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Abstract 

NETplace is an efficient algorithm to assign virtual nodes to physical nodes on 

the network emulation testbed, while reducing the experiment runtime for 

network emulation up to 64%. As an assumption of this algorithm, a detailed 

defined cost model for communication cost has been provided. This cost model 

needs expected data rates of the links between each pair of virtual nodes as well 

as CPU load (in CPU cycles) on the virtual nodes, which are the experimental data 

produced by SoftwareunderTest (SuT). Therefore, the goal of the thesis is to 

define a generic load model to efficiently provide placement algorithm with a 

realistic estimation of experimental load data. 

In order to reach this goal, several problems should be solved. First, there are 

thousands of network links and virtual nodes in the model, so it is impossible to 

manually inquire and input all experimental CPU load and data rates into the 

model, because it takes too much time. A possible approach to resolve this 

problem is to divide the nodes into several groups, in which all the nodes have 

nearly similar characteristics. That is to say, a node classification is made. Thus, 

we only need specify one node for each group, and the other nodes can be 

automatically assigned according to the node classification. Second, nowadays 

the network is already very large, so it still costs much time, if we classify the 

nodes in the whole network together. A better solution is to analyze the nodes in 

part networks with the help of network clustering. So generally speaking, 

through combining the network graph clustering with the nodes classification 

we can provide the load information, which NETplace needs.  
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Kurzfassung 
 

NETplace ist ein effizienter Algorithmus, um mehre virtuelle Knoten zuzuweisen 

jedem physischen Knoten, der auf der NET liegt. Dabei wird die benötigte 

Laufzeit auf bis zu 64% reduziert. Dabei wird angenommen, dass ein 

Kostenmodell für die Komummunikationskosten bereitgestellt wird. Dieses 

Kostenmodell benötigt die Datenrate zwischen den verschieden virtuellen 

Knoten sowie die CPU-Auslastung der virtuellen Knoten. Diese sind die 

experimentelle Daten, die vom SuT produziert werden. Daher ist das Ziel dieser 

Diplomarbeit, ein allgemeines Modell zu definieren, das effizient den placement - 

Algorithmus mit einer realistischen Einschätzung der experimentellen Daten 

liefert. 

Um dieses Ziel zu erreichen, müssen einige Probleme gelöst werden. Es gibt 

tausende Netzwerkverbindungen und virtuelle Knoten in diesem Model, 

weswegen es unmöglich ist, alle experimentelle Daten manuell abzufragen und 

aufzunehmen. Dies würde zu viel Zeit kosten. Ein Lösungsansatz wäre es, die 

Knoten, die alle ähnliche Eigenschaften haben, in Gruppen zu unterteilen. Das 

heißt wir brauchen eine Knotenklassifizierung. Daher müssen wir nur die Daten 

einem Knoten für jede Gruppe abfragen und aufnehmen. Die anderen werden 

automatisch über die Knotenklassifizierung bestimmt. Heutzutage sind die 

Netzwerke sehr groß geworden, weshalb es sehr viel Zeit in Anspruch nehmen 

würde, wenn wir alle Knoten im gesamten Netzwerk klassifizieren würden. Eine 

bessere Lösung ist es, nur einen Teil der Knoten im Netzwerk mithilfe des 

Network-Cluster zu analysieren. Kurz gesagt, durch das Kombinieren von 

Network- Graph – Clustering mit der Knotenklassifizierung können wir die Daten 

bereitstellen, die NETplace braucht. 
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Chapter 1  

Introduction 

1.1 Motivation 

Today more and more dynamic1 large-scale distributed systems are used in 

world, so network evaluation becomes more and more important. In order to 

monitor the load information in whole system of such dynamic large-scale 

network, an appropriate emulation system should be set up. Now the NET 

(Network Emulation Testbed) project [1] of the Institute of Parallel and 

Distributed Systems (IPVS) at University of Stuttgart is a solution for such 

network emulation. The system is consisted of a 64-nodes PC cluster with 

flexible hardware and software tools. The nodes are connected with a high 

performance switch. Each node is able to emulate many virtual nodes, which 

represents a network component, (such as a terminal, router, gateway or switch 

etc.) in real world network. And those virtual nodes are running now in a 

network emulation environment, which means Time Virtualized Emulation 

Environment (TVEE) [2] here.  

A basic concept of network emulation is node virtualization, in which multiple 

virtual nodes are put onto each physical node of the emulation bestbed. But just 

using node virtualization is not scalable for large network, because the number 

of physical node is not always scalable. On the other hand, we also cannot put too 

many virtual nodes on each physical node. Therefore, time virtualization must 

also be used in TVEE, which can reduce the load on physical nodes through using 

a virtual time running slower than the real time on them. If a load is higher than 

the capability of a physical node, it will cause bias in the results, which is named 

overload. Conversely, if the load is much lower than the capability on a physical 

node, many calculation resources will be wasted, which is named underload. In 

order to keep the load between overload and underload, an adaptive virtual time 

is needed, which can adjust the virtual clock rate on physical nodes according to 

the load of them.  

 

                                                             
1
 Here “dynamic” means that the load in the network such as CPU load and data rates is often changed, 

but not the network topology. 
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Fig.1.1 TVEE architecture 

As showed in Figure 1.1, TVEE provides a nested virtualization. A virtual 

machine (VM) is running on each CPU core of each physical node, which offers 

virtual time to the operation system and SuT in VM. The virtualization inside VM 

is virtual routing (VR), which is more lightweight than VM. Using VR, the 

resources are partitioned into parts to create virtual nodes.  

In order to assign the appropriate virtual nodes onto the physical nodes of the 

64-nodes PC cluster, an automatic placement algorithm NETplace is used. As we 

said, the physical nodes must not be overloaded during the placement. We can 

achieve it by adjusting the dynamic virtual time. But if the virtual time is too slow, 

then the experiment runtime will be very long. If we deploy the virtual nodes 

onto the most suitable physical nodes, the running time of the experiment can be 

reduced substantially. So it is important to find out an efficient algorithm to 

minimize the experiment runtime. Fortunately NETplace is such an efficient 

algorithm to achieve this assignment. [3] 

For the input for NETplace algorithm, two input parameters, expected CPUs’ load 

on the virtual nodes and expected data rates of the data links between each pair 

of virtual nodes must be provided. Therefore, in this thesis an efficient load 

model will be established, in which the two parameters can be precisely offered 

as soon as possible. 

1.2 Goal of the study 

In order to place the virtual nodes onto the physical nodes of the PC cluster, a 

generic cost model for the communication of the systems is necessary. With two 

input parameters (CPU load and expected data rates), together with defining 

data links between virtual nodes in three different types (intra-vm, inter-vm and 

inter-pnode links), such a cost model can be set up. And the NETplace algorithm 

is based on it. But the two parameters, expected CPU load and expected data 

rates are just provided as an assumption now.  

physical node 
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In order to get the expected CPU load and expected data rates, the load 

information in the system must be inquired. But the network may be very large. 

Maybe there are thousands of nodes and edges in the load model. Manually 

inquiring all the load information of all the virtual nodes and data links and 

offering them to NETplace are impossible. So it is important to find out a relative 

automatic assignment method. A possible approach is to define a generic load 

model2 at first. According to the load model, a node classification can be carried 

out. Besides that, considering the large-scale network, a network clustering is 

also necessary. If network clustering is executed, the runtime of the node 

classification can be reduced. And the information of network topology could be 

used to achieve the network clustering and node classification.  

Therefore, the goal of this diploma thesis is to set up an algorithm, in which the 

expected CPU load and expected data rates can be provided for NETplace as 

precisely as possible.  

The algorithm is named “NETclassify”, which is running as following: Firstly, we 

give a detailed and generic load model for real world networks, the 

characteristics of the elements in the network will be mapped into this model 

according to the given real world network topology. Then a network is clustered, 

and the node classification algorithm can be carried out in relative small part 

network. Finally, in each class a node will be elected. Only the load of those nodes 

and data links from them is manually inquired, calculated and inputted, the load 

of the other data can be automatically allocated according to the node 

classification.  

1.3 Outline 

The reminder of this thesis is structured as follows: 

Chapter 2 represents related work and the differences to this diploma thesis. 

Chapter 3 describes possible design ideas for the network classification and 

issues design approaches of network classification. 

Chapter 4 shows the implementation of the network classification, which is 

based on the concept in chapter 3.  

                                                             
2
 “Generic load model” here means that this load model is suitable for all kinds of networks, not for a 

specific one. 
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In chapter 5 the procedures and results of evaluation of the implementation, 

which are defined in chapter 4, are described. 

In chapter 6 a summary of the diploma thesis and the possible enhancements of 

the diploma thesis are given. 
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Chapter 2 

Related work 

In this chapter, the related work of this diploma thesis will be introduced. The 

purpose of the study is to efficiently provide the expected load on the virtual 

nodes and expected data rates on the data links to NETplace. In order to reduce 

the work for inquiry and input of these two parameters in a large-scale network, 

a suitable node classification algorithm is needed. After the successful 

classification, the nodes, which have similar CPU load and similar data rates on 

the outgoing paths, are in the same group. This is also the goal of node 

classification. In order to achieve the goal, the communication capacity from a 

node to other nodes is measured. A possible approach is to create the Node 

Classification Algorithm with the help of bandwidth estimation for 

communication, while bandwidth is the worst-case estimation of the expected 

data rates. The reason why we use the bandwidth instead of the data rates here 

is that, the data rates on the data links are changeable.  

The concept of node here is the network component. The nodes classification, 

which we discuss here, is the network components classification.  

Automatic nodes classification is a method, with which the nodes could be 

automatically classified in many different classes by one or some properties of 

them. In some cases, we may classify the nodes by some properties of them, 

while the nodes may be classified by some other properties of them in some 

other cases. The classification is based on the selection of the properties of the 

nodes, while the selection is decided by the demand. For example, the result of 

automatic bandwidth estimation is the property we should use here.  

Unfortunately, as far as I know, there is no systematic approach for automatic 

nodes classification with the help of automatic bandwidth estimation. However, 

there exist some approaches for automatic nodes classification, if we do not care 

about the properties of the nodes for classification.  

Therefore, we can divide the problem in two part problems and focus on the 

related work on them: One is automatic nodes classification, and the other is 

automatic bandwidth estimation.  
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2.1 Automatic Nodes Classification 

For automatic nodes classification, there is an approach of automatic 

classification of node types in switch-level description. [18] 

This approach is just the classification of nodes types in switch-level, which is a 

part of network nodes. The metric for classification for this approach is the 

memory quality of the switch: weather it is temporary or memory.  

In this approach, according to some properties of the nodes, here is the property 

of the switch: temporary and memory. And the concrete method is:  

If the memory of a node is lost and it cannot affect the circuit operation, then it is 

classified as a temporary node. On the contrary, if the memory of a node is 

maintained, then it is classified as a memory node.  

However, the metric for classification is independent of bandwidth estimation. 

2.2 Automatic Bandwidth Estimation 

Here we want to find out an efficient method to measure the communication 

capacity in the whole network. The most accurate value of communication 

capacity is the real-time data rates on data links. With them we can know how 

much data exist on a link.  

There are some approaches to estimate the bandwidth on a link. [19] [20] 

For example, the packet pair mechanism is a reliable method to measure the 

bottleneck link capacity on a network path and the initial gap increasing (IGI) 

method and the packet transmission rate (PTR) method are two good 

measurements for available bandwidth. The themes in these papers are focused 

on how to measure the bottleneck link capacity or the available bandwidth 

capacity on a link. 

However, in our approach, we assume that, the method of measurement of the 

bottleneck link capacity or the available bandwidth capacity on a link is known. 

We want analyze the transport capacities between nodes in a network with the 

influence of other communication in the same network. So it is not suitable for 

us. 
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Chapter 3 

Design Issues 

In this chapter, the design issues of the algorithm NETclassify will be 

represented.  

For a better understanding, at first, a basic architecture of NETclassify is 

introduced. 

After that, some approaches of network clustering are described. Through 

network clustering, a network is split into many small part networks. 

Furthermore, the Node Classification Algorithm is discussed in detail. As a 

foundation of Node Classification Algorithm, a transmission cost model is set up. 

This model could help us to decide the routing paths between nodes in network, 

which is very important for the calculation of data transport capacities. As a 

result of successful division, the nodes with similar characteristics are in the 

same group. 

Finally, a manual inquiry and assignment of the CPU load on a node and data 

rates on the outgoing data links of it in each group is given, and according to the 

manual input, the CPU load on other nodes and data rates on the outgoing data 

links of them in the same group are also automatically assigned.  

3.1 Basic Architecture 

Above all, the relationship between NETclassify and its background is introduced. 

In the background of NETclassify the input and output of the algorithm are 

described.  

As shown in Figure 3.1, the Network Topology Generator can automatically map 

the network topology to a directed graph, in which nodes represent the network 

components and edges between the nodes represent the network data links. 

Furthermore, the characteristics of network components (i.e. nodes) and data 

links are also mapped. The characteristics of nodes here are node’s ID and the 

software running on it, while the characteristics of data links are link source 

node’s ID, link destination node’s ID, packet loss rate, maximal delay, and 

bandwidth on the link. This is one important input for NETclassify. The other 
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input is sample data rate, which must be manually inquired by human once for 

each group. Certainly, frequently manual inquiring takes much time, so the 

number of groups is kept as small as possible.  

The output of NETclassify is two kinds of values for NETplace[3] algorithm: one 

is CPU load on the virtual nodes, while the other is the data rates of the edges 

between them. 

 

 

 

 

 

 

              Input: Network topology 

             Input: sample data 

                                          

      human                        Output 

                                                      

 

                                   

                 from data rates                     from CPU load 

 

 

Fig 3.1 background of the diploma thesis 

After the explanation of the task, now the rough process of the NETclassify will 

be introduced. It is running as following in Figure 3.2: 

In the picture, the rough process of the NETclassify is shown. Firstly, as an input, 

a directed graph is given, in which all the parameters of the network topology is 

written. This graph can be very large. In order to reduce the runtime of the 

NETclassify, a network clustering is carried out. As a result, a graph is into many 

small part graphs split. 

With the cost information (i.e. bandwidth, maximal delay and packet loss rate) 
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on the links in each part graph, a transmission cost model is set up. Through this 

model we could know the shortest path between every pair of nodes, with which 

the routing information is known. The routing information is an important 

condition of the Node Classification Algorithm. 

Furthermore, a preparation work is necessary, in which some basic concepts and 

definitions are given. After that, the nodes are divided with similar functions in 

identical groups through the Node Classification Algorithm in the end. 

Besides the classified nodes, we still need sample data and suitable assignment 

method for an output. The sample data here is the CPU load of a random selected 

node and the data rates of the outgoing links from it in each group. We inquire 

the values of them in the network at first. Then with the assignment method the 

expected CPU load of other nodes and expected data rates of other data links in 

the same group can be automatically assigned.  

using cost information 

 

                                          offering shortest path between each 

                                                  pair of nodes 

     graph clustering 

       

                                         using node information 

 

                                   

nodes classifying 

 

                      

             

    

Fig 3.2 process of NETclassify 

3.2 Network Clustering 

In order to reduce the runtime of NETclassify, a network clustering algorithm is 

executed, which is also a graph clustering algorithm, because the network 

directed graph 

many part graphs  

transmission cost model 

Node Classification Algorithm 

nodes in groups sample data assignment method 

output 

preparation work for Node 

Classification Algorithm 
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topology has been already mapped into a graph. Then the problem of network 

clustering becomes a problem of graph clustering.  

The structure of the real world network must not be destroyed by the clustering 

algorithm. Otherwise, after Node Classification Algorithm we could not get a 

correct result.  

For example, for a node classification we do need to analyze the flow of load 

information on the communication paths between each pair of nodes. The 

structure information of the edges in a graph is very important for the analysis of 

the communication between each pair of nodes. The communication between 

each pair of nodes within groups is much more than the communication between 

groups. 

In some of the clustering literature, such a group in a graph is also named a 

cluster or community. [11] 

3.2.1 Different Clustering Methods 

Up to now, there are many network clustering algorithms [4] [5]. The global 

methods for graph clustering can be a flat structure clustering, which comprises 

single partition and cover, or defined as a hierarchical structure clustering, 

where each top-level cluster is always composed of sub-level clusters.  

Almost all the structures of the networks today belong to hierarchical structure. 

For this reason, we will put more effort on the hierarchical structure and search 

a suitable clustering algorithm in it.  

In a hierarchical structure, a single cluster in a level can be composed further of 

several sub-clusters in the lower level. Certainly, it can also merge with other 

clusters in the same level to a large cluster in the higher level. The number of 

clusters in each level is different. The higher the level is, the lower the number of 

clusters is. For different requirements, (for example, the graph must be split in 

more than 100 part graphs or the number of nodes in each part graph cannot be 

more than 80.) we can find out a suitable dividing possibility in one level. 

In Figure 3.3 there is a dendrogram of hierarchical structure for a 23 nodes in a 

graph. In the highest level, the root cluster is an entire dataset, while the 23 

elements are the leaf clusters in the lowest level. Between them there are four 

intermediate levels. Each level in the dendrogram, which is marked by dotted 
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lines, can be regarded as a kind of clustering.  

 

Fig 3.3 a dendrogram of hierarchical structure [4] 

The clustering method of the hierarchical structure can be divided into two big 

classes: divisive global clustering (top-down, recursively partitioning) and 

agglomerative global clustering (bottom-up, merging). 

Following algorithms belong to the divisive global clustering method: 

Such as cuts, maximum-flow, betweenness, resistor networks and so forth. 

3.2.1.1 Cuts and Maximum-Flow 

In cuts method the graph is split in two part graphs by removing a cut3. Usually 

we are looking for a small cut, but there are various possibilities. The most 

famous one, minimum-cut can be considered with maximum-flow algorithm. [12, 

13] With min cut/max flow method, we can find out the shortest path, max flow, 

min cost-flow in the graph. But it is not useful for our task, because the min 

cut/max flow is used for a one source one sink approach, and the graph is a 

directed (weighted) graph. 

3.2.1.2 Betweenness 

According to the idea of Newman and Girvan, the weights on the edges are 

determined by the structural properties of the graph. The weight on each 

arbitrary edge {n1, n2} is the number of the shortest paths connecting any pair of 

nodes that passes through the edge. [4] And this weight of the link is the 

betweenness of the link. Therefore, the edge, whose betweenness with the 

highest value can be easily removed. If an edge is the connector of two part 

                                                             
3
 A partition of all the nodes in a graph into two nonempty sets is called a cut. 



 

 15 / 75 
 

networks, then each communication between each pair of nodes in different 

parts will go through it. The structure of the graph has a smallest influence on 

the removal of such an edge, because the structures of part networks are not 

destroyed. This method is suitable for my work. And I will introduce it further in 

detail later. 

3.2.1.3 Resistor Networks 

In this method the graph is mapped into an electric circuit, in which a unit 

resistor is placed on each edge and unit current flows (or random walks) into 

and out of the source and destination vertices. The random-walk and 

current-flow measures are proved precisely the same by M. E. J. Newman and M. 

Girvan in the Literature [7]. However, the time complexity for this method is very 

high. It takes O((n+m)*m*n2) for the entire community structure algorithm, 

where m is the number of edges in a graph and n is the number of nodes. 

 

 

Fig 3.4 an example of type resistor networks from source s to destination t. All the black points 

are the nodes in the graph, and the resistors represent the data links between them. [7] 

Now in NETclassify I will choose a clustering algorithm, which is based on 

betweenness of the edges. As we have already said, that the structure 

information of the edges in the graph is very important for the analysis of the 

communication between two nodes. And the structure information here is the 

edge-betweenness, which is the number of the shortest paths between any pair 

of nodes that pass through the edge. The higher the edge betweenness of an edge 

is, the more probable the edge is a boundary of two part network. 

3.2.2 Girvan-Newman Algorithm 

Girvan-Newman algorithm (Girvan & Newman, 2002) [6] [8] is such an algorithm, 



 

 16 / 75 
 

which can be used in Network clustering and is running as following steps: 

1. The betweenness of all the edges in the graph is calculated. 

2. The edge, whose betweenness is the highest, is removed. 

3. The betweenness of the edges, which has an influence on the last removal of 

the edge, is recalculated. 

4. Repeat step 2 and step 3 until there is no edge in the graph. 

However, the Girvan-Newman algorithm has a big problem, that this algorithm is 

not scalable for a large network. As what is pointed in [7], the time complexity is 

very high, the algorithm is running in O (m2n), where m is the number of edges 

and n is the number of nodes or O (n3) for a sparse graph (because in a sparse 

graph, m is as big as n).  

3.2.3 Clauset-Newman-Moore 

There are some faster approaches. One of them is the Clauset-Newman-Moore 

Algorithm [9], which is based on a greedy optimization. A key definition here is 

the concept modularity. 

3.2.3.1 Modularity 

Modularity is a metric, which represents the result of division. It is showed, 

whether the division is good or not. The value of modularity is always between 0 

and 1. If it is a good division, i.e. the value of modularity is relative high, it means, 

that the communication within each part is much more than the communication 

between parts.  

In literature [7], the following detailed definition of Modularity is given: 

For each particular division of a network into k communities, a k×k symmetric 

matrix e is set up. Each element eij in the matrix is the fraction of all edges in the 

network that link vertices in community i to vertices in community j. The sums of 

row (or column) in the matrix ai =  (j eij) represent the fraction of edges that 

connect to vertices in community i.  

The formula of modularity measure is defined: 

Q =  (i eii-ai2) = Tr e-||e2|| 
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Where Tr e =  (i eii) is the fraction of edges in the network that connect vertices 

in the same community and ||x|| indicates the sum of the elements of the matrix 

x. [7] 

 

Fig 3.5 an example of network clustering with the value of modularity 

Source: page 8 of paper [7] 

In the Figure 3.5, under the best division, the graph is split into four part graphs. 

At that time, the value of modularity is 0.5. If the number of part graphs is 

smaller than four, the less the number of part graphs is, the smaller the value of 

modularity is and vice versa. Obviously, the value 0.5 is the highest value here. In 

this structure, division into four part graphs is the best result. 

The time complexity of the Clauset-Newman-Moore Algorithm is O (m*d*log( n)), 

where m is the number of edges, n is number of nodes and d is the depth of the 

dendrogram, which describe the structure of the community division. In a sparse 

graph, the depth d equals to log (n) and m is also as big as n. So the time 

complexity becomes O (n*log2n). 

Clauset-Newman-Moore is an efficient algorithm to find community structures in 

large network. A community structure is a group of nodes, in which the density 

of edges is higher than density of edges between groups. It could be a real world 

department of a company. So using the Clauset-Newman-Moore algorithm does 

not destroy the structure of the real world network.  
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3.2.4 Weighted Graph 

The most networks are studied in binary form, that is to say, either the edge 

between two nodes exists or not. A simple expression can be written in a matrix 

M: [10] 

Mij =   
1, if i and j are connected,

0, otherwise.
  

Where i and j belongs to the nodes set N. 

In the real world, some graphs are weighted graphs. The weight can be a 

property of the graph. Then the expression becomes: 

Mij = (weight of the connection from i to j) 

Where i, j ∈ N. 

Now in our approach, if a weighted graph is used, bandwidth can be a weight of 

the connection. The higher the bandwidth is, the higher the weight is.  

For example, 

 

Fig 3.6 matrix is set up with weight 

A basic idea of the weighted graph is that the weight on a link represents the 

number of communication of links on this connection.  

 

Fig 3.7 weight is represented by several links 

Under this condition, that the bandwidth is the weight of the link: 

If the bandwidth of a link is more than 1, we will assume that, there are multiple 
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edges on the link, which is shown in Figure 3.7. Then the betweenness of such a 

link also becomes higher. According to the idea of Network clustering algorithm, 

which uses betweenness method, if the betweenness of two nodes are very high, 

then the link between the two nodes is assumed to be a link between clusters. 

Thus, the nodes, which are connected with a low-value bandwidth, have a better 

chance in the same cluster. The link, which has a high bandwidth, is considered 

as a boundary between two clusters, and will probably be removed. 

But in the real world, the bandwidth of a link, which is used to connect two 

communities, cannot be high. If we use this weighted approach, perhaps the link 

cannot be recognized as the boundary of a division. And a link in a community, 

whose bandwidth is high, is recognized as the boundary of division. 

 

(a) 

 

(b) 

Fig. 3.8 two results of network clustering (the digit on each link is the bandwidth of the link) 
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In Fig 3.8, the picture (a) shows us the division of the network without 

considering weight on each link. 

With the weight of the link, the result of division is shown in picture (b), in which 

the structure of network is destroyed. 

Therefore, the weighted graph model is not used here, unless a suitable property 

of a link can be found as the weight of the link instead of bandwidth. 

 

As showed in Figure 3.2, we need a Transmission Cost Model for each part 

directed graph, which represents the transmission cost in each part network.  

3.3 Transmission Cost Model 

The Transmission Cost Model consists of a set N of virtual nodes and a set E of 

edges between nodes. Once data is transmitted through an edge ei ∈ E, it takes 

Cost ci. The set of Cost for all the edges is C. Cost ci is related with 

upload/download bandwidth, maximal delay and packet loss rate, which are 

already provided by the network topology. Obviously, the higher the bandwidth 

is, the lower the Cost is. On the contrary, the higher the maximal delay and 

packet loss rate are, the higher the Cost is.  

Therefore, the formula is defined as following: 

𝐶 =
D × L

B
 

Where D is the maximal delay, L is the packet loss rate and B is the bandwidth.  

But for a directed graph, there are two directions for each link. Therefore, for 

arbitrary edge ei ∈ E, the maximal delay dui and ddi belong to D, where dui is the 

upload maximal delay of edge ei and ddi is the download maximal delay of edge ei; 

the packet loss rate lui and ldi belong to L, where lui is the upload packet loss rate 

of edge ei and ldi is the download packet loss rate of edge ei; the bandwidth bui 

and bdi belong to B, where bui is the upload bandwidth of edge ei and bdi is the 

download bandwidth of edge ei.  

Thus, for each edge ei there are two kinds of Cost, cui and cdi: 

cui =
dui × lui

bui
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And 

cdi =
ddi × ldi

bdi
 

Where cui is the upload Cost of edge ei, and cdi is the download Cost of it. They are 

the weights of edge in two directions. 

Now with a suitable shortest path algorithm, we can get the shortest paths 

between each pair of nodes in this directed weighted graph, where the upload 

Cost and download Cost defined before are the weights on the edges. 

Generally speaking, in a routing algorithm, the path, which has the lowest Cost 

between two nodes, is selected as the routing path between them. So with the 

shortest Cost paths between each pair of nodes, we will get the routing 

information in the network. 

3.4 Preparation Work of Node Classification Algorithm 

In this section, some preparation work for Node Classification Algorithm is 

described. 

The main task of the Node Classification Algorithm is to classify the nodes in 

groups by comparing one or some characteristics of the nodes.  

In NETclassifty, the reason why we need a Node Classification Algorithm is the 

necessity to reduce the effort of assignment of expected CPU load on the nodes 

and expected data rates on the data links between nodes.  

Therefore, the characteristics of the nodes we need for node classification 

algorithm are the software running on the nodes, which has a great influence on 

the expected CPU load and data transport capacity of the node, which determines 

the outgoing expected data rate.  

The critical value, real time transport capacity is a dynamic value. A possible 

substitute is to use the speed of the network links of the virtual network 

topology, i.e. bandwidth is used as a worst-case estimation of the transport 

capacity. So the bandwidth on each link becomes also important. 

As an input, the network topology is given, i.e. all parameters of the real world 

network are known. Therefore, after the successful mapping, we know which 

software is running on which node as well as the upload/download bandwidth 
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on each link. 

3.4.1 Preparation Work for Nodes 

Firstly, we focus on the characteristics of nodes.  

Not all the nodes will communicate with other nodes in a network. Generally 

speaking, a communication exists just between p2p nodes or client and server. 

We can also say that, communication exists between terminals. This is due to the 

different functions of nodes.  

Concerning the software running on the nodes, we can divide the nodes into two 

big classes by the nodes’ functions at first. One is called terminal, whose function 

is just to send and receive data while the other is named router4, whose function 

is to forward data, i.e. get data in incoming paths and put them in suitable 

outgoing paths, no message is produced in the transmission. Obviously a node in 

terminals is not similar as a node in routers. Concerning the completely different 

roles of nodes, nodes can be discriminated in class terminal and class router. And 

through checking the software on the nodes, we know the different roles of 

different nodes. 

 

 

 

 

 

Fig 3.9 normal connection structures for terminal and router 

As what is in Figure3.9 shown, our assumption is that, many terminals may 

connect to a router, but each terminal connects just to one router. So the 

connection grad of a terminal is one, and the connection grad of a router is bigger 

than two. 

Certainly, there are also some extreme cases: for example, maybe a router has 

only one connecter, that is to say, the data, which is transported to the router 

cannot be forwarded. In that case, we can analyze the network without regard 

for this router. 

                                                             
4
 The “router” here is not only a hardware router, it can also be a gateway, switch and so on. 

T

1

1 

 

T 

T 

R

1 

 

R

1 

 



 

 23 / 75 
 

3.4.2 Preparation Work for Edges 

Then the characteristics of the edges will be introduced.  

In this directed graph, for each edge, there are two values for the bandwidth. One 

is for upload bandwidth, and the other is for download bandwidth. These two 

values could be used as two directions of data transformation. Bandwidth is the 

maximal transport capacity of a data link, which is fixed for a data link, while the 

data rate is the actual transport flow of a data link, which can be often changed. 

In Figure 3.10, there is a link between node 1 and node 2.  

As showed in the picture a, the upload bandwidth and download bandwidth on a 

link is fixed. However, the data rates on the upload and download channels of 

link can be independently changed. In picture b and c, the data rates are 

different.  

                          upload bandwidth : 1M/bps 

                         download bandwidth : 40M/bps 

(a) 

                        upload data rate : 500k/bps 

                        download data rate : 10M/bps 

(b) 

                         upload data rate : 100k/bps 

                           download data rate : 15M/bps 

(c) 

Fig 3.10 difference of bandwidth and data rate of data link 

The relationship between data rate and bandwidth on a link in the same 

direction is: 

0 ≤ data rate ≤ bandwidth  

3.5 Node Classification Algorithm 

We want to classify the nodes in some groups, where the nodes have similar 

characteristics. Above all, we should make clear that, why we need nodes 

classification. As what we have already talked about, we want to reduce the 

1

1 

2 

1

1 

2 

1

1 

2 
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runtime of data inquiry and assignment. And the data, which needs to be 

inquired and assigned in the model for NETplace, is CPU load on the nodes and 

data rates between nodes. Therefore, the nodes in the same group should have 

similar CPU load and data transport capacity. 

3.5.1 Basic Concepts 

Before the introduction of the Node Classification Algorithm, we do need explain 

some basic concepts. 

3.5.1.1 CPU Load and Data Transport Capacity 

At first, the two concepts CPU load and data transport capacity are introduced. 

CPU load here is the load of CPU on a node.  

And the data transport capacity of a node here is divided in two cases:  

1. data transport capacity of a terminal: 

The data transport capacity from a terminal to all other corresponding 

terminals. (Communication exists just between terminals, which has been in 

chapter 3.1 discussed.) The reason, why only the outgoing transport capacity 

is considered, is that, every outgoing link of a node is also an incoming link of 

another node at the same time. The set of outgoing link of all the nodes is the 

set of links in the network. If we consider all the outgoing link of nodes, all 

the links in the network have been already considered. After we use the 

outgoing transport capacity to calculate the data transport capacity of a 

terminal, the nodes in the same group have same outgoing data transport 

capacity, i.e. they have similar expected data rates on the corresponding 

outgoing links. 

2. data transport capacity of a router 

The data forward capacity of a router, which is determined by the 

communication between terminals through this router.  

3.5.1.2 Analysis for CPU Load 

We can make a compare among all software running on each node, because the 

conclusion, in which the CPU load on some nodes is similar, only works on the 

premise that the software is the same. If the premise is met, and the data 
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transport capacities of the nodes, which will be discussed later, are also alike, 

then we could draw the conclusion that they possess the similar CPU load. I.e. the 

nodes, on which the same software is running and of which the data transport 

capacities are similar, have the similar CPU load. 

3.5.1.3 Analysis for Data Transport Capacity 

Then we turn to the analysis for data transport capacity. At first, the definitions 

of the maximal data transport capacity between nodes and the data transport 

capacity of a node are given: 

3.5.1.3.1 Maximal Data Transport Capacity between Nodes 

The maximal data transport capacity between two nodes is determined by the 

minimal bandwidth of a link, which is on the shortest cost path between them.  

The formula of the maximal transport capacity from nodes m to node n is defined 

as following: 

ωmn = min⁡(bmn1
, bn1n2

, … , bnx n) 

The nodes n1, n2 … nx are the intermediate nodes on the connecting path between 

node m and node n. 

For example: 

                10                          12 

                 9                           8 

Fig 3.11 a simple network topology, where the bandwidth from T1 to R1 is 10, from R1 to T2 is 12, 

from T2 to R1 is 8, and from R1 to T1 is 9. 

As showed in Figure 3.11, the maximal data transport capacity from T1 to T2 and 

that from T2 to T1 can be calculated with the formula above: 

 ωT1T2  = min  bT1R1
, bR1T2

 = min    10 , 12  = 10; 

And ωT2T1
= min  bT2R1

, bR1T1
 = min    8 , 9  = 8. 

 

 

T2 T1 R1 
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3.5.1.3.2 Data Transport Capacity of a Node 

The definition of the data transport capacity of a node is different from the one of 

maximal data transport capacity between two nodes. 

Transport Capacity of a Terminal 

The data transport capacity of a terminal is described as a vector. 

For each terminal, there is a vector, which represents the data transport capacity 

of itself. Every item of the vector represents the data transport capacity from this 

terminal to a corresponding communication terminal. Therefore, the number of 

the items in a vector is the number of corresponding communication terminals. 

The data transport capacity of a terminal m can be defined in a vector as the 

following form: 

Ωm =  

μmn1

μmn2

…
μmny

  

Where the nodes n1, n2 … ny are the corresponding communication terminals of 

the node m, and μmn1
, μmn2

, μmn3
are the transport capacities from m to n1, n2, n3. 

A transport capacity μn1n2
 on a path from n1 to n2 is different in different 

transmission cases, which is smaller or equal to the maximal transport 

capacity ωn1n2
 on it, because in a part network, maybe more than one terminal 

will transmit data though the same path at the same time. For example: 

 

Fig 3.12 a server S1 and two clients C1, C2; among which there are many routers. The transport 

capacity from S1 to C1 is 10; while the transport capacity from S1 to C2 is 7. 
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According to the data transport capacity in the Figure 3.12: 

The vector, which means the transport capacity of node S1 is ΩS1
=  

μS1C1

μS1C2
  =  

 
10
7
 , where the first item 10 represents the data transport capacity from S1 to C1 

and the second item 7 represents the data transport capacity from S1 to C2. 

Transport Capacity of a Router 

Transport capacity of a router is described as two vectors. One is used for 

outgoing transport capacities on each link, and the other is used for incoming 

transport capacities on each link. The number of items of each vector is the 

number of connected links of the router.  

As what we have already said, the calculation of the transport capacity of a 

router relays on the transport capacity between terminals, whose 

communication goes through it.  

From the transport capacity of each terminal, we can know the communication 

from each terminal to all other corresponding communication terminals. Then 

we know, in this communication, how much data is transmitted through each 

link. This is the transport size on each link. 

Then we can get the outgoing and incoming transport sizes on the connected 

links of a router, and the formula of transport capacity on a router r can be 

defined in two vectors: 

The outgoing transport capacity of a router is written as: 

Ωrout
=

 

 

λrn1

λrn2

…
λrnz 

  

The incoming transport capacity of a router is written as: 

Ωrin
=

 

 

λn1r

λn2r

…
λnz r 

  

Where the nodes n1, n2 … nz are the neighbors of the router r. 
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For example, the transport capacity on the router R1 in the Figure 4.3 is: 

Outgoing transport capacity Ωrout
 equals 

λR1T1

λR1T2

 =  
8

10
 . 

And the incoming transport capacity Ωrin
 equals 

λT1R1

λT2R 1

  = 
10
8
 . 

3.5.1.3.3 Different Routing Schemes and Transmission Situations 

As what is in the previous section written, data transport capacity of a router 

relays on the results of data transport capacities of terminals. Before calculating 

the data transport capacity of a terminal, the corresponding terminals of this 

terminal are known. However, in a network, the transmission situation is very 

complex. For each terminal, the routing schema can be anycast, unicast, multicast 

or broadcast. And in a part network, maybe there is just one terminal in the 

transport mode, maybe all the terminals simultaneous transport data.  

Different Routing Schemes 

Anycast: one to one of many                 Unicast: one to one 

 

 

 

 

 

Fig 3.13 anycast and unicast 1->1 

 Multicast: one to many                    Broadcast: one to many 

 

 

 

 

 

Fig 3.14 multicast and broadcast 1->n 
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Different Transmission Situations 

In a network, maybe just one terminal transports data, maybe some terminals 

simultaneous transport data. 

Therefore, the following transmission situations should be considered: 

Firstly, for each terminal, when it transports data, there is no other terminals 

simultaneous transport data. Under this premise, three cases will be introduced. 

1. The terminal runs an unicast. There is T-1 possibilities in all, where T is the 

number of corresponding terminals in the network. 

2. The terminal runs a multicast. There is  2
𝑇−1

 + 3
𝑇−1

 +……+ 𝑇−1
𝑇−1

  possibilities 

in all, where  2
𝑇−1

  possibilities are for the case that the multicast is run from 

the terminal to arbitrary two terminals;  𝑛
𝑇−1

  possibilities are for the case 

that the multicast is run from the terminal to arbitrary n terminals … until the 

final item  𝑇−1
𝑇−1

 =1 possibility is for the case broadcast. 

3. The terminal simultaneous runs some unicasts. There is also 

 2
𝑇−1

 + 3
𝑇−1

 +……+ 𝑇−1
𝑇−1

  kinds of possibility in all, where  2
𝑇−1

  possibilities 

are for the case that simultaneous unicasts are run from the terminal to 

arbitrary two terminals;  𝑛
𝑇−1

  possibilities are for the case that 

simultaneous unicasts are run from the terminal to arbitrary n terminals … 

until the final item 𝑇−1
𝑇−1

 =1 possibility is for the case that simultaneous 

unicasts are run from the terminal to all the other terminals. This situation is 

similar as the situation 2, but the available transport capacities of the 

terminal in the two cases are different. The difference is showed in Figure 

3.15. 

              4                              6 

                 6                               6 

           10                             10 

                   9                              9 

              6                              6 

(a) simultaneous unicasts                  (b) multicast 

Fig 3.15 difference between simultaneous unicasts and multicast 

2 

4 

1 
1 2 

3 

4 

3 
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Secondly, some of the terminals simultaneous transport data. The different 

transmission situations are located in two cases:  

1. Arbitrary two terminals simultaneous transport data. 

2. All the terminals simultaneous transport data. 

That is to say, there are maybe arbitrary two or three or four or even all the 

terminals simultaneous transport data. And the transmission situation for each 

terminal is written in the first part.  

3.5.2 Design of Node Classification Algorithm 

There are two approaches for the design of Node Classification Algorithm. One is 

running under the assumption, that the routing information on all the nodes is 

known, while the other is running under the assumption, that the data will 

always transmitted on the shortest cost paths between each pair of nodes. 

3.5.2.1 First Approach 

In this approach, our assumption is that the routing information on all the nodes 

is known. That is to say, we know the next hop on each node for each 

communication. 

3.5.2.1.1 Basic Definitions in the First Approach 

For a communication between each pair of terminals, we consider that, all the 

transport paths between the two terminals are known.  

For example, in the Figure 3.16, we can see all the transport paths from node T1 

to node T2, where the arrow direction shows the routing direction from T1 to T2 

and the digit on each link represents the bandwidth on the link in the arrow 

direction. 

The routing paths form T1 to T2 are: 

T1->R6->R1->R3->R7->T2 

T1->R6->R1->R3->R5->R7->T2 

T1->R6->R1->R3->R4->R7->T2 

T1->R6->R1->R3->R2->R4->R7->T2 

T1->R6->R2->R4->R7->T2 
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Fig.3.16 a small part network, where just the routing information from T1 to T2 is marked 

The Array AC[r] on each router is the available transport capacity on the node, 

which represents the rest transport capacity on the outgoing links of a router 

after transporting data from the incoming paths to the outgoing links.  

The sum of bandwidth on the outgoing links of the router r is σr =   brnii , where 

node ni is a node in the part network, and the sum of incoming transport size of 

the router r is Inr =  Iniri  , where Inir represents the incoming transport size of 

the router r from the node ni. 

Thus, the definition of available transport capacity on a router r in formula is: 

AC [r] = σr  – Inr , if σr >  Inr

0, otherwise
   

We know, in order to classify the nodes into groups, we need analyze the 

transport capacity on each terminal and each router. And the transport capacity 

on router is dependent on the transport capacities on the terminals. 

So the question, how much data is transmitted from a terminal to the other 

corresponding terminals, is very important.  

Before we calculate the transport capacity between terminals, the basic 

transmission rules on the intermediate routers are introduced. 

The basic transmission rules are defined as following: 

If Inr of a router r is known, then the node can be analyzed. The analysis is 

divided in three possibilities.  
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In the Listing 3.1, the basic transmission rules are written in pseudo code. 

Listing 3.1 Basic Transmission Rules on a router r 

// Out(r) is the sum of outgoing bandwidth of the router r 

// In(r) is the sum of incoming data size of the router r 

// Tr is the transport capacity between two terminals, which is analyzed here 

// OV is the overflow size  

If (Out(r) = In(r)) then 

 Tr := Tr; 

elseif (Out(r) < In(r)) then 

 Tr := Tr – (In(r) – Out(r)); 

 OV := OV + (In(r) – Out(r)); 

elseif (Out(r) > In(r))then  

 Tr := Tr; 

 AC[r] := (Out(r) – In(r)) 

endif 

 

3.5.2.1.2 Design of the First Approach 

Transport Capacity of Terminal 

Each terminal Ti has a vector ΩTi
=  

μTi T1

μTi T2

…
μTi Tj

  , where each item μTi Tj
 means the 

data transport capacity from Ti to Tj.  

Now in order to calculate every item μTi Tj , all the routing paths between them 

are considered. In the worst case, all the routers are in the routing paths, and 

then all the routers are analyzed.  

According to the assumption, all the routing information for transmission of each 

pair of terminals is known. I.e. we know the incoming paths and outgoing paths 

of each router for each transmission of each pair of terminals. 

Then μTiTj
 can be calculated in the following steps: 

1. The initial transport capacity from Ti to Tj is set as outgoing bandwidth of Ti. 

2. According to the basic rule defined before, all the neighbors of Ti will be 

analyzed. 

3. Repeat the step 2 until Tj is reached. Now we have a value of transport 
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capacity between Ti and Tj as well as AC[r] on each router. 

4. If the overflow size OS from Ti to Tj > 0, we should check the array AC[r]. If 

there are paths from Ti to Tj, on each of which the smallest AC[r] of every 

router is bigger than 0. Then the smallest AC[r] of each path will be added to 

the transport capacity from Ti to Tj. But the transport capacity from Ti to Tj 

cannot be bigger than outgoing bandwidth of Ti. 

In order to understand better, a pseudo code is offered in Listing 3.2. 

In the algorithm, we want to calculate a transport capacity from s to d. One input 

is (G=(E,V,γ),s,d), where G is the graph of the part network, E is the set of nodes 

in the part network, V is the set of links in the part network and γ(eiej) is the 

bandwidth on the link from ei to ej, s is the source node and d is the destination 

node. The other input is PathSet, which is the set of routing paths from node s to 

node t. Furthermore, we known the Out(n), which represents the sum of 

bandwidth on the outgoing links of each node n.  

Tr is the transport capacity from the source s to the destination d and OV is the 

overflow size in the part network.  

Listing 3.2 Algorithm for Transport Capacity Calculation from s to d 

 

var x,y nodes; OV,Tr float; 

var TrIn,AC float; 

α: array[1…|V|][1…|V|] of float;      (*real transport data size on a link*) 

tn: array[1…|V|]of float;    (*in fact, how much data is transmitted through a node*) 

In: array[1…|V|]of float;                 (*sum of incoming data size of a node*) 

p: array[1…|V|]of nodes;           (*previous node of a node*) 

path: array[1…|E|]of paths; 

B: set of nodes          (*nodes, which are analyzed*) 

R: set of nodes    (*nodes, which are the neighbors of nodes in B and not in B*) 

U: set of nodes             (*the rest nodes*) 

B := {s}; R :=ϕ; p(s)=nil;                (*initialization of B,R,U*) 

Tr:=Out(s);                                        (*initialization of Tr*) 

begin 

forall y∈V\{s}: {s,y}∈E do 

  p(y) :=s;α(s,y) :=γ(s, y); 

  In(y):=In(y) + α(s,y); 

insert (R,y, α(s,y)); 

endfor 

U:=V\(R⊔{s}); 

while d∉B do 
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 x:=nil;                          (*look for a node x that data size on 

forall y∈R do                       all the incoming links is known*) 

  cond:=true; 

  for all (z,y)∈E do 

   if α(z,y)=0 then 

    cond:=false; 

   endif 

  endfor 

  if cond:=true then 

 x:=y; 

   if In(x)=Out(x) then             (*tn(n) is the sum of outgoing 

    tn(x):=In(x);                      data size of a node n*) 

elseif In(x)>Out(x) then 

    Tr :=Tr-(In(x)-Out(x)); 

    OV:=OV+In(x)-Out(x);    (*recalculate the Overflow Size*) 

    tn(x):=Out(y);    

elseif In(x)<Out(x) then 

    AC(x):=Out(x)-In(x);  

    tn(x):=In(x) 

   endif 

   forall (x,z)∈E do                    (*calculate the outgoing 

    α(x,z)= 
γ(x,z)

Out (x)
× tn;               data size on each link*) 

    In(z):=In(z)+ α(x,z);    (*corresponding In(n) is modified*) 

   endfor 

   B:=B ⊔{x};                              

   R:=R \{x};                             (*set R is updated*) 

   forall y∈U: {x,y}∈E do 

     p(y) :=x;α(x,y) := 
γ(x,y)

Out (x)
× tn(x) 

     In(y):=In(y) + α(x,y); 

insert (R,y, α(x,y)); 

endfor  

endif 

  endfor 

 endwhile 

 forall path∈PathSet do               (*step 4*) 

If OV>0 then 

   TrIn:=0; 

   AC:=Float_MAX; 

   forall y∈path do 

    if AC<AC(y) then 

     AC:=AC(y); 

    endif 



 

 35 / 75 
 

   enddo 

   if AC>0 then 

    AC:=min(AC,OV) 

    Tr:=Tr+AC; 

    forall y∈path do 

     AC(y)=AC(y)-AC; 

    enddo 

    If Tr>Out(s) then 

     Tr:=Out(s); 

    Endif 

    OV:=OV-AC; 

   endif 

  endif 

endfor 

end 

 

For example: 

                    AC[N2]=0   AC[N3]=10 

      30         40             20 

 

Fig. 3.17 the digit on the links means the bandwidth in the arrow direction 

We want to calculate the transport capacity from N1 to N4, μN1N4  in the Figure 

3.17: 

At the beginning,  μN1N4
 is set to 30 because the sum of outgoing bandwidth of 

node N1, Out(N1) equals 30. 

Then we analyze the neighbor node N2. For node N2, the sum of data size on the 

incoming links of the node N2, In(N2) is as big as Out(N1), which equals 30. The 

sum of the outgoing bandwidth of N2, Out(N2) is 40. Therefore, according to the 

basic rule three,  μN1N4  is not changed. It is still 30. And the available capacity on 

the node N2, AC[N2] = Out(N2)-In(N2) =10; the sum of data size on the outgoing 

data links on N2, tn(N2)= In(N2)=30. Therefore, the outgoing data size on the link 

from N2 to N3, α(N2, N3) =  
γ(N2 ,N3)

Out (N2)
× tn(N2) =

40

40
× 30 = 30 . And In(N3) = 

 α(Ni , N3)i  = α(N2, N3) = 30. 

After that, the node N3 is analyzed. As an input, In(N3) equals 30 while Out(N3) is 

20. According to the basic rule two,  μN1N4
 will be decreased.  μN1N4

 =  μN1N4
 – 

(In(N3) - Out(N3)) = 20. The overflow size, OV = OV + (In(N3) - Out(N3))= 10. And 

N1 N2 N3 N4 
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tn(N3)=Out(N3)=20; α(N3, N4) =  
γ(N3 ,N4)

Out (N3)
× tn(N3) =

30

30
× 20 = 20. And In(N4) = 

 α(Ni , N4)i  = α(N3, N4)= 20. 

Finally, we come to the destination node N4. We can find out, that OV > 0. So like 

what is written in step four, we will check AC[r] for each router in each routing 

path from N1 to N4 now. There is just one routing path here, N1->N2->N3->N4. On 

the path, AC[N2] = 0, and the AC[N3] = 10, so the available transport capacity on 

the path is min(AC[N2],AC[N3]) = 0.  

So the final result is: 
 μN1N4

 =  μN1N4
 + min(AC[N2],AC[N3]) = 20 + 0 = 20. 

 

After that, for each terminal, we have a vector, in which the transport capacities 

from this terminal to other corresponding terminals are written. Through the 

compare of vectors the terminals can be divided in different groups. 

Transport Capacity of a Router 

In this approach, in order to get a better result of measuring, the calculation 

method of transport capacity of a router is different from the definition in the 

previous section. 

The transport capacity of a router is defined as the difference of transport 

capacities between the case that the router is in the part network and the case 

that the router is not in the part network. 

For each router r, there is a vector 

|Ta1 − Tb1|
|Ta2 − Tb2|

…
|Tan − Tbn |

 , where Tb1, Tb2,…Tbn  are the 

transport capacities between corresponding terminals in the part network, when 

r is in the network and Ta1 , Ta2,…Tan  are the transport capacities, when r is not 

in the network. 

For example the router N2, N3 in Figure 3.17 

When N2 is in the part network, the transport capacity from N1 to N4 is 20. When 

N2 is not in the part network, the transport capacity from N1 to N4 is 0. The 

transport capacity of router N2 is (|Ta1 − Tb1|) =  |0 − 20| = ( 20 ). And for N3 

is also( 20 ). 
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3.5.2.1.3 Time Complexity 

In this design, we will consider all the paths between two communication 

terminals. So in the worst case, all the routers are considered.  

The time complexity for the calculating the transport capacity of a terminal is 

O(T2× R), where T is the number of terminals in a part network and R is the 

number of routers. In the worse case, there is communication between each pair 

of terminals; each communication goes through all the routers. The number of 

possibilities for pairs of communication terminals is T2. The number of router is 

R. So the time complexity is O(T2× R).  

For the calculation of the transport capacity of a router, the time complexity is 

even O(T2×R2), because for each router, in the worst case, all the communication 

between any pair of terminals in the part network will be calculated once. That is 

O((T2× R ) × R ) = O(T2×R2) 

However, the assumption, that routing information on all the nodes is known, is 

very hard to touch. Usually, we do not know so much routing information. So we 

will look for another design. 

3.5.2.2 Second Approach 

In this approach, we do not know all the routing information on each node. Then 

how can we get the routing information. In order to solve this problem, a new 

assumption is given. 

3.5.2.2.1 Real Time Communication Case 

In this assumption, a communication parameter p is used for a definition of a real 

time communication case, which is located between two extreme communication 

cases in the network: extreme high communication and extreme low 

communication in the network. 

The real time means that, the communication parameter p can be changed along 

with different time point. 
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First Case: Extreme Low Communication in the Network 

In this case, we assume that, just one terminal transmits data. The shortest path 

between two terminals is always considered as the communication path between 

them. The shortest path is calculated from the transmission cost model, 

represents the path with shortest cost between them. It can also be named 

shortest cost path. In such a case, the data from one terminal to another is always 

going along the shortest path between these two terminals. It does conform to 

the routing rules.  

Second Case: Extreme High Communication in the Network 

In this case, we assume that, all the terminals are simultaneously transporting 

data. The shortest path between two terminals is still always considered as the 

communication path between the two terminals. The reason is that, the network 

is overload everywhere in such a case. So the data, which is transported from one 

node to another, cannot flow to other nodes, which are not in the shortest path. 

Thus, under this assumption, the communication between two terminals is 

always limited in the shortest path of the two terminals.  

We keep the communication parameter p between 0 and 1, where the value 0 

represents the case of extreme low communication in the network and the value 

1 represents the case of extreme high communication in the network. 

 

 

 

 

 

 

Fig. 3.18 real time communictaion 

the transport capacity on a terminal

= transport capacity in the case of extreme low communication in the network 

× p

+ transport capacity in the case of extreme high communication in the network 

× (1 − p) 

extreme low 

communication 

extreme high 

communication 

communication

parameter p: 

real time 

communication 0 1 
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With this formula the transport capacity on each terminal is calculated.  

The calculation of transport capacity on each router is based on the results of the 

transport capacity on each terminal. It has been already described in previous 

section, Analysis for Data Transport Capacity. 

3.5.2.2.2 Design of Second Approach 

As what is in section Basic architecture of the load model of real world network 

defined, the nodes have been already divided in two classes, and a node of class 

terminal will never be similar as a node in class router due to the different 

functions of them. Therefore, for a node classification, only the nodes in the same 

class are compared.  

In addition, in order to reduce the runtime of the operation in the algorithm, the 

whole network has already been divided into some part networks, which has 

already been discussed in Section network clustering. 

So all the nodes in the same class in all the part networks will be compared 

together. 

Total Process of the Node Classification 

 

 

 

 

 

Fig 3.19 total process of the node classification 

As the process showed in the Figure 3.19, in the Node Classification Algorithm, at 

first, nodes are separated into different classes, each of which has different 

function. After that, the corresponding transport capacities of nodes in each class 

are calculated. Finally, we divide the nodes into different groups in each class 

through comparing the transport capacities of nodes. The compare between 

nodes in one class is independent of the compare between nodes in another class. 

The compare module is running independently in each node class. 

Node Classification Algorithm 

compare module nodes divided in different classes 

calculate the corresponding 

transport capacities of nodes 

in each class 
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Nodes in Different Classes 

In the section preparation work, it is defined that, the nodes in a network have 

been divided in two classes.  

Furthermore, the class terminal will be divided in three part classes: class server, 

class client and class p2p point, which can acts as a server as well as a client. 

Concerning the software on each node, we can know which node belongs to 

which class. 

Due to different functions of nodes in class servers, class clients and class p2p 

points, there are four classes now in all. 

Data Transport Capacities of Nodes in Each Class 

Above all, some basic traffic rules are defined: 

In the network, server just transports data to client while client also just 

transports data to server. There is no communication between servers or 

between clients. P2p nodes can communicate with all the other p2p nodes, 

because a p2p node can act as a server as well as a client. 

Normally, a network is either a p2p network or a client server network. We 

assume that, either all the terminals in a network are p2p nodes, or all the 

terminals are client and server nodes. 

Transport Capacity Calculation in Different Classes 

After that, the different calculation methods for nodes in different classes will be 

defined in details. The definitions are described respectively in two different 

network types: client server network and p2p network. Furthermore, in each 

type of network, the data transport capacities of all the nodes in all the classes 

will be calculated in two cases: extreme low communication in the network and 

extreme high communication in the network.  

 

In a Client Server Network 

Case1: Extreme Low Communication in the Network 

In this case, we assume that, there is just one terminal transports data. 

At first we analyze the terminals in class client. A client transports data just to 
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one server at a time point. The possibility of transmission from a client to each 

server is the same. So the average data transport capacity from a client C to a 

server is defined as AC =
Sum C

ns
, where ns is the number of servers in the part 

network and SumC =  ωCS1
+ ωCS2

+ ⋯+ ωCSn s
 represents the sum of maximal 

transport capacities from the client C to a server. 

Thus, the transport capacity of a client ΩC =

 

  
 

ωC S 1

Sum C
× AC

ωC S 2

Sum C
× AC

…
ωC S ns

Sum C
× AC 

  
 

=

 

  
 

ωC S 1

ns

ωC S 2

ns
…

ωC S ns

ns  

  
 

. 

For example, in Figure 3.20, the bandwidth is given. So the data transport 

capacities of the two clients C1 and C2 can be calculated. 

 

             10                     7 

             6           10            10 

            5            20          8   20 

              9 

Fig 3.20 a simple network topology with two clients, two servers and two routers, where the digit 

on the arrows means the bandwidth of the link in the arrow direction. 

For client C1: 

ωC1S1
= 7, ωC1S2

= 8, ns  = 2; 

Therefore, the transport capacity of the client C1 

ΩC1
=  

ωC1S1

ns
ωC1S2

ns

 =  

7

2
8

2

 =  
3.5

4
  

For client C2: 

ωC2S1
= 5, ωC2S2

= 5, ns  = 2; 

 

C1 

C2 

R1 R2 

S1 

S2 
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Therefore, the transport capacity of the client C1 

ΩC2
=  

ωC2S1

ns
ωC2S2

ns

 =  

5

2
5

2

 =  
2.5

2.5
  

 

Then we will analyze the terminals in class server. In this case, data is 

transported from a server S to all other clients at the same time. Here we will 

introduce a new definition, bottleneck factor of a link.  

The bottleneck factor of a link from n1 to n2 can be defined in the following form: 

οn1n2
=  

θn1n2

bn1n2

, if θn1n2
> bn1n2

1 , otherweise

  

where θn1n2
=   ωTi Tji,j through the link from n1 to n2 , (∀i, j, Ti , Tj ∈ T), is the sum of 

maximal transport capacities in the part network through the link from n1 to n2, 

each of which is determined by the communication between a pair of 

corresponding communication terminals in the part network and bn1n2
 is the 

bandwidth of the link. 

In this case, θn1n2
 is the sum of maximal transport capacities through the link 

from n1 to n2, each of which is determined by the communication from a server S 

to a corresponding client in the part network. 

The bottleneck factor of a link is the bottleneck on the link. When the bottleneck 

factor on a link equals 1, it means that, there is no bottleneck on the link.  

Furthermore, we can write 

The bottleneck factor of a path between two terminals T1 and T2  

ΟT1T2
= max(οT1n1

, οn1n2
…… οnx T2

) 

where nodes n1, n2…… nx are the intermediate nodes on the shortest path from 

T1 to T2. 
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Then in this case, the transport capacity of a server S is 

ΩS =

 

 
 
 
 

ωSC1

ΟSC1

ωSC2

ΟSC2…
ωSCnc

ΟSCnc 

 
 
 
 

 

Where nc  is the number of clients in the part network 

Now we analyze the topology in Figure 3.20. In this example, in this case, the 

bottleneck factor on each link for server S1 is calculated as following: 

Sum of the max transport capacity bandwidth   bottleneck factor on the link 
on the link from n1 to n2 : (θn1n2

) 

θS1R2
= 6 + 9 = 15     bS1R2

= 10  οS1R2
=

θS 1R 2

bS 1R 2

=
15

10
= 1.5 

θR2R1
= 6 + 9 = 15     bR2R1

= 20  οR2R1
= 1 

θR1C1
= 6       bR1C1

= 6  οR2S1
= 1 

θR1C2
= 9       bR1C2

= 9  οR2S2
= 1 

Then each bottleneck factor on the shortest path from Server S1 to each other 

client is: 

Shortest path  bottleneck factor on the path 
From S1 to C1 S1->R2->R1->C1  ΟS1C1

= max οS1R2
, οR2R1

, οR1C1
 = 1.5 

From S1 to C2 S1->R2->R1->C2  ΟS1C2
= max οS1R2

, οR2R1
, οR1C2

 = 1.5 

Therefore, the transport capacity of S1 is: 

ΩS1
=

 

 

ωS1C1

ΟS1C1

ωS1C2

ΟS1C2 

 =  

6

1.5
9

1.5

 =  
4

6
  

The bottleneck factor on each link for server S2 is: 

Sum of the max transport capacity bandwidth    bottleneck factor on the link 
on the link from n1 to n2 : (θn1n2

) 

θS2R2
= 6 + 9 = 15     bS2R2

= 20  οS2R2
= 1 

θR2R1
= 6 + 9 = 15     bR2R1

= 20  οR2R1
= 1 

θR1C1
= 6       bR1C1

= 6  οR2S1
= 1 

θR1C2
= 9       bR1C2

= 9  οR2S2
= 1 
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Then each bottleneck factor on the shortest path from Server S2 to each other 

client is: 

Shortest path  bottleneck factor on the path 
From S2 to C1 S2->R2->R1->C1  ΟS2C1

= max οS2R2
, οR2R1

, οR1C1
 = 1 

From S2 to C2 S2->R2->R1->C2  ΟS2C2
= max οS2R2

, οR2R1
, οR1C2

 = 1 

Therefore, the transport capacity of S2  

ΩS2
=

 

 

ωS2C1

ΟS2C1

ωS2C2

ΟS2C2 

 =  

6

1
9

1

 =  
6

9
  

 

Finally we will analyze the nodes in class router. 

In this case, there is always only one terminal in transport mode. 

So the transport capacity on each link = 
ϑn 1n 2

nc +ns
 

Where ϑn1n2
 is sum of all the transport capacities of terminals in the case of 

extreme low communication through this link from n1 to n2, which can be 

defined as: 

ϑn1n2
=   μSi C ji,j +  μC j Sii,j  through the link from n1 to n2, (∀i, Si ∈ S; ∀j, Cj ∈ C,  

(All the transport capacities  μ in the definition here are calculated in the case 

extreme low communication in the network.) 

And the item nc + ns  represents the sum of number of servers and that of 

clients in a part network. 

Because 
1

nc+ns

 is the possibility for each terminal, that it is in the transport mode. 

Thus, the outgoing transport capacity of a router r is 

Ωrout
=

 

  
 

ϑrn 1

nc +ns

ϑrn 2

nc +ns
…
ϑrn n

nc +ns 

  
 

, 



 

 45 / 75 
 

And the incoming transport capacity of a router r is 

Ωrin
=

 

  
 

ϑn 1r

nc +ns

ϑn 2r

nc +ns
…
ϑn n r

nc +ns 

  
 

, 

where the nodes n1, n2…nn are the neighbors of the router r. 

As the topology in Figure 3.20 shown, the transport capacity on each node is: 

ΩC1
=  

3.5

4
 ; ΩC2

=  
2.5

2.5
 ; ΩS1

=  
4

6
 ; on node ΩS2

=  
6

9
 . 

Obviously, the number of communication between communication terminals in 

this part network is nc + ns = 2 + 2 = 4.  

For router R1 and R2: 

At first, for each link from n1 to n2, the sum of all the transport capacities of 

terminals through this link from n1 to n2 ϑC1R2
 is calculated: 

ϑC1R1
= 3.5 + 4 = 7.5      ϑR1C1

= 4 + 6 = 10 

ϑC2R1
= 2.5 + 2.5 = 5      ϑR1C2

= 6 + 9 = 15 

ϑR1R2
= ϑC1R2

 +  ϑC2R1
= 7.5 + 5 = 12.5   ϑR2R1

= ϑS1R2
+ ϑS2R2

= 10 + 15 = 25 

ϑR2S1
= 3.5 + 2.5 = 6         ϑS1R2

= 4 + 6 = 10 

ϑR2S2
= 4 + 2.5 = 6.5        ϑS2R2

= 6 + 9 = 15 

Therefore, for router R1, the outgoing transport capacity on the router is: 

ΩR1out
=

 

 
 

ϑR 1C1

nc +ns

ϑR 1C2

nc +ns

ϑR 1R 2

nc +ns 

 
 

=

 

 
 

10

4
15

4
12.5

4  

 
 

=  
2.5

3.75
3.125

 , 

And the incoming transport capacity is: 

ΩR1in
=

 

 
 

ϑC 1R 1

nc +ns

ϑC 2R 1

nc +ns

ϑR 2R 1

nc +ns 

 
 

=

 

 
 

7.5

4
5

4
25

4  

 
 

=  
1.875
1.25
6.25

 . 
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For router R2, the outgoing transport capacity is: 

ΩR2out
=

 

 
 

ϑR 2S 1

nc +ns

ϑR 2S 2

nc +ns

ϑR 2R 1

nc +ns 

 
 

=

 

 
 

10

4
15

4
25

4  

 
 

=  
1.5

1.625
6.25

 , 

And the incoming transport capacity is: 

ΩR2in
=

 

 
 

ϑS 1R 2

nc +ns

ϑS 2R 2

nc +ns

ϑR 1R 2

nc +ns 

 
 

=

 

 
 

6

4
6.5

4
12.5

4  

 
 

=  
2.5

3.75
3.125

 . 

 

Case2: Extreme High Communication in the Network 

In this case, we assume that, all the terminals will transport data simultaneously. 

Each client transmits data to a server, when each server transmits data to all the 

clients. Then maybe there is overflow in the network. We need the overflow 

factor on each link here.  

The overflow factor of a link from n1 to n2 can be defined in the following form: 

γn1n2
=  

ϑn1n2

bn1n2

, if θn1n2
> bn1n2

1 , otherweise

  

In this case, ϑn1n2
 is the sum of transport capacities through the link from n1 to 

n2, each of which is determined by all the communication between 

corresponding communication nodes in the part network. 

The overflow factor of a link is the overflow situation on the link. When the 

overflow factor on a link equals 1, it means that, there is no overflow on the link.  

Furthermore, we can write 

The overflow factor of a path between two terminals T1 and T2  

ΓT1T2
= max(γT1n1

, γn1n2
…… γnx T2

) 

where nodes n1, n2…… nx are the intermediate nodes on the shortest path from 
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T1 to T2. With it the transport capacity of a client C can be written in: 

ΩC =

 

 
 
 

ϑCS1

ΓCS1

ϑCS2

ΓCS2…
ϑCSn

ΓC Sn 

 
 
 

. 

And the transport capacity of a server S can be written in: 

ΩS =

 

 
 
 

ϑS C1

ΓSC1

ϑS C2

ΓSC2…
ϑSCn

ΓS Cn 

 
 
 

. 

In this case, concerning the topology in Figure 3.20, the overflow factor on each 

link is calculated as following: 

Sum of the transport capacity  bandwidth  overflow factor on the link 
on the link from n1 to n2 : (ϑn1n2

) 

ϑC1R1
= 3.5 + 4 = 7.5     bC1R1

= 10  γC1R1
= 1 

ϑC2R1
= 2.5 + 2.5 = 5     bC2R1

= 5  γC2R1
= 1 

ϑR1R2
= ϑC1R1

+ ϑC2R1
= 12.5   bR1R2

= 10  γR1R2
=

ϑR 1R 2

bR 1R 2

= 1.25 

ϑR2S1
= 3.5 + 2.5 = 6     bR2S1

= 7  γR2S1
= 1 

ϑR2S2
= 4 + 2.5 = 6.5     bR2S2

= 8  γR2S2
= 1 

ϑS1R2
= 4 + 6 = 10     bS1R2

= 10  γS1R2
= 1 

ϑS2R2
= 6 + 9 = 15     bS2R2

= 20  γS2R2
= 1 

ϑR2R1
= ϑS1R2

+ ϑS2R2
= 25   bR2R1

= 20  γR2R1
=

ϑR 2R 1

bR 2R 1

= 1.25 

ϑR1C1
= 4 + 6 = 10     bR1C1

= 6  γR1C1
=

ϑR 1C 1

bR 1C 1

= 1.67 

ϑR1C2
= 6 + 9 = 15     bR1C2

= 9  γR1C2
=

ϑR 1C 2

bR 1C 2

= 1.67 

Then each overflow factor on the shortest path from each server and client to 

corresponding communication nodes is: 

Shortest path  overflow factor on the path 
From C1 to S1  C1->R1->R2->S1  ΓC1S1

= max γC1R1
, γR1R2

, γR2S1
 = 1.25 

From C1 to S2  C1->R1->R2->S2  ΓC1S2
= max γC1R1

, γR1R2
, γR2S2

 = 1.25 

From C2 to S1  C2->R1->R2->S1  ΓC2S1
= max γC2R1

, γR1R2
, γR2S1

 = 1.25 

From C2 to S2  C2->R1->R2->S2  ΓC2S2
= max γC2R1

, γR1R2
, γR2S2

 = 1.25 

From S1 to C1  S1->R2->R1->C1  ΓS1C1
= max γS1R2

, γR2R1
, γR1C1

 = 1.67 
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From S1 to C2  S1->R2->R1->C2  ΓS1C2
= max γS1R2

, γR2R1
, γR1C2

 = 1.67 

From S2 to C1  S2->R2->R1->C1  ΓS2C1
= max γS2R2

, γR2R1
, γR1C1

 = 1.67 

From S2 to C2  S2->R2->R1->C2  ΓS2C2
= max γS2R2

, γR2R1
, γR1C2

 = 1.67 

Thus, the transport capacities of C1, C2, S1 and S2 are: 

ΩC1
=  

ϑC1S1

ΓC1S1

ϑC1S2

ΓC1S2

 =  

3.5

1.25
4

1.25

 =  
2.8
3.2

 ; ΩC1
=  

ϑC2S1

ΓC2S1

ϑC2S2

ΓC2S2

 =  

2.5

1.25
2.5

1.25

 =  
2
2
 ; 

ΩS1
=  

ϑS1C1

ΓS1C1

ϑS1C2

ΓS1C1

 =  

4

1.67
6

1.67

 =  
2.4
3.6

 ; ΩS2
=  

ϑS2C1

ΓS2C1

ϑS2C2

ΓS2C1

 =  

6

1.67
9

1.67

 =  
3.6
5.4

 . 

Then we will analyze the nodes in class router. In this case, all the terminals are 

in transport mode.  

The sum of all the transport capacities between terminals in the case of extreme 

high communication is defined in form: 

ϑ′n1n2
=   μS i C ji,j +  μC j Sii,j  through the link from n1 to n2, (∀i, Si ∈ S; ∀j, Cj ∈ C,  

(All the transport capacities  μ in the definition here are calculated in the case 

extreme high communication in the network.) 

Therefore, the transport capacity on each link = ϑ′n1n2
; 

Thus, the outgoing transport capacity of a router r is 

Ωrout
=

 

 

ϑ′rn1

ϑ′rn2

…
ϑ′rnn 

 , 

 

And the incoming transport capacity of a router r is 

Ωrin
=

 

 

ϑ′n1r

ϑ′n2r

…
ϑ′nn r 

 , 

where the nodes n1, n2…nn are the neighbors of the router r. 
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For example,  

According to the results in the page 52, the outgoing transport capacity of the 

router R1 in Figure 3.20 is: 

ΩR1out
=  

ϑ′ R1C1

ϑ′ R1C2

ϑ′R1R2

 = 
2.4 + 3.6
3.6 + 5.4

2.8 + 3.2 + 2 + 2
 =  

6
9

10
 , 

The incoming transport capacity of the router R1 is: 

ΩR1in
=  

ϑ′ C1R1

ϑ′ C2R1

ϑ′R2R1

 = 
2.8 + 3.2

2 + 2
2.4 + 3.6 + 3.6 + 5.4

 =  
6
4

15
 . 

 

In a P2P Network 
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Fig 3.21 a simple network topology with three p2p nodes and three routers, where the digit on 

the arrows means the bandwidth of the link in the arrow direction. 

For p2p point, either in the case extreme low communication or in the case 

extreme high communication in the network, all the p2p nodes will transport 

data as much as possible. So the transport capacity is limited by the bottleneck 

factor in the network. 

 

 

And the definition of transport capacity on a p2p node p is: 

P1 

P2 

P3 R1 

R2 

R3 
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Ωp =

 

 
 
 

ωp p 1

Οp p 1
ωp p 2

Οp p 1…
ωp p 2

Οp p n p 

 
 
 

, 

where nodes p1, p2 … pnp
 are the p2p nodes in the p2p part network. 

As showed in Figure 3.21, the maximal transport capacities on each p2p nodes 

are: 

ωp1p2
= 8 ; ωp1p3

= 8 ; ωp2p1
= 10 ; ωp2p3

= 8 ; ωp3p1
= 7 and ωp3p1

= 7. 

Then the bottleneck factor on each link in each direction can be calculated: 

Sum of the max transport capacity bandwidth   bottleneck factor on the link 
on the link from n1 to n2 : (θn1n2

) 

θp1R1
= 8 + 8 = 16     bp1R1

= 10  οp1R1
=

θp 1R 1

bp 1R 1

=
16

10
= 1.6 

θp2R3
= 10 + 8 = 18     bp2R3

= 10  οp2R3
=

θp 2R 3

bp 2R 3

=
18

10
= 1.8 

θR1R2
= 8 + 8 = 16     bR1R2

= 15  οR1R2
=

θR 1R 2

bR 1R 2

=
16

15
= 1.07 

θR3R2
= 10 + 8 = 18     bR3R2

= 10  οR3R2
=

θR 3R 2

bR 3R 2

=
18

10
= 1.8 

θR2P3
= 8 + 8 = 16     bR2P3

= 8  οR2P3
=

θR 2P 3

bR 2P 3

=
16

8
= 2 

θP3R2
= 7 + 7 = 14     bP3R2

= 7  οP3R2
=

θP 3R 2

bP 3R 2

=
14

7
= 2 

θR2R1
= 10 + 7 = 17     bR2R1

= 20  οR2R1
= 1 

θR2R3
= 8 + 7 = 15     bR2R3

= 8  οR2R3
=

θR 2R 3

bR 2R 3

=
15

8
= 1.875 

θR1P1
= 10 + 7 = 17     bR1P1

= 12  οR1P1
=

θR 1P 1

bR 1P 1

=
17

12
= 1.42 

θR3P2
= 8 + 7 = 15     bR3P2

= 12  οR3P2
=

θR 3P 2

bR 3P 2

=
15

12
= 1.25 

Then each bottleneck factor on the shortest path is: 

Shortest path  bottleneck factor on the path 
From P1 to P2 P1->R1->R2->R3->P2 ΟP1P2

= max οp1R1
, οR1R2

, οR2R3
, οR3P2

 = 1.875 

From P1 to P3 P1->R1->R2->P3  ΟP1P3
= max οP1R1

, οR1R2
, οR2P3

 = 2 

From P2 to P1 P2->R3->R2->R1->P1 ΟP2P1
= max οP2R3

, οR3R2
, οR2R1

, οR1P1
 = 1.8 

From P2 to P3 P2->R3->R2->P3  ΟP2P3
= max οP2R3

, οR3R2
, οR2P3

 = 2 
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From P3 to P1 P3->R2->R1->P1  ΟP3P1
= max οP3R2

, οR2R1
, οR1P1

 = 2 

From P3 to P2 P3->R2->R3->P2  ΟP3P2
= max οP3R2

, οR2R3
, οR3P2

 = 2 

Thus, the transport capacities on p1, p2 and p3 are: 

ΩP1
=  

ωP1P2

ΟP1P2

ωP1P3

ΟP1P3

 =  

8

1.875
8

2

 =  
4.27

4
 ; 

ΩP2
=  

ωP2P1

ΟP2P1

ωP2P3

ΟP2P3

 =  

10

1.8
8

2

 =  
5.56

4
 ; 

ΩP3
=  

ωP3P1

ΟP3P1

ωP3P2

ΟP3P2

 =  

7

2
7

2

 =  
3.5
3.5

 . 

In a p2p network, all the p2p nodes transport data at the same time either in the 

case extreme low communication or in the extreme high communication. 

Therefore, the calculation of the transport capacity of a router in p2p network 

is same as the calculation of the transport capacity of a router in client server 

network in case extreme communication. 

3.5.2.2.3 Time Complexity 

In this design, we consider the shortest cost paths from a terminal to 

corresponding communication terminals. And the time complexity is O (n3), 

where n is the number of nodes in a part network. So it is not scalable for very 

large network. We need make a network clustering at first. 

In next chapter, the analysis of the time complexity will be introduced with codes 

in detail. 

3.6 Compare Module 

In the previous section, the transport capacity of each node has been already 

calculated; now each terminal has a vector and each router has two vectors. 

Each node, whether they are in the same part network or not, need to be 

compared with other nodes, which are in the same class. That is to say, the 
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compare is running in the whole network. 

3.6.1 Standard vector of a group 

When the first node is put into a new group, the vector of the node becomes the 

standard vector of a group. For each further compare, the node will be compared 

with the standard vector of each exist group. If a node is put into an existing 

group, then the standard vector of that group will be recalculated, the value 

becomes the average value of the vectors of all the nodes in the group. 

3.6.2 Compare method 

The compare method is running as following: 

Compare within terminals: 

In order to make a compare between two terminals, each item in a vector of a 

terminal will be compared in order from top to bottom with that of the other 

terminal. If the difference between vectors of these two terminals is smaller than 

a value, within a certain range, then the two terminals are in the same group. 

Compare within routers: 

Each router has two vectors: the incoming transport capacity vector and 

outgoing transport capacity vector. So In order to make a compare between two 

routers, each item in an incoming transport capacity vector and in an outgoing 

transport capacity vector of a router, will be compared in order from top to 

bottom with those of the other router. If both the difference between incoming 

transport capacity vectors and the difference between two outgoing transport 

capacity vectors of the two routers are smaller than a value, within a certain 

range, then the two routers are in the same group. 

3.6.3 Sort the items in each vector 

Before the compare is carried out, all the items in each vector are sorted by 

values in descending order from top to bottom. 

 

 

 

For example: 



 

 53 / 75 
 

 

Fig 3.22 a network topology with two servers and two clients 

In Figure 3.22, the transport capacities on client C1 and C2 are: 

ΩC1
=  

100
10

           ΩC2
=  

10
100

 , 

Where the first item of each vector is always the transport capacity from the 

client to S1 and the second item of each vector is the transport capacity from the 

client to S2. 

If we directly compare the vector C1 with C2 without sorting, we will get the 

result that the two clients are not in the same group; however, practically the 

transport capacity on C1 is as big as that on C2.  

After the sorting, the transport capacities on client C1 and C2 are: 

ΩC1
=  

100
10

           ΩC2
=  

100
10

 , 

In fact, for a client, the most important thing is the size of transport capacity, not 

the destination of each transport. 
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3.6.4 Compare Parameter 

The compare parameter is a value, which is used for compare among nodes in 

the same class. If the difference between vectors of two nodes is within a range, 

which is determined by the compare parameter, then we could say the two nodes 

are in the same group. 

The compare parameters for compare among nodes in different classes are 

different. 

The compare parameter, which is used for compare among servers, is named 

server compare parameter; the compare parameter, which is used for compare 

among clients, is named client compare parameter; the compare parameter, 

which is used for compare among p2p nodes, is named p2p compare parameter; 

the compare parameter, which is used for compare among routers, is named 

router compare parameter. 

high                                       few 

 

                    similarity within a group 

                                        number of groups 

 

low                                        many 

similarity within                                      number of groups 

    a group         small                        big 

                        value of the compare parameter 

Fig. 3.23 compare parameter 

The value of each kind of the compare parameter is adaptive. As showed in 

Figure 3.23, the smaller the compare parameter is, the more similar the nodes 

within a group is. But if the value is too small, then the nodes will be in too many 

groups divided. In this way, too many manual inquiries will be called. It cannot 

be accepted. We are hunting for a balance point, where the arrow is located in 

the picture. 
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3.7 Assignment Method 

In the end, an assignment method is carried out.  

At the beginning of the method, the CPU load on a node and the data rate on the 

outgoing links of the node will be inquired in each group. 

According to the node classification algorithm described in the previous section, 

the nodes in the same group are in the same class: (two possibilities)  

1. All the nodes in a group are routers. 

2. All The nodes in a group are terminals.(class server, client and p2p belong to 

class terminal) 

3.7.1 Assignment of Terminal 

If nodes in a group are terminals, then we can directly assign the inquired CPU 

load on the terminal to other terminals; assign the inquired data rate on the 

outgoing link of the terminal to the outgoing link of other terminals. The reason 

is that, for each terminal, there is just one outgoing link. 

3.7.2 Assignment of Router 

If nodes in a group are routers, the assignment of CPU load of a router is same as 

that of a terminal. However, the assignment of data rates on the links is different, 

because the router in the same group may have different connection grads.  

Therefore, the following rules are needed: 

1. The sum of the data rates on the outgoing links of a router is same as the sum 

of data rates on the outgoing links of the inquired router. 

2. The data rates will be divided into the corresponding links according to the 

weight of the links. (The link, whose cost is small, has a high weight.) 
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                                                             Node 

Classification        

Algorithm 

Chapter 4 

Implementation  

In this chapter the implementation details of the design, which has been 

described in the previous chapter, will be represented. The implementation is 

consisted of several parts: network clustering, shortest (cost) path algorithm, 

transport capacity calculation and compare module, where the last three parts 

belong to Node Classification Algorithm. All the components of the algorithm are 

written in language C.  

4.1 Architecture of Implementation 

 

 

 

 

                             

       part network 1          …………       part network N 

                              ………… 

                              ………… 

     

 

                            

             

                              ………… 

 

        

                                 

                              ………… 

                               

 

 

 

Fig. 4.1 architecture of implementation 

 

server_group.txt; client_group.txt; p2p_group.txt;router_group.txt 

network clustering algorithm 

Transport capacity 

calculating 

Input files: structure .txt; node.txt 

 

 

 

structure1.txt 

node1.txt 

shortest path 

algorithm  

shortest path 

algorithm 

structureN.txt 

nodeN.txt 

path1.txt pathN.txt 

S1.txt;C1.txt;P1.txt;R1.txt SN.txt;CN.txt;PN.txt;RN.txt 

Transport capacity 

calculating 

compare module 
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As what is in Figure 4.1 showed, as input, two files is given, one is named 

sturture.txt, in which the structure of links in the network is written; while the 

other is named node.txt, in which the information of nodes in the network is 

recorded. 

In the end, the output files are server_group.txt, client_group.txt, p2p_group.txt 

and router_group.txt. From the name we can easy know, they are the results of 

the nodes classification for different node classes. 

The whole process of implementation is running as following: 

At the beginning, with the structure of links in the network, the network can be 

clustered into many relative small part networks (in Figure: from part network 1 

to part network N), each of which has its own link structure and node 

information (in Figure: for example, files sturture1.txt and node1.txt are for part 

network 1; and files sturtureN.txt and nodeN.txt are for part network N).  

After that, the shortest paths between each pair of nodes in every part network 

are calculated. It is the routing information for each pair of communication 

terminals, which is saved in pathn.txt, where n means that the routing 

information is for part network n. (for each 1 ≤ n ≤ N) 

Then the most important module in the Node Classification Algortihm is carried 

out. According to different cases, the data transport capacity of each node is 

calculated. And the corresponding data is saved in different files, where S1.txt 

means the transport capacity of server in part network 1 and C2.txt means the 

transport capacity of client in part network 2 and so on. 

At last, we will use the compare module to compare all the nodes in the same 

class in the whole network. For example, the transport capacity of a server in 

S1.txt will be compared with that of each server in all the files S*.txt. As a result, 

we get a file group_server.txt, in which, each server belongs to which group is 

written. And the compares among clients, p2p nodes and routers are same as 

that among servers. 

 

Now we will turn to each module of the implementation. 

4.2 Network Clustering 

In this section, the network clustering is described. In order to reduce the 

runtime of NETclassify, number of nodes in a part network is limited to1000. 



 

 58 / 75 
 

 

 

 

 

 

 

 

 

 

 

                                              >1000 

 

                             ≤1000 

 

 

Fig. 4.2 flow chat of the network clustering 

As showed in Figure 4.2, the network clustering is running in this way. As the 

output of network clustering, we have got all the information of links and nodes 

in each part network. 

4.2.1 Clauset-Newman-Moore Algorithm 

The core of the network clustering is the Clauset-Newman-Moore Algorithm, the 

source code of which has been already written by the SNAP group in university 

STANFORD. [14] 

Listing 4.1 Clauset-Newman-Moore Algorithm[14] 

 

Input: Graph = (E, V) 

Begin 

 Matrix = Graph.get_adjacent Matrix(); 

 CmtyV = Graph.get_community(); 

nodes in a part 

graph 

write the information of links and 

nodes in each part network 

network clustering: 

Clause-Newman-M

oore Algorithm 

check the number 

of nodes in each 

part graph 

the whole graph 
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// maximize modularity 

Find (Matrix.exist_best_modularity()){ 

 //reconstruct communities 

 CmtyV. reconstrut (); 

} 

    return Matrix; 

} 

As showed in Listing 4.1, the algorithm is running in two steps. At first, the 

maximal modularity in the network is found; then the network is reconstructed 

according to the division, when the network has a maximal modularity. 

4.3 Shortest Path Algorithm 

As we all known, there are many shortest path algorithms in the world, which 

could be distinguished from each other in the following generalizations: 

single-source shortest path algorithm, single-destination shortest path algorithm 

and all-pairs shortest path algorithm. 

Now we do need the third approach. All the terminals in a part network may 

transmit data to other corresponding terminals. We need the routing paths 

between each pair of corresponding terminals. 

A famous algorithm of this approach is Floyd algorithm, [15] in which the 

shortest paths between all pairs of nodes are calculated. As a result, we get the 

cost of shortest path between each pair of nodes. But it is not useful for us; we 

want the path information between any two nodes. So a modified Floyd 

algorithm is used here, in which the forward sequence on the shortest path 

between each pair of nodes is recorded. [16] The source code is showed in listing 

4.2. 

Listing 4.2 modified Floyd Algorithm 

 

//the the forward sequence on the shortest path is saved in path[][] 

void floyd(int dist[ ][ ], int path[ ][ ], int n) 

{ 

   int i, j, k; 

   for (i = 0; i < n; i++)  

       for (j = 0; j < n; j++) 

           path[i][j] = i; 

   for (k = 0; k < n; k++)  

       for (i = 0; i < n; i++)  

           for (j = 0; j < n; j++)  
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                if (dist[i][j] > dist[i][k]+dist[k][j])  

                { 

                     path[i][j] = path[k][j];       (*record the path*) 

                     dist[i][j] = dist[i][k]+dist[k][j];       

                } 

} 

 

4.4 Transport Capacity Calculation 

The calculation of transport capacity on each node is the most important part in 

the Node Classification Algorithm.  

 

 

 

                   p2p                          C/S 

 

                                      

 

 

 

 

 

 

 

 

 

Figure 4.3 flow chat of the transport capacity calculation 

In this figure, the TC means transport capacity calculation, R means router, C means client, P 

means p2p point and S means server 

As showed in Figure 4.3, above all, we need know the network type of each part 

nodes and links 

information in a 

part network 

network 

type? 

TC on P 

TC on R 

case 2: extreme high 

communication in the 

part network 

case 1: extreme low 

communication in 

the part network 

TC on C in 

case 1 

TC on S in 

case 1 

TC on C in 

case 2 

TC on S in 

case 2 

TC on C 

TC on S 
TC on each 

link in case 1 

TC on each 

link in case 2 

TC on R 
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network, whether it is a p2p network or a client server network. The processes 

of analysis on nodes are different in different network types. 

In a client server network, at first the calculations of transport capacities on 

clients and servers in each case (extreme low communication in a part network 

or extreme high communication in a part network) are running respectively. For 

each client or server, we have two vectors, each of which is calculated in an 

extreme case. After that, as what is said in the previous chapter, transport 

capacity on each server or client is produced with the communication parameter 

p. Finally, concerning the transport capacities on servers and clients, the 

transport capacity on each router could be calculated. 

In a p2p network, the calculation of transport capacity is simpler than the one in 

client server network. Each p2p node transmits data always to other p2p nodes 

in any case. Therefore, we directly calculate the transport capacity on each p2p 

node. And concerning the results the transport capacity on each router is also 

calculated. 

It had been elaborated in the previous chapter how to calculate each kind of 

Transport capacity concretely, so now I will not introduce the code again.  

4.5 Compare Module 

The transport capacity of a node is written in a vector. So the vector of a node in 

this section means the transport capacity of a node.  

The compare is running just within the same class. (within class clients, servers, 

p2p nodes or routers.)  

In each class, as showed in Figure 4.4, the first node is assigned to the first group, 

and the vector of the node becomes the standard vector of the group. Then from 

the second node, we can make a compare between the node and the standard 

vector(s) of the existing group(s). The vector of each node is compared with the 

standard vector in each group. If the difference between the vector of a node and 

the standard vector in an existing group is within a range, which is determined 

by compare parameter, then the node is assigned to this group, and the standard 

vector of this group is recalculated. If the difference between the vector of the 

node and the standard vector in each existing group is not within this range, then 

the node is assigned to a new group. After that, the standard vector of the new 

group is also generated. 
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Figure 4.4 flow chat of the compare module: make a compare among nodes in each class 

 

4.5.1 Compare Method 

In our approach, the numbers of items in the vectors of two routers are different, 

because the numbers of links on two routers may be different. 

Furthermore, the nodes in a class will be compared with all the other nodes in 

the same class. The nodes may be come from different part networks. Due to the 

different numbers of clients, servers and p2p nodes in different part networks, 

the numbers of items in two vectors of terminals in same class maybe also 

different. 

However, the compare between two vectors is running under the condition, that 

the numbers of items in two vectors are same. Therefore, the vector, the number 

of whose items is less, is reconstructed. 
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For example, two vectors: 

vector I =  

i1

i2

…
im

  and vector J =  

j1
j2

…
jn

 , 

where m<n, the number of items in vector I is less than that in vector J. 

Then the vector I is reconstructed: 

vector I = 

 

 
 
 
 

i1

i2

…
im

im+1

…
in  

 
 
 
 

, 

where all the items im, im+1 … in equal 0. 

As said in the previous chapter, before compare, all the items in each vector are 

sorted by values in descending order from top to bottom. The last items in the 

vector, im to in, which equals to 0, are already in this order. 

Compare Parameter 

Compare parameter is the measuring metric. The difference between two 

vectors is calculated in the formula: 

DIJ =  

d1

d2

…
dn

   

Where vector I is the standard vector of a group, and dn =  
in − jn , in ≥ jn

jn − in , in < jn

  

Then we can compare the  (
dn

in
n × in) =  (dnn ) with the compare parameter, 

where 
dn

in
 is the proportion of difference value between an item in the node 

vector and that in a standard vector in a group to that in the standard vector in 

the group. And × in  here means that, the weight of the proportion of difference 

value is considered. 
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4.5.2 Recalculation of Standard Vector in a Group 

If a node is assigned to a new group, then vector of the node becomes the 

standard vector in the new group. However, if a node is assigned to an existing 

group, the standard vector of the group needs be recalculated. The standard 

vector in a group is always the average value of the vectors of all the nodes in the 

group. 

If a node n is assigned to an existing group, then the standard vector of this group 

becomes: 

SV × weight + vector of node n

weight + 1
 

Where SV is the standard vector of the group before node n is assigned to this 

group and weight is the number of nodes in the group before n is assigned to 

the group. 

For example, the recalculation of the vectors of a router is written in Listing 4.3. 

For each router r, there are two vectors: one represents the incoming transport 

capacity on a router and the other represents the outgoing transport capacity on 

a router. 

Listing 4.3 Recalculation of the vectors of a router 

 

Input: 

//the vectors of the router 

Analy_In[ ]; Analy_Out[ ]; 

//standard vectors of the group, where the router is assigned 

SV_In[ ][ ];SV_Out[ ][ ]; 

Begin 

  Grad = max (Analy_In[ ].get_number_of_items(), SV_In[ ].get_number_of_items()) 

for (int i=0;i<Grad;i++){                   (*each item in the vectors are recalculated*) 

 //each item in the standard vector of incoming transport capacity on a router 

SV_In[ ][i] = (standard_ In[ ][i] * weight + analy_In[i]) / (weight + 1)  

//each item in the standard vector of outgoing transport capacity on a router 

SV_Out[ ] [i] = (SV_Out[ ][i] * weight+analy_Out[i]) / (weight + 1); 

} 

weight = weight + 1; (*after the recalculation, the weight in the group is increased*) 

End 
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Chapter 5 

Evaluation 

In this chapter, the evaluation of NETclassify is presented. At first, the goal of the 

evaluation of the algorithm is explained. Then we will introduce the platform, 

where NETclassify is running. Finally, the results of the evaluation is presented 

and discussed. 

5.1 Evaluation Goals 

The goal of the evaluation is to examine if the implementation of NETclassify 

described in the previous chapter fulfills the main requirements of NETclassify 

which are described in Chapter 3.1. 

A research in the evaluation is the runtime of the algorithm and the number of 

groups in the results of the nodes classification. We want to know that, whether 

an acceptable classification can be finished in an acceptable time.  

Furthermore, we want to know, whether the nodes in the same group have 

similar transport characteristics. 

5.2 Platform 

As hardware infrastructure, a 12 nodes cluster server “curium” is set up. Each 

node is a Dual QuadXeon. Each QuaXeou has 8 CPUs, each of which is 3000GHz. 

Our implementation is running on it. 

On the other hand, the software environment for the implementation is Linux 

system. And in this implementation, the program of NETclassify is running in line 

one by one. 

5.3 Evaluation Results 

Above all, the input network topologies are introduced. Nine network topologies 

are offered for this Evaluation.  

They are described in the following table: 
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Description Topology Number of links 

( directions) 

Number of 

routers 

Number of 

terminals 

a network 

topology from 

DSL supplier 

ATandT 

ATandT 3895 753 1500 

simplified vision 

of Caumpus2 

Campus1 250 170 50 

composed with 

20 Campus 

network 

topologies 

Campus2 5620 600 4880 

a network 

topology from 

internet 

Internet 6632 1454 659 

snapshot of 

routers in 

internet 

NetworkMap 4527 2376 800 

generated by 

the topology 

generator 

BRITE [17] 

TopoAS 2609 1024 500 

generated by 

BRITE 

Waxman1.25k 3000 1250 500 

generated by 

BRITE 

Waxman2.5k 5500 2500 500 

generated by 

BRITE 

Waxman5k 12500 5000 2500 

In order to execute the implementation, three kinds of parameters are offered: 

network name, communication case parameter and compare parameter. 

Furthermore, for each network, 5 kinds of different link properties (bandwidth, 

maximal delay and packet loss) on each link are provided in this evaluation, 

which is determined by link parameter.  

At first, we want to know, whether the link parameter has an influence on the 

results of classification, when the compare is made among nodes in the same 

network with same communication case parameter and compare parameter. 

In each following chart the x-axis represents different link parameter, and the 

y-axis represents the number of groups for each class. 

For each chart there is a description, the format is: 
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network name/communication case parameter/compare parameter/number of 

terminals in the network/number of servers in the network 

ATandT/0.25/0.5/1500/753    ATandT/0.75/0.4/1500/753 

   

ATandT/0.5/0.3/1500/753     ATandT/0.0/0.2/1500/753 

   

Waxman1.25k/1.0/0.1/1500/753    Internet/0.25/0.3/659/1454 

   

Fig 5.1 evaluation of the implementation with different link parameters 

As shown in Figure 5.1, different link parameters of each network have just little 

influence on the results of classification, when the compare is made among nodes 

in the same network with same communication parameter and compare 

parameter.  

Then we will make a research on the compare parameter. Therefore, now in each 

following chart the x-axis represents different compare parameters, and the 

y-axis represents the number of groups for each class. 
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And the description of each chart here is in form: 

network name/communication case parameter/number of terminals in the 

network/number of servers in the network 

ATandT/0.25/1500/753                ATandT/0.75/1500/753 

  

Campus2/0.25/4880/600     Waxman5k/0.5/2500/5000 

  

Internet/0.25/659/1454               TopoAS/0.5/500/1024 

  

Fig 5.2 evaluation of the implementation with different compare parameters 

As shown in Figure 5.2, compare parameter has a great influence on the results 

of classification, when the compare is made among nodes in the same network 

with same communication case parameter. The smaller the compare parameter 

is, the more groups after classification there will be. And likely, the increase of 

the nodes in the network will also be accompanied with a corresponding growth 

in the quantity of the groups.  
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We can control the number of groups through change the adaptive compare 

parameter. 

After that, we will focus on the communication case parameter. Therefore, in 

each following chart the x-axis represents different communication case 

parameters, and the y-axis represents the number of groups for each class. 

And the description of each chart here is in form: 

network name/compare parameter/number of terminals in the network/ 

number of servers in the network 

TopoAS/0.1/500/1024                 TopoAS/0.3/500/1024 

  
Compus1/0.1/50/170                  Compus1/0.2/50/170 

  
Waxman5k/0.3/2500/5000              Waxman5k/0.5/2500/5000 

  
Fig 5.3 evaluation of the implementation with different communication case parameters 

As showed in Figure 5.3, in the network, which are rich in nodes, the number of 

the groups fluctuates in line with different communication case parameters; on 

the contrary, when there are fewer nodes in the network, the number remains 
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level in such a case. However, in the same network the effects of compare 

parameter are found negligible. 

Finally, we will make a research on the runtime of the implementation. We want 

to know, whether the runtime of the implementation is acceptable. 

The average runtime of different networks are showed in Figure 5.4 (a) and (b). 

 

(a) x-axis represents number of nodes in a network 

 

(b) x-axis represents number of terminals in a network 

Fig 5.4 compare of runtime in different networks 
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As showed in Figure 5.4, for different networks, there is an upward trend in the 

runtime with regards of the number of the nodes (especially the number of 

terminals) in the network, but the rate of increase slow down. Therefore, the 

runtime of NETclassify is acceptable. 

However, it is very hard to evaluate, whether the nodes in the same group have 

similar real-time transport capacity or not. In the further, this problem should be 

solved. A possible solution is through some measuring methods of bottleneck 

link capacity and available bandwidth in the complex transmission situation to 

calculate the available transport capacity of each node. Then with this result we 

can know the similarity of a group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 72 / 75 
 

Chapter 6 

Conclusion 

In order to offer NETplace two important parameters: expected CPU load on a 

node and expected data rates on each data link, an algorithm NETclassify is 

designed in this diploma thesis. 

NETclassify is consisted of two most important parts, network clustering and 

Node Classification Algorithm. In the network clustering, the whole network is 

divided into small part networks. Furthermore, before the execution of Node 

Classification Algorithm, nodes in each part network are divided into different 

classes. And the shortest paths between each pair of communication nodes are 

calculated in a transmission cost model, which is the routing information. Then 

the Node Classification Algorithm is carried out. Concerning the routing 

information in the part network and the different functions of nodes in different 

classes, the transport capacity on each node is calculated and in the compare 

method, the nodes in the whole network will be composed, if they within the 

same class. As the result, each node is assigned to a suitable group. Finally, a 

manual inquiry and assignment of the CPU load on a node and data rates on the 

outgoing data links of it in each group is given, and according to the manual input, 

the CPU load on other nodes and data rates on the outgoing data links of them in 

the same group are also automatically assigned. 

In the evaluation, we can see that, the runtime of the NETclassify in different 

networks is acceptable (less than 2 minutes); even when the number of nodes in 

the network is more than 7000 nodes. And the results of the classification 

depend strongly on the compare parameter. So if the operator thinks that, the 

number of groups is too high, then he could set the compare parameter to a 

higher value. Then he can get the desired result.  

However, we do not know how to evaluate the similarity of nodes in a group. In 

the further, this problem should be solved. 
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