Institut fir Parallele und Verteilte Systeme
Universitat Stuttgart
Universitatsstra3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3038

Nutzung einer integrierten
Datenbank zur effizienten
Ausfuhrung von Workflows

Florian Bernd Dominic Wagner

Studiengang: Informatik

Prufer: Dr. habil. Holger Schwarz
Betreuer: Dipl.-Inf. Peter Reimann
begonnen am: 16. September 2010
beendet am: 22. Februar 2011

CR-Klassifikation: D.2.11,H.2.3, H.2.4, H.2.8, H.4 1

Inhaltsverzeichnis

3.

. Einleitung

1.1. Motivation und Aufgaben dieser Arbeit L
1.2. Konventionen und rechtliche Hinweise
1.3. Aufbau dieses Dokuments L o

Grundlagen
2.1. eXtensible Markup Language
2.1.1. XML-Schema
212, XPath.
21.3. XQuery
21.4. pureXML
2.2. Service Oriented Architecture
2.2.1. Webservices L
2.3. Workflowtechnologie,
2.3.1. Workflow Management Systeme
2.3.2. Workflow Sprachen
2.3.2.1. Simple Conceptual Unified Flow Language
2.3.2.2. WS-Business Process Execution Language
2.3.3. Workflow Arten. L L
2.3.3.1. Businesss-WFs 0 .
2.3.3.2. Wissenschaftliche-WFs
2.3.3.3. Extraction Transformation Load-WFs
2.3.3.4. Zusammenfassung
2.4. Datenbanktechnologie,
2.4.1. Datenbanksysteme
24.1.1. IBMDB2
2.4.1.2. PostgreSQL oo o o
2.5. Webservice und Workflow-Technologie fiir Proteinmodellierung
2.5.1. Bioinformatik oo o
2.5.1.1. Anwendungsfall Mustersuche

Workflow Architekturen und Datenbank Integration

3.1.

Workflow Reference Model

13
14
15
15

17
17
20
21
23
23
25
25
27
28
28
30
30
32
32
33
34
34
35
35
37
37

38
39

43
43

3.2. Arbeiten und Ansétze zur Datenbankintegration.
3.2.1. BPEL/SQL Funktionalitat
3.2.2. Process Graph Model Optimierung
3.2.3. Datenbank als Workflowsystem erster Klasse
3.2.4. Zusammenfassung und Abgrenzung zu dieser Arbeit

3.3. Workflowsysteme und Engines
3.3.1. Apache Orchestration Director Engine
332 Taverna.
3.3.3. Trident Scientific Workflow Workbench
3.3.4. WebSphere Process Server,

. Nutzung von Funktionen einer integrierten Workflowdatenbank
4.1. Grundlegendes Konzept
4.2. PushdownKonzepte
4.2.1. WebService-Pushdown
4.2.2. Assignment-Pushdown
4.2.3. ExpressionEvaluation-Pushdown.
4.2.3.1. Condition-Pushdown
4.3. Query-Pushdown L
4.3.1. XPath-Pushdown o
4.3.2. Pushdown-Hierarchie und Architekturmodell

. Apache ODE Architektur im Detail

5.1. Gesamtarchitektur Lo

5.2. Detaillierte Architektur der Runtime und der Data Access Objects
5.2.1. ODERuntime
5.2.2. OModel und BPEL Typsystem
5.2.3. ODE Hibernate DAO und Tabellenschema
5.2.4. BpelRuntimeContext und Aktivitdten
5.2.5. Ausfiihrungsszenario,

5.3. Moglichkeiten fiir eine starkere Nutzung der integrierten Datenbank

. Implementierung des Prototyps
6.1. Verdnderungen an der Architektur von Apache ODE
6.1.1. Anderungen am Datenmodell der integrierten Datenbank
6.1.2. Anderungen in der DAO-Schicht
6.1.2.1. Hauptmethoden von ScopeDAO
6.1.3. Anderungen in der Runtime-Schicht
6.2. Funktionalitit des Prototyps
6.2.1. Realisierte Pushdown-Konzepte
6.2.2. Technische Schwierigkeiten
6.2.2.1. Implementierung fiir PostgreSQL

6.2.3. Weiterfiihrende Modifikationen

. Evaluierung des Prototyps

7.1. Vorstellung der Testfalle
7.2. Testumgebung und Durchfiithrung
7.3. Vorstellung der Messergebnisse

7.3.1. Vorbemerkung zur Vergleichbarkeit der Messungen

7.3.2. Zuweisungen
73.21. IBMDB2,

7.3.22. PostgreSQL,

7.3.3. Bedingungen (ExpressionEvaluation-Pushdown)
7.3.4. INVOKE (Webservice-Pushdown)
7.3.5. Anwendungsfall (Simulationsworkflow)
73.51. IBMDB2,

7.3.5.2. PostgreSQL

7.4. Diskussion der Messergebnisse
7.4.1. Technische Limitierungen

. Konzeptionelle Erweiterungen

8.1. Referenzarchitektur
8.1.1. Referenzarchitektur fiir ein Pushdown WIMS . .
8.1.2. Architekturmodell Hybrides WIMS

8.2. Weiterfithrende Arbeiten

. Zusammenfassung

9.1. Schlussfolgerung
9.2. Ausblick Lo o
9.3. Danksagungen.

. Abkiirzungsverzeichnis

. Entwicklungsumgebung

B.1. Verwendete Software

B.2. Programmierumgebung

B.3. Workflow Erstellung

B.4. Installation des Prototyps
B.4.1. Datenbank Setup
B.4.2. Prototyp Einstellungen

. Anwendungsfall Proteinmodellierung - Mustersuche
C.1. BIIF XML Beispiel
C.2. BPEL Prozess des Anwendungsfalls fiir die Mustersuche

101
101
103
105
105
106
107
112
114
118
120
120
124
127
129

131
131
131
132
133

139
140
140
141

143

145
145
146
146
147

147
148

149

149
151

C.3. WSDL Datei zum Aufruf des BPEL-Prozesses des Anwendungsfalls fiir die
Mustersuche L

Literaturverzeichnis

Abbildungsverzeichnis

2.1.
2.2,

2.3.

3.1.
3.2.

3.3.
3.4
3-5-
3.6.
3.7

4.1.
4.2.
4.3.
4.4.
4.5.

5.1.
5.2.
5-3-
5.4.
5-5-
5.6.

6.1.
6.2.
6.3.

Architektur eines typischen Workflow Management Systems 29
3D Struktur eines Cytochrome P450 Proteins. Rot: « Helix, Gelb: B Faltblatt,
Griin: Schleifen. Quelle: [Wag1o] 39
Graphische Reprasentation des in WS-BPEL definierten Anwendungsfalls zur
Mustersuche in Proteinsequenzen. 41
Das Workflow Referenz Modell - Vgl. [Holgs] 44
Typische Workflow-Engine mit integriertem DBS fiir die Speicherung von
Prozess und WF-Instanz Daten. 45
Ein Beispiel-Workflow mit Inline SQL Aktivitdten. 46
Architektur des SIMPL-Frameworks - Vgl. [RRST10] 48
Funktionsweise des PGM-Optimierers - Vgl. [VSSToy] 49
Optimierung des BPEL/SQL Workflows aus Abb.3.3 50
Klassische WfMS Architektur (a) und DBMS als Erste-Klasse WIMS (b). Vgl.
[AILG8] . . . o o e 51
Uberfithrung eines Workflows in das ORDBM Schema Moose - Vgl. [AILg8] . 52
Das Konzept zur erweiterten Nutzung der integrierten DB 58
Der Webservice-Pushdown 60
Der Query-Pushdown in asynchronem oder synchronem Modus. 62
Hierarchie der Pushdown-Konzepte 63
Softwarearchitektur zur Realisierung der Pushdown-Konzepte 64
Gesamtarchitektur von Apache ODE 66
Bestandteile der Apache ODE Runtime 68
Ausschnitt des OModel als UML Diagramm 70
UML-Diagramm eines Ausschnitts der Apache ODE DAO-Schicht 73
Teile der von Hibernate generierten Apache ODE Tabellenschemata 74
Ausschnitt der Laufzeitkomponenten als UML-Diagramm 75
Verdndertes und vereinfachtes Tabellenschema fiir den Prototyp. 83
UML-Diagramm der modifizierten DAO-Schicht fiir den Prototypen 86
UML-Diagramm der verdnderten Runtime-Schicht des Prototyps 94
. Graphische Reprasentation der BPEL-Workflows fiir die Finzeltests. 102

7.2.
7.3.
7.4.
7.5.
7.6.
7.7.

7.8.

7-9-

7.10.
7.11.

7.12.
7.13.

7.14.
7.15.
7.16.
7.17.
7.18.
7.19.
7.20.
7.21.

7.22.

7.23.

Diagramm zur Vergleichbarkeit der Messungen zwischen Original Apache

ODE und allen anderen Versionen 106
Relative ASSIGN-Zeit iiber Datengrofie fiir Zuweisungen ohne XPath-
Ausdruck (DB2). 108
Relative Laufzeit tiber Datengrofle fiir Zuweisungen ohne XPath-Ausdruck
(DB2). . . . e e e e 108
Relative ASSIGN-Zeit iiber Datengrofie fiir Zuweisungen einfacher XPath-
Selektionen (DB2). 109
Relative Laufzeit iiber Datengrofie fiir Zuweisungen einfacher XPath-
Selektionen (DB2). e 110
Relative ASSIGN-Zeit iiber Datengrofse fiir Zuweisungen komplexer XPath-
Ausdriicke (DB2). 110
Relative Laufzeit tiber Datengrofie fiir Zuweisungen komplexer XPath-
Ausdriicke (DB2). 111

Relative kombinierte ASSIGN-Zeit iiber Datengrofle fiir Zuweisungen (DB2). . 111
Relative ASSIGN-Zeit iiber Datengrofie fiir Zuweisungen ohne XPath-

Ausdruck (PostgreSQL). oo 112
Relative ASSIGN-Zeit iiber Datengrofie fiir Zuweisungen einfacher XPath-
Selektionen (PostgreSQL). 113

Relative kombinierte Laufzeit {iber Datengrofse fiir Zuweisungen (PostgreSQL).113
Relative IF-Zeit tiber Datengrofie fiir die Auswertung einfacher XPath-

Ausdriicke (DB2). 115
Relative Laufzeit {iber Datengrofie fiir die Auswertung einfacher XPath-
Ausdriicke (DB2). 115
Relative IF-Zeit {iber Datengrofle fiir die Auswertung komplexer XPath-
Ausdriicke (DB2). 116
Relative IF-Zeit tiber Datengrofe fiir die parallele Auswertung einfacher und
komplexer XPath-Ausdriicke (DB2). 117
Relative Gesamtlaufzeit iiber Datengrofie fiir die parallele Auswertung einfa-
cher und komplexer XPath-Ausdriicke (DB2). 117
Relative INVOKE-Zeit iiber Datengrofie fiir den Aufruf einer WS-Operation
(DB2). . . . e e e e e 119
Relative Instanzlaufzeit iiber Datengrofie fiir den Aufruf einer WS-Operation
(DB2). e 119
Relative ASSIGN-Zeit tiber Anzahl Schleifendurchldufe fiir den Anwendungs-
fall (DB2). e e e e 121
Relative IF-Zeit tiber Anzahl Schleifendurchldufe fiir den Anwendungsfall
(DB2). e 122
Relative Laufzeit tiber Anzahl Schleifendurchldufe fiir den Anwendungsfall
(DB2). . . . e e e e 123

Absoluter Hauptspeicherverbrauch tiber Anzahl Schleifendurchlédufe fiir den
Anwendungsfall (DB2). 123

7.24.
7.25.
7.26.
7.27.

7.28.

8.1.
8.2.

Relative Laufzeit und relativer Hauptspeicherverbrauch bei paralleler Ausfiih-
rung von 10 Instanzen des Anwendungsfalls mit 40 Iterationen (DB2).
Relative Gesamtlaufzeit der parallelen und sequentiellen Ausfithrung von 10
Instanzen des Anwendungsfalls mit 40 Iterationen (DB2).
Relative ASSIGN-Zeit tiber Anzahl Schleifendurchldufe fiir den Anwendungs-
fall (PostgreSQL).
Relative Laufzeit einer Instanz iiber Anzahl Schleifendurchldufe fiir den An-
wendungsfall (PostgreSQL). L o L
Absoluter Hauptspeicherverbrauch tiber Anzahl Schleifendurchlédufe fiir den
Anwendungsfall (PostgreSQL). o L L.

Referenzarchitektur fiir ein Pushdown WEMS
Klassische WfMS Architektur (a), DBMS als Erste-Klasse WfMS (b) und der
Hybride Ansatz (c). Vgl. [AIL98]

. 127

Tabellenverzeichnis

10

2.1.
2.2,

2.3.
2.4.

6.1.
6.2.

6.3.
7.1.
7.2.

7-3

Strukturgrad von Informationen und typische Vertreter dieser Klassen. 18

Die XPath-Achsen mit Beschreibung und abkiirzender Schreibweise. 22

Die XPath-Knotentests mit Beschreibung. 22

Vergleich der Eigenschaften und Anwendungsgebiete der verschiedenen Arten

von Workflows. 35
. Mogliche Auspragungen des Query-Pushdowns. 61

. Die BPEL Variablen Typen, ihre OModel Représentation und die in der Laufzeit

verwendeten Wrapper Elemente. 71

. WS-BPEL Aktivititen und ihre moglichen Optimierungen durch die

Pushdown-Konzepte aus Kapitel 4.. 79

Auswahl und Begriindung der verwendeten Komponenten fiir den Prototyp. . 82
Aufrufhierarchie zwischen den XPath-Pushdown Methoden aus ScopeFrame,

BpelRuntimeContext und ScopeDAO. 93
Alle ODE Klassen, die potentiell von den Pushdown-Konzepten Gebrauch
machen kénnen und der Stand ihrer Implementierung. 95
Testfille der Einzelmessungen im Uberblick. 101
XPath-Ausdriicke verschiedener Komplexitit fiir die Messung der Zuweisung
(ASSIGN). 107
XPath-Ausdriicke verschiedener Komplexitdt fiir die Messung der Bedin-
gungsauswertung (IF). 114

Verzeichnis der Listings

2.1.
2.2,

2.3.
2.4.

2.5.

2.6.
2.7.

5.1.

5.2.
6.1.
6.2.

6.3.
6.4.

6.5.
6.6.

C1.
C.a.
. Die WSDL Datei zum Aufruf des BPEL-Prozesses des Anwendungsfalls fiir

Ein wohlgeformtes XML-Dokument, welches alle XML-Knotentypen beinhaltet.
Ein XML-Schema Dokument, welches die Struktur des XML Dokuments aus

Listing 2.1 definjert. L L o
XQuery-Anfrage an DB2 mit Zugriff auf ein XML-Feld einer relationalen Tabelle.
Ein pureXML-Ausdruck, der ein bestehendes, in einem XML-Feld abgelegtes,

XML-Dokument modifiziert.
Ein pureXML-Ausdruck, der ein bestehendes XML-Dokument unter Verwen-

dung des Inhalt eines zweiten XML-Dokuments modifiziert.
Eine SOAP Nachricht aus dem Anwendungsfall fiir Proteinmmodellierung . .
Proteinsequenz des Proteins aus Abb. 2.2 als Zeichenkette. Quelle: [Wag1o] . .

Beispiel fiir die Annotation einer Java Klasse, die von Hibernate synchronisiert
werdensoll.
Pseudoquellcode der Ausfithrung des ASSIGN-Beispiels fiir Apache ODE.

SQL/pureXML Query fiir den WS-Pushdown.
SQL/pureXML Query fiir den synchronen XPath-Pushdown innerhalb Zu-
weisungen von Variablen. o o000
Beispielinstanz des SQL/pureXML Query aus Listing 6.2.
Aus diesen vier Teil-Queries wird das SQL/pureXML Query fiir den synchro-
nen XPath-Ausdruck-Pushdown aufgebaut..
Beispiel SQL/pureXML Query fiir den synchronen XPath-Ausdruck-Pushdown.
Beispiel eines SQL/pureXML Query fiir den asynchronen XPath-Pushdown
von einem XML Element Typ an einen XSD Einfachen Typ, der initialisiert ist.

BIIF XML Beispiel (gekiirzt)
BPEL Prozess des Anwendungsfalls fiir die Mustersuche

die Mustersuche.

24

24
26

72

- 77

88
89

89
90

11

1. Einleitung

Integration ist eines der wichtigsten Themen in unserer heutigen Welt. Von einem soziolo-
gischen Standpunkt aus betrachtet riicken Menschen aus der ganzen Welt jeden Tag ndher
zusammen. Dies fithrt manchmal zu Missverstdndnissen und kulturellen Konflikten. Der
einzige Ausweg besteht darin, miteinander zu kommunizieren und die Lebensweise und
Fahigkeiten der anderen zu respektieren. Diese Globalisierung wird nicht nur durch den
immer giinstiger werdenden Massenverkehr oder die tiberall verfiigbare Telekommunikation
angetrieben, auch die Informationstechnologie tragt einen grofsen Teil dazu bei und ist
mit unserem téglichen Leben, dem Massenverkehr und der Telekommunikation verwoben
wie kaum eine andere Technologie je zuvor. Mit dem omnipréasenten Internet konnen wir
Informationen und Menschen auf der ganzen Welt, ohne eine fiir den Menschen spiirbare
Zeitverzogerung, austauschen und erreichen. Unternehmen und wissenschaftliche Einrich-
tungen, die tiber die ganze Welt verstreut sind, konnen ihre Daten teilen und haben dadurch
die Moglichkeit global zusammen zu arbeiten. Es konnen Dienstleistungen angeboten wer-
den, die vor 20 Jahren noch unvorstellbar waren und Daten wissenschaftlicher Experimente
zeitnah ausgewertet werden. Die riesigen Messdaten des Compact Muon Solenoid (CMS),
der Partikel Detektor des Large Hadron Colliders (LHC) in Cern, werden beispielsweise
durch ein weltweites Netz von Rechnern ausgewertet [DBG'03].

Aber wie kam es tiberhaupt dazu und was bedeutet es Daten zu speichern und auszut-
auschen? - Nach den 1950ern konnte man sehr gut wissenschaftliche Probleme sowie
betriebswirtschaftliche Berechnungen, z.B. Abrechnungen, mit Computern durchfiihren.
Im Zuge der Softwarekrise in den 1970ern, kam die Notwendigkeit auf, immer grofiere
Datenmengen getrennt von den Anwendungen abzuspeichern bzw. iiberhaupt Systeme
zu besitzen, die grofie Datenmengen verwalten konnen. Aus dieser Notwendigkeit heraus
sind die heutigen Datenbanksysteme entstanden, die Funktionen zum Speichern und Laden
von Daten anbieten und die Verwaltung, wie diese Daten physikalisch auf Bandern und
Festplatten gespeichert werden, iibernehmen. Da die Datenbanktechnologie nun schon fast
ein halbes Jahrhundert alt ist, ist sie eine ausgereifte und anerkannte Technologie innerhalb
der Informatik.

Die Idee verschiedene Computer miteinander zu verbinden entstand ebenfalls in den 1970ern,
hauptsdchlich vom U.S. Militdr vorangetrieben, die Nachrichten und Informationen zwischen
ihren Auflenposten austauschen wollten. Dieses Netzwerk wurde in den 198ocern erweitert,
indem Universitdten aller Welt angeschlossen wurden, in Deutschland war ein Server der
Universitdt Karlsruhe der Erste, der mit dem sog. Internet verbunden war. In den 1990ern

13

1. Einleitung

wurde das Internet 6ffentlich und innerhalb der letzten 10 Jahre haben sogar kleine Firmen
und Privathaushalte mindestens einen Computer oder ein elektronisches Geréat, welches mit
dem Internet verbunden ist.

Somit besitzen wir heutzutage ein riesiges, weltumspannendes, verteiltes und heterogenes
Computersystem und eine Vielzahl von Anwendungen, die potentiell miteinander verbunden
sind. Dadurch kann es einfacher, schneller und giinstiger sein, neue Anwendungen durch
eine Kombination bestehender Anwendungen zu realisieren. Jedoch ist die Starke dieser
verteilten Applikationen zugleich auch ihre grofste Schwiche. Das Hauptproblem besteht
darin, Mittel und Wege zu finden, diese verstreuten Anwendungen in einer einheitlichen
Art und Weise miteinander arbeiten bzw. kommunizieren zu lassen. Eine generelle Architek-
turbeschreibung, welche die nétigen Voraussetzungen fiir ein solches System beschreibt, ist
die Service Oriented Architecture (SOA) [WCL"o05]. Eine allgemein anerkannte Realisierung
fiir eine SOA sind Webservices (WSs) [WCL"05] und Workflows (WFs) [FLoo]. Mit der
Workflowsprache Web Services- Business Process Execution Language (WS-BPEL) [OASo7]
kann man Prozesse (z.B. Geschiftsprozesse) durch Orchestrierung einzelner WSs modellieren
und ausfiihren. Somit wird die Erstellung und die Ausfithrung von WFs, die Stabilitdat und
die Geschwindigkeit der zugrunde liegenden WF-Management Systeme (WfMSe) immer
wichtiger.

1.1. Motivation und Aufgaben dieser Arbeit

Nahezu alle WfMSe verwenden ein Datenbanksystem (DBS) um WEF- und Prozess-Daten (z.B.
Variableninhalte, Nachrichten an und von WSs und Metainformationen zu Ausfiithrungen) zu
speichern und persistent zu halten. Da Datenbanksysteme eine ausgereifte und skalierbare
Technologie darstellen, ist es von Interesse, ihre Moglichkeiten und Funktionen auszunut-
zen, um die Arbeit von WfMSen zu verbessern. Ansatzpunkte sind die Verbesserung der
Ausfiihrungszeit von Workflow-Instanzen, ein geringer Hauptspeicherverbrauch und die
Verbesserung der Stabilitiat sowie des Durchsatzes bei paralleler Ausfiihrung von Instanzen.
In dieser Arbeit soll gepriift werden, welche Moglichkeiten existieren, ein DBS stiarker an ein
WIMS anzubinden und ob dies die Leistungsfahigkeit des WfMSs erhoht und eine messbare
Verbesserung der angesprochenen Eigenschaften zur Folge hat.

Hierbei konzentrieren wir uns auf die Verbesserung der Variablenzuweisung, der Bedin-
gungsauswertung sowie der WS-Aufrufe der Workflowsprache WS-BPEL. Diese sind die
meist verwendeten BPEL-Aktivititen und somit wichtige Optimierungskandidaten. Trotz der
Orientierung von WS-BPEL auf Geschaftsprozesse, ist ein aktueller Forschungsschwerpunkt
WS-BPEL ebenfalls fiir wissenschaftliche (eScience) WFs zu verwenden [Sloo7] [GSK T 11].
Insbesondere um die Beschreibung aller WE-Arten zu vereinheitlichen. Wissenschaftliche
WFs verarbeiten typischerweise grofiere Datenmengen innerhalb des WfMSs als WFs fiir Ge-
schéftsprozesse, weshalb die Performanz und Stabilitit der genannten WS-BPEL Aktivitaten

14

1.2. Konventionen und rechtliche Hinweise

ebenfalls von grofsem Interesse sind. Um einen Prototypen entwickeln zu kdnnen, greifen wir
auf die WS-BPEL OpenSource WF-Engine Apache Orchestration Director Engine® zurtick.

1.2. Konventionen und rechtliche Hinweise

Begriffe, fiir die eine abkiirzende Schreibweise existiert, werden bei der erstmaligen Verwen-
dung ausgeschrieben und dahinter innerhalb runder Klammern die Abkiirzung angegeben.
Zusatzlich wird ein Abkiirzungsverzeichnis im Anhang A (Seite 143) angegeben.

In dieser Arbeit kam Software zum Einsatz, die nicht 6ffentlich zur Verfligung steht und fiir
die Lizenzen erworben werden miissen. Fiir den Einsatz des in dieser Arbeit entstandenen
Prototyps zusammen mit bestimmten Produkten, muss eine entsprechende Lizenz erworben
werden. Dies betrifft insbesondere die in der nachfolgenden Liste genannten Produkte:

e IBM DB2 UDB Vg.7

Diese Arbeit enthilt eine Datenbank-Auswertung. Der Autor dieser Arbeit hat die Vorberei-
tung und Ausfiithrung dieser Auswertung mit besonderer Vorsicht durchgefiihrt. Trotzdem
kann der Autor mogliche Fehler, die hierbei entstanden sind, nicht ausschlieffen. Aus diesem
Grund tibernimmt der Autor keine Verantwortung fiir die Korrektheit und Vollstandigkeit
der gesamten Auswertung und der daraus geschlossenen Erkenntnisse.

1.3. Aufbau dieses Dokuments

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Grundlagen: Stellt wichtige informationstechnische Grundlagen zum Verstand-
nis dieser Arbeit vor.

Kapitel 3 — Workflow Architekturen und Datenbank Integration: Gibt einen Einblick in die
Archtitektur von WfMSen und stellt verwandte Arbeiten und Themen vor.

Kapitel 4 — Nutzung von Funktionen einer integrierten Workflowdatenbank: Befasst sich
mit in dieser Arbeit entstandenen Konzepten sowie Konzepte aus der Literatur, die
eine stiarkere Integration der integrierten DB eines WfMSs ermoglichen.

Kapitel 5 — Apache ODE Architektur im Detail: Beleuchtet die Teile der Softwarearchitektur
von Apache ODE, die fiir die Implementierung des Prototyps wichtig sind.

TApache Orchestration Director Engine http://ode.apache.org

15

1. Einleitung

Kapitel 6 — Implementierung des Prototyps: Stellt Details zur Implementierung des Proto-
typs vor.

Kapitel 7 — Evaluierung des Prototyps: Dieses Kapitel beinhaltet die Laufzeit- und Haupt-
speichermessungen zum Prototyp sowie eine Diskussion der Ergebnisse.

Kapitel 8 — Konzeptionelle Erweiterungen: Bettet die Ergebnisse dieser Arbeit in einen gro-
Beren Kontext ein und stellt weiterfithrende Arbeiten vor.

Kapitel 9 — Zusammenfassung: Fasst die Arbeit, ihre Ergebnisse und weiterfithrende Arbei-
ten zusammen.

16

2. Grundlagen

In diesem Kaptitel werden wir den technischen sowie wissenschaftlichen Hintergrund lie-
fern, der notig ist, um diese Arbeit nachzuvollziehen. Der erste Abschnitt wird sich mit der
eXtensible Markup Language (XML) und Techniken befassen diese Daten zu beschreiben
und zu verarbeiten. Der zweite Abschnitt befasst sich mit der in der Einleitung angespro-
chenen SOA und Webservices. Der dritte Abschnitt widmet sich den Workflowsprachen,
insbesondere WS-BPEL. Der vierte Abschnitt soll eine kurze Zusammenfassung der Daten-
banktechnologie geben und stellt die in dieser Arbeit verwendeten Datenbanksysteme und
ihre Funktionalitdten, insbesondere beziiglich XML, kurz vor. Der fiinfte und letzte Abschnitt
dieses Kapitels stellt den fiir die Evaluation verwendeten Workflow-Anwendungsfall vor.

2.1. eXtensible Markup Language

Die eXtensible Markup Language (XML) [W3Co8] ist eine sog. Markup-Sprache. Markup-
Sprachen zeichnen sich dadurch aus, dass Informationen mit ihren zugehorigen Metainfor-
mationen verkntipft werden. In XML geschieht dies tiber die sog. Tags, diese beherbergen
die Metainformation in ihrem Namen und umklammern die damit verbundene Information.
Das 6ffnende Tag wird in spitzen Klammern geschrieben <information>, das schlieffende Tag
ebenfalls in spitzen Klammern, wobei noch ein Querstrich eingefiihrt wird </information>,
dazwischen befindet sich die Information (<information>Hier ist die Information</information>).
Die Information kann sich aus Text, sowie neuen Tags zusammensetzen. Somit ldsst sich
XML z.B. als Baumstruktur entsprechend dem Document Object Model (DOM) [w3ca]
verarbeiten.

In der Tat existieren Verwandschaftsbeziehungen zur Hyper Text Markup Language (HTML).
Im Gegensatz zu HTML, wo jedes Tag eine bestimmte Bedeutung bei der graphischen
Darstellung in einem Webbrowser besitzt, werden die Tags und deren Bedeutung in XML
vom Benutzer vorgegeben bzw. in einer Spezifikationssprache definiert (Document Type
Definition (DTD) [W3Cb] oder XML-Schema [Thoo4]). Der tatsdchliche Vorgénger von XML
ist die Standard Generalized Markup Language (SGML) [sgm86], welche auch das DTD
Format eingefiihrt hat. Ein wohlgeformtes XML-Dokument besitzt einen einzigen Wurzel-
knoten (also ein o6ffnendes und schlieffendes Tag des gleichen Namens) und zu jedem
geoffneten Tag existiert ein schlieflendes Tag auf gleicher Tiefe des Baumes. Ein Beispiel fiir
ein wohlgeformtes XML-Dokument ist in Listing 2.1 zu sehen.

17

2. Grundlagen

Im Gegensatz zu einer Tabelle, wie man sie von relationalen Datenbanken her kennt, ist die
Metainformation von der Information selbst nicht getrennt und ist somit fiir den Menschen
besser lesbar. Trotzdem ist ein solches Dokument durch die vorhandenen Metainformation
von Programmen immer noch einfach, im Gegensatz zu einem geschriebenen Text, zu ver-
arbeiten. Ein weit wichtigerer Punkt ist jedoch, dass es jederzeit moglich ist, ein einzelnes
Dokument um neue Metainformationen, durch zusatzliche oder neue Tags, und Informa-
tionen zu erweitern, ohne dass darauf arbeitende Programme gedndert werden mdiissen.
Durch diese und weitere Eigenschaften, gehort XML zu den Semi-Strukturieren Daten (siehe
Tabelle 2.1).

Typ Typische Vertreter Anderbarkeit der Struktur
Strukturierte Daten Datenbanktabellen Einheitlich fiir alle Datenséatze
Semi-Strukturierte Daten XML Jederzeit fiir einzelne Dokumente
Unstrukturierte Daten Textdokumente keine Einschrankungen

Tabelle 2.1.: Strukturgrad von Informationen und typische Vertreter dieser Klassen.

XML Knoten

Im Folgenden stellen wir kurz alle XML Knotentypen vor. Alle genannten Knoten finden
sich ebenfalls in Listing 2.1 wieder:

Verarbeitungsanweisungen (engl. processing instruction) beinhalten Informationen wie das
Dokument zu verarbeiten ist, z.B. ob es sich um ein HTML oder XML Dokument
handelt und welche Zeichenkodierung (UTF-8, Latin1 etc.) verwendet wurde. Die-
ser Knoten wird durch einen Block aus Spitzen-Klammern und ein Fragezeichen
gekennzeichnet. <?xml version="1.0"encoding="UTF-8"?>

Kommentare beschreiben zusitzliche Informationen die fiir das menschliche Verstandnis
von Interesse sind. <!-information about the author —>

Text Knoten beinhalten Text z.B. Florian Wagner

Element Knoten werden durch Tags gedffnet und geschlossen und konnen Textknoten
und/oder weitere Elementknoten enthalten. <exp:name>Florian Wagner</exp:name>

Attribut Knoten konnen zusatzliche Informationen beherbergen, die an ein Element gebun-
den werden konnen, ohne hierfiir ein Unterknoten zu definieren. Dies ist insbesondere
dann niitzlich, falls diese Information innerhalb der Struktur nur einmalig vorkommt.
Vergleichen wir hierzu in Listing 2.1, dass ein title Attribut fiir den document Knoten
nicht ausreicht, um mehrere Titel in verschiedenen Sprachen darzustellen. Attribute
werden innerhalb eines Tags aufgenommen. <exp:document type="thesis”>

18

1
2

O N VU1 R~ W

10

11
12

13

2.1. eXtensible Markup Language

Gemischter Inhalt Dies ist eine spezielle Form, bei dem im Unterbaum eines Elementkno-
tens Text sowie weitere Elementknoten vorkommen. Dies ist im document Konten in
Listing 2.1 veranschaulicht.

<?xml version="1.0" encoding="UTF-8"7>
<exp:thesis xmlns:exp="http://www.flowsoft.de/thesis/xml">
<!-- information about the author -->
<exp:author>
<exp:name>Florian Wagner</exp:name>
</exp:author>
<!-- information about document -->
<exp:document type="thesis">
<exp:title lang="en">Exploiting an integrated database system to improve
workflow execution</exp:title>
<exp:title lang="de">Nutzung einer integrierten Datenbank zur effizienten
Ausfiihrung von Workflows</exp:title>
Diese Arbeit befasst sich mit Workflow- und Datenbanksystemen.
</exp:document>
</exp:thesis>

Listing 2.1: Ein wohlgeformtes XML-Dokument, welches alle XML-Knotentypen beinhaltet.

XML Namensraume

Namensraume (engl. namespaces) wurden eingefiihrt, um zwischen gleichen Tag-Namen
mit unterschiedlicher Semantik unterscheiden zu konnen. Vorallem beim Datenaustausch
zwischen Unternehmen oder wissenschaftlichen Einrichtungen konnen potentiell XML
Strukturen und Tagnamen identisch sein, sich iiberschneiden und im schlimmsten Fall eine
andere Bedeutung besitzen. Um wéhrend des Auslesens der Informationen, z.B. durch
ein Programm, zwischen der richtigen Semantik unterscheiden zu kénnen, kann jedem
Elementknoten ein Namensraum zugeordnet werden, der somit dessen Semantik festlegt.
Die Spezifikation dieser Semantik, z.B. in Form von DTD, XML-Schema oder in Form eines
Textdokuments, wird diesem Namensraum zugeordnet. Dariiber hinaus ist es auch moglich
innerhalb eines XML Dokuments Elemente verschiedener Namensraume zu verwenden.

Ein Namensraum wird durch einen Uniform Resource Identifier (URI) beschrieben, oftmals
werden hierzu Uniform Resource Locations (URL) verwendet z.B. eine HTTP Adresse. Diese
muss allerdings nicht zwingend existieren, es ist aber eine giangige Praxis hinter dieser
URL die XML Spezifikation abzulegen. Typischerweise werden die Namensrdume eines
XML Dokuments im Wurzelknoten tiber die Attribute xmlns gefolgt von einem Doppel-
punkt und dem zugeordneten Prifix angegeben. In Listing 2.1 ist also der Namensraum
http:/fwww.flowsoft.de/thesis/xml an den Préfix exp gebunden. Die Knoten dieses Namensraums
werden dann durch das Prifix vor ihren Namen (durch einen Doppelpunkt getrennt) zu

19

QWO O\ U1~ W N R

2. Grundlagen

diesem zugeordnet (vgl. <exp:author>). Es kann auch ein Standard Namensraum angegeben
werden, indem lediglich das Attribut xmins ohne Prifixangabe verwendet wird. Knoten ohne
Prafix gehoren dann automatisch zu diesem Namensraum.

Da die Nutzung von Namensrdaumen oft zu Verwirrungen fiihrt, soll hier angemerkt sein,
dass ein Préfix unabhidngig vom Namensraum ist. Dies bedeutet, dass der Prafix nur eine
abkiirzende Schreibweise fiir das jeweils aktuelle Dokument darstellt und in einem zweiten
Dokument anders heifien kann. Ebenfalls kann innerhalb einer XPath oder XQuery Anfrage
(siehe Kapitel 2.1.2 und 2.1.3) der Namensraum an einen dritten Prafix gebunden werden.
Wichtig ist nur, dass die Namensraum URI der Knoten identisch ist, falls sie zum gleichen
Namensraum gehoren.

2.1.1. XML-Schema

XML-Schema [Thoog] ist eine XML Definitionssprache, die in sich selbst definiert und im
XML Format geschrieben ist. Dies ist einer der Unterschiede zur DTD, die ein eigenes
Format besitzt. Ebenfalls konnen komplexere Strukturen als mit DTD beschrieben werden.
Das Hauptmerkmal von XML-Schema liegt darin, dass man eine genaue Typisierung von
Datenfeldern vornehmen kann. Es wird zwischen vordefinierten Basistypen (wie String,
Integer, Boolean etc.) und vom Benutzer definierten, einfachen sowie komplexen Typen
unterschieden. Uber die komplexen Typen kann die Struktur eines XML Dokuments
spezifiziert werden, durch das Einschranken von Basistypen zu simplen Typen kénnen z.B.
Enumerationen oder Zahlenrdume definiert werden. Ein XML Dokument wird als valide
bezeichnet, falls es wohlgeformt ist (vgl. Kapitel 2.1) und die Spezifikation erfiillt. Das
XML-Schema, welches die Struktur des XML Dokument aus Listing 2.1 spezifiziert ist in
Listing 2.2 zu sehen.

<xsd:schema targetNamespace="http://www.flowsoft.de/thesis/xml"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- Element definitions -->
<xsd:element name="thesis" type="thesisType"/>

<!-- Type definitions -->
<xsd:complexType name="thesisType">
<xsd:sequence>
<xsd:element name="author" type='"authorType" minOccurs="0"
max0Occurs="unbounded" />
<xsd:element name="document" type="documentType" minOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="authorType">

<xsd:sequence>
<xsd:element name="name" type="xsd:string" minOccurs="1"/>

20

2.1. eXtensible Markup Language

<xsd:element name="adress" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="documentType" mixed="true">
<xsd:sequence>
<xsd:element name="title" type="titleType" minOccurs="1"
max0ccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="type" type="documentTypes'" use="optional" default="no'"/>
</xsd:complexType>

<xsd:complexType name="titleType" mixed="true">
<xsd:attribute name="lang" type="xsd:string" use="required" default="no"/>
</xsd:complexType>

<xsd:simpleType name="documentTypes'>
<xsd:restriction base="xsd:string">
<xsd:pattern value="thesis|paper|manual"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Listing 2.2: Ein XML-Schema Dokument, welches die Struktur des XML Dokuments aus
Listing 2.1 definiert.

2.1.2. XPath

Mit XPath [W3Cg9] ist es unter anderem moglich, einen hierarchischen Pfad innerhalb eines
XML Dokuments zu durchlaufen und Unter-, Text-, Attribut- und Kommentarknoten sowie
Verarbeitungsanweisungen ausgeben zu lassen. Ein einfacher Pfadausdruck sieht einem
absoluten Verzeichnispfad eines Unix Betriebssystems sehr dhnlich, welches ebenfalls in einer
hierarchischen Baumstruktur dargestellt wird. XPath besitzt eine Vielzahl an Moglichkeiten
um Vater-, Kind- und Geschwisterknoten auszuwéhlen, dies geschieht iiber die sog. Achsen
(engl. axes). Man kann fiir jede Hierarchiestufe einen sogenannten Lokalisierungsschritt
durchfiihren. Dieser besteht aus einem einleitendem Querstrich, der Angabe der Achse,
einem doppelten Doppelpunkt, einen Knotentest und aus einem optionalen Préadikats,
welches innerhalb eckiger Klammern angegeben wird. Diese Lokalisierungsschritte konnen
konkateniert werden. Ein Lokaliserungsschritt sieht also folgendermafsen aus:

/Achse: :Knotentest [Pradikat]

Je nach XPath-Implementierung ist es erforderlich bzw. moglich Namensraume anzugeben
und an Prifixe zu binden. Der Préfix wird dann wie im XML Dokument beim Knoten-
test durch einen Doppelpunkt getrennt vom Knotennamen angegeben. Einige wichtige

21

2. Grundlagen

Achsen werden in Tabelle 2.2, die Knotentests in Tabelle 2.3, inklusive ihrer abkiirzenden
Schreibweisen angegeben.

Achse selektiert Abkiirzung
child: alle direkten Unterknoten wird weggelassen
parent:: den Elternknoten

descendant-or-self:: den aktuellen Knoten und alle Unterknoten //
attribute:: alle Attributknoten @
namespace:: alle Namensraumknoten

Tabelle 2.2.: Die XPath-Achsen mit Beschreibung und abkiirzender Schreibweise.

Knotentest selektiert
* alle Knoten
Knotennamen benannten Knoten
text() Textknoten
comment() Kommentarknoten

processing-instruction() Verarbeitunsanweisungskonten

Tabelle 2.3.: Die XPath-Knotentests mit Beschreibung.

Um die Funktionsweise zu verdeutlichen, werden nun zwei Ausdriicke vorgestellt, mit
denen Information aus dem XML Dokument aus Listing 2.1 extrahiert werden konnen. Der
Folgende XPath-Ausdruck liefert den Name des Autors zuritick:

/child: :thesis/child: :author/child: :name/text ()
Der zweite XPath-Ausdruck liefert den deutschen Titel zurtick:
/child: :thesis/child: :document/child: :title[attribute::lang="de"]/text ()

Um die Anwendung dieser Ausdriicke zu vereinfachen wurden abkiirzende Schreibweisen
eingefiihrt, die in der Tabelle 2.2 aufgefiihrt sind. Somit lassen sich beide XPath-Ausdrucke
vereinfachen zu:

/thesis/author/name/text ()
/thesis/document/title[@lang="de"]/text ()

Des Weiteren bietet XPath eine Reihe von Funktionen an, um Zeichenketten zu manipulieren
und zu verarbeiten. Es ist zudem moglich mathematische Ausdriicke berechnen zu lassen
und diese z.B. innerhalb eines Pradikats einzusetzen. Durch das Einfithren von Variablen

22

2.1. eXtensible Markup Language

konnen ebenfalls Ausdriicke evaluiert werden, die auf mehrere XML Dokumente verweisen.
Fiir weitergehende Informationen tiber XPath und seine Funktionen empfehlen wir die
XPath Spezifikation vom W3C [W3Cgg].

2.1.3. XQuery

XPath stellt eine Moglichkeit dar, Knoten und Informationen aus XML Dokumenten zu
extrahieren. Allerdings ist es nicht ohne Weiteres moglich, Informationen aus mehreren
XML Dokumenten zu aggregieren oder Berechnungen auf mehreren, sich wiederholenden
Knoten innerhalb eines XML Dokumentes durchzufiihren. Um dies zu bewerkstelligen wurde
XQuery [W3Co7b] eingefiihrt, das von einer ganzen Reihe an Query Sprachen, insbesondere
XPath und SQL, inspiriert wurde. Das Hauptziel ist es, XML Dokumente in einer Mengen-
orientierten Weise zu verarbeiten, wie es z.B. SQL bei relationalen Datenbanken erlaubt. Das
zugrunde liegende Datenmodell besteht aus den Knotentypen, die wir von XML und XPath
her kennen (vgl. Kapitel 2.1), Sequenzen (fiir die Mengenverarbeitung), atomaren Werten und
Ausdriicken. Mit XQuery ist es so moglich einen Verbund (Join) zwischen XML Dokumenten
herzustellen und deren Informationen miteinander zu verkniipfen (entsprechend einem
Join auf relationalen Tabellen). Die Syntax von XQuery heifst FLWOR was fiir For Let Where
Orderby Return steht und ist angelehnt an die SFW (Select From Where) Syntax von SQL.
Der nachfolgende XQuery-Ausdruck liefert die Titel aus dem Beispiel in Listing 2.1 in
alphabetischer Reihenfolge zurtick:

for $x in fn:doc("XMLEXAMPLE.xml")/thesis/document
order by $x/title
return {$x/title/text ()}

Fiir weitergehende Informationen tiber XQuery und seine Funktionen empfehlen wir die
XQuery Spezifikation vom W3C [W3Coyb].

2.1.4. pureXML

Das DBS DB2 von IBM verwendet die eigene XML-Verarbeitungssprache pureXML [Cheo7y].
PureXML unterstiitzt die XQuery- und somit auch die XPath-Spezifikation. Es ist moglich
diese XQuery-Anfragen in SQL-Ausdriicke einzubetten, genauso ist es umgekehrt moglich
in XQuery-Anfragen relationale Daten einzubinden. Fiir die Einbettung von XQuery
in SQL existiert die SQL-Funktion XMLQUERY, fiir die Einbettung von SQL oder den
Zugriff auf ein relationales XML-Feld innerhalb eines XQuery-Ausdrucks existieren die
XQuery-Erweiterungsfuntionen dbz-fn:xmlcolumn und db2-fn:sqlquery. Soll ein nativer
XQuery-Ausdruck anstatt einem SQL-Ausdruck verarbeitet werden, reicht die Angabe des
Schliisselworts xquery vor dem eigentlichen XQuery-Ausdruck. Das XQuery-Beispiel aus

23

N

AU W IN R

AU W N R

2. Grundlagen

Kapitel 2.1.3 ist als Anfrage an die DB2 in Listing 2.3 dargestellt.

xquery for $x in db2-fn:sqlquery("select xmlfeld from daten where id = 1")/thesis/document
order by $x/title
return {$x/title/text()}

Listing 2.3: XQuery-Anfrage an DB2 mit Zugriff auf ein XML-Feld einer relationalen Tabelle.

Dartiber hinaus stellt pureXML eine eigene, in XQuery eingebettete Syntax vor, mit der XML
Manipulationen moglich sind. Bisher existiert hierzu noch kein Standard, allerdings gibt
es einen Kandidaten fiir die sog. XQuery Update Facility [W3Cog], deren Syntax teilweise
dhnlich zu der von pureXML ist. Die Syntax fiir die Manipulation in pureXML ist in Listing
2.4 zu sehen. Der urspriingliche Wert des XML Dokuments wird mit der Variable $new
verkniipft und anschlieffend durch die Anweisung modify do replace value of der Inhalt des in
XPath angegebenen XML-Elements ($new/thesis/author/name) durch die Zeichenkette ,Florian
BD Wagner” ersetzt. Der return Befehl gibt das veranderte Dokument zurtick.

update daten set xmlfeld = XMLQUERY(’
copy $new := $XMLFELD
modify do replace value of $new/thesis/author/name
with "Florian BD Wagner"
return $new’)
where id = 1

Listing 2.4: Ein pureXML-Ausdruck, der ein bestehendes, in einem XML-Feld abgelegtes,
XML-Dokument modifiziert.

Auf die Spalte xmlfeld (vom Typ XML) der Tabelle daten kann innerhalb des pureXML-
Ausdrucks tiber den grofs geschriebenen Namen $XMLFELD zugegriffen werden. Anstelle
von do replace konnen auch neue XML-Elemente eingefiigt (do insert ... before/after ...) oder
geloscht werden (do delete). Es kann auch auf mehrere XML-Felder referenziert werden,
indem diese als Variablen an die pureXML Funktion XMLQUERY tiibergeben werden
(passing siehe Listing 2.5). Fiir weitergehende Funktionalitdten von pureXML sei auf [Cheo7]
verwiesen.

update daten set xmlfeld = XMLQUERY(’

copy $new := $XMLFELD

modify do replace value of $new/thesis/author/name

with value of $XMLFELD2/thesis/author/name

return $new’ passing (select xmlfeld from daten where id =2) as "XMLFELD2")
where id = 1

Listing 2.5: Ein pureXML-Ausdruck, der ein bestehendes XML-Dokument unter
Verwendung des Inhalt eines zweiten XML-Dokuments modifiziert.

24

2.2. Service Oriented Architecture

2.2. Service Oriented Architecture

Die Service Oriented Architecture (SOA) ist ein Paradigma fiir eine Softwarearchitektur,
welche sich aus kleineren, selbststandigen Programmen zusammensetzt. Diese Programme
werden Services oder Dienste genannt, deren Zusammensetzung (Orchestrierung) die neue
Funktionalitdt generiert. So soll es schnell und mit geringen Kosten moglich sein, bestehende
Software miteinander interagieren zu lassen und diese Interaktion jederzeit einfach zu ver-
andern. Dieser Wunsch kommt insbesondere aus der Wirtschaft, ist aber ebenso fiir grofier
angelegte wissenschaftliche Experimente interessant. Ein einfaches Beispiel ist die Ubernah-
me eines Konkurrenz-Unternehmens und der Wunsch oder die Notwendigkeit bestehende
Software- und IT-Landschaften einheitlich verwenden zu konnen. Im Wesentlichen ergeben
sich hieraus auch die weiteren Konzepte einer SOA:

e Lose Kopplung

Service/Dienstleistungs-Vertrag

Abstraktion

Wiederverwendbarkeit

Zustandslosigkeit

Eine heutzutage weit verbreitete Realisierung einer SOA, ist die Orchestrierung von
Webservices (WS), die wir im Folgenden vorstellen. Die Orchestrierung der WSs erfolgt
oft mit Hilfe von Workflows (WF), die wir in einem eigenen Kapitel 2.3 besprechen. Fiir
eine tiefer gehende Beschreibung der SOA und den dazugehorigen Konzepten sei auf das
Lehrbuch [WCL " o05] verwiesen.

2.2.1. Webservices

Eine Reihe von Standards des World Wide Web Consortiums (W3C) und der Organization
for the Advancement of Structured Information Standards (OASIS) bilden zusammen die
sog. WS-* Standards. Nahezu alle WS-* Standards werden im XML Format geschrieben
und in XML-Schema (siehe Kapitel 2.1.1) definiert. Das Nachrichtenaustausch Protokoll
sowie die Beschreibungssprache fiir Webservices werden nachfolgend erldutert. Auf die
Workflowsprache WS-BPEL, die eine Orchestrierung der Webservices erlaubt, wird in Kapitel
2.3.2.2 detaillierter eingegangen.

25

~ W N

O U1

2. Grundlagen

Simple Object Access Protocol

Um die Art und Weise des Nachrichtenaustausch zwischen Diensten, insbesondere WSs, zu
standardisieren wurde SOAP [W3Co7ya] eingefiihrt. Dieses XML Format erlaubt es Nach-
richten einheitlich zu versenden und zu empfangen. In vielen Implementierungen wird es
genutzt, um direkt Operationen eines Programms aufzurufen. Hierbei werden innerhalb
der SOAP Nachricht die Empfangermethode und die zu tibergebenden Parameter gesendet.
Liefert die Methode einen Riickgabewert, wird eine SOAP Nachricht mit dem Resultat an
den Sender zuriick geschickt.

In Listing 2.6 ist eine solche SOAP Nachricht dargestellt. Sie besteht aus dem Umschlag
(engl. envelope), in dem ein Kopf (engl. header) und der Korper (engl. body) enthalten sind. Der
Header kann zusétzliche Informationen fiir den Transport beinhalten, wie z.B. Informationen
zur Authorisierung oder Verschliisselung. Im Body wird die aufzurufende Operation, sowie
ihre Parameter, deren Typen und Werte benannt. Im Beispiel wird also die Operation
getSFamilyAlignment des WS mit dem Namensraum http://www.dwarf.uni-stuttgart.de/ACCESS,
mit dem Parameter superfamily_id vom Typ Integer und dem Wert ,8“, angefordert. Welche
Operationen zur Verfiigung stehen, an welche tatsiachliche Intra- oder Internetadresse und
mit welchem Transportprotokoll diese Nachricht gesendet werden muss, wird durch die
Web Service Definition Language beschrieben.

<soapenv:Envelope xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:acc="http://www.dwarf.uni-stuttgart.de/ACCESS">
<soapenv:Header/>
<soapenv:Body>
<acc:getSFamilyAlignment
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<superfamily_id xsi:type="xsd:integer">8</superfamily_id>
</acc:getSFamilyAlignment>
</soapenv:Body>
</soapenv:Envelope>

Listing 2.6: Eine SOAP Nachricht aus dem Anwendungsfall fiir Proteinmmodellierung
(Kapitel 2.5.1.1). Die aufzurufende Methode heifst getSFamilyAlignment und es
wird der Parameter superfamily_id mit Typ Integer iibergeben.

Web Service Definition Language

Wie im vorhergehenden Abschnitt angesprochen wird WSDL [Chro1] verwendet um WSs
ihre Operationen und den Service Endpunkt, also die Adresse an die Nachrichten gesendet
werden miissen, zu definieren. WSDL wird ebenfalls in XML geschrieben und besteht im
Prinzip aus folgenden sechs Elementen:

26

2.3. Workflowtechnologie

Types beschreibt die benutzerdefinierten Typen der Parameter im Abschnitt Message in
XML-Schema.

Message beschreibt Nachrichten, durch die Angabe von Parametern und deren Typen.

PortType beschreibt die Operationen des WS, diese bestehen aus einer Eingangs- und
Ausgangsnachricht die unter Messages definiert wurden.

Binding beschreibt das Transport-Protokoll {iber die die Nachrichten gesendet werden.

Port beschreibt die tatsdchliche Intra- oder Internetadresse des Service Endpunkts, an den
die Nachrichten gesendet werden sollen.

Service bindet alle Ports zusammen, somit ist es moglich Operationen eines WS auf ver-
schiedene Endpunkte zu verteilen.

Mit diesen Informationen ist es moglich SOAP Nachrichten automatisch zu generieren und
an den richtigen Endpunkt zu versenden. Ein Beispiel fiir eine WSDL Datei ist im Anhang
C.3 (Seite 155) zu finden.

2.3. Workflowtechnologie

In den letzten 10 Jahren ist der Bedarf an WfMSen stark angewachsen. Durch die Verwendung
von Workflows mochte man eine zusétzliche Abstraktionsschicht einziehen. Diese Workflows
konnen mit weniger Aufwand und geringerer IT Expertise erstellt werden, als die zu
erstellende Funktionalitdt in einem monolithischen Programm umzusetzen. Hinzu kommt
die Moglichkeit Workflows graphisch zu reprasentieren und in einem WYSIWYG Editor
bearbeiten zu konnen.

Mathematisch betrachtet, stellen Workflows einen gerichteten Graphen dar [FLoo], dieser
besteht aus einer Menge von Knoten und einer Menge von Kanten. Die Konten stellen
sog. Aktivititen dar, hier werden bestimmte Aufgaben durchgefiihrt, z.B. das Aufrufen
eines Webservice, eine Datenmanipulation oder eine Ausgabe um nur einen Bruchteil
moglicher Aktivititen zu nennen. Die Bedeutung der Kanten ist essentiell fiir die Art der
Workflowsprache, hierauf gehen wir im Kapitel 2.3.2 ndher ein. Jedoch ist allen Workflows
gemein, dass sie in Richtung der Kanten von den Konten ohne Eingangskanten, bzw.
speziell als Startknoten markierte Konten, bis zu Knoten ohne Ausgangskanten durchlaufen
werden.

27

2. Grundlagen

2.3.1. Workflow Management Systeme

WIMSe bestehen typischerweise aus vier Komponenten, der Build-Time, der Run-Time, der
Kommunikationsinfrastruktur und aus einem Monitor Programm (siehe Abb. 2.1). Manchmal
werden Monitor und Runtime miteinander verschmolzen. Ebenfalls gibt es Systeme in denen
die Build-Time und/oder Monitor Komponenten fehlen bzw. unabhingig voneinander
sind.

Die Build-Time Komponente ist fiir die Erstellung von Workflows verantwortlich, je nach
System kommen hier graphische Editoren oder spezielle Texteditoren zum Einsatz. Ein
Beispiel fiir einen graphischen Editor ist der Eclipse BPEL Designer*

Die Run-Time Komponente compiliert oder interpretiert den Workflow-Prozess der mit
einem GUI Editor oder direkt in der WEF-Sprache geschrieben wurde und ist fiir
dessen Ausfithrung verantwortlich. Ein Beispiel fiir eine Run-Time ist die Apache
Orchestration Director Engine (siehe Kapitel 3.3.1, Seite 54).

Die Kommunikationsinfrastruktur wird von der Run-Time verwendet oder die Run-Time ist
in ihr eingebettet. Somit kann die Run-Time bestimmte Aktivitdten einer WF-Sprache
realisieren. Dies kann z.B. das Versenden von Nachrichten an WSs oder das Ausfiihren
von anderen Applikationen sein. Ein Beispiel fiir eine solche Infrastruktur ist der
Apache Tomcat Server?.

Die Monitor Komponente ist fiir die Uberwachung und Analyse der Ausfithrung von
Workflow-Instanzen innerhalb der Run-Time verantwortlich. Ein Beispiel ist die Moni-
tor Perspektive des Taverna Systems (siehe Kapitel 3.3.2, Seite 55).

2.3.2. Workflow Sprachen

Workflowsprachen heben sich nicht nur durch die Funktionen der Aktivitdten voneinander
ab. Ein wesentlicher Punkt indem sich Workflowsprachen unterscheiden koénnen, ist die
Bedeutung der Kanten. Man unterscheidet hierbei zwischen:

Daten-Fluss orientierten WFs - tiber die Kanten laufen Daten

Kontroll-Fluss orientierten WFs - die Kanten bestimmen die Ausfiihrungsreihenfolge

'Eclipse BPEL Designer http:/ /www.eclipse.org/bpel/
*http:/ /tomcat.apache.org/

28

2.3. Workflowtechnologie

Build-Time] ‘ '
< N
A

A4 } v

G
Kommunikations-

Monitor < Run-Time N Infrastruktur

Abbildung 2.1.: Architektur eines typischen WfMSs bestehend aus einer Build-Time zur
Erstellung von WFs, einer Run-Time zur Ausfiihrung der WFs, einer Kom-
munikationsinfrastruktur die von der Run-Time verwendet wird um be-
stimmte Aktivititen durchzufiihren und einem Monitor zur Uberwachung
der WF-Ausfiihrung.

Werden fiir wissenschaftliche Workflows haufig daten-Fluss orientierte Workflowsprachen
verwendet, findet man bei der Modellierung von Geschéftsprozessen ausschliefslich kontroll-
Fluss orientierte Sprachen. Dies kommt daher, da bei wissenschaftlichen Experimenten Daten
neu generiert und analysiert werden, die Hauptaufgabe von wissenschaftlichen Workflows
stellt meist die Generierung und anschlieffende Analyse der Daten dar. Zudem ist die
Erstellung solcher Workflows intuitiver und es existieren de facto keine Variablen in solchen
Workflows. Somit ist es auch Wissenschaftlern, ohne Programmiererfahrung und ohne
Kenntnisse iiber den Variablenbegriff moglich solche WFs zu erstellen.

Bei Geschéftsprozessen hingegen werden oft nur bestehende Daten aggregiert oder abgerufen
um eine Entscheidung hervorzurufen was als nédchstes zu tun ist, hier konnen kontroll-
Fluss orientierte Sprachen mit ihren if-then-else und Schleifenkonstrukten die Arbeitsabldufe
effizienter und intuitiver beschreiben.

Im Folgenden wird je eine Workflowsprache fiir daten- sowie kontroll-Fluss vorgestellt. Beide
Sprachen basieren auf der Web Services Flow Language (WSFL) von IBM. Das Hauptaugen-
merk liegt hierbei auf WS-BPEL, einerseits, da es die Workflowsprache von Apache ODE ist
und somit eng mit dieser Arbeit in Verbindung steht und andererseits, da derzeit eine Stan-
dardsprache fiir alle Arten von Workflows gesucht wird. Hierbei ist WS-BPEL Gegenstand
vieler Arbeiten und das Simulation Technology Projekt (SimTech) der Universitat Stuttgart
befasst sich ebenfalls mit WS-BPEL als Workflowsprache fiir wissenschaftliche Simulationen
[Sloo7] [GHCMog] [RRS " 10].

29

2. Grundlagen

2.3.2.1. Simple Conceptual Unified Flow Language

SCUFL ist eine daten-Fluss orientierte Workflowsprache, die vom Bioinformatik-
Workflowsystem Taverna [OAFo04] verwendet wird. Taverna wird ebenfalls zunehmend fiir
medizinische und chemische WFs verwendet. Ebenfalls in XML definiert besitzt SCUFL
nur sehr wenig Elemente, was die Einfachheit von daten-Fluss orientierten Sprachen
unterstreicht. Es gibt nur folgende Elemente:

¢ Ein- und Ausgaben
e (Daten)Flusskanten
e Koordinationskanten

e Prozessoren (Aktivitdten)

Als Aktivititen konnen in Java implementierte Methoden, WSDL Webservices sowie eine
Vielzahl weiterer (auch lokaler) Anwendungen dienen. Fiir weitere Informationen tiiber
Taverna und SCUFL sei auf [OAF"04] [OLK*07] und fiir eine Anwendung auf [Wag1o]

verwiesen.

2.3.2.2. WS-Business Process Execution Language

Die Workflowsprache WS-Business Process Execution Language (WS-BPEL) wurde von
IBM, Microsoft und anderen Unternehmen entwickelt und unter dem Dach der OASIS
standardisiert [OASo7]. Sie ist kontroll-Fluss orientiert, arbeitet mit Variablen und zeichnet
sich zusédtzlich durch die Orchestrierung von WS-Aufrufen aus. Da sie in vielen WF-Systemen
(IBM WebSphere Process Server3, Microsoft BizTalk*) implementiert ist, ist sie der de facto
Standard fiir die Modellierung von Geschéftsprozessen.

WS-BPEL Prozesse werden ebenfalls in XML geschrieben und die Sprache ist in XML-Schema
spezifiziert, es existieren GUI-Editoren wie z.B. der BPEL-Designer [bpe]. Im Folgenden
werden wir den deklarativen Aufbau eines BPEL Prozesses und anschliefSend die einzelnen
Sprachelemente vorstellen.

Shttp:/ /www.ibm.com/software/products/de/de/wps/
“http:/ /www.microsoft.com/biztalk/

30

2.3. Workflowtechnologie

Aufbau eines BPEL-Prozesses

Ein BPEL Prozess besteht aus folgenden Abschnitten:
import In diesem Abschnitt werden WSDL und XML-Schema Definitionen eingebunden.

partnerLinks Dieser Abschnitt dient dazu, die verwendeten Webservices und Operationen
einzubinden.

variables Die globalen Variablen und ihre XML-Typen werden in diesem Abschnitt definiert.
WS-BPEL unterscheidet zwischen drei Klassen von XML-Typen: WSDL-Nachrichten,
XML-Schema-Elementen und XML-Schema-Typen.

logic Die Beschreibung der eigentlichen Prozesslogik, welche auf globale Variablen und
partnerLinks referenzieren kann, wird in diesem Abschnitt beschrieben.

BPEL-Sprachelemente

Die fiir die Beschreibung der Prozesslogik wichtigen Sprachelemente, die sog. Akti-
vititen stellen wir kurz vor. Fiir alle weiteren, nicht erwédhnten, Sprachelemente verweisen
wir auf den Standard [OASo7].

ASSIGN ist fiir Zuweisungen, insbesondere Variablenzuweisungen, zustandig. Innerhalb
einer ASSIGN-Aktivitdt konnen mehrere Zuweisungen erfolgen, diese werden durch
COPY-Blocke voneinander getrennt. Auf der linken Seite der Zuweisung (<to>) muss
eine Variable stehen, auf der rechten Seite (<from>) sind des weiteren Literale (Initial-
werte) und Ausdriicke (z.B. XPath, XQuery) erlaubt. Eine Variable kann zusitzlich um
eine XPath-Selektion ergdnzt werden, um nur bestimmte Teile eines XML-Dokuments
zuzuweisen (Selektion auf rechter Seite), oder nur einen bestimmten Teil eines XML-
Dokuments zu ersetzen (Selektion auf linker Seite). Des Weiteren konnen partnerLinks
zugewiesen werden, hierfiir verweisen wir ebenfalls auf den Standard.

IF ist fiir den klassischen Kontrollfluss zustdndig. Hierbei wird ein boolscher Ausdruck
einer Query-Sprache (XPath, XQuery etc.) evaluiert und entsprechend der then bzw.
else Zweig durchlaufen.

FOREACH ist eine Schleife, der Start- und Endwert des Zihlers wird iiber einen Ausdruck
einer Query-Sprache ermittelt. Der Zahler wird in jedem Schleifendurchlauf um Eins
erhoht, bis er den Endwert erreicht oder die optionale Bedingung zum vorzeitigen
Beenden der Schleife erfiillt ist.

WHILE ist eine klassische While-Schleife, die solange durchlaufen wird, wie die Schleifenbe-
dingung wahr ist. Die Bedingung wird vor Eintritt in den Schleifenrumpf evaluiert und
ist ebenfalls ein boolscher Ausdruck einer Query-Sprache.

31

2. Grundlagen

REPEAT UNTIL ist der While-Schleife sehr dhnlich, lediglich die Schleifenbedingung wird
nach durchlaufen des Schleifenrumpfes evaluiert, was ein mindestens einmaliges
durchlaufen des Schleifenrumpfes zur Folge hat.

ONALARM/WAIT konnen den Ablauf eines Prozesses pausieren. Nach einer bestimmten
Zeitspanne, oder nach eintreten eines bestimmten Ereignisses, wird der Prozess fort-
gesetzt. Die Zeitspanne wird ebenfalls durch einen Ausdruck einer Query-Sprache
bestimmt.

INVOKE ruft eine Operation eines WS auf, dieser muss dafiir im Abschnitt partnerLinks des
BPEL-Prozesses eingebunden worden sein. Es wird bestimmt welche Operation des
WS aufgerufen wird, der Inhalt der Aufruf-Nachricht wird aus einer BPEL-Variablen
entnommen. Der Inhalt der Ergebnis-Nachricht des WS wird ebenfalls in eine BPEL-
Variable gespeichert und kann daraufhin weiter verarbeitet werden.

Allen ausgehenden Kanten aller Aktivitdten kann eine sog. TransitionCondition zugewiesen
werden. Eine Ziel-Aktivitit am Ende der Kante wird nur dann ausgefiihrt, falls die Bedingung
der TransitionCondition erfiillt ist, ansonsten wird die weitere Verarbeitung an dieser Stelle
gestoppt. Auflerdem wird jede Aktivitdt und jede Variable einem sog. Scope zugeordnet.
Diese Scopes sind im Wesentlichen vergleichbar mit Sichtbarkeitsbereichen von klassischen
Programmiersprachen. Variablen und Aktivitédten, die z.B. innerhalb einer FOREACH-Schleife
definiert und ausgefiihrt werden, sind nur innerhalb des von der Schleife definierten Scopes
sichtbar.

Ein Beispiel fiir einen BPEL-Prozess ist im Anhang C.2 (Seite 151) zu finden. Es ist festzustel-
len, dass WS-BPEL sehr stark mit XML und seinen Verarbeitungsmoglichkeiten verwoben ist
und nahezu alle Aktivitdten hiervon beriihrt werden.

2.3.3. Workflow Arten

In diesem Abschnitt mochten wir typische Arten von Workflows nach Thren spezifischen
Eigenschaften wie z.B. die Art ihrer Aktivitdten (und Dienste), Anwendungsbereichen, zu
verarbeitende Datengrofien und der Art des Flusses klassifizieren.

2.3.3.1. Business-WFs

Typische Workflows im Geschiftsumfeld modellieren haufig wiederkehrende Arbeitsschritte
eines Unternehmens [FLoo]. Ein Beispiel ist der Versand von Waren nach Zahlungseingang.
Der Workflow kann mehrmals am Tag ausgefiihrt werden, z.B. manuell durch einen Mitar-
beiter ausgelost oder automatisch zu bestimmten Uhrzeiten. Dann wird der Workflow tiber
alle offenen Bestellungen iterieren, die Firmenkonten nach einer Zahlung durchsuchen und,

32

2.3. Workflowtechnologie

falls die zugehorige Zahlung eingegangen ist, die Daten der Lieferung an die Spedition wei-
tergeben. Liegt keine Zahlung vor, konnte des Weiteren tiberpriift werden, ob eine Mahnung
fallig ist und diese automatisch veranlasst werden.

Es geht bei diesen Workflows also hauptsachlich um Entscheidungen und daraus resultie-
renden Handlungen, hierfiir sind kontroll-Fluss orientierte WF-Sprachen wie WS-BPEL ideal
geeignet. Oft miissen nur identifizierende Daten, z.B. Kunden-, Auftrags- und Rechnungs-
nummern in der WF-Runtime gehalten werden, das Datenaufkommen in der Runtime kann
also vergleichsweise gering gehalten werden. Die Laufzeiten entpsrechender WFs sind mit
wenigen Ausnahmen héufig sehr kurz (innerhalb von Sekunden oder Minuten). Dafiir ist
die gleichzeitige, also parallele, Ausfithrung von Interesse, man stelle sich z.B. einen WF vor,
der die Ticketbestellung fiir ein angesagtes Rock-Konzert abwickelt.

2.3.3.2. Wissenschaftliche-WFs

Wissenschaftliche-WFs (engl. eScience-WFs) finden vor allem innerhalb der Naturwissenschaf-
ten immer grofiere Bedeutung [Tayoy]. Hauptsdchlich geht es darum computergestiitzte
Experimente oder Simulationen bzw. Auswertungen gesammelter Daten durchzufiihren. Da
es sich um wissenschaftliche Experimente handelt und somit oftmals keine Standardsoft-
ware existiert, setzen sich die Berechnungen und anschlieflfenden Analysen aus diversen
Programmen zusammen. Zwischen diesen Programmen miissen ggf. Daten in ein anderes
Format gebracht werden und/oder von einer Ressource auf eine andere Ressource tiber-
tragen werden um eine weitere Verarbeitung zu gewihrleisten. Diese Prozesse konnen mit
Workflows modelliert und orchestriert werden. Grundsitzlich kann man feststellen, dass
der Fokus weniger auf Entscheidungen liegt, sondern auf den zu verarbeitenden Daten.
Ohne Eingabedaten gibt es kein Experiment und ohne Ergebnisdaten keine Analyse. Man
kann hier prinzipiell unterscheiden zwischen Workflows, die lediglich die Programme mit
ihren Parametern in der richtigen Reihenfolge starten und bei denen diese Programme ihre
Daten in externen Datenbanken oder auf dem Dateisystem abliegen, und Workflows, die
diese Daten in der WF-Runtime verarbeiten und dort analysieren. Letztere fithren also zu
einem grofien Datenaufkommen innerhalb der WF-Runtime. Vorallem, da diese Daten in
der Regel wesentlich grofser sind als bei Business-WFs. Daten-Fluss orientierte WE-Sprachen
sind fiir eine solche Modellierung oft intuitiver anwendbar. Da man allerdings auch an einer
Standardsprache fiir Workflows interessiert ist und sich der Datenfluss auch innerhalb eines
Kontrollflusses darstellen lisst, riickt derzeit WS-BPEL ebenfalls als wissenschaftliche WE-
Sprache in den Vordergrund [AMA06] [Sloo7] [GHCMog] [GSK*11]. Man kann feststellen,
dass Wissenschaftliche-WFs seltener, dafiir mit grofseren Datenmengen als Business-WFs
ausgefiihrt werden. Eine parallele Ausfiihrung dieser WFs macht nur in einigen speziellen
Féllen Sinn.

33

2. Grundlagen

2.3.3.3. Extraction Transformation Load-WFs

Extraction Transformation Load-WFs (ETL-WFs) orchestrieren ETL-Operationen. Diese kon-
nen im Wesentlichen das Laden (Load/Retrieval) und Filtern einer Datenmenge sowie
Verkniipfung (Join), Vereinigung (Union) und Zusammenfithrung (Merge) zweier Daten-
mengen sein. Die Ausfithrung mehrerer solcher Operationen (ETL-Prozess) kann durch
Daten- oder Kontrollfluss beschrieben werden. ETL-WFs sind ETL-Prozesse, die mit Hilfe
von WE-Technologie modelliert und ausgefiihrt werden. In einer kontroll-Fluss orientierten
Sprache wie WS-BPEL werden diese ETL-Operationen als Aufruf von WSs oder in Aktivi-
tiaten eingebettete Datenverarbeitungsanweisungen realisiert. So wird z.B. der Inhalt einer
Datei durch eine Anfrage an das Dateisystem in die WF-Engine geladen, oder es konnen
SQL Anfragen an relationale DBSe gestellt werden, die entweder das Resultat (z.B. fiir Data
Retrieval Anweisungen wie SELECT) oder eine Bestidtigung der Ausfiihrung (z.B. fiir DDL
INSERT /UPDATE Anweisungen) an die WF-Engine liefern.

Die Arbeit [VSRMo8] befasst sich mit SQL Fahigkeiten von gangigen Workflowsystemen.
Hierbei werden die Ergebnisdaten eines SQL SELECT Ausdrucks z.B. zeilenweise in der
Workflowengine verarbeitet. Somit besitzen diese Workflows ebenfalls ein erhohtes Da-
tenaufkommen innerhalb der WE-Runtime. Es bestehen bei solchen Workflows jedoch
die Moglichkeit globale Optimierungen, z.B. durch den WF-Compiler oder einer Modell-
transformation, vorzunehmen. Dadurch kann der Datentransfer zwischen Datenbank und
WE-Engine zum Teil ganz vermieden werden [VSSTo07]. In [RRS™ 10] wird ein allgemeines
Gertist (Framework) fiir ETL-Operationen in WF-Sprachen beschrieben und in Apache ODE
prototypisch implementiert. Im Vergleich zu den Systemen aus [VSRMo8] konnen, durch
Erweiterung der SIMPL (SimTech - Information Management, Processes, and Languages)
Data Mining Aktivitdten, nicht nur relationale DBS angesprochen werden, sondern alle
denkbaren Datenquellen sowie Verkniipfungs- und Vereinigungsoperationen auf diesen
heterogenen Datenquellen durchgefiihrt werden. ETL-WFs arbeiten fast ausschliefilich auf
Mengen von Daten, deshalb ist ihr Datenaufkommen entsprechend grof3, die Daten konnen
jedoch durch entsprechende Systeme und globale Optimierungen von der WF-Engine fern-
gehalten werden. Eine parallele Ausfiihrung von ETL-WFs, zumindest bei Auswertung und
Manipulation der gleichen Datensétze, fithrt zum gleichen Ergebnis und ist dadurch von
geringerem Interesse.

2.3.3.4. Zusammenfassung

Wir fassen die Eigenschaften der vorgestellten WF-Typen in Tabelle 2.4 zusammen. Business-
WFs haben typischerweise eine kurze Laufzeit und miissen ggf. auch parallel ausgefiihrt
werden. Sie verarbeiten in der Regel kleinere Datenmengen als Wissenschaftliche- und ETL-
WEFs. Diese werden allerdings seltener ausgefiihrt und die parallele Ausfithrung spielt nur
eine untergeordnete Rolle.

34

2.4. Datenbanktechnologie

WF-Typ Anwendungsbereich Daten- | Ausfithrungs- | Haufigkeit der
grofie art Ausfiithrung
Business Geschiftsprozesse klein sequentiell /| viele
parallel
Wissenschaftlich | Experimente und Simula- | grofs oft nur sequen- | wenige-viele
tionen tiell
ETL Analyse von Geschiftsda- | grofs sequentiell wenige
ten, Experimente und Si-
mulationen

Tabelle 2.4.: Vergleich der Eigenschaften und Anwendungsgebiete der verschiedenen Arten
von Workflows.

2.4. Datenbanktechnologie

Die Datenbanktechnologie existiert nun seit iiber vier Jahrzehnten und bildet ein solides
und anerkanntes Fundament innerhalb der Informatik, um grofie Datenmengen effizient
zu speichern, zu selektieren und zu transformieren. Da diese Arbeit im Rahmen des Ar-
beitskreises ,,Anwendersoftware” der Universitdt Stuttgart, der sich mit Datenbanken und
Informationssystemen befasst, entstanden ist, setzen wir Grundkenntnisse in diesem Bereich
voraus. Fiir eine Einfithrung in Datenbanken und Informationssysteme verweisen wir auf
das Lehrbuch [AEog]. Dennoch mochten wir einige wichtige Begriffe kurz erldutern.

2.4.1. Datenbanksysteme

Ein Datenbanksystem (DBS) setzt sich aus einer Datenbank (DB) und dem Datenbank-
Management-System (DBMS) zusammen. Die DB beinhaltet die Daten und Metadaten, das
DBMS verwaltet die Zugriffe und Aktualisierungen auf die DB. Es existieren verschiedene
Moglichkeiten Datenstrukturen zu modellieren und auf diese Daten zuzugreifen:

e Hierarchisch (Satzorientierter Zugriff)
e Relational (Mengenorientierter Zugriff)

e Objektrelational (Objekt-/Mengenorientierter Zugriff)

35

2. Grundlagen

Einige der wichtigsten Eigenschaften, die fiir die Stabilitdt und Mehrbenutzerfihigkeit
von DBMSen verantwortlich sind, sind die ACID-Eigenschaften des Transaktionskonzepts
[THo1]:

Atomaritat (engl. Atomicity ,Alles oder nichts”) Die Ausfithrung und Verdnderungen der
Daten durch eine Transaktion findet entweder ganz oder gar nicht statt.

Konsistenz (engl. Consistency) Der Inhalt der Datenbank wird durch die Transaktion von
einem konsistenten Zustand in einen anderen konsistenten Zustand tiberfiihrt. Insbe-
sondere miissen hierbei Referenzen und Querverweise auf andere Daten der Datenbank
ihre Giiltigkeit beibehalten.

Isolation Sichert den logischen Einbenutzerbetrieb, obwohl mehrere Benutzer mit dem
System arbeiten. Insbesondere darf innerhalb einer Transaktion nicht auf veraltete oder
bereits tiberschriebene Daten anderer Transaktionen zugegriffen werden.

Dauerhaftigkeit (engl. Durability) Die Persistenz der Daten einer abgeschlossenen Transaktion
muss gesichert werden, insbesondere beim Ausfall des Systems.

Am populédrsten sind die relationalen Datenbanksysteme, sie finden heutzutage in fast jeder
grofieren Software, in der Daten gespeichert werden, Verwendung. Hierbei werden die
Daten als Zeilen in Tabellen gespeichert. Die Spalten tragen die Metainformation (wie Typ und
Semantik der Spalte), somit gehoren relationale Datenbanken zum Typ der Strukturierten
Daten (vgl. Tabelle 2.1, Seite 18).

Die Daten werden mit Hilfe der von ANSI und ISO> standardisierten Query-Sprache SQL se-
lektiert und transformiert. Durch die massiv steigende Verwendung von Semi-Strukturierten
Daten wie XML (siehe Kapitel 2.1) in den letzten 10 Jahren, ist der Bedarf an XML Verarbei-
tungsmoglichkeiten in Datenbanksystemen gestiegen. Hierbei gibt es zwei Ansétze:

Native-XML Datenbanken speichern und verarbeiten ausschliefllich XML Dokumente mit
Hilfe von XML Query-Sprachen.

XML-Enabled Datenbanken besitzen fiir die relationalen Tabellen einen zuséitzlichen Spal-
tentyp XML indem XML Dokumente gespeichert werden koénnen. Diese Felder konnen
prinzipiell, z.B. mit XML Query-Sprachen, gesondert verarbeitet werden.

Im Folgenden mochten wir kurz zwei XML-Enabled Datenbanken vorstellen, die in dieser
Arbeit verwendet wurden.

Shttp:/ /www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=45342

36

2.4. Datenbanktechnologie

2.4.1.1. IBM DB2

Die DB2 ist ein DBS der Firma International Business Machines Corporation (IBM) welches
auf das System R, eine relationale Forschungsdatenbank aus Mitte der 1970er Jahre, zuriick-
geht. Die erste Version wurde 1983 eingefiihrt und wurde seitdem stetig weiterentwickelt.
Seit 1997 ist die DB2 in der Version g verfiigbar. Als Produktivsystem, welches auch in
Grofikonzernen eingesetzt wird, ist es ein sehr stabiles System. Es ist moglich, die DB2 als
verteiltes Datenbanksystem zu verwenden. Es unterstiitzt eine Vielzahl der im SQL Standard
vorgeschlagenen Funktionalitaten wie User Defined Functions (UDF), Speicherung von Binary
Large OBjects (BLOB) und Funktionen fiir DataWarehousing und OnLine Analytical Processing
(OLAP).

Als XML-Enabled DBS besitzt es seit der Version 9 den XML Spaltentyp und zahlreiche
Funktionen zum Verarbeiten von XML Daten. Es ist moglich XPath und XQuery Ausdriicke
alleinstehend oder innerhalb von SQL Ausdriicken zu evaluieren. Durch die von IBM eigens
entwickelte Query-Sprache pureXML ([Cheoy], siehe Kapitel 2.1.4) ist es sogar moglich XML
Dokumente zu transformieren, was mit XPath und XQuery nicht moglich ist.

Aktuelle Version: DB2 UDB 9.7

Verwendete Version: DB2 UDB 9.7

Offizielle Webseite: http://www.ibm.com/software/data/db2/
Historische Informationen: http://de.wikipedia.org/wiki/IBM_DB2

2.4.1.2. PostgreSQL

PostgreSQL ist ein kostenloses DBS, welches in den 198cer Jahren an der University of
California in Berkeley entwickelt wurde. Seit 1997 wird es von einer OpenSource Commu-
nity weiterentwickelt. Es gilt als schnelles und leichtgewichtiges DBS, das trotzdem viele
Funktionen des SQL Standards implementiert.

Als XML-Enabled DBS existiert ebenfalls der XML Spaltentyp und die Moglichkeit mit
der Funktion xpath XPath-Ausdriicke innerhalb von SQL Ausdriicken zu evaluieren.
Es existiert jedoch keine Moglichkeit XQuery-Ausdriicke auszuwerten, eine eigene
Transformationssprache wie pureXML bei IBM DB2 fehlt ebenfalls.

Aktuelle Version: PostgreSQL 9.0

Verwendete Version: PostgreSQL 8.4

Offizielle Webseite: http://www.postgresql.org/

Historische Informationen: http://de.wikipedia.org/wiki/Postgresql

37

http://www.ibm.com/software/data/db2/
http://de.wikipedia.org/wiki/IBM_DB2
http://www.postgresql.org/
http://de.wikipedia.org/wiki/Postgresql

N QU W N R

2. Grundlagen

2.5. Webservice und Workflow-Technologie flir Proteinmodellierung

In diesem Abschnitt mochten wir aus dem Anwendungsbereich Bioinformatik einen Anwen-
dungsfall (engl. Use-Case) fiir einen wissenschaftlichen WF (siehe Kapitel 2.3.3.2), der Daten
innerhalb der WF-Runtime verarbeitet, vorstellen. Dieser wird in dieser Arbeit als Testfall
fir die Evaluation in Kapitel 7 dienen. In [Wag1o] wurde das XML Schema Biolnformatics
Interchange Format (BIIF) als Austauschformat fiir Proteindaten entworfen und Webservices
implementiert, die dieses Format als Ein- und Ausgabe verwenden. Aufserdem wurde ein
Anwendungsfall fiir das Workflowsystem Taverna vorgestellt und dieser ebenfalls als BPEL-
Prozess modelliert. Bevor wir unseren Anwendungsfall vorstellen, gehen wir kurz auf ein
paar Grundlagen ein.

2.5.1. Bioinformatik

Die Bioinformatik gehort zu den Life-Science Wissenschaften und befasst sich mit der
computergestiitzten Forschung an biologischen Objekten und Systemen, wie etwa Proteine
und ihre Rolle im Stoffwechsel von Organismen. Ein Protein besteht aus einer Verkettung
von 22 moglichen Aminosduren. Diese lineare Anordnung wird auch Primérstruktur
genannt und bestimmt die Faltung in Sekundéarstrukturen (a« Helix, B Faltblatt und
Schleifen) die wiederum die raumliche 3D Struktur des Proteins bestimmen (siehe Abb. 2.2).
Die Primérstruktur eines Proteins, auch als Proteinsequenz bezeichnet, kann man als
Zeichenkette darstellen (siehe Listing 2.7).

MALSQSVPFS
GSTPVLVLSR
LEEHVSKEAK
ILRYLPNPAL
TVTTAISWSL
IPKKCCVFVN

ATELLLASAI
LDTIRQALVR
ALISRLQELM
QRFKAFNQRF
MYLVTKPEIQ
QWQVNHDPEL

FCLVFWVLKG
QGDDFKGRPD
AGPGHFDPYN
LWFLQKTVQE
RKIQKELDTV
WEDPSEFRPE

LRPRVPKGLK SPPEPWGWPL
LYTSTLITDG QSLTFSTDSG
QVVVSVANVI GAMCFGQHFP
HYQDFDKNSV RDITGALFKH
IGRERRPRLS DRPQLPYLEA
RFLTADGTAI NKPLSEKMML

LGHVLTLGKN PHLALSRMSQ
PVWAARRRLA QNALNTFSIA
ESSDEMLSLV KNTHEFVETA
SKKGPRASGN LIPQEKIVNL
FILETFRHSS FLPFTIPHST
FGMGKRRCIG EVLAKWEIFL

RYGDVLQIRI
SDPASSSSCY
SSGNPLDFFP
VNDIFGAGFD
TRDTTLNGFY
FLAILLQQLE

FSVPPGVKVD LTPIYGLTMK HARCEHVQAR LRFSIN

Listing 2.7: Proteinsequenz des Proteins aus Abb. 2.2 als Zeichenkette. Quelle: [Wag10]

Proteine, welche die gleichen Eigenschaften besitzen, z.B. die gleiche chemische Reaktion
katalysieren, werden zu sog. Proteinfamilien zusammengefasst. Oft geht dies mit einer sehr
dhnlichen Proteinsequenz einher. Die DataWarehouse Architecture for pRotein classiFication
(DWARF) [FTGPo6] sucht aus externen Protein-Datenquellen wie Genbank [BKML*10] sol-
che dhnlichen Proteinsequenzen und fasst sie in einer Datenbank zusammen. In [Wag10]
wurden fiir das DWARF-System Webservices zum Abfragen und Verdndern dieser Da-
tenbankinhalte implementiert. Derzeit ist die CYPED® Datenbank [SWLPog] iiber diese

bhttp:/ /www.cyped.uni-stuttgart.de/

38

2.5. Webservice und Workflow-Technologie fir Proteinmodellierung

Abbildung 2.2.: 3D Struktur eines Cytochrome P450 Proteins. Rot: « Helix, Gelb: g Faltblatt,
Griin: Schleifen. Quelle: [Wag10]

Webservices auslesbar. Fiir weiterfithrende Informationen zur Biochemie sei auf das Lehr-
buch [JMBoy] und fiir Informationen zur WS und WF-Technologie fiir Proteinmodellierung
auf [Wag1o] verwiesen.

2.5.1.1. Anwendungsfall Mustersuche

Eine innerhalb der Bioinformatik annerkannte Analysemdoglichkeit stellt die Mustersuche
(engl. Pattern-Matching) dar. Hierbei wird in den als Zeichenketten gespeicherten Proteinse-
quenzen nach einem bestimmten Muster, z.B. in der Form eines reguldren Ausdrucks, gesucht.
Diese Muster dienen zum Erkennen wichtiger Regionen innerhalb einer Proteinfamilie, z.B.
lassen sich so die fiir die chemische Reaktion wichtigen Aminosduren lokalisieren.

Die auszufithrenden Aufgaben bieten sich ideal an, um diese durch einen Workflow zu
modellieren, auflerdem kann man bei Verwendung von WS-BPEL die datenverarbeitenden
Schritte in die WF-Engine ziehen. Aus diesem Grund ist dieser Anwendungsfall fiir die
Messungen in Kapitel 7 von besonderem Interesse.

39

2. Grundlagen

Fiir die Messungen verwenden wir das folgende Muster” [NG8y], welches bereits in einen
reguldrer Ausdruck umgeformt wurde:

[FW] [SGNH] . [GD] ["F] [RKHPT] [~P]C[LIVMFAP] [GAD]

Wir beschreiben nun Schrittweise den zugehorigen BPEL-Prozess der graphisch in Abb. 2.3
dargestellt ist, zudem ist der in BPEL definierte Prozess im Anhang C.2 (Seite 151) zu
finden.

recievelnput empfingt die Parameter ID (der Identifier der CYPED Unterfamilie die durch-
sucht werden soll) und PATTERN (das zu suchende Muster als reguldren Ausdruck).

Initialisation initialisiert einige BPEL-Variablen und WSDL Nachrichten, insbesondere die
WSDL Nachricht an den DWARF-Webservice, der als Parameter die ID der Unterfamilie
bendtigt.

getSuperFamilySequences ruft die Operation getSFamilyAlignment des Webservice
DWARF_ACCESS auf (siehe [Wag1o0]).

AssignWSResponse weist das Ergebnis des WS einer BPEL-Variable zu.

ForEachProteinSequence diese Foreach Schleife wird fiir jede Proteinsequenz einmal durch-
laufen.

PrepareProteinSequence bereinigt die aktuelle Proteinsequenz von storenden Sonderzei-
chen, die aus der Darstellung des WS-Resultats herriihren und speichert die bereinigte
Proteinsequenz in einer BPEL-Variable ab.

IfPatternMatches priift nun ob der reguldre Ausdruck auf die aktuelle Proteinsequenz
zutrifft, falls ja wird der Bezeichner der Proteinsequenz an eine Variable vom Typ
xsd:string konkateniert und der Zahler fiir positive Proteinsequenzen (die das Muster
enthalten) um Eins erhoht. Andernfalls wird der Zahler fiir negative Proteinsequenzen
(die das Muster nicht enthalten) um Eins erhoht.

PrepareOutput stellt die Antwortnachricht zusammen, bestehend aus negativem und positi-
vem Zahler, sowie allen Bezeichnern der Proteine welche das Muster enthalten.

replyOutput sendet die Antwortnachricht.

Nach Ausfithrung des Workflows erhilt man also eine Statistik {iber die Anzahl der positiven
und negativen Proteinsequenzen beziiglich des vorgegebenen Musters und die Bezeichner
der positiven Proteinsequenzen zurtick.

7http:/ /expasy.org/prosite/PDOCo0081

40

2.5. Webservice und Workflow-Technologie fir Proteinmodellierung

Abbildung 2.3.:

rmain

& | receivelnput

= Initialisation

<§> getSuperFamilySequences

= HAssignWSResponse

¢ ForEachProteinsequence

Sequence

— PrepareProteinSequence

4 IFPatternMatches

IFPatterniatches

= addsequenceHeader

= PrepareCutput

2 | replyCukput

®

Else

= CountMegative

Graphische Reprasentation des in WS-BPEL definierten Anwendungsfalls
zur Mustersuche in Proteinsequenzen.

41

3. Workflow Architekturen und Datenbank
Integration

Dieses Kapitel wird einen Einblick in die allgemeine Architektur von WfMSen geben. Es wird
zuerst das Workflow Referenz Modell aus dem Jahr 1995 vorgestellt [Holgs], anschliefSend
werden Moglichkeiten der Integration von Datenbanktechnologie in WfMSe [VSRMo8]
[RRST10] und der Ansatz vorgestellt Datenbanken und WfMSe miteinander zu verschmelzen
[AIL98] [SKDNos5]. Im letzten Abschnitt dieses Kapitels wird eine Auswahl an WfMSen
vorgestellt und wie diese ihre integrierte Datenbank verwenden.

3.1. Workflow Reference Model

Das Workflow Referenz Modell [Holgs] befasst sich mit dem Aufbau, Nutzen und der Funk-
tionsweise von Workflow Management Systemen (WfMS). Der schematische Aufbau dieses
Modells ist in Abb. 3.1 zu sehen. Es besteht aus der zentralen Workflow-Engine und fiinf
weiteren Schnittstellen. Die WF-Engine, die Prozess-Definitions Tools und die Administrati-
ons & Monitor Tools bilden das eigentliche WEMS (vgl. Kapitel 2.3.1, Seite 28). Die weiteren
Schnittstellen sind fiir die Aufrufe der zu orchestrierenden Dienste und Programme oder
anderer Workflow-Systeme zustdandig. Im Folgenden werden die einzelnen Komponenten
und Schnittstellen etwas niher erldutert.

Die Workflow API legt das Protokoll und die Austauschformate fest, mit denen die weiteren
Komponenten mit der Workflow-Engine kommunizieren.

Die Workflow-Engine fiihrt Instanzen der Workflows aus. Dazu navigiert sie durch die
Workflow-Graphen und ruft entsprechende Dienste der Schnittstellen 2-4 auf.

Prozess-Definitions Tools werden zur Erstellung der Workflows benétigt, z.B. mit Hilfe
einer GUI oder direkt in der WF-Sprache. Anschliefsend wird der WF der WF-Engine
bekannt gemacht (engl. deploy), damit dieser von Anwendern oder anderen Systemen
entsprechend aufgerufen werden kann. Hierbei werden die zum WF gehérenden Do-
kumente (z.B. die Beschreibung in einer WF-Sprache) entweder in internes Format der
WE-Engine compiliert oder fiir die interpretative Ausfithrung entsprechend archiviert.

43

3. Workflow Architekturen und Datenbank Integration

rozess-Definitions
Tools

A

Schnittstelle 1

h 4

Schnittstelle 5 Workflow API C Schnittstelle 4 <
N .
b X
Administrations & - S B Weitere
Monitor Tools e Workflow Engine N Workflow Engines

Schnittstelle 2 Schnittstelle 3
Y e A A o
3 3
X 5
Workflow = Aufzurufende ~=
Client Anwendungen Anwendungen

Abbildung 3.1.: Das Workflow Referenz Modell, gut zu erkennen ist die Aufteilung in Build-
time (Prozess-Definition), Runtime (Workflow-Engine) und die Monitor
Anwendungen (Administration & Monitor Tools). Des Weiteren die Schnitt-
stellen zu ausfiihrenden Programmen und anderen Workflow-Engines. Vgl.

[Holgs]

Administrations & Monitor Tools stellen Funktionen zur Verfiigung, mit denen das WfMS
und die Ausfithrung von WF-Instanzen tiberwacht werden konnen.

Schnittstellen 2-4 stellen verschiedene Moglichkeiten dar, welche Dienste innerhalb eines
WFs aufgerufen werden kénnen. Dies konnen z.B. andere als WF definierte Prozesse
sein (Schnittstelle 4) oder Programme und Dienste wie WSs (Schnittstelle 3) oder
sonstige Client-Anwendungen (z.B. GUI-Anwendung zum Instanziieren eines WFs)
des WEMSs (Schnittstelle 2).

In der Streitschrift [ASg6] werden Probleme und Nutzen der damaligen WEMS angesprochen.
Einerseits wird die Stabilitdt, Transaktions- und Mehrbenutzerfahigkeit (also Ausfiihrung
paralleler Instanzen) damaliger WfMS kritisiert und deren Nahe zu (Aktiven) Datenbanken
thematisiert, welche die angesprochenen Probleme schon geldst haben. Auf den Ansatz der
Verschmelzung beider Systeme [AIL98] gehen wir im Kapitel 3.2.3 ndher ein.

44

3.2. Arbeiten und Ansatze zur Datenbankintegration

Heutzutage existieren WfMSe immer noch getrennt von Datenbanksystemen, allerdings
werden DBSe wie in vielen anderen Softwarearchitekturen auch in WfMSen eingesetzt, um
Daten zu Prozessen und laufenden Instanzen (wie Variableninhalte, Startzeiten und Anzahl
laufender Instanzen etc.) persistent zu halten. Dadurch kénnen Instanzen nach Ausfall
des Systems am Punkt des Abbruchs wieder aufgenommen werden und bei Fehlern die
Ausfiihrung nachvollzogen werden (z.B. mit Monitortools). Somit kann man die zentrale
Architekturkomponente der WF-Engine aus Abb. 3.1 um eine integrierte DB erweitern (siehe
Abb. 3.2). Bis auf wenige Ausnahmen leichtgewichtiger WF-Engines, fiir z.B. Smartphones
[GPWTo7] [HHGROo6], verwenden alle WF-Engines eine integrierte DB.

)

Workflow API

Workflow
Engine
DBS

f

Abbildung 3.2.: Typische Workflow-Engine mit integriertem DBS fiir die Speicherung von
Prozess und WF-Instanz Daten.

So konnten einige der in der Streitschrift angesprochenen Probleme, wie Stabilitdt, Feh-
lertoleranz, Skalierbarkeit, Performanz, Mehrbenutzerfdhigkeit und Flexibilitit teilweise
behoben werden. In der Gesamtheit betrachtet, konnen aber auch heutzutage die WfMSe
in den genannten Bereichen nicht mit gdngigen DBSen konkurrieren. Weshalb weiterhin
eine noch starkere Integration dieser beiden Systeme von groflem Interesse ist. Dies ist einer
der Griinde, warum wir in dieser Arbeit untersuchen, welche Funktionen einer WF-Engine
auf ihr integriertes DBS {ibertragbar sind und unter welchen Umstédnden dies zu einer
verbesserten Ausfithrung von WEF-Instanzen fiihrt.

3.2. Arbeiten und Ansatze zur Datenbankintegration

Es soll nun ein Einblick in den Stand der Forschung zur stirkeren Integration von DBSen in
W{MSe gegeben werden bzw. welche Funktionalitdten von anderen Systemen oder Ansdtzen
angeboten werden.

3.2.1. BPEL/SQL Funktionalitat

In [VSRMo8] werden die WfMSe von IBM (WebSphere Process Server), Microsoft (Workflow
Foundation) und Oracle (Oracle SOA Suite) qualitativ auf ihre Moglichkeiten fiir Inline SQL

45

3. Workflow Architekturen und Datenbank Integration

Support, also im Workflow eingebettete Datenverarbeitungsanweisungen, untersucht. Bis
auf die Workflow Foundation verwenden diese Systeme WS-BPEL als WE-Sprache in jeweils
erweiterter Form. Die Workflow Foundation stellt jedoch Import und Export Funktionen
zur Verfiigung, um BPEL Prozesse auf das interne Modell zu iibersetzen und umgekehrt.
BPEL/SQL bezeichnet hierbei, dass fiir ein WS-BPEL kompatibles WfMS entsprechende
Inline SQL-Erweiterungen bzw. Funktionen angeboten werden.

Ausdriicklich wurden SQL Inline Aktivititen untersucht, die im Gegensatz zu SQL Adaptern
eigenstdndige Aktivitdten darstellen. Diese senden SQL-Anweisungen an ein DBS und
werden entsprechend vom WMS implementiert. Adapter hingegen rufen Webservices auf,
die dann SQL Anfragen ausfithren und die Ergebnisse in einem eigenstandigen (XML)
Format als SOAP Nachricht zurtickgeben. Solche Adapter wurden fiir den Anwendungsfall
der Proteinmodellierung (siehe Kapitel 2.5, Seite 38) in der Arbeit [Wag1o0] fiir das DWARF
System erstellt. Die SQL Aufrufe werden bei beiden Methoden (Inline SQL, Adapter) auf
externen Datenbanken ausgefiihrt, also nicht auf der integrierten WE-Datenbank.

/|

Produkte

SELECT id, preis _—
FROM Produkte2010
7 2010
~{ Foreach | Fur jedes — \
H i \ Produkte
Tupel(#id#, #prels#)‘/,\ \ 3 011
\

aus Menge SQL1 @nge dor /

: \Tupel aus SQL1/< Ly
Preis /
Aktualisierung 7/ “

SQL, INSERT INTO /

Produkte2011———
VAULES (#id#, #preis#)

:

Abbildung 3.3.: Ein Beispiel-Workflow mit Inline SQL Aktivitdten. Hierbei werden Produkt-
preise einer externen Datenbank aktualisiert, indem die aktuellen Preise
zuerst geladen werden, anschlieffend in einer Foreach Schleife angepasst
und schliefSlich in die Datenbank zurtickgespeichert werden.

Betrachten wir nun folgendes Workflow-Beispiel aus Abb. 3.3. Es enthélt eine Inline SQL
Aktivitdt (SQL,), welche aus einer Datenbanktabelle Produkte2o10 zu allen Produkten den

46

3.2. Arbeiten und Ansatze zur Datenbankintegration

Primérschlussel (id) und den Preis des Produkts ermittelt. Die Ergebnismenge wird im
Workflow in einer Prozessvariable zwischengespeichert. Die Foreach Schleife wird fiir jedes
Ergebnistupel in dieser Menge, also fiir jedes Produkt, durchlaufen. In der stilisierten
Aktivitat PreisAktualisierung wird nun der Preis des Produkts angepasst (in WS-BPEL konnte
hier eine ASSIGN Aktivitdt oder ein Webservice Aufruf erfolgen). Anschlieffend wird mit der
zweiten Inline SQL Aktivitat das Produkt mit dem neuen Preis in die Tabelle Produkte2o11
eingefiigt.

Die drei betrachteten Systeme unterscheiden sich hierbei, wenn man von der Art der
Implementierung der Inline SQL Aktivitdten absieht, nur in zwei Kriterien:

1. Die Ergebnismenge der SQL; Aktivitdat wird entweder in einer temporaren Tabelle der
externen Datenbank (IBM) gespeichert und dann vollstindig fiir die Verarbeitung in
eine Prozessvariable des WF-Engine geladen, oder direkt in eine Prozessvariable und
somit innerhalb der integrierten WF-Datenbank gespeichert (Microsoft, Oracle).

2. Die Bindung der Inline SQL Aktivititen an die externe Datenbank kann statisch
(Microsoft, Oracle) oder dynamisch (IBM) erfolgen.

Ein erweiterter Ansatz zu BPEL/SQL wird in [RRS"10] vorgestellt. Das dort vorgestellte
SIMPL-Framework (SimTech - Information Management, Processes, and Languages) bietet
die gleichen Moglichkeiten wie die bereits vorgestellten BPEL/SQL Ansétze, ist jedoch vom
eigentlichen WfMS unabhingig und kann somit in jedes WfMS integriert werden. Es bietet
insbesondere auch Zugriffsmoglichkeiten auf weitere Datenquellen, wie z.B. Dateisysteme.
Das System besteht aus dem SIMPL-Kern, der in die Kommunikationsinfrastruktur des
WEMSs eingebettet wird. Dort werden die Schnittstellen auf die verschiedenen Datenquellen
(relationales DBS, Dateisystem etc.) als Operatoren (Data Access Operations) implementiert.
Fiir das jeweilige WEMS konnen nun Aktivitédten, als sog. Plug-Ins, implementiert werden,
die diese Operatoren aufrufen (siehe Abb. 3.4). Interessant ist hierbei die Moglichkeit, ETL-
Operatoren (siehe Kapitel 2.3.3.3, Seite 34) auf heterogene Daten anzuwenden, so kénnen z.B.
Daten die im CSV-Format auf dem Dateisystem abliegen, mit Daten aus einem relationalen
DBS verkniipft, vereinigt und zusammengefiihrt werden. Des Weiteren ist es moglich Daten
aus den verschiedenen Quellen ineinander zu tiberfithren, z.B. CSV-Daten in ein relationales
Modell und umgekehrt abzuspeichern. Bisher wurde der SIMPL-Kern an die WF-Engine
Apache ODE angebunden.

3.2.2. Process Graph Model Optimierung

Fur die Inline SQL Aktivititen aus Kapitel 3.2.1 ergeben sich globale Optimierungsmoglich-
keiten, die in [VSSToy] durch den vorgestellten Process Graph Model (PGM) Optimierer
durchgefiihrt werden. Dies steht im Gegensatz zu dem Ansatz dieser Arbeit, in der wir
die integrierte DB des WfMSs nutzen mochten um wéahrend der Workflow-Ausfithrung

47

3. Workflow Architekturen und Datenbank Integration

Kommunikations Datenquellen
infrasturktur G
SIMPL Plug-In SIMPL Kern g
iy
Nachrichten

o }4 —p| Data Access
Aktivitaten Operations system

Abbildung 3.4.: Architektur des SIMPL-Frameworks. Die im WfMS implementieren Plug-Ins
kommunizieren mit dem SIMPL-Kern, bzw. mit den dort implementier-
ten Data Access Operations, die Zugriff auf eine Vielzahl von heterogenen
Datenquellen erlauben. Vgl. [RRS™ 10]

WEF-Engine

<///°// j

o (77

v
V4

R weitere

4

Dateisystem

lokale Optimierungen zu erzielen. PGM ist ein Graph-Modell, in den Workflows allgemein
uberfiihrt werden konnen (also auch ein BPEL/SQL WEF), hierzu berticksichtigt PGM die
Aktivitdten als Knoten, deren Daten- sowie Kontrollflusskanten, moglich vorkommende
Variablen und sog. Partner, also Aufrufe externer Diensten (wie WSs und DBSe). Dadurch
besitzt ein PGM-Graph alle nétigen Informationen fiir eine semantisch korrekte Optimierung.
Der PGM Optimierer arbeitet dann nach folgendem Schema (siehe Abb. 3.5):

1. Ubersetzen eines BPEL/SQL Workflows in das PGM Modell
2. Der PGM Graph wird durch bestimmte Regeln und eine Kontrollstrategie optimiert

3. Der optimierte PGM Graph wird in ein BPEL/SQL Workflow riickiibersetzt

Die Kontrollstategie durchldauft im Wesentlichen die vorliegende Regelmenge in einer vor-
gegebenen Reihenfolge und priift die Anwendbarkeit auf den PGM-Graph. Dadurch wird
gewihrleistet, dass nach Anwendung einer Regel moglicherweise weitere Regeln anwendbar
sind, um einen stiarker optimierten Graph zu erhalten. Die Regeln bestehen jeweils aus einer
Bedingung und einer Aktion, nur wenn die Bedingung erfiillt ist, werden die daran beteiligten
Aktivitdten (die vom Kontrollfluss aus betrachtet vor und nach der aktuell betrachteten
Aktivitat auftreten konnen) durch die Aktion in eine entsprechend verdnderte Aktivitat
tiberfiihrt. Wichtigen und interessante Regeln sind hierbei:

Assign-Pushdown Die Verwendung einer WF-Variablen innerhalb einer SQL-Anweisung
wird durch ihre vorhergehende Definition ersetzt (BPEL-ASSIGN). Dies kann insbeson-
dere auch eine SQL-Anweisung sein, falls der Inhalt der WF-Variablen durch einen
solchen Ausdruck geladen wurde.

Webservice-Pushdown Der Aufruf eines WSs wird in die SQL-Anweisung integriert, anstatt
diesen tiber die WF-Engine auszufiihren.

48

3.2. Arbeiten und Ansatze zur Datenbankintegration

/ \ PGM Optimierer

BPEL/SQL

umgeschr.
BPEL/SQL

Regel

Kontroll
Bedingung Strategie
BPEL/SQL nach Aktion PGM nach

PGM BPEL/SQL

/;\ v
\PGM/ Optimierer-Engine umgeschr.

'QGM

Abbildung 3.5.: BPEL/SQL WFs werden zuerst in das interne PGM Modell {iiberfiihrt,
der PGM-Graph wird dann durch Regeln und eine Kontrollstategie op-
timiert und wieder in einen entsprechenden BPEL/SQL WF {iberfiihrt. Vgl.
[VSSto7]

Tupel-to-Set Die tupelweise Verarbeitung innerhalb einer Schleife wird in eine SQL-
Mengenoperation iiberfiihrt.

Wir werden nun die grundséitzliche Funktionsweise und das Zusammenspiel ausgewahl-
ter Regeln anhand des Beispiels aus Abb. 3.3 vorstellen. Betrachten wir den ersten Opti-
mierungsschritt (Abb. 3.6a), hier wird die verarbeitende Aktivitat (PreisAktualisierung) in
Form einer User Defined Function (UDF) innerhalb des DBSs ausgewertet. Die Funktion
PreisAktualisierung erscheint im INSERT Ausdruck der Inline SQL Aktivitat (SQL;). Stellt
diese Funktion ein Aufruf an einen Webservice dar, wird der bereits vorgestellte Webservice-
Pushdown angewandt. Falls die Funktion (PreisAktualisierung) eine Zuweisung ist, wird
entsprechend der Assign-Pushdown verwendet.

Der zweite Optimierungsschritt (Abb. 3.6b) eliminiert die Foreach Schleife. Dazu werden die
Ergebnistupel der Inline SQL Aktivitdt SQL; nicht mehr tupelweise (VALUES) durch mehr-
maliges Aufrufen von SQL, aus Abb. 3.6a, sondern durch eine Mengenoperation (SELECT)
innerhalb der SQL-Anweisung SQL, aus der tempordren Datenbanktabelle geladen. Ins-
besondere kann dadurch die Foreach-Schleife und das Laden der tempordren Tabelle in
eine WE-Variable eliminiert werden. Die zugehorige Regel lautet Insert Tupel-to-Set, die zur
Gruppe der bereits angesprochenen Tupel-to-Set-Regeln gehort. Durch die Eliminierung der
Schleife findet nun die Verarbeitung durch einen einzigen SQL Ausdruck mengenorientiert
im DBS statt und es miissen keine Daten mehr zwischen Datenbank und WF-Engine aus-
getauscht werden. Der dritte und letzte Optimierungsschritt (Abb. 3.6¢c) ersetzt noch die
temporéare Tabelle in SQL, durch den SQL Ausdruck von SQL; da die temporéare Tabelle
nicht langer bendtigt wird. Die zugehorige Regel lautet Eliminate Temporary Table.

49

3. Workflow Architekturen und Datenbank Integration

!
saL;
v

| Foreach |

Preis
Aktualisierung

+ SQL2

SELECT id, preis

FROM Produkte2

Fir jedes

Tupel(#id#, #preis#)
aus Menge SQL1

0

Tupel aus SQL1 |
in TEMP

INSERT INTO Produkte2011

VAULES (#id#,

PrelsAktuaInsnerung(#pre|s#

/|

Produkte
2010

Produkte
2011

T

\

-

(a) Beispiel Prozess nach erstem Optimierungsschritt

SQL;

A

Preis
Aktualisierung

+ SQL2

}

SELECT id, pr

eis

s

FROM Produkte2010

Menge der

| Tupel aus SQL1

in TEMP

INSERT INTO Produkte2011
SELECT #id#,
PreisAktualisierung(#preis#)

FROM TEMP

Produkte
2010

Produkte
2011

(b) Beispiel Prozess nach zweitem Optimierungsschritt

Preis

Aktualisierung

!

INSERT INTO Produkte2011

SELECT id,

PreisAktualisierung(preis) FROM

(SELECT id, preis FROM
Produkte2010)

_

/

Produkte
2010

-

Produkte
2011

(c) Beispiel Prozess nach letztem Optimierungsschritt

Abbildung 3.6.: Optimierung des BPEL/SQL Workflows aus Abb. 3.3

50

3.2. Arbeiten und Ansatze zur Datenbankintegration

Das Papier [VSSTo07] stellt noch weitere Regeln und Optimierungsstrategien vor. Messungen
zeigen, dass insbesondere die Insert Tuple-to-Set Regel einen starken Performanz Vorteil
bringt. Je nach zu verarbeitender Datengrofie betrdagt der Beschleunigungsfaktor der WE-
Laufzeit zwischen 245 und 15000. Diese Werte sind durchaus beeindruckend und zeigen die
Starke mengenorientierter Verarbeitung innerhalb moderner DBSe.

3.2.3. Datenbank als Workflowsystem erster Klasse

Ein ganz anderer Ansatz der stirkeren Integration von Datenbank- und Workflowsystemen
versucht die WF-Engine innerhalb des Datenbanksystems zu realisieren, hierbei fallt also die
Implementierung einer eigenenstdndigen WF-Engine weg [AIL98] [SKDNos5]. Dieser Ansatz
wird oft mit dem Schlagwort Aktive Datenbanken in Verbindung gebracht [ASg6] [PDgg].

Vor allem bei wissenschaftlichen WFs, die stark daten-orientiert sind, spielen die effizi-
ente Verarbeitung grofier Datenmengen, die Nachvollziehbarkeit der Experimente und
anschlieflfende Analysen der Daten eine wichtige Rolle. Da nahezu alle WF-Engines {iber
einer Datenbank aufgebaut sind, liegt die Idee nahe, die Funktionen der WF-Engine in die
Datenbank zu tibernehmen. So féllt einerseits die zusdtzliche Kommunikation zwischen den
Softwaremodulen weg und die Daten sind durch die ACID-Eigenschaften des DBSs zugleich
persistent. Das Papier [AIL98] fordert DBSe als Erste-Klasse WEMS zu betrachten (siehe Abb.
3.7) und stellt einen Prototypen auf dem objektrelationalen DBS Horse vor.

Spezial . Spezial
' optional !
i\ Programme Programme |
Prozess und Daten| WORKFLOW
Verwaltung SOFTWARE
Daten DBMS DBMS Prozess und Daten
Verwaltung Verwaltung
(a) (b)

Abbildung 3.7.: Klassische WIMS Architektur (a) und DBMS als Erste-Klasse WEMS (b). Vgl.
[AIL98]

Die grundlegende Idee ist, einen Workflow in ein entsprechendes Datenbankschema zu
tiberfiihren, Tabellen stellen somit Aktivitiaten dar. Die Daten die in diesen Aktivitdten verar-
beitet oder generiert werden, werden in dieser Tabelle gespeichert. Die Verarbeitungsschritte
werden tiber Ausloser (engl. Trigger) gestartet und so z.B. ein Webservice oder externes

51

3. Workflow Architekturen und Datenbank Integration

Workflow Spezifikation MOOSE (ORDBM) Schema
A1 T F(E1)

E1 BT
E1 | A1

Abbildung 3.8.: Der Workflow wird in ein ORDBM Schema gebracht, die Eingabe Ez und
die Ausgabe A1 werden als abgeleitete Tabellen der Aktivitdtstabelle T
modelliert. Einfiigen von Daten in E1 triggert die Transformation F(E1) und
speichert das Ergebnis in Tabelle A1 ab. Vgl. [AIL98]

Programm aufgerufen. Um nach Beenden einer Aktivitdt die ndchste Aktivitdt auszuldsen,
wird entweder eine UDF aufgerufen (kontroll-Fluss orientiert) oder weiter zu verarbeitende
Daten als Zeile in die ndchste Aktivitdtstabelle eingefiigt, was einen Trigger zur Verarbeitung
auslost (daten-Fluss orientiert).

In Abb. 3.8 wird ein Beispiel gegeben, wie man eine Workflow Aktivitit in das entsprechende
Datenbankschema (Moose) der Horse Datenbank tiberfiihrt. Da es sich hierbei um daten-
Fluss orientierte Workflows handelt, laufen tiber die Workflowkanten Daten, die mit Eingabe
(E) und Ausgabe (A) bezeichnet werden. Die Aktivitdt T verarbeitet die Eingabe E1 und gibt
die Ausgabe A1 weiter. Im Moose Schema existiert die Tabelle T, welche die Funktionalitdt
der Aktivitdt T reprédsentiert. Die Tabellen E1 und Az sind nach dem objektrelationalen
Modell von T abgeleitet. Sobald ein Eingabedatum in Tabelle E1 gespeichert wird, wird
der entsprechende Trigger der Tabelle T aktiv, transformiert das Eingabedatum (F(E1)) und
speichert das Ergebnis in Tabelle A1 ab. Diese Tabelle A1 kann nun wieder als Eingabe fiir
eine folgende Aktivitdt dienen und 16st deren Verarbeitungsschritt aus. Fiir alle weiteren
Ubersetzungen wie Verzweigungen, Schleifenkonstrukte und Ahnliches sei auf [AIL98]
verwiesen.

Um ein solches System zu realisieren miissen nur wenige Grundvoraussetzungen an das
DBMS gestellt gestellt werden:

o Interaktionsmoglichkeiten mit dem Betriebssystem wie Programmaufrufe, Laden und
Speichern von Daten des Dateisystems und/oder Aufrufe von Webservices

e Bereitstellung von Auslosern (Triggern)

e Eine gewisse Ausdrucksmaichtigkeit der Stored Procedures / User Defined Functions
des DBMS um Datentransformationen ausfiihren zu kénnen

Wie leicht zu sehen ist, konnen Monitor- und Analyseprogramme direkt via SQL mit diesem
System kommunizieren, weitere Vorteile die man durch DBMSe von Haus aus geliefert
bekommt sind:

52

3.2. Arbeiten und Ansatze zur Datenbankintegration

e Transaktionssicherheit
e Mehrbenutzerfahigkeit (parallele Ausfiihrung von Workflow Instanzen)
e Kaum Limitierung in der Grofle der zu verarbeitenden Daten

Weitere Vorteile solcher solcher Systeme sind:

e Sie sind mit geringem Implementierungsaufwand zu erstellen, da alle notwendigen
Komponenten vom DBS zur Verfiigung gestellt werden miissen. Insbesondere miissen
keine Vorkehrungen fiir einen Mehrbenutzerbetrieb getroffen werden

e Beinhalten Optimierungsmoglichkeiten durch Einstellungen des DBMS
e Einheitliche Sprache (wie SQL) fiir Analyse und Monitor Anwendungen
¢ Informationen zum WfMS sowie Status zu Instanzen sind sofort verfiigbar

Abschliefiend ist zu sagen, dass solche Systeme eine echte Alternative darstellen, die in
[AS96] beschriebenen Probleme von WfMSen zu 16sen. Jedoch existieren auch heute noch
wenig DBSe, die tiber ausgepragte Interaktionsmoglichkeiten wie Aufrufe von externen
Programmen oder WSs anbieten. Vorallem ladsst sich ein WE-Compiler, der einen WF in
das entsprechende Datenmodell bzw. Schema transformiert mit einem DBS nur schlecht
implementieren. Insbesondere bietet der Ansatz keine Moglichkeit schon existierende WfMSe
zu verbessern.

3.2.4. Zusammenfassung und Abgrenzung zu dieser Arbeit

Die vorgestellten Ansdtze zur stiarkeren Integration von DBSen in WfMSe beziehen sich
entweder auf externe Datenquellen und DBSe oder verschmelzen WfMSe und DBSe zu einem
einzigen System. In dieser Arbeit untersuchen wir jedoch die Nutzungsmoglichkeiten einer
integrierter DB innerhalb von géngigen WfMSen. Hierbei sollen lokale Optimierungen zur
Laufzeit eines Workflows zum Einsatz kommen, die sich auf Basisaktivititen der WF-Sprache
beziehen. Dies ermoglicht eine transparente Nutzung des modifizierten WfMSs fiir bereits
existierende WFs. Ausnutzen von BPEL/SQL Aktivitidten, die auf die integrierte DB zugreifen,
konnen die Korrektheit des WEMSs verletzen. Da diese vom Anwender geschrieben werden
miissen, ist es bei einer inkorrekten Nutzung moglich Variableninhalte einer veralteten
Instanz, einer parallel laufenden Instanz oder sogar eines anderen Prozesses zu lesen und zu
verdndern. Dies beeintrachtigt die Nachvollziehbarkeit beendeter WF-Instanzen und kann
zu nicht-deterministischem und semantisch inkorrektem Verhalten von laufenden Instanzen
fiihren. Wir konnten nach bestem Wissen bis dato in der Literatur keine konkreten Ansétze
fiir die starkere Nutzung der integrierten WF-DB finden.

53

3. Workflow Architekturen und Datenbank Integration

3.3. Workflowsysteme und Engines

Wir werden nun einige ausgewdhlte, gangige Workflowsysteme vorstellen und in wieweit
diese ihre integrierte Datenbank fiir die Ausfithrung von Workflows verwenden. Die Rei-
henfolge der WfMSe impliziert keine Wertung, sie wurden alphabetisch sortiert. Wir stellen
jeweils die WF-Sprache, das Lizenzmodell, die unterstiitzten DBMSe und deren Verwendung
vor und beschreiben kurz das System.

3.3.1. Apache Orchestration Director Engine

Entwickler: Apache Software Foundation

Webseite: http://ode.apache.org/

Workflow-Sprache: WS-BPEL 2.0 (Kontroll-Fluss)

Lizenz: Apache License Version 2.0

Unterstiitzte DBMS: Apache Derby (embedded), IBM DB2, MySQL, PostgreSQL und viele
Weitere (verwendet Hibernate oder openJPA Middelware) [Miil10]

Verwendung der DB: Persistenz

Apache ODE ist eine OpenSource WF-Engine fiir die Ausfithrung von WS-BPEL Workflows.
Sie ist eine der wenigen, noch existierenden OpenSource WF-Engines fiir WS-BPEL und
unterstiitzt den gesamten BPEL 2.0 Standard. Sie wird fiir die Forschungszwecke im Rahmen
des Simulation Technology (SimTech) Projekts' der Universitat Stuttgart als Prototyp fiir die
speziellen Bediirfnisse von Simulationsworkflows angepasst und erweitert [GSK'11]. Da
ihr Quellcode offen liegt, viele DBSe unterstiitzt und fiir SimTech erweitert wird, findet sie
auch in dieser Arbeit Verwendung und wird in den Kapiteln 5 und 6 nédher vorgestellt. Die
integrierte DB wird bisher nicht weiter ausgenutzt, aufSer fiir die Persistenz von Prozess-
und Instanzdaten.

Thttp:/ /www.simtech.uni-stuttgart.de/

54

http://ode.apache.org/

3.3. Workflowsysteme und Engines

3.3.2. Taverna

Entwickler: Taverna / myGrid Team

Webseite: http://www.taverna.org.uk/
Workflow-Sprache: SCUFL (Daten-Fluss)

Lizenz: Lesser General Public License (LGPL) Version 2.1
Unterstiitzte DBMS: Apache Derby (embedded), MySQL
Verwendung der DB: Persistenz

Taverna ist ein komplettes WEMS mit GUI Editor fiir die Workflow Erstellung, der WF-Engine,
die Workflows ausfiihrt, und mit einem Monitor Tool, mit welchem man die Ausfithrung
von Workflows iiberwachen sowie Zwischen- und Endergebnisse einsehen kann [OAF " 04].
Urspriinglich wurde es fiir die speziellen Bediirfnisse von Bioinformatik-Workflows ent-
wickelt, inzwischen findet es aber auch in allen anderen LifeSciences, wie Medizin- und
Chemoinformatik, Verwendung. Es zeichnet sich durch einfach zu modellierende daten-Fluss
orientierte Workflows und eine Vielzahl an Diensten aus, die als Aktivitidten in einen sol-
chen Workflow einbindbar sind. Neben der Ausfithrung von Webservices stehen zahlreiche
eingebettete Bioinformatik-Dienste zur Verfiigung. Weiterhin ist es moglich Programme
auf Betriebssystem-Ebene sowie lokale, vom Anwender in Java geschriebene, Aktivitdaten
aufzurufen. Eine Anfrage an die Mailing-Liste* ergab, dass die integrierte Datenbank aufier
zur Persistenz nicht weiter genutzt wird, um die Workflow-Ausfithrung zu beschleunigen
oder anderweitig zu verbessern.

3.3.3. Trident Scientific Workflow Workbench

Entwickler: Microsoft Research

Webseite: http://tridentworkflow.codeplex.com/

Workflow-Sprache: Workflow Foundation - Extensible Object Markup Language (XOML) -
von und nach WS-BPEL transformierbar

Lizenz: Apache License Version 2.0

Unterstiitzte DBMS: Microsoft SQL Server

Verwendung der DB: Persistenz

Microsoft Trident [BJAT08] wurde als wissenschaftliche Workflow Workbench entwickelt.
Die interne Reprasentation des Workflows erfolgt iiber die Microsoft Windows Workflow
Foundation3 und das XML Format XOML. XOML selbst ist kontroll-Fluss oriententiert, in

*http:/ /www.mail-archive.com/taverna-hackers@lists.sourceforge.net/ msgo1341.html
3http:/ /msdn.microsoft.com/en-us/netframework/aa663328

55

http://www.taverna.org.uk/
http://tridentworkflow.codeplex.com/

3. Workflow Architekturen und Datenbank Integration

Trident besteht allerdings ebenfalls die Moglichkeit daten-Fluss orientierte WFs zu kon-
zipieren, dhnlich zu Taverna (siehe Kapitel 3.3.2). Dies geschieht tiber sog. Container. So
existieren auch in Trident eine GUI zur Erstellung der Workflows und ein Monitortool
zur Uberwachung der Workflow-Ausfithrung. Neben Kontroll-Fluss-Strukturen wie if-then,
Auswertungen von Bedingungen etc. verfiigt Trident tiber eine Vielzahl von Zugriffsmog-
lichkeiten auf verschiedene Datenquellen wie das Dateisystem (File Input, File Writer),
Datenbanken (SQL Connection, Stored Procedure Executor) und fiir Anwendungsdomé&nen
spezifische Datenquellen. Ebenfalls kann die Amazon S3 Storage Cloud angebunden werden.
Weitere Aktivititen ermoglichen es Diagramme zu erzeugen oder XPath-Ausdriicke auf
XML-Dokumente zu evaluieren. Ebenfalls ist es moglich Webservices einzubinden.

Der Quellcode ist frei verfiigbar, jedoch wird fiir die Ausfithrung von Trident eine Microsoft
SQL Server Version benétigt. Microsoft rdat davon ab, die kostenlose Express Version zu
verwenden. Eine Anfrage* an das Trident Forum ergab, dass auch hier die Datenbank
nur fiir die Persistenz verwendet wird. Eine nennenswerte Architekturentscheidung ist
die ausschlieflliche Verwendung von UDFs und Stored Procedures zur Abstraktion der
SQL Anfragen an das letztendlich verwendete interne Datenmodell innerhalb der MS SQL
Datenbank.

3.3.4. WebSphere Process Server

Entwickler: IBM

Webseite: http://www.ibm.com/software/integration/wps/

Workflow-Sprache: Generalized Flow (BPEL Derivat)

Lizenz: Proprietdr

Unterstiitzte DBMS: Apache Derby, IBM DBz, IBM Informix, Microsoft SQL Server, Oracle
10/11g

Verwendung der DB: Unbekannt, mit Sicherheit jedoch Persistenz

Der WebSphere Process Server (WPS) ist die WF-Engine von IBMs WebSphere> und fiihrt
Workflows aus, welche in dem erweitertem WS-BPEL Dialekt Generalized Flow geschrieben
sind. Dieser Dialekt ist um Aktivitdten erweitert, die z.B. einen Benutzer Entscheidungen
oder Tatigkeiten ausfiihren lassen. Aufgrund der zur Verfiigung stehenden Informationen
konnte nicht ermittelt werden, ob der WPS sein integriertes DBS fiir andere Aufgaben aufser
zur persistenten Speicherung verwendet. Jedoch ist das zugehorige Tabellenschema auf
mehrere voneinander unabhéngige Datenbanken aufgeteilt. Somit ist es moglich diese auf
mehrere Datenbankserver zu verteilen, um ein skalierbareres System zu erhalten.

“http:/ /tridentworkflow.codeplex.com/Thread / View.aspx?Threadld=229518
Shttp:/ /www.ibm.com/software /websphere /

56

http://www.ibm.com/software/integration/wps/

4. Nutzung von Funktionen einer integrierten
Workflowdatenbank

Nachdem wir in Kapitel 2 die nétigen Grundlagen und in Kapitel 3 den aktuellen Stand der
Forschung zur Integration von WF- und DB-Systemen sowie verschiedene WfMSe vorge-
stellt haben, widmen wir uns nun dem Forschungsziel dieser Arbeit und der erarbeiteten
konzeptionellen Ergebnisse. Diese wurden in einem Prototypen umgesetzt (siehe Kapitel 5
und 6), der anschliefSend auf eine verbesserte Workflow-Ausfithrung hin evaluiert wurde
(siehe Kapitel 7).

4.1. Grundlegendes Konzept

Ziel dieser Arbeit ist es eine WF-Engine so zu verdndern, dass sie Funktionalitdten, die bei
der Ausfiihrung eines WF in der WE-Runtime stattfinden, an das DBMS der integrierten
DB abgibt. Die Grundidee ist hierbei, dass so Datentransfer zwischen dem DBS und der
WEF-Engine vermieden oder verringert werden kann, was sich potentiell in einer schnelleren
Workflow-Ausfiihrung und/oder in einem verringertem Ressourcenverbrauch des WfMSs
duflern sollte.

Um das Konzept zu verdeutlichen, betrachten wir Abb. 4.1. Es ist aus Software-Engineering
Gesichtspunkten iiblich zwischen der eigentlichen WF-Runtime und dem DBS eine DAO-
Schicht (Data Access Object) zu legen, die dann letztendlich mit dem DBS kommuniziert. So
ist es ohne Modifikationen der WF-Runtime moglich andere DBMS zu unterstiitzen. Alle
WIMSe, die diesem Konzept folgen, halten ihre Daten in der DAO-Schicht, solange diese in
der Runtime nicht benétigt werden. Die DAO-Schicht kiimmert sich (automatisch) um die
Persistenz dieser Daten, also dass diese in der integrierten DB gespeichert werden. Dies dient
der Nachvollziehbarkeit und der Uberwachung der Ausfiihrung eines WFs mit Hilfe von
Monitor Anwendungen und der Moglichkeit einen WF zu pausieren sowie insbesondere nach
einem Systemausfall die Ausfithrung des Workflows fortzusetzen (Recovery). Aufserdem ist
es moglich Daten der DAO-Schicht aus dem Hauptspeicher zu entfernen (Dehydratation)
und bei Bedarf aus der DB zu laden (Hydratation). Dehydratation erfolgt insbesondere bei
langlaufenden Prozessen, um die Ressourcen zur Ausfiihrung anderer WFs nicht unnétig zu
belegen.

57

4. Nutzung von Funktionen einer integrierten Workflowdatenbank

a) Klassisch— DB als Datenspeicher b) Neu— DB zur Datentransformation
=3 Datenfluss

==esP Kontrollfluss

= & Daten- oder
Kontrollfluss

Ausfihrung einer Instanz > Ausfiihrung einer Instanz

Persistenz /
Dehydratation
Laden /
Hydratation

O Verarbeitung /

Transformation

= Verarbeitungs-
H
v Anfrage

Abbildung 4.1.: Ublicherweise wird das DBS nur fiir die Persistenz und Speicherung von
WF-Daten verwendet a). Das Konzept zur erweiterten Nutzung des DBS ist
die Verarbeitung dieser Daten innerhalb der Runtime a) auf die Ebene des
DBS zu tibertragen b).

Betrachten wir die Zuweisung von Variablen innerhalb eines WFs als Beispiel. So wird ein
Datum von der WF-Runtime aus der DAO-Schicht bzw. u.U. aus der Datenbank geladen,
innerhalb der WF-Runtime zugewiesen und sofort wieder an die DAO-Schicht bzw. die
DB tibergeben. Die integrierte DB des WfMSs wird also nur als Datenspeicher verwendet
(siehe Abb. 4.1a). Befinden sich zum Zeitpunkt der Zuweisung (Abb. 4.1b) jedoch alle
Daten bereits in der DB, was z.B. durch eine garantierte Persistenz gesichert ist, kann diese
Zuweisung direkt innerhalb der DB stattfinden. Mit dieser Methode kénnen prinzipiell auch
weitere Verarbeitungs- und Datentransformationsschritte (z.B. Auswertung von Bedingungen)
innerhalb des DBS ausgefiihrt werden und falls vorhanden das Resultat oder eine Bestitigung
der Ausfithrung an die WF-Runtime zuriickgeliefert werden. Somit kann der Datentransfer
zwischen den Softwareschichten verringert bzw. ganz vermieden werden.

Um diese Verlagerung der Aufgaben transparent zu halten und auch fiir bestehende WFs
verwenden zu kénnen, darf dies keine Veranderung im Quellcode der WFs nach sich ziehen.
Somit ist die Verwendung von Inline SQL Aktivitdten (z.B. BPEL/SQL siehe Kapitel 3.2.1,
Seite 45), die grundsitzlich auch auf der integrierten DB des W{MSs operieren kénnten,
nicht sinnvoll. Hieraus folgt zugleich, dass mit dem vorgestellten Konzept keine globalen
Optimierungen moglich sind, diese globalen Optimierungen miissen durch entsprechende
Compiler oder vorangestellte Optimierer (siehe Kapitel 3.2.2, Seite 47) erfolgen. Wahrend der
Ausfithrung von WFs in einer WE-Runtime sind somit nur lokale Optimierungen einzelner
Aktivitaten moglich. Der durchaus plausible Ansatz die Funktionalitaten einer WF-Engine
in ein DBMS vollstandig zu integrieren (siehe Kapitel 3.2.3, Seite 51) und so die Runtime
und DAO-Schicht aus Abb. 4.1 zu entfernen, wiirden den Rahmen dieser Arbeit sprengen,

4.2. Pushdown Konzepte

die Realisierungsmoglichkeit eines entsprechenden im DBS geschriebenen WF-Compilers ist
fraglich und der Ansatz liefert keinerlei Moglichkeiten bestehende WfMSe zu optimieren.

Zum aktuellen Zeitpunkt und nach bestem Wissen existiert keine Literatur zur Nutzung
integrierter WF-DBen nach dem Konzept aus Abb. 4.1b. Die betrachteten WfMSe aus
Kapitel 3.3 arbeiten alle nach dem klassischen Konzept aus Abb. 4.1a. Falls nicht, sind die
entsprechenden Information nicht 6ffentlich zugéanglich. Im folgenden Teilkapitel stellen
wir konkrete Ansdtze und Techniken vor, die unser grundlegendes Konzept aus Abb. 4.1b
aufgreifen.

4.2. Pushdown Konzepte

Da die grundlegende Idee fiir eine stirkere Integration der integrierten DB das Herun-
terdriicken von Funktionalitdt darstellt, nehmen wir Anleihen an den Pushdown-Regeln
aus [VSSTo7], die das gleiche Ziel fiir externe DBen anstreben, und erweitern diese unter
Betrachtung der Funktionalitdten einer kontroll-Fluss orientierten WF-Sprache wie WS-BPEL.
Wir stellen zuerst die verschiedenen Pushdown-Konzepte bzw. Techniken vor und geben
anschlieffend eine Hierarchie und eine entsprechende Softwarearchitektur an.

4.2.1. WebService-Pushdown

Eine Moglichkeit eine klassische Aufgabe einer WF-Engine an das DBS zu {ibergeben, stellt
der WebService-Pushdown dar. Dieser ist eine Regel des PGM Optimierers (siehe Kapitel 3.2.2,
Seite 47), die auch auf unseren Ansatz iibertragbar ist. Hierbei wird der aufzurufende WS
direkt innerhalb des DBSs aufgerufen. Dieser Aufruf kann von der WF-Engine transparent
an das DBS, das die entsprechende Funktionalitit unterstiitzt, {ibergeben werden. Hierbei
kann ein verringerter Datentransfer zwischen WF-Runtime und DBS erzielt werden, da die
Ergebnisdaten des WS direkt in die DB ohne Umweg iiber die WE-Runtime gespeichert
werden (siehe Abb. 4.2). Allerdings sollten die Eingabedaten fiir den WS bereits in der DB
abliegen, da sonst ein zusitzlicher Datentransfer zwischen WF-Runtime und DBS nétig wird.
Der WebService-Pushdown ist fiir alle WfMSe, die WSs aufrufen und ein WS-fahiges DBS
unterstiitzen, geeignet.

4.2.2. Assignment-Pushdown

Der Assignment-Pushdown ist sehr dhnlich zur Assign-Pushdown Regel des PGM Opti-
mierers (siehe Kapitel 3.2.2, Seite 47). Wahrend der Assign-Pushdown jedoch Referenzen
auf WF-Variablen innerhalb von SQL-Anweisungen durch ihre Definition ersetzt, fiihrt der
Assignment-Pushdown ausschliefllich Zuweisungen an und von WF-Variablen durch. Der

59

4. Nutzung von Funktionen einer integrierten Workflowdatenbank

Kommunikations
Infrastruktur

Abbildung 4.2.: Veranschaulichung des WebService-Pushdowns. Anstatt den Aufruf tiber
die Kommunikationsinfrastruktur der WEF-Runtime durchzufiihren, wird
der Aufruf vom DBS selbst vorgenommen. Somit wird der Datentransfer
zwischen Runtime, DBS und ggf. Kommunikationsinfrastruktur vermieden.

entsprechende Verarbeitungsschritt aus Abb. 4.1b ist die Zuweisung der WF-Sprache und
liefert nur eine Bestdtigung an die WF-Runtime zurtick ohne Variableninhalte zu {ibertragen.
Ebenfalls miissen als Vorbedingung, wie beim WS-Pushdown, alle Variableninhalte in der
integrierten DB abliegen. Eine konkrete Realisierung stellen wir in Kapitel 4.3 vor.

4.2.3. ExpressionEvaluation-Pushdown

Der ExpressionEvaluation-Pushdown wertet allgemein Ausdriicke (z.B. Mathematische) in-
nerhalb des DBSs aus und liefert nur das Ergebnis an die WE-Runtime zurtick. Dies kénnen
im Prinzip alle mogliche Typen sein, die ein entsprechender Ausdruck zuriickgeben kann (z.B.
Integer, Boolean uvm.). Dadurch kann das Datenvolumen, welches zwischen Runtime, DAO-
Schicht und DBS ausgetauscht wird verringert werden. Der Verarbeitungsschritt in Abb. 4.1b
ist somit die Auswertung dieser Ausdriicke. Im Gegensatz zum Assignment-Pushdown wer-
den beim ExpressionEvaluation-Pushdown Daten an die WF-Runtime zurtickgeliefert. Wie
fiir WS- und Assignment-Pushdown sollten als Vorbedingung ebenfalls alle Variableninhalte
schon in der integrierten DB abliegen. Eine konkrete Realisierung stellen wir ebenfalls in
Kapitel 4.3 vor.

4.2.3.1. Condition-Pushdown

Der Condition-Pushdown soll Bedingungen, welche auf WEF-Variablen referenzieren, in-
nerhalb des DBSs auswerten und gibt nur noch das Resultat also wahr oder falsch an die

60

4.3. Query-Pushdown

WEF-Engine zuriick, damit diese den weiteren Kontrollfluss steuern kann (z.B. IF und Transi-
tionConditions in WS-BPEL). Somit stellt er eine konkrete Variante des ExpressionEvaluation-
Pushdown dar, der boolsche Ausdriicke innerhalb des DBSs auswerten ldasst. Weitere Va-
rianten des ExpressionEvaluation-Pushdown kénnten Schleifenzdhler oder Zeitspannen
berechnen.

4.3. Query-Pushdown

Wir mochten nun den Query-Pushdown einfiihren. Dies ist eine Technik, mit der sich, zu-
mindest fiir WS-BPEL, die Konzepte Assignment- sowie ExpressionEvaluation-Pushdown
gleichzeitig realisieren lassen. Hierbei werden Ausdriicke und Anfragen einer Query-Sprache,
die nativ innerhalb eines Workflows formuliert werden konnen, an das DBS weitergeleitet,
um dort ausgewertet zu werden.

Art der Daten-| Query-Sprache Anforderung DBS WIMS
struktur
XML XPath (XQuery) XML-Enabled oder alle WS-BPEL,
Native XML Taverna, Trident
uvm.
Tabellen SQL relationales DBS -
Text reguldre Ausdriicke, In- | CLOB Datenfeld, -
formation Retrieval (IR) | IR Query Implementie-
Query-Sprache rung
Zukiinftiges zukiinftige Implementierung -
Datenstruktur Query-Sprache Datenfeld und Query-
Sprache

Tabelle 4.1.: Mogliche Auspragungen des Query-Pushdowns.

Die Grundvoraussetzung hierfiir ist, dass das DBS diese Query-Sprache implementiert und
evaluieren kann. Implizit kann dies voraussetzen, dass die entsprechenden Datenstrukturen,
in denen die Daten in den WFs dargestellt werden, als Datentyp im DBS abbildbar sein
miissen. Die Art des Flusses der WE-Sprache spielt hierbei eine untergeordnete Rolle.
Wihrend bei kontroll-Fluss orientierten Sprachen innerhalb der Queries auf Variablen
referenziert wird, kann bei einer daten-Fluss orientierten Sprache auf die eingehenden
Kanten, welche mit einem Datum behaftet sind, referenziert werden. Um die moglichen
Auspragungen dieses Konzepts besser zu verstehen, sind in Tabelle 4.1 einige mogliche
Auspragungen dargestellt. Die Tabelle zeigt fiir verschiedene Datenstrukturen eine mogliche
oder existierende Query-Sprache zur Verarbeitung dieser Struktur und die Anforderungen
an das DBS, um den entsprechenden Query-Pushdown fiir ein WfMS zu realisieren. Wir

61

4. Nutzung von Funktionen einer integrierten Workflowdatenbank

bezeichnen die jeweilige Auspragung tiber den Namen der zugehorigen Query-Sprache (z.B.
XPath-Pushdown, SQL-Pushdown etc.).

Wir konnen den Query-Pushdown in zwei Modi ausfiihren (siehe Abb. 4.3). Beim synchronen
Modus wird der Ausdruck innerhalb des DBS ausgewertet und das Datum anschlieffend an
die WF-Engine zuriickgegeben und dort weiterverarbeitet. Dieser synchrone Modus realisiert
den ExpressionEvaluation-Pushdown. Im asynchronem Modus wird der Ausdruck innerhalb
des DBSs ausgewertet und direkt in der DB einem Datenfeld (z.B. einer WEF-Variablen)
zugewiesen und realisiert somit den Assignment-Pushdown. Wird das Datum des Feldes
bzw. der WF-Variablen spiter in der Runtime benétigt, muss es entsprechen nachgeladen
werden.

/ Synchron / Asynchron
Anfrage @ Anfrage @

Wert bei

Bedarf @
/) /)

Ergebnis der

Anfrage @

Awarbeitung

Abbildung 4.3.: Der Query-Pushdown in asynchronem oder synchronem Modus.

Fiir diese Arbeit ist insbesondere der XPath-Pushdown von Interesse, da er fiir alle WS-BPEL
Implementierungen anwendbar ist, wir stellen ihn im Folgenden durch ein kleines Beispiel
vor. Auf die anderen in Tabelle 4.1 beschriebenen Auspriagungen gehen wir nicht weiter ein,
da wir Sie innerhalb dieser Arbeit nicht umsetzen werden.

4.3.1. XPath-Pushdown

Der XPath-Pushdown driickt XPath-Ausdriicke (siehe Kapitel 2.1.2, Seite 21) von der WF-
Runtime Ebene auf die Datenbankebene. Betrachten wir unser XML-Beispieldokument
(Listing 2.1, Seite 19) und folgende WS-BPEL ASSIGN-Aktivitat:

<assign>
<copy>
<from>$y/document/title [@lang="de"]/text () </from>
<to variable="x"/>
</copy>
</assign>

62

4.3. Query-Pushdown

Des Weiteren nehmen wir an, dass die Variable y das XML-Beispieldokument enthélt und die
Variable x vom Typ xsd:string ist. Somit wird also der deutsche Titel aus dem XML-Dokument
,Nutzung einer integrierten Datenbank zur effizienten Ausfiihrung von Workflows” an die Variable
x zugewiesen. Man beachte, dass das Wurzel Element thesis im Ausdruck nicht angegeben
wurde. Dies ist eine Besonderheit von XPath-in-BPEL-Ausdriicken, da das Element implizit
durch die Typisierung bekannt ist. Wird der XPath-Pushdown synchron durchgefiihrt,
wird der Titel an die WF-Runtime tibergeben und dort der Variablen x zugewiesen und
anschlieffend an die DAO-Schicht und von dort ggf. zur Persistenz an das DBS iibergeben.
Bei einem asynchronem XPath-Pushdown, wird der Titel innerhalb des DBSs ausgewertet
und dem Datenfeld der Variable x innerhalb der Datenbank zugewiesen. Wird das Datum
von x spéter in der WF-Runtime bendtigt, muss es iiber die DAO-Schicht nachgeladen
werden.

4.3.2. Pushdown-Hierarchie und Architekturmodell

Es ist moglich, die vorgestellten Pushdown-Konzepte einer Hierarchie zuzuordnen (siehe
Abb. 4.4). Der Webservie-Pushdown steht weitgehend fiir sich alleine. Der Query-
Pushdown kann in die asynchrone und synchrone Variante aufgeschliisselt werden,
wobei die asynchrone Variante den Assignment-Pushdown und die synchrone den
ExpressionEvaluation-Pushdown realisieren kann. Der Condition-Pushdown ist als Spe-
zialfall des ExpressionEvaluation-Pushdowns unter diesem anzuordnen. Gegebenenfalls
lasst sich diese Hierarchie um weitere Konzepte erweitern. Wir werden in dieser Arbeit
jedoch nur die in der Hierarchie vorgestellten Konzepte in den Prototypen umsetzen.

Pushdown
Query Webservice
asynchron synchron
Assignment)
Expression
Evaluation
Condition

Abbildung 4.4.: Die Hierarchie der Pushdown-Konzepte. Fiir die Umsetzung des Proto-
typs auf Basis von WS-BPEL ist insbesondere die Realisierung des Query-
Pushdowns und des Webservice-Pushdowns von Interesse.

63

4. Nutzung von Funktionen einer integrierten Workflowdatenbank

Eine mogliche Softwarearchitektur, die es nicht erfordert zu grofle Anderungen in der
WF-Engine vorzunehmen, fiihrt neben der traditionellen DAO-Schicht eine Pushdown-
Schicht ein (Abb. 4.5). In dieser Pushdown-Schicht werden, fiir den Query-Pushdown, die
Ausdriicke des aktuell ausgefiihrten WFs in eine fiir das DBS verstdandliche Form gebracht
und dann als Anfrage an das DBS gesendet. Fiir den WS-Pushdown wird die entsprechende
DB-Funktion mit allen notigen Parametern aufgerufen. Die Pushdown-Schicht kann
direkt von der Runtime oder von der DAO-Schicht angesprochen und verwendet werden.
Gegebenenfalls ldsst sie sich auch in die DAO-Schicht integrieren.

Pushdown DAO

Abbildung 4.5.: Mogliche Softwarearchitektur zur Realisierung der Pushdown-Konzepte.
Die Pushdown-Schicht kann von der Runtime sowie der DAO-Schicht
verwendet werden und lésst sich ggf. in Letztere integrieren.

64

5. Apache ODE Architektur im Detail

In diesem Kapitel stellen wir die Software-Architektur von Apache ODE vor. Als OpenSource
BPEL Engine und im Rahmen des SimTech Projekts untersucht [GSK ™ 11], bietet sie sich ideal
an um die Konzepte aus Kapitel 4 prototypisch zu implementieren, insbesondere da sie die
dort vorgestellte Architektur Runtime-DAO-DBS besitzt. Zuerst stellen wir die allgemeine
Architektur und anschlieffend die detailliertere Archtitektur der DAO-Schicht und die fiir
den Prototyp wichtigen Runtime Module vor. Die Anderungen und Eingriffe, die fiir den
Prototyp notwendig sind, werden in Kapitel 6 vorgestellt.

5.1. Gesamtarchitektur

Apache ODE ist eine reine WF-Engine, sie besitzt jedoch eingeschrankte Moglichkeiten
laufende Instanzen zu iiberwachen, anzuhalten und fortzusetzen. Diese Funktionen sind
entweder iiber ein Application Programming Interface (API) oder eine Webseite aufrufbar.
Die in Apache ODE bekannt gemachten BPEL-Prozesse werden iiber WS-Aufrufe instanziiert.
Aus diesem Grund muss Apache ODE in eine Kommunikationsinfrastruktur fiir Webservices
eingebettet werden (ODE Integrationsschicht in Abb. 5.1). Typischerweise wird dazu ein
Apache Tomcat Server' mit Axis2 verwendet, ODE kann allerdings auch in den Apache
ServiceMix? eingebettet werden.

Apache ODE ist in Java implementiert. Die Gesamtarchitektur wird in Abb. 5.1 veranschau-
licht. Betrachten wir das Schaubild zuerst von oben nach unten: Die in WS-BPEL definierten
Prozesse werden durch den ODE BPEL Compiler zuerst in ein Java Objektschema tibersetzt
und anschlieflend serialisiert als Datei abgespeichert. Fiir das Instanziieren des Prozesses
und seiner WS-Aufrufe miissen die entsprechenden WSDL Dateien tibergeben werden. Um
Initialwerte von Variablen zu generieren bzw. Zuweisungen von Literalen (XML Dokumente,
die innerhalb des BPEL Prozesses definiert sind) zu validieren, werden ebenfalls die ent-
sprechenden XML Schemata vom Compiler benétigt. Gleichzeitig wird der Prozess bekannt
gemacht, ab sofort kann er instanziiert werden. Betrachten wir nun die ODE BPEL Runtime,
sie besteht aus einer Vielzahl an Modulen, die in einem vereinfachten Architekturbild nicht
alle darstellbar sind. Die Wichtigsten sind in Abb. 5.1 veranschaulicht:

Thttp:/ /tomcat.apache.org/
http:/ /servicemix.apache.org/

65

5. Apache ODE Architektur im Detail

Apache ODE

Nachrichten
Austausch

BPEL
Aktivitaten

JACOB VPU

DBS

Abbildung 5.1.: Die Gesamtarchitektur von Apache ODE. WS-BPEL Prozesse werden zu-
erst in ein internes Schema compiliert. Die Runtime besteht aus mehreren
Modulen, wobei das Fundament durch die Jacob VPU gebildet wird, um
eine parallele Ausfithrung von Instanzen zu erlauben. In der Runtime wer-
den ebenfalls die BPEL Aktivititen implementiert, die potentiell auf Daten
(DAO-Schicht) und auf WSs zugreifen (Nachrichtenaustausch) konnen. Vgl.

[Apa]

JACOB VPU? ist eine fiir ODE entwickelte Virtual Processing Unit (VPU) und bildet das
Fundament der Runtime Archtitektur. Sie tibernimmt alle Aufgaben, um Instanzen
parallel ausfithren zu konnen (Kontextwechsel beim Warten auf Resultat eines WS,
Verarbeiten von zeitgleichen Instanziierungen).

BPEL Aktivititen werden in diesem Modul implementiert (ASSIGN, FOREACH, IF etc.). Die-
ses Modul interagiert mit den beiden Modulen DAO-Schicht und Nachrichtenaustausch
um die Daten einer WF-Instanz zu verwalten und persistent zu halten sowie um mit
WSs kommunizieren zu konnen.

ODE DAO-Schicht ist fiir die Speicherung und Persistenz der Prozess- und Instanzdaten
verantwortlich und kommuniziert dazu mit dem DBS links in Abb. 5.1 (siehe auch
Kapitel 4.1, Seite 57).

3http:/ /ode.apache.org/jacob.html

66

5.2. Detaillierte Architektur der Runtime und der Data Access Objects

Nachrichtenaustausch ist fiir das Senden und Empfangen von Nachrichten von und zu
Webservices verantwortlich und dass eine eingehende Nachricht an die korrekte
Prozess-Instanz geliefert wird. Sie interagiert mit der Integrationsschicht der Kommu-
nikationsinfrastruktur (z.B. Axis2, ServiceMix), die ihrerseits die WS-Aufrufe verwaltet.

5.2. Detaillierte Architektur der Runtime und der Data Access
Objects

Wir mochten nun detailliertere Zusammenhénge vorstellen. Zuerst werden wir die ODE
Runtime genauer auflosen und anschliefiend die fiir diese Arbeit wichtigen Komponenten
OModel, Hibernate DAO und BPEL Aktivititen genauer betrachten.

5.2.1. ODE Runtime

Wir fachern die Runtime aus Abb. 5.1 in Abb. 5.2 noch etwas genauer auf. Auch hier wurde
noch von der tatsdchlichen Implementierung stark abstrahiert. Wir konnen die Komponenten
in vier Bereiche einteilen, diese sind entsprechend farblich voneinander abgehoben. Die
DAO-Schicht (gelb) verwaltet alle Daten zu Prozessen und Instanzen. Es kann aus drei
verschiedenen Implementierungen gewéahlt werden:

e Hibernate [KBA™] ist ein DB Middleware System, welches darauf basiert, dass Da-
tenfelder gekennzeichneter Java Objekte automatisch in einer DB persistent gemacht
werden.

o openJPA [JPA] ist ebenfalls ein DB Middleware System und bietet im Prinzip die
gleichen Funktionalititen wie Hibernate. Die Systeme unterscheiden sich allenfalls
leicht in den anbindbaren DBSen und kleineren Implementierungsdetails.

e inMEM implementiert die DAOs, ohne dass die entsprechenden Daten auf eine Daten-
bank abgebildet werden, so ist es moglich einen Prozess ,,inMemory” auszufiihren.

Die griinen Module kann man als Prozessdaten und Ausfiihrungslogik Schicht bezeichnen.
Activity implementiert die BPEL Konstrukte und deren Logik. Compilierte Prozesse wer-
den im Objektmodell (OModel) dargestellt und repréasentieren die BPEL Aktivitdten und
Konstrukte. Der BPELRuntimeContext hélt Informationen und Zugriffsfunktionen auf die
zu verwendende DAO-Schicht (Hibernate, openJPA) und die Laufzeitparameter von ODE
(JDBC Einstellungen, Prozess-Dehydratation etc.). BPELProcess verwaltet die Informationen
zu einem BPEL Prozess, wie aufzurufende Webservices und die im Prozess verwendeten
Query-Sprachen (XPath, XQuery etc.). Dies hat zur Folge, dass tiber dieses Modul die Query
Auswertung (blau) sowie die WS-Aufrufe (orange) erfolgen. Fiir die Evaluierung von XPath

67

5. Apache ODE Architektur im Detail

Ausdriicken werden das Jaxen und Javax Framework verwendet, als Kommunikationsinfra-
struktur kann entweder Axis2 oder der ServiceMix verwendet werden (siehe Kapitel 5.1). In
den folgenden Teilkapiteln stellen wir das Objektmodell, die Hibernate DAO-Schicht und
die Runtime-Schicht vor.

ODE-Runtime

Abbildung 5.2.: Bestandteile der Apache ODE Runtime. Die BPEL Aktivititen greifen auf
ihre Instanzdaten tiber den BPELRuntimeContext zu. Query-Auswertungen
und WS-Aufrufe erfolgen indirekt tiber das BPELProcess Modul, das die
dafiir nétigen Informationen tragt. Die DAO Schicht verwaltet die Prozess-
und Instanzdaten.

5.2.2. OModel und BPEL Typsystem

Das OModel ist die Objektreprasentation eines BPEL Prozesses, der mit Apache ODE com-
piliert wurde. Es gibt OModel-Objekte fiir alle BPEL Aktivitdten und weitere Konstrukte
und Elemente wie Scopes und Expressions. Das OModel ist fiir das Verstdandnis, wie BPEL
Prozesse auf Apache ODE abgebildet werden, essentiell und fordert die Lesbarkeit des
Laufzeit Quellcodes der Aktivititen und Konstrukte. Jedes BPEL-Konstrukt eines WFs wird
durch den Apache ODE BPEL-Compiler in ein OModel-Objekt transformiert und trdgt somit

68

5.2. Detaillierte Architektur der Runtime und der Data Access Objects

die Informationen (Variablenname, WSDL-Operation, XPath-Ausdriicke etc.) aus diesem
WE.

Abbildung 5.3 stellt den fiir diese Arbeit wesentlichen Teil des OModel dar:

OBase ist die Superklasse aller weitere OModel-Klassen. Die Methode dehydrate() erlaubt
es die Informationen, die in einem OModel-Objekt zu einem konkreten BPEL-Prozess
gespeichert sind, aus dem Hauptspeicher zu entfernen um Systemressourcen frei zu
geben. Dies kann z.B. bei lang laufenden Prozessen mit hohen Wartezeiten sinnvoll
sein.

OScope reprasentiert ein BPEL Scope, einen Sichtbarkeitsblock fiir Variablen, &hnlich zu
Blocken in Programmiersprachen mit statischer Namensbindung. Dieser trdgt die
Informationen zu allen Variablen, die in diesem Block definiert wurden.

OScope.Variable stellt eine Variablendeklaration dar. Diese beinhaltet den Namen der Va-
riable und ihren Typ, in diesem Fall auch eine Riickreferenz auf den Block (OScope) in
dem sie deklariert ist.

OVarType ist die Oberklasse der im OModel reprasentierten BPEL Typen, denen eine Variable
angehoren kann. Wir greifen das Typsystem spéter auf.

OActivity ist die Oberklasse fiir alle Aktivitidten.

Olnvoke représentiert einen WS-Invoke. Die essentiellen Informationen sind, welche Varia-
ble die Ausgangsnachricht hilt (inputVar), in welche Variable die Eingangsnachricht
gespeichert wird (outputVar) und die aufzurufende WSDL Operation (Operation). Der
Webservice selbst wird in seiner WSDL-Datei beschrieben und tiber BPEL partnerLinks
(OPartnerLink) eingebunden.

OAssign reprasentiert die BPEL Zuweisung (ASSIGN), diese kann mehrere Copy Blocke
beinhalten (OAssign.Copy).

OAssign.Copy stellt einen Copy Block dar. Es existieren die linke Seite der Zuweisung (to)
und die rechte Seite der Zuweisung (from). Die linke Seite muss auf eine Variable
referenzieren, weshalb das entsprechende Interface LValue die getVariable() Methode
implementieren muss. Die rechte Seite der Zuweisung (Interface RValue) kann eine
Variable (VariableRef), ein Ausdruck (Expression) oder ein Literal sein. Literale sind
Start- bzw. Initialwerte fiir BPEL-Variablen, konnen als Konstanten betrachtet werden
und werden im Prozessmodell definiert, weshalb diese Werte im OModel gespeichert
werden.

OExpression ist die Oberklasse fiir alle Query-Sprachen, die in dem System implementiert
wurden. Uns reicht hier die Unterklasse OXPathioExpression, welche XPath1.0 Aus-
driicke reprasentiert. Sie beinhaltet den XPath-Ausdruck sowie alle an dem Ausdruck
beteiligten Variablen.

69

5. Apache ODE Architektur im Detail

OScope

+variables : HashMap <String, OScope.Variable>

OScope.Variable
+name : string
+declaringScope : OScope OElementVarType
+type : OVarType +elementType : QName
OBase OVarType OMessageVarType
<} q +tmessageType : QName
+dehydrate() : void
JAN
Olnvoke OXsdTypeVarType
+inputVar : OScope.Variable +xsdType : QName
+outputVar : OScope.Variable +simple : bool
OActivity +operation : Operation
OAssign
+copy : ArrayList <OAssign.Copy>
OAssign.Copy
+to : LValue
+from : RValue
OExpression OXPath10Expression
q +xpath : string
+vars : HashMap <String, OScope.Variable>
- . VariableRef
«interface» «implements» - -
Lvalue = W1 ______] +varlaple : OScope.\{arlabIe
+getVariable() : OScope.Variable *+ocation : OExpression

-

«interface» «implements» Expression
Rvalue Q —————————— +expression : OExpression

Literal

e | +xmlLiteral : string

Abbildung 5.3.: Ausschnitt des OModel als UML Diagramm. Es zeigt die Reprasentatio-
nen der fiir diese Arbeit wichtigen BPEL Aktivitdten und Konstrukte wie
Variablendeklaration, Variablentypen, Sichtbarkeitsbereiche, Zuweisungen,
WS-Aufrufe und XPath-Ausdriicke.

70

5.2. Detaillierte Architektur der Runtime und der Data Access Objects

In der BPEL Spezifikation [OASoy] werden folgende drei tibergeordnete Variablen-Typen
WSDL Nachricht, XML Schema und XML Element beschrieben. Diese werden entsprechend
auf die OModel-Klassen OMessageVarType, OXsdTypeVarType und OElementVarType abgebildet,
die alle Unterklassen von OVarType sind. Der jeweils zugehorige XML Schema Typ aus
der Prozessdefinition wird als Qualified Name (QName) gespeichert. Bei Verwendung und
Manipulation von XML Daten innerhalb von Apache ODE sind die intern verwendeten XML
Wrapper Elemente zu den verschiedenen Typen von Interesse, diese konnen der Tabelle 5.1
entnommen werden. Diese Wrapper Elemente werden bendtigt um entsprechende Manipula-
tionen der XML Dokumente vorzunehmen (z.B Document-Object-Model Operationen) bzw.
die Auswertungsmodule (Jaxen XPath-Evaluator) korrekt anzusteuern.

BPEL Typ ‘ OVarType ‘ Wrapper

WSDL Nachricht | OMessageVarType <message/>

XML Element OElementVarType Name des Elements

XML Schema OXsdTypeVarType - complex | <xsd-complex-type-wrapper/>
OXsdTypeVarType - simple | <temporary-simple-type-wrapper/>

Tabelle 5.1.: Die BPEL Variablen Typen, ihre OModel Représentation und die in der Laufzeit
verwendeten Wrapper Elemente.

Es sei darauf hingewiesen, dass im OModel keinerlei Variableninhalte gespeichert werden.
Lediglich die Werte zu Literalen innerhalb von ASSIGN-COPY Blocken werden hier gespei-
chert. Die Speicherung von Variableninhalten erfolgt innerhalb der DAO-Schicht und wird
im ndchsten Abschnitt besprochen.

5.2.3. ODE Hibernate DAO und Tabellenschema

Nachdem wir das OModel, die darin enthaltene Deklaration und Typisierung von Variablen
betrachtet haben, werden wir nun die Speicherung der Variableninhalte {iber die DAOs
vorstellen. Wir stellen ebenfalls nur einen kleinen Ausschnitt der DAO-Schicht vor, und zwar
die Schnittstellen zu Scopes und Variableninhalten. Als Implementierungsbeispiel stellen wir
die Hibernate Variante vor. Einerseits, da sie im Prototyp verwendet wurde (siehe Kapitel 6)
und da aus dem Hibernate Beispiel das zugehorige Tabellenschema direkt ableitbar ist.

Uber die ProcessInstanceDAO-Schnittstelle erhdlt man Zugriff auf die ScopeDAO-Schnittstelle
(siehe Abb. 5.4). Diese hilt die Informationen zu den XmlDataDAO-Schnittstellen welche
die Daten zu den Variablen beinhalten und diese tiber Getter- und Settermethoden verfiigbar
machen. Da die ProcessInstanceDAO-Schnittstelle die spdtere Verbindung zum BpelRuntime-
Context bildet, ist sie fiir das Gesamtbild wichtig, die konkrete Implementierung ist jedoch
uninteressant.

71

[
OO O\ NUT-R W N R

N R H R RRRRBR KRR
OO O\ ONUThRR W N R

21

5. Apache ODE Architektur im Detail

Betrachten wir nun die Hibernate Implementierungen der Schnittstellen ScopeDaolmpl und
XmlDataDaoImpl. Beides sind Unterklassen von HibernateDao, dort wird die aktuelle Hiber-
nate DB-Sitzungen verwaltet und Hibernate-Methoden (update()) konnen tiber diese Klasse
angesprochen werden.

XmlDataDaolmpl enthélt ein Attribut _node vom Typ W3C Node, in dem das XML Dokument
gehalten wird, sowie das Attribut _data vom Typ HXmlData. Das XML Dokument in _node
wird, falls es grofier als 256 Zeichen ist, in eine Byte-Reprasentation konvertiert und in
HXmlData _data gespeichert. Andernfalls wird es in HXmlData als _simpleValue gespeichert.
Dies wird aus Performanzgriinden durchgefiihrt, um String- anstatt BLOB-Felder fiir kleine
Inhalte innerhalb der DB zu verwenden. Entsprechend referenziert ScopeDaolmpl auf ein
Objekt vom Typ HScope in dem z.B. der Name des Scopes abgelegt wird. Objekte von HScope
und HXmlData stellen durch die Hibernate Middleware direkt Zeilen entsprechender Daten-
banktabellen dar. Hibernate verwaltet die Synchronisierung, also das Speichern und Laden
bzw. die Persistenz der Attribute, dieser Objekte tiber die Getter-/Settermethoden und durch
Uberwachung des Java Bytecodes selbststandig. Dazu miissen die Datenfelder solcher Objek-
te entsprechend annotiert werden (siehe Listing 5.1). Aus diesen Annotationen ergeben sich
ebenfalls die Tabellenschemata fiir die Datenbank. Es kann auch mit Vererbung gearbeitet
werden: da HScope sowie HXmlData von HObject abgeleitet sind, besitzen beide das _id At-
tribut. Wir erhalten aus Abb. 5.4 direkt folgendes Datenschema in Abb. 5.5 fiir die Datenbank.

/%%
* Qhibernate.class table="BPEL_XML_DATA"
*/
public class HXmlData extends HObject {
private byte[] _data;
/%%
* Ohibernate.property type="byte[]"
* G@hibernate.column name="DATA" sql-type="BLOB"
*/
public byte[]l getData() {
return _data;
}
public void setData(byte[] data) {
_data = data;
}
}

Listing 5.1: Beispiel fiir die Annotation einer Java Klasse, die von Hibernate synchronisiert
werden soll.

72

€L

«interface»
ProcessinstanceDAO

+getScope(ein :long) : ScopeDAO

«uses»

!
N/

«interface»
ScopeDAO

+getName() : string
+getVariable(ein : string) : XmIDataDAO
+getVariables() : Collection <XmIDataDAO>

T
«uses»
'

«interface»
XmiIDataDAO

+getld() : long
+getName() : string
+get() : Node

+set(ein : Node) : void

«uses»

ScopeDaolmpl

«implements»

-_variables : HashMap<String,XmIDataDAO>
-_scope : HScope

«extgnds»

HScope

-_variables : Set <HXmIData>
-_name : string

+getVariables() : Set <HXmlIData>
+setVariables(ein : Set <HXmlData>) : void

HibernateDao

_{>

«extgnds» [#update() : void

XmlDataDaolmpl

«implements»

-_data : HXmIData

-_node : Node

T
! «uses»
!
|

——~7]-_simpleValue : string

HXmIData

-_data : byte[]
-_name : string

«extgnds»

«extg

-_simpleType : bool
+getData() : byte[]
+setData(ein : byte[]) : void

HObject
-_id : long
+getld() : long
+setld(ein : long) : void

nds»

Abbildung 5.4.: UML-Diagramm eines Ausschnitts der DAO-Schicht inklusive Hibernate Varianten der ScopeDAO und
XmlDataDAO Schnittstellen. Dies sind alles Klassen von ODE, Hibernate selbst iiberwacht nur die Objekte
HScope und HXmlData und synchronisiert deren Attribute mit Zeilen einer entsprechenden Datenbanktabel-

le.

s108[q0 SS90V Bl JOP PUN SWIuNY Jop INPBHYDIY aualelaq ‘2'S

5. Apache ODE Architektur im Detail

BPEL_SCOPE BPEL_XML_DATA
PK (1D int <4——{PK |ID int
NAME | varchar(255) NAME varchar(255)
DATA varbinary(max)
SIMPLE_VALUE | varchar(255)
HScope <-> BPEL_SCOPE SIMPLE_TYPE | bit
HXmIData <-> BPEL_XML_DATA FK1 | scoPE ~ int

Abbildung 5.5.: Tabellenschema, welches sich durch die Hibernate Middleware direkt
aus den annotierten Klassen HScope und HXmlData aus Abb. 5.4 ergibt.
HScope wird auf die Tabelle BPEL_SCOPE und HXmlData auf die Tabelle
BPEL_XML_DATA abgebildet.

5.2.4. BpelRuntimeContext und Aktivitaten

Um das Gesamtbild zu vervollstandigen, stellen wir jetzt die Funktionsweise der Laufzeit-
Aktivititen (ACTIVITY) mit dem Laufzeit-Kontext (BpelRuntimeContext) und deren Anbin-
dung an die DAO-Schicht und das OModel vor. Wir stellen die Komponenten aus Abb. 5.6
einzeln vor und beschreiben anschliefsend ihr Zusammenwirken. Ein konkretes Beispiel wird
im Abschnitt Ausfiihrungsszenario besprochen.

BpelRuntimeContext und die Implementierung BpelRuntimeContextImpl stellen Methoden
zur Verfligung, mit denen Variableninhalte gelesen (readVariable) und geschrieben
(writeVariable) werden konnen, diese greifen direkt auf die DAO-Schicht zu. Der
BpelRunteimContext ist somit das Bindeglied zwischen Runtime und DAO-Schicht.
Des Weiteren werden WS-Aufrufe an die Kommunikationsinfrastruktur weitergelei-
tet und die Auswertungsmodule fiir Query-Sprachen (wie XPath, XQuery etc.) den
Aktivitdten zur Verfiigung gestellt.

ScopeFrame implementiert die Funktionen der BPEL-Scopes (Blocke). Eine Funktion ist
das Auflosen einer Variable (resolve) entsprechend der Sichtbarkeit, die durch die
im BPEL-Prozess definierten Scopes gegeben sind. Aus diesem Grund besitzt ein
ScopeFrame Zugriff auf seinen Vater ScopeFrame. Dariiber hinaus stellt ScopeFrame
Methoden fiir das Lesen (fetchVariableData) und Schreiben (writeVariable, commitChanges)
von Variableninhalten bereit. ScopeFrame ist direkt mit seiner OModel-Reprasentation
verbunden (Attribut oscope).

Variablelnstance ist eine Wrapperklasse fiir eine Variable aus dem OModel
(OScope.Variable) und der ID des Scope, dem sie angehort.

ACTIVITY ist die Oberklasse aller implementierten BPEL-Aktivitdten. Sie beinhaltet den
ScopeFrame, in dem sie eingebettet ist, sowie die OModel Représentation dieser Akti-
vitdt tiber ein Objekt der Klasse Activitylnfo. Ebenfalls stellt sie Methoden zum Lesen

74

5.2. Detaillierte Architektur der Runtime und der Data Access Objects

BpelRuntimeContextimpl

-_dao : ProcessIinstanceDAO

Variablelnstance

«imple;nents» +declaration : OScope.Variable
! +scopelnstance : long

AV

«interface»
BpelRuntimeContext «uses»
+readVariable(ein : long, ein : string, ein : bool) : Node
+writeVariable(ein : Variablelnstance, ein : Node) : Node |
+invoke(ein : Operation, ein : Node) : string I
+getExpLangRuntime() : <nicht spezifiziert> |
|
J

0
«uses»

ScopeFrame

-oscope : OScope
! -parent : ScopeFrame
BpelJacobRunnable +resolve(ein : OScope.Variable) : Variablelnstance
+fetchVariableData(ein : BpelRuntimeContext, ein : Variablelnstance, ein : bool) : Node
+writeVariable(ein : BpelRuntimeContext, ein : Variablelnstance, ein : Node) : Node

#getBpelRuntimeContext() : BpelRuntimeContext +commitChanges(ein : BpelRuntimeContext, ein : Variablelnstance, ein : Node) : Node
AN 7N

|

|

|

3

' ACTIVITY ;

Activityinfo «uses»#_self : ActivityInfo cuses» !

+0: OActivity K----# scopeFrame : ScopeFrame ~ f===========———= H
-fetchVariableData(ein : Variablelnstance, ein : bool) : Node

-commitChanges(ein : Variablelnstance, ein : Node) : void

AN
INVOKE FOREACH ASSIGN
+run() : void +run() : void +run() : void
-evaluateCondition(ein : OExpression) : int -copy(ein : OAssign.Copy) : void
-evalLValue(ein : LValue) : Node
-evalRValue(ein : RValue) : Node
-evalQuery(ein : OExpression) : Node

Abbildung 5.6.: Ausschnitt der Laufzeitkomponenten als UML-Diagramm. ACTIVITY ist
an das OModel und die BpelRuntimeContextImpl an die DAO-Schicht an-
gebunden. Zwischen diesen beiden Komponenten fungiert ScopeFrame als
Vermiittler fiir das Lesen und Schreiben von Variableninhalten.

(fetchVariableData) und Schreiben (commitChanges) von Variableninhalten bereit. Insbe-
sondere verfiigt sie {iber Zugriff auf das aktuelle BpelRuntimeContext-Objekt, welches
fir die laufende Instanz von Apache ODE giiltig ist. Auf dieses kann tiber die Metho-
de getBpelRuntimeContext(), welche von BpelJacobRunnable ererbt wurde, zugegriffen
werden. Im Folgenden stellen wir nur die, fiir das Verstandnis dieser Arbeit, wichtigen
Aktivitaten vor. Alle abgeleiteten Aktivitdten miissen die Methode run() implementie-
ren, diese wird durch die JacobVPU aufgerufen um die Aktivitdt zu starten.

INVOKE realisiert die Logik eines WS-Aufrufs. Zuerst wird die Variable mit der Ausgangs-
nachricht gelesen, diese an die invoke-Methode des BpelRuntimeContext tibergeben
und anschliefiend die Antwortnachricht des WS in die dafiir vorgesehene Variable
geschrieben.

75

5. Apache ODE Architektur im Detail

FOREACH realisiert die Logik der BPEL-Foreach Schleife. Diese Schleife besitzt einen Start-
und einen Endwert, tiber den ein Zihler lduft. Diese Werte werden tiber Query-
Ausdriicke bestimmt (evaluateCondition).

ASSIGN realisiert die BPEL-Assign Logik. Hierbei werden sequentiell alle Copy-Blocke durch-
laufen und jeweils die Variable der linken Seite aufgelost (evalLValue) sowie das Resultat
des Ausdrucks oder der Inhalt der Variable der rechten Seite (evalRValue) und dieser
Wert anschlieffend in die Variable der linken Seite gespeichert. Die Methode evalQuery
wird verwendet um Query-Ausdriicke innerhalb von evalRValue auszuwerten.

Lesende und schreibende Zugriffe auf eine Variable innerhalb einer Aktivitat finden grund-
sdtzlich folgendermafien statt:

1. Die Variable liegt als OScope.Variable vor und wird mit Hilfe von ScopeFrame.resolve
aufgeldst und in ein Objekt von VariableInstance umgeschrieben.

2. Es wird auf die Schreib- und Lese-Methoden von ACTIVITY unter Verwendung von
VariableInstance zugegriffen, diese geben den Aufruf an die Methoden von ScopeFrame
weiter, die prinzipiell auch innerhalb der Aktivitdt direkt angesprochen werden konnen.
Hierfiir muss zusatzlich der BpelRuntimeContext {ibergeben werden.

3. ScopeFrame leitet die Anfrage an die Methoden zum Lesen und Schreiben von Variablen
des BpelRuntimeContext weiter.

4. Der BpelRuntimeContext greift auf die konkreten Variableninhalte tiber die DAO-Schicht
zu, liberschreibt diese mit neuen Werten oder liefert den aktuellen Inhalt zurtick.

Die Aktivitdten sind indirekt mit dem OModel tiber ActivityInfo und {iber den ScopeFrame
verkniipft (siehe Kapitel 5.2.2). Die Anbindung an die DAO-Schicht erfolgt innerhalb der
BpelRuntimeContextImpl tiber die ProcessIntanceDAO (siehe Kapitel 5.2.3).

5.2.5. Ausfliihrungsszenario

Um die Interaktion der drei vorgestellten Schichten (OModel, Hibernate-DAO und
BpelRuntimeContext und Aktivititen) besser nachvollziehen zu konnen, werden wir hier auf
das BPEL-Zuweisungsbeispiel aus Kapitel 4.3.1 (Seite 62) zuriickgreifen.

<assign>
<copy>
<from>$y/document/title [@lang="de"]/text ()</from>
<to variable="x"/>
</copy>
</assign>

76

OV N N U1~ W N R

5.2. Detaillierte Architektur der Runtime und der Data Access Objects

Variable y enthilt nach wie vor das XML-Beispieldokument aus Listing 2.1 (Seite 19). Variable
x ist vom Typ xsd:string. Das entsprechende OAssign Objekt enthilt ein OAssign.Copy Objekt,
dessen Attribut to vom Typ VariableRef ist und den Namen der Variable x speichert. Das
Attribut from ist ebenfalls vom Typ VariableRef und hélt den Namen der Variable y und
zusétzlich den OXPath1oExpression Ausdruck ,/document/title[@lang="de"]/text()”. Wir starten
mit der Methode ASSIGN.run() und stellen die Ausfithrungsreihenfolge in Pseudoquellcode
vor, wie sie bei Ausfithrung des Beispiels auftreten wiirden (Listing 5.2).

Man kann erkennen, dass es ein relativ langer Weg ist, bis alle Informationen fiir die tatsach-
liche Zuweisung vorliegen. Insbesondere wird der aktuelle Wert der Variablen x gelesen,
bevor der neue Wert fiir x geschrieben wird. Dies hat mit der Moglichkeit zu tun, dass auf
der linken Seite der Zuweisung ebenfalls auf einen bestimmten Pfad im XML Dokument
verwiesen werden kann. Aus diesem Grund bendtigt man den alten Variableninhalt zur
Zuweisung innerhalb der Runtime. Beim anschliefendem Speichern des neuen Werts in
die DAO-Schicht, leuchtet es nicht ein, warum der neu geschriebene Wert gleichzeitig zu-
riickgegeben wird. Insbesondere da ASSIGN.commitChanges diesen Wert einfach ignoriert.
Wir mochten darauf hinweisen, dass der Autor dieser Arbeit nicht fiir den Zuweisungs-
mechanismus von Apache ODE, fiir das vorgestellte Beispiel (Listing 5.2), verantwortlich
ist.

Man muss in jedem Fall darauf hinweisen, dass in Java lediglich die Referenzen der Objekte
kopiert werden, es wird also tatsachlich auf dem Inhalt operiert, der sich in der DAO-Schicht
befindet. Aus diesem Grund kann der vermeintliche Kommunikationsiiberschuss moglicher-
weise sehr gering sein.

// Deklarationen

to : VariableRef; // Enthdlt Deklaration flir BPEL-Variable x

from : VariableRef; // Enthdlt Deklaration fiir BPEL-Variable vy

VI : VariableInstance; // Tempordre Variable

value, rvalue, lvalue : Node; // Tempordre Variablen fir XML-Inhalte

// Start der Assign Aktivitét

ASSIGN.run ()
// Bearbeiten des COPY-Blocks, Zuweisung des from-Teils an den to-Teil
ASSIGN.copy (to, from)

// Bestimmen des Werts des from-Teils
rvalue := ASSIGN.evalRValue (from)
// ScopeFrame 1lost Variable y auf
VI := ScopeFrame.resolve (from)
// Lesen des Werts von Variable y
value := ASSIGN.fetchVariableData (VI)
// Durchreichen an BpelRuntimeContext
return ScopeFrame.fetchVariableData (VI)
return BpelRuntimeContext.readVariable (VI)
// Lesen der ScopeDAO des Scopes in den y eingebettet ist
ScopeDAO := ProcessInstanceDAO.getScope (VI.scopelnstance)
// Lesen der XmlDataDAO der zu y gehdrt

77

5. Apache ODE Architektur im Detail

63

XmlDataDAO := ScopeDAO.getVariable (VI.declaration.name)
// Riickgabe des Werts von y
return XmlDataDAO.get

// Evaluieren des XPath-Ausdrucks auf den Wert von y

return ASSIGN.evalQuery(value, from.location)

// Bestimmen des Werts des to-Teils
lvalue := ASSIGN.evalLValue (to)
// ScopeFrame 1ost Variable x auf
VI := ScopeFrame.resolve (to)
// Lesen des Werts von Variable x
value := ASSIGN.fetchVariableData (VI)
// Durchreichen an BpelRuntimeContext
return ScopeFrame.fetchVariableData (VI)
return BpelRuntimeContext.readVariable (VI)
// Lesen der ScopeDAO des Scopes in den x eingebettet ist

ScopeDAO := ProcessInstanceDAO.getScope (VI.scopelnstance)
// Lesen der XmlDataDAO der zu x gehdrt
XmlDataDAO := ScopeDAO.getVariable(VI.declaration.name)

// Riickgabe des Werts von x
return XmlDataDAO.get

// Die eigentliche Zuweisung
lvalue := rvalue;

// Speichern des neuen Werts von x
// ScopeFrame 138st Variable x auf
VI := ScopeFrame.resolve (to)
// Durchreichen an BpelRuntimeContext
ASSIGN.commitChanges (VI, lvalue)
return ScopeFrame.commitChanges (VI, lvalue)
return BpelRuntimeContext.writeVariable (VI, lvalue)
// Lesen der ScopeDAO des Scopes in den x eingebettet ist

ScopeDAO := ProcessInstanceDAO.getScope (VI.scopelnstance, lvalue)
// Lesen der XmlDataDAO der zu x gehdrt
XmlDataDAO := ScopeDAO.getVariable (VI.declaration.name)

// Setzen des neuen Werts von x
XmlDataDAO. set (lvalue)

// Riuckgabe des neuen Werts von x
return XmlDataDAO.get

64 // Ende der Assign Aktivitéat

Listing 5.2: Pseudoquellcode der Ausfithrung des ASSIGN-Beispiels fiir Apache ODE.

78

5.3. Mdglichkeiten fir eine starkere Nutzung der integrierten Datenbank

5.3. Maglichkeiten flir eine starkere Nutzung der integrierten
Datenbank

Nach Betrachtung der Architektur von Apache ODE und den einzelnen BPEL Aktivitdten
ergeben sich nun Moglichkeiten die Pushdown-Konzepte aus Kapitel 4 anzuwenden. Fiir
WS-Aufrufe sollte es moglich sein den WS-Pushdown einzufiihren, indem die Methode
invoke von BpelRuntimeContextImpl erweitert wird. Die Zuweisungslogik von ASSIGN
sollte unter Beachtung des Typsystems (siehe Tabelle 5.1) in die ScopeDAO-Schicht
verlagert werden kdnnen und als asynchroner Query-Pushdown (Assignment-Pushdown)
direkt im DBS erfolgen. Die notwendigen Erweiterungen stellen wir in Kapitel 6 vor.
Alternativ dazu kann die Zuweisungslogik in ASSIGN verbleiben und der synchrone
Query-Pushdown (ExpressionEvaluation-Pushdown) verwendet werden, um die Berechnung
des zuzuweisenden Werts in der DB durchzufiihren und anschliefSend diesen Wert fiir die
Zuweisung an die ODE-Runtime zu iibertragen. Bedingungsevaluationen fiir Schleifen
(FOREACH, WHILE etc.), fiir Kontrollstrukturen (IF, SWITCH) und Zeitberechnungen fiir
die Verarbeitung von Ereignissen (ONALARM, WAIT) kénnten {iiber einen synchronen
Query-Pushdown (ExpressionEvaluation/Condition-Pushdown) erfolgen. Ebenfalls
konnte der synchrone Query-Pushdown (als Condition-Pushdown) fiir die Auswertung
der TransitionConditions aller Aktivititen verwendet werden. Eine Auflistung aller lo-
kalen Optimierungsmoglichkeiten fiir WS-BPEL Aktivitdten ist der Tabelle 5.2 zu entnehmen.

WS-BPEL ODE Klasse Art des Modus des
Aktivitat/Konstrukt Pushdown | Pushdown
ASSIGN ASSIGN Query asynchron
& synchron
INVOKE INVOKE Webservice | -
FOREACH FOREACH Query synchron
WHILE WHILE Query synchron
REPEAT UNTIL REPEATUNTIL Query synchron
IF (BPEL 2.0) SWITCH Query synchron
SWITCH (BPEL 1.0) SWITCH Query synchron
ONALARM EH_ALARM Query synchron
WAIT WAIT Query synchron
TransitionConditions ACTIVITYGUARD Query synchron

Tabelle 5.2.: WS-BPEL Aktivititen und ihre moglichen Optimierungen durch die Pushdown-
Konzepte aus Kapitel 4.

79

6. Implementierung des Prototyps

Um die Realisierbarkeit der Konzepte aus Kapitel 4 nachzuweisen und sie auf eine Per-
formanzsteigerung hin untersuchen zu kénnen, wurden sie prototypisch innerhalb der
WE-Engine Apache ODE umgesetzt. In diesem Kapitel stellen wir die dazu notwendigen
Modifikationen und technische Details sowie typische Probleme, die bei der Umsetzung
auftraten, vor.

6.1. Veranderungen an der Architektur von Apache ODE

Um den Prototyp umzusetzen, mussten zuerst mehrere Komponenten fiir Apache ODE
festgelegt werden. Zum einen die Version von Apache ODE selbst, hier wurde entschieden
die Version 1.3.4 zu verwenden. Diese war zur Zeit der Implementierung die aktuellste 1.3
Version, die Version 2.0 wird nicht verwendet, da diese von Apache nicht fortgefiihrt wird.
Die Einbettung von Apache ODE findet innerhalb Apache Tomcat 6.0.29 mit Axisz statt, da dies
eine unkomplizierte, gut dokumentierte und sehr verbreitete Moglichkeit ist Apache ODE
zur Verfiigung zu stellen. Die Wahl fiir das DB Middleware System (Realisierung der DAOs)
fiel auf Hibernate 3.2.5. Prinzipiell gibt es zwar kaum Unterschiede zwischen openJPA und
Hibernate, allerdings ist es derzeit mit openJPA nicht moglich XML Daten grofier als 1MB in
die DB abzuspeichern. Hibernate hingegen besitzt hier keine Beschrankungen, aufser die fiir
Binary Large OBbjects (BLOB) {iblichen, die auch fiir openJPA gelten. Als DBS wurde IBM DB2
UDB Version 9.7 verwendet, einerseits, da sie in [Miil1o] als WF-DB empfohlen wird, und
andererseits, da sie iiber ausreichend XML Funktionalitdten zum Speichern und Verarbeiten
von XML Dokumenten verfiigt. Fiir die Evaluierung wurde als Alternative zu DB2 noch
PostgreSQL Version 8.4 mit einigen Einschrankungen hinzugezogen (siehe Kapitel 7). Die
eben besprochenen Entscheidungen sind in Tabelle 6.1 zusammengefasst.

6.1.1. Anderungen am Datenmodell der integrierten Datenbank

Um die Implementierung des XPath-Pushdowns vorzubereiten, musste das Datenmodell bzw.
das Datenbankschema aus Abb. 5.5 (Seite 74) gedndert werden. Das BLOB Feld DATA der
Tabelle BPEL_XML_DATA wurde in ein XML Feld umgewandelt, um die XML Verarbeitung
innerhalb des DBSs zu erméglichen. Dazu musste die Hibernate Annotierung fiir das Attribut
_data der Klasse HXmlData aus Abb. 5.4 (Seite 73) von BLOB auf XML geédndert werden.

81

6. Implementierung des Prototyps

Komponente Software Version Begriindung

WF-Engine Apache ODE 1.3.4 aktuelle ODE Version,
2.0 wird nicht fortge-
fihrt

Einbettung Apache Tomcat 6.0.29 einfach durchzufiihren,
weit verbreitet

DB Middleware Hibernate 3.2.5 XML Daten grofier iMB
moglich

DBS IBM DB2 UDB 9.7.0.441 empfohlen und sehr gu-
te XML Verarbeitungs-
moglichkeiten

Tabelle 6.1.: Auswahl und Begriindung der verwendeten Komponenten fiir den Prototyp.

Tatsédchlich wird in der Originalversion von Apache ODE hier ein benutzerdefinierter Typ
verwendet, der die Daten aus HXmlData komprimiert und nur die komprimierten Daten in
die DB ablegt. Diese Komprimierung wurde durch die Anderung deaktiviert, lediglich das
DBS selbst konnte eine solche Komprimierung vornehmen, andernfalls wére die Verarbeitung
dieser Daten innerhalb des DBSs nicht moglich.

Um eine einheitliche Verarbeitung und Struktur der SQL/XPath-Ausdriicke zu erhalten,
die im Prototyp generiert werden miissen, wurde die Unterscheidung zwischen einfachen
Werten (SIMPLE_VALUE) und grofien Werten (DATA) aufgehoben. Hierzu musste die Xml-
DataDaolmpl entsprechend verandert werden. Da XML Felder in DBSen nur wohlgeformte
XML Dokumente enthalten diirfen, musste ein Wrapper Element verwendet werden, um
XSD Einfache Typen im XML Feld DATA ablegen zu kénnen. Dazu wurde das Element
<temporary-simple-type-wrapper/> verwendet (siehe Tabelle 5.1, Seite 71). Dies wird innerhalb
der ODE-Runtime bei der Verarbeitung von XSD Einfachen Typen verwendet und ermdglicht
es so ohne weitere Anderungen den XPath-Pushdown ein- und auszuschalten. Alle anderen
BPEL /XML-Typen besitzen innerhalb von Apache ODE schon eine eindeutiges XML Wurzel-
element (siehe ebenfalls Tabelle 5.1). Damit ist Apache ODE ohne den Pushdown ebenfalls
mit dem modifizierten Datenmodell lauffahig. Diese Version mit modifiziertem Datenmodell,
aber ohne Pushdown-Funktionalitidt, nennen wir instrumentalisierte Apache ODE, sie wird
ebenfalls fiir die Evaluiering (Kapitel 7) benotigt. Das verdnderte Tabellenschema ist in
Abb. 6.1 dargestellt.

6.1.2. Anderungen in der DAO-Schicht
Die DAO-Schicht verwaltet die Zugriffe auf die DB. Dies geschieht iiber SQL Anfragen

an das DBS bzw. iiber das DB Middleware System Hibernate, welches letztendlich SQL
Anfragen an das DBS kapselt und somit die Runtime unabhangig vom konkreten DBS und

82

6.1. Veranderungen an der Architektur von Apache ODE

BPEL_SCOPE BPEL_XML_DATA
PK |ID int ¢——{PK |ID int
NAME | varchar(255) NAME | varchar(255)
DATA | xml
FK1 | SCOPE |int

HScope <-> BPEL_SCOPE
HXmIData <-> BPEL_XML_DATA

Abbildung 6.1.: Verdndertes und vereinfachtes Tabellenschema fiir den Prototyp.

dem Datenschema macht. Deshalb ist die DAO-Schicht die Architekturschicht, in der die
SQL Anfragen fiir den XPath- und WS-Pushdown generiert und an das DBS gestellt werden
miissen. Abb. 6.2 zeigt das modifizierte UML-Diagramm der DAO-Schicht aus Kapitel
5.2.3. Unverdnderte Klassen sind grau eingefiarbt, neue Klassen und Typen sind hellblau
eingefdrbt, alle anderen Klassen und Schnittstellen (weifs in Abb. 6.2) wurden in irgendeiner
Weise modifiziert. Private Hilfsmethoden, die benotigt werden, um die Hauptfunktionen
umzusetzen, werden aus Griinden der Ubersichtlichkeit nicht dargestellt. Im Folgenden
gehen wir auf die einzelnen Anderungen und einige Details ein.

HibernateDao Die HibernateDao wird um die Methode hibernateFlush() erweitert, diese wird
in der Methode XmlDataDaolmpl.set() verwendet um das Festschreiben eines Variablenwertes
und somit dessen Persistenz zu erzwingen, da die Persistenz fiir die Realisierung des XPath-
und WS-Pushdown essentiell ist.

ScopeDAO und ScopeDaolmpl Wir integrieren die in Kapitel 4 angesprochene Pushdown-
Schicht in die ScopeDAO. Wir realisieren dort die vier benétigten Hauptmethoden
fur die Pushdown-Konzepte. Fiir Zuweisungen benotigen wir den asynchronen
(dataAssignByContext) XPath-Pushdown (Assignment-Pushdown). Fiir Zuweisungen
die noch innerhalb der WF-Runtime stattfinden sollen, aber der zuzuweisende Ausdruck im
DBS ausgewertet werden soll, benotigen wir des Weiteren die synchronen XPath-Pushdown
Funktionen inDatabaseXPath und inDatabaseExpression (ExpressionEvaluation-Pushdown).
Insbesondere wird die synchrone XPath-Pushdown Funktion inDatabaseExpression ebenfalls
fiir die Auswertung von Bedingungen und Berechnungen in anderen BPEL-Aktivititen
verwendet. Fiir die Realisierung des WS-Pushdown wird noch die Methode invokeWS
benotigt. Diese vier Methoden werden in Kapitel 6.1.2.1 ausfiihrlicher vorgestellt.

XmiDataDAO und XmiIDataDaolmpl Die XmIDataDAO musste verdndert werden, um einen
veralteten Variableninhalt der in HXmlData gehalten wird zu kennzeichnen (setDetached).
Dies wird benétigt, falls die Variablenzuweisung iiber einen WS- oder asynchronen XPath-
Pushdown erfolgt. Wird der Variableninhalt dann zu einem spiteren Zeitpunkt von

83

6. Implementierung des Prototyps

BpelRuntimeContext (siehe Kapitel 5.2.4, Seite 74) angefordert, muss der im Hauptspeicher
gehaltene Wert zuerst mit dem Datum aus der DB aktualisiert werden.

HXmIData Die Hibernate Annotierung fiir HXmlData wurde wie in Kapitel 6.1.1 angespro-
chen von der komprimierten Byte Darstellung auf XML gedndert. Zusitzlich wurde das
Attribut _detached eingefiihrt, um die Daten als veraltet zu kennzeichnen. Diese Information
wird nicht auf das Tabellenschema der Datenbank tiibertragen, da diese Information nur
wahrend der Laufzeit einer WE-Instanz von Interesse ist.

VariableContext Diese Klasse wird in den neuen Methoden der ScopeDAO verwendet. Wie
in Kapitel 5.3 (Seite 79) angesprochen, muss die Zuweisungslogik, zumindest fiir Zuweisun-
gen durch einen asynchronen XPath-Pushdown, auf die DAO-Schicht tibertragen werden,
um dort die korrekten SQL-Anfragen generieren zu konnen. Um den Aufruf des asynchronen
XPath-Pushdown zu vereinheitlichen, wird die Wrapper Klasse VariableContext verwendet,
die alle dafiir nétigen Informationen einer Variable beinhaltet. Um ebenfalls einheitlich die
Zuweisungen von Ausdriicken an Variablen zu ermoglichen, werden die Expressions als
Pseudovariablen ohne ID iibergeben. Insgesamt kdnnen folgende Informationen benétigt
werden:

Identifier (Id) - Primérschliissel der jeweiligen Variable in Tabelle BPEL_XML_DATA,
fiir Ausdriicke NULL.

varType - Der Typ der jeweiligen Variable (siehe Tabelle 5.1, Seite 71) oder der Typ
,Expression”, falls es sich um einen Ausdruck handelt.

type - Der XML-Typ der Variable als Qualified Name, fiir Ausdriicke NULL.

namespaces - Der umgebende Namensraumkontext, in dem sich die Variable oder
der Ausdruck befindet, hier sind alle Namensrdaume und ihre etwaigen Prafixe
enthalten.

path - Die Pfadselektion, fiir die Zuweisung von XML-Teildokumenten, bei Variablen
oder der Ausdruck selbst.

exprContext - Fur Ausdriicke zusatzliche Referenzen auf die im Ausdruck enthaltenen
Variablen als VariableContext, fiir Variablen NULL.

84

6.1. Veranderungen an der Architektur von Apache ODE

VarType VarType ist eine Aufzdhlung der moglichen Typen, die bei der Zuweisung auftreten
konnen. Dies ist der Typ des Attributs varType der Klasse VariableContext. Die einzelnen
Typen, jeweils mit ihrem korrespondierendem OModel, lauten:

MESSAGE - OMessageVarType

ELEMENT - OElementVarType

COMPLEXXSD - OXsdTypeVarType (simple = false)
SIMPLEXSD - OXsdTypeVarType (simple = true)
EXPRESSION - Expression/OExpression

IntegratedDatabaseNativeQueries Diese Schnittstelle kapselt alle SQL-Anfragen und Frag-
mente, die fiir das Zusammenstellen der Anfragen an das DBS benotigt werden. Diese
Schnittstelle ist notig, um verschiedene DBSe anbinden zu konnen. Eigentlich wird diese Auf-
gabe vom DB Middleware System iibernommen, jedoch verfiigt das verwendete Hibernate
iiber keine Moglichkeit die XML Verarbeitung innerhalb der eigenen Hibernate Query Lan-
guage (HQL)" abzubilden. Aus diesem Grund mdiissen pro DBS die nativen SQL-Ausdriicke
getrennt abgelegt werden. Wie Abb. 6.2 zu entnehmen ist, wurde diese Schnittstelle fiir
IBM DBz (IDNDB2) vollstandig und PostgreSQL (IDNPostgreSQL) eingeschrankt implemen-
tiert. Diese Schnittstelle wird innerhalb von ScopeDaolmpl verwendet, um die konkreten
SQL-Anfragen zu generieren.

Topen]PA enthalt ebenfalls keine Moglichkeit der standardisierten XML Verarbeitung

85

98

HScope

5 -_variables : Set <HXmlIData>
«interface» P —— e — e — e — - - _name: string

ProcessinstanceDAO |
- +getVariables() : Set <HXmlIData>

«uses»

+getScope(ein : long) 8 ScopeDAO) ScopeDaolmpl +setVariables(ein : Set <HXmIData>) : void
«USES» «implements» [irables : HashMap<String, XmiDataDAO> «extgnds»
| | -_scope : HScope
! ! «extgnds»
i i
\i/ v HibernateDao HObject

«interface» _|>#idn0ueries L _ D -_id : long

ScopeDAO #update() : void +getld() : long
#hibernateFlush() : void +setld(ein : long) : void

+getName() : string

+getVariable(ein : string) : XmIDataDAO

+getVariables() : Collection <XmIDataDAO>

+dataAssignByContext(ein : VariableContext, ein : VariableContext) : void

+/:nDatabaseXPath(e/:n :ang, eir_7 :QI_\Iame, ein :string_, ein :NSContext)_ : Node_ HxmiData «extands»
+inDatabaseExpression(ein : string, ein : NSContext, ein : HashMap<String, VariableContext>) : Node
+invokeWS(ein : long, ein : long, ein : QName, ein : string, ein : string) : void «extgnds» -_data : byte[]
-_name : string
«uses»

-_simpleType : bool
-_detached : bool
+getData() : byte[]
+setData(ein : byte[]) : void

«uses»

«interface»
XmlIDataDAO
+getld() : long
+getName() : string
+get() : Node
+set(ein : Node) : void
+setDetached(ein : bool) : void e

«wuses»

XmlIDataDaolmpl

-_data : HXmIData
-_node : Node

|
|
|
|
|
I
]
I
|
|
|
|
I
i
\|-_simpleValue : string ~
|
|
|
I
I
I
|
|
|
|
I
I
]
|
|

sdA10101d sep Bunienuswaljdw] 9

VariableContext «enumeration» «interface»
+ID : long VarType IntegratedDatabaseNativeQueries
+varType : VarType +MESSAGE
+type : QName +ELEMENT A
+namespaces : NSContext +COMPLEXXSD mTTTTTT T
+path : string +SIMPLEXSD i !
+exprContext : HashMap<String,VariableContext> | ~ [*EXPRESSION IDNDB2 IDNPostgreSQL

Abbildung 6.2.: UML-Diagramm eines Ausschnitts der modifizierten DAO-Schicht fiir den Prototypen. Graue Kompo-
nenten wurden nicht verandert, Hellblaue sind neu, weiffe Komponenten wurden im Vergleich zum
UML-Diagramm aus Abb. 5.4 (Seite 73) modifiziert.

] NUT R~ W N R

6.1. Veranderungen an der Architektur von Apache ODE

6.1.2.1. Hauptmethoden von ScopeDAO

Wir stellen nun die Methoden vor, welche die Anweisungen des WS- und XPath-Pushdown an
das DBS weitergeben. Alle vorgestellten SQL Anweisungen beziehen sich auf das DBS DB2
UDB V9.7 mit eingebettetem pureXML, da wir mit PostgreSQL V8.4 nicht alle Methoden rea-
lisieren konnen. Durch das Auflosen der Variablen durch ScopeFrame.resolve wird, falls noch
nicht vorhanden, ein entsprechendes XmlIDataDAO und HXmlData Objekt und dadurch ein
Tabelleneintrag zu dieser Variable erzeugt. Deshalb miissen grundsitzlich fiir Zuweisungen
SQL-UPDATE Anweisungen verwendet werden.

invokeWS ruft die UDF des DBSs fiir das Aufrufen eines WS auf.

Parameter:

inputVar (Long) - Primérschliissel der Variable mit der Nachricht, die an den WS als Eingabe
geschickt wird.

outputVar (Long) - Primédrschliissel der Variable, in die das Resultat des WS gespeichert wird.
operationNS (QName) - XML Namensraum der WS Operation.

operationName (String) - Aufzurufende WS Operation.

EPR (String) - Endpunkt URL des aufzurufenden WS.

Die UDF, die fiir den Webservice Aufruf verwendet wird lautet:
db2xml .soaphttpc (endpoint_url, soap_action, soap_body)

An diese Funktion muss der Endpunkt (endpoint_url), der Name der WSDL Operation
(soap_action) und die Eingaben (soap_body) tibergeben werden. Enthélt die Nachricht
bereits die Operation als Wurzel-Element, kann die Operation leer gelassen werden, diese
Struktur liegt durch Apache ODE bereits vor und wir werden davon Gebrauch machen.
Das vollstandige SQL/pureXML Query, um den WS-Pushdown durchzufiihren, ist in
Listing 6.1 dargestellt. Die Parameter mit vorangestelltem Doppelpunkt sind die direkten
oder modifizierten Werte der Eingangsparameter der Funktion invokeWS.

update bpel_xml_data set data = db2xml.soaphttpc (’:EPR’, ’7,
(select XMLSERIALIZE (XMLELEMENT (
NAME "wsinvoke::operationName",
XMLNAMESPACES (’ :operationNS’ AS "wsinvoke"),
XMLQUERY (’declare default element namespace "x"; $DATA/message/*’)

) as clob)
from bpel_xml_data where id = :inputVar))
where id = :outputVar;

Listing 6.1: SQL/pureXML Query fiir den WS-Pushdown.

87

S WN K

6. Implementierung des Prototyps

inDatabaseXpath stellt das SQL Query fiir den synchronen XPath-Pushdown innerhalb
von Zuweisungen zusammen. Im Gegensatz zu inDatabaseExpression kann nur auf eine
Variable referenziert werden und somit hauptsdchlich XPath-Pfadselektionen auf ein
XML-Dokument evaluiert werden (Sonderfall des ExpressionEvaluation-Pushdown).
Parameter:

varKey (Long) - Primérschliissel der Variablen, auf die zugegriffen wird.

varType (QName) - Der XML Typ der Variable.

xPath (String) - Pfadselektion als XPath-Ausdruck.

namespaces (NSContext) - Der XML Namensraumkontext enthilt alle notigen Namensrdume.
Riickgabetyp: (XML) Node

Da sich das Query nur auf eine Variable und somit auf einen XML-Schema Typen bezieht
wird nur dessen Namensraum benétigt (namespaces), dieser wird in Prafix (:prefix) und
Namensraum-URI (:uri) aufgetrennt. Das entsprechende SQL/pureXML Query ist in
Listing 6.2 dargestellt.

select XMLQUERY(’declare default element namespace '"*'";
declare namespace :prefix=":uri";
$DATA/ :xPath’)

from bpel_xml_data where id = :varKey

Listing 6.2: SQL/pureXML Query fiir den synchronen XPath-Pushdown innerhalb
Zuweisungen von Variablen.

Betrachten wir das Zuweisungsbeispiel, genauer gesagt den from Teil aus Kapitel 4.3.1
(Seite 62):

<from>$y/exp:document/exp:title [@lang="de"]/text () </from>

Die Variable y enthélt das XML-Beispieldokument aus Listing 2.1 (Seite 19), ihr Primérschliis-
sel in der Datenbanktabelle BPEL_XML_DATA sei 1. Die Instanz des Queries aus Listing 6.2
fiir diesen Ausdruck ist in Listing 6.3 dargestellt. Der Namensraum samt Prafix wurden
hinzugefiigt, und der XPath-Ausdruck wurde um das Wurzel-Element (exp:thesis) erweitert.
Dies ist notwendig, da XPath-in-BPEL-Ausdriicke nicht die Wurzel von XML Elementen
referenzieren, da diese implizit durch die Typisierung der referenzierten Variable bekannt
ist. Diese Information muss aber fiir die Auswertung innerhalb des DBS dem Ausdruck
hinzugefiigt werden. Bei Verwendung von Message oder XSD Typen miissen entsprechend
die Wrapper Elemente aus Tabelle 5.1 (Seite 71) in den XPath-Ausdruck eingefiigt werden.

88

A~ O N R

AWN R

6.1. Veranderungen an der Architektur von Apache ODE

select XMLQUERY(’declare default element namespace "*";
declare namespace exp="http://www.flowsoft.de/thesis/xml";
$DATA/exp:thesis/exp:document/exp:title[@lang="de"]/text()’)
from bpel_xml_data where id = 1

Listing 6.3: Beispielinstanz des SQL/pureXML Query aus Listing 6.2.

inDatabaseExpression stellt das SQL Query fiir den synchronen XPath-Pushdown eines
allgemeinen XPath-Ausdrucks zusammen.

Parameter:

xPath (String) - Der zu evaluierende XPath-Ausdruck.

namespaces (NSContext) - Der XML Namensraumkontext des XPath-Ausdrucks.
exprContext (HashMap VariableContext) - Enthélt alle Informationen zu im XPath-Ausdruck
vorkommenden Variablen.

Riickgabetyp: (XML) Node

Diese Methode ist die Erweiterung von inDatabaseXpath auf allgemeine XPath-Ausdriicke,
diese konnen mehr als eine Variable enthalten. Das SQL/pureXML Query muss entsprechend
zusammengestellt werden. Die Basis bildet das erste Query aus Listing 6.4. Die verwendeten
Namensraume werden durch die Queries zwei (Zeile 2) und drei (Zeile 3) beschrieben und
anstelle des Platzhalters :namespace des Ersten (Zeile 1) eingesetzt. Fiir jede vorkommende
Variable wird das vierte Query (Zeile 4) instanziiert und anstelle des Platzhalters :variables
des Ersten eingesetzt. Die weiteren in Listing 6.4 auftretenden Platzhalter werden jeweils
aus den Attributen von VariableContext zur jeweils referenzierten Variable gebildet (:xPath,
id, :prefix und :uri). Der Platzhalter :def_namespace wird aus dem Parameter namespaces
abgeleitet (insofern vorhanden).

select XMLQUERY(’ :namespace :xPath’ passing :variables) from bpel_xml_data where id = :id
declare default element namespace '":def_namespace';

declare namespace :prefix=":uri";

(select data from bpel_xml_data where id = :id) as ":name"

Listing 6.4: Aus diesen vier Teil-Queries wird das SQL/pureXML Query fiir den synchronen
XPath-Ausdruck-Pushdown aufgebaut.

Wir erkldren im Folgenden die Verwendung dieser vier Queries an einem Beispiel. Nehmen
wir folgenden XPath-in-BPEL-Ausdruck als Beispiel:

concat ($x/exp:author/exp:name, $y/exp:author/exp:name)

In den Variablen x und y sei jeweils das XML-Beispieldokument aus Listing 2.1 (Seite 19)
gespeichert. Somit wird der Ausdruck die Zeichenkette , Florian WagnerFlorian Wagner”
berechnen. Die Primérschliissel der Variablen in der Datenbanktabelle BPEL_XML_DATA

89

W N

N v~

6. Implementierung des Prototyps

seinen 1 und 2. Als Basis dient das erste Query aus Listing 6.4. Der Platzhalter :namespace
wird durch die Konkatenation fiir den Standard-Namensraum (zweites Query) und der
Namensrdume je Variable (drittes Query) ersetzt. Da fiir dieses Beispiel kein Standard-
Namensraum existiert, wird der in pureXML mogliche Wildcard ,*” verwendet (Listing 6.5
Zeile 1). Und da beide Variablen x und y den selben Namensraum beanspruchen, kommt
dieser entsprechend nur einmal vor (exp - http://www.flowsoft.de/thesis/xml - Listing 6.5
Zeile 2). Der Platzhalter :xPath des ersten Query wird entsprechend durch den modifizierten
Ausdruck (mit Wurzelelementen) ersetzt (Listing 6.5 Zeile 3). Die Konkatenation des vierten
Query;, fiir alle im Ausdruck auftretenden Variablen wird im Platzhalter :variables ersetzt
(Listing 6.5 Zeile 4-6). Damit man nur eine Zeile als Riickgabe erhilt, wird der Ausdruck nur
tiir eine beliebige im Ausdruck auftretende Variable in BPEL_XML_DATA zuriickgegeben
(:id im ersten Query - Listing 6.5 Zeile 1 und 7). Gegebenenfalls konnte dies auch durch eine
SQL-Limitierungsanweisung erfolgen. Insgesamt folgt daraus das SQL/pureXML Query in
Listing 6.5.

select XMLQUERY(’declare default element namespace '"*'";
declare namespace exp="http://www.flowsoft.de/thesis/xml";
concat ($x/exp:thesis/exp:author/exp:name,
$y/exp:thesis/exp:author/exp:name)’

passing
(select data from bpel_xml_data where id = 1) as "x",
(select data from bpel_xml_data where id = 2) as "y")

from bpel_xml_data where id = 1

Listing 6.5: Beispiel SQL/pureXML Query fiir den synchronen XPath-Ausdruck-Pushdown.

dataAssignByContext ist fiir den asynchronen XPath-Pushdown (Assignment-Pushdown)
der Zuweisung verantwortlich. Sie realisiert die Zuweisungslogik von ASSIGN innerhalb
der DAO-Schicht.

Parameter:

IContext (VariableContext) - Linke Seite der Zuweisung,.

rContext (VariableContext) - Rechte Seite der Zuweisung.

Die Methode sorgt dafiir, dass innerhalb des DBSs die rechte Seite der linken Seite zugewie-
sen wird. IContext beinhaltet alle notigen Informationen tiber die Variable an die zugewiesen
werden soll. rContext stellt alle ndtigen Informationen zum Auswerten der rechten Seite
(Variable oder Ausdruck) zur Verfiigung. Die Methode dataAssignByContext verwendet zahl-
reiche private Methoden, um den gesamten asynchronen Modus der ASSIGN Zuweisung zu
unterstiitzen. Es werden die Erkenntnisse und die Aufbaulogik der SQL/pureXML Queries
aus den vorangegangen Methoden inDatabaseXpath und inDatabaseExpression verwendet, um
die rechte Seite der Zuweisung auszuwerten. Das Ergebnis wird dann dem XML Feld der
Variablen der linken Seite innerhalb des selben SQL-Ausdrucks zugewiesen. Da eine abso-

90

=

OO o UKW N R

6.1. Veranderungen an der Architektur von Apache ODE

lute Verallgemeinerung der Queries nicht moglich war, insbesondere durch die Wrapper
Struktur von Apache ODE und zusétzlich deutliche Unterschiede in der XML Verarbei-
tung zwischen ODE und DBz bestehen, wurde ein systematischer Ansatz gewéhlt, um ein
lauffihiges System zu erhalten. Es konnen auf vier mogliche Typen der linken Seite, fiinf
mogliche Typen der rechten Seite zugewiesen werden. Dies ist jeweils fiir eine initialisierte
und eine uninitialisierte linke Seite der Zuweisung moglich. Daraus ergeben sich insgesamt
40 Zuweisungsmoglichkeiten, die wir nicht alle im Detail besprechen.

Der Aufbau der Namensrdaume sowie die Veranderung der Pfadselektionen und Ausdriicke
entsprechen im Wesentlichen denen aus den vorangegangen Methoden, es muss jedoch auf
doppelte und gleiche Préafixe der Namensraume geachtet und diese ggf. eliminiert oder umge-
schrieben werden. Wir stellen nun ein Query anhand des Beispiels aus Kapitel 4.3.1 (Seite 62)
vor. Fiir alle anderen Moglichkeiten sei direkt auf die Implementierung verwiesen.

<copy>
<from>$y/exp:document/exp:title [@lang="de"]/text ()</from>
<to variable="x"/>

</copy>

Die Variable y (Primérschliissel 1) enthdlt das XML-Beispieldokument aus Listing 2.1
(Seite 19) die Variable x (Primérschliissel 2) sei vom Typ xsd:string. Die Basis bildet das
gleiche Query wie fiir den WS-Pushdown, wobei die UDF durch eine pureXML-Anweisung
(XMLQUERY) ersetzt wird (siehe Listing 6.6). In dieser pureXML-Anweisung werden die
Namensrdume sowie die zu referenzierenden Variablen analog zu inDatabaseXPath und
inDatabaseExpression gebildet.

update bpel_xml_data set data =
XMLQUERY (’declare default element namespace "*";

declare namespace exp="http://www.flowsoft.de/thesis/xml";
copy $new := $DATA modify
do replace value of $new/temporary-simple-type-wrapper
with $data2/exp:thesis/exp:document/exp:title[@lang="de"]/text ()
return $new’
passing
(select data from bpel_xml_data where id = 1 as "data2")
where id = 2

Listing 6.6: Beispiel eines SQL/pureXML Query fiir den asynchronen XPath-Pushdown von
einem XML Element Typ an einen XSD Einfachen Typ, der initialisiert ist.

Durch den pureXML-Befehl copy $new := $DATA wird der Inhalt der zu aktualisierende
Variable in $new gespeichert und durch den Befehl do replace value of $new... with ... modifiziert.
Dies ist der entscheidende Schritt der Zuweisung, bei dem das Ergebnis des Ausdrucks
der rechten Seite zugewiesen wird. Anschlieffend wird durch den Befehl return $new der

91

6. Implementierung des Prototyps

neue Variableninhalt zuriickgegeben und an das XML-Feld von Variable x zugewiesen
(set data = XMLQUERY). Ist die Variable an die zugewiesen werden soll nicht initialisiert,
andert sich der Befehl von do replace value of nach do replace. Allerdings muss dann ein
wohlgeformtes XML-Dokument mit eindeutiger Wurzel zugewiesen werden und ggf. dieses
Wurzelelement in den passenden Wrapper umbenannt werden (siehe Tabelle 5.1, Seite 71).
Das HXmlData Objekt, welches von Hibernate tiberwacht wird, muss nach der Ausfithrung
als detached markiert werden, um bei Verwendung innerhalb der Runtime aktualisiert werden
zu konnen.

6.1.3. Anderungen in der Runtime-Schicht

In Kapitel Anderungen in der DAO-Schicht wurden die Anderungen in der DAO-Schicht
vorgestellt, die notig sind, um die Pushdown Konzepte zu realisieren. Diese Funktionalitdt
muss jetzt nur noch durch die Aktivitaten aufgerufen werden, weshalb die Anderungen
in der Runtime-Schicht nicht so gravierend ausfallen. Die Hauptaufgabe besteht darin,
die Informationen zu Variablen und Ausdriicken aus dem OModel (siehe Kapitel 5.2.2,
Seite 68) zu extrahieren und in geeigneter Form (direkt oder durch die Wrapper Klasse
VariableContext) an die DAO-Schicht zu tibergeben, die dann mit dem DBS kommuniziert.
Das UML-Diagramm ist in Abb. 6.3 zu sehen, grau eingefdarbte Klassen wurden nicht
verdandert. Wir gehen nun auf die verdnderten Schnittstellen und Klassen ein. Tabelle 6.2
fasst die Aufrufthierarchie der Methoden aus ScopeFrame, BpelRuntimeContext und der in
Kapitel 6.1.2.1 vorgestellten Methoden der ScopeDAO zusammen.

BpelRuntimeContext und BpelRuntimeContextimpl stellen vier XPath-Pushdown Metho-
den (inDatabaseAssign, inDatabaseExpressionAssign, inDatabaseXPath, inDatabaseXPath-
Expression) bereit, die ausschlieSlich von ScopeFrame aus aufgerufen werden. Es
werden die aufgeldsten Variablen als Variablelnstance (VI) sowie XPath-Ausdriicke
(OXPath1oExpression) {ibergeben und die fiir die DAO-Schicht notwendigen Informatio-
nen extrahiert oder in Objekte der Wrapper Klasse VariableContext (siehe Kapitel 6.1.2)
der DAO-Schicht tiberfiihrt. Die Methode inDatabaselnvoke wird hingegen direkt durch
die Aktivitdt INVOKE aufgerufen. Anschlieflend wird die Aufgabe entsprechend an
eine der vier ScopeDAO Hauptmethoden (siehe Kapitel 6.1.2.1) weitergegeben.

ScopeFrame stellt drei inDatabase Methoden bereit, die von den BPEL Aktivititen aufgeru-
fen werden konnen. Hierbei fithrt der Aufruf von inDatabaseAssign zu einem asynchro-
nen XPath-Pushdown (Assignment-Pushdown). Hierbei muss wegen des unterschied-
lichen OModels fiir Ausdriicke (OExpression) und Variablen (VariableRef) jeweils die
entsprechende Methode des BpelRuntimeContext (inDatabaseAssign oder inDatabase-
ExpressionAssign) aufgerufen werden. Diese vereinheitlichen dann jeweils den Aufruf
an die ScopeDAO (dataAssignByContext). Der Aufruf von inDatabaseXPath fiihrt zu

92

6.2. Funktionalitat des Prototyps

einem synchronem XPath-Pushdown fiir Zuweisungen und der Aufruf von inDatabase-
XPathExpression zum allgemeinen synchronen XPath-Pushdown (ExpressionEvaluation-
Pushdown), der auch fiir die Evaluierung von Bedingungen in den Kontroll- und
Schleifenkonstrukten genutzt werden kann.

ACTIVITY und Unterklassen verwenden, bis auf INVOKE, innerhalb ihrer Logik die XPath-
Pushdown Methoden von ScopeFrame. INVOKE greift direkt auf die Methode
inDatabaselnvoke von BpelRuntimeContext zu.

ScopeFrame BpelRuntimeContext ScopeDAO

inDatabaseAssign inDatabaseAssign dataAssignByContext
inDatabaseExpressionAssign

inDatabaseXPath inDatabaseXPath inDatabaseXPath

inDatabaseXPathExpression | inDatabaseXPathExpression | inDatabaseExpression

- inDatabaselnvoke invokeWS

Tabelle 6.2.: Aufrufhierarchie zwischen den XPath-Pushdown Methoden aus ScopeFrame,
BpelRuntimeContext und ScopeDAO.

Durch diese Architektur, also die Implementierung der Pushdown-Methoden in
BpelRuntimeContext und ScopeFrame, ist die Ubertragung auf die in Tabelle 5.2 (Seite 79)
genannten Aktivititen ohne weitere Schwierigkeiten moglich. Zudem koénnen auch
zukiinftige oder benutzerdefinierte Aktivitdten den XPath-Pushdown verwenden.

6.2. Funktionalitat des Prototyps

Wir prasentieren nun die, durch die Implementierung, realisierten Funktionalitdten, stellen
potentielle weiterfiihrende Anderungen vor und berichten iiber konkrete Schwierigkeiten,
die sich bei der Implementierung des Prototyps ergaben.

6.2.1. Realisierte Pushdown-Konzepte

Das Konzept des Query-Pushdown wurde in der Auspriagung als XPath-Pushdown in Zu-
sammenwirken mit IBM DBz vollstdndig implementiert. Der Webservice-Pushdown wurde
rudimentdr implementiert, hier fehlt die korrekte Logik zur Fehlerbehandlung und Fehler-
weitergabe an Apache ODE. Um Messungen zur Performanz durchzufiihren, eignet sich
die Implementierung dennoch. Generell, auch fiir den WS-Pushdown, wird im Falle eines
Fehlers in einer der hinzugefiigten Methoden oder durch das DBS die urspriingliche Logik

93

6. Implementierung des Prototyps

BpelRuntimeContextimpl Variablelnstance (VI)
- dao : ProcessinstanceDAO +declaration : OScope.Variable
— +scopelnstance : long

T
: «implements»

«interface»

BpelRuntimeContext
+readVariable(ein : long, ein : string, ein : bool) : Node
+writeVariable(ein : VI, ein : Node) : Node
+invoke(ein : Operation, ein : Node) : string
+getExpLangRuntime() : <nicht spezifiziert>
+inDatabaseAssign(ein : VI, ein : VI, ein : OAssign.Copy) : void
+inDatabaseExpressionAssign(ein : VI, ein : OXPath10Expression, ein : HashMap<String,VI>, ein : OAssign.Copy) : void
+inDatabaseXpath(ein : VI, ein : RValue) : Node
+inDatabaseXpathExpression(ein : OXPath10Expression, ein : HashMap<String,VI>) : Node
+inDatabaselnvoke(ein , ein : Operation, ein : VI, ein : VI) : void

i
«uses» | i «uses»
|
|

BpelJacobRunnable ScopeFrame

-oscope : OScope
-parent : ScopeFrame

#getBpelRuntimeContext() : BpelRuntimeContext
+resolve(ein : OScope.Variable) : VI

Z; +fetchVariableData(ein : BpelRuntimeContext, ein : VI, ein : bool) : Node
+writeVariable(ein : BpelRuntimeContext, ein : VI, ein : Node) : Node
+commitChanges(ein : BpelRuntimeContext, ein : VI, ein : Node) : Node
+inDatabaseAssign(ein : BpelRuntimeContext, ein : VI, ein : VI, ein : OAssign.Copy) : void
+inDatabaseXPath(ein : BpelRuntimeContext, ein : VI, ein : RValue) : Node
+inDatabaseXPathExpression(ein : BpelRuntimeContext, ein : Expression) : Node

ZOY

|

|

ACTIVITY !

— #_self : ActivityInfo !

«uses» ! «uses» |

Actnvnty!n.fo #_scopeFrame : ScopeFrame !

+0 : OActivity K-------- +fetchVariableData(ein : VI, ein :bool):Node [~~~ =~ "~~~ ~""""""7"-
+commitChanges(ein : VI, ein : Node) : void

+inDatabaseAssign(ein : OAssign.Copy) : void
+inDatabaseXPath(ein : RValue) : Node

JAN
INVOKE FOREACH ASSIGN
+run() : void +run() : void +run() : void
-evaluateCondition(ein : OExpression) : int -copy(ein : OAssign.Copy) : void
-evalLValue(ein : LValue) : Node
-evalRValue(ein : RValue) : Node
-evalQuery(ein : OExpression) : Node

Abbildung 6.3.: UML-Diagramm der verdnderten Runtime-Schicht des Prototyps. Grau ge-
farbte Klassen wurden nicht verdndert. Zu den Lese- und Schreibmethoden
auf Variablen kommen die WS- und XPath-Pushdown Methoden hinzu,
diese leiten die Anfragen an die DAO-Schicht weiter.

94

6.2. Funktionalitat des Prototyps

der Aktivitdten durchlaufen. Fiir die in Kapitel 7 verwendeten Test- und Anwendungsfélle er-
geben sich in der Implementierung des Prototyps keine Fehler, wodurch die Vergleichbarkeit
der Messergebnisse gegeben ist.

Die Aktivititen aus Tabelle 5.2 (Seite 79), die potentiell die Pushdown Konzepte verwen-
den konnen, sind nochmals, mit dem Stand ihrer Umsetzung im Prototyp, in Tabelle 6.3
angegeben.

ODE Klasse Art des Modus des | Implementiert

(BPEL-Aktivitat) Pushdown Pushdown

ASSIGN XPath (Assignment & | asynchron | ja
ExpressionEvaluation) | & synchron

INVOKE Webservice - ja (ohne Fehlerbe-

handlung)

FOREACH XPath synchron ja
(ExpressionEvaluation)

WHILE XPath (Condition) synchron ja

REPEATUNTIL XPath (Condition) synchron ja

SWITCH (IF) XPath (Condition) synchron ja

EH_ALARM XPath synchron ja

(ONALARM) (ExpressionEvaluation)

WAIT XPath synchron ja
(ExpressionEvaluation)

ACTIVITYGUARD XPath (Condition) synchron ja

(TransitionConditions)

Tabelle 6.3.: Alle ODE Klassen, die potentiell von den Pushdown-Konzepten Gebrauch
machen konnen und der Stand ihrer Implementierung.

Zusatzlich wurden Parameter zum Ein- und Ausschalten der verschiedenen Pushdown-
Konzepte der ODE Konfigurationsdatei hinzugefiigt (siche Anhang B.4.2, Seite 148). Dadurch
ist es moglich die Wirkung einzelner Pushdown-Konzepte, insbesondere der Vergleich der
synchronen und asynchronen Variante fiir Zuweisungen, zu untersuchen. Aufierdem muss
man fiir die Verwendung des DBSs PostgreSQL V8.4 Pushdown-Konzepte, die fiir dieses
DBS nicht umgesetzt werden konnten, deaktivieren konnen.

6.2.2. Technische Schwierigkeiten
Alle technischen Schwierigkeiten, die wahrend der Implementierung auftraten, hangen

direkt mit der XML Technologie oder mit der Art und Weise, wie XML Dokumente von ver-
schiedenen Systemen und Implementierungen verarbeitet werden, zusammen. Insbesondere

95

6. Implementierung des Prototyps

muss fiir jedes anzubindende DBS die Moglichkeiten und Funktionen der XML Verarbeitung
untersucht und getestet werden. Die Verwendung von unterschiedlichen Wrapper Elementen
(siehe Tabelle 5.1, Seite 71) innerhalb der WF-Runtime verhindert die Verallgemeinerung der
auszufiihrenden Queries erheblich.

Die grofiten Schwierigkeiten werden jedoch durch die XML Namensrdume hervorgerufen.
Diese miissen in jeder Anfrage an das DBS tibergeben werden, um die XPath Ausdriicke
korrekt evaluieren zu konnen, insbesondere wenn Prafixnotationen innerhalb der Ausdriicke
verwendet werden. Hierbei konnen folgende Situationen auftreten:

Gleicher Préfix mit gleichem Namensraum Dies kommt bei Verwendung von zwei Varia-
blen mit gleichem Namensraum vor, die doppelte Namensraumangabe muss unter-
bunden werden, da dies zu Fehlern im DBS fithren kann.

Gleicher Prafix mit unterschiedlichem Namensraum Dies kann bei der Zuweisung von zwei
Variablen mit unterschiedlichem Namensraum vorkommen, ein Priafix muss dabei
innerhalb des Ausdrucks umgeschrieben werden.

Unterschiedlicher Préfix mit gleichem Namensraum Ist laut Spezifikation der XML Na-
mensrdume explizit erlaubt und sollte keine Fehler verursachen, die konkrete Im-
plementierung im DBS sollte jedoch tiberpriift werden.

Mehrere Standard-Namensraume Dies kann ebenfalls bei einer Zuweisung zweier Variablen
mit unterschiedlichem Namensraum vorkommen. Hier kdnnen je nach DBS entweder
sog. Wildcards fiir Standard-Namensrdume (engl. Default Namespaces) verwendet wer-
den, oder es muss mindestens ein Standard-Namensraum in einen Namensraum mit
Préafix tiberfithrt werden, was ebenfalls eine Anpassung des Ausdrucks nach sich zieht.

Zusétzlich kann es zu allgemeinen Schwierigkeiten mit Standard-Namensraumen kommen.
In pureXML wird die Angabe eines Standard-Namensraums unterstiitzt, es kann sogar ein
Wildcard eingefiihrt werden, der Lokalisierungsschritte ohne Prifixangabe automatisch
ihrem Standard-Namensraum zuordnet. Die Angabe eines Standard-Namensraums ist in
PostgreSQL hingegen nicht moglich, hier muss fiir die korrekte Verarbeitung des Ausdrucks
extra ein Préfix fiir den Standard-Namensraum eingefiihrt werden und der Ausdruck
entsprechend abgedndert werden.

Diese und weitere Probleme mit XML Namensrdumen fithren dazu, dass Stimmen laut
werden, XML Namensrdume wiirden nur zur Verwirrung fiihren und Auswertungen von
XML Daten unnétig kompliziert machen und sollten spérlich eingesetzt werden [Daros].
Allerdings sind Namensraume aus Sprachen wie WS-BPEL nicht wegzudenken, sie sind
essentiell fiir die Typisierung der Variablen und deren Validierung notig. Ignoriert man bei
der Verarbeitung der Ausdriicke auf XML Daten generell die XML Namensrdume, kann
dies prinzipiell zu semantisch falschen Ergebnissen fiihren, was eine zwingend korrekte
Verwendung der Namensraume notig macht.

6.2. Funktionalitat des Prototyps

6.2.2.1. Implementierung fiir PostgreSQL

Fiir PostgreSQL konnte leider nur ein Bruchteil der Funktionalititen umgesetzt werden. In
der verwendeten Version 8.4 gibt es keine Moglichkeit einen WS aufzurufen, womit die
Umsetzung des WS-Pushdown hinféllig ist. Die XML Verarbeitungsmoglichkeiten sind im
Vergleich zur DB2 von IBM stark eingeschrédnkt. Es gibt keine Sprachelemente, mit denen
es moglich ist XML Daten dhnlich zu pureXML oder XQuery Update zu transformieren.
Die Evaluierung von XPath Ausdriicken erfolgt in PostgreSQL durch die Funktion xpath.
Der Riickgabewert dieser Funktion erfolgt als Zeichenkette und wird mit zusatzlichen
Anfiihrungszeichen annotiert. Dies fiihrt zum einen dazu, dass eine direkte Zuweisung an
ein XML Feld innerhalb der Datenbank nicht moglich ist, also ein asynchroner Pushdown
nicht durchfiihrbar ist. Andererseits muss eine komplizierte Bereinigung des Riickgabewerts
bei synchronen Anfragen innerhalb der DAO-Schicht erfolgen, damit die Daten im fiir
ODE richtigen Format tibergeben werden. Dartiber hinaus kann die xpath Funktion nur auf
jeweils ein XML Feld zugreifen, wodurch Evaluierungen von Ausdriicken mit mehreren
Variablen ebenfalls nicht moglich sind. Zudem wird nur ein Bruchteil der XPath Spezifikation
realisiert, womit im Prinzip nur noch Pfadausdriicke auf ein XML Dokument evaluierbar
sind. Die einzige XPath-Pushdown Variante, die also derzeit mit PostgreSQL abgebildet
werden konnte, ist der synchrone XPath-Pushdown fiir BPEL ASSIGN (ExpressionEvaluation-
Pushdown), bei dem die rechte Seite der Zuweisung eine Variable mit Pfadselektion darstellt
(siehe inDatabaseXPath aus Kapitel 6.1.2.1). Die Méachtigkeit der PostgreSQL-xpath Funktion
ist auch in der aktuellen Version g gleich geblieben. Allerdings konnte die Version g nicht
korrekt mit Hibernate kommunizieren, weshalb auf die Version 8.4 zurtickgegriffen wurde.
Falls in zukiinftigen PostgreSQL Versionen die XML Verarbeitungsmoglichkeiten ausgebaut
werden, ist es ggf. moglich eine vollstindige Implementierung des XPath-Pushdown zu
erreichen.

6.2.3. Weiterfiihrende Modifikationen

Es sind eine Reihe weiterer Modifikationen fiir Apache ODE vorstellbar. Die meisten dieser
Modifikationen gehen in Richtung eines Produktivsystems, einige bieten zusétzliche Funktio-
nalitdt an, andere konnen wissenschaftlich untersucht werden. Teilweise werden wir die hier
genannten Modifikationen im Kapitel 8, Konzeptionelle Erweiterungen, nochmals aufgreifen.
Das Konzept aller genannten weiterfithrenden Modifikationen beruht nach wie vor auf der
Verlagerung der Funktionen von der WF-Runtime auf das DBS (siehe Kapitel 4.1, Seite 57).
Einige sind direkte weiterfithrende Auspriagungen des Query-Pushdown Konzepts.

Fehlerbehandlung WS-Pushdown Die Fehlerbehandlung kann noch vollstindig implemen-
tiert werden. Fiir jedes DBS mit SOAP-Unterstiitzung miissen hierbei die SQL Fehler
Codes auf die entsprechenden ODE Ausnahmen abgebildet werden, damit ODE oder
der BPEL-Prozess entsprechend auf die Fehler reagieren konnen. Als Vervollstindigung

97

6. Implementierung des Prototyps

der Implementierung stellt dies eine reine Erweiterung fiir Apache ODE dar und wird
deshalb nicht in Kapitel 8 aufgefiihrt.

Variablen Eigenschaften BPEL-Variablen konnen als zusitzliche Metainformation mit sog.

Eigenschaften (engl. Variable Properties) versehen werden. Diese Eigenschaften konnen
ebenfalls durch Zuweisungen verandert werden. Der XPath-Pushdown fiir die Zuwei-
sung dieser Eigenschaften kann analog implementiert werden, die Struktur hierfiir ist
bereits in der Methode inDatabaseAssign von BpelRuntimeContextImpl (siehe Abb. 6.3)
vorgesehen. Die Tabelle VAR_PROPERTIES des ODE DB-Schemas miisste analog zu
BPEL_XML_DATA angepasst, der VariableContext um die Eigenschaften erweitert und
die Zuweisungslogik der ScopeDAO hinzugefiigt werden. Als Funktionsvervollstindi-
gung fiir Apache ODE wird dies ebenfalls nicht in Kapitel 8 aufgefiihrt.

XML-Wrapper vereinheitlichen Speziell fiir den Prototypen wére es moglich, die XML-

Wrapper Elemente aller Typen von BPEL-Variablen (siehe Tabelle 5.1, Seite 71) zu
vereinheitlichen und so die Implementierung des XPath-Pushdowns zu vereinfachen
bzw. die Komplexitdt der Generierung der SQL-Anweisungen zu reduzieren. Dies wird
ebenfalls nicht in Kapitel 8 diskutiert.

XQuery-Pushdown Der synchrone XQuery-Pushdown kann fiir IBM DB2 mit kleineren

Anderungen innerhalb der Runtime-Schicht realisiert werden. Hierbei muss das OModel
fiir XQuery-Ausdriicke entsprechend auf den VariableContext abgebildet werden. Ob die
Einbettung der XQuery Ausdriicke fiir einen asynchronen XQuery-Pushdown innerhalb
der pureXML Queries von DB2 moglich ist, muss gesondert evaluiert werden, sollte
jedoch ebenfalls realisierbar sein. Diese konsequente Erweiterung des Query-Pushdown
wird in Kapitel 8 aufgegriffen.

pureXML/XUpdate-Pushdown XUpdate [ALoo] sowie pureXML von IBM stellen Funktionen

zur Manipulation von XML Daten bereit, wie Loschen, Austauschen und Hinzuftigen
von XML Knoten. Es existiert derzeit noch kein Standard, allerdings sollten die Manipu-
lationskomponenten dieser Sprachen voraussichtlich durch die XQuery Update Facility
Recommendation [W3Co9] ersetzt werden. Ob die direkte Manipulation von Variablen
durch den Anwender innerhalb der Auswertung von z.B. Schleifenbedingung jedoch
sinnvoll ist, muss gesondert diskutiert werden. Fiir zukiinftige WfMSe und DBSe kénn-
te dies dann auch tiber einen Standard wie XQuery Update erfolgen. Es sei hier darauf
hingewiesen, dass fiir den asynchronen XPath-Pushdown (siehe Kapitel 6.1.2.1) die
Manipulationskomponenten von pureXML dazu verwendet werden die BPEL ASSIGN
Anweisung innerhalb des DBS auszufiihren. Ob eine verschachtelte Ausfithrung mog-
lich ist, muss gesondert evaluiert werden. Aufgrund der interessanten konzeptionellen
Erweiterung und der Moglichkeit der Standardisierung des Query-Pushdown greifen
wir dies ebenfalls in Kapitel 8 auf.

Anbindung weiterer XML-Enabled DBS Es konnten weitere XML-Enabled DBS in den Pro-

98

totypen eingebunden werden. Ein zukiinftiger Standard fiir die Manipulation von

6.2. Funktionalitat des Prototyps

XML Feldern und dessen Implementierung in giangigen DBSen wiirde die getrennte
Implementierung jedoch {iiberfliissig machen. Dies greifen wir insbesondere wegen der
erneuten Auswertung zukiinftiger XML-Enabled Systeme nochmals in Kapitel 8 auf.

XSD Schema Validierung Die Validierung der Variablen nach ihrer Zuweisung, wie sie im
BPEL Standard vorgesehen ist, wird derzeit von Apache ODE nicht implementiert®. Es
sollte moglich sein, die einzelnen XSD Spezifikationen in den XSD Schema Speicher
der Datenbank zu laden und die Validierung innerhalb des DBSs zu veranlassen,
zumindest stellt DB2 mit pureXML prinzipiell Funktionen hierzu zur Verfiigung. Als
direkte Funktionserweiterung von Apache ODE stellen wir dies in Kapitel 8 nicht
weiter vor.

*http:/ /ode.apache.org/ws-bpel-20-specification-compliance.html

99

7. Evaluierung des Prototyps

In diesem Kapitel stellen wir die Ergebnisse der Laufzeit- und Hauptspeichermessungen
des Prototyps aus Kapitel 6 vor. In Abschnitt 7.1 stellen wir die verwendeten Testfille, in
Abschnitt 7.2 die verwendete Testumgebung vor. In Abschnitt 7.3 stellen wir die relevanten
Resultate vor, deren Bedeutung sowie technische Einschrankungen des Prototyps werden in
Abschnitt 7.4 diskutiert.

7.1. Vorstellung der Testfalle

Um die Auswirkungen der einzelnen Pushdown-Konzepte aus Kapitel 4 besser zu veran-
schaulichen, wurden Einzeltests erstellt. Diese basieren auf drei Basis-Workflows (Abb. 7.1),
die sich dann in der Komplexitdt der XPath-Ausdriicke und der verwendeten Datengrofie
unterscheiden. Der erste Basis-Workflow enthilt nur eine ASSIGN-Aktivitat, anhand der
wir Messungen fiir verschiedenartige Zuweisungen machen (Abb. 7.1a). Diese WFs decken
somit vollstandig den Assignment-Pushdown ab, sowie Teile des ExpressionEvaluation-
Pushdown und sein Verhalten bei Verwendung innerhalb von Zuweisungen. Je nach XML
Verarbeitungsmoglichkeiten des DBSs ist fiir ASSIGN nur der synchrone XPath-Pushdown
(ExpressionEvaluation-Pushdown) anwendbar. Der zweite Basis-Workflow steht fiir die
Untersuchung des ExpressionEvaluation-Pushdown (Abb. 7.1b). Dieser WF benétigt eine
vorgeschaltete Zuweisung um iiberhaupt ein XML-Dokument im Prozessspeicher zu haben,
auf den ein Ausdruck evaluiert werden kann. Da die Implementierung des synchronen

Klasse/Konzept Art des Pushdown ‘ Stellvertretende BPEL-Aktivitat
Assignment asynchroner XPath ASSIGN
Expression- synchroner XPath ASSIGN, IF, WHILE, FOREACH,
Evaluation REPEAT UNTIL, WAIT, SWITCH
(BPEL 1.0)
Webservice Webservice INVOKE
Anwendungsfall asynchroner XPath ASSIGN, FOREACH, IF, INVOKE
synchroner XPath
Webservice

Tabelle 7.1.: Testfille der Einzelmessungen im Uberblick.

101

7. Evaluierung des Prototyps

XPath-Pushdown (ExpressionEvaluation-Pushdown) fiir alle Aktivitdaten (aufer ASSIGN,
siehe oben) gleich ist, reicht es aus, diesen fiir eine Stellvertreter-Aktivitdt, im konkreten
Fall IF, zu untersuchen. Die nachgelagerte Zuweisung weifit zu Uberpriifungszwecken einer
Variablen den Wert ,true” zu, in dem Fall wenn die Auswertung der Bedingung wahr ist.
Der dritte Basis-Workflow steht fiir die Uberpriifung des Webservice-Pushdown (Abb. 7.1¢).
Diese WFs benotigen ebenfalls eine vorgelagerte Zuweisung um die WSDL Nachricht an
den Webservice zu generieren.

Zusitzlich zu den Einzelmessungen wird der Anwendungsfall aus der Proteinmodellierung
(siehe Kapitel 2.5.1.1, Seite 39), als Workflow mit datenverarbeitenden Schritten innerhalb
einer Schleife, verwendet. Der zugehorige WF enthilt Aktivitaten (ASSIGN, FOREACH, IF,
INVOKE) zu allen drei Klassen der in den Prototyp implementierten Pushdown-Konzepten.
Die Tabelle 7.1 gibt einen Uberblick iiber die vorgestellten Testklassen.

= main = main = main
& | receivelnput & | receivelnput & | receivelnput
= Mssign = Assign = Assign
2| rephyOutput $ 1 @ Invoke
T true 2| replyOutput
®
= Assign
@®
2| replyOukput
@®
(a) (b) (c)

Abbildung 7.1.: Graphische Représentation der BPEL-Workflows fiir die Einzeltests.

Alle Testfédlle werden jeweils mit drei unterschiedlichen Datengrofien (100kb, 500kb, 4MB)
evaluiert. Hier wird jeweils ein entsprechendes XML Dokument des XML Formats BIIF aus
[Wag1o] verwendet. Als Beispiel ist ein solches (gekiirztes) XML Dokument in Anhang C.1
(Seite 149) angegeben. Die tatsachlichen XML Dokumente unterscheiden sich nur in der An-
zahl der Proteineintrdge (<seq>-Elemente) innerhalb des <aln>-Elements. Zusétzlich werden
die Einzeltest fiir den Assignment- und ExpressionEvaluation-Pushdown fiir verschiedene
Komplexitdten des XPath-Ausdrucks evaluiert:

102

7.2. Testumgebung und Durchfiihrung

1. Ohne XPath-Ausdruck (nur Zuweisung einer Variable auf eine Andere)
2. XPath-Selektion des ersten <seq>-Elements

3. XPath-Selektion des mittleren <seq>-Elements

4. XPath-Selektion des letzten <seg>-Elements

5. Komplexer XPath-Ausdruck: Zugriff auf zwei Variablen mit gleichem Inhalt, Konkate-
nation der ersten Proteinsequenz der ersten Variablen mit letzter Proteinsequenz der
zweiten Variablen.

Die Resultate der XPath-Selektionen (Varianten 2-4) werden gemittelt und als "einfache XPath-
Selektionen” betrachtet. Es wurden, soweit nicht anderes angegeben, pro Testfall jeweils
100 sequentielle Ausfithrungen durchgefiihrt. Aufgrund der hohen Anzahl an Testfédllen
wurden nur fiir ausgewdhlte Testfdlle parallele Messungen vorgenommen. Hier wurden
ebenfalls, falls nicht anders angegeben, 100 parallel laufende Instanzen gemessen. Aus diesen
100 Messungen wurde dann jeweils der Mittelwert gebildet (siehe auch Vorbemerkung zur
Vergleichbarkeit der Messungen Kapitel 7.3.1).

7.2. Testumgebung und Durchfiihrung

Die Messungen wurden auf dem Entwicklungssystem (siehe Anhang B, Seite 145) durchge-
fiihrt, da hier alle DBSe installiert und fiir die Verwendung mit Apache ODE konfiguriert
waren. Auflerdem ist auf diesem System die Lizenz fiir IBM DB2 vorhanden. Das System
ist mit Windows XP Professional 32-bit (Service Pack 3) installiert, verfiigt iiber eine zwei
Kern CPU (Intel Core2Duo T7300@2GHz) sowie iiber 3GB Hauptspeicher und einer Grafik-
karte mit eigenstandigem Grafikspeicher. Die Messungen wurden jeweils fiir drei bzw. vier
Varianten der WF-Engine Apache ODE durchgefiihrt:

Prototyp mit asynchronem Pushdown Im Zusammenhang mit dem Assignment-Pushdown
(ASSIGN) und dem DBS IBM DB2 bei eingeschaltetem asynchronem XPath-Pushdown.

Prototyp mit synchronem Pushdown Verwendet ausschliefilich den ExpressionEvaluation-
Pushdown (ASSIGN, IF, WHILE etc.) in Form des synchronen XPath-Pushdown. Ent-
sprechend werden innerhalb von Zuweisungen nur die Teilausdriicke im DBS ausge-
wertet aber innerhalb der Runtime zugewiesen. Diese Version wird im Zusammenhang
mit dem DBSe IBM DB2 und PostgreSQL genannt.

Instrumentalisierte ODE Version und Tabellenschema des Prototyps, aber vollstandig abge-
schaltete XPath- und WS-Pushdown Funktionalitét.

Original ODE Apache ODE in Version 1.3.4 und original Tabellenschema.

103

7. Evaluierung des Prototyps

Der WS-Pushdown ist in beiden Prototyp-Varianten, soweit vom DBS unterstiitzt (somit nur
fir IBM DB2), eingeschaltet. Fiir die Messungen des Anwendungsfalls werden jeweils alle
moglichen Pushdown-Funktionen, die PostgreSQL oder DB2 umsetzen koénnen, eingeschaltet
und diese Variante als Prototyp bezeichnet. Zudem wurden alle Versionen durch Zeitmes-
sungen, fiir die stellvertretenden Aktivititen aus Tabelle 7.1, erweitert. Die Zeitmessung
der Aktivitdten wird jeweils in der Log-Datei von Apache Tomcat vermerkt und mit Hilfe
eines Perl-Skripts ausgewertet. Hierbei wird der Durchschnitt aller Messpunkte zu dieser
Aktivitat tiber alle Instanzen hinweg berechnet. Falls nicht anders vermerkt, wurden jeweils
100 Wiederholungen des gleichen Testfalls mit Hilfe eines weiteren Perl-Skripts automatisch
durchgefiihrt und die durchschnittliche, minimale und maximale Instanzlaufzeit durch
SQL-Anfragen an das DBS berechnet. Ebenfalls wurde die Gesamtlaufzeit tiber die Startzeit
der ersten Instanz bis Endzeit der letzten Instanz {iber eine SQL-Anfrage bestimmt (Apache
ODE vermerkt diese Informationen in der Tabelle BPEL_INSTANCE). Der Hauptspeicherver-
brauch wurde tiber die Differenz von maximal und minimal verfiigbarem Hauptspeicher
wiahrend einer Messung ermittelt. Hierzu wurde der 'verfiigbare Hauptspeicher” durch
den Leistungsmonitor von Windows XP in einer CSV Datei aufgezeichnet, die Auswertung
erfolgte ebenfalls iiber ein Perl-Skript. Der Ablauf jeder Messung erfolgte nach folgenden
Schritten:

1. Loschen aller Datenbankinhalte fiir die aktuelle ODE DB, sowie Loschen der aktu-
ellen Apache Tomcat Log-Datei und Loschen der Inhalte im processes Ordner der
verwendeten Apache ODE Version.

2. Kopieren des aktuellen Testfalls in den processes Ordner der aktuellen Apache ODE
Version.

3. Starten der gemessenen ODE Version, bis Testfall compiliert und zur Verfiigung gestellt
(deployed) wurde.

4. Stoppen der gemessenen ODE Version, Starten der Hauptspeichermessung.

5. Starten der gemessenen ODE Version, Start der automatisierten Testfall-Ausfiihrung
(Perl-Skript).

6. Nach Ausfiihrung aller Instanzen, Stoppen der aktuellen ODE Version.
7. Stoppen der Hauptspeichermessung.

8. Eintragen der Ergebnisse in eine Tabellenkalkulation zur Weiterverarbeitung.

Die Dateien mit den Rohdaten und den Testfédllen sowie die Tabellenkalkulation mit den
zusammengetragenen Ergebnissen liegen der DVD unter [DVD]/Evaluation bei. Im néchsten
Abschnitt werden die Ergebnisse der Messungen vorgestellt und anschliefsend diskutiert.

104

7.3. Vorstellung der Messergebnisse

7.3. Vorstellung der Messergebnisse

Da wir nur an der Tauglichkeit der Pushdown-Konzepte aus Kapitel 4 interessiert sind,
werden wir nur relative Laufzeiten zu einer Bezugsversion von Apache ODE, jeweils fiir
das gleiche DBS, vorstellen. Hierzu treffen wir im nadchsten Abschnitt einige Vorbemer-
kungen zur Vergleichbarkeit der Messungen. Anschliefiend stellen wir die Ergebnisse nach
den Klassen aus Tabelle 7.1 getrennt vor. Da die Hauptspeichermessungen fiir die Einzel-
testfdlle der Aktivitdten fiir uns keine sichtbare Aussagekraft besitzen, stellen wir diese
nicht vor. Fiir den Anwendungsfall hingegen kann man einige Aussagen treffen und wir
stellen die Resultate absolut in MB vor. Die Datenbanksysteme wurden ohne Modifikation
ihrer Werkseinstellungen verwendet. Die Einzelmessungen liegen der DVD in der Datei
[DVD]/Evaluation/Evaluation_ErgebnisListe.xlsx bei.

7.3.1. Vorbemerkung zur Vergleichbarkeit der Messungen

Bei der Implementierung des Prototyps fiel auf, dass die verwendete Hibernate-DAO der
Original Apache ODE Version die Daten erst nach Ende der Instanz oder an bestimmten Stel-
len im Workflow (z.B. wihrend eines INVOKE) in die Datenbank {ibertragt und festschreibt.
Damit die Pushdown-Konzepte jedoch anwendbar sind, miissen die Daten bereits in der
DB abliegen, weshalb bei jedem Aufruf der set-Methode der XmlDataDaolmpl (Abb. 6.2,
Seite 86) ein sog. Flush, ein erzwungenes Eintragen der Daten in die DB durch Hibernate,
innerhalb des Prototyps eingefiihrt werden musste (siehe auch Klasse HibernateDao im UML-
Diagramm Abb. 6.2, Seite 86). Bei diesem Flush werden alle Daten, also auch Prozess- und
Auditingdaten, die sich in der DAO-Schicht befinden unselektiv durch Hibernate mit der
DB synchronisiert. Da es im Prototyp innerhalb der ASSIGN Aktivitdt zu Flushs kommen
kann, sind die isolierten Messwerte fiir die ASSIGN-Aktivitit nicht direkt mit den Werten
der Original ODE Version vergleichbar.

Des Weiteren ergab sich eine grofie Diskrepanz zwischen den gemessenen durchschnittlichen
Instanzlaufzeiten (ermittelt aus dem Durchschnitt der einzelnen Instanzlaufzeiten) und den
berechneten durchschnittlichen Instanzlaufzeiten (ermittelt aus Gesamtlaufzeit durch Anzahl
durchlaufener Instanzen) fiir die Original ODE Version. Um die Vermutung beweisen zu
konnen, dass in der Originalversion, insbesondere fiir die kurz laufenden Testfille, die
Datenbankkommunikation erst nach Ende der Instanz erfolgt, wurde eine zusétzlich Version
der Instrumentalisierten ODE erstellt. In dieser wurde der erzwungene Flush ausgesetzt,
sie unterscheidet sich zur Original ODE also nur noch durch das XML Feld anstelle des
BLOB Felds in der Datenbank. Wir vergleichen nun die Resultate eines Testfalls fiir In-
strumentalisierte ODE mit Flush, Instrumentalisierte ODE ohne Flush und der Original
ODE Version in Abb. 7.2. Man kann deutlich erkennen, dass die gemessene Instanzlaufzeit
der Instrumentalisierten ODE ohne Flush deutlich geringer ausfallt als mit Flush, jedoch
die berechnete Instanzlaufzeit weitgehend identisch ist. Der einzige Unterschied zwischen

105

7. Evaluierung des Prototyps

300

278,31

250

200

150

B ohne Flush XML

Prozent %

B mit Flush XML

= ohne Flush BLOB

100

50 A

Instanzlaufzeit intern [relativ] Instanzlaufzeit berechnet[relativ]

Art der Instanzlaufzeitmessung

Abbildung 7.2.: Die Vergleichbarkeit der Messungen zwischen Original ODE (ohne Flush
BLOB) und allen anderen Versionen ist nur fiir die berechnete Instanzlauf-
zeit gegeben, da die Datenbankkommunikation bei Versionen ohne Flush
nicht in die gemessene Zeit einzelner Instanzen eingeht (linke Seite), sich
jedoch in der Gesamtlaufzeit aller Instanzen widerspiegelt (rechte Seite).
(DBS: IBM DB2)

Instrumentalisierter ODE ohne Flush und Original ODE ist der verwendete Typ des Daten-
bankfeldes. Da Original ODE schneller ist als die Instrumentalisierte ODE ohne Flush lasst
sich daraus ableiten, dass moglicherweise die XML Datenbankfelder nicht so effizient sind
wie die BLOB Felder der DB2 oder das Durchschreiben der Daten in ein XML Feld mehr
Zeit benotigt.

Aus diesen Griinden stellen wir die Messergebnisse der Zuweisungen (Assignment- und
ExpressionEvaluation-Pushdown) relativ zur Instrumentalisierten ODE (100%) dar. Als
Instanzlaufzeit verwenden wir grundsatzlich die Berechnete und geben sie relativ zur
Original ODE (100%) an. Ebenfalls relativ zur Original ODE stellen wir die Messungen der
Webservice-Aufrufe (INVOKE) und die Messungen zum ExpressionEvaluation-Pushdown
tiir Bedingungen (IF) dar, da in diesen Aktivitdaten kein Flush im Prototyp erfolgt.

7.3.2. Zuweisungen

Im Folgenden werden wir die Ergebnisse der sequentiellen Messungen zur Zuweisung,
zuerst fiir IBM DB2 und anschliefiend fiir PostgreSQL vorstellen. Die Messwerte zu den
parallelen Messungen entsprechen weitestgehend denen der Sequentiellen, da wir aus den
parallelen Messungen zu den Zuweisungen keine weiteren Schliisse ziehen konnten, stellen

106

7.3. Vorstellung der Messergebnisse

wir sie nicht vor. Als ASSIGN-Zeit bezeichnen wir die Zeit, die fiir die Ausfithrung der
Aktivitat ASSIGN benétigt wird. Die einfachen und komplexen XPath-Ausdriicke konnen der
Tabelle 7.2 entnommen werden, sie werden jeweils auf ein vergleichbares XML Dokument,
wie in Anhang C.1 (Seite 149) angegeben, ausgefiihrt.

Art des | XPath-Ausdruck
Ausdrucks
ohne XPath | -
einfach $var /aln/seq[position()=erstes,mittleres,letztes]
komplex concat($varz/aln/seq[position()=1]/aa,
$varz2 /aln/seq[position()=last()]/aa)

Tabelle 7.2.: XPath-Ausdriicke verschiedener Komplexitét fiir die Messung der Zuweisung
(ASSIGN).

7.3.2.1. IBM DB2

In Abb. 7.3 ist die relative ASSIGN-Zeit, also die benotigte Zeit fiir die Aktivitat ASSIGN, fiir
eine Zuweisung ohne XPath-Ausdruck iiber die verschiedenen Datengrofien angegeben. Gut
zu erkennen ist, dass der asynchrone XPath-Pushdown schneller als der synchrone XPath-
Pushdown und die Instrumentalisierte Version ist. Der synchrone XPath-Pushdown und die
Instrumentalisierte Version enthalten in den ASSIGN-Zeiten jeweils auch die Zeit, die fiir
das Durchschreiben der Variablen notig ist (Flush). Diese Flush-Zeit ist in der ASSIGN-Zeit
der asynchronen Variante nicht enthalten, da hier durch die Zuweisung innerhalb der DB
kein Flush notig ist.

Im direkten Vergleich mit Original ODE (siehe Kapitel 7.3.1) erfolgt die Zuweisung mit
dem asynchronem Pushdown fiir 100kb deutlich langsamer wihrend sie fiir 500kb nahezu
identisch ist und fiir 4MB wieder etwas langsamer wird. In Abb. 7.4 wird die berechnete
Laufzeit dargestellt, Original ODE ist je nach Datengrofie 30-90% schneller. Interessant ist,
dass im Vergleich zu der ASSIGN-Zeit in Abb. 7.3 die Laufzeit fiir 100kb im Vergleich zu
Original ODE garnicht so schlecht ist, wie die reine ASSIGN-Zeit vermuten ldsst. Hingegen
werden die Instanzlaufzeiten fiir 500kb und 4MB wieder schlechter obwohl deren ASSIGN-
Zeiten relativ gesehen besser sind als fiir die 100kb Variante. Wir kennen den genauen Grund
hierfiir nicht, vermuten jedoch, dass dies ebenfalls mit der DB-Kommunikation zu tun hat.

Vergleicht man den asynchronen und synchronen XPath-Pushdown fiir die einfachen XPath-
Selektionen ist die ASSIGN-Zeit fiir den synchronen XPath-Pushdown etwas besser (siehe
Abb. 7.5), was sich durch die Einfachheit des SQL-Ausdrucks fiir den synchronen Fall im
vgl. zum komplexeren SQL-Ausdruck im asychnronen Fall erkldren lasst (siehe Kapitel
6.1.2.1, Seite 87). Allerdings sind die Instanzlaufzeiten nahezu identisch (siehe Abb. 7.6).

107

7. Evaluierung des Prototyps

120

105,39

M async Pushdown

Prozent %

M sync Pushdown
M Instrumentalisiert

H Original ODE

100kb 500kb 4MB

Datengrofe

Abbildung 7.3.: Relative ASSIGN-Zeit iiber Datengrofie fiir Zuweisungen ohne XPath-

Ausdruck (DB2).
250
1941
200 189,87
157,26 155,58

150 140,41
e 130,72 132,31
E M async Pushdown
8
E M sync Pushdown

100 4

M Instrumentalisiert

W Original ODE

100kb 500kb 4MB

Datengriole

Abbildung 7.4.: Relative Laufzeit {iber Datengrofle fiir Zuweisungen ohne XPath-Ausdruck
(DB2).

108

7.3. Vorstellung der Messergebnisse

120

100 100 100

100

B0

60 - M async Pushdown

Prozent %

M sync Pushdown
M Instrumentalisiert

40 m Original ODE

20

100kb 500kb 4MB

DatengriBe

Abbildung 7.5.: Relative ASSIGN-Zeit tiber Datengrofie fiir Zuweisungen einfacher XPath-
Selektionen (DB2).

Vergleicht man den asynchronen und synchronen Pushdown mit Original ODE bleiben zwar
die Tendenzen fiir die ASSIGN-Zeit und Instanzlaufzeiten bestehen, die beiden Varianten
des Prototyps sind aber immer langsamer als die Original ODE.

Im Gegensatz dazu, ist die ASSIGN-Zeit und die Laufzeit des asynchronen XPath-Pushdown
fiir komplexe Ausdriicke deutlich besser als die des Synchronen. Fiir groflere Datenmen-
gen zeigt der synchrone XPath-Pushdown sogar eine Verschlechterung im Vergleich zur
Instrumentalisierten ODE. Hingegen kann sich der asynchrone XPath-Pushdown erstmalig
fiir das 500kb XML Dokument gegen Original ODE durchsetzen und zeigt eine schnellere
Ausfithrung (siehe Abb. 7.7 und 7.8). Die ASSIGN-Zeit des asynchronen Pushdown fiir 100kb
ist etwas langsamer und die 4MB Variante geringfiigig langsamer im Vergleich zur Original
ODE dies spiegelt sich auch in den Instanzlaufzeiten wieder. Somit zeigt die asynchrone
Variante des Prototyps insbesondere fiir komplexe XPath-Ausdriicke ein besseres Verhalten
als bei einfachen Ausdriicken.

Mittelt man die ASSIGN-Zeiten der verschiedenen Zuweisungen, erhdlt man die kombinierte
ASSIGN-Zeit in Abb. 7.9. Interessant ist der Vorteil der synchronen Ausfiihrung fiir kleine
Datenmengen, der sich bei grofiere Datenmengen in einen Nachteil umwandelt. Hingegen
bleibt der asynchrone XPath-Pushdown immer besser als die Instrumentalisierte ODE.
Insgesamt bleiben die Instanzlaufzeiten des Prototyps hinter der Original Version zurtick,
wobei sie bei der mittleren Datengrofie von 500kb sehr nahe beieinander liegen.

109

7. Evaluierung des Prototyps

Prozent %

180

160

140

120

100

&0

60

40

20

158,15 155,15 150.92

14928 14762

145,08

120,88 122,09 13033

M async Pushdown
H sync Pushdown
M Instrumentalisiert

M Original ODE

100kb 500kb 4MB

Datengrofe

Abbildung 7.6.: Relative Laufzeit iiber Datengrofie fiir Zuweisungen einfacher XPath-

Prozent %

160

Selektionen (DB2).

135,29

o async Pushdown

M =ync Pushdown

M Instrumentalisiert

M Original ODE

100kb 500kb 4MB

Datengriofle

Abbildung 7.7.: Relative ASSIGN-Zeit tiber Datengrofle fiir Zuweisungen komplexer XPath-

110

Ausdriicke (DB2).

7.3. Vorstellung der Messergebnisse

250
215,14
200
150
&
‘E M async Pushdown
1 11298 112 110,68
g 108,55 108,04 - B sync Pushdown
100

M Instrumentalisiert

M Original ODE

100kb 500kb 4MB

DatengriBe

Abbildung 7.8.: Relative Laufzeit tiber Datengrofie fiir Zuweisungen komplexer XPath-
Ausdriicke (DB2).

M async Pushdown

Prozent %

M sync Pushdown
M Instrumentalisiert

H Original ODE

100kb 500kb 4MB

DatengroBe

Abbildung 7.9.: Relative kombinierte ASSIGN-Zeit iiber DatengrofSe fiir Zuweisungen (DB2).

111

7. Evaluierung des Prototyps

300

243,59
250

200

150

M sync Pushdown

Prozent %

M Instrumentalisiert

M Original ODE
100

50 A

100kb 500kb 4MB

Datengrofe

Abbildung 7.10.: Relative ASSIGN-Zeit {iber Datengrofie fiir Zuweisungen ohne XPath-
Ausdruck (PostgreSQL).

7.3.2.2. PostgreSQL

Im Vergleich zu IBM DB2 kénnen wir mit PostgreSQL nur einen Bruchteil der Pushdown-
Konzepte umsetzen (siehe Kapitel 6.2.2.1). Aus diesem Grund ist es nur moglich den
synchronen XPath-Pushdown fiir Zuweisungen, ohne und fiir einfache XPath-Selektionen,
zu evaluieren. Komplexe XPath-Ausdriicke und damit auch die Evaluierung von Bedingun-
gen (ExpressionEvaluation/Condition-Pushdown) sowie der asynchrone XPath-Pushdown
konnen mit dem derzeitigen Stand von PostgreSQL nicht umgesetzt werden.

Betrachtet man die ASSIGN-Zeit ohne XPath in Abb. 7.10, erkennt man generell eine schlech-
tere Ausfithrungszeit des synchronen XPath-Pushdowns zum Referenzsystem. Lediglich
fir die ASSIGN-Zeit bei einfachen XPath-Selektionen (Abb. 7.11) und den Testfall mit dem
100kb Dokument, ldsst sich eine leichte Verbesserung feststellen. Im Vergleich zur Origi-
nal ODE ist der Prototyp sowohl bei der ASSIGN-Zeit als auch bei der Laufzeit deutlich
langsamer. Betrachtet man die kombinierte Instanzlaufzeit (Mittel aus ohne und einfachen
XPath-Selektionen) im Vergleich zur Instrumentalisierten ODE zeigt der synchrone XPath-
Pushdown fiir PostgreSQL eine generell schlechtere Performanz (siehe Abb. 7.12). Das
Ergebnis passt zu der Beobachtung, die wir ebenfalls bei der DB2 gemacht haben: Eine
Verschlechterung des synchronen XPath-Pushdowns bei zunehmenden Datenmengen. Au-
erdem scheint die xpath-Funktion von PostgreSQL noch optimierungsbediirftig zu sein, da
sie insgesamt schlechter abschneidet als die pureXML-Technologie der DB2.

112

7.3. Vorstellung der Messergebnisse

120

106,51

100

Prozent %
@
=1
|

M sync Pushdown
M Instrumentalisiert

m Original ODE

100kb 500kb 4MB

Abbildung 7.11.: Relative ASSIGN-Zeit iiber Datengrofe fiir Zuweisungen einfacher XPath-
Selektionen (PostgreSQL).

450

400 3847

Prozent %

M sync Pushdown

M nstrumentalisiert

M Original ODE

100kb 500kb

4MB
DatengriBe

Abbildung 7.12.: Relative kombinierte Laufzeit tiber Datengrofie fiir Zuweisungen (Post-
greSQL).

113

7. Evaluierung des Prototyps

7.3.3. Bedingungen (ExpressionEvaluation-Pushdown)

Wir stellen nun die Ergebnisse der sequentiellen und parallelen Messungen fiir den
ExpressionEvaluation-Pushdown, anhand der Stellvertreter-Aktivitat IF und dem DBS IBM
DB2 vor. Wie in Kapitel 7.1 beschrieben, testen wir jeweils fiir einfache und einen kom-
plexen XPath-Ausdruck, diese beziehen sich ebenfalls auf das Beispiel XML Dokument
aus Anhang C.1 (Seite 149), welches in der Datengrofse variiert wird. Die XPath-Ausriicke
sind der Tabelle 7.3 zu entnehmen. Als IF-Zeit bezeichnen wir die benétigte Zeit fiir die
Auswertung der XPath-Ausdriicke und weicht somit minimal von der benétigten Zeit der
gesamten IF-Aktivitdt ab.

Art des | XPath-Ausdruck

Ausdrucks

einfach count($var/aln/seq[position()=erstes,mittleres,letztes] /annotation/*)
> 28

komplex count($var1 /aln/seq[position()=1]/annotation/*)
- count($varz /aln/seq[position()=last()] /annotation/*) > o

Tabelle 7.3.: XPath-Ausdriicke verschiedener Komplexitét fiir die Messung der Bedingungs-
auswertung (IF).

Betrachten wir zundchst die Auswertung der einfachen XPath-Ausdriicke. In Abb. 7.13
ist zu sehen, dass die IF-Zeit des synchronen XPath-Pushdown immer eine schnellere
Ausfiihrung erlaubt als mit der Instrumentalisierten ODE. Allerdings ist nur fiir das 500kb
XML Dokument der synchrone XPath-Pushdown schneller als die Original ODE Version. Fiir
die 4MB Variante ist die IF-Zeit nur geringfiigig langsamer als gegeniiber der Original ODE.
Vergleichen wir die Laufzeit einer Instanz in Abb. 7.14 verhalten sich alle Versionen ungefahr
gleich schnell, aufler fiir den Testfall mit 4MB, hier ist die Original Version schneller. Dies
lasst sich moglicherweise auf die im WF verwendeten ASSIGN-Aktivitdten zuriickfithren
(siehe Abb. 7.1b), um einer BPEL Variable das entsprechende XML Dokument zuzuweisen
wobei ein Flush durchgefiihrt werden muss.

Betrachten wir die IF-Zeit fiir die Auswertung komplexer XPath-Ausdriicke, ist der synchro-
ne XPath-Pushdown allen anderen Varianten bei jeder Datengrofie tiberlegen (Abb. 7.15).
Insbesondere bei 500kb ist der synchrone XPath-Pushdown um einen Faktor 4 schneller als
Original ODE. Die Instrumentalisierte Version ist hingegen immer langsamer als die Aus-
wertung der Original Version. Die relative Instanzlaufzeit der komplexen XPath-Ausdriicke
entspricht, mit der gleichen Begriindung, der der einfachen XPath-Ausdriicke, weshalb wir
kein separates Schaubild angeben.

Betrachtet man die parallele Ausfithrung von jeweils 100 Instanzen der Testfélle, ergibt
sich eine interessante Verschiebung zugunsten des synchronen XPath-Pushdowns fiir die
IF-Zeit (siehe Abb. 7.16). Insbesondere ist die Auswertung eines komplexen XPath-Ausdrucks

114

7.3. Vorstellung der Messergebnisse

200

188,55

Prozent %

M sync Pushdown
M Instrumentalisiert

= Original ODE

100kb 500kb 4MB

DatengréRe

Abbildung 7.13.: Relative IF-Zeit tiber Datengrofie fiir die Auswertung einfacher XPath-
Ausdriicke (DB2).

Prozent %

M sync Pushdown
M nstrumentalisiert

M Original ODE

100kb

500kb 4MB

DatengriBe

Abbildung 7.14.: Relative Laufzeit tiber Datengrofie fiir die Auswertung einfacher XPath-
Ausdriicke (DB2).

115

7. Evaluierung des Prototyps

140

120

100

80

M sync Pushdown

Prozent %

60 M Instrumentalisiert
M Original ODE

40

20 4

100kb 500kb 4MB

Abbildung 7.15.: Relative IF-Zeit {iber Datengrofie fiir die Auswertung komplexer XPath-
Ausdriicke (DB2).

auf das 4MB Dokument nun relativ am schnellsten, im Gegensatz zu den sequentiellen
Messungen. Moglicherweise kommt dies durch ein effizienteres Cache-Verhalten der DB2 bei
nebenldufigen Transaktionen zu Stande. Die Gesamtlaufzeiten dieser parallelen Fille ndhern
sich fiir den synchronen XPath-Pushdown und komplexe XPath-Ausdriicke der Original
ODE Version an. Allerdings ist die 4MB Variante fiir einfache XPath-Ausdriicke deutlich
abgeschlagen gegeniiber der Originalversion (siehe Abb. 7.17). Auch hier vermuten wir,
dass dies durch die Effekte aus den ASSIGN-Aktivitiaten, die im Testworkflow enthalten
sind, herriihrt. Zudem sollte erwdhnt werden, dass sowohl fiir den Prototyp, als auch fiir
Original ODE fiir die 4MB Variante keine 100 Instanzen bei paralleler Ausfiihrung vollstindig
durchlaufen werden. Die Stabilitdt der WF-Engine lédsst also bei dieser Datengrofie nach.
Allerdings konnten mit der Original ODE ca. zehn Instanzen mehr parallel ausgefiihrt werden
als mit unserem Prototyp. Die Messungen wurden entsprechend fiir 100 Ausfithrungen
abgeschitzt, indem die Gesamtlaufzeit durch die Anzahl der durchlaufenden Instanzen
geteilt und anschlieflend mit 100 multipliziert wurde. Dies spiegelt nicht zwangsldufig die
tatsdchliche Gesamtlaufzeit fiir 100 parallele Instanzen wieder.

116

7.3. Vorstellung der Messergebnisse

120

Prozent %

M einfaches Query
B komplexes Query
= Original ODE

100kb 500kb 4MB

Datengréfe

Abbildung 7.16.: Relative IF-Zeit iiber Datengrofie fiir die parallele Auswertung einfacher
und komplexer XPath-Ausdriicke (DB2).

200

180,49
180

160

140

120

108,43
100

M einfaches Query

Prozent %

B komplexes Que
80 - P ry

= Original ODE
60

40

100kb 500kb 4MB

DatengriBe

Abbildung 7.17.: Relative Gesamtlaufzeit tiber Datengrofse fiir die parallele Auswertung
einfacher und komplexer XPath-Ausdriicke (DB2).

117

7. Evaluierung des Prototyps

7.3.4. INVOKE (Webservice-Pushdown)

In diesem Abschnitt stellen wir die Ergebnisse der Messungen zum Webservice-Pushdown
vor. Der Webservice-Pushdown konnte nur fiir das DBS IBM DB2 umgesetzt werden (siehe
Kapitel 6.1.2.1, Seite 87). Eine parallele Ausfiihrung der Testfélle ist sowohl fiir Original ODE,
als auch fiir den Prototyp nicht moglich, da Fehler beim Senden und Empfangen der SOAP
Nachrichten auftreten und dabei die weitere Verarbeitung aller laufenden Instanzen in der
WEF-Engine unterbrochen wird. Aufgerufen wird die WSDL-Operation getSFamilyAlignment
des Webservice DIWARF_ACCESS, diese Operation wird ebenfalls im Anwendungsfall ver-
wendet (siehe Kapitel 2.5.1.1, Seite 39). Die Messungen zum Anwendungsfall werden im
nichsten Abschnitt vorgestellt.

Betrachten wir die INVOKE-Zeit, also die Zeit, die fiir die Aktivitat INVOKE benétigt wird,
sehen wir, dass die Zeiten fiir den WS-Pushdown im Vergleich zur Instrumentalisierten und
Originalen ODE Version sehr dicht beieinander liegen. Die maximale Abweichung betragt
nur rund 5% (siehe Abb. 7.18). Der Webservice-Aufruf der Instrumentalisierten Version
tir das 4MB XML Dokument schlug jedesmal fehl, wir konnten den Fehler noch nicht
lokalisieren. Fiir grofiere Dokumente konnen wir einen kleinen Vorteil des WS-Pushdown
gegeniiber der Original Version feststellen. Das Schaubild fiir die Laufzeiten einer Instanz
(Abb. 7.19) korrelliert weitgehend mit den INVOKE-Zeiten. Lediglich die leicht schnellere
Ausfithrung der Instrumentalisierten gegeniiber der Original Version fiir 500kb ist nicht
nachvollziehbar, dies konnte aber an Systemeinfliissen (Kontextwechsel der CPU, Netzwer-
klatenz etc.) wiahrend der Ausfiihrung der Testfélle liegen, da die Resultate hier sehr dicht
zusammenliegen.

Auch wenn der WS-Pushdown nur eine minimale Verbesserungen zeigt, ist er fiir die strikte
Trennung von Daten- und Prozessverwaltung fiir das Architekturmodell Hybrides WfMS,
welches wir in Kapitel 8 vorstellen werden, essentiell.

118

7.3. Vorstellung der Messergebnisse

106

103,68

Prozent %

B W5-Pushdown

M Instrumentalisiert

M Original ODE

100kb 500kb 4MB

DatengroBe

Abbildung 7.18.: Relative INVOKE-Zeit tiber Datengrofie fiir den Aufruf einer WS-Operation
(DB2).

104

102,61

Prozent %

B 'WS-Pushdown
M Instrumentalisiert

m Original ODE

100kb

Abbildung 7.19.: Relative Instanzlaufzeit {iber Datengrofie fiir den Aufruf einer WS-
Operation (DB2).

119

7. Evaluierung des Prototyps

7.3.5. Anwendungsfall (Simulationsworkflow)

Wir werden nun die Ergebnisse zu den Messungen des Anwendungsfalls vorstellen,
dessen Funktionsweise wird in Kapitel 2.5.1.1 (Seite 39) beschrieben, der zugehorige
in BPEL definierte Prozess ist im Anhang C.2 (Seite 151) und auf der DVD unter
[DVD]/Evaluation/ErgebnisseUndTestfille/UseCase/ODEDwarfUseCase zu finden. Der Anwen-
dungsfall ist fiir die Bioinformatik relevant und verarbeitet Daten iterativ innerhalb einer
Schleife. Diese iterative Datenverarbeitung ist ein grundlegendes Schema vieler Simula-
tionen, und es werden im Rahmen des Simulation Technology (SimTech) Projekts an der
Universitdt Stuttgart weitere Algorithmen fiir Simulationen vorgestellt, die eine iterative
Datenverarbeitung betreiben [HDO10].

Die Testfille werden wieder fiir XML Dokumente, wie in Anhang C.1 (Seite 149), mit
den Datengrofien 100kb, 500kb und 4MB ausgefiihrt. Da tiber die <seg>-Elemente iteriert
wird, konnen wir diese Datengrofien auch als Anzahl Schleifendurchldufe angeben, diese
sind jeweils 40, 199 und 697 Iterationen. Wir haben fiir die sequentiellen Messungen bei
40 Iterationen den Anwendungsfall 100 mal und bei 199 Iterationen 10 mal, sowie 3 mal
fiir 697 Iterationen hintereinander ausgefiihrt. Fiir die parallelen Messungen 50 (fiir 40
Iterationen), 10 (fiir 199 Iterationen) und 2 (fiir 697 Iterationen) parallel laufende Instanzen
gemessen. Diese unterschiedlichen Werte wurden wegen der teils langen Laufzeiten des
Anwendungsfalls, insbesondere bei vielen Interationen, und der Stabilitit der Original ODE
bei paralleler Ausfiihrung verwendet. Wir werden zundchst die Resultate fiir das DBS IBM
DBz und anschliefSend fiir PostgreSQL vorstellen. Nur fiir IBM DB2 wurden parallele Tests
durchgefiihrt, hierbei musste die INVOKE-Aktivitat durch eine ASSIGN-Aktivitét, in der
das eigentliche WS-Resultat als Literalwert einer Variablen zugewiesen wird, ausgetauscht
werden (siehe Kapitel 7.3.4).

7.3.5.1. IBM DB2

Zundchst werden wir die ASSIGN- und IF-Zeiten der sequentiellen Tests vorstellen, anschlie-
end die Laufzeit einer Instanz und danach die Ergebnisse der parallelen Ausfiihrung. Die
ASSIGN-Zeit wird tiber alle gemessenen ASSIGN-Aktivitdten gemittelt, wir konnen somit
keine Riickschliisse auf die Performanz einzelner, im Anwendungsfall vorhandener, ASSIGN-
Aktivitdten ziehen. Zu beachten ist, dass die Original ODE und die Instrumentalisiserte ODE
Version im Vergleich zum Prototyp wihrend der Verarbeitung des Anwendungsfalls mit 697
Schleifendurchldufen abbrechen. Aus diesem Grund konnen wir nur Vergleiche zwischen 40
und 199 Schleifendurchldufen prasentieren. Wir stellen jedoch fest, dass der Prototyp den
Anwendungsfall auch fiir grofsere Datenmengen durchlduft und somit einen wesentlichen
Stabilitdtsvorteil aufweist.

Betrachten wir die ASSIGN-Zeit fiir den sequentiellen Fall, man erkennt den deutlichen
Performanzvorteil des Prototyps gegentiber der Instrumentalisierten Version, der Prototyp

120

7.3. Vorstellung der Messergebnisse

120

M Prototyp

Prozent %

M Instrumentalisiert

W Original ODE

Anzahl Proteine (Schleifendurchlaufe)

Abbildung 7.20.: Relative ASSIGN-Zeit tiber Anzahl Schleifendurchlédufe fiir den Anwen-
dungsfall (DB2).

ist 7-15 mal schneller (siehe Abb. 7.20). Sogar gegeniiber Original ODE ist der Prototyp
nun bei den ASSIGN-Zeiten um einen Faktor 3-5 performanter. Moglicherweise kommt
der Effekt daher, da bis auf die Initialwerte der BPEL-Variablen bei der Ausfiithrung des
Anwendungsfalls keine Flushs erfolgen, insbesondere nicht innerhalb der Foreach-Schleife.
Auflerdem ist es moglich, dass die innerhalb der Schleife wiederkehrenden Zuweisungen
und XPath-Auswertung vom DBS erkannt und durch einen Query-Cache schneller ausgefiihrt
werden konnen.

Die Messungen zu den IF-Zeiten verwundern auf den ersten Blick, die Instrumentalisierte
ODE ist bis zu 16 mal und der Prototyp bis zu einem Faktor von 2,5 langsamer als die
Original ODE Version (siehe Abb. 7.21). Die Absolutwerte liegen jedoch im einstelligen
Millisekunden Bereich, welches auch unsere Messeinheit ist. Zudem wird bei der Auswertung
des zugehorigen XPath-Ausdrucks nur in einer ca. 1kb grofien Zeichenkette nach einem
reguldren Ausdruck gesucht. Daher ist die Hauptspeicher-basierte Auswertung innerhalb
Original ODE schneller, insbesondere da keine Kommunikation mit dem DBS stattfinden
muss.

Bei Betrachtung der Instanzlaufzeit wird nun deutlich, dass der Prototyp eine schnellere
Ausfiihrung erlaubt. Fiir 40 Schleifendurchlédufe ist er fast doppelt so schnell wie Original
ODE und fiir 199 Iterationen sogar fast um einen Faktor 4 schneller® als die Original Version
(Abb. 7.22). Die Instrumentalisierte ODE zeigt gleichféormig schlechtere Laufzeiten, was

'Dadurch verringert sich die mittlere Laufzeit, fiir eine Instanz mit 199 Iterationen auf dem Testsystem, von
7:15min auf 1:53min.

121

7. Evaluierung des Prototyps

1800

1600

1600

1400

1200

1000

M Prototyp

Prozent %

800

M Instrumentalisiert

M Original ODE
600 +

400

200 +

Anzahl Proteine (Schleifendurchldufe)

Abbildung 7.21.: Relative IF-Zeit iiber Anzahl Schleifendurchldufe fiir den Anwendungsfall
(DB2).

unsere Vermutung aus Kapitel 7.3.1 bestdrkt, dass der Zugriff auf XML Felder nicht so
effizient ist, wie auf entsprechende BLOB Felder in der Original Version.

Wiéhrend die Hauptspeichermessungen fiir die Einzeltests schwer zu interpretieren und
nicht aussagekriftig genug waren, konnen wir aus den Hauptspeichermessungen des An-
wendungsfalls einige interessante Schlussfolgerungen ziehen (Abb 7.23). Fiir den kleinen
Anwendungsfall mit 40 Iterationen ist der Hauptspeicherverbrauch fiir alle drei Versionen
fast gleich, bei 199 Iterationen erkennt man einen klaren Anstieg der Original ODE Version,
um den Faktor 2-4 gegeniiber Prototyp und Instrumentalisierter ODE, auf iiber gooMB.
Die Instrumentalisierte Version benétigt in diesem Fall am wenigsten Hauptspeicher. Wir
schlieflen daraus, dass wahrscheinlich das DB Middleware System Hibernate durch die
erzwungene Persistenz in der Instrumentalisierten Version, die Objekte aus dem Haupt-
speicher 16schen kann, um sie bei Bedarf nachzuladen. Dieses Vorgehen ist in der Original
Version nicht moglich, da sie lediglich vor der Schleifenausfithrung, genauer gesagt vor dem
WS-Aufruf, ein Durchschreiben der Daten erzwingt und dann erst wieder beim Beenden
der Instanz (siehe Kapitel 7.3.1). Der im Vergleich zur Instrumentalisierten Version erhohte
Hauptspeicher Verbrauch des Prototypen ldsst darauf schliefen, dass IBM DBz fiir die Aus-
wertung der XPath-Ausdriicke zusétzlichen Hauptspeicher vom System anfordet, dieser ist
aber im Vergleich zur Original ODE Version immer noch geringer. Somit bleiben Ressourcen
frei, die fiir andere Aufgaben bei der WF-Ausfiihrung verwendet werden konnen, z.B. fiir
Auditing Mafinahmen.

Zum Abschluss der Messungen fiir das DBS IBM DB2 betrachten wir noch die parallele
Ausfithrung des Anwendungsfalls mit 40 Iterationen, fiir jeweils 10 parallel laufende Instan-

122

7.3. Vorstellung der Messergebnisse

140

Prozent %

M Prototyp

M Instrumentalisiert

W Original ODE

Anzahl Proteine (Schleifendurchldufe)

Abbildung 7.22.: Relative Laufzeit tiber Anzahl Schleifendurchldufe fiir den Anwendungsfall
(DB2).

1000

M Prototyp

M Instrumentalisiert

M Original ODE

Anzahl Proteine (Schleifendruchldufe)

Abbildung 7.23.: Absoluter Hauptspeicherverbrauch tiber Anzahl Schleifendurchlédufe fiir
den Anwendungsfall (DB2).

123

7. Evaluierung des Prototyps

120

100 100
100 N T

&0

60

Prozent %

H Prototyp

= Original ODE

40

20

Gesamtlaufzeit Hauptspeichernutzung

Art der Messung

Abbildung 7.24.: Relative Laufzeit und relativer Hauptspeicherverbrauch bei paralleler Aus-
fithrung von 10 Instanzen des Anwendungsfalls mit 40 Iterationen (DB2).

zen (Abb 7.24). Man erkennt fiir die Gesamtlaufzeit als auch fiir die Hauptspeichernutzung
einen deutlich Vorteil bei Verwendung des Prototyps im Gegensatz zur Original Version. Der
Prototyp ist zudem stabiler, ausschliefSlich mit ihm ist es moglich 50 parallele Instanzen fiir
40 Iterationen, 10 parallele Instanzen fiir 199 Iterationen und 2 parallele Instanzen fiir 697
Iterationen auszufiihren. Dabei ist insbesondere die parallele Ausfithrung der 697 Iterationen
zu erwidhnen, da die aufsummierte Gesamtlaufzeit beider Instanzen ziemlich genau der
einer einzelnen sequentiellen Ausfiithrung entspricht, was eine Durchsatzsteigerung von
100% bedeutet. Vergleicht man, jeweils fiir 40 Iterationen, die mittleren Instanzlaufzeiten
der 10 parallel ausgefiihrten Instanzen mit den mittleren Instanzlaufzeiten der sequentiellen
Ausfiihrung des Prototyps und Original ODE, benétigt eine parallel ausgefiihrte Instanz
des Prototyps im Mittel mehr als doppelt so lang wie die sequentielle Ausfithrung. Eine
parallele Instanz der Original Version benottigt sogar die 10 fache Zeit der entsprechenden
sequentiellen Ausfiihrung. Allerdings ist die Gesamtzeit der Ausfithrung von 10 Instanzen
im parallelen Fall durch die Nebenldufigkeit fiir den Prototyp ca. sechs mal und fiir Origi-
nal ODE ca. doppelt so schnell wie die entsprechende sequentielle Gesamtlaufzeit (sieche
Abb. 7.25). Somit kann bei der parallelen Ausfiihrung der Prototyp gegeniiber Original ODE
sogar eine bis zu dreifach grofiere Durchsatzsteigerung erzielen.

7.3.5.2. PostgreSQL

Die Messwerte fiir den Anwendungsfall mit dem DBS PostgreSQL sind, durch die funktio-
nalen Einschrankungen und die bereits schlechteren Ergebnisse im Vergleich zur Instrumen-

124

7.3. Vorstellung der Messergebnisse

120

100
100

&80

]
50 sequentiell Prototyp

Prozent %

M parallel Prototyp
H sequentiell Original

40 M parallel Original

20 A

40

Anzahl Proteine (Schleifendurchldufe)

Abbildung 7.25.: Relative Gesamtlaufzeit der parallelen und sequentiellen Ausfiithrung von
10 Instanzen des Anwendungsfalls mit 40 Iterationen (DB2).

talisierten Version fiir den Assignment-Pushdown (siehe Kapitel 7.3.2.2), nicht tiberraschend.
Die ASSIGN-Zeiten des Prototyps sind nahezu mit der der Instrumentalisierten Version iden-
tisch. Dies ist darauf zuriickzufiihren, da lediglich die XPath-Selektionen anders behandelt
werden. Die Original Version ist im Vergleich zu den beiden anderen Versionen deutlich
schneller in der Ausfithrung (siehe Abb 7.26). Die relative Laufzeit einer Instanz korreliert
entsprechend mit der ASSIGN-Zeit, Prototyp und Instrumentalisierte Version sind um einen
Faktor 1,6 - 2,3 langsamer als die Original Version (siehe Abb 7.27). Der Prototyp und die
Instrumentalisierte ODE verschlechtern sich bei 199 Iterationen gegentiber der Original ODE
noch weiter als bei 40 Iterationen. Betrachtet man den Hauptspeicherverbrauch ergibt sich
ein dhnliches Bild wie fiir die Auswertung mit dem DBS IBM DB2. Die Instrumentalisierte
Version benotigt am wenigsten Hauptspeicher gefolgt vom Prototyp und Original ODE,
zumindest fiir den Anwendungsfall mit 199 Iterationen (siehe Abb 7.28). Dies untermauert
unsere Annahme aus Kapitel 7.3.5.1, dass durch die erzwungenen Flushs im Prototyp und
der Instrumentalisierten ODE durch Hibernate Hauptspeicher freigegeben werden kann.
Keine Version war in der Lage den Anwendungsfall mit 697 Iterationen zu durchlaufen, der
Prototyp war sogar am instabilsten und durchlief schon fiir den Anwendungsfall mit 199
Iterationen nicht alle Instanzen.

125

7. Evaluierung des Prototyps

120

102,5
" 100 100,23 100
100 +
B0 +
&
-
13
E 60 7 M Prototyp
& M Instrumentalisiert
m Original ODE
a0 -
20
a

40 199

Anzahl Proteine (Schleife ndurchldufe)

Abbildung 7.26.: Relative ASSIGN-Zeit tiber Anzahl Schleifendurchlédufe fiir den Anwen-
dungsfall (PostgreSQL).

250

235,86 234,33

200

150

Prozent %

M Prototyp
[]
100 ~ Instrumentalisiert

M Original ODE

50

Anzahl Proteine (Schleifendurchldufe)

Abbildung 7.27.: Relative Laufzeit einer Instanz tiber Anzahl Schleifendurchlédufe fiir den
Anwendungsfall (PostgreSQL).

126

7.4. Diskussion der Messergebnisse

1200

1000 957

800 ————

600

MB

M Prototyp

513

M Instrumentalisiert

M Original ODE

400

200

40 199

Anzahl Proteine (Schleifendurchldufe)

Abbildung 7.28.: Absoluter Hauptspeicherverbrauch tiber Anzahl Schleifendurchlédufe fiir
den Anwendungsfall (PostgreSQL).

7.4. Diskussion der Messergebnisse

Die Ergebnisse zeigen deutlich, dass die Funktionalitdten, die ein DBS anbietet, und deren
effiziente Implementierung entscheidend sind, um die vorgestellten Konzepte aus Kapitel 4
erfolgreich (Durchfiihrbarkeit sowie Performanzgewinn) umsetzen zu kénnen. Der Prototyp
mit dem DBS PostgreSQL zeigt leider durchweg eine schlechtere Performanz als die Original
ODE Version, die mit PosgtreSQL arbeitet. Dies hat mehrere Griinde angefangen von
den eingeschriankten XML Funktionalitdten, die nur einen Bruchteil der moglichen XPath-
Pushdown Funktionen realisieren lassen und vor allem die Ausfiihrung des interessanten
asynchronen XPath-Pushdowns verhindern. Mit der DB2 war es moglich alle Funktionen
des Prototyps umzusetzen, was fiir einige Félle ein Performanzgewinn erbrachte.

Betrachten wir die Testfélle der einzelnen Aktivitéten, liegt der Prototyp bei der Instanzlauf-
zeit in fast allen Fallen hinter der Original ODE Version zuriick. Wie schon in Kapitel 7.3.1
besprochen, vermuten wir hier eine aufwéandigere Datenbankkommunikation in Zusammen-
spiel mit einer nicht so effizienten Implementierung der XML Felder im Vergleich zu den
BLOB Feldern der jeweiligen DBSe. Zudem miissen alle Variableninhalte fiir den Prototyp
bereits in der DB abgespeichert sein, das Erzwingen dieser Persistenz beeintrachtigt die
Laufzeit des Prototypen. Die Persistenz wirkt sich jedoch positiv auf den Hauptspeicherver-
brauch von Workflows mit Datenverarbeitung innerhalb von Schleifen aus (siehe Abb. 7.23)
und konnte ggf. auch dem Original System mehr Stabilitdt verleihen. Wird die Persistenz
der Daten erzwungen, ist der Prototyp mit dem DBS IBM DBz jeweils performanter (Lauf-
zeitvergleiche gegenitiber der Instrumentalisierten Version). Bei den ASSIGN- und IF-Zeiten

127

7. Evaluierung des Prototyps

lasst sich feststellen, dass der Prototyp bei komplexen XPath-Ausdriicke schneller wird und
fir die DatengrofSe 500kb oft die beste relative Zeit aufweist. Weitere Tests mit einem 50MB
XML-Dokument ergaben, dass sich der Trend fortsetzt und die relativen Zeiten fiir grofie
XML-Daten zunehmend schlechter werden. Die INVOKE-Zeit des Prototypen nimmt fiir
zunehmende Datengrofien gegeniiber der Original ODE ab und kann ab Datengrofien von
500kb grundsitzlich verwendet werden.

Das Zusammenspiel der Konzepte WS-Pushdown, Assignment-Pushdown (asynchroner
XPath-Pushdown) und ExpressionEvaluation-Pushdown (synchroner XPath-Pushdown), wie
sie im Anwendungsfall auftreten, ziehen eine bis zu 4-fache Steigerung der Ausfithrungsge-
schwindigkeit sowie einen geringeren Hauptspeicherverbrauch nach sich. In diesem Fall ist
auch die Datenbankkommunikation geringer, da im Wesentlichen nur Anweisungen und
keine Inhalte an das DBS iibergeben werden. Variableninhalte werden nur zur Initialisierung
(BPEL Literale) an das DBS {iibergeben. Alle weiteren datenverarbeitenden Schritte finden
direkt innerhalb des DBSs statt. Die Auswertung einer Bedingung liefert nur das Resultat
(wahr oder falsch) und nicht die Variableninhalte zuriick. Zudem konnen hier DB spezifische
Optimierungen, z.B. ein Query-Cache, helfen die Ausfithrung zu beschleunigen. Insbesondere
bei einer iterativen Verarbeitung von Daten werden innerhalb der Schleife gleichformig struk-
turierte Anfragen an das DBS gestellt, die vom DB-Optimierer erkannt und so effizienter
ausgefiihrt werden konnen. Die parallele Ausfithrung von Workflowinstanzen ist mit dem
Prototyp stabiler, was wohl auf die Transaktions- und Mehrbenutzereigenschaften heutiger
DBSe zuriickzufiihren ist. Die Persistenz der Daten ist durch den WS- und asynchronen
XPath-Pushdown ohne weitere Mafinahmen gegeben wodurch prinzipiell eine Recovery
nach einem Systemausfall gewéhrleistet wird.

Zusammenfassend ist zu sagen, dass die Wahl des DBSs entscheidend ist. Der vorgestellte
Prototyp, der mit dem DBS IBM DB2 arbeitet, ist insbesondere fiir alle Arten von Work-
flows geeignet, in denen Daten innerhalb einer Schleife verarbeitet werden. Diese Verarbei-
tungsform ist ein wiederkehrendes Strukturelement vieler Simulationsworkflows ([HDO1o0],
Anwendungsfall Kapitel 2.5.1.1, Seite 39) und daher von Interesse. Fiir ETL-Workflows
(Kapitel 2.3.3.3, Seite 34) konnte sich der Prototyp moglicherweise ebenfalls eignen, da diese
Workflows sehr dhnlich zu dem vorgestellten Anwendungsfall und oft noch datenintensi-
ver sind. Dies miisste allerdings fiir bestimmte ETL-Muster und ETL-Operationen separat
evaluiert werden. Fiir Business-Workflows (Kapitel 2.3.3.1, Seite 32) sowie fiir Simulati-
onsworkflows mit geringem Datenaufkommen (Kapitel 2.3.3.2, Seite 33), die dhnlich zu
Business-Workflows nur die Aufrufreihenfolge externe Programme orchestrieren, scheint der
Prototyp im jetzigen Zustand nicht geeignet zu sein. Durch weitere Anpassungen, insbeson-
dere an der DAO-Schicht und die Optimierung der DBS-Parameter oder der Verwendung
eines Nativen-XML DBSs, konnte der Prototyp aber auch fiir diese Workflows zumindest
eine gleich schnelle Ausfiithrung erlauben.

128

7.4. Diskussion der Messergebnisse

7.4.1. Technische Limitierungen

Apache ODE sowie der Prototyp besitzen einige Limitierungen, die im Rahmen der Eva-
luation gedndert oder berticksichtigt werden mussten. Zum Einen mussten hart kodierte
Timeout-Werte fiir das Versenden und Empfangen von SOAP Nachrichten in beiden Versio-
nen gedndert werden, um die Testfdlle ausfithren zu konnen. Apache ODE verhilt sich nach
einer bestimmten Ausfithrungszeit einer Workflowinstanz nicht mehr ganz korrekt, z.B. wird
eine vollstindig erfolgreich ausgefiihrte Instanz nicht als ‘ausgefiihrt’” gekennzeichnet und
bleibt als ‘aktiv” markiert. Wie schon unter Kapitel 7.3.4 erwidhnt, ist die parallele Ausfithrung
von WS-Aufrufen auf die gleiche WSDL-Operation eines WS anscheinend nicht méglich, dies
kann jedoch auch mit der verwendeten Kommunikationsinfrastruktur (in diesem Fall Axis2)
zusammenhdngen. Auch kann sowohl fiir den Prototyp als auch fiir Original Apache ODE
bei Datenmengen im MB-Bereich die Anzahl parallel laufender Instanzen nicht beliebig hoch
gewdhlt werden. Zudem kann beim gleichzeitigen Aufrufen mehrerer Instanzen des gleichen
Prozesses es in beiden Versionen dazu kommen, dass eine gewisse Anzahl von Aufrufen
nicht vom System verarbeitet wird und entsprechend weniger Instanzen auf der WF-Engine
ausgefiihrt werden als angefordert. Es konnten auch keine WFs mit XML-Dokumenten
die grofier als 75MB waren compiliert werden, somit konnten keine Tests fiir sehr grofie
Dokumente im Hundert-MB bzw. GB Bereich durchgefiihrt werden.

Der Prototyp mit dem DBS IBM DB2 kann standardmaéfsig nur WS-Aufrufe durchfiihren,
bei denen die Antwortnachricht des WS nicht grofier als 1MB ist. Dies kann durch eine
verdnderte Signatur der entsprechenden UDF angehoben werden? und wurde fiir die Aus-
fiihrung des Anwendungsfalls mit 697 Iterationen auf 5MB erhoht. Zudem versteht pureXML
nur einen bestimmten Dialekt von XPath-Ausdriicken, dies ist insbesondere bei der Selek-
tion von einzelnen Elementen aufgefallen. Wahrend Original ODE den XPath-Ausdruck
"$var/items/item[1]” ohne Probleme auswertet und das erste <item>-Element des XML Doku-
ments in der Variable var zuriickliefert, muss fiir die korrekte Bearbeitung innerhalb der
DB2 der XPath-Ausdruck in "$var/items/item[position()=1]" umgewandelt werden. Dies wird
moglicherweise in einer neuen Version der DBz und einer XPath-Standard entsprechenden
pureXML-Implementierung kein Thema mehr sein oder man konnte ggf. eine Natives XML
DBS verwenden, das den XPath-Standard schon jetzt korrekt umsetzt.

https:/ /www.ibm.com/support/docview.wss?uid=swg11Z46071

129

8. Konzeptionelle Erweiterungen

In diesem Kapitel werden wir, aus den Erfahrungen bei der Implementierung des Prototyps,
eine Referenzarchitektur fiir solche Systeme vorstellen und diese in Relation zu den anderen
Integrationsmoglichkeiten aus Kapitel 3.2 setzen. Im Abschnitt 8.2 werden wir weiterfithrende
Arbeiten zur Erweiterung und zum Einsatz der Konzepte aus Kapitel 4 vorstellen.

8.1. Referenzarchitektur

Die Realisierbarkeit der Konzepte aus Kapitel 4 konnte durch den Prototypen als Proof-of-
Concept nachgeweisen werden. Da dies ein experimenteller Ansatz ist und dieser deshalb nur
prototypisch implementiert werden konnte, existiert natiirlich Spielraum fiir eine sauberere
Implementierung. Aus den Erfahrungen und Schwierigkeiten der Implementierung des
Prototyps mochten wir nun in Anlehnung an Kapitel 3 eine konzeptionelle Referenzarchitek-
tur und Implementierungsdetails vorstellen, die zu einem tibersichtlicherem System und
moglicherweise zu einer Verallgemeinerung der Anfragen an das DBS fiihren.

8.1.1. Referenzarchitektur fir ein Pushdown WfMS

Die Referenzarchitektur besteht aus der Runtime-, DAO- und Pushdown-Schicht (siehe
Abb. 8.1). Die Pushdown-Schicht ist fiir die Realisierung der Pushdown-Konzepte verant-
wortlich und kann von der DAO-Schicht sowie direkt von der Runtime aus aufgerufen und
verwendet werden. Fiir die Referenzarchitektur ist es auflerdem wichtig, dass das Typsys-
tem des WfMSs tiber alle drei Schichten Runtime, Pushdown und DAO hinweg sichtbar
ist (wie in Abb. 8.1 angedeutet). Dadurch ist die Verlagerung der Anwendungslogik (z.B.
fir Zuweisungen) von der Runtime- auf die Pushdown-Schicht ohne Weiteres moglich. Die
Pushdown-Schicht beinhaltet den Mechanismus zur Query-Bildung und ggf. die Queries
fiir verschiedene DBSe (solange noch keine Standard Query-Sprache fiir die Manipulation
von XML Daten existiert). Die Aufgaben, die von der Pushdown-Schicht iibernommen wer-
den, sind also im Wesentlichen die in dieser Arbeit entwickelten Hauptfunktionen aus der
ScopeDAO-Schicht des Prototypen (siehe Kapitel 6.1.2.1, Seite 87). Dadurch kann sowohl
die Runtime als auch die DAO-Schicht auf die Pushdown-Funktionen zuriickgreifen. Die
DAO-Schicht ist im Prinzip nur fiir das Speichern von Literal-Werten fiir Variablen und

131

8. Konzeptionelle Erweiterungen

anderen Informationen zu Prozessen und Instanzen verantwortlich und koénnte ggf. ganz
eliminiert werden und deren Funktionen in die Pushdown-Schicht {ibertragen werden. Der
wesentliche Unterschied zwischen DAO- und Pushdown-Schicht ist der Ort der Datenverar-
beitung. Wahrend Daten der DAO-Schicht in der Runtime verarbeitet werden, werden bei
Verwendung der Pushdown-Schicht diese Daten ausschliefSlich innerhalb des DBSs verarbeitet
und lediglich Resultate (wie z.B. das Ergebnis der Abbruchbedingung einer Schleife) an
die Runtime weitergegeben. Ein einheitliches Wrapper Element fiir alle XML-Dokumente
oder Fragmente erleichtert die Query-Erstellung, durch das Typsystem ist sowieso bekannt,
um welchen Typ es sich jeweils handelt. Dies muss nicht zwangsldufig auf der Datenebene
(z.B. innerhalb des XML-Dokuments) widergespiegelt werden (im Gegensatz zu Tabelle 5.1,
Seite 71).

Runtime

Typ
system

Pushdown| DAO

1

Abbildung 8.1.: Referenzarchitektur fiir ein Pushdown W{MS bestehend aus einem global
sichtbaren Typsystem und einer Pushdown-Schicht, die von einer optionalen DAO-Schicht
und der Runtime-Schicht aus aufgerufen werden kann.

8.1.2. Architekturmodell Hybrides WfMS

Wenn sowohl WS- als auch Query-Pushdown vollstandig (asynchron und synchron) im-
plementiert werden konnen, findet im Prinzip kein Datenaustausch von Variableninhalten
zwischen Runtime und DBS statt. Lediglich Ergebnisse von Bedingungsevaluationen fiir
Schleifen- und Kontrollstrukturen werden an die Runtime zurtickgeliefert. Die Datenver-
arbeitung und Datenspeicherung findet ausschliefilich im DBS statt. Dies stellt also eine
Zwischenform, zwischen der klassischen WEMS Architektur und dem Ansatz das DBS als
WIMS erster Klasse zu betrachten, dar. Wir bezeichnen dieses neue Architektur als Hybriden
Ansatz und erweitern das Architekturmodell aus Abb. 3.7 (Seite 51) in Abb. 8.2. Der hybride
Ansatz zeichnet sich dadurch aus, dass die Prozess- und Datenverwaltung strikt vonein-
ander getrennt sind. Die Prozessverwaltung {ibernimmt im Wesentlichen die Navigation
durch den Prozess, indem die Kontrollfluss-Entscheidungen interpretiert und ausgefiihrt
werden. Diese strikte Trennung steht im Gegensatz zur klassischen Variante in Abb. 8.2a, bei
der die Datenverwaltung sowohl innerhalb der WF-Runtime und des DBS erfolgt und der
voll integrierten Variante in Abb. 8.2b, in der beide Aufgaben nur vom DBS iibernommen
werden.

132

8.2. Weiterfihrende Arbeiten

Spezial
Programme

Spezial
Programme

1

Spezial

optional Programme

optional

Prozess und Daten | WORKFLOW Prozess WORKFLOW
Verwaltung SOFTWARE Verwaltung SOFTWARE
Daten Prozess und Daten Daten
DBMS
Verwaltung DBMS Verwaltung DBMS Verwaltung

(@) (b) (©

Abbildung 8.2.: Klassische WEMS Architektur (a), DBMS als Erste-Klasse WIMS (b) und der
Hybride Ansatz (c). Vgl. [AIL98]

8.2. Weiterfuhrende Arbeiten

Wir werden nun einige Erweiterungen und weitere wissenschaftliche Untersuchungsmog-
lichkeiten vorstellen, die mit den Pushdown-Konzepten aus Kapitel 4 im Rahmen weiterer
Arbeiten untersucht werden konnen. Teilweise greifen wir hier Modifikationen auf, die schon
direkt am Prototypen (Kapitel 6.2.3, Seite 97) vorgestellt wurden.

XQuery(-Update)-Pushdown Man sollte mit wenig Aufwand innerhalb des Prototyps den
XQuery-Pushdown synchron als ExpressionEvaluation-Pushdown und asynchron als
Assignment-Pushdown realisieren konnen. Da XQuery-Ausdriicke deutlich komple-
xer werden konnen als XPath-Ausdriicke, sind weitere Messungen dieser konkreten
Pushdown-Technik interessant. Untersttitzt das DBS bereits den Kandidat fiir die
XQuery Update Facility [W3Co9], kann der bereits implementierte XPath-Pushdown
prinzipiell standardisiert werden und somit auch ohne zusitzlichen Aufwand fiir
XQuery-Ausdriicke verwendet werden.

Unterstiitzung und Evaluierung weiterer XML-Enabled DBSe Man konnte noch weitere
XML-Enabled DBSe, wie z.B. Microsoft SQL Server und Oracle Database, an den
Prototypen anbinden und evaluieren. In Zukunft kénnten die Messungen aus Kapitel 7
tiir XML-Enabled DBSe wiederholt werden, wenn z.B. die XML-Verarbeitung in diesen
Systemen ausgereifter ist. Gegebenenfalls konnen dann alle in den Prototyp imple-
mentierten Pushdown-Konzepte auch durch PostgreSQL und andere DBSe realisiert
werden. Insofern sich in Zukunft der XPath/XQuery-Pushdown auf XML-Enabled
DBSe standardisieren ldsst, miisste fiir eine Evaluierung der verschiedenen DBSe keine
spezifische Anpassungen am Prototyp (aufier die Standardisierung) mehr vorgenom-
men werden. Dariiber hinaus kdnnte man den jetzigen Prototypen fiir verschiedene
Datenbankparameter (Query-Optimierung, Anzahl Seitenpuffer etc.) testen und so
seine Leistung optimieren.

133

8. Konzeptionelle Erweiterungen

(Automatische) XML-Indizierung Falls die XML-Validierung in den Prototypen implemen-

tiert wurde (siehe Kapitel 6.2.3, Seite 97) ist es, zumindest fiir das DBS IBM DBz,
moglich XML-Knoten (Elemente, Attribute etc.) zu indizieren. Dies kann bei iterativen
Zugriffen auf bestimmte Elemente des XML-Dokuments (sieche Anwendungsfall Kapitel
2.5.1.1, Seite 39) zu einer beschleunigten Ausfithrung der XPath/XQuery-Ausdriicken
fiihren. Welche XML-Knoten zu indizieren sind, konnte vom Anwender vorgegeben,
durch den WF-Compiler oder zur Laufzeit anhand der XPath/XQuery-Ausdriicke
ermittelt werden. Letzteres konnte auch eine Funktion sein, die in die DB-Technologie
von XML-Enabled DBSen, z.B. in den DB-Optimierer, aufzunehmen ist.

Natives XML-DBS Es ist denkbar innerhalb der DAO-Schicht des Prototyps, fiir die Speiche-

rung und Verarbeitung von Variablen, mit einem nativen XML-DBS, wie z.B. eXist-db",
zu kommunizieren. Hier wiirden die Variablen jeweils als eigenstandiges Dokument
oder in einer separaten XML Struktur als einzelnes XML Dokument abgespeichert,
manipuliert und zugewiesen werden. Moglicherweise fiihrt dies zu einer erheblichen
Performanzsteigerung, da diese Systeme auf die Verarbeitung von XML Daten ausge-
legt sind und da der zusétzliche Overhead iiber SQL-Anweisungen auf die XML-Felder
in Tabellen zugreifen zu miissen wegfillt. Durch entsprechende Laufzeitmessungen
konnte diese These belegt werden. Dartiber hinaus ist es denkbar, die Prozessinforma-
tionen weiterhin in einem relationalem DBS zu halten. Die DAO-Schicht wiirde damit
zweigeteilt sein und der Prototyp wiirde entsprechend zwei DBSe (Relational und
Nativ XML) benétigen. Dies stellt eine Verfeinerung der Moglichkeit dar Informationen
zum WEMS auf verschiedene DBen und DBSe aufzuteilen (siehe WebSphere Process
Server Kapitel 3.3.4, Seite 56).

Weitere DAO Spezialisierungen Man konnte andere Datenstrukturen fiir die Prozessvaria-

blen zulassen, z.B. ein relationales Schema. Diese wiirden sich direkt auf eine Relation
eines relationalen DBSs abbilden lassen, was insbesondere fiir ETL-WFs, die tabellen-
orientierte Daten verarbeiten, zu Performanzvorteilen fithren wiirde. Einerseits fallt
dabei die XML-Konvertierung weg und andererseits konnen die schnellen relationa-
len Operatoren der integrierten DB direkt verwendet werden. Des Weiteren wire es
denkbar die Datenstruktur (XML oder Relational) fiir jede Prozessvariable einzeln
festzulegen. Um all dies Umzusetzen bendttigt man eine Reihe spezialisierter DAOs
und Varianten des Query-Pushdown (siehe Tabelle 4.1, Seite 61) die auf die entspre-
chenden DBSe (Relational, Nativ XML) zugreifen und deren Daten verarbeiten konnen.
Falls die Persistenz dieser Daten nicht zwingend erforderlich ist, konnten aufSerdem
hauptspeicherbasierte DBSe zum Einsatz kommen.

Pushdown fiir andere WfMSe Der ExpressionEvaluation-Pushdown konnte fiir andere, z.B.

eher datenorientierten WfMSe wie Taverna oder Microsoft Trident umgesetzt und

Thttp:/ /exist.sourceforge.net/

134

8.2. Weiterfihrende Arbeiten

evaluiert werden. Zumindest fiir die Aktivititen der beiden Systeme, die XPath-
Auswertungen durchfithren. Auflerdem konnte gepriift werden, ob die anderen
Pushdown-Konzepte dort ebenfalls anwendbar sind oder auch neue Pushdown-
Konzepte umsetzbar und somit in die Pushdown-Hierarchie aufzunehmen sind.

Pushdown-Optimierer Nach Evaluation weiterer Test- und Anwendungsfélle konnte in den
Prototypen ein z.B. kostenbasierter Pushdown-Optimierer eingefiihrt werden, der nach
bestimmten Kriterien entscheidet, wann die Aufgabe in der WF-Engine und wann
innerhalb des DBSs durchgefiihrt wird. Im Anwendungsfall war z.B. die Evaluierung
der IF-Bedingung durch den kleinen Inhalt der Variable innerhalb der WF-Engine
schneller (siehe Kapitel 7.3.5.1, Seite 120). Allerdings miissten hierzu die Daten aus dem
DBS in die WE-Engine geladen werden, was wiederum Zeit benétigt. Ob solche Effekte
eine Optimierung der Instanzlaufzeit verhindern muss hierbei evaluiert werden.

Pushdown von SIMPL-Aktivititen Eine weitere Arbeit kann sich mit der Implementierung
des Pushdown fiir die SIMPL-Aktivititen (siehe Kapitel 3.2.1, Seite 45) in Apache ODE
befassen. Hierzu konnten UDFs und Stored Procedures fiir die integrierte WF-DB
geschrieben werden, welche direkt mit dem SIMPL-Kern kommunizieren und so ohne
Umweg durch die WF-Engine die Daten direkt miteinander austauschen. Alternativ
konnte der Pushdown auch an den SIMPL-Kern erfolgen, der dabei die Informationen
zur integrierten WF-DB erhélt um so die Daten austauschen zu konnen. Dies wire
insbesondere fiir die SIMPL-Aktivitdten RetrieveData und WriteDataBack interessant
[RRS*10].

Nexus DS Operatoren NexusDS [CEB"o09] ist ein verteiltes, Datenstrom verarbeitendes Sys-
tem. Sein Anwendungsschwerpunkt ist die sog. Angereicherte Realitit (engl. Augmented
Reality), hierbei werden meist Bilder der realen Welt durch zusétzliche Informationen
angereichert. Das System kann aus sehr heterogenen Plattformen (mobile Endgerite,
Server, Grafikkarten etc.) bestehen und eine Vielzahl von Datenquellen anbinden. Der
in [CEB" 09] vorgestellte Anwendungsfall erhilt von einem Smartphone dessen aktuelle
geographische Position (z.B. via GPS). Anhand dieser Information wird nun auf Servern
und einem Grafikkarten-Cluster eine virtuelle 3D-Ansicht erstellt, die mit Informatio-
nen tiiber interessante Orte (POI) und z.B. verfiigbare Taxis angereichert ist. Diese 3D-
Ansicht wird als 2D-Bild an das Smartphone zuriickgeschickt. Solange die Anwendung
auf dem Smartphone nicht abgebrochen wird, wird die Ansicht stindig aktualisiert und
an das Smartphone geschickt, weshalb von einem Datenstrom System gesprochen wird.
Um die verschiedenen Datenquellen in NexusDS anzusprechen, werden sog. Operatoren
implementiert. Hier ist es denkbar entsprechende ExpressionEvaluation-Pushdown
Operatoren zu realisieren, die z.B. fiir die Auswertung von XPath-Ausdriicken auf
XML Dokumenten einer XML-(Enabled /Nativen)-Datenbank einen XPath-Pushdown
vornehmen und so die Last des Gesamtsystems noch weiter zu verteilen. Insbesondere,
wenn der Datenbankserver ein eigenstdndiges System darstellt und die Anfragen
entsprechend komplex sind. Umgekehrt konnte es fiir Datenfluss-orientierte WfMSe

135

8. Konzeptionelle Erweiterungen

interessant sein eine Nexus DS Anwendung als Aktivitidt zu verwenden. Da diese
staindig Daten generiert, konnen diese kontinuierlich in einem entsprechendem WF
analysiert oder weiterverarbeitet werden.

UDFs als Alternative zu DB Middleware Man kann die Idee, UDFs und Stored Procedu-

res anstelle von direkten SQL-Aufrufen zu verwenden (aus Microsoft Trident siehe
Kapitel 3.3.3, Seite 55), dahingehend untersuchen, ob dieses Modell es erlaubt DB-
Middlewaresysteme wie Hibernate und openJPA aus WfMSen zu entfernen, ohne
die Flexibilitat bei der Wahl des DBSs zu verlieren. Gegebenenfalls kann durch diese
schlankeren Systeme bereits eine schnellere Workflow-Ausfiihrung ermoglicht werden.
Um diesen Ansatz zu iiberpriifen, konnte z.B. fiir Apache ODE eine eigene DAO
geschrieben werden, die nur UDFs und Stored Procedures aufruft und Letztere ent-
sprechend fiir mehrere DBSe implementiert werden. Zusétzlich kann gepriift werden,
ob es moglich ist UDFs und Stored Procedures zu definieren, welche die Pushdown-
Konzepte realisieren. Insbesondere konnten dann auch bei Zuweisung an Variablen
SQL INSERT-Ausdriicke zum Einsatz kommen. Durch die Struktur der DAO-Schicht
des Prototyps wurde jeweils fiir die Variablen der linken Seite vor der Zuweisung eine
entsprechende Zeile in der Tabelle erstellt. Somit kamen nur SQL UPDATE-Ausdriicke
zum Einsatz (siehe Kapitel 6.1.2.1, Seite 87).

Hybrider Ansatz Um den Hybriden Ansatz und die strikte Trennung von Prozess- und

Datenverwaltung vollstandig umzusetzen, miissten ebenfalls die Initalwerte von Pro-
zessvariablen bereits im DBS vorliegen. In unserem Prototypen werden derzeit die
BPEL-Literale tiber die DAO-Schicht, wiahrend der Laufzeit einer Instanz, an das DBS
tibergeben, was dieser strikten Trennung widerspricht. Es ist jedoch denkbar, wahrend
der Deployment-Phase eines Prozesses diese Initialwerte in eine dafiir vorgesehene Rela-
tion in das DBS zu tibertragen und beim Aufruf der entsprechenden Zuweisung diesen
Initialwert innerhalb des DBSs zuzuweisen. Nach dieser Erweiterung des Prototyps
wiirde dieser dem Hybriden Ansatz weitestgehend entsprechen. Ungeklart ist jedoch
wie die Inhalte der SOAP-Nachricht, welche fiir die Instanziierung eines Prozesses
in Apache ODE verantwortlich ist, bei strikter Trennung von Prozess- und Daten-
verwaltung ohne den Umweg durch die WF-Engine in die integrierte DB gelangen
sollen.

DBS als WfMS erster Klasse Falls ein System wie unter UDFs als Alternative zu DB Midd-

136

leware beschrieben umgesetzt werden konnte, insbesondere mit Umsetzung der
Pushdown-Konzepte, ist der beschriebene Ansatz von [AILg8] das DBS als W{MS
erster Klasse zu betrachten nicht mehr weit. Es konnte dann untersucht werden, ob
es moglich ist die Prozesslogik, z.B. fiir eine BPEL-Engine, vollstandig in das DBS zu
iibertragen, und ob es moglich ist im DBS einen BPEL-Compiler bzw. Interpreter zu
schreiben. Wir vermuten jedoch, dass es an dieser Stelle sinnvoller ist den von uns
eingefiihrten Hybriden Ansatz (siehe Abb. 8.2c) zu verwenden.

8.2. Weiterfihrende Arbeiten

Es existieren somit eine ganze Reihe weiterer Moglichkeiten die Integration von Daten,
Datenstrukturen und DBSen mit WfMSen auszubauen und so Verbesserungen in der Laufzeit
durch die Art der Datenverarbeitung und Dateniibertragung zu erlangen. Insbesondere
sollte je nach Datenstruktur der zu verarbeitenden Daten ein passendes Verarbeitungsmodell
gewdhlt werden, um die optimale Leistung zu erhalten. So ist es auch denkbar andere
Datenbank- und datenbanknahe Technologien einzusetzen. Als Beispiel konnten verteilte
DBSe bei verteilten WfMSen zum Einsatz kommen oder Semantic Web Frameworks® bei

Verwendung von Resource Description Framework-Graphen (RDF3) in entsprechenden
W({MSen.

?Jena - http:/ /jena.sourceforge.net/index.html
Shttp:/ /www.w3.org/RDF/

137

9. Zusammenfassung

In dieser Arbeit haben wir uns mit der stiarkeren Integration von DBSen in WfMSe befasst.
Hierzu haben wir verwandte Arbeiten vorgestellt. Diese befassen sich hauptsédchlich mit der
Anbindung externer Datenbanken an WfMSe (BPEL/SQL, SIMPL) oder mit der Verschmel-
zung beider Systeme (DBS als WEMS erster Klasse). Fiir BPEL/SQL-WFs besteht prinzipiell
die Moglichkeit der globalen Optimierung, wobei z.B. ein Ziel ist die tupelweise Verarbei-
tung innerhalb der WF-Runtime in eine Mengenoperation auf dem DBS zu tiberfithren
(PGM-Optimierer). Im Gegensatz dazu betrachten wir die stirkere Integration eines DBSs,
das von WfMSen zur Speicherung der Prozess- und Instanzdaten verwendet wird. Hierbei
soll die WF-Ausfiihrung fiir den Anwender transparent bleiben, also keine Anderungen
im WF nach sich ziehen. Dadurch sind wir auf lokale Optimierungen zur Laufzeit des
WFs beschréankt. Die grundsétzliche Idee ist traditionelle Aufgaben, wie Zuweisungen und
Webservice Aufrufe, von der Runtime-Ebene der WF-Engine auf das DBS zu iibertragen. Wir
haben bestehende Konzepte, um dieses ,,Hinunterschieben” (Pushdown) zu ermoglichen,
vorgestellt und neue Konzepte erarbeitet. Diese wurden prototypisch in der BPEL-Engine
Apache ODE implementiert. Hierzu haben wir die aktuelle Software-Architektur, insbe-
sondere die fiir die Implementierung wichtigen Teile, von Apache ODE vorgestellt und
sind auf Implementierungsdetails und Probleme fiir unsere Erweiterung eingegangen. Um
die Tauglichkeit der vorgestellten Pushdown-Konzepte zu tiberpriifen, wurde der Prototyp
durch eine Reihe von Test- und einem Anwendungsfall evaluiert. Aus den vorgestellten
Ergebnissen lassen sich Riickschliisse und Voraussetzungen ableiten, die fiir eine verbesserte
Workflow-Ausfithrung durch die Pushdown-Konzepte nétig sind (siehe Kapitel 9.1). Aus den
Erfahrungen bei der Implementierung und der Architektur des Prototyps haben wir eine
Referenzarchitektur fiir solche Pushdown-W{MSe vorgestellt und diese als Hybriden-Ansatz
in Relation zu bestehenden WfMS-Architekturen gesetzt. Der Hybride-Ansatz trennt hierbei
strikt die Prozess- (WF-Runtime) und Datenverwaltung (DBS) im Gegensatz zur klassischen
WIEMS-Architektur und stellt somit eine Mischform aus klassischer WfMS-Architektur und
der Alternative DBMSe als Erste-Klasse WfMSe dar. Des Weiteren haben wir zahlreiche
weitere Modifikationen und weiterfithrende Arbeiten vorgestellt, mit denen es moglich
sein sollte die Workflow-Ausfithrung zu verbessern oder die Pushdown-Konzepte auch in
anderen Systemen einzusetzen.

139

9. Zusammenfassung

9.1. Schlussfolgerung

Wir haben erfolgreich die vorgestellten Pushdown-Konzepte in einen Prototyp umsetzen
konnen. Hierbei fillt auf, dass fiir die vollstindige Umsetzung die angebotene Funktiona-
litdt von DBSen eine entscheidende Rolle spielt. Wahrend wir fiir das DBS IBM DBz alle
Konzepte umsetzen konnten, ging dies fiir PostgreSQL nur fiir einen sehr kleinen Teil. Die
Pushdown-Konzepte selbst konnen fiir sich allein betrachtet je nach Anwendung (Kom-
plexitat der Aufgabe, Datenmenge) eine Optimierung oder Pessimierung nach sich ziehen.
Dies scheint allerdings auch von der effizienten Implementierung der XML-Technologie in
dem verwendeten DBS abhéngig zu sein. Grundsétzlich konnten wir beim Zusammenspiel
der Pushdown-Konzepte im Anwendungsfall einen deutlichen Stabilitdts- und Performanz-
vorteil gegeniiber der Original WF-Engine feststellen. Hierbei findet die Datenmanipula-
tion und Auswertung fast ausschlieSlich innerhalb des DBSs statt, wahrend nur noch die
Prozess-steuernden Anteile von der WF-Eninge verwaltet werden (Hybrider Ansatz). Dieser
Anwendungsfall spiegelt insbesondere bestimmte Klassen von Simulationsworkflows wieder,
die im Rahmen des SimTech Projekts von grofiem Interesse sind. Kritisch betrachtet konnte
die Beschleunigung der Evaluierung von XPath-Ausdriicken innerhalb der DB2 auch durch
die Implementierung der XPath-Engine in C anstatt Java entstehen. Aufierdem ist nicht aus-
geschlossen, dass sich die XPath-Engine in Apache ODE effizienter nutzen ldsst. Wir wissen
jedoch, dass auch fiir die XML-Felder im DBS IBM DBz Datenbanktechnologie eingesetzt
wird, die eine schnellere und stabilere Verarbeitung erlaubt. In jedem Fall sind durch das
Anwenden der Pushdown-Konzepte die Daten einer WF-Instanz zu jeder Zeit persistent.

9.2. Ausblick

Diese Arbeit legt den Grundstein fiir zahlreiche weitere Arbeiten. Zum Beispiel kann das
Konzept des WS- und ExpressionEvaluation-Pushdown als Operatoren in das NexusDS Sys-
tem implementiert werden. Fiir das SIMPL-Projekt konnten ebenfalls Pushdown-Funktionen
implementiert werden, die eine direkte Interaktion des SIMPL-Kerns mit der integrierten DB
des WfMSs erlauben, wodurch Daten ohne den Umweg iiber die WF-Engine ausgetauscht
werden konnen. Aufierdem konnen die Pushdown Konzepte in andere WfMSe implementiert
werden. Der vorgestellte Prototyp kann um zahlreiche weitere Funktionen (siehe Kapitel
6.2.3, Seite 97) erweitert werden. Insbesondere die Anbindung und Evaluation an ein natives
XML DBS klingt vielversprechend. Die Anbindung weiterer (zukiinftiger) relationaler DBSe
und weiterfithrende Auswertungen, fiir andere Workflow-Typen als in Kapitel 7 behandelt,
sind ebenfalls von wissenschaftlichem Interesse. Weitere Arbeiten konnten sich dartiber
hinaus, unter der Verwendung der vorgestellten Konzepte und Erweiterungen, auch mit
einer Umsetzung 'DBS als erste Klasse WEMS' fiir die Workflowsprache WS-BPEL befassen.

140

9.3. Danksagungen

9.3. Danksagungen

Ich mochte mich bei Prof. Dr. Bernhard Mitschang und Dr. habil. Holger Schwarz fiir
die Ermoglichung dieser Arbeit, die Bereitstellung von Arbeitsraumen und technischen
Ressourcen sowie der benétigten Lizenz fiir das DBS IBM DB2 bedanken. Weiterer Dank gilt
Dipl.-Inf. Michael Reiter fiir die fachlichen Korrekturen an Kapitel 3 und ein ganz besonderer
Dank geht an meinen Betreuer Dipl.-Inf. Peter Reimann fiir seine stets guten Ideen, die
den Verlauf der Arbeit geprdgt haben und fiir seine professionellen und konstruktiven
Kommentare zur Verbesserung dieser Ausarbeitung. Des Weiteren mochte ich mich bei
allen Mitarbeitern der Abteilung Anwendersoftware am Institut fiir Parallele und Verteilte
Systeme sowie der Apache ODE Mailingliste bedanken.

Zum Schluss mochte ich meiner Familie und meinen Freunden danken, die immer fiir mich
da sind und moralische Unterstiitzung geleistet haben.

141

A. Abkurzungsverzeichnis

APl Application Programming Interface

BIIF Biolnformatics Interchange Format

DAO Data Access Objects

DB Datenbank

DBMS Datenbank Management System

DBS Datenbanksystem

DTD Document Type Definition

DWARF DataWarehouse Architecture for pRotein classiFication
ETL Extraction Transformation Load

GUI Graphical User Interface

OASIS Organization for the Advancement of Structured Information Standards
PGM Process Graph Model

RDF Resource Description Framework

SGML Standard Generalized Markup Language

SIMPL SimTech - Information Management, Processes, and Languages
SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

UML Unified Modeling Lanuage

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

VPU Virtual Processing Unit

W3C World Wide Web Consortium

143

A. Abkulrzungsverzeichnis

WF Workflow

WIMS Workflow Managment System

WPS WebSphere Process Server

WS Webservice

WS-BPEL WS-Business Process Execution Language
WSDL Web Service Description Language

WSFL Web Services Flow Language

WYSIWYG What You See Is What You Get (Oft im Zusammenhang mit graphischen Editoren
verwendet)

XML eXtensible Markup Language
XOML Extensible Object Markup Language

144

Entwicklungsumgebung

Wir werden einige Eckdaten zur verwendeten Software und eine Installationsanleitung
fir den Prototypen, z.B. fiir weitere Auswertungen oder Implementierungsarbeiten ange-
ben. Das Entwicklungssystem wurde mit dem Betriebssystem Windows XP Professional
32-bit betrieben und lief auf einem Intel Core2Duo T7300@2GHz Prozessor. Das System
verfligte aufSerdem {iiber 3GB Hauptspeicher und einer Grafikkarte mit eigenstindigem
Grafikspeicher.

B.1.

Verwendete Software

Die verwendete Software bezieht sich immer auf Windows XP 32-bit:

Apache Buildr 1.3.5 - http://buildr.apache.org/

Apache ODE 1.3.4 - http://ode.apache.org

Apache Tomcat 6.0.29 - http://tomcat .apache.org/

BPEL-Designer (Eclipse Galileo 3.5) - http://www.eclipse.org/bpel/
Eclipse Helios Java EE 3.6 - http://www.eclipse.org/

IBM DB2 Vg.7 (kostenpflichtige Lizenz benétigt!) - http://www.ibm.com/software/
data/db2/

Java JRE und JDK 1.6.0_23 - http://www.oracle.com/technetwork/java/javase/
downloads/index.html

PostgreSQL 8.4 - http://www.postgresql.org/

Ruby 1.8.7 + DevKit 3.4.5 - http://rubyonrails.org/download

Silk Subversion 1.6.12 - http://www.sliksvn.com/en/download
SoapUlI 3.6.1 - http://www.soapui.org/

SQuirreL SQL Client 3.1.2 - http://squirrel-sql.sourceforge.net

Strawberry Perl 5.12.1 - http://strawberryperl.com/

145

http://buildr.apache.org/
http://ode.apache.org
http://tomcat.apache.org/
http://www.eclipse.org/bpel/
http://www.eclipse.org/
http://www.ibm.com/software/data/db2/
http://www.ibm.com/software/data/db2/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.postgresql.org/
http://rubyonrails.org/download
http://www.sliksvn.com/en/download
http://www.soapui.org/
http://squirrel-sql.sourceforge.net
http://strawberryperl.com/

B. Entwicklungsumgebung

B.2. Programmierumgebung

Es sollte jeweils das aktuelle Java Runtime Environment (JRE) und Java Development
Kit (JDK) auf dem System installiert sein und sichergestellt werden, dass die Umge-
bungsvariablen JAVA_HOME und JRE_HOME korrekt auf den jeweiligen Installationspfad
(bin-Verzeichnis) gesetzt sind.

Fiir die Programmierumgebung und das Compilieren des ODE Quellcodes muss Ruby
1.8.7 + DevKit 3.4.5 installiert werden und anschlieflend t{iber den Kommandozeilen-Befehl
"gem install buildr -v 1.3.5 —platform mswin32” das Buildsystem Apache Buildr installiert wer-
den. Der Quellcode von Apache ODE 1.3.4 wurde per SVN aus dem Apache SVN Server
ausgecheckt und konnte im Top-Level Quellcode Ordner mit dem Befehl "buildr _1.3.5_
package test=no’” compiliert werden. Um die notigen Projektinformationen fiir einen Import
nach Eclipse Helios zu generieren, kann der Befehl ‘buildr _1.3.5_ eclipse’ verwendet werden.
Programmiert wurde innerhalb von Eclipse, compiliert iiber die Eingabeaufforderung mit
Hilfe von Apache Buildr. Anschlieflend wurden die erzeugten Java Archive (Jar)-Dateien in
den Class-Path ([tomcatdir]/webapps/ode/WEB-INF/Ilib) einer in Apache Tomcat eingebetteten
Apache ODE 1.3.4 Version kopiert. Fiir die Einbettung von Apache ODE in Tomcat sei auf
http://ode.apache.org/war-deployment .html verwiesen.

Der Quellcode des Prototyps liegt auf der DVD unter [DVD]/Implementierung/Prototyp/src/ode-
1.3.4-prototyp ab. Der Quellcode der fiir die Evaluation modifizierten Original Apache ODE
1.3.4 liegt auf der DVD unter [DVD]/Implementierung/ApacheODE/src/ode-1.3.4-0rig ab.

B.3. Workflow Erstellung

Die BPEL-Workflows zum Testen der Implementierung, der Testfdlle sowie des Anwendungs-
falls wurden mit dem auf Eclipse basierendem BPEL-Designer modelliert. Die verwendete
Version konnte nicht zum automatischen bekanntmachen der Workflows, aufgrund eines
Fehlers beim Kopieren des Projekts, verwendet werden. Der Prozessordner wurde daher
manuell in den processes Ordner ([tomcatdir]/webapps/ode/WEB-INF /processes) von Apache
ODE kopiert. Eine gute Installationsanleitung fiir den BPEL-Designer ist unter http://
Wwww.se.uni-hannover.de/lehre/tutorials/BPEL-0ODE-Eclipse-Getting-Started.php zu
finden. Da es zu Versionsinkompatibilititen der BPEL-Designer-Plugins mit den Eclip-
se Versionen kommen kann, befindet sich die verwendete und ausfithrbare Version des
BPEL-Designers auf der DVD unter [DVD]/Implementierung/BPEL-Designer.

146

http://ode.apache.org/war-deployment.html
http://www.se.uni-hannover.de/lehre/tutorials/BPEL-ODE-Eclipse-Getting-Started.php
http://www.se.uni-hannover.de/lehre/tutorials/BPEL-ODE-Eclipse-Getting-Started.php

B.4. Installation des Prototyps

B.4. Installation des Prototyps

Zuerst sollte das zu verwendende Datenbanksystem eingerichtet werden (siehe
Abschnitt B.4.1). Auflerdem muss Java JRE in der jeweils aktuellsten Version instal-
liert sein und die Umgebungsvariable JRE_HOME korrekt auf den Installationsordner
verweisen. Der ausfiihrbare und in Apache Tomcat eingebettete Prototyp befindet sich auf
der DVD unter [DVD]/Implementierung/Prototyp/Ausfiihrbar. Es reicht aus, den Ordner auf
das System zu kopieren. Jetzt miissen nur noch einige Einstellungen vorgenommen werden,
die im Abschnitt B.4.1 und B.4.2 beschrieben werden.

B.4.1. Datenbank Setup

Fiir jedes DBS sollte eine leere Datenbank angelegt werden. Am Besten erledigt man das
durch die jeweilige Steuerzentrale des DBSs. Je nach DBS miissen unterschiedliche Schemata
geladen werden, dies kann ebenfalls durch die SQL-Konsole in der Steuerzentrale oder
durch z.B. Squirrel-SQL erfolgen. Bei Verwendung von Squirrel-SQL miissen allerdings die
passenden JDBC Treiber in den lib-Ordner von Squirrel-SQL kopiert werden.

IBM DB2 ODE-Schema auf DVD unter
[DVD]/Implementierung/DBSetup/ode-134-hib-db2_prototyp.sql

PostgreSQL ODE-Schema auf DVD unter
[DVD]/Implementierung/DBSetup/ode-134-hib-pgsql_prototyp.sql

Zudem muss fiir die Verwendung mit PostgreSQL die Hibernate-DAO im Classpath
[tomcatdir]/webapps/ode/WEB-INF/lib des Prototypen ausgetauscht werden:

IBM DB2 Hibernate-DAO auf DVD unter
[DVD]/Implementierung/DBSetup/ode-lib/IBM DB2/ode-dao-hibernate-1.3.4.jar

PostgreSQL Hibernate-DAQO auf DVD unter
[DVD]/Implementierung/DBSetup/ode-lib/PostgreSQL/ode-dao-hibernate-1.3.4.jar

Fiir die Verwendung von IBM DB2 mit dem Protoyp muss zusétzlich in den Classpath der
Apache Tomcat Installation [tomcatdir]/lib die Lizenzdatei dbzjcc_license_cu.jar eingespielt
werden. Diese befindet sich innerhalb der DB2 Installation (z.B. C:\IBM\SQLLIB\java).
Die JDBC-URL inklusive Datenbankname, Datenbankbenutzer und Passwort muss in
der Konfigurationsdatei ode-axis2.properties abgedandert werden. Diese befindet sich unter
[tomcatdir]/webapps/ode/WEB-INF/conf, die jeweiligen JDBC-URLSs sind bereits in der Konfigu-
rationsdatei des Prototypen enthalten.

Fiir die Verwendung des Webservice-Pushdown (nur fiir IBM DB2) muss die DB2 Datenbank
mit der Zeichenkodierung ,utf8” erstellt werden und die ,,Web-Services” Funktionalitat

147

B. Entwicklungsumgebung

aktiviert werden. Diese kann in der DB2 Steuerzentrale fiir die entsprechende DB tiiber die
Eigenschaft ,Web-Services” aktiviert und deaktiviert werden. Auflerdem muss die folgende
benutzerdefinierte UDF erstellt werden®:

CREATE FUNCTION db2xml.soaphttplg (
endpoint_url VARCHAR(256),
soapaction VARCHAR(256),
soap_body varchar(3072))

RETURNS clob(5M)

LANGUAGE C PARAMETER STYLE DB2SQL
SPECIFIC soaphttplg

EXTERNAL NAME ’db2soapudf!soaphttpvico’
SCRATCHPAD FINAL CALL FENCED

NOT DETERMINISTIC CALLED ON NULL INPUT
NO SQL EXTERNAL ACTION DBINFO;

B.4.2. Prototyp Einstellungen

In der Konfigurationsdatei des Prototypen konnen die einzelnen Pushdown-Konzepte ein-
und ausgeschaltet werden. Hierzu exisiteren fiinf Parameter:

ode-axis2.db.mode.enhanced (Werte: true/false) Hauptschalter, bei false werden alle ande-
ren Pushdown-Einstellungen ignoriert.

ode-axis2.db.mode.enhanced.sync (Werte: true/false) Schaltet den synchronen XPath-
Pushdown fiir Pfadselektionen ein (ExpressionEvaluation-Pushdown).

ode-axis2.db.mode.enhanced.sync.expression (Werte: true/false) Schaltet den synchronen
XPath-Pushdown zusétzlich fiir komplexe XPath-Ausdriicke ein (ExpressionEvaluation-
Pushdown).

ode-axis2.db.mode.enhanced.async (Werte: true/false) Schaltet den asynchronen XPath-
Pushdown ein (Assignment-Pushdown), falls true findet die synchrone Auswertung
innerhalb von ASSIGN-Aktivititen nicht mehr statt.

ode-axis2.db.mode.enhanced.ws (Werte: true/false) Schaltet den Webservice-Pushdown
ein oder aus.

Thttps:/ /www.ibm.com/support/docview.wss?uid=swg11Z46071

148

1

=
R OO O\ ONU1T -k~ W N

[y

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

C. Anwendungsfall Proteinmodellierung -

Mustersuche

C.1. BIIF XML Beispiel

XML Beispieldokument (gekiirzt) des Resultats des Webservice-Aufrufs des Anwendungs-

falls aus Kapitel 2.5 und der Evaluierung in Kapitel 7.

<biif>

<date>2010-06-01</date>

<creator>DWARF_ACCESS.pl#getHFamilyAlignment</creator>
<description>Homologous Family Alignment of Family 1106 from CYPED</description>

<aln>
<seq>

<header>AAH29014.1</header>

<1sid>urn:1lsid:dwarf.uni-stuttgart.de:p450_v2_online_091215:4568</1sid>

<source>

<database id="4568" name="dwarf" version="p450_v2_online_091215"/>
<database href="http://www.ncbi.nlm.nih.gov/Genbank/index.html" id="AAH29014.1"

name="GenBank"/>

<database id="20809428" name='"General Identifier'"/>
</source>
<aa>MEVLGLLKFEVSGTIVTVTLLVAL. . .]JEASPETQVPLQLESKSALGPKNGVYIKIVSR</aa>

<annotation countGaps='"no'">

<region name="p450 domain" start="1" stop="499"/>

<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region

name="alphaA" start="63" stop="69"/>
name="betal_1" start="74" stop="80"/>
name="betal_2" start="86" stop="92"/>
name="alphaB" start="92" stop="99"/>

name="betal_5" start="105" stop="109"/>

name="alphaC"
name="alphaD"
name="alphaE"
name="alphaF"
name="alphaG"
name="alphaH"
name="alphal"
name="alphaJ"

name="betal_4" start="410" stop="414"/>
name="beta2_1" start="416" stop=”420”/>
name="beta2_2" start="422" stop=”426”/>

start="130"
start="151"
start="181"
start="207"
start="249"
start="278"
start="332"
start="362"

stop="144"/>
stop="164"/>
stop="194"/>
stop="214"/>
stop="260"/>
stop="284"/>
stop="361"/>
stop="368"/>

149

C. Anwendungsfall Proteinmodellierung - Mustersuche

150

<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region

</seq>
[...]
<seq>

name="betal_3" start="429" stop="433"/>
name="alphaK_1" start="438" stop="442"/>

name="Meander loop" start="446" stop="454"/>
name="Cys Pocket" start="468" stop="481"/>

name="alphal." start="482" stop="501"/>

name="beta3_3"
name="beta4_1"
name="betad4_2"
name="beta3_2"
name="beta3_1"

start="502"
start="512"
start="520"
start="526"
start="174"

stop="505"/>
stop="515"/>
stop="523"/>
stop="529"/>
stop="181"/>

name="alphaK" start="391" stop="404"/>
</annotation>

<header>AAB87704.1</header>

<lsid>urn:lsid:dwarf.uni—stuttgart.de:p450_v2_on1ine_091215:4572</lsid>

<source>

<database id="4572" name="dwarf"

name="GenBank" />

<database i1d="1698440" name='"General Identifier"/>

</source>

<aa>MEVLGLLKFEVSGTIVTVTLLVAL...]EASPETQVPLQLESKSALGPKNGVYIKIVSR</aa>

<annotation countGaps='"no'">

<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region
<region

name="p450 domain" start="1" stop="499"/>

version="p450_v2_online_091215"/>
<database href="http://www.ncbi.nlm.nih.gov/Genbank/index.html" id="AAB87704.1"

name="alphaA" start="63" stop="69"/>
name="betal_1" start="74" stop="80"/>
name="betal_2" start="86" stop="92"/>
name="alphaB" start="92" stop="99"/>
name="betal_5" start="105" stop="109"/>

name="alphaC"
name="alphaD"
name="alphaE"
name="alphaF"
name="alphaG"
name="alphaH"
name="alphalI"
name="alphaJ"
name="betal_4"
name="beta2_1"
name="beta2_2"
name="betal_3"

start="130"
start="151"
start="181"
start="207"
start="249"
start="278"
start="332"
start="362"
start="410"
start="416"
start="422"
start="429"

stop="144"/>

stop="164"/>
stop="194"/>
stop="214"/>
stop="260"/>
stop="284"/>
stop="361"/>
stop="368"/>
stop="414"/>
stop="420"/>
stop="426"/>
stop="433"/>

name="alphaK_1" start="438" stop="442"/>

name="Meander loop" start="446" stop="454"/>
name="Cys Pocket" start="468" stop="481"/>

name="alphal" start="482" stop="501"/>

name="beta3_3"
name="betad_1"
name="betad_2"
name="beta3_2"

start="502"
start="512"
start="520"
start="526"

stop="505"/>
stop="515"/>
stop="523"/>
stop="529"/>

C.2. BPEL Prozess des Anwendungsfalls fir die Mustersuche

<region name="beta3_1" start="174" stop="181"/>
<region name="alphaK" start="391" stop="404"/>
</annotation>
</seq>

<similarity>ksksksksskkikkkiokkk [,]aksokiomkkkkkkiokkkookkkkokkokkokk k< /similarity>
</aln>
</biif>

Listing C.1: BIIF XML Beispiel (gekiirzt)

C.2. BPEL Prozess des Anwendungsfalls fiir die Mustersuche

Der BPEL Prozess fiir den Anwendungsfall aus Kapitel 2.5.

<!-- ODEDwarfUseCase BPEL Process [Generated by the Eclipse BPEL Designer] -->
<bpel:process name="0DEDwarfUseCase"

N oUW N R

11

12

13
14
15
16
17
18
19
20
21
22
23
24
25

26

27
28

targetNamespace="http://wuw.dwarf.uni-stuttgart.de"
suppressJoinFailure="yes"
xmlns:tns="http://wuw.dwarf.uni-stuttgart.de"
xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
xmlns:ns="http://www.dwarf.uni-stuttgart.de/ACCESS"
xmlns:biif="http://www.dwarf.uni-stuttgart.de/BIIF/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- Import the client WSDL -->

<bpel:import namespace="http://www.dwarf.uni-stuttgart.de/ACCESS"
location="DWARF_ACCESS.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"></bpel:import>

<bpel:import namespace="http://www.dwarf.uni-stuttgart.de/BIIF/" location="biif.xsd"

importType="http://wuw.w3.0rg/2001/XMLSchema"></bpel:import>
<bpel:import location="ODEDwarfUseCaseArtifacts.wsdl"
namespace="http://www.dwarf .uni-stuttgart.de"
importType="http://schemas.xmlsoap.org/wsdl/" />

<t-- -->
<!-- PARTNERLINKS -=>
<!-- List of services participating in this BPEL process -->
<o N

<bpel:partnerLinks>
<!-- The ’client’ role represents the requester of this service. -->
<bpel:partnerLink name="client"
partnerLinkType="tns:0DEDwarfUseCase"
myRole="0DEDwarfUseCaseProvider"
/>
<bpel:partnerLink name="dwarfAccessLink" partnerLinkType="tns:dwarfAPL"
partnerRole="dwarfAPLType"></bpel:partnerLink>
</bpel:partnerLinks>

<t -

151

73
74
75

C. Anwendungsfall Proteinmodellierung - Mustersuche

<!-- VARIABLES -->
<!-- List of messages and XML documents used within this BPEL process -->
<!-- -->

<bpel:variables>
<!-- Reference to the message passed as input during initiation -->
<bpel:variable name="input"
messageType="tns:0DEDwarfUseCaseRequestMessage" />

<t--
Reference to the message that will be returned to the requester
-->
<bpel:variable name="output"
messageType="tns:0DEDwarfUseCaseResponselessage"/>
<bpel:variable name="dwarfAccessLinkResponse"
messageType="ns:getSFamilyAlignmentResponse"></bpel:variable>
<bpel:variable name="dwarfAccessLinkRequest"
messageType="ns:getSFamilyAlignmentRequest"></bpel:variable>
<bpel:variable name="biif" type="biif:biifType"></bpel:variable>
<bpel:variable name="Counter" type="xsd:int"></bpel:variable>
<bpel:variable name='"pattern" type='"xsd:string"></bpel:variable>
<bpel:variable name='"positive" type='"xsd:int"></bpel:variable>
<bpel:variable name='"negative" type='"xsd:int"></bpel:variable>
<bpel:variable name="accessions" type="xsd:string"></bpel:variable>
<bpel:variable name='"proteinsequence" type='"xsd:string"></bpel:variable>
</bpel:variables>

<t-- -=>
<!-- ORCHESTRATION LOGIC -=>

<!-- Set of activities coordinating the flow of messages across the -->
<!-- services integrated within this business process -=>

<rt-- -->

<bpel:sequence name="main">

<!-- Receive input from requester.
Note: This maps to operation defined in ODEDwarfUseCase.wsdl
-->
<bpel:receive name='"receivelnput" partnerLink="client"
portType="tns:0DEDwarfUseCase"
operation='"process" variable="input"
createInstance="yes"/>

<!-- Generate reply to synchronous request -->
<bpel:assign validate="no" name="Prepare'>
<bpel:copy>
<bpel:from part="payload" variable="input'">
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[tns:superfamily]]l></bpel:query>
</bpel:from>
<bpel:to part="superfamily_id" variable="dwarfAccessLinkRequest"></bpel:to>
</bpel:copy>

152

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116
117
118
119

C.2. BPEL Prozess des Anwendungsfalls fir die Mustersuche

<bpel:copy>
<bpel:from part="payload" variable="input'>
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[tns:pattern]]> </bpel:query>
</bpel:from>
<bpel:to variable="pattern'"></bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from>
<bpel:literal xml:space="preserve">0</bpel:literal>
</bpel:from>
<bpel:to variable="positive'"></bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from>
<bpel:literal xml:space="preserve">0</bpel:literal>
</bpel:from>
<bpel:to variable="negative'"></bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from><bpel:literal
xml:space="preserve'">Accessions:</bpel:literal></bpel:from>
<bpel:to variable="accessions"></bpel:to>
</bpel:copy>
</bpel:assign>
<bpel:invoke name="getSuperFamilySequences" partnerLink="dwarfAccessLink"
operation="getSFamilyAlignment" portType='"ns:DWARFAccessPortType"
inputVariable="dwarfAccessLinkRequest"
outputVariable="dwarfAccessLinkResponse"></bpel:invoke>
<bpel:assign validate='"no" name="AssignWSResponse'>
<bpel:copy>
<bpel:from part="biif" variable="dwarfAccessLinkResponse"></bpel:from>
<bpel:to variable="biif"></bpel:to>
</bpel:copy>
</bpel:assign>
<bpel:forEach parallel="no" counterName="Counter" name="ForEachProteinSequence'">
<bpel:startCounterValue>
<! [CDATA[111>
</bpel:startCounterValue>
<bpel:finalCounterValue><! [CDATA[count ($biif/aln/seq)]]></bpel:finalCounterValue>
<bpel:scope>
<bpel:sequence>
<bpel:assign validate="no" name="PrepareProteinSequence">
<bpel:copy>
<bpel:from

expressionlLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath2.0">
<! [CDATA[replace($biif/aln/seq[position()=$Counter]/aa,"-","","i")1]1>

</bpel:from>
<bpel:to variable="proteinsequence"></bpel:to>
</bpel:copy>

153

120
121

122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162
163
164
165

C. Anwendungsfall Proteinmodellierung - Mustersuche

</bpel:assign>
<bpel:if name="IfPatternMatches"><bpel:condition
expressionlLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath2.0">
<! [CDATA [matches ($proteinsequence, $pattern, "i")]]1> </bpel:condition>
<bpel:assign validate="no" name='"AddSequenceHeader'">
<bpel:copy>
<bpel:from>
<! [CDATA[$positive + 1]]1>
</bpel:from>
<bpel:to variable="positive'"></bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from>
<! [CDATA[concat ($accessions,
$biif/aln/seqlposition()=$Counter] /header/text(), "; ")11>
</bpel:from>
<bpel:to variable="accessions"></bpel:to>
</bpel:copy>
</bpel:assign>
<bpel:else>

<bpel:assign validate="no" name="CountNegative'>
<bpel:copy>
<bpel:from>
<![CDATA[$negative + 111>
</bpel:from>
<bpel:to variable="negative"></bpel:to>
</bpel:copy>
</bpel:assign>
</bpel:else>

</bpel:if>
</bpel:sequence>
</bpel:scope>
</bpel:forEach>
<bpel:assign validate='"no" name="Prepare(Qutput'">
<bpel: copy>
<bpel:from>
<bpel:literal xml:space="preserve"> <tns:0DEDwarfUseCaseResponse
xmlns:tns="http://wuw.dwarf.uni-stuttgart.de"
xmlns:xsi="http://wuw.w3.0rg/2001/XMLSchema-instance">
<tns:positive></tns:positive>
<tns:negative></tns:negative>
<tns:acc_codes></tns:acc_codes>
</tns:0DEDwarfUseCaseResponse>
</bpel:literal>
</bpel:from>
<bpel:to variable="output" part="payload"></bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from variable="accessions"></bpel:from>

154

C.3. WSDL Datei zum Aufruf des BPEL-Prozesses des Anwendungsfalls fur die Mustersuche

166 <bpel:to part='"payload" variable="output">

167 <bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[tns:acc_codes]]> </bpel:query>

168 </bpel:to>

169 </bpel:copy>

170 <bpel:copy>

171 <bpel:from variable="positive'"></bpel:from>
172 <bpel:to part="payload" variable="output'>
173 <bpel:query

queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[tns:positive]]> </bpel:query>

174 </bpel:to>

175 </bpel:copy>

176 <bpel:copy>

177 <bpel:from variable='"negative"></bpel:from>
178 <bpel:to part="payload" variable="output'>
179 <bpel:query

queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<![CDATA[tns:negative]]> </bpel:query>

180 </bpel:to>

181 </bpel:copy>

182 </bpel:assign>

183 <bpel:reply name="replyOutput"

184 partnerLink="client"

185 portType="tns:0DEDwarfUseCase"
186 operation="process"

187 variable="output"

188 />

189 </bpel:sequence>

190 </bpel:process>

Listing C.2: BPEL Prozess des Anwendungsfalls fiir die Mustersuche

C.3. WSDL Datei zum Aufruf des BPEL-Prozesses des
Anwendungsfalls fir die Mustersuche

Die WSDL Datei zum Aufruf des BPEL-Prozesses innerhalb von Apache ODE fiir den
Anwendungsfall der Mustersuche.

1 <7?xml version="1.0" encoding="UTF-8" standalone="no"?7>

2 <definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
xmlns:tns="http://wuw.dwarf.uni-stuttgart.de"
xmlns :vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop"
xmlns:wsdl="http://www.dwarf.uni-stuttgart.de/ACCESS" name="0DEDwarfUseCase"
targetNamespace="http://www.dwarf.uni-stuttgart.de"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

155

[
= O\O O\ ONUl &~ W

12
13

14
15

C. Anwendungsfall Proteinmodellierung - Mustersuche

TYPE DEFINITION - List of types participating in this BPEL process
The BPEL Designer will generate default request and response types
but you can define or import any XML Schema type and use them as part
of the message types.

<plnk:partnerLinkType name="dwarfAPL">
<plnk:role name="dwarfAPLType'" portType="wsdl:DWARFAccessPortType"/>
</plnk:partnerLinkType>
<import location="DWARF_ACCESS.wsdl"
namespace="http://www.dwarf.uni-stuttgart.de/ACCESS"/>
<types>
<schema xmlns="http://www.w3.org/2001/XMLSchema" attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="http://www.dwarf.uni-stuttgart.de">

<element name="ODEDwarfUseCaseRequest'>
<complexType>
<sequence>
<element name='"superfamily" type="integer"/>
<element name='"pattern" type="string"/>
</sequence>
</complexType>
</element>

<element name="ODEDwarfUseCaseResponse'>
<complexType>
<sequence>
<element name="positive" type="integer"/>
<element name="negative" type="integer"/>
<element name="acc_codes" type="string"/>
</sequence>
</complexType>
</element>
</schema>
</types>

MESSAGE TYPE DEFINITION - Definition of the message types used as
part of the port type defintioms

<message name='"ODEDwarfUseCaseRequestlessage'>

<part element="tns:0DEDwarfUseCaseRequest" name="payload"/>
</message>
<message name="ODEDwarfUseCaseResponseMessage'>

<part element="tns:0DEDwarfUseCaseResponse" name="payload"/>
</message>

156

C.3. WSDL Datei zum Aufruf des BPEL-Prozesses des Anwendungsfalls fur die Mustersuche

PORT TYPE DEFINITION - A port type groups a set of operations into
a logical service unit.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ s
<!-- portType implemented by the ODEDwarfUseCase BPEL process -->
<portType name="0DEDwarfUseCase'>
<operation name='"process'>
<input message="tns:0DEDwarfUseCaseRequestMessage'/>
<output message='"tns:0DEDwarfUseCaseResponsellessage"/>
</operation>
</portType>
Ty Ty B Y Y Y 0 Y Y Y N Y N NN NN N ey
PARTNER LINK TYPE DEFINITION
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ s
<plnk:partnerLinkType name="ODEDwarfUseCase">
<plnk:role name="ODEDwarfUseCaseProvider" portType="tns:0DEDwarfUseCase"/>
</plnk:partnerLinkType>
<binding name="ODEDwarfUseCaseBinding" type='"tns:0DEDwarfUseCase'>
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<operation name='"process'>
<soap:operation
soapAction="http://www.dwarf.uni-stuttgart.de/process" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>
<service name="ODEDwarfUseCase'">
<port name="0ODEDwarfUseCasePort" binding="tns:0DEDwarfUseCaseBinding">
<soap:address location="http://localhost:8080/ode/processes/0DEDwarfUseCase" />
</port>
</service>
</definitions>
Listing C.3: Die WSDL Datei zum Aufruf des BPEL-Prozesses des Anwendungsfalls fiir die
Mustersuche.

157

Literaturverzeichnis

[AEo9]

[AILoS]

[ALoo]

[AMAO6]

[Apa]

[AS96]

[BJA*08]

[BKML10]

[bpe]
[CEBT09]

A. K. André Eickler. Datenbanksysteme. Eine Einfiihrung. Oldenbourg Wissen-
schaftsverlag GmbH, 2009. (Zitiert auf Seite 35)

A. Ailamaki, Y. E. Ioannidis, M. Livny. Scientific workflow management by
database management. In Proc. Tenth Int Scientific and Statistical Database Mana-
gement Conf, pp. 190-199. 1998. doi:10.1109/SSDM.1998.688123. (Zitiert auf den

Seiten 7, 9, 43, 44, 51, 52, 133 und 136)

L. M. Andreas Laux. XUpdate Working Draft, 2000. URL http://xmldb-org.
sourceforge.net/xupdate/xupdate-wd.html. (Zitiert auf Seite 98)

A. Akram, D. Meredith, R. Allan. Evaluation of BPEL to Scientific Workflows. In
Proc. Sixth IEEE Int. Symp. Cluster Computing and the Grid CCGRID 06, volume 1,
pp- 269—274. 2006. doi:10.1109/CCGRID.2006.44. (Zitiert auf Seite 33)

Apache. Apache ODE Architecture. ~ URL http://ode.apache.org/
architectural-overview.html. (Zitiert auf Seite 66)

G. Alonso, H.-J. Schek. Research Issues in Large Workflow Management Sys-
tems. In In Proceedings of NSF Workshop on Workflow and Process Automation in
Information Science, pp. 126—132. 1996. (Zitiert auf den Seiten 44, 51 und 53)

R. Barga, J. Jackson, N. Araujo, D. Guo, N. Gautam, Y. Simmhan. The Trident
Scientific Workflow Workbench. In Proc. IEEE Fourth Int. Conf. eScience eScience
‘08, pp. 317-318. 2008. doi:10.1109/eScience.2008.126. (Zitiert auf Seite 55)

D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman,]. Ostell, E. W. Sayers. GenBank.
Nucleic Acids Res, 38(Database issue):D46-D51, 2010. doi:10.1093/nar/gkp1024.
URL http://dx.doi.org/10.1093/nar/gkp1024. (Zitiert auf Seite 38)

BPEL Project. Eclipse. URL http://www.eclipse.org/bpel. (Zitiert auf Seite 30)

N. Cipriani, M. Eissele, A. Brodt, M. Grossmann, B. Mitschang. NexusDS: a flexi-
ble and extensible middleware for distributed stream processing. In Proceedings
of the 2009 International Database Engineering & Applications Symposium, IDEAS
‘09, pp- 152-161. ACM, New York, NY, USA, 2009. doi:http://doi.acm.org/10.
1145/1620432.1620448. URL http://doi.acm.org/10.1145/1620432.1620448.
(Zitiert auf Seite 135)

159

http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://ode.apache.org/architectural-overview.html
http://ode.apache.org/architectural-overview.html
http://dx.doi.org/10.1093/nar/gkp1024
http://www.eclipse.org/bpel
http://doi.acm.org/10.1145/1620432.1620448

Literaturverzeichnis

[Cheo7]

[Chro1]

[Daros]

[DBG* 03]

[FLoo]

[FTGPo6]

[GHCMog]

[GPWTo7]

[GSKT11]

[HDO10]

160

W.-]J. Chen. DB2 9 pureXML Guide. IBM, 2007. URL http://www.redbooks.ibm.
com/abstracts/sg247315 . html. (Zitiert auf den Seiten 23, 24 und 37)

F. Christensen, E. ; Curbera. Web Services Description Language (WSDL) 1.1,
2001. URL http://www.w3.org/TR/wsdl. (Zitiert auf Seite 26)

P. Darugar. Abolish XML namespaces? Technical report, IBM, 2005. URL
http://www.ibm.com/developerworks/xml/library/x-abolns.html. (Zitiert
auf Seite 96)

E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn,
A. Lazzarini, A. Arbree, R. Cavanaugh, S. Koranda. Mapping abstract complex
workflows onto grid environments. Journal of Grid Computing, (1):25-39, 2003.
(Zitiert auf Seite 13)

D. R. Frank Leymann. Production Workflow: Concepts and Techniques. Prentice
Hall International, 2000. (Zitiert auf den Seiten 14, 27 und 32)

M. Fischer, Q. K. Thai, M. Grieb, J. Pleiss. DWARF-a data warehouse system
for analyzing protein families. BMC Bioinformatics, 7:495, 2006. do0i:10.1186/
1471-2105-7-495. URL http://dx.doi.org/10.1186/1471-2105-7-495. (Zitiert
auf Seite 38)

T. Gunarathne, C. Herath, E. Chinthaka, S. Marru. Experience with adapting
a WS-BPEL runtime for eScience workflows. In Proceedings of the 5th Grid
Computing Environments Workshop, GCE “o9, pp. 7:1—7:10. ACM, New York,
NY, USA, 2009. doi:http://doi.acm.org/10.1145/1658260.1658270. URL http:
//doi.acm.org/10.1145/1658260.1658270. (Zitiert auf den Seiten 29 und 33)

T. Gunarathne, D. Premalal, T. Wijethilake, I. Kumara, A. Kumar. BPEL-Mora:
Lightweight Embeddable Extensible BPEL Engine. In M. Calisti, M. Wal-
liser, S. Brantschen, M. Herbstritt, C. Pautasso, C. Bussler, editors, Emer-
ging Web Services Technology, Whitestein Series in Software Agent Technolo-
gies and Autonomic Computing, pp. 3—20. Birkhaeuser Basel, 2007. URL
http://dx.doi.org/10.1007/978-3-7643-8448-7_2. (Zitiert auf Seite 45)

Gorlach, Sonntag, Karastoyanova, Leymann, Reiter. Conventional Workflow
Technology for Scientific Simulation. To appear in: Yang, Y. (ed.); Wang, L. (ed.);
Jie, W. (ed.): Guide to e-Science. Springer, 2011. (Zitiert auf den Seiten 14, 33, 54
und 65)

B. Haasdonk, M. Dihlmann, M. Ohlberger. A Training Set and Multiple Bases
Generation Approach for Parametrized Model Reduction Based on Adaptive
Grids in Parameter Space. 2010. URL http://www.ians.uni-stuttgart.de/
agh/publications/2010/HD010/. (Zitiert auf den Seiten 120 und 128)

http://www.redbooks.ibm.com/abstracts/sg247315.html
http://www.redbooks.ibm.com/abstracts/sg247315.html
http://www.w3.org/TR/wsdl
http://www.ibm.com/developerworks/xml/library/x-abolns.html
http://dx.doi.org/10.1186/1471-2105-7-495
http://doi.acm.org/10.1145/1658260.1658270
http://doi.acm.org/10.1145/1658260.1658270
http://dx.doi.org/10.1007/978-3-7643-8448-7_2
http://www.ians.uni-stuttgart.de/agh/publications/2010/HDO10/
http://www.ians.uni-stuttgart.de/agh/publications/2010/HDO10/

Literaturverzeichnis

[HHGRo6] G. Hackmann, M. Haitjema, C. Gill, G.-C. Roman. Sliver: A BPEL Workflow

[Holgs]

[IMBo7]

[JPA]

[KBA*]

[Miil1o]

[NG87]

[OAF"04]

[OASo7]

[OLK " 07]

Process Execution Engine for Mobile Devices. In A. Dan, W. Lamersdorf,
editors, Service-Oriented Computing ICSOC 2006, volume 4294 of Lecture Notes
in Computer Science, pp. 503-508. Springer Berlin / Heidelberg, 2006. URL
http://dx.doi.org/10.1007/11948148_47. (Zitiert auf Seite 45)

D. Hollingsworth. The Workflow Reference Model. 1995. (Zitiert auf den
Seiten 7, 43 und 44)

J. L. T. Jeremy M. Berg, Lubert Stryer. Biochemistry. Spektrum Verlag, 2007.
(Zitiert auf Seite 39)

OpenJPA 2.0. URL http://openjpa.apache.org/documentation.html. (Zitiert
auf Seite 67)

G. King, C. Bauer, M. R. Andersen, E. Bernard, S. Ebersole. Hibernate Re-
ference Documentation. URL http://docs. jboss.org/hibernate/core/3.5/
reference/en/html/. (Zitiert auf Seite 67)

C. M. Miiller. Development of an Integrated Database Architecture for a Runti-
me Environment for Simulation Workflows. Diplomarbeit, Universitdt Stuttgart,
2010. URL http://elib.uni-stuttgart.de/opus/volltexte/2010/5232/pdf/
DIP_2984.pdf. (Zitiert auf den Seiten 54 und 81)

D. W. Nebert, F. J. Gonzalez. P450 genes: structure, evolution, and regulation.
Annu Rev Biochem, 56:945-993, 1987. doi:10.1146/annurev.bi.56.070187.004501.
URL http://dx.doi.org/10.1146/annurev.bi.56.070187.004501. (Zitiert auf
Seite 40)

T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat, P. Li. Taverna: a tool for the composition
and enactment of bioinformatics workflows. Bioinformatics, 20(17):3045-3054,
2004. doi:10.1093/bioinformatics/bth361. URL http://dx.doi.org/10.1093/
bioinformatics/bth361. (Zitiert auf den Seiten 30 und 55)

OASIS. Web Services Business Process Execution Language Version 2.0,
OASIS Standard, 2007. URL http://docs.oasis-open.org/wsbpel/2.0/0S/
wsbpel-v2.0-0S.pdf. (Zitiert auf den Seiten 14, 30, 31 und 71)

T. Oinn, P. Li, D. B. Kell, C. Goble, A. Goderis, M. Greenwood, D. Hull, R. Ste-
vens, D. Turi,]. Zhao. Taverna myGrid: Aligning a Workflow System with the
Life Sciences Community. In L. J. Taylor, E. Deelman, D. B. Gannon, M. Shields,
editors, Workflows for e-Science, pp. 300-319. Springer London, 2007. URL
http://dx.doi.org/10.1007/978-1-84628-757-2_19. (Zitiert auf Seite 30)

161

http://dx.doi.org/10.1007/11948148_47
http://openjpa.apache.org/documentation.html
http://docs.jboss.org/hibernate/core/3.5/reference/en/html/
http://docs.jboss.org/hibernate/core/3.5/reference/en/html/
http://elib.uni-stuttgart.de/opus/volltexte/2010/5232/pdf/DIP_2984.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2010/5232/pdf/DIP_2984.pdf
http://dx.doi.org/10.1146/annurev.bi.56.070187.004501
http://dx.doi.org/10.1093/bioinformatics/bth361
http://dx.doi.org/10.1093/bioinformatics/bth361
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://dx.doi.org/10.1007/978-1-84628-757-2_19

Literaturverzeichnis

[PDg9]

[RRST10]

[sgm86]

[SKDNos]

[Sloo7]

[SWLPog]

[Tayo7]

[THo1]

[Thoo4]

[VSRMo8]

[VSSto7]

[w3ca]

[W3Cb]

162

N. W. Paton, O. Diaz. Active database systems. ACM Comput. Surv., 31:63-103,
1999. doi:http://doi.acm.org/10.1145/311531.311623. URL http://doi.acm.
org/10.1145/311531.311623. (Zitiert auf Seite 51)

P. Reimann, M. Reiter, H. Schwarz, D. Karastoyanova, F. Leymann. SIMPL - A
Framework for Accessing External Data in Simulation Workflows. 2010. (Zitiert
auf den Seiten 7, 29, 34, 43, 47, 48 und 135)

ISO 8879:1986 Information Processing - Text and Office Systems - Standard
Generalized Markup Language (SGML), 1986. (Zitiert auf Seite 17)

S. Shankar, A. Kini, D. J. DeWitt, J]. Naughton. Integrating databases and
workflow systems. SIGMOD Rec., 34:5-11, 2005. doi:http://doi.acm.org/10.
1145/1084805.1084808. URL http://doi.acm.org/10.1145/1084805.1084808.
(Zitiert auf den Seiten 43 und 51)

A. Slominski. Adapting BPEL to Scientific Workflows. In I. J. Taylor, E. Deelman,
D. B. Gannon, M. Shields, editors, Workflows for e-Science, pp. 208—226. Sprin-
ger London, 2007. URL http://dx.doi.org/10.1007/978-1-84628-757-2_14.
(Zitiert auf den Seiten 14, 29 und 33)

D. Sirim, F. Wagner, A. Lisitsa,]. Pleiss. The cytochrome P450 engineering data-
base: Integration of biochemical properties. BMC Biochem, 10:27, 2009. doi:10.
1186/1471-2091-10-27. URL http://dx.doi.org/10.1186/1471-2091-10-27.
(Zitiert auf Seite 38)

G. S. Taylor, Deelman. Workflows for e-Science. Springer, 2007. (Zitiert auf
Seite 33)

E. R. Theo Héarder. Datenbanksysteme - Konzepte und Techniken der Implementie-
rung. Springer, 2001. (Zitiert auf Seite 36)

H. S. Thompson. XML Schema, 2004. URL http://www.w3.org/XML/Schema.
(Zitiert auf den Seiten 17 und 20)

M. Vrhovnik, H. Schwarz, S. Radeschiitz, B. Mitschang. An Overview of SQL
Support in Workflow Products. In Proc. IEEE 24th Int. Conf. Data Engineering
ICDE 2008, pp. 1287-1296. 2008. doi:10.1109/ICDE.2008.4497538. (Zitiert auf
den Seiten 34, 43 und 45)

M. Vrhovnik, H. Schwarz, O. Suhre, B. Mitschang, V. Markl, A. Maier, T. Kraft.
An approach to optimize data processing in business processes. In In VLDB,
pp- 615-626. 2007. (Zitiert auf den Seiten 7, 34, 47, 49, 51 und 59)

Document Object Model (DOM). URL http://www.w3.org/DOM/. (Zitiert auf
Seite 17)

W3C. Document Type Definition. (Zitiert auf Seite 17)

http://doi.acm.org/10.1145/311531.311623
http://doi.acm.org/10.1145/311531.311623
http://doi.acm.org/10.1145/1084805.1084808
http://dx.doi.org/10.1007/978-1-84628-757-2_14
http://dx.doi.org/10.1186/1471-2091-10-27
http://www.w3.org/XML/Schema
http://www.w3.org/DOM/

Literaturverzeichnis

[W3Cg99] W3C. XML Path Language (XPath) Version 1.0, 1999. URL http://www.w3.org/
TR/xpath/. (Zitiert auf den Seiten 21 und 23)

[W3Coya] W3C. SOAP Version 1.2, 2007. URL http://www.w3.org/TR/soap/. (Zitiert auf
Seite 26)

[W3Co7b] W3C. XQuery 1.0: An XML Query Language, 2007. URL http://www.w3.org/
TR/xquery/. (Zitiert auf Seite 23)

[W3Co8] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition), 2008. URL
http://www.w3.org/TR/2008/REC-xml-20081126/. (Zitiert auf Seite 17)

[W3Coo] W3C. XQuery Update Facility 1.0, 2009. URL http://www.w3.org/TR/
xquery-update-10/. (Zitiert auf den Seiten 24, 98 und 133)

[Wag1o0] F. Wagner. Webservice und Workflow-Technologie fiir Proteinmodellierung,
2010. URL http://elib.uni-stuttgart.de/opus/volltexte/2010/5567/pdf/
STUD_2258.pdf. (Zitiert auf den Seiten 7, 11, 30, 38, 39, 40, 46 und 102)

[WCL"o05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson. Web Services
Y Y, g
Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More. Prentice Hall PTR, 2005. (Zitiert auf den Seiten 14
und 25)

Alle URLs wurden zuletzt am 19. Februar 2011 gepriift.

163

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/
http://elib.uni-stuttgart.de/opus/volltexte/2010/5567/pdf/STUD_2258.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2010/5567/pdf/STUD_2258.pdf

Erkldarung

Hiermit versichere ich, diese Arbeit selbstandig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Florian Bernd Dominic Wagner)

	1 Einleitung
	1.1 Motivation und Aufgaben dieser Arbeit
	1.2 Konventionen und rechtliche Hinweise
	1.3 Aufbau dieses Dokuments

	2 Grundlagen
	2.1 eXtensible Markup Language
	2.1.1 XML-Schema
	2.1.2 XPath
	2.1.3 XQuery
	2.1.4 pureXML

	2.2 Service Oriented Architecture
	2.2.1 Webservices

	2.3 Workflowtechnologie
	2.3.1 Workflow Management Systeme
	2.3.2 Workflow Sprachen
	2.3.2.1 Simple Conceptual Unified Flow Language
	2.3.2.2 WS-Business Process Execution Language

	2.3.3 Workflow Arten
	2.3.3.1 Business-WFs
	2.3.3.2 Wissenschaftliche-WFs
	2.3.3.3 Extraction Transformation Load-WFs
	2.3.3.4 Zusammenfassung

	2.4 Datenbanktechnologie
	2.4.1 Datenbanksysteme
	2.4.1.1 IBM DB2
	2.4.1.2 PostgreSQL

	2.5 Webservice und Workflow-Technologie für Proteinmodellierung
	2.5.1 Bioinformatik
	2.5.1.1 Anwendungsfall Mustersuche

	3 Workflow Architekturen und Datenbank Integration
	3.1 Workflow Reference Model
	3.2 Arbeiten und Ansätze zur Datenbankintegration
	3.2.1 BPEL/SQL Funktionalität
	3.2.2 Process Graph Model Optimierung
	3.2.3 Datenbank als Workflowsystem erster Klasse
	3.2.4 Zusammenfassung und Abgrenzung zu dieser Arbeit

	3.3 Workflowsysteme und Engines
	3.3.1 Apache Orchestration Director Engine
	3.3.2 Taverna
	3.3.3 Trident Scientific Workflow Workbench
	3.3.4 WebSphere Process Server

	4 Nutzung von Funktionen einer integrierten Workflowdatenbank
	4.1 Grundlegendes Konzept
	4.2 Pushdown Konzepte
	4.2.1 WebService-Pushdown
	4.2.2 Assignment-Pushdown
	4.2.3 ExpressionEvaluation-Pushdown
	4.2.3.1 Condition-Pushdown

	4.3 Query-Pushdown
	4.3.1 XPath-Pushdown
	4.3.2 Pushdown-Hierarchie und Architekturmodell

	5 Apache ODE Architektur im Detail
	5.1 Gesamtarchitektur
	5.2 Detaillierte Architektur der Runtime und der Data Access Objects
	5.2.1 ODE Runtime
	5.2.2 OModel und BPEL Typsystem
	5.2.3 ODE Hibernate DAO und Tabellenschema
	5.2.4 BpelRuntimeContext und Aktivitäten
	5.2.5 Ausführungsszenario

	5.3 Möglichkeiten für eine stärkere Nutzung der integrierten Datenbank

	6 Implementierung des Prototyps
	6.1 Veränderungen an der Architektur von Apache ODE
	6.1.1 Änderungen am Datenmodell der integrierten Datenbank
	6.1.2 Änderungen in der DAO-Schicht
	6.1.2.1 Hauptmethoden von ScopeDAO

	6.1.3 Änderungen in der Runtime-Schicht

	6.2 Funktionalität des Prototyps
	6.2.1 Realisierte Pushdown-Konzepte
	6.2.2 Technische Schwierigkeiten
	6.2.2.1 Implementierung für PostgreSQL

	6.2.3 Weiterführende Modifikationen

	7 Evaluierung des Prototyps
	7.1 Vorstellung der Testfälle
	7.2 Testumgebung und Durchführung
	7.3 Vorstellung der Messergebnisse
	7.3.1 Vorbemerkung zur Vergleichbarkeit der Messungen
	7.3.2 Zuweisungen
	7.3.2.1 IBM DB2
	7.3.2.2 PostgreSQL

	7.3.3 Bedingungen (ExpressionEvaluation-Pushdown)
	7.3.4 INVOKE (Webservice-Pushdown)
	7.3.5 Anwendungsfall (Simulationsworkflow)
	7.3.5.1 IBM DB2
	7.3.5.2 PostgreSQL

	7.4 Diskussion der Messergebnisse
	7.4.1 Technische Limitierungen

	8 Konzeptionelle Erweiterungen
	8.1 Referenzarchitektur
	8.1.1 Referenzarchitektur für ein Pushdown WfMS
	8.1.2 Architekturmodell Hybrides WfMS

	8.2 Weiterführende Arbeiten

	9 Zusammenfassung
	9.1 Schlussfolgerung
	9.2 Ausblick
	9.3 Danksagungen

	A Abkürzungsverzeichnis
	B Entwicklungsumgebung
	B.1 Verwendete Software
	B.2 Programmierumgebung
	B.3 Workflow Erstellung
	B.4 Installation des Prototyps
	B.4.1 Datenbank Setup
	B.4.2 Prototyp Einstellungen

	C Anwendungsfall Proteinmodellierung - Mustersuche
	C.1 BIIF XML Beispiel
	C.2 BPEL Prozess des Anwendungsfalls für die Mustersuche
	C.3 WSDL Datei zum Aufruf des BPEL-Prozesses des Anwendungsfalls für die Mustersuche

	Literaturverzeichnis

