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Abstract

Simulating the real world has become one of the most widely used techniques in engineering
today. Multiprocessor platforms play a key role in this development since bigger and bigger
problems need more computing power to be solved. When the floating point standard was
adopted in the early eighties of the 20th century, the amount of floating point operations
executed in a simulation was very low compared to today. Nowadays, numerical errors
accumulate to a noticeable amount, what is known as round-off error propagation and describes
the problem that this error can grow over time, finally making the result worthless in terms
of informational content.

Where lives, money or other critical aspects depend on computed results confidence about
their correctness is of paramount importance. Therefore numerical analysis techniques
were developed to make a statement about the accuracy of results computed with floating
point arithmetic. They are well defined and understood in the theoretical world but rarely
implemented or used in applications. This thesis will develop an approach to implement the
accuracy analysis Discrete Stochastic Arithmetic in software aiming at integrating into an
existing software package for simulating molecular dynamics. Discrete Stochastic Arithmetic
is based on CESTAC, one of the first methods used for estimating round-off errors. An
emphasis will be laid on easy applicability and improved performance of the developed
methods. To review the effectiveness of the implementations a case study will be performed
on a simple simulation example.

General-Purpose computation on Graphics Processing Units (GPGPU) has recently estab-
lished its reputation in scientific computing for accelerating parallelizable computations.
Due to their completely different architecture, with hundreds of specialized cores, modern
graphics cards achieve high ratings for floating-point operations per second (Flops). The dif-
ference to common CPU architectures also has a downside: developers need to rethink their
usual implementation approaches and learn to handle the different tool and instruction set
provided. This thesis will elaborate on the possibilities of implementing Discrete Stochastic
Arithmetic on GPU as well as the merits compared to CPU.
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1 Introduction

This chapter gives an overview over the thesis. First a motivation to the problem is given in
section 1.1 followed by the definition of goals of the thesis (section 1.2). Concluding there is
an overview over the chapters (section 1.3).

1.1 Motivation

During the initial period of scientific computing use of limited accuracy floating point
arithmetic as adopted by the IEEE 754" standard has never been challenged concerning round-
off errors. Floating point operations per second (Flops) where limited by slow hardware and
therefore everyone assumed that loss of information during arithmetic operations would not
affect the overall result. Nowadays, a single GPU achieves about 3 TFlops®. For comparison:
When the first TOP5003 list of super computers was published in 1993, all 500 Systems had a
combined computing power of 1.122 TFlops. In 1993 executing a simulation on the fastest
system took 1 hour, on today’s fastest system one can easily do the same 20 times within less
than a second (if we are looking at Flops only). This demonstrates the rapid development of
computing power in this area, which is surely good for scientific progress as models can be
more complex and simulations more thorough.

Unfortunately, a growth of arithmetical operations with several orders of magnitude arises
a problem. Using IEEE 754 as accurate binary floating-point representation will not al-
ways be sufficient any more. Billions of rounded operations produce what is known as
round-off error propagation. This denotes the fact that rounding errors accumulate over time
until they make up a significant part of the result. This makes results less trustworthy and
can, in extreme cases, completely erase the informational statement. If lives, money or other
critical aspects depend on such results it is not acceptable to just assume correctness. Rather
absolute confidence concerning the accuracy of computational results is inevitable.

Mathematicians developed a way to estimate the round-off error based on a numerical analy-
sis: Discrete Stochastic Arithmetic (DSA). CADNA* is the first library to implement DSA but

Thttp:/ /grouper.ieee.org/groups/ 754/

*http:/ /www.amd.com/us/press-releases /Pages /amd-press-release-2009sep22.aspx
3http:/ /www.tops00.0rg/list/1993/06/100

4http:/ /www-pequan.lip6.fr/cadna/
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1 Introduction

slows down calculations so much that it is hardly usable for long running simulations. Also
it is not possible to use CADNA in software packages utilising graphics cards to accelerate
floating-point calculation intense applications.

1.2 Goals

The goal of this thesis is to assess the applicability of numeric accuracy analysis based on
the Discrete Stochastic Analysis. To do so, a way is needed to map the theoretical idea to a
software solution. Important are the aspects of easy applicability and improved execution
performance. To review the solution’s applicability a case study is carried out on molecular
dynamics simulation package GROMACS5>.

The second part will focus on implementing DSA for the General-Purpose computation on
Graphics Processing Units® (GPGPU) platform. The biggest incentive is the possibility to
achieve a further acceleration compared to CPU versions of accuracy analysis. Due to its
totally different architecture porting a solution to GPU arises different problems. A NVIDIA
based graphics card was made available and thus used in this thesis. There are a several
programming environments available for NVIDIA GPUs like BrookGPU7, OpenCL8, Direct
Compute? and Compute Unified Device Architecture' (CUDA) but since CUDA is closest
to hardware for NVIDIA GPUs this thesis will implement a CUDA based solution.

1.3 Outline

The thesis has following structure. Chapter 2 explains the basic idea of the Discrete Stochastic
Arithmetic. The IEEE standard for floating point arithmetic is introduced because it is key
to understand the underlying problem. Section 2.2 gives a brief explanation of DSA and
the theory behind it. The last section introduces the first library implementing an accuracy
analysis method based on DSA. Chapter 3 discusses the different approaches of how to
implement DSA in a software package and finally presents the strengths and weaknesses of
each method. Chapter 4 is devoted to the software package GROMACS and the case study
where implementing DSA is explained and the results of simulations are examined. The
chapter finishes with a conclusion of the results obtained. Chapter 5 agitates the differences

Shttp:/ /www.gromacs.org

bhttp:/ /gpgpu.org/about

7http:/ / graphics.stanford.edu/projects /brookgpu/

8http:/ /www.khronos.org/opencl/

Shttp:/ /www.nvidia.com/object/cuda_directcompute.html
ohttp:/ /www.nvidia.com/object/what_is_cuda_new.html
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1.3 Outline

between the GPU and the CPU architecture. It tries to clarify the benefits for scientific
computing and introduces the DSA implementation for GPU.

13






2 Discrete Stochastic Arithmetic

The term Discrete Stochastic Arithmetic (DSA) was formed by J. Vignes and first mentioned
in [Viggs]. It is based on a method for round-off error analysis named Control et Estima-
tion Stochastique des Arrondis de Calcul (CESTAC) described in [PV80], [Vig88] and [Vig78].
Sometimes Permutation-Pertubation is mentioned as well, but since it contains additional
approaches to the problem of round-off error propagation, only the first two will be referred
to.

2.1 Standard for Binary Floating-Point Arithmetic (IEEE 754)

The IEEE 754 standard was adopted in 1985 and describes how binary floating-point numbers
should be handled by microprocessors. There were four proposed formats. The most widely
known are the Single Format which needs 32 bits and the Double Format which needs 64
bits to represent one number. Usually those two formats are offered to the user through
the high-level languages. The other two formats, the Single-Extended Format (> 43-bit) and
the Double-Extended Format (> 79-bit, usually 8o bits), are optional and do not have to be
implemented to satisfy the standard. The same is true for Double Format.

The representation of a value in binary format is encoded in three parts: sign, exponent and
mantissa. Table 2.1 lists how many bits are used for each of these three parts. The precision

Precision Sign Exponent Mantissa

single 1 bit 8 bits 23 bits
double 1 bit 11 bits 52 bits

Table 2.1: Floating-point memory representation

of the representable numbers is limited by the length of the chosen format. The result of 1/3
equals to 0.333 and no matter how high the chosen precision is, the exact result will be cut
off eventually. To control this behaviour common to all mathematical operators the IEEE 754
standard defines several rounding modes.

15



2 Discrete Stochastic Arithmetic

Round to Nearest Returns the next representable value closest to the exact result. This is
the default rounding mode.

Round Up Round toward +oco
Round Down Round toward —oo
Round toward Zero Returns the value closest to zero.

Note that rounding applied to a specific value will only result in two different results. For
example round to zero equals round down for positive values. Accordingly round up and
round to zero are equal for negative values.

The standard furthermore allows the microprocessors to internally work with a high precision
format and then round the result to the precision used in the program (e.g. 32 bits or 64
bits). As a consequence, microprocessors are mostly using 8o bits internally to achieve higher
precision results. Especially operations with intermediate results, like multiply-add-fused
instructions, benefit from this implementation. Multiply-add-fused instructions multiply two
floating-point operands and the result is added to the third operand without an intermediate
rounding operation in-between. In terms of accuracy this certainly is desirable. However, in
some cases it impedes the reproducibility of simulations, especially in case of dynamic load
balancing being used to execute simulations on multiple processors, because associativity
for mathematical operations is no longer given (see [CK]). Some of these aspects which have
an influence on GROMACS are listed in [gro].

The ISO Cgg standard provides compatibility with IEEE 754 and therefore offers functionality
to control the 'FPU. The interface allows to read from and write to different registers, interact
with floating point exceptions and control the rounding mode. A detailed description can be
found in [fen].

2.2 Fundamentals of Discrete Stochastic Arithmetic

Chapter 2.1 already gave an introduction to floating-point arithmetic implemented on
microprocessors and why calculations do not yield a mathematic exact result. To get an idea
of how to quantify the error, one has to look at the theoretical definition of floating-point
arithmetic. Let Q) be the binary floating-point operator used by a microprocessor and w
the exact mathematical operator. A computation performed by a micro-processor can be
described as

XQY = XwY —2EPen

'Floating Point Unit
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2.2 Fundamentals of Discrete Stochastic Arithmetic

where E is the binary exponent of the result, p the length of the mantissa in bits, € the sign
of XQY. Further, 277« represents the absolute round-off error (see [Chego]). Changing the
rounding mode for each operation introduces a random variable h. Using round to nearest h
is, for example, randomly equal to —1, 0, or +1.

XQY = XwY —2FPe(a — h)

Because a result usually does not only consist of one floating-point operation different
rounding errors need to be summed up. Assuming E and € are independent of a — I leads
to the following representation where R is the rounded and r the mathematical exact result
and n the number of operations issued to obtain R. a; is the random variable for the i-th
operation. The function g;(d) describes the data and program used and is independent of
o

R =r+ Y &i(d)277(a; — hi) + O(27%)

For unbiased rounding h is equal to zero and in the first order probabilistic model O(272)
can be omitted leaving

R~r+ Y, 8i(d)2 Pa;

as final description.

This leads to two basic hypotheses:

a) variables «; are independently centred and uniformly distributed
b) first order model for R is legitimate

If both assumptions hold, all values obtained by DSA will be Gaussian distributed (see
[Vigo3])-

Basically this means that the four allowed rounding modes produces two different results
with each being a valid representation of the exact result. Rounding up will give a slightly
higher value and rounding down of course a slightly lower value. If only round down is
used during a calculation the result will be underestimated. Same holds for rounding up,
only that the result will be an overestimation of the exact result and it is obvious that the
exact result lies in-between.

To get an estimation of the result rounding up and down will be done with a probability
of 0.5 each (see [Chego]). The sequence of rounding up or down is randomly selected and
therefore different for every execution. Therefore, N runs of a program will yield N results
R; with i = 1...N. N approximations are used to compose a mean value.

17



2 Discrete Stochastic Arithmetic

_ N
R — 2121 Ri
N

According to [Vigg3], R; is Gaussian distributed with mean value equal to the exact
mathematical result, so with i — oo, R approaches to the exact result. Unfortunately such a
high number of samples is not achievable. DSA makes it possible to estimate the number of
accurate digits of a result for a certain confidence level by utilising Student’s t-distribution
known from statistics to compensate the lack of an extraordinary amount of samples. In the

following formula g is the value of Student’s t-distribution (see A.1) with N — 1 degrees of
freedom and a confidence B that a sample will be less than 7.

VN-[R|

O'TIB

Cg = log,,

o is furthermore defined as

N-1
2 _ Lio 1 (R;—R)?
o N

If Cg is zero then R is to be considered insignificant. ] Vignes introduced in [Vigg3] the term
computational zero to describe this state when a result has no informational content due to
round-off error. If Cy is greater zero it represents the amount of accurate digits of the result
for the given confidence level B. So if Cx = 2 for R = 129.102 then only the first two digits
can be trusted and the last digits 9.102 may be contaminated by round-off errors.

2.3 CADNA Library

CADNA is a library that implements CESTAC, the predecessor of DSA, in ADA, C++ and
Fortran. It is developed by Jean-Luc Lamotte, Fabienne Jézéquel, Laurent-Stéphane Didier
and Jean-Marie Chesneaux. This library supports the development as well as the debugging
of numerical applications ([CT]). The main features are

e estimation of round-off error
e detection of numerical instabilities
o checking of the sequencing of the program

e accuracy estimation of intermediate results

18



2.3 CADNA Library

For this thesis only the C++ library is of interest. It provides two classes double_st and
float_st. The postfix st stands for stochastic type and will be used as synonym for both
classes. The stochastic types are meant to replace their C++ counterparts double and
float. The mathematical (+, —, /, *,...) and the relational operators (==, =>, <=, ...) are
overloaded so that both classes can be used as if they were the build-in types. Furthermore,
instances of these classes can be casted to float, double, long, unsigned, int and short.
Most mathematical functions like floor, ceil, pow have been overloaded as well. One
instance of a stochastic type contains three variables which represent the current state of this
instance. All operators are applied to the three variables but with different rounding modes.
Additionally, numerical analysis is applied to find numerical instabilities. The accurate result
is represented by the mean value of the three variables of an instance. It is important that,
as soon as one variable is using a stochastic type, at least the left side of an operator is a
stochastic type too. This ensures that the accuracy information stored inside the variable is
not lost. Floating-point operations form a virtual chain which is not to be broken. Table 2.2
provides an example.

Line C++ source code  Stochastic type a Stochastic type b C++ type
1 double d=0.0; d=o0.0
2 double_st a=2.0; a.X=2.0a.y=2.0 a.z=2.0 d=o0.0
3 double_st b=3.0; a.x=2.0a.y=2.0a.z=2.0 b.x=3.0b.y=3.0b.z=3.0 d=0.0
4 a=axb; a.x=6.0 a.y=6.1 a.z=5.9 b.x=3.0b.y=3.0b.z=3.0 d=0.0
5 d=a; a.x=6.0 a.y=6.1 a.z=5.9 b.x=3.0b.y=3.0b.z=3.0 d=6.0
6  b=d; a.x=6.0 a.y=6.1 a.z=5.9 b.x=6.0b.y=6.0b.z=6.0 d=6.0

Table 2.2: Example of a broken stochastic type chain

Line 2 and 3 define the stochastic variables a and b. After the operation in line 4 the stochastic
variable a contains three different values due to the round-off error (exemplary). The mean
value represents the exact result. The operation in line 5 breaks the chain because the
exact result is given to variable d but the stochastic information is lost. Variable b can not
reconstruct the information. This is to be avoided.

CADNA is provided as library to be integrated into other applications. However, CADNA
has some prerequisites that need to be met in order to function properly. First of all the
application has to support C++. C applications that can not be compiled with a C++ compiler
can not use CADNA. Using CADNA will result in an about four times bigger memory
footprint of the application. Applications already operating at their memory limit can not
afford this. Since CADNA replaces a type with a class incompatibilities with interfaces
and other program parts need to be resolved which might not always be possible. A
common example is a closed source third party library: the stochastic type cannot be passed

19



2 Discrete Stochastic Arithmetic

to the library and needs to be converted back to a standard type. As mentioned before,
this will break the chain and the accuracy information is lost. Applications already using
parallelisation libraries like MPI will have a serious problem with stochastic types because
they contain three values instead of one. Normally, variables can be passed to other running
instances through MPI provided methods. This only works for built-in types. Usually,
class instances need to be converted to byte stream by the sender and reconstructed by the
receiver introducing a huge overhead. A last limitation to mention is the extra time needed
by CADNA to compute additional analysis steps which severely slows down execution.
Applications already exhausting the maximal acceptable execution time without CADNA
applied will drastically exceed this limit once CADNA is integrated.

20



3 Implementing DSA on CPU

For all simulations and implementations the soft- and hardware system described in appendix
A.2.6 has been used.

The main focus of this thesis is to assess the applicability of DSA to the molecular dynamics
simulation package GROMACS. With CADNA (see 2.3) there already exists a ready to use
C++ implementation of DSA. The problem is that CADNA does a lot more than just analyse
accuracy. All extra checks imply an additional contribution to the performance penalty. For
long running simulations this easily means that simulation time grows from days (without
modifications) to months if an accuracy analysis method is applied. So reducing simulation
time has first priority. This is why CADNA in its original form won’t be used. Nevertheless
the core idea behind the library, to estimate the accuracy with only three executions as
samples for the accuracy analysis, will be adopted. To realise the software solution a way to
independently and randomly round up and down for each atomic floating-point operation
is needed. This rounding behaviour will be addressed as random rounding (rr).

GROMACS currently contains 1,393,734 LOC". Like most simulation software it has grown
over decades and hundreds of person years of work have been put into. Refactoring the
source code to integrate new functionality which needs to be in place at every atomic
operation is not feasible. This basically leaves three other options to implement random
rounding;:

1. implement DSA in hardware
2. find a non source code intrusive method
3. automatically replace necessary parts in the source code

Option one is possible (see [CMb] and [CMa]) but not subject of this thesis. Option two
can be implemented using the interface to the floating point unit presented from section 2.1
and is detailed in section 3.1. Automatically replacing source code as proposed by option
three will be discussed in section 3.2. This chapter concludes with a comparison of the two
methods in section 3.3.

ILines Of Code
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3 Implementing DSA on CPU

3.1 Automated Code Insertion

Automated Code Insertion (short ACI) inserts the needed code for switching the round-
ing mode after each arithmetic operation automatically on assembly level. Chapter 2.1
already introduced a way to control the rounding behaviour of the FPU. The function int
fsetround(int) is of peculiar interest. The function takes the rounding mode as argument,
clears the FPU pipeline of any queued operations and sets the requested rounding mode. As
it is IEEE 754 compliant the following rounding modes are supported:

e 'E_DOWNWARD

e 'E_TONEAREST
e 'E_TOWARDZERO
e FE_UPWARD

On assembly level a function call to fsetround() translates to fldcw WORD. This call simply
loads a special control word into the floating point registers (for more information about
the structure of the control word please refer to [Int11] chapter 8, figure 8-9 through 8-12).
Assembly code fortunately has a much clearer structure then C or C++. One line in assembly
stands for one operation. Also there are no function and variables names to worry about.
These circumstances make possible what in the C/C++ world would mess up the source
code: search and replace. When searching for example fadd in an assembly source file one
only gets the places where an floating-point addition operation is issued. In the C/C++
world the search result can be anything from a variable name to a comment. Now, if one
would like to change the rounding mode after each floating-point operation, one would need
to insert a call to f1dcw with the appropriate control word as argument. So the first solution
to applying random rounding to GROMACS is to write a script which switches rounding
mode after each floating-point operation on assembly level.

First one has to understand the compilation process of GROMACS. It relies on a tool called
make” which is configured by files called Makefile residing in each folder. Once called on the
root directory it walks the folder tree and calls the configured compiler with the necessary
arguments. The easiest way to manipulate the compilation of GROMACS therefore is to dock
in-between make and the compiler. It is possible to provide make with custom compilers via
the CC and CXX environment variables. Instead of providing the path to a normal compiler
CC and CXX are now pointing to the script which does the magic namely gccrr. py.

Figure 3.1 illustrates the first step done by the script. It extracts the command line parameters
for the compiler and replaces all arguments demanding an object file as target with the
option to generate assembly files. The compiler then pre processes the C or C++ source

*http:/ /www.gnu.org/software/make/
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files and translates them down to assembly language. The script inserts the switching of
rounding mode after each floating-point operation. Afterwards the target requested from
the original command is created. The second step of the script only comes into play if the

make gccrr.py gcc
[_make |

CC -c file.cc -o file.o

insert rr code
into file.s |

gcc -c file.s -o file.o

Figure 3.1: gccrr.py - Object file compilation

compiler needs to link several object or library files together. In this case a control word
file is additionally linked to the target (see figure 3.2). Linking has to be done eventually to
create a valid executable thus all executables will finally contain a control word object. It
provides the microprocessor specific control words to set the rounding mode an some logic
to randomly decide between round up and down.

Although a decision about rounding up or down could be done on the fly it is better from a
performance point of view to generate a random value table at the beginning of the execution.
If an execution reaches the end of a table it can be re-used from the beginning, guaranteeing a
constant slow down independent of simulation length or number of floating-point operations.
The initialization function also is provided by the control word file and a call to it can be
inserted by script. The compiler script as well as the script to enable the initialization
and further instructions can be found in the appendix at A.2.1 and A.2.4. A step-by-step

23



3 Implementing DSA on CPU

Figure 3.2: gccrr.py - Executable compilation

instructions on how to compile a random rounding binary of GROMACS can be found in
appendix A.2.7.

A drop of bitterness is that the method seems not to be perfectly reliable in conjunction with
GROMACS. In some rare cases the execution of a modified executable aborts with a segmen-
tation fault due to access to uninitialized memory. Debugging revealed a questionable if
condition comparing two floating-point values if (r2 < rs2) as the cause. If the expression
evaluates to true a function is called which accesses an array with uninitialized values.
Probably r2 and rs2 are correlated and their values are equal in a normal execution with
round-to-nearest-even, and the expression evaluates to false. The array is not initialized
because it is not needed in this case. With random rounding the correlation between the
two variables is destroyed, and one of the variables has a slightly different value and the
function is called under wrong prerequisites causing the segmentation fault. A solution to
this problem is to extend the if condition like r2 < rs2 && |r2-rs2| > € with e setto a
relatively low value. Unfortunately it is again not possible to do this for the whole code base
of GROMACS within a short period of time.

Generally it would have been better to avoid such behaviour during development. A correct
implementation should check data for initialization before usage.

3.2 Own Type Insertion

The second approach of implementing DSA in GROMACS is called Own Type Insertion
(short OTI) and uses an own type instead of the C/C++ types float or double. As this
is exactly what CADNA does (see chapter2.3) it’s C library is used to serve as basis. As
mentioned before CADNA is very slow because of analyses which go beyond accuracy
estimation. Therefore the overloaded operator function are stripped of their functionality. A
downside of the random rounding implementation as presented in section 3.1 is that the
FPU'’s pipeline gets emptied after each operation to change the rounding mode. To avoid
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this a faster rounding technique is implemented. It is called NextFloat an presented in
[CFDo8].

At the beginning FPU rounding is set to round to zero. For positive values this equals
rounding down and for negative values rounding up. To get rounding up for positive and
rounding down for negative values one unit of least precision (ULP) needs to be added.
This can be done by multiplying an operations result by 1.0 + 277 with p being the floating-
point mantissa length. Instead of changing the rounding mode random rounding is done
by multiplying a result with either 1.0 or 1.0 + 277. If a result of an operation would be
exact, like x = 1.0 % 2.0, NextFloat will overestimate the result because of the additional
multiplication.

Applied on a simple example calculating the dot product of two vectors in single precision,
NextFloat rounding provides virtually a Gaussian distribution (see 3.3). Since the centre
of the distribution should approach the mathematic correct result the mean value can be
compared to a high precision result obtained with double precision. Table 3.1 shows, that
the result from NextFloat rounding is much closer to the high precision reference sample
than the result obtained with single precision.

Example ‘ Value

Dot product high precision reference (double) 260,7141794713
Dot product NextFloat (mean over 4096 samples) | 260,7141591236
Dot product (single) 260,7141418457

Table 3.1: Dot product precision comparison for OTI

Normally a=a+b would result in a fadd assembly operation. With the changes applied
the code of listing 3.1 is execute instead. The comparison of operations shows that the
rounding function is at least four times slower than the original code. Additionally there is
the overhead introduced by converting C/C++ float to float_st, the function lookup in
the VTable, pushing registers to the stack and so on.

a+b
x * {1.0 | 1.0+272 } // example for single precision

X

X
index++
index = index & max_index

Listing 3.1: Rounding function for own type

The problem with if conditions as with Automated Code Insertion (section 3.1) can easily
be avoided by applying the € comparison to all overloaded relational operators.
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Figure 3.3: Value distribution for OTI dot product example

3.3 Method Comparison

Two methods have been introduced to implement DSA on CPU. Both have their area of
application. Which one to use is a decision heavily depending on the use case. To simplify
the decision-making this section provides a comparison of the different properties of the two
methods. Table 3.2 provides a short summary.

Automated Code Insertion

Floating-Point Coverage Covers all floating-point operations regardless where they are
hidden in the source code. Random rounding can only be deselected for sets of
fp commands. If one addition operation should use random rounding, all addition
operations in that source file will. If all operations should use random rounding this is
the most thorough method.

Work Intensity Besides the testing after changing the source code which should be done
for any method Automate Code Insertion is very easy to use. It only needs some
changes to the build system and the new binary is ready to go. It is to note that the
compilation process is slowed down by the random rounding compiler script. This is
only of interest if the compiler script should be used in the development process.

Performance Because the pipeline has to be emptied before switching the rounding mode
for each operation this method is really expensive in execution time.
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Reliability In special cases ACI can cause problems during execution time. They can be
resolved but this requires changes to the source code.

Development Since the code insertion happens at assembly level the inserted code can not
be seen when debugging the C/C++ code. It is also very complicated to extend ACI. If
there should be done more than just changing the rounding mode after each operation
one has to be aware that the code is inserted without any knowledge of the state the
program is currently in. For example might registers already be in use. The code
inserted has to work under any thinkable precondition which makes the development
very complicated. Any further extension will slow down the execution additionally.

Own Type Insertion

Floating-Point Coverage Only the floating-point operations involving a stochastic type will
make use of random rounding. This makes it possible to control the usage of random
rounding on a very fine level. If it is necessary to cover all operations replacing all
relevant occurrence is either very unlikely or comes close to completely refactoring the
package.

Work Intensity Replacing all floating-point types with a stochastic type is very work inten-
sive. Fixing all resulting compiler errors is a complicated task. Especially if the source
code of the software package is unknown to the developer. The corrections must not
change the behaviour of the program.

Performance Compared to Automate Code Insertion, Own Type Insertion is really fast
because it can make full use of the FPU pipeline.

Reliability No issues regarding the reliability where discovered during the analysis of this
method.

Development Code can be added and debugged without limitations.

Short Summary

All properties in a short overview.
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28

Automated Code Insertion | Own Type Insertion

Advantages

e covers all fp operations
e nearly no code changes
o fast to apply

e safe solution

e small performance penalty
e extendible

e debugable

Disadvantages

¢ huge performance penalty
e not perfectly reliable

e very work intensive
e does not cover all fp operations

Table 3.2: Random rounding method comparison on CPU



4 Application of DSA in Molecular Dynamics
Simulations on CPU

This chapter gives a brief introduction to GROMACS" and molecular dynamics simulations.
GROMACS is a software package that solves the Newtonian equation of motion and is
widely used for simulating biochemical molecules like proteins, lipids and nucleic acids.
Utilising MPI?, GROMACS can be executed on clustered environments.

First this chapter will give an introduction to molecular dynamics. Section 4.2 will present
the example used in all simulations of this chapter. Then the results of the case study with
two proposed DSA implementations will be discussed.

4.1 Fundamentals of Molecular Dynamics

Molecular dynamics (MD) is a field in computer simulation with the ambition to model
the structure of molecules as well as the interaction of molecules among each other. Initial
input data contains information about the type of molecules in the system, their position
and their velocity, among others. Simulations are carried out in a step-by-step fashion. Each
step calculates the forces acting on an atom

F =%
1 51’1'

by summing forces between non-bonded atom pairs
Fi =), Fj

plus external forces and forces from bonded interactions and then solves newton’s equation
of motion

Thttp:/ /www.gromacs.org/
*http:/ /www.mpi-forum.org/
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52y .
miFQ = Pi,l =1..N

to update the atoms positions before advancing on the time line [AAB" 10]. The step size
determines how much time passes between to steps. The smaller the step size is chosen, the
closer the result will get to the natural worlds model.

4.1.1 Periodic Boundary Condition

Simulating takes place in a virtual box. Normally only a small number of molecules is put
into the box (10.000 is still small) so that a majority of molecules are located near the surface
of the box. To avoid unnatural behaviour in this region Periodic Boundary Conditions
(PBC) are applied [Allog]. To simulate an infinite volume a replica of the box is put in every
direction. If an atom exits the simulation box in the centre it will enter the very same box
from the opposite direction keeping the total atom count constant.

4.1.2 System Properties

There are several key properties measured in a system:
e pressure

e temperature

density

potential energy

kinetic energy
e volume

e box dimensions

total energy

Density and potential energy are to highlight in this ensemble as they are later used in the
case study.

Depending on the preferences of the simulation some properties are kept constant. The
waterbox example from section 4.2 uses a barostat to keep system pressure constant by
scaling the box vectors (see [Rii08]). This implicitly has an influence on density which is
determined by

p:

<IF
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with mass m and volume V of the system. Pressure again is calculated by
— 2 =
with Eg;, defined as
_ 1N
Exin = 5 )i mivi ®v;
v; is the velocity of a particle and E the virial defined as
= _ _ 1
E=—7)ic"ij® F;

Consequently a systems density is indirectly linked to its kinetic energy.

Potential energy of a system is composed of various terms such as the Lennard-Jones
and Coulomb interaction as well as bonded terms which are summed all together. The
Lennard-Jones potential Vi is defined as

(12) (6)
VL] — Ci]llz — Cié
7’1-]- Ti]-

with Cl.(j(’) and ijlz)
equals

being atom pair dependent parameters. The Coulomb interaction V.

9i4j
VC(rij> - fe:rl-]j

As one can see from these parts the potential energy of a system is heavily depending on
the particles position in the system.

4.1.3 Property Fluctuation

The fluctuation describes the difference between the mean and the current value.

(Ax)2)7 = ([x — (x)]2)>

(x) denotes the average of x. The variance for a series Ny of values is given by

_ N 2 1 N, 2
Oy = ) ;i Xj — ﬁx(zi:ﬁ X;)
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4.2 Waterbox Example

Waterbox example will be the problem simulated in all cases where GROMACS is used. It
models a rectangular box filled with water molecules and it behaves like a chaotic system
where similar causes can end up in completely different result states (see [Avro8]). Periodic
Boundary Conditions are applied as well as pressure and temperature coupling. The first
period of time is needed to equilibrate the water mixture. This means the molecules need to
find a position which could also be found in real life and therefore not violating any natural
law. If this state is achieved, many properties of the model will reflect reality. With PyMol3 it
is possible to visualize the system state (figure 4.1). Oxygen atoms are coloured in red and

Figure 4.1: Waterbox visualized in PyMol

reside in the middle of the molecule with two adjacent hydrogen atoms on the left and right
coloured in white.

3http:/ /www.pymol.org/
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4.3 Implementation Notes

Chapter 3 proposed two DSA implementation methods. Automated Code Insertion was
chosen to be evaluated in a case study for section 4.4. A step-by-step guide of applying
ACI to GROMACS version 4.0.7 is provided by appendix A.2.7. Own Type Insertion was
done as a proof-of-concept and a working binary version of GROMACS was created. It only
works with the latest major version of GROMACS (4.5.x) due to missing C++ support in
prior releases.

SSE stands for Streaming SIMD Extensions and was invented by Intel in 1993 [RCC'06].
Single Instruction Multiple Data (SIMD) is a technique using data level parallelism and
executes the same command on a block of data simultaneously thus boosting performance.
GROMACS is able to use the SSE instruction set but the compiler script used with ACI is
unable to change rounding for each atomic operation as they are all run in parallel. As a
consequence GROMCAS needs to be compiled without this extension when applying ACI.

4.4 Waterbox Case Study with Automated Code Insertion

4.4.1 Execution Time

With ACT applied to GROMACS the implementation has to proof that it does what it was
designed for. First test is whether the simulation still works. Comparing simulation data
of the unadjusted version to the ACI version showed the same results. As expected the
simulation time increased drastically. Figure 4.2 visualizes the drastic difference in execution

Version Optimization Execution Times Mean Time
ACI single  unoptimized 933s 932s 934S 933s
ACI double unoptimized 1.0305 1.0265 1.027S ~ 1.028s
single unoptimized 60s 60s 61s ~ 60s
double unoptimized 71s 718 71S 718
single optimized 27s 278 278 278
double optimized 298 298 29s 298
single optimized + SSE 17s 18s 18s ~ 18s
double optimized + SSE 18s 18s 18s 18s

Table 4.1: Execution times for 2.000 step waterbox
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4 Application of DSA in Molecular Dynamics Simulations on CPU

time. Interesting to note is that double precision seems to be as fast as single precision. This
is a deception based on the short simulation length. When using longer simulations double
precision will be 30% slower than single precision. The slow down factor of ACI compared

Waterbox Simulation on CPU

18

optimized 18

L 1.028
ACI unoptimized 93

0 200 400 600 800 1.000 1.200

execution time in seconds

Figure 4.2: ACI runtime comparison

to the fastest, unadjusted version of GROMACS is S, = 913—5’; ~ 52 for one run. To perform
an accurate digits estimation with DSA at least three independent results are necessary
thus three simulations need to be executed. Normally one would start three simulations at
the same time so that time to obtain three results won’t grow. Three parallel simulations
still need three times the resources a single simulation would occupy. Therefore, the total
amount of resource consumption needs to be multiplied by three. Simulation time can also
be considered as a resource which causes a combined growth in expenditure to apply ACI
of 156x.

4.4.2 Effects of round-off error on a Chaotic System

Chaotic systems somehow contradict common believe in cause and effect. Lets take throwing
a ball and measuring the distance as an example. Everybody will agree that two balls thrown
with nearly equal force will hit ground in nearly the same area. Same consideration is not
applicable to chaotic systems. With only nearly equal force thrown both balls can end up in
totally different places. Yet thrown at exactly the same force they will sure land on top of
each other. This also holds for the waterbox simulation. Two executions with exactly same
parameters will end up in exactly the same result state. When random rounding comes
into play no execution will exactly proceed as another resulting in probably totally different
result states.

Figure 4.3 shows a waterbox after two steps of simulation. There are two simulations put
on top of each other. The one obtained by an unchanged version of GROMACS is coloured
green and the ACI version is coloured in red. Red can only be seen in place where the
position of a molecule differs between the two simulations. For two simulation steps nearly
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Figure 4.3: Waterbox after 2 steps

everything is green. After ten time steps (figure 4.4) first discrepancies can be observed.
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Figure 4.4: Waterbox after 10 steps

Figures for 40 and 200 time steps make clear that divergence will increase over time (figures
4.5 and 4.6). It is important to understand that both simulations represent a valid system

since all physical and biomechanical laws are being obeyed.
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Figure 4.6: Waterbox after 200 steps

4.4.3 Accuracy Estimation of Density and Potential Energy
Estimating accurate digits was done for four different simulation set-ups. Simulation length

was fixed to 8o pico seconds resulting in 20.000 time steps for a step size of 2 femto seconds.
Second simulation series used a step size of 4 femto seconds. To reach a simulation length of
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8o pico seconds the amount of time steps had to be cut to 10.000. For a step size of 6fs the
amount of steps is further scaled down and reaches 5.000 for 8fs. Each series contains 16
simulation samples used to calculate the amount of accurate digits. Table 4.2 provides the
exact values calculated with instructions provided by DSA. The amount of accurate digits

Step Size ‘ Potential Energy ‘ Density

‘ single double ‘ single double

2fs 2,671543225 2,736112016 | 2,286969324 2,339662333
4fs 2,678121365 2,843117985 | 2,527940688  2,224069343
6fs 2,756327267 2,805290527 | 2,279916378 2,391591876
8fs 2,77395379  2,704616572 | 2,099444145 2,165402125

Table 4.2: Accurate digits estimation for waterbox

ranges from about 2 to a little under 2,9. Potential energy is, according to these numbers,
more accurate than density. Figure 4.7 plots accurate digits over step size. One can see that a
change of step size nearly has no affect on accurate digits count. Plotting same parameters

Potential Energy
00—

1 —o—single

accurate digits
‘I—‘
(0]

0,5 =m-double

2fs 4fs 6fs 8fs
time step width

Figure 4.7: Accurate digits of potential energy

for density suggests that by increasing the step size accuracy decreases.
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Density
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Figure 4.8: Accurate digits of density

4.4.4 Histogram

DSA assumes that the computed results are Gaussian distributed and centred at the mathe-
matical correct result [Vigg3]. If obtained results are still Gaussian distributed the method is
believed to be compliant to DSA hypotheses.
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Figure 4.9: Result distribution for potential energy

To evaluate the distribution several thousand simulations were used to extract enough
samples for a distribution analysis of the randomly rounded results. Figure 4.9 shows a
histogram for potential energy. The x-axis values represent the calculated potential energy
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for the system while the y-axis shows the number of occurrences. Same is plotted for
density in figure 4.10. Lab experience has shown that even a rectangular shaped distribution
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Figure 4.10: Result distribution for density

would provide acceptable results. Therefore both distributions show a good shape close to a
Gaussian distribution.

4.4.5 Error Significance

Single precision data from the unchanged version of GROMACS could not be gathered
for a time step width of 8fs. This is because the bigger the time step gets, the higher the
possibility that a particle moves too close to another particle. Two particles can not be in the
same place and to solve the situation a force is applied on each particle to accelerate them in
opposite directions. Adding forces inflates the system with extra energy. If there is too much
additional energy the simulation is aborted. For single precision this was the case at 8fs step
width. Interestingly the ACI version of GROMACS simulated 8fs without problems.

A molecular dynamics simulation is not a static system and constantly in motion. The water-
box example uses pressure and temperature coupling resulting in varying box dimensions.
Thus density and potential energy are not constant values either. Variance can be measured
in a fluctuation calculation presented in section 4.1.3. Figure 4.11 plots the fluctuation for
potential energy. Random rounding did not change the fluctuation of potential energy at all.
For density the plot (figure 4.12) shows constant fluctuation for ACI enabled simulations.
However, fluctuation for unchanged versions of GROMACS rises with increasing time step
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Figure 4.11: Fluctuation for potential energy

width which is a result of the same cause that makes it necessary to abort simulations
described above.

Density
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Figure 4.12: Fluctuation for density

The Institute of Technical Biochemistry at the University of Stuttgart is also using GROMACS
to run molecular dynamics simulations. According to lab experiments a fluctuation of about
5% relative to the actual value of a measured property is acceptable. Figure 4.13 plots
fluctuation of density divided by density over the four presented simulation set-ups. Values
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obtained by GROMACS with Automated Code Insertion are averaged over 16 obtained
samples. Clearly the application of random rounding has no effect on fluctuation of potential
energy. Same information is plotted for density in figure

If 5% of fluctuation is acceptable this is a good limit for numerical accuracy as well. Only if
numerical errors are bigger than fluctuation they pose a serious problem to MD simulations.
Table 4.3 list relative numerical errors for given simulations. For both, potential energy

Step Size ‘ Potential Energy ‘ Density

Relative Numerical Error in Percent

single double ‘ single double

2fs 0,213037852  0,183606471 | 0,516452848 0,457443717

4fs 0,209835341  0,143509951 | 0,296523633  0,596939967
6fs 0,175255934 0,156570332 | 0,52490852  0,405889787
8fs 0,168285311 0,197416491 | 0,795345548 0,683278688

Table 4.3: Relative numerical error in percent for potential energy and density

4.13 and density 4.14, the numerical error is under one percent. Relative numerical error
in potential energy is stable for evaluated step widths. For density it seems to increase for
bigger step widths.

Fluctuation / Potential Energy
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Figure 4.13: Percentage of simulation result for potential energy
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Figure 4.14: Percentage of simulation result for density

4.5 Applying Own Type Insertion to GROMACS

Applying own type insertion to GROMACS was a very work intensive task. Fortunately
GROMACS can be compiled with either single or double precision. This means there
already has to be a mechanism to switch a type to avoid duplicating source code. Listing 4.1
provides the relevant passage. This is very convenient as real only needs to be replaced by
a stochastic type from OTI library.

#ifndef HAVE_REAL

typedef float real;
#define HAVE_REAL

#endif

#ifndef HAVE_REAL

typedef double real;
#define HAVE_REAL

#endif

Listing 4.1: simple.h - GROMACS type declaration

GROMACS’s developers are proud their software is highly optimized. However, high
optimization often means writing very specific code, using tricks and neglecting clean
implementation. Therefore simply replacing a type by another will not suffice. Accordingly
compiling GROMACS resulted in a lot of compiler errors and even more warnings. One
problem was that not the whole package uses real as type. In some places real was only
used to point to a specific implementation at linking stage. Listing 4.2 gives an example.
Line 2 defines a function with real as argument. At linking time real is already replaced

42




N A W N R

O ® N o w AW N R

R
R O

"
N

"
@

n

N
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with either float or double and the definition can be linked to according implementation.
Replacing real with a stochastic type breaks this behaviour.

Also there were a lot of type casts involving float or double arrays. They only worked
under the assumption that real is replace by a built-in type, whereas, after changing the
type, line 3 and 6 won’t work together.

//**% header file *¥x
void gmx_erf(real *); // original
void gmx_erf(float_st *); // after replacement

//*%* source file ***
void gmx_erf(float *) { ... };
void gmx_erf(double *) { ... };

Listing 4.2: Problematic function declarations

Another problem arose from C++ integration code. Nearly all files contained a mechanism
shown by listing 4.3. It properly defines C code passages if a C++ compiler is used. Both
stochastic types, float_st and double_st, are C++ classes. If some inserted code is placed
inside simple.h the example won’t compile any more since C++ code is called from within
a C code section. This is not hard to resolve once found but under millions of lines of code it
can be hidden pretty damn good.

#ifdef __cplusplus
extern "C" {
#endif

#if O

}

#endif

#include "types/simple.h"

#ifdef __cplusplus
}
#endif

Listing 4.3: Dangling extern C

One last problem worth presenting is only a compiler warning (see listing 4.4). Still the
program won’t execute properly if the warning’s cause is not removed.

source.c:17: warning: cannot pass objects of non-POD
through ‘...’; call will abort at runtime

Listing 4.4: Variable argument list warning
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Functions with variable argument lists can not be called with classes which are not of POD
type meaning they are not allowed to have any user defined functions. Functions like printf
and fprintf used for outputting text use variable argument lists. Since GROMACS outputs
a lot of information thousands of warnings needed to be fixed.

The list of problems is far from being complete. Provided examples should give an impression
of the variety of issues that can occur when applying OTI to an existing software package.
At first try without much knowledge about GROMACS source code it took about 18 to 20
working days to get a working version of GROMACS. As a proof-of-concept only replacing
real surely was sufficient. For productive use a lot more work needs to be put into properly
applying OTI. There are plenty program parts where real was not used thus no variable
replaced by a stochastic type.

4.6 Lessons Learned

Waterbox example is no ordinary simulation due to its chaotic-system-like behaviour. Both
Automated Code Insertion and Own Type Insertion were successfully applied to GROMACS.
Based on ACI a case study was conducted. All properties observed showed no drastic
changes when simulated with random rounding. Accuracy analysis of density and potential
energy revealed a relative numerical error of under one percent which is significantly less
than tolerated 5% of fluctuation.

Own Type Insertion was developed with aim of accelerating ACI. This goal was reached.
Figure 4.15 illustrates the slowdown for applying ACI as well as for applying OTI. OTI is, as
expected, more work intensive to implement.

Runtime Slowdown
60

51,83
50

40 B GROMACS
30 B GROMACS ACI

20 13,09 GROMACS OTI

10 —

Figure 4.15: Performance penalty on CPU
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Simulations on GPU

5.1 NVIDIA Graphics Cards

In 2010 NVIDIA published a new generation of graphics cards with the codename Fermi™.

It is aimed to deliver high performance in computer games as well as in scientific comput-
ing. With full IEEE 754-2008 floating point support and eight times the double precision
performance than its predecessor it tries to further broaden the use of graphics cards in the
scientific sector. The following sections will clarify why Fermi™can accelerate computation

intensive tasks by orders of magnitude.

5.1.1 Fermi Architecture

The first and by the time of writing fastest GPU based on Fermi'™consists of 16 Streaming
Multiprocessors (SM). They are arranged around the L2 Cache surrounded by the DRAM

components (see figure 5.1). The Streaming Multiprocessor as shown in figure 5.2 contains
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Figure 5.1: NVIDIA Fermi Architecture

32 CUDA cores. This sums up to a total amount of 512 CUDA cores per card. Each SM has
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5 Application of DSA in Molecular Dynamics Simulations on GPU

64 KB of L1 Cache, an Interconnect Network for inter-core communication a big register file
and 16 load/store units (LD/ST) to read write data to and from the cache or DRAM. On the
right-hand side the four Special Function Units are located (SFU). A SFU can handle one
transcendental instructions as sin, cosine, reciprocal or square root per clock. A CUDA core

Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit

SFU

SFU

SFU

SFU

Figure 5.2: FERMI Streaming Multiprocessor

(figure 5.3) consists of a fully pipelined integer arithmetic unit (ALU) and floating point unit
(FPU).



5.1 NVIDIA Graphics Cards

Figure 5.3: NVIDIA FERMI CUDA Core

5.1.2 Compute Unified Device Architecture

To accelerate an application with CUDA the computation intensive tasks need to be exported
to so called kernels. A kernel is a function that is executed in parallel on the GPU. Figure 5.4
illustrates the organization of the threads. Each thread has its private memory. Threads are
organized into blocks. Each block can resort to memory that is shared among all its threads
allowing inter-thread communication. Blocks are furthermore organized into grids.

It is a developers task to choose the dimensions of grids and blocks. To fully utilize 512
available cores it is necessary to provide far more than one thread per core to hide memory
latency (see [MSWgs5]). But one has to be cautious. If threads on one SM need more than
the 32,768 provided registers one needs to reduce the amount of threads executed on an
SM. Generally this is unlikely to happen. Unfortunately it is not always possible to dissect
algorithms or functions into thousands of subtasks which are data independent. Naturally
those tasks won’t benefit from CUDA as much as highly parallelized ones.

NVIDIA provides a compiler front end called nocc. It is used to compile CUDA source (file
extension .cu) files into executables. It usually contains two types of source code.

host code Host code is written in C or C++. It handles the start up of the program and all
interactions with components not residing on graphics cards (e.g. hard disk, RAM,
keyboard, ...). It copies needed data to the graphics cards and calls a kernel to be
executed on GPU.

device code A kernel is a good exemplary for device code. It is exclusively executed on the
GPU. Device code can be linked to an executable either as PTX code, which is a kind of
an assembly for GPU, or as binary GPU code called cubin. Both cases produce a global
data array which is loaded to GPU by host code. It is also possible to create an object
out of a cubin or PTX fragment which is loaded at runtime. For PTX code just-in-time
compilation is used by the device driver to create a runnable binary version of the PTX
file as soon as it is loaded onto the GPU.
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Thread

Nm— ]

Thread Block
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Figure 5.4: CUDA thread allocation

Figure 5.5 illustrates the structure of compilation stages used. First the pre-processor cudafe
splits host and device code. Device code is further compiled by nvopencc to PTX code. ptxas
finally creates binary device code which is placed in a fatbin format along a hash of the input
files. Fatbin objects can be embedded into the executable or stored in file system to be loaded
at execution time. Earlier extracted host code is compiled with a C/C++ compiler available
on the system.

To distinguish between different available versions of CUDA enabled graphics cards NVIDIA
introduced the compute capability model. It is defined by a major and minor revision number.
Devices with same major revision number originate from the same GPU architecture. Minor
revisions keep track of improvements inside a major line. It is possible to embed different
compute capability enabled fatbins in an executable to leverage all features of the presented



5.2 Waterbox Performance on GPU
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Figure 5.5: NVIDIA CUDA compiler stages

execution environment. A collection of features available per compute capability for current
architectures can be found at [NVI1oc].

5.2 Waterbox Performance on GPU

As mentioned earlier it is possible to achieve high acceleration in computations when moving
from CPU to GPU. A simple matrix multiplication is a popular example. Depending on
the matrix size a speedup of 300 can easily be achieved. Surely this is not possible for all
applications.
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5 Application of DSA in Molecular Dynamics Simulations on GPU

Unfortunately the waterbox example uses the Particle Mesh Ewald method (PME) during
calculation of non-bonded potentials. Hereto a citation from GROMACS developer section:

"Presently, the PME performance for a single GPU with ECC enabled roughly matches us-
ing GROMACS on all 8 cores of a cluster node. The primary bottleneck here is simply the reciprocal
space grid algorithm which is highly accelerated on CPUs in GROMACS, while it is fundamentally
harder to implement efficiently on GPUs - this is currently an area of intensive work. The GPU code
actually uses 5th order interpolation internally, so you can usually improve performance a bit further
by extending the grid/fourierspacing option."

(Source: http://www.gromacs.org/Downloads/Installation_Instructions/Gromacs_on_GPUs)

Thus the speedup by moving from CPU to GPU is nearly neglectable. There are
other algorithms which highly profit from a GPU’s computing power (see figure 5.6). The

GROMACS 4.5 performance comparison
system: DHFR implicit (2489 atoms), solvated (23569 atoms)

O Tesla C2050 ECC on
@ Tesla C2050 ECC off
O GeForce GTX 470

B GTX 580

O cCore i7 920 4T

@ Core i7 920 8T

B 2x HeonES430-8T
@ AMD X6 1090T 6T

Performance (ns/day)

Impl Inm Impl 2nm Impl Inf PME RF 1nm

Figure 5.6: GROMACS GPU Benchmarks - Source http://www.gromacs.org/gpu

comparison already contains a sample from the GTX 580, NVIDIA’s newest CUDA enabled
graphics card, which yields a peak speedup of about 20. As expected, the waterbox example
executed on GPU did not outrun the CPU version on the test system (A.2.6). Depending on
conditioning of input data the GPU version did slightly better or slightly worse. Table 5.1
shows gathered values. There were four simulation set-ups executed starting with 2.400
molecules and doubling the molecule count for each of the remaining three simulations.
Step size was set to 2 femto seconds (fs) with 100.000 time steps resulting in a simulation
time of 200 pico seconds (ps). That a simulation with 9.600 atoms can be faster than one
with 4.800 atoms is due to simulation overhead. There are similar effects on CPU for systems
run on 64 CPUs and more. For 2.400 atoms CPU is faster than GPU. Here problem size is
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5.3 Static Binary Rounding

Number of molecules GPU CPU
2.400 1.015 seC 774 secC
4.800 1.225 seCc  1.202 SecC
9.600 1.142 seC  1.353 sec
19.200 2.984 sec 2.812 sec

Table 5.1: Execution times for 100.000 step waterbox on GPU

too small to benefit from a highly parallel execution environment. Loading data to GPU
takes more time than computing an actual result. In this case CPU will always be faster
because no transfer overhead is present.

Waterbox simulation GPU vs. CPU

3.500
3.000
2.500
2.000

1.500 = GPU

1.000 - = CPU
500 -

execution time in sec

2.400 4.800 9.600 19.200

number of atoms

Figure 5.7: Waterbox runtime on GPU

5.3 Static Binary Rounding

Fermi™is the newest CUDA enabled architecture from NVIDIA and is closest to fully
implementing IEEE 754-2008 yet [NVI10d], especially when single precision is concerned. In
difference to CPU rounding it can not dynamically be changed during execution time. Rather
there is a dedicated assembly command for each operation and rounding mode combination.
For single precision floating-point multiplication those commands look like the following.

mul.f32 Default to mul.rn.f32.
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5 Application of DSA in Molecular Dynamics Simulations on GPU

mul.rn.f32 Multiplication with round to nearest even.
mul.rz.f£32 Multiplication with round to zero.
mul.rm.f32 Multiplication with round to —oo
mul.rp.£32 Multiplication with round to +o0

There are additional commands with combinations of sat, ftz, approx and full but since
they do not have an influence on rounding they are not of interest.

No dynamic rounding means that DSA implementation one from CPU, Automatic Code
Insertion, is not applicable here. Generally, a possibility to plug into the compilation process
is present. Replacing NVIDIA’s compiler by a script will have the same effect as placing
a script between make and gcc for ACIL. But with no command to control an operation’s
rounding mode there is nothing the script can insert.

Method two, Own Type Insertion, involved class operator overloading. CUDA cores are only
fast for arithmetic operations and function calls or class operations do not count to their
strengths. Because a drastic performance boost is expected by moving from CPU to GPU the
OTI method won’t be a good choice, although applicable. Still, CUDA provides rounded
floating-point operators. Indeed they can’t be chosen dynamically but during compilation
time one is totally free to determine the kind of rounding applied to an operation. This
means random rounding can be implemented analogous to ACI, only not during runtime
but during compilation of the binary. For ACI each execution of a simulation has its own
unique rounding sequence. Applied at compilation time each executable has its own unique
rounding sequence which is static during execution time. Instead of running the same binary
three times one needs to execute three different binaries each having a unique rounding
sequence.

Table 5.2 gives exemplary binaries. All three still have the same program logic. They only
differ in the command used for e.g. multiplication. This method will be referred to as Static
Binary Rounding (SBR).

Operation Executable A Executable B Executable C

a+b round up round down  round down
a*b round down round up round down
a/b round up round up round up
b+a round down  round down round up

Table 5.2: Example for three statically rounding binaries
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Again, like with ACI, a script is handling the code changes making it as fast to implement
as possible. Section 5.1.2 already approached CUDA’s compilation stages and presented
a dedicated step for processing CUDA assembly files in the PTX format. This makes it
easier to apply changes to this step as only one tool with a sole purpose has to be replaced
(see figure 5.8). The script can found in appendix A.3.1. Though the idea behind Static

[

.C host code

l gpu unchanged

nvopencc

.ptx

change
v v
cpp |[¢— fatbin %unchanged
v

.CU.C

Figure 5.8: Changes in compilation stages for SBR

Binary Rounding is the same as behind Automated Code Insertion, still there is a significant
difference. Rounding in a binary obtained by SBR is statically determined at compile time.
When executed with CUDA a floating-point operation from binary file is (ideally) executed
simultaneously on all CUDA cores. If this operation is determined to round up normally
all threads of the same kernel will round up. A CUDA program which consists of only one
floating-point operation embedded inside a loop has a rounding sequence length of one.
SBR can only replace one operation with randomly chosen round up or down commands.
The changed program only rounds up or down at all operations. Therefore the use of SBR is
limited to programs with a decent amount of source code level floating-point operations.
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5 Application of DSA in Molecular Dynamics Simulations on GPU

GROMACS for GPU makes use of a library called OpenMM". All molecular simulation
related program logic which needs to run on GPU is provided by this library. Compiling
said library and GROMACS with the SBR script worked fine. OpenMM provides several
tests to verify the functionality of the installation. The adjusted version did pass all tests.
Unfortunately GROMACS did not produce reasonable results for the waterbox simulation.
Box dimensions are zero or negative, density calculated to infinite and potential energy
only at a fraction of values observed on CPU. This behaviour was common to the changed
and unchanged version of GROMACS. Therefore Static Binary Rounding can be excluded
as perpetrator. Hints from the OpenMM development team point wrong data hand-over
between GROMACS and OpenMM. This issue could not be resolved by end of this thesis.

To verify value distribution for SBR enabled binaries another example had to be used. A
popular one for displaying CUDA’s acceleration opportunities is matrix multiplication. In its
original form matrix multiplication only uses two floating-point operations at source level:
one addition and one multiplication. To inflate this example with more arithmetic operations
loop unrolling was applied [HL].
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Figure 5.9: Value distribution for Static Binary Rounding

Afterwards each thread, and therefore each random rounding sequence, consisted of about
128 floating-point operations. Matrix size needed to be scaled as well to provide enough data
for such excess of operations. Figure 5.9 plots the value distribution for a result component.

For a small example with only 128 occasions to generate a round-off error the resulting

distribution is promising close to Gaussian distribution. For accuracy comparison the result

Thttps:/ /simtk.org/home/openmm
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5.3 Static Binary Rounding

of a dot product between a row and a column of the matrix is used. Again, double precision
serves as high precision reference. The mean value of the results obtained with SBR is much
closer to the high precision sample than the result computed with single precision (see table
5.3) making SBR a valid DSA implementation on GPU.

Example ‘ Value

Dot product high precision reference (double) | 258.3175263699
Dot product (mean over 4096 samples) 258,3174569085
Dot product (single) 258.3172912598

Table 5.3: Dot product precision comparison for Static Binary Rounding
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6 Conclusion

This work assessed the applicability of numeric accuracy analysis based on DSA for CPU and
GPU platform. Three methods were developed, two for CPU and one for GPU, to implement
DSA in an existing software package. A case study was elaborated to review the effects of
DSA on molecular dynamics simulation package GROMACS.

The challenge of implementing DSA in software consists in the fact that simulation tools, or
computational software in a broader sense, grew over many years. Those applications are
highly optimized and serve their purpose well. It is unlikely to convince users of working
with or developers of implementing a new system only because an accuracy analysis should
be integrated. So there is no chance of implementing such methods from the start. Best
solution would probably be provided by hardware because a floating-point unit with random
rounding capability is completely transparent to software running on top. Currently none
of the big players in microprocessor industry offers products with this feature. Even if
said products would exist it still were a question of monetary resources to replace a High
Performance Cluster like JUGENE' by a pendant with random rounding capability. Thus,
there are little alternatives to change existing software.

If changes need to be made it is desirable that these changes are made automatically. It
allows to obtain results fast without investing too much resources beforehand. This might
help to convince people of putting their software to a preliminary accuracy check. It also
helps to use always the latest software version as new releases can be adopted with DSA
fast. Last but not least an automatism makes less mistakes. Both Automated Code Insertion
and Static Binary Rounding do provide this automation property.

In contrast, Own Type Insertion is not automatically applicable. There are steps like replacing
a built-in type by a stochastic type which can be done by script or with refactoring tools of a
development environment. Correcting broken code lines to reach a successful compilation
still is a task to be done by hand. Unfortunately this has to be repeated for every new
software version released, which is ultimately a question of costs. A benefit is the fast
software rounding mode NextFloat which drastically accelerates Own Type Insertion in
contrast to Automated Code Insertion.

Thttp:/ /www.fz-juelich.de/portal / forschung /highlights /supercomputer
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6 Conclusion

Biggest disadvantage of Static Binary Rounding is the limitation to programs with many
floating-point operations on source code level. Besides that, it is the best solution from
a technical point of view. It can be applied fully automatically, does not slow down the
simulation and covers all floating-point operations.

An interesting question was whether the waterbox example would show a significant
numerical error. Simulation results obtained with a GROMACS version using Automated
Code Insertion suggest that the relative numerical error is under 1%. Fluctuation dominates
changes of system properties with an amount of 5% of the actual value. More important is
the fact that the implemented method did not break the simulation software and provided
results usable for accuracy analysis.

Each of the three implementations has its own strengths and weaknesses, but none of
them is suited for solving all problems at the same time. A decision can only be based on
information about the intended use case one. Still, Automated Code Insertion and Static
Binary Rounding are fast to apply and cover all floating-point operations. Static Binary
Rounding combines these advantages with high execution speed and safest changes in code,
making it the cleanest solution to implementing DSA from a technical point of view.

Table 6.1 summarizes properties of all three implementation methods.



65

CPU

GPU

Automated Code Insertion | Own Type Insertion

| Static Binary Rounding

Advantages

e covers all fp operations
e nearly no code changes
o fast to apply

e safe solution

e small performance penalty
e extensible

e debugable

e covers all fp operations

e absolutely no code changes

e very fast to apply

e no performance penalty

e only assembly changes, no insertion

Disadvantages

¢ huge performance penalty
e not perfectly reliable

e very work intensive
e does not cover all fp operations

e only works on big examples
e only works on NVIDIA GPUs
e needs compute capability > 2.0

Table 6.1: Random rounding method comparison




6 Conclusion

6.1 Further Work

Currently Automated Code Insertion will not work on multi threaded programs. State
variables and random rounding value table are globally defined allowing no simultaneous
access. Using MPI is safe because each node has its own global data space. A common
solution is to use mutual exclusion algorithms to avoid concurrent writes but will imply
further slowdown.

On basis of Own Type Insertion alternative implementations for rounding floating-point
operations can be assessed to find a robust and mathematic reasonable way to avoid emp-
tying an FPU’s pipeline after each operation. Round-by-multiplication has shown drastic
performance gains compared to ACI and could serve as basis for such assessment.

NVIDIA’s CUDA is under constant development. After adding limited support for C++
classes in device code with the last major release they promised to further complete C++
capabilities. It might become interesting to investigate porting Own Type Insertion to GPU
to get random rounding on a fine grained level of floating-point operations.
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A Appendix

A.1 Discrete Stochastic Arithmetic

A.1.1 Student’s t-distribution

William Gosset introduced this statistical distribution in 1908. It is used when estimating
a mean value of a normally distributed population with only few samples. The value is
selected by the degrees of freedom (DoF) and the confidence interval.

DoF 75% 80% 85% 90% 95% 99% 99.5% 99.9%

1 1.000 1.376 1.963 3.078 6.314 31.82 63.66 318.3
2 0.816 1.061 1.386 1.886 2.920 6.965 9.925 22.33
3 0765 0978 1.250 1.638 2.353 4.541 5.841 10.21
4 0741 0.941 1.190 1.533 2.132 3.747 4.604 7.173
5 0.727 0.920 1.156 1.476 2.015 3.365 4.032 5.893
6 0.718 0.906 1.134 1.440 1.943 3.143 3.707  5.208
7 0.711 0.896 1.119 1.415 1.895 2.998 3.499 4.785
8 0.706 0.889 1.108 1.397 1.860 2.896 3.355 4.501
9 0703 0.883 1.100 1.383 1.833 2.821 3.250 4.297
10 0.700 0.879 1.093 1.372 1.812 2.764 3.169 4.144
11 0.697 0.876 1.088 1.363 1.796 2.718 3.106  4.025
12 0.695 0.873 1.083 1.356 1.782 2681 3.055 3.930
13 0.694 0.870 1.079 1.350 1.771 2.650 3.012 3.852
14 0.692 0.868 1.076 1.345 1.761 2.624 2.977 3.787
15 0.691 0.866 1.074 1.341 1.753 2.602 2.947 3.733
16 0.690 0.865 1.071 1.337 1.746 2583 2921 3.686

Table A.1: Student’s t-distribution values - Source:
http://www.stat.tamu.edu/~west/applets/tdemo.html
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A Appendix

A.2 GROMACS Related Works

A.2.1 Random rounding compiler script

The script used for automatically compiling GROMACS with random rounding arithmetic.
When configuring the software package this script should be set as compiler in the CC
environment variable. It then intercepts the normal compiler calls and reinterprets them to
generate a binary with random rounding arithmetic.

#!/usr/bin/python
# -*- coding: utf-8 -*-

4| # Setting the GCCRR_DEBUG environment variable (to "true" or some other text) will make the

script output additional information.

#omm - IMPORT -----
import sys

from os import system
import os.path

import subprocess

#omm - CONSTANTS -----

DEBUG=None # Display debugging information.

FILE_CW_CONTROL_C = ’/home/cmoetzing/Diplomarbeit/bin/cwc_64.c’ # Path to the control word
file.

COMPILER = ’gcc -m64’ # Which compiler to use, also a good

place to add additional compiler options.

CLEAN_ARGS = sys.argv[1:] # Exclude the name of the script from
command line arguments.

FPU_COMMANDS_FOR_INJECT=[]

# This array contains all the floating point operations which will we bundled with a switch
of the rounding mode.

# Please only input lower case commands. The script will also add every command as upper
case.

FPU_COMMANDS = ["fadd","faddp","fsub","fsubp","fsubr","fsubrp","fiadd","fisub","fisubr"]

FPU_COMMANDS +=
["fmul","fmulp","fdiv","fdivp","fdivr","fdivrp","fprem","fprem1","fimul","fidiv","fidivr"]

FPU_COMMANDS += ["fsqrt","fptan","fpatan","fsin","fcos","fsincos"]

FPU_COMMANDS += ["fexp","fyl2x","fyl2xpl"]

FPU_COMMANDS +=
["fld","flds","fld1","fld1","f1d12t","f1d12e","fldpi","f1d1g2","f1d1n2","fldz"]

# The source file extensions the script works with.
SOURCE_EXT = [".c",".cc",".cpp"]
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A.2 GROMACS Related Works

# This is probably the most important part of this script. Those lines contain the assembly

1)
2)
3)
4)
5)
6)
7)
8)

H R OH R R B R B

code to switch the rounding mode.

Save current content of of register.

Increment the array index.

Ensure the we do not run over the end of the array.

Load the index value to the register.

Get the new rounding word from the array.

Chop it to the right length.

Load the control word to the FPU register

Load the previous value back to the register to continue execution.

ROUNDING_CODE_LINES = """
\txchgq\t_RAX_(Jrip), Jrax
\tincq\t_RR_INDEX_ (}rip)
\tandq\t$0xFFFFFF, _RR_INDEX_(J)rip)
\tmovq\t_RR_INDEX_ (Jirip), Jrax
\tmovzwl\t_RR_ARRAY_ (Jrax, jrax), Jeax
\tmovw\tZax, _RR_WORD_ (Jrip)
\tfldcw\t_RR_WORD_ (Jirip)
\txchgq\t/rax, _RAX_(Jrip)
menf1:-1] . split("\n")

INSTANCES=0 # For debugging purpose.

# Prints a status message.
def status(msg):

global DEBUG
if (DEBUG)
print "#>> Ys" % (msg)

# Exits the script with an error if something bad happens.

def panic_code(msg, code):

global DEBUG
if DEBUG :
print "##HHHHEEEEE R
print "#>> Panic: %s" %(msg)
print "##HHHEHEEEEE R
sys.exit(code)

# Exits the script silently.
def panic(msg):

panic_code(msg, 1)

# Call the compiler with the given argunents. Arguments must be an array.
def call_compiler(args)

cmd = "%s %s " % (COMPILER, " ".join(args))
# This resolves an issue with double quoted quotes.
if (cmd. find ("\\\"") == -1)
cmd = cmd.replace("\"", "\\\"")
status(cmd)
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# Open a subprocess to get the return code of the operation.
process = subprocess.Popen(cmd, shell=True, stdin=None, stdout=None, bufsize=0)
r = process.wait()
if r !'= 0:
panic_code(cmd, r)

# This function tries to find out whether gcc is called to compile something or just to get
the version (gcc --version).
# If for example the autotools try to find out which verison of gcc is used this script
should not interfere.
def has_compile_args(args):
ret = False
for arg in args:
if (arg == "-o"):
ret = True
else:
base,ext = os.path.splitext(arg)
if (ext in SOURCE_EXT):
ret = True
return ret

# If we create a executable out of some .o files we just need to call the normal command.
# The function first looks for an -o argument. If found, next is set to true meaning the
next argument will decide.
# If the next argument contains a dot this means code injection will take place (no normal
compile).
def do_normal_compile(args)
if (not has_compile_args(args)):
status("No compile args found.")
return True
next = False
for arg in args
if ( next == True )
if ( arg.find(".") == -1 )
return True
else
return False
if( arg == "-o")
next = True

# Compile the control word file to an object file. The object file is later linked to an
executable containing some random rounding stuff.
def make_cw_control():
os.popen("%s -c %shs.c -o %s.o" ¥ (COMPILER,
"",FILE_CW_CONTROL_C[:-2],FILE_CW_CONTROL_C[:-2]))
return FILE_CW_CONTROL_C[:-2] + ".o"

# Inserts the rounding code lines into the normal assembly code.
def translate_line(L,line):
# Append original assembly line to result.
L.append(line)
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127 cmds = line.split(None,1)

128 # Ensure no empty lines are processed.

129 if ( len(cmds) '= 0 and len(cmds[0]) '= 0 ):

130 # Remove AT&T syntax data size access markers from command.

131 cmd = cmds[0]

132 cmdl = None

133 if ( emd[-1] in ["B","s","w","1","q","t"] ):

134 cmdl = cmd[:-1]

135 # Is cmd a floating point operation...

136 if ( cmd in FPU_COMMANDS_FOR_INJECT or cmdl in FPU_COMMANDS_FOR_INJECT ):
137 # ... then append switching the rounding mode ...

138 L += ROUNDING_CODE_LINES

139 # ... and count how many switches were inserted (for debugging).
140 global INSTANCES

141 INSTANCES=INSTANCES+1

143| # Inserts the random rounding code into the assembly files.
144| def inject_rounding_ changes(file_name):

145 file = open(file_name,"r")
146 text = file.read()

147 file.close()

148

149 old_lines = text.split("\n")
150 new_lines = []

151

152 for line in old_lines:

153 translate_line(new_lines,line)
154

155 text = "\n".join(new_lines)
156 file = open(file_name,"w")
157 file.write(text)

158 file.close()

160| # Takes the requested compiler arugments and returns only those usable to generate an
assembly file instead of an object file.
161| def extract_compile_args(args):

162 ret = []

163 # -S is the gcc option for compiling to assembly
164 ret.append("-S")

165 ommit_next = False

166 last_arg=""

167 for arg in args

168 keep = True

169

170 if ( ommit_next == True )

171 ommit_next = False

172 keep = False

173 else :

174 # -0 is not of interest since we provide our own .s targets
175 if( arg == "-0" )

176 ommit_next = True
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keep = False

for s in [".0o",".a",".s0"]
# After a -MF or -MT we need to keep the targets.
if ( arg.endswith(s) and not last_arg in ["-MF", "-MT"])
keep = False

# Linking will be done later.
for s ln [ll_lll lI_LI| lI_wl!l]:
if ( arg.startswith(s) ):
keep = False

if( keep )
ret.append(arg)
last_arg=arg
return ret

# Replace the source file endings with .s which we generated.
def extract_assemble_args(args):
ret = []
for arg in args
tmp = arg
for ext in SOURCE_EXT :
tmp = tmp.replace(ext, ".s")
ret.append (tmp)
return ret

# If object files are linked together also link the control word file to it.
def extract_link_args(args):
ret=args
if (has_compile_args(args)):
# compile c¢ and/or add ¢ file with static objects for our rounding magic
cw_file = make_cw_control()
ret.append(cw_file)
return ret

# Chain for compiling code with rounding mode switching.
def do_rr_compile(args, files, do_linking)
# Make FPU code, no SSE.
args.append (" -mfpmath=387")

# Compile withouth linking.
status("compile")
call_compiler (extract_compile_args(args))

# Inject rounding mode changes into .s files.
for (full_name,base) in files:

inject_rounding_changes(base+".s")

# Assemble
status("assemble")
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call_compiler(extract_assemble_args(args))

# Link

if ( do_linking ):
status("1link")
call_compiler(extract_link_args(args))

# Initialization at beginning of script.
def init()
# Add upper version of FPU commands.
for cmd in FPU_COMMANDS:
FPU_COMMANDS_FOR_INJECT.append (cmd)
FPU_COMMANDS_FOR_INJECT.append (cmd.upper())
# Handle debugging variable.
try:
dbg = os.environ[’GCCRR_DEBUG’]
except KeyError:
dbg="false"
if (len(dbg.strip()) != 0):
global DEBUG
if dbg == "true"
DEBUG = True
else:
DEBUG = False

# Determine whether a link and a compile (like gcc main.c -o main.exe) takes place.
def link_and_compile_at_same_time(args):
if (do_normal_compile(args))
for arg in args:
base,ext = os.path.splitext(arg)
if (ext in SOURCE_EXT):
return True
return False

# Try to determine whether gcc is called from inside the configure script from autotools.
# This is necessary since the interference of this script does not work well with some tests
done by autotools.

def is_configure(args):

for arg in args

if (arg.find("conftest") != -1)
return True
return False

init ()
if (is_configure (CLEAN_ARGS)):

call_compiler (CLEAN_ARGS)
sys.exit()
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if (1ink_and_compile_at_same_time (CLEAN_ARGS)):
panic("Cannot link and compile at the same time.")

if ( do_normal_compile (CLEAN_ARGS) )
if (1ink_and_compile_at_same_time (CLEAN_ARGS)) :
panic("Cannot link and compile at the same time.")
status("Skip rr compile.")
call_compiler(extract_link_args (CLEAN_ARGS))
else :
status("Do rr compile")
do_linking = True
ommit_next = False
files = []

for arg in CLEAN_ARGS :
if ( arg in ["-c","-S8"] )
do_linking = False
base,ext = os.path.splitext(arg)

if ( ext in SOURCE_EXT )
files.append((arg,base))

do_rr_compile (CLEAN_ARGS, files, do_linking)

status("Injected rr-snippet %i times." % (INSTANCES))

Listing A.1: gccrr.py - Automated Code Insertion compiler script

A.2.2 Get FPU rounding control words

This file outputs the control words for the different rounding modes. The control words then
can be put into a random rounding control file (A.3). To compile the source file execute

gcc get_rounding words.c -o get_rounding words -1m

The rounding modes are output in hexadecimal format:

Upward: B7F

Downward: 77F

Nearest even: 37F

To zero: FTF

Since the control words might vary on different hardware architectures it is impor-

tant to verify using the right ones before compiling a software package with the gccrr.py
script from A.1.
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#include <stdio.h>
#include <fenv.h>

long value = 2;

int main() {
printf ("Upward: ");
fesetround (FE_UPWARD) ;
__asm__("fstcw value");
printf ("%1X\n", value);

printf ("Downward: ") ;

fesetround (FE_DOWNWARD) ;
__asm__("fstcw value");
printf ("%1X\n", value);

printf ("Nearest even: ");
fesetround (FE_TONEAREST) ;
__asm__("fstcw value");
printf ("%1X\n", value);

printf("To zero: ");
fesetround (FE_TOWARDZERO) ;
__asm__("fstcw value");
printf ("%1X\n", value);

Listing A.2: get_rounding_words.c

A.2.3 Random rounding control file

At the start of an execution of a program which was compiled with gccrr.py (A.1) the
sequence of rounding control word needs to be generated. Done in this file it is automatically
compiled and linked to the program. In this case the control words are valid for a x86_64
CPU. An important value is the size of the control word array. The bigger it is, the longer
the initialization takes. If all numbers where used the counter is set to zero and a second
iteration begins. If the size is changed make sure the line in the gccrr.py script (A.1) which
resets the counter is adapted as well.

#include <sys/time.h>
#include <stdio.h>

// Number of elements in the array. Remember to set andq in gccrr.py accordingly.
#define RR_ARRAY_LENGTH 0x1000000

// Temporary storage for registers during injected asm.
unsigned long _RAX_ = 0;
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// Array to store a random sequence of round up and down codes.
unsigned short _RR_ARRAY_[RR_ARRAY_LENGTH] ;

// Index of current position in _RR_ARRAY_

unsigned long int _RR_INDEX_ = 1;

// Store the currently used rounding word.
unsigned short _RR_WORD_ = 0xOb7f;

// Random number generator.
static unsigned int lfsr = OxFFFFFFFFu;
static unsigned int get_rnb()

{
// taps: 32 31 30 10; characteristic polynomial: x~32 + x~31 + x~30 + x710 + 1
unsigned bit = ((1fsr >> 31) -~ (1fsr >> 30) =~ (1fsr >> 29) ~ (1fsr >> 9) ) & 1;
1lfsr = (Ufsr >> 1) | (bit << 31);
return bit;

3

// Called once at startup of application to fill the array equally with rounding up and down
control words.
void enable_random_rounding()
{
fprintf (stderr, "Init rr array.\n");
struct timeval time;
unsigned 1i;

// The two used rounding control words.
unsigned short cws[] = {0xb7f,0x77f};

// This is the seed of the random number generator. If same control word distribution
is needed twice, set this to a fixed value.
gettimeofday (&time,0);

1lfsr = 1000*time.tv_sec + time.tv_usec;

for (i = 0; i < RR_ARRAY_LENGTH; ++ i ) {
_RR_ARRAY_[i] = cws[get_rnb()&1];

}

fprintf (stderr, "RR enabled.\n");

Listing A.3: cwc_64.c - Random rounding control word file

A.2.4 Automatic Code Insertion enabler script
As mentioned in A.3 the array holding the control words needs to be initialized at a

programs start. Therefore a function call needs to be inserted in the main function. This is
done by this script automatically. To use it just point it to the root folder of the source code.
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python enable_rounding.py /tmp/gromacs-4.0.7/

The script informs about the files where random rounding was enabled

Enabled rr in ’/tmp/gromacs-4.0.7/src/kernel/gmxdump.c’.

and where the regular expressions might have missed a main function (which hopefully

never occurs).
WARNING: grep my have missed a main function in ’/tmp/gromacs-4.0.7/src/mm.c’.

#!/usr/bin/python
# -*- coding: utf-8 -*-

#-———- IMPORT -----
import sys

from os import system
import os.path

import subprocess
import re

# Function to call from main.
RR_CALL="enable_random_rounding() ;"
# Definition of function which is linked to the file later.

RR_DEF="""extern void enable_random_rounding();
mmnn

# Exclued the name of the script from the command line arguments.
ARGS = sys.argv[1:]

# Regular expressions
RE_FILES=re.compile("~.*(\.c$|\.cpp$|\.cxx$|\.cc$)")
RE_MAIN=re.compile (’ [\s]*main[\s]*[\\(J{1}[\s]*int [\s]+argc.*\\)’)
RE_MAIN_CHECK=re.compile(’ [\s]*main[\s]*\(’)
RE_BODY_START=re.compile(’{’)

# Print error and exit.

def panic(msg):
print "#>> Error when calling: %s" %(msg)
sys.exit (1)

# Execute a command in a subprocess

def call(cmd):
process = subprocess.Popen(cmd, shell=True, stdin=None, stdout=None, bufsize=0)
r = process.wait()
if r !'= 0:
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panic(cmd)

# Inject the functiomn call.

def inject_enable_function(FILE):
LOOK = False
DONE = False

F = open(FILE, "r")
TEXT = F.read()
F.close()

LINES=TEXT.Split("\n")
F = open(FILE, "w")
F.write(RR_DEF + "\n")

for LINE in LINES:
F.write(LINE + "\n")

if not DONE:
if LOOK:
MO = RE_BODY_START.search(LINE)
if MO != None and len(MO.group(0)) > O:
F.write(RR_CALL + "\n")
DONE=True
else:
MO = RE_MAIN.search(LINE)
if MO != None and len(MO.group(0)) > O:
MO = RE_BODY_START.search(LINE)
if MO != None and len(MO.group(0)) > O:
F.write(RR_CALL + "\n")
DONE = True
else:
LOOK = True
F.close()

print "Enabled rr in ’Y%s’." %(FILE)

# Look for a main method and call inject function.
# If no main function was found and the file still contains the word "main" a warning is
printed.
def check_file_for_main(FILE):
F = open(FILE,"r")
TEXT = F.read()
F.close()

MO=RE_MAIN.search(TEXT)

if MO != None and len(MO.group(0)) > O:
inject_enable_function(FILE)

else:
MO = RE_MAIN_CHECK.search(FILE)
if MO !'= None and len(MO.group(0)) > O:
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print "WARNING: grep my have missed a main function in ’%s’. Please
check manually." %(FILE)

# Find all relevant files.
def walk(X, DIR, FILES):
for FILE in FILES:
MO = RE_FILES.search(FILE)
if MO != None and len(MO.group(0)) > O:
check_file_for_main(DIR + "/" + FILE)

if len(ARGS) != 1:
print "Usage: enable_rouding.py FOLDER"
exit

else:
FOLDER=ARGS [0]

os.path.walk(FOLDER, walk, "")

Listing A.4: enable_rounding.py - Automated Code Insertion enabler script

A.2.5 GROMACS 4.0.7 patch

diff -rupN ../gromacs-4.0.7-rr-single-clean/src/mdlib/ns.c ./src/mdlib/ns.c

--- ../gromacs-4.0.7-rr-single-clean/src/mdlib/ns.c 2010-09-21 23:57:27.000000000 +0200
+++ ./src/mdlib/ns.c 2010-08-26 10:41:54.000000000 +0200

@@ -83,6 +83,10 @@ static bool NOTEXCL_(t_excl e[],atom_id

#define NOTEXCL(e,i,j) !(ISEXCL(e,i,j))

#endif

+#define _EPSILON_ 0.0000001
+real _tmp_;
+real _tmp_ii_;
+
/K ok ok ok ok ok o ok ook ok oK oK K oK K oK K ok oK o ok o sk o ok oK oK oK K oK oK ok K ok K o ok ok K
*
* UTILITIES FOR NS
@@ -2039,7 +2043,15 Q@@ static int nsgrid_core(FILE *log,t_commr
/* check energy group exclusions */
if (!'(i_egp_flags[jgid]l & EGP_EXCL))

{
- if (r2 < rs2)
+
_tmp_ = r2-rs2;
+
if (_tmp_ < 0) {
+

_tmp_ = -1*%_tmp_;
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+
}
+
_tmp_ii_ = r2-rm2;
+ if (Ctmp_ii_ < 0) {
+ _tmp_ii_ = -1x_tmp_ii_;
+ }
+ if (r2 < rs2 &% _tmp_ > _EPSILON_)
{
if (nsr[jgid]l >= MAX_CG)
{
@@ -2052,7 +2064,7 @@ static int nsgrid_core(FILE *log,t_commr
}
nl_sr(jgid] [nsrljgidl++]=jjcg;
}
- else if (r2 < rm2)
+ else if (r2 < rm2 &% _tmp_ii_ > _EPSILON_)

{
if (nlr_ljc[jgid]l >= MAX_CG)
{
@0 -2129,14 +2141,22 Q@ static int nsgrid_core(FILE *log,t_commr
/* Perform any left over force calculations */
for (nn=0; (nn<ngid); nn++)
{
- if (rm2 > rs2)
_tmp_ = rm2-rs2;
if (_tmp_ < 0) {
_tmp_ = -1*_tmp_;
}
if (rm2 > rs2 && _tmp_ > _EPSILON_)
{

+ o+ o+ 4+ o+

do_longrange(cr,top,fr,0,md,icg,nn,nlr_ljc[nn],
nl_lr_ljc[nn],bexcl,shift,x,box_size,nrnb,
lambda,dvdlambda,grppener,
TRUE, TRUE, TRUE, bHaveVdW,bDoForces) ;
}
- if (rl2 > rm2) {
_tmp_ = rl2-rm2;
if (Ltmp_ < 0) {
_tmp_ = -1x_tmp_;
}
if (rl2 > rm2 && _tmp_ > _EPSILON_) {
do_longrange(cr,top,fr,0,md,icg,nn,nlr_one[nn],
nl_lr_one[nn],bexcl,shift,x,box_size,nrnb,
lambda,dvdlambda, grppener,

+ o+ o+ o+ o+

Listing A.5: gromacs-4.0.7.patch - GROMACS if-condition patch
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A.2.6 System Configuration
The software and tools where developed and tested on this system configuration:
Software
e Linux 2.6.18-194.26.1.el5 SMP x86_64
e gcc version 4.1.2 20080704 (Red Hat 4.1.2-48)
e GNU libc 2.5
o GROMACS 4.0.7
e Python 2.4.3
e GNU bash, version 3.2.25(1)-release (x86_64-redhat-linux-gnu)
e grep (GNU grep) 2.5.1
e GNU sed version 4.1.5

patch 2.5.4

Hardware
e Intel(R) Core(TM) i7 CPU 960 @ 3.20GHz
e 12 Gb RAM
e 2x NVIDIA GeForce GTX 480

A.2.7 Compiling GROMACS with random rounding arithmetic

These are the steps necessary to compile GROMACS with random rounding arithmetic.

wget ftp://ftp.gromacs.org/pub/gromacs/gromacs-4.0.7.tar.gz

tar xzf gromacs-4.0.7.tar.gz

cd gromacs-4.0.7/

patch -Npl < /tmp/gromacs-4.0.7.patch

/tmp/bin/enable_rounding.py /tmp/gromacs-4.0.7/

CC="/tmp/bin/gccrr.py" CFLAGS="-00 -g" CPPFLAGS="-00 -g" ./configure
--prefix=/tmp/gromacs-rr/double --disable-x86-64-sse --disable-cpu-optimization
--enable-double --disable-fftw-measure --with-fft=fftpack --disable-ia32-3dnow
--disable-ia32-sse

make #(no make -j!!!)

make install

Listing A.6: Compiling GROMACS step-by-step
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The patch from line four fixes an issue with some if conditions. Line five inserts a definition
and the call of the initialization function for the random rounding arithmetic. Line six
contains the configuration options. Optimization level Oo and debugging is really essential.
This way the compiler does not re-arrange or optimize code so all arithmetic operations
are translated straight forward. Disabling SSE' ensures that the arithmetic operations are
translated to FPU commands which can be modified by the script from A.1. SSE accumulates
several operations into one therefore preventing to set the rounding mode for each atomic
operation individually. The current implementation of the compilation script does not allow
several instances to run at any point in time. This is because the control word object file
might be overwritten during the linking stage resulting in binary garbage. As a result the
make command from line seven must not have a -j argument (or no number larger then 1
for -j to be absolutely correct). Be aware that GROMACS appends _d as suffix to all binary
files if compiled with double precision.

A.2.8 Running the waterbox example

Starting the waterbox simulation involves two steps.

grompp -p OO\_spce.top -f sim.mdp -c 04\_md\_final.gro -o 05\_input.tpr
mdrun -reprod -v -s 05\_input.tpr -o 05\_md\_traj.trr -e 05\_md\_ener.edr -c
05\_md\_final.pdb -g result.log

Listing A.7: Waterbox execution commands

The first command generates one input file which contains all data necessary to start the
simulation. It is better to use grompp from an unmodified build of GROMACS and only
start mdrun from the random rounding version. Line two contains the -reprod argument. It
instructs GROMACS to eliminate functions which exacerbate the reproducibility whenever
possible (see [gro]). All files named in line two are output files except for 05_input.tpr.
PyMol can use the .pdb file to visualize the result of the simulation (see chapter 4.2). To
extract different properties from the simulation g_energy can be used on the energy file
(05_md_ener. edr).

Thttp:/ /software.intel.com/en-us/articles / using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitiv
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A.3.1 Static Binary Rounding compiler script

The script replaces the original ptxas binary from CUDA and replaces the
floating point operations with their corresponding round up or down version.

#!/usr/bin/python
#/home/moetzicn/python/bin/python
# -*- coding: utf-8 -*-

IMPORT
import sys
from os import system
import os.path

import subprocess
import re

import

random
import time

SETTINGS

PTXAS = "ptxas_orig "
DEBUG = True
RND = [urmn, urpu ]

# Path to the unchanged ptxas binary.
# Enable/disable debugging information.

# This are the two rounding modes the script will use.

LOG_FILE = "/tmp/ptxas" # In in debug mode, write to this log.

# CUDA assembly fp instructions. Example for PTX ISA 2.2 and .target sm_20 only
# The script constructs all permutations e.g. mul.f32, mul.f64, mul.rz.f32, mul.rn.£f32,

MATH_BASE = ["mul", "add", "sub" "mad", "fma", "div", "GC", "sqrt" ]
MATH_MID = [ "rz", "rn", "ftz", "sat" ]

MATH_EXT = [ "£32", "f64" ]

R INIT-----

# Regular expression to search for ptx input file.
PTX_CMD_REGEX=re.compile ("\s+([~\s]+\.ptx)\s+")

CLEAN_ARGS = sys.argv[1:]
CMD_STR = " ".join(sys.argv)

# Return a random bit.
def get_rnb()
return random.randint(0,8192)%2

# Exits the script with an error if something bad happens.
def panic_code(msg, code):
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global DEBUG
if DEBUG :
print "#HHHEEEEE R
print "#>> Panic: %s" %(msg)
print "#HHHEEEEEE R
sys.exit(code)

# Exits the script silently.
def panic(msg):
panic_code(msg, 1)

# Execute given command
def execute(cmd):
if DEBUG :
print(cmd)
process = subprocess.Popen(cmd ,shell=True, stdin=None, stdout=None, bufsize=0)
r = process.wait()
if r '= 0 :
panic("Could not execute command" + cmd)

# Randomly return round up or round down code.
def get_rounding_mode ()
return RND[get_rnb()]

# Replace all mathematical operator with rounding version.
def replace_math_op(file)
fds = open(file, "r")
text = fds.read()
fds.close()
old_lines = text.split("\n")
new_lines = []
for line in old_lines :
rnd = get_rounding_mode ()
for ext in MATH_EXT :
match = re.search(ext, line)
if match!=None
for base in MATH_BASE :
match=re.search("\s+" + base + "\.", line)
if match!=None :
if re.search("\s+" + base + "\." + ext, line) !=

None :
new_op = base + "." + rnd + "." + ext
op = base + "." + ext

write_log("Replacing instruction " + op +
" with " + new_op)
line = line.replace(op, new_op)
else :
for mid in MATH_MID :
if re.search("\s+" + base + "\." +
mid + "\." + ext, line) != None
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break
new_lines.append(line)
fds = open(file, "w")
fds.write("\n".join(new_lines))
fds.close()

# Get the path of the ptx file.
def get_ptx_file(args)
match=PTX_CMD_REGEX.search(args)
if match != None and len(match.group(1)) > O:
return match.group(1)
else :
return None

# If in debug mode, write the message to the log file.
def write_log(message)
if DEBUG :
fds = open(LOG_FILE, "a")
fds.write(message + "\n")
fds.close()

R SCRIPT -----
random.seed(time.time())

write_log("Original commad: " + CMD_STR)

ptx_file = get_ptx_file(CMD_STR)

if ptx_file != None :
write_log("Replacing fp operations in " + ptx_file)
replace_math_op(ptx_file)

else :
if DEBUG :

new_op = base + "." + rnd +
n n + ext

op = base + "." + mid + "."
+ ext

write_log("Replacing
instruction " + op + "
with " + new_op)

line = line.replace(op,
new_op)

break

print "Could not find a ptx file in command:\n" + CMD_STR

# Execute the unchanged binary with the original arguments.

execute("ptxas_orig " + " ".join(CLEAN_ARGS))

Listing A.8: ptxas.py - Static Binary Rounding compiler script
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A.3.2 Compiling GROMACS for GPU with random rounding arithmetic

These are the commands necessary to compile OpenMM and GROMACS with random
rounding arithmetic on GPU. The source code of OpenMM can be obtained from
https:/ /simtk.org/project/xml/downloads.xml?group_id=161. After registering one needs
to download OpenMM2.0-Source.zip. The floating point operations replaced by the script
only work with compute capability 2.0 or newer (see [NVI10a] and [NVI1ob]). Therefore all
other compute capability targets need to be eliminated. The floating point operations are
replaced before the ptx assembly phase of nvcc (see figure 5.5). Therefore the binary file
ptxas in the CUDA bin folder needs to replaced with the python script from appendix A.3.1.
The original ptxas command needs to be renamed to ptxas_orig so that the script can still
execute it after it has done its modifications. It is not sufficient to only put the python script
somewhere in the PATH variable of the system since CMake tries to determine the location
of CUDA via the location of the CUDA binaries.

unzip OpenMM2.0-Source.zip

wget ftp://ftp.gromacs.org/pub/gromacs/gromacs-4.5.3.tar.gz

tar xzf gromacs-4.5.3.tar.gz

mkdir openmm

cd openmm

cmake -DCMAKE_INSTALL_PREFIX=/tmp/openmm -DFOUND_CUDART=/tmp/cuda/1ib64/libcudart.so
-DCUDA_HAVE_GPU=TRUE -DOPENMM_BUILD_CUDA_LIB=0N -DOPENMM_BUILD_OPENCL_LIB=0FF
-DOPENMM_BUILD_STATIC_LIB=0N -DFOUND_CUT_INCLUDE=/tmp/cuda/sdk/C/common/inc
-DFOUND_CUT=/tmp/cuda/sdk/C/1ib/libcutil_x86_64.a ../OpenMM2.0-Source/src/

sed -i "s/CUDA_NVCC_FLAGS:STRING=-gencode;arch=compute_11,code=sm_11;
-gencode;arch=compute_13,code=sm_13;-gencode;arch=compute_20,code=sm_20;
-use_fast_math/CUDA_NVCC_FLAGS:STRING=
-gencode;arch=compute_20,code=sm_20;--ftz=false;--prec-div=true;--prec-sqrt=true;/g"
CMakeCache.txt

echo "c\ng\n" > /tmp/cmake.cnf

(ccmake CMakeCache.txt) < /tmp/cmake.cnf

make

make install

cd ..

mkdir gromacs

cd gromacs

export OPENMM_ROOT_DIR="/tmp/openmm"

cmake -DGMX_OPENMM=0N -DCMAKE_INSTALL_PREFIX=/tmp/gromacs-gpu -DGMX_THREADS=0FF
../gromacs-4.5.3

make mdrun

make install-mdrun

Listing A.9: Compile GROMACS for GPU step-by-step
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