
Institut für Parallele und Verteilte Systeme
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3038

Nutzung einer integrierten
Datenbank zur effizienten

Ausführung von Workflows

Florian Bernd Dominic Wagner

Studiengang: Informatik

Prüfer: Dr. habil. Holger Schwarz

Betreuer: Dipl.-Inf. Peter Reimann

begonnen am: 16. September 2010

beendet am: 22. Februar 2011

CR-Klassifikation: D.2.11, H.2.3, H.2.4, H.2.8, H.4.1

Inhaltsverzeichnis

1. Einleitung 13
1.1. Motivation und Aufgaben dieser Arbeit . 14

1.2. Konventionen und rechtliche Hinweise . 15

1.3. Aufbau dieses Dokuments . 15

2. Grundlagen 17
2.1. eXtensible Markup Language . 17

2.1.1. XML-Schema . 20

2.1.2. XPath . 21

2.1.3. XQuery . 23

2.1.4. pureXML . 23

2.2. Service Oriented Architecture . 25

2.2.1. Webservices . 25

2.3. Workflowtechnologie . 27

2.3.1. Workflow Management Systeme . 28

2.3.2. Workflow Sprachen . 28

2.3.2.1. Simple Conceptual Unified Flow Language 30

2.3.2.2. WS-Business Process Execution Language 30

2.3.3. Workflow Arten . 32

2.3.3.1. Business-WFs . 32

2.3.3.2. Wissenschaftliche-WFs . 33

2.3.3.3. Extraction Transformation Load-WFs 34

2.3.3.4. Zusammenfassung . 34

2.4. Datenbanktechnologie . 35

2.4.1. Datenbanksysteme . 35

2.4.1.1. IBM DB2 . 37

2.4.1.2. PostgreSQL . 37

2.5. Webservice und Workflow-Technologie für Proteinmodellierung 38

2.5.1. Bioinformatik . 38

2.5.1.1. Anwendungsfall Mustersuche 39

3. Workflow Architekturen und Datenbank Integration 43
3.1. Workflow Reference Model . 43

3

3.2. Arbeiten und Ansätze zur Datenbankintegration 45

3.2.1. BPEL/SQL Funktionalität . 45

3.2.2. Process Graph Model Optimierung . 47

3.2.3. Datenbank als Workflowsystem erster Klasse 51

3.2.4. Zusammenfassung und Abgrenzung zu dieser Arbeit 53

3.3. Workflowsysteme und Engines . 54

3.3.1. Apache Orchestration Director Engine 54

3.3.2. Taverna . 55

3.3.3. Trident Scientific Workflow Workbench 55

3.3.4. WebSphere Process Server . 56

4. Nutzung von Funktionen einer integrierten Workflowdatenbank 57
4.1. Grundlegendes Konzept . 57

4.2. Pushdown Konzepte . 59

4.2.1. WebService-Pushdown . 59

4.2.2. Assignment-Pushdown . 59

4.2.3. ExpressionEvaluation-Pushdown . 60

4.2.3.1. Condition-Pushdown . 60

4.3. Query-Pushdown . 61

4.3.1. XPath-Pushdown . 62

4.3.2. Pushdown-Hierarchie und Architekturmodell 63

5. Apache ODE Architektur im Detail 65
5.1. Gesamtarchitektur . 65

5.2. Detaillierte Architektur der Runtime und der Data Access Objects 67

5.2.1. ODE Runtime . 67

5.2.2. OModel und BPEL Typsystem . 68

5.2.3. ODE Hibernate DAO und Tabellenschema 71

5.2.4. BpelRuntimeContext und Aktivitäten . 74

5.2.5. Ausführungsszenario . 76

5.3. Möglichkeiten für eine stärkere Nutzung der integrierten Datenbank 79

6. Implementierung des Prototyps 81
6.1. Veränderungen an der Architektur von Apache ODE 81

6.1.1. Änderungen am Datenmodell der integrierten Datenbank 81

6.1.2. Änderungen in der DAO-Schicht . 82

6.1.2.1. Hauptmethoden von ScopeDAO 87

6.1.3. Änderungen in der Runtime-Schicht . 92

6.2. Funktionalität des Prototyps . 93

6.2.1. Realisierte Pushdown-Konzepte . 93

6.2.2. Technische Schwierigkeiten . 95

6.2.2.1. Implementierung für PostgreSQL 97

4

6.2.3. Weiterführende Modifikationen . 97

7. Evaluierung des Prototyps 101
7.1. Vorstellung der Testfälle . 101

7.2. Testumgebung und Durchführung . 103

7.3. Vorstellung der Messergebnisse . 105

7.3.1. Vorbemerkung zur Vergleichbarkeit der Messungen 105

7.3.2. Zuweisungen . 106

7.3.2.1. IBM DB2 . 107

7.3.2.2. PostgreSQL . 112

7.3.3. Bedingungen (ExpressionEvaluation-Pushdown) 114

7.3.4. INVOKE (Webservice-Pushdown) . 118

7.3.5. Anwendungsfall (Simulationsworkflow) 120

7.3.5.1. IBM DB2 . 120

7.3.5.2. PostgreSQL . 124

7.4. Diskussion der Messergebnisse . 127

7.4.1. Technische Limitierungen . 129

8. Konzeptionelle Erweiterungen 131
8.1. Referenzarchitektur . 131

8.1.1. Referenzarchitektur für ein Pushdown WfMS 131

8.1.2. Architekturmodell Hybrides WfMS . 132

8.2. Weiterführende Arbeiten . 133

9. Zusammenfassung 139
9.1. Schlussfolgerung . 140

9.2. Ausblick . 140

9.3. Danksagungen . 141

A. Abkürzungsverzeichnis 143

B. Entwicklungsumgebung 145
B.1. Verwendete Software . 145

B.2. Programmierumgebung . 146

B.3. Workflow Erstellung . 146

B.4. Installation des Prototyps . 147

B.4.1. Datenbank Setup . 147

B.4.2. Prototyp Einstellungen . 148

C. Anwendungsfall Proteinmodellierung - Mustersuche 149
C.1. BIIF XML Beispiel . 149

C.2. BPEL Prozess des Anwendungsfalls für die Mustersuche 151

5

C.3. WSDL Datei zum Aufruf des BPEL-Prozesses des Anwendungsfalls für die
Mustersuche . 155

Literaturverzeichnis 159

6

Abbildungsverzeichnis

2.1. Architektur eines typischen Workflow Management Systems 29

2.2. 3D Struktur eines Cytochrome P450 Proteins. Rot: α Helix, Gelb: β Faltblatt,
Grün: Schleifen. Quelle: [Wag10] . 39

2.3. Graphische Repräsentation des in WS-BPEL definierten Anwendungsfalls zur
Mustersuche in Proteinsequenzen. 41

3.1. Das Workflow Referenz Modell - Vgl. [Hol95] 44

3.2. Typische Workflow-Engine mit integriertem DBS für die Speicherung von
Prozess und WF-Instanz Daten. 45

3.3. Ein Beispiel-Workflow mit Inline SQL Aktivitäten. 46

3.4. Architektur des SIMPL-Frameworks - Vgl. [RRS+10] 48

3.5. Funktionsweise des PGM-Optimierers - Vgl. [VSS+07] 49

3.6. Optimierung des BPEL/SQL Workflows aus Abb. 3.3 50

3.7. Klassische WfMS Architektur (a) und DBMS als Erste-Klasse WfMS (b). Vgl.
[AIL98] . 51

3.8. Überführung eines Workflows in das ORDBM Schema Moose - Vgl. [AIL98] . 52

4.1. Das Konzept zur erweiterten Nutzung der integrierten DB 58

4.2. Der Webservice-Pushdown . 60

4.3. Der Query-Pushdown in asynchronem oder synchronem Modus. 62

4.4. Hierarchie der Pushdown-Konzepte . 63

4.5. Softwarearchitektur zur Realisierung der Pushdown-Konzepte 64

5.1. Gesamtarchitektur von Apache ODE . 66

5.2. Bestandteile der Apache ODE Runtime . 68

5.3. Ausschnitt des OModel als UML Diagramm . 70

5.4. UML-Diagramm eines Ausschnitts der Apache ODE DAO-Schicht 73

5.5. Teile der von Hibernate generierten Apache ODE Tabellenschemata 74

5.6. Ausschnitt der Laufzeitkomponenten als UML-Diagramm 75

6.1. Verändertes und vereinfachtes Tabellenschema für den Prototyp. 83

6.2. UML-Diagramm der modifizierten DAO-Schicht für den Prototypen 86

6.3. UML-Diagramm der veränderten Runtime-Schicht des Prototyps 94

7.1. Graphische Repräsentation der BPEL-Workflows für die Einzeltests. 102

7

7.2. Diagramm zur Vergleichbarkeit der Messungen zwischen Original Apache
ODE und allen anderen Versionen . 106

7.3. Relative ASSIGN-Zeit über Datengröße für Zuweisungen ohne XPath-
Ausdruck (DB2). 108

7.4. Relative Laufzeit über Datengröße für Zuweisungen ohne XPath-Ausdruck
(DB2). 108

7.5. Relative ASSIGN-Zeit über Datengröße für Zuweisungen einfacher XPath-
Selektionen (DB2). 109

7.6. Relative Laufzeit über Datengröße für Zuweisungen einfacher XPath-
Selektionen (DB2). 110

7.7. Relative ASSIGN-Zeit über Datengröße für Zuweisungen komplexer XPath-
Ausdrücke (DB2). 110

7.8. Relative Laufzeit über Datengröße für Zuweisungen komplexer XPath-
Ausdrücke (DB2). 111

7.9. Relative kombinierte ASSIGN-Zeit über Datengröße für Zuweisungen (DB2). . 111

7.10. Relative ASSIGN-Zeit über Datengröße für Zuweisungen ohne XPath-
Ausdruck (PostgreSQL). 112

7.11. Relative ASSIGN-Zeit über Datengröße für Zuweisungen einfacher XPath-
Selektionen (PostgreSQL). 113

7.12. Relative kombinierte Laufzeit über Datengröße für Zuweisungen (PostgreSQL).113

7.13. Relative IF-Zeit über Datengröße für die Auswertung einfacher XPath-
Ausdrücke (DB2). 115

7.14. Relative Laufzeit über Datengröße für die Auswertung einfacher XPath-
Ausdrücke (DB2). 115

7.15. Relative IF-Zeit über Datengröße für die Auswertung komplexer XPath-
Ausdrücke (DB2). 116

7.16. Relative IF-Zeit über Datengröße für die parallele Auswertung einfacher und
komplexer XPath-Ausdrücke (DB2). 117

7.17. Relative Gesamtlaufzeit über Datengröße für die parallele Auswertung einfa-
cher und komplexer XPath-Ausdrücke (DB2). 117

7.18. Relative INVOKE-Zeit über Datengröße für den Aufruf einer WS-Operation
(DB2). 119

7.19. Relative Instanzlaufzeit über Datengröße für den Aufruf einer WS-Operation
(DB2). 119

7.20. Relative ASSIGN-Zeit über Anzahl Schleifendurchläufe für den Anwendungs-
fall (DB2). 121

7.21. Relative IF-Zeit über Anzahl Schleifendurchläufe für den Anwendungsfall
(DB2). 122

7.22. Relative Laufzeit über Anzahl Schleifendurchläufe für den Anwendungsfall
(DB2). 123

7.23. Absoluter Hauptspeicherverbrauch über Anzahl Schleifendurchläufe für den
Anwendungsfall (DB2). 123

8

7.24. Relative Laufzeit und relativer Hauptspeicherverbrauch bei paralleler Ausfüh-
rung von 10 Instanzen des Anwendungsfalls mit 40 Iterationen (DB2). 124

7.25. Relative Gesamtlaufzeit der parallelen und sequentiellen Ausführung von 10

Instanzen des Anwendungsfalls mit 40 Iterationen (DB2). 125

7.26. Relative ASSIGN-Zeit über Anzahl Schleifendurchläufe für den Anwendungs-
fall (PostgreSQL). 126

7.27. Relative Laufzeit einer Instanz über Anzahl Schleifendurchläufe für den An-
wendungsfall (PostgreSQL). 126

7.28. Absoluter Hauptspeicherverbrauch über Anzahl Schleifendurchläufe für den
Anwendungsfall (PostgreSQL). 127

8.1. Referenzarchitektur für ein Pushdown WfMS 132

8.2. Klassische WfMS Architektur (a), DBMS als Erste-Klasse WfMS (b) und der
Hybride Ansatz (c). Vgl. [AIL98] . 133

9

Tabellenverzeichnis

2.1. Strukturgrad von Informationen und typische Vertreter dieser Klassen. 18

2.2. Die XPath-Achsen mit Beschreibung und abkürzender Schreibweise. 22

2.3. Die XPath-Knotentests mit Beschreibung. 22

2.4. Vergleich der Eigenschaften und Anwendungsgebiete der verschiedenen Arten
von Workflows. 35

4.1. Mögliche Ausprägungen des Query-Pushdowns. 61

5.1. Die BPEL Variablen Typen, ihre OModel Repräsentation und die in der Laufzeit
verwendeten Wrapper Elemente. 71

5.2. WS-BPEL Aktivitäten und ihre möglichen Optimierungen durch die
Pushdown-Konzepte aus Kapitel 4. 79

6.1. Auswahl und Begründung der verwendeten Komponenten für den Prototyp. . 82

6.2. Aufrufhierarchie zwischen den XPath-Pushdown Methoden aus ScopeFrame,
BpelRuntimeContext und ScopeDAO. 93

6.3. Alle ODE Klassen, die potentiell von den Pushdown-Konzepten Gebrauch
machen können und der Stand ihrer Implementierung. 95

7.1. Testfälle der Einzelmessungen im Überblick. 101

7.2. XPath-Ausdrücke verschiedener Komplexität für die Messung der Zuweisung
(ASSIGN). 107

7.3. XPath-Ausdrücke verschiedener Komplexität für die Messung der Bedin-
gungsauswertung (IF). 114

10

Verzeichnis der Listings

2.1. Ein wohlgeformtes XML-Dokument, welches alle XML-Knotentypen beinhaltet. 19

2.2. Ein XML-Schema Dokument, welches die Struktur des XML Dokuments aus
Listing 2.1 definiert. 20

2.3. XQuery-Anfrage an DB2 mit Zugriff auf ein XML-Feld einer relationalen Tabelle. 24

2.4. Ein pureXML-Ausdruck, der ein bestehendes, in einem XML-Feld abgelegtes,
XML-Dokument modifiziert. 24

2.5. Ein pureXML-Ausdruck, der ein bestehendes XML-Dokument unter Verwen-
dung des Inhalt eines zweiten XML-Dokuments modifiziert. 24

2.6. Eine SOAP Nachricht aus dem Anwendungsfall für Proteinmmodellierung . . 26

2.7. Proteinsequenz des Proteins aus Abb. 2.2 als Zeichenkette. Quelle: [Wag10] . . 38

5.1. Beispiel für die Annotation einer Java Klasse, die von Hibernate synchronisiert
werden soll. 72

5.2. Pseudoquellcode der Ausführung des ASSIGN-Beispiels für Apache ODE. . . 77

6.1. SQL/pureXML Query für den WS-Pushdown. 87

6.2. SQL/pureXML Query für den synchronen XPath-Pushdown innerhalb Zu-
weisungen von Variablen. 88

6.3. Beispielinstanz des SQL/pureXML Query aus Listing 6.2. 89

6.4. Aus diesen vier Teil-Queries wird das SQL/pureXML Query für den synchro-
nen XPath-Ausdruck-Pushdown aufgebaut. 89

6.5. Beispiel SQL/pureXML Query für den synchronen XPath-Ausdruck-Pushdown. 90

6.6. Beispiel eines SQL/pureXML Query für den asynchronen XPath-Pushdown
von einem XML Element Typ an einen XSD Einfachen Typ, der initialisiert ist. 91

C.1. BIIF XML Beispiel (gekürzt) . 149

C.2. BPEL Prozess des Anwendungsfalls für die Mustersuche 151

C.3. Die WSDL Datei zum Aufruf des BPEL-Prozesses des Anwendungsfalls für
die Mustersuche. 155

11

1. Einleitung

Integration ist eines der wichtigsten Themen in unserer heutigen Welt. Von einem soziolo-
gischen Standpunkt aus betrachtet rücken Menschen aus der ganzen Welt jeden Tag näher
zusammen. Dies führt manchmal zu Missverständnissen und kulturellen Konflikten. Der
einzige Ausweg besteht darin, miteinander zu kommunizieren und die Lebensweise und
Fähigkeiten der anderen zu respektieren. Diese Globalisierung wird nicht nur durch den
immer günstiger werdenden Massenverkehr oder die überall verfügbare Telekommunikation
angetrieben, auch die Informationstechnologie trägt einen großen Teil dazu bei und ist
mit unserem täglichen Leben, dem Massenverkehr und der Telekommunikation verwoben
wie kaum eine andere Technologie je zuvor. Mit dem omnipräsenten Internet können wir
Informationen und Menschen auf der ganzen Welt, ohne eine für den Menschen spürbare
Zeitverzögerung, austauschen und erreichen. Unternehmen und wissenschaftliche Einrich-
tungen, die über die ganze Welt verstreut sind, können ihre Daten teilen und haben dadurch
die Möglichkeit global zusammen zu arbeiten. Es können Dienstleistungen angeboten wer-
den, die vor 20 Jahren noch unvorstellbar waren und Daten wissenschaftlicher Experimente
zeitnah ausgewertet werden. Die riesigen Messdaten des Compact Muon Solenoid (CMS),
der Partikel Detektor des Large Hadron Colliders (LHC) in Cern, werden beispielsweise
durch ein weltweites Netz von Rechnern ausgewertet [DBG+

03].

Aber wie kam es überhaupt dazu und was bedeutet es Daten zu speichern und auszut-
auschen? - Nach den 1950ern konnte man sehr gut wissenschaftliche Probleme sowie
betriebswirtschaftliche Berechnungen, z.B. Abrechnungen, mit Computern durchführen.
Im Zuge der Softwarekrise in den 1970ern, kam die Notwendigkeit auf, immer größere
Datenmengen getrennt von den Anwendungen abzuspeichern bzw. überhaupt Systeme
zu besitzen, die große Datenmengen verwalten können. Aus dieser Notwendigkeit heraus
sind die heutigen Datenbanksysteme entstanden, die Funktionen zum Speichern und Laden
von Daten anbieten und die Verwaltung, wie diese Daten physikalisch auf Bändern und
Festplatten gespeichert werden, übernehmen. Da die Datenbanktechnologie nun schon fast
ein halbes Jahrhundert alt ist, ist sie eine ausgereifte und anerkannte Technologie innerhalb
der Informatik.

Die Idee verschiedene Computer miteinander zu verbinden entstand ebenfalls in den 1970ern,
hauptsächlich vom U.S. Militär vorangetrieben, die Nachrichten und Informationen zwischen
ihren Außenposten austauschen wollten. Dieses Netzwerk wurde in den 1980ern erweitert,
indem Universitäten aller Welt angeschlossen wurden, in Deutschland war ein Server der
Universität Karlsruhe der Erste, der mit dem sog. Internet verbunden war. In den 1990ern

13

1. Einleitung

wurde das Internet öffentlich und innerhalb der letzten 10 Jahre haben sogar kleine Firmen
und Privathaushalte mindestens einen Computer oder ein elektronisches Gerät, welches mit
dem Internet verbunden ist.

Somit besitzen wir heutzutage ein riesiges, weltumspannendes, verteiltes und heterogenes
Computersystem und eine Vielzahl von Anwendungen, die potentiell miteinander verbunden
sind. Dadurch kann es einfacher, schneller und günstiger sein, neue Anwendungen durch
eine Kombination bestehender Anwendungen zu realisieren. Jedoch ist die Stärke dieser
verteilten Applikationen zugleich auch ihre größte Schwäche. Das Hauptproblem besteht
darin, Mittel und Wege zu finden, diese verstreuten Anwendungen in einer einheitlichen
Art und Weise miteinander arbeiten bzw. kommunizieren zu lassen. Eine generelle Architek-
turbeschreibung, welche die nötigen Voraussetzungen für ein solches System beschreibt, ist
die Service Oriented Architecture (SOA) [WCL+

05]. Eine allgemein anerkannte Realisierung
für eine SOA sind Webservices (WSs) [WCL+

05] und Workflows (WFs) [FL00]. Mit der
Workflowsprache Web Services- Business Process Execution Language (WS-BPEL) [OAS07]
kann man Prozesse (z.B. Geschäftsprozesse) durch Orchestrierung einzelner WSs modellieren
und ausführen. Somit wird die Erstellung und die Ausführung von WFs, die Stabilität und
die Geschwindigkeit der zugrunde liegenden WF-Management Systeme (WfMSe) immer
wichtiger.

1.1. Motivation und Aufgaben dieser Arbeit

Nahezu alle WfMSe verwenden ein Datenbanksystem (DBS) um WF- und Prozess-Daten (z.B.
Variableninhalte, Nachrichten an und von WSs und Metainformationen zu Ausführungen) zu
speichern und persistent zu halten. Da Datenbanksysteme eine ausgereifte und skalierbare
Technologie darstellen, ist es von Interesse, ihre Möglichkeiten und Funktionen auszunut-
zen, um die Arbeit von WfMSen zu verbessern. Ansatzpunkte sind die Verbesserung der
Ausführungszeit von Workflow-Instanzen, ein geringer Hauptspeicherverbrauch und die
Verbesserung der Stabilität sowie des Durchsatzes bei paralleler Ausführung von Instanzen.
In dieser Arbeit soll geprüft werden, welche Möglichkeiten existieren, ein DBS stärker an ein
WfMS anzubinden und ob dies die Leistungsfähigkeit des WfMSs erhöht und eine messbare
Verbesserung der angesprochenen Eigenschaften zur Folge hat.

Hierbei konzentrieren wir uns auf die Verbesserung der Variablenzuweisung, der Bedin-
gungsauswertung sowie der WS-Aufrufe der Workflowsprache WS-BPEL. Diese sind die
meist verwendeten BPEL-Aktivitäten und somit wichtige Optimierungskandidaten. Trotz der
Orientierung von WS-BPEL auf Geschäftsprozesse, ist ein aktueller Forschungsschwerpunkt
WS-BPEL ebenfalls für wissenschaftliche (eScience) WFs zu verwenden [Slo07] [GSK+

11].
Insbesondere um die Beschreibung aller WF-Arten zu vereinheitlichen. Wissenschaftliche
WFs verarbeiten typischerweise größere Datenmengen innerhalb des WfMSs als WFs für Ge-
schäftsprozesse, weshalb die Performanz und Stabilität der genannten WS-BPEL Aktivitäten

14

1.2. Konventionen und rechtliche Hinweise

ebenfalls von großem Interesse sind. Um einen Prototypen entwickeln zu können, greifen wir
auf die WS-BPEL OpenSource WF-Engine Apache Orchestration Director Engine1 zurück.

1.2. Konventionen und rechtliche Hinweise

Begriffe, für die eine abkürzende Schreibweise existiert, werden bei der erstmaligen Verwen-
dung ausgeschrieben und dahinter innerhalb runder Klammern die Abkürzung angegeben.
Zusätzlich wird ein Abkürzungsverzeichnis im Anhang A (Seite 143) angegeben.

In dieser Arbeit kam Software zum Einsatz, die nicht öffentlich zur Verfügung steht und für
die Lizenzen erworben werden müssen. Für den Einsatz des in dieser Arbeit entstandenen
Prototyps zusammen mit bestimmten Produkten, muss eine entsprechende Lizenz erworben
werden. Dies betrifft insbesondere die in der nachfolgenden Liste genannten Produkte:

• IBM DB2 UDB V9.7

Diese Arbeit enthält eine Datenbank-Auswertung. Der Autor dieser Arbeit hat die Vorberei-
tung und Ausführung dieser Auswertung mit besonderer Vorsicht durchgeführt. Trotzdem
kann der Autor mögliche Fehler, die hierbei entstanden sind, nicht ausschließen. Aus diesem
Grund übernimmt der Autor keine Verantwortung für die Korrektheit und Vollständigkeit
der gesamten Auswertung und der daraus geschlossenen Erkenntnisse.

1.3. Aufbau dieses Dokuments

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen: Stellt wichtige informationstechnische Grundlagen zum Verständ-
nis dieser Arbeit vor.

Kapitel 3 – Workflow Architekturen und Datenbank Integration: Gibt einen Einblick in die
Archtitektur von WfMSen und stellt verwandte Arbeiten und Themen vor.

Kapitel 4 – Nutzung von Funktionen einer integrierten Workflowdatenbank: Befasst sich
mit in dieser Arbeit entstandenen Konzepten sowie Konzepte aus der Literatur, die
eine stärkere Integration der integrierten DB eines WfMSs ermöglichen.

Kapitel 5 – Apache ODE Architektur im Detail: Beleuchtet die Teile der Softwarearchitektur
von Apache ODE, die für die Implementierung des Prototyps wichtig sind.

1Apache Orchestration Director Engine http://ode.apache.org

15

1. Einleitung

Kapitel 6 – Implementierung des Prototyps: Stellt Details zur Implementierung des Proto-
typs vor.

Kapitel 7 – Evaluierung des Prototyps: Dieses Kapitel beinhaltet die Laufzeit- und Haupt-
speichermessungen zum Prototyp sowie eine Diskussion der Ergebnisse.

Kapitel 8 – Konzeptionelle Erweiterungen: Bettet die Ergebnisse dieser Arbeit in einen grö-
ßeren Kontext ein und stellt weiterführende Arbeiten vor.

Kapitel 9 – Zusammenfassung: Fasst die Arbeit, ihre Ergebnisse und weiterführende Arbei-
ten zusammen.

16

2. Grundlagen

In diesem Kaptitel werden wir den technischen sowie wissenschaftlichen Hintergrund lie-
fern, der nötig ist, um diese Arbeit nachzuvollziehen. Der erste Abschnitt wird sich mit der
eXtensible Markup Language (XML) und Techniken befassen diese Daten zu beschreiben
und zu verarbeiten. Der zweite Abschnitt befasst sich mit der in der Einleitung angespro-
chenen SOA und Webservices. Der dritte Abschnitt widmet sich den Workflowsprachen,
insbesondere WS-BPEL. Der vierte Abschnitt soll eine kurze Zusammenfassung der Daten-
banktechnologie geben und stellt die in dieser Arbeit verwendeten Datenbanksysteme und
ihre Funktionalitäten, insbesondere bezüglich XML, kurz vor. Der fünfte und letzte Abschnitt
dieses Kapitels stellt den für die Evaluation verwendeten Workflow-Anwendungsfall vor.

2.1. eXtensible Markup Language

Die eXtensible Markup Language (XML) [W3C08] ist eine sog. Markup-Sprache. Markup-
Sprachen zeichnen sich dadurch aus, dass Informationen mit ihren zugehörigen Metainfor-
mationen verknüpft werden. In XML geschieht dies über die sog. Tags, diese beherbergen
die Metainformation in ihrem Namen und umklammern die damit verbundene Information.
Das öffnende Tag wird in spitzen Klammern geschrieben <information>, das schließende Tag
ebenfalls in spitzen Klammern, wobei noch ein Querstrich eingeführt wird </information>,
dazwischen befindet sich die Information (<information>Hier ist die Information</information>).
Die Information kann sich aus Text, sowie neuen Tags zusammensetzen. Somit lässt sich
XML z.B. als Baumstruktur entsprechend dem Document Object Model (DOM) [w3ca]
verarbeiten.

In der Tat existieren Verwandschaftsbeziehungen zur Hyper Text Markup Language (HTML).
Im Gegensatz zu HTML, wo jedes Tag eine bestimmte Bedeutung bei der graphischen
Darstellung in einem Webbrowser besitzt, werden die Tags und deren Bedeutung in XML
vom Benutzer vorgegeben bzw. in einer Spezifikationssprache definiert (Document Type
Definition (DTD) [W3Cb] oder XML-Schema [Tho04]). Der tatsächliche Vorgänger von XML
ist die Standard Generalized Markup Language (SGML) [sgm86], welche auch das DTD
Format eingeführt hat. Ein wohlgeformtes XML-Dokument besitzt einen einzigen Wurzel-
knoten (also ein öffnendes und schließendes Tag des gleichen Namens) und zu jedem
geöffneten Tag existiert ein schließendes Tag auf gleicher Tiefe des Baumes. Ein Beispiel für
ein wohlgeformtes XML-Dokument ist in Listing 2.1 zu sehen.

17

2. Grundlagen

Im Gegensatz zu einer Tabelle, wie man sie von relationalen Datenbanken her kennt, ist die
Metainformation von der Information selbst nicht getrennt und ist somit für den Menschen
besser lesbar. Trotzdem ist ein solches Dokument durch die vorhandenen Metainformation
von Programmen immer noch einfach, im Gegensatz zu einem geschriebenen Text, zu ver-
arbeiten. Ein weit wichtigerer Punkt ist jedoch, dass es jederzeit möglich ist, ein einzelnes
Dokument um neue Metainformationen, durch zusätzliche oder neue Tags, und Informa-
tionen zu erweitern, ohne dass darauf arbeitende Programme geändert werden müssen.
Durch diese und weitere Eigenschaften, gehört XML zu den Semi-Strukturieren Daten (siehe
Tabelle 2.1).

Typ Typische Vertreter Änderbarkeit der Struktur
Strukturierte Daten Datenbanktabellen Einheitlich für alle Datensätze
Semi-Strukturierte Daten XML Jederzeit für einzelne Dokumente
Unstrukturierte Daten Textdokumente keine Einschränkungen

Tabelle 2.1.: Strukturgrad von Informationen und typische Vertreter dieser Klassen.

XML Knoten

Im Folgenden stellen wir kurz alle XML Knotentypen vor. Alle genannten Knoten finden
sich ebenfalls in Listing 2.1 wieder:

Verarbeitungsanweisungen (engl. processing instruction) beinhalten Informationen wie das
Dokument zu verarbeiten ist, z.B. ob es sich um ein HTML oder XML Dokument
handelt und welche Zeichenkodierung (UTF-8, Latin1 etc.) verwendet wurde. Die-
ser Knoten wird durch einen Block aus Spitzen-Klammern und ein Fragezeichen
gekennzeichnet. <?xml version=“1.0“encoding=“UTF-8“?>

Kommentare beschreiben zusätzliche Informationen die für das menschliche Verständnis
von Interesse sind. <!– information about the author –>

Text Knoten beinhalten Text z.B. Florian Wagner

Element Knoten werden durch Tags geöffnet und geschlossen und können Textknoten
und/oder weitere Elementknoten enthalten. <exp:name>Florian Wagner</exp:name>

Attribut Knoten können zusätzliche Informationen beherbergen, die an ein Element gebun-
den werden können, ohne hierfür ein Unterknoten zu definieren. Dies ist insbesondere
dann nützlich, falls diese Information innerhalb der Struktur nur einmalig vorkommt.
Vergleichen wir hierzu in Listing 2.1, dass ein title Attribut für den document Knoten
nicht ausreicht, um mehrere Titel in verschiedenen Sprachen darzustellen. Attribute
werden innerhalb eines Tags aufgenommen. <exp:document type=“thesis“>

18

2.1. eXtensible Markup Language

Gemischter Inhalt Dies ist eine spezielle Form, bei dem im Unterbaum eines Elementkno-
tens Text sowie weitere Elementknoten vorkommen. Dies ist im document Konten in
Listing 2.1 veranschaulicht.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <exp:thesis xmlns:exp="http://www.flowsoft.de/thesis/xml">

3 <!-- information about the author -->

4 <exp:author>

5 <exp:name>Florian Wagner</exp:name>

6 </exp:author>

7 <!-- information about document -->

8 <exp:document type="thesis">

9 <exp:title lang="en">Exploiting an integrated database system to improve

workflow execution</exp:title>

10 <exp:title lang="de">Nutzung einer integrierten Datenbank zur effizienten

Ausführung von Workflows</exp:title>

11 Diese Arbeit befasst sich mit Workflow- und Datenbanksystemen.

12 </exp:document>

13 </exp:thesis>

Listing 2.1: Ein wohlgeformtes XML-Dokument, welches alle XML-Knotentypen beinhaltet.

XML Namensräume

Namensräume (engl. namespaces) wurden eingeführt, um zwischen gleichen Tag-Namen
mit unterschiedlicher Semantik unterscheiden zu können. Vorallem beim Datenaustausch
zwischen Unternehmen oder wissenschaftlichen Einrichtungen können potentiell XML
Strukturen und Tagnamen identisch sein, sich überschneiden und im schlimmsten Fall eine
andere Bedeutung besitzen. Um während des Auslesens der Informationen, z.B. durch
ein Programm, zwischen der richtigen Semantik unterscheiden zu können, kann jedem
Elementknoten ein Namensraum zugeordnet werden, der somit dessen Semantik festlegt.
Die Spezifikation dieser Semantik, z.B. in Form von DTD, XML-Schema oder in Form eines
Textdokuments, wird diesem Namensraum zugeordnet. Darüber hinaus ist es auch möglich
innerhalb eines XML Dokuments Elemente verschiedener Namensräume zu verwenden.

Ein Namensraum wird durch einen Uniform Resource Identifier (URI) beschrieben, oftmals
werden hierzu Uniform Resource Locations (URL) verwendet z.B. eine HTTP Adresse. Diese
muss allerdings nicht zwingend existieren, es ist aber eine gängige Praxis hinter dieser
URL die XML Spezifikation abzulegen. Typischerweise werden die Namensräume eines
XML Dokuments im Wurzelknoten über die Attribute xmlns gefolgt von einem Doppel-
punkt und dem zugeordneten Präfix angegeben. In Listing 2.1 ist also der Namensraum
http://www.flowsoft.de/thesis/xml an den Präfix exp gebunden. Die Knoten dieses Namensraums
werden dann durch das Präfix vor ihren Namen (durch einen Doppelpunkt getrennt) zu

19

2. Grundlagen

diesem zugeordnet (vgl. <exp:author>). Es kann auch ein Standard Namensraum angegeben
werden, indem lediglich das Attribut xmlns ohne Präfixangabe verwendet wird. Knoten ohne
Präfix gehören dann automatisch zu diesem Namensraum.

Da die Nutzung von Namensräumen oft zu Verwirrungen führt, soll hier angemerkt sein,
dass ein Präfix unabhängig vom Namensraum ist. Dies bedeutet, dass der Präfix nur eine
abkürzende Schreibweise für das jeweils aktuelle Dokument darstellt und in einem zweiten
Dokument anders heißen kann. Ebenfalls kann innerhalb einer XPath oder XQuery Anfrage
(siehe Kapitel 2.1.2 und 2.1.3) der Namensraum an einen dritten Präfix gebunden werden.
Wichtig ist nur, dass die Namensraum URI der Knoten identisch ist, falls sie zum gleichen
Namensraum gehören.

2.1.1. XML-Schema

XML-Schema [Tho04] ist eine XML Definitionssprache, die in sich selbst definiert und im
XML Format geschrieben ist. Dies ist einer der Unterschiede zur DTD, die ein eigenes
Format besitzt. Ebenfalls können komplexere Strukturen als mit DTD beschrieben werden.
Das Hauptmerkmal von XML-Schema liegt darin, dass man eine genaue Typisierung von
Datenfeldern vornehmen kann. Es wird zwischen vordefinierten Basistypen (wie String,
Integer, Boolean etc.) und vom Benutzer definierten, einfachen sowie komplexen Typen
unterschieden. Über die komplexen Typen kann die Struktur eines XML Dokuments
spezifiziert werden, durch das Einschränken von Basistypen zu simplen Typen können z.B.
Enumerationen oder Zahlenräume definiert werden. Ein XML Dokument wird als valide
bezeichnet, falls es wohlgeformt ist (vgl. Kapitel 2.1) und die Spezifikation erfüllt. Das
XML-Schema, welches die Struktur des XML Dokument aus Listing 2.1 spezifiziert ist in
Listing 2.2 zu sehen.

1 <xsd:schema targetNamespace="http://www.flowsoft.de/thesis/xml"

2 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

3

4 <!-- Element definitions -->

5 <xsd:element name="thesis" type="thesisType"/>

6

7 <!-- Type definitions -->

8 <xsd:complexType name="thesisType">

9 <xsd:sequence>

10 <xsd:element name="author" type="authorType" minOccurs="0"

11 maxOccurs="unbounded"/>

12 <xsd:element name="document" type="documentType" minOccurs="1"/>

13 </xsd:sequence>

14 </xsd:complexType>

15

16 <xsd:complexType name="authorType">

17 <xsd:sequence>

18 <xsd:element name="name" type="xsd:string" minOccurs="1"/>

20

2.1. eXtensible Markup Language

19 <xsd:element name="adress" type="xsd:string" minOccurs="0"/>

20 </xsd:sequence>

21 </xsd:complexType>

22

23 <xsd:complexType name="documentType" mixed="true">

24 <xsd:sequence>

25 <xsd:element name="title" type="titleType" minOccurs="1"

maxOccurs="unbounded"/>

26 </xsd:sequence>

27 <xsd:attribute name="type" type="documentTypes" use="optional" default="no"/>

28 </xsd:complexType>

29

30 <xsd:complexType name="titleType" mixed="true">

31 <xsd:attribute name="lang" type="xsd:string" use="required" default="no"/>

32 </xsd:complexType>

33

34 <xsd:simpleType name="documentTypes">

35 <xsd:restriction base="xsd:string">

36 <xsd:pattern value="thesis|paper|manual"/>

37 </xsd:restriction>

38 </xsd:simpleType>

39

40 </xsd:schema>

Listing 2.2: Ein XML-Schema Dokument, welches die Struktur des XML Dokuments aus
Listing 2.1 definiert.

2.1.2. XPath

Mit XPath [W3C99] ist es unter anderem möglich, einen hierarchischen Pfad innerhalb eines
XML Dokuments zu durchlaufen und Unter-, Text-, Attribut- und Kommentarknoten sowie
Verarbeitungsanweisungen ausgeben zu lassen. Ein einfacher Pfadausdruck sieht einem
absoluten Verzeichnispfad eines Unix Betriebssystems sehr ähnlich, welches ebenfalls in einer
hierarchischen Baumstruktur dargestellt wird. XPath besitzt eine Vielzahl an Möglichkeiten
um Vater-, Kind- und Geschwisterknoten auszuwählen, dies geschieht über die sog. Achsen
(engl. axes). Man kann für jede Hierarchiestufe einen sogenannten Lokalisierungsschritt
durchführen. Dieser besteht aus einem einleitendem Querstrich, der Angabe der Achse,
einem doppelten Doppelpunkt, einen Knotentest und aus einem optionalen Prädikats,
welches innerhalb eckiger Klammern angegeben wird. Diese Lokalisierungsschritte können
konkateniert werden. Ein Lokaliserungsschritt sieht also folgendermaßen aus:

/Achse::Knotentest[Prädikat]

Je nach XPath-Implementierung ist es erforderlich bzw. möglich Namensräume anzugeben
und an Präfixe zu binden. Der Präfix wird dann wie im XML Dokument beim Knoten-
test durch einen Doppelpunkt getrennt vom Knotennamen angegeben. Einige wichtige

21

2. Grundlagen

Achsen werden in Tabelle 2.2, die Knotentests in Tabelle 2.3, inklusive ihrer abkürzenden
Schreibweisen angegeben.

Achse selektiert Abkürzung
child:: alle direkten Unterknoten wird weggelassen
parent:: den Elternknoten ..
descendant-or-self:: den aktuellen Knoten und alle Unterknoten //
attribute:: alle Attributknoten @
namespace:: alle Namensraumknoten

Tabelle 2.2.: Die XPath-Achsen mit Beschreibung und abkürzender Schreibweise.

Knotentest selektiert
* alle Knoten
Knotennamen benannten Knoten
text() Textknoten
comment() Kommentarknoten
processing-instruction() Verarbeitunsanweisungskonten

Tabelle 2.3.: Die XPath-Knotentests mit Beschreibung.

Um die Funktionsweise zu verdeutlichen, werden nun zwei Ausdrücke vorgestellt, mit
denen Information aus dem XML Dokument aus Listing 2.1 extrahiert werden können. Der
Folgende XPath-Ausdruck liefert den Name des Autors zurück:

/child::thesis/child::author/child::name/text()

Der zweite XPath-Ausdruck liefert den deutschen Titel zurück:

/child::thesis/child::document/child::title[attribute::lang="de"]/text()

Um die Anwendung dieser Ausdrücke zu vereinfachen wurden abkürzende Schreibweisen
eingeführt, die in der Tabelle 2.2 aufgeführt sind. Somit lassen sich beide XPath-Ausdrucke
vereinfachen zu:

/thesis/author/name/text()

/thesis/document/title[@lang="de"]/text()

Des Weiteren bietet XPath eine Reihe von Funktionen an, um Zeichenketten zu manipulieren
und zu verarbeiten. Es ist zudem möglich mathematische Ausdrücke berechnen zu lassen
und diese z.B. innerhalb eines Prädikats einzusetzen. Durch das Einführen von Variablen

22

2.1. eXtensible Markup Language

können ebenfalls Ausdrücke evaluiert werden, die auf mehrere XML Dokumente verweisen.
Für weitergehende Informationen über XPath und seine Funktionen empfehlen wir die
XPath Spezifikation vom W3C [W3C99].

2.1.3. XQuery

XPath stellt eine Möglichkeit dar, Knoten und Informationen aus XML Dokumenten zu
extrahieren. Allerdings ist es nicht ohne Weiteres möglich, Informationen aus mehreren
XML Dokumenten zu aggregieren oder Berechnungen auf mehreren, sich wiederholenden
Knoten innerhalb eines XML Dokumentes durchzuführen. Um dies zu bewerkstelligen wurde
XQuery [W3C07b] eingeführt, das von einer ganzen Reihe an Query Sprachen, insbesondere
XPath und SQL, inspiriert wurde. Das Hauptziel ist es, XML Dokumente in einer Mengen-
orientierten Weise zu verarbeiten, wie es z.B. SQL bei relationalen Datenbanken erlaubt. Das
zugrunde liegende Datenmodell besteht aus den Knotentypen, die wir von XML und XPath
her kennen (vgl. Kapitel 2.1), Sequenzen (für die Mengenverarbeitung), atomaren Werten und
Ausdrücken. Mit XQuery ist es so möglich einen Verbund (Join) zwischen XML Dokumenten
herzustellen und deren Informationen miteinander zu verknüpfen (entsprechend einem
Join auf relationalen Tabellen). Die Syntax von XQuery heißt FLWOR was für For Let Where
Orderby Return steht und ist angelehnt an die SFW (Select From Where) Syntax von SQL.
Der nachfolgende XQuery-Ausdruck liefert die Titel aus dem Beispiel in Listing 2.1 in
alphabetischer Reihenfolge zurück:

for $x in fn:doc("XMLEXAMPLE.xml")/thesis/document

order by $x/title

return {$x/title/text()}

Für weitergehende Informationen über XQuery und seine Funktionen empfehlen wir die
XQuery Spezifikation vom W3C [W3C07b].

2.1.4. pureXML

Das DBS DB2 von IBM verwendet die eigene XML-Verarbeitungssprache pureXML [Che07].
PureXML unterstützt die XQuery- und somit auch die XPath-Spezifikation. Es ist möglich
diese XQuery-Anfragen in SQL-Ausdrücke einzubetten, genauso ist es umgekehrt möglich
in XQuery-Anfragen relationale Daten einzubinden. Für die Einbettung von XQuery
in SQL existiert die SQL-Funktion XMLQUERY, für die Einbettung von SQL oder den
Zugriff auf ein relationales XML-Feld innerhalb eines XQuery-Ausdrucks existieren die
XQuery-Erweiterungsfuntionen db2-fn:xmlcolumn und db2-fn:sqlquery. Soll ein nativer
XQuery-Ausdruck anstatt einem SQL-Ausdruck verarbeitet werden, reicht die Angabe des
Schlüsselworts xquery vor dem eigentlichen XQuery-Ausdruck. Das XQuery-Beispiel aus

23

2. Grundlagen

Kapitel 2.1.3 ist als Anfrage an die DB2 in Listing 2.3 dargestellt.

1 xquery for $x in db2-fn:sqlquery("select xmlfeld from daten where id = 1")/thesis/document

2 order by $x/title

3 return {$x/title/text()}

Listing 2.3: XQuery-Anfrage an DB2 mit Zugriff auf ein XML-Feld einer relationalen Tabelle.

Darüber hinaus stellt pureXML eine eigene, in XQuery eingebettete Syntax vor, mit der XML
Manipulationen möglich sind. Bisher existiert hierzu noch kein Standard, allerdings gibt
es einen Kandidaten für die sog. XQuery Update Facility [W3C09], deren Syntax teilweise
ähnlich zu der von pureXML ist. Die Syntax für die Manipulation in pureXML ist in Listing
2.4 zu sehen. Der ursprüngliche Wert des XML Dokuments wird mit der Variable $new
verknüpft und anschließend durch die Anweisung modify do replace value of der Inhalt des in
XPath angegebenen XML-Elements ($new/thesis/author/name) durch die Zeichenkette „Florian
BD Wagner“ ersetzt. Der return Befehl gibt das veränderte Dokument zurück.

1 update daten set xmlfeld = XMLQUERY('

2 copy $new := $XMLFELD

3 modify do replace value of $new/thesis/author/name

4 with "Florian BD Wagner"

5 return $new')

6 where id = 1

Listing 2.4: Ein pureXML-Ausdruck, der ein bestehendes, in einem XML-Feld abgelegtes,
XML-Dokument modifiziert.

Auf die Spalte xmlfeld (vom Typ XML) der Tabelle daten kann innerhalb des pureXML-
Ausdrucks über den groß geschriebenen Namen $XMLFELD zugegriffen werden. Anstelle
von do replace können auch neue XML-Elemente eingefügt (do insert ... before/after ...) oder
gelöscht werden (do delete). Es kann auch auf mehrere XML-Felder referenziert werden,
indem diese als Variablen an die pureXML Funktion XMLQUERY übergeben werden
(passing siehe Listing 2.5). Für weitergehende Funktionalitäten von pureXML sei auf [Che07]
verwiesen.

1 update daten set xmlfeld = XMLQUERY('

2 copy $new := $XMLFELD

3 modify do replace value of $new/thesis/author/name

4 with value of $XMLFELD2/thesis/author/name

5 return $new' passing (select xmlfeld from daten where id =2) as "XMLFELD2")

6 where id = 1

Listing 2.5: Ein pureXML-Ausdruck, der ein bestehendes XML-Dokument unter
Verwendung des Inhalt eines zweiten XML-Dokuments modifiziert.

24

2.2. Service Oriented Architecture

2.2. Service Oriented Architecture

Die Service Oriented Architecture (SOA) ist ein Paradigma für eine Softwarearchitektur,
welche sich aus kleineren, selbstständigen Programmen zusammensetzt. Diese Programme
werden Services oder Dienste genannt, deren Zusammensetzung (Orchestrierung) die neue
Funktionalität generiert. So soll es schnell und mit geringen Kosten möglich sein, bestehende
Software miteinander interagieren zu lassen und diese Interaktion jederzeit einfach zu ver-
ändern. Dieser Wunsch kommt insbesondere aus der Wirtschaft, ist aber ebenso für größer
angelegte wissenschaftliche Experimente interessant. Ein einfaches Beispiel ist die Übernah-
me eines Konkurrenz-Unternehmens und der Wunsch oder die Notwendigkeit bestehende
Software- und IT-Landschaften einheitlich verwenden zu können. Im Wesentlichen ergeben
sich hieraus auch die weiteren Konzepte einer SOA:

• Lose Kopplung

• Service/Dienstleistungs-Vertrag

• Abstraktion

• Wiederverwendbarkeit

• Zustandslosigkeit

Eine heutzutage weit verbreitete Realisierung einer SOA, ist die Orchestrierung von
Webservices (WS), die wir im Folgenden vorstellen. Die Orchestrierung der WSs erfolgt
oft mit Hilfe von Workflows (WF), die wir in einem eigenen Kapitel 2.3 besprechen. Für
eine tiefer gehende Beschreibung der SOA und den dazugehörigen Konzepten sei auf das
Lehrbuch [WCL+

05] verwiesen.

2.2.1. Webservices

Eine Reihe von Standards des World Wide Web Consortiums (W3C) und der Organization
for the Advancement of Structured Information Standards (OASIS) bilden zusammen die
sog. WS-* Standards. Nahezu alle WS-* Standards werden im XML Format geschrieben
und in XML-Schema (siehe Kapitel 2.1.1) definiert. Das Nachrichtenaustausch Protokoll
sowie die Beschreibungssprache für Webservices werden nachfolgend erläutert. Auf die
Workflowsprache WS-BPEL, die eine Orchestrierung der Webservices erlaubt, wird in Kapitel
2.3.2.2 detaillierter eingegangen.

25

2. Grundlagen

Simple Object Access Protocol

Um die Art und Weise des Nachrichtenaustausch zwischen Diensten, insbesondere WSs, zu
standardisieren wurde SOAP [W3C07a] eingeführt. Dieses XML Format erlaubt es Nach-
richten einheitlich zu versenden und zu empfangen. In vielen Implementierungen wird es
genutzt, um direkt Operationen eines Programms aufzurufen. Hierbei werden innerhalb
der SOAP Nachricht die Empfängermethode und die zu übergebenden Parameter gesendet.
Liefert die Methode einen Rückgabewert, wird eine SOAP Nachricht mit dem Resultat an
den Sender zurück geschickt.

In Listing 2.6 ist eine solche SOAP Nachricht dargestellt. Sie besteht aus dem Umschlag
(engl. envelope), in dem ein Kopf (engl. header) und der Körper (engl. body) enthalten sind. Der
Header kann zusätzliche Informationen für den Transport beinhalten, wie z.B. Informationen
zur Authorisierung oder Verschlüsselung. Im Body wird die aufzurufende Operation, sowie
ihre Parameter, deren Typen und Werte benannt. Im Beispiel wird also die Operation
getSFamilyAlignment des WS mit dem Namensraum http://www.dwarf.uni-stuttgart.de/ACCESS,
mit dem Parameter superfamily_id vom Typ Integer und dem Wert „8“, angefordert. Welche
Operationen zur Verfügung stehen, an welche tatsächliche Intra- oder Internetadresse und
mit welchem Transportprotokoll diese Nachricht gesendet werden muss, wird durch die
Web Service Definition Language beschrieben.

1 <soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:acc="http://www.dwarf.uni-stuttgart.de/ACCESS">

2 <soapenv:Header/>

3 <soapenv:Body>

4 <acc:getSFamilyAlignment

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

5 <superfamily_id xsi:type="xsd:integer">8</superfamily_id>

6 </acc:getSFamilyAlignment>

7 </soapenv:Body>

8 </soapenv:Envelope>

Listing 2.6: Eine SOAP Nachricht aus dem Anwendungsfall für Proteinmmodellierung
(Kapitel 2.5.1.1). Die aufzurufende Methode heißt getSFamilyAlignment und es
wird der Parameter superfamily_id mit Typ Integer übergeben.

Web Service Definition Language

Wie im vorhergehenden Abschnitt angesprochen wird WSDL [Chr01] verwendet um WSs
ihre Operationen und den Service Endpunkt, also die Adresse an die Nachrichten gesendet
werden müssen, zu definieren. WSDL wird ebenfalls in XML geschrieben und besteht im
Prinzip aus folgenden sechs Elementen:

26

2.3. Workflowtechnologie

Types beschreibt die benutzerdefinierten Typen der Parameter im Abschnitt Message in
XML-Schema.

Message beschreibt Nachrichten, durch die Angabe von Parametern und deren Typen.

PortType beschreibt die Operationen des WS, diese bestehen aus einer Eingangs- und
Ausgangsnachricht die unter Messages definiert wurden.

Binding beschreibt das Transport-Protokoll über die die Nachrichten gesendet werden.

Port beschreibt die tatsächliche Intra- oder Internetadresse des Service Endpunkts, an den
die Nachrichten gesendet werden sollen.

Service bindet alle Ports zusammen, somit ist es möglich Operationen eines WS auf ver-
schiedene Endpunkte zu verteilen.

Mit diesen Informationen ist es möglich SOAP Nachrichten automatisch zu generieren und
an den richtigen Endpunkt zu versenden. Ein Beispiel für eine WSDL Datei ist im Anhang
C.3 (Seite 155) zu finden.

2.3. Workflowtechnologie

In den letzten 10 Jahren ist der Bedarf an WfMSen stark angewachsen. Durch die Verwendung
von Workflows möchte man eine zusätzliche Abstraktionsschicht einziehen. Diese Workflows
können mit weniger Aufwand und geringerer IT Expertise erstellt werden, als die zu
erstellende Funktionalität in einem monolithischen Programm umzusetzen. Hinzu kommt
die Möglichkeit Workflows graphisch zu repräsentieren und in einem WYSIWYG Editor
bearbeiten zu können.

Mathematisch betrachtet, stellen Workflows einen gerichteten Graphen dar [FL00], dieser
besteht aus einer Menge von Knoten und einer Menge von Kanten. Die Konten stellen
sog. Aktivitäten dar, hier werden bestimmte Aufgaben durchgeführt, z.B. das Aufrufen
eines Webservice, eine Datenmanipulation oder eine Ausgabe um nur einen Bruchteil
möglicher Aktivitäten zu nennen. Die Bedeutung der Kanten ist essentiell für die Art der
Workflowsprache, hierauf gehen wir im Kapitel 2.3.2 näher ein. Jedoch ist allen Workflows
gemein, dass sie in Richtung der Kanten von den Konten ohne Eingangskanten, bzw.
speziell als Startknoten markierte Konten, bis zu Knoten ohne Ausgangskanten durchlaufen
werden.

27

2. Grundlagen

2.3.1. Workflow Management Systeme

WfMSe bestehen typischerweise aus vier Komponenten, der Build-Time, der Run-Time, der
Kommunikationsinfrastruktur und aus einem Monitor Programm (siehe Abb. 2.1). Manchmal
werden Monitor und Runtime miteinander verschmolzen. Ebenfalls gibt es Systeme in denen
die Build-Time und/oder Monitor Komponenten fehlen bzw. unabhängig voneinander
sind.

Die Build-Time Komponente ist für die Erstellung von Workflows verantwortlich, je nach
System kommen hier graphische Editoren oder spezielle Texteditoren zum Einsatz. Ein
Beispiel für einen graphischen Editor ist der Eclipse BPEL Designer1

Die Run-Time Komponente compiliert oder interpretiert den Workflow-Prozess der mit
einem GUI Editor oder direkt in der WF-Sprache geschrieben wurde und ist für
dessen Ausführung verantwortlich. Ein Beispiel für eine Run-Time ist die Apache
Orchestration Director Engine (siehe Kapitel 3.3.1, Seite 54).

Die Kommunikationsinfrastruktur wird von der Run-Time verwendet oder die Run-Time ist
in ihr eingebettet. Somit kann die Run-Time bestimmte Aktivitäten einer WF-Sprache
realisieren. Dies kann z.B. das Versenden von Nachrichten an WSs oder das Ausführen
von anderen Applikationen sein. Ein Beispiel für eine solche Infrastruktur ist der
Apache Tomcat Server2.

Die Monitor Komponente ist für die Überwachung und Analyse der Ausführung von
Workflow-Instanzen innerhalb der Run-Time verantwortlich. Ein Beispiel ist die Moni-
tor Perspektive des Taverna Systems (siehe Kapitel 3.3.2, Seite 55).

2.3.2. Workflow Sprachen

Workflowsprachen heben sich nicht nur durch die Funktionen der Aktivitäten voneinander
ab. Ein wesentlicher Punkt indem sich Workflowsprachen unterscheiden können, ist die
Bedeutung der Kanten. Man unterscheidet hierbei zwischen:

Daten-Fluss orientierten WFs - über die Kanten laufen Daten

Kontroll-Fluss orientierten WFs - die Kanten bestimmen die Ausführungsreihenfolge

1Eclipse BPEL Designer http://www.eclipse.org/bpel/
2http://tomcat.apache.org/

28

2.3. Workflowtechnologie

Abbildung 2.1.: Architektur eines typischen WfMSs bestehend aus einer Build-Time zur
Erstellung von WFs, einer Run-Time zur Ausführung der WFs, einer Kom-
munikationsinfrastruktur die von der Run-Time verwendet wird um be-
stimmte Aktivitäten durchzuführen und einem Monitor zur Überwachung
der WF-Ausführung.

Werden für wissenschaftliche Workflows häufig daten-Fluss orientierte Workflowsprachen
verwendet, findet man bei der Modellierung von Geschäftsprozessen ausschließlich kontroll-
Fluss orientierte Sprachen. Dies kommt daher, da bei wissenschaftlichen Experimenten Daten
neu generiert und analysiert werden, die Hauptaufgabe von wissenschaftlichen Workflows
stellt meist die Generierung und anschließende Analyse der Daten dar. Zudem ist die
Erstellung solcher Workflows intuitiver und es existieren de facto keine Variablen in solchen
Workflows. Somit ist es auch Wissenschaftlern, ohne Programmiererfahrung und ohne
Kenntnisse über den Variablenbegriff möglich solche WFs zu erstellen.

Bei Geschäftsprozessen hingegen werden oft nur bestehende Daten aggregiert oder abgerufen
um eine Entscheidung hervorzurufen was als nächstes zu tun ist, hier können kontroll-
Fluss orientierte Sprachen mit ihren if-then-else und Schleifenkonstrukten die Arbeitsabläufe
effizienter und intuitiver beschreiben.

Im Folgenden wird je eine Workflowsprache für daten- sowie kontroll-Fluss vorgestellt. Beide
Sprachen basieren auf der Web Services Flow Language (WSFL) von IBM. Das Hauptaugen-
merk liegt hierbei auf WS-BPEL, einerseits, da es die Workflowsprache von Apache ODE ist
und somit eng mit dieser Arbeit in Verbindung steht und andererseits, da derzeit eine Stan-
dardsprache für alle Arten von Workflows gesucht wird. Hierbei ist WS-BPEL Gegenstand
vieler Arbeiten und das Simulation Technology Projekt (SimTech) der Universität Stuttgart
befasst sich ebenfalls mit WS-BPEL als Workflowsprache für wissenschaftliche Simulationen
[Slo07] [GHCM09] [RRS+10].

29

2. Grundlagen

2.3.2.1. Simple Conceptual Unified Flow Language

SCUFL ist eine daten-Fluss orientierte Workflowsprache, die vom Bioinformatik-
Workflowsystem Taverna [OAF+

04] verwendet wird. Taverna wird ebenfalls zunehmend für
medizinische und chemische WFs verwendet. Ebenfalls in XML definiert besitzt SCUFL
nur sehr wenig Elemente, was die Einfachheit von daten-Fluss orientierten Sprachen
unterstreicht. Es gibt nur folgende Elemente:

• Ein- und Ausgaben

• (Daten)Flusskanten

• Koordinationskanten

• Prozessoren (Aktivitäten)

Als Aktivitäten können in Java implementierte Methoden, WSDL Webservices sowie eine
Vielzahl weiterer (auch lokaler) Anwendungen dienen. Für weitere Informationen über
Taverna und SCUFL sei auf [OAF+

04] [OLK+
07] und für eine Anwendung auf [Wag10]

verwiesen.

2.3.2.2. WS-Business Process Execution Language

Die Workflowsprache WS-Business Process Execution Language (WS-BPEL) wurde von
IBM, Microsoft und anderen Unternehmen entwickelt und unter dem Dach der OASIS
standardisiert [OAS07]. Sie ist kontroll-Fluss orientiert, arbeitet mit Variablen und zeichnet
sich zusätzlich durch die Orchestrierung von WS-Aufrufen aus. Da sie in vielen WF-Systemen
(IBM WebSphere Process Server3, Microsoft BizTalk4) implementiert ist, ist sie der de facto
Standard für die Modellierung von Geschäftsprozessen.

WS-BPEL Prozesse werden ebenfalls in XML geschrieben und die Sprache ist in XML-Schema
spezifiziert, es existieren GUI-Editoren wie z.B. der BPEL-Designer [bpe]. Im Folgenden
werden wir den deklarativen Aufbau eines BPEL Prozesses und anschließend die einzelnen
Sprachelemente vorstellen.

3http://www.ibm.com/software/products/de/de/wps/
4http://www.microsoft.com/biztalk/

30

2.3. Workflowtechnologie

Aufbau eines BPEL-Prozesses

Ein BPEL Prozess besteht aus folgenden Abschnitten:

import In diesem Abschnitt werden WSDL und XML-Schema Definitionen eingebunden.

partnerLinks Dieser Abschnitt dient dazu, die verwendeten Webservices und Operationen
einzubinden.

variables Die globalen Variablen und ihre XML-Typen werden in diesem Abschnitt definiert.
WS-BPEL unterscheidet zwischen drei Klassen von XML-Typen: WSDL-Nachrichten,
XML-Schema-Elementen und XML-Schema-Typen.

logic Die Beschreibung der eigentlichen Prozesslogik, welche auf globale Variablen und
partnerLinks referenzieren kann, wird in diesem Abschnitt beschrieben.

BPEL-Sprachelemente

Die für die Beschreibung der Prozesslogik wichtigen Sprachelemente, die sog. Akti-
vitäten stellen wir kurz vor. Für alle weiteren, nicht erwähnten, Sprachelemente verweisen
wir auf den Standard [OAS07].

ASSIGN ist für Zuweisungen, insbesondere Variablenzuweisungen, zuständig. Innerhalb
einer ASSIGN-Aktivität können mehrere Zuweisungen erfolgen, diese werden durch
COPY-Blöcke voneinander getrennt. Auf der linken Seite der Zuweisung (<to>) muss
eine Variable stehen, auf der rechten Seite (<from>) sind des weiteren Literale (Initial-
werte) und Ausdrücke (z.B. XPath, XQuery) erlaubt. Eine Variable kann zusätzlich um
eine XPath-Selektion ergänzt werden, um nur bestimmte Teile eines XML-Dokuments
zuzuweisen (Selektion auf rechter Seite), oder nur einen bestimmten Teil eines XML-
Dokuments zu ersetzen (Selektion auf linker Seite). Des Weiteren können partnerLinks
zugewiesen werden, hierfür verweisen wir ebenfalls auf den Standard.

IF ist für den klassischen Kontrollfluss zuständig. Hierbei wird ein boolscher Ausdruck
einer Query-Sprache (XPath, XQuery etc.) evaluiert und entsprechend der then bzw.
else Zweig durchlaufen.

FOREACH ist eine Schleife, der Start- und Endwert des Zählers wird über einen Ausdruck
einer Query-Sprache ermittelt. Der Zähler wird in jedem Schleifendurchlauf um Eins
erhöht, bis er den Endwert erreicht oder die optionale Bedingung zum vorzeitigen
Beenden der Schleife erfüllt ist.

WHILE ist eine klassische While-Schleife, die solange durchlaufen wird, wie die Schleifenbe-
dingung wahr ist. Die Bedingung wird vor Eintritt in den Schleifenrumpf evaluiert und
ist ebenfalls ein boolscher Ausdruck einer Query-Sprache.

31

2. Grundlagen

REPEAT UNTIL ist der While-Schleife sehr ähnlich, lediglich die Schleifenbedingung wird
nach durchlaufen des Schleifenrumpfes evaluiert, was ein mindestens einmaliges
durchlaufen des Schleifenrumpfes zur Folge hat.

ONALARM/WAIT können den Ablauf eines Prozesses pausieren. Nach einer bestimmten
Zeitspanne, oder nach eintreten eines bestimmten Ereignisses, wird der Prozess fort-
gesetzt. Die Zeitspanne wird ebenfalls durch einen Ausdruck einer Query-Sprache
bestimmt.

INVOKE ruft eine Operation eines WS auf, dieser muss dafür im Abschnitt partnerLinks des
BPEL-Prozesses eingebunden worden sein. Es wird bestimmt welche Operation des
WS aufgerufen wird, der Inhalt der Aufruf-Nachricht wird aus einer BPEL-Variablen
entnommen. Der Inhalt der Ergebnis-Nachricht des WS wird ebenfalls in eine BPEL-
Variable gespeichert und kann daraufhin weiter verarbeitet werden.

Allen ausgehenden Kanten aller Aktivitäten kann eine sog. TransitionCondition zugewiesen
werden. Eine Ziel-Aktivität am Ende der Kante wird nur dann ausgeführt, falls die Bedingung
der TransitionCondition erfüllt ist, ansonsten wird die weitere Verarbeitung an dieser Stelle
gestoppt. Außerdem wird jede Aktivität und jede Variable einem sog. Scope zugeordnet.
Diese Scopes sind im Wesentlichen vergleichbar mit Sichtbarkeitsbereichen von klassischen
Programmiersprachen. Variablen und Aktivitäten, die z.B. innerhalb einer FOREACH-Schleife
definiert und ausgeführt werden, sind nur innerhalb des von der Schleife definierten Scopes
sichtbar.

Ein Beispiel für einen BPEL-Prozess ist im Anhang C.2 (Seite 151) zu finden. Es ist festzustel-
len, dass WS-BPEL sehr stark mit XML und seinen Verarbeitungsmöglichkeiten verwoben ist
und nahezu alle Aktivitäten hiervon berührt werden.

2.3.3. Workflow Arten

In diesem Abschnitt möchten wir typische Arten von Workflows nach Ihren spezifischen
Eigenschaften wie z.B. die Art ihrer Aktivitäten (und Dienste), Anwendungsbereichen, zu
verarbeitende Datengrößen und der Art des Flusses klassifizieren.

2.3.3.1. Business-WFs

Typische Workflows im Geschäftsumfeld modellieren häufig wiederkehrende Arbeitsschritte
eines Unternehmens [FL00]. Ein Beispiel ist der Versand von Waren nach Zahlungseingang.
Der Workflow kann mehrmals am Tag ausgeführt werden, z.B. manuell durch einen Mitar-
beiter ausgelöst oder automatisch zu bestimmten Uhrzeiten. Dann wird der Workflow über
alle offenen Bestellungen iterieren, die Firmenkonten nach einer Zahlung durchsuchen und,

32

2.3. Workflowtechnologie

falls die zugehörige Zahlung eingegangen ist, die Daten der Lieferung an die Spedition wei-
tergeben. Liegt keine Zahlung vor, könnte des Weiteren überprüft werden, ob eine Mahnung
fällig ist und diese automatisch veranlasst werden.

Es geht bei diesen Workflows also hauptsächlich um Entscheidungen und daraus resultie-
renden Handlungen, hierfür sind kontroll-Fluss orientierte WF-Sprachen wie WS-BPEL ideal
geeignet. Oft müssen nur identifizierende Daten, z.B. Kunden-, Auftrags- und Rechnungs-
nummern in der WF-Runtime gehalten werden, das Datenaufkommen in der Runtime kann
also vergleichsweise gering gehalten werden. Die Laufzeiten entpsrechender WFs sind mit
wenigen Ausnahmen häufig sehr kurz (innerhalb von Sekunden oder Minuten). Dafür ist
die gleichzeitige, also parallele, Ausführung von Interesse, man stelle sich z.B. einen WF vor,
der die Ticketbestellung für ein angesagtes Rock-Konzert abwickelt.

2.3.3.2. Wissenschaftliche-WFs

Wissenschaftliche-WFs (engl. eScience-WFs) finden vor allem innerhalb der Naturwissenschaf-
ten immer größere Bedeutung [Tay07]. Hauptsächlich geht es darum computergestützte
Experimente oder Simulationen bzw. Auswertungen gesammelter Daten durchzuführen. Da
es sich um wissenschaftliche Experimente handelt und somit oftmals keine Standardsoft-
ware existiert, setzen sich die Berechnungen und anschließenden Analysen aus diversen
Programmen zusammen. Zwischen diesen Programmen müssen ggf. Daten in ein anderes
Format gebracht werden und/oder von einer Ressource auf eine andere Ressource über-
tragen werden um eine weitere Verarbeitung zu gewährleisten. Diese Prozesse können mit
Workflows modelliert und orchestriert werden. Grundsätzlich kann man feststellen, dass
der Fokus weniger auf Entscheidungen liegt, sondern auf den zu verarbeitenden Daten.
Ohne Eingabedaten gibt es kein Experiment und ohne Ergebnisdaten keine Analyse. Man
kann hier prinzipiell unterscheiden zwischen Workflows, die lediglich die Programme mit
ihren Parametern in der richtigen Reihenfolge starten und bei denen diese Programme ihre
Daten in externen Datenbanken oder auf dem Dateisystem abliegen, und Workflows, die
diese Daten in der WF-Runtime verarbeiten und dort analysieren. Letztere führen also zu
einem großen Datenaufkommen innerhalb der WF-Runtime. Vorallem, da diese Daten in
der Regel wesentlich größer sind als bei Business-WFs. Daten-Fluss orientierte WF-Sprachen
sind für eine solche Modellierung oft intuitiver anwendbar. Da man allerdings auch an einer
Standardsprache für Workflows interessiert ist und sich der Datenfluss auch innerhalb eines
Kontrollflusses darstellen lässt, rückt derzeit WS-BPEL ebenfalls als wissenschaftliche WF-
Sprache in den Vordergrund [AMA06] [Slo07] [GHCM09] [GSK+

11]. Man kann feststellen,
dass Wissenschaftliche-WFs seltener, dafür mit größeren Datenmengen als Business-WFs
ausgeführt werden. Eine parallele Ausführung dieser WFs macht nur in einigen speziellen
Fällen Sinn.

33

2. Grundlagen

2.3.3.3. Extraction Transformation Load-WFs

Extraction Transformation Load-WFs (ETL-WFs) orchestrieren ETL-Operationen. Diese kön-
nen im Wesentlichen das Laden (Load/Retrieval) und Filtern einer Datenmenge sowie
Verknüpfung (Join), Vereinigung (Union) und Zusammenführung (Merge) zweier Daten-
mengen sein. Die Ausführung mehrerer solcher Operationen (ETL-Prozess) kann durch
Daten- oder Kontrollfluss beschrieben werden. ETL-WFs sind ETL-Prozesse, die mit Hilfe
von WF-Technologie modelliert und ausgeführt werden. In einer kontroll-Fluss orientierten
Sprache wie WS-BPEL werden diese ETL-Operationen als Aufruf von WSs oder in Aktivi-
täten eingebettete Datenverarbeitungsanweisungen realisiert. So wird z.B. der Inhalt einer
Datei durch eine Anfrage an das Dateisystem in die WF-Engine geladen, oder es können
SQL Anfragen an relationale DBSe gestellt werden, die entweder das Resultat (z.B. für Data
Retrieval Anweisungen wie SELECT) oder eine Bestätigung der Ausführung (z.B. für DDL
INSERT/UPDATE Anweisungen) an die WF-Engine liefern.

Die Arbeit [VSRM08] befasst sich mit SQL Fähigkeiten von gängigen Workflowsystemen.
Hierbei werden die Ergebnisdaten eines SQL SELECT Ausdrucks z.B. zeilenweise in der
Workflowengine verarbeitet. Somit besitzen diese Workflows ebenfalls ein erhöhtes Da-
tenaufkommen innerhalb der WF-Runtime. Es bestehen bei solchen Workflows jedoch
die Möglichkeit globale Optimierungen, z.B. durch den WF-Compiler oder einer Modell-
transformation, vorzunehmen. Dadurch kann der Datentransfer zwischen Datenbank und
WF-Engine zum Teil ganz vermieden werden [VSS+07]. In [RRS+10] wird ein allgemeines
Gerüst (Framework) für ETL-Operationen in WF-Sprachen beschrieben und in Apache ODE
prototypisch implementiert. Im Vergleich zu den Systemen aus [VSRM08] können, durch
Erweiterung der SIMPL (SimTech - Information Management, Processes, and Languages)
Data Mining Aktivitäten, nicht nur relationale DBS angesprochen werden, sondern alle
denkbaren Datenquellen sowie Verknüpfungs- und Vereinigungsoperationen auf diesen
heterogenen Datenquellen durchgeführt werden. ETL-WFs arbeiten fast ausschließlich auf
Mengen von Daten, deshalb ist ihr Datenaufkommen entsprechend groß, die Daten können
jedoch durch entsprechende Systeme und globale Optimierungen von der WF-Engine fern-
gehalten werden. Eine parallele Ausführung von ETL-WFs, zumindest bei Auswertung und
Manipulation der gleichen Datensätze, führt zum gleichen Ergebnis und ist dadurch von
geringerem Interesse.

2.3.3.4. Zusammenfassung

Wir fassen die Eigenschaften der vorgestellten WF-Typen in Tabelle 2.4 zusammen. Business-
WFs haben typischerweise eine kurze Laufzeit und müssen ggf. auch parallel ausgeführt
werden. Sie verarbeiten in der Regel kleinere Datenmengen als Wissenschaftliche- und ETL-
WFs. Diese werden allerdings seltener ausgeführt und die parallele Ausführung spielt nur
eine untergeordnete Rolle.

34

2.4. Datenbanktechnologie

WF-Typ Anwendungsbereich Daten-
größe

Ausführungs-
art

Häufigkeit der
Ausführung

Business Geschäftsprozesse klein sequentiell /
parallel

viele

Wissenschaftlich Experimente und Simula-
tionen

groß oft nur sequen-
tiell

wenige-viele

ETL Analyse von Geschäftsda-
ten, Experimente und Si-
mulationen

groß sequentiell wenige

Tabelle 2.4.: Vergleich der Eigenschaften und Anwendungsgebiete der verschiedenen Arten
von Workflows.

2.4. Datenbanktechnologie

Die Datenbanktechnologie existiert nun seit über vier Jahrzehnten und bildet ein solides
und anerkanntes Fundament innerhalb der Informatik, um große Datenmengen effizient
zu speichern, zu selektieren und zu transformieren. Da diese Arbeit im Rahmen des Ar-
beitskreises „Anwendersoftware“ der Universität Stuttgart, der sich mit Datenbanken und
Informationssystemen befasst, entstanden ist, setzen wir Grundkenntnisse in diesem Bereich
voraus. Für eine Einführung in Datenbanken und Informationssysteme verweisen wir auf
das Lehrbuch [AE09]. Dennoch möchten wir einige wichtige Begriffe kurz erläutern.

2.4.1. Datenbanksysteme

Ein Datenbanksystem (DBS) setzt sich aus einer Datenbank (DB) und dem Datenbank-
Management-System (DBMS) zusammen. Die DB beinhaltet die Daten und Metadaten, das
DBMS verwaltet die Zugriffe und Aktualisierungen auf die DB. Es existieren verschiedene
Möglichkeiten Datenstrukturen zu modellieren und auf diese Daten zuzugreifen:

• Hierarchisch (Satzorientierter Zugriff)

• Relational (Mengenorientierter Zugriff)

• Objektrelational (Objekt-/Mengenorientierter Zugriff)

35

2. Grundlagen

Einige der wichtigsten Eigenschaften, die für die Stabilität und Mehrbenutzerfähigkeit
von DBMSen verantwortlich sind, sind die ACID-Eigenschaften des Transaktionskonzepts
[TH01]:

Atomarität (engl. Atomicity „Alles oder nichts“) Die Ausführung und Veränderungen der
Daten durch eine Transaktion findet entweder ganz oder gar nicht statt.

Konsistenz (engl. Consistency) Der Inhalt der Datenbank wird durch die Transaktion von
einem konsistenten Zustand in einen anderen konsistenten Zustand überführt. Insbe-
sondere müssen hierbei Referenzen und Querverweise auf andere Daten der Datenbank
ihre Gültigkeit beibehalten.

Isolation Sichert den logischen Einbenutzerbetrieb, obwohl mehrere Benutzer mit dem
System arbeiten. Insbesondere darf innerhalb einer Transaktion nicht auf veraltete oder
bereits überschriebene Daten anderer Transaktionen zugegriffen werden.

Dauerhaftigkeit (engl. Durability) Die Persistenz der Daten einer abgeschlossenen Transaktion
muss gesichert werden, insbesondere beim Ausfall des Systems.

Am populärsten sind die relationalen Datenbanksysteme, sie finden heutzutage in fast jeder
größeren Software, in der Daten gespeichert werden, Verwendung. Hierbei werden die
Daten als Zeilen in Tabellen gespeichert. Die Spalten tragen die Metainformation (wie Typ und
Semantik der Spalte), somit gehören relationale Datenbanken zum Typ der Strukturierten
Daten (vgl. Tabelle 2.1, Seite 18).

Die Daten werden mit Hilfe der von ANSI und ISO5 standardisierten Query-Sprache SQL se-
lektiert und transformiert. Durch die massiv steigende Verwendung von Semi-Strukturierten
Daten wie XML (siehe Kapitel 2.1) in den letzten 10 Jahren, ist der Bedarf an XML Verarbei-
tungsmöglichkeiten in Datenbanksystemen gestiegen. Hierbei gibt es zwei Ansätze:

Native-XML Datenbanken speichern und verarbeiten ausschließlich XML Dokumente mit
Hilfe von XML Query-Sprachen.

XML-Enabled Datenbanken besitzen für die relationalen Tabellen einen zusätzlichen Spal-
tentyp XML indem XML Dokumente gespeichert werden können. Diese Felder können
prinzipiell, z.B. mit XML Query-Sprachen, gesondert verarbeitet werden.

Im Folgenden möchten wir kurz zwei XML-Enabled Datenbanken vorstellen, die in dieser
Arbeit verwendet wurden.

5http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=45342

36

2.4. Datenbanktechnologie

2.4.1.1. IBM DB2

Die DB2 ist ein DBS der Firma International Business Machines Corporation (IBM) welches
auf das System R, eine relationale Forschungsdatenbank aus Mitte der 1970er Jahre, zurück-
geht. Die erste Version wurde 1983 eingeführt und wurde seitdem stetig weiterentwickelt.
Seit 1997 ist die DB2 in der Version 9 verfügbar. Als Produktivsystem, welches auch in
Großkonzernen eingesetzt wird, ist es ein sehr stabiles System. Es ist möglich, die DB2 als
verteiltes Datenbanksystem zu verwenden. Es unterstützt eine Vielzahl der im SQL Standard
vorgeschlagenen Funktionalitäten wie User Defined Functions (UDF), Speicherung von Binary
Large OBjects (BLOB) und Funktionen für DataWarehousing und OnLine Analytical Processing
(OLAP).

Als XML-Enabled DBS besitzt es seit der Version 9 den XML Spaltentyp und zahlreiche
Funktionen zum Verarbeiten von XML Daten. Es ist möglich XPath und XQuery Ausdrücke
alleinstehend oder innerhalb von SQL Ausdrücken zu evaluieren. Durch die von IBM eigens
entwickelte Query-Sprache pureXML ([Che07], siehe Kapitel 2.1.4) ist es sogar möglich XML
Dokumente zu transformieren, was mit XPath und XQuery nicht möglich ist.

Aktuelle Version: DB2 UDB 9.7
Verwendete Version: DB2 UDB 9.7
Offizielle Webseite: http://www.ibm.com/software/data/db2/
Historische Informationen: http://de.wikipedia.org/wiki/IBM_DB2

2.4.1.2. PostgreSQL

PostgreSQL ist ein kostenloses DBS, welches in den 1980er Jahren an der University of
California in Berkeley entwickelt wurde. Seit 1997 wird es von einer OpenSource Commu-
nity weiterentwickelt. Es gilt als schnelles und leichtgewichtiges DBS, das trotzdem viele
Funktionen des SQL Standards implementiert.

Als XML-Enabled DBS existiert ebenfalls der XML Spaltentyp und die Möglichkeit mit
der Funktion xpath XPath-Ausdrücke innerhalb von SQL Ausdrücken zu evaluieren.
Es existiert jedoch keine Möglichkeit XQuery-Ausdrücke auszuwerten, eine eigene
Transformationssprache wie pureXML bei IBM DB2 fehlt ebenfalls.

Aktuelle Version: PostgreSQL 9.0
Verwendete Version: PostgreSQL 8.4
Offizielle Webseite: http://www.postgresql.org/
Historische Informationen: http://de.wikipedia.org/wiki/Postgresql

37

http://www.ibm.com/software/data/db2/
http://de.wikipedia.org/wiki/IBM_DB2
http://www.postgresql.org/
http://de.wikipedia.org/wiki/Postgresql

2. Grundlagen

2.5. Webservice und Workflow-Technologie für Proteinmodellierung

In diesem Abschnitt möchten wir aus dem Anwendungsbereich Bioinformatik einen Anwen-
dungsfall (engl. Use-Case) für einen wissenschaftlichen WF (siehe Kapitel 2.3.3.2), der Daten
innerhalb der WF-Runtime verarbeitet, vorstellen. Dieser wird in dieser Arbeit als Testfall
für die Evaluation in Kapitel 7 dienen. In [Wag10] wurde das XML Schema BioInformatics
Interchange Format (BIIF) als Austauschformat für Proteindaten entworfen und Webservices
implementiert, die dieses Format als Ein- und Ausgabe verwenden. Außerdem wurde ein
Anwendungsfall für das Workflowsystem Taverna vorgestellt und dieser ebenfalls als BPEL-
Prozess modelliert. Bevor wir unseren Anwendungsfall vorstellen, gehen wir kurz auf ein
paar Grundlagen ein.

2.5.1. Bioinformatik

Die Bioinformatik gehört zu den Life-Science Wissenschaften und befasst sich mit der
computergestützten Forschung an biologischen Objekten und Systemen, wie etwa Proteine
und ihre Rolle im Stoffwechsel von Organismen. Ein Protein besteht aus einer Verkettung
von 22 möglichen Aminosäuren. Diese lineare Anordnung wird auch Primärstruktur
genannt und bestimmt die Faltung in Sekundärstrukturen (α Helix, β Faltblatt und
Schleifen) die wiederum die räumliche 3D Struktur des Proteins bestimmen (siehe Abb. 2.2).
Die Primärstruktur eines Proteins, auch als Proteinsequenz bezeichnet, kann man als
Zeichenkette darstellen (siehe Listing 2.7).

1 MALSQSVPFS ATELLLASAI FCLVFWVLKG LRPRVPKGLK SPPEPWGWPL LGHVLTLGKN PHLALSRMSQ RYGDVLQIRI

2 GSTPVLVLSR LDTIRQALVR QGDDFKGRPD LYTSTLITDG QSLTFSTDSG PVWAARRRLA QNALNTFSIA SDPASSSSCY

3 LEEHVSKEAK ALISRLQELM AGPGHFDPYN QVVVSVANVI GAMCFGQHFP ESSDEMLSLV KNTHEFVETA SSGNPLDFFP

4 ILRYLPNPAL QRFKAFNQRF LWFLQKTVQE HYQDFDKNSV RDITGALFKH SKKGPRASGN LIPQEKIVNL VNDIFGAGFD

5 TVTTAISWSL MYLVTKPEIQ RKIQKELDTV IGRERRPRLS DRPQLPYLEA FILETFRHSS FLPFTIPHST TRDTTLNGFY

6 IPKKCCVFVN QWQVNHDPEL WEDPSEFRPE RFLTADGTAI NKPLSEKMML FGMGKRRCIG EVLAKWEIFL FLAILLQQLE

7 FSVPPGVKVD LTPIYGLTMK HARCEHVQAR LRFSIN

Listing 2.7: Proteinsequenz des Proteins aus Abb. 2.2 als Zeichenkette. Quelle: [Wag10]

Proteine, welche die gleichen Eigenschaften besitzen, z.B. die gleiche chemische Reaktion
katalysieren, werden zu sog. Proteinfamilien zusammengefasst. Oft geht dies mit einer sehr
ähnlichen Proteinsequenz einher. Die DataWarehouse Architecture for pRotein classiFication
(DWARF) [FTGP06] sucht aus externen Protein-Datenquellen wie Genbank [BKML+

10] sol-
che ähnlichen Proteinsequenzen und fasst sie in einer Datenbank zusammen. In [Wag10]
wurden für das DWARF-System Webservices zum Abfragen und Verändern dieser Da-
tenbankinhalte implementiert. Derzeit ist die CYPED6 Datenbank [SWLP09] über diese

6http://www.cyped.uni-stuttgart.de/

38

2.5. Webservice und Workflow-Technologie für Proteinmodellierung

Abbildung 2.2.: 3D Struktur eines Cytochrome P450 Proteins. Rot: α Helix, Gelb: β Faltblatt,
Grün: Schleifen. Quelle: [Wag10]

Webservices auslesbar. Für weiterführende Informationen zur Biochemie sei auf das Lehr-
buch [JMB07] und für Informationen zur WS und WF-Technologie für Proteinmodellierung
auf [Wag10] verwiesen.

2.5.1.1. Anwendungsfall Mustersuche

Eine innerhalb der Bioinformatik annerkannte Analysemöglichkeit stellt die Mustersuche
(engl. Pattern-Matching) dar. Hierbei wird in den als Zeichenketten gespeicherten Proteinse-
quenzen nach einem bestimmten Muster, z.B. in der Form eines regulären Ausdrucks, gesucht.
Diese Muster dienen zum Erkennen wichtiger Regionen innerhalb einer Proteinfamilie, z.B.
lassen sich so die für die chemische Reaktion wichtigen Aminosäuren lokalisieren.

Die auszuführenden Aufgaben bieten sich ideal an, um diese durch einen Workflow zu
modellieren, außerdem kann man bei Verwendung von WS-BPEL die datenverarbeitenden
Schritte in die WF-Engine ziehen. Aus diesem Grund ist dieser Anwendungsfall für die
Messungen in Kapitel 7 von besonderem Interesse.

39

2. Grundlagen

Für die Messungen verwenden wir das folgende Muster7 [NG87], welches bereits in einen
regulärer Ausdruck umgeformt wurde:

[FW][SGNH].[GD][^F][RKHPT][^P]C[LIVMFAP][GAD]

Wir beschreiben nun Schrittweise den zugehörigen BPEL-Prozess der graphisch in Abb. 2.3
dargestellt ist, zudem ist der in BPEL definierte Prozess im Anhang C.2 (Seite 151) zu
finden.

recieveInput empfängt die Parameter ID (der Identifier der CYPED Unterfamilie die durch-
sucht werden soll) und PATTERN (das zu suchende Muster als regulären Ausdruck).

Initialisation initialisiert einige BPEL-Variablen und WSDL Nachrichten, insbesondere die
WSDL Nachricht an den DWARF-Webservice, der als Parameter die ID der Unterfamilie
benötigt.

getSuperFamilySequences ruft die Operation getSFamilyAlignment des Webservice
DWARF_ACCESS auf (siehe [Wag10]).

AssignWSResponse weist das Ergebnis des WS einer BPEL-Variable zu.

ForEachProteinSequence diese Foreach Schleife wird für jede Proteinsequenz einmal durch-
laufen.

PrepareProteinSequence bereinigt die aktuelle Proteinsequenz von störenden Sonderzei-
chen, die aus der Darstellung des WS-Resultats herrühren und speichert die bereinigte
Proteinsequenz in einer BPEL-Variable ab.

IfPatternMatches prüft nun ob der reguläre Ausdruck auf die aktuelle Proteinsequenz
zutrifft, falls ja wird der Bezeichner der Proteinsequenz an eine Variable vom Typ
xsd:string konkateniert und der Zähler für positive Proteinsequenzen (die das Muster
enthalten) um Eins erhöht. Andernfalls wird der Zähler für negative Proteinsequenzen
(die das Muster nicht enthalten) um Eins erhöht.

PrepareOutput stellt die Antwortnachricht zusammen, bestehend aus negativem und positi-
vem Zähler, sowie allen Bezeichnern der Proteine welche das Muster enthalten.

replyOutput sendet die Antwortnachricht.

Nach Ausführung des Workflows erhält man also eine Statistik über die Anzahl der positiven
und negativen Proteinsequenzen bezüglich des vorgegebenen Musters und die Bezeichner
der positiven Proteinsequenzen zurück.

7http://expasy.org/prosite/PDOC00081

40

2.5. Webservice und Workflow-Technologie für Proteinmodellierung

Abbildung 2.3.: Graphische Repräsentation des in WS-BPEL definierten Anwendungsfalls
zur Mustersuche in Proteinsequenzen.

41

3. Workflow Architekturen und Datenbank
Integration

Dieses Kapitel wird einen Einblick in die allgemeine Architektur von WfMSen geben. Es wird
zuerst das Workflow Referenz Modell aus dem Jahr 1995 vorgestellt [Hol95], anschließend
werden Möglichkeiten der Integration von Datenbanktechnologie in WfMSe [VSRM08]
[RRS+10] und der Ansatz vorgestellt Datenbanken und WfMSe miteinander zu verschmelzen
[AIL98] [SKDN05]. Im letzten Abschnitt dieses Kapitels wird eine Auswahl an WfMSen
vorgestellt und wie diese ihre integrierte Datenbank verwenden.

3.1. Workflow Reference Model

Das Workflow Referenz Modell [Hol95] befasst sich mit dem Aufbau, Nutzen und der Funk-
tionsweise von Workflow Management Systemen (WfMS). Der schematische Aufbau dieses
Modells ist in Abb. 3.1 zu sehen. Es besteht aus der zentralen Workflow-Engine und fünf
weiteren Schnittstellen. Die WF-Engine, die Prozess-Definitions Tools und die Administrati-
ons & Monitor Tools bilden das eigentliche WfMS (vgl. Kapitel 2.3.1, Seite 28). Die weiteren
Schnittstellen sind für die Aufrufe der zu orchestrierenden Dienste und Programme oder
anderer Workflow-Systeme zuständig. Im Folgenden werden die einzelnen Komponenten
und Schnittstellen etwas näher erläutert.

Die Workflow API legt das Protokoll und die Austauschformate fest, mit denen die weiteren
Komponenten mit der Workflow-Engine kommunizieren.

Die Workflow-Engine führt Instanzen der Workflows aus. Dazu navigiert sie durch die
Workflow-Graphen und ruft entsprechende Dienste der Schnittstellen 2-4 auf.

Prozess-Definitions Tools werden zur Erstellung der Workflows benötigt, z.B. mit Hilfe
einer GUI oder direkt in der WF-Sprache. Anschließend wird der WF der WF-Engine
bekannt gemacht (engl. deploy), damit dieser von Anwendern oder anderen Systemen
entsprechend aufgerufen werden kann. Hierbei werden die zum WF gehörenden Do-
kumente (z.B. die Beschreibung in einer WF-Sprache) entweder in internes Format der
WF-Engine compiliert oder für die interpretative Ausführung entsprechend archiviert.

43

3. Workflow Architekturen und Datenbank Integration

Abbildung 3.1.: Das Workflow Referenz Modell, gut zu erkennen ist die Aufteilung in Build-
time (Prozess-Definition), Runtime (Workflow-Engine) und die Monitor
Anwendungen (Administration & Monitor Tools). Des Weiteren die Schnitt-
stellen zu ausführenden Programmen und anderen Workflow-Engines. Vgl.
[Hol95]

Administrations & Monitor Tools stellen Funktionen zur Verfügung, mit denen das WfMS
und die Ausführung von WF-Instanzen überwacht werden können.

Schnittstellen 2-4 stellen verschiedene Möglichkeiten dar, welche Dienste innerhalb eines
WFs aufgerufen werden können. Dies können z.B. andere als WF definierte Prozesse
sein (Schnittstelle 4) oder Programme und Dienste wie WSs (Schnittstelle 3) oder
sonstige Client-Anwendungen (z.B. GUI-Anwendung zum Instanziieren eines WFs)
des WfMSs (Schnittstelle 2).

In der Streitschrift [AS96] werden Probleme und Nutzen der damaligen WfMS angesprochen.
Einerseits wird die Stabilität, Transaktions- und Mehrbenutzerfähigkeit (also Ausführung
paralleler Instanzen) damaliger WfMS kritisiert und deren Nähe zu (Aktiven) Datenbanken
thematisiert, welche die angesprochenen Probleme schon gelöst haben. Auf den Ansatz der
Verschmelzung beider Systeme [AIL98] gehen wir im Kapitel 3.2.3 näher ein.

44

3.2. Arbeiten und Ansätze zur Datenbankintegration

Heutzutage existieren WfMSe immer noch getrennt von Datenbanksystemen, allerdings
werden DBSe wie in vielen anderen Softwarearchitekturen auch in WfMSen eingesetzt, um
Daten zu Prozessen und laufenden Instanzen (wie Variableninhalte, Startzeiten und Anzahl
laufender Instanzen etc.) persistent zu halten. Dadurch können Instanzen nach Ausfall
des Systems am Punkt des Abbruchs wieder aufgenommen werden und bei Fehlern die
Ausführung nachvollzogen werden (z.B. mit Monitortools). Somit kann man die zentrale
Architekturkomponente der WF-Engine aus Abb. 3.1 um eine integrierte DB erweitern (siehe
Abb. 3.2). Bis auf wenige Ausnahmen leichtgewichtiger WF-Engines, für z.B. Smartphones
[GPW+

07] [HHGR06], verwenden alle WF-Engines eine integrierte DB.

Abbildung 3.2.: Typische Workflow-Engine mit integriertem DBS für die Speicherung von
Prozess und WF-Instanz Daten.

So konnten einige der in der Streitschrift angesprochenen Probleme, wie Stabilität, Feh-
lertoleranz, Skalierbarkeit, Performanz, Mehrbenutzerfähigkeit und Flexibilität teilweise
behoben werden. In der Gesamtheit betrachtet, können aber auch heutzutage die WfMSe
in den genannten Bereichen nicht mit gängigen DBSen konkurrieren. Weshalb weiterhin
eine noch stärkere Integration dieser beiden Systeme von großem Interesse ist. Dies ist einer
der Gründe, warum wir in dieser Arbeit untersuchen, welche Funktionen einer WF-Engine
auf ihr integriertes DBS übertragbar sind und unter welchen Umständen dies zu einer
verbesserten Ausführung von WF-Instanzen führt.

3.2. Arbeiten und Ansätze zur Datenbankintegration

Es soll nun ein Einblick in den Stand der Forschung zur stärkeren Integration von DBSen in
WfMSe gegeben werden bzw. welche Funktionalitäten von anderen Systemen oder Ansätzen
angeboten werden.

3.2.1. BPEL/SQL Funktionalität

In [VSRM08] werden die WfMSe von IBM (WebSphere Process Server), Microsoft (Workflow
Foundation) und Oracle (Oracle SOA Suite) qualitativ auf ihre Möglichkeiten für Inline SQL

45

3. Workflow Architekturen und Datenbank Integration

Support, also im Workflow eingebettete Datenverarbeitungsanweisungen, untersucht. Bis
auf die Workflow Foundation verwenden diese Systeme WS-BPEL als WF-Sprache in jeweils
erweiterter Form. Die Workflow Foundation stellt jedoch Import und Export Funktionen
zur Verfügung, um BPEL Prozesse auf das interne Modell zu übersetzen und umgekehrt.
BPEL/SQL bezeichnet hierbei, dass für ein WS-BPEL kompatibles WfMS entsprechende
Inline SQL-Erweiterungen bzw. Funktionen angeboten werden.

Ausdrücklich wurden SQL Inline Aktivitäten untersucht, die im Gegensatz zu SQL Adaptern
eigenständige Aktivitäten darstellen. Diese senden SQL-Anweisungen an ein DBS und
werden entsprechend vom WfMS implementiert. Adapter hingegen rufen Webservices auf,
die dann SQL Anfragen ausführen und die Ergebnisse in einem eigenständigen (XML)
Format als SOAP Nachricht zurückgeben. Solche Adapter wurden für den Anwendungsfall
der Proteinmodellierung (siehe Kapitel 2.5, Seite 38) in der Arbeit [Wag10] für das DWARF
System erstellt. Die SQL Aufrufe werden bei beiden Methoden (Inline SQL, Adapter) auf
externen Datenbanken ausgeführt, also nicht auf der integrierten WF-Datenbank.

Abbildung 3.3.: Ein Beispiel-Workflow mit Inline SQL Aktivitäten. Hierbei werden Produkt-
preise einer externen Datenbank aktualisiert, indem die aktuellen Preise
zuerst geladen werden, anschließend in einer Foreach Schleife angepasst
und schließlich in die Datenbank zurückgespeichert werden.

Betrachten wir nun folgendes Workflow-Beispiel aus Abb. 3.3. Es enthält eine Inline SQL
Aktivität (SQL1), welche aus einer Datenbanktabelle Produkte2010 zu allen Produkten den

46

3.2. Arbeiten und Ansätze zur Datenbankintegration

Primärschlussel (id) und den Preis des Produkts ermittelt. Die Ergebnismenge wird im
Workflow in einer Prozessvariable zwischengespeichert. Die Foreach Schleife wird für jedes
Ergebnistupel in dieser Menge, also für jedes Produkt, durchlaufen. In der stilisierten
Aktivität PreisAktualisierung wird nun der Preis des Produkts angepasst (in WS-BPEL könnte
hier eine ASSIGN Aktivität oder ein Webservice Aufruf erfolgen). Anschließend wird mit der
zweiten Inline SQL Aktivität das Produkt mit dem neuen Preis in die Tabelle Produkte2011
eingefügt.

Die drei betrachteten Systeme unterscheiden sich hierbei, wenn man von der Art der
Implementierung der Inline SQL Aktivitäten absieht, nur in zwei Kriterien:

1. Die Ergebnismenge der SQL1 Aktivität wird entweder in einer temporären Tabelle der
externen Datenbank (IBM) gespeichert und dann vollständig für die Verarbeitung in
eine Prozessvariable des WF-Engine geladen, oder direkt in eine Prozessvariable und
somit innerhalb der integrierten WF-Datenbank gespeichert (Microsoft, Oracle).

2. Die Bindung der Inline SQL Aktivitäten an die externe Datenbank kann statisch
(Microsoft, Oracle) oder dynamisch (IBM) erfolgen.

Ein erweiterter Ansatz zu BPEL/SQL wird in [RRS+10] vorgestellt. Das dort vorgestellte
SIMPL-Framework (SimTech - Information Management, Processes, and Languages) bietet
die gleichen Möglichkeiten wie die bereits vorgestellten BPEL/SQL Ansätze, ist jedoch vom
eigentlichen WfMS unabhängig und kann somit in jedes WfMS integriert werden. Es bietet
insbesondere auch Zugriffsmöglichkeiten auf weitere Datenquellen, wie z.B. Dateisysteme.
Das System besteht aus dem SIMPL-Kern, der in die Kommunikationsinfrastruktur des
WfMSs eingebettet wird. Dort werden die Schnittstellen auf die verschiedenen Datenquellen
(relationales DBS, Dateisystem etc.) als Operatoren (Data Access Operations) implementiert.
Für das jeweilige WfMS können nun Aktivitäten, als sog. Plug-Ins, implementiert werden,
die diese Operatoren aufrufen (siehe Abb. 3.4). Interessant ist hierbei die Möglichkeit, ETL-
Operatoren (siehe Kapitel 2.3.3.3, Seite 34) auf heterogene Daten anzuwenden, so können z.B.
Daten die im CSV-Format auf dem Dateisystem abliegen, mit Daten aus einem relationalen
DBS verknüpft, vereinigt und zusammengeführt werden. Des Weiteren ist es möglich Daten
aus den verschiedenen Quellen ineinander zu überführen, z.B. CSV-Daten in ein relationales
Modell und umgekehrt abzuspeichern. Bisher wurde der SIMPL-Kern an die WF-Engine
Apache ODE angebunden.

3.2.2. Process Graph Model Optimierung

Für die Inline SQL Aktivitäten aus Kapitel 3.2.1 ergeben sich globale Optimierungsmöglich-
keiten, die in [VSS+07] durch den vorgestellten Process Graph Model (PGM) Optimierer
durchgeführt werden. Dies steht im Gegensatz zu dem Ansatz dieser Arbeit, in der wir
die integrierte DB des WfMSs nutzen möchten um während der Workflow-Ausführung

47

3. Workflow Architekturen und Datenbank Integration

Abbildung 3.4.: Architektur des SIMPL-Frameworks. Die im WfMS implementieren Plug-Ins
kommunizieren mit dem SIMPL-Kern, bzw. mit den dort implementier-
ten Data Access Operations, die Zugriff auf eine Vielzahl von heterogenen
Datenquellen erlauben. Vgl. [RRS+10]

lokale Optimierungen zu erzielen. PGM ist ein Graph-Modell, in den Workflows allgemein
überführt werden können (also auch ein BPEL/SQL WF), hierzu berücksichtigt PGM die
Aktivitäten als Knoten, deren Daten- sowie Kontrollflusskanten, möglich vorkommende
Variablen und sog. Partner, also Aufrufe externer Diensten (wie WSs und DBSe). Dadurch
besitzt ein PGM-Graph alle nötigen Informationen für eine semantisch korrekte Optimierung.
Der PGM Optimierer arbeitet dann nach folgendem Schema (siehe Abb. 3.5):

1. Übersetzen eines BPEL/SQL Workflows in das PGM Modell

2. Der PGM Graph wird durch bestimmte Regeln und eine Kontrollstrategie optimiert

3. Der optimierte PGM Graph wird in ein BPEL/SQL Workflow rückübersetzt

Die Kontrollstategie durchläuft im Wesentlichen die vorliegende Regelmenge in einer vor-
gegebenen Reihenfolge und prüft die Anwendbarkeit auf den PGM-Graph. Dadurch wird
gewährleistet, dass nach Anwendung einer Regel möglicherweise weitere Regeln anwendbar
sind, um einen stärker optimierten Graph zu erhalten. Die Regeln bestehen jeweils aus einer
Bedingung und einer Aktion, nur wenn die Bedingung erfüllt ist, werden die daran beteiligten
Aktivitäten (die vom Kontrollfluss aus betrachtet vor und nach der aktuell betrachteten
Aktivität auftreten können) durch die Aktion in eine entsprechend veränderte Aktivität
überführt. Wichtigen und interessante Regeln sind hierbei:

Assign-Pushdown Die Verwendung einer WF-Variablen innerhalb einer SQL-Anweisung
wird durch ihre vorhergehende Definition ersetzt (BPEL-ASSIGN). Dies kann insbeson-
dere auch eine SQL-Anweisung sein, falls der Inhalt der WF-Variablen durch einen
solchen Ausdruck geladen wurde.

Webservice-Pushdown Der Aufruf eines WSs wird in die SQL-Anweisung integriert, anstatt
diesen über die WF-Engine auszuführen.

48

3.2. Arbeiten und Ansätze zur Datenbankintegration

Abbildung 3.5.: BPEL/SQL WFs werden zuerst in das interne PGM Modell überführt,
der PGM-Graph wird dann durch Regeln und eine Kontrollstategie op-
timiert und wieder in einen entsprechenden BPEL/SQL WF überführt. Vgl.
[VSS+07]

Tupel-to-Set Die tupelweise Verarbeitung innerhalb einer Schleife wird in eine SQL-
Mengenoperation überführt.

Wir werden nun die grundsätzliche Funktionsweise und das Zusammenspiel ausgewähl-
ter Regeln anhand des Beispiels aus Abb. 3.3 vorstellen. Betrachten wir den ersten Opti-
mierungsschritt (Abb. 3.6a), hier wird die verarbeitende Aktivität (PreisAktualisierung) in
Form einer User Defined Function (UDF) innerhalb des DBSs ausgewertet. Die Funktion
PreisAktualisierung erscheint im INSERT Ausdruck der Inline SQL Aktivität (SQL2). Stellt
diese Funktion ein Aufruf an einen Webservice dar, wird der bereits vorgestellte Webservice-
Pushdown angewandt. Falls die Funktion (PreisAktualisierung) eine Zuweisung ist, wird
entsprechend der Assign-Pushdown verwendet.

Der zweite Optimierungsschritt (Abb. 3.6b) eliminiert die Foreach Schleife. Dazu werden die
Ergebnistupel der Inline SQL Aktivität SQL1 nicht mehr tupelweise (VALUES) durch mehr-
maliges Aufrufen von SQL2 aus Abb. 3.6a, sondern durch eine Mengenoperation (SELECT)
innerhalb der SQL-Anweisung SQL2 aus der temporären Datenbanktabelle geladen. Ins-
besondere kann dadurch die Foreach-Schleife und das Laden der temporären Tabelle in
eine WF-Variable eliminiert werden. Die zugehörige Regel lautet Insert Tupel-to-Set, die zur
Gruppe der bereits angesprochenen Tupel-to-Set-Regeln gehört. Durch die Eliminierung der
Schleife findet nun die Verarbeitung durch einen einzigen SQL Ausdruck mengenorientiert
im DBS statt und es müssen keine Daten mehr zwischen Datenbank und WF-Engine aus-
getauscht werden. Der dritte und letzte Optimierungsschritt (Abb. 3.6c) ersetzt noch die
temporäre Tabelle in SQL2 durch den SQL Ausdruck von SQL1 da die temporäre Tabelle
nicht länger benötigt wird. Die zugehörige Regel lautet Eliminate Temporary Table.

49

3. Workflow Architekturen und Datenbank Integration

Abbildung 3.6.: Optimierung des BPEL/SQL Workflows aus Abb. 3.3

50

3.2. Arbeiten und Ansätze zur Datenbankintegration

Das Papier [VSS+07] stellt noch weitere Regeln und Optimierungsstrategien vor. Messungen
zeigen, dass insbesondere die Insert Tuple-to-Set Regel einen starken Performanz Vorteil
bringt. Je nach zu verarbeitender Datengröße beträgt der Beschleunigungsfaktor der WF-
Laufzeit zwischen 245 und 15000. Diese Werte sind durchaus beeindruckend und zeigen die
Stärke mengenorientierter Verarbeitung innerhalb moderner DBSe.

3.2.3. Datenbank als Workflowsystem erster Klasse

Ein ganz anderer Ansatz der stärkeren Integration von Datenbank- und Workflowsystemen
versucht die WF-Engine innerhalb des Datenbanksystems zu realisieren, hierbei fällt also die
Implementierung einer eigenenständigen WF-Engine weg [AIL98] [SKDN05]. Dieser Ansatz
wird oft mit dem Schlagwort Aktive Datenbanken in Verbindung gebracht [AS96] [PD99].

Vor allem bei wissenschaftlichen WFs, die stark daten-orientiert sind, spielen die effizi-
ente Verarbeitung großer Datenmengen, die Nachvollziehbarkeit der Experimente und
anschließende Analysen der Daten eine wichtige Rolle. Da nahezu alle WF-Engines über
einer Datenbank aufgebaut sind, liegt die Idee nahe, die Funktionen der WF-Engine in die
Datenbank zu übernehmen. So fällt einerseits die zusätzliche Kommunikation zwischen den
Softwaremodulen weg und die Daten sind durch die ACID-Eigenschaften des DBSs zugleich
persistent. Das Papier [AIL98] fordert DBSe als Erste-Klasse WfMS zu betrachten (siehe Abb.
3.7) und stellt einen Prototypen auf dem objektrelationalen DBS Horse vor.

Abbildung 3.7.: Klassische WfMS Architektur (a) und DBMS als Erste-Klasse WfMS (b). Vgl.
[AIL98]

Die grundlegende Idee ist, einen Workflow in ein entsprechendes Datenbankschema zu
überführen, Tabellen stellen somit Aktivitäten dar. Die Daten die in diesen Aktivitäten verar-
beitet oder generiert werden, werden in dieser Tabelle gespeichert. Die Verarbeitungsschritte
werden über Auslöser (engl. Trigger) gestartet und so z.B. ein Webservice oder externes

51

3. Workflow Architekturen und Datenbank Integration

Abbildung 3.8.: Der Workflow wird in ein ORDBM Schema gebracht, die Eingabe E1 und
die Ausgabe A1 werden als abgeleitete Tabellen der Aktivitätstabelle T
modelliert. Einfügen von Daten in E1 triggert die Transformation F(E1) und
speichert das Ergebnis in Tabelle A1 ab. Vgl. [AIL98]

Programm aufgerufen. Um nach Beenden einer Aktivität die nächste Aktivität auszulösen,
wird entweder eine UDF aufgerufen (kontroll-Fluss orientiert) oder weiter zu verarbeitende
Daten als Zeile in die nächste Aktivitätstabelle eingefügt, was einen Trigger zur Verarbeitung
auslöst (daten-Fluss orientiert).

In Abb. 3.8 wird ein Beispiel gegeben, wie man eine Workflow Aktivität in das entsprechende
Datenbankschema (Moose) der Horse Datenbank überführt. Da es sich hierbei um daten-
Fluss orientierte Workflows handelt, laufen über die Workflowkanten Daten, die mit Eingabe
(E) und Ausgabe (A) bezeichnet werden. Die Aktivität T verarbeitet die Eingabe E1 und gibt
die Ausgabe A1 weiter. Im Moose Schema existiert die Tabelle T, welche die Funktionalität
der Aktivität T repräsentiert. Die Tabellen E1 und A1 sind nach dem objektrelationalen
Modell von T abgeleitet. Sobald ein Eingabedatum in Tabelle E1 gespeichert wird, wird
der entsprechende Trigger der Tabelle T aktiv, transformiert das Eingabedatum (F(E1)) und
speichert das Ergebnis in Tabelle A1 ab. Diese Tabelle A1 kann nun wieder als Eingabe für
eine folgende Aktivität dienen und löst deren Verarbeitungsschritt aus. Für alle weiteren
Übersetzungen wie Verzweigungen, Schleifenkonstrukte und Ähnliches sei auf [AIL98]
verwiesen.

Um ein solches System zu realisieren müssen nur wenige Grundvoraussetzungen an das
DBMS gestellt gestellt werden:

• Interaktionsmöglichkeiten mit dem Betriebssystem wie Programmaufrufe, Laden und
Speichern von Daten des Dateisystems und/oder Aufrufe von Webservices

• Bereitstellung von Auslösern (Triggern)

• Eine gewisse Ausdrucksmächtigkeit der Stored Procedures / User Defined Functions
des DBMS um Datentransformationen ausführen zu können

Wie leicht zu sehen ist, können Monitor- und Analyseprogramme direkt via SQL mit diesem
System kommunizieren, weitere Vorteile die man durch DBMSe von Haus aus geliefert
bekommt sind:

52

3.2. Arbeiten und Ansätze zur Datenbankintegration

• Transaktionssicherheit

• Mehrbenutzerfähigkeit (parallele Ausführung von Workflow Instanzen)

• Kaum Limitierung in der Größe der zu verarbeitenden Daten

Weitere Vorteile solcher solcher Systeme sind:

• Sie sind mit geringem Implementierungsaufwand zu erstellen, da alle notwendigen
Komponenten vom DBS zur Verfügung gestellt werden müssen. Insbesondere müssen
keine Vorkehrungen für einen Mehrbenutzerbetrieb getroffen werden

• Beinhalten Optimierungsmöglichkeiten durch Einstellungen des DBMS

• Einheitliche Sprache (wie SQL) für Analyse und Monitor Anwendungen

• Informationen zum WfMS sowie Status zu Instanzen sind sofort verfügbar

Abschließend ist zu sagen, dass solche Systeme eine echte Alternative darstellen, die in
[AS96] beschriebenen Probleme von WfMSen zu lösen. Jedoch existieren auch heute noch
wenig DBSe, die über ausgeprägte Interaktionsmöglichkeiten wie Aufrufe von externen
Programmen oder WSs anbieten. Vorallem lässt sich ein WF-Compiler, der einen WF in
das entsprechende Datenmodell bzw. Schema transformiert mit einem DBS nur schlecht
implementieren. Insbesondere bietet der Ansatz keine Möglichkeit schon existierende WfMSe
zu verbessern.

3.2.4. Zusammenfassung und Abgrenzung zu dieser Arbeit

Die vorgestellten Ansätze zur stärkeren Integration von DBSen in WfMSe beziehen sich
entweder auf externe Datenquellen und DBSe oder verschmelzen WfMSe und DBSe zu einem
einzigen System. In dieser Arbeit untersuchen wir jedoch die Nutzungsmöglichkeiten einer
integrierter DB innerhalb von gängigen WfMSen. Hierbei sollen lokale Optimierungen zur
Laufzeit eines Workflows zum Einsatz kommen, die sich auf Basisaktivitäten der WF-Sprache
beziehen. Dies ermöglicht eine transparente Nutzung des modifizierten WfMSs für bereits
existierende WFs. Ausnutzen von BPEL/SQL Aktivitäten, die auf die integrierte DB zugreifen,
können die Korrektheit des WfMSs verletzen. Da diese vom Anwender geschrieben werden
müssen, ist es bei einer inkorrekten Nutzung möglich Variableninhalte einer veralteten
Instanz, einer parallel laufenden Instanz oder sogar eines anderen Prozesses zu lesen und zu
verändern. Dies beeinträchtigt die Nachvollziehbarkeit beendeter WF-Instanzen und kann
zu nicht-deterministischem und semantisch inkorrektem Verhalten von laufenden Instanzen
führen. Wir konnten nach bestem Wissen bis dato in der Literatur keine konkreten Ansätze
für die stärkere Nutzung der integrierten WF-DB finden.

53

3. Workflow Architekturen und Datenbank Integration

3.3. Workflowsysteme und Engines

Wir werden nun einige ausgewählte, gängige Workflowsysteme vorstellen und in wieweit
diese ihre integrierte Datenbank für die Ausführung von Workflows verwenden. Die Rei-
henfolge der WfMSe impliziert keine Wertung, sie wurden alphabetisch sortiert. Wir stellen
jeweils die WF-Sprache, das Lizenzmodell, die unterstützten DBMSe und deren Verwendung
vor und beschreiben kurz das System.

3.3.1. Apache Orchestration Director Engine

Entwickler: Apache Software Foundation
Webseite: http://ode.apache.org/
Workflow-Sprache: WS-BPEL 2.0 (Kontroll-Fluss)
Lizenz: Apache License Version 2.0
Unterstützte DBMS: Apache Derby (embedded), IBM DB2, MySQL, PostgreSQL und viele
Weitere (verwendet Hibernate oder openJPA Middelware) [Mül10]
Verwendung der DB: Persistenz

Apache ODE ist eine OpenSource WF-Engine für die Ausführung von WS-BPEL Workflows.
Sie ist eine der wenigen, noch existierenden OpenSource WF-Engines für WS-BPEL und
unterstützt den gesamten BPEL 2.0 Standard. Sie wird für die Forschungszwecke im Rahmen
des Simulation Technology (SimTech) Projekts1 der Universität Stuttgart als Prototyp für die
speziellen Bedürfnisse von Simulationsworkflows angepasst und erweitert [GSK+

11]. Da
ihr Quellcode offen liegt, viele DBSe unterstützt und für SimTech erweitert wird, findet sie
auch in dieser Arbeit Verwendung und wird in den Kapiteln 5 und 6 näher vorgestellt. Die
integrierte DB wird bisher nicht weiter ausgenutzt, außer für die Persistenz von Prozess-
und Instanzdaten.

1http://www.simtech.uni-stuttgart.de/

54

http://ode.apache.org/

3.3. Workflowsysteme und Engines

3.3.2. Taverna

Entwickler: Taverna / myGrid Team
Webseite: http://www.taverna.org.uk/
Workflow-Sprache: SCUFL (Daten-Fluss)
Lizenz: Lesser General Public License (LGPL) Version 2.1
Unterstützte DBMS: Apache Derby (embedded), MySQL
Verwendung der DB: Persistenz

Taverna ist ein komplettes WfMS mit GUI Editor für die Workflow Erstellung, der WF-Engine,
die Workflows ausführt, und mit einem Monitor Tool, mit welchem man die Ausführung
von Workflows überwachen sowie Zwischen- und Endergebnisse einsehen kann [OAF+

04].
Ursprünglich wurde es für die speziellen Bedürfnisse von Bioinformatik-Workflows ent-
wickelt, inzwischen findet es aber auch in allen anderen LifeSciences, wie Medizin- und
Chemoinformatik, Verwendung. Es zeichnet sich durch einfach zu modellierende daten-Fluss
orientierte Workflows und eine Vielzahl an Diensten aus, die als Aktivitäten in einen sol-
chen Workflow einbindbar sind. Neben der Ausführung von Webservices stehen zahlreiche
eingebettete Bioinformatik-Dienste zur Verfügung. Weiterhin ist es möglich Programme
auf Betriebssystem-Ebene sowie lokale, vom Anwender in Java geschriebene, Aktivitäten
aufzurufen. Eine Anfrage an die Mailing-Liste2 ergab, dass die integrierte Datenbank außer
zur Persistenz nicht weiter genutzt wird, um die Workflow-Ausführung zu beschleunigen
oder anderweitig zu verbessern.

3.3.3. Trident Scientific Workflow Workbench

Entwickler: Microsoft Research
Webseite: http://tridentworkflow.codeplex.com/
Workflow-Sprache: Workflow Foundation - Extensible Object Markup Language (XOML) -
von und nach WS-BPEL transformierbar
Lizenz: Apache License Version 2.0
Unterstützte DBMS: Microsoft SQL Server
Verwendung der DB: Persistenz

Microsoft Trident [BJA+
08] wurde als wissenschaftliche Workflow Workbench entwickelt.

Die interne Repräsentation des Workflows erfolgt über die Microsoft Windows Workflow
Foundation3 und das XML Format XOML. XOML selbst ist kontroll-Fluss oriententiert, in

2http://www.mail-archive.com/taverna-hackers@lists.sourceforge.net/msg01341.html
3http://msdn.microsoft.com/en-us/netframework/aa663328

55

http://www.taverna.org.uk/
http://tridentworkflow.codeplex.com/

3. Workflow Architekturen und Datenbank Integration

Trident besteht allerdings ebenfalls die Möglichkeit daten-Fluss orientierte WFs zu kon-
zipieren, ähnlich zu Taverna (siehe Kapitel 3.3.2). Dies geschieht über sog. Container. So
existieren auch in Trident eine GUI zur Erstellung der Workflows und ein Monitortool
zur Überwachung der Workflow-Ausführung. Neben Kontroll-Fluss-Strukturen wie if-then,
Auswertungen von Bedingungen etc. verfügt Trident über eine Vielzahl von Zugriffsmög-
lichkeiten auf verschiedene Datenquellen wie das Dateisystem (File Input, File Writer),
Datenbanken (SQL Connection, Stored Procedure Executor) und für Anwendungsdomänen
spezifische Datenquellen. Ebenfalls kann die Amazon S3 Storage Cloud angebunden werden.
Weitere Aktivitäten ermöglichen es Diagramme zu erzeugen oder XPath-Ausdrücke auf
XML-Dokumente zu evaluieren. Ebenfalls ist es möglich Webservices einzubinden.

Der Quellcode ist frei verfügbar, jedoch wird für die Ausführung von Trident eine Microsoft
SQL Server Version benötigt. Microsoft rät davon ab, die kostenlose Express Version zu
verwenden. Eine Anfrage4 an das Trident Forum ergab, dass auch hier die Datenbank
nur für die Persistenz verwendet wird. Eine nennenswerte Architekturentscheidung ist
die ausschließliche Verwendung von UDFs und Stored Procedures zur Abstraktion der
SQL Anfragen an das letztendlich verwendete interne Datenmodell innerhalb der MS SQL
Datenbank.

3.3.4. WebSphere Process Server

Entwickler: IBM
Webseite: http://www.ibm.com/software/integration/wps/
Workflow-Sprache: Generalized Flow (BPEL Derivat)
Lizenz: Proprietär
Unterstützte DBMS: Apache Derby, IBM DB2, IBM Informix, Microsoft SQL Server, Oracle
10/11g
Verwendung der DB: Unbekannt, mit Sicherheit jedoch Persistenz

Der WebSphere Process Server (WPS) ist die WF-Engine von IBMs WebSphere5 und führt
Workflows aus, welche in dem erweitertem WS-BPEL Dialekt Generalized Flow geschrieben
sind. Dieser Dialekt ist um Aktivitäten erweitert, die z.B. einen Benutzer Entscheidungen
oder Tätigkeiten ausführen lassen. Aufgrund der zur Verfügung stehenden Informationen
konnte nicht ermittelt werden, ob der WPS sein integriertes DBS für andere Aufgaben außer
zur persistenten Speicherung verwendet. Jedoch ist das zugehörige Tabellenschema auf
mehrere voneinander unabhängige Datenbanken aufgeteilt. Somit ist es möglich diese auf
mehrere Datenbankserver zu verteilen, um ein skalierbareres System zu erhalten.

4http://tridentworkflow.codeplex.com/Thread/View.aspx?ThreadId=229518

5http://www.ibm.com/software/websphere/

56

http://www.ibm.com/software/integration/wps/

4. Nutzung von Funktionen einer integrierten
Workflowdatenbank

Nachdem wir in Kapitel 2 die nötigen Grundlagen und in Kapitel 3 den aktuellen Stand der
Forschung zur Integration von WF- und DB-Systemen sowie verschiedene WfMSe vorge-
stellt haben, widmen wir uns nun dem Forschungsziel dieser Arbeit und der erarbeiteten
konzeptionellen Ergebnisse. Diese wurden in einem Prototypen umgesetzt (siehe Kapitel 5

und 6), der anschließend auf eine verbesserte Workflow-Ausführung hin evaluiert wurde
(siehe Kapitel 7).

4.1. Grundlegendes Konzept

Ziel dieser Arbeit ist es eine WF-Engine so zu verändern, dass sie Funktionalitäten, die bei
der Ausführung eines WF in der WF-Runtime stattfinden, an das DBMS der integrierten
DB abgibt. Die Grundidee ist hierbei, dass so Datentransfer zwischen dem DBS und der
WF-Engine vermieden oder verringert werden kann, was sich potentiell in einer schnelleren
Workflow-Ausführung und/oder in einem verringertem Ressourcenverbrauch des WfMSs
äußern sollte.

Um das Konzept zu verdeutlichen, betrachten wir Abb. 4.1. Es ist aus Software-Engineering
Gesichtspunkten üblich zwischen der eigentlichen WF-Runtime und dem DBS eine DAO-
Schicht (Data Access Object) zu legen, die dann letztendlich mit dem DBS kommuniziert. So
ist es ohne Modifikationen der WF-Runtime möglich andere DBMS zu unterstützen. Alle
WfMSe, die diesem Konzept folgen, halten ihre Daten in der DAO-Schicht, solange diese in
der Runtime nicht benötigt werden. Die DAO-Schicht kümmert sich (automatisch) um die
Persistenz dieser Daten, also dass diese in der integrierten DB gespeichert werden. Dies dient
der Nachvollziehbarkeit und der Überwachung der Ausführung eines WFs mit Hilfe von
Monitor Anwendungen und der Möglichkeit einen WF zu pausieren sowie insbesondere nach
einem Systemausfall die Ausführung des Workflows fortzusetzen (Recovery). Außerdem ist
es möglich Daten der DAO-Schicht aus dem Hauptspeicher zu entfernen (Dehydratation)
und bei Bedarf aus der DB zu laden (Hydratation). Dehydratation erfolgt insbesondere bei
langlaufenden Prozessen, um die Ressourcen zur Ausführung anderer WFs nicht unnötig zu
belegen.

57

4. Nutzung von Funktionen einer integrierten Workflowdatenbank

Abbildung 4.1.: Üblicherweise wird das DBS nur für die Persistenz und Speicherung von
WF-Daten verwendet a). Das Konzept zur erweiterten Nutzung des DBS ist
die Verarbeitung dieser Daten innerhalb der Runtime a) auf die Ebene des
DBS zu übertragen b).

Betrachten wir die Zuweisung von Variablen innerhalb eines WFs als Beispiel. So wird ein
Datum von der WF-Runtime aus der DAO-Schicht bzw. u.U. aus der Datenbank geladen,
innerhalb der WF-Runtime zugewiesen und sofort wieder an die DAO-Schicht bzw. die
DB übergeben. Die integrierte DB des WfMSs wird also nur als Datenspeicher verwendet
(siehe Abb. 4.1a). Befinden sich zum Zeitpunkt der Zuweisung (Abb. 4.1b) jedoch alle
Daten bereits in der DB, was z.B. durch eine garantierte Persistenz gesichert ist, kann diese
Zuweisung direkt innerhalb der DB stattfinden. Mit dieser Methode können prinzipiell auch
weitere Verarbeitungs- und Datentransformationsschritte (z.B. Auswertung von Bedingungen)
innerhalb des DBS ausgeführt werden und falls vorhanden das Resultat oder eine Bestätigung
der Ausführung an die WF-Runtime zurückgeliefert werden. Somit kann der Datentransfer
zwischen den Softwareschichten verringert bzw. ganz vermieden werden.

Um diese Verlagerung der Aufgaben transparent zu halten und auch für bestehende WFs
verwenden zu können, darf dies keine Veränderung im Quellcode der WFs nach sich ziehen.
Somit ist die Verwendung von Inline SQL Aktivitäten (z.B. BPEL/SQL siehe Kapitel 3.2.1,
Seite 45), die grundsätzlich auch auf der integrierten DB des WfMSs operieren könnten,
nicht sinnvoll. Hieraus folgt zugleich, dass mit dem vorgestellten Konzept keine globalen
Optimierungen möglich sind, diese globalen Optimierungen müssen durch entsprechende
Compiler oder vorangestellte Optimierer (siehe Kapitel 3.2.2, Seite 47) erfolgen. Während der
Ausführung von WFs in einer WF-Runtime sind somit nur lokale Optimierungen einzelner
Aktivitäten möglich. Der durchaus plausible Ansatz die Funktionalitäten einer WF-Engine
in ein DBMS vollständig zu integrieren (siehe Kapitel 3.2.3, Seite 51) und so die Runtime
und DAO-Schicht aus Abb. 4.1 zu entfernen, würden den Rahmen dieser Arbeit sprengen,

58

4.2. Pushdown Konzepte

die Realisierungsmöglichkeit eines entsprechenden im DBS geschriebenen WF-Compilers ist
fraglich und der Ansatz liefert keinerlei Möglichkeiten bestehende WfMSe zu optimieren.

Zum aktuellen Zeitpunkt und nach bestem Wissen existiert keine Literatur zur Nutzung
integrierter WF-DBen nach dem Konzept aus Abb. 4.1b. Die betrachteten WfMSe aus
Kapitel 3.3 arbeiten alle nach dem klassischen Konzept aus Abb. 4.1a. Falls nicht, sind die
entsprechenden Information nicht öffentlich zugänglich. Im folgenden Teilkapitel stellen
wir konkrete Ansätze und Techniken vor, die unser grundlegendes Konzept aus Abb. 4.1b
aufgreifen.

4.2. Pushdown Konzepte

Da die grundlegende Idee für eine stärkere Integration der integrierten DB das Herun-
terdrücken von Funktionalität darstellt, nehmen wir Anleihen an den Pushdown-Regeln
aus [VSS+07], die das gleiche Ziel für externe DBen anstreben, und erweitern diese unter
Betrachtung der Funktionalitäten einer kontroll-Fluss orientierten WF-Sprache wie WS-BPEL.
Wir stellen zuerst die verschiedenen Pushdown-Konzepte bzw. Techniken vor und geben
anschließend eine Hierarchie und eine entsprechende Softwarearchitektur an.

4.2.1. WebService-Pushdown

Eine Möglichkeit eine klassische Aufgabe einer WF-Engine an das DBS zu übergeben, stellt
der WebService-Pushdown dar. Dieser ist eine Regel des PGM Optimierers (siehe Kapitel 3.2.2,
Seite 47), die auch auf unseren Ansatz übertragbar ist. Hierbei wird der aufzurufende WS
direkt innerhalb des DBSs aufgerufen. Dieser Aufruf kann von der WF-Engine transparent
an das DBS, das die entsprechende Funktionalität unterstützt, übergeben werden. Hierbei
kann ein verringerter Datentransfer zwischen WF-Runtime und DBS erzielt werden, da die
Ergebnisdaten des WS direkt in die DB ohne Umweg über die WF-Runtime gespeichert
werden (siehe Abb. 4.2). Allerdings sollten die Eingabedaten für den WS bereits in der DB
abliegen, da sonst ein zusätzlicher Datentransfer zwischen WF-Runtime und DBS nötig wird.
Der WebService-Pushdown ist für alle WfMSe, die WSs aufrufen und ein WS-fähiges DBS
unterstützen, geeignet.

4.2.2. Assignment-Pushdown

Der Assignment-Pushdown ist sehr ähnlich zur Assign-Pushdown Regel des PGM Opti-
mierers (siehe Kapitel 3.2.2, Seite 47). Während der Assign-Pushdown jedoch Referenzen
auf WF-Variablen innerhalb von SQL-Anweisungen durch ihre Definition ersetzt, führt der
Assignment-Pushdown ausschließlich Zuweisungen an und von WF-Variablen durch. Der

59

4. Nutzung von Funktionen einer integrierten Workflowdatenbank

Abbildung 4.2.: Veranschaulichung des WebService-Pushdowns. Anstatt den Aufruf über
die Kommunikationsinfrastruktur der WF-Runtime durchzuführen, wird
der Aufruf vom DBS selbst vorgenommen. Somit wird der Datentransfer
zwischen Runtime, DBS und ggf. Kommunikationsinfrastruktur vermieden.

entsprechende Verarbeitungsschritt aus Abb. 4.1b ist die Zuweisung der WF-Sprache und
liefert nur eine Bestätigung an die WF-Runtime zurück ohne Variableninhalte zu übertragen.
Ebenfalls müssen als Vorbedingung, wie beim WS-Pushdown, alle Variableninhalte in der
integrierten DB abliegen. Eine konkrete Realisierung stellen wir in Kapitel 4.3 vor.

4.2.3. ExpressionEvaluation-Pushdown

Der ExpressionEvaluation-Pushdown wertet allgemein Ausdrücke (z.B. Mathematische) in-
nerhalb des DBSs aus und liefert nur das Ergebnis an die WF-Runtime zurück. Dies können
im Prinzip alle mögliche Typen sein, die ein entsprechender Ausdruck zurückgeben kann (z.B.
Integer, Boolean uvm.). Dadurch kann das Datenvolumen, welches zwischen Runtime, DAO-
Schicht und DBS ausgetauscht wird verringert werden. Der Verarbeitungsschritt in Abb. 4.1b
ist somit die Auswertung dieser Ausdrücke. Im Gegensatz zum Assignment-Pushdown wer-
den beim ExpressionEvaluation-Pushdown Daten an die WF-Runtime zurückgeliefert. Wie
für WS- und Assignment-Pushdown sollten als Vorbedingung ebenfalls alle Variableninhalte
schon in der integrierten DB abliegen. Eine konkrete Realisierung stellen wir ebenfalls in
Kapitel 4.3 vor.

4.2.3.1. Condition-Pushdown

Der Condition-Pushdown soll Bedingungen, welche auf WF-Variablen referenzieren, in-
nerhalb des DBSs auswerten und gibt nur noch das Resultat also wahr oder falsch an die

60

4.3. Query-Pushdown

WF-Engine zurück, damit diese den weiteren Kontrollfluss steuern kann (z.B. IF und Transi-
tionConditions in WS-BPEL). Somit stellt er eine konkrete Variante des ExpressionEvaluation-
Pushdown dar, der boolsche Ausdrücke innerhalb des DBSs auswerten lässt. Weitere Va-
rianten des ExpressionEvaluation-Pushdown könnten Schleifenzähler oder Zeitspannen
berechnen.

4.3. Query-Pushdown

Wir möchten nun den Query-Pushdown einführen. Dies ist eine Technik, mit der sich, zu-
mindest für WS-BPEL, die Konzepte Assignment- sowie ExpressionEvaluation-Pushdown
gleichzeitig realisieren lassen. Hierbei werden Ausdrücke und Anfragen einer Query-Sprache,
die nativ innerhalb eines Workflows formuliert werden können, an das DBS weitergeleitet,
um dort ausgewertet zu werden.

Art der Daten-
struktur

Query-Sprache Anforderung DBS WfMS

XML XPath (XQuery) XML-Enabled oder
Native XML

alle WS-BPEL,
Taverna, Trident
uvm.

Tabellen SQL relationales DBS -
Text reguläre Ausdrücke, In-

formation Retrieval (IR)
Query-Sprache

CLOB Datenfeld,
IR Query Implementie-
rung

-

Zukünftiges
Datenstruktur

zukünftige
Query-Sprache

Implementierung
Datenfeld und Query-
Sprache

-

Tabelle 4.1.: Mögliche Ausprägungen des Query-Pushdowns.

Die Grundvoraussetzung hierfür ist, dass das DBS diese Query-Sprache implementiert und
evaluieren kann. Implizit kann dies voraussetzen, dass die entsprechenden Datenstrukturen,
in denen die Daten in den WFs dargestellt werden, als Datentyp im DBS abbildbar sein
müssen. Die Art des Flusses der WF-Sprache spielt hierbei eine untergeordnete Rolle.
Während bei kontroll-Fluss orientierten Sprachen innerhalb der Queries auf Variablen
referenziert wird, kann bei einer daten-Fluss orientierten Sprache auf die eingehenden
Kanten, welche mit einem Datum behaftet sind, referenziert werden. Um die möglichen
Ausprägungen dieses Konzepts besser zu verstehen, sind in Tabelle 4.1 einige mögliche
Ausprägungen dargestellt. Die Tabelle zeigt für verschiedene Datenstrukturen eine mögliche
oder existierende Query-Sprache zur Verarbeitung dieser Struktur und die Anforderungen
an das DBS, um den entsprechenden Query-Pushdown für ein WfMS zu realisieren. Wir

61

4. Nutzung von Funktionen einer integrierten Workflowdatenbank

bezeichnen die jeweilige Ausprägung über den Namen der zugehörigen Query-Sprache (z.B.
XPath-Pushdown, SQL-Pushdown etc.).

Wir können den Query-Pushdown in zwei Modi ausführen (siehe Abb. 4.3). Beim synchronen
Modus wird der Ausdruck innerhalb des DBS ausgewertet und das Datum anschließend an
die WF-Engine zurückgegeben und dort weiterverarbeitet. Dieser synchrone Modus realisiert
den ExpressionEvaluation-Pushdown. Im asynchronem Modus wird der Ausdruck innerhalb
des DBSs ausgewertet und direkt in der DB einem Datenfeld (z.B. einer WF-Variablen)
zugewiesen und realisiert somit den Assignment-Pushdown. Wird das Datum des Feldes
bzw. der WF-Variablen später in der Runtime benötigt, muss es entsprechen nachgeladen
werden.

Abbildung 4.3.: Der Query-Pushdown in asynchronem oder synchronem Modus.

Für diese Arbeit ist insbesondere der XPath-Pushdown von Interesse, da er für alle WS-BPEL
Implementierungen anwendbar ist, wir stellen ihn im Folgenden durch ein kleines Beispiel
vor. Auf die anderen in Tabelle 4.1 beschriebenen Ausprägungen gehen wir nicht weiter ein,
da wir Sie innerhalb dieser Arbeit nicht umsetzen werden.

4.3.1. XPath-Pushdown

Der XPath-Pushdown drückt XPath-Ausdrücke (siehe Kapitel 2.1.2, Seite 21) von der WF-
Runtime Ebene auf die Datenbankebene. Betrachten wir unser XML-Beispieldokument
(Listing 2.1, Seite 19) und folgende WS-BPEL ASSIGN-Aktivität:

<assign>

<copy>

<from>$y/document/title[@lang="de"]/text()</from>

<to variable="x"/>

</copy>

</assign>

62

4.3. Query-Pushdown

Des Weiteren nehmen wir an, dass die Variable y das XML-Beispieldokument enthält und die
Variable x vom Typ xsd:string ist. Somit wird also der deutsche Titel aus dem XML-Dokument
„Nutzung einer integrierten Datenbank zur effizienten Ausführung von Workflows“ an die Variable
x zugewiesen. Man beachte, dass das Wurzel Element thesis im Ausdruck nicht angegeben
wurde. Dies ist eine Besonderheit von XPath-in-BPEL-Ausdrücken, da das Element implizit
durch die Typisierung bekannt ist. Wird der XPath-Pushdown synchron durchgeführt,
wird der Titel an die WF-Runtime übergeben und dort der Variablen x zugewiesen und
anschließend an die DAO-Schicht und von dort ggf. zur Persistenz an das DBS übergeben.
Bei einem asynchronem XPath-Pushdown, wird der Titel innerhalb des DBSs ausgewertet
und dem Datenfeld der Variable x innerhalb der Datenbank zugewiesen. Wird das Datum
von x später in der WF-Runtime benötigt, muss es über die DAO-Schicht nachgeladen
werden.

4.3.2. Pushdown-Hierarchie und Architekturmodell

Es ist möglich, die vorgestellten Pushdown-Konzepte einer Hierarchie zuzuordnen (siehe
Abb. 4.4). Der Webservie-Pushdown steht weitgehend für sich alleine. Der Query-
Pushdown kann in die asynchrone und synchrone Variante aufgeschlüsselt werden,
wobei die asynchrone Variante den Assignment-Pushdown und die synchrone den
ExpressionEvaluation-Pushdown realisieren kann. Der Condition-Pushdown ist als Spe-
zialfall des ExpressionEvaluation-Pushdowns unter diesem anzuordnen. Gegebenenfalls
lässt sich diese Hierarchie um weitere Konzepte erweitern. Wir werden in dieser Arbeit
jedoch nur die in der Hierarchie vorgestellten Konzepte in den Prototypen umsetzen.

Abbildung 4.4.: Die Hierarchie der Pushdown-Konzepte. Für die Umsetzung des Proto-
typs auf Basis von WS-BPEL ist insbesondere die Realisierung des Query-
Pushdowns und des Webservice-Pushdowns von Interesse.

63

4. Nutzung von Funktionen einer integrierten Workflowdatenbank

Eine mögliche Softwarearchitektur, die es nicht erfordert zu große Änderungen in der
WF-Engine vorzunehmen, führt neben der traditionellen DAO-Schicht eine Pushdown-
Schicht ein (Abb. 4.5). In dieser Pushdown-Schicht werden, für den Query-Pushdown, die
Ausdrücke des aktuell ausgeführten WFs in eine für das DBS verständliche Form gebracht
und dann als Anfrage an das DBS gesendet. Für den WS-Pushdown wird die entsprechende
DB-Funktion mit allen nötigen Parametern aufgerufen. Die Pushdown-Schicht kann
direkt von der Runtime oder von der DAO-Schicht angesprochen und verwendet werden.
Gegebenenfalls lässt sie sich auch in die DAO-Schicht integrieren.

Abbildung 4.5.: Mögliche Softwarearchitektur zur Realisierung der Pushdown-Konzepte.
Die Pushdown-Schicht kann von der Runtime sowie der DAO-Schicht
verwendet werden und lässt sich ggf. in Letztere integrieren.

64

5. Apache ODE Architektur im Detail

In diesem Kapitel stellen wir die Software-Architektur von Apache ODE vor. Als OpenSource
BPEL Engine und im Rahmen des SimTech Projekts untersucht [GSK+

11], bietet sie sich ideal
an um die Konzepte aus Kapitel 4 prototypisch zu implementieren, insbesondere da sie die
dort vorgestellte Architektur Runtime-DAO-DBS besitzt. Zuerst stellen wir die allgemeine
Architektur und anschließend die detailliertere Archtitektur der DAO-Schicht und die für
den Prototyp wichtigen Runtime Module vor. Die Änderungen und Eingriffe, die für den
Prototyp notwendig sind, werden in Kapitel 6 vorgestellt.

5.1. Gesamtarchitektur

Apache ODE ist eine reine WF-Engine, sie besitzt jedoch eingeschränkte Möglichkeiten
laufende Instanzen zu überwachen, anzuhalten und fortzusetzen. Diese Funktionen sind
entweder über ein Application Programming Interface (API) oder eine Webseite aufrufbar.
Die in Apache ODE bekannt gemachten BPEL-Prozesse werden über WS-Aufrufe instanziiert.
Aus diesem Grund muss Apache ODE in eine Kommunikationsinfrastruktur für Webservices
eingebettet werden (ODE Integrationsschicht in Abb. 5.1). Typischerweise wird dazu ein
Apache Tomcat Server1 mit Axis2 verwendet, ODE kann allerdings auch in den Apache
ServiceMix2 eingebettet werden.

Apache ODE ist in Java implementiert. Die Gesamtarchitektur wird in Abb. 5.1 veranschau-
licht. Betrachten wir das Schaubild zuerst von oben nach unten: Die in WS-BPEL definierten
Prozesse werden durch den ODE BPEL Compiler zuerst in ein Java Objektschema übersetzt
und anschließend serialisiert als Datei abgespeichert. Für das Instanziieren des Prozesses
und seiner WS-Aufrufe müssen die entsprechenden WSDL Dateien übergeben werden. Um
Initialwerte von Variablen zu generieren bzw. Zuweisungen von Literalen (XML Dokumente,
die innerhalb des BPEL Prozesses definiert sind) zu validieren, werden ebenfalls die ent-
sprechenden XML Schemata vom Compiler benötigt. Gleichzeitig wird der Prozess bekannt
gemacht, ab sofort kann er instanziiert werden. Betrachten wir nun die ODE BPEL Runtime,
sie besteht aus einer Vielzahl an Modulen, die in einem vereinfachten Architekturbild nicht
alle darstellbar sind. Die Wichtigsten sind in Abb. 5.1 veranschaulicht:

1http://tomcat.apache.org/
2http://servicemix.apache.org/

65

5. Apache ODE Architektur im Detail

Abbildung 5.1.: Die Gesamtarchitektur von Apache ODE. WS-BPEL Prozesse werden zu-
erst in ein internes Schema compiliert. Die Runtime besteht aus mehreren
Modulen, wobei das Fundament durch die Jacob VPU gebildet wird, um
eine parallele Ausführung von Instanzen zu erlauben. In der Runtime wer-
den ebenfalls die BPEL Aktivitäten implementiert, die potentiell auf Daten
(DAO-Schicht) und auf WSs zugreifen (Nachrichtenaustausch) können. Vgl.
[Apa]

JACOB VPU3 ist eine für ODE entwickelte Virtual Processing Unit (VPU) und bildet das
Fundament der Runtime Archtitektur. Sie übernimmt alle Aufgaben, um Instanzen
parallel ausführen zu können (Kontextwechsel beim Warten auf Resultat eines WS,
Verarbeiten von zeitgleichen Instanziierungen).

BPEL Aktivitäten werden in diesem Modul implementiert (ASSIGN, FOREACH, IF etc.). Die-
ses Modul interagiert mit den beiden Modulen DAO-Schicht und Nachrichtenaustausch
um die Daten einer WF-Instanz zu verwalten und persistent zu halten sowie um mit
WSs kommunizieren zu können.

ODE DAO-Schicht ist für die Speicherung und Persistenz der Prozess- und Instanzdaten
verantwortlich und kommuniziert dazu mit dem DBS links in Abb. 5.1 (siehe auch
Kapitel 4.1, Seite 57).

3http://ode.apache.org/jacob.html

66

5.2. Detaillierte Architektur der Runtime und der Data Access Objects

Nachrichtenaustausch ist für das Senden und Empfangen von Nachrichten von und zu
Webservices verantwortlich und dass eine eingehende Nachricht an die korrekte
Prozess-Instanz geliefert wird. Sie interagiert mit der Integrationsschicht der Kommu-
nikationsinfrastruktur (z.B. Axis2, ServiceMix), die ihrerseits die WS-Aufrufe verwaltet.

5.2. Detaillierte Architektur der Runtime und der Data Access
Objects

Wir möchten nun detailliertere Zusammenhänge vorstellen. Zuerst werden wir die ODE
Runtime genauer auflösen und anschließend die für diese Arbeit wichtigen Komponenten
OModel, Hibernate DAO und BPEL Aktivitäten genauer betrachten.

5.2.1. ODE Runtime

Wir fächern die Runtime aus Abb. 5.1 in Abb. 5.2 noch etwas genauer auf. Auch hier wurde
noch von der tatsächlichen Implementierung stark abstrahiert. Wir können die Komponenten
in vier Bereiche einteilen, diese sind entsprechend farblich voneinander abgehoben. Die
DAO-Schicht (gelb) verwaltet alle Daten zu Prozessen und Instanzen. Es kann aus drei
verschiedenen Implementierungen gewählt werden:

• Hibernate [KBA+] ist ein DB Middleware System, welches darauf basiert, dass Da-
tenfelder gekennzeichneter Java Objekte automatisch in einer DB persistent gemacht
werden.

• openJPA [JPA] ist ebenfalls ein DB Middleware System und bietet im Prinzip die
gleichen Funktionalitäten wie Hibernate. Die Systeme unterscheiden sich allenfalls
leicht in den anbindbaren DBSen und kleineren Implementierungsdetails.

• inMEM implementiert die DAOs, ohne dass die entsprechenden Daten auf eine Daten-
bank abgebildet werden, so ist es möglich einen Prozess „inMemory“ auszuführen.

Die grünen Module kann man als Prozessdaten und Ausführungslogik Schicht bezeichnen.
Activity implementiert die BPEL Konstrukte und deren Logik. Compilierte Prozesse wer-
den im Objektmodell (OModel) dargestellt und repräsentieren die BPEL Aktivitäten und
Konstrukte. Der BPELRuntimeContext hält Informationen und Zugriffsfunktionen auf die
zu verwendende DAO-Schicht (Hibernate, openJPA) und die Laufzeitparameter von ODE
(JDBC Einstellungen, Prozess-Dehydratation etc.). BPELProcess verwaltet die Informationen
zu einem BPEL Prozess, wie aufzurufende Webservices und die im Prozess verwendeten
Query-Sprachen (XPath, XQuery etc.). Dies hat zur Folge, dass über dieses Modul die Query
Auswertung (blau) sowie die WS-Aufrufe (orange) erfolgen. Für die Evaluierung von XPath

67

5. Apache ODE Architektur im Detail

Ausdrücken werden das Jaxen und Javax Framework verwendet, als Kommunikationsinfra-
struktur kann entweder Axis2 oder der ServiceMix verwendet werden (siehe Kapitel 5.1). In
den folgenden Teilkapiteln stellen wir das Objektmodell, die Hibernate DAO-Schicht und
die Runtime-Schicht vor.

Abbildung 5.2.: Bestandteile der Apache ODE Runtime. Die BPEL Aktivitäten greifen auf
ihre Instanzdaten über den BPELRuntimeContext zu. Query-Auswertungen
und WS-Aufrufe erfolgen indirekt über das BPELProcess Modul, das die
dafür nötigen Informationen trägt. Die DAO Schicht verwaltet die Prozess-
und Instanzdaten.

5.2.2. OModel und BPEL Typsystem

Das OModel ist die Objektrepräsentation eines BPEL Prozesses, der mit Apache ODE com-
piliert wurde. Es gibt OModel-Objekte für alle BPEL Aktivitäten und weitere Konstrukte
und Elemente wie Scopes und Expressions. Das OModel ist für das Verständnis, wie BPEL
Prozesse auf Apache ODE abgebildet werden, essentiell und fördert die Lesbarkeit des
Laufzeit Quellcodes der Aktivitäten und Konstrukte. Jedes BPEL-Konstrukt eines WFs wird
durch den Apache ODE BPEL-Compiler in ein OModel-Objekt transformiert und trägt somit

68

5.2. Detaillierte Architektur der Runtime und der Data Access Objects

die Informationen (Variablenname, WSDL-Operation, XPath-Ausdrücke etc.) aus diesem
WF.

Abbildung 5.3 stellt den für diese Arbeit wesentlichen Teil des OModel dar:

OBase ist die Superklasse aller weitere OModel-Klassen. Die Methode dehydrate() erlaubt
es die Informationen, die in einem OModel-Objekt zu einem konkreten BPEL-Prozess
gespeichert sind, aus dem Hauptspeicher zu entfernen um Systemressourcen frei zu
geben. Dies kann z.B. bei lang laufenden Prozessen mit hohen Wartezeiten sinnvoll
sein.

OScope repräsentiert ein BPEL Scope, einen Sichtbarkeitsblock für Variablen, ähnlich zu
Blöcken in Programmiersprachen mit statischer Namensbindung. Dieser trägt die
Informationen zu allen Variablen, die in diesem Block definiert wurden.

OScope.Variable stellt eine Variablendeklaration dar. Diese beinhaltet den Namen der Va-
riable und ihren Typ, in diesem Fall auch eine Rückreferenz auf den Block (OScope) in
dem sie deklariert ist.

OVarType ist die Oberklasse der im OModel repräsentierten BPEL Typen, denen eine Variable
angehören kann. Wir greifen das Typsystem später auf.

OActivity ist die Oberklasse für alle Aktivitäten.

OInvoke repräsentiert einen WS-Invoke. Die essentiellen Informationen sind, welche Varia-
ble die Ausgangsnachricht hält (inputVar), in welche Variable die Eingangsnachricht
gespeichert wird (outputVar) und die aufzurufende WSDL Operation (Operation). Der
Webservice selbst wird in seiner WSDL-Datei beschrieben und über BPEL partnerLinks
(OPartnerLink) eingebunden.

OAssign repräsentiert die BPEL Zuweisung (ASSIGN), diese kann mehrere Copy Blöcke
beinhalten (OAssign.Copy).

OAssign.Copy stellt einen Copy Block dar. Es existieren die linke Seite der Zuweisung (to)
und die rechte Seite der Zuweisung (from). Die linke Seite muss auf eine Variable
referenzieren, weshalb das entsprechende Interface LValue die getVariable() Methode
implementieren muss. Die rechte Seite der Zuweisung (Interface RValue) kann eine
Variable (VariableRef), ein Ausdruck (Expression) oder ein Literal sein. Literale sind
Start- bzw. Initialwerte für BPEL-Variablen, können als Konstanten betrachtet werden
und werden im Prozessmodell definiert, weshalb diese Werte im OModel gespeichert
werden.

OExpression ist die Oberklasse für alle Query-Sprachen, die in dem System implementiert
wurden. Uns reicht hier die Unterklasse OXPath10Expression, welche XPath1.0 Aus-
drücke repräsentiert. Sie beinhaltet den XPath-Ausdruck sowie alle an dem Ausdruck
beteiligten Variablen.

69

5. Apache ODE Architektur im Detail

Abbildung 5.3.: Ausschnitt des OModel als UML Diagramm. Es zeigt die Repräsentatio-
nen der für diese Arbeit wichtigen BPEL Aktivitäten und Konstrukte wie
Variablendeklaration, Variablentypen, Sichtbarkeitsbereiche, Zuweisungen,
WS-Aufrufe und XPath-Ausdrücke.

70

5.2. Detaillierte Architektur der Runtime und der Data Access Objects

In der BPEL Spezifikation [OAS07] werden folgende drei übergeordnete Variablen-Typen
WSDL Nachricht, XML Schema und XML Element beschrieben. Diese werden entsprechend
auf die OModel-Klassen OMessageVarType, OXsdTypeVarType und OElementVarType abgebildet,
die alle Unterklassen von OVarType sind. Der jeweils zugehörige XML Schema Typ aus
der Prozessdefinition wird als Qualified Name (QName) gespeichert. Bei Verwendung und
Manipulation von XML Daten innerhalb von Apache ODE sind die intern verwendeten XML
Wrapper Elemente zu den verschiedenen Typen von Interesse, diese können der Tabelle 5.1
entnommen werden. Diese Wrapper Elemente werden benötigt um entsprechende Manipula-
tionen der XML Dokumente vorzunehmen (z.B Document-Object-Model Operationen) bzw.
die Auswertungsmodule (Jaxen XPath-Evaluator) korrekt anzusteuern.

BPEL Typ OVarType Wrapper

WSDL Nachricht OMessageVarType <message/>
XML Element OElementVarType Name des Elements
XML Schema OXsdTypeVarType - complex

OXsdTypeVarType - simple
<xsd-complex-type-wrapper/>
<temporary-simple-type-wrapper/>

Tabelle 5.1.: Die BPEL Variablen Typen, ihre OModel Repräsentation und die in der Laufzeit
verwendeten Wrapper Elemente.

Es sei darauf hingewiesen, dass im OModel keinerlei Variableninhalte gespeichert werden.
Lediglich die Werte zu Literalen innerhalb von ASSIGN-COPY Blöcken werden hier gespei-
chert. Die Speicherung von Variableninhalten erfolgt innerhalb der DAO-Schicht und wird
im nächsten Abschnitt besprochen.

5.2.3. ODE Hibernate DAO und Tabellenschema

Nachdem wir das OModel, die darin enthaltene Deklaration und Typisierung von Variablen
betrachtet haben, werden wir nun die Speicherung der Variableninhalte über die DAOs
vorstellen. Wir stellen ebenfalls nur einen kleinen Ausschnitt der DAO-Schicht vor, und zwar
die Schnittstellen zu Scopes und Variableninhalten. Als Implementierungsbeispiel stellen wir
die Hibernate Variante vor. Einerseits, da sie im Prototyp verwendet wurde (siehe Kapitel 6)
und da aus dem Hibernate Beispiel das zugehörige Tabellenschema direkt ableitbar ist.

Über die ProcessInstanceDAO-Schnittstelle erhält man Zugriff auf die ScopeDAO-Schnittstelle
(siehe Abb. 5.4). Diese hält die Informationen zu den XmlDataDAO-Schnittstellen welche
die Daten zu den Variablen beinhalten und diese über Getter- und Settermethoden verfügbar
machen. Da die ProcessInstanceDAO-Schnittstelle die spätere Verbindung zum BpelRuntime-
Context bildet, ist sie für das Gesamtbild wichtig, die konkrete Implementierung ist jedoch
uninteressant.

71

5. Apache ODE Architektur im Detail

Betrachten wir nun die Hibernate Implementierungen der Schnittstellen ScopeDaoImpl und
XmlDataDaoImpl. Beides sind Unterklassen von HibernateDao, dort wird die aktuelle Hiber-
nate DB-Sitzungen verwaltet und Hibernate-Methoden (update()) können über diese Klasse
angesprochen werden.

XmlDataDaoImpl enthält ein Attribut _node vom Typ W3C Node, in dem das XML Dokument
gehalten wird, sowie das Attribut _data vom Typ HXmlData. Das XML Dokument in _node
wird, falls es größer als 256 Zeichen ist, in eine Byte-Repräsentation konvertiert und in
HXmlData _data gespeichert. Andernfalls wird es in HXmlData als _simpleValue gespeichert.
Dies wird aus Performanzgründen durchgeführt, um String- anstatt BLOB-Felder für kleine
Inhalte innerhalb der DB zu verwenden. Entsprechend referenziert ScopeDaoImpl auf ein
Objekt vom Typ HScope in dem z.B. der Name des Scopes abgelegt wird. Objekte von HScope
und HXmlData stellen durch die Hibernate Middleware direkt Zeilen entsprechender Daten-
banktabellen dar. Hibernate verwaltet die Synchronisierung, also das Speichern und Laden
bzw. die Persistenz der Attribute, dieser Objekte über die Getter-/Settermethoden und durch
Überwachung des Java Bytecodes selbstständig. Dazu müssen die Datenfelder solcher Objek-
te entsprechend annotiert werden (siehe Listing 5.1). Aus diesen Annotationen ergeben sich
ebenfalls die Tabellenschemata für die Datenbank. Es kann auch mit Vererbung gearbeitet
werden: da HScope sowie HXmlData von HObject abgeleitet sind, besitzen beide das _id At-
tribut. Wir erhalten aus Abb. 5.4 direkt folgendes Datenschema in Abb. 5.5 für die Datenbank.

1 /**

2 * @hibernate.class table="BPEL_XML_DATA"

3 */

4 public class HXmlData extends HObject {

5

6 private byte[] _data;

7 ...

8

9 /**

10 * @hibernate.property type="byte[]"

11 * @hibernate.column name="DATA" sql-type="BLOB"

12 */

13 public byte[] getData() {

14 return _data;

15 }

16

17 public void setData(byte[] data) {

18 _data = data;

19 }

20 ...

21 }

Listing 5.1: Beispiel für die Annotation einer Java Klasse, die von Hibernate synchronisiert
werden soll.

72

5.2.
D

etaillierte
A

rchitekturderR
untim

e
und

derD
ata

A
ccess

O
bjects

Abbildung 5.4.: UML-Diagramm eines Ausschnitts der DAO-Schicht inklusive Hibernate Varianten der ScopeDAO und
XmlDataDAO Schnittstellen. Dies sind alles Klassen von ODE, Hibernate selbst überwacht nur die Objekte
HScope und HXmlData und synchronisiert deren Attribute mit Zeilen einer entsprechenden Datenbanktabel-
le.

7
3

5. Apache ODE Architektur im Detail

Abbildung 5.5.: Tabellenschema, welches sich durch die Hibernate Middleware direkt
aus den annotierten Klassen HScope und HXmlData aus Abb. 5.4 ergibt.
HScope wird auf die Tabelle BPEL_SCOPE und HXmlData auf die Tabelle
BPEL_XML_DATA abgebildet.

5.2.4. BpelRuntimeContext und Aktivitäten

Um das Gesamtbild zu vervollständigen, stellen wir jetzt die Funktionsweise der Laufzeit-
Aktivitäten (ACTIVITY) mit dem Laufzeit-Kontext (BpelRuntimeContext) und deren Anbin-
dung an die DAO-Schicht und das OModel vor. Wir stellen die Komponenten aus Abb. 5.6
einzeln vor und beschreiben anschließend ihr Zusammenwirken. Ein konkretes Beispiel wird
im Abschnitt Ausführungsszenario besprochen.

BpelRuntimeContext und die Implementierung BpelRuntimeContextImpl stellen Methoden
zur Verfügung, mit denen Variableninhalte gelesen (readVariable) und geschrieben
(writeVariable) werden können, diese greifen direkt auf die DAO-Schicht zu. Der
BpelRunteimContext ist somit das Bindeglied zwischen Runtime und DAO-Schicht.
Des Weiteren werden WS-Aufrufe an die Kommunikationsinfrastruktur weitergelei-
tet und die Auswertungsmodule für Query-Sprachen (wie XPath, XQuery etc.) den
Aktivitäten zur Verfügung gestellt.

ScopeFrame implementiert die Funktionen der BPEL-Scopes (Blöcke). Eine Funktion ist
das Auflösen einer Variable (resolve) entsprechend der Sichtbarkeit, die durch die
im BPEL-Prozess definierten Scopes gegeben sind. Aus diesem Grund besitzt ein
ScopeFrame Zugriff auf seinen Vater ScopeFrame. Darüber hinaus stellt ScopeFrame
Methoden für das Lesen (fetchVariableData) und Schreiben (writeVariable, commitChanges)
von Variableninhalten bereit. ScopeFrame ist direkt mit seiner OModel-Repräsentation
verbunden (Attribut oscope).

VariableInstance ist eine Wrapperklasse für eine Variable aus dem OModel
(OScope.Variable) und der ID des Scope, dem sie angehört.

ACTIVITY ist die Oberklasse aller implementierten BPEL-Aktivitäten. Sie beinhaltet den
ScopeFrame, in dem sie eingebettet ist, sowie die OModel Repräsentation dieser Akti-
vität über ein Objekt der Klasse ActivityInfo. Ebenfalls stellt sie Methoden zum Lesen

74

5.2. Detaillierte Architektur der Runtime und der Data Access Objects

Abbildung 5.6.: Ausschnitt der Laufzeitkomponenten als UML-Diagramm. ACTIVITY ist
an das OModel und die BpelRuntimeContextImpl an die DAO-Schicht an-
gebunden. Zwischen diesen beiden Komponenten fungiert ScopeFrame als
Vermittler für das Lesen und Schreiben von Variableninhalten.

(fetchVariableData) und Schreiben (commitChanges) von Variableninhalten bereit. Insbe-
sondere verfügt sie über Zugriff auf das aktuelle BpelRuntimeContext-Objekt, welches
für die laufende Instanz von Apache ODE gültig ist. Auf dieses kann über die Metho-
de getBpelRuntimeContext(), welche von BpelJacobRunnable ererbt wurde, zugegriffen
werden. Im Folgenden stellen wir nur die, für das Verständnis dieser Arbeit, wichtigen
Aktivitäten vor. Alle abgeleiteten Aktivitäten müssen die Methode run() implementie-
ren, diese wird durch die JacobVPU aufgerufen um die Aktivität zu starten.

INVOKE realisiert die Logik eines WS-Aufrufs. Zuerst wird die Variable mit der Ausgangs-
nachricht gelesen, diese an die invoke-Methode des BpelRuntimeContext übergeben
und anschließend die Antwortnachricht des WS in die dafür vorgesehene Variable
geschrieben.

75

5. Apache ODE Architektur im Detail

FOREACH realisiert die Logik der BPEL-Foreach Schleife. Diese Schleife besitzt einen Start-
und einen Endwert, über den ein Zähler läuft. Diese Werte werden über Query-
Ausdrücke bestimmt (evaluateCondition).

ASSIGN realisiert die BPEL-Assign Logik. Hierbei werden sequentiell alle Copy-Blöcke durch-
laufen und jeweils die Variable der linken Seite aufgelöst (evalLValue) sowie das Resultat
des Ausdrucks oder der Inhalt der Variable der rechten Seite (evalRValue) und dieser
Wert anschließend in die Variable der linken Seite gespeichert. Die Methode evalQuery
wird verwendet um Query-Ausdrücke innerhalb von evalRValue auszuwerten.

Lesende und schreibende Zugriffe auf eine Variable innerhalb einer Aktivität finden grund-
sätzlich folgendermaßen statt:

1. Die Variable liegt als OScope.Variable vor und wird mit Hilfe von ScopeFrame.resolve
aufgelöst und in ein Objekt von VariableInstance umgeschrieben.

2. Es wird auf die Schreib- und Lese-Methoden von ACTIVITY unter Verwendung von
VariableInstance zugegriffen, diese geben den Aufruf an die Methoden von ScopeFrame
weiter, die prinzipiell auch innerhalb der Aktivität direkt angesprochen werden können.
Hierfür muss zusätzlich der BpelRuntimeContext übergeben werden.

3. ScopeFrame leitet die Anfrage an die Methoden zum Lesen und Schreiben von Variablen
des BpelRuntimeContext weiter.

4. Der BpelRuntimeContext greift auf die konkreten Variableninhalte über die DAO-Schicht
zu, überschreibt diese mit neuen Werten oder liefert den aktuellen Inhalt zurück.

Die Aktivitäten sind indirekt mit dem OModel über ActivityInfo und über den ScopeFrame
verknüpft (siehe Kapitel 5.2.2). Die Anbindung an die DAO-Schicht erfolgt innerhalb der
BpelRuntimeContextImpl über die ProcessIntanceDAO (siehe Kapitel 5.2.3).

5.2.5. Ausführungsszenario

Um die Interaktion der drei vorgestellten Schichten (OModel, Hibernate-DAO und
BpelRuntimeContext und Aktivitäten) besser nachvollziehen zu können, werden wir hier auf
das BPEL-Zuweisungsbeispiel aus Kapitel 4.3.1 (Seite 62) zurückgreifen.

<assign>

<copy>

<from>$y/document/title[@lang="de"]/text()</from>

<to variable="x"/>

</copy>

</assign>

76

5.2. Detaillierte Architektur der Runtime und der Data Access Objects

Variable y enthält nach wie vor das XML-Beispieldokument aus Listing 2.1 (Seite 19). Variable
x ist vom Typ xsd:string. Das entsprechende OAssign Objekt enthält ein OAssign.Copy Objekt,
dessen Attribut to vom Typ VariableRef ist und den Namen der Variable x speichert. Das
Attribut from ist ebenfalls vom Typ VariableRef und hält den Namen der Variable y und
zusätzlich den OXPath10Expression Ausdruck „/document/title[@lang="de"]/text()“. Wir starten
mit der Methode ASSIGN.run() und stellen die Ausführungsreihenfolge in Pseudoquellcode
vor, wie sie bei Ausführung des Beispiels auftreten würden (Listing 5.2).

Man kann erkennen, dass es ein relativ langer Weg ist, bis alle Informationen für die tatsäch-
liche Zuweisung vorliegen. Insbesondere wird der aktuelle Wert der Variablen x gelesen,
bevor der neue Wert für x geschrieben wird. Dies hat mit der Möglichkeit zu tun, dass auf
der linken Seite der Zuweisung ebenfalls auf einen bestimmten Pfad im XML Dokument
verwiesen werden kann. Aus diesem Grund benötigt man den alten Variableninhalt zur
Zuweisung innerhalb der Runtime. Beim anschließendem Speichern des neuen Werts in
die DAO-Schicht, leuchtet es nicht ein, warum der neu geschriebene Wert gleichzeitig zu-
rückgegeben wird. Insbesondere da ASSIGN.commitChanges diesen Wert einfach ignoriert.
Wir möchten darauf hinweisen, dass der Autor dieser Arbeit nicht für den Zuweisungs-
mechanismus von Apache ODE, für das vorgestellte Beispiel (Listing 5.2), verantwortlich
ist.

Man muss in jedem Fall darauf hinweisen, dass in Java lediglich die Referenzen der Objekte
kopiert werden, es wird also tatsächlich auf dem Inhalt operiert, der sich in der DAO-Schicht
befindet. Aus diesem Grund kann der vermeintliche Kommunikationsüberschuss möglicher-
weise sehr gering sein.

1 // Deklarationen
2 to : VariableRef; // Enthält Deklaration für BPEL-Variable x
3 from : VariableRef; // Enthält Deklaration für BPEL-Variable y
4 VI : VariableInstance; // Temporäre Variable
5 value, rvalue, lvalue : Node; // Temporäre Variablen für XML-Inhalte
6 // Start der Assign Aktivität
7 ASSIGN.run()
8 // Bearbeiten des COPY-Blocks, Zuweisung des from-Teils an den to-Teil
9 ASSIGN.copy(to, from)

10

11 // Bestimmen des Werts des from-Teils
12 rvalue := ASSIGN.evalRValue(from)
13 // ScopeFrame löst Variable y auf
14 VI := ScopeFrame.resolve(from)
15 // Lesen des Werts von Variable y
16 value := ASSIGN.fetchVariableData(VI)
17 // Durchreichen an BpelRuntimeContext
18 return ScopeFrame.fetchVariableData(VI)
19 return BpelRuntimeContext.readVariable(VI)
20 // Lesen der ScopeDAO des Scopes in den y eingebettet ist
21 ScopeDAO := ProcessInstanceDAO.getScope(VI.scopeInstance)
22 // Lesen der XmlDataDAO der zu y gehört

77

5. Apache ODE Architektur im Detail

23 XmlDataDAO := ScopeDAO.getVariable(VI.declaration.name)
24 // Rückgabe des Werts von y
25 return XmlDataDAO.get
26 // Evaluieren des XPath-Ausdrucks auf den Wert von y
27 return ASSIGN.evalQuery(value, from.location)
28

29 // Bestimmen des Werts des to-Teils
30 lvalue := ASSIGN.evalLValue(to)
31 // ScopeFrame löst Variable x auf
32 VI := ScopeFrame.resolve(to)
33 // Lesen des Werts von Variable x
34 value := ASSIGN.fetchVariableData(VI)
35 // Durchreichen an BpelRuntimeContext
36 return ScopeFrame.fetchVariableData(VI)
37 return BpelRuntimeContext.readVariable(VI)
38 // Lesen der ScopeDAO des Scopes in den x eingebettet ist
39 ScopeDAO := ProcessInstanceDAO.getScope(VI.scopeInstance)
40 // Lesen der XmlDataDAO der zu x gehört
41 XmlDataDAO := ScopeDAO.getVariable(VI.declaration.name)
42 // Rückgabe des Werts von x
43 return XmlDataDAO.get
44

45 // Die eigentliche Zuweisung
46 lvalue := rvalue;
47

48 // Speichern des neuen Werts von x
49 // ScopeFrame löst Variable x auf
50 VI := ScopeFrame.resolve(to)
51 // Durchreichen an BpelRuntimeContext
52 ASSIGN.commitChanges(VI, lvalue)
53 return ScopeFrame.commitChanges(VI, lvalue)
54 return BpelRuntimeContext.writeVariable(VI, lvalue)
55 // Lesen der ScopeDAO des Scopes in den x eingebettet ist
56 ScopeDAO := ProcessInstanceDAO.getScope(VI.scopeInstance, lvalue)
57 // Lesen der XmlDataDAO der zu x gehört
58 XmlDataDAO := ScopeDAO.getVariable(VI.declaration.name)
59 // Setzen des neuen Werts von x
60 XmlDataDAO.set(lvalue)
61 // Rückgabe des neuen Werts von x
62 return XmlDataDAO.get
63

64 // Ende der Assign Aktivität

Listing 5.2: Pseudoquellcode der Ausführung des ASSIGN-Beispiels für Apache ODE.

78

5.3. Möglichkeiten für eine stärkere Nutzung der integrierten Datenbank

5.3. Möglichkeiten für eine stärkere Nutzung der integrierten
Datenbank

Nach Betrachtung der Architektur von Apache ODE und den einzelnen BPEL Aktivitäten
ergeben sich nun Möglichkeiten die Pushdown-Konzepte aus Kapitel 4 anzuwenden. Für
WS-Aufrufe sollte es möglich sein den WS-Pushdown einzuführen, indem die Methode
invoke von BpelRuntimeContextImpl erweitert wird. Die Zuweisungslogik von ASSIGN
sollte unter Beachtung des Typsystems (siehe Tabelle 5.1) in die ScopeDAO-Schicht
verlagert werden können und als asynchroner Query-Pushdown (Assignment-Pushdown)
direkt im DBS erfolgen. Die notwendigen Erweiterungen stellen wir in Kapitel 6 vor.
Alternativ dazu kann die Zuweisungslogik in ASSIGN verbleiben und der synchrone
Query-Pushdown (ExpressionEvaluation-Pushdown) verwendet werden, um die Berechnung
des zuzuweisenden Werts in der DB durchzuführen und anschließend diesen Wert für die
Zuweisung an die ODE-Runtime zu übertragen. Bedingungsevaluationen für Schleifen
(FOREACH, WHILE etc.), für Kontrollstrukturen (IF, SWITCH) und Zeitberechnungen für
die Verarbeitung von Ereignissen (ONALARM, WAIT) könnten über einen synchronen
Query-Pushdown (ExpressionEvaluation/Condition-Pushdown) erfolgen. Ebenfalls
könnte der synchrone Query-Pushdown (als Condition-Pushdown) für die Auswertung
der TransitionConditions aller Aktivitäten verwendet werden. Eine Auflistung aller lo-
kalen Optimierungsmöglichkeiten für WS-BPEL Aktivitäten ist der Tabelle 5.2 zu entnehmen.

WS-BPEL
Aktivität/Konstrukt

ODE Klasse Art des
Pushdown

Modus des
Pushdown

ASSIGN ASSIGN Query asynchron
& synchron

INVOKE INVOKE Webservice -
FOREACH FOREACH Query synchron
WHILE WHILE Query synchron
REPEAT UNTIL REPEATUNTIL Query synchron
IF (BPEL 2.0) SWITCH Query synchron
SWITCH (BPEL 1.0) SWITCH Query synchron
ONALARM EH_ALARM Query synchron
WAIT WAIT Query synchron
TransitionConditions ACTIVITYGUARD Query synchron

Tabelle 5.2.: WS-BPEL Aktivitäten und ihre möglichen Optimierungen durch die Pushdown-
Konzepte aus Kapitel 4.

79

6. Implementierung des Prototyps

Um die Realisierbarkeit der Konzepte aus Kapitel 4 nachzuweisen und sie auf eine Per-
formanzsteigerung hin untersuchen zu können, wurden sie prototypisch innerhalb der
WF-Engine Apache ODE umgesetzt. In diesem Kapitel stellen wir die dazu notwendigen
Modifikationen und technische Details sowie typische Probleme, die bei der Umsetzung
auftraten, vor.

6.1. Veränderungen an der Architektur von Apache ODE

Um den Prototyp umzusetzen, mussten zuerst mehrere Komponenten für Apache ODE
festgelegt werden. Zum einen die Version von Apache ODE selbst, hier wurde entschieden
die Version 1.3.4 zu verwenden. Diese war zur Zeit der Implementierung die aktuellste 1.3
Version, die Version 2.0 wird nicht verwendet, da diese von Apache nicht fortgeführt wird.
Die Einbettung von Apache ODE findet innerhalb Apache Tomcat 6.0.29 mit Axis2 statt, da dies
eine unkomplizierte, gut dokumentierte und sehr verbreitete Möglichkeit ist Apache ODE
zur Verfügung zu stellen. Die Wahl für das DB Middleware System (Realisierung der DAOs)
fiel auf Hibernate 3.2.5. Prinzipiell gibt es zwar kaum Unterschiede zwischen openJPA und
Hibernate, allerdings ist es derzeit mit openJPA nicht möglich XML Daten größer als 1MB in
die DB abzuspeichern. Hibernate hingegen besitzt hier keine Beschränkungen, außer die für
Binary Large OBbjects (BLOB) üblichen, die auch für openJPA gelten. Als DBS wurde IBM DB2

UDB Version 9.7 verwendet, einerseits, da sie in [Mül10] als WF-DB empfohlen wird, und
andererseits, da sie über ausreichend XML Funktionalitäten zum Speichern und Verarbeiten
von XML Dokumenten verfügt. Für die Evaluierung wurde als Alternative zu DB2 noch
PostgreSQL Version 8.4 mit einigen Einschränkungen hinzugezogen (siehe Kapitel 7). Die
eben besprochenen Entscheidungen sind in Tabelle 6.1 zusammengefasst.

6.1.1. Änderungen am Datenmodell der integrierten Datenbank

Um die Implementierung des XPath-Pushdowns vorzubereiten, musste das Datenmodell bzw.
das Datenbankschema aus Abb. 5.5 (Seite 74) geändert werden. Das BLOB Feld DATA der
Tabelle BPEL_XML_DATA wurde in ein XML Feld umgewandelt, um die XML Verarbeitung
innerhalb des DBSs zu ermöglichen. Dazu musste die Hibernate Annotierung für das Attribut
_data der Klasse HXmlData aus Abb. 5.4 (Seite 73) von BLOB auf XML geändert werden.

81

6. Implementierung des Prototyps

Komponente Software Version Begründung

WF-Engine Apache ODE 1.3.4 aktuelle ODE Version,
2.0 wird nicht fortge-
führt

Einbettung Apache Tomcat 6.0.29 einfach durchzuführen,
weit verbreitet

DB Middleware Hibernate 3.2.5 XML Daten größer 1MB
möglich

DBS IBM DB2 UDB 9.7.0.441 empfohlen und sehr gu-
te XML Verarbeitungs-
möglichkeiten

Tabelle 6.1.: Auswahl und Begründung der verwendeten Komponenten für den Prototyp.

Tatsächlich wird in der Originalversion von Apache ODE hier ein benutzerdefinierter Typ
verwendet, der die Daten aus HXmlData komprimiert und nur die komprimierten Daten in
die DB ablegt. Diese Komprimierung wurde durch die Änderung deaktiviert, lediglich das
DBS selbst könnte eine solche Komprimierung vornehmen, andernfalls wäre die Verarbeitung
dieser Daten innerhalb des DBSs nicht möglich.

Um eine einheitliche Verarbeitung und Struktur der SQL/XPath-Ausdrücke zu erhalten,
die im Prototyp generiert werden müssen, wurde die Unterscheidung zwischen einfachen
Werten (SIMPLE_VALUE) und großen Werten (DATA) aufgehoben. Hierzu musste die Xml-
DataDaoImpl entsprechend verändert werden. Da XML Felder in DBSen nur wohlgeformte
XML Dokumente enthalten dürfen, musste ein Wrapper Element verwendet werden, um
XSD Einfache Typen im XML Feld DATA ablegen zu können. Dazu wurde das Element
<temporary-simple-type-wrapper/> verwendet (siehe Tabelle 5.1, Seite 71). Dies wird innerhalb
der ODE-Runtime bei der Verarbeitung von XSD Einfachen Typen verwendet und ermöglicht
es so ohne weitere Änderungen den XPath-Pushdown ein- und auszuschalten. Alle anderen
BPEL/XML-Typen besitzen innerhalb von Apache ODE schon eine eindeutiges XML Wurzel-
element (siehe ebenfalls Tabelle 5.1). Damit ist Apache ODE ohne den Pushdown ebenfalls
mit dem modifizierten Datenmodell lauffähig. Diese Version mit modifiziertem Datenmodell,
aber ohne Pushdown-Funktionalität, nennen wir instrumentalisierte Apache ODE, sie wird
ebenfalls für die Evaluiering (Kapitel 7) benötigt. Das veränderte Tabellenschema ist in
Abb. 6.1 dargestellt.

6.1.2. Änderungen in der DAO-Schicht

Die DAO-Schicht verwaltet die Zugriffe auf die DB. Dies geschieht über SQL Anfragen
an das DBS bzw. über das DB Middleware System Hibernate, welches letztendlich SQL
Anfragen an das DBS kapselt und somit die Runtime unabhängig vom konkreten DBS und

82

6.1. Veränderungen an der Architektur von Apache ODE

Abbildung 6.1.: Verändertes und vereinfachtes Tabellenschema für den Prototyp.

dem Datenschema macht. Deshalb ist die DAO-Schicht die Architekturschicht, in der die
SQL Anfragen für den XPath- und WS-Pushdown generiert und an das DBS gestellt werden
müssen. Abb. 6.2 zeigt das modifizierte UML-Diagramm der DAO-Schicht aus Kapitel
5.2.3. Unveränderte Klassen sind grau eingefärbt, neue Klassen und Typen sind hellblau
eingefärbt, alle anderen Klassen und Schnittstellen (weiß in Abb. 6.2) wurden in irgendeiner
Weise modifiziert. Private Hilfsmethoden, die benötigt werden, um die Hauptfunktionen
umzusetzen, werden aus Gründen der Übersichtlichkeit nicht dargestellt. Im Folgenden
gehen wir auf die einzelnen Änderungen und einige Details ein.

HibernateDao Die HibernateDao wird um die Methode hibernateFlush() erweitert, diese wird
in der Methode XmlDataDaoImpl.set() verwendet um das Festschreiben eines Variablenwertes
und somit dessen Persistenz zu erzwingen, da die Persistenz für die Realisierung des XPath-
und WS-Pushdown essentiell ist.

ScopeDAO und ScopeDaoImpl Wir integrieren die in Kapitel 4 angesprochene Pushdown-
Schicht in die ScopeDAO. Wir realisieren dort die vier benötigten Hauptmethoden
für die Pushdown-Konzepte. Für Zuweisungen benötigen wir den asynchronen
(dataAssignByContext) XPath-Pushdown (Assignment-Pushdown). Für Zuweisungen
die noch innerhalb der WF-Runtime stattfinden sollen, aber der zuzuweisende Ausdruck im
DBS ausgewertet werden soll, benötigen wir des Weiteren die synchronen XPath-Pushdown
Funktionen inDatabaseXPath und inDatabaseExpression (ExpressionEvaluation-Pushdown).
Insbesondere wird die synchrone XPath-Pushdown Funktion inDatabaseExpression ebenfalls
für die Auswertung von Bedingungen und Berechnungen in anderen BPEL-Aktivitäten
verwendet. Für die Realisierung des WS-Pushdown wird noch die Methode invokeWS
benötigt. Diese vier Methoden werden in Kapitel 6.1.2.1 ausführlicher vorgestellt.

XmlDataDAO und XmlDataDaoImpl Die XmlDataDAO musste verändert werden, um einen
veralteten Variableninhalt der in HXmlData gehalten wird zu kennzeichnen (setDetached).
Dies wird benötigt, falls die Variablenzuweisung über einen WS- oder asynchronen XPath-
Pushdown erfolgt. Wird der Variableninhalt dann zu einem späteren Zeitpunkt von

83

6. Implementierung des Prototyps

BpelRuntimeContext (siehe Kapitel 5.2.4, Seite 74) angefordert, muss der im Hauptspeicher
gehaltene Wert zuerst mit dem Datum aus der DB aktualisiert werden.

HXmlData Die Hibernate Annotierung für HXmlData wurde wie in Kapitel 6.1.1 angespro-
chen von der komprimierten Byte Darstellung auf XML geändert. Zusätzlich wurde das
Attribut _detached eingeführt, um die Daten als veraltet zu kennzeichnen. Diese Information
wird nicht auf das Tabellenschema der Datenbank übertragen, da diese Information nur
während der Laufzeit einer WF-Instanz von Interesse ist.

VariableContext Diese Klasse wird in den neuen Methoden der ScopeDAO verwendet. Wie
in Kapitel 5.3 (Seite 79) angesprochen, muss die Zuweisungslogik, zumindest für Zuweisun-
gen durch einen asynchronen XPath-Pushdown, auf die DAO-Schicht übertragen werden,
um dort die korrekten SQL-Anfragen generieren zu können. Um den Aufruf des asynchronen
XPath-Pushdown zu vereinheitlichen, wird die Wrapper Klasse VariableContext verwendet,
die alle dafür nötigen Informationen einer Variable beinhaltet. Um ebenfalls einheitlich die
Zuweisungen von Ausdrücken an Variablen zu ermöglichen, werden die Expressions als
Pseudovariablen ohne ID übergeben. Insgesamt können folgende Informationen benötigt
werden:

Identifier (Id) - Primärschlüssel der jeweiligen Variable in Tabelle BPEL_XML_DATA,
für Ausdrücke NULL.

varType - Der Typ der jeweiligen Variable (siehe Tabelle 5.1, Seite 71) oder der Typ
„Expression“, falls es sich um einen Ausdruck handelt.

type - Der XML-Typ der Variable als Qualified Name, für Ausdrücke NULL.

namespaces - Der umgebende Namensraumkontext, in dem sich die Variable oder
der Ausdruck befindet, hier sind alle Namensräume und ihre etwaigen Präfixe
enthalten.

path - Die Pfadselektion, für die Zuweisung von XML-Teildokumenten, bei Variablen
oder der Ausdruck selbst.

exprContext - Für Ausdrücke zusätzliche Referenzen auf die im Ausdruck enthaltenen
Variablen als VariableContext, für Variablen NULL.

84

6.1. Veränderungen an der Architektur von Apache ODE

VarType VarType ist eine Aufzählung der möglichen Typen, die bei der Zuweisung auftreten
können. Dies ist der Typ des Attributs varType der Klasse VariableContext. Die einzelnen
Typen, jeweils mit ihrem korrespondierendem OModel, lauten:

MESSAGE - OMessageVarType

ELEMENT - OElementVarType

COMPLEXXSD - OXsdTypeVarType (simple = false)

SIMPLEXSD - OXsdTypeVarType (simple = true)

EXPRESSION - Expression/OExpression

IntegratedDatabaseNativeQueries Diese Schnittstelle kapselt alle SQL-Anfragen und Frag-
mente, die für das Zusammenstellen der Anfragen an das DBS benötigt werden. Diese
Schnittstelle ist nötig, um verschiedene DBSe anbinden zu können. Eigentlich wird diese Auf-
gabe vom DB Middleware System übernommen, jedoch verfügt das verwendete Hibernate
über keine Möglichkeit die XML Verarbeitung innerhalb der eigenen Hibernate Query Lan-
guage (HQL)1 abzubilden. Aus diesem Grund müssen pro DBS die nativen SQL-Ausdrücke
getrennt abgelegt werden. Wie Abb. 6.2 zu entnehmen ist, wurde diese Schnittstelle für
IBM DB2 (IDNDB2) vollständig und PostgreSQL (IDNPostgreSQL) eingeschränkt implemen-
tiert. Diese Schnittstelle wird innerhalb von ScopeDaoImpl verwendet, um die konkreten
SQL-Anfragen zu generieren.

1openJPA enthält ebenfalls keine Möglichkeit der standardisierten XML Verarbeitung

85

6.
Im

plem
entierung

des
P

rototyps

Abbildung 6.2.: UML-Diagramm eines Ausschnitts der modifizierten DAO-Schicht für den Prototypen. Graue Kompo-
nenten wurden nicht verändert, Hellblaue sind neu, weiße Komponenten wurden im Vergleich zum
UML-Diagramm aus Abb. 5.4 (Seite 73) modifiziert.

8
6

6.1. Veränderungen an der Architektur von Apache ODE

6.1.2.1. Hauptmethoden von ScopeDAO

Wir stellen nun die Methoden vor, welche die Anweisungen des WS- und XPath-Pushdown an
das DBS weitergeben. Alle vorgestellten SQL Anweisungen beziehen sich auf das DBS DB2

UDB V9.7 mit eingebettetem pureXML, da wir mit PostgreSQL V8.4 nicht alle Methoden rea-
lisieren können. Durch das Auflösen der Variablen durch ScopeFrame.resolve wird, falls noch
nicht vorhanden, ein entsprechendes XmlDataDAO und HXmlData Objekt und dadurch ein
Tabelleneintrag zu dieser Variable erzeugt. Deshalb müssen grundsätzlich für Zuweisungen
SQL-UPDATE Anweisungen verwendet werden.

invokeWS ruft die UDF des DBSs für das Aufrufen eines WS auf.
Parameter:
inputVar (Long) - Primärschlüssel der Variable mit der Nachricht, die an den WS als Eingabe
geschickt wird.
outputVar (Long) - Primärschlüssel der Variable, in die das Resultat des WS gespeichert wird.
operationNS (QName) - XML Namensraum der WS Operation.
operationName (String) - Aufzurufende WS Operation.
EPR (String) - Endpunkt URL des aufzurufenden WS.

Die UDF, die für den Webservice Aufruf verwendet wird lautet:

db2xml.soaphttpc (endpoint_url, soap_action, soap_body)

An diese Funktion muss der Endpunkt (endpoint_url), der Name der WSDL Operation
(soap_action) und die Eingaben (soap_body) übergeben werden. Enthält die Nachricht
bereits die Operation als Wurzel-Element, kann die Operation leer gelassen werden, diese
Struktur liegt durch Apache ODE bereits vor und wir werden davon Gebrauch machen.
Das vollständige SQL/pureXML Query, um den WS-Pushdown durchzuführen, ist in
Listing 6.1 dargestellt. Die Parameter mit vorangestelltem Doppelpunkt sind die direkten
oder modifizierten Werte der Eingangsparameter der Funktion invokeWS.

1 update bpel_xml_data set data = db2xml.soaphttpc (':EPR', '',

2 (select XMLSERIALIZE(XMLELEMENT(

3 NAME "wsinvoke::operationName",

4 XMLNAMESPACES(':operationNS' AS "wsinvoke"),

5 XMLQUERY('declare default element namespace "*"; $DATA/message/*')

6) as clob)

7 from bpel_xml_data where id = :inputVar))

8 where id = :outputVar;

Listing 6.1: SQL/pureXML Query für den WS-Pushdown.

87

6. Implementierung des Prototyps

inDatabaseXpath stellt das SQL Query für den synchronen XPath-Pushdown innerhalb
von Zuweisungen zusammen. Im Gegensatz zu inDatabaseExpression kann nur auf eine
Variable referenziert werden und somit hauptsächlich XPath-Pfadselektionen auf ein
XML-Dokument evaluiert werden (Sonderfall des ExpressionEvaluation-Pushdown).
Parameter:
varKey (Long) - Primärschlüssel der Variablen, auf die zugegriffen wird.
varType (QName) - Der XML Typ der Variable.
xPath (String) - Pfadselektion als XPath-Ausdruck.
namespaces (NSContext) - Der XML Namensraumkontext enthält alle nötigen Namensräume.
Rückgabetyp: (XML) Node

Da sich das Query nur auf eine Variable und somit auf einen XML-Schema Typen bezieht
wird nur dessen Namensraum benötigt (namespaces), dieser wird in Präfix (:prefix) und
Namensraum-URI (:uri) aufgetrennt. Das entsprechende SQL/pureXML Query ist in
Listing 6.2 dargestellt.

1 select XMLQUERY('declare default element namespace "*";

2 declare namespace :prefix=":uri";

3 $DATA/:xPath')

4 from bpel_xml_data where id = :varKey

Listing 6.2: SQL/pureXML Query für den synchronen XPath-Pushdown innerhalb
Zuweisungen von Variablen.

Betrachten wir das Zuweisungsbeispiel, genauer gesagt den from Teil aus Kapitel 4.3.1
(Seite 62):

<from>$y/exp:document/exp:title[@lang="de"]/text()</from>

Die Variable y enthält das XML-Beispieldokument aus Listing 2.1 (Seite 19), ihr Primärschlüs-
sel in der Datenbanktabelle BPEL_XML_DATA sei 1. Die Instanz des Queries aus Listing 6.2
für diesen Ausdruck ist in Listing 6.3 dargestellt. Der Namensraum samt Präfix wurden
hinzugefügt, und der XPath-Ausdruck wurde um das Wurzel-Element (exp:thesis) erweitert.
Dies ist notwendig, da XPath-in-BPEL-Ausdrücke nicht die Wurzel von XML Elementen
referenzieren, da diese implizit durch die Typisierung der referenzierten Variable bekannt
ist. Diese Information muss aber für die Auswertung innerhalb des DBS dem Ausdruck
hinzugefügt werden. Bei Verwendung von Message oder XSD Typen müssen entsprechend
die Wrapper Elemente aus Tabelle 5.1 (Seite 71) in den XPath-Ausdruck eingefügt werden.

88

6.1. Veränderungen an der Architektur von Apache ODE

1 select XMLQUERY('declare default element namespace "*";

2 declare namespace exp="http://www.flowsoft.de/thesis/xml";

3 $DATA/exp:thesis/exp:document/exp:title[@lang="de"]/text()')

4 from bpel_xml_data where id = 1

Listing 6.3: Beispielinstanz des SQL/pureXML Query aus Listing 6.2.

inDatabaseExpression stellt das SQL Query für den synchronen XPath-Pushdown eines
allgemeinen XPath-Ausdrucks zusammen.
Parameter:
xPath (String) - Der zu evaluierende XPath-Ausdruck.
namespaces (NSContext) - Der XML Namensraumkontext des XPath-Ausdrucks.
exprContext (HashMap VariableContext) - Enthält alle Informationen zu im XPath-Ausdruck
vorkommenden Variablen.
Rückgabetyp: (XML) Node

Diese Methode ist die Erweiterung von inDatabaseXpath auf allgemeine XPath-Ausdrücke,
diese können mehr als eine Variable enthalten. Das SQL/pureXML Query muss entsprechend
zusammengestellt werden. Die Basis bildet das erste Query aus Listing 6.4. Die verwendeten
Namensräume werden durch die Queries zwei (Zeile 2) und drei (Zeile 3) beschrieben und
anstelle des Platzhalters :namespace des Ersten (Zeile 1) eingesetzt. Für jede vorkommende
Variable wird das vierte Query (Zeile 4) instanziiert und anstelle des Platzhalters :variables
des Ersten eingesetzt. Die weiteren in Listing 6.4 auftretenden Platzhalter werden jeweils
aus den Attributen von VariableContext zur jeweils referenzierten Variable gebildet (:xPath,
:id, :prefix und :uri). Der Platzhalter :def_namespace wird aus dem Parameter namespaces
abgeleitet (insofern vorhanden).

1 select XMLQUERY(':namespace :xPath' passing :variables) from bpel_xml_data where id = :id

2 declare default element namespace ":def_namespace";

3 declare namespace :prefix=":uri";

4 (select data from bpel_xml_data where id = :id) as ":name"

Listing 6.4: Aus diesen vier Teil-Queries wird das SQL/pureXML Query für den synchronen
XPath-Ausdruck-Pushdown aufgebaut.

Wir erklären im Folgenden die Verwendung dieser vier Queries an einem Beispiel. Nehmen
wir folgenden XPath-in-BPEL-Ausdruck als Beispiel:

concat($x/exp:author/exp:name, $y/exp:author/exp:name)

In den Variablen x und y sei jeweils das XML-Beispieldokument aus Listing 2.1 (Seite 19)
gespeichert. Somit wird der Ausdruck die Zeichenkette „Florian WagnerFlorian Wagner“
berechnen. Die Primärschlüssel der Variablen in der Datenbanktabelle BPEL_XML_DATA

89

6. Implementierung des Prototyps

seinen 1 und 2. Als Basis dient das erste Query aus Listing 6.4. Der Platzhalter :namespace
wird durch die Konkatenation für den Standard-Namensraum (zweites Query) und der
Namensräume je Variable (drittes Query) ersetzt. Da für dieses Beispiel kein Standard-
Namensraum existiert, wird der in pureXML mögliche Wildcard „*“ verwendet (Listing 6.5
Zeile 1). Und da beide Variablen x und y den selben Namensraum beanspruchen, kommt
dieser entsprechend nur einmal vor (exp - http://www.flowsoft.de/thesis/xml - Listing 6.5
Zeile 2). Der Platzhalter :xPath des ersten Query wird entsprechend durch den modifizierten
Ausdruck (mit Wurzelelementen) ersetzt (Listing 6.5 Zeile 3). Die Konkatenation des vierten
Query, für alle im Ausdruck auftretenden Variablen wird im Platzhalter :variables ersetzt
(Listing 6.5 Zeile 4-6). Damit man nur eine Zeile als Rückgabe erhält, wird der Ausdruck nur
für eine beliebige im Ausdruck auftretende Variable in BPEL_XML_DATA zurückgegeben
(:id im ersten Query - Listing 6.5 Zeile 1 und 7). Gegebenenfalls könnte dies auch durch eine
SQL-Limitierungsanweisung erfolgen. Insgesamt folgt daraus das SQL/pureXML Query in
Listing 6.5.

1 select XMLQUERY('declare default element namespace "*";

2 declare namespace exp="http://www.flowsoft.de/thesis/xml";

3 concat($x/exp:thesis/exp:author/exp:name,

$y/exp:thesis/exp:author/exp:name)'

4 passing

5 (select data from bpel_xml_data where id = 1) as "x",

6 (select data from bpel_xml_data where id = 2) as "y")

7 from bpel_xml_data where id = 1

Listing 6.5: Beispiel SQL/pureXML Query für den synchronen XPath-Ausdruck-Pushdown.

dataAssignByContext ist für den asynchronen XPath-Pushdown (Assignment-Pushdown)
der Zuweisung verantwortlich. Sie realisiert die Zuweisungslogik von ASSIGN innerhalb
der DAO-Schicht.
Parameter:
lContext (VariableContext) - Linke Seite der Zuweisung.
rContext (VariableContext) - Rechte Seite der Zuweisung.

Die Methode sorgt dafür, dass innerhalb des DBSs die rechte Seite der linken Seite zugewie-
sen wird. lContext beinhaltet alle nötigen Informationen über die Variable an die zugewiesen
werden soll. rContext stellt alle nötigen Informationen zum Auswerten der rechten Seite
(Variable oder Ausdruck) zur Verfügung. Die Methode dataAssignByContext verwendet zahl-
reiche private Methoden, um den gesamten asynchronen Modus der ASSIGN Zuweisung zu
unterstützen. Es werden die Erkenntnisse und die Aufbaulogik der SQL/pureXML Queries
aus den vorangegangen Methoden inDatabaseXpath und inDatabaseExpression verwendet, um
die rechte Seite der Zuweisung auszuwerten. Das Ergebnis wird dann dem XML Feld der
Variablen der linken Seite innerhalb des selben SQL-Ausdrucks zugewiesen. Da eine abso-

90

6.1. Veränderungen an der Architektur von Apache ODE

lute Verallgemeinerung der Queries nicht möglich war, insbesondere durch die Wrapper
Struktur von Apache ODE und zusätzlich deutliche Unterschiede in der XML Verarbei-
tung zwischen ODE und DB2 bestehen, wurde ein systematischer Ansatz gewählt, um ein
lauffähiges System zu erhalten. Es können auf vier mögliche Typen der linken Seite, fünf
mögliche Typen der rechten Seite zugewiesen werden. Dies ist jeweils für eine initialisierte
und eine uninitialisierte linke Seite der Zuweisung möglich. Daraus ergeben sich insgesamt
40 Zuweisungsmöglichkeiten, die wir nicht alle im Detail besprechen.

Der Aufbau der Namensräume sowie die Veränderung der Pfadselektionen und Ausdrücke
entsprechen im Wesentlichen denen aus den vorangegangen Methoden, es muss jedoch auf
doppelte und gleiche Präfixe der Namensräume geachtet und diese ggf. eliminiert oder umge-
schrieben werden. Wir stellen nun ein Query anhand des Beispiels aus Kapitel 4.3.1 (Seite 62)
vor. Für alle anderen Möglichkeiten sei direkt auf die Implementierung verwiesen.

<copy>

<from>$y/exp:document/exp:title[@lang="de"]/text()</from>

<to variable="x"/>

</copy>

Die Variable y (Primärschlüssel 1) enthält das XML-Beispieldokument aus Listing 2.1
(Seite 19) die Variable x (Primärschlüssel 2) sei vom Typ xsd:string. Die Basis bildet das
gleiche Query wie für den WS-Pushdown, wobei die UDF durch eine pureXML-Anweisung
(XMLQUERY) ersetzt wird (siehe Listing 6.6). In dieser pureXML-Anweisung werden die
Namensräume sowie die zu referenzierenden Variablen analog zu inDatabaseXPath und
inDatabaseExpression gebildet.

1 update bpel_xml_data set data =

2 XMLQUERY('declare default element namespace "*";

3 declare namespace exp="http://www.flowsoft.de/thesis/xml";

4 copy $new := $DATA modify

5 do replace value of $new/temporary-simple-type-wrapper

6 with $data2/exp:thesis/exp:document/exp:title[@lang="de"]/text()

7 return $new'

8 passing

9 (select data from bpel_xml_data where id = 1 as "data2")

10 where id = 2

Listing 6.6: Beispiel eines SQL/pureXML Query für den asynchronen XPath-Pushdown von
einem XML Element Typ an einen XSD Einfachen Typ, der initialisiert ist.

Durch den pureXML-Befehl copy $new := $DATA wird der Inhalt der zu aktualisierende
Variable in $new gespeichert und durch den Befehl do replace value of $new... with ... modifiziert.
Dies ist der entscheidende Schritt der Zuweisung, bei dem das Ergebnis des Ausdrucks
der rechten Seite zugewiesen wird. Anschließend wird durch den Befehl return $new der

91

6. Implementierung des Prototyps

neue Variableninhalt zurückgegeben und an das XML-Feld von Variable x zugewiesen
(set data = XMLQUERY). Ist die Variable an die zugewiesen werden soll nicht initialisiert,
ändert sich der Befehl von do replace value of nach do replace. Allerdings muss dann ein
wohlgeformtes XML-Dokument mit eindeutiger Wurzel zugewiesen werden und ggf. dieses
Wurzelelement in den passenden Wrapper umbenannt werden (siehe Tabelle 5.1, Seite 71).
Das HXmlData Objekt, welches von Hibernate überwacht wird, muss nach der Ausführung
als detached markiert werden, um bei Verwendung innerhalb der Runtime aktualisiert werden
zu können.

6.1.3. Änderungen in der Runtime-Schicht

In Kapitel Änderungen in der DAO-Schicht wurden die Änderungen in der DAO-Schicht
vorgestellt, die nötig sind, um die Pushdown Konzepte zu realisieren. Diese Funktionalität
muss jetzt nur noch durch die Aktivitäten aufgerufen werden, weshalb die Änderungen
in der Runtime-Schicht nicht so gravierend ausfallen. Die Hauptaufgabe besteht darin,
die Informationen zu Variablen und Ausdrücken aus dem OModel (siehe Kapitel 5.2.2,
Seite 68) zu extrahieren und in geeigneter Form (direkt oder durch die Wrapper Klasse
VariableContext) an die DAO-Schicht zu übergeben, die dann mit dem DBS kommuniziert.
Das UML-Diagramm ist in Abb. 6.3 zu sehen, grau eingefärbte Klassen wurden nicht
verändert. Wir gehen nun auf die veränderten Schnittstellen und Klassen ein. Tabelle 6.2
fasst die Aufrufhierarchie der Methoden aus ScopeFrame, BpelRuntimeContext und der in
Kapitel 6.1.2.1 vorgestellten Methoden der ScopeDAO zusammen.

BpelRuntimeContext und BpelRuntimeContextImpl stellen vier XPath-Pushdown Metho-
den (inDatabaseAssign, inDatabaseExpressionAssign, inDatabaseXPath, inDatabaseXPath-
Expression) bereit, die ausschließlich von ScopeFrame aus aufgerufen werden. Es
werden die aufgelösten Variablen als VariableInstance (VI) sowie XPath-Ausdrücke
(OXPath10Expression) übergeben und die für die DAO-Schicht notwendigen Informatio-
nen extrahiert oder in Objekte der Wrapper Klasse VariableContext (siehe Kapitel 6.1.2)
der DAO-Schicht überführt. Die Methode inDatabaseInvoke wird hingegen direkt durch
die Aktivität INVOKE aufgerufen. Anschließend wird die Aufgabe entsprechend an
eine der vier ScopeDAO Hauptmethoden (siehe Kapitel 6.1.2.1) weitergegeben.

ScopeFrame stellt drei inDatabase Methoden bereit, die von den BPEL Aktivitäten aufgeru-
fen werden können. Hierbei führt der Aufruf von inDatabaseAssign zu einem asynchro-
nen XPath-Pushdown (Assignment-Pushdown). Hierbei muss wegen des unterschied-
lichen OModels für Ausdrücke (OExpression) und Variablen (VariableRef) jeweils die
entsprechende Methode des BpelRuntimeContext (inDatabaseAssign oder inDatabase-
ExpressionAssign) aufgerufen werden. Diese vereinheitlichen dann jeweils den Aufruf
an die ScopeDAO (dataAssignByContext). Der Aufruf von inDatabaseXPath führt zu

92

6.2. Funktionalität des Prototyps

einem synchronem XPath-Pushdown für Zuweisungen und der Aufruf von inDatabase-
XPathExpression zum allgemeinen synchronen XPath-Pushdown (ExpressionEvaluation-
Pushdown), der auch für die Evaluierung von Bedingungen in den Kontroll- und
Schleifenkonstrukten genutzt werden kann.

ACTIVITY und Unterklassen verwenden, bis auf INVOKE, innerhalb ihrer Logik die XPath-
Pushdown Methoden von ScopeFrame. INVOKE greift direkt auf die Methode
inDatabaseInvoke von BpelRuntimeContext zu.

ScopeFrame BpelRuntimeContext ScopeDAO

inDatabaseAssign inDatabaseAssign
inDatabaseExpressionAssign

dataAssignByContext

inDatabaseXPath inDatabaseXPath inDatabaseXPath
inDatabaseXPathExpression inDatabaseXPathExpression inDatabaseExpression
- inDatabaseInvoke invokeWS

Tabelle 6.2.: Aufrufhierarchie zwischen den XPath-Pushdown Methoden aus ScopeFrame,
BpelRuntimeContext und ScopeDAO.

Durch diese Architektur, also die Implementierung der Pushdown-Methoden in
BpelRuntimeContext und ScopeFrame, ist die Übertragung auf die in Tabelle 5.2 (Seite 79)
genannten Aktivitäten ohne weitere Schwierigkeiten möglich. Zudem können auch
zukünftige oder benutzerdefinierte Aktivitäten den XPath-Pushdown verwenden.

6.2. Funktionalität des Prototyps

Wir präsentieren nun die, durch die Implementierung, realisierten Funktionalitäten, stellen
potentielle weiterführende Änderungen vor und berichten über konkrete Schwierigkeiten,
die sich bei der Implementierung des Prototyps ergaben.

6.2.1. Realisierte Pushdown-Konzepte

Das Konzept des Query-Pushdown wurde in der Ausprägung als XPath-Pushdown in Zu-
sammenwirken mit IBM DB2 vollständig implementiert. Der Webservice-Pushdown wurde
rudimentär implementiert, hier fehlt die korrekte Logik zur Fehlerbehandlung und Fehler-
weitergabe an Apache ODE. Um Messungen zur Performanz durchzuführen, eignet sich
die Implementierung dennoch. Generell, auch für den WS-Pushdown, wird im Falle eines
Fehlers in einer der hinzugefügten Methoden oder durch das DBS die ursprüngliche Logik

93

6. Implementierung des Prototyps

Abbildung 6.3.: UML-Diagramm der veränderten Runtime-Schicht des Prototyps. Grau ge-
färbte Klassen wurden nicht verändert. Zu den Lese- und Schreibmethoden
auf Variablen kommen die WS- und XPath-Pushdown Methoden hinzu,
diese leiten die Anfragen an die DAO-Schicht weiter.

94

6.2. Funktionalität des Prototyps

der Aktivitäten durchlaufen. Für die in Kapitel 7 verwendeten Test- und Anwendungsfälle er-
geben sich in der Implementierung des Prototyps keine Fehler, wodurch die Vergleichbarkeit
der Messergebnisse gegeben ist.

Die Aktivitäten aus Tabelle 5.2 (Seite 79), die potentiell die Pushdown Konzepte verwen-
den können, sind nochmals, mit dem Stand ihrer Umsetzung im Prototyp, in Tabelle 6.3
angegeben.

ODE Klasse
(BPEL-Aktivität)

Art des
Pushdown

Modus des
Pushdown

Implementiert

ASSIGN XPath (Assignment &
ExpressionEvaluation)

asynchron
& synchron

ja

INVOKE Webservice - ja (ohne Fehlerbe-
handlung)

FOREACH XPath
(ExpressionEvaluation)

synchron ja

WHILE XPath (Condition) synchron ja
REPEATUNTIL XPath (Condition) synchron ja
SWITCH (IF) XPath (Condition) synchron ja
EH_ALARM
(ONALARM)

XPath
(ExpressionEvaluation)

synchron ja

WAIT XPath
(ExpressionEvaluation)

synchron ja

ACTIVITYGUARD
(TransitionConditions)

XPath (Condition) synchron ja

Tabelle 6.3.: Alle ODE Klassen, die potentiell von den Pushdown-Konzepten Gebrauch
machen können und der Stand ihrer Implementierung.

Zusätzlich wurden Parameter zum Ein- und Ausschalten der verschiedenen Pushdown-
Konzepte der ODE Konfigurationsdatei hinzugefügt (siehe Anhang B.4.2, Seite 148). Dadurch
ist es möglich die Wirkung einzelner Pushdown-Konzepte, insbesondere der Vergleich der
synchronen und asynchronen Variante für Zuweisungen, zu untersuchen. Außerdem muss
man für die Verwendung des DBSs PostgreSQL V8.4 Pushdown-Konzepte, die für dieses
DBS nicht umgesetzt werden konnten, deaktivieren können.

6.2.2. Technische Schwierigkeiten

Alle technischen Schwierigkeiten, die während der Implementierung auftraten, hängen
direkt mit der XML Technologie oder mit der Art und Weise, wie XML Dokumente von ver-
schiedenen Systemen und Implementierungen verarbeitet werden, zusammen. Insbesondere

95

6. Implementierung des Prototyps

muss für jedes anzubindende DBS die Möglichkeiten und Funktionen der XML Verarbeitung
untersucht und getestet werden. Die Verwendung von unterschiedlichen Wrapper Elementen
(siehe Tabelle 5.1, Seite 71) innerhalb der WF-Runtime verhindert die Verallgemeinerung der
auszuführenden Queries erheblich.

Die größten Schwierigkeiten werden jedoch durch die XML Namensräume hervorgerufen.
Diese müssen in jeder Anfrage an das DBS übergeben werden, um die XPath Ausdrücke
korrekt evaluieren zu können, insbesondere wenn Präfixnotationen innerhalb der Ausdrücke
verwendet werden. Hierbei können folgende Situationen auftreten:

Gleicher Präfix mit gleichem Namensraum Dies kommt bei Verwendung von zwei Varia-
blen mit gleichem Namensraum vor, die doppelte Namensraumangabe muss unter-
bunden werden, da dies zu Fehlern im DBS führen kann.

Gleicher Präfix mit unterschiedlichem Namensraum Dies kann bei der Zuweisung von zwei
Variablen mit unterschiedlichem Namensraum vorkommen, ein Präfix muss dabei
innerhalb des Ausdrucks umgeschrieben werden.

Unterschiedlicher Präfix mit gleichem Namensraum Ist laut Spezifikation der XML Na-
mensräume explizit erlaubt und sollte keine Fehler verursachen, die konkrete Im-
plementierung im DBS sollte jedoch überprüft werden.

Mehrere Standard-Namensräume Dies kann ebenfalls bei einer Zuweisung zweier Variablen
mit unterschiedlichem Namensraum vorkommen. Hier können je nach DBS entweder
sog. Wildcards für Standard-Namensräume (engl. Default Namespaces) verwendet wer-
den, oder es muss mindestens ein Standard-Namensraum in einen Namensraum mit
Präfix überführt werden, was ebenfalls eine Anpassung des Ausdrucks nach sich zieht.

Zusätzlich kann es zu allgemeinen Schwierigkeiten mit Standard-Namensräumen kommen.
In pureXML wird die Angabe eines Standard-Namensraums unterstützt, es kann sogar ein
Wildcard eingeführt werden, der Lokalisierungsschritte ohne Präfixangabe automatisch
ihrem Standard-Namensraum zuordnet. Die Angabe eines Standard-Namensraums ist in
PostgreSQL hingegen nicht möglich, hier muss für die korrekte Verarbeitung des Ausdrucks
extra ein Präfix für den Standard-Namensraum eingeführt werden und der Ausdruck
entsprechend abgeändert werden.

Diese und weitere Probleme mit XML Namensräumen führen dazu, dass Stimmen laut
werden, XML Namensräume würden nur zur Verwirrung führen und Auswertungen von
XML Daten unnötig kompliziert machen und sollten spärlich eingesetzt werden [Dar05].
Allerdings sind Namensräume aus Sprachen wie WS-BPEL nicht wegzudenken, sie sind
essentiell für die Typisierung der Variablen und deren Validierung nötig. Ignoriert man bei
der Verarbeitung der Ausdrücke auf XML Daten generell die XML Namensräume, kann
dies prinzipiell zu semantisch falschen Ergebnissen führen, was eine zwingend korrekte
Verwendung der Namensräume nötig macht.

96

6.2. Funktionalität des Prototyps

6.2.2.1. Implementierung für PostgreSQL

Für PostgreSQL konnte leider nur ein Bruchteil der Funktionalitäten umgesetzt werden. In
der verwendeten Version 8.4 gibt es keine Möglichkeit einen WS aufzurufen, womit die
Umsetzung des WS-Pushdown hinfällig ist. Die XML Verarbeitungsmöglichkeiten sind im
Vergleich zur DB2 von IBM stark eingeschränkt. Es gibt keine Sprachelemente, mit denen
es möglich ist XML Daten ähnlich zu pureXML oder XQuery Update zu transformieren.
Die Evaluierung von XPath Ausdrücken erfolgt in PostgreSQL durch die Funktion xpath.
Der Rückgabewert dieser Funktion erfolgt als Zeichenkette und wird mit zusätzlichen
Anführungszeichen annotiert. Dies führt zum einen dazu, dass eine direkte Zuweisung an
ein XML Feld innerhalb der Datenbank nicht möglich ist, also ein asynchroner Pushdown
nicht durchführbar ist. Andererseits muss eine komplizierte Bereinigung des Rückgabewerts
bei synchronen Anfragen innerhalb der DAO-Schicht erfolgen, damit die Daten im für
ODE richtigen Format übergeben werden. Darüber hinaus kann die xpath Funktion nur auf
jeweils ein XML Feld zugreifen, wodurch Evaluierungen von Ausdrücken mit mehreren
Variablen ebenfalls nicht möglich sind. Zudem wird nur ein Bruchteil der XPath Spezifikation
realisiert, womit im Prinzip nur noch Pfadausdrücke auf ein XML Dokument evaluierbar
sind. Die einzige XPath-Pushdown Variante, die also derzeit mit PostgreSQL abgebildet
werden konnte, ist der synchrone XPath-Pushdown für BPEL ASSIGN (ExpressionEvaluation-
Pushdown), bei dem die rechte Seite der Zuweisung eine Variable mit Pfadselektion darstellt
(siehe inDatabaseXPath aus Kapitel 6.1.2.1). Die Mächtigkeit der PostgreSQL-xpath Funktion
ist auch in der aktuellen Version 9 gleich geblieben. Allerdings konnte die Version 9 nicht
korrekt mit Hibernate kommunizieren, weshalb auf die Version 8.4 zurückgegriffen wurde.
Falls in zukünftigen PostgreSQL Versionen die XML Verarbeitungsmöglichkeiten ausgebaut
werden, ist es ggf. möglich eine vollständige Implementierung des XPath-Pushdown zu
erreichen.

6.2.3. Weiterführende Modifikationen

Es sind eine Reihe weiterer Modifikationen für Apache ODE vorstellbar. Die meisten dieser
Modifikationen gehen in Richtung eines Produktivsystems, einige bieten zusätzliche Funktio-
nalität an, andere können wissenschaftlich untersucht werden. Teilweise werden wir die hier
genannten Modifikationen im Kapitel 8, Konzeptionelle Erweiterungen, nochmals aufgreifen.
Das Konzept aller genannten weiterführenden Modifikationen beruht nach wie vor auf der
Verlagerung der Funktionen von der WF-Runtime auf das DBS (siehe Kapitel 4.1, Seite 57).
Einige sind direkte weiterführende Ausprägungen des Query-Pushdown Konzepts.

Fehlerbehandlung WS-Pushdown Die Fehlerbehandlung kann noch vollständig implemen-
tiert werden. Für jedes DBS mit SOAP-Unterstützung müssen hierbei die SQL Fehler
Codes auf die entsprechenden ODE Ausnahmen abgebildet werden, damit ODE oder
der BPEL-Prozess entsprechend auf die Fehler reagieren können. Als Vervollständigung

97

6. Implementierung des Prototyps

der Implementierung stellt dies eine reine Erweiterung für Apache ODE dar und wird
deshalb nicht in Kapitel 8 aufgeführt.

Variablen Eigenschaften BPEL-Variablen können als zusätzliche Metainformation mit sog.
Eigenschaften (engl. Variable Properties) versehen werden. Diese Eigenschaften können
ebenfalls durch Zuweisungen verändert werden. Der XPath-Pushdown für die Zuwei-
sung dieser Eigenschaften kann analog implementiert werden, die Struktur hierfür ist
bereits in der Methode inDatabaseAssign von BpelRuntimeContextImpl (siehe Abb. 6.3)
vorgesehen. Die Tabelle VAR_PROPERTIES des ODE DB-Schemas müsste analog zu
BPEL_XML_DATA angepasst, der VariableContext um die Eigenschaften erweitert und
die Zuweisungslogik der ScopeDAO hinzugefügt werden. Als Funktionsvervollständi-
gung für Apache ODE wird dies ebenfalls nicht in Kapitel 8 aufgeführt.

XML-Wrapper vereinheitlichen Speziell für den Prototypen wäre es möglich, die XML-
Wrapper Elemente aller Typen von BPEL-Variablen (siehe Tabelle 5.1, Seite 71) zu
vereinheitlichen und so die Implementierung des XPath-Pushdowns zu vereinfachen
bzw. die Komplexität der Generierung der SQL-Anweisungen zu reduzieren. Dies wird
ebenfalls nicht in Kapitel 8 diskutiert.

XQuery-Pushdown Der synchrone XQuery-Pushdown kann für IBM DB2 mit kleineren
Änderungen innerhalb der Runtime-Schicht realisiert werden. Hierbei muss das OModel
für XQuery-Ausdrücke entsprechend auf den VariableContext abgebildet werden. Ob die
Einbettung der XQuery Ausdrücke für einen asynchronen XQuery-Pushdown innerhalb
der pureXML Queries von DB2 möglich ist, muss gesondert evaluiert werden, sollte
jedoch ebenfalls realisierbar sein. Diese konsequente Erweiterung des Query-Pushdown
wird in Kapitel 8 aufgegriffen.

pureXML/XUpdate-Pushdown XUpdate [AL00] sowie pureXML von IBM stellen Funktionen
zur Manipulation von XML Daten bereit, wie Löschen, Austauschen und Hinzufügen
von XML Knoten. Es existiert derzeit noch kein Standard, allerdings sollten die Manipu-
lationskomponenten dieser Sprachen voraussichtlich durch die XQuery Update Facility
Recommendation [W3C09] ersetzt werden. Ob die direkte Manipulation von Variablen
durch den Anwender innerhalb der Auswertung von z.B. Schleifenbedingung jedoch
sinnvoll ist, muss gesondert diskutiert werden. Für zukünftige WfMSe und DBSe könn-
te dies dann auch über einen Standard wie XQuery Update erfolgen. Es sei hier darauf
hingewiesen, dass für den asynchronen XPath-Pushdown (siehe Kapitel 6.1.2.1) die
Manipulationskomponenten von pureXML dazu verwendet werden die BPEL ASSIGN
Anweisung innerhalb des DBS auszuführen. Ob eine verschachtelte Ausführung mög-
lich ist, muss gesondert evaluiert werden. Aufgrund der interessanten konzeptionellen
Erweiterung und der Möglichkeit der Standardisierung des Query-Pushdown greifen
wir dies ebenfalls in Kapitel 8 auf.

Anbindung weiterer XML-Enabled DBS Es könnten weitere XML-Enabled DBS in den Pro-
totypen eingebunden werden. Ein zukünftiger Standard für die Manipulation von

98

6.2. Funktionalität des Prototyps

XML Feldern und dessen Implementierung in gängigen DBSen würde die getrennte
Implementierung jedoch überflüssig machen. Dies greifen wir insbesondere wegen der
erneuten Auswertung zukünftiger XML-Enabled Systeme nochmals in Kapitel 8 auf.

XSD Schema Validierung Die Validierung der Variablen nach ihrer Zuweisung, wie sie im
BPEL Standard vorgesehen ist, wird derzeit von Apache ODE nicht implementiert2. Es
sollte möglich sein, die einzelnen XSD Spezifikationen in den XSD Schema Speicher
der Datenbank zu laden und die Validierung innerhalb des DBSs zu veranlassen,
zumindest stellt DB2 mit pureXML prinzipiell Funktionen hierzu zur Verfügung. Als
direkte Funktionserweiterung von Apache ODE stellen wir dies in Kapitel 8 nicht
weiter vor.

2http://ode.apache.org/ws-bpel-20-specification-compliance.html

99

7. Evaluierung des Prototyps

In diesem Kapitel stellen wir die Ergebnisse der Laufzeit- und Hauptspeichermessungen
des Prototyps aus Kapitel 6 vor. In Abschnitt 7.1 stellen wir die verwendeten Testfälle, in
Abschnitt 7.2 die verwendete Testumgebung vor. In Abschnitt 7.3 stellen wir die relevanten
Resultate vor, deren Bedeutung sowie technische Einschränkungen des Prototyps werden in
Abschnitt 7.4 diskutiert.

7.1. Vorstellung der Testfälle

Um die Auswirkungen der einzelnen Pushdown-Konzepte aus Kapitel 4 besser zu veran-
schaulichen, wurden Einzeltests erstellt. Diese basieren auf drei Basis-Workflows (Abb. 7.1),
die sich dann in der Komplexität der XPath-Ausdrücke und der verwendeten Datengröße
unterscheiden. Der erste Basis-Workflow enthält nur eine ASSIGN-Aktivität, anhand der
wir Messungen für verschiedenartige Zuweisungen machen (Abb. 7.1a). Diese WFs decken
somit vollständig den Assignment-Pushdown ab, sowie Teile des ExpressionEvaluation-
Pushdown und sein Verhalten bei Verwendung innerhalb von Zuweisungen. Je nach XML
Verarbeitungsmöglichkeiten des DBSs ist für ASSIGN nur der synchrone XPath-Pushdown
(ExpressionEvaluation-Pushdown) anwendbar. Der zweite Basis-Workflow steht für die
Untersuchung des ExpressionEvaluation-Pushdown (Abb. 7.1b). Dieser WF benötigt eine
vorgeschaltete Zuweisung um überhaupt ein XML-Dokument im Prozessspeicher zu haben,
auf den ein Ausdruck evaluiert werden kann. Da die Implementierung des synchronen

Klasse/Konzept Art des Pushdown Stellvertretende BPEL-Aktivität

Assignment asynchroner XPath ASSIGN
Expression-
Evaluation

synchroner XPath ASSIGN, IF, WHILE, FOREACH,
REPEAT UNTIL, WAIT, SWITCH
(BPEL 1.0)

Webservice Webservice INVOKE
Anwendungsfall asynchroner XPath

synchroner XPath
Webservice

ASSIGN, FOREACH, IF, INVOKE

Tabelle 7.1.: Testfälle der Einzelmessungen im Überblick.

101

7. Evaluierung des Prototyps

XPath-Pushdown (ExpressionEvaluation-Pushdown) für alle Aktivitäten (außer ASSIGN,
siehe oben) gleich ist, reicht es aus, diesen für eine Stellvertreter-Aktivität, im konkreten
Fall IF, zu untersuchen. Die nachgelagerte Zuweisung weißt zu Überprüfungszwecken einer
Variablen den Wert „true“ zu, in dem Fall wenn die Auswertung der Bedingung wahr ist.
Der dritte Basis-Workflow steht für die Überprüfung des Webservice-Pushdown (Abb. 7.1c).
Diese WFs benötigen ebenfalls eine vorgelagerte Zuweisung um die WSDL Nachricht an
den Webservice zu generieren.

Zusätzlich zu den Einzelmessungen wird der Anwendungsfall aus der Proteinmodellierung
(siehe Kapitel 2.5.1.1, Seite 39), als Workflow mit datenverarbeitenden Schritten innerhalb
einer Schleife, verwendet. Der zugehörige WF enthält Aktivitäten (ASSIGN, FOREACH, IF,
INVOKE) zu allen drei Klassen der in den Prototyp implementierten Pushdown-Konzepten.
Die Tabelle 7.1 gibt einen Überblick über die vorgestellten Testklassen.

Abbildung 7.1.: Graphische Repräsentation der BPEL-Workflows für die Einzeltests.

Alle Testfälle werden jeweils mit drei unterschiedlichen Datengrößen (100kb, 500kb, 4MB)
evaluiert. Hier wird jeweils ein entsprechendes XML Dokument des XML Formats BIIF aus
[Wag10] verwendet. Als Beispiel ist ein solches (gekürztes) XML Dokument in Anhang C.1
(Seite 149) angegeben. Die tatsächlichen XML Dokumente unterscheiden sich nur in der An-
zahl der Proteineinträge (<seq>-Elemente) innerhalb des <aln>-Elements. Zusätzlich werden
die Einzeltest für den Assignment- und ExpressionEvaluation-Pushdown für verschiedene
Komplexitäten des XPath-Ausdrucks evaluiert:

102

7.2. Testumgebung und Durchführung

1. Ohne XPath-Ausdruck (nur Zuweisung einer Variable auf eine Andere)

2. XPath-Selektion des ersten <seq>-Elements

3. XPath-Selektion des mittleren <seq>-Elements

4. XPath-Selektion des letzten <seq>-Elements

5. Komplexer XPath-Ausdruck: Zugriff auf zwei Variablen mit gleichem Inhalt, Konkate-
nation der ersten Proteinsequenz der ersten Variablen mit letzter Proteinsequenz der
zweiten Variablen.

Die Resultate der XPath-Selektionen (Varianten 2-4) werden gemittelt und als ’einfache XPath-
Selektionen’ betrachtet. Es wurden, soweit nicht anderes angegeben, pro Testfall jeweils
100 sequentielle Ausführungen durchgeführt. Aufgrund der hohen Anzahl an Testfällen
wurden nur für ausgewählte Testfälle parallele Messungen vorgenommen. Hier wurden
ebenfalls, falls nicht anders angegeben, 100 parallel laufende Instanzen gemessen. Aus diesen
100 Messungen wurde dann jeweils der Mittelwert gebildet (siehe auch Vorbemerkung zur
Vergleichbarkeit der Messungen Kapitel 7.3.1).

7.2. Testumgebung und Durchführung

Die Messungen wurden auf dem Entwicklungssystem (siehe Anhang B, Seite 145) durchge-
führt, da hier alle DBSe installiert und für die Verwendung mit Apache ODE konfiguriert
waren. Außerdem ist auf diesem System die Lizenz für IBM DB2 vorhanden. Das System
ist mit Windows XP Professional 32-bit (Service Pack 3) installiert, verfügt über eine zwei
Kern CPU (Intel Core2Duo T7300@2GHz) sowie über 3GB Hauptspeicher und einer Grafik-
karte mit eigenständigem Grafikspeicher. Die Messungen wurden jeweils für drei bzw. vier
Varianten der WF-Engine Apache ODE durchgeführt:

Prototyp mit asynchronem Pushdown Im Zusammenhang mit dem Assignment-Pushdown
(ASSIGN) und dem DBS IBM DB2 bei eingeschaltetem asynchronem XPath-Pushdown.

Prototyp mit synchronem Pushdown Verwendet ausschließlich den ExpressionEvaluation-
Pushdown (ASSIGN, IF, WHILE etc.) in Form des synchronen XPath-Pushdown. Ent-
sprechend werden innerhalb von Zuweisungen nur die Teilausdrücke im DBS ausge-
wertet aber innerhalb der Runtime zugewiesen. Diese Version wird im Zusammenhang
mit dem DBSe IBM DB2 und PostgreSQL genannt.

Instrumentalisierte ODE Version und Tabellenschema des Prototyps, aber vollständig abge-
schaltete XPath- und WS-Pushdown Funktionalität.

Original ODE Apache ODE in Version 1.3.4 und original Tabellenschema.

103

7. Evaluierung des Prototyps

Der WS-Pushdown ist in beiden Prototyp-Varianten, soweit vom DBS unterstützt (somit nur
für IBM DB2), eingeschaltet. Für die Messungen des Anwendungsfalls werden jeweils alle
möglichen Pushdown-Funktionen, die PostgreSQL oder DB2 umsetzen können, eingeschaltet
und diese Variante als Prototyp bezeichnet. Zudem wurden alle Versionen durch Zeitmes-
sungen, für die stellvertretenden Aktivitäten aus Tabelle 7.1, erweitert. Die Zeitmessung
der Aktivitäten wird jeweils in der Log-Datei von Apache Tomcat vermerkt und mit Hilfe
eines Perl-Skripts ausgewertet. Hierbei wird der Durchschnitt aller Messpunkte zu dieser
Aktivität über alle Instanzen hinweg berechnet. Falls nicht anders vermerkt, wurden jeweils
100 Wiederholungen des gleichen Testfalls mit Hilfe eines weiteren Perl-Skripts automatisch
durchgeführt und die durchschnittliche, minimale und maximale Instanzlaufzeit durch
SQL-Anfragen an das DBS berechnet. Ebenfalls wurde die Gesamtlaufzeit über die Startzeit
der ersten Instanz bis Endzeit der letzten Instanz über eine SQL-Anfrage bestimmt (Apache
ODE vermerkt diese Informationen in der Tabelle BPEL_INSTANCE). Der Hauptspeicherver-
brauch wurde über die Differenz von maximal und minimal verfügbarem Hauptspeicher
während einer Messung ermittelt. Hierzu wurde der ’verfügbare Hauptspeicher’ durch
den Leistungsmonitor von Windows XP in einer CSV Datei aufgezeichnet, die Auswertung
erfolgte ebenfalls über ein Perl-Skript. Der Ablauf jeder Messung erfolgte nach folgenden
Schritten:

1. Löschen aller Datenbankinhalte für die aktuelle ODE DB, sowie Löschen der aktu-
ellen Apache Tomcat Log-Datei und Löschen der Inhalte im processes Ordner der
verwendeten Apache ODE Version.

2. Kopieren des aktuellen Testfalls in den processes Ordner der aktuellen Apache ODE
Version.

3. Starten der gemessenen ODE Version, bis Testfall compiliert und zur Verfügung gestellt
(deployed) wurde.

4. Stoppen der gemessenen ODE Version, Starten der Hauptspeichermessung.

5. Starten der gemessenen ODE Version, Start der automatisierten Testfall-Ausführung
(Perl-Skript).

6. Nach Ausführung aller Instanzen, Stoppen der aktuellen ODE Version.

7. Stoppen der Hauptspeichermessung.

8. Eintragen der Ergebnisse in eine Tabellenkalkulation zur Weiterverarbeitung.

Die Dateien mit den Rohdaten und den Testfällen sowie die Tabellenkalkulation mit den
zusammengetragenen Ergebnissen liegen der DVD unter [DVD]/Evaluation bei. Im nächsten
Abschnitt werden die Ergebnisse der Messungen vorgestellt und anschließend diskutiert.

104

7.3. Vorstellung der Messergebnisse

7.3. Vorstellung der Messergebnisse

Da wir nur an der Tauglichkeit der Pushdown-Konzepte aus Kapitel 4 interessiert sind,
werden wir nur relative Laufzeiten zu einer Bezugsversion von Apache ODE, jeweils für
das gleiche DBS, vorstellen. Hierzu treffen wir im nächsten Abschnitt einige Vorbemer-
kungen zur Vergleichbarkeit der Messungen. Anschließend stellen wir die Ergebnisse nach
den Klassen aus Tabelle 7.1 getrennt vor. Da die Hauptspeichermessungen für die Einzel-
testfälle der Aktivitäten für uns keine sichtbare Aussagekraft besitzen, stellen wir diese
nicht vor. Für den Anwendungsfall hingegen kann man einige Aussagen treffen und wir
stellen die Resultate absolut in MB vor. Die Datenbanksysteme wurden ohne Modifikation
ihrer Werkseinstellungen verwendet. Die Einzelmessungen liegen der DVD in der Datei
[DVD]/Evaluation/Evaluation_ErgebnisListe.xlsx bei.

7.3.1. Vorbemerkung zur Vergleichbarkeit der Messungen

Bei der Implementierung des Prototyps fiel auf, dass die verwendete Hibernate-DAO der
Original Apache ODE Version die Daten erst nach Ende der Instanz oder an bestimmten Stel-
len im Workflow (z.B. während eines INVOKE) in die Datenbank überträgt und festschreibt.
Damit die Pushdown-Konzepte jedoch anwendbar sind, müssen die Daten bereits in der
DB abliegen, weshalb bei jedem Aufruf der set-Methode der XmlDataDaoImpl (Abb. 6.2,
Seite 86) ein sog. Flush, ein erzwungenes Eintragen der Daten in die DB durch Hibernate,
innerhalb des Prototyps eingeführt werden musste (siehe auch Klasse HibernateDao im UML-
Diagramm Abb. 6.2, Seite 86). Bei diesem Flush werden alle Daten, also auch Prozess- und
Auditingdaten, die sich in der DAO-Schicht befinden unselektiv durch Hibernate mit der
DB synchronisiert. Da es im Prototyp innerhalb der ASSIGN Aktivität zu Flushs kommen
kann, sind die isolierten Messwerte für die ASSIGN-Aktivität nicht direkt mit den Werten
der Original ODE Version vergleichbar.

Des Weiteren ergab sich eine große Diskrepanz zwischen den gemessenen durchschnittlichen
Instanzlaufzeiten (ermittelt aus dem Durchschnitt der einzelnen Instanzlaufzeiten) und den
berechneten durchschnittlichen Instanzlaufzeiten (ermittelt aus Gesamtlaufzeit durch Anzahl
durchlaufener Instanzen) für die Original ODE Version. Um die Vermutung beweisen zu
können, dass in der Originalversion, insbesondere für die kurz laufenden Testfälle, die
Datenbankkommunikation erst nach Ende der Instanz erfolgt, wurde eine zusätzlich Version
der Instrumentalisierten ODE erstellt. In dieser wurde der erzwungene Flush ausgesetzt,
sie unterscheidet sich zur Original ODE also nur noch durch das XML Feld anstelle des
BLOB Felds in der Datenbank. Wir vergleichen nun die Resultate eines Testfalls für In-
strumentalisierte ODE mit Flush, Instrumentalisierte ODE ohne Flush und der Original
ODE Version in Abb. 7.2. Man kann deutlich erkennen, dass die gemessene Instanzlaufzeit
der Instrumentalisierten ODE ohne Flush deutlich geringer ausfällt als mit Flush, jedoch
die berechnete Instanzlaufzeit weitgehend identisch ist. Der einzige Unterschied zwischen

105

7. Evaluierung des Prototyps

Abbildung 7.2.: Die Vergleichbarkeit der Messungen zwischen Original ODE (ohne Flush
BLOB) und allen anderen Versionen ist nur für die berechnete Instanzlauf-
zeit gegeben, da die Datenbankkommunikation bei Versionen ohne Flush
nicht in die gemessene Zeit einzelner Instanzen eingeht (linke Seite), sich
jedoch in der Gesamtlaufzeit aller Instanzen widerspiegelt (rechte Seite).
(DBS: IBM DB2)

Instrumentalisierter ODE ohne Flush und Original ODE ist der verwendete Typ des Daten-
bankfeldes. Da Original ODE schneller ist als die Instrumentalisierte ODE ohne Flush lässt
sich daraus ableiten, dass möglicherweise die XML Datenbankfelder nicht so effizient sind
wie die BLOB Felder der DB2 oder das Durchschreiben der Daten in ein XML Feld mehr
Zeit benötigt.

Aus diesen Gründen stellen wir die Messergebnisse der Zuweisungen (Assignment- und
ExpressionEvaluation-Pushdown) relativ zur Instrumentalisierten ODE (100%) dar. Als
Instanzlaufzeit verwenden wir grundsätzlich die Berechnete und geben sie relativ zur
Original ODE (100%) an. Ebenfalls relativ zur Original ODE stellen wir die Messungen der
Webservice-Aufrufe (INVOKE) und die Messungen zum ExpressionEvaluation-Pushdown
für Bedingungen (IF) dar, da in diesen Aktivitäten kein Flush im Prototyp erfolgt.

7.3.2. Zuweisungen

Im Folgenden werden wir die Ergebnisse der sequentiellen Messungen zur Zuweisung,
zuerst für IBM DB2 und anschließend für PostgreSQL vorstellen. Die Messwerte zu den
parallelen Messungen entsprechen weitestgehend denen der Sequentiellen, da wir aus den
parallelen Messungen zu den Zuweisungen keine weiteren Schlüsse ziehen konnten, stellen

106

7.3. Vorstellung der Messergebnisse

wir sie nicht vor. Als ASSIGN-Zeit bezeichnen wir die Zeit, die für die Ausführung der
Aktivität ASSIGN benötigt wird. Die einfachen und komplexen XPath-Ausdrücke können der
Tabelle 7.2 entnommen werden, sie werden jeweils auf ein vergleichbares XML Dokument,
wie in Anhang C.1 (Seite 149) angegeben, ausgeführt.

Art des
Ausdrucks

XPath-Ausdruck

ohne XPath -
einfach $var/aln/seq[position()=erstes,mittleres,letztes]
komplex concat($var1/aln/seq[position()=1]/aa,

$var2/aln/seq[position()=last()]/aa)

Tabelle 7.2.: XPath-Ausdrücke verschiedener Komplexität für die Messung der Zuweisung
(ASSIGN).

7.3.2.1. IBM DB2

In Abb. 7.3 ist die relative ASSIGN-Zeit, also die benötigte Zeit für die Aktivität ASSIGN, für
eine Zuweisung ohne XPath-Ausdruck über die verschiedenen Datengrößen angegeben. Gut
zu erkennen ist, dass der asynchrone XPath-Pushdown schneller als der synchrone XPath-
Pushdown und die Instrumentalisierte Version ist. Der synchrone XPath-Pushdown und die
Instrumentalisierte Version enthalten in den ASSIGN-Zeiten jeweils auch die Zeit, die für
das Durchschreiben der Variablen nötig ist (Flush). Diese Flush-Zeit ist in der ASSIGN-Zeit
der asynchronen Variante nicht enthalten, da hier durch die Zuweisung innerhalb der DB
kein Flush nötig ist.

Im direkten Vergleich mit Original ODE (siehe Kapitel 7.3.1) erfolgt die Zuweisung mit
dem asynchronem Pushdown für 100kb deutlich langsamer während sie für 500kb nahezu
identisch ist und für 4MB wieder etwas langsamer wird. In Abb. 7.4 wird die berechnete
Laufzeit dargestellt, Original ODE ist je nach Datengröße 30-90% schneller. Interessant ist,
dass im Vergleich zu der ASSIGN-Zeit in Abb. 7.3 die Laufzeit für 100kb im Vergleich zu
Original ODE garnicht so schlecht ist, wie die reine ASSIGN-Zeit vermuten lässt. Hingegen
werden die Instanzlaufzeiten für 500kb und 4MB wieder schlechter obwohl deren ASSIGN-
Zeiten relativ gesehen besser sind als für die 100kb Variante. Wir kennen den genauen Grund
hierfür nicht, vermuten jedoch, dass dies ebenfalls mit der DB-Kommunikation zu tun hat.

Vergleicht man den asynchronen und synchronen XPath-Pushdown für die einfachen XPath-
Selektionen ist die ASSIGN-Zeit für den synchronen XPath-Pushdown etwas besser (siehe
Abb. 7.5), was sich durch die Einfachheit des SQL-Ausdrucks für den synchronen Fall im
vgl. zum komplexeren SQL-Ausdruck im asychnronen Fall erklären lasst (siehe Kapitel
6.1.2.1, Seite 87). Allerdings sind die Instanzlaufzeiten nahezu identisch (siehe Abb. 7.6).

107

7. Evaluierung des Prototyps

Abbildung 7.3.: Relative ASSIGN-Zeit über Datengröße für Zuweisungen ohne XPath-
Ausdruck (DB2).

Abbildung 7.4.: Relative Laufzeit über Datengröße für Zuweisungen ohne XPath-Ausdruck
(DB2).

108

7.3. Vorstellung der Messergebnisse

Abbildung 7.5.: Relative ASSIGN-Zeit über Datengröße für Zuweisungen einfacher XPath-
Selektionen (DB2).

Vergleicht man den asynchronen und synchronen Pushdown mit Original ODE bleiben zwar
die Tendenzen für die ASSIGN-Zeit und Instanzlaufzeiten bestehen, die beiden Varianten
des Prototyps sind aber immer langsamer als die Original ODE.

Im Gegensatz dazu, ist die ASSIGN-Zeit und die Laufzeit des asynchronen XPath-Pushdown
für komplexe Ausdrücke deutlich besser als die des Synchronen. Für größere Datenmen-
gen zeigt der synchrone XPath-Pushdown sogar eine Verschlechterung im Vergleich zur
Instrumentalisierten ODE. Hingegen kann sich der asynchrone XPath-Pushdown erstmalig
für das 500kb XML Dokument gegen Original ODE durchsetzen und zeigt eine schnellere
Ausführung (siehe Abb. 7.7 und 7.8). Die ASSIGN-Zeit des asynchronen Pushdown für 100kb
ist etwas langsamer und die 4MB Variante geringfügig langsamer im Vergleich zur Original
ODE dies spiegelt sich auch in den Instanzlaufzeiten wieder. Somit zeigt die asynchrone
Variante des Prototyps insbesondere für komplexe XPath-Ausdrücke ein besseres Verhalten
als bei einfachen Ausdrücken.

Mittelt man die ASSIGN-Zeiten der verschiedenen Zuweisungen, erhält man die kombinierte
ASSIGN-Zeit in Abb. 7.9. Interessant ist der Vorteil der synchronen Ausführung für kleine
Datenmengen, der sich bei größere Datenmengen in einen Nachteil umwandelt. Hingegen
bleibt der asynchrone XPath-Pushdown immer besser als die Instrumentalisierte ODE.
Insgesamt bleiben die Instanzlaufzeiten des Prototyps hinter der Original Version zurück,
wobei sie bei der mittleren Datengröße von 500kb sehr nahe beieinander liegen.

109

7. Evaluierung des Prototyps

Abbildung 7.6.: Relative Laufzeit über Datengröße für Zuweisungen einfacher XPath-
Selektionen (DB2).

Abbildung 7.7.: Relative ASSIGN-Zeit über Datengröße für Zuweisungen komplexer XPath-
Ausdrücke (DB2).

110

7.3. Vorstellung der Messergebnisse

Abbildung 7.8.: Relative Laufzeit über Datengröße für Zuweisungen komplexer XPath-
Ausdrücke (DB2).

Abbildung 7.9.: Relative kombinierte ASSIGN-Zeit über Datengröße für Zuweisungen (DB2).

111

7. Evaluierung des Prototyps

Abbildung 7.10.: Relative ASSIGN-Zeit über Datengröße für Zuweisungen ohne XPath-
Ausdruck (PostgreSQL).

7.3.2.2. PostgreSQL

Im Vergleich zu IBM DB2 können wir mit PostgreSQL nur einen Bruchteil der Pushdown-
Konzepte umsetzen (siehe Kapitel 6.2.2.1). Aus diesem Grund ist es nur möglich den
synchronen XPath-Pushdown für Zuweisungen, ohne und für einfache XPath-Selektionen,
zu evaluieren. Komplexe XPath-Ausdrücke und damit auch die Evaluierung von Bedingun-
gen (ExpressionEvaluation/Condition-Pushdown) sowie der asynchrone XPath-Pushdown
können mit dem derzeitigen Stand von PostgreSQL nicht umgesetzt werden.

Betrachtet man die ASSIGN-Zeit ohne XPath in Abb. 7.10, erkennt man generell eine schlech-
tere Ausführungszeit des synchronen XPath-Pushdowns zum Referenzsystem. Lediglich
für die ASSIGN-Zeit bei einfachen XPath-Selektionen (Abb. 7.11) und den Testfall mit dem
100kb Dokument, lässt sich eine leichte Verbesserung feststellen. Im Vergleich zur Origi-
nal ODE ist der Prototyp sowohl bei der ASSIGN-Zeit als auch bei der Laufzeit deutlich
langsamer. Betrachtet man die kombinierte Instanzlaufzeit (Mittel aus ohne und einfachen
XPath-Selektionen) im Vergleich zur Instrumentalisierten ODE zeigt der synchrone XPath-
Pushdown für PostgreSQL eine generell schlechtere Performanz (siehe Abb. 7.12). Das
Ergebnis passt zu der Beobachtung, die wir ebenfalls bei der DB2 gemacht haben: Eine
Verschlechterung des synchronen XPath-Pushdowns bei zunehmenden Datenmengen. Au-
ßerdem scheint die xpath-Funktion von PostgreSQL noch optimierungsbedürftig zu sein, da
sie insgesamt schlechter abschneidet als die pureXML-Technologie der DB2.

112

7.3. Vorstellung der Messergebnisse

Abbildung 7.11.: Relative ASSIGN-Zeit über Datengröße für Zuweisungen einfacher XPath-
Selektionen (PostgreSQL).

Abbildung 7.12.: Relative kombinierte Laufzeit über Datengröße für Zuweisungen (Post-
greSQL).

113

7. Evaluierung des Prototyps

7.3.3. Bedingungen (ExpressionEvaluation-Pushdown)

Wir stellen nun die Ergebnisse der sequentiellen und parallelen Messungen für den
ExpressionEvaluation-Pushdown, anhand der Stellvertreter-Aktivität IF und dem DBS IBM
DB2 vor. Wie in Kapitel 7.1 beschrieben, testen wir jeweils für einfache und einen kom-
plexen XPath-Ausdruck, diese beziehen sich ebenfalls auf das Beispiel XML Dokument
aus Anhang C.1 (Seite 149), welches in der Datengröße variiert wird. Die XPath-Ausrücke
sind der Tabelle 7.3 zu entnehmen. Als IF-Zeit bezeichnen wir die benötigte Zeit für die
Auswertung der XPath-Ausdrücke und weicht somit minimal von der benötigten Zeit der
gesamten IF-Aktivität ab.

Art des
Ausdrucks

XPath-Ausdruck

einfach count($var/aln/seq[position()=erstes,mittleres,letztes]/annotation/*)
> 28

komplex count($var1/aln/seq[position()=1]/annotation/*)
- count($var2/aln/seq[position()=last()]/annotation/*) > 0

Tabelle 7.3.: XPath-Ausdrücke verschiedener Komplexität für die Messung der Bedingungs-
auswertung (IF).

Betrachten wir zunächst die Auswertung der einfachen XPath-Ausdrücke. In Abb. 7.13

ist zu sehen, dass die IF-Zeit des synchronen XPath-Pushdown immer eine schnellere
Ausführung erlaubt als mit der Instrumentalisierten ODE. Allerdings ist nur für das 500kb
XML Dokument der synchrone XPath-Pushdown schneller als die Original ODE Version. Für
die 4MB Variante ist die IF-Zeit nur geringfügig langsamer als gegenüber der Original ODE.
Vergleichen wir die Laufzeit einer Instanz in Abb. 7.14 verhalten sich alle Versionen ungefähr
gleich schnell, außer für den Testfall mit 4MB, hier ist die Original Version schneller. Dies
lässt sich möglicherweise auf die im WF verwendeten ASSIGN-Aktivitäten zurückführen
(siehe Abb. 7.1b), um einer BPEL Variable das entsprechende XML Dokument zuzuweisen
wobei ein Flush durchgeführt werden muss.

Betrachten wir die IF-Zeit für die Auswertung komplexer XPath-Ausdrücke, ist der synchro-
ne XPath-Pushdown allen anderen Varianten bei jeder Datengröße überlegen (Abb. 7.15).
Insbesondere bei 500kb ist der synchrone XPath-Pushdown um einen Faktor 4 schneller als
Original ODE. Die Instrumentalisierte Version ist hingegen immer langsamer als die Aus-
wertung der Original Version. Die relative Instanzlaufzeit der komplexen XPath-Ausdrücke
entspricht, mit der gleichen Begründung, der der einfachen XPath-Ausdrücke, weshalb wir
kein separates Schaubild angeben.

Betrachtet man die parallele Ausführung von jeweils 100 Instanzen der Testfälle, ergibt
sich eine interessante Verschiebung zugunsten des synchronen XPath-Pushdowns für die
IF-Zeit (siehe Abb. 7.16). Insbesondere ist die Auswertung eines komplexen XPath-Ausdrucks

114

7.3. Vorstellung der Messergebnisse

Abbildung 7.13.: Relative IF-Zeit über Datengröße für die Auswertung einfacher XPath-
Ausdrücke (DB2).

Abbildung 7.14.: Relative Laufzeit über Datengröße für die Auswertung einfacher XPath-
Ausdrücke (DB2).

115

7. Evaluierung des Prototyps

Abbildung 7.15.: Relative IF-Zeit über Datengröße für die Auswertung komplexer XPath-
Ausdrücke (DB2).

auf das 4MB Dokument nun relativ am schnellsten, im Gegensatz zu den sequentiellen
Messungen. Möglicherweise kommt dies durch ein effizienteres Cache-Verhalten der DB2 bei
nebenläufigen Transaktionen zu Stande. Die Gesamtlaufzeiten dieser parallelen Fälle nähern
sich für den synchronen XPath-Pushdown und komplexe XPath-Ausdrücke der Original
ODE Version an. Allerdings ist die 4MB Variante für einfache XPath-Ausdrücke deutlich
abgeschlagen gegenüber der Originalversion (siehe Abb. 7.17). Auch hier vermuten wir,
dass dies durch die Effekte aus den ASSIGN-Aktivitäten, die im Testworkflow enthalten
sind, herrührt. Zudem sollte erwähnt werden, dass sowohl für den Prototyp, als auch für
Original ODE für die 4MB Variante keine 100 Instanzen bei paralleler Ausführung vollständig
durchlaufen werden. Die Stabilität der WF-Engine lässt also bei dieser Datengröße nach.
Allerdings konnten mit der Original ODE ca. zehn Instanzen mehr parallel ausgeführt werden
als mit unserem Prototyp. Die Messungen wurden entsprechend für 100 Ausführungen
abgeschätzt, indem die Gesamtlaufzeit durch die Anzahl der durchlaufenden Instanzen
geteilt und anschließend mit 100 multipliziert wurde. Dies spiegelt nicht zwangsläufig die
tatsächliche Gesamtlaufzeit für 100 parallele Instanzen wieder.

116

7.3. Vorstellung der Messergebnisse

Abbildung 7.16.: Relative IF-Zeit über Datengröße für die parallele Auswertung einfacher
und komplexer XPath-Ausdrücke (DB2).

Abbildung 7.17.: Relative Gesamtlaufzeit über Datengröße für die parallele Auswertung
einfacher und komplexer XPath-Ausdrücke (DB2).

117

7. Evaluierung des Prototyps

7.3.4. INVOKE (Webservice-Pushdown)

In diesem Abschnitt stellen wir die Ergebnisse der Messungen zum Webservice-Pushdown
vor. Der Webservice-Pushdown konnte nur für das DBS IBM DB2 umgesetzt werden (siehe
Kapitel 6.1.2.1, Seite 87). Eine parallele Ausführung der Testfälle ist sowohl für Original ODE,
als auch für den Prototyp nicht möglich, da Fehler beim Senden und Empfangen der SOAP
Nachrichten auftreten und dabei die weitere Verarbeitung aller laufenden Instanzen in der
WF-Engine unterbrochen wird. Aufgerufen wird die WSDL-Operation getSFamilyAlignment
des Webservice DWARF_ACCESS, diese Operation wird ebenfalls im Anwendungsfall ver-
wendet (siehe Kapitel 2.5.1.1, Seite 39). Die Messungen zum Anwendungsfall werden im
nächsten Abschnitt vorgestellt.

Betrachten wir die INVOKE-Zeit, also die Zeit, die für die Aktivität INVOKE benötigt wird,
sehen wir, dass die Zeiten für den WS-Pushdown im Vergleich zur Instrumentalisierten und
Originalen ODE Version sehr dicht beieinander liegen. Die maximale Abweichung beträgt
nur rund 5% (siehe Abb. 7.18). Der Webservice-Aufruf der Instrumentalisierten Version
für das 4MB XML Dokument schlug jedesmal fehl, wir konnten den Fehler noch nicht
lokalisieren. Für größere Dokumente können wir einen kleinen Vorteil des WS-Pushdown
gegenüber der Original Version feststellen. Das Schaubild für die Laufzeiten einer Instanz
(Abb. 7.19) korrelliert weitgehend mit den INVOKE-Zeiten. Lediglich die leicht schnellere
Ausführung der Instrumentalisierten gegenüber der Original Version für 500kb ist nicht
nachvollziehbar, dies könnte aber an Systemeinflüssen (Kontextwechsel der CPU, Netzwer-
klatenz etc.) während der Ausführung der Testfälle liegen, da die Resultate hier sehr dicht
zusammenliegen.

Auch wenn der WS-Pushdown nur eine minimale Verbesserungen zeigt, ist er für die strikte
Trennung von Daten- und Prozessverwaltung für das Architekturmodell Hybrides WfMS,
welches wir in Kapitel 8 vorstellen werden, essentiell.

118

7.3. Vorstellung der Messergebnisse

Abbildung 7.18.: Relative INVOKE-Zeit über Datengröße für den Aufruf einer WS-Operation
(DB2).

Abbildung 7.19.: Relative Instanzlaufzeit über Datengröße für den Aufruf einer WS-
Operation (DB2).

119

7. Evaluierung des Prototyps

7.3.5. Anwendungsfall (Simulationsworkflow)

Wir werden nun die Ergebnisse zu den Messungen des Anwendungsfalls vorstellen,
dessen Funktionsweise wird in Kapitel 2.5.1.1 (Seite 39) beschrieben, der zugehörige
in BPEL definierte Prozess ist im Anhang C.2 (Seite 151) und auf der DVD unter
[DVD]/Evaluation/ErgebnisseUndTestfälle/UseCase/ODEDwarfUseCase zu finden. Der Anwen-
dungsfall ist für die Bioinformatik relevant und verarbeitet Daten iterativ innerhalb einer
Schleife. Diese iterative Datenverarbeitung ist ein grundlegendes Schema vieler Simula-
tionen, und es werden im Rahmen des Simulation Technology (SimTech) Projekts an der
Universität Stuttgart weitere Algorithmen für Simulationen vorgestellt, die eine iterative
Datenverarbeitung betreiben [HDO10].

Die Testfälle werden wieder für XML Dokumente, wie in Anhang C.1 (Seite 149), mit
den Datengrößen 100kb, 500kb und 4MB ausgeführt. Da über die <seq>-Elemente iteriert
wird, können wir diese Datengrößen auch als Anzahl Schleifendurchläufe angeben, diese
sind jeweils 40, 199 und 697 Iterationen. Wir haben für die sequentiellen Messungen bei
40 Iterationen den Anwendungsfall 100 mal und bei 199 Iterationen 10 mal, sowie 3 mal
für 697 Iterationen hintereinander ausgeführt. Für die parallelen Messungen 50 (für 40

Iterationen), 10 (für 199 Iterationen) und 2 (für 697 Iterationen) parallel laufende Instanzen
gemessen. Diese unterschiedlichen Werte wurden wegen der teils langen Laufzeiten des
Anwendungsfalls, insbesondere bei vielen Interationen, und der Stabilität der Original ODE
bei paralleler Ausführung verwendet. Wir werden zunächst die Resultate für das DBS IBM
DB2 und anschließend für PostgreSQL vorstellen. Nur für IBM DB2 wurden parallele Tests
durchgeführt, hierbei musste die INVOKE-Aktivität durch eine ASSIGN-Aktivität, in der
das eigentliche WS-Resultat als Literalwert einer Variablen zugewiesen wird, ausgetauscht
werden (siehe Kapitel 7.3.4).

7.3.5.1. IBM DB2

Zunächst werden wir die ASSIGN- und IF-Zeiten der sequentiellen Tests vorstellen, anschlie-
ßend die Laufzeit einer Instanz und danach die Ergebnisse der parallelen Ausführung. Die
ASSIGN-Zeit wird über alle gemessenen ASSIGN-Aktivitäten gemittelt, wir können somit
keine Rückschlüsse auf die Performanz einzelner, im Anwendungsfall vorhandener, ASSIGN-
Aktivitäten ziehen. Zu beachten ist, dass die Original ODE und die Instrumentalisiserte ODE
Version im Vergleich zum Prototyp während der Verarbeitung des Anwendungsfalls mit 697

Schleifendurchläufen abbrechen. Aus diesem Grund können wir nur Vergleiche zwischen 40

und 199 Schleifendurchläufen präsentieren. Wir stellen jedoch fest, dass der Prototyp den
Anwendungsfall auch für größere Datenmengen durchläuft und somit einen wesentlichen
Stabilitätsvorteil aufweist.

Betrachten wir die ASSIGN-Zeit für den sequentiellen Fall, man erkennt den deutlichen
Performanzvorteil des Prototyps gegenüber der Instrumentalisierten Version, der Prototyp

120

7.3. Vorstellung der Messergebnisse

Abbildung 7.20.: Relative ASSIGN-Zeit über Anzahl Schleifendurchläufe für den Anwen-
dungsfall (DB2).

ist 7-15 mal schneller (siehe Abb. 7.20). Sogar gegenüber Original ODE ist der Prototyp
nun bei den ASSIGN-Zeiten um einen Faktor 3-5 performanter. Möglicherweise kommt
der Effekt daher, da bis auf die Initialwerte der BPEL-Variablen bei der Ausführung des
Anwendungsfalls keine Flushs erfolgen, insbesondere nicht innerhalb der Foreach-Schleife.
Außerdem ist es möglich, dass die innerhalb der Schleife wiederkehrenden Zuweisungen
und XPath-Auswertung vom DBS erkannt und durch einen Query-Cache schneller ausgeführt
werden können.

Die Messungen zu den IF-Zeiten verwundern auf den ersten Blick, die Instrumentalisierte
ODE ist bis zu 16 mal und der Prototyp bis zu einem Faktor von 2,5 langsamer als die
Original ODE Version (siehe Abb. 7.21). Die Absolutwerte liegen jedoch im einstelligen
Millisekunden Bereich, welches auch unsere Messeinheit ist. Zudem wird bei der Auswertung
des zugehörigen XPath-Ausdrucks nur in einer ca. 1kb großen Zeichenkette nach einem
regulären Ausdruck gesucht. Daher ist die Hauptspeicher-basierte Auswertung innerhalb
Original ODE schneller, insbesondere da keine Kommunikation mit dem DBS stattfinden
muss.

Bei Betrachtung der Instanzlaufzeit wird nun deutlich, dass der Prototyp eine schnellere
Ausführung erlaubt. Für 40 Schleifendurchläufe ist er fast doppelt so schnell wie Original
ODE und für 199 Iterationen sogar fast um einen Faktor 4 schneller1 als die Original Version
(Abb. 7.22). Die Instrumentalisierte ODE zeigt gleichförmig schlechtere Laufzeiten, was

1Dadurch verringert sich die mittlere Laufzeit, für eine Instanz mit 199 Iterationen auf dem Testsystem, von
7:15min auf 1:53min.

121

7. Evaluierung des Prototyps

Abbildung 7.21.: Relative IF-Zeit über Anzahl Schleifendurchläufe für den Anwendungsfall
(DB2).

unsere Vermutung aus Kapitel 7.3.1 bestärkt, dass der Zugriff auf XML Felder nicht so
effizient ist, wie auf entsprechende BLOB Felder in der Original Version.

Während die Hauptspeichermessungen für die Einzeltests schwer zu interpretieren und
nicht aussagekräftig genug waren, können wir aus den Hauptspeichermessungen des An-
wendungsfalls einige interessante Schlussfolgerungen ziehen (Abb 7.23). Für den kleinen
Anwendungsfall mit 40 Iterationen ist der Hauptspeicherverbrauch für alle drei Versionen
fast gleich, bei 199 Iterationen erkennt man einen klaren Anstieg der Original ODE Version,
um den Faktor 2-4 gegenüber Prototyp und Instrumentalisierter ODE, auf über 900MB.
Die Instrumentalisierte Version benötigt in diesem Fall am wenigsten Hauptspeicher. Wir
schließen daraus, dass wahrscheinlich das DB Middleware System Hibernate durch die
erzwungene Persistenz in der Instrumentalisierten Version, die Objekte aus dem Haupt-
speicher löschen kann, um sie bei Bedarf nachzuladen. Dieses Vorgehen ist in der Original
Version nicht möglich, da sie lediglich vor der Schleifenausführung, genauer gesagt vor dem
WS-Aufruf, ein Durchschreiben der Daten erzwingt und dann erst wieder beim Beenden
der Instanz (siehe Kapitel 7.3.1). Der im Vergleich zur Instrumentalisierten Version erhöhte
Hauptspeicher Verbrauch des Prototypen lässt darauf schließen, dass IBM DB2 für die Aus-
wertung der XPath-Ausdrücke zusätzlichen Hauptspeicher vom System anfordet, dieser ist
aber im Vergleich zur Original ODE Version immer noch geringer. Somit bleiben Ressourcen
frei, die für andere Aufgaben bei der WF-Ausführung verwendet werden können, z.B. für
Auditing Maßnahmen.

Zum Abschluss der Messungen für das DBS IBM DB2 betrachten wir noch die parallele
Ausführung des Anwendungsfalls mit 40 Iterationen, für jeweils 10 parallel laufende Instan-

122

7.3. Vorstellung der Messergebnisse

Abbildung 7.22.: Relative Laufzeit über Anzahl Schleifendurchläufe für den Anwendungsfall
(DB2).

Abbildung 7.23.: Absoluter Hauptspeicherverbrauch über Anzahl Schleifendurchläufe für
den Anwendungsfall (DB2).

123

7. Evaluierung des Prototyps

Abbildung 7.24.: Relative Laufzeit und relativer Hauptspeicherverbrauch bei paralleler Aus-
führung von 10 Instanzen des Anwendungsfalls mit 40 Iterationen (DB2).

zen (Abb 7.24). Man erkennt für die Gesamtlaufzeit als auch für die Hauptspeichernutzung
einen deutlich Vorteil bei Verwendung des Prototyps im Gegensatz zur Original Version. Der
Prototyp ist zudem stabiler, ausschließlich mit ihm ist es möglich 50 parallele Instanzen für
40 Iterationen, 10 parallele Instanzen für 199 Iterationen und 2 parallele Instanzen für 697

Iterationen auszuführen. Dabei ist insbesondere die parallele Ausführung der 697 Iterationen
zu erwähnen, da die aufsummierte Gesamtlaufzeit beider Instanzen ziemlich genau der
einer einzelnen sequentiellen Ausführung entspricht, was eine Durchsatzsteigerung von
100% bedeutet. Vergleicht man, jeweils für 40 Iterationen, die mittleren Instanzlaufzeiten
der 10 parallel ausgeführten Instanzen mit den mittleren Instanzlaufzeiten der sequentiellen
Ausführung des Prototyps und Original ODE, benötigt eine parallel ausgeführte Instanz
des Prototyps im Mittel mehr als doppelt so lang wie die sequentielle Ausführung. Eine
parallele Instanz der Original Version benötigt sogar die 10 fache Zeit der entsprechenden
sequentiellen Ausführung. Allerdings ist die Gesamtzeit der Ausführung von 10 Instanzen
im parallelen Fall durch die Nebenläufigkeit für den Prototyp ca. sechs mal und für Origi-
nal ODE ca. doppelt so schnell wie die entsprechende sequentielle Gesamtlaufzeit (siehe
Abb. 7.25). Somit kann bei der parallelen Ausführung der Prototyp gegenüber Original ODE
sogar eine bis zu dreifach größere Durchsatzsteigerung erzielen.

7.3.5.2. PostgreSQL

Die Messwerte für den Anwendungsfall mit dem DBS PostgreSQL sind, durch die funktio-
nalen Einschränkungen und die bereits schlechteren Ergebnisse im Vergleich zur Instrumen-

124

7.3. Vorstellung der Messergebnisse

Abbildung 7.25.: Relative Gesamtlaufzeit der parallelen und sequentiellen Ausführung von
10 Instanzen des Anwendungsfalls mit 40 Iterationen (DB2).

talisierten Version für den Assignment-Pushdown (siehe Kapitel 7.3.2.2), nicht überraschend.
Die ASSIGN-Zeiten des Prototyps sind nahezu mit der der Instrumentalisierten Version iden-
tisch. Dies ist darauf zurückzuführen, da lediglich die XPath-Selektionen anders behandelt
werden. Die Original Version ist im Vergleich zu den beiden anderen Versionen deutlich
schneller in der Ausführung (siehe Abb 7.26). Die relative Laufzeit einer Instanz korreliert
entsprechend mit der ASSIGN-Zeit, Prototyp und Instrumentalisierte Version sind um einen
Faktor 1,6 - 2,3 langsamer als die Original Version (siehe Abb 7.27). Der Prototyp und die
Instrumentalisierte ODE verschlechtern sich bei 199 Iterationen gegenüber der Original ODE
noch weiter als bei 40 Iterationen. Betrachtet man den Hauptspeicherverbrauch ergibt sich
ein ähnliches Bild wie für die Auswertung mit dem DBS IBM DB2. Die Instrumentalisierte
Version benötigt am wenigsten Hauptspeicher gefolgt vom Prototyp und Original ODE,
zumindest für den Anwendungsfall mit 199 Iterationen (siehe Abb 7.28). Dies untermauert
unsere Annahme aus Kapitel 7.3.5.1, dass durch die erzwungenen Flushs im Prototyp und
der Instrumentalisierten ODE durch Hibernate Hauptspeicher freigegeben werden kann.
Keine Version war in der Lage den Anwendungsfall mit 697 Iterationen zu durchlaufen, der
Prototyp war sogar am instabilsten und durchlief schon für den Anwendungsfall mit 199

Iterationen nicht alle Instanzen.

125

7. Evaluierung des Prototyps

Abbildung 7.26.: Relative ASSIGN-Zeit über Anzahl Schleifendurchläufe für den Anwen-
dungsfall (PostgreSQL).

Abbildung 7.27.: Relative Laufzeit einer Instanz über Anzahl Schleifendurchläufe für den
Anwendungsfall (PostgreSQL).

126

7.4. Diskussion der Messergebnisse

Abbildung 7.28.: Absoluter Hauptspeicherverbrauch über Anzahl Schleifendurchläufe für
den Anwendungsfall (PostgreSQL).

7.4. Diskussion der Messergebnisse

Die Ergebnisse zeigen deutlich, dass die Funktionalitäten, die ein DBS anbietet, und deren
effiziente Implementierung entscheidend sind, um die vorgestellten Konzepte aus Kapitel 4

erfolgreich (Durchführbarkeit sowie Performanzgewinn) umsetzen zu können. Der Prototyp
mit dem DBS PostgreSQL zeigt leider durchweg eine schlechtere Performanz als die Original
ODE Version, die mit PosgtreSQL arbeitet. Dies hat mehrere Gründe angefangen von
den eingeschränkten XML Funktionalitäten, die nur einen Bruchteil der möglichen XPath-
Pushdown Funktionen realisieren lassen und vor allem die Ausführung des interessanten
asynchronen XPath-Pushdowns verhindern. Mit der DB2 war es möglich alle Funktionen
des Prototyps umzusetzen, was für einige Fälle ein Performanzgewinn erbrachte.

Betrachten wir die Testfälle der einzelnen Aktivitäten, liegt der Prototyp bei der Instanzlauf-
zeit in fast allen Fällen hinter der Original ODE Version zurück. Wie schon in Kapitel 7.3.1
besprochen, vermuten wir hier eine aufwändigere Datenbankkommunikation in Zusammen-
spiel mit einer nicht so effizienten Implementierung der XML Felder im Vergleich zu den
BLOB Feldern der jeweiligen DBSe. Zudem müssen alle Variableninhalte für den Prototyp
bereits in der DB abgespeichert sein, das Erzwingen dieser Persistenz beeinträchtigt die
Laufzeit des Prototypen. Die Persistenz wirkt sich jedoch positiv auf den Hauptspeicherver-
brauch von Workflows mit Datenverarbeitung innerhalb von Schleifen aus (siehe Abb. 7.23)
und könnte ggf. auch dem Original System mehr Stabilität verleihen. Wird die Persistenz
der Daten erzwungen, ist der Prototyp mit dem DBS IBM DB2 jeweils performanter (Lauf-
zeitvergleiche gegenüber der Instrumentalisierten Version). Bei den ASSIGN- und IF-Zeiten

127

7. Evaluierung des Prototyps

lässt sich feststellen, dass der Prototyp bei komplexen XPath-Ausdrücke schneller wird und
für die Datengröße 500kb oft die beste relative Zeit aufweist. Weitere Tests mit einem 50MB
XML-Dokument ergaben, dass sich der Trend fortsetzt und die relativen Zeiten für große
XML-Daten zunehmend schlechter werden. Die INVOKE-Zeit des Prototypen nimmt für
zunehmende Datengrößen gegenüber der Original ODE ab und kann ab Datengrößen von
500kb grundsätzlich verwendet werden.

Das Zusammenspiel der Konzepte WS-Pushdown, Assignment-Pushdown (asynchroner
XPath-Pushdown) und ExpressionEvaluation-Pushdown (synchroner XPath-Pushdown), wie
sie im Anwendungsfall auftreten, ziehen eine bis zu 4-fache Steigerung der Ausführungsge-
schwindigkeit sowie einen geringeren Hauptspeicherverbrauch nach sich. In diesem Fall ist
auch die Datenbankkommunikation geringer, da im Wesentlichen nur Anweisungen und
keine Inhalte an das DBS übergeben werden. Variableninhalte werden nur zur Initialisierung
(BPEL Literale) an das DBS übergeben. Alle weiteren datenverarbeitenden Schritte finden
direkt innerhalb des DBSs statt. Die Auswertung einer Bedingung liefert nur das Resultat
(wahr oder falsch) und nicht die Variableninhalte zurück. Zudem können hier DB spezifische
Optimierungen, z.B. ein Query-Cache, helfen die Ausführung zu beschleunigen. Insbesondere
bei einer iterativen Verarbeitung von Daten werden innerhalb der Schleife gleichförmig struk-
turierte Anfragen an das DBS gestellt, die vom DB-Optimierer erkannt und so effizienter
ausgeführt werden können. Die parallele Ausführung von Workflowinstanzen ist mit dem
Prototyp stabiler, was wohl auf die Transaktions- und Mehrbenutzereigenschaften heutiger
DBSe zurückzuführen ist. Die Persistenz der Daten ist durch den WS- und asynchronen
XPath-Pushdown ohne weitere Maßnahmen gegeben wodurch prinzipiell eine Recovery
nach einem Systemausfall gewährleistet wird.

Zusammenfassend ist zu sagen, dass die Wahl des DBSs entscheidend ist. Der vorgestellte
Prototyp, der mit dem DBS IBM DB2 arbeitet, ist insbesondere für alle Arten von Work-
flows geeignet, in denen Daten innerhalb einer Schleife verarbeitet werden. Diese Verarbei-
tungsform ist ein wiederkehrendes Strukturelement vieler Simulationsworkflows ([HDO10],
Anwendungsfall Kapitel 2.5.1.1, Seite 39) und daher von Interesse. Für ETL-Workflows
(Kapitel 2.3.3.3, Seite 34) könnte sich der Prototyp möglicherweise ebenfalls eignen, da diese
Workflows sehr ähnlich zu dem vorgestellten Anwendungsfall und oft noch datenintensi-
ver sind. Dies müsste allerdings für bestimmte ETL-Muster und ETL-Operationen separat
evaluiert werden. Für Business-Workflows (Kapitel 2.3.3.1, Seite 32) sowie für Simulati-
onsworkflows mit geringem Datenaufkommen (Kapitel 2.3.3.2, Seite 33), die ähnlich zu
Business-Workflows nur die Aufrufreihenfolge externe Programme orchestrieren, scheint der
Prototyp im jetzigen Zustand nicht geeignet zu sein. Durch weitere Anpassungen, insbeson-
dere an der DAO-Schicht und die Optimierung der DBS-Parameter oder der Verwendung
eines Nativen-XML DBSs, könnte der Prototyp aber auch für diese Workflows zumindest
eine gleich schnelle Ausführung erlauben.

128

7.4. Diskussion der Messergebnisse

7.4.1. Technische Limitierungen

Apache ODE sowie der Prototyp besitzen einige Limitierungen, die im Rahmen der Eva-
luation geändert oder berücksichtigt werden mussten. Zum Einen mussten hart kodierte
Timeout-Werte für das Versenden und Empfangen von SOAP Nachrichten in beiden Versio-
nen geändert werden, um die Testfälle ausführen zu können. Apache ODE verhält sich nach
einer bestimmten Ausführungszeit einer Workflowinstanz nicht mehr ganz korrekt, z.B. wird
eine vollständig erfolgreich ausgeführte Instanz nicht als ’ausgeführt’ gekennzeichnet und
bleibt als ’aktiv’ markiert. Wie schon unter Kapitel 7.3.4 erwähnt, ist die parallele Ausführung
von WS-Aufrufen auf die gleiche WSDL-Operation eines WS anscheinend nicht möglich, dies
kann jedoch auch mit der verwendeten Kommunikationsinfrastruktur (in diesem Fall Axis2)
zusammenhängen. Auch kann sowohl für den Prototyp als auch für Original Apache ODE
bei Datenmengen im MB-Bereich die Anzahl parallel laufender Instanzen nicht beliebig hoch
gewählt werden. Zudem kann beim gleichzeitigen Aufrufen mehrerer Instanzen des gleichen
Prozesses es in beiden Versionen dazu kommen, dass eine gewisse Anzahl von Aufrufen
nicht vom System verarbeitet wird und entsprechend weniger Instanzen auf der WF-Engine
ausgeführt werden als angefordert. Es konnten auch keine WFs mit XML-Dokumenten
die größer als 75MB waren compiliert werden, somit konnten keine Tests für sehr große
Dokumente im Hundert-MB bzw. GB Bereich durchgeführt werden.

Der Prototyp mit dem DBS IBM DB2 kann standardmäßig nur WS-Aufrufe durchführen,
bei denen die Antwortnachricht des WS nicht größer als 1MB ist. Dies kann durch eine
veränderte Signatur der entsprechenden UDF angehoben werden2 und wurde für die Aus-
führung des Anwendungsfalls mit 697 Iterationen auf 5MB erhöht. Zudem versteht pureXML
nur einen bestimmten Dialekt von XPath-Ausdrücken, dies ist insbesondere bei der Selek-
tion von einzelnen Elementen aufgefallen. Während Original ODE den XPath-Ausdruck
’$var/items/item[1]’ ohne Probleme auswertet und das erste <item>-Element des XML Doku-
ments in der Variable var zurückliefert, muss für die korrekte Bearbeitung innerhalb der
DB2 der XPath-Ausdruck in ’$var/items/item[position()=1]’ umgewandelt werden. Dies wird
möglicherweise in einer neuen Version der DB2 und einer XPath-Standard entsprechenden
pureXML-Implementierung kein Thema mehr sein oder man könnte ggf. eine Natives XML
DBS verwenden, das den XPath-Standard schon jetzt korrekt umsetzt.

2https://www.ibm.com/support/docview.wss?uid=swg1IZ46071

129

8. Konzeptionelle Erweiterungen

In diesem Kapitel werden wir, aus den Erfahrungen bei der Implementierung des Prototyps,
eine Referenzarchitektur für solche Systeme vorstellen und diese in Relation zu den anderen
Integrationsmöglichkeiten aus Kapitel 3.2 setzen. Im Abschnitt 8.2 werden wir weiterführende
Arbeiten zur Erweiterung und zum Einsatz der Konzepte aus Kapitel 4 vorstellen.

8.1. Referenzarchitektur

Die Realisierbarkeit der Konzepte aus Kapitel 4 konnte durch den Prototypen als Proof-of-
Concept nachgeweisen werden. Da dies ein experimenteller Ansatz ist und dieser deshalb nur
prototypisch implementiert werden konnte, existiert natürlich Spielraum für eine sauberere
Implementierung. Aus den Erfahrungen und Schwierigkeiten der Implementierung des
Prototyps möchten wir nun in Anlehnung an Kapitel 3 eine konzeptionelle Referenzarchitek-
tur und Implementierungsdetails vorstellen, die zu einem übersichtlicherem System und
möglicherweise zu einer Verallgemeinerung der Anfragen an das DBS führen.

8.1.1. Referenzarchitektur für ein Pushdown WfMS

Die Referenzarchitektur besteht aus der Runtime-, DAO- und Pushdown-Schicht (siehe
Abb. 8.1). Die Pushdown-Schicht ist für die Realisierung der Pushdown-Konzepte verant-
wortlich und kann von der DAO-Schicht sowie direkt von der Runtime aus aufgerufen und
verwendet werden. Für die Referenzarchitektur ist es außerdem wichtig, dass das Typsys-
tem des WfMSs über alle drei Schichten Runtime, Pushdown und DAO hinweg sichtbar
ist (wie in Abb. 8.1 angedeutet). Dadurch ist die Verlagerung der Anwendungslogik (z.B.
für Zuweisungen) von der Runtime- auf die Pushdown-Schicht ohne Weiteres möglich. Die
Pushdown-Schicht beinhaltet den Mechanismus zur Query-Bildung und ggf. die Queries
für verschiedene DBSe (solange noch keine Standard Query-Sprache für die Manipulation
von XML Daten existiert). Die Aufgaben, die von der Pushdown-Schicht übernommen wer-
den, sind also im Wesentlichen die in dieser Arbeit entwickelten Hauptfunktionen aus der
ScopeDAO-Schicht des Prototypen (siehe Kapitel 6.1.2.1, Seite 87). Dadurch kann sowohl
die Runtime als auch die DAO-Schicht auf die Pushdown-Funktionen zurückgreifen. Die
DAO-Schicht ist im Prinzip nur für das Speichern von Literal-Werten für Variablen und

131

8. Konzeptionelle Erweiterungen

anderen Informationen zu Prozessen und Instanzen verantwortlich und könnte ggf. ganz
eliminiert werden und deren Funktionen in die Pushdown-Schicht übertragen werden. Der
wesentliche Unterschied zwischen DAO- und Pushdown-Schicht ist der Ort der Datenverar-
beitung. Während Daten der DAO-Schicht in der Runtime verarbeitet werden, werden bei
Verwendung der Pushdown-Schicht diese Daten ausschließlich innerhalb des DBSs verarbeitet
und lediglich Resultate (wie z.B. das Ergebnis der Abbruchbedingung einer Schleife) an
die Runtime weitergegeben. Ein einheitliches Wrapper Element für alle XML-Dokumente
oder Fragmente erleichtert die Query-Erstellung, durch das Typsystem ist sowieso bekannt,
um welchen Typ es sich jeweils handelt. Dies muss nicht zwangsläufig auf der Datenebene
(z.B. innerhalb des XML-Dokuments) widergespiegelt werden (im Gegensatz zu Tabelle 5.1,
Seite 71).

Abbildung 8.1.: Referenzarchitektur für ein Pushdown WfMS bestehend aus einem global
sichtbaren Typsystem und einer Pushdown-Schicht, die von einer optionalen DAO-Schicht
und der Runtime-Schicht aus aufgerufen werden kann.

8.1.2. Architekturmodell Hybrides WfMS

Wenn sowohl WS- als auch Query-Pushdown vollständig (asynchron und synchron) im-
plementiert werden können, findet im Prinzip kein Datenaustausch von Variableninhalten
zwischen Runtime und DBS statt. Lediglich Ergebnisse von Bedingungsevaluationen für
Schleifen- und Kontrollstrukturen werden an die Runtime zurückgeliefert. Die Datenver-
arbeitung und Datenspeicherung findet ausschließlich im DBS statt. Dies stellt also eine
Zwischenform, zwischen der klassischen WfMS Architektur und dem Ansatz das DBS als
WfMS erster Klasse zu betrachten, dar. Wir bezeichnen dieses neue Architektur als Hybriden
Ansatz und erweitern das Architekturmodell aus Abb. 3.7 (Seite 51) in Abb. 8.2. Der hybride
Ansatz zeichnet sich dadurch aus, dass die Prozess- und Datenverwaltung strikt vonein-
ander getrennt sind. Die Prozessverwaltung übernimmt im Wesentlichen die Navigation
durch den Prozess, indem die Kontrollfluss-Entscheidungen interpretiert und ausgeführt
werden. Diese strikte Trennung steht im Gegensatz zur klassischen Variante in Abb. 8.2a, bei
der die Datenverwaltung sowohl innerhalb der WF-Runtime und des DBS erfolgt und der
voll integrierten Variante in Abb. 8.2b, in der beide Aufgaben nur vom DBS übernommen
werden.

132

8.2. Weiterführende Arbeiten

Abbildung 8.2.: Klassische WfMS Architektur (a), DBMS als Erste-Klasse WfMS (b) und der
Hybride Ansatz (c). Vgl. [AIL98]

8.2. Weiterführende Arbeiten

Wir werden nun einige Erweiterungen und weitere wissenschaftliche Untersuchungsmög-
lichkeiten vorstellen, die mit den Pushdown-Konzepten aus Kapitel 4 im Rahmen weiterer
Arbeiten untersucht werden können. Teilweise greifen wir hier Modifikationen auf, die schon
direkt am Prototypen (Kapitel 6.2.3, Seite 97) vorgestellt wurden.

XQuery(-Update)-Pushdown Man sollte mit wenig Aufwand innerhalb des Prototyps den
XQuery-Pushdown synchron als ExpressionEvaluation-Pushdown und asynchron als
Assignment-Pushdown realisieren können. Da XQuery-Ausdrücke deutlich komple-
xer werden können als XPath-Ausdrücke, sind weitere Messungen dieser konkreten
Pushdown-Technik interessant. Unterstützt das DBS bereits den Kandidat für die
XQuery Update Facility [W3C09], kann der bereits implementierte XPath-Pushdown
prinzipiell standardisiert werden und somit auch ohne zusätzlichen Aufwand für
XQuery-Ausdrücke verwendet werden.

Unterstützung und Evaluierung weiterer XML-Enabled DBSe Man könnte noch weitere
XML-Enabled DBSe, wie z.B. Microsoft SQL Server und Oracle Database, an den
Prototypen anbinden und evaluieren. In Zukunft könnten die Messungen aus Kapitel 7

für XML-Enabled DBSe wiederholt werden, wenn z.B. die XML-Verarbeitung in diesen
Systemen ausgereifter ist. Gegebenenfalls können dann alle in den Prototyp imple-
mentierten Pushdown-Konzepte auch durch PostgreSQL und andere DBSe realisiert
werden. Insofern sich in Zukunft der XPath/XQuery-Pushdown auf XML-Enabled
DBSe standardisieren lässt, müsste für eine Evaluierung der verschiedenen DBSe keine
spezifische Anpassungen am Prototyp (außer die Standardisierung) mehr vorgenom-
men werden. Darüber hinaus könnte man den jetzigen Prototypen für verschiedene
Datenbankparameter (Query-Optimierung, Anzahl Seitenpuffer etc.) testen und so
seine Leistung optimieren.

133

8. Konzeptionelle Erweiterungen

(Automatische) XML-Indizierung Falls die XML-Validierung in den Prototypen implemen-
tiert wurde (siehe Kapitel 6.2.3, Seite 97) ist es, zumindest für das DBS IBM DB2,
möglich XML-Knoten (Elemente, Attribute etc.) zu indizieren. Dies kann bei iterativen
Zugriffen auf bestimmte Elemente des XML-Dokuments (siehe Anwendungsfall Kapitel
2.5.1.1, Seite 39) zu einer beschleunigten Ausführung der XPath/XQuery-Ausdrücken
führen. Welche XML-Knoten zu indizieren sind, könnte vom Anwender vorgegeben,
durch den WF-Compiler oder zur Laufzeit anhand der XPath/XQuery-Ausdrücke
ermittelt werden. Letzteres könnte auch eine Funktion sein, die in die DB-Technologie
von XML-Enabled DBSen, z.B. in den DB-Optimierer, aufzunehmen ist.

Natives XML-DBS Es ist denkbar innerhalb der DAO-Schicht des Prototyps, für die Speiche-
rung und Verarbeitung von Variablen, mit einem nativen XML-DBS, wie z.B. eXist-db1,
zu kommunizieren. Hier würden die Variablen jeweils als eigenständiges Dokument
oder in einer separaten XML Struktur als einzelnes XML Dokument abgespeichert,
manipuliert und zugewiesen werden. Möglicherweise führt dies zu einer erheblichen
Performanzsteigerung, da diese Systeme auf die Verarbeitung von XML Daten ausge-
legt sind und da der zusätzliche Overhead über SQL-Anweisungen auf die XML-Felder
in Tabellen zugreifen zu müssen wegfällt. Durch entsprechende Laufzeitmessungen
könnte diese These belegt werden. Darüber hinaus ist es denkbar, die Prozessinforma-
tionen weiterhin in einem relationalem DBS zu halten. Die DAO-Schicht würde damit
zweigeteilt sein und der Prototyp würde entsprechend zwei DBSe (Relational und
Nativ XML) benötigen. Dies stellt eine Verfeinerung der Möglichkeit dar Informationen
zum WfMS auf verschiedene DBen und DBSe aufzuteilen (siehe WebSphere Process
Server Kapitel 3.3.4, Seite 56).

Weitere DAO Spezialisierungen Man könnte andere Datenstrukturen für die Prozessvaria-
blen zulassen, z.B. ein relationales Schema. Diese würden sich direkt auf eine Relation
eines relationalen DBSs abbilden lassen, was insbesondere für ETL-WFs, die tabellen-
orientierte Daten verarbeiten, zu Performanzvorteilen führen würde. Einerseits fällt
dabei die XML-Konvertierung weg und andererseits können die schnellen relationa-
len Operatoren der integrierten DB direkt verwendet werden. Des Weiteren wäre es
denkbar die Datenstruktur (XML oder Relational) für jede Prozessvariable einzeln
festzulegen. Um all dies Umzusetzen benötigt man eine Reihe spezialisierter DAOs
und Varianten des Query-Pushdown (siehe Tabelle 4.1, Seite 61) die auf die entspre-
chenden DBSe (Relational, Nativ XML) zugreifen und deren Daten verarbeiten können.
Falls die Persistenz dieser Daten nicht zwingend erforderlich ist, könnten außerdem
hauptspeicherbasierte DBSe zum Einsatz kommen.

Pushdown für andere WfMSe Der ExpressionEvaluation-Pushdown könnte für andere, z.B.
eher datenorientierten WfMSe wie Taverna oder Microsoft Trident umgesetzt und

1http://exist.sourceforge.net/

134

8.2. Weiterführende Arbeiten

evaluiert werden. Zumindest für die Aktivitäten der beiden Systeme, die XPath-
Auswertungen durchführen. Außerdem könnte geprüft werden, ob die anderen
Pushdown-Konzepte dort ebenfalls anwendbar sind oder auch neue Pushdown-
Konzepte umsetzbar und somit in die Pushdown-Hierarchie aufzunehmen sind.

Pushdown-Optimierer Nach Evaluation weiterer Test- und Anwendungsfälle könnte in den
Prototypen ein z.B. kostenbasierter Pushdown-Optimierer eingeführt werden, der nach
bestimmten Kriterien entscheidet, wann die Aufgabe in der WF-Engine und wann
innerhalb des DBSs durchgeführt wird. Im Anwendungsfall war z.B. die Evaluierung
der IF-Bedingung durch den kleinen Inhalt der Variable innerhalb der WF-Engine
schneller (siehe Kapitel 7.3.5.1, Seite 120). Allerdings müssten hierzu die Daten aus dem
DBS in die WF-Engine geladen werden, was wiederum Zeit benötigt. Ob solche Effekte
eine Optimierung der Instanzlaufzeit verhindern muss hierbei evaluiert werden.

Pushdown von SIMPL-Aktivitäten Eine weitere Arbeit kann sich mit der Implementierung
des Pushdown für die SIMPL-Aktivitäten (siehe Kapitel 3.2.1, Seite 45) in Apache ODE
befassen. Hierzu könnten UDFs und Stored Procedures für die integrierte WF-DB
geschrieben werden, welche direkt mit dem SIMPL-Kern kommunizieren und so ohne
Umweg durch die WF-Engine die Daten direkt miteinander austauschen. Alternativ
könnte der Pushdown auch an den SIMPL-Kern erfolgen, der dabei die Informationen
zur integrierten WF-DB erhält um so die Daten austauschen zu können. Dies wäre
insbesondere für die SIMPL-Aktivitäten RetrieveData und WriteDataBack interessant
[RRS+10].

Nexus DS Operatoren NexusDS [CEB+
09] ist ein verteiltes, Datenstrom verarbeitendes Sys-

tem. Sein Anwendungsschwerpunkt ist die sog. Angereicherte Realität (engl. Augmented
Reality), hierbei werden meist Bilder der realen Welt durch zusätzliche Informationen
angereichert. Das System kann aus sehr heterogenen Plattformen (mobile Endgeräte,
Server, Grafikkarten etc.) bestehen und eine Vielzahl von Datenquellen anbinden. Der
in [CEB+

09] vorgestellte Anwendungsfall erhält von einem Smartphone dessen aktuelle
geographische Position (z.B. via GPS). Anhand dieser Information wird nun auf Servern
und einem Grafikkarten-Cluster eine virtuelle 3D-Ansicht erstellt, die mit Informatio-
nen über interessante Orte (POI) und z.B. verfügbare Taxis angereichert ist. Diese 3D-
Ansicht wird als 2D-Bild an das Smartphone zurückgeschickt. Solange die Anwendung
auf dem Smartphone nicht abgebrochen wird, wird die Ansicht ständig aktualisiert und
an das Smartphone geschickt, weshalb von einem Datenstrom System gesprochen wird.
Um die verschiedenen Datenquellen in NexusDS anzusprechen, werden sog. Operatoren
implementiert. Hier ist es denkbar entsprechende ExpressionEvaluation-Pushdown
Operatoren zu realisieren, die z.B. für die Auswertung von XPath-Ausdrücken auf
XML Dokumenten einer XML-(Enabled/Nativen)-Datenbank einen XPath-Pushdown
vornehmen und so die Last des Gesamtsystems noch weiter zu verteilen. Insbesondere,
wenn der Datenbankserver ein eigenständiges System darstellt und die Anfragen
entsprechend komplex sind. Umgekehrt könnte es für Datenfluss-orientierte WfMSe

135

8. Konzeptionelle Erweiterungen

interessant sein eine Nexus DS Anwendung als Aktivität zu verwenden. Da diese
ständig Daten generiert, können diese kontinuierlich in einem entsprechendem WF
analysiert oder weiterverarbeitet werden.

UDFs als Alternative zu DB Middleware Man kann die Idee, UDFs und Stored Procedu-
res anstelle von direkten SQL-Aufrufen zu verwenden (aus Microsoft Trident siehe
Kapitel 3.3.3, Seite 55), dahingehend untersuchen, ob dieses Modell es erlaubt DB-
Middlewaresysteme wie Hibernate und openJPA aus WfMSen zu entfernen, ohne
die Flexibilität bei der Wahl des DBSs zu verlieren. Gegebenenfalls kann durch diese
schlankeren Systeme bereits eine schnellere Workflow-Ausführung ermöglicht werden.
Um diesen Ansatz zu überprüfen, könnte z.B. für Apache ODE eine eigene DAO
geschrieben werden, die nur UDFs und Stored Procedures aufruft und Letztere ent-
sprechend für mehrere DBSe implementiert werden. Zusätzlich kann geprüft werden,
ob es möglich ist UDFs und Stored Procedures zu definieren, welche die Pushdown-
Konzepte realisieren. Insbesondere könnten dann auch bei Zuweisung an Variablen
SQL INSERT-Ausdrücke zum Einsatz kommen. Durch die Struktur der DAO-Schicht
des Prototyps wurde jeweils für die Variablen der linken Seite vor der Zuweisung eine
entsprechende Zeile in der Tabelle erstellt. Somit kamen nur SQL UPDATE-Ausdrücke
zum Einsatz (siehe Kapitel 6.1.2.1, Seite 87).

Hybrider Ansatz Um den Hybriden Ansatz und die strikte Trennung von Prozess- und
Datenverwaltung vollständig umzusetzen, müssten ebenfalls die Initalwerte von Pro-
zessvariablen bereits im DBS vorliegen. In unserem Prototypen werden derzeit die
BPEL-Literale über die DAO-Schicht, während der Laufzeit einer Instanz, an das DBS
übergeben, was dieser strikten Trennung widerspricht. Es ist jedoch denkbar, während
der Deployment-Phase eines Prozesses diese Initialwerte in eine dafür vorgesehene Rela-
tion in das DBS zu übertragen und beim Aufruf der entsprechenden Zuweisung diesen
Initialwert innerhalb des DBSs zuzuweisen. Nach dieser Erweiterung des Prototyps
würde dieser dem Hybriden Ansatz weitestgehend entsprechen. Ungeklärt ist jedoch
wie die Inhalte der SOAP-Nachricht, welche für die Instanziierung eines Prozesses
in Apache ODE verantwortlich ist, bei strikter Trennung von Prozess- und Daten-
verwaltung ohne den Umweg durch die WF-Engine in die integrierte DB gelangen
sollen.

DBS als WfMS erster Klasse Falls ein System wie unter UDFs als Alternative zu DB Midd-
leware beschrieben umgesetzt werden konnte, insbesondere mit Umsetzung der
Pushdown-Konzepte, ist der beschriebene Ansatz von [AIL98] das DBS als WfMS
erster Klasse zu betrachten nicht mehr weit. Es könnte dann untersucht werden, ob
es möglich ist die Prozesslogik, z.B. für eine BPEL-Engine, vollständig in das DBS zu
übertragen, und ob es möglich ist im DBS einen BPEL-Compiler bzw. Interpreter zu
schreiben. Wir vermuten jedoch, dass es an dieser Stelle sinnvoller ist den von uns
eingeführten Hybriden Ansatz (siehe Abb. 8.2c) zu verwenden.

136

8.2. Weiterführende Arbeiten

Es existieren somit eine ganze Reihe weiterer Möglichkeiten die Integration von Daten,
Datenstrukturen und DBSen mit WfMSen auszubauen und so Verbesserungen in der Laufzeit
durch die Art der Datenverarbeitung und Datenübertragung zu erlangen. Insbesondere
sollte je nach Datenstruktur der zu verarbeitenden Daten ein passendes Verarbeitungsmodell
gewählt werden, um die optimale Leistung zu erhalten. So ist es auch denkbar andere
Datenbank- und datenbanknahe Technologien einzusetzen. Als Beispiel könnten verteilte
DBSe bei verteilten WfMSen zum Einsatz kommen oder Semantic Web Frameworks2 bei
Verwendung von Resource Description Framework-Graphen (RDF3) in entsprechenden
WfMSen.

2Jena - http://jena.sourceforge.net/index.html
3http://www.w3.org/RDF/

137

9. Zusammenfassung

In dieser Arbeit haben wir uns mit der stärkeren Integration von DBSen in WfMSe befasst.
Hierzu haben wir verwandte Arbeiten vorgestellt. Diese befassen sich hauptsächlich mit der
Anbindung externer Datenbanken an WfMSe (BPEL/SQL, SIMPL) oder mit der Verschmel-
zung beider Systeme (DBS als WfMS erster Klasse). Für BPEL/SQL-WFs besteht prinzipiell
die Möglichkeit der globalen Optimierung, wobei z.B. ein Ziel ist die tupelweise Verarbei-
tung innerhalb der WF-Runtime in eine Mengenoperation auf dem DBS zu überführen
(PGM-Optimierer). Im Gegensatz dazu betrachten wir die stärkere Integration eines DBSs,
das von WfMSen zur Speicherung der Prozess- und Instanzdaten verwendet wird. Hierbei
soll die WF-Ausführung für den Anwender transparent bleiben, also keine Änderungen
im WF nach sich ziehen. Dadurch sind wir auf lokale Optimierungen zur Laufzeit des
WFs beschränkt. Die grundsätzliche Idee ist traditionelle Aufgaben, wie Zuweisungen und
Webservice Aufrufe, von der Runtime-Ebene der WF-Engine auf das DBS zu übertragen. Wir
haben bestehende Konzepte, um dieses „Hinunterschieben“ (Pushdown) zu ermöglichen,
vorgestellt und neue Konzepte erarbeitet. Diese wurden prototypisch in der BPEL-Engine
Apache ODE implementiert. Hierzu haben wir die aktuelle Software-Architektur, insbe-
sondere die für die Implementierung wichtigen Teile, von Apache ODE vorgestellt und
sind auf Implementierungsdetails und Probleme für unsere Erweiterung eingegangen. Um
die Tauglichkeit der vorgestellten Pushdown-Konzepte zu überprüfen, wurde der Prototyp
durch eine Reihe von Test- und einem Anwendungsfall evaluiert. Aus den vorgestellten
Ergebnissen lassen sich Rückschlüsse und Voraussetzungen ableiten, die für eine verbesserte
Workflow-Ausführung durch die Pushdown-Konzepte nötig sind (siehe Kapitel 9.1). Aus den
Erfahrungen bei der Implementierung und der Architektur des Prototyps haben wir eine
Referenzarchitektur für solche Pushdown-WfMSe vorgestellt und diese als Hybriden-Ansatz
in Relation zu bestehenden WfMS-Architekturen gesetzt. Der Hybride-Ansatz trennt hierbei
strikt die Prozess- (WF-Runtime) und Datenverwaltung (DBS) im Gegensatz zur klassischen
WfMS-Architektur und stellt somit eine Mischform aus klassischer WfMS-Architektur und
der Alternative DBMSe als Erste-Klasse WfMSe dar. Des Weiteren haben wir zahlreiche
weitere Modifikationen und weiterführende Arbeiten vorgestellt, mit denen es möglich
sein sollte die Workflow-Ausführung zu verbessern oder die Pushdown-Konzepte auch in
anderen Systemen einzusetzen.

139

9. Zusammenfassung

9.1. Schlussfolgerung

Wir haben erfolgreich die vorgestellten Pushdown-Konzepte in einen Prototyp umsetzen
können. Hierbei fällt auf, dass für die vollständige Umsetzung die angebotene Funktiona-
lität von DBSen eine entscheidende Rolle spielt. Während wir für das DBS IBM DB2 alle
Konzepte umsetzen konnten, ging dies für PostgreSQL nur für einen sehr kleinen Teil. Die
Pushdown-Konzepte selbst können für sich allein betrachtet je nach Anwendung (Kom-
plexität der Aufgabe, Datenmenge) eine Optimierung oder Pessimierung nach sich ziehen.
Dies scheint allerdings auch von der effizienten Implementierung der XML-Technologie in
dem verwendeten DBS abhängig zu sein. Grundsätzlich konnten wir beim Zusammenspiel
der Pushdown-Konzepte im Anwendungsfall einen deutlichen Stabilitäts- und Performanz-
vorteil gegenüber der Original WF-Engine feststellen. Hierbei findet die Datenmanipula-
tion und Auswertung fast ausschließlich innerhalb des DBSs statt, während nur noch die
Prozess-steuernden Anteile von der WF-Eninge verwaltet werden (Hybrider Ansatz). Dieser
Anwendungsfall spiegelt insbesondere bestimmte Klassen von Simulationsworkflows wieder,
die im Rahmen des SimTech Projekts von großem Interesse sind. Kritisch betrachtet könnte
die Beschleunigung der Evaluierung von XPath-Ausdrücken innerhalb der DB2 auch durch
die Implementierung der XPath-Engine in C anstatt Java entstehen. Außerdem ist nicht aus-
geschlossen, dass sich die XPath-Engine in Apache ODE effizienter nutzen lässt. Wir wissen
jedoch, dass auch für die XML-Felder im DBS IBM DB2 Datenbanktechnologie eingesetzt
wird, die eine schnellere und stabilere Verarbeitung erlaubt. In jedem Fall sind durch das
Anwenden der Pushdown-Konzepte die Daten einer WF-Instanz zu jeder Zeit persistent.

9.2. Ausblick

Diese Arbeit legt den Grundstein für zahlreiche weitere Arbeiten. Zum Beispiel kann das
Konzept des WS- und ExpressionEvaluation-Pushdown als Operatoren in das NexusDS Sys-
tem implementiert werden. Für das SIMPL-Projekt könnten ebenfalls Pushdown-Funktionen
implementiert werden, die eine direkte Interaktion des SIMPL-Kerns mit der integrierten DB
des WfMSs erlauben, wodurch Daten ohne den Umweg über die WF-Engine ausgetauscht
werden können. Außerdem können die Pushdown Konzepte in andere WfMSe implementiert
werden. Der vorgestellte Prototyp kann um zahlreiche weitere Funktionen (siehe Kapitel
6.2.3, Seite 97) erweitert werden. Insbesondere die Anbindung und Evaluation an ein natives
XML DBS klingt vielversprechend. Die Anbindung weiterer (zukünftiger) relationaler DBSe
und weiterführende Auswertungen, für andere Workflow-Typen als in Kapitel 7 behandelt,
sind ebenfalls von wissenschaftlichem Interesse. Weitere Arbeiten könnten sich darüber
hinaus, unter der Verwendung der vorgestellten Konzepte und Erweiterungen, auch mit
einer Umsetzung ’DBS als erste Klasse WfMS’ für die Workflowsprache WS-BPEL befassen.

140

9.3. Danksagungen

9.3. Danksagungen

Ich möchte mich bei Prof. Dr. Bernhard Mitschang und Dr. habil. Holger Schwarz für
die Ermöglichung dieser Arbeit, die Bereitstellung von Arbeitsräumen und technischen
Ressourcen sowie der benötigten Lizenz für das DBS IBM DB2 bedanken. Weiterer Dank gilt
Dipl.-Inf. Michael Reiter für die fachlichen Korrekturen an Kapitel 3 und ein ganz besonderer
Dank geht an meinen Betreuer Dipl.-Inf. Peter Reimann für seine stets guten Ideen, die
den Verlauf der Arbeit geprägt haben und für seine professionellen und konstruktiven
Kommentare zur Verbesserung dieser Ausarbeitung. Des Weiteren möchte ich mich bei
allen Mitarbeitern der Abteilung Anwendersoftware am Institut für Parallele und Verteilte
Systeme sowie der Apache ODE Mailingliste bedanken.

Zum Schluss möchte ich meiner Familie und meinen Freunden danken, die immer für mich
da sind und moralische Unterstützung geleistet haben.

141

A. Abkürzungsverzeichnis

API Application Programming Interface

BIIF BioInformatics Interchange Format

DAO Data Access Objects

DB Datenbank

DBMS Datenbank Management System

DBS Datenbanksystem

DTD Document Type Definition

DWARF DataWarehouse Architecture for pRotein classiFication

ETL Extraction Transformation Load

GUI Graphical User Interface

OASIS Organization for the Advancement of Structured Information Standards

PGM Process Graph Model

RDF Resource Description Framework

SGML Standard Generalized Markup Language

SIMPL SimTech - Information Management, Processes, and Languages

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

UML Unified Modeling Lanuage

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

VPU Virtual Processing Unit

W3C World Wide Web Consortium

143

A. Abkürzungsverzeichnis

WF Workflow

WfMS Workflow Managment System

WPS WebSphere Process Server

WS Webservice

WS-BPEL WS-Business Process Execution Language

WSDL Web Service Description Language

WSFL Web Services Flow Language

WYSIWYG What You See Is What You Get (Oft im Zusammenhang mit graphischen Editoren
verwendet)

XML eXtensible Markup Language

XOML Extensible Object Markup Language

144

B. Entwicklungsumgebung

Wir werden einige Eckdaten zur verwendeten Software und eine Installationsanleitung
für den Prototypen, z.B. für weitere Auswertungen oder Implementierungsarbeiten ange-
ben. Das Entwicklungssystem wurde mit dem Betriebssystem Windows XP Professional
32-bit betrieben und lief auf einem Intel Core2Duo T7300@2GHz Prozessor. Das System
verfügte außerdem über 3GB Hauptspeicher und einer Grafikkarte mit eigenständigem
Grafikspeicher.

B.1. Verwendete Software

Die verwendete Software bezieht sich immer auf Windows XP 32-bit:

• Apache Buildr 1.3.5 - http://buildr.apache.org/

• Apache ODE 1.3.4 - http://ode.apache.org

• Apache Tomcat 6.0.29 - http://tomcat.apache.org/

• BPEL-Designer (Eclipse Galileo 3.5) - http://www.eclipse.org/bpel/

• Eclipse Helios Java EE 3.6 - http://www.eclipse.org/

• IBM DB2 V9.7 (kostenpflichtige Lizenz benötigt!) - http://www.ibm.com/software/
data/db2/

• Java JRE und JDK 1.6.0_23 - http://www.oracle.com/technetwork/java/javase/

downloads/index.html

• PostgreSQL 8.4 - http://www.postgresql.org/

• Ruby 1.8.7 + DevKit 3.4.5 - http://rubyonrails.org/download

• Silk Subversion 1.6.12 - http://www.sliksvn.com/en/download

• SoapUI 3.6.1 - http://www.soapui.org/

• SQuirreL SQL Client 3.1.2 - http://squirrel-sql.sourceforge.net

• Strawberry Perl 5.12.1 - http://strawberryperl.com/

145

http://buildr.apache.org/
http://ode.apache.org
http://tomcat.apache.org/
http://www.eclipse.org/bpel/
http://www.eclipse.org/
http://www.ibm.com/software/data/db2/
http://www.ibm.com/software/data/db2/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.postgresql.org/
http://rubyonrails.org/download
http://www.sliksvn.com/en/download
http://www.soapui.org/
http://squirrel-sql.sourceforge.net
http://strawberryperl.com/

B. Entwicklungsumgebung

B.2. Programmierumgebung

Es sollte jeweils das aktuelle Java Runtime Environment (JRE) und Java Development
Kit (JDK) auf dem System installiert sein und sichergestellt werden, dass die Umge-
bungsvariablen JAVA_HOME und JRE_HOME korrekt auf den jeweiligen Installationspfad
(bin-Verzeichnis) gesetzt sind.

Für die Programmierumgebung und das Compilieren des ODE Quellcodes muss Ruby
1.8.7 + DevKit 3.4.5 installiert werden und anschließend über den Kommandozeilen-Befehl
’gem install buildr -v 1.3.5 –platform mswin32’ das Buildsystem Apache Buildr installiert wer-
den. Der Quellcode von Apache ODE 1.3.4 wurde per SVN aus dem Apache SVN Server
ausgecheckt und konnte im Top-Level Quellcode Ordner mit dem Befehl ’buildr _1.3.5_
package test=no’ compiliert werden. Um die nötigen Projektinformationen für einen Import
nach Eclipse Helios zu generieren, kann der Befehl ’buildr _1.3.5_ eclipse’ verwendet werden.
Programmiert wurde innerhalb von Eclipse, compiliert über die Eingabeaufforderung mit
Hilfe von Apache Buildr. Anschließend wurden die erzeugten Java Archive (Jar)-Dateien in
den Class-Path ([tomcatdir]/webapps/ode/WEB-INF/lib) einer in Apache Tomcat eingebetteten
Apache ODE 1.3.4 Version kopiert. Für die Einbettung von Apache ODE in Tomcat sei auf
http://ode.apache.org/war-deployment.html verwiesen.

Der Quellcode des Prototyps liegt auf der DVD unter [DVD]/Implementierung/Prototyp/src/ode-
1.3.4-prototyp ab. Der Quellcode der für die Evaluation modifizierten Original Apache ODE
1.3.4 liegt auf der DVD unter [DVD]/Implementierung/ApacheODE/src/ode-1.3.4-orig ab.

B.3. Workflow Erstellung

Die BPEL-Workflows zum Testen der Implementierung, der Testfälle sowie des Anwendungs-
falls wurden mit dem auf Eclipse basierendem BPEL-Designer modelliert. Die verwendete
Version konnte nicht zum automatischen bekanntmachen der Workflows, aufgrund eines
Fehlers beim Kopieren des Projekts, verwendet werden. Der Prozessordner wurde daher
manuell in den processes Ordner ([tomcatdir]/webapps/ode/WEB-INF/processes) von Apache
ODE kopiert. Eine gute Installationsanleitung für den BPEL-Designer ist unter http://

www.se.uni-hannover.de/lehre/tutorials/BPEL-ODE-Eclipse-Getting-Started.php zu
finden. Da es zu Versionsinkompatibilitäten der BPEL-Designer-Plugins mit den Eclip-
se Versionen kommen kann, befindet sich die verwendete und ausführbare Version des
BPEL-Designers auf der DVD unter [DVD]/Implementierung/BPEL-Designer.

146

http://ode.apache.org/war-deployment.html
http://www.se.uni-hannover.de/lehre/tutorials/BPEL-ODE-Eclipse-Getting-Started.php
http://www.se.uni-hannover.de/lehre/tutorials/BPEL-ODE-Eclipse-Getting-Started.php

B.4. Installation des Prototyps

B.4. Installation des Prototyps

Zuerst sollte das zu verwendende Datenbanksystem eingerichtet werden (siehe
Abschnitt B.4.1). Außerdem muss Java JRE in der jeweils aktuellsten Version instal-
liert sein und die Umgebungsvariable JRE_HOME korrekt auf den Installationsordner
verweisen. Der ausführbare und in Apache Tomcat eingebettete Prototyp befindet sich auf
der DVD unter [DVD]/Implementierung/Prototyp/Ausführbar. Es reicht aus, den Ordner auf
das System zu kopieren. Jetzt müssen nur noch einige Einstellungen vorgenommen werden,
die im Abschnitt B.4.1 und B.4.2 beschrieben werden.

B.4.1. Datenbank Setup

Für jedes DBS sollte eine leere Datenbank angelegt werden. Am Besten erledigt man das
durch die jeweilige Steuerzentrale des DBSs. Je nach DBS müssen unterschiedliche Schemata
geladen werden, dies kann ebenfalls durch die SQL-Konsole in der Steuerzentrale oder
durch z.B. Squirrel-SQL erfolgen. Bei Verwendung von Squirrel-SQL müssen allerdings die
passenden JDBC Treiber in den lib-Ordner von Squirrel-SQL kopiert werden.

IBM DB2 ODE-Schema auf DVD unter
[DVD]/Implementierung/DBSetup/ode-134-hib-db2_prototyp.sql

PostgreSQL ODE-Schema auf DVD unter
[DVD]/Implementierung/DBSetup/ode-134-hib-pgsql_prototyp.sql

Zudem muss für die Verwendung mit PostgreSQL die Hibernate-DAO im Classpath
[tomcatdir]/webapps/ode/WEB-INF/lib des Prototypen ausgetauscht werden:

IBM DB2 Hibernate-DAO auf DVD unter
[DVD]/Implementierung/DBSetup/ode-lib/IBM DB2/ode-dao-hibernate-1.3.4.jar

PostgreSQL Hibernate-DAO auf DVD unter
[DVD]/Implementierung/DBSetup/ode-lib/PostgreSQL/ode-dao-hibernate-1.3.4.jar

Für die Verwendung von IBM DB2 mit dem Protoyp muss zusätzlich in den Classpath der
Apache Tomcat Installation [tomcatdir]/lib die Lizenzdatei db2jcc_license_cu.jar eingespielt
werden. Diese befindet sich innerhalb der DB2 Installation (z.B. C:\IBM\SQLLIB\java).
Die JDBC-URL inklusive Datenbankname, Datenbankbenutzer und Passwort muss in
der Konfigurationsdatei ode-axis2.properties abgeändert werden. Diese befindet sich unter
[tomcatdir]/webapps/ode/WEB-INF/conf, die jeweiligen JDBC-URLs sind bereits in der Konfigu-
rationsdatei des Prototypen enthalten.

Für die Verwendung des Webservice-Pushdown (nur für IBM DB2) muss die DB2 Datenbank
mit der Zeichenkodierung „utf8“ erstellt werden und die „Web-Services“ Funktionalität

147

B. Entwicklungsumgebung

aktiviert werden. Diese kann in der DB2 Steuerzentrale für die entsprechende DB über die
Eigenschaft „Web-Services“ aktiviert und deaktiviert werden. Außerdem muss die folgende
benutzerdefinierte UDF erstellt werden1:

CREATE FUNCTION db2xml.soaphttplg (

endpoint_url VARCHAR(256),

soapaction VARCHAR(256),

soap_body varchar(3072))

RETURNS clob(5M)

LANGUAGE C PARAMETER STYLE DB2SQL

SPECIFIC soaphttplg

EXTERNAL NAME 'db2soapudf!soaphttpvico'

SCRATCHPAD FINAL CALL FENCED

NOT DETERMINISTIC CALLED ON NULL INPUT

NO SQL EXTERNAL ACTION DBINFO;

B.4.2. Prototyp Einstellungen

In der Konfigurationsdatei des Prototypen können die einzelnen Pushdown-Konzepte ein-
und ausgeschaltet werden. Hierzu exisiteren fünf Parameter:

ode-axis2.db.mode.enhanced (Werte: true/false) Hauptschalter, bei false werden alle ande-
ren Pushdown-Einstellungen ignoriert.

ode-axis2.db.mode.enhanced.sync (Werte: true/false) Schaltet den synchronen XPath-
Pushdown für Pfadselektionen ein (ExpressionEvaluation-Pushdown).

ode-axis2.db.mode.enhanced.sync.expression (Werte: true/false) Schaltet den synchronen
XPath-Pushdown zusätzlich für komplexe XPath-Ausdrücke ein (ExpressionEvaluation-
Pushdown).

ode-axis2.db.mode.enhanced.async (Werte: true/false) Schaltet den asynchronen XPath-
Pushdown ein (Assignment-Pushdown), falls true findet die synchrone Auswertung
innerhalb von ASSIGN-Aktivitäten nicht mehr statt.

ode-axis2.db.mode.enhanced.ws (Werte: true/false) Schaltet den Webservice-Pushdown
ein oder aus.

1https://www.ibm.com/support/docview.wss?uid=swg1IZ46071

148

C. Anwendungsfall Proteinmodellierung -
Mustersuche

C.1. BIIF XML Beispiel

XML Beispieldokument (gekürzt) des Resultats des Webservice-Aufrufs des Anwendungs-
falls aus Kapitel 2.5 und der Evaluierung in Kapitel 7.

1 <biif>

2 <date>2010-06-01</date>

3 <creator>DWARF_ACCESS.pl#getHFamilyAlignment</creator>

4 <description>Homologous Family Alignment of Family 1106 from CYPED</description>

5 <aln>

6 <seq>

7 <header>AAH29014.1</header>

8 <lsid>urn:lsid:dwarf.uni-stuttgart.de:p450_v2_online_091215:4568</lsid>

9 <source>

10 <database id="4568" name="dwarf" version="p450_v2_online_091215"/>

11 <database href="http://www.ncbi.nlm.nih.gov/Genbank/index.html" id="AAH29014.1"

name="GenBank"/>

12 <database id="20809428" name="General Identifier"/>

13 </source>

14 <aa>MEVLGLLKFEVSGTIVTVTLLVA[...]EASPETQVPLQLESKSALGPKNGVYIKIVSR</aa>

15 <annotation countGaps="no">

16 <region name="p450 domain" start="1" stop="499"/>

17 <region name="alphaA" start="63" stop="69"/>

18 <region name="beta1_1" start="74" stop="80"/>

19 <region name="beta1_2" start="86" stop="92"/>

20 <region name="alphaB" start="92" stop="99"/>

21 <region name="beta1_5" start="105" stop="109"/>

22 <region name="alphaC" start="130" stop="144"/>

23 <region name="alphaD" start="151" stop="164"/>

24 <region name="alphaE" start="181" stop="194"/>

25 <region name="alphaF" start="207" stop="214"/>

26 <region name="alphaG" start="249" stop="260"/>

27 <region name="alphaH" start="278" stop="284"/>

28 <region name="alphaI" start="332" stop="361"/>

29 <region name="alphaJ" start="362" stop="368"/>

30 <region name="beta1_4" start="410" stop="414"/>

31 <region name="beta2_1" start="416" stop="420"/>

32 <region name="beta2_2" start="422" stop="426"/>

149

C. Anwendungsfall Proteinmodellierung - Mustersuche

33 <region name="beta1_3" start="429" stop="433"/>

34 <region name="alphaK_1" start="438" stop="442"/>

35 <region name="Meander loop" start="446" stop="454"/>

36 <region name="Cys Pocket" start="468" stop="481"/>

37 <region name="alphaL" start="482" stop="501"/>

38 <region name="beta3_3" start="502" stop="505"/>

39 <region name="beta4_1" start="512" stop="515"/>

40 <region name="beta4_2" start="520" stop="523"/>

41 <region name="beta3_2" start="526" stop="529"/>

42 <region name="beta3_1" start="174" stop="181"/>

43 <region name="alphaK" start="391" stop="404"/>

44 </annotation>

45 </seq>

46 [...]

47 <seq>

48 <header>AAB87704.1</header>

49 <lsid>urn:lsid:dwarf.uni-stuttgart.de:p450_v2_online_091215:4572</lsid>

50 <source>

51 <database id="4572" name="dwarf" version="p450_v2_online_091215"/>

52 <database href="http://www.ncbi.nlm.nih.gov/Genbank/index.html" id="AAB87704.1"

name="GenBank"/>

53 <database id="1698440" name="General Identifier"/>

54 </source>

55 <aa>MEVLGLLKFEVSGTIVTVTLLVA[...]EASPETQVPLQLESKSALGPKNGVYIKIVSR</aa>

56 <annotation countGaps="no">

57 <region name="p450 domain" start="1" stop="499"/>

58 <region name="alphaA" start="63" stop="69"/>

59 <region name="beta1_1" start="74" stop="80"/>

60 <region name="beta1_2" start="86" stop="92"/>

61 <region name="alphaB" start="92" stop="99"/>

62 <region name="beta1_5" start="105" stop="109"/>

63 <region name="alphaC" start="130" stop="144"/>

64 <region name="alphaD" start="151" stop="164"/>

65 <region name="alphaE" start="181" stop="194"/>

66 <region name="alphaF" start="207" stop="214"/>

67 <region name="alphaG" start="249" stop="260"/>

68 <region name="alphaH" start="278" stop="284"/>

69 <region name="alphaI" start="332" stop="361"/>

70 <region name="alphaJ" start="362" stop="368"/>

71 <region name="beta1_4" start="410" stop="414"/>

72 <region name="beta2_1" start="416" stop="420"/>

73 <region name="beta2_2" start="422" stop="426"/>

74 <region name="beta1_3" start="429" stop="433"/>

75 <region name="alphaK_1" start="438" stop="442"/>

76 <region name="Meander loop" start="446" stop="454"/>

77 <region name="Cys Pocket" start="468" stop="481"/>

78 <region name="alphaL" start="482" stop="501"/>

79 <region name="beta3_3" start="502" stop="505"/>

80 <region name="beta4_1" start="512" stop="515"/>

81 <region name="beta4_2" start="520" stop="523"/>

82 <region name="beta3_2" start="526" stop="529"/>

150

C.2. BPEL Prozess des Anwendungsfalls für die Mustersuche

83 <region name="beta3_1" start="174" stop="181"/>

84 <region name="alphaK" start="391" stop="404"/>

85 </annotation>

86 </seq>

87 <similarity>******************[...]******************************</similarity>

88 </aln>

89 </biif>

Listing C.1: BIIF XML Beispiel (gekürzt)

C.2. BPEL Prozess des Anwendungsfalls für die Mustersuche

Der BPEL Prozess für den Anwendungsfall aus Kapitel 2.5.

1 <!-- ODEDwarfUseCase BPEL Process [Generated by the Eclipse BPEL Designer] -->

2 <bpel:process name="ODEDwarfUseCase"

3 targetNamespace="http://www.dwarf.uni-stuttgart.de"

4 suppressJoinFailure="yes"

5 xmlns:tns="http://www.dwarf.uni-stuttgart.de"

6 xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable"

7 xmlns:ns="http://www.dwarf.uni-stuttgart.de/ACCESS"

xmlns:biif="http://www.dwarf.uni-stuttgart.de/BIIF/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

8

9 <!-- Import the client WSDL -->

10 <bpel:import namespace="http://www.dwarf.uni-stuttgart.de/ACCESS"

location="DWARF_ACCESS.wsdl"

importType="http://schemas.xmlsoap.org/wsdl/"></bpel:import>

11 <bpel:import namespace="http://www.dwarf.uni-stuttgart.de/BIIF/" location="biif.xsd"

importType="http://www.w3.org/2001/XMLSchema"></bpel:import>

12 <bpel:import location="ODEDwarfUseCaseArtifacts.wsdl"

namespace="http://www.dwarf.uni-stuttgart.de"

13 importType="http://schemas.xmlsoap.org/wsdl/" />

14

15 <!-- === -->

16 <!-- PARTNERLINKS -->

17 <!-- List of services participating in this BPEL process -->

18 <!-- === -->

19 <bpel:partnerLinks>

20 <!-- The 'client' role represents the requester of this service. -->

21 <bpel:partnerLink name="client"

22 partnerLinkType="tns:ODEDwarfUseCase"

23 myRole="ODEDwarfUseCaseProvider"

24 />

25 <bpel:partnerLink name="dwarfAccessLink" partnerLinkType="tns:dwarfAPL"

partnerRole="dwarfAPLType"></bpel:partnerLink>

26 </bpel:partnerLinks>

27

28 <!-- === -->

151

C. Anwendungsfall Proteinmodellierung - Mustersuche

29 <!-- VARIABLES -->

30 <!-- List of messages and XML documents used within this BPEL process -->

31 <!-- === -->

32 <bpel:variables>

33 <!-- Reference to the message passed as input during initiation -->

34 <bpel:variable name="input"

35 messageType="tns:ODEDwarfUseCaseRequestMessage"/>

36

37 <!--

38 Reference to the message that will be returned to the requester

39 -->

40 <bpel:variable name="output"

41 messageType="tns:ODEDwarfUseCaseResponseMessage"/>

42 <bpel:variable name="dwarfAccessLinkResponse"

messageType="ns:getSFamilyAlignmentResponse"></bpel:variable>

43 <bpel:variable name="dwarfAccessLinkRequest"

messageType="ns:getSFamilyAlignmentRequest"></bpel:variable>

44 <bpel:variable name="biif" type="biif:biifType"></bpel:variable>

45 <bpel:variable name="Counter" type="xsd:int"></bpel:variable>

46 <bpel:variable name="pattern" type="xsd:string"></bpel:variable>

47 <bpel:variable name="positive" type="xsd:int"></bpel:variable>

48 <bpel:variable name="negative" type="xsd:int"></bpel:variable>

49 <bpel:variable name="accessions" type="xsd:string"></bpel:variable>

50 <bpel:variable name="proteinsequence" type="xsd:string"></bpel:variable>

51 </bpel:variables>

52

53 <!-- === -->

54 <!-- ORCHESTRATION LOGIC -->

55 <!-- Set of activities coordinating the flow of messages across the -->

56 <!-- services integrated within this business process -->

57 <!-- === -->

58 <bpel:sequence name="main">

59

60 <!-- Receive input from requester.

61 Note: This maps to operation defined in ODEDwarfUseCase.wsdl

62 -->

63 <bpel:receive name="receiveInput" partnerLink="client"

64 portType="tns:ODEDwarfUseCase"

65 operation="process" variable="input"

66 createInstance="yes"/>

67

68 <!-- Generate reply to synchronous request -->

69 <bpel:assign validate="no" name="Prepare">

70 <bpel:copy>

71 <bpel:from part="payload" variable="input">

72 <bpel:query

queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">

<![CDATA[tns:superfamily]]></bpel:query>

73 </bpel:from>

74 <bpel:to part="superfamily_id" variable="dwarfAccessLinkRequest"></bpel:to>

75 </bpel:copy>

152

C.2. BPEL Prozess des Anwendungsfalls für die Mustersuche

76 <bpel:copy>

77 <bpel:from part="payload" variable="input">

78 <bpel:query

queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">

<![CDATA[tns:pattern]]> </bpel:query>

79 </bpel:from>

80 <bpel:to variable="pattern"></bpel:to>

81 </bpel:copy>

82 <bpel:copy>

83 <bpel:from>

84 <bpel:literal xml:space="preserve">0</bpel:literal>

85 </bpel:from>

86 <bpel:to variable="positive"></bpel:to>

87 </bpel:copy>

88 <bpel:copy>

89 <bpel:from>

90 <bpel:literal xml:space="preserve">0</bpel:literal>

91 </bpel:from>

92 <bpel:to variable="negative"></bpel:to>

93 </bpel:copy>

94 <bpel:copy>

95 <bpel:from><bpel:literal

xml:space="preserve">Accessions:</bpel:literal></bpel:from>

96 <bpel:to variable="accessions"></bpel:to>

97 </bpel:copy>

98 </bpel:assign>

99 <bpel:invoke name="getSuperFamilySequences" partnerLink="dwarfAccessLink"

operation="getSFamilyAlignment" portType="ns:DWARFAccessPortType"

inputVariable="dwarfAccessLinkRequest"

outputVariable="dwarfAccessLinkResponse"></bpel:invoke>

100 <bpel:assign validate="no" name="AssignWSResponse">

101 <bpel:copy>

102 <bpel:from part="biif" variable="dwarfAccessLinkResponse"></bpel:from>

103 <bpel:to variable="biif"></bpel:to>

104 </bpel:copy>

105 </bpel:assign>

106 <bpel:forEach parallel="no" counterName="Counter" name="ForEachProteinSequence">

107 <bpel:startCounterValue>

108 <![CDATA[1]]>

109 </bpel:startCounterValue>

110 <bpel:finalCounterValue><![CDATA[count($biif/aln/seq)]]></bpel:finalCounterValue>

111 <bpel:scope>

112 <bpel:sequence>

113 <bpel:assign validate="no" name="PrepareProteinSequence">

114 <bpel:copy>

115 <bpel:from

expressionLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath2.0">

116 <![CDATA[replace($biif/aln/seq[position()=$Counter]/aa,"-","","i")]]>

117 </bpel:from>

118 <bpel:to variable="proteinsequence"></bpel:to>

119 </bpel:copy>

153

C. Anwendungsfall Proteinmodellierung - Mustersuche

120 </bpel:assign>

121 <bpel:if name="IfPatternMatches"><bpel:condition

expressionLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath2.0">

<![CDATA[matches($proteinsequence, $pattern, "i")]]> </bpel:condition>

122 <bpel:assign validate="no" name="AddSequenceHeader">

123 <bpel:copy>

124 <bpel:from>

125 <![CDATA[$positive + 1]]>

126 </bpel:from>

127 <bpel:to variable="positive"></bpel:to>

128 </bpel:copy>

129 <bpel:copy>

130 <bpel:from>

131 <![CDATA[concat($accessions,

$biif/aln/seq[position()=$Counter]/header/text(), "; ")]]>

132 </bpel:from>

133 <bpel:to variable="accessions"></bpel:to>

134 </bpel:copy>

135 </bpel:assign>

136 <bpel:else>

137

138 <bpel:assign validate="no" name="CountNegative">

139 <bpel:copy>

140 <bpel:from>

141 <![CDATA[$negative + 1]]>

142 </bpel:from>

143 <bpel:to variable="negative"></bpel:to>

144 </bpel:copy>

145 </bpel:assign>

146 </bpel:else>

147

148 </bpel:if>

149 </bpel:sequence>

150 </bpel:scope>

151 </bpel:forEach>

152 <bpel:assign validate="no" name="PrepareOutput">

153 <bpel:copy>

154 <bpel:from>

155 <bpel:literal xml:space="preserve"> <tns:ODEDwarfUseCaseResponse

xmlns:tns="http://www.dwarf.uni-stuttgart.de"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

156 <tns:positive></tns:positive>

157 <tns:negative></tns:negative>

158 <tns:acc_codes></tns:acc_codes>

159 </tns:ODEDwarfUseCaseResponse>

160 </bpel:literal>

161 </bpel:from>

162 <bpel:to variable="output" part="payload"></bpel:to>

163 </bpel:copy>

164 <bpel:copy>

165 <bpel:from variable="accessions"></bpel:from>

154

C.3. WSDL Datei zum Aufruf des BPEL-Prozesses des Anwendungsfalls für die Mustersuche

166 <bpel:to part="payload" variable="output">

167 <bpel:query

queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">

<![CDATA[tns:acc_codes]]> </bpel:query>

168 </bpel:to>

169 </bpel:copy>

170 <bpel:copy>

171 <bpel:from variable="positive"></bpel:from>

172 <bpel:to part="payload" variable="output">

173 <bpel:query

queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">

<![CDATA[tns:positive]]> </bpel:query>

174 </bpel:to>

175 </bpel:copy>

176 <bpel:copy>

177 <bpel:from variable="negative"></bpel:from>

178 <bpel:to part="payload" variable="output">

179 <bpel:query

queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">

<![CDATA[tns:negative]]> </bpel:query>

180 </bpel:to>

181 </bpel:copy>

182 </bpel:assign>

183 <bpel:reply name="replyOutput"

184 partnerLink="client"

185 portType="tns:ODEDwarfUseCase"

186 operation="process"

187 variable="output"

188 />

189 </bpel:sequence>

190 </bpel:process>

Listing C.2: BPEL Prozess des Anwendungsfalls für die Mustersuche

C.3. WSDL Datei zum Aufruf des BPEL-Prozesses des
Anwendungsfalls für die Mustersuche

Die WSDL Datei zum Aufruf des BPEL-Prozesses innerhalb von Apache ODE für den
Anwendungsfall der Mustersuche.

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

2 <definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"

xmlns:tns="http://www.dwarf.uni-stuttgart.de"

xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop"

xmlns:wsdl="http://www.dwarf.uni-stuttgart.de/ACCESS" name="ODEDwarfUseCase"

targetNamespace="http://www.dwarf.uni-stuttgart.de"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

155

C. Anwendungsfall Proteinmodellierung - Mustersuche

3

4 <!-- ~~~

5 TYPE DEFINITION - List of types participating in this BPEL process

6 The BPEL Designer will generate default request and response types

7 but you can define or import any XML Schema type and use them as part

8 of the message types.

9 ~~~ -->

10 <plnk:partnerLinkType name="dwarfAPL">

11 <plnk:role name="dwarfAPLType" portType="wsdl:DWARFAccessPortType"/>

12 </plnk:partnerLinkType>

13 <import location="DWARF_ACCESS.wsdl"

namespace="http://www.dwarf.uni-stuttgart.de/ACCESS"/>

14 <types>

15 <schema xmlns="http://www.w3.org/2001/XMLSchema" attributeFormDefault="unqualified"

elementFormDefault="qualified"

targetNamespace="http://www.dwarf.uni-stuttgart.de">

16

17 <element name="ODEDwarfUseCaseRequest">

18 <complexType>

19 <sequence>

20 <element name="superfamily" type="integer"/>

21 <element name="pattern" type="string"/>

22 </sequence>

23 </complexType>

24 </element>

25

26 <element name="ODEDwarfUseCaseResponse">

27 <complexType>

28 <sequence>

29 <element name="positive" type="integer"/>

30 <element name="negative" type="integer"/>

31 <element name="acc_codes" type="string"/>

32 </sequence>

33 </complexType>

34 </element>

35 </schema>

36 </types>

37

38

39 <!-- ~~~

40 MESSAGE TYPE DEFINITION - Definition of the message types used as

41 part of the port type defintions

42 ~~~ -->

43 <message name="ODEDwarfUseCaseRequestMessage">

44 <part element="tns:ODEDwarfUseCaseRequest" name="payload"/>

45 </message>

46 <message name="ODEDwarfUseCaseResponseMessage">

47 <part element="tns:ODEDwarfUseCaseResponse" name="payload"/>

48 </message>

49

50 <!-- ~~~

156

C.3. WSDL Datei zum Aufruf des BPEL-Prozesses des Anwendungsfalls für die Mustersuche

51 PORT TYPE DEFINITION - A port type groups a set of operations into

52 a logical service unit.

53 ~~~ -->

54

55 <!-- portType implemented by the ODEDwarfUseCase BPEL process -->

56 <portType name="ODEDwarfUseCase">

57 <operation name="process">

58 <input message="tns:ODEDwarfUseCaseRequestMessage"/>

59 <output message="tns:ODEDwarfUseCaseResponseMessage"/>

60 </operation>

61 </portType>

62

63

64 <!-- ~~~

65 PARTNER LINK TYPE DEFINITION

66 ~~~ -->

67 <plnk:partnerLinkType name="ODEDwarfUseCase">

68 <plnk:role name="ODEDwarfUseCaseProvider" portType="tns:ODEDwarfUseCase"/>

69 </plnk:partnerLinkType>

70

71 <binding name="ODEDwarfUseCaseBinding" type="tns:ODEDwarfUseCase">

72 <soap:binding style="document"

73 transport="http://schemas.xmlsoap.org/soap/http" />

74 <operation name="process">

75 <soap:operation

76 soapAction="http://www.dwarf.uni-stuttgart.de/process" />

77 <input>

78 <soap:body use="literal" />

79 </input>

80 <output>

81 <soap:body use="literal" />

82 </output>

83 </operation>

84 </binding>

85 <service name="ODEDwarfUseCase">

86 <port name="ODEDwarfUseCasePort" binding="tns:ODEDwarfUseCaseBinding">

87 <soap:address location="http://localhost:8080/ode/processes/ODEDwarfUseCase" />

88 </port>

89 </service>

90 </definitions>

Listing C.3: Die WSDL Datei zum Aufruf des BPEL-Prozesses des Anwendungsfalls für die
Mustersuche.

157

Literaturverzeichnis

[AE09] A. K. André Eickler. Datenbanksysteme. Eine Einführung. Oldenbourg Wissen-
schaftsverlag GmbH, 2009. (Zitiert auf Seite 35)

[AIL98] A. Ailamaki, Y. E. Ioannidis, M. Livny. Scientific workflow management by
database management. In Proc. Tenth Int Scientific and Statistical Database Mana-
gement Conf, pp. 190–199. 1998. doi:10.1109/SSDM.1998.688123. (Zitiert auf den
Seiten 7, 9, 43, 44, 51, 52, 133 und 136)

[AL00] L. M. Andreas Laux. XUpdate Working Draft, 2000. URL http://xmldb-org.

sourceforge.net/xupdate/xupdate-wd.html. (Zitiert auf Seite 98)

[AMA06] A. Akram, D. Meredith, R. Allan. Evaluation of BPEL to Scientific Workflows. In
Proc. Sixth IEEE Int. Symp. Cluster Computing and the Grid CCGRID 06, volume 1,
pp. 269–274. 2006. doi:10.1109/CCGRID.2006.44. (Zitiert auf Seite 33)

[Apa] Apache. Apache ODE Architecture. URL http://ode.apache.org/

architectural-overview.html. (Zitiert auf Seite 66)

[AS96] G. Alonso, H.-J. Schek. Research Issues in Large Workflow Management Sys-
tems. In In Proceedings of NSF Workshop on Workflow and Process Automation in
Information Science, pp. 126–132. 1996. (Zitiert auf den Seiten 44, 51 und 53)

[BJA+
08] R. Barga, J. Jackson, N. Araujo, D. Guo, N. Gautam, Y. Simmhan. The Trident

Scientific Workflow Workbench. In Proc. IEEE Fourth Int. Conf. eScience eScience
’08, pp. 317–318. 2008. doi:10.1109/eScience.2008.126. (Zitiert auf Seite 55)

[BKML+
10] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, E. W. Sayers. GenBank.

Nucleic Acids Res, 38(Database issue):D46–D51, 2010. doi:10.1093/nar/gkp1024.
URL http://dx.doi.org/10.1093/nar/gkp1024. (Zitiert auf Seite 38)

[bpe] BPEL Project. Eclipse. URL http://www.eclipse.org/bpel. (Zitiert auf Seite 30)

[CEB+
09] N. Cipriani, M. Eissele, A. Brodt, M. Grossmann, B. Mitschang. NexusDS: a flexi-

ble and extensible middleware for distributed stream processing. In Proceedings
of the 2009 International Database Engineering & Applications Symposium, IDEAS
’09, pp. 152–161. ACM, New York, NY, USA, 2009. doi:http://doi.acm.org/10.
1145/1620432.1620448. URL http://doi.acm.org/10.1145/1620432.1620448.
(Zitiert auf Seite 135)

159

http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://ode.apache.org/architectural-overview.html
http://ode.apache.org/architectural-overview.html
http://dx.doi.org/10.1093/nar/gkp1024
http://www.eclipse.org/bpel
http://doi.acm.org/10.1145/1620432.1620448

Literaturverzeichnis

[Che07] W.-J. Chen. DB2 9 pureXML Guide. IBM, 2007. URL http://www.redbooks.ibm.

com/abstracts/sg247315.html. (Zitiert auf den Seiten 23, 24 und 37)

[Chr01] F. Christensen, E. ; Curbera. Web Services Description Language (WSDL) 1.1,
2001. URL http://www.w3.org/TR/wsdl. (Zitiert auf Seite 26)

[Dar05] P. Darugar. Abolish XML namespaces? Technical report, IBM, 2005. URL
http://www.ibm.com/developerworks/xml/library/x-abolns.html. (Zitiert
auf Seite 96)

[DBG+
03] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn,

A. Lazzarini, A. Arbree, R. Cavanaugh, S. Koranda. Mapping abstract complex
workflows onto grid environments. Journal of Grid Computing, (1):25–39, 2003.
(Zitiert auf Seite 13)

[FL00] D. R. Frank Leymann. Production Workflow: Concepts and Techniques. Prentice
Hall International, 2000. (Zitiert auf den Seiten 14, 27 und 32)

[FTGP06] M. Fischer, Q. K. Thai, M. Grieb, J. Pleiss. DWARF–a data warehouse system
for analyzing protein families. BMC Bioinformatics, 7:495, 2006. doi:10.1186/
1471-2105-7-495. URL http://dx.doi.org/10.1186/1471-2105-7-495. (Zitiert
auf Seite 38)

[GHCM09] T. Gunarathne, C. Herath, E. Chinthaka, S. Marru. Experience with adapting
a WS-BPEL runtime for eScience workflows. In Proceedings of the 5th Grid
Computing Environments Workshop, GCE ’09, pp. 7:1–7:10. ACM, New York,
NY, USA, 2009. doi:http://doi.acm.org/10.1145/1658260.1658270. URL http:

//doi.acm.org/10.1145/1658260.1658270. (Zitiert auf den Seiten 29 und 33)

[GPW+
07] T. Gunarathne, D. Premalal, T. Wijethilake, I. Kumara, A. Kumar. BPEL-Mora:

Lightweight Embeddable Extensible BPEL Engine. In M. Calisti, M. Wal-
liser, S. Brantschen, M. Herbstritt, C. Pautasso, C. Bussler, editors, Emer-
ging Web Services Technology, Whitestein Series in Software Agent Technolo-
gies and Autonomic Computing, pp. 3–20. Birkhaeuser Basel, 2007. URL
http://dx.doi.org/10.1007/978-3-7643-8448-7_2. (Zitiert auf Seite 45)

[GSK+
11] Görlach, Sonntag, Karastoyanova, Leymann, Reiter. Conventional Workflow

Technology for Scientific Simulation. To appear in: Yang, Y. (ed.); Wang, L. (ed.);
Jie, W. (ed.): Guide to e-Science. Springer, 2011. (Zitiert auf den Seiten 14, 33, 54

und 65)

[HDO10] B. Haasdonk, M. Dihlmann, M. Ohlberger. A Training Set and Multiple Bases
Generation Approach for Parametrized Model Reduction Based on Adaptive
Grids in Parameter Space. 2010. URL http://www.ians.uni-stuttgart.de/

agh/publications/2010/HDO10/. (Zitiert auf den Seiten 120 und 128)

160

http://www.redbooks.ibm.com/abstracts/sg247315.html
http://www.redbooks.ibm.com/abstracts/sg247315.html
http://www.w3.org/TR/wsdl
http://www.ibm.com/developerworks/xml/library/x-abolns.html
http://dx.doi.org/10.1186/1471-2105-7-495
http://doi.acm.org/10.1145/1658260.1658270
http://doi.acm.org/10.1145/1658260.1658270
http://dx.doi.org/10.1007/978-3-7643-8448-7_2
http://www.ians.uni-stuttgart.de/agh/publications/2010/HDO10/
http://www.ians.uni-stuttgart.de/agh/publications/2010/HDO10/

Literaturverzeichnis

[HHGR06] G. Hackmann, M. Haitjema, C. Gill, G.-C. Roman. Sliver: A BPEL Workflow
Process Execution Engine for Mobile Devices. In A. Dan, W. Lamersdorf,
editors, Service-Oriented Computing ICSOC 2006, volume 4294 of Lecture Notes
in Computer Science, pp. 503–508. Springer Berlin / Heidelberg, 2006. URL
http://dx.doi.org/10.1007/11948148_47. (Zitiert auf Seite 45)

[Hol95] D. Hollingsworth. The Workflow Reference Model. 1995. (Zitiert auf den
Seiten 7, 43 und 44)

[JMB07] J. L. T. Jeremy M. Berg, Lubert Stryer. Biochemistry. Spektrum Verlag, 2007.
(Zitiert auf Seite 39)

[JPA] OpenJPA 2.0. URL http://openjpa.apache.org/documentation.html. (Zitiert
auf Seite 67)

[KBA+] G. King, C. Bauer, M. R. Andersen, E. Bernard, S. Ebersole. Hibernate Re-
ference Documentation. URL http://docs.jboss.org/hibernate/core/3.5/

reference/en/html/. (Zitiert auf Seite 67)

[Mül10] C. M. Müller. Development of an Integrated Database Architecture for a Runti-
me Environment for Simulation Workflows. Diplomarbeit, Universität Stuttgart,
2010. URL http://elib.uni-stuttgart.de/opus/volltexte/2010/5232/pdf/

DIP_2984.pdf. (Zitiert auf den Seiten 54 und 81)

[NG87] D. W. Nebert, F. J. Gonzalez. P450 genes: structure, evolution, and regulation.
Annu Rev Biochem, 56:945–993, 1987. doi:10.1146/annurev.bi.56.070187.004501.
URL http://dx.doi.org/10.1146/annurev.bi.56.070187.004501. (Zitiert auf
Seite 40)

[OAF+
04] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,

K. Glover, M. R. Pocock, A. Wipat, P. Li. Taverna: a tool for the composition
and enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–3054,
2004. doi:10.1093/bioinformatics/bth361. URL http://dx.doi.org/10.1093/

bioinformatics/bth361. (Zitiert auf den Seiten 30 und 55)

[OAS07] OASIS. Web Services Business Process Execution Language Version 2.0,
OASIS Standard, 2007. URL http://docs.oasis-open.org/wsbpel/2.0/OS/

wsbpel-v2.0-OS.pdf. (Zitiert auf den Seiten 14, 30, 31 und 71)

[OLK+
07] T. Oinn, P. Li, D. B. Kell, C. Goble, A. Goderis, M. Greenwood, D. Hull, R. Ste-

vens, D. Turi, J. Zhao. Taverna myGrid: Aligning a Workflow System with the
Life Sciences Community. In I. J. Taylor, E. Deelman, D. B. Gannon, M. Shields,
editors, Workflows for e-Science, pp. 300–319. Springer London, 2007. URL
http://dx.doi.org/10.1007/978-1-84628-757-2_19. (Zitiert auf Seite 30)

161

http://dx.doi.org/10.1007/11948148_47
http://openjpa.apache.org/documentation.html
http://docs.jboss.org/hibernate/core/3.5/reference/en/html/
http://docs.jboss.org/hibernate/core/3.5/reference/en/html/
http://elib.uni-stuttgart.de/opus/volltexte/2010/5232/pdf/DIP_2984.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2010/5232/pdf/DIP_2984.pdf
http://dx.doi.org/10.1146/annurev.bi.56.070187.004501
http://dx.doi.org/10.1093/bioinformatics/bth361
http://dx.doi.org/10.1093/bioinformatics/bth361
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://dx.doi.org/10.1007/978-1-84628-757-2_19

Literaturverzeichnis

[PD99] N. W. Paton, O. Díaz. Active database systems. ACM Comput. Surv., 31:63–103,
1999. doi:http://doi.acm.org/10.1145/311531.311623. URL http://doi.acm.

org/10.1145/311531.311623. (Zitiert auf Seite 51)

[RRS+10] P. Reimann, M. Reiter, H. Schwarz, D. Karastoyanova, F. Leymann. SIMPL - A
Framework for Accessing External Data in Simulation Workflows. 2010. (Zitiert
auf den Seiten 7, 29, 34, 43, 47, 48 und 135)

[sgm86] ISO 8879:1986 Information Processing - Text and Office Systems - Standard
Generalized Markup Language (SGML), 1986. (Zitiert auf Seite 17)

[SKDN05] S. Shankar, A. Kini, D. J. DeWitt, J. Naughton. Integrating databases and
workflow systems. SIGMOD Rec., 34:5–11, 2005. doi:http://doi.acm.org/10.
1145/1084805.1084808. URL http://doi.acm.org/10.1145/1084805.1084808.
(Zitiert auf den Seiten 43 und 51)

[Slo07] A. Slominski. Adapting BPEL to Scientific Workflows. In I. J. Taylor, E. Deelman,
D. B. Gannon, M. Shields, editors, Workflows for e-Science, pp. 208–226. Sprin-
ger London, 2007. URL http://dx.doi.org/10.1007/978-1-84628-757-2_14.
(Zitiert auf den Seiten 14, 29 und 33)

[SWLP09] D. Sirim, F. Wagner, A. Lisitsa, J. Pleiss. The cytochrome P450 engineering data-
base: Integration of biochemical properties. BMC Biochem, 10:27, 2009. doi:10.
1186/1471-2091-10-27. URL http://dx.doi.org/10.1186/1471-2091-10-27.
(Zitiert auf Seite 38)

[Tay07] G. S. Taylor, Deelman. Workflows for e-Science. Springer, 2007. (Zitiert auf
Seite 33)

[TH01] E. R. Theo Härder. Datenbanksysteme - Konzepte und Techniken der Implementie-
rung. Springer, 2001. (Zitiert auf Seite 36)

[Tho04] H. S. Thompson. XML Schema, 2004. URL http://www.w3.org/XML/Schema.
(Zitiert auf den Seiten 17 und 20)

[VSRM08] M. Vrhovnik, H. Schwarz, S. Radeschiitz, B. Mitschang. An Overview of SQL
Support in Workflow Products. In Proc. IEEE 24th Int. Conf. Data Engineering
ICDE 2008, pp. 1287–1296. 2008. doi:10.1109/ICDE.2008.4497538. (Zitiert auf
den Seiten 34, 43 und 45)

[VSS+07] M. Vrhovnik, H. Schwarz, O. Suhre, B. Mitschang, V. Markl, A. Maier, T. Kraft.
An approach to optimize data processing in business processes. In In VLDB,
pp. 615–626. 2007. (Zitiert auf den Seiten 7, 34, 47, 49, 51 und 59)

[w3ca] Document Object Model (DOM). URL http://www.w3.org/DOM/. (Zitiert auf
Seite 17)

[W3Cb] W3C. Document Type Definition. (Zitiert auf Seite 17)

162

http://doi.acm.org/10.1145/311531.311623
http://doi.acm.org/10.1145/311531.311623
http://doi.acm.org/10.1145/1084805.1084808
http://dx.doi.org/10.1007/978-1-84628-757-2_14
http://dx.doi.org/10.1186/1471-2091-10-27
http://www.w3.org/XML/Schema
http://www.w3.org/DOM/

Literaturverzeichnis

[W3C99] W3C. XML Path Language (XPath) Version 1.0, 1999. URL http://www.w3.org/

TR/xpath/. (Zitiert auf den Seiten 21 und 23)

[W3C07a] W3C. SOAP Version 1.2, 2007. URL http://www.w3.org/TR/soap/. (Zitiert auf
Seite 26)

[W3C07b] W3C. XQuery 1.0: An XML Query Language, 2007. URL http://www.w3.org/

TR/xquery/. (Zitiert auf Seite 23)

[W3C08] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition), 2008. URL
http://www.w3.org/TR/2008/REC-xml-20081126/. (Zitiert auf Seite 17)

[W3C09] W3C. XQuery Update Facility 1.0, 2009. URL http://www.w3.org/TR/

xquery-update-10/. (Zitiert auf den Seiten 24, 98 und 133)

[Wag10] F. Wagner. Webservice und Workflow-Technologie für Proteinmodellierung,
2010. URL http://elib.uni-stuttgart.de/opus/volltexte/2010/5567/pdf/

STUD_2258.pdf. (Zitiert auf den Seiten 7, 11, 30, 38, 39, 40, 46 und 102)

[WCL+
05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson. Web Services

Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More. Prentice Hall PTR, 2005. (Zitiert auf den Seiten 14

und 25)

Alle URLs wurden zuletzt am 19. Februar 2011 geprüft.

163

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/
http://elib.uni-stuttgart.de/opus/volltexte/2010/5567/pdf/STUD_2258.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2010/5567/pdf/STUD_2258.pdf

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Florian Bernd Dominic Wagner)

	1 Einleitung
	1.1 Motivation und Aufgaben dieser Arbeit
	1.2 Konventionen und rechtliche Hinweise
	1.3 Aufbau dieses Dokuments

	2 Grundlagen
	2.1 eXtensible Markup Language
	2.1.1 XML-Schema
	2.1.2 XPath
	2.1.3 XQuery
	2.1.4 pureXML

	2.2 Service Oriented Architecture
	2.2.1 Webservices

	2.3 Workflowtechnologie
	2.3.1 Workflow Management Systeme
	2.3.2 Workflow Sprachen
	2.3.2.1 Simple Conceptual Unified Flow Language
	2.3.2.2 WS-Business Process Execution Language

	2.3.3 Workflow Arten
	2.3.3.1 Business-WFs
	2.3.3.2 Wissenschaftliche-WFs
	2.3.3.3 Extraction Transformation Load-WFs
	2.3.3.4 Zusammenfassung

	2.4 Datenbanktechnologie
	2.4.1 Datenbanksysteme
	2.4.1.1 IBM DB2
	2.4.1.2 PostgreSQL

	2.5 Webservice und Workflow-Technologie für Proteinmodellierung
	2.5.1 Bioinformatik
	2.5.1.1 Anwendungsfall Mustersuche

	3 Workflow Architekturen und Datenbank Integration
	3.1 Workflow Reference Model
	3.2 Arbeiten und Ansätze zur Datenbankintegration
	3.2.1 BPEL/SQL Funktionalität
	3.2.2 Process Graph Model Optimierung
	3.2.3 Datenbank als Workflowsystem erster Klasse
	3.2.4 Zusammenfassung und Abgrenzung zu dieser Arbeit

	3.3 Workflowsysteme und Engines
	3.3.1 Apache Orchestration Director Engine
	3.3.2 Taverna
	3.3.3 Trident Scientific Workflow Workbench
	3.3.4 WebSphere Process Server

	4 Nutzung von Funktionen einer integrierten Workflowdatenbank
	4.1 Grundlegendes Konzept
	4.2 Pushdown Konzepte
	4.2.1 WebService-Pushdown
	4.2.2 Assignment-Pushdown
	4.2.3 ExpressionEvaluation-Pushdown
	4.2.3.1 Condition-Pushdown

	4.3 Query-Pushdown
	4.3.1 XPath-Pushdown
	4.3.2 Pushdown-Hierarchie und Architekturmodell

	5 Apache ODE Architektur im Detail
	5.1 Gesamtarchitektur
	5.2 Detaillierte Architektur der Runtime und der Data Access Objects
	5.2.1 ODE Runtime
	5.2.2 OModel und BPEL Typsystem
	5.2.3 ODE Hibernate DAO und Tabellenschema
	5.2.4 BpelRuntimeContext und Aktivitäten
	5.2.5 Ausführungsszenario

	5.3 Möglichkeiten für eine stärkere Nutzung der integrierten Datenbank

	6 Implementierung des Prototyps
	6.1 Veränderungen an der Architektur von Apache ODE
	6.1.1 Änderungen am Datenmodell der integrierten Datenbank
	6.1.2 Änderungen in der DAO-Schicht
	6.1.2.1 Hauptmethoden von ScopeDAO

	6.1.3 Änderungen in der Runtime-Schicht

	6.2 Funktionalität des Prototyps
	6.2.1 Realisierte Pushdown-Konzepte
	6.2.2 Technische Schwierigkeiten
	6.2.2.1 Implementierung für PostgreSQL

	6.2.3 Weiterführende Modifikationen

	7 Evaluierung des Prototyps
	7.1 Vorstellung der Testfälle
	7.2 Testumgebung und Durchführung
	7.3 Vorstellung der Messergebnisse
	7.3.1 Vorbemerkung zur Vergleichbarkeit der Messungen
	7.3.2 Zuweisungen
	7.3.2.1 IBM DB2
	7.3.2.2 PostgreSQL

	7.3.3 Bedingungen (ExpressionEvaluation-Pushdown)
	7.3.4 INVOKE (Webservice-Pushdown)
	7.3.5 Anwendungsfall (Simulationsworkflow)
	7.3.5.1 IBM DB2
	7.3.5.2 PostgreSQL

	7.4 Diskussion der Messergebnisse
	7.4.1 Technische Limitierungen

	8 Konzeptionelle Erweiterungen
	8.1 Referenzarchitektur
	8.1.1 Referenzarchitektur für ein Pushdown WfMS
	8.1.2 Architekturmodell Hybrides WfMS

	8.2 Weiterführende Arbeiten

	9 Zusammenfassung
	9.1 Schlussfolgerung
	9.2 Ausblick
	9.3 Danksagungen

	A Abkürzungsverzeichnis
	B Entwicklungsumgebung
	B.1 Verwendete Software
	B.2 Programmierumgebung
	B.3 Workflow Erstellung
	B.4 Installation des Prototyps
	B.4.1 Datenbank Setup
	B.4.2 Prototyp Einstellungen

	C Anwendungsfall Proteinmodellierung - Mustersuche
	C.1 BIIF XML Beispiel
	C.2 BPEL Prozess des Anwendungsfalls für die Mustersuche
	C.3 WSDL Datei zum Aufruf des BPEL-Prozesses des Anwendungsfalls für die Mustersuche

	Literaturverzeichnis

