Vor der Konstruktion der Prozess View Vorlage wird zuerst der abstrahierte Verarbei-
tungsprozess sequenziell modelliert. Die in der Arbeit entwickelten View-Funktionen als
Webservices können zusammengesetzt werden, um eine Vorlage für die benutzerdefinierte
Sicht auf BPEL-Prozesse zu erstellen. Es können auch die grundlegenden Webservices ver-
wendet werden, welche als ein einzelner Schritt in dem Verarbeitungsprozess betrachtet wird.
Eine komplexe Vorlage kann aus anderen elementaren Prozess View Vorlagen zusammen
komponiert werden. Eine Vorlage zu designen wird durchgeführt ohne eine Datenabgabe
bzw. ohne das Hochladen des Prozesses. Dies wird immer stärker durch den entsprechende
Kombinationskontext und Anwendungsziel bestimmt.

47



3.3. Business Process View Template

3.3.2. View Template Bereitstellung

Eine erstellte Prozess View Vorlage wird in den Apache ODE Server erfolgreich kompiliert
und als aufrufbarer Webservice bereit gestellt. Um dieser Vorlage anzuwenden wird nur das
WSDL Dokument in dem Vorlage-Projekt gebraucht. Das zu der Vorlage gehörende BPEL-
Projekt wird heruntergeladen und das darin liegende WSDL Dokument von die Prozess
View Vorlage wird zum Services Auflisten importiert, dann wird es als ein elementarer
Service registriert.

3.3.3. View Template Anwenden

Die Anwendung der Prozess View Vorlage wird einfach durch Service Auswahl und die
entsprechende Parametrisierung realisiert. Es wird in der Arbeit so implementiert, dass alle
Geschäftsprozess-bezogenen Daten für die Prozesstransformation beim Aufrufen gemeinsam
in dem User-Interface einmal eingetragen werden. In der folgende Abbildung 3.5 wird
beispielsweise ein View Template angezeigt. Diese Prozess View Vorlage soll die existierenden
spezifischen annotierten Aktivitäten in dem Prozess bereinigen. Die grüne Aktivitäten in
den Prozess sind die speziell klassifizierten Tätigkeiten im individuellen Prozesskontext.

Die spezifische 

annotierte 

Aktivitäten in 

Prozess löschen

--- die gewöhnliche Aktivität

--- die spezifische annotierte Aktivität

View Template

Eingabe Ausgabe

Abbildung 3.5.: Beispieldarstellung der View Template Anwendung

48



4. Implementierung

Im vorliegenden Kapitel wird die praktische Umsetzungen der im vorherigen Kapitel erklär-
ten Konzepte und Entwürfen beschrieben. Es wird im ersten Abschnitt 4.1 die unterliegende
Datenbankimplementierung erläutert. Im Abschnitt 4.2 wird das entworfene Webinterface
und deren gegliederte Unterinterfaces für den Benutzer als eine webbasierte Verwaltungs-
plattform entwickelt. Das Kernkonzept der Arbeit, also die umgesetzten Transformation
Services werden in dem Abschnitt 4.3 detailliert erläutert. Die Servicebasis für die technische
Realisierung folgt in dem folgenden Abschnitt 4.4 bietet. Das neu erstellte Konzept der
Prozess View Vorlage wird in dem Abschnitt 4.5 für eine praxisorientierte Anwendungsmög-
lichkeit vertiefter diskutiert.

4.1. Datenbanktabellen

Es wird in der Arbeit vorgenommen, alle ausgeführte Prozesstransformation in der Verwal-
tungsplattform zu protokollieren. Es werden darin die einfachen Datenschemen erstellt, um
die assoziierten Daten, wie der BPEL-Prozess, das Rules Dokument, das Ergebnis und die
Datumsinformation in eine relationale Datenbank, wie das hier angewendete MySQL detail-
liert und gut strukturiert zu speichern. In der Auflistung 4.1 werden die SQL-Ausdrücke
für die Erzeugung solcher Datentabellen für die Verwaltungsplattform gezeigt. Es bestehen
insgesamt drei Tabellen in der Datenbank, die die verschiedenen Anwendungsfunktionen
für Datenobjektpersistenz realisieren.

Die Tabelle transformlist ist die zentrale Transformation Registrierung auf der Serverseite für
die webbasierte Verwaltungsplattform. Es bietet vier Varianten für die Prozesstransformation
in der Webanwendung. Die entsprechende Information der angewendeten Variante wird
in der Spalte [info] registriert. Die Prozesstransformation durch Hochladen eines Rules-
Dokuments wird es als vorgegebenes Verfahren „Default” protokolliert. Die Aufrufe der
View-Funktionen wird als „Call view function” protokolliert. Das interaktive Editieren eines
Rules-Dokuments wird als „Rules design” protokolliert und die Prozesstransformation durch
die umgesetzten Transformation Services wird als „Call view service” protokolliert. Der
Datentyp in den weiteren Spalten [process], [rules], [view] werden als LONGTEXT definiert,
weil der Geschäftsprozess, das generierter Ergebnis und das Rules Dokument in den Praxis
sehr groß sein können.

In der Tabelle servicesbean werden die verfügbaren Transformation Services für die Verwal-
tungsplattform gespeichert. Die in dem WSDL Dokument beschriebenen Services und die

49



4.1. Datenbanktabellen

detaillierte Parametrisierung werden ausgezogen und in den assoziierten Spalten dauerhaft
registriert. Die relevanten Daten, wie Name und Datentyp jedes Parameters für die Operation
werden in der Spalte [parameters] für das Services Auswählen textuell gespeichert.

Listing 4.1 Die SQL-Ausdrücke für die Erzeugung der Datenbanktabellen
create database processViewData;

use processViewData;

CREATE TABLE ‘processViewData‘.‘transformlist‘ (
‘transform_ID‘ INTEGER NOT NULL AUTO_INCREMENT,
‘info‘ LONGTEXT,
‘process‘ LONGTEXT,
‘rules‘ LONGTEXT,
‘view‘ LONGTEXT,
‘date‘ TEXT,
PRIMARY KEY USING BTREE(‘transform_ID‘)

);

CREATE TABLE ‘processViewData‘.‘servicesbean‘ (
‘number‘ INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
‘name‘ LONGTEXT,
‘operation‘ LONGTEXT,
‘output‘ LONGTEXT,
‘parameters‘ LONGTEXT,
‘request‘ LONGTEXT,
‘response‘ LONGTEXT,
PRIMARY KEY USING BTREE(‘number‘)

);

CREATE TABLE ‘processViewData‘.‘parametersbean‘ (
‘id‘ INTEGER NOT NULL AUTO_INCREMENT,
‘datatyp‘ LONGTEXT,
‘instance‘ LONGTEXT,
‘operation‘ LONGTEXT,
‘previousServiceAsInput‘ TINYINT,
‘request‘ LONGTEXT,
‘response‘ LONGTEXT,
‘service‘ LONGTEXT,
‘value‘ LONGTEXT,
PRIMARY KEY (‘id‘)

);

Die Tabelle parametersbean ist ein zeitweiliger Speicherort für die eingegebenen Daten
in der Webservicekonzept-basierten Verwaltungsplattform. Die darin gespeicherten Daten
bzw. die aufgerufene Operation und die eingegebenen Parameterwerten für jede eindeutige
Konstruktionsinstanz werden in ein entsprechend identifiziertes XML-Dokument strukturiert
transformiert. Die assoziierte Daten in dieser Tabelle werden dann wieder gelöscht. Es
ist auch für den unabhängigen gleichzeitig Zugriff der verteilten Benutzer nacheinander
gesorgt.

50



4.2. Web Client

Die in der Datenbank benötigen Tabellen werden in der Anwendung als persistente Entity
Typen durch den Hibernate EntityManager API Version 3.5 zusammen mit den Hibernate
Annotations verwaltet und operiertet. Diese API beinhaltet einen Operationsset für die
transaktionale Manipulation auf der persistenten Datenobjekte, z.B das Erstellen einer
neuen persistenten Objektinstanz, das Modifizieren Objektinstanz, das Entfernen und das
Durchführen einer Objektanfrage.

4.2. Web Client

In diesem Abschnitt wird die praktische Entwicklung eines webbasierten Benutzerinterface
und die logische Funktionen in der Anwendungsschicht erläutert. Das Benutzerinterface in
der Verwaltungsplattform ist in vier Webinterfaces unterteilt. Eine detaillierte Erklärung für
jedes gegliederte Webinterface wird im Folgenden schrittweise gegeben.

4.2.1. View Services Manager

Das View Services Manager Webinterface ist das zentralen User-Interface der Verwaltungs-
plattform. Es wird wiederum in die verschiedenen Subfenstern bzw. Subfunktionen unterteilt.
Die komplette Benutzerfunktionen werden sich innerhalb dieses Workbereich befinden. Das
Webinterface ist für den Benutzer anschaulich und selbst erklärbar. Bevor die Anwendung
gestartet wird, ist eine Initialisierung für eine neue Designsession erforderlich. In der Abbil-
dung 4.1 ist die Designsession in dem View Services Manager schematisch dargestellt.

Deploy in 
Apache ODE 

BPEL-Prozess 
(Bereitgestellt als 

Web Service)

Step 1:
Select Operation(s)

St
ep

 2
: D

ep
lo

y

Step 3: Invoke

Abbildung 4.1.: Schematische Darstellung vom View Services Manager

51



4.2. Web Client

Eine tabellarische Auflistung der verfügbare View Services sowie die rechte Tabelle „SER-
VICES LIST” in der obigen Abbildung 4.1 befinden sich im Mittelbereich des Webclients.
Beim Rendering der JSP-Seite werden die Datensätzen, wie die umgesetzten Services und
die darin unterstützten Operationen bzw. die entsprechenden Parametern aus der Daten-
banktabelle servicesbean abgeholt und in dem Subfenster für die Anzeige der Servicebasis
aufgelistet. Durch den Klick auf den Kommandolink „parameters” in der Zeile der Service-
list wird das Webinterface für die Datenabgaben des ausgewählten Services generiert und
navigiert.

Nach jedem Service Auswählen und der Datenabgaben werden der aufgerufene Service in
dem unteren Subfenster für die Anzeige der ausgewählten Service-Sequenz hinzugefügt
und sequenziell aufgelistet, wie die linke Tabelle in der Abbildung 4.1. Es wird dabei ein
flexibler Positionswechsel und Modifizierung der Servicedaten unterstützt. Durch den Klick
auf den Kommandolink „Deploy the sequence process” wird die Sequenz in ein kompaktes
BPEL-Projekt umgewandelt und in den Apache ODE auf der Serverseite bereitgestellt.

In dem links positionierten, kleinen Fenster für den Statuscheck des BPEL-Prozesses werden
zwei Kommandolinks angeboten. Der Benutzer klickt auf den Kommandolink „Check
Status”, um den aktuellen Zustand des Prozesses zu befragen. Dabei wird in manchen
Fälle z.B, bei zu vielen Benutzerabfragen, der deployte Prozess langsamer verarbeitet und
verzögert. Nach einem aktivem Signal klickt der Benutzer auf den Kommandolink „Invoke
the activ process” und die Durchführung der Prozesstransformation wird automatisch
erzeugt.

Das Ergebnis wird dann in dem Textfenster textuell angezeigt und das ganze assoziierte
BPEL-Projekt wird zum Herunterladen bereitgestellt. Ein Screenshot vom View Services
Manager Webinterface wird in der Abbildung A.4 im Anhang gefunden. Die detaillierte
Erklärung der grundlegenden Implementierungstechnik und die logischen Funktionen für
das View Services Manager Webinterface werden in dem Abschnitt 4.4 schrittweise weiter
diskutiert.

4.2.2. View Transformator

Ein View Transformator Webinterface soll die Arbeit der Durchführung einer Prozess-
transformation erleichtern. Es ersetzt den Aufwand bei der Anwendung des durch Java
implementierten konsolenbasierten Programmpaket. Eine Prozesstransformation wird relativ
einfach durchgeführt durch das Hochladen der beiden beteiligten Dokumente, also des
BPEL-Prozess und des Rules Dokument. Es werden darin auch die zwei bereits bestehen-
den View-Funktionen Fokus-Funktion und Teilprozesseliminierung aus der Arbeit [Cai10]
implementiert.

4.2.3. Rules Designer

Ein interaktives webbasiertes Editor-Interface wird erstellt für das flexible Erzeugen eines
Rules Dokument. Der Benutzer kann das Rules Dokument individuell durch das Klicken

52



4.2. Web Client

auf die Tasten komfortabel erstellen. In dem Benutzerfenster werden der vordefinierte
Funktionsbutton wie folgt bereitgestellt. Nach der Initialisierung eines Rules Dokuments wird
das Wurzelelement „<tns:rules>” und die entsprechenden Attributen wie in die Auflistung
4.2 anzeigt automatisch vor erzeugt.

Listing 4.2 Das vorerst initialisierte Rules Dokument
<?xml version="1.0" encoding="UTF-8"?>
<tns:rules xmlns:tns="http://www.eclipse.org/bpel/views/rules"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.eclipse.org/bpel/views/rules Rules.xsd"
name="rulesGenerator">

</tns:rules>

Parametrisierung

Es wird zu erst die erforderliche allgemeine Parametrisierung für das Aggregat und die
Bereinigung des Prozesses nach der Prozesstransformation spezifiziert. Nach der Selektion
des entsprechenden booleschen Wertes werden die Angaben durch den Klick auf den Button
„set parameters” bestätigt.

Rule hinzufügen

Durch den Klick auf den Button „add a rule” wird eine Anweisung neben dem eingetipptem
eindeutigem Name in das Rules Dokument erstellt. Es wird ein funktionales aber unvollstän-
diges Dokument (Ohne eine genaue Angabe der gewünschten Aktionen und Zielnavigation
bzw. Zielselektion) in der Auflistung 4.3 angezeigt. Danach werden die Parametrisierung
und eine Testanweisung für die Prozesstransformation eingegebenen.

Listing 4.3 Das Rules Dokument nach der Parametrisierung und dem Hinzufügen einer
Anweisung
<?xml version="1.0" encoding="UTF-8"?>
<tns:rules xmlns:tns="http://www.eclipse.org/bpel/views/rules"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="rulesGenerator"
xsi:schemaLocation="http://www.eclipse.org/bpel/views/rules Rules.xsd">

<parameter>
<aggregate value="true"/>
<cleaning value="true"/>

</parameter>
<rule apply="true" name="test">

<actions/>
<targets/>

</rule>
</tns:rules>

53



4.2. Web Client

Rule entfernen

Eine Aktion für die Entfernung einer Anweisung wird nützlich, wenn man das erstellte
Rules Dokument modifizieren will. Durch die Angabe eines bereits stehenden und eindeutig
identifizierten Name wird darin die entsprechende Anweisung komplett ausgelöscht.

Rule wählen

Eine Aktion für die Selektion einer Anweisung ist auch benutzbar, wenn man nur ein paar
Details in einer Anweisung modifizieren will. Durch die Angabe eines bereits bestehenden
und eindeutig identifizierten Name wird darin die entsprechende Anweisung ausgewählt.
Eine detaillierte Modifikation wird durch die folgende Aktion gestützt.

Aktion hinzufügen und entfernen

Die entworfen fünf Aktionen „<actionOmit>”, „<actionOpaque>”, „<actionSetAttributeTo>”,
„<addPreserve>” und „<addTag>” werden ausgewählt, um die erstellte Anweisung und
deren Funktionalität zu vervollständigen. Durch den Klick auf die Tasten und die Angabe
von den entsprechenden Parameterwerten können die Aktionen in die bestimmte Anweisung
hinzugefügt oder entferntet werden.

Zielobjektselektion hinzufügen und entfernen

Die drei Basisverfahren zur Zielobjektnavigation „<tag>”, „<attribute>” und „<type>” wer-
den unterstützt. Durch den Klick auf die Tasten und die Angabe von den entsprechenden
Parameterwerten können die Ausdrücke für die Zielobjektselektion zu einer bestimmten
Anweisung sequenziell hinzugefügt oder entferntet werden. Um die rekursive logische
Kombination durch „<and>”, „<or>” und „<not>” zu implementieren, wurde ein Mecha-
nismus entwickelt, welcher eindasen Aufmachen und Schließen eines logische Operator
realisiert. Damit wird ein beliebig geschachtelter logischer Ausdruck korrekt und strukturiert
erstellt. In der Auflistung 4.4 wird ein Testbeispiel eines Logikausdrucks angezeigt. Darin
wird jeder logischer Operator mit einem eindeutigen Namen und der Status-Signalisierung
gekennzeichnet. Eine neu hinzugefügte Zielobjektnavigation wird in den am tiefsten eröffne-
ten Logikoperator bzw. in dieser Situation in den „<not>” Operator eingefügt. Von dieser
Erweiterung wird die vorhandene Prozesstransformation nicht beeinflusst.

54



4.2. Web Client

Listing 4.4 Die mehrfach geschachtelten Logikausdrücke in dem Rules Dokument
<?xml version="1.0" encoding="UTF-8"?>
<tns:rules xmlns:tns="http://www.eclipse.org/bpel/views/rules"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="rulesGenerator"
xsi:schemaLocation="http://www.eclipse.org/bpel/views/rules Rules.xsd">

<parameter>
<aggregate value="true"/>
<cleaning value="true"/>

</parameter>
<rule apply="true" name="test">

<actions>
<actionOmit/>

</actions>
<targets>

<and id="1" status="open">
<tag tagName="Stuttgart"/>
<or id="2" status="closed">

<tag tagName="Ulm"/>
<tag tagName="Heidelberg"/>

</or>
<not id="3" status="open">

<tag tagName="Mannheim"/>
</not>

</and>
</targets>

</rule>
</tns:rules>

4.2.4. View Administrator

In der Verwaltungsplattform wird ein User-Interface für den Administrator erstellt. Darin
werden alle gespeicherten Prozesstransformationen auf dem Datenbanktabelle transformlist
in den Webclient aufgelistet. Der Administrator kann die detaillierten Informationen über den
abgegebenen BPEL-Prozess, das Rules Dokument und die resultierte Prozesssicht von jeder
Transformation lesen und analysieren. Um diese Funktion in dem Interface zu realisieren,
wird dafür das JSF 2.0 Frameworks angewendet. Eine Kollektion transformationList vom
managt JavaBean transformationBean wird beim Rendering der JSP-Seite alle gespeicherten
Instanzen durch eine Getter Methode sammeln. Durch die Anwendung der JSF-Tag dataTable
werden alle abgeholten Datensätzen aus der Kollektion tabellarisch angezeigt. Das Tag-
Element dataScroller in der JSF Komponente Tomahawk aus dem Apache MyFaces Projekt
unterstützt eine Navigation in Datenkomponenten bzw. in einer Datentabelle durch Scrollen.
Die genaue Informationen wird dann durch den navigierten Kommandolink „Show Details”
abgefragt.

55



4.3. Prozess Transformation Service

4.3. Prozess Transformation Service

In diesem Abschnitt werden der in der Arbeit implementierte Transformation Service für das
BPEL-basierte Prozessmodell vorgestellt. Die technischen Details jeder Operation werden
schematische erklärt und alle umgesetzten Transformation Services sollen eine Funktionsbase
für die Verwaltungsplattform schaffen.

4.3.1. Operationen

Es wird in der Arbeit die grundlegenden Elementaroperationen und die bereits entwickelte
View-Funktionen als verfügbare Webservices für die Prozesstransformation umgesetzt. In den
Tabellen 4.1 und 4.2 werden alle aufrufbaren Operation aufgelistet und das entsprechende
Anwendungsszenario werden kurz zusammengefasst.

Operation Beschreibung

activityAddTagByName Tag-Information addieren nach dem Name
activityAddTagByTag Tag-Information addieren nach der Tag-Infos
activityAddTagByType Tag-Information addieren nach der Type
activityOmitByName Aktivitätslöschung nach dem Name
activityOmitByTag Aktivitätslöschung nach der Tag-Infos
activityOmitByType Aktivitätslöschung nach der Type
activityOpaqueByName Undurchsichtig machen nach dem Name
activityOpaqueByTag Undurchsichtig machen nach der Tag-Infos
activityOpaqueByType Undurchsichtig machen nach der Type
activitySetAttrbuteToByName Attribute modifizieren nach dem Name
activitySetAttrbuteToByTag Attribute modifizieren nach der Tag-Infos
activitySetAttrbuteToByType Attribute modifizieren nach der Type
activitySetPreservedByName Aufbewahrt machen nach dem Name
activitySetPreservedByTag Aufbewahrt machen nach der Tag-Infos
activitySetPreservedByType Aufbewahrt machen nach der Type
processInput Prozess hochladen
viewClean Der Ergebnisprozess bereinigen

Tabelle 4.1.: Die als Webservices implementierte Elementaroperationen

56



4.4. Services Anwendung und Verwaltung

Operation Beschreibung

processViewFocusOnActivty Fokussieren in den Prozess
processViewRemoveFragment Teilprozesseliminieren
transformByRules Prozesstransformation zum gegebenen Rules Dokument

Tabelle 4.2.: Die als Webservices implementierte View-Funktionen

Eine logische Kombination durch „and”, „or” und „not” für die Zielobjektselektion in der
Operation werden im aktuellen Stand dieser Arbeit nicht unterstützt. Es besteht noch diese
Erweiterungsmöglichkeit, um die Zielobjektnavigation in der Operation zu vervollständi-
gen.

4.3.2. WSDL

Alle aufrufbaren Operationen im Transformation Service werden in einem WSDL Dokument
beschrieben. Dieses Dokument wird erstellt z.B durch den Aufruf unter diesem Weblink 1

nach einer erfolgreichen Anwendungsinstallation auf dem Tomcat Webserver. Das WSDL
Dokument ist eines der relevanten Artefakte für den kompletten Konstruktionsablauf in der
Webservicekonzept-basierten Verwaltungsplattform.

4.4. Services Anwendung und Verwaltung

In diesem Abschnitt werden die technischen Implementierungsdetails und die grundlegen-
den Logikfunktionen für das View Services Manager Webinterface vorgestellt. Das Kerngebiet
der Arbeit liegt bei der Implementierung des View Services Managers. Es richtet sich an einen
Webservices-basiertes Anwendungsaspekt für die Transformation des Prozessmodelles

4.4.1. Bereitstellung von Services

Die in den vorherigen Abschnitten erklärten Services bzw. Operationen werden in der
Verwaltungsplattform als eine zentrale Funktionsbasis bereitgestellt. Auf dem Anwendungs-
server wird ein spezieller Ordner unter dem Name „importedWSDL” für die Lagerung des
relevanten WSDL Dokumentes erstellt. Ein individuelles Hochladung eines gewünschten
externen WSDL Dokuments wird optional durch den Kommandolink „Services Import”
unterstützt. Es wird vorgenommen. Nach einer erfolgreich Installation wird das WSDL
Dokument „processViewService.wsdl” initiativ automatisch in die Lagerung gespeichert.
Beim erstmaligen Aufruf des View Services Managers ist die Servicelist des Webclients leer

1http://localhost:8080/processViewWebAnwendung/services/processViewService?wsdl

57



4.4. Services Anwendung und Verwaltung

und besitzt keine verfügbaren Operationen in der entsprechenden assoziierten Datenbank-
tabelle servicesbean. Druch Klick auf den Kommandolink „Services list update” wird das
Durchsuchen von allen verfügbaren Services und darin liegenden Operationen durchgeführt.
Es werden die Services und Operationen in der Datenbanktabelle vollständig gespeichert .
Der durchgeführte Verarbeitungsablauf ist wie folgt gegliedert.

Schritt 1: Dokument finden

Die Methode servicesListUpdate() durchsucht die XML-basierten Dokumente in dem Ord-
ner „importedWSDL” rekursiv. Wenn der Dokumentname mit „.wsdl” endet, wird die
DOM-Baumstruktur in den Zwischenspeichern analysiert und extrahiert. Die späteren Ar-
beitsschritte basieren auf diesem DOM-Baum.

Schritt 2: Service finden

Die Methode findServiceName() wird jeweils nach der jeweils Erstellung des DOM-Baum
ausgelöst. Sie zielt auf das XML-Element „<wsdl:service>” ab und holt den Wert aus dem
Attribut „name”. Der Servicename wird dann assoziiert mit der Spalte „name” in der
Datenbanktabelle sevicesbean .

Schritt 3: Operation finden

Es wird in dem WSDl Dokument eine Reihe von Operationen beschrieben. Die Methode
findeServiceOperation() durchsucht die allen XML-Elemente „<wsdl:operation>” innerhalb
des Elements „<wsdl:portType>” und extrahiert den Wert aus dem Attribut „name”. Der
Operationsname wird in der Spalte „operation” der Tabelle gespeichert.

Schritt 4: Eingabeparametern finden

Nach jeder erfolgreichen Registrierung einer Operation müssen die entsprechenden Pa-
rametern herausgefunden werden. Unter dem Element „<wsdl:operation>” werden die
Nachrichtenformate für die Eingabe und Ausgabe definiert. Die Methode passt die verfüg-
baren Elemente „<wsdl:message>” im WSDL Dokument mit den Werten in dem Attribut
„message” in den Elementen „<wsdl:input>” an. In dem zusammengepassten Element
„<wsdl:message>” werden das Unterelement „<wsdl:part>” und dessen Attribut „element”
weiter analysiert. In dem WSDL Dokument werden die XML Schema Elemente für jeden
Datentypen spezifiziert. Die Methode findet die Datenstruktur und den entsprechenden
Datentyp für jeden Eingabeparameter heraus. Solche Informationen werden dann in der
Spalte „parameters” der Datenbanktabelle sevicesbean textuell registriert.

58



4.4. Services Anwendung und Verwaltung

Schritt 5: Ausgabeparametern finden

Die Datenstruktur und die vordefinierten Datentypen für die Ausgabeparameter in
„<wsdl:output>” für jede Operation wird dann wie im oben beschriebenen Verfahren durch-
sucht. Die Information, wie Ausgabeparameter und Datentyp werden dann in der Spalte
„output” gespeichert. Es wird in der Arbeit in den meisten Fällen die Zeichenketten „retrun
(xs:string)” in der Spalte gespeichert. Neben den Parameterinformation werden die Nach-
richtennamen, wie die Werte aus dem Attribut „message” der Elemente „<wsdl:input>” und
„<wsdl:output>” auch genutzt. Sie werden in den Spalten „request” und „response” in der
Tabelle für jede assoziierte Operation registriert. Solche Informationen werden unverzichtbar
verlangt im späteren Anwendungskontext.

Schritt 6: Datensatz speichern

Um den Datensatz von jeder Operation in den Service zu speichern, wird in der Arbeit das
Spring Framework und Hibernate Framwork zusammen angewendet. Es wird eine JavaBean
„servicesBean” erstellt, in der alle relevanten Operationsinformationen als Eigenschaften defi-
niert werden. Durch ein paar Setter-Methoden und die Funktion „EntityManager.persist()”
wird der Datensatz in der Datenbanktabelle sevicesbean gespeichert. Nach frm alle beschrie-
benen Arbeitsschritte ausgeführt wurden, wird eine vollständige Datenbanktabelle erstellt
und als Servicebase für das Webinterface „Service Auflisten” bereitgestellt.

4.4.2. Kombination von Services

Vor der Auswahl des bereitgestellten Services wird eine neue und eindeutige Identifizierung
für die Konstruktion initialisiert. Der Benutzer klickt auf „Click here for initialize a new
view design”, dann wird eine Instanz-ID mit dem Name des „viewDesign” und mit einem
exakten aktuellen Zeitstempel erzeugt. Nach einer sequenziellen Auswahl der Operation
resultiert eine Services-Sequenz. In der Arbeit wird dieser Vorgang in einem identifizierbaren
XML-Dokument unter dem Namen der entsprechenden Instanz-ID repräsentiert.

Operation wählen

Durch den Klick auf den Kommandolink „parameters” wird die entsprechende Operati-
on ausgewählt und der in der Spalte „parameters” assoziierten Datensatz in der Tabelle
sevicesbean wird abgeholt. Die gespeicherten Zeichenketten werden dann analysiert. Die
Anwendung extrahiert die Parameter und erzeugt die Datensätzen in den Datenbanktabelle
paramertsbean ohne die entsprechende Dateneintragung. Nach einer erfolgreiche Operati-
onsselektion wird auf das Webinterface für die Datenabgaben navigiert.

59



4.4. Services Anwendung und Verwaltung

Daten abgeben

Im Webinterface für die Datenabgabe wird eine Instanz-bezogene Tabelle wie in der Abbil-
dung 4.2 angezeigt. In der nun die Spalten „datatyp”, „value” und „previousServiceAsInput”
aus der Tabelle paramertsbean dargestellt sind. Die anderen Spalten werden automatisch
durch die assoziierte Information aus der Tabelle sevicesbean und der aktuellen Instanz-
Session gefüllt.

Abbildung 4.2.: Das Webinterface für die Datenabgabe

Es wird also angenommen, dass es bei der ersten Auswahl der Spalte „Set output of previous
service as input” nicht selektiert wird muss. Diese Spalte dient als Kombinationspunkt
zwischen den nacheinander ausgewählten Operationen. Eine boolesche Bewertung für
jede folgende Operation ist dringend erforderlich, um den Ergebnisprozess der vorherigen
Operation als eigenen Eingabeprozess zu bestimmen.

60



4.4. Services Anwendung und Verwaltung

Zwischendokument erzeugen

Durch den Klick auf den Button „Save the parameter inputs” nach der Datenabgabe wird
das Instanz-bezogene und eindeutig identifizierte XML-Dokument in dem spezialen Ordner
„inputData” in der Verwaltungsplattform erzeugt. Die Anwendung liest die Instanz-bezogene
Datensätzen aus der Tabelle paramertsbean und erzeugt das entsprechenden XML-basierte
Dokument. Die bezogenen Datensätze werden nach der Erzeugung des XML Dokuments
dann nicht weiter in der Tabelle paramertsbean gespeichert. In der Auflistung 4.5 wird ein
Beispiel des erzeugten XML-Dokuments angezeigt.

Listing 4.5 Das erzeugte XML Dokument nach der Operationsauswahl und Datenabgabe
<input name="viewDesign_20101211_194951105">

<service name="processViewService" operation="activityOmitByName" time="20101211_195346634">
<request name="activityOmitByNameRequest">

<process previous="false" type="string">
<!-- DruckereiWorkflow BPEL Process [Generated by the Eclipse BPEL Designer] -->
<!-- Date: Mon Nov 22 15:16:56 CET 2010 -->
<bpel:process name="DruckereiWorkflow"

targetNamespace="http://eclipse.org/bpel/sample"
suppressJoinFailure="yes"
xmlns:tns="http://eclipse.org/bpel/sample"
xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

---die detaillierte Prozessdefinition wird hier ausgelöscht.---

</bpel:process>
</process>
<activityName previous="false" type="string">Cutting</activityName>

</request>
<response name="activityOmitByNameResponse"/>

</service>

<service name="processViewService" operation="activityOpaqueByName"
time="20101211_195406863">

<request name="activityOpaqueByNameRequest">
<process previous="true" type="string"/>
<activityName previous="false" type="string">Binding</activityName>

</request>
<response name="activityOpaqueByNameResponse"/>

</service>

</input>

Zwischendokument modifizieren

Die in dem XML-Dokument repräsentierte Services-Sequenz wird in dem Webinterface
„Services Sequenz” tabellarisch angezeigt. Es werden darin ein paar Funktionen unterstützt,
um die eingelegte Sequenz und das assoziierte XML-Dokument leicht modifizieren und

61



4.4. Services Anwendung und Verwaltung

anpassen zu können. Dazu gehört z.B die eingetragenen Daten zu verändern, die aus-
gewählte Operation zu löschen und die zwei nebeneinander positionierten Operationen
auszuwechseln.

4.4.3. BPEL-Projekt Erzeugen und Deployment

In diesem Abschnitt wird die automatische Erzeugung des vollständigen BPEL-Projekts in
der Apache ODE beschrieben. Alle folgenden Arbeitsschritte sollen nach dem Klick auf den
Kommandolink „Deploy the sequenz process” nacheinander durchgeführt werden.

Schritt 1: BPEL Ordner erzeugen

Es wird zuerst ein Projektordner unter dem gleichen Name wie die eindeutig assoziierte
Instanz-ID erzeugt. Dieser Ordner liegt in dem deployten Apache ODE Pfad, wie „ode/WEB-
INF/processes”. Das vorhanden WSDL Dokument „processViewService.wsdl” aus dem
Ordner „importedWSDL” wird in den Projektordner kopiert. Die weiteren relevanten Arte-
fakte für ein vollständiges BPEL-Projekt werden dann generiert.

Schritt 2: BPEL-Prozess erzeugen

Der BPEL-Prozess für jede eindeutige Konstruktionsinstanz wird zusammen durch das
WSDL Dokument „processViewService.wsdl” und dem assoziierten Zwischendokument für
die Service-Sequenz in den Ordner „inputData” automatisch produziert. Dieser Arbeits-
vorgang wird in der Methode generateBPELFile() durchgeführt. Jede erforderliche Struktur,
wie die XML-Elemente in dem BPEL-Prozess werden nacheinander in einem vordefinierten
Prozessstil sequentiell generiert. In der Abbildung 4.3 ist der produzierte BPEL-Prozess für
die definierte Sequenz in der Auflistung 4.5 grafisch dargestellt.

Der Mechanismus für die Erzeugung des BPEL-Prozesses und des WSDL Dokuments sind
die Kernaufgabe in der Implementierungsphase. Das Implementierungskonzept basiert auf
der Spezifikationen von WS-BPEL Version 2.0 und WSDL Version 1.1 bei der Erstellung
solcher Artefakte. Die in dem Zwischendokument in Reihe definierten Operationsaufrufen
werden in die BPEL-Struktur „<bpel:flow>” umgesetzt. Jede aufgerufene Operation wird als
eine eindeutige identifizierte Aktivität „<bpel:invoke>” im BPEL-Prozess implementiert. Die
Parameterübergabe wird durch die ebenfalls eindeutig identifizierte Aktivität „<bpel:assign>”
realisiert.

62



4.4. Services Anwendung und Verwaltung

Abbildung 4.3.: Der erzeugter BPEL-Prozess für die Sequenz in der Auflistung 4.5

Schritt 3: WSDL Dokument erzeugen

Das spezifiziertes WSDL Dokument wird dann durch die Methode generateProcessWSDL()
aus einem vollständigen BPEL-Prozess produziert. Das erzeugte WSDL Dokument für die
Sequenz in der Auflistung 4.5 wird im Folgenden veranschaulicht.
basicstylebasicstyle

basicstylebasicstyle basicstyle<?xml version="1.0" encoding="UTF-8"?>
basicstylebasicstyle basicstyle<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
basicstylebasicstyle basicstylexmlns:ns1="http://processView.com" xmlns:p="http://www.w3.org/2001/XMLSchema"
basicstylebasicstyle basicstylexmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
basicstylebasicstyle basicstylexmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
basicstylebasicstyle basicstylexmlns:tns="http://www.processView.com/viewDesign_20101211_194951105"
basicstylebasicstyle basicstylename="viewDesign_20101211_194951105"
basicstylebasicstyle basicstyletargetNamespace="http://www.processView.com/viewDesign_20101211_194951105">
basicstylebasicstyle basicstyle<types>
basicstylebasicstyle basicstyle<schema xmlns="http://www.w3.org/2001/XMLSchema"
basicstylebasicstyle basicstyleattributeFormDefault="unqualified" elementFormDefault="qualified"
basicstylebasicstyle basicstyletargetNamespace="http://www.processView.com/viewDesign_20101211_194951105">
basicstylebasicstyle basicstyle<element name="viewDesign_20101211_194951105Request">
basicstylebasicstyle basicstyle<complexType>
basicstylebasicstyle basicstyle<sequence>

63



4.4. Services Anwendung und Verwaltung

basicstylebasicstyle basicstyle<element minOccurs="0" name="process_20101211_195346634"
basicstylebasicstyle basicstylenillable="true" type="string" />
basicstylebasicstyle basicstyle<element minOccurs="0" name="activityName_20101211_195346634"
basicstylebasicstyle basicstylenillable="true" type="string" />
basicstylebasicstyle basicstyle<element minOccurs="0" name="activityName_20101211_195406863"
basicstylebasicstyle basicstylenillable="true" type="string" />
basicstylebasicstyle basicstyle</sequence>
basicstylebasicstyle basicstyle</complexType>
basicstylebasicstyle basicstyle</element>
basicstylebasicstyle basicstyle<element name="viewDesign_20101211_194951105Response">
basicstylebasicstyle basicstyle<complexType>
basicstylebasicstyle basicstyle<sequence>
basicstylebasicstyle basicstyle<element minOccurs="0" name="result" nillable="true" type="string" />
basicstylebasicstyle basicstyle</sequence>
basicstylebasicstyle basicstyle</complexType>
basicstylebasicstyle basicstyle</element>
basicstylebasicstyle basicstyle</schema>
basicstylebasicstyle basicstyle</types>
basicstylebasicstyle basicstyle<import location="processViewService.wsdl" namespace="http://processView.com" />
basicstylebasicstyle basicstyle<plnk:partnerLinkType
basicstylebasicstyle basicstylename="processViewService-20101211195556671-activityOmitByNamePartnerLinkType">
basicstylebasicstyle basicstyle<plnk:role
basicstylebasicstyle basicstylename="processViewService-20101211195556671-activityOmitByNameProvider"
basicstylebasicstyle basicstyleportType="ns1:processViewServicePortType">
basicstylebasicstyle basicstyle</plnk:role>
basicstylebasicstyle basicstyle</plnk:partnerLinkType>
basicstylebasicstyle basicstyle<plnk:partnerLinkType
basicstylebasicstyle basicstylename="processViewService-20101211195556761-activityOpaqueByNamePartnerLinkType">
basicstylebasicstyle basicstyle<plnk:role
basicstylebasicstyle basicstylename="processViewService-20101211195556761-activityOpaqueByNameProvider"
basicstylebasicstyle basicstyleportType="ns1:processViewServicePortType">
basicstylebasicstyle basicstyle</plnk:role>
basicstylebasicstyle basicstyle</plnk:partnerLinkType>
basicstylebasicstyle basicstyle<message name="viewDesign_20101211_194951105RequestMessage">
basicstylebasicstyle basicstyle<part element="tns:viewDesign_20101211_194951105Request" name="payload" />
basicstylebasicstyle basicstyle</message>
basicstylebasicstyle basicstyle<message name="viewDesign_20101211_194951105ResponseMessage">
basicstylebasicstyle basicstyle<part element="tns:viewDesign_20101211_194951105Response" name="payload" />
basicstylebasicstyle basicstyle</message>
basicstylebasicstyle basicstyle<message
basicstylebasicstyle basicstylename="processViewService-20101211195556671-activityOmitByNameRequest">
basicstylebasicstyle basicstyle<part element="ns1:activityOmitByName" name="parameters" />
basicstylebasicstyle basicstyle</message>
basicstylebasicstyle basicstyle<message
basicstylebasicstyle basicstylename="processViewService-20101211195556671-activityOmitByNameResponse">
basicstylebasicstyle basicstyle<part element="ns1:activityOmitByNameResponse" name="parameters" />
basicstylebasicstyle basicstyle</message>
basicstylebasicstyle basicstyle<message
basicstylebasicstyle basicstylename="processViewService-20101211195556761-activityOpaqueByNameRequest">
basicstylebasicstyle basicstyle<part element="ns1:activityOpaqueByName" name="parameters" />
basicstylebasicstyle basicstyle</message>
basicstylebasicstyle basicstyle<message
basicstylebasicstyle basicstylename="processViewService-20101211195556761-activityOpaqueByNameResponse">
basicstylebasicstyle basicstyle<part element="ns1:activityOpaqueByNameResponse" name="parameters" />
basicstylebasicstyle basicstyle</message>

64



4.4. Services Anwendung und Verwaltung

basicstylebasicstyle basicstyle<portType name="viewDesign_20101211_194951105">
basicstylebasicstyle basicstyle<operation name="process">
basicstylebasicstyle basicstyle<input message="tns:viewDesign_20101211_194951105RequestMessage" />
basicstylebasicstyle basicstyle<output message="tns:viewDesign_20101211_194951105ResponseMessage" />
basicstylebasicstyle basicstyle</operation>
basicstylebasicstyle basicstyle</portType>
basicstylebasicstyle basicstyle<plnk:partnerLinkType name="viewDesign_20101211_194951105">
basicstylebasicstyle basicstyle<plnk:role name="viewDesign_20101211_194951105Provider"
basicstylebasicstyle basicstyleportType="tns:viewDesign_20101211_194951105" />
basicstylebasicstyle basicstyle</plnk:partnerLinkType>
basicstylebasicstyle basicstyle<binding name="viewDesign_20101211_194951105Binding"
basicstylebasicstyle basicstyletype="tns:viewDesign_20101211_194951105">
basicstylebasicstyle basicstyle<soap:binding style="document"
basicstylebasicstyle basicstyletransport="http://schemas.xmlsoap.org/soap/http" />
basicstylebasicstyle basicstyle<operation name="process">
basicstylebasicstyle basicstyle<soap:operation soapAction="http://eclipse.org/bpel/sample/process" />
basicstylebasicstyle basicstyle<input>
basicstylebasicstyle basicstyle<soap:body use="literal" />
basicstylebasicstyle basicstyle</input>
basicstylebasicstyle basicstyle<output>
basicstylebasicstyle basicstyle<soap:body use="literal" />
basicstylebasicstyle basicstyle</output>
basicstylebasicstyle basicstyle</operation>
basicstylebasicstyle basicstyle</binding>
basicstylebasicstyle basicstyle<service name="viewDesign_20101211_194951105">
basicstylebasicstyle basicstyle<port binding="tns:viewDesign_20101211_194951105Binding"
basicstylebasicstyle basicstylename="viewDesign_20101211_194951105Port">
basicstylebasicstyle basicstyle<soap:address
basicstylebasicstyle basicstylelocation="http://localhost:8080/ode/processes/viewDesign_20101211_194951105" />
basicstylebasicstyle basicstyle</port>
basicstylebasicstyle basicstyle</service>
basicstylebasicstyle basicstyle</definitions>
basicstylebasicstyle

Schritt 4: deploy.xml erzeugen

In der Methode generateDeployXML() wird das XML Dokument „deploy.xml” automatisch
erstellt. Die relevanten Elemente sind hier „<provide>”, „<invoke>” und das entsprechende
Unterelement „<service>”.

65



4.4. Services Anwendung und Verwaltung

Listing 4.6 Das erzeugte deploy.xml Dokument für die Sequenz in der Auflistung 4.5
basicstylebasicstyle

basicstylebasicstyle basicstyle<?xml version="1.0" encoding="UTF-8"?>
basicstylebasicstyle basicstyle<deploy xmlns="http://www.apache.org/ode/schemas/dd/2007/03"
basicstylebasicstyle basicstylexmlns:ns1="http://processView.com" xmlns:sample="http://eclipse.org/bpel/sample"
basicstylebasicstyle basicstylexmlns:tns="http://www.processView.com/viewDesign_20101211_194951105">
basicstylebasicstyle basicstyle<process name="tns:viewDesign_20101211_194951105">
basicstylebasicstyle basicstyle<active>true</active>
basicstylebasicstyle basicstyle<retired>false</retired>
basicstylebasicstyle basicstyle<process-events generate="all"/>
basicstylebasicstyle basicstyle<provide partnerLink="client">
basicstylebasicstyle basicstyle<service name="tns:viewDesign_20101211_194951105"
basicstylebasicstyle basicstyleport="viewDesign_20101211_194951105Port"/>
basicstylebasicstyle basicstyle</provide>
basicstylebasicstyle basicstyle<invoke
basicstylebasicstyle basicstylepartnerLink="processViewService-20101211195556671-activityOmitByNamePartnerLink">
basicstylebasicstyle basicstyle<service name="ns1:processViewService" port="processViewServiceHttpSoap11Endpoint"/>
basicstylebasicstyle basicstyle</invoke>
basicstylebasicstyle basicstyle<invoke
basicstylebasicstyle basicstylepartnerLink="processViewService-20101211195556761-activityOpaqueByNamePartnerLink">
basicstylebasicstyle basicstyle<service name="ns1:processViewService" port="processViewServiceHttpSoap11Endpoint"/>
basicstylebasicstyle basicstyle</invoke>
basicstylebasicstyle basicstyle</process>
basicstylebasicstyle basicstyle</deploy>
basicstylebasicstyle

In diese Methode werden die assoziierten Servicenamen und Port in dem WSDL Dokument
„processViewService.wsdl” herausgefunden. Die aufgerufenen „partnerLink” werden aus
dem generierten BPEL-Prozess unter dem XML Element „<bpel:partnerLinks>” automatisch
extrahiert.

Schritt 5: BPEL-Prozess kompilieren

Apache ODE erkennt das neue generierte BPEL-Projekt selbständig. Der ODE Server prüft
den BPEL-Prozess syntaktisch und semantisch und kompiliert ihn. Es wird dann eine
CBP-Datei in dem BPEL-Projekt erfolgreich erzeugt.

4.4.4. BPEL-Prozess Ausführen

In der letzte Phase wird der deployte BPEL-Prozess als Webservices aufgerufen. Die abgegebe-
ne Daten sowie der Geschäftsprozess und die Parameter werden vom Prozess Transformation
Service verarbeitet. Natürlich werden die kompletten Arbeitsschritte voll automatisch auf
der Serverseite durchgeführt. Der Benutzer muss nur den Status abfragen und klickt auf den
Kommandolink „Invoke the active process”, um diesen Vorgang auszulösen. Die relevante
Arbeiten sind hier die Erzeugung einer absendbaren SOAP-Nachricht aus dem Zwischendo-
kument und die Verarbeitung der Antwort. Dieser Abschnitt bezieht sich hauptsächlich auf
die Implementierung eines komplexen Webservices-Klient.

66



4.4. Services Anwendung und Verwaltung

Schritt 1: Status checken

Apache ODE bietet eine Prozess Management API an, welche die auf den deployten BPEL-
Prozess und erzeugten Prozessinstanz bezogenen Managementfunktion unterstützt. Die
API wird als einen Webservice Interface implementiert. Darin werden sechs Operation
spezifiziert, mit denen deployte Prozesses und die Instanzen abgefragt und die Zustände im
Apache ODE manipuliert werden können. Das WSDL Dokument der Prozess Management
API kurz „pmapi.wsdl” können unter diesen Weblinks 2 gefunden werden. Es wird in der
Arbeit die Operation „listProcesses” angewendet, um die detaillierte Information über einen
spezifizierten BPEL-Prozess durch eine Prozessnamensfilterung abzufragen. Die erzeugte
SOAP-Nachricht wird in der Auflistung 4.7 angezeigt.

Listing 4.7 Die erzeugte Abfragenachricht zur Apache ODE Prozess Management API
basicstylebasicstyle

basicstylebasicstyle basicstyle
basicstylebasicstyle basicstyle<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
basicstylebasicstyle basicstylexmlns:pmap="http://www.apache.org/ode/pmapi">
basicstylebasicstyle basicstyle<soap:Header/>
basicstylebasicstyle basicstyle<soap:Body>
basicstylebasicstyle basicstyle<pmap:listProcesses>
basicstylebasicstyle basicstyle<filter>name=viewDesign_20101212_160941250*</filter>
basicstylebasicstyle basicstyle</pmap:listProcesses>
basicstylebasicstyle basicstyle</soap:Body>
basicstylebasicstyle basicstyle</soap:Envelope>
basicstylebasicstyle

Die detaillierte Information vom deploytem BPEL-Prozesses sind in der folgenden Auflis-
tung ausführlich dargestellt. Das Programm sucht die aktuelle Konstruktionsinstanz bzw.
die angepasste Prozess-ID „<ns:pid>” heraus. Der Prozesszustand wird in dem Element
„<ns:status>” angezeigt, z.B als ACTIVE signalisiert. Dieser komplette Serviceaufruf und die
Antwortverarbeitung werden in der Methode statusCheck() implementiert.
basicstylebasicstyle

basicstylebasicstyle basicstyle<soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
basicstylebasicstyle basicstyle<soapenv:Body>
basicstylebasicstyle basicstyle<axis2ns2:listProcessesResponse xmlns:axis2ns2="http://www.apache.org/ode/pmapi">
basicstylebasicstyle basicstyle<process-info-list>
basicstylebasicstyle basicstyle<ns:process-info xmlns:ns="http://www.apache.org/ode/pmapi/types/2006/08/02/">
basicstylebasicstyle basicstyle<ns:pid>
basicstylebasicstyle basicstyle{http://www.processView.com/viewDesign_20101212_160941250}viewDesign_20101212_160941250-10
basicstylebasicstyle basicstyle</ns:pid>
basicstylebasicstyle basicstyle<ns:status>ACTIVE</ns:status>
basicstylebasicstyle basicstyle<ns:version>10</ns:version>
basicstylebasicstyle basicstyle<ns:definition-info>
basicstylebasicstyle basicstyle<ns:process-name
basicstylebasicstyle basicstylexmlns:view="http://www.processView.com/viewDesign_20101212_160941250">
basicstylebasicstyle basicstyleview:viewDesign_20101212_160941250
basicstylebasicstyle basicstyle</ns:process-name>
basicstylebasicstyle basicstyle</ns:definition-info>

2http://svn.apache.org/repos/asf/ode/trunk/axis2/src/main/wsdl/pmapi.wsdl

67



4.4. Services Anwendung und Verwaltung

basicstylebasicstyle basicstyle<ns:deployment-info>
basicstylebasicstyle basicstyle<ns:package>viewDesign_20101212_160941250</ns:package>
basicstylebasicstyle basicstyle<ns:document>viewDesign_20101212_160941250.bpel</ns:document>
basicstylebasicstyle basicstyle<ns:deploy-date>2010-12-12T16:32:35.687+01:00</ns:deploy-date>
basicstylebasicstyle basicstyle<ns:deployer/>
basicstylebasicstyle basicstyle</ns:deployment-info>
basicstylebasicstyle basicstyle<ns:instance-summary>
basicstylebasicstyle basicstyle<ns:instances state="ACTIVE" count="0"/>
basicstylebasicstyle basicstyle<ns:instances state="COMPLETED" count="0"/>
basicstylebasicstyle basicstyle<ns:instances state="ERROR" count="0"/>
basicstylebasicstyle basicstyle<ns:instances state="FAILED" count="0"/>
basicstylebasicstyle basicstyle<ns:instances state="SUSPENDED" count="0"/>
basicstylebasicstyle basicstyle<ns:instances state="TERMINATED" count="0"/>
basicstylebasicstyle basicstyle</ns:instance-summary>
basicstylebasicstyle basicstyle<ns:properties/>
basicstylebasicstyle basicstyle<ns:endpoints/>
basicstylebasicstyle basicstyle<ns:documents>
basicstylebasicstyle basicstyle<ns:document>
basicstylebasicstyle basicstyle<ns:name>processViewService.wsdl</ns:name>
basicstylebasicstyle basicstyle<ns:type>http://schemas.xmlsoap.org/wsdl/</ns:type>
basicstylebasicstyle basicstyle<ns:source>file:/C:/Dokumente und
basicstylebasicstyle basicstyleEinstellungen/cai/Desktop/apache-tomcat-6.0.26/
basicstylebasicstyle basicstylewebapps/ode/WEB-INF/processes/viewDesign_20101212_160941250/
basicstylebasicstyle basicstyleprocessViewService.wsdl
basicstylebasicstyle basicstyle</ns:source>
basicstylebasicstyle basicstyle</ns:document>
basicstylebasicstyle basicstyle<ns:document>
basicstylebasicstyle basicstyle<ns:name>viewDesign_20101212_160941250.bpel</ns:name>
basicstylebasicstyle basicstyle<ns:type>http://schemas.xmlsoap.org/ws/2004/03/business-process/</ns:type>
basicstylebasicstyle basicstyle<ns:source>file:/C:/Dokumente und
basicstylebasicstyle basicstyleEinstellungen/cai/Desktop/apache-tomcat-6.0.26/
basicstylebasicstyle basicstylewebapps/ode/WEB-INF/processes/viewDesign_20101212_160941250/
basicstylebasicstyle basicstyleviewDesign_20101212_160941250.bpel
basicstylebasicstyle basicstyle</ns:source>
basicstylebasicstyle basicstyle</ns:document>
basicstylebasicstyle basicstyle<ns:document>
basicstylebasicstyle basicstyle<ns:name>viewDesign_20101212_160941250.cbp</ns:name>
basicstylebasicstyle basicstyle<ns:type>http://www.fivesight.com/schemas/2005/12/19/CompiledBPEL</ns:type>
basicstylebasicstyle basicstyle<ns:source>file:/C:/Dokumente und
basicstylebasicstyle basicstyleEinstellungen/cai/Desktop/apache-tomcat-6.0.26/
basicstylebasicstyle basicstylewebapps/ode/WEB-INF/processes/viewDesign_20101212_160941250/
basicstylebasicstyle basicstyleviewDesign_20101212_160941250.cbp
basicstylebasicstyle basicstyle</ns:source>
basicstylebasicstyle basicstyle</ns:document>
basicstylebasicstyle basicstyle<ns:document>
basicstylebasicstyle basicstyle<ns:name>viewDesign_20101212_160941250.wsdl</ns:name>
basicstylebasicstyle basicstyle<ns:type>http://schemas.xmlsoap.org/wsdl/</ns:type>
basicstylebasicstyle basicstyle<ns:source>file:/C:/Dokumente und
basicstylebasicstyle basicstyleEinstellungen/cai/Desktop/apache-tomcat-6.0.26/
basicstylebasicstyle basicstylewebapps/ode/WEB-INF/processes/viewDesign_20101212_160941250/
basicstylebasicstyle basicstyleviewDesign_20101212_160941250.wsdl
basicstylebasicstyle basicstyle</ns:source>
basicstylebasicstyle basicstyle</ns:document>
basicstylebasicstyle basicstyle</ns:documents>
basicstylebasicstyle basicstyle</ns:process-info>

68



4.4. Services Anwendung und Verwaltung

basicstylebasicstyle basicstyle</process-info-list>
basicstylebasicstyle basicstyle</axis2ns2:listProcessesResponse>
basicstylebasicstyle basicstyle</soapenv:Body>
basicstylebasicstyle basicstyle</soapenv:Envelope>
basicstylebasicstyle

Schritt 2: SOAP-Nachrichten erzeugen

Nach dem aktivierten Signal wird der BPEL-Prozess als aufrufbarer Webservices bereit-
gestellt. Der Benutzer klickt auf den Kommandolink „Invoke the active process” und löst
diese Aktion aus. Das Programm erzeugt automatisch eine SOAP-Nachricht aus dem as-
soziierten Zwischendokument in dem Ordner „inputData”. Das WSDL Dokument in dem
BPEL-Projekt wird analysiert, die Variablen werden durchgesucht und als Input-Parameter
in die SOAP-Nachricht hinzugefügt. Dann wird die entsprechende Datenabgabe aus dem
Zwischendokument abgeholt und in die assoziierten Parametern als Wertzuweisung einge-
tragen.

Listing 4.8 Die erzeugte SOAP-Nachricht aus den Zwischendokument in der Auflistung 4.5
basicstylebasicstyle

basicstylebasicstyle basicstyle<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
basicstylebasicstyle basicstylexmlns:view="http://www.processView.com/viewDesign_20101211_194951105">
basicstylebasicstyle basicstyle<soap:Header/>
basicstylebasicstyle basicstyle<soap:Body>
basicstylebasicstyle basicstyle<view:viewDesign_20101211_194951105Request
basicstylebasicstyle basicstylexmlns:view="http://www.processView.com/viewDesign_20101211_194951105">
basicstylebasicstyle basicstyle<view:process_20101211_195346634>
basicstylebasicstyle basicstyle<!-- DruckereiWorkflow BPEL Process [Generated by the Eclipse BPEL Designer]
basicstylebasicstyle basicstyle-->
basicstylebasicstyle basicstyle<!-- Date: Mon Nov 22 15:16:56 CET 2010 -->
basicstylebasicstyle basicstyle<bpel:process name="DruckereiWorkflow"
basicstylebasicstyle basicstyletargetNamespace="http://eclipse.org/bpel/sample"
basicstylebasicstyle basicstylesuppressJoinFailure="yes"
basicstylebasicstyle basicstylexmlns:tns="http://eclipse.org/bpel/sample"
basicstylebasicstyle basicstylexmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable">
basicstylebasicstyle basicstyle
basicstylebasicstyle basicstyle---die detaillierte Prozessdefinition wird hier ausgelöscht.---
basicstylebasicstyle basicstyle
basicstylebasicstyle basicstyle</bpel:process>
basicstylebasicstyle basicstyle</view:process_20101211_195346634>
basicstylebasicstyle basicstyle<view:activityName_20101211_195346634>Cutting</view:activityName_20101211_195346634>
basicstylebasicstyle basicstyle<view:activityName_20101211_195406863>Binding</view:activityName_20101211_195406863>
basicstylebasicstyle basicstyle</view:viewDesign_20101211_194951105Request>
basicstylebasicstyle basicstyle</soap:Body>
basicstylebasicstyle basicstyle</soap:Envelope>
basicstylebasicstyle

Die obige SOAP-Nachricht wird automatisch zusammen aus dem WSDL Dokument in dem
BPEL-Projekt und dem assoziierten Zwischendokument in der Auflistung 4.5 generiert. Das

69



4.4. Services Anwendung und Verwaltung

Programm sendet diese SOAP-Nachricht zu dem BPEL-Prozess in der Apache ODE, in der
er als ein aufrufbarer Web Services kompiliert und bereitgestellt wird.

Schritt 3: Antworten abholen

Nach der erfolgreichen Transformation soll der Ergebnisprozess zurück geschickt werden.
Das Ergebnis in der SOAP-Antwort, wie in der Auflistung 4.9 wird dann extrahiert und in
dem Webinterface angezeigt. Es wird in der Arbeit die Fehlermeldung auch für den Benutzer
angezeigt, wenn der Fehler innerhalb der Prozesstransformation generiert wurde.

Listing 4.9 Die SOAP-Antwortnachricht zu der Auflistung 4.8
basicstylebasicstyle

basicstylebasicstyle basicstyle<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
basicstylebasicstyle basicstyle<soapenv:Body>
basicstylebasicstyle basicstyle<viewDesign_20101211_194951105Response
basicstylebasicstyle basicstylexmlns="http://www.processView.com/viewDesign_20101211_194951105">
basicstylebasicstyle basicstyle<tns:result xmlns:tns="http://www.processView.com/viewDesign_20101211_194951105">
basicstylebasicstyle basicstyle
basicstylebasicstyle basicstyle<!-- DruckereiWorkflow BPEL Process [Generated by the Eclipse BPEL Designer] -->
basicstylebasicstyle basicstyle<!-- Date: Mon Nov 22 15:16:56 CET 2010 -->
basicstylebasicstyle basicstyle<bpel:process name="DruckereiWorkflow"
basicstylebasicstyle basicstyletargetNamespace="http://eclipse.org/bpel/sample"
basicstylebasicstyle basicstylesuppressJoinFailure="yes"
basicstylebasicstyle basicstylexmlns:tns="http://eclipse.org/bpel/sample"
basicstylebasicstyle basicstylexmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable">
basicstylebasicstyle basicstyle
basicstylebasicstyle basicstyle---die detaillierte Prozessdefinition nach Transformation wird hier
basicstylebasicstyle basicstyleausgelöscht.---
basicstylebasicstyle basicstyle
basicstylebasicstyle basicstyle</bpel:process>
basicstylebasicstyle basicstyle
basicstylebasicstyle basicstyle</tns:result>
basicstylebasicstyle basicstyle</viewDesign_20101211_194951105Response>
basicstylebasicstyle basicstyle</soapenv:Body>
basicstylebasicstyle basicstyle</soapenv:Envelope>
basicstylebasicstyle

Schritt 4: BPEL-Projekt herunterladen

Das ganzes BPEL-Projekt wird durch den Klick auf den Kommandolink „Deployed process
download” heruntergeladen. Das Projekt und darin liegende Artefakte werden als ein
komplettes ZIP-File komprimiert.

70



4.5. Business Process View Template

4.5. Business Process View Template

In diesem Abschnitt wird die Prozess View Vorlage für eine höhere Anwendbarkeit vertieft
überlegt. Die Implementierbarkeit und technische Umsetzbarkeit werden ebenfalls getestet.
Es wird aber nur eine grobe Idee in dieser Arbeit vorgestellt.

Es wurde in der Praxisarbeit diese Unterstützung zu der Prozess View Vorlage implementiert.
Ein erstellter Prototyp der Prozess View Vorlage wird hier als einen benutzerdefinierte Elimi-
nierung eines kritischen Bereichs oder Pfads in einem Geschäftsprozess angewendet, wie in
der Abbildung 4.4 schematisch angezeigt. Es besteht eigentlich aus zwei Schritten in der Vor-
lage. In der Abbildung A.1 ist diese Vorlage als ein BPEL-Prozess grafisch dargestellt. Damit
können der Geschäftsprozess in einem Massenverfahren zu einer bestimmten Zielsetzung
hin transformiert werden. Der Benutzer gibt den Geschäftsprozess und die Parameter zu
einer flexibler Definition eines kritischen Pfads für den ersten Schritt „Focus on a subprocess”
ein. Der zweite Schritt „Remove the subprocess” wird folgend selbständig durchgeführt. Eine
anschauliches Testbeispiel wird in der Abbildungen A.2 und A.3 angezeigt. Darin werden
die geschäftlichen Tätigkeiten für die Definition eines Druckweiterverarbeitungsprozess in
einer Druckerei, wie der rötlich eingefärbten Bereich ausgelöscht.

Step 1: 

Focus on a 

subprocess

Step 2: 

Remove the 

subprocess

Abbildung 4.4.: Die grafische Darstellung dieser Prozess View Template und deren Prinzip

71



5. Zusammenfassung und Ausblick

In diesem Kapitel werden die Ergebnisse der Diplomarbeit kurz zusammengefasst und
mit der primären Zielsetzungen verglichen. Ein Blick in die Zukunft, die bestehenden
Verbesserungsmöglichkeiten und die betroffenen Probleme für die Business Prozess View
werden ebenfalls betrachtet und im Kontext der aktuellen Rahmenbedingung und dem
heutigen Technikstand für eine stärkere Anwendungskompetenz untersucht.

5.1. Zusammenfassung

Die Aufgabe in dieser Diplomarbeit ist die Entwicklung einer webbasierten Verwaltungsplatt-
form für die benutzerdefinierte Prozesstransformation und die komfortable Konstruktion
einer Sicht auf einen BPEL-Prozesses. Eine Applikation für die Prozesstransformation wurde
bereits erstellt. Diese kann nach der Eingabe des BPEL-Prozesses und der XML-basierten
Rulessprache über die Konsole das Prozessmodell transformieren. In der entworfenen Ver-
waltungsplattform wird diese Applikation integriert und ein benutzerfreundlicher Webclient
dafür entwickelt, welcher in die vier Webinterface sowie View Designer und Manager, View
Transformer, Rules Designer und View Administrator gegliedert ist. Die genutzten Frame-
works für die Entwicklung einer Webanwendung in Mehrschichtenarchitektur werden in der
Praxis umgesetzt und gegenseitig integriert.

Die elementarenn Operationen und die spezifizierten Funktionen für die Prozesstransforma-
tion werden in der Arbeit als aufrufbares Webservices Interface umgesetzt. Sie stellen eine
zentrale Funktionsbasis für das View Designer und Manager dar. Damit ist die individuelle
Konstruktion der Prozesstransformation implementierbar. Der Benutzer wählt die verfüg-
baren Operationen und kombiniert sie nacheinander. Die resultierende Sequenz wird zu
einem ausführbaren BPEL-Prozess umgewandelt. Dieser vordefinierter Verarbeitungspro-
zess mit den Konstruktionsinstanz-bezogene Daten wird auf der Serverseite automatisch
durchgeführt und das vollständige BPEL-Projekt wird zum Herunterladen bereitgestellt.

Die Webservice-basierte Konstruktion der benutzerdefinierten Prozesstransformation ist
das hauptsächliche Praxisergebnis der Diplomarbeit. Es wird in der Webapplikation als
Kernmodul betreut und bietet parallel eine höhere Erweiterbarkeit. Extern entwickelte
Prozess Transformation Services können in dieser Plattform durch Hochladen des entspre-
chendes WSDL Dokumentes integriert werden. Die vielfältig angebotenen Funktionalitäten
der Servicebasis werden dadurch verstärkt. Die konstruierte Services-Sequenz kann als
eine wiederverwendbare Prozess View Vorlage für eine spezifizierte Prozessabstraktion in
Rahmen eines Massenverfahrens wieder in die Plattform importiert werden.

72



5.2. Ausblick

5.2. Ausblick

Business Prozess View zeigt bereits seine große Kompetenz in der Geschäftsprozesstrans-
formation. Seine Fähigkeit zur Prozessabstraktion und zum Verbergen der kritischen In-
formationen, wie z.B der geschäftsdaten-bezogenem Aktivitätskontext oder die spezielle
Geschäftsregelung beinhaltetende Prozesssemantik in dem simulierten Geschäftsprozesses
wird weiterhin vervollständigt und ständig verbessert. Künftig soll die Anwendungsvision
in dem Gebiet der Business Prozess View weiter skaliert werden. Das Konzept der Pro-
zess View Vorlage wäre ein nützlicher Ausgangspunkt, in dem die umgesetzten einfachen
Transformation Services strukturell zusammengesetzt werden und damit ein eigener wie-
derverwendbarer Verarbeitungsmechanismus auf den Geschäftsprozess erstellt wird. Eine
betroffene Anforderung ist die technische Umsetzbarkeit solcher elementaren und effektiven
Operationsservices als grundsätzliche Bauelemente für die funktional stärkere Prozess View
Vorlage.

Daneben wäre die Ausführbarkeit des Ergebnisprozesses nach der Prozesstransformation
eine ausstehende Aufgabe. Im Verlauf der Diplomarbeit wurde diese Anforderung sowie
die Simulierbarkeit des abstrahierten Prozesses wegen der resultierenden Hochkomplexität
vernachlässigt. Dies bezieht sich weder auf die Prozessabstraktion noch auf die entsprechen-
den assoziierten Geschäftsdaten. Eine neue Lösung sollte dazu erstellt und implementiert
werden, um den abstrahierten Prozesses ebenfalls korrekt simulieren und analysieren zu
können.

73



Literaturverzeichnis

[AAA+
07] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford, Y. Goland,

A. Guízar, N. Kartha, et al. Web services business process execution language
version 2.0. OASIS Standard, 11, 2007. (Zitiert auf den Seiten 7 und 14)

[Ber10] E. Bernard. Hibernate Annotations Reference Guide 3.5.1-Final, 2010. URL
http://docs.jboss.org/hibernate/stable/annotations/reference/en/
pdf/hibernate_reference.pdf. (Zitiert auf Seite 26)

[BHM+
04] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, D. Orchard.

Web Services Architecture, W3C Working Group Note 11 February 2004. World
Wide Web Consortium, article available from: http://www. w3. org/TR/ws-arch, 2004.
(Zitiert auf Seite 10)

[BK09] E. Burns, R. Kitain. JavaServer Faces Specification. Sun Microsystems Inc. Santa
Clara, 2009. (Zitiert auf Seite 23)

[Cai10] J. Cai. Abstrakte Sichten auf BPEL Prozesse. Studienarbeit: Univer-
sität Stuttgart, Institut für Architektur von Anwendungssystemen, 2010.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=STUD-2250&engl=0. (Zitiert auf den Seiten 8, 10, 18, 19, 33, 34

und 52)

[GKE10] M. R. A.-E. B. Gavin King, Christian Bauer, S. Ebersole. Hibernate Reference Docu-
mentation 3.5.1-Final, 2010. URL http://docs.jboss.org/hibernate/stable/
core/reference/en/pdf/hibernate_reference.pdf. (Zitiert auf den Seiten 4

und 25)

[GSVR94] M. Gaitanides, R. Scholz, A. Vrohlings, M. Raster. Prozessmanagement: Konzepte,
Umsetzungen und Erfahrungen des Reengineering. C. Hanser, 1994. (Zitiert auf
Seite 7)

[KBRL05] N. Kavantzas, D. Burdett, G. Ritzinger, Y. Lafon. Web services choreography
description language version 1.0, w3c candidate recommendation. World Wide
Web Consortium, pp. 10–20051109, 2005. (Zitiert auf Seite 14)

[Mor09] R. Mordani. Java Servlet Specification Version 3.0. Sun Microsystems, Inc., 2009.
(Zitiert auf Seite 20)

[OAS07] OASIS. Web services business process execution language version 2.0. URL:
http://docs. oasis-open. org/wsbpel/2.0/OS/wsbpel-v2. 0-OS. html, 2007. (Zitiert auf
Seite 10)

74

http://docs.jboss.org/hibernate/stable/annotations/reference/en/pdf/hibernate_reference.pdf
http://docs.jboss.org/hibernate/stable/annotations/reference/en/pdf/hibernate_reference.pdf
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=STUD-2250&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=STUD-2250&engl=0
http://docs.jboss.org/hibernate/stable/core/reference/en/pdf/hibernate_reference.pdf
http://docs.jboss.org/hibernate/stable/core/reference/en/pdf/hibernate_reference.pdf


Literaturverzeichnis

[PD09] M. R. K.-m. C. Pierre Delisle, Jan Luehe. JavaServer Pages Specification. Version
2.2. Sun Microsystems, Inc., 2009. (Zitiert auf den Seiten 21 und 22)

[PP08] M. Papazoglou, M. Papazoglou. Web services: principles and technology. Addison-
Wesley, 2008.

[RJ+10] K. D. Rod Johnson, Juergen Hoeller, et al. The Spring Framework-Reference Docu-
mentation 3.0, 2010. URL http://static.springsource.org/spring/docs/3.0.
x/spring-framework-reference/pdf/spring-framework-reference.pdf. (Zi-
tiert auf den Seiten 4, 27, 28 und 29)

[SLS10] D. Schumm, F. Leymann, A. Streule. Process Viewing Patterns. In Proceedings
of the 14th IEEE International EDOC Conference, EDOC 2010, 25-29 October 2010,
Vitória, Brazil, pp. 89–98. IEEE Computer Society, 2010. doi:10.1109/EDOC.2010.16.
(Zitiert auf Seite 7)

[Str09] A. Streule. Abstract Views on BPEL Processes. Diplomarbeit, Universität Stuttgart,
Fakultät Informatik, Elektrotechnik und Informationstechnik, Germany, 2009.
(Zitiert auf den Seiten 8, 10, 18 und 33)

[Tea05] J. W. S. P. Team. Streaming APIs for XML Parsers, August 2005. URL http://
java.sun.com/performance/reference/whitepapers/StAX-1_0.pdf. (Zitiert
auf Seite 31)

[WCL+
05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. Ferguson. Web Services

Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging and More. Prentice Hall PTR Upper Saddle River, NJ, USA,
2005. (Zitiert auf den Seiten 4, 10 und 11)

Alle URLs wurden zuletzt am 20.12.2010 geprüft.

75

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/pdf/spring-framework-reference.pdf
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/pdf/spring-framework-reference.pdf
http://java.sun.com/performance/reference/whitepapers/StAX-1_0.pdf
http://java.sun.com/performance/reference/whitepapers/StAX-1_0.pdf


A. Anhang

A.1. Prozess View Template - Testbeispiele

Abbildung A.1.: Prozess View Vorlage für die Elimination von dem PostPressManagement-
Subprozess

76



A.1. Prozess View Template - Testbeispiele

Listing A.1 Das deploy.xml Dokument für die Prozess View Template in der Abbildung A.1
basicstylebasicstyle

basicstylebasicstyle basicstyle<?xml version="1.0" encoding="UTF-8"?>
basicstylebasicstyle basicstyle<deploy xmlns="http://www.apache.org/ode/schemas/dd/2007/03"
basicstylebasicstyle basicstylexmlns:ns1="http://processView.com" xmlns:sample="http://eclipse.org/bpel/sample"
basicstylebasicstyle basicstylexmlns:tns="http://www.processView.com/viewDesign_20110113_141421125">
basicstylebasicstyle basicstyle<process name="tns:viewDesign_20110113_141421125">
basicstylebasicstyle basicstyle<active>true</active>
basicstylebasicstyle basicstyle<retired>false</retired>
basicstylebasicstyle basicstyle<process-events generate="all" />
basicstylebasicstyle basicstyle<provide partnerLink="client">
basicstylebasicstyle basicstyle<service name="tns:viewDesign_20110113_141421125"
basicstylebasicstyle basicstyleport="viewDesign_20110113_141421125Port" />
basicstylebasicstyle basicstyle</provide>
basicstylebasicstyle basicstyle<invoke
basicstylebasicstyle basicstylepartnerLink="processViewService-20110113141510984-processViewFocusOnActivityPartnerLink">
basicstylebasicstyle basicstyle<service name="ns1:processViewService" port="processViewServiceHttpSoap11Endpoint"
basicstylebasicstyle basicstyle/>
basicstylebasicstyle basicstyle</invoke>
basicstylebasicstyle basicstyle<invoke
basicstylebasicstyle basicstylepartnerLink="processViewService-20110113141511078-processViewRemoveFragmentPartnerLink">
basicstylebasicstyle basicstyle<service name="ns1:processViewService" port="processViewServiceHttpSoap11Endpoint"
basicstylebasicstyle basicstyle/>
basicstylebasicstyle basicstyle</invoke>
basicstylebasicstyle basicstyle</process>
basicstylebasicstyle basicstyle</deploy>
basicstylebasicstyle

Der erzeugt entsprechend BPEL-Prozess für die Prozess View Template in der Abbil-
dung A.1:
basicstylebasicstyle

basicstylebasicstyle basicstyle<?xml version="1.0" encoding="UTF-8"?>
basicstylebasicstyle basicstyle<bpel:process xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
basicstylebasicstyle basicstylexmlns:ns1="http://processView.com"
basicstylebasicstyle basicstylexmlns:tns="http://www.processView.com/viewDesign_20110113_141421125"
basicstylebasicstyle basicstylename="viewDesign_20110113_141421125" suppressJionFailure="yes"
basicstylebasicstyle basicstyletargetNamespace="http://www.processView.com/viewDesign_20110113_141421125">
basicstylebasicstyle basicstyle<bpel:import importType="http://schemas.xmlsoap.org/wsdl/"
basicstylebasicstyle basicstylelocation="viewDesign_20110113_141421125.wsdl"
basicstylebasicstyle basicstylenamespace="http://processView.com/viewDesign_20110113_141421125" />
basicstylebasicstyle basicstyle<bpel:partnerLinks>
basicstylebasicstyle basicstyle<bpel:partnerLink myRole="viewDesign_20110113_141421125Provider"
basicstylebasicstyle basicstylename="client" partnerLinkType="tns:viewDesign_20110113_141421125" />
basicstylebasicstyle basicstyle<bpel:partnerLink
basicstylebasicstyle basicstylename="processViewService-20110113141510984-processViewFocusOnActivityPartnerLink"
basicstylebasicstyle basicstylepartnerLinkType="tns:processViewService-20110113141510984-processViewFocusOnActivityPartnerLinkType"
basicstylebasicstyle basicstylepartnerRole="processViewService-20110113141510984-processViewFocusOnActivityProvider"
basicstylebasicstyle basicstyleportType="ns1:processViewServicePortType" />
basicstylebasicstyle basicstyle<bpel:partnerLink
basicstylebasicstyle basicstylename="processViewService-20110113141511078-processViewRemoveFragmentPartnerLink"
basicstylebasicstyle basicstylepartnerLinkType="tns:processViewService-20110113141511078-processViewRemoveFragmentPartnerLinkType"
basicstylebasicstyle basicstylepartnerRole="processViewService-20110113141511078-processViewRemoveFragmentProvider"
basicstylebasicstyle basicstyleportType="ns1:processViewServicePortType" />

77



A.1. Prozess View Template - Testbeispiele

basicstylebasicstyle basicstyle</bpel:partnerLinks>
basicstylebasicstyle basicstyle<bpel:variables>
basicstylebasicstyle basicstyle<bpel:variable messageType="tns:viewDesign_20110113_141421125RequestMessage"
basicstylebasicstyle basicstylename="input" />
basicstylebasicstyle basicstyle<bpel:variable messageType="tns:viewDesign_20110113_141421125ResponseMessage"
basicstylebasicstyle basicstylename="output" />
basicstylebasicstyle basicstyle<bpel:variable messageType="ns1:processViewFocusOnActivityRequest"
basicstylebasicstyle basicstylename="processViewService-20110113141510984-processViewFocusOnActivityRequest" />
basicstylebasicstyle basicstyle<bpel:variable messageType="ns1:processViewFocusOnActivityResponse"
basicstylebasicstyle basicstylename="processViewService-20110113141510984-processViewFocusOnActivityResponse" />
basicstylebasicstyle basicstyle<bpel:variable messageType="ns1:processViewRemoveFragmentRequest"
basicstylebasicstyle basicstylename="processViewService-20110113141511078-processViewRemoveFragmentRequest" />
basicstylebasicstyle basicstyle<bpel:variable messageType="ns1:processViewRemoveFragmentResponse"
basicstylebasicstyle basicstylename="processViewService-20110113141511078-processViewRemoveFragmentResponse" />
basicstylebasicstyle basicstyle</bpel:variables>
basicstylebasicstyle basicstyle<bpel:sequence name="main">
basicstylebasicstyle basicstyle<bpel:receive createInstance="yes" name="receiveInput"
basicstylebasicstyle basicstyleoperation="process" partnerLink="client"
basicstylebasicstyle basicstyleportType="tns:viewDesign_20110113_141421125"
basicstylebasicstyle basicstylevariable="input" />
basicstylebasicstyle basicstyle<bpel:flow name="Servicesflow">
basicstylebasicstyle basicstyle<bpel:links>
basicstylebasicstyle basicstyle<bpel:link name="link1" />
basicstylebasicstyle basicstyle<bpel:link name="link3" />
basicstylebasicstyle basicstyle<bpel:link name="link2" />
basicstylebasicstyle basicstyle</bpel:links>
basicstylebasicstyle basicstyle<bpel:assign
basicstylebasicstyle basicstylename="Assign-processViewService-20110113141510984-processViewFocusOnActivity"
basicstylebasicstyle basicstylevalidate="no">
basicstylebasicstyle basicstyle<bpel:copy>
basicstylebasicstyle basicstyle<bpel:from>
basicstylebasicstyle basicstyle<bpel:literal xml:space="preserve">
basicstylebasicstyle basicstyle<proc:processViewFocusOnActivity
basicstylebasicstyle basicstylexmlns:proc="http://processView.com"
basicstylebasicstyle basicstylexmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
basicstylebasicstyle basicstyle<proc:process />
basicstylebasicstyle basicstyle<proc:name />
basicstylebasicstyle basicstyle<proc:predecessorPath />
basicstylebasicstyle basicstyle<proc:successorPath />
basicstylebasicstyle basicstyle</proc:processViewFocusOnActivity>
basicstylebasicstyle basicstyle</bpel:literal>
basicstylebasicstyle basicstyle</bpel:from>
basicstylebasicstyle basicstyle<bpel:to part="parameters"
basicstylebasicstyle basicstylevariable="processViewService-20110113141510984-processViewFocusOnActivityRequest"
basicstylebasicstyle basicstyle/>
basicstylebasicstyle basicstyle</bpel:copy>
basicstylebasicstyle basicstyle<bpel:copy>
basicstylebasicstyle basicstyle<bpel:from part="payload" variable="input">
basicstylebasicstyle basicstyle<bpel:query
basicstylebasicstyle basicstylequeryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
basicstylebasicstyle basicstyle<![CDATA[tns:process_20110113_141459234]]></bpel:query>
basicstylebasicstyle basicstyle</bpel:from>
basicstylebasicstyle basicstyle<bpel:to part="parameters"
basicstylebasicstyle basicstylevariable="processViewService-20110113141510984-processViewFocusOnActivityRequest">

78



A.1. Prozess View Template - Testbeispiele

basicstylebasicstyle basicstyle<bpel:query
basicstylebasicstyle basicstylequeryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
basicstylebasicstyle basicstyle<![CDATA[ns1:process]]></bpel:query>
basicstylebasicstyle basicstyle</bpel:to>
basicstylebasicstyle basicstyle</bpel:copy>
basicstylebasicstyle basicstyle<bpel:copy>
basicstylebasicstyle basicstyle<bpel:from part="payload" variable="input">
basicstylebasicstyle basicstyle<bpel:query
basicstylebasicstyle basicstylequeryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
basicstylebasicstyle basicstyle<![CDATA[tns:name_20110113_141459234]]></bpel:query>
basicstylebasicstyle basicstyle</bpel:from>
basicstylebasicstyle basicstyle<bpel:to part="parameters"
basicstylebasicstyle basicstylevariable="processViewService-20110113141510984-processViewFocusOnActivityRequest">
basicstylebasicstyle basicstyle<bpel:query
basicstylebasicstyle basicstylequeryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
basicstylebasicstyle basicstyle<![CDATA[ns1:name]]></bpel:query>
basicstylebasicstyle basicstyle</bpel:to>
basicstylebasicstyle basicstyle</bpel:copy>
basicstylebasicstyle basicstyle<bpel:copy>
basicstylebasicstyle basicstyle<bpel:from part="payload" variable="input">
basicstylebasicstyle basicstyle<bpel:query
basicstylebasicstyle basicstylequeryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
basicstylebasicstyle basicstyle<![CDATA[tns:predecessorPath_20110113_141459234]]></bpel:query>
basicstylebasicstyle basicstyle</bpel:from>
basicstylebasicstyle basicstyle<bpel:to part="parameters"
basicstylebasicstyle basicstylevariable="processViewService-20110113141510984-processViewFocusOnActivityRequest">
basicstylebasicstyle basicstyle<bpel:query
basicstylebasicstyle basicstylequeryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
basicstylebasicstyle basicstyle<![CDATA[ns1:predecessorPath]]></bpel:query>
basicstylebasicstyle basicstyle</bpel:to>
basicstylebasicstyle basicstyle</bpel:copy>
basicstylebasicstyle basicstyle<bpel:copy>
basicstylebasicstyle basicstyle<bpel:from part="payload" variable="input">
basicstylebasicstyle basicstyle<bpel:query
basicstylebasicstyle basicstylequeryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
basicstylebasicstyle basicstyle<![CDATA[tns:successorPath_20110113_141459234]]></bpel:query>
basicstylebasicstyle basicstyle</bpel:from>
basicstylebasicstyle basicstyle<bpel:to part="parameters"
basicstylebasicstyle basicstylevariable="processViewService-20110113141510984-processViewFocusOnActivityRequest">
basicstylebasicstyle basicstyle<bpel:query
basicstylebasicstyle basicstylequeryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
basicstylebasicstyle basicstyle<![CDATA[ns1:successorPath]]></bpel:query>
basicstylebasicstyle basicstyle</bpel:to>
basicstylebasicstyle basicstyle</bpel:copy>
basicstylebasicstyle basicstyle<bpel:sources>
basicstylebasicstyle basicstyle<bpel:source linkName="link1" />
basicstylebasicstyle basicstyle</bpel:sources>
basicstylebasicstyle basicstyle</bpel:assign>
basicstylebasicstyle basicstyle<bpel:invoke
basicstylebasicstyle basicstyleinputVariable="processViewService-20110113141510984-processViewFocusOnActivityRequest"
basicstylebasicstyle basicstylename="invoke-processViewService-20110113141510984-processViewFocusOnActivity"
basicstylebasicstyle basicstyleoperation="processViewFocusOnActivity"
basicstylebasicstyle basicstyleoutputVariable="processViewService-20110113141510984-processViewFocusOnActivityResponse"
basicstylebasicstyle basicstylepartnerLink="processViewService-20110113141510984-processViewFocusOnActivityPartnerLink"
basicstylebasicstyle basicstyleportType="ns1:processViewServicePortType">

79



A.1. Prozess View Template - Testbeispiele

basicstylebasicstyle basicstyle<bpel:targets>
basicstylebasicstyle basicstyle<bpel:target linkName="link1" />
basicstylebasicstyle basicstyle</bpel:targets>
basicstylebasicstyle basicstyle<bpel:sources>
basicstylebasicstyle basicstyle<bpel:source linkName="link2" />
basicstylebasicstyle basicstyle</bpel:sources>
basicstylebasicstyle basicstyle</bpel:invoke>
basicstylebasicstyle basicstyle<bpel:assign
basicstylebasicstyle basicstylename="Assign-processViewService-20110113141511078-processViewRemoveFragment"
basicstylebasicstyle basicstylevalidate="no">
basicstylebasicstyle basicstyle<bpel:copy>
basicstylebasicstyle basicstyle<bpel:from>
basicstylebasicstyle basicstyle<bpel:literal xml:space="preserve">
basicstylebasicstyle basicstyle<proc:processViewRemoveFragment
basicstylebasicstyle basicstylexmlns:proc="http://processView.com"
basicstylebasicstyle basicstylexmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
basicstylebasicstyle basicstyle<proc:process />
basicstylebasicstyle basicstyle<proc:fragment />
basicstylebasicstyle basicstyle</proc:processViewRemoveFragment>
basicstylebasicstyle basicstyle</bpel:literal>
basicstylebasicstyle basicstyle</bpel:from>
basicstylebasicstyle basicstyle<bpel:to part="parameters"
basicstylebasicstyle basicstylevariable="processViewService-20110113141511078-processViewRemoveFragmentRequest"
basicstylebasicstyle basicstyle/>
basicstylebasicstyle basicstyle</bpel:copy>
basicstylebasicstyle basicstyle<bpel:copy>
basicstylebasicstyle basicstyle<bpel:from part="payload" variable="input">
basicstylebasicstyle basicstyle<bpel:query
basicstylebasicstyle basicstylequeryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
basicstylebasicstyle basicstyle<![CDATA[tns:process_20110113_141508125]]></bpel:query>
basicstylebasicstyle basicstyle</bpel:from>
basicstylebasicstyle basicstyle<bpel:to part="parameters"
basicstylebasicstyle basicstylevariable="processViewService-20110113141511078-processViewRemoveFragmentRequest">
basicstylebasicstyle basicstyle<bpel:query
basicstylebasicstyle basicstylequeryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
basicstylebasicstyle basicstyle<![CDATA[ns1:process]]></bpel:query>
basicstylebasicstyle basicstyle</bpel:to>
basicstylebasicstyle basicstyle</bpel:copy>
basicstylebasicstyle basicstyle<bpel:copy>
basicstylebasicstyle basicstyle<bpel:from part="parameters"
basicstylebasicstyle basicstylevariable="processViewService-20110113141510984-processViewFocusOnActivityResponse">
basicstylebasicstyle basicstyle<bpel:query
basicstylebasicstyle basicstylequeryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
basicstylebasicstyle basicstyle<![CDATA[/*/text()]]></bpel:query>
basicstylebasicstyle basicstyle</bpel:from>
basicstylebasicstyle basicstyle<bpel:to part="parameters"
basicstylebasicstyle basicstylevariable="processViewService-20110113141511078-processViewRemoveFragmentRequest">
basicstylebasicstyle basicstyle<bpel:query
basicstylebasicstyle basicstylequeryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
basicstylebasicstyle basicstyle<![CDATA[ns1:fragment]]></bpel:query>
basicstylebasicstyle basicstyle</bpel:to>
basicstylebasicstyle basicstyle</bpel:copy>
basicstylebasicstyle basicstyle<bpel:targets>
basicstylebasicstyle basicstyle<bpel:target linkName="link2" />
basicstylebasicstyle basicstyle</bpel:targets>

80



A.1. Prozess View Template - Testbeispiele

basicstylebasicstyle basicstyle<bpel:sources>
basicstylebasicstyle basicstyle<bpel:source linkName="link3" />
basicstylebasicstyle basicstyle</bpel:sources>
basicstylebasicstyle basicstyle</bpel:assign>
basicstylebasicstyle basicstyle<bpel:invoke
basicstylebasicstyle basicstyleinputVariable="processViewService-20110113141511078-processViewRemoveFragmentRequest"
basicstylebasicstyle basicstylename="invoke-processViewService-20110113141511078-processViewRemoveFragment"
basicstylebasicstyle basicstyleoperation="processViewRemoveFragment"
basicstylebasicstyle basicstyleoutputVariable="processViewService-20110113141511078-processViewRemoveFragmentResponse"
basicstylebasicstyle basicstylepartnerLink="processViewService-20110113141511078-processViewRemoveFragmentPartnerLink"
basicstylebasicstyle basicstyleportType="ns1:processViewServicePortType">
basicstylebasicstyle basicstyle<bpel:targets>
basicstylebasicstyle basicstyle<bpel:target linkName="link3" />
basicstylebasicstyle basicstyle</bpel:targets>
basicstylebasicstyle basicstyle</bpel:invoke>
basicstylebasicstyle basicstyle</bpel:flow>
basicstylebasicstyle basicstyle<bpel:assign name="PrepareOutput" validate="no">
basicstylebasicstyle basicstyle<bpel:copy>
basicstylebasicstyle basicstyle<bpel:from>
basicstylebasicstyle basicstyle<bpel:literal xml:space="Preserve">
basicstylebasicstyle basicstyle<tns:viewDesign_20110113_141421125Response
basicstylebasicstyle basicstylexmlns:tns="http://www.processView.com/viewDesign_20110113_141421125">
basicstylebasicstyle basicstyle<tns:result />
basicstylebasicstyle basicstyle</tns:viewDesign_20110113_141421125Response>
basicstylebasicstyle basicstyle</bpel:literal>
basicstylebasicstyle basicstyle</bpel:from>
basicstylebasicstyle basicstyle<bpel:to part="payload" variable="output" />
basicstylebasicstyle basicstyle</bpel:copy>
basicstylebasicstyle basicstyle<bpel:copy>
basicstylebasicstyle basicstyle<bpel:from part="parameters"
basicstylebasicstyle basicstylevariable="processViewService-20110113141511078-processViewRemoveFragmentResponse">
basicstylebasicstyle basicstyle<bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
basicstylebasicstyle basicstyle<![CDATA[/*/text()]]></bpel:query>
basicstylebasicstyle basicstyle</bpel:from>
basicstylebasicstyle basicstyle<bpel:to part="payload" variable="output">
basicstylebasicstyle basicstyle<bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
basicstylebasicstyle basicstyle<![CDATA[tns:result]]></bpel:query>
basicstylebasicstyle basicstyle</bpel:to>
basicstylebasicstyle basicstyle</bpel:copy>
basicstylebasicstyle basicstyle</bpel:assign>
basicstylebasicstyle basicstyle<bpel:reply name="replyOutput" operation="process"
basicstylebasicstyle basicstylepartnerLink="client" portType="tns:viewDesign_20110113_141421125"
basicstylebasicstyle basicstylevariable="output" />
basicstylebasicstyle basicstyle</bpel:sequence>
basicstylebasicstyle basicstyle<bpel:import importType="http://schemas.xmlsoap.org/wsdl/"
basicstylebasicstyle basicstylelocation="processViewService.wsdl" namespace="http://processView.com" />
basicstylebasicstyle basicstyle</bpel:process>
basicstylebasicstyle

Der erzeugt entsprechend WSDL Dokument für die Prozess View Template in der Abbil-
dung A.1:
basicstylebasicstyle

basicstylebasicstyle basicstyle<?xml version="1.0" encoding="UTF-8"?>
basicstylebasicstyle basicstyle<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
basicstylebasicstyle basicstylexmlns:ns1="http://processView.com" xmlns:p="http://www.w3.org/2001/XMLSchema"

81



A.1. Prozess View Template - Testbeispiele

basicstylebasicstyle basicstylexmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
basicstylebasicstyle basicstylexmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
basicstylebasicstyle basicstylexmlns:tns="http://www.processView.com/viewDesign_20110113_141421125"
basicstylebasicstyle basicstylename="viewDesign_20110113_141421125"
basicstylebasicstyle basicstyletargetNamespace="http://www.processView.com/viewDesign_20110113_141421125">
basicstylebasicstyle basicstyle<types>
basicstylebasicstyle basicstyle<schema xmlns="http://www.w3.org/2001/XMLSchema"
basicstylebasicstyle basicstyleattributeFormDefault="unqualified" elementFormDefault="qualified"
basicstylebasicstyle basicstyletargetNamespace="http://www.processView.com/viewDesign_20110113_141421125">
basicstylebasicstyle basicstyle<element name="viewDesign_20110113_141421125Request">
basicstylebasicstyle basicstyle<complexType>
basicstylebasicstyle basicstyle<sequence>
basicstylebasicstyle basicstyle<element minOccurs="0" name="process_20110113_141459234"
basicstylebasicstyle basicstylenillable="true" type="string" />
basicstylebasicstyle basicstyle<element minOccurs="0" name="name_20110113_141459234"
basicstylebasicstyle basicstylenillable="true" type="string" />
basicstylebasicstyle basicstyle<element minOccurs="0" name="predecessorPath_20110113_141459234"
basicstylebasicstyle basicstylenillable="true" type="int" />
basicstylebasicstyle basicstyle<element minOccurs="0" name="successorPath_20110113_141459234"
basicstylebasicstyle basicstylenillable="true" type="int" />
basicstylebasicstyle basicstyle<element minOccurs="0" name="process_20110113_141508125"
basicstylebasicstyle basicstylenillable="true" type="string" />
basicstylebasicstyle basicstyle</sequence>
basicstylebasicstyle basicstyle</complexType>
basicstylebasicstyle basicstyle</element>
basicstylebasicstyle basicstyle<element name="viewDesign_20110113_141421125Response">
basicstylebasicstyle basicstyle<complexType>
basicstylebasicstyle basicstyle<sequence>
basicstylebasicstyle basicstyle<element minOccurs="0" name="result" nillable="true" type="string" />
basicstylebasicstyle basicstyle</sequence>
basicstylebasicstyle basicstyle</complexType>
basicstylebasicstyle basicstyle</element>
basicstylebasicstyle basicstyle</schema>
basicstylebasicstyle basicstyle</types>
basicstylebasicstyle basicstyle<import location="processViewService.wsdl" namespace="http://processView.com" />
basicstylebasicstyle basicstyle<plnk:partnerLinkType
basicstylebasicstyle basicstylename="processViewService-20110113141510984-processViewFocusOnActivityPartnerLinkType">
basicstylebasicstyle basicstyle<plnk:role
basicstylebasicstyle basicstylename="processViewService-20110113141510984-processViewFocusOnActivityProvider"
basicstylebasicstyle basicstyleportType="ns1:processViewServicePortType">
basicstylebasicstyle basicstyle</plnk:role>
basicstylebasicstyle basicstyle</plnk:partnerLinkType>
basicstylebasicstyle basicstyle<plnk:partnerLinkType
basicstylebasicstyle basicstylename="processViewService-20110113141511078-processViewRemoveFragmentPartnerLinkType">
basicstylebasicstyle basicstyle<plnk:role
basicstylebasicstyle basicstylename="processViewService-20110113141511078-processViewRemoveFragmentProvider"
basicstylebasicstyle basicstyleportType="ns1:processViewServicePortType">
basicstylebasicstyle basicstyle</plnk:role>
basicstylebasicstyle basicstyle</plnk:partnerLinkType>
basicstylebasicstyle basicstyle<message name="viewDesign_20110113_141421125RequestMessage">
basicstylebasicstyle basicstyle<part element="tns:viewDesign_20110113_141421125Request" name="payload" />
basicstylebasicstyle basicstyle</message>
basicstylebasicstyle basicstyle<message name="viewDesign_20110113_141421125ResponseMessage">
basicstylebasicstyle basicstyle<part element="tns:viewDesign_20110113_141421125Response" name="payload" />
basicstylebasicstyle basicstyle</message>

82



A.1. Prozess View Template - Testbeispiele

basicstylebasicstyle basicstyle<message
basicstylebasicstyle basicstylename="processViewService-20110113141510984-processViewFocusOnActivityRequest">
basicstylebasicstyle basicstyle<part element="ns1:processViewFocusOnActivity" name="parameters" />
basicstylebasicstyle basicstyle</message>
basicstylebasicstyle basicstyle<message
basicstylebasicstyle basicstylename="processViewService-20110113141510984-processViewFocusOnActivityResponse">
basicstylebasicstyle basicstyle<part element="ns1:processViewFocusOnActivityResponse" name="parameters" />
basicstylebasicstyle basicstyle</message>
basicstylebasicstyle basicstyle<message
basicstylebasicstyle basicstylename="processViewService-20110113141511078-processViewRemoveFragmentRequest">
basicstylebasicstyle basicstyle<part element="ns1:processViewRemoveFragment" name="parameters" />
basicstylebasicstyle basicstyle</message>
basicstylebasicstyle basicstyle<message
basicstylebasicstyle basicstylename="processViewService-20110113141511078-processViewRemoveFragmentResponse">
basicstylebasicstyle basicstyle<part element="ns1:processViewRemoveFragmentResponse" name="parameters" />
basicstylebasicstyle basicstyle</message>
basicstylebasicstyle basicstyle<portType name="viewDesign_20110113_141421125">
basicstylebasicstyle basicstyle<operation name="process">
basicstylebasicstyle basicstyle<input message="tns:viewDesign_20110113_141421125RequestMessage" />
basicstylebasicstyle basicstyle<output message="tns:viewDesign_20110113_141421125ResponseMessage" />
basicstylebasicstyle basicstyle</operation>
basicstylebasicstyle basicstyle</portType>
basicstylebasicstyle basicstyle<plnk:partnerLinkType name="viewDesign_20110113_141421125">
basicstylebasicstyle basicstyle<plnk:role name="viewDesign_20110113_141421125Provider"
basicstylebasicstyle basicstyleportType="tns:viewDesign_20110113_141421125" />
basicstylebasicstyle basicstyle</plnk:partnerLinkType>
basicstylebasicstyle basicstyle<binding name="viewDesign_20110113_141421125Binding"
basicstylebasicstyle basicstyletype="tns:viewDesign_20110113_141421125">
basicstylebasicstyle basicstyle<soap:binding style="document"
basicstylebasicstyle basicstyletransport="http://schemas.xmlsoap.org/soap/http" />
basicstylebasicstyle basicstyle<operation name="process">
basicstylebasicstyle basicstyle<soap:operation soapAction="http://eclipse.org/bpel/sample/process" />
basicstylebasicstyle basicstyle<input>
basicstylebasicstyle basicstyle<soap:body use="literal" />
basicstylebasicstyle basicstyle</input>
basicstylebasicstyle basicstyle<output>
basicstylebasicstyle basicstyle<soap:body use="literal" />
basicstylebasicstyle basicstyle</output>
basicstylebasicstyle basicstyle</operation>
basicstylebasicstyle basicstyle</binding>
basicstylebasicstyle basicstyle<service name="viewDesign_20110113_141421125">
basicstylebasicstyle basicstyle<port binding="tns:viewDesign_20110113_141421125Binding"
basicstylebasicstyle basicstylename="viewDesign_20110113_141421125Port">
basicstylebasicstyle basicstyle<soap:address
basicstylebasicstyle basicstylelocation="http://localhost:8080/ode/processes/viewDesign_20110113_141421125" />
basicstylebasicstyle basicstyle</port>
basicstylebasicstyle basicstyle</service>
basicstylebasicstyle basicstyle</definitions>
basicstylebasicstyle

83



A.1. Prozess View Template - Testbeispiele

Die abstrakte Sicht:

Abbildung A.2.: Der Geschäftsprozess von dem Druckerei

84



A.1. Prozess View Template - Testbeispiele

Die abstrakte Sicht:

Abbildung A.3.: Der Geschäftsprozess von dem Druckerei nach die Elimination von dem
PostPressManagement-Subprozess

85



A.2. Der Screenshot der Prozess View Verwaltungsplattform

A.2. Der Screenshot der Prozess View Verwaltungsplattform

Abbildung A.4.: Prozess View Services Manager und Designer

86



Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

( Jiayang Cai , am 20.12.2010)


	1 Einleitung
	1.1 Motivation
	1.2 Zielsetzung
	1.3 Aufbau der Arbeit

	2 Grundlagen und Technologien
	2.1 Web Services
	2.1.1 WSDL
	2.1.2 SOAP

	2.2 Business Process Execution Language
	2.2.1 Orchestration
	2.2.2 Workflow Engine
	2.2.3 Abstrakte Sicht auf BPEL-Prozess (Business Process View)

	2.3 Eingesetzte Technologien und Frameworks
	2.3.1 Java Servlet Technologie
	2.3.2 JavaServer Pages
	2.3.3 JavaServer Faces 2.0 Framework
	2.3.4 Hibernate Framework
	2.3.5 Spring Framework
	2.3.6 Apache Struts2 Framework
	2.3.7 Apache Axis2 Framework


	3 Konzept und Entwurf
	3.1 Konzept und Architektur
	3.2 Entwurf
	3.2.1 Anwendungsmodellierung
	3.2.2 Transformation Services Architektur
	3.2.3 Transformation Services Client (View Designer)

	3.3 Business Process View Template
	3.3.1 View Template Design
	3.3.2 View Template Bereitstellung
	3.3.3 View Template Anwenden


	4 Implementierung
	4.1 Datenbanktabellen
	4.2 Web Client
	4.2.1 View Services Manager
	4.2.2 View Transformator
	4.2.3 Rules Designer
	4.2.4 View Administrator

	4.3 Prozess Transformation Service
	4.3.1 Operationen
	4.3.2 WSDL

	4.4 Services Anwendung und Verwaltung
	4.4.1 Bereitstellung von Services
	4.4.2 Kombination von Services
	4.4.3 BPEL-Projekt Erzeugen und Deployment
	4.4.4 BPEL-Prozess Ausführen

	4.5 Business Process View Template

	5 Zusammenfassung und Ausblick
	5.1 Zusammenfassung
	5.2 Ausblick

	Literaturverzeichnis
	A Anhang
	A.1 Prozess View Template - Testbeispiele
	A.2 Der Screenshot der Prozess View Verwaltungsplattform


