Institut fUr Parallele und Verteilte Systeme

Universit& Stuttgart
Universit&sstral® 38
D —70569 Stuttgart

Diplomarbeit Nr. 3082

Development of a Load Model

for Distributed Systems

Kai Zhou
Studiengang: Informatik
Prifer: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel
Betreuer: Dipl.-Inf. Andreas Grau
begonnen am: 21. 09. 2010
beendet am: 23.03. 2011

CR-Nummer: C2.0,C21,C2.2,C25

ABSTRACT 1
CHAPTER 1. INTRODUCTION 4
1.1 MOTIVATION 4
1.2 GOAL OF THE STUDY 5
1.3 OUTLINE 6
CHAPTER 2 RELATED WORK 8
2.1 AUTOMATIC NODES CLASSIFICATION 9
2.2 AUTOMATIC BANDWIDTH ESTIMATION 9
CHAPTER 3 DESIGN ISSUES 10
3.1 BASIC ARCHITECTURE 10
3.2 NETWORK CLUSTERING 12
3.2.1 DIFFERENT CLUSTERING METHODS 13
3.2.1.1 Cuts and Maximum-Flow 14
3.2.1.2 Betweenness 14
3.2.1.3 Resistor Networks 15
3.2.2 GIRVAN-NEWMAN ALGORITHM 15
3.2.3 CLAUSET-NEWMAN-MOORE 16
3.2.3.1 Modularity 16
3.2.4 WEIGHTED GRAPH 18
3.3 TRANSMISSION COST MODEL 20
3.4 PREPARATION WORK OF NODE CLASSIFICATION ALGORITHM 21
3.4.1 PREPARATION WORK FOR NODES 22
3.4.2 PREPARATION WORK FOR EDGES 23
3.5 NODE CLASSIFICATION ALGORITHM 23
3.5.1 Basic CONCEPTS 24
3.5.1.1 CPU Load and Data Transport Capacity 24
3.5.1.2 Analysis for CPU Load 24
3.5.1.3 Analysis for Data Transport Capacity 25
3.5.1.3.1 Maximal Data Transport Capacity between Nodes 25
3.5.1.3.2 Data Transport Capacity of a Node 26
Transport Capacity of a Terminal 26
Transport Capacity of a Router 27
3.5.1.3.3 Different Routing Schemes and Transmission Situations 28
Different Routing Schemes 28
Different Transmission Situations 29
3.5.2 DESIGN OF NODE CLASSIFICATION ALGORITHM 30

3.5.2.1 First Approach 30
3.5.2.1.1 Basic Definitions in the First Approach 30
3.5.2.1.2 Design of the First Approach 32
Transport Capacity of Terminal 32
Transport Capacity of a Router 36
3.5.2.1.3 Time Complexity 37
3.5.2.2 Second Approach 37
3.5.2.2.1 Real Time Communication Case 37
First Case: Extreme Low Communication in the Network 38
Second Case: Extreme High Communication in the Network 38
3.5.2.2.2 Design of Second Approach 39
Total Process of the Node Classification 39
Nodes in Different Classes 40
Data Transport Capacities of Nodes in Each Class 40
Transport Capacity Calculation in Different Classes 40
3.5.2.2.3 Time Complexity 51
3.6 COMPARE MODULE 51
3.6.1 STANDARD VECTOR OF A GROUP 52
3.6.2 COMPARE METHOD 52
3.6.3 SORT THE ITEMS IN EACH VECTOR 52
3.6.4 COMPARE PARAMETER 54
3.7 ASSIGNMENT METHOD 55
3.7.1 ASSIGNMENT OF TERMINAL 55
3.7.2 ASSIGNMENT OF ROUTER 55
CHAPTER 4 IMPLEMENTATION 56
4.1 ARCHITECTURE OF IMPLEMENTATION 56
4.2 NETWORK CLUSTERING 57
4.2.1 CLAUSET-NEWMAN-MOORE ALGORITHM 58
4.3 SHORTEST PATH ALGORITHM 59
4.4 TRANSPORT CAPACITY CALCULATION 60
4.5 COMPARE MODULE 61
4.5.1 COMPARE METHOD 62
4.5.2 RECALCULATION OF STANDARD VECTOR IN A GROUP 64
CHAPTER 5 EVALUATION 65
5.1 EVALUATION GOALS 65
5.2 PLATFORM 65
5.3 EVALUATION RESULTS 65
CHAPTER 6 CONCLUSION 72

Abstract

NETplace is an efficient algorithm to assign virtual nodes to physical nodes on
the network emulation testbed, while reducing the experiment runtime for
network emulation up to 64%. As an assumption of this algorithm, a detailed
defined cost model for communication cost has been provided. This cost model
needs expected data rates of the links between each pair of virtual nodes as well
as CPU load (in CPU cycles) on the virtual nodes, which are the experimental data
produced by SoftwareunderTest (SuT). Therefore, the goal of the thesis is to
define a generic load model to efficiently provide placement algorithm with a
realistic estimation of experimental load data.

In order to reach this goal, several problems should be solved. First, there are
thousands of network links and virtual nodes in the model, so it is impossible to
manually inquire and input all experimental CPU load and data rates into the
model, because it takes too much time. A possible approach to resolve this
problem is to divide the nodes into several groups, in which all the nodes have
nearly similar characteristics. That is to say, a node classification is made. Thus,
we only need specify one node for each group, and the other nodes can be
automatically assigned according to the node classification. Second, nowadays
the network is already very large, so it still costs much time, if we classify the
nodes in the whole network together. A better solution is to analyze the nodes in
part networks with the help of network clustering. So generally speaking,
through combining the network graph clustering with the nodes classification
we can provide the load information, which NETplace needs.

1/75

Kurzfassung

NETplace ist ein effizienter Algorithmus, um mehre virtuelle Knoten zuzuweisen
jedem physischen Knoten, der auf der NET liegt. Dabei wird die bendtigte
Laufzeit auf bis zu 64% reduziert. Dabei wird angenommen, dass ein
Kostenmodell fiir die Komummunikationskosten bereitgestellt wird. Dieses
Kostenmodell bendtigt die Datenrate zwischen den verschieden virtuellen
Knoten sowie die CPU-Auslastung der virtuellen Knoten. Diese sind die
experimentelle Daten, die vom SuT produziert werden. Daher ist das Ziel dieser
Diplomarbeit, ein allgemeines Modell zu definieren, das effizient den placement -
Algorithmus mit einer realistischen Einschitzung der experimentellen Daten

liefert.

Um dieses Ziel zu erreichen, miissen einige Probleme gelost werden. Es gibt
tausende Netzwerkverbindungen und virtuelle Knoten in diesem Model,
weswegen es unmoglich ist, alle experimentelle Daten manuell abzufragen und
aufzunehmen. Dies wiirde zu viel Zeit kosten. Ein Losungsansatz ware es, die
Knoten, die alle dhnliche Eigenschaften haben, in Gruppen zu unterteilen. Das
heifst wir brauchen eine Knotenklassifizierung. Daher miissen wir nur die Daten
einem Knoten fiir jede Gruppe abfragen und aufnehmen. Die anderen werden
automatisch tliber die Knotenklassifizierung bestimmt. Heutzutage sind die
Netzwerke sehr grofd geworden, weshalb es sehr viel Zeit in Anspruch nehmen
wiirde, wenn wir alle Knoten im gesamten Netzwerk klassifizieren wiirden. Eine
bessere Losung ist es, nur einen Teil der Knoten im Netzwerk mithilfe des
Network-Cluster zu analysieren. Kurz gesagt, durch das Kombinieren von
Network- Graph - Clustering mit der Knotenklassifizierung konnen wir die Daten
bereitstellen, die NETplace braucht.

2/75

Acknowledgments

[would like to sincerely thank my tutor Andreas Grau for his help, support and
guidance during my diploma thesis. He put me on the road to doing good
research and his easy accessibility to discuss various issues was invaluable
during my research.

3/75

Chapter 1

Introduction

1.1 Motivation

Today more and more dynamic! large-scale distributed systems are used in
world, so network evaluation becomes more and more important. In order to
monitor the load information in whole system of such dynamic large-scale
network, an appropriate emulation system should be set up. Now the NET
(Network Emulation Testbed) project [1] of the Institute of Parallel and
Distributed Systems (IPVS) at University of Stuttgart is a solution for such
network emulation. The system is consisted of a 64-nodes PC cluster with
flexible hardware and software tools. The nodes are connected with a high
performance switch. Each node is able to emulate many virtual nodes, which
represents a network component, (such as a terminal, router, gateway or switch
etc.) in real world network. And those virtual nodes are running now in a
network emulation environment, which means Time Virtualized Emulation
Environment (TVEE) [2] here.

A basic concept of network emulation is node virtualization, in which multiple
virtual nodes are put onto each physical node of the emulation bestbed. But just
using node virtualization is not scalable for large network, because the number
of physical node is not always scalable. On the other hand, we also cannot put too
many virtual nodes on each physical node. Therefore, time virtualization must
also be used in TVEE, which can reduce the load on physical nodes through using
a virtual time running slower than the real time on them. If a load is higher than
the capability of a physical node, it will cause bias in the results, which is named
overload. Conversely, if the load is much lower than the capability on a physical
node, many calculation resources will be wasted, which is named underload. In
order to keep the load between overload and underload, an adaptive virtual time
is needed, which can adjust the virtual clock rate on physical nodes according to
the load of them.

! Here “dynamic” means that the load in the network such as CPU load and data rates is often changed,
but not the network topology.
4/75

physical node

virtual machinel (for CPU corel) virtual machine2 (for CPU core2)

OS with virtual routing OS with virtual routing

virtual nodel virtual node2 virtual node3 virtual node4 virtual node5 virtual node6

Fig.1.1 TVEE architecture

As showed in Figure 1.1, TVEE provides a nested virtualization. A virtual
machine (VM) is running on each CPU core of each physical node, which offers
virtual time to the operation system and SuT in VM. The virtualization inside VM
is virtual routing (VR), which is more lightweight than VM. Using VR, the

resources are partitioned into parts to create virtual nodes.

In order to assign the appropriate virtual nodes onto the physical nodes of the
64-nodes PC cluster, an automatic placement algorithm NETplace is used. As we
said, the physical nodes must not be overloaded during the placement. We can
achieve it by adjusting the dynamic virtual time. But if the virtual time is too slow,
then the experiment runtime will be very long. If we deploy the virtual nodes
onto the most suitable physical nodes, the running time of the experiment can be
reduced substantially. So it is important to find out an efficient algorithm to
minimize the experiment runtime. Fortunately NETplace is such an efficient

algorithm to achieve this assignment. [3]

For the input for NETplace algorithm, two input parameters, expected CPUs’ load
on the virtual nodes and expected data rates of the data links between each pair
of virtual nodes must be provided. Therefore, in this thesis an efficient load
model will be established, in which the two parameters can be precisely offered

as soon as possible.

1.2 Goal of the study

In order to place the virtual nodes onto the physical nodes of the PC cluster, a
generic cost model for the communication of the systems is necessary. With two
input parameters (CPU load and expected data rates), together with defining
data links between virtual nodes in three different types (intra-vm, inter-vm and
inter-pnode links), such a cost model can be set up. And the NETplace algorithm
is based on it. But the two parameters, expected CPU load and expected data

rates are just provided as an assumption now.
5/75

In order to get the expected CPU load and expected data rates, the load
information in the system must be inquired. But the network may be very large.
Maybe there are thousands of nodes and edges in the load model. Manually
inquiring all the load information of all the virtual nodes and data links and
offering them to NETplace are impossible. So it is important to find out a relative
automatic assignment method. A possible approach is to define a generic load
model? at first. According to the load model, a node classification can be carried
out. Besides that, considering the large-scale network, a network clustering is
also necessary. If network clustering is executed, the runtime of the node
classification can be reduced. And the information of network topology could be

used to achieve the network clustering and node classification.

Therefore, the goal of this diploma thesis is to set up an algorithm, in which the
expected CPU load and expected data rates can be provided for NETplace as

precisely as possible.

The algorithm is named “NETclassify”, which is running as following: Firstly, we
give a detailed and generic load model for real world networks, the
characteristics of the elements in the network will be mapped into this model
according to the given real world network topology. Then a network is clustered,
and the node classification algorithm can be carried out in relative small part
network. Finally, in each class a node will be elected. Only the load of those nodes
and data links from them is manually inquired, calculated and inputted, the load
of the other data can be automatically allocated according to the node

classification.

1.3 Outline

The reminder of this thesis is structured as follows:
Chapter 2 represents related work and the differences to this diploma thesis.

Chapter 3 describes possible design ideas for the network classification and

issues design approaches of network classification.

Chapter 4 shows the implementation of the network classification, which is

based on the concept in chapter 3.

? “Generic load model” here means that this load model is suitable for all kinds of networks, not for a
specific one.
6/75

In chapter 5 the procedures and results of evaluation of the implementation,

which are defined in chapter 4, are described.

In chapter 6 a summary of the diploma thesis and the possible enhancements of

the diploma thesis are given.

7/75

Chapter 2

Related work

In this chapter, the related work of this diploma thesis will be introduced. The
purpose of the study is to efficiently provide the expected load on the virtual
nodes and expected data rates on the data links to NETplace. In order to reduce
the work for inquiry and input of these two parameters in a large-scale network,
a suitable node classification algorithm is needed. After the successful
classification, the nodes, which have similar CPU load and similar data rates on
the outgoing paths, are in the same group. This is also the goal of node
classification. In order to achieve the goal, the communication capacity from a
node to other nodes is measured. A possible approach is to create the Node
Classification Algorithm with the help of bandwidth estimation for
communication, while bandwidth is the worst-case estimation of the expected
data rates. The reason why we use the bandwidth instead of the data rates here

is that, the data rates on the data links are changeable.

The concept of node here is the network component. The nodes classification,

which we discuss here, is the network components classification.

Automatic nodes classification is a method, with which the nodes could be
automatically classified in many different classes by one or some properties of
them. In some cases, we may classify the nodes by some properties of them,
while the nodes may be classified by some other properties of them in some
other cases. The classification is based on the selection of the properties of the
nodes, while the selection is decided by the demand. For example, the result of

automatic bandwidth estimation is the property we should use here.

Unfortunately, as far as I know, there is no systematic approach for automatic
nodes classification with the help of automatic bandwidth estimation. However,
there exist some approaches for automatic nodes classification, if we do not care

about the properties of the nodes for classification.

Therefore, we can divide the problem in two part problems and focus on the
related work on them: One is automatic nodes classification, and the other is

automatic bandwidth estimation.

8/75

2.1 Automatic Nodes Classification

For automatic nodes classification, there is an approach of automatic

classification of node types in switch-level description. [18]

This approach is just the classification of nodes types in switch-level, which is a
part of network nodes. The metric for classification for this approach is the

memory quality of the switch: weather it is temporary or memory.

In this approach, according to some properties of the nodes, here is the property

of the switch: temporary and memory. And the concrete method is:

If the memory of a node is lost and it cannot affect the circuit operation, then it is
classified as a temporary node. On the contrary, if the memory of a node is

maintained, then it is classified as a memory node.

However, the metric for classification is independent of bandwidth estimation.

2.2 Automatic Bandwidth Estimation

Here we want to find out an efficient method to measure the communication
capacity in the whole network. The most accurate value of communication
capacity is the real-time data rates on data links. With them we can know how

much data exist on a link.
There are some approaches to estimate the bandwidth on a link. [19] [20]

For example, the packet pair mechanism is a reliable method to measure the
bottleneck link capacity on a network path and the initial gap increasing (IGI)
method and the packet transmission rate (PTR) method are two good
measurements for available bandwidth. The themes in these papers are focused
on how to measure the bottleneck link capacity or the available bandwidth

capacity on a link.

However, in our approach, we assume that, the method of measurement of the
bottleneck link capacity or the available bandwidth capacity on a link is known.
We want analyze the transport capacities between nodes in a network with the
influence of other communication in the same network. So it is not suitable for

us.

9/75

Chapter 3

Design Issues

In this chapter, the design issues of the algorithm NETclassify will be

represented.

For a better understanding, at first, a basic architecture of NETclassify is

introduced.

After that, some approaches of network clustering are described. Through

network clustering, a network is split into many small part networks.

Furthermore, the Node Classification Algorithm is discussed in detail. As a
foundation of Node Classification Algorithm, a transmission cost model is set up.
This model could help us to decide the routing paths between nodes in network,
which is very important for the calculation of data transport capacities. As a
result of successful division, the nodes with similar characteristics are in the

same group.

Finally, a manual inquiry and assignment of the CPU load on a node and data
rates on the outgoing data links of it in each group is given, and according to the
manual input, the CPU load on other nodes and data rates on the outgoing data

links of them in the same group are also automatically assigned.

3.1 Basic Architecture

Above all, the relationship between NETclassify and its background is introduced.
In the background of NETclassify the input and output of the algorithm are
described.

As shown in Figure 3.1, the Network Topology Generator can automatically map
the network topology to a directed graph, in which nodes represent the network
components and edges between the nodes represent the network data links.
Furthermore, the characteristics of network components (i.e. nodes) and data
links are also mapped. The characteristics of nodes here are node’s ID and the
software running on it, while the characteristics of data links are link source
node’s ID, link destination node’s ID, packet loss rate, maximal delay, and
bandwidth on the link. This is one important input for NETclassify. The other

10/75

input is sample data rate, which must be manually inquired by human once for
each group. Certainly, frequently manual inquiring takes much time, so the
number of groups is kept as small as possible.

The output of NETclassify is two kinds of values for NETplace[3] algorithm: one
is CPU load on the virtual nodes, while the other is the data rates of the edges

between them.

Network Topology — 3| Network Topology
Generator e e
l Input: Network topology
Input: sample dat:; NETclassify
human Atnut \A
Data rates CPU load
Link 1-3: Datarate; Node 1: CPUload,
Link 2-4: Datarate, Node 2: CPUload,
from data rates from CPU load

Netplace

Fig 3.1 background of the diploma thesis

After the explanation of the task, now the rough process of the NETclassify will

be introduced. It is running as following in Figure 3.2:

In the picture, the rough process of the NETclassify is shown. Firstly, as an input,
a directed graph is given, in which all the parameters of the network topology is
written. This graph can be very large. In order to reduce the runtime of the
NETclassify, a network clustering is carried out. As a result, a graph is into many

small part graphs split.

With the cost information (i.e. bandwidth, maximal delay and packet loss rate)

11/75

on the links in each part graph, a transmission cost model is set up. Through this
model we could know the shortest path between every pair of nodes, with which
the routing information is known. The routing information is an important

condition of the Node Classification Algorithm.

Furthermore, a preparation work is necessary, in which some basic concepts and
definitions are given. After that, the nodes are divided with similar functions in

identical groups through the Node Classification Algorithm in the end.

Besides the classified nodes, we still need sample data and suitable assignment
method for an output. The sample data here is the CPU load of a random selected
node and the data rates of the outgoing links from it in each group. We inquire
the values of them in the network at first. Then with the assignment method the
expected CPU load of other nodes and expected data rates of other data links in

the same group can be automatically assigned.

using cost information

transmission cost model

v

directed graph

offering shortest path between each
pair of nodes

graphjclustering
\4

many part graphs

using node information
\ 4

Node Classification Algorithm

Al

A

preparation work for Node

Classification Algorithm

nodes classifying

<

sample data assignment method nodes in groups
\ ! /
output

Fig 3.2 process of NETclassify

3.2 Network Clustering

In order to reduce the runtime of NETclassify, a network clustering algorithm is

executed, which is also a graph clustering algorithm, because the network
12/75

topology has been already mapped into a graph. Then the problem of network

clustering becomes a problem of graph clustering.

The structure of the real world network must not be destroyed by the clustering
algorithm. Otherwise, after Node Classification Algorithm we could not get a

correct result.

For example, for a node classification we do need to analyze the flow of load
information on the communication paths between each pair of nodes. The
structure information of the edges in a graph is very important for the analysis of
the communication between each pair of nodes. The communication between
each pair of nodes within groups is much more than the communication between

groups.

In some of the clustering literature, such a group in a graph is also named a

cluster or community. [11]

3.2.1 Different Clustering Methods

Up to now, there are many network clustering algorithms [4] [5]. The global
methods for graph clustering can be a flat structure clustering, which comprises
single partition and cover, or defined as a hierarchical structure clustering,

where each top-level cluster is always composed of sub-level clusters.

Almost all the structures of the networks today belong to hierarchical structure.
For this reason, we will put more effort on the hierarchical structure and search

a suitable clustering algorithm in it.

In a hierarchical structure, a single cluster in a level can be composed further of
several sub-clusters in the lower level. Certainly, it can also merge with other
clusters in the same level to a large cluster in the higher level. The number of
clusters in each level is different. The higher the level is, the lower the number of
clusters is. For different requirements, (for example, the graph must be split in
more than 100 part graphs or the number of nodes in each part graph cannot be

more than 80.) we can find out a suitable dividing possibility in one level.

In Figure 3.3 there is a dendrogram of hierarchical structure for a 23 nodes in a
graph. In the highest level, the root cluster is an entire dataset, while the 23
elements are the leaf clusters in the lowest level. Between them there are four

intermediate levels. Each level in the dendrogram, which is marked by dotted

13/75

lines, can be regarded as a kind of clustering.

Hﬂ _________ ..l_‘j

1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23

Fig 3.3 a dendrogram of hierarchical structure [4]

The clustering method of the hierarchical structure can be divided into two big
classes: divisive global clustering (top-down, recursively partitioning) and

agglomerative global clustering (bottom-up, merging).
Following algorithms belong to the divisive global clustering method:

Such as cuts, maximum-flow, betweenness, resistor networks and so forth.
3.2.1.1 Cuts and Maximum-Flow

In cuts method the graph is split in two part graphs by removing a cut3. Usually
we are looking for a small cut, but there are various possibilities. The most
famous one, minimum-cut can be considered with maximum-flow algorithm. [12,
13] With min cut/max flow method, we can find out the shortest path, max flow,
min cost-flow in the graph. But it is not useful for our task, because the min
cut/max flow is used for a one source one sink approach, and the graph is a
directed (weighted) graph.

3.2.1.2 Betweenness

According to the idea of Newman and Girvan, the weights on the edges are
determined by the structural properties of the graph. The weight on each
arbitrary edge {n1, n2} is the number of the shortest paths connecting any pair of
nodes that passes through the edge. [4] And this weight of the link is the
betweenness of the link. Therefore, the edge, whose betweenness with the

highest value can be easily removed. If an edge is the connector of two part

A partition of all the nodes in a graph into two nonempty sets is called a cut.
14/75

networks, then each communication between each pair of nodes in different
parts will go through it. The structure of the graph has a smallest influence on
the removal of such an edge, because the structures of part networks are not
destroyed. This method is suitable for my work. And I will introduce it further in

detail later.
3.2.1.3 Resistor Networks

In this method the graph is mapped into an electric circuit, in which a unit
resistor is placed on each edge and unit current flows (or random walks) into
and out of the source and destination vertices. The random-walk and
current-flow measures are proved precisely the same by M. E.]. Newman and M.
Girvan in the Literature [7]. However, the time complexity for this method is very
high. It takes O((n+m)*m®*n?) for the entire community structure algorithm,

where m is the number of edges in a graph and n is the number of nodes.

current in

N

A

current out

Fig 3.4 an example of type resistor networks from source s to destination t. All the black points

are the nodes in the graph, and the resistors represent the data links between them. [7]

Now in NETclassify I will choose a clustering algorithm, which is based on
betweenness of the edges. As we have already said, that the structure
information of the edges in the graph is very important for the analysis of the
communication between two nodes. And the structure information here is the
edge-betweenness, which is the number of the shortest paths between any pair
of nodes that pass through the edge. The higher the edge betweenness of an edge

is, the more probable the edge is a boundary of two part network.

3.2.2 Girvan-Newman Algorithm

Girvan-Newman algorithm (Girvan & Newman, 2002) [6] [8] is such an algorithm,
15/75

which can be used in Network clustering and is running as following steps:

1. The betweenness of all the edges in the graph is calculated.

2. The edge, whose betweenness is the highest, is removed.

3. The betweenness of the edges, which has an influence on the last removal of
the edge, is recalculated.

4. Repeat step 2 and step 3 until there is no edge in the graph.

However, the Girvan-Newman algorithm has a big problem, that this algorithm is
not scalable for a large network. As what is pointed in [7], the time complexity is
very high, the algorithm is running in O (m?n), where m is the number of edges
and n is the number of nodes or O (n3) for a sparse graph (because in a sparse

graph, m is as big as n).
3.2.3 Clauset-Newman-Moore

There are some faster approaches. One of them is the Clauset-Newman-Moore
Algorithm [9], which is based on a greedy optimization. A key definition here is

the concept modularity.

3.2.3.1 Modularity

Modularity is a metric, which represents the result of division. It is showed,
whether the division is good or not. The value of modularity is always between 0
and 1. If it is a good division, i.e. the value of modularity is relative high, it means,
that the communication within each part is much more than the communication

between parts.
In literature [7], the following detailed definition of Modularity is given:

For each particular division of a network into k communities, a kxk symmetric
matrix e is set up. Each element ej in the matrix is the fraction of all edges in the

network that link vertices in community i to vertices in community j. The sums of

row (or column) in the matrix ai = };;(eij) represent the fraction of edges that
connect to vertices in community i.
The formula of modularity measure is defined:

Q= Yi(ei-ai?) =Tre-||e?||

16 /75

Where Tr e =)};(ej) is the fraction of edges in the network that connect vertices

in the same community and ||x]|| indicates the sum of the elements of the matrix

==
ﬁ

0000000000000aa. A AAAA 0000 000000

modularity

l

Fig 3.5 an example of network clustering with the value of modularity

Source: page 8 of paper [7]

In the Figure 3.5, under the best division, the graph is split into four part graphs.
At that time, the value of modularity is 0.5. If the number of part graphs is
smaller than four, the less the number of part graphs is, the smaller the value of
modularity is and vice versa. Obviously, the value 0.5 is the highest value here. In

this structure, division into four part graphs is the best result.

The time complexity of the Clauset-Newman-Moore Algorithm is O (m*d*log(n)),
where m is the number of edges, n is number of nodes and d is the depth of the
dendrogram, which describe the structure of the community division. In a sparse
graph, the depth d equals to log (n) and m is also as big as n. So the time

complexity becomes O (n*log?n).

Clauset-Newman-Moore is an efficient algorithm to find community structures in
large network. A community structure is a group of nodes, in which the density
of edges is higher than density of edges between groups. It could be a real world
department of a company. So using the Clauset-Newman-Moore algorithm does

not destroy the structure of the real world network.

17/75

3.2.4 Weighted Graph

The most networks are studied in binary form, that is to say, either the edge

between two nodes exists or not. A simple expression can be written in a matrix
M: [10]

{1, ifi and j are connected,
M = .

0, otherwise.
Where i and j belongs to the nodes set N.

In the real world, some graphs are weighted graphs. The weight can be a
property of the graph. Then the expression becomes:

M;; - (weight of the connection from i to j)
Wherei,j € N.

Now in our approach, if a weighted graph is used, bandwidth can be a weight of
the connection. The higher the bandwidth is, the higher the weight is.

For example,

s
(o]
o

- — A
[=]
]

L= L
o w =

Fig 3.6 matrix is set up with weight

A basic idea of the weighted graph is that the weight on a link represents the

number of communication of links on this connection.

ABCD
B 0131\ A
_lr1o022| B
A c =
3201]| ¢
* 1210/ b

Fig 3.7 weight is represented by several links
Under this condition, that the bandwidth is the weight of the link:

If the bandwidth of a link is more than 1, we will assume that, there are multiple

18/75

edges on the link, which is shown in Figure 3.7. Then the betweenness of such a
link also becomes higher. According to the idea of Network clustering algorithm,
which uses betweenness method, if the betweenness of two nodes are very high,

then the link between the two nodes is assumed to be a link between clusters.

Thus, the nodes, which are connected with a low-value bandwidth, have a better
chance in the same cluster. The link, which has a high bandwidth, is considered

as a boundary between two clusters, and will probably be removed.

But in the real world, the bandwidth of a link, which is used to connect two
communities, cannot be high. If we use this weighted approach, perhaps the link
cannot be recognized as the boundary of a division. And a link in a community,

whose bandwidth is high, is recognized as the boundary of division.

(b)

Fig. 3.8 two results of network clustering (the digit on each link is the bandwidth of the link)

19/75

In Fig 3.8, the picture (a) shows us the division of the network without

considering weight on each link.

With the weight of the link, the result of division is shown in picture (b), in which

the structure of network is destroyed.

Therefore, the weighted graph model is not used here, unless a suitable property

of a link can be found as the weight of the link instead of bandwidth.

As showed in Figure 3.2, we need a Transmission Cost Model for each part

directed graph, which represents the transmission cost in each part network.

3.3 Transmission Cost Model

The Transmission Cost Model consists of a set N of virtual nodes and a set E of
edges between nodes. Once data is transmitted through an edge e; € E, it takes
Cost ci. The set of Cost for all the edges is C. Cost c;i is related with
upload/download bandwidth, maximal delay and packet loss rate, which are
already provided by the network topology. Obviously, the higher the bandwidth
is, the lower the Cost is. On the contrary, the higher the maximal delay and

packet loss rate are, the higher the Cost is.

Therefore, the formula is defined as following:

DXL
B

Where D is the maximal delay, L is the packet loss rate and B is the bandwidth.

But for a directed graph, there are two directions for each link. Therefore, for
arbitrary edge e; € E, the maximal delay du and d4; belong to D, where dy; is the
upload maximal delay of edge ej and dgi is the download maximal delay of edge e;;
the packet loss rate lyi and lg; belong to L, where ly; is the upload packet loss rate
of edge e; and lg; is the download packet loss rate of edge ej; the bandwidth by;
and bgi belong to B, where by is the upload bandwidth of edge e; and bg; is the
download bandwidth of edge e;.

Thus, for each edge eithere are two kinds of Cost, cuiand cai:

— dui X lui
bui

Cui

20/75

And

- dgi X 1y
di =
by

Where cui is the upload Cost of edge e; and cq; is the download Cost of it. They are

the weights of edge in two directions.

Now with a suitable shortest path algorithm, we can get the shortest paths
between each pair of nodes in this directed weighted graph, where the upload

Cost and download Cost defined before are the weights on the edges.

Generally speaking, in a routing algorithm, the path, which has the lowest Cost
between two nodes, is selected as the routing path between them. So with the
shortest Cost paths between each pair of nodes, we will get the routing

information in the network.

3.4 Preparation Work of Node Classification Algorithm

In this section, some preparation work for Node Classification Algorithm is

described.

The main task of the Node Classification Algorithm is to classify the nodes in

groups by comparing one or some characteristics of the nodes.

In NETclassifty, the reason why we need a Node Classification Algorithm is the
necessity to reduce the effort of assignment of expected CPU load on the nodes

and expected data rates on the data links between nodes.

Therefore, the characteristics of the nodes we need for node classification
algorithm are the software running on the nodes, which has a great influence on
the expected CPU load and data transport capacity of the node, which determines

the outgoing expected data rate.

The critical value, real time transport capacity is a dynamic value. A possible
substitute is to use the speed of the network links of the virtual network
topology, i.e. bandwidth is used as a worst-case estimation of the transport

capacity. So the bandwidth on each link becomes also important.

As an input, the network topology is given, i.e. all parameters of the real world
network are known. Therefore, after the successful mapping, we know which

software is running on which node as well as the upload/download bandwidth

21/75

on each link.

3.4.1 Preparation Work for Nodes

Firstly, we focus on the characteristics of nodes.

Not all the nodes will communicate with other nodes in a network. Generally
speaking, a communication exists just between p2p nodes or client and server.
We can also say that, communication exists between terminals. This is due to the
different functions of nodes.

Concerning the software running on the nodes, we can divide the nodes into two
big classes by the nodes’ functions at first. One is called terminal, whose function
is just to send and receive data while the other is named router#, whose function
is to forward data, i.e. get data in incoming paths and put them in suitable
outgoing paths, no message is produced in the transmission. Obviously a node in
terminals is not similar as a node in routers. Concerning the completely different
roles of nodes, nodes can be discriminated in class terminal and class router. And
through checking the software on the nodes, we know the different roles of

different nodes.

/

9

|

1O :

Fig 3.9 normal connection structures for terminal and router

As what is in Figure3.9 shown, our assumption is that, many terminals may
connect to a router, but each terminal connects just to one router. So the
connection grad of a terminal is one, and the connection grad of a router is bigger

than two.

Certainly, there are also some extreme cases: for example, maybe a router has
only one connecter, that is to say, the data, which is transported to the router
cannot be forwarded. In that case, we can analyze the network without regard

for this router.

* The “router” here is not only a hardware router, it can also be a gateway, switch and so on.
22/75

3.4.2 Preparation Work for Edges

Then the characteristics of the edges will be introduced.

In this directed graph, for each edge, there are two values for the bandwidth. One
is for upload bandwidth, and the other is for download bandwidth. These two
values could be used as two directions of data transformation. Bandwidth is the
maximal transport capacity of a data link, which is fixed for a data link, while the

data rate is the actual transport flow of a data link, which can be often changed.
In Figure 3.10, there is a link between node 1 and node 2.

As showed in the picture a, the upload bandwidth and download bandwidth on a
link is fixed. However, the data rates on the upload and download channels of

link can be independently changed. In picture b and c, the data rates are

different.
Q upload bandwidth : 1M /bps -~ Q
1 < - 2
download bandwidth : 40M/bps

(a)
upload data rate : 500k/bps
Q download data rate : 10M/bps
(b)
Q upload data rate : 100k/bps -
D download data rate : 15M/bps
(c)

Fig 3.10 difference of bandwidth and data rate of data link

The relationship between data rate and bandwidth on a link in the same

direction is:

0 < datarate < bandwidth

3.5 Node Classification Algorithm

We want to classify the nodes in some groups, where the nodes have similar
characteristics. Above all, we should make clear that, why we need nodes
classification. As what we have already talked about, we want to reduce the

23/75

runtime of data inquiry and assignment. And the data, which needs to be
inquired and assigned in the model for NETplace, is CPU load on the nodes and
data rates between nodes. Therefore, the nodes in the same group should have

similar CPU load and data transport capacity.

3.5.1 Basic Concepts

Before the introduction of the Node Classification Algorithm, we do need explain

some basic concepts.

3.5.1.1 CPU Load and Data Transport Capacity

At first, the two concepts CPU load and data transport capacity are introduced.

CPU load here is the load of CPU on a node.

And the data transport capacity of a node here is divided in two cases:

1. data transport capacity of a terminal:
The data transport capacity from a terminal to all other corresponding
terminals. (Communication exists just between terminals, which has been in
chapter 3.1 discussed.) The reason, why only the outgoing transport capacity
is considered, is that, every outgoing link of a node is also an incoming link of
another node at the same time. The set of outgoing link of all the nodes is the
set of links in the network. If we consider all the outgoing link of nodes, all
the links in the network have been already considered. After we use the
outgoing transport capacity to calculate the data transport capacity of a
terminal, the nodes in the same group have same outgoing data transport
capacity, i.e. they have similar expected data rates on the corresponding
outgoing links.

2. data transport capacity of a router
The data forward capacity of a router, which is determined by the

communication between terminals through this router.

3.5.1.2 Analysis for CPU Load

We can make a compare among all software running on each node, because the
conclusion, in which the CPU load on some nodes is similar, only works on the

premise that the software is the same. If the premise is met, and the data

24/75

transport capacities of the nodes, which will be discussed later, are also alike,
then we could draw the conclusion that they possess the similar CPU load. L.e. the
nodes, on which the same software is running and of which the data transport

capacities are similar, have the similar CPU load.
3.5.1.3 Analysis for Data Transport Capacity

Then we turn to the analysis for data transport capacity. At first, the definitions
of the maximal data transport capacity between nodes and the data transport

capacity of a node are given:
3.5.1.3.1 Maximal Data Transport Capacity between Nodes

The maximal data transport capacity between two nodes is determined by the

minimal bandwidth of a link, which is on the shortest cost path between them.

The formula of the maximal transport capacity from nodes m to node n is defined

as following:
®pp = minitby, by n,, e, byn)

The nodes ni, nz ... nx are the intermediate nodes on the connecting path between

node m and node n.

For example:

D= ===
9 N 5

Fig 3.11 a simple network topology, where the bandwidth from T1 to R1 is 10, from R1 to T, is 12,

from T, to Ry is 8, and from R; to T1is 9.

As showed in Figure 3.11, the maximal data transport capacity from T to T2 and

that from T to T1 can be calculated with the formula above:
wr,r, =min (br,g,,bg,r,) = min (10,12) = 10;

And szTl = min (bTZRl’leTl) = min (8 ,9) = 8.

25/75

3.5.1.3.2 Data Transport Capacity of a Node

The definition of the data transport capacity of a node is different from the one of

maximal data transport capacity between two nodes.

Transport Capacity of a Terminal
The data transport capacity of a terminal is described as a vector.

For each terminal, there is a vector, which represents the data transport capacity
of itself. Every item of the vector represents the data transport capacity from this
terminal to a corresponding communication terminal. Therefore, the number of
the items in a vector is the number of corresponding communication terminals.
The data transport capacity of a terminal m can be defined in a vector as the

following form:

p-mnl
p-mnz

Q, =
|J-mny
Where the nodes ni, nz ... ny are the corresponding communication terminals of

the node m, and Wy pn,, Hmn,, Mmn,are the transport capacities from m to ni, n, na.

A transport capacity u,,,, on a path from ni to n is different in different

transmission cases, which is smaller or equal to the maximal transport

capacity w,,,, on it, because in a part network, maybe more than one terminal

will transmit data though the same path at the same time. For example:

Fig 3.12 a server S;and two clients C1, C2; among which there are many routers. The transport

capacity from S; to Cq is 10; while the transport capacity from S; to Cz is 7.

26/75

According to the data transport capacity in the Figure 3.12:

Mslcl) _

The vector, which means the transport capacity of node Siis Qg, = (Ms C
1%2

(170), where the first item 10 represents the data transport capacity from S1 to Cq

and the second item 7 represents the data transport capacity from S1 to Cz.

Transport Capacity of a Router

Transport capacity of a router is described as two vectors. One is used for
outgoing transport capacities on each link, and the other is used for incoming
transport capacities on each link. The number of items of each vector is the

number of connected links of the router.

As what we have already said, the calculation of the transport capacity of a
router relays on the transport capacity between terminals, whose

communication goes through it.

From the transport capacity of each terminal, we can know the communication
from each terminal to all other corresponding communication terminals. Then
we know, in this communication, how much data is transmitted through each

link. This is the transport size on each link.

Then we can get the outgoing and incoming transport sizes on the connected
links of a router, and the formula of transport capacity on a router r can be

defined in two vectors:
The outgoing transport capacity of a router is written as:

)\rnl\
Q —)erlz

Tout
}\rnz
The incoming transport capacity of a router is written as:
}\n1r\
Q. = Anar
)\nzr/

Where the nodes nj, nz ... n; are the neighbors of the router r.

27 /75

For example, the transport capacity on the router R in the Figure 4.3 is:

; : AR, 8
Outgoing transport capacity Q. . equals(kRlTZ = (10).

A
And the incoming transport capacity (1. equals<7\T1R1> =(10).
in T2R1 8

3.5.1.3.3 Different Routing Schemes and Transmission Situations

As what is in the previous section written, data transport capacity of a router
relays on the results of data transport capacities of terminals. Before calculating
the data transport capacity of a terminal, the corresponding terminals of this
terminal are known. However, in a network, the transmission situation is very
complex. For each terminal, the routing schema can be anycast, unicast, multicast
or broadcast. And in a part network, maybe there is just one terminal in the

transport mode, maybe all the terminals simultaneous transport data.

Different Routing Schemes

Anycast: one to one of many Unicast: one to one
Fig 3.13 anycast and unicast 1->1

Multicast: one to many Broadcast: one to many

Lo ok

Fig 3.14 multicast and broadcast 1->n

28/75

Different Transmission Situations

In a network, maybe just one terminal transports data, maybe some terminals

simultaneous transport data.
Therefore, the following transmission situations should be considered:

Firstly, for each terminal, when it transports data, there is no other terminals

simultaneous transport data. Under this premise, three cases will be introduced.

1. The terminal runs an unicast. There is T-1 possibilities in all, where T is the

number of corresponding terminals in the network.

2. The terminal runs a multicast. There is (Til)+(Til)+ +(;j) possibilities
in all, where (TEI) possibilities are for the case that the multicast is run from

the terminal to arbitrary two terminals; (T’il) possibilities are for the case
that the multicast is run from the terminal to arbitrary n terminals ... until the
final item (;:1):1 possibility is for the case broadcast.

3. The terminal simultaneous runs some unicasts. There is also
(T31)+(Til)+ +(;:D kinds of possibility in all, where (Til) possibilities
are for the case that simultaneous unicasts are run from the terminal to
arbitrary two terminals; (,",) possibilities are for the case that
simultaneous unicasts are run from the terminal to arbitrary n terminals ...
until the final item(;:i):l possibility is for the case that simultaneous

unicasts are run from the terminal to all the other terminals. This situation is
similar as the situation 2, but the available transport capacities of the
terminal in the two cases are different. The difference is showed in Figure
3.15.

(a) simultaneous unicasts (b) multicast

Fig 3.15 difference between simultaneous unicasts and multicast

29/75

Secondly, some of the terminals simultaneous transport data. The different

transmission situations are located in two cases:
1. Arbitrary two terminals simultaneous transport data.
2. All the terminals simultaneous transport data.

That is to say, there are maybe arbitrary two or three or four or even all the
terminals simultaneous transport data. And the transmission situation for each

terminal is written in the first part.

3.5.2 Design of Node Classification Algorithm

There are two approaches for the design of Node Classification Algorithm. One is
running under the assumption, that the routing information on all the nodes is
known, while the other is running under the assumption, that the data will

always transmitted on the shortest cost paths between each pair of nodes.

3.5.2.1 First Approach

In this approach, our assumption is that the routing information on all the nodes
is known. That is to say, we know the next hop on each node for each

communication.

3.5.2.1.1 Basic Definitions in the First Approach

For a communication between each pair of terminals, we consider that, all the

transport paths between the two terminals are known.

For example, in the Figure 3.16, we can see all the transport paths from node T
to node Tz, where the arrow direction shows the routing direction from T to T:
and the digit on each link represents the bandwidth on the link in the arrow

direction.

The routing paths form T1 to T2 are:
T1->Re->R1->R3->R7->T>
T1->Re->R1->R3->Rs5->R7->T>
T1->Re->R1->R3->R4->R7->T>
T1->Re->R1->R3->R2->R4->R7->T>
T1->Re->R2->R4->R7->T»

30/75

Fig.3.16 a small part network, where just the routing information from T to T, is marked

The Array AC[r] on each router is the available transport capacity on the node,
which represents the rest transport capacity on the outgoing links of a router

after transporting data from the incoming paths to the outgoing links.

The sum of bandwidth on the outgoing links of the routerris o, =);b,,, where
node n; is a node in the part network, and the sum of incoming transport size of
the router r is Inr= X1, , where I, represents the incoming transport size of

the router r from the node n;.

Thus, the definition of available transport capacity on a router r in formula is:

AC[r] :{or - In,, if o, > In,
0, otherwise

We know, in order to classify the nodes into groups, we need analyze the
transport capacity on each terminal and each router. And the transport capacity

on router is dependent on the transport capacities on the terminals.

So the question, how much data is transmitted from a terminal to the other

corresponding terminals, is very important.

Before we calculate the transport capacity between terminals, the basic

transmission rules on the intermediate routers are introduced.
The basic transmission rules are defined as following:

If In; of a router r is known, then the node can be analyzed. The analysis is

divided in three possibilities.

31/75

In the Listing 3.1, the basic transmission rules are written in pseudo code.

Listing 3.1 Basic Transmission Rules on a router r
// Out(r) is the sum of outgoing bandwidth of the router r
// In(r) is the sum of incoming data size of the router r
// Tr is the transport capacity between two terminals, which is analyzed here
// OV is the overflow size
If (Out(r) = In(r)) then
Tr:=Tr;
elseif (Out(r) < In(r)) then
Tr := Tr - (In(r) - Out(r));
0V := 0V + (In(r) - Out(r));
elseif (Out(r) > In(r))then
Tr:=Tr;
ACJr] := (Out(r) - In(r))
endif

3.5.2.1.2 Design of the First Approach

Transport Capacity of Terminal

K114
: Hr;T, :
Each terminal Ti has a vector Qp, = , Where each item Wr,r, means the
U,

data transport capacity from T; to Tj.

Now in order to calculate every item br,T;, all the routing paths between them

are considered. In the worst case, all the routers are in the routing paths, and

then all the routers are analyzed.

According to the assumption, all the routing information for transmission of each
pair of terminals is known. l.e. we know the incoming paths and outgoing paths

of each router for each transmission of each pair of terminals.

Then Wt can be calculated in the following steps:

1. The initial transport capacity from T; to Tjis set as outgoing bandwidth of T;.
2. According to the basic rule defined before, all the neighbors of T; will be
analyzed.

3. Repeat the step 2 until Tjis reached. Now we have a value of transport
32/75

capacity between T; and Tj as well as AC[r] on each router.

4. If the overflow size OS from T; to Tj > 0, we should check the array AC[r]. If
there are paths from T; to Tj, on each of which the smallest AC[r] of every
router is bigger than 0. Then the smallest AC[r] of each path will be added to
the transport capacity from T; to Tj. But the transport capacity from T; to T;
cannot be bigger than outgoing bandwidth of T;.

In order to understand better, a pseudo code is offered in Listing 3.2.

In the algorithm, we want to calculate a transport capacity from s to d. One input
is (G=(E,V,y),s,d), where G is the graph of the part network, E is the set of nodes

in the part network, V is the set of links in the part network and y(e;e;) is the

bandwidth on the link from e; to ej, s is the source node and d is the destination
node. The other input is PathSet, which is the set of routing paths from node s to
node t. Furthermore, we known the Out(n), which represents the sum of

bandwidth on the outgoing links of each node n.

Tr is the transport capacity from the source s to the destination d and OV is the

overflow size in the part network.

Listing 3.2 Algorithm for Transport Capacity Calculation from s to d

var X,y nodes; OV,Tr float;
var TrIn,AC float;

a: array[1...|V[][1...|V]] of float; (*real transport data size on a link*)
tn: array[1...|V/|]of float; (*in fact, how much data is transmitted through a node*)
In: array[1...|V|]of float; (*sum of incoming data size of a node*)
p: array[1...|V[]of nodes; (*previous node of a node*)
path: array[1...|E[]of paths;

B: set of nodes (*nodes, which are analyzed*)
R: set of nodes (*nodes, which are the neighbors of nodes in B and not in B¥)
U: set of nodes (*the rest nodes™)
B :={s}; R:=¢; p(s)=nil; (*initialization of B,R,U*)
Tr:=0ut(s); (*initialization of Tr*)
begin

forall yeV\{s}: {s,y}€E do
p(y) :=s;a(s,y) :=y(s,y);
In(y):=In(y) + a(s)y);
insert (Ry, a(s,y));

endfor

U:=V\(Ru({s});

while d¢B do

33/75

X:=nil;
forall yeR do
cond:=true;
for all (z,y)€E do
if a(z,y)=0 then
cond:=false;
endif
endfor
if cond:=true then
X:=Y;
if In(x)=0ut(x) then
tn(x):=In(x);
elseif In(x)>0ut(x) then
Tr :=Tr-(In(x)-0Out(x));
OV:=0V+In(x)-Out(x);
tn(x):=0ut(y);
elseif In(x)<Out(x) then
AC(x):=0ut(x)-In(x);
tn(x):=In(x)
endif
forall (x,z)€E do
a(x,z)= %’(ZX)) X tn;
In(z):=In(z)+ a(x,2);
endfor
B:=B u{x};
R:=R \{x};
forall yeU: {x,y}€E do
p(y) =xia(xy) = Lo
In(y):=In(y) + a(xy);
insert (Ry, a(x,y));
endfor
endif
endfor
endwhile
forall pathePathSet do
[f OV>0 then
Trin:=0;
AC:=Float MAX;
forall yEpath do
if AC<AC(y) then
AC:=AC(y);
endif

(*look for a node x that data size on
all the incoming links is known*)

(*tn(n) is the sum of outgoing
data size of a node n*)

(*recalculate the Overflow Size*)

(*calculate the outgoing

data size on each link*)

(*corresponding In(n) is modified*)

(*set R is updated*)

X tn(x)

(*step 4%)

34/75

enddo
if AC>0 then
AC:=min(AC,0V)
Tr:=Tr+AC;
forall yepath do
AC(y)=AC(y)-AC;
enddo
If Tr>Out(s) then
Tr:=0ut(s);
Endif
0V:=0V-AC;
endif
endif
endfor
end

For example:

C[Nz]= AC[Ns]=
@J—“OJM“ ()

Fig. 3.17 the digit on the links means the bandwidth in the arrow direction

We want to calculate the transport capacity from N1 to Ns, uy,y, in the Figure
3.17:

At the beginning, py,y, is set to 30 because the sum of outgoing bandwidth of
node N1, Out(N1) equals 30.

Then we analyze the neighbor node N». For node N2, the sum of data size on the
incoming links of the node N2, In(N2) is as big as Out(N1), which equals 30. The
sum of the outgoing bandwidth of N2, Out(Nz) is 40. Therefore, according to the
basic rule three, uy,y, is not changed. It is still 30. And the available capacity on
the node N2, AC[Nz] = Out(N2)-In(Nz) =10; the sum of data size on the outgoing
data links on N2, tn(N2)= In(N2)=30. Therefore, the outgoing data size on the link

Y(N2,N3)

from Nz to N3, a(Nz N3) = out (N,)

x tn(Nz) =5% 30 =30. And In(Ns) =
Yia(N;, N3) = a(Nz, N3) =30.

After that, the node N3 is analyzed. As an input, In(N3) equals 30 while Out(N3) is
20. According to the basic rule two, uy,n, will be decreased. uy,n, = HnyN, -

(In(N3) - Out(N3)) = 20. The overflow size, OV = OV + (In(N3) - Out(N3))=10. And

35/75

tn(N3)=0ut(N3)=20; a(N3, N4) = %xmmg) =2 x 20 = 20. And In(Ns) =
3

Yia(N;, Ny) = a(N3z, Ng)=20.

Finally, we come to the destination node N4. We can find out, that OV > 0. So like
what is written in step four, we will check AC[r] for each router in each routing
path from N1 to N4 now. There is just one routing path here, N1->N2->N3->N4. On
the path, AC[Nz] = 0, and the AC[N3] = 10, so the available transport capacity on
the path is min(AC[N2],AC[N3]) = 0.

So the final result is:

HN,N, = Hn,N, *+min(AC[N2],AC[N3]) =20+ 0 =20.

After that, for each terminal, we have a vector, in which the transport capacities
from this terminal to other corresponding terminals are written. Through the
compare of vectors the terminals can be divided in different groups.

Transport Capacity of a Router

In this approach, in order to get a better result of measuring, the calculation
method of transport capacity of a router is different from the definition in the

previous section.

The transport capacity of a router is defined as the difference of transport
capacities between the case that the router is in the part network and the case

that the router is not in the part network.

|T;1 _'Tbll
: | Taz — Tp2|

For each router r, there is a vector , where Ty, Ty,,...Ty, are the
|T;n _'Tbnl

transport capacities between corresponding terminals in the part network, when
r is in the network and T,q, T,,,...T,, are the transport capacities, when r is not

in the network.
For example the router N2, N3 in Figure 3.17

When N is in the part network, the transport capacity from N1 to N4 is 20. When
N2 is not in the part network, the transport capacity from N1 to N4 is 0. The
transport capacity of router Nz is (|T,; — Ty1]) = (|0 — 20]) = (20). And for N3
is also(20).

36/75

3.5.2.1.3 Time Complexity

In this design, we will consider all the paths between two communication

terminals. So in the worst case, all the routers are considered.

The time complexity for the calculating the transport capacity of a terminal is
O(T?x R), where T is the number of terminals in a part network and R is the
number of routers. In the worse case, there is communication between each pair
of terminals; each communication goes through all the routers. The number of
possibilities for pairs of communication terminals is T2. The number of router is

R. So the time complexity is O(T?x R).

For the calculation of the transport capacity of a router, the time complexity is
even O(T%xR?), because for each router, in the worst case, all the communication
between any pair of terminals in the part network will be calculated once. That is
O((T?2x R) xR)=0(T2xR?)

However, the assumption, that routing information on all the nodes is known, is
very hard to touch. Usually, we do not know so much routing information. So we

will look for another design.

3.5.2.2 Second Approach

In this approach, we do not know all the routing information on each node. Then
how can we get the routing information. In order to solve this problem, a new

assumption is given.

3.5.2.2.1 Real Time Communication Case

In this assumption, a communication parameter p is used for a definition of a real
time communication case, which is located between two extreme communication
cases in the network: extreme high communication and extreme low

communication in the network.

The real time means that, the communication parameter p can be changed along

with different time point.

37/75

First Case: Extreme Low Communication in the Network

In this case, we assume that, just one terminal transmits data. The shortest path
between two terminals is always considered as the communication path between
them. The shortest path is calculated from the transmission cost model,
represents the path with shortest cost between them. It can also be named
shortest cost path. In such a case, the data from one terminal to another is always
going along the shortest path between these two terminals. It does conform to

the routing rules.

Second Case: Extreme High Communication in the Network

In this case, we assume that, all the terminals are simultaneously transporting
data. The shortest path between two terminals is still always considered as the
communication path between the two terminals. The reason is that, the network
is overload everywhere in such a case. So the data, which is transported from one

node to another, cannot flow to other nodes, which are not in the shortest path.

Thus, under this assumption, the communication between two terminals is

always limited in the shortest path of the two terminals.

We keep the communication parameter p between 0 and 1, where the value 0
represents the case of extreme low communication in the network and the value

1 represents the case of extreme high communication in the network.

communication
parameter p:
real time
0 communication || 1

extreme low extreme high
communication T [communication

Fig. 3.18 real time communictaion

the transport capacity on a terminal

= transport capacity in the case of extreme low communication in the network
Xp

+ transport capacity in the case of extreme high communication in the network
X (1-p)

38/75

With this formula the transport capacity on each terminal is calculated.

The calculation of transport capacity on each router is based on the results of the
transport capacity on each terminal. It has been already described in previous

section, Analysis for Data Transport Capacity.

3.5.2.2.2 Design of Second Approach

As what is in section Basic architecture of the load model of real world network
defined, the nodes have been already divided in two classes, and a node of class
terminal will never be similar as a node in class router due to the different
functions of them. Therefore, for a node classification, only the nodes in the same

class are compared.

In addition, in order to reduce the runtime of the operation in the algorithm, the
whole network has already been divided into some part networks, which has

already been discussed in Section network clustering.

So all the nodes in the same class in all the part networks will be compared

together.

Total Process of the Node Classification

Node Classification Algorithm

nodes divided in different classes compare module

\ calculate the corresponding

transport capacities of nodes
in each class

Fig 3.19 total process of the node classification

As the process showed in the Figure 3.19, in the Node Classification Algorithm, at
first, nodes are separated into different classes, each of which has different
function. After that, the corresponding transport capacities of nodes in each class
are calculated. Finally, we divide the nodes into different groups in each class
through comparing the transport capacities of nodes. The compare between
nodes in one class is independent of the compare between nodes in another class.

The compare module is running independently in each node class.

39/75

Nodes in Different Classes

In the section preparation work, it is defined that, the nodes in a network have

been divided in two classes.

Furthermore, the class terminal will be divided in three part classes: class server,
class client and class p2p point, which can acts as a server as well as a client.
Concerning the software on each node, we can know which node belongs to

which class.

Due to different functions of nodes in class servers, class clients and class p2p

points, there are four classes now in all.

Data Transport Capacities of Nodes in Each Class
Above all, some basic traffic rules are defined:

In the network, server just transports data to client while client also just
transports data to server. There is no communication between servers or
between clients. P2p nodes can communicate with all the other pZp nodes,

because a p2p node can act as a server as well as a client.

Normally, a network is either a p2p network or a client server network. We
assume that, either all the terminals in a network are p2p nodes, or all the

terminals are client and server nodes.

Transport Capacity Calculation in Different Classes

After that, the different calculation methods for nodes in different classes will be
defined in details. The definitions are described respectively in two different
network types: client server network and p2p network. Furthermore, in each
type of network, the data transport capacities of all the nodes in all the classes
will be calculated in two cases: extreme low communication in the network and

extreme high communication in the network.

In a Client Server Network

Casel: Extreme Low Communication in the Network
In this case, we assume that, there is just one terminal transports data.

At first we analyze the terminals in class client. A client transports data just to
40/75

one server at a time point. The possibility of transmission from a client to each
server is the same. So the average data transport capacity from a client C to a

m . .
€ where ns is the number of servers in the part

. \ Su
server is defined as A; =

S

network and Sum¢ = wcg, + wgs, + -+ w¢s, represents the sum of maximal
S

transport capacities from the client Cto a server.

wcs wcs
Sum C ng
| ®csy x A wcs,
Thus, the transport capacity of a client (¢ = | Sum ¢ ¢ 1= | ng

wCSnS / \(")CSn
— S % A s
\Sumc ¢ ng

For example, in Figure 3.20, the bandwidth is given. So the data transport

capacities of the two clients C1 and Cz can be calculated.

Fig 3.20 a simple network topology with two clients, two servers and two routers, where the digit

on the arrows means the bandwidth of the link in the arrow direction.
For client C1:
(1)(:151: 7, (L)C152= 8, ng = 2;

Therefore, the transport capacity of the client Cq

Wc;s,; 7
| s | (2] 3.5)
ch_ Wes, | |8 _(4
ng 2

For client C»:

(DC251= 5, (DC252= 5, ng = 2;

41/75

Therefore, the transport capacity of the client Cq

Wc,s,
n

_QC: S =

2 (DCZSZ

- (32)

NN]| Ul

N

Then we will analyze the terminals in class server. In this case, data is
transported from a server S to all other clients at the same time. Here we will

introduce a new definition, bottleneck factor of a link.
The bottleneck factor of a link from nj to nz can be defined in the following form:

enlnz

,ifOh 0, > b n,

Onin, = bnlnz

1, otherweise

where 8, ,, = Xi; wr, 1, through the link from n; tony, (Vi,j, Ty, Ty € T), is the sum of

maximal transport capacities in the part network through the link from n; to np,
each of which is determined by the communication between a pair of
corresponding communication terminals in the part network and b, ,, is the
bandwidth of the link.

In this case, 8, ,, is the sum of maximal transport capacities through the link
from n1 to nz, each of which is determined by the communication from a server S

to a corresponding client in the part network.

The bottleneck factor of a link is the bottleneck on the link. When the bottleneck

factor on a link equals 1, it means that, there is no bottleneck on the link.
Furthermore, we can write

The bottleneck factor of a path between two terminals T1 and T>

where nodes ny, ny...... ny are the intermediate nodes on the shortest path from
T1 to Ts.

42 /75

Then in this case, the transport capacity of a server S is

/wscl\
Osc,

Wsc,

Osc,
w

SCp,
Osc,,

\owc./

Where n. is the number of clients in the part network

Now we analyze the topology in Figure 3.20. In this example, in this case, the

bottleneck factor on each link for server S; is calculated as following:

Sum of the max transport capacity bandwidth bottleneck factor on the link
on the link from ni tonz: (8,,y,)

B4R 15
eisz =6+4+9=15 bSle =10 051R2 = bsiki = E =1.5
eRle =6+4+9=15 bRZRl =20 0R2R1 =1
eRlcl =6 lecl =6 0R251 =1
Or,c, =9 bryc, =9 ORys, =1

Then each bottleneck factor on the shortest path from Server Si1 to each other

client is:

Shortest path bottleneck factor on the path
From Sl to CI Sl‘>R2'>R1‘>C1 051C1 = max(oisZ,oRzRI, OR1C1) =1.5
From Sl to CZ Sl‘>R2'>R1‘>C2 OSICZ = max(oisZ,oRzRI, OR1C2) =1.5

Therefore, the transport capacity of Sy is:

/w51c1 6

Oslcl\ E 4

Qsl —_— (DSlCZ/ = 9 = ()
051C2 1.5

The bottleneck factor on each link for server S; is:

Sum of the max transport capacity bandwidth bottleneck factor on the link
on the link from ni tonz : (8,,y,)

Os,r, =6+9 =15 bs,r, = 20 Os,r, = 1

Or,r, =6+9=15 bg,r, = 20 OR,r, = 1

Or,c, = 6 bp,c, =6 OR,s, =1

Or,c, =9 br,c, =9 OR,s, = 1

43 /75

Then each bottleneck factor on the shortest path from Server Sz to each other

client is:

Shortest path bottleneck factor on the path
From S;to C1 S2->Rz->R1->C1 Os,c, = max(052R2'0R2R1' 0R1C1) =1
From S;to C2 S2->Rz->R1->C2 Os,c, = max(052R2'0R2R1' 0R1Cz) =1

Therefore, the transport capacity of Sz
6
(e)-(3)-6
2_\wszc2/_ 91 \9
1

Finally we will analyze the nodes in class router.

In this case, there is always only one terminal in transport mode.

‘9“1112

So the transport capacity on each link = —

Where 9, ,, is sum of all the transport capacities of terminals in the case of
extreme low communication through this link from n: to nz, which can be

defined as:
Onin, = (Zi,]- us,c, + Yij chsi) through the link from n; to ny, (Vi, S; € S; Vj, C; € C,

(All the transport capacities pin the definition here are calculated in the case

extreme low communication in the network.)

And the item n. + ng represents the sum of number of servers and that of

clients in a part network.

Because is the possibility for each terminal, that it is in the transport mode.

n.+ng

Thus, the outgoing transport capacity of a router r is

1()rnl
ne +ns
19rnz

Tout ~— | Netng |’

\ﬂmn /
nc+ns

44 /75

And the incoming transport capacity of a router r is

19n1r
19nzr
Tin :| nc+ng |'

19nnr

nc+ng

where the nodes ni, nz...n, are the neighbors of the router .

As the topology in Figure 3.20 shown, the transport capacity on each node is:

Qc, = (345); Qc, = (; 2) Qs = (2), onnode (g = (g)

Obviously, the number of communication between communication terminals in
this part networkis n. +ng =2 + 2 = 4.

For router R1and Ro:

At first, for each link from ni to nz, the sum of all the transport capacities of

terminals through this link from ni tonz ¢, g, is calculated:

9c,p, =35+4=75 Op,c, =4+6=10
9c,p, = 25+25="5 Or,c, = 6+9=15
9.k, = 9c,r, + Ic,r, = 7-5+5=12.5 9., = s, + 95,8, = 10 + 15 = 25
Op,s, =35+25=6 95,r, = 4 +6 =10
9,5, =4 +25=65 95,r, = 6+9 =15

Therefore, for router Ry, the outgoing transport capacity on the router is:

‘9R1C1 10
nC+nS 4 2 5
‘9R1C2 15)
QRlout 0 ne4ng | 4 =1 375}
\{,Rle / 125 3.125
ne+ng 4
And the incoming transport capacity is:
dcqry 7.5
nets 4 1.875
‘9C2R1 5 '
'QRlin ~ 1 netng 4 |7 1.25
\SRZM / 25 6.25
ng+ng 4

45 /75

For router Ry, the outgoing transport capacity is:

/ o\ [
n¢+ng 4
o 1.5

19R252

QRZout T netng - 4 =|1625)
\GRZRl/ E 6.25
nc+ng 4

And the incoming transport capacity is:

() (5
n.+ng 4 \
_ | g 2.5

Case2: Extreme High Communication in the Network

In this case, we assume that, all the terminals will transport data simultaneously.
Each client transmits data to a server, when each server transmits data to all the
clients. Then maybe there is overflow in the network. We need the overflow

factor on each link here.

The overflow factor of a link from n1 to n2 can be defined in the following form:

_mng
,if0h 0, > by n,

ynlnz - bl’llnz

1, otherweise

In this case, 9,,,,, is the sum of transport capacities through the link from n; to
nz, each of which is determined by all the communication between

corresponding communication nodes in the part network.

The overflow factor of a link is the overflow situation on the link. When the

overflow factor on a link equals 1, it means that, there is no overflow on the link.
Furthermore, we can write
The overflow factor of a path between two terminals T1 and T>

Tryr, = mMax(Yrng, Ynyng = - Yn, T,)

where nodes ni, ny...... ny are the intermediate nodes on the shortest path from

46 / 75

T1 to To. With it the transport capacity of a client C can be written in:

9csq
Fcsy
| Scsz |

Ics, |'

ﬂcsn/
Tcsy,

And the transport capacity of a server S can be written in:

scq
Iscq
| Sscz |

Isc, r
sc,
Tsc,

In this case, concerning the topology in Figure 3.20, the overflow factor on each

link is calculated as following:

Sum of the transport capacity

on the link from ni to nz : (9y,n,)

8C1R1 = 35 + 4 = 75
SCZRl = 25 + 25 = 5

8R1R2 = 8C1R1 + ﬁcle = 125

9r,s, =35+25=6
Or,s, = 4+ 2.5 =65
9s,r, =4+6=10
95,8, =6+9 =15

8R2R1 = Il)isz + ‘SSZRZ = 25

8R1C1=4+6=10

8R1C2=6+9=15

bandwidth
bC1R1 =10
bC2R1 =5
leRZ =10
bR251 =7
bg,s, =
bisZ =10
bSZRZ =20
bRZRI =20
bRICI =6
bR1C2 =9

overflow factor on the link

YciRy T
YRy T

YRR, =

YR,S; =
YR,S,
YsiR, =
Ys,R, =

YRR, ©

YriC; T

YriC, T

1

1

IRz = .25
briR; '

1

=1
=1
=1

ot = .25

br,Ry

e — 1,67

bricy

Sric2 _ 4 g7

bric,

Then each overflow factor on the shortest path from each server and client to

corresponding communication nodes is:

From Cito S
From Cito Sz
From Cto S
From Czto Sz
From S1to Cq

Shortest path

C1->R1->R2->$3
C1->R1->R2->S;
C2->R1->R2->$§3
C2->R1->R2->S;
S1->Rz->R1->Cy

overflow factor on the path

I‘(3151

= max(Yc,r,, YRRy YR,S;) = 1.25
Ie,s, = max(Ye Ry YRoRy YRyS,) = 1.25
Ie,s, = max(Ye,r, YRiRy VRys,) = 1.25
Ic,s, = Max(Ye,r, YRiRy YRyS,) = 1.25
Ts,c, = max(Ys,ry YRyRy» YRyCy) = 1.67

47 /75

From Sl to CZ Sl'>R2'>R1'>C2 FSICZ = maX(YisZ,yRZRl,YRlcz) = 1.67
From SZ to Cl SZ->R2->R1->C1 F52C1 = maX(YSsz'YR2R1'YR1C1) =1.67
From SZ to CZ SZ->R2->R1->C2 FSZCZ = maX(YSzRZ'YR2R1'YR1C2) =1.67

Thus, the transport capacities of C1, C2, S1 and S2 are:

Scq51 3.5 Scas1 2.5
0. = T¢qsq _ 125 :(2'8)'Q _ Tcysq _ 125 :(2)_
1 Scisy 4 3.2/ Ta 9cys, 25 2/’
Teys, 1.25 Teys, 1.25
9s1¢q. 4 9sac1 6
Qg = Tsicq _ 167 2(2.4)_ 0. = Ts,cq _ 167 =(3.6).
1 9s1cp 6 3.6/ "2 9spco 9 5.4
Tsycy 1.67 Tsycq 1.67

Then we will analyze the nodes in class router. In this case, all the terminals are

in transport mode.

The sum of all the transport capacities between terminals in the case of extreme

high communication is defined in form:

8,n1n2 = (Zi,j Hs;c, + Zi,j quSi) through the link from n; to ny, (Vi, S; € S;vj, C; € C,

(All the transport capacities pin the definition here are calculated in the case

extreme high communication in the network.)
Therefore, the transport capacity on each link= 9', ,,;

Thus, the outgoing transport capacity of a router r is
!
/8 rnl\
!
Q = 8 rnp
Fout \ /’
!
Y rny,

And the incoming transport capacity of a router r is

!
8 nqr
‘8,
Q — npr ,

rin LN}
/
o) n,r

where the nodes ni1, nz..nn are the neighbors of the router r.

48 /75

For example,

According to the results in the page 52, the outgoing transport capacity of the

router Ry in Figure 3.20 is:
9 ricy 2.4 +3.6 6
Oy = 9 Rr,c, =(3.6 +5.4 > = (9),
9'r{R, 28+32+2+2 10

The incoming transport capacity of the router Ry is:

9 ciry 2.8+3.2 6
QRlin: Y c,Rry =(2+2 >=<4).

15

9'r,r,/ \24+3.6+3.6+54

In a P2P Network

RO =S

12

Fig 3.21 a simple network topology with three p2p nodes and three routers, where the digit on

the arrows means the bandwidth of the link in the arrow direction.

For p2p point, either in the case extreme low communication or in the case
extreme high communication in the network, all the p2p nodes will transport
data as much as possible. So the transport capacity is limited by the bottleneck

factor in the network.

And the definition of transport capacity on a p2p node p is:

49 /75

Wppy

Opp1q

Wppy
0. =

p Oppq |'
Wppy /
(0}
ppnp

where nodes p1, p2 ... Pn, are the p2p nodes in the p2p part network.

As showed in Figure 3.21, the maximal transport capacities on each p2p nodes

are:
(‘)p1p2 =8 ;(‘)P1P3 =8 ;(‘)Pzpl =10 ;(‘)Pzp3 =8 ;(‘)P3P1 =7 and (‘)P3p1 =7.

Then the bottleneck factor on each link in each direction can be calculated:

Sum of the max transport capacity bandwidth bottleneck factor on the link
on the link from ni tonz: (8,,,,)
Opiry _ 16

Glel =8+8=16 bp1R1 =10 Op;R; :mzﬁzlﬁ
0p,R 18

Op,r, =10+8 =18 by,r, =10 Op,R; = ﬁ == 1.8
ORr{R 16

0 =8+4+8=16 b =15 =—12=—=1.07

R;R, + R;R, OR,R, brir, 15
_ _ _ __ Or3r, _ 18

6R3R2 =10+8=18 bR3R2 =10 OR3R2 = ﬁ = E =1.8
ORr,p 16

6R2p3=8+8=16 bR2p3=8 OR2p3=ﬁ=?=2
Bpsr 14

ep3R2 =74+7=14 bP3R2 =7 OP3R2 = _bszz = 7 =2

eRle =10+7 =17 bR2R1 =20 ORZRl =1
ORr,R 15

6R2R3 =8+7=15 bR2R3 =8 OR2R3 = ﬁ = E = 1.875
ORrqP 17

eRlpl =10+7 =17 lepl =12 OR1P1 = ﬁ = E =1.42
BRrsp 15

6R3P2 =8+7=15 bR3P2 =12 OR3P2 = ﬁ = E =1.25

Then each bottleneck factor on the shortest path is:

Shortest path bottleneck factor on the path

From P1 to PZ P1'>R1'>R2'>R3'>P2 OPIPZ = maX(olel,ORle,0R2R3,0R3p2) = 1.875

From Pi1toP3 P1->R1->Rz->P3 Op,p, = maX(OP1R1' OR,R, 0R2p3) =2

From P2to P1 P2->R3->R2->R1->P1 Op,p, = maX(OPzRy0R3R2'0R2R1'0R1P1) =18

From P2to Pz P2->R3->R3->P3 Op,p, = maX(0P2R3:0R3R2:OR2P3) =2

50/75

From P3 to P1 P3'>R2'>R1'>P1 Op3p1 = maX(Opst, ORZRl' ORlpl) =2
From P3 to PZ P3->R2->R3->P2 Op3p2 = maX(Op3R2, OR2R3' 0R3P2) =2

Thus, the transport capacities on p1, pz and p3 are:

Wp1Py 8
Qo = Opipy | _ [1875 | _ (4.27),
Py T\ wpipy | T 8 “\ 4)
Op1p3 2
©PaPy 10
Q. = Opppy | 18] 5.56_
P 7w | 7\ 8)T\ 4)
0P2P3
Wp3Py 7
Q — OP3P1 — E _(35)
Ps 7\ ©pspy 7 3.5/°
0p3p2 2

In a p2p network, all the p2p nodes transport data at the same time either in the
case extreme low communication or in the extreme high communication.
Therefore, the calculation of the transport capacity of a router in p2p network
is same as the calculation of the transport capacity of a router in client server

network in case extreme communication.
3.5.2.2.3 Time Complexity

In this design, we consider the shortest cost paths from a terminal to
corresponding communication terminals. And the time complexity is O (n3),
where n is the number of nodes in a part network. So it is not scalable for very

large network. We need make a network clustering at first.

In next chapter, the analysis of the time complexity will be introduced with codes
in detail.

3.6 Compare Module

In the previous section, the transport capacity of each node has been already

calculated; now each terminal has a vector and each router has two vectors.

Each node, whether they are in the same part network or not, need to be

compared with other nodes, which are in the same class. That is to say, the

51/75

compare is running in the whole network.

3.6.1 Standard vector of a group

When the first node is put into a new group, the vector of the node becomes the
standard vector of a group. For each further compare, the node will be compared
with the standard vector of each exist group. If a node is put into an existing
group, then the standard vector of that group will be recalculated, the value

becomes the average value of the vectors of all the nodes in the group.

3.6.2 Compare method

The compare method is running as following:
Compare within terminals:

In order to make a compare between two terminals, each item in a vector of a
terminal will be compared in order from top to bottom with that of the other
terminal. If the difference between vectors of these two terminals is smaller than

a value, within a certain range, then the two terminals are in the same group.
Compare within routers:

Each router has two vectors: the incoming transport capacity vector and
outgoing transport capacity vector. So In order to make a compare between two
routers, each item in an incoming transport capacity vector and in an outgoing
transport capacity vector of a router, will be compared in order from top to
bottom with those of the other router. If both the difference between incoming
transport capacity vectors and the difference between two outgoing transport
capacity vectors of the two routers are smaller than a value, within a certain

range, then the two routers are in the same group.

3.6.3 Sort the items in each vector

Before the compare is carried out, all the items in each vector are sorted by
values in descending order from top to bottom.

For example:

52/75

Fig 3.22 a network topology with two servers and two clients

In Figure 3.22, the transport capacities on client C; and C; are:

_ (100 _ (10
fle, = (10) e, = (100)'
Where the first item of each vector is always the transport capacity from the

client to S;1 and the second item of each vector is the transport capacity from the

client to So.

If we directly compare the vector C; with Cz without sorting, we will get the
result that the two clients are not in the same group; however, practically the

transport capacity on Ci is as big as that on Co.
After the sorting, the transport capacities on client C1 and C; are:

c, = (11000) Qc, = (11000)’

In fact, for a client, the most important thing is the size of transport capacity, not

the destination of each transport.

53/75

3.6.4 Compare Parameter

The compare parameter is a value, which is used for compare among nodes in
the same class. If the difference between vectors of two nodes is within a range,
which is determined by the compare parameter, then we could say the two nodes

are in the same group.

The compare parameters for compare among nodes in different classes are
different.

The compare parameter, which is used for compare among servers, is named
server compare parameter; the compare parameter, which is used for compare
among clients, is named client compare parameter; the compare parameter,
which is used for compare among p2p nodes, is named p2p compare parameter;
the compare parameter, which is used for compare among routers, is named

router compare parameter.

high few

A A

ilarity within a group

low many

similarity within number of groups

a group small big

value of the co_mpare parameter
Fig. 3.23 compare parameter

The value of each kind of the compare parameter is adaptive. As showed in
Figure 3.23, the smaller the compare parameter is, the more similar the nodes
within a group is. But if the value is too small, then the nodes will be in too many
groups divided. In this way, too many manual inquiries will be called. It cannot
be accepted. We are hunting for a balance point, where the arrow is located in

the picture.

54 /75

3.7 Assignment Method

In the end, an assignment method is carried out.

At the beginning of the method, the CPU load on a node and the data rate on the

outgoing links of the node will be inquired in each group.

According to the node classification algorithm described in the previous section,

the nodes in the same group are in the same class: (two possibilities)

1. All the nodes in a group are routers.
2. All The nodes in a group are terminals.(class server, client and pZ2p belong to

class terminal)

3.7.1 Assignment of Terminal

If nodes in a group are terminals, then we can directly assign the inquired CPU
load on the terminal to other terminals; assign the inquired data rate on the
outgoing link of the terminal to the outgoing link of other terminals. The reason

is that, for each terminal, there is just one outgoing link.

3.7.2 Assignment of Router

If nodes in a group are routers, the assignment of CPU load of a router is same as
that of a terminal. However, the assignment of data rates on the links is different,

because the router in the same group may have different connection grads.
Therefore, the following rules are needed:

1. The sum of the data rates on the outgoing links of a router is same as the sum
of data rates on the outgoing links of the inquired router.
2. The data rates will be divided into the corresponding links according to the

weight of the links. (The link, whose cost is small, has a high weight.)

55/75

Chapter 4

Implementation

In this chapter the implementation details of the design, which has been
described in the previous chapter, will be represented. The implementation is
consisted of several parts: network clustering, shortest (cost) path algorithm,
transport capacity calculation and compare module, where the last three parts
belong to Node Classification Algorithm. All the components of the algorithm are

written in language C.

4.1 Architecture of Implementation

Input files: structure .txt; node.txt

e T —

N

[network clustering algorithm

part network 1 J\ part network N Node

Classification
structurel.txt || ceeeeeennn structureN.txt Algorithm
nodeltxt || ... nodeN.txt
~ N
shortest path shortest path
algorithm) L algorithm
4 1l
pathl.txt pathN.txt
) e IR <4 =
Transport capacity Transport capacity
calculating calculating
S1.txt;Cl.txt;P1.txt;R1.ext | =" SN.txt;CN.txt;PN.txt;RN.txtj
\ [compare module]
| I
server_group.txt; client_group.txt; p2p_group.txt;router_group.txt

Fig. 4.1 architecture of implementation

56 /75

As what is in Figure 4.1 showed, as input, two files is given, one is named
sturture.txt, in which the structure of links in the network is written; while the
other is named node.txt, in which the information of nodes in the network is

recorded.

In the end, the output files are server_group.txt, client_group.txt, p2p_group.txt
and router_group.txt. From the name we can easy know, they are the results of

the nodes classification for different node classes.
The whole process of implementation is running as following:

At the beginning, with the structure of links in the network, the network can be
clustered into many relative small part networks (in Figure: from part network 1
to part network N), each of which has its own link structure and node
information (in Figure: for example, files sturturel.txt and nodel.txt are for part

network 1; and files sturtureN.txt and nodeN.txt are for part network N).

After that, the shortest paths between each pair of nodes in every part network
are calculated. It is the routing information for each pair of communication
terminals, which is saved in pathn.txt, where n means that the routing

information is for part network n. (foreach 1 < n < N)

Then the most important module in the Node Classification Algortihm is carried
out. According to different cases, the data transport capacity of each node is
calculated. And the corresponding data is saved in different files, where S1.txt
means the transport capacity of server in part network 1 and C2.txt means the

transport capacity of client in part network 2 and so on.

At last, we will use the compare module to compare all the nodes in the same
class in the whole network. For example, the transport capacity of a server in
S1.txt will be compared with that of each server in all the files S*.txt. As a result,
we get a file group_server.txt, in which, each server belongs to which group is
written. And the compares among clients, p2p nodes and routers are same as

that among servers.

Now we will turn to each module of the implementation.

4.2 Network Clustering

In this section, the network clustering is described. In order to reduce the

runtime of NETclassify, number of nodes in a part network is limited to1000.
57/75

[the whole graph]

A 4

network clustering:
Clause-Newman-M

oore Algorithm

\ 4

check the number }

of nodes in each
part graph

nodes in a part >1000

graph

<1000

write the information of links and
nodes in each part network

Fig. 4.2 flow chat of the network clustering

As showed in Figure 4.2, the network clustering is running in this way. As the
output of network clustering, we have got all the information of links and nodes

in each part network.

4.2.1 Clauset-Newman-Moore Algorithm

The core of the network clustering is the Clauset-Newman-Moore Algorithm, the
source code of which has been already written by the SNAP group in university
STANFORD. [14]

Listing 4.1 Clauset-Newman-Moore Algorithm|[14]

Input: Graph = (E, V)
Begin
Matrix = Graph.get_adjacent Matrix();
CmtyV = Graph.get_community();
58/75

// maximize modularity

Find (Matrix.exist_best_modularity()){
//reconstruct communities
CmtyV. reconstrut ();

}

return Matrix;

}

As showed in Listing 4.1, the algorithm is running in two steps. At first, the

maximal modularity in the network is found; then the network is reconstructed

according to the division, when the network has a maximal modularity.

4.3 Shortest Path Algorithm

As we all known, there are many shortest path algorithms in the world, which
could be distinguished from each other in the following generalizations:
single-source shortest path algorithm, single-destination shortest path algorithm

and all-pairs shortest path algorithm.

Now we do need the third approach. All the terminals in a part network may
transmit data to other corresponding terminals. We need the routing paths

between each pair of corresponding terminals.

A famous algorithm of this approach is Floyd algorithm, [15] in which the
shortest paths between all pairs of nodes are calculated. As a result, we get the
cost of shortest path between each pair of nodes. But it is not useful for us; we
want the path information between any two nodes. So a modified Floyd
algorithm is used here, in which the forward sequence on the shortest path
between each pair of nodes is recorded. [16] The source code is showed in listing
4.2.

Listing 4.2 modified Floyd Algorithm

//the the forward sequence on the shortest path is saved in path[][]
void floyd(int dist[][], int path[][], int n)
{
inti,j, k;
for (i=0;i<n;i++)
for (j =0;j<n;j++)
path[i][j] = i;
for (k=0; k <n; k++)
for (i=0;i<n;i++)
for (j = 0;j <n;j++)

59/75

if (dist[i][j] > dist[i][k]+dist[k][j])

{
path[i][j] = path[K][j]; (*record the path*)
dist[i][j] = dist[i][k]+dist[K][j];

4.4 Transport Capacity Calculation

The calculation of transport capacity on each node is the most important part in

the Node Classification Algorithm.

nodes and links
informationina

part network

network
type?

)
—
(@]
o
>
X

L L

case 1: extreme low case 2: extreme high
communication in communication in the
the part network part network
TConC < 1 t ;
TConCin TConSin TConCin TConSin
case 1 case 1 case 2 case 2

TCon S
TC on each TC on each

link in case 1 link in case 2

TConR <

Figure 4.3 flow chat of the transport capacity calculation
In this figure, the TC means transport capacity calculation, R means router, C means client, P
means p2p point and S means server

As showed in Figure 4.3, above all, we need know the network type of each part

60 /75

network, whether it is a p2p network or a client server network. The processes

of analysis on nodes are different in different network types.

In a client server network, at first the calculations of transport capacities on
clients and servers in each case (extreme low communication in a part network
or extreme high communication in a part network) are running respectively. For
each client or server, we have two vectors, each of which is calculated in an
extreme case. After that, as what is said in the previous chapter, transport
capacity on each server or client is produced with the communication parameter
p. Finally, concerning the transport capacities on servers and clients, the

transport capacity on each router could be calculated.

In a p2p network, the calculation of transport capacity is simpler than the one in
client server network. Each p2p node transmits data always to other p2p nodes
in any case. Therefore, we directly calculate the transport capacity on each p2p
node. And concerning the results the transport capacity on each router is also

calculated.

It had been elaborated in the previous chapter how to calculate each kind of

Transport capacity concretely, so now [will not introduce the code again.

4.5 Compare Module

The transport capacity of a node is written in a vector. So the vector of a node in

this section means the transport capacity of a node.

The compare is running just within the same class. (within class clients, servers,

p2p nodes or routers.)

In each class, as showed in Figure 4.4, the first node is assigned to the first group,
and the vector of the node becomes the standard vector of the group. Then from
the second node, we can make a compare between the node and the standard
vector(s) of the existing group(s). The vector of each node is compared with the
standard vector in each group. If the difference between the vector of a node and
the standard vector in an existing group is within a range, which is determined
by compare parameter, then the node is assigned to this group, and the standard
vector of this group is recalculated. If the difference between the vector of the
node and the standard vector in each existing group is not within this range, then
the node is assigned to a new group. After that, the standard vector of the new

group is also generated.

61/75

a node is ready to

~N e N be compared
go to the next compare the No
existing group "1 vector of a node
with standard
J Is it the
A vector in a group
\ J first node?

No Yes
difference assign the node
within a range? to this group
standard v
vector in each
. No recalculate the
group is
standard vector
compared?

of this group

A 4

) generate the
assign the node

to a new group J

of this group

=L standard vector

Figure 4.4 flow chat of the compare module: make a compare among nodes in each class

4.5.1 Compare Method

In our approach, the numbers of items in the vectors of two routers are different,

because the numbers of links on two routers may be different.

Furthermore, the nodes in a class will be compared with all the other nodes in
the same class. The nodes may be come from different part networks. Due to the
different numbers of clients, servers and p2p nodes in different part networks,
the numbers of items in two vectors of terminals in same class maybe also
different.

However, the compare between two vectors is running under the condition, that
the numbers of items in two vectors are same. Therefore, the vector, the number

of whose items is less, is reconstructed.

62 /75

For example, two vectors:

iy J1

i .
vectorI=| 2 | and vector] = J2 ,

Im jn

where m<n, the number of items in vector I is less than that in vector J.

Then the vector I is reconstructed:
|
vector [= I i, I,

where all the items im, im+1 ... in equal 0.

As said in the previous chapter, before compare, all the items in each vector are
sorted by values in descending order from top to bottom. The last items in the

vector, im to in, which equals to 0, are already in this order.
Compare Parameter

Compare parameter is the measuring metric. The difference between two

vectors is calculated in the formula:

d

d

Dy = 2
d,

in - jnr in = jn

Where vector I is the standard vector of a group, and d, = { . .
Jn —In Ih <y

dn _ . :
Then we can compare the Z“(i_ X i,) = X,(d,) with the compare parameter,

dn . : : : :
where — s the proportion of difference value between an item in the node

n

vector and that in a standard vector in a group to that in the standard vector in
the group. And X i, here means that, the weight of the proportion of difference

value is considered.

63 /75

4.5.2 Recalculation of Standard Vector in a Group

If a node is assigned to a new group, then vector of the node becomes the
standard vector in the new group. However, if a node is assigned to an existing
group, the standard vector of the group needs be recalculated. The standard

vector in a group is always the average value of the vectors of all the nodes in the
group.

If a node n is assigned to an existing group, then the standard vector of this group

becomes:

SV x weight + vector of node n
weight + 1

Where SV is the standard vector of the group before node n is assigned to this
group and weight is the number of nodes in the group before n is assigned to

the group.
For example, the recalculation of the vectors of a router is written in Listing 4.3.

For each router r, there are two vectors: one represents the incoming transport
capacity on a router and the other represents the outgoing transport capacity on

a router.

Listing 4.3 Recalculation of the vectors of a router

Input:
//the vectors of the router
Analy_In[]; Analy_Out[];
//standard vectors of the group, where the router is assigned
SV_In[][;SV_Out[][];
Begin
Grad = max (Analy_In[].get_number_of_items(), SV_In[].get_number_of items())
for (int i=0;i<Grad;i++){ (*each item in the vectors are recalculated*)
//each item in the standard vector of incoming transport capacity on a router
SV_In[][i] = (standard_ In[][i] * weight + analy_In[i]) / (weight + 1)
//each item in the standard vector of outgoing transport capacity on a router
SV_Out[] [i] = (SV_Out[][i] * weight+analy_Out[i]) / (weight + 1);
}
weight = weight + 1; (*after the recalculation, the weight in the group is increased*)
End

64 /75

Chapter 5

Evaluation

In this chapter, the evaluation of NETclassify is presented. At first, the goal of the
evaluation of the algorithm is explained. Then we will introduce the platform,
where NETclassify is running. Finally, the results of the evaluation is presented

and discussed.

5.1 Evaluation Goals

The goal of the evaluation is to examine if the implementation of NETclassify
described in the previous chapter fulfills the main requirements of NETclassify

which are described in Chapter 3.1.

A research in the evaluation is the runtime of the algorithm and the number of
groups in the results of the nodes classification. We want to know that, whether

an acceptable classification can be finished in an acceptable time.

Furthermore, we want to know, whether the nodes in the same group have

similar transport characteristics.

5.2 Platform

As hardware infrastructure, a 12 nodes cluster server “curium” is set up. Each
node is a Dual QuadXeon. Each QuaXeou has 8 CPUs, each of which is 3000GHz.

Our implementation is running on it.

On the other hand, the software environment for the implementation is Linux
system. And in this implementation, the program of NETclassify is running in line

one by one.

5.3 Evaluation Results

Above all, the input network topologies are introduced. Nine network topologies

are offered for this Evaluation.

They are described in the following table:

65/ 75

Description Topology Number of links Number of Number of
(directions) routers terminals

a network ATandT 3895 753 1500
topology from
DSL supplier
ATandT

simplified vision Campus1 250 170 50
of Caumpus2

composed with Campus?2 5620 600 4880
20 Campus
network

topologies

a network Internet 6632 1454 659
topology from
internet

snapshot of NetworkMap 4527 2376 800
routers in
internet

generated by TopoAS 2609 1024 500
the topology
generator
BRITE [17]

generated by Waxman1.25k 3000 1250 500
BRITE

generated by Waxman2.5k 5500 2500 500
BRITE

generated by Waxman5k 12500 5000 2500
BRITE

In order to execute the implementation, three kinds of parameters are offered:
network name, communication case parameter and compare parameter.
Furthermore, for each network, 5 kinds of different link properties (bandwidth,
maximal delay and packet loss) on each link are provided in this evaluation,

which is determined by link parameter.

At first, we want to know, whether the link parameter has an influence on the
results of classification, when the compare is made among nodes in the same

network with same communication case parameter and compare parameter.

In each following chart the x-axis represents different link parameter, and the

y-axis represents the number of groups for each class.

For each chart there is a description, the format is:

66 /75

network name/communication case parameter/compare parameter/number of

terminals in the network/number of servers in the network

ATandT/0.25/0.5/1500/753 ATandT/0.75/0.4/1500/753
30 80
25
20 A 60
i ‘ v a ‘ ’ & client 20 @ client
10 M server M server
20
5 router f . u ' ! router
0 T T T 1 0| T T T 1
1 2 3 4 5 1 2 3 4 5
ATandT/0.5/0.3/1500/753 ATandT/0.0/0.2/1500/753
150 | 400 -
100 300
@ client m m B g B 4 client
200 ‘ * *
50 M server * ® morer
100
, ' ’ 9 ’ router router
0| T T T 1 0 T T T 1
1 2 3 4 5 1 2 3 4 5
Waxman1.25k/1.0/0.1/1500/753 Internet/0.25/0.3/659/1454
800 200
600 - 150
@ client @ client
400 100
W server W server
200 router >0 ' [| t
] router
¥ 9 9 9 oy v 7 ¢ R
1 2 3 4 5 1 2 3 4 5

Fig 5.1 evaluation of the implementation with different link parameters

As shown in Figure 5.1, different link parameters of each network have just little
influence on the results of classification, when the compare is made among nodes
in the same network with same communication parameter and compare

parameter.

Then we will make a research on the compare parameter. Therefore, now in each
following chart the x-axis represents different compare parameters, and the

y-axis represents the number of groups for each class.

67 /75

And the description of each chart here is in form:

network name/communication case parameter/number of terminals in the

network/number of servers in the network

ATandT/0.25/1500/753 ATandT/0.75/1500/753
800 800
600 - 600 -
client = client
400 400
server server
200 - S EEEEE— 200
router ~ router
0 T T T 1 0 - rr 1 1T 1
0.1 02 03 04 05 0.1 0.2 03 04 05
Campus2/0.25/4880/600 Waxman5k/0.5/2500/5000
500 2000
400 \ 1500 -
300 client = client
\ 1000 +—
200 - server server
\\ 500
100 ¥ router router
0 e — 0 —
0.1 02 03 04 0.5 01 02 03 04 0.5
Internet/0.25/659/1454 TopoAS/0.5/500/1024
600 800
500 600
400 +— lient i
300 clien 400 = Client
200 server server
100 —; router 200 router
0 B o N‘ T T 1
0.1 02 03 04 05 01 0.2 03 04 05

Fig 5.2 evaluation of the implementation with different compare parameters

As shown in Figure 5.2, compare parameter has a great influence on the results
of classification, when the compare is made among nodes in the same network
with same communication case parameter. The smaller the compare parameter
is, the more groups after classification there will be. And likely, the increase of
the nodes in the network will also be accompanied with a corresponding growth

in the quantity of the groups.

68 /75

We can control the number of groups through change the adaptive compare

parameter.

After that, we will focus on the communication case parameter. Therefore, in
each following chart the x-axis represents different communication case

parameters, and the y-axis represents the number of groups for each class.
And the description of each chart here is in form:

network name/compare parameter/number of terminals in the network/

number of servers in the network

TopoAS/0.1/500/1024 TopoAS/0.3/500/1024
800 200
600 150
client = client
400 100
server server
200 50
\ router router
0 — 0 [————
0 025 05 075 1 0 025 05 075 1
Compus1/0.1/50/170 Compus1/0.2/50/170
20 10
15 8 T —— :
10 f— client 6 client
server 4 server
5 2
router router
0 T T T 1 0 T T T 1
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Waxman5k/0.3/2500/5000 Waxman5k/0.5/2500/5000
250 50
200 40
150 — client 30 =\ client
100 server 20 '& server
50 N 10
N router e —— router
0 T T T 1 O I I I \
0 025 05 075 1 0 025 05 0.75 1

Fig 5.3 evaluation of the implementation with different communication case parameters

As showed in Figure 5.3, in the network, which are rich in nodes, the number of
the groups fluctuates in line with different communication case parameters; on

the contrary, when there are fewer nodes in the network, the number remains

69 /75

level in such a case. However, in the same network the effects of compare

parameter are found negligible.

Finally, we will make a research on the runtime of the implementation. We want

to know, whether the runtime of the implementation is acceptable.

The average runtime of different networks are showed in Figure 5.4 (a) and (b).

01:43.7
01:26.4 - ¢ Campus2
01:09.1 - ¢ ATandT ©® Waxman5k
00:51.8 -
® NetworkMa
@ Internet p @ Network
00:34.6 © Waxman2.5k
©® _TopoAS
L %axmanl.zsk
00:17.3 | ® Campusl
00:00.0 T T T 1
0 2000 4000 6000 8000
(a) x-axis represents number of nodes in a network
01:43.7
01:26.4 - @ Campus2
01:09.1 - * ATandT o \yaxmansk
00:51.8 -
@ NetworkMap @ Network
@ Internet
00:34.6 - ® Waxman2.5k
: TopoAS
Waxman1l.25k
00:17.3 {» Campusl
00:00.0 T T T T T 1
0 1000 2000 3000 4000 5000 6000

(b) x-axis represents number of terminals in a network
Fig 5.4 compare of runtime in different networks

70/75

As showed in Figure 5.4, for different networks, there is an upward trend in the
runtime with regards of the number of the nodes (especially the number of
terminals) in the network, but the rate of increase slow down. Therefore, the

runtime of NETclassify is acceptable.

However, it is very hard to evaluate, whether the nodes in the same group have
similar real-time transport capacity or not. In the further, this problem should be
solved. A possible solution is through some measuring methods of bottleneck
link capacity and available bandwidth in the complex transmission situation to
calculate the available transport capacity of each node. Then with this result we

can know the similarity of a group.

71/75

Chapter 6

Conclusion

In order to offer NETplace two important parameters: expected CPU load on a
node and expected data rates on each data link, an algorithm NETclassify is

designed in this diploma thesis.

NETclassify is consisted of two most important parts, network clustering and
Node Classification Algorithm. In the network clustering, the whole network is
divided into small part networks. Furthermore, before the execution of Node
Classification Algorithm, nodes in each part network are divided into different
classes. And the shortest paths between each pair of communication nodes are
calculated in a transmission cost model, which is the routing information. Then
the Node Classification Algorithm is carried out. Concerning the routing
information in the part network and the different functions of nodes in different
classes, the transport capacity on each node is calculated and in the compare
method, the nodes in the whole network will be composed, if they within the
same class. As the result, each node is assigned to a suitable group. Finally, a
manual inquiry and assignment of the CPU load on a node and data rates on the
outgoing data links of it in each group is given, and according to the manual input,
the CPU load on other nodes and data rates on the outgoing data links of them in

the same group are also automatically assigned.

In the evaluation, we can see that, the runtime of the NETclassify in different
networks is acceptable (less than 2 minutes); even when the number of nodes in
the network is more than 7000 nodes. And the results of the classification
depend strongly on the compare parameter. So if the operator thinks that, the
number of groups is too high, then he could set the compare parameter to a

higher value. Then he can get the desired result.

However, we do not know how to evaluate the similarity of nodes in a group. In

the further, this problem should be solved.

72/75

References

[1]
[2]

[10]

[11]

[12]

[13]

NET-Project. http://net.informatik.uni-stuttgart.de/, 2008.

Andreas Grau, Steffen Maier, Klaus Herrmann, Kurt Rothermel, Time
Jails: A Hybrid Approach to Scalable Network Emulation, 22nd
ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed
Simulation (PADS 2008)

Andreas Grau, Klaus Herrmann, and Kurt Rothermel, NETplace:
Efficient Runtime Minimization of Network Emulation Experiments,
Proceeding of the International Symposium on Performance
Evaluation of Computer and Telecommunication Systems
(SPECTS'10) [Best Paper Award], 2010

Satu Elisa Schaeffer, Graph clustering, Computer Science Review,
Volume 1, Issue 1, August 2007

M. E.]J. Newman, Detecting community structure in networks, The
European Physical Journal B - Condensed Matter and Complex
Systems, Vol. 38, No. 2. (25 March 2004)

Matthew]. Rattigan, Marc Maier, David Jensen, Graph Clustering
with Network Structure Indices, ICML '07 Proceedings of the 24th
international conference on Machine learning

M. E. J. Newman and M. Girvan, Finding and evaluating community
structure in networks, Physical review, E, Statistical, nonlinear, and
soft matter physics, Vol. 69, No. 2 Pt 2. (February 2004)

Lei, Tang, Community Detection in Social Networks, http://
www.public.asu.edu/~huanliu/dmml_presentation/2008/Communi
ty % 20Detection%20in%20Social%20Networks.pdf

Aaron Clauset, M. E. J. Newman, and Cristopher Moore, Finding
community structure in very large networks, Physical Review E
(2004), p. 1- 6.

M. E. J. Newman, Analysis of weighted networks, Phys. Rev. E 70,
056131 (2004)

M. Girvan, M.E.J. Newman, Community structure in social and
biological networks, Proceedings of the National Academy of
Sciences, USA 99 (2002) 8271-8276.

P. Elias, A. Feinstein, C.E. Shannon, Note on maximum flow through a
network, IRE Transactions on Information Theory IT2(1956)
117-1109.

L.R. Ford Jr., D.R. Fulkerson, Maximum flow through a network,
73/75

[14]
[15]

[16]

[17]
[18]

[19]

[20]

Canadian Journal of Mathematics 8 (1956) 399-404.
SNAP, http://snap.stanford.edu/data/index.html

Floyd algorithm, Volker Diekert, from teaching materials of “Entwurf
und Analyse von Algorithmen”, SS 2006

http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorith
m

Brite, http://www.cs.bu.edu/brite/

Blaauw, D.T.; Banerjee, P.; Abraham,].A., Automatic classification of
node types in switch-level descriptions, Computer Design: VLSI in
Computers and Processors, 1990. ICCD '90. Proceedings., 1990 IEEE
International Conference

Ningning Hu, Peter Steenkiste, Evaluation and Characterization of
Available Bandwidth Probing Techniques, IEEE Journal on Selected
Areas in Communications, Vol. 21 (2003)

Jin Cao; William S. Cleveland; Don X. Sun, Bandwidth Estimation for
Best-Effort Internet Traffic, Statist. Sci. Volume 19, Number 3 (2004),
518-543.

74 /75

Statement

[ensure that I have created this document on my own and only used those

external sources in the references.

kai zhou

75/75

