

Institut für Parallele und Verteilte Systeme

Universität Stuttgart

Universitätsstraße 38

D –70569 Stuttgart

Diplomarbeit Nr. 3082

Development of a Load Model

for Distributed Systems

Kai Zhou

Studiengang: Informatik

Prüfer: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Betreuer: Dipl.-Inf. Andreas Grau

begonnen am: 21. 09. 2010

beendet am: 23. 03. 2011

CR-Nummer: C2.0, C2.l, C2.2, C2.5

ABSTRACT 1

CHAPTER 1. INTRODUCTION 4

1.1 MOTIVATION 4

1.2 GOAL OF THE STUDY 5

1.3 OUTLINE 6

CHAPTER 2 RELATED WORK 8

2.1 AUTOMATIC NODES CLASSIFICATION 9

2.2 AUTOMATIC BANDWIDTH ESTIMATION 9

CHAPTER 3 DESIGN ISSUES 10

3.1 BASIC ARCHITECTURE 10

3.2 NETWORK CLUSTERING 12

3.2.1 DIFFERENT CLUSTERING METHODS 13

3.2.1.1 Cuts and Maximum-Flow 14

3.2.1.2 Betweenness 14

3.2.1.3 Resistor Networks 15

3.2.2 GIRVAN-NEWMAN ALGORITHM 15

3.2.3 CLAUSET-NEWMAN-MOORE 16

3.2.3.1 Modularity 16

3.2.4 WEIGHTED GRAPH 18

3.3 TRANSMISSION COST MODEL 20

3.4 PREPARATION WORK OF NODE CLASSIFICATION ALGORITHM 21

3.4.1 PREPARATION WORK FOR NODES 22

3.4.2 PREPARATION WORK FOR EDGES 23

3.5 NODE CLASSIFICATION ALGORITHM 23

3.5.1 BASIC CONCEPTS 24

3.5.1.1 CPU Load and Data Transport Capacity 24

3.5.1.2 Analysis for CPU Load 24

3.5.1.3 Analysis for Data Transport Capacity 25

3.5.1.3.1 Maximal Data Transport Capacity between Nodes 25

3.5.1.3.2 Data Transport Capacity of a Node 26

Transport Capacity of a Terminal 26

Transport Capacity of a Router 27

3.5.1.3.3 Different Routing Schemes and Transmission Situations 28

Different Routing Schemes 28

Different Transmission Situations 29

3.5.2 DESIGN OF NODE CLASSIFICATION ALGORITHM 30

3.5.2.1 First Approach 30

3.5.2.1.1 Basic Definitions in the First Approach 30

3.5.2.1.2 Design of the First Approach 32

Transport Capacity of Terminal 32

Transport Capacity of a Router 36

3.5.2.1.3 Time Complexity 37

3.5.2.2 Second Approach 37

3.5.2.2.1 Real Time Communication Case 37

First Case: Extreme Low Communication in the Network 38

Second Case: Extreme High Communication in the Network 38

3.5.2.2.2 Design of Second Approach 39

Total Process of the Node Classification 39

Nodes in Different Classes 40

Data Transport Capacities of Nodes in Each Class 40

Transport Capacity Calculation in Different Classes 40

3.5.2.2.3 Time Complexity 51

3.6 COMPARE MODULE 51

3.6.1 STANDARD VECTOR OF A GROUP 52

3.6.2 COMPARE METHOD 52

3.6.3 SORT THE ITEMS IN EACH VECTOR 52

3.6.4 COMPARE PARAMETER 54

3.7 ASSIGNMENT METHOD 55

3.7.1 ASSIGNMENT OF TERMINAL 55

3.7.2 ASSIGNMENT OF ROUTER 55

CHAPTER 4 IMPLEMENTATION 56

4.1 ARCHITECTURE OF IMPLEMENTATION 56

4.2 NETWORK CLUSTERING 57

4.2.1 CLAUSET-NEWMAN-MOORE ALGORITHM 58

4.3 SHORTEST PATH ALGORITHM 59

4.4 TRANSPORT CAPACITY CALCULATION 60

4.5 COMPARE MODULE 61

4.5.1 COMPARE METHOD 62

4.5.2 RECALCULATION OF STANDARD VECTOR IN A GROUP 64

CHAPTER 5 EVALUATION 65

5.1 EVALUATION GOALS 65

5.2 PLATFORM 65

5.3 EVALUATION RESULTS 65

CHAPTER 6 CONCLUSION 72

 1 / 75

Abstract

NETplace is an efficient algorithm to assign virtual nodes to physical nodes on

the network emulation testbed, while reducing the experiment runtime for

network emulation up to 64%. As an assumption of this algorithm, a detailed

defined cost model for communication cost has been provided. This cost model

needs expected data rates of the links between each pair of virtual nodes as well

as CPU load (in CPU cycles) on the virtual nodes, which are the experimental data

produced by SoftwareunderTest (SuT). Therefore, the goal of the thesis is to

define a generic load model to efficiently provide placement algorithm with a

realistic estimation of experimental load data.

In order to reach this goal, several problems should be solved. First, there are

thousands of network links and virtual nodes in the model, so it is impossible to

manually inquire and input all experimental CPU load and data rates into the

model, because it takes too much time. A possible approach to resolve this

problem is to divide the nodes into several groups, in which all the nodes have

nearly similar characteristics. That is to say, a node classification is made. Thus,

we only need specify one node for each group, and the other nodes can be

automatically assigned according to the node classification. Second, nowadays

the network is already very large, so it still costs much time, if we classify the

nodes in the whole network together. A better solution is to analyze the nodes in

part networks with the help of network clustering. So generally speaking,

through combining the network graph clustering with the nodes classification

we can provide the load information, which NETplace needs.

 2 / 75

Kurzfassung

NETplace ist ein effizienter Algorithmus, um mehre virtuelle Knoten zuzuweisen

jedem physischen Knoten, der auf der NET liegt. Dabei wird die benötigte

Laufzeit auf bis zu 64% reduziert. Dabei wird angenommen, dass ein

Kostenmodell für die Komummunikationskosten bereitgestellt wird. Dieses

Kostenmodell benötigt die Datenrate zwischen den verschieden virtuellen

Knoten sowie die CPU-Auslastung der virtuellen Knoten. Diese sind die

experimentelle Daten, die vom SuT produziert werden. Daher ist das Ziel dieser

Diplomarbeit, ein allgemeines Modell zu definieren, das effizient den placement -

Algorithmus mit einer realistischen Einschätzung der experimentellen Daten

liefert.

Um dieses Ziel zu erreichen, müssen einige Probleme gelöst werden. Es gibt

tausende Netzwerkverbindungen und virtuelle Knoten in diesem Model,

weswegen es unmöglich ist, alle experimentelle Daten manuell abzufragen und

aufzunehmen. Dies würde zu viel Zeit kosten. Ein Lösungsansatz wäre es, die

Knoten, die alle ähnliche Eigenschaften haben, in Gruppen zu unterteilen. Das

heißt wir brauchen eine Knotenklassifizierung. Daher müssen wir nur die Daten

einem Knoten für jede Gruppe abfragen und aufnehmen. Die anderen werden

automatisch über die Knotenklassifizierung bestimmt. Heutzutage sind die

Netzwerke sehr groß geworden, weshalb es sehr viel Zeit in Anspruch nehmen

würde, wenn wir alle Knoten im gesamten Netzwerk klassifizieren würden. Eine

bessere Lösung ist es, nur einen Teil der Knoten im Netzwerk mithilfe des

Network-Cluster zu analysieren. Kurz gesagt, durch das Kombinieren von

Network- Graph – Clustering mit der Knotenklassifizierung können wir die Daten

bereitstellen, die NETplace braucht.

 3 / 75

Acknowledgments

I would like to sincerely thank my tutor Andreas Grau for his help, support and

guidance during my diploma thesis. He put me on the road to doing good

research and his easy accessibility to discuss various issues was invaluable

during my research.

 4 / 75

Chapter 1

Introduction

1.1 Motivation

Today more and more dynamic1 large-scale distributed systems are used in

world, so network evaluation becomes more and more important. In order to

monitor the load information in whole system of such dynamic large-scale

network, an appropriate emulation system should be set up. Now the NET

(Network Emulation Testbed) project [1] of the Institute of Parallel and

Distributed Systems (IPVS) at University of Stuttgart is a solution for such

network emulation. The system is consisted of a 64-nodes PC cluster with

flexible hardware and software tools. The nodes are connected with a high

performance switch. Each node is able to emulate many virtual nodes, which

represents a network component, (such as a terminal, router, gateway or switch

etc.) in real world network. And those virtual nodes are running now in a

network emulation environment, which means Time Virtualized Emulation

Environment (TVEE) [2] here.

A basic concept of network emulation is node virtualization, in which multiple

virtual nodes are put onto each physical node of the emulation bestbed. But just

using node virtualization is not scalable for large network, because the number

of physical node is not always scalable. On the other hand, we also cannot put too

many virtual nodes on each physical node. Therefore, time virtualization must

also be used in TVEE, which can reduce the load on physical nodes through using

a virtual time running slower than the real time on them. If a load is higher than

the capability of a physical node, it will cause bias in the results, which is named

overload. Conversely, if the load is much lower than the capability on a physical

node, many calculation resources will be wasted, which is named underload. In

order to keep the load between overload and underload, an adaptive virtual time

is needed, which can adjust the virtual clock rate on physical nodes according to

the load of them.

1
 Here “dynamic” means that the load in the network such as CPU load and data rates is often changed,

but not the network topology.

 5 / 75

Fig.1.1 TVEE architecture

As showed in Figure 1.1, TVEE provides a nested virtualization. A virtual

machine (VM) is running on each CPU core of each physical node, which offers

virtual time to the operation system and SuT in VM. The virtualization inside VM

is virtual routing (VR), which is more lightweight than VM. Using VR, the

resources are partitioned into parts to create virtual nodes.

In order to assign the appropriate virtual nodes onto the physical nodes of the

64-nodes PC cluster, an automatic placement algorithm NETplace is used. As we

said, the physical nodes must not be overloaded during the placement. We can

achieve it by adjusting the dynamic virtual time. But if the virtual time is too slow,

then the experiment runtime will be very long. If we deploy the virtual nodes

onto the most suitable physical nodes, the running time of the experiment can be

reduced substantially. So it is important to find out an efficient algorithm to

minimize the experiment runtime. Fortunately NETplace is such an efficient

algorithm to achieve this assignment. [3]

For the input for NETplace algorithm, two input parameters, expected CPUs’ load

on the virtual nodes and expected data rates of the data links between each pair

of virtual nodes must be provided. Therefore, in this thesis an efficient load

model will be established, in which the two parameters can be precisely offered

as soon as possible.

1.2 Goal of the study

In order to place the virtual nodes onto the physical nodes of the PC cluster, a

generic cost model for the communication of the systems is necessary. With two

input parameters (CPU load and expected data rates), together with defining

data links between virtual nodes in three different types (intra-vm, inter-vm and

inter-pnode links), such a cost model can be set up. And the NETplace algorithm

is based on it. But the two parameters, expected CPU load and expected data

rates are just provided as an assumption now.

physical node

 ………….

virtual machine1 (for CPU core1)

OS with virtual routing

virtual node1 virtual node2 virtual node3

virtual machine2 (for CPU core2)

OS with virtual routing

virtual node4 virtual node5 virtual node6

 6 / 75

In order to get the expected CPU load and expected data rates, the load

information in the system must be inquired. But the network may be very large.

Maybe there are thousands of nodes and edges in the load model. Manually

inquiring all the load information of all the virtual nodes and data links and

offering them to NETplace are impossible. So it is important to find out a relative

automatic assignment method. A possible approach is to define a generic load

model2 at first. According to the load model, a node classification can be carried

out. Besides that, considering the large-scale network, a network clustering is

also necessary. If network clustering is executed, the runtime of the node

classification can be reduced. And the information of network topology could be

used to achieve the network clustering and node classification.

Therefore, the goal of this diploma thesis is to set up an algorithm, in which the

expected CPU load and expected data rates can be provided for NETplace as

precisely as possible.

The algorithm is named “NETclassify”, which is running as following: Firstly, we

give a detailed and generic load model for real world networks, the

characteristics of the elements in the network will be mapped into this model

according to the given real world network topology. Then a network is clustered,

and the node classification algorithm can be carried out in relative small part

network. Finally, in each class a node will be elected. Only the load of those nodes

and data links from them is manually inquired, calculated and inputted, the load

of the other data can be automatically allocated according to the node

classification.

1.3 Outline

The reminder of this thesis is structured as follows:

Chapter 2 represents related work and the differences to this diploma thesis.

Chapter 3 describes possible design ideas for the network classification and

issues design approaches of network classification.

Chapter 4 shows the implementation of the network classification, which is

based on the concept in chapter 3.

2
 “Generic load model” here means that this load model is suitable for all kinds of networks, not for a

specific one.

 7 / 75

In chapter 5 the procedures and results of evaluation of the implementation,

which are defined in chapter 4, are described.

In chapter 6 a summary of the diploma thesis and the possible enhancements of

the diploma thesis are given.

 8 / 75

Chapter 2

Related work

In this chapter, the related work of this diploma thesis will be introduced. The

purpose of the study is to efficiently provide the expected load on the virtual

nodes and expected data rates on the data links to NETplace. In order to reduce

the work for inquiry and input of these two parameters in a large-scale network,

a suitable node classification algorithm is needed. After the successful

classification, the nodes, which have similar CPU load and similar data rates on

the outgoing paths, are in the same group. This is also the goal of node

classification. In order to achieve the goal, the communication capacity from a

node to other nodes is measured. A possible approach is to create the Node

Classification Algorithm with the help of bandwidth estimation for

communication, while bandwidth is the worst-case estimation of the expected

data rates. The reason why we use the bandwidth instead of the data rates here

is that, the data rates on the data links are changeable.

The concept of node here is the network component. The nodes classification,

which we discuss here, is the network components classification.

Automatic nodes classification is a method, with which the nodes could be

automatically classified in many different classes by one or some properties of

them. In some cases, we may classify the nodes by some properties of them,

while the nodes may be classified by some other properties of them in some

other cases. The classification is based on the selection of the properties of the

nodes, while the selection is decided by the demand. For example, the result of

automatic bandwidth estimation is the property we should use here.

Unfortunately, as far as I know, there is no systematic approach for automatic

nodes classification with the help of automatic bandwidth estimation. However,

there exist some approaches for automatic nodes classification, if we do not care

about the properties of the nodes for classification.

Therefore, we can divide the problem in two part problems and focus on the

related work on them: One is automatic nodes classification, and the other is

automatic bandwidth estimation.

 9 / 75

2.1 Automatic Nodes Classification

For automatic nodes classification, there is an approach of automatic

classification of node types in switch-level description. [18]

This approach is just the classification of nodes types in switch-level, which is a

part of network nodes. The metric for classification for this approach is the

memory quality of the switch: weather it is temporary or memory.

In this approach, according to some properties of the nodes, here is the property

of the switch: temporary and memory. And the concrete method is:

If the memory of a node is lost and it cannot affect the circuit operation, then it is

classified as a temporary node. On the contrary, if the memory of a node is

maintained, then it is classified as a memory node.

However, the metric for classification is independent of bandwidth estimation.

2.2 Automatic Bandwidth Estimation

Here we want to find out an efficient method to measure the communication

capacity in the whole network. The most accurate value of communication

capacity is the real-time data rates on data links. With them we can know how

much data exist on a link.

There are some approaches to estimate the bandwidth on a link. [19] [20]

For example, the packet pair mechanism is a reliable method to measure the

bottleneck link capacity on a network path and the initial gap increasing (IGI)

method and the packet transmission rate (PTR) method are two good

measurements for available bandwidth. The themes in these papers are focused

on how to measure the bottleneck link capacity or the available bandwidth

capacity on a link.

However, in our approach, we assume that, the method of measurement of the

bottleneck link capacity or the available bandwidth capacity on a link is known.

We want analyze the transport capacities between nodes in a network with the

influence of other communication in the same network. So it is not suitable for

us.

 10 / 75

Chapter 3

Design Issues

In this chapter, the design issues of the algorithm NETclassify will be

represented.

For a better understanding, at first, a basic architecture of NETclassify is

introduced.

After that, some approaches of network clustering are described. Through

network clustering, a network is split into many small part networks.

Furthermore, the Node Classification Algorithm is discussed in detail. As a

foundation of Node Classification Algorithm, a transmission cost model is set up.

This model could help us to decide the routing paths between nodes in network,

which is very important for the calculation of data transport capacities. As a

result of successful division, the nodes with similar characteristics are in the

same group.

Finally, a manual inquiry and assignment of the CPU load on a node and data

rates on the outgoing data links of it in each group is given, and according to the

manual input, the CPU load on other nodes and data rates on the outgoing data

links of them in the same group are also automatically assigned.

3.1 Basic Architecture

Above all, the relationship between NETclassify and its background is introduced.

In the background of NETclassify the input and output of the algorithm are

described.

As shown in Figure 3.1, the Network Topology Generator can automatically map

the network topology to a directed graph, in which nodes represent the network

components and edges between the nodes represent the network data links.

Furthermore, the characteristics of network components (i.e. nodes) and data

links are also mapped. The characteristics of nodes here are node’s ID and the

software running on it, while the characteristics of data links are link source

node’s ID, link destination node’s ID, packet loss rate, maximal delay, and

bandwidth on the link. This is one important input for NETclassify. The other

 11 / 75

input is sample data rate, which must be manually inquired by human once for

each group. Certainly, frequently manual inquiring takes much time, so the

number of groups is kept as small as possible.

The output of NETclassify is two kinds of values for NETplace[3] algorithm: one

is CPU load on the virtual nodes, while the other is the data rates of the edges

between them.

 Input: Network topology

 Input: sample data

 human Output

 from data rates from CPU load

Fig 3.1 background of the diploma thesis

After the explanation of the task, now the rough process of the NETclassify will

be introduced. It is running as following in Figure 3.2:

In the picture, the rough process of the NETclassify is shown. Firstly, as an input,

a directed graph is given, in which all the parameters of the network topology is

written. This graph can be very large. In order to reduce the runtime of the

NETclassify, a network clustering is carried out. As a result, a graph is into many

small part graphs split.

With the cost information (i.e. bandwidth, maximal delay and packet loss rate)

Network Topology

1

1

2

1

3

1

4

1

5

1

6

1

7

1

Network Topology

Generator

NETclassify

CPU load

Node 1：CPUload1

Node 2：CPUload2

……

Data rates

Link 1-3: Datarate1

Link 2-4: Datarate2

Netplace

 12 / 75

on the links in each part graph, a transmission cost model is set up. Through this

model we could know the shortest path between every pair of nodes, with which

the routing information is known. The routing information is an important

condition of the Node Classification Algorithm.

Furthermore, a preparation work is necessary, in which some basic concepts and

definitions are given. After that, the nodes are divided with similar functions in

identical groups through the Node Classification Algorithm in the end.

Besides the classified nodes, we still need sample data and suitable assignment

method for an output. The sample data here is the CPU load of a random selected

node and the data rates of the outgoing links from it in each group. We inquire

the values of them in the network at first. Then with the assignment method the

expected CPU load of other nodes and expected data rates of other data links in

the same group can be automatically assigned.

using cost information

 offering shortest path between each

 pair of nodes

 graph clustering

 using node information

nodes classifying

Fig 3.2 process of NETclassify

3.2 Network Clustering

In order to reduce the runtime of NETclassify, a network clustering algorithm is

executed, which is also a graph clustering algorithm, because the network

directed graph

many part graphs

transmission cost model

Node Classification Algorithm

nodes in groups sample data assignment method

output

preparation work for Node

Classification Algorithm

 13 / 75

topology has been already mapped into a graph. Then the problem of network

clustering becomes a problem of graph clustering.

The structure of the real world network must not be destroyed by the clustering

algorithm. Otherwise, after Node Classification Algorithm we could not get a

correct result.

For example, for a node classification we do need to analyze the flow of load

information on the communication paths between each pair of nodes. The

structure information of the edges in a graph is very important for the analysis of

the communication between each pair of nodes. The communication between

each pair of nodes within groups is much more than the communication between

groups.

In some of the clustering literature, such a group in a graph is also named a

cluster or community. [11]

3.2.1 Different Clustering Methods

Up to now, there are many network clustering algorithms [4] [5]. The global

methods for graph clustering can be a flat structure clustering, which comprises

single partition and cover, or defined as a hierarchical structure clustering,

where each top-level cluster is always composed of sub-level clusters.

Almost all the structures of the networks today belong to hierarchical structure.

For this reason, we will put more effort on the hierarchical structure and search

a suitable clustering algorithm in it.

In a hierarchical structure, a single cluster in a level can be composed further of

several sub-clusters in the lower level. Certainly, it can also merge with other

clusters in the same level to a large cluster in the higher level. The number of

clusters in each level is different. The higher the level is, the lower the number of

clusters is. For different requirements, (for example, the graph must be split in

more than 100 part graphs or the number of nodes in each part graph cannot be

more than 80.) we can find out a suitable dividing possibility in one level.

In Figure 3.3 there is a dendrogram of hierarchical structure for a 23 nodes in a

graph. In the highest level, the root cluster is an entire dataset, while the 23

elements are the leaf clusters in the lowest level. Between them there are four

intermediate levels. Each level in the dendrogram, which is marked by dotted

 14 / 75

lines, can be regarded as a kind of clustering.

Fig 3.3 a dendrogram of hierarchical structure [4]

The clustering method of the hierarchical structure can be divided into two big

classes: divisive global clustering (top-down, recursively partitioning) and

agglomerative global clustering (bottom-up, merging).

Following algorithms belong to the divisive global clustering method:

Such as cuts, maximum-flow, betweenness, resistor networks and so forth.

3.2.1.1 Cuts and Maximum-Flow

In cuts method the graph is split in two part graphs by removing a cut3. Usually

we are looking for a small cut, but there are various possibilities. The most

famous one, minimum-cut can be considered with maximum-flow algorithm. [12,

13] With min cut/max flow method, we can find out the shortest path, max flow,

min cost-flow in the graph. But it is not useful for our task, because the min

cut/max flow is used for a one source one sink approach, and the graph is a

directed (weighted) graph.

3.2.1.2 Betweenness

According to the idea of Newman and Girvan, the weights on the edges are

determined by the structural properties of the graph. The weight on each

arbitrary edge {n1, n2} is the number of the shortest paths connecting any pair of

nodes that passes through the edge. [4] And this weight of the link is the

betweenness of the link. Therefore, the edge, whose betweenness with the

highest value can be easily removed. If an edge is the connector of two part

3
 A partition of all the nodes in a graph into two nonempty sets is called a cut.

 15 / 75

networks, then each communication between each pair of nodes in different

parts will go through it. The structure of the graph has a smallest influence on

the removal of such an edge, because the structures of part networks are not

destroyed. This method is suitable for my work. And I will introduce it further in

detail later.

3.2.1.3 Resistor Networks

In this method the graph is mapped into an electric circuit, in which a unit

resistor is placed on each edge and unit current flows (or random walks) into

and out of the source and destination vertices. The random-walk and

current-flow measures are proved precisely the same by M. E. J. Newman and M.

Girvan in the Literature [7]. However, the time complexity for this method is very

high. It takes O((n+m)*m*n2) for the entire community structure algorithm,

where m is the number of edges in a graph and n is the number of nodes.

Fig 3.4 an example of type resistor networks from source s to destination t. All the black points

are the nodes in the graph, and the resistors represent the data links between them. [7]

Now in NETclassify I will choose a clustering algorithm, which is based on

betweenness of the edges. As we have already said, that the structure

information of the edges in the graph is very important for the analysis of the

communication between two nodes. And the structure information here is the

edge-betweenness, which is the number of the shortest paths between any pair

of nodes that pass through the edge. The higher the edge betweenness of an edge

is, the more probable the edge is a boundary of two part network.

3.2.2 Girvan-Newman Algorithm

Girvan-Newman algorithm (Girvan & Newman, 2002) [6] [8] is such an algorithm,

 16 / 75

which can be used in Network clustering and is running as following steps:

1. The betweenness of all the edges in the graph is calculated.

2. The edge, whose betweenness is the highest, is removed.

3. The betweenness of the edges, which has an influence on the last removal of

the edge, is recalculated.

4. Repeat step 2 and step 3 until there is no edge in the graph.

However, the Girvan-Newman algorithm has a big problem, that this algorithm is

not scalable for a large network. As what is pointed in [7], the time complexity is

very high, the algorithm is running in O (m2n), where m is the number of edges

and n is the number of nodes or O (n3) for a sparse graph (because in a sparse

graph, m is as big as n).

3.2.3 Clauset-Newman-Moore

There are some faster approaches. One of them is the Clauset-Newman-Moore

Algorithm [9], which is based on a greedy optimization. A key definition here is

the concept modularity.

3.2.3.1 Modularity

Modularity is a metric, which represents the result of division. It is showed,

whether the division is good or not. The value of modularity is always between 0

and 1. If it is a good division, i.e. the value of modularity is relative high, it means,

that the communication within each part is much more than the communication

between parts.

In literature [7], the following detailed definition of Modularity is given:

For each particular division of a network into k communities, a k×k symmetric

matrix e is set up. Each element eij in the matrix is the fraction of all edges in the

network that link vertices in community i to vertices in community j. The sums of

row (or column) in the matrix ai = (j eij) represent the fraction of edges that

connect to vertices in community i.

The formula of modularity measure is defined:

Q = (i eii-ai2) = Tr e-||e2||

 17 / 75

Where Tr e = (i eii) is the fraction of edges in the network that connect vertices

in the same community and ||x|| indicates the sum of the elements of the matrix

x. [7]

Fig 3.5 an example of network clustering with the value of modularity

Source: page 8 of paper [7]

In the Figure 3.5, under the best division, the graph is split into four part graphs.

At that time, the value of modularity is 0.5. If the number of part graphs is

smaller than four, the less the number of part graphs is, the smaller the value of

modularity is and vice versa. Obviously, the value 0.5 is the highest value here. In

this structure, division into four part graphs is the best result.

The time complexity of the Clauset-Newman-Moore Algorithm is O (m*d*log(n)),

where m is the number of edges, n is number of nodes and d is the depth of the

dendrogram, which describe the structure of the community division. In a sparse

graph, the depth d equals to log (n) and m is also as big as n. So the time

complexity becomes O (n*log2n).

Clauset-Newman-Moore is an efficient algorithm to find community structures in

large network. A community structure is a group of nodes, in which the density

of edges is higher than density of edges between groups. It could be a real world

department of a company. So using the Clauset-Newman-Moore algorithm does

not destroy the structure of the real world network.

 18 / 75

3.2.4 Weighted Graph

The most networks are studied in binary form, that is to say, either the edge

between two nodes exists or not. A simple expression can be written in a matrix

M: [10]

Mij =
1, if i and j are connected,

0, otherwise.

Where i and j belongs to the nodes set N.

In the real world, some graphs are weighted graphs. The weight can be a

property of the graph. Then the expression becomes:

Mij = (weight of the connection from i to j)

Where i, j ∈ N.

Now in our approach, if a weighted graph is used, bandwidth can be a weight of

the connection. The higher the bandwidth is, the higher the weight is.

For example,

Fig 3.6 matrix is set up with weight

A basic idea of the weighted graph is that the weight on a link represents the

number of communication of links on this connection.

Fig 3.7 weight is represented by several links

Under this condition, that the bandwidth is the weight of the link:

If the bandwidth of a link is more than 1, we will assume that, there are multiple

 19 / 75

edges on the link, which is shown in Figure 3.7. Then the betweenness of such a

link also becomes higher. According to the idea of Network clustering algorithm,

which uses betweenness method, if the betweenness of two nodes are very high,

then the link between the two nodes is assumed to be a link between clusters.

Thus, the nodes, which are connected with a low-value bandwidth, have a better

chance in the same cluster. The link, which has a high bandwidth, is considered

as a boundary between two clusters, and will probably be removed.

But in the real world, the bandwidth of a link, which is used to connect two

communities, cannot be high. If we use this weighted approach, perhaps the link

cannot be recognized as the boundary of a division. And a link in a community,

whose bandwidth is high, is recognized as the boundary of division.

(a)

(b)

Fig. 3.8 two results of network clustering (the digit on each link is the bandwidth of the link)

 20 / 75

In Fig 3.8, the picture (a) shows us the division of the network without

considering weight on each link.

With the weight of the link, the result of division is shown in picture (b), in which

the structure of network is destroyed.

Therefore, the weighted graph model is not used here, unless a suitable property

of a link can be found as the weight of the link instead of bandwidth.

As showed in Figure 3.2, we need a Transmission Cost Model for each part

directed graph, which represents the transmission cost in each part network.

3.3 Transmission Cost Model

The Transmission Cost Model consists of a set N of virtual nodes and a set E of

edges between nodes. Once data is transmitted through an edge ei ∈ E, it takes

Cost ci. The set of Cost for all the edges is C. Cost ci is related with

upload/download bandwidth, maximal delay and packet loss rate, which are

already provided by the network topology. Obviously, the higher the bandwidth

is, the lower the Cost is. On the contrary, the higher the maximal delay and

packet loss rate are, the higher the Cost is.

Therefore, the formula is defined as following:

𝐶 =
D × L

B

Where D is the maximal delay, L is the packet loss rate and B is the bandwidth.

But for a directed graph, there are two directions for each link. Therefore, for

arbitrary edge ei ∈ E, the maximal delay dui and ddi belong to D, where dui is the

upload maximal delay of edge ei and ddi is the download maximal delay of edge ei;

the packet loss rate lui and ldi belong to L, where lui is the upload packet loss rate

of edge ei and ldi is the download packet loss rate of edge ei; the bandwidth bui

and bdi belong to B, where bui is the upload bandwidth of edge ei and bdi is the

download bandwidth of edge ei.

Thus, for each edge ei there are two kinds of Cost, cui and cdi:

cui =
dui × lui

bui

 21 / 75

And

cdi =
ddi × ldi

bdi

Where cui is the upload Cost of edge ei, and cdi is the download Cost of it. They are

the weights of edge in two directions.

Now with a suitable shortest path algorithm, we can get the shortest paths

between each pair of nodes in this directed weighted graph, where the upload

Cost and download Cost defined before are the weights on the edges.

Generally speaking, in a routing algorithm, the path, which has the lowest Cost

between two nodes, is selected as the routing path between them. So with the

shortest Cost paths between each pair of nodes, we will get the routing

information in the network.

3.4 Preparation Work of Node Classification Algorithm

In this section, some preparation work for Node Classification Algorithm is

described.

The main task of the Node Classification Algorithm is to classify the nodes in

groups by comparing one or some characteristics of the nodes.

In NETclassifty, the reason why we need a Node Classification Algorithm is the

necessity to reduce the effort of assignment of expected CPU load on the nodes

and expected data rates on the data links between nodes.

Therefore, the characteristics of the nodes we need for node classification

algorithm are the software running on the nodes, which has a great influence on

the expected CPU load and data transport capacity of the node, which determines

the outgoing expected data rate.

The critical value, real time transport capacity is a dynamic value. A possible

substitute is to use the speed of the network links of the virtual network

topology, i.e. bandwidth is used as a worst-case estimation of the transport

capacity. So the bandwidth on each link becomes also important.

As an input, the network topology is given, i.e. all parameters of the real world

network are known. Therefore, after the successful mapping, we know which

software is running on which node as well as the upload/download bandwidth

 22 / 75

on each link.

3.4.1 Preparation Work for Nodes

Firstly, we focus on the characteristics of nodes.

Not all the nodes will communicate with other nodes in a network. Generally

speaking, a communication exists just between p2p nodes or client and server.

We can also say that, communication exists between terminals. This is due to the

different functions of nodes.

Concerning the software running on the nodes, we can divide the nodes into two

big classes by the nodes’ functions at first. One is called terminal, whose function

is just to send and receive data while the other is named router4, whose function

is to forward data, i.e. get data in incoming paths and put them in suitable

outgoing paths, no message is produced in the transmission. Obviously a node in

terminals is not similar as a node in routers. Concerning the completely different

roles of nodes, nodes can be discriminated in class terminal and class router. And

through checking the software on the nodes, we know the different roles of

different nodes.

Fig 3.9 normal connection structures for terminal and router

As what is in Figure3.9 shown, our assumption is that, many terminals may

connect to a router, but each terminal connects just to one router. So the

connection grad of a terminal is one, and the connection grad of a router is bigger

than two.

Certainly, there are also some extreme cases: for example, maybe a router has

only one connecter, that is to say, the data, which is transported to the router

cannot be forwarded. In that case, we can analyze the network without regard

for this router.

4
 The “router” here is not only a hardware router, it can also be a gateway, switch and so on.

T

1

1

T

T

R

1

R

1

 23 / 75

3.4.2 Preparation Work for Edges

Then the characteristics of the edges will be introduced.

In this directed graph, for each edge, there are two values for the bandwidth. One

is for upload bandwidth, and the other is for download bandwidth. These two

values could be used as two directions of data transformation. Bandwidth is the

maximal transport capacity of a data link, which is fixed for a data link, while the

data rate is the actual transport flow of a data link, which can be often changed.

In Figure 3.10, there is a link between node 1 and node 2.

As showed in the picture a, the upload bandwidth and download bandwidth on a

link is fixed. However, the data rates on the upload and download channels of

link can be independently changed. In picture b and c, the data rates are

different.

 upload bandwidth : 1M/bps

 download bandwidth : 40M/bps

(a)

 upload data rate : 500k/bps

 download data rate : 10M/bps

(b)

 upload data rate : 100k/bps

 download data rate : 15M/bps

(c)

Fig 3.10 difference of bandwidth and data rate of data link

The relationship between data rate and bandwidth on a link in the same

direction is:

0 ≤ data rate ≤ bandwidth

3.5 Node Classification Algorithm

We want to classify the nodes in some groups, where the nodes have similar

characteristics. Above all, we should make clear that, why we need nodes

classification. As what we have already talked about, we want to reduce the

1

1

2

1

1

2

1

1

2

 24 / 75

runtime of data inquiry and assignment. And the data, which needs to be

inquired and assigned in the model for NETplace, is CPU load on the nodes and

data rates between nodes. Therefore, the nodes in the same group should have

similar CPU load and data transport capacity.

3.5.1 Basic Concepts

Before the introduction of the Node Classification Algorithm, we do need explain

some basic concepts.

3.5.1.1 CPU Load and Data Transport Capacity

At first, the two concepts CPU load and data transport capacity are introduced.

CPU load here is the load of CPU on a node.

And the data transport capacity of a node here is divided in two cases:

1. data transport capacity of a terminal:

The data transport capacity from a terminal to all other corresponding

terminals. (Communication exists just between terminals, which has been in

chapter 3.1 discussed.) The reason, why only the outgoing transport capacity

is considered, is that, every outgoing link of a node is also an incoming link of

another node at the same time. The set of outgoing link of all the nodes is the

set of links in the network. If we consider all the outgoing link of nodes, all

the links in the network have been already considered. After we use the

outgoing transport capacity to calculate the data transport capacity of a

terminal, the nodes in the same group have same outgoing data transport

capacity, i.e. they have similar expected data rates on the corresponding

outgoing links.

2. data transport capacity of a router

The data forward capacity of a router, which is determined by the

communication between terminals through this router.

3.5.1.2 Analysis for CPU Load

We can make a compare among all software running on each node, because the

conclusion, in which the CPU load on some nodes is similar, only works on the

premise that the software is the same. If the premise is met, and the data

 25 / 75

transport capacities of the nodes, which will be discussed later, are also alike,

then we could draw the conclusion that they possess the similar CPU load. I.e. the

nodes, on which the same software is running and of which the data transport

capacities are similar, have the similar CPU load.

3.5.1.3 Analysis for Data Transport Capacity

Then we turn to the analysis for data transport capacity. At first, the definitions

of the maximal data transport capacity between nodes and the data transport

capacity of a node are given:

3.5.1.3.1 Maximal Data Transport Capacity between Nodes

The maximal data transport capacity between two nodes is determined by the

minimal bandwidth of a link, which is on the shortest cost path between them.

The formula of the maximal transport capacity from nodes m to node n is defined

as following:

ωmn = min⁡(bmn1
, bn1n2

, … , bnx n)

The nodes n1, n2 … nx are the intermediate nodes on the connecting path between

node m and node n.

For example:

 10 12

 9 8

Fig 3.11 a simple network topology, where the bandwidth from T1 to R1 is 10, from R1 to T2 is 12,

from T2 to R1 is 8, and from R1 to T1 is 9.

As showed in Figure 3.11, the maximal data transport capacity from T1 to T2 and

that from T2 to T1 can be calculated with the formula above:

 ωT1T2 = min bT1R1
, bR1T2

 = min 10 , 12 = 10;

And ωT2T1
= min bT2R1

, bR1T1
 = min 8 , 9 = 8.

T2 T1 R1

 26 / 75

3.5.1.3.2 Data Transport Capacity of a Node

The definition of the data transport capacity of a node is different from the one of

maximal data transport capacity between two nodes.

Transport Capacity of a Terminal

The data transport capacity of a terminal is described as a vector.

For each terminal, there is a vector, which represents the data transport capacity

of itself. Every item of the vector represents the data transport capacity from this

terminal to a corresponding communication terminal. Therefore, the number of

the items in a vector is the number of corresponding communication terminals.

The data transport capacity of a terminal m can be defined in a vector as the

following form:

Ωm =

μmn1

μmn2

…
μmny

Where the nodes n1, n2 … ny are the corresponding communication terminals of

the node m, and μmn1
, μmn2

, μmn3
are the transport capacities from m to n1, n2, n3.

A transport capacity μn1n2
 on a path from n1 to n2 is different in different

transmission cases, which is smaller or equal to the maximal transport

capacity ωn1n2
 on it, because in a part network, maybe more than one terminal

will transmit data though the same path at the same time. For example:

Fig 3.12 a server S1 and two clients C1, C2; among which there are many routers. The transport

capacity from S1 to C1 is 10; while the transport capacity from S1 to C2 is 7.

 27 / 75

According to the data transport capacity in the Figure 3.12:

The vector, which means the transport capacity of node S1 is ΩS1
=

μS1C1

μS1C2
 =

10
7
 , where the first item 10 represents the data transport capacity from S1 to C1

and the second item 7 represents the data transport capacity from S1 to C2.

Transport Capacity of a Router

Transport capacity of a router is described as two vectors. One is used for

outgoing transport capacities on each link, and the other is used for incoming

transport capacities on each link. The number of items of each vector is the

number of connected links of the router.

As what we have already said, the calculation of the transport capacity of a

router relays on the transport capacity between terminals, whose

communication goes through it.

From the transport capacity of each terminal, we can know the communication

from each terminal to all other corresponding communication terminals. Then

we know, in this communication, how much data is transmitted through each

link. This is the transport size on each link.

Then we can get the outgoing and incoming transport sizes on the connected

links of a router, and the formula of transport capacity on a router r can be

defined in two vectors:

The outgoing transport capacity of a router is written as:

Ωrout
=

λrn1

λrn2

…
λrnz

The incoming transport capacity of a router is written as:

Ωrin
=

λn1r

λn2r

…
λnz r

Where the nodes n1, n2 … nz are the neighbors of the router r.

 28 / 75

For example, the transport capacity on the router R1 in the Figure 4.3 is:

Outgoing transport capacity Ωrout
 equals

λR1T1

λR1T2

 =
8

10
 .

And the incoming transport capacity Ωrin
 equals

λT1R1

λT2R 1

 =
10
8
 .

3.5.1.3.3 Different Routing Schemes and Transmission Situations

As what is in the previous section written, data transport capacity of a router

relays on the results of data transport capacities of terminals. Before calculating

the data transport capacity of a terminal, the corresponding terminals of this

terminal are known. However, in a network, the transmission situation is very

complex. For each terminal, the routing schema can be anycast, unicast, multicast

or broadcast. And in a part network, maybe there is just one terminal in the

transport mode, maybe all the terminals simultaneous transport data.

Different Routing Schemes

Anycast: one to one of many Unicast: one to one

Fig 3.13 anycast and unicast 1->1

 Multicast: one to many Broadcast: one to many

Fig 3.14 multicast and broadcast 1->n

 29 / 75

Different Transmission Situations

In a network, maybe just one terminal transports data, maybe some terminals

simultaneous transport data.

Therefore, the following transmission situations should be considered:

Firstly, for each terminal, when it transports data, there is no other terminals

simultaneous transport data. Under this premise, three cases will be introduced.

1. The terminal runs an unicast. There is T-1 possibilities in all, where T is the

number of corresponding terminals in the network.

2. The terminal runs a multicast. There is 2
𝑇−1

 + 3
𝑇−1

 +……+ 𝑇−1
𝑇−1

 possibilities

in all, where 2
𝑇−1

 possibilities are for the case that the multicast is run from

the terminal to arbitrary two terminals; 𝑛
𝑇−1

 possibilities are for the case

that the multicast is run from the terminal to arbitrary n terminals … until the

final item 𝑇−1
𝑇−1

 =1 possibility is for the case broadcast.

3. The terminal simultaneous runs some unicasts. There is also

 2
𝑇−1

 + 3
𝑇−1

 +……+ 𝑇−1
𝑇−1

 kinds of possibility in all, where 2
𝑇−1

 possibilities

are for the case that simultaneous unicasts are run from the terminal to

arbitrary two terminals; 𝑛
𝑇−1

 possibilities are for the case that

simultaneous unicasts are run from the terminal to arbitrary n terminals …

until the final item 𝑇−1
𝑇−1

 =1 possibility is for the case that simultaneous

unicasts are run from the terminal to all the other terminals. This situation is

similar as the situation 2, but the available transport capacities of the

terminal in the two cases are different. The difference is showed in Figure

3.15.

 4 6

 6 6

 10 10

 9 9

 6 6

(a) simultaneous unicasts (b) multicast

Fig 3.15 difference between simultaneous unicasts and multicast

2

4

1
1 2

3

4

3

 30 / 75

Secondly, some of the terminals simultaneous transport data. The different

transmission situations are located in two cases:

1. Arbitrary two terminals simultaneous transport data.

2. All the terminals simultaneous transport data.

That is to say, there are maybe arbitrary two or three or four or even all the

terminals simultaneous transport data. And the transmission situation for each

terminal is written in the first part.

3.5.2 Design of Node Classification Algorithm

There are two approaches for the design of Node Classification Algorithm. One is

running under the assumption, that the routing information on all the nodes is

known, while the other is running under the assumption, that the data will

always transmitted on the shortest cost paths between each pair of nodes.

3.5.2.1 First Approach

In this approach, our assumption is that the routing information on all the nodes

is known. That is to say, we know the next hop on each node for each

communication.

3.5.2.1.1 Basic Definitions in the First Approach

For a communication between each pair of terminals, we consider that, all the

transport paths between the two terminals are known.

For example, in the Figure 3.16, we can see all the transport paths from node T1

to node T2, where the arrow direction shows the routing direction from T1 to T2

and the digit on each link represents the bandwidth on the link in the arrow

direction.

The routing paths form T1 to T2 are:

T1->R6->R1->R3->R7->T2

T1->R6->R1->R3->R5->R7->T2

T1->R6->R1->R3->R4->R7->T2

T1->R6->R1->R3->R2->R4->R7->T2

T1->R6->R2->R4->R7->T2

 31 / 75

Fig.3.16 a small part network, where just the routing information from T1 to T2 is marked

The Array AC[r] on each router is the available transport capacity on the node,

which represents the rest transport capacity on the outgoing links of a router

after transporting data from the incoming paths to the outgoing links.

The sum of bandwidth on the outgoing links of the router r is σr = brnii , where

node ni is a node in the part network, and the sum of incoming transport size of

the router r is Inr = Iniri , where Inir represents the incoming transport size of

the router r from the node ni.

Thus, the definition of available transport capacity on a router r in formula is:

AC [r] = σr – Inr , if σr > Inr

0, otherwise

We know, in order to classify the nodes into groups, we need analyze the

transport capacity on each terminal and each router. And the transport capacity

on router is dependent on the transport capacities on the terminals.

So the question, how much data is transmitted from a terminal to the other

corresponding terminals, is very important.

Before we calculate the transport capacity between terminals, the basic

transmission rules on the intermediate routers are introduced.

The basic transmission rules are defined as following:

If Inr of a router r is known, then the node can be analyzed. The analysis is

divided in three possibilities.

 32 / 75

In the Listing 3.1, the basic transmission rules are written in pseudo code.

Listing 3.1 Basic Transmission Rules on a router r

// Out(r) is the sum of outgoing bandwidth of the router r

// In(r) is the sum of incoming data size of the router r

// Tr is the transport capacity between two terminals, which is analyzed here

// OV is the overflow size

If (Out(r) = In(r)) then

 Tr := Tr;

elseif (Out(r) < In(r)) then

 Tr := Tr – (In(r) – Out(r));

 OV := OV + (In(r) – Out(r));

elseif (Out(r) > In(r))then

 Tr := Tr;

 AC[r] := (Out(r) – In(r))

endif

3.5.2.1.2 Design of the First Approach

Transport Capacity of Terminal

Each terminal Ti has a vector ΩTi
=

μTi T1

μTi T2

…
μTi Tj

 , where each item μTi Tj
 means the

data transport capacity from Ti to Tj.

Now in order to calculate every item μTi Tj , all the routing paths between them

are considered. In the worst case, all the routers are in the routing paths, and

then all the routers are analyzed.

According to the assumption, all the routing information for transmission of each

pair of terminals is known. I.e. we know the incoming paths and outgoing paths

of each router for each transmission of each pair of terminals.

Then μTiTj
 can be calculated in the following steps:

1. The initial transport capacity from Ti to Tj is set as outgoing bandwidth of Ti.

2. According to the basic rule defined before, all the neighbors of Ti will be

analyzed.

3. Repeat the step 2 until Tj is reached. Now we have a value of transport

 33 / 75

capacity between Ti and Tj as well as AC[r] on each router.

4. If the overflow size OS from Ti to Tj > 0, we should check the array AC[r]. If

there are paths from Ti to Tj, on each of which the smallest AC[r] of every

router is bigger than 0. Then the smallest AC[r] of each path will be added to

the transport capacity from Ti to Tj. But the transport capacity from Ti to Tj

cannot be bigger than outgoing bandwidth of Ti.

In order to understand better, a pseudo code is offered in Listing 3.2.

In the algorithm, we want to calculate a transport capacity from s to d. One input

is (G=(E,V,γ),s,d), where G is the graph of the part network, E is the set of nodes

in the part network, V is the set of links in the part network and γ(eiej) is the

bandwidth on the link from ei to ej, s is the source node and d is the destination

node. The other input is PathSet, which is the set of routing paths from node s to

node t. Furthermore, we known the Out(n), which represents the sum of

bandwidth on the outgoing links of each node n.

Tr is the transport capacity from the source s to the destination d and OV is the

overflow size in the part network.

Listing 3.2 Algorithm for Transport Capacity Calculation from s to d

var x,y nodes; OV,Tr float;

var TrIn,AC float;

α: array[1…|V|][1…|V|] of float; (*real transport data size on a link*)

tn: array[1…|V|]of float; (*in fact, how much data is transmitted through a node*)

In: array[1…|V|]of float; (*sum of incoming data size of a node*)

p: array[1…|V|]of nodes; (*previous node of a node*)

path: array[1…|E|]of paths;

B: set of nodes (*nodes, which are analyzed*)

R: set of nodes (*nodes, which are the neighbors of nodes in B and not in B*)

U: set of nodes (*the rest nodes*)

B := {s}; R :=ϕ; p(s)=nil; (*initialization of B,R,U*)

Tr:=Out(s); (*initialization of Tr*)

begin

forall y∈V\{s}: {s,y}∈E do

 p(y) :=s;α(s,y) :=γ(s, y);

 In(y):=In(y) + α(s,y);

insert (R,y, α(s,y));

endfor

U:=V\(R⊔{s});

while d∉B do

 34 / 75

 x:=nil; (*look for a node x that data size on

forall y∈R do all the incoming links is known*)

 cond:=true;

 for all (z,y)∈E do

 if α(z,y)=0 then

 cond:=false;

 endif

 endfor

 if cond:=true then

 x:=y;

 if In(x)=Out(x) then (*tn(n) is the sum of outgoing

 tn(x):=In(x); data size of a node n*)

elseif In(x)>Out(x) then

 Tr :=Tr-(In(x)-Out(x));

 OV:=OV+In(x)-Out(x); (*recalculate the Overflow Size*)

 tn(x):=Out(y);

elseif In(x)<Out(x) then

 AC(x):=Out(x)-In(x);

 tn(x):=In(x)

 endif

 forall (x,z)∈E do (*calculate the outgoing

 α(x,z)=
γ(x,z)

Out (x)
× tn; data size on each link*)

 In(z):=In(z)+ α(x,z); (*corresponding In(n) is modified*)

 endfor

 B:=B ⊔{x};

 R:=R \{x}; (*set R is updated*)

 forall y∈U: {x,y}∈E do

 p(y) :=x;α(x,y) :=
γ(x,y)

Out (x)
× tn(x)

 In(y):=In(y) + α(x,y);

insert (R,y, α(x,y));

endfor

endif

 endfor

 endwhile

 forall path∈PathSet do (*step 4*)

If OV>0 then

 TrIn:=0;

 AC:=Float_MAX;

 forall y∈path do

 if AC<AC(y) then

 AC:=AC(y);

 endif

 35 / 75

 enddo

 if AC>0 then

 AC:=min(AC,OV)

 Tr:=Tr+AC;

 forall y∈path do

 AC(y)=AC(y)-AC;

 enddo

 If Tr>Out(s) then

 Tr:=Out(s);

 Endif

 OV:=OV-AC;

 endif

 endif

endfor

end

For example:

 AC[N2]=0 AC[N3]=10

 30 40 20

Fig. 3.17 the digit on the links means the bandwidth in the arrow direction

We want to calculate the transport capacity from N1 to N4, μN1N4 in the Figure

3.17:

At the beginning, μN1N4
 is set to 30 because the sum of outgoing bandwidth of

node N1, Out(N1) equals 30.

Then we analyze the neighbor node N2. For node N2, the sum of data size on the

incoming links of the node N2, In(N2) is as big as Out(N1), which equals 30. The

sum of the outgoing bandwidth of N2, Out(N2) is 40. Therefore, according to the

basic rule three, μN1N4 is not changed. It is still 30. And the available capacity on

the node N2, AC[N2] = Out(N2)-In(N2) =10; the sum of data size on the outgoing

data links on N2, tn(N2)= In(N2)=30. Therefore, the outgoing data size on the link

from N2 to N3, α(N2, N3) =
γ(N2 ,N3)

Out (N2)
× tn(N2) =

40

40
× 30 = 30 . And In(N3) =

 α(Ni , N3)i = α(N2, N3) = 30.

After that, the node N3 is analyzed. As an input, In(N3) equals 30 while Out(N3) is

20. According to the basic rule two, μN1N4
 will be decreased. μN1N4

 = μN1N4
 –

(In(N3) - Out(N3)) = 20. The overflow size, OV = OV + (In(N3) - Out(N3))= 10. And

N1 N2 N3 N4

 36 / 75

tn(N3)=Out(N3)=20; α(N3, N4) =
γ(N3 ,N4)

Out (N3)
× tn(N3) =

30

30
× 20 = 20. And In(N4) =

 α(Ni , N4)i = α(N3, N4)= 20.

Finally, we come to the destination node N4. We can find out, that OV > 0. So like

what is written in step four, we will check AC[r] for each router in each routing

path from N1 to N4 now. There is just one routing path here, N1->N2->N3->N4. On

the path, AC[N2] = 0, and the AC[N3] = 10, so the available transport capacity on

the path is min(AC[N2],AC[N3]) = 0.

So the final result is:
 μN1N4

 = μN1N4
 + min(AC[N2],AC[N3]) = 20 + 0 = 20.

After that, for each terminal, we have a vector, in which the transport capacities

from this terminal to other corresponding terminals are written. Through the

compare of vectors the terminals can be divided in different groups.

Transport Capacity of a Router

In this approach, in order to get a better result of measuring, the calculation

method of transport capacity of a router is different from the definition in the

previous section.

The transport capacity of a router is defined as the difference of transport

capacities between the case that the router is in the part network and the case

that the router is not in the part network.

For each router r, there is a vector

|Ta1 − Tb1|
|Ta2 − Tb2|

…
|Tan − Tbn |

 , where Tb1, Tb2,…Tbn are the

transport capacities between corresponding terminals in the part network, when

r is in the network and Ta1 , Ta2,…Tan are the transport capacities, when r is not

in the network.

For example the router N2, N3 in Figure 3.17

When N2 is in the part network, the transport capacity from N1 to N4 is 20. When

N2 is not in the part network, the transport capacity from N1 to N4 is 0. The

transport capacity of router N2 is (|Ta1 − Tb1|) = |0 − 20| = (20). And for N3

is also(20).

 37 / 75

3.5.2.1.3 Time Complexity

In this design, we will consider all the paths between two communication

terminals. So in the worst case, all the routers are considered.

The time complexity for the calculating the transport capacity of a terminal is

O(T2× R), where T is the number of terminals in a part network and R is the

number of routers. In the worse case, there is communication between each pair

of terminals; each communication goes through all the routers. The number of

possibilities for pairs of communication terminals is T2. The number of router is

R. So the time complexity is O(T2× R).

For the calculation of the transport capacity of a router, the time complexity is

even O(T2×R2), because for each router, in the worst case, all the communication

between any pair of terminals in the part network will be calculated once. That is

O((T2× R) × R) = O(T2×R2)

However, the assumption, that routing information on all the nodes is known, is

very hard to touch. Usually, we do not know so much routing information. So we

will look for another design.

3.5.2.2 Second Approach

In this approach, we do not know all the routing information on each node. Then

how can we get the routing information. In order to solve this problem, a new

assumption is given.

3.5.2.2.1 Real Time Communication Case

In this assumption, a communication parameter p is used for a definition of a real

time communication case, which is located between two extreme communication

cases in the network: extreme high communication and extreme low

communication in the network.

The real time means that, the communication parameter p can be changed along

with different time point.

 38 / 75

First Case: Extreme Low Communication in the Network

In this case, we assume that, just one terminal transmits data. The shortest path

between two terminals is always considered as the communication path between

them. The shortest path is calculated from the transmission cost model,

represents the path with shortest cost between them. It can also be named

shortest cost path. In such a case, the data from one terminal to another is always

going along the shortest path between these two terminals. It does conform to

the routing rules.

Second Case: Extreme High Communication in the Network

In this case, we assume that, all the terminals are simultaneously transporting

data. The shortest path between two terminals is still always considered as the

communication path between the two terminals. The reason is that, the network

is overload everywhere in such a case. So the data, which is transported from one

node to another, cannot flow to other nodes, which are not in the shortest path.

Thus, under this assumption, the communication between two terminals is

always limited in the shortest path of the two terminals.

We keep the communication parameter p between 0 and 1, where the value 0

represents the case of extreme low communication in the network and the value

1 represents the case of extreme high communication in the network.

Fig. 3.18 real time communictaion

the transport capacity on a terminal

= transport capacity in the case of extreme low communication in the network

× p

+ transport capacity in the case of extreme high communication in the network

× (1 − p)

extreme low

communication

extreme high

communication

communication

parameter p:

real time

communication 0 1

 39 / 75

With this formula the transport capacity on each terminal is calculated.

The calculation of transport capacity on each router is based on the results of the

transport capacity on each terminal. It has been already described in previous

section, Analysis for Data Transport Capacity.

3.5.2.2.2 Design of Second Approach

As what is in section Basic architecture of the load model of real world network

defined, the nodes have been already divided in two classes, and a node of class

terminal will never be similar as a node in class router due to the different

functions of them. Therefore, for a node classification, only the nodes in the same

class are compared.

In addition, in order to reduce the runtime of the operation in the algorithm, the

whole network has already been divided into some part networks, which has

already been discussed in Section network clustering.

So all the nodes in the same class in all the part networks will be compared

together.

Total Process of the Node Classification

Fig 3.19 total process of the node classification

As the process showed in the Figure 3.19, in the Node Classification Algorithm, at

first, nodes are separated into different classes, each of which has different

function. After that, the corresponding transport capacities of nodes in each class

are calculated. Finally, we divide the nodes into different groups in each class

through comparing the transport capacities of nodes. The compare between

nodes in one class is independent of the compare between nodes in another class.

The compare module is running independently in each node class.

Node Classification Algorithm

compare module nodes divided in different classes

calculate the corresponding

transport capacities of nodes

in each class

 40 / 75

Nodes in Different Classes

In the section preparation work, it is defined that, the nodes in a network have

been divided in two classes.

Furthermore, the class terminal will be divided in three part classes: class server,

class client and class p2p point, which can acts as a server as well as a client.

Concerning the software on each node, we can know which node belongs to

which class.

Due to different functions of nodes in class servers, class clients and class p2p

points, there are four classes now in all.

Data Transport Capacities of Nodes in Each Class

Above all, some basic traffic rules are defined:

In the network, server just transports data to client while client also just

transports data to server. There is no communication between servers or

between clients. P2p nodes can communicate with all the other p2p nodes,

because a p2p node can act as a server as well as a client.

Normally, a network is either a p2p network or a client server network. We

assume that, either all the terminals in a network are p2p nodes, or all the

terminals are client and server nodes.

Transport Capacity Calculation in Different Classes

After that, the different calculation methods for nodes in different classes will be

defined in details. The definitions are described respectively in two different

network types: client server network and p2p network. Furthermore, in each

type of network, the data transport capacities of all the nodes in all the classes

will be calculated in two cases: extreme low communication in the network and

extreme high communication in the network.

In a Client Server Network

Case1: Extreme Low Communication in the Network

In this case, we assume that, there is just one terminal transports data.

At first we analyze the terminals in class client. A client transports data just to

 41 / 75

one server at a time point. The possibility of transmission from a client to each

server is the same. So the average data transport capacity from a client C to a

server is defined as AC =
Sum C

ns
, where ns is the number of servers in the part

network and SumC = ωCS1
+ ωCS2

+ ⋯+ ωCSn s
 represents the sum of maximal

transport capacities from the client C to a server.

Thus, the transport capacity of a client ΩC =

ωC S 1

Sum C
× AC

ωC S 2

Sum C
× AC

…
ωC S ns

Sum C
× AC

=

ωC S 1

ns

ωC S 2

ns
…

ωC S ns

ns

.

For example, in Figure 3.20, the bandwidth is given. So the data transport

capacities of the two clients C1 and C2 can be calculated.

 10 7

 6 10 10

 5 20 8 20

 9

Fig 3.20 a simple network topology with two clients, two servers and two routers, where the digit

on the arrows means the bandwidth of the link in the arrow direction.

For client C1:

ωC1S1
= 7, ωC1S2

= 8, ns = 2;

Therefore, the transport capacity of the client C1

ΩC1
=

ωC1S1

ns
ωC1S2

ns

 =

7

2
8

2

 =
3.5

4

For client C2:

ωC2S1
= 5, ωC2S2

= 5, ns = 2;

C1

C2

R1 R2

S1

S2

 42 / 75

Therefore, the transport capacity of the client C1

ΩC2
=

ωC2S1

ns
ωC2S2

ns

 =

5

2
5

2

 =
2.5

2.5

Then we will analyze the terminals in class server. In this case, data is

transported from a server S to all other clients at the same time. Here we will

introduce a new definition, bottleneck factor of a link.

The bottleneck factor of a link from n1 to n2 can be defined in the following form:

οn1n2
=

θn1n2

bn1n2

, if θn1n2
> bn1n2

1 , otherweise

where θn1n2
= ωTi Tji,j through the link from n1 to n2 , (∀i, j, Ti , Tj ∈ T), is the sum of

maximal transport capacities in the part network through the link from n1 to n2,

each of which is determined by the communication between a pair of

corresponding communication terminals in the part network and bn1n2
 is the

bandwidth of the link.

In this case, θn1n2
 is the sum of maximal transport capacities through the link

from n1 to n2, each of which is determined by the communication from a server S

to a corresponding client in the part network.

The bottleneck factor of a link is the bottleneck on the link. When the bottleneck

factor on a link equals 1, it means that, there is no bottleneck on the link.

Furthermore, we can write

The bottleneck factor of a path between two terminals T1 and T2

ΟT1T2
= max(οT1n1

, οn1n2
…… οnx T2

)

where nodes n1, n2…… nx are the intermediate nodes on the shortest path from

T1 to T2.

 43 / 75

Then in this case, the transport capacity of a server S is

ΩS =

ωSC1

ΟSC1

ωSC2

ΟSC2…
ωSCnc

ΟSCnc

Where nc is the number of clients in the part network

Now we analyze the topology in Figure 3.20. In this example, in this case, the

bottleneck factor on each link for server S1 is calculated as following:

Sum of the max transport capacity bandwidth bottleneck factor on the link
on the link from n1 to n2 : (θn1n2

)

θS1R2
= 6 + 9 = 15 bS1R2

= 10 οS1R2
=

θS 1R 2

bS 1R 2

=
15

10
= 1.5

θR2R1
= 6 + 9 = 15 bR2R1

= 20 οR2R1
= 1

θR1C1
= 6 bR1C1

= 6 οR2S1
= 1

θR1C2
= 9 bR1C2

= 9 οR2S2
= 1

Then each bottleneck factor on the shortest path from Server S1 to each other

client is:

Shortest path bottleneck factor on the path
From S1 to C1 S1->R2->R1->C1 ΟS1C1

= max οS1R2
, οR2R1

, οR1C1
 = 1.5

From S1 to C2 S1->R2->R1->C2 ΟS1C2
= max οS1R2

, οR2R1
, οR1C2

 = 1.5

Therefore, the transport capacity of S1 is:

ΩS1
=

ωS1C1

ΟS1C1

ωS1C2

ΟS1C2

 =

6

1.5
9

1.5

 =
4

6

The bottleneck factor on each link for server S2 is:

Sum of the max transport capacity bandwidth bottleneck factor on the link
on the link from n1 to n2 : (θn1n2

)

θS2R2
= 6 + 9 = 15 bS2R2

= 20 οS2R2
= 1

θR2R1
= 6 + 9 = 15 bR2R1

= 20 οR2R1
= 1

θR1C1
= 6 bR1C1

= 6 οR2S1
= 1

θR1C2
= 9 bR1C2

= 9 οR2S2
= 1

 44 / 75

Then each bottleneck factor on the shortest path from Server S2 to each other

client is:

Shortest path bottleneck factor on the path
From S2 to C1 S2->R2->R1->C1 ΟS2C1

= max οS2R2
, οR2R1

, οR1C1
 = 1

From S2 to C2 S2->R2->R1->C2 ΟS2C2
= max οS2R2

, οR2R1
, οR1C2

 = 1

Therefore, the transport capacity of S2

ΩS2
=

ωS2C1

ΟS2C1

ωS2C2

ΟS2C2

 =

6

1
9

1

 =
6

9

Finally we will analyze the nodes in class router.

In this case, there is always only one terminal in transport mode.

So the transport capacity on each link =
ϑn 1n 2

nc +ns

Where ϑn1n2
 is sum of all the transport capacities of terminals in the case of

extreme low communication through this link from n1 to n2, which can be

defined as:

ϑn1n2
= μSi C ji,j + μC j Sii,j through the link from n1 to n2, (∀i, Si ∈ S; ∀j, Cj ∈ C,

(All the transport capacities μ in the definition here are calculated in the case

extreme low communication in the network.)

And the item nc + ns represents the sum of number of servers and that of

clients in a part network.

Because
1

nc+ns

 is the possibility for each terminal, that it is in the transport mode.

Thus, the outgoing transport capacity of a router r is

Ωrout
=

ϑrn 1

nc +ns

ϑrn 2

nc +ns
…
ϑrn n

nc +ns

,

 45 / 75

And the incoming transport capacity of a router r is

Ωrin
=

ϑn 1r

nc +ns

ϑn 2r

nc +ns
…
ϑn n r

nc +ns

,

where the nodes n1, n2…nn are the neighbors of the router r.

As the topology in Figure 3.20 shown, the transport capacity on each node is:

ΩC1
=

3.5

4
 ; ΩC2

=
2.5

2.5
 ; ΩS1

=
4

6
 ; on node ΩS2

=
6

9
 .

Obviously, the number of communication between communication terminals in

this part network is nc + ns = 2 + 2 = 4.

For router R1 and R2:

At first, for each link from n1 to n2, the sum of all the transport capacities of

terminals through this link from n1 to n2 ϑC1R2
 is calculated:

ϑC1R1
= 3.5 + 4 = 7.5 ϑR1C1

= 4 + 6 = 10

ϑC2R1
= 2.5 + 2.5 = 5 ϑR1C2

= 6 + 9 = 15

ϑR1R2
= ϑC1R2

 + ϑC2R1
= 7.5 + 5 = 12.5 ϑR2R1

= ϑS1R2
+ ϑS2R2

= 10 + 15 = 25

ϑR2S1
= 3.5 + 2.5 = 6 ϑS1R2

= 4 + 6 = 10

ϑR2S2
= 4 + 2.5 = 6.5 ϑS2R2

= 6 + 9 = 15

Therefore, for router R1, the outgoing transport capacity on the router is:

ΩR1out
=

ϑR 1C1

nc +ns

ϑR 1C2

nc +ns

ϑR 1R 2

nc +ns

=

10

4
15

4
12.5

4

=
2.5

3.75
3.125

 ,

And the incoming transport capacity is:

ΩR1in
=

ϑC 1R 1

nc +ns

ϑC 2R 1

nc +ns

ϑR 2R 1

nc +ns

=

7.5

4
5

4
25

4

=
1.875
1.25
6.25

 .

 46 / 75

For router R2, the outgoing transport capacity is:

ΩR2out
=

ϑR 2S 1

nc +ns

ϑR 2S 2

nc +ns

ϑR 2R 1

nc +ns

=

10

4
15

4
25

4

=
1.5

1.625
6.25

 ,

And the incoming transport capacity is:

ΩR2in
=

ϑS 1R 2

nc +ns

ϑS 2R 2

nc +ns

ϑR 1R 2

nc +ns

=

6

4
6.5

4
12.5

4

=
2.5

3.75
3.125

 .

Case2: Extreme High Communication in the Network

In this case, we assume that, all the terminals will transport data simultaneously.

Each client transmits data to a server, when each server transmits data to all the

clients. Then maybe there is overflow in the network. We need the overflow

factor on each link here.

The overflow factor of a link from n1 to n2 can be defined in the following form:

γn1n2
=

ϑn1n2

bn1n2

, if θn1n2
> bn1n2

1 , otherweise

In this case, ϑn1n2
 is the sum of transport capacities through the link from n1 to

n2, each of which is determined by all the communication between

corresponding communication nodes in the part network.

The overflow factor of a link is the overflow situation on the link. When the

overflow factor on a link equals 1, it means that, there is no overflow on the link.

Furthermore, we can write

The overflow factor of a path between two terminals T1 and T2

ΓT1T2
= max(γT1n1

, γn1n2
…… γnx T2

)

where nodes n1, n2…… nx are the intermediate nodes on the shortest path from

 47 / 75

T1 to T2. With it the transport capacity of a client C can be written in:

ΩC =

ϑCS1

ΓCS1

ϑCS2

ΓCS2…
ϑCSn

ΓC Sn

.

And the transport capacity of a server S can be written in:

ΩS =

ϑS C1

ΓSC1

ϑS C2

ΓSC2…
ϑSCn

ΓS Cn

.

In this case, concerning the topology in Figure 3.20, the overflow factor on each

link is calculated as following:

Sum of the transport capacity bandwidth overflow factor on the link
on the link from n1 to n2 : (ϑn1n2

)

ϑC1R1
= 3.5 + 4 = 7.5 bC1R1

= 10 γC1R1
= 1

ϑC2R1
= 2.5 + 2.5 = 5 bC2R1

= 5 γC2R1
= 1

ϑR1R2
= ϑC1R1

+ ϑC2R1
= 12.5 bR1R2

= 10 γR1R2
=

ϑR 1R 2

bR 1R 2

= 1.25

ϑR2S1
= 3.5 + 2.5 = 6 bR2S1

= 7 γR2S1
= 1

ϑR2S2
= 4 + 2.5 = 6.5 bR2S2

= 8 γR2S2
= 1

ϑS1R2
= 4 + 6 = 10 bS1R2

= 10 γS1R2
= 1

ϑS2R2
= 6 + 9 = 15 bS2R2

= 20 γS2R2
= 1

ϑR2R1
= ϑS1R2

+ ϑS2R2
= 25 bR2R1

= 20 γR2R1
=

ϑR 2R 1

bR 2R 1

= 1.25

ϑR1C1
= 4 + 6 = 10 bR1C1

= 6 γR1C1
=

ϑR 1C 1

bR 1C 1

= 1.67

ϑR1C2
= 6 + 9 = 15 bR1C2

= 9 γR1C2
=

ϑR 1C 2

bR 1C 2

= 1.67

Then each overflow factor on the shortest path from each server and client to

corresponding communication nodes is:

Shortest path overflow factor on the path
From C1 to S1 C1->R1->R2->S1 ΓC1S1

= max γC1R1
, γR1R2

, γR2S1
 = 1.25

From C1 to S2 C1->R1->R2->S2 ΓC1S2
= max γC1R1

, γR1R2
, γR2S2

 = 1.25

From C2 to S1 C2->R1->R2->S1 ΓC2S1
= max γC2R1

, γR1R2
, γR2S1

 = 1.25

From C2 to S2 C2->R1->R2->S2 ΓC2S2
= max γC2R1

, γR1R2
, γR2S2

 = 1.25

From S1 to C1 S1->R2->R1->C1 ΓS1C1
= max γS1R2

, γR2R1
, γR1C1

 = 1.67

 48 / 75

From S1 to C2 S1->R2->R1->C2 ΓS1C2
= max γS1R2

, γR2R1
, γR1C2

 = 1.67

From S2 to C1 S2->R2->R1->C1 ΓS2C1
= max γS2R2

, γR2R1
, γR1C1

 = 1.67

From S2 to C2 S2->R2->R1->C2 ΓS2C2
= max γS2R2

, γR2R1
, γR1C2

 = 1.67

Thus, the transport capacities of C1, C2, S1 and S2 are:

ΩC1
=

ϑC1S1

ΓC1S1

ϑC1S2

ΓC1S2

 =

3.5

1.25
4

1.25

 =
2.8
3.2

 ; ΩC1
=

ϑC2S1

ΓC2S1

ϑC2S2

ΓC2S2

 =

2.5

1.25
2.5

1.25

 =
2
2
 ;

ΩS1
=

ϑS1C1

ΓS1C1

ϑS1C2

ΓS1C1

 =

4

1.67
6

1.67

 =
2.4
3.6

 ; ΩS2
=

ϑS2C1

ΓS2C1

ϑS2C2

ΓS2C1

 =

6

1.67
9

1.67

 =
3.6
5.4

 .

Then we will analyze the nodes in class router. In this case, all the terminals are

in transport mode.

The sum of all the transport capacities between terminals in the case of extreme

high communication is defined in form:

ϑ′n1n2
= μS i C ji,j + μC j Sii,j through the link from n1 to n2, (∀i, Si ∈ S; ∀j, Cj ∈ C,

(All the transport capacities μ in the definition here are calculated in the case

extreme high communication in the network.)

Therefore, the transport capacity on each link = ϑ′n1n2
;

Thus, the outgoing transport capacity of a router r is

Ωrout
=

ϑ′rn1

ϑ′rn2

…
ϑ′rnn

 ,

And the incoming transport capacity of a router r is

Ωrin
=

ϑ′n1r

ϑ′n2r

…
ϑ′nn r

 ,

where the nodes n1, n2…nn are the neighbors of the router r.

 49 / 75

For example,

According to the results in the page 52, the outgoing transport capacity of the

router R1 in Figure 3.20 is:

ΩR1out
=

ϑ′ R1C1

ϑ′ R1C2

ϑ′R1R2

 =
2.4 + 3.6
3.6 + 5.4

2.8 + 3.2 + 2 + 2
 =

6
9

10
 ,

The incoming transport capacity of the router R1 is:

ΩR1in
=

ϑ′ C1R1

ϑ′ C2R1

ϑ′R2R1

 =
2.8 + 3.2

2 + 2
2.4 + 3.6 + 3.6 + 5.4

 =
6
4

15
 .

In a P2P Network

 10

 12 15 8

 20

 10 8 7

 10

 12

Fig 3.21 a simple network topology with three p2p nodes and three routers, where the digit on

the arrows means the bandwidth of the link in the arrow direction.

For p2p point, either in the case extreme low communication or in the case

extreme high communication in the network, all the p2p nodes will transport

data as much as possible. So the transport capacity is limited by the bottleneck

factor in the network.

And the definition of transport capacity on a p2p node p is:

P1

P2

P3 R1

R2

R3

 50 / 75

Ωp =

ωp p 1

Οp p 1
ωp p 2

Οp p 1…
ωp p 2

Οp p n p

,

where nodes p1, p2 … pnp
 are the p2p nodes in the p2p part network.

As showed in Figure 3.21, the maximal transport capacities on each p2p nodes

are:

ωp1p2
= 8 ; ωp1p3

= 8 ; ωp2p1
= 10 ; ωp2p3

= 8 ; ωp3p1
= 7 and ωp3p1

= 7.

Then the bottleneck factor on each link in each direction can be calculated:

Sum of the max transport capacity bandwidth bottleneck factor on the link
on the link from n1 to n2 : (θn1n2

)

θp1R1
= 8 + 8 = 16 bp1R1

= 10 οp1R1
=

θp 1R 1

bp 1R 1

=
16

10
= 1.6

θp2R3
= 10 + 8 = 18 bp2R3

= 10 οp2R3
=

θp 2R 3

bp 2R 3

=
18

10
= 1.8

θR1R2
= 8 + 8 = 16 bR1R2

= 15 οR1R2
=

θR 1R 2

bR 1R 2

=
16

15
= 1.07

θR3R2
= 10 + 8 = 18 bR3R2

= 10 οR3R2
=

θR 3R 2

bR 3R 2

=
18

10
= 1.8

θR2P3
= 8 + 8 = 16 bR2P3

= 8 οR2P3
=

θR 2P 3

bR 2P 3

=
16

8
= 2

θP3R2
= 7 + 7 = 14 bP3R2

= 7 οP3R2
=

θP 3R 2

bP 3R 2

=
14

7
= 2

θR2R1
= 10 + 7 = 17 bR2R1

= 20 οR2R1
= 1

θR2R3
= 8 + 7 = 15 bR2R3

= 8 οR2R3
=

θR 2R 3

bR 2R 3

=
15

8
= 1.875

θR1P1
= 10 + 7 = 17 bR1P1

= 12 οR1P1
=

θR 1P 1

bR 1P 1

=
17

12
= 1.42

θR3P2
= 8 + 7 = 15 bR3P2

= 12 οR3P2
=

θR 3P 2

bR 3P 2

=
15

12
= 1.25

Then each bottleneck factor on the shortest path is:

Shortest path bottleneck factor on the path
From P1 to P2 P1->R1->R2->R3->P2 ΟP1P2

= max οp1R1
, οR1R2

, οR2R3
, οR3P2

 = 1.875

From P1 to P3 P1->R1->R2->P3 ΟP1P3
= max οP1R1

, οR1R2
, οR2P3

 = 2

From P2 to P1 P2->R3->R2->R1->P1 ΟP2P1
= max οP2R3

, οR3R2
, οR2R1

, οR1P1
 = 1.8

From P2 to P3 P2->R3->R2->P3 ΟP2P3
= max οP2R3

, οR3R2
, οR2P3

 = 2

 51 / 75

From P3 to P1 P3->R2->R1->P1 ΟP3P1
= max οP3R2

, οR2R1
, οR1P1

 = 2

From P3 to P2 P3->R2->R3->P2 ΟP3P2
= max οP3R2

, οR2R3
, οR3P2

 = 2

Thus, the transport capacities on p1, p2 and p3 are:

ΩP1
=

ωP1P2

ΟP1P2

ωP1P3

ΟP1P3

 =

8

1.875
8

2

 =
4.27

4
 ;

ΩP2
=

ωP2P1

ΟP2P1

ωP2P3

ΟP2P3

 =

10

1.8
8

2

 =
5.56

4
 ;

ΩP3
=

ωP3P1

ΟP3P1

ωP3P2

ΟP3P2

 =

7

2
7

2

 =
3.5
3.5

 .

In a p2p network, all the p2p nodes transport data at the same time either in the

case extreme low communication or in the extreme high communication.

Therefore, the calculation of the transport capacity of a router in p2p network

is same as the calculation of the transport capacity of a router in client server

network in case extreme communication.

3.5.2.2.3 Time Complexity

In this design, we consider the shortest cost paths from a terminal to

corresponding communication terminals. And the time complexity is O (n3),

where n is the number of nodes in a part network. So it is not scalable for very

large network. We need make a network clustering at first.

In next chapter, the analysis of the time complexity will be introduced with codes

in detail.

3.6 Compare Module

In the previous section, the transport capacity of each node has been already

calculated; now each terminal has a vector and each router has two vectors.

Each node, whether they are in the same part network or not, need to be

compared with other nodes, which are in the same class. That is to say, the

 52 / 75

compare is running in the whole network.

3.6.1 Standard vector of a group

When the first node is put into a new group, the vector of the node becomes the

standard vector of a group. For each further compare, the node will be compared

with the standard vector of each exist group. If a node is put into an existing

group, then the standard vector of that group will be recalculated, the value

becomes the average value of the vectors of all the nodes in the group.

3.6.2 Compare method

The compare method is running as following:

Compare within terminals:

In order to make a compare between two terminals, each item in a vector of a

terminal will be compared in order from top to bottom with that of the other

terminal. If the difference between vectors of these two terminals is smaller than

a value, within a certain range, then the two terminals are in the same group.

Compare within routers:

Each router has two vectors: the incoming transport capacity vector and

outgoing transport capacity vector. So In order to make a compare between two

routers, each item in an incoming transport capacity vector and in an outgoing

transport capacity vector of a router, will be compared in order from top to

bottom with those of the other router. If both the difference between incoming

transport capacity vectors and the difference between two outgoing transport

capacity vectors of the two routers are smaller than a value, within a certain

range, then the two routers are in the same group.

3.6.3 Sort the items in each vector

Before the compare is carried out, all the items in each vector are sorted by

values in descending order from top to bottom.

For example:

 53 / 75

Fig 3.22 a network topology with two servers and two clients

In Figure 3.22, the transport capacities on client C1 and C2 are:

ΩC1
=

100
10

 ΩC2
=

10
100

 ,

Where the first item of each vector is always the transport capacity from the

client to S1 and the second item of each vector is the transport capacity from the

client to S2.

If we directly compare the vector C1 with C2 without sorting, we will get the

result that the two clients are not in the same group; however, practically the

transport capacity on C1 is as big as that on C2.

After the sorting, the transport capacities on client C1 and C2 are:

ΩC1
=

100
10

 ΩC2
=

100
10

 ,

In fact, for a client, the most important thing is the size of transport capacity, not

the destination of each transport.

 54 / 75

3.6.4 Compare Parameter

The compare parameter is a value, which is used for compare among nodes in

the same class. If the difference between vectors of two nodes is within a range,

which is determined by the compare parameter, then we could say the two nodes

are in the same group.

The compare parameters for compare among nodes in different classes are

different.

The compare parameter, which is used for compare among servers, is named

server compare parameter; the compare parameter, which is used for compare

among clients, is named client compare parameter; the compare parameter,

which is used for compare among p2p nodes, is named p2p compare parameter;

the compare parameter, which is used for compare among routers, is named

router compare parameter.

high few

 similarity within a group

 number of groups

low many

similarity within number of groups

 a group small big

 value of the compare parameter

Fig. 3.23 compare parameter

The value of each kind of the compare parameter is adaptive. As showed in

Figure 3.23, the smaller the compare parameter is, the more similar the nodes

within a group is. But if the value is too small, then the nodes will be in too many

groups divided. In this way, too many manual inquiries will be called. It cannot

be accepted. We are hunting for a balance point, where the arrow is located in

the picture.

 55 / 75

3.7 Assignment Method

In the end, an assignment method is carried out.

At the beginning of the method, the CPU load on a node and the data rate on the

outgoing links of the node will be inquired in each group.

According to the node classification algorithm described in the previous section,

the nodes in the same group are in the same class: (two possibilities)

1. All the nodes in a group are routers.

2. All The nodes in a group are terminals.(class server, client and p2p belong to

class terminal)

3.7.1 Assignment of Terminal

If nodes in a group are terminals, then we can directly assign the inquired CPU

load on the terminal to other terminals; assign the inquired data rate on the

outgoing link of the terminal to the outgoing link of other terminals. The reason

is that, for each terminal, there is just one outgoing link.

3.7.2 Assignment of Router

If nodes in a group are routers, the assignment of CPU load of a router is same as

that of a terminal. However, the assignment of data rates on the links is different,

because the router in the same group may have different connection grads.

Therefore, the following rules are needed:

1. The sum of the data rates on the outgoing links of a router is same as the sum

of data rates on the outgoing links of the inquired router.

2. The data rates will be divided into the corresponding links according to the

weight of the links. (The link, whose cost is small, has a high weight.)

 56 / 75

 Node

Classification

Algorithm

Chapter 4

Implementation

In this chapter the implementation details of the design, which has been

described in the previous chapter, will be represented. The implementation is

consisted of several parts: network clustering, shortest (cost) path algorithm,

transport capacity calculation and compare module, where the last three parts

belong to Node Classification Algorithm. All the components of the algorithm are

written in language C.

4.1 Architecture of Implementation

 part network 1 ………… part network N

 …………

 …………

 …………

 …………

Fig. 4.1 architecture of implementation

server_group.txt; client_group.txt; p2p_group.txt;router_group.txt

network clustering algorithm

Transport capacity

calculating

Input files: structure .txt; node.txt

structure1.txt

node1.txt

shortest path

algorithm

shortest path

algorithm

structureN.txt

nodeN.txt

path1.txt pathN.txt

S1.txt;C1.txt;P1.txt;R1.txt SN.txt;CN.txt;PN.txt;RN.txt

Transport capacity

calculating

compare module

 57 / 75

As what is in Figure 4.1 showed, as input, two files is given, one is named

sturture.txt, in which the structure of links in the network is written; while the

other is named node.txt, in which the information of nodes in the network is

recorded.

In the end, the output files are server_group.txt, client_group.txt, p2p_group.txt

and router_group.txt. From the name we can easy know, they are the results of

the nodes classification for different node classes.

The whole process of implementation is running as following:

At the beginning, with the structure of links in the network, the network can be

clustered into many relative small part networks (in Figure: from part network 1

to part network N), each of which has its own link structure and node

information (in Figure: for example, files sturture1.txt and node1.txt are for part

network 1; and files sturtureN.txt and nodeN.txt are for part network N).

After that, the shortest paths between each pair of nodes in every part network

are calculated. It is the routing information for each pair of communication

terminals, which is saved in pathn.txt, where n means that the routing

information is for part network n. (for each 1 ≤ n ≤ N)

Then the most important module in the Node Classification Algortihm is carried

out. According to different cases, the data transport capacity of each node is

calculated. And the corresponding data is saved in different files, where S1.txt

means the transport capacity of server in part network 1 and C2.txt means the

transport capacity of client in part network 2 and so on.

At last, we will use the compare module to compare all the nodes in the same

class in the whole network. For example, the transport capacity of a server in

S1.txt will be compared with that of each server in all the files S*.txt. As a result,

we get a file group_server.txt, in which, each server belongs to which group is

written. And the compares among clients, p2p nodes and routers are same as

that among servers.

Now we will turn to each module of the implementation.

4.2 Network Clustering

In this section, the network clustering is described. In order to reduce the

runtime of NETclassify, number of nodes in a part network is limited to1000.

 58 / 75

 >1000

 ≤1000

Fig. 4.2 flow chat of the network clustering

As showed in Figure 4.2, the network clustering is running in this way. As the

output of network clustering, we have got all the information of links and nodes

in each part network.

4.2.1 Clauset-Newman-Moore Algorithm

The core of the network clustering is the Clauset-Newman-Moore Algorithm, the

source code of which has been already written by the SNAP group in university

STANFORD. [14]

Listing 4.1 Clauset-Newman-Moore Algorithm[14]

Input: Graph = (E, V)

Begin

 Matrix = Graph.get_adjacent Matrix();

 CmtyV = Graph.get_community();

nodes in a part

graph

write the information of links and

nodes in each part network

network clustering:

Clause-Newman-M

oore Algorithm

check the number

of nodes in each

part graph

the whole graph

 59 / 75

// maximize modularity

Find (Matrix.exist_best_modularity()){

 //reconstruct communities

 CmtyV. reconstrut ();

}

 return Matrix;

}

As showed in Listing 4.1, the algorithm is running in two steps. At first, the

maximal modularity in the network is found; then the network is reconstructed

according to the division, when the network has a maximal modularity.

4.3 Shortest Path Algorithm

As we all known, there are many shortest path algorithms in the world, which

could be distinguished from each other in the following generalizations:

single-source shortest path algorithm, single-destination shortest path algorithm

and all-pairs shortest path algorithm.

Now we do need the third approach. All the terminals in a part network may

transmit data to other corresponding terminals. We need the routing paths

between each pair of corresponding terminals.

A famous algorithm of this approach is Floyd algorithm, [15] in which the

shortest paths between all pairs of nodes are calculated. As a result, we get the

cost of shortest path between each pair of nodes. But it is not useful for us; we

want the path information between any two nodes. So a modified Floyd

algorithm is used here, in which the forward sequence on the shortest path

between each pair of nodes is recorded. [16] The source code is showed in listing

4.2.

Listing 4.2 modified Floyd Algorithm

//the the forward sequence on the shortest path is saved in path[][]

void floyd(int dist[][], int path[][], int n)

{

 int i, j, k;

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 path[i][j] = i;

 for (k = 0; k < n; k++)

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 60 / 75

 if (dist[i][j] > dist[i][k]+dist[k][j])

 {

 path[i][j] = path[k][j]; (*record the path*)

 dist[i][j] = dist[i][k]+dist[k][j];

 }

}

4.4 Transport Capacity Calculation

The calculation of transport capacity on each node is the most important part in

the Node Classification Algorithm.

 p2p C/S

Figure 4.3 flow chat of the transport capacity calculation

In this figure, the TC means transport capacity calculation, R means router, C means client, P

means p2p point and S means server

As showed in Figure 4.3, above all, we need know the network type of each part

nodes and links

information in a

part network

network

type?

TC on P

TC on R

case 2: extreme high

communication in the

part network

case 1: extreme low

communication in

the part network

TC on C in

case 1

TC on S in

case 1

TC on C in

case 2

TC on S in

case 2

TC on C

TC on S
TC on each

link in case 1

TC on each

link in case 2

TC on R

 61 / 75

network, whether it is a p2p network or a client server network. The processes

of analysis on nodes are different in different network types.

In a client server network, at first the calculations of transport capacities on

clients and servers in each case (extreme low communication in a part network

or extreme high communication in a part network) are running respectively. For

each client or server, we have two vectors, each of which is calculated in an

extreme case. After that, as what is said in the previous chapter, transport

capacity on each server or client is produced with the communication parameter

p. Finally, concerning the transport capacities on servers and clients, the

transport capacity on each router could be calculated.

In a p2p network, the calculation of transport capacity is simpler than the one in

client server network. Each p2p node transmits data always to other p2p nodes

in any case. Therefore, we directly calculate the transport capacity on each p2p

node. And concerning the results the transport capacity on each router is also

calculated.

It had been elaborated in the previous chapter how to calculate each kind of

Transport capacity concretely, so now I will not introduce the code again.

4.5 Compare Module

The transport capacity of a node is written in a vector. So the vector of a node in

this section means the transport capacity of a node.

The compare is running just within the same class. (within class clients, servers,

p2p nodes or routers.)

In each class, as showed in Figure 4.4, the first node is assigned to the first group,

and the vector of the node becomes the standard vector of the group. Then from

the second node, we can make a compare between the node and the standard

vector(s) of the existing group(s). The vector of each node is compared with the

standard vector in each group. If the difference between the vector of a node and

the standard vector in an existing group is within a range, which is determined

by compare parameter, then the node is assigned to this group, and the standard

vector of this group is recalculated. If the difference between the vector of the

node and the standard vector in each existing group is not within this range, then

the node is assigned to a new group. After that, the standard vector of the new

group is also generated.

 62 / 75

 No

 No Yes

 Yes

 No

Figure 4.4 flow chat of the compare module: make a compare among nodes in each class

4.5.1 Compare Method

In our approach, the numbers of items in the vectors of two routers are different,

because the numbers of links on two routers may be different.

Furthermore, the nodes in a class will be compared with all the other nodes in

the same class. The nodes may be come from different part networks. Due to the

different numbers of clients, servers and p2p nodes in different part networks,

the numbers of items in two vectors of terminals in same class maybe also

different.

However, the compare between two vectors is running under the condition, that

the numbers of items in two vectors are same. Therefore, the vector, the number

of whose items is less, is reconstructed.

difference

within a range?

assign the node

to this group

recalculate the

standard vector

of this group

standard

vector in each

group is

compared?

go to the next

existing group

assign the node

to a new group

generate the

standard vector

of this group

compare the

vector of a node

with standard

vector in a group

a node is ready to

be compared

Is it the

first node?

 63 / 75

For example, two vectors:

vector I =

i1

i2

…
im

 and vector J =

j1
j2

…
jn

 ,

where m<n, the number of items in vector I is less than that in vector J.

Then the vector I is reconstructed:

vector I =

i1

i2

…
im

im+1

…
in

,

where all the items im, im+1 … in equal 0.

As said in the previous chapter, before compare, all the items in each vector are

sorted by values in descending order from top to bottom. The last items in the

vector, im to in, which equals to 0, are already in this order.

Compare Parameter

Compare parameter is the measuring metric. The difference between two

vectors is calculated in the formula:

DIJ =

d1

d2

…
dn

Where vector I is the standard vector of a group, and dn =
in − jn , in ≥ jn

jn − in , in < jn

Then we can compare the (
dn

in
n × in) = (dnn) with the compare parameter,

where
dn

in
 is the proportion of difference value between an item in the node

vector and that in a standard vector in a group to that in the standard vector in

the group. And × in here means that, the weight of the proportion of difference

value is considered.

 64 / 75

4.5.2 Recalculation of Standard Vector in a Group

If a node is assigned to a new group, then vector of the node becomes the

standard vector in the new group. However, if a node is assigned to an existing

group, the standard vector of the group needs be recalculated. The standard

vector in a group is always the average value of the vectors of all the nodes in the

group.

If a node n is assigned to an existing group, then the standard vector of this group

becomes:

SV × weight + vector of node n

weight + 1

Where SV is the standard vector of the group before node n is assigned to this

group and weight is the number of nodes in the group before n is assigned to

the group.

For example, the recalculation of the vectors of a router is written in Listing 4.3.

For each router r, there are two vectors: one represents the incoming transport

capacity on a router and the other represents the outgoing transport capacity on

a router.

Listing 4.3 Recalculation of the vectors of a router

Input:

//the vectors of the router

Analy_In[]; Analy_Out[];

//standard vectors of the group, where the router is assigned

SV_In[][];SV_Out[][];

Begin

 Grad = max (Analy_In[].get_number_of_items(), SV_In[].get_number_of_items())

for (int i=0;i<Grad;i++){ (*each item in the vectors are recalculated*)

 //each item in the standard vector of incoming transport capacity on a router

SV_In[][i] = (standard_ In[][i] * weight + analy_In[i]) / (weight + 1)

//each item in the standard vector of outgoing transport capacity on a router

SV_Out[] [i] = (SV_Out[][i] * weight+analy_Out[i]) / (weight + 1);

}

weight = weight + 1; (*after the recalculation, the weight in the group is increased*)

End

 65 / 75

Chapter 5

Evaluation

In this chapter, the evaluation of NETclassify is presented. At first, the goal of the

evaluation of the algorithm is explained. Then we will introduce the platform,

where NETclassify is running. Finally, the results of the evaluation is presented

and discussed.

5.1 Evaluation Goals

The goal of the evaluation is to examine if the implementation of NETclassify

described in the previous chapter fulfills the main requirements of NETclassify

which are described in Chapter 3.1.

A research in the evaluation is the runtime of the algorithm and the number of

groups in the results of the nodes classification. We want to know that, whether

an acceptable classification can be finished in an acceptable time.

Furthermore, we want to know, whether the nodes in the same group have

similar transport characteristics.

5.2 Platform

As hardware infrastructure, a 12 nodes cluster server “curium” is set up. Each

node is a Dual QuadXeon. Each QuaXeou has 8 CPUs, each of which is 3000GHz.

Our implementation is running on it.

On the other hand, the software environment for the implementation is Linux

system. And in this implementation, the program of NETclassify is running in line

one by one.

5.3 Evaluation Results

Above all, the input network topologies are introduced. Nine network topologies

are offered for this Evaluation.

They are described in the following table:

 66 / 75

Description Topology Number of links

(directions)

Number of

routers

Number of

terminals

a network

topology from

DSL supplier

ATandT

ATandT 3895 753 1500

simplified vision

of Caumpus2

Campus1 250 170 50

composed with

20 Campus

network

topologies

Campus2 5620 600 4880

a network

topology from

internet

Internet 6632 1454 659

snapshot of

routers in

internet

NetworkMap 4527 2376 800

generated by

the topology

generator

BRITE [17]

TopoAS 2609 1024 500

generated by

BRITE

Waxman1.25k 3000 1250 500

generated by

BRITE

Waxman2.5k 5500 2500 500

generated by

BRITE

Waxman5k 12500 5000 2500

In order to execute the implementation, three kinds of parameters are offered:

network name, communication case parameter and compare parameter.

Furthermore, for each network, 5 kinds of different link properties (bandwidth,

maximal delay and packet loss) on each link are provided in this evaluation,

which is determined by link parameter.

At first, we want to know, whether the link parameter has an influence on the

results of classification, when the compare is made among nodes in the same

network with same communication case parameter and compare parameter.

In each following chart the x-axis represents different link parameter, and the

y-axis represents the number of groups for each class.

For each chart there is a description, the format is:

 67 / 75

network name/communication case parameter/compare parameter/number of

terminals in the network/number of servers in the network

ATandT/0.25/0.5/1500/753 ATandT/0.75/0.4/1500/753

ATandT/0.5/0.3/1500/753 ATandT/0.0/0.2/1500/753

Waxman1.25k/1.0/0.1/1500/753 Internet/0.25/0.3/659/1454

Fig 5.1 evaluation of the implementation with different link parameters

As shown in Figure 5.1, different link parameters of each network have just little

influence on the results of classification, when the compare is made among nodes

in the same network with same communication parameter and compare

parameter.

Then we will make a research on the compare parameter. Therefore, now in each

following chart the x-axis represents different compare parameters, and the

y-axis represents the number of groups for each class.

0

5

10

15

20

25

30

1 2 3 4 5

client

server

router

0

20

40

60

80

1 2 3 4 5

client

server

router

0

50

100

150

1 2 3 4 5

client

server

router
0

100

200

300

400

1 2 3 4 5

client

server

router

0

200

400

600

800

1 2 3 4 5

client

server

router

0

50

100

150

200

1 2 3 4 5

client

server

router

 68 / 75

And the description of each chart here is in form:

network name/communication case parameter/number of terminals in the

network/number of servers in the network

ATandT/0.25/1500/753 ATandT/0.75/1500/753

Campus2/0.25/4880/600 Waxman5k/0.5/2500/5000

Internet/0.25/659/1454 TopoAS/0.5/500/1024

Fig 5.2 evaluation of the implementation with different compare parameters

As shown in Figure 5.2, compare parameter has a great influence on the results

of classification, when the compare is made among nodes in the same network

with same communication case parameter. The smaller the compare parameter

is, the more groups after classification there will be. And likely, the increase of

the nodes in the network will also be accompanied with a corresponding growth

in the quantity of the groups.

0

200

400

600

800

0.1 0.2 0.3 0.4 0.5

client

server

router

0

200

400

600

800

0.1 0.2 0.3 0.4 0.5

client

server

router

0

100

200

300

400

500

0.1 0.2 0.3 0.4 0.5

client

server

router

0

500

1000

1500

2000

0.1 0.2 0.3 0.4 0.5

client

server

router

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5

client

server

router

0

200

400

600

800

0.1 0.2 0.3 0.4 0.5

client

server

router

 69 / 75

We can control the number of groups through change the adaptive compare

parameter.

After that, we will focus on the communication case parameter. Therefore, in

each following chart the x-axis represents different communication case

parameters, and the y-axis represents the number of groups for each class.

And the description of each chart here is in form:

network name/compare parameter/number of terminals in the network/

number of servers in the network

TopoAS/0.1/500/1024 TopoAS/0.3/500/1024

Compus1/0.1/50/170 Compus1/0.2/50/170

Waxman5k/0.3/2500/5000 Waxman5k/0.5/2500/5000

Fig 5.3 evaluation of the implementation with different communication case parameters

As showed in Figure 5.3, in the network, which are rich in nodes, the number of

the groups fluctuates in line with different communication case parameters; on

the contrary, when there are fewer nodes in the network, the number remains

0

200

400

600

800

0 0.25 0.5 0.75 1

client

server

router
0

50

100

150

200

0 0.25 0.5 0.75 1

client

server

router

0

5

10

15

20

0 0.25 0.5 0.75 1

client

server

router
0

2

4

6

8

10

0 0.25 0.5 0.75 1

client

server

router

0

50

100

150

200

250

0 0.25 0.5 0.75 1

client

server

router
0

10

20

30

40

50

0 0.25 0.5 0.75 1

client

server

router

 70 / 75

level in such a case. However, in the same network the effects of compare

parameter are found negligible.

Finally, we will make a research on the runtime of the implementation. We want

to know, whether the runtime of the implementation is acceptable.

The average runtime of different networks are showed in Figure 5.4 (a) and (b).

(a) x-axis represents number of nodes in a network

(b) x-axis represents number of terminals in a network

Fig 5.4 compare of runtime in different networks

ATandT

Campus1

Campus2

Internet
NetworkMap

TopoAS
Waxman1.25k

Waxman2.5k

Waxman5k

00:00.0

00:17.3

00:34.6

00:51.8

01:09.1

01:26.4

01:43.7

0 2000 4000 6000 8000

Network

ATandT

Campus1

Campus2

Internet
NetworkMap

TopoAS
Waxman1.25k

Waxman2.5k

Waxman5k

00:00.0

00:17.3

00:34.6

00:51.8

01:09.1

01:26.4

01:43.7

0 1000 2000 3000 4000 5000 6000

Network

 71 / 75

As showed in Figure 5.4, for different networks, there is an upward trend in the

runtime with regards of the number of the nodes (especially the number of

terminals) in the network, but the rate of increase slow down. Therefore, the

runtime of NETclassify is acceptable.

However, it is very hard to evaluate, whether the nodes in the same group have

similar real-time transport capacity or not. In the further, this problem should be

solved. A possible solution is through some measuring methods of bottleneck

link capacity and available bandwidth in the complex transmission situation to

calculate the available transport capacity of each node. Then with this result we

can know the similarity of a group.

 72 / 75

Chapter 6

Conclusion

In order to offer NETplace two important parameters: expected CPU load on a

node and expected data rates on each data link, an algorithm NETclassify is

designed in this diploma thesis.

NETclassify is consisted of two most important parts, network clustering and

Node Classification Algorithm. In the network clustering, the whole network is

divided into small part networks. Furthermore, before the execution of Node

Classification Algorithm, nodes in each part network are divided into different

classes. And the shortest paths between each pair of communication nodes are

calculated in a transmission cost model, which is the routing information. Then

the Node Classification Algorithm is carried out. Concerning the routing

information in the part network and the different functions of nodes in different

classes, the transport capacity on each node is calculated and in the compare

method, the nodes in the whole network will be composed, if they within the

same class. As the result, each node is assigned to a suitable group. Finally, a

manual inquiry and assignment of the CPU load on a node and data rates on the

outgoing data links of it in each group is given, and according to the manual input,

the CPU load on other nodes and data rates on the outgoing data links of them in

the same group are also automatically assigned.

In the evaluation, we can see that, the runtime of the NETclassify in different

networks is acceptable (less than 2 minutes); even when the number of nodes in

the network is more than 7000 nodes. And the results of the classification

depend strongly on the compare parameter. So if the operator thinks that, the

number of groups is too high, then he could set the compare parameter to a

higher value. Then he can get the desired result.

However, we do not know how to evaluate the similarity of nodes in a group. In

the further, this problem should be solved.

 73 / 75

References

[1] NET-Project. http://net.informatik.uni-stuttgart.de/, 2008.

[2] Andreas Grau, Steffen Maier, Klaus Herrmann, Kurt Rothermel, Time

Jails: A Hybrid Approach to Scalable Network Emulation, 22nd

ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed

Simulation (PADS 2008)

[3] Andreas Grau, Klaus Herrmann, and Kurt Rothermel, NETplace:

Efficient Runtime Minimization of Network Emulation Experiments,

Proceeding of the International Symposium on Performance

Evaluation of Computer and Telecommunication Systems

(SPECTS'10) [Best Paper Award], 2010

[4] Satu Elisa Schaeffer, Graph clustering, Computer Science Review,

Volume 1, Issue 1, August 2007

[5] M. E. J. Newman, Detecting community structure in networks, The

European Physical Journal B - Condensed Matter and Complex

Systems, Vol. 38, No. 2. (25 March 2004)

[6] Matthew J. Rattigan, Marc Maier, David Jensen, Graph Clustering

with Network Structure Indices, ICML '07 Proceedings of the 24th

international conference on Machine learning

[7] M. E. J. Newman and M. Girvan, Finding and evaluating community

structure in networks, Physical review, E, Statistical, nonlinear, and

soft matter physics, Vol. 69, No. 2 Pt 2. (February 2004)

[8] Lei, Tang, Community Detection in Social Networks, http://

www.public.asu.edu/~huanliu/dmml_presentation/2008/Communi

ty % 20Detection%20in%20Social%20Networks.pdf

[9] Aaron Clauset, M. E. J. Newman, and Cristopher Moore, Finding

community structure in very large networks, Physical Review E

(2004), p. 1- 6.

[10] M. E. J. Newman, Analysis of weighted networks, Phys. Rev. E 70,

056131 (2004)

[11] M. Girvan, M.E.J. Newman, Community structure in social and

biological networks, Proceedings of the National Academy of

Sciences, USA 99 (2002) 8271–8276.

[12] P. Elias, A. Feinstein, C.E. Shannon, Note on maximum flow through a

network, IRE Transactions on Information Theory IT2(1956)

117–119.

[13] L.R. Ford Jr., D.R. Fulkerson, Maximum flow through a network,

 74 / 75

Canadian Journal of Mathematics 8 (1956) 399–404.

[14] SNAP, http://snap.stanford.edu/data/index.html

[15] Floyd algorithm, Volker Diekert, from teaching materials of “Entwurf

und Analyse von Algorithmen”, SS 2006

[16] http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorith

m

[17] Brite, http://www.cs.bu.edu/brite/

[18] Blaauw, D.T.; Banerjee, P.; Abraham, J.A., Automatic classification of

node types in switch-level descriptions, Computer Design: VLSI in

Computers and Processors, 1990. ICCD '90. Proceedings., 1990 IEEE

International Conference

[19] Ningning Hu, Peter Steenkiste, Evaluation and Characterization of

Available Bandwidth Probing Techniques, IEEE Journal on Selected

Areas in Communications, Vol. 21 (2003)

[20] Jin Cao; William S. Cleveland; Don X. Sun, Bandwidth Estimation for

Best-Effort Internet Traffic, Statist. Sci. Volume 19, Number 3 (2004),

518-543.

 75 / 75

Statement

I ensure that I have created this document on my own and only used those

external sources in the references.

kai zhou

