Institute of Parallel and Distributed Systems
University of Stuttgart
Universitatsstra3e 38

D-70569 Stuttgart

Diplomarbeit Nr. 3084

Development of an Automatic
Numerical Stability Analyser Based
on a Hardware Implementation of
Discrete Stochastic Arithmetic

Sylvain Burlet

Course of Study: Elektrotechnik und Informationstechnik
Examiner: Prof. Dr.-Ing. Sven Simon

Supervisor: M.Sc. Wenbin Li

Commenced: September 1, 2010

Completed: March 3, 2011

CR-Classification: C.3,D.25, G.1.0

Abstract

Computers usually represent numbers with finite precision arithmetic. Most real numbers
can not be exactly represented. Results of assignment and computations have then to be
approximated, and rounding errors are induced. Several approaches have been developed to
study the rounding errors. Among these methods, the numerical accuracy analysis based on
the discrete stochastic arithmetic is able to provide a tight and accurate estimation of the
rounding errors. It have been proven to be effective and reliable in many publications. A
hardware platform has been developed in a previous project to use the principles of discrete
stochastic arithmetic. On this hardware platform, multiple processing blocks can execute the
same program in parallel with random rounding. Adapted floating point units provide the
necessary values to compute an estimation of the accuracy.

Based on the dedicated hardware platform, a numerical stability analyser is investigated
in this work. The proposed numerical stability analyser is able to gather information
from the dedicated hardware platform and provide the numerical accuracy information to
the user. The interface to the user is kept the same as a state-of-the-art debugger, while
providing additional commands that allows the accuracy estimation of intermediate results.
The mechanisms involved in the numerical stability analyser is exposed and its usage is
explained.

Contents

1 Introduction

1.1

Motivation

1.2 Overview

2.1

2.2

3.1

3.2

3-3

4.1

4.2

Numerical Accuracy analysis

Rounding Errors in the Computed Results

2.1.1
2.1.2

Finite representation of
Rounding errors . . .

numbers

2.1.3 Propagation of rounding errors. L oL
Numerical Accuracy analysis

2.2.1
2.2.2
2.2.3

Overview of numerical

accuracy analysis methods

Discrete Stochastic Arithmetic

Stability analysis . . .

Structure of the Analyser

Introduction to the dedicated Hardware for numerical accuracy analysis
Discrete Stochastic Floating Point Unit

3.1.1
3.1.2

Random Rounding . .

3.1.3 Parallel Processing Blocks
Utilisation of the dedicated hardware
Running One program on several Processing Blocks

3.2.1
3.2.2

One execution Flow .

3.2.3 A state-of-the-art debugger L.
Numerical accuracy analysis
Several Calculated Results

3.3.1
3.3.2

Retrieving the accuracy

GDB as initial debugger . . .

4.1.1
4.1.2

A numerical accuracy analyser based on GDB

Integration with hardware Part

Developing possibility

software debugging using Remote connections

4.2.1

Client/Server Structure

10

11
11
11
12
14
16
16
17
20

23

23
24
26
27
27
28
29
29
29
31

33

33
33
34
35
35

43

4.2.2 Connecting the hardware platform

423 System Overview L
Modified functionalities Lo
43.1 SetaBreakpoint 0 oo Lo
432 Runtheprogram
4.3.3 Computetheaccuracy,

5 Use of the analyser

5.1

5.2

Functionalities
5.1.1 Connecting Processors 0 oL
512 Useofthedebugger
5.1.3 ACCUracy MeasUreo vt
Possible extensions L
5.2.1 Graphicinterface o oL o
5.2.2 MoOre processors
5.2.3 Detecting instability 0.,

6 Conclusion

Bibliography

45

45
45
49
51
56
56
57
60

63

65

List of Figures

2.1
2.2

3.1

3.2
33

4.1
4.2
43

5.1

5.2

IEEE 754, Floating point representation for single precision
IEEE 754, Floating point representation for double precision

The processor communicates with an external Floating Point Unit usinf a
Fabric co-processor Bus o L o
Discrete Stochastic Floating Point Unit and its processor
Architecture of a system including several processing blocks used for accuracy
estimation based on discrete stochastic arithmetic

Architecture involved to debug a program on a FPGA board
System used to develop the accuracy analyser
Complete overview of thesystem

Insight, a graphical interface for GDB, allows to directly use GDB and thus
use some modified commands. o L Lo oL
Insight directly uses the response from GDB at given commands.

1 Introduction

1.1 Motivation

Applications on computers often involves real numbers that are represented according to the
IEEE-754 floating point description (see 2.1.1). This representation uses a finite number of
binary digits and thus can only represent a finite number of values. The real numbers are
approximated and rounded to fit this representation. This causes rounding errors not only in
the assignment, but also in each arithmetic operation. These rounding errors propagate and
degrade thus the accuracy of the results. The effect of rounding error have to be estimated.

Along the years, several methods have been developed to study the influence of the round-
off errors on the results. In theory, this methods could be used to overestimate the error.
However, these methods are algorithm-specific and imply a lot of computations. The discrete
stochastic arithmetic aims to estimate the loss of accuracy in a computation. The result of any
operation is randomly rounded up or down. With several results obtained while running the
same program with the same data, it is then possible to estimate the accuracy of a computed
result.

The influence of the rounding errors depends on the data but also on the algorithm used
and even on the order of the operations. It becomes interesting to be able to stop the
execution of a program at a certain steps to check the accuracy loss on several variables.
Tools enabling such verifications present then an interest. The discrete stochastic arithmetic
provides accuracy information for any variable at any step of a program.

In order to be able to estimate the accuracy of a result by using the discrete stochastic
arithmetic, some verifications have to be done with the different intermediate results at each
step of the computations. On the hardware platform developed for this purpose, multiple
processing blocks can execute the same program in parallel with random rounding. Two
adapted floating point units provide the necessary values to compute an estimation of the
accuracy at any step. Then a special tool has to be developed to use this hardware and
provide the user with the informations he needs.

A normal debugger enables the user to stop the execution of a program at given points of
the execution and then have a look at the value of the intermediates results. An existent
debugger is modified to be able to run a program on the hardware implementation of the

1 Introduction

discrete stochastic arithmetic and then provide additionally to the previous information the
accuracy of the displayed result.

1.2 Overview

In this work, it will first be explained how real numbers are represented on by computers
using the floating point representation. The round-off error for each floating point operation
will be analysed. The effect of these errors to the final results will be explained. Different
methods developed over the years to overestimate the error of the result will be reviewed.
Only a probabilistic approach allows to answer the question : what is the rounding error
of the computed result? Discrete stochastic arithmetic provides a method to estimate the
accuracy of a computed result by using several runs of the program with random rounding.

In order to apply the principles of discrete stochastic arithmetic, an hardware platform has
been developed consisting of two processing blocks. Each processing block is composed of a
PowerPC processor and a special Floating Point Unit. It will be explained how this platform
is used to compute twice the results of a program with random rounding. The multiple
results are used to compute an estimation of the accuracy of the result.

The tool used to analyse the program on the special structure acts as a debugger. It has
been modified to use a single program on two processing blocks at the same time. The
corresponding modifications of the normal functionalities of the debugger will be reviewed.
It will also be explained how the accuracy of the result can then be computed.

The use of the automatic numerical stability analyser based on the hardware implementation
of discrete stochastic arithmetic will be explained. The results it achieved and the problems
that have been encountered will be reviewed. Finally, some possible extensions of the tool
will also be described.

10

2 Numerical Accuracy analysis

2.1 Rounding Errors in the Computed Results

2.1.1 Finite representation of numbers

Computers use binary coded numbers for every computations. As only a finite number of
binary digits is used, not every real number can be exactly represented.

Normalised representation of a real in base b

In mathematics, every real number except zero can be uniquely written with a sign ¢, a
mantissa m and an exponent e. This representation is used in [3] (R* is the set of all real
numbers except zero):

Vx € R, x =eb’m
withe € {—1,1}, e € Z, m € [1,b]
+o0 ,
m = Z ai.b’z = dy,a1a243...4;...
i=1
with a; € {0,1,2,...,b—1}and ag # 0
To represent real numbers, computers use a representation derived from this writing.
IEEE-754 Floating Point Standard.
Representing a real number on computer means coding the triplet {e,e,m}. Since 1985,

the IEEE-754 standard has been defined and used by most of the computer constructors.
Computers use the base 2, meaning that e and m are calculated in the following way [3] :

p . +00)
e = Ebi.zl and m = Z ai.Z_Z_l with (al-, bl) S {0,1}
i=0 i=0

The sign ¢ is coded with s, one single bit that is 0 when the number is positive, and 1
otherwise. The exponent is coded with 8 bits for single precision, and with 11 bits for double

11

2 Numerical Accuracy analysis

precision. In order to avoid negative exponent, the representation is biased with 27 — 1 for
single precision, 2!° — 1 for double precision. That lets 23 bits for the mantissa for single
precision, 52 for double precision. In normalized writing, a¢ is not represented as it always
is 1.

1 2 .. 9 10 32

‘S‘ gk 251 ‘ - Ay |

Figure 2.1: IEEE 754, Floating point representation for single precision

1 2 .. 12 13 64

‘ s ‘ g+gh-1 ‘ - Ay |

Figure 2.2: IEEE 754, Floating point representation for double precision

Only a finite ensemble of numbers can be represented so is limited. This ensemble is
narrow-minded and discrete, which leads to some limitations. This ensemble is written as
(F) in the following

Limitations of the representation

As the number of available bits to represent a number is limited, only numbers with defined
properties can be exactly represented : the exponent have to be between -127 and +128
(between -1023 and +1024 for double precision), the mantissa in base 2 should contain only
zeros after the 23th bit (after the 52th for double precision). Not every real number has such
properties, which explains why they have to be approximated and rounded to be represented
in this ensemble.

2.1.2 Rounding errors

Due to the finite representations of real numbers by computers, numbers often have to be
represented by an approximation as explained in the previous section. Different rounding
modes can be used.

Different rounding modes

When the real values can not be represented precisely using Floating Point numbers, round-

ing is used. The IEEE 754 standard defines four rounding modes. The exact representation

of the real number x is e.b%m with m = Y75 2,27~ 1. x’ is the approximation of x, written

with ¥’ = s.bm’ and m' = 2;;203 al.271. s is the representation of ¢ [3] [6].

12

2.1 Rounding Errors in the Computed Results

Rounding towards zero :
a;=a;0<i<23

@, =0i>23

Rounding towards nearest :
/
a23 — ﬂ23 "‘ ﬂ24

with carry propagation (the exponent may be increased by one)

Rounding towards +infinity :
a3 = a3 +5s

with carry propagation (s is the logic negation of s)

Rounding towards -infinity :
Ay = a3 + S
with carry propagation

This rounding is used for each value assignment, and after each elementary operation.

Rounding errors in computation

The operands and the calculated results of each operation might be rounded to be represented
in floating point format. This leads to cascading rounding errors that influence the result.
This result X might differ from the exact result x. The resulting error can be defined in two
ways [6] :

e the absolute error :

X =x+e, withe, € R

e the relative error :

X =x(1+e,) withe, €R

The second representation can be used to calculate the number of significant digit, which is
defined as follow [3] :

X |
2.(X —x)| 08w

This definition corresponds to the intuitive idea of the number of exact decimal digits

x.(2+e)

Cxx = logio 7o
-y

between two numbers.

13

2 Numerical Accuracy analysis

Floating point numbers and relative error

x € R* can be represented as following :
x=emb’withl <=m <b

Representing x with a floating point number means choosing a mantissa M with p digits
such that :

X = e.M.b° .Then we have : X = x.(1+ b F.x)

b~ P is the relative error. « is called the normalized relative error. While rounding numbers,
the error might differ with the used modus :

e towards to nearest : « € [—0.5,0.5]
e towards zero: a € [0,1]
e towards plus infinity : & € [—1,+1]

e towards minus infinity : « € [—1,+1]

2.1.3 Propagation of rounding errors

As rounding errors might occur at every step of computer calculations, the final result is
effected by rounding error propagation due to approximations.

Overflow and Underflow

As previously exposed, a number is represented with a mantissa, an exponent and a sign
(see 2.1.1). For single precision, the exponent is represented with 8 bits. It means that
numbers with an exponent greater than 128 can not be represented. Such cases are called
"overflow". Similarly, exponents under -1277 cause "Underflow". For double precision, these
phenomenons occur with exponents greater than 1024 or smaller than -1023. In order
to denote such problems, the maximal value of the exponent is used to represent these
exceptions. Thus, for single precision, the exponent 128 (binary : 11111111 considering the
bias) in correlation with a mantissa consisting only of zeros represents plus or minus infinity
(the sign still have to be considered). When this exponent is used with a non-zero mantissa,
it is used to signal the exception "NaN" (Not a Number). Such exception will naturally
propagate into calculations because there is no way to go back to the exact mathematical
value. This leads to indubitably marked loss of accuracy in the result.

14

2.1 Rounding Errors in the Computed Results

Cancellation

Due to the chosen representation of numbers, a great loss of accuracy might happen with
single operations. The cancellation is one of those situations. It happens while adding x to y
with x =~ —y.

X+Y=x(1+e)+y(1+el) = <x+y)(1+xiyei‘+xiye¥>

As the term x + y is close to zero, the relative error of the result increased significantly in
this operation.

As an example, take x = 3.1416, y = —3.141592654. The exact result should be x +y =
7.346 % 10~%. Now y as been represented in single precision with a relative error of 9 x 107> :
Y = —3.1415. x is exactly represented : X = 3.1416. The calculation returns: X +Y = 1.107%.
The relative error is now approximately 13. In many applications, such a large relative error
makes the computed result meaningless, although the approximation of the operands has
not been so bad .

Conditional Branches

We have seen that the accuracy of some computed results is highly dependent on the input
data. It should now be considered in correlation with conditional branches in a program.
The following code illustrate the problem :

IF A==B THEN

ELSE

END IF

Comparing A and B is similar to calculating A — B and using the sign of the result. As we
have previously seen, this calculation might result in an inaccurate result. This might then

change the behaviour of the program, and the result might be really different from what is
expected using exact mathematics.

15

2 Numerical Accuracy analysis

2.2 Numerical Accuracy analysis

2.2.1 Overview of numerical accuracy analysis methods

The influence of the chosen representation of numbers on computer computations have been
known for while and several methods have been developed to estimate the accuracy of the
computed result. These methods are reviewed in [3].

Regressive Analysis

Regressive analysis considers the computer result as the result of the same algorithm, but
with disturbed data. This approach works with arithmetic of real numbers. It is working
particularly well with linear algebra algorithms. The inconvenient is that it completely
depends upon the used algorithm that as to be studied to used partial derivative of the result
with the data and partial results. It returns an uprate of the global error of the result. This
approach have been started by J.H. Wilkinson ([12] resumed in [3]).

Direct Analysis

This kind of analysis consists of uprating the rounding error at each step of the algorithm.
As it carefully follows the algorithms, this approach can provide fine uprate of the error. It
sometime provides good results and is often easy to implement. F. Stummel showed that the
accuracy of the result of the Gaussian elimination depends on the precision of the pivot ([11]
used in [3]). It can also help to see where the accuracy loss can happen. The disadvantage of
this method is that it does not provide an estimation of the accuracy of the result, but only
an uprate of the error.

Interval Arithmetic

This approach consists of calculating the interval in which the result of each operation is
contained at each step of the program. The principal interest of this method is that it is based
on a solid mathematical algebra. It makes sure that the the exact mathematical result can be
fund in the computed interval. The inconvenient of this method is that it usally overestimates
the error. Indeed, it does not take into account that rounding error may compensate, and
that it is affected by the dispersion effect. The dispersion effect is the following effect :

VX eF, X—X=0and X/X=1

16

2.2 Numerical Accuracy analysis

But in interval arithmetic :
X =[1,2] implies X — X = [-1,1], X/X = [0.5,2]

This phenomenon explains why this method can not be used easily.

Probabilistic approach

The idea of the probabilistic approach is to execute the same program several times while
propagating the rounding errors differently. Thus several different results are obtained. The
common part of these results give an estimation of the accuracy, the rest is the non significant
part. It is based on random arithmetic to generate different propagation of rounding errors.
It has been showed that some properties of exact arithmetic lost in computer arithmetic are
restored [5].The idea is that every exact result of an arithmetic operation can be surrounded
with two successive floating point numbers R* and R™. The random arithmetic consists of
randomly choosing one or the other. Thus, executing several times a same program results
in as much computed results. The aim is not to get a better result, but to be able to give an
estimation of the number of exact digits using these results.

2.2.2 Discrete Stochastic Arithmetic

One of the methods to estimate the accuracy of a computed result consists in using random
errors to provide this information. This is based on properties of the stochastic arithmetic.

Random rounding

If we represent two real numbers x; and x; as floating point numbers with X; and X,. We
have then X; = x; — 2E17P.¢1.aq andXp = xp — 25277 5.4, where p is the number of bits of
the mantissa, E the exponent and ¢ the sign. 277.a is the absolute error when coding the
mantissa (¢ € [0,1]). Than with x3 the result of operation and X3 the result of the computer
addition, we have :

e addition :

X3 =X1+Xp = (x1 + XQ) — 2E17p.€1.061 — 2E27P.€2.a2 — 2E37p.€3.a3

e subtraction :

Xz =X1—Xp = (x1 — XQ) — ZEl_p.El.tXl + ZEZ_p.EIz.Oéz — 2E3_p.€3.063

17

2 Numerical Accuracy analysis

e multiplication :

Xz =X1xXp = (X1 * Xz) — xz.ZE“”.el.al — X1.2E27P.€2.a2 — 2E37p.£3.063 — 0(272'}7)

e division :

X3 =X1/Xo = (x1/x2) — 2B1P ey 0 — 2B P en . /g — 253 eg.5 — (9(2’2*’)

While doing it with the several basic operations, it can be showed that the computer result R
of a classical elementary operation can be written :

51
R=r+)Y_gi(d)25 Pase;+O27*F)
i=1

where : E;, u;,¢; are the exponent, rounding and sign of intermediate values. g;(d) are
quantities independent of the arithmetic and of the accuracy. P is the position of the last
binary digit. r is is the exact mathematical result. s; is the number of operands of the
operation. With random rounding, only the last bit can be changed for one operation. Each
single operation results of the addition of the following term : +2E~7.e.h Thus the result of
several operations becomes :
n
R=r+Y ui(d)277.(a; — hi) + O(27%F)

i=1
where : u;(d) are quantities depending on data and the algorithm. «;, h; are the rounding
and the perturbation of intermediate results. n is the number of elementary operations.
u;(d) is independent of «; and h;. a;, h; are random variables, and depend of anterior ;
These calculation are done in [4] or [2]. By identifying the &;’s to independent identically
distributed random variables, we can simplify this writing.

Accuracy estimation

It has be shown by R.W. Hamming and D.E. Knuth (and used in [4]) that it can be assumed
that the distribution of the mantissa is a logarithm distribution. This proof is also examined
in [4]. A. Feldstein and R. Goodman proved that the distribution of the trailing digits
converges to to the uniform distribution when the rank of the rounded digit tends to infinity
(the proof is used in [4]). The «;’s can then be modelled by uniformly distributed random
variable on [0, 1] while chopping, on [—1/2,1/2] for rounding. A uniform distribution is
then also assumed for the a; — ;. As the terms in 2727 can be neglected, a computer result
R can be modelled by the random variable Z defined by :
n

Z=r+ Zui(d).Z”’.zi
i—1

18

2.2 Numerical Accuracy analysis

where u;(d) are constants and z; independent identically distributed random variables.

With this modelling the exact result r of the operation is the mean value of this random
variable as the z;’s are centred due to the choice of the h;. As the distribution of Z is a
Gaussian distribution, the Student test can be used to determine the accuracy of the result,
as described in equation (2.1) :
VN.|Z| 1
T

N—-1
_ : 2 _ —7\2
(2.1) Cf = 1Og10(0‘7‘3) Wlth - = m g (Zl — Z)

Tp is the value of the Student’s distribution for N — 1 degrees of freedom and a probability
level 1 — B. In practical, we take p = 0.95 and N = 2 or 3. C5 is the number of significant
digit in base 10 of the computed result

Validity of the stochastic arithmetic

The validity of the previous calculations is granted only if some hypothesis are true. These
are :

e Signs and exponent of intermediate results are true. This is only a theoretical problem :
in practice the central limit theorem and the robustness of the Student’s test ensure
that it is never a problem.

e Rounding errors &; are indeed independent centred equally distributed random vari-
ables : due to the introduction of the h;, the «; are indeed independent random variables.
In practice, then are never really centred.]J.-M. Chesneaux [4] have showed that in
practice, this is never completely true and that there always is a bias of several ¢ for Z,
but that error never implies more that one digit of error for the accuracy measure.

e The approximation in first order in 277 is true : while using addition or subtractions,
this can never be false. However in multiplications or divisions, the relative error needs
to be smaller than one to verify this approximation : (e, = % << 1. In practice, such
numbers should be detected as soon as they appear during calculation and noticed to
the user. They are called informatical zeros, as they are value that the computer can
not distinguish from zero.

e No Overflow or Underflow happens : when an overflow or underflow appears during
calculation, this one can not be continued with a real meaning. This should also be
checked during the execution.

As we can see, it is theoretically possible to calculate the accuracy of a calculated result using
stochastic arithmetic, but for that some condition have to be checked during the execution.

19

2 Numerical Accuracy analysis

2.2.3 Stability analysis
Parallel execution

As we have seen previously (2.2.2), there are several verifications that has to be done at
each several steps of the execution of the program. For this reason, it is needed to check for
Overflow and Underflow at each step at the execution, but also to compare the result of each
execution before any multiplication or division to check for informatical zeros. Informatical
zeros are introduced to represent the real zero or numbers with no significant digits.

ViRi=00rCg <0

Every arithmetical operation has to be run N times before going to the next. For each of
these operations, the random rounding has to be applied. With the results of these N runs,
it is possible to detect informatical zeros and then to detect operations that could implies
meaningless results. There are two ways to realise it. One is to run each operation several
time with separate operands that has to be stored and restored each time. The second
possibility is to have several executing units running simultaneously and exchanging data
whenever is is needed to make some check.

Accuracy loss

Due to the representation of numbers, computer arithmetic is more vulnerable to the
changing of the order of operations. Here is an example :

10%° —10*° + 1 = 1 in normal math

(10% —10%°) + 1 = 1 executed in this order for single precision
10% 4 (—10% 4 1) = 0 executed in this order for single precision

Thus, we can see that a same algorithm written differently might provide a different result.
For this reason, it is an interesting problem to check for brutal loss of accuracy during
the execution of a program, in order to tell the user where some improvement might be
useful in the code to provide more accurate results. The idea of an accuracy analyser based
on the stochastic arithmetic is that it can provide the accuracy loss for any floating point
variable at any step of the execution. When computing the accuracy of the final result with
stochastic arithmetic, the intermediate computations already enable to compute accuracy of
intermediate results.

20

2.2 Numerical Accuracy analysis

Unstable execution

As we have seen, there are some verifications that have to be done at each step of the execution
of the calculations. Overflow, Underflows and informatical zeros can be gathered during
the execution and noticed at the end in order to tell the user the accuracy (or inaccuracy) of
the calculated result. However, some exceptions generated by such an analyser might bring
some problems. Indeed informatical zeros might change the result of a comparison used for
conditional branching, and thus change the execution of the program. For some examples,
iterative algorithm use tests to stop. The propagation of rounding errors might disturb the
computation of the test condition. Using an informatical zero to stop iterations is a problem.
Such difference should be recognized and signalled to the user as soon as they appear. Thus,
an accuracy analyser based on stochastic arithmetic as to make some verifications during the
execution of the program, and might interrupt the normal execution of this one.

21

3 Structure of the Analyser

3.1 Introduction to the dedicated Hardware for numerical accuracy
analysis

Advantages of dedicated hardware

Estimating the accuracy of a computed result with stochastic arithmetic means computing
each intermediate result of a floating point operation several times using random rounding.
It is possible to write libraries applying these principles. The steps for each floating point
operations become then [1] : randomly choose the rounding mode, execute the operation
N times, compute the average result, compute the number of significant digits, detect
informatical zeros and control order relations.

Such a software implementation of discrete stochastic arithmetic implies a significant in-
crease of the computational time. Realising the implementation on hardware simplifies the
utilisation because the program does not have to be compiled with modified libraries, and
reduces the computation time. Indeed, it is then possible to execute some operations in
parallel.

3.1.1 Discrete Stochastic Floating Point Unit

In order to calculate the accuracy of a computer result using the stochastic arithmetic,
modified floating point unit is used.

Power PC and APU

In order to provide efficient means to calculate with floating point numbers, current pro-
cessors are often using so called "Floating Point Unit" (FPU). In such an architecture, the
processor uses a special interface to communicate with this entity. It sends command to this
external unit and and then wait result to be available. The Floating Point Unit is then in
charge of all operations with floating point numbers : addition, subtraction, multiplication,
division, square root, conversion and comparison. A FPU designed with the principles of

23

3 Structure of the Analyser

stochastic arithmetic is not the common case, it has to be integrated separately. In our case,
it is realized on a FPGA (field-programmable gate array) containing PowerPC 440 processors
that can use a custom FPU. Then the communication between them have to use a bus called
the Fabric Co-Processor Bus (FCB). In order to use this bus, the processor uses the so called
Auxiliary Processor Unit (APU). This structure allows the user to use a provided FPU or to
integrate its own using a FPGA board. The corresponding structure is depicted in figure :

3.1

Embedded Processor

Block
Fabric Co-
ETOC?SBSW Cache/ Auxiliary processor Floating
Other ocal bus Memory Processor Bus .
peripherals -Management A Unit Pcnr_1t
. Unit
Unit Controller

Figure 3.1: The processor communicates with an external Floating Point Unit usinf a Fabric
co-processor Bus

Floating Point Unit

The Floating Point Unit is separated from the processor and communicates with it using the
signals provide by the Fabric Co-processor Bus. The FPU has 32 floating point registers. The
operations that are supported by the FPU are addition, multiplication, division, square root,
absolute value and conversion to integer or from integer to floating point. These operations
are pipelined in order to provide a maximum throughput. Comparisons between floating
points is also possible. The calculation units have to provide some extra features in order to
support discrete stochastic arithmetic. A view of the developed FPU can be seen on Figure
3.2. The structure of the DSFPU is described in details in the article [8].

3.1.2 Random Rounding

Discrete stochastic arithmetic is based on the introduction of random rounding for each
floating point operation. This has to be implemented inside the Floating Point Unit.

24

3.1 Introduction to the dedicated Hardware for numerical accuracy analysis

Instruction

Load Data
128 bits 5

: PowerPC |1 ~| APU | Store Data
! e
: 440 [7~] Control | ™7 128 bits
: i Inst. Valid
: } Data Valid

e]
H

FCB

Done

—p Decoder |-|->|FPSCR LFsR |

H v

H Pipeline Interlock mode)

E) Controller Rounding mode

o =

HEE

P F oP1 Add I_p\

s .

H L MAC

: g

: «Q

s o

: S |op2 Div RES

5 2

H Sqrt

AN B | T

H 5}

; FP / Int %
bl * cMP

Figure 3.2: Discrete Stochastic Floating Point Unit and its processor

Rounding methods

The execution units of the Floating Point Unit are able to provide results using one of the 5
following rounding modes :

On traditional CPUs, switching of the rounding mode might have influence on several

rounding to nearest (IEEE-754)
rounding towards zero (IEEE-754)

rounding towards plus infinity (IEEE-754)

rounding towards minus infinity (IEEE-754)

random rounding : either towards plus infinity or towards minus infinity. Both

possibility are equally probable.

stages of the pipeline. As a consequence, the pipeline has to be flushed. However, in the
architecture of the STochastic Floating Point Unit(STFPU), the random rounding mode is a
switch between two modes without flushing the pipeline, in order to be used for stochastic

arithmetic.

25

3 Structure of the Analyser

Random Rounding

The random rounding mode switches between rounding-up and rounding-down randomly.
To do so, it has to use a bit that is randomly generated. A Fibonacci-style Linear Feedback
Shift Register (LFSR) is used as Pseudo Random Number Generator. It consists of a 32 bits
register that is shifted and filled with a logical combination of some of the bits. The 32th,
31th, 30th and 10th bits are used to compute the output that is also used to fill the shifted
register. The repeating cycle have a length of 232 — 1. The output is "0" with a probability of
50,572%, "1" with a probability of 49,428%.

The integration of the random rounding modus can be seen on the Figure 3.2 (top-right).

3.1.3 Parallel Processing Blocks

The second special feature of a discrete stochastic floating point unit is the stability analysis
while the program is running. To do so, it has to use the N computed results of the same
program with different rounding error propagations, what is realised with parallel processing
blocks.

Distinct Memories

As we previously saw, the different processing blocks have to run independent random
rounding. In order to do so, every floating point variable that is used has to be stored
separately in each processing block. However, it might also happen that such a variable is
converted to an integer, used as an integer and the result then used again as a floating point.
Thus integer variable should also be handled separately. This example shows that every
single piece of memory should be duplicated in order to be sure that the several processing
blocks running the program are effectively generating independent propagation of rounding
errors. So the processing blocks should not only consists of parallel running FPU, but of
real blocks consisting of processors, FPU and memory. However, these blocks needs some
communications in-between.

Synchronization and Communications

In order to compute the accuracy of a computed result, several processing blocks have to
run the same program going through the same data-path. During the execution, random
rounding is applied independently in each block. However, if the block are completely
independent, there is no easy way to ensure that the same branch has been taken for each
conditional branch. This phenomenon has to be watched in order to avoid meaningless

26

3.2 Utilisation of the dedicated hardware

results. Thus each time a comparison between two numbers occurs, every block has to
be stalled after computing the result until all of them finish. Then, the average has to be
compared, and a unique decision is taken. It informatical zero appear at this point, no
decision can be taken. In such a case, the user should be warned.

Resulting Architecture

The processing blocks consisting of processors, memory and Floating Point Unit running the
program are completely independent except for the synchronization part that have to use
the different results to avoid different decisions to be taken for conditional branches. The
resulting architecture can be seen in the Figure 3.3 :

Processing Block N

Cache/ Discrete
MEmoyiand M _ Stochastic
. Floating Point
Processing Block 2 Unit
Processing Block 1 f—
Memory and Cache/ Discrete pt
peripherals M Memory Processor Slochastic I
dovices anagement FIoatlng_Pulnt L |
Unit Unit

Synchronization and Numerival
Accuracy Analysis

Figure 3.3: Architecture of a system including several processing blocks used for accuracy
estimation based on discrete stochastic arithmetic

In order to calculate the computed accuracy, a modified debugger is used to run the program
on the different processing blocks and the collect the necessary information to display the
accuracy.

3.2 Utilisation of the dedicated hardware

3.2.1 Running One program on several Processing Blocks
Shared Data

To calculate accuracy, the processing blocks have to run through the same calculations with
the same initial data, that get then perturbed by the propagation of errors due to random

27

3 Structure of the Analyser

rounding. The variables used during the calculations might be really different between
several blocks during the calculations, but it has to start with exactly the same code. To run
the program, a binary file has to be loaded into the memory and then the processor started.
Here the same binary file containing the same program with the same values have to be
loaded for all the processing blocks.

Simultaneous start

The different processing blocks running in parallel are stalled at every operation that
needs synchronisation until the others reach the same elementary operation. In order
for the stability analyser not to stall the hardware, all the processing blocks have to run
simultaneously. Usually when executing a program on a processing block, it is started and it
is then expected to reach a normal stop by itself. The processing blocks used here can not
run independently for each other, that is why they have to be all started before expecting
something to happen.

3.2.2 One execution Flow
Common Breakpoints

The accuracy analyser is designed to run a program as normal, but retrieve not only the
results of the computations, but also some information about the accuracy of these results. An
expected behaviour of an analyser is to look like a debugger : a program is chosen, a target
set to run it and some breakpoints chosen to get intermediate results and see the execution
flow. Then, the analyser has to execute the chosen program on the different processing
block in parallel, and after each of the processing blocks reaches the same breakpoint as
defined in the program, it can recover the different values computed for a same variable and
thus provide information about the accuracy of the result based on equation (2.1). thus it is
necessary to make sure that all processing blocks get stopped at the chosen breakpoint.

Same inputs

The different processing blocks are running an unique program, and are expected to reach
the same breakpoint. However, loading the same source code and set the same breakpoints
is not sufficient for them to follow the same execution-flow. Indeed, during the execution
of the program, peripheral devices might be used to provide input values and might have
influence on the computed results. For example, it is the case for variable set after the start
of the program using some input in a console. These inputs have to be identical for all
processing blocks in order for them to work as expected.

28

3.3 Numerical accuracy analysis

3.2.3 A state-of-the-art debugger

To see what happens inside a program during its execution, a debugger is usually needed. In
order to get the information where accuracy of computed values is lost, a modified debugger
is meaningful: it allows the user to define breakpoints and then to check the accuracy of any
intermediate results.

Multiple connections

In order to preserve resources, the Board is only used to run the program and no Operating
System. It is then required that the debugger operates remotely.

As several processing blocks are used, the modified numerical accuracy debugger has to
be connected to each of them : the program has to be loaded, messages exchanged to set
breakpoints, to start a processing block, to signal that a breakpoint has been reached, and
to read the values of variable when the processing block is stopped. Normal debugger are
only meant to be connected to one processing block, here it has to be able to use several and
communicate independently with them.

Duplicated functionalities

The user should not see any difference in the debugging process by using the proposed
numerical accuracy analyser.

As the analyser only have to show the unique execution flow of the program, the user want
to set the breakpoints on the code, and the analyser then have to set the real breakpoint for
each of the processing blocks in order to execute the same portion of code. The user also
wants to start the program once, the analyser has then to start each of the processing block
as if there where only one processing block. Thus, all the processing blocks are running the
same program, and can be synchronized.

3.3 Numerical accuracy analysis

3.3.1 Several Calculated Results
The accuracy analyser consists of a debugger modified to execute several instances of a

program on several processing blocks. After executing the program, each processing block
computed a different version of the value with different rounding error propagation.

29

3 Structure of the Analyser

Different Values

The different processing blocks are loaded with the same program. Thus, the same variable
is stored once on each of these blocks. Then the program is run, until it reaches its end or
a breakpoint set by the user. As each of these blocks applies random rounding after each
floating point operation, the computed results are different in each of the processing blocks.
The synchronization part developed on hardware ensures that the same breakpoint in the
program is reached in every block, by avoiding different decision to be taken in conditional
branches due to the different values of variable in the instances. The debugger have to collect
them and calculate the average value and its numerical accuracy (see equation (2.1)).

The analyser is expected to display the computed values and the number of significant digits
of this value. These informations is computed by using the different values computed for a
single variable.

Different types of computed values

The processing blocks do not only consists of Floating Point Units designed to apply the
principles of stochastic arithmetic, but also a normal processor and memory. Then every
variable is not always a floating point number represented with the IEEE-754 Standard.
Although random rounding is only applied in the custom floating point unit, floating point
variables are not the only one affected by the mechanism. Indeed, it is possible to imagine a
program that uses a written value as input. This value is at the start a character sequence.
It is then translated into a floating point number. Then some calculations are made and a
result is computed. This result also is a floating point number that gets converted again into
a chain of character. The resulting character sequence would most surely differ between the
several processing blocks (the computations done in floating point arithmetic only have to
be large enough). This example can not really happen has the synchronisation part prevent
conversion form floating point to integer to return different values. However, it shows that
the types of variables have to be taken into account.

As the previous example shows, the processing blocks computes different values due to
random rounding. The accuracy analyser has to provide the user with only one value for
each of the variables. It has then to retrieve all of them and compute the accuracy for each
of them. The hardware developed only provide a way to calculate the accuracy of floating
point numbers. Thus, the analyser have to know the type of all the variable in order to be
able to compute and provide the accuracy only for floating point results.

30

3.3 Numerical accuracy analysis

3.3.2 Retrieving the accuracy

The numerical accuracy analyser is meant to provide the numerical accuracy of results.
However numerical accuracy only does not make sense in every case. These case have to be
recognized by the analyser.

Retrieving the types

As previously exposed, every single processing block running the program contains an
instance of each variable, whatever its type is. When the processing blocks stops at the
end of the program or at a breakpoint, the analyser retrieves the addresses of all variable
in a symbol file. This symbol file contains informations about the type of a variable and
gets the necessary information to read its value. Such a file has to be generated for every
processing block in order for the accuracy analyser to utilize them to compute the accuracy
of the variable for which it is defined. It is then possible for the analyser to read the different
values computed for a single variable and inform the user if they are different and what
there values are.

Return a useful value

The aim of the accuracy analyser is to display the accuracy of every floating point variable.
A normal debugger already display the value of each of them. The accuracy only have to be
added nearby.

The accuracy is simply computed using the formula :
1 N-1

VN.IZ|, . 5 2
o) with 0° = N=T L (Zi —2Z)

Cz= 10g10(

with Z; the values of the N different processing blocks.

Conclusion

It has been shown that is is possible to modify a normal debugger in order to run a
single program on several processing blocks developed to apply the principle of stochastic
arithmetic. Thus, the different values computed for a single variable can be retrieved and
used to compute the accuracy of any floating point variable.

31

4 A numerical accuracy analyser based on GDB

4.1 GDB as initial debugger

The accuracy analyser is a debugger with some additional functionalities. Developing it
from scratch would have represent an enormous amount of work. However, it is possible
to use the sources of an existent debugger as a starting point, and to modify it to make an
accuracy analyser out of it.

4.1.1 Integration with hardware Part

The numerical accuracy analyser has to work with the special hardware introduced in section
3.1. As it is only a modified debugger, it has been decided to use one that already works
with the developed hardware.

Integration with existent tools

The Xilinx tolls does not only facilitate the building of a system implementing the principle of
stochastic arithmetic, but it also provides the necessary tools to run a program on it. Indeed
the Xilinx Platform Studio SDK (Software Development Kit) tool provides a compiler for the
developed structure. The code can be written in C and then compiled for the hardware. It
also provides a header file defining constants for the addresses of the different peripherals.

After compiling the source code into a .elf file, the Xilinx tools provide a mean to load it
on the board and start the execution. It allows the user to open a GNU debugger (GDB)
server for each processor at different TCP port number. These GDB servers provide then an
interface for debugging that can be used by the debugger GDB. The GDB program does not
even have to be on the computer used to program the board and providing the GDB server
interface. It only needs the source code and a copy of the executable file. An illustration of
the strucure can be seen on Figure 4.1.

33

4 A numerical accuracy analyser based on GDB

4.1.2 Developing possibility

As previously mentioned, the tools used to developed the hardware system already provide
a debugger. This debugger had to be adapted in order to realize an accuracy analyser. It has
been possible due the interesting properties of the debugger used.

License status

The normal GDB debugger only uses one target at a time to run a program. To be able to
use the two processors of the developed system to run in parallel a program, it has been
necessary to modify the existing debugger. It is not always possible for a programmer to
modify a program, especially when the source code is not available. However, GDB was
released under the GNU General Public License (GPL), which means that the source code is
available for every user and can be modified for its own use. Naturally, it also means that
the derived works can only be distributed under the same license terms.

This last property had its importance. Indeed, the compiled source code targets a custom
hardware that differs from the others. It means that the target is not a common computing
system. Some of its properties have to be used by the debugger to works properly. The
debugger had already been adapted by Xilinx and the resulting software is also under the
GPL and available on internet at the address : http://www.xilinx.com/guest_resources/
gnu/index.htm. The documentation is also available [7] . This software as been the start of
the accuracy analyser.

Programming language

GDB was first written by Richard Stallman in 1986. John Gilmore maintained if from 1990
to 1993 while he worked for Cygnus Solutions. The GDB Steering Committee which is
appointed by the Free Software Foundation now maintains it. It is mostly written in C and
is composed of several hundreds of files. Most of these files are written in C. The necessary
makefiles and scripts used to compile it are provided with the source code. It was then
possible to adapt the debugger for accuracy analysis.

Documentation

As the program is now a few years old, and is maintained by a lot of persons, a lot of
documentation on it is available. The official web site regroups a lot of general information
about the program : http://www.gnu.org/software/gdb/. In particular, the part of the web
site dedicated to the internal work of GDB provides explanations of the complex internal

34

http://www.xilinx.com/guest_resources/gnu/index.htm
http://www.xilinx.com/guest_resources/gnu/index.htm
http://www.gnu.org/software/gdb/

4.2 software debugging using Remote connections

organizations : http://sourceware.org/gdb/current/onlinedocs/gdbint/. Two manuals
are also available, one for normal use [9], one for developer use [10].

4.2 software debugging using Remote connections

4.2.1 Client/Server Structure

As previously explained, the FPGA board is only used to run the program. The accuracy
analyser is running on a computer using a remote connection to a GDB server. This GDB
server is provided by Xilinx tools running on the computer used to program the board. The
different mechanisms that such a structure implies are explained here.

GDB Remote Protocol

Computer running Computer connected to the FPGA Board
the accuracy FPGA
analyser
JTAG
TCP/IP chairy
Modified Ganneelions GDB Xilinx
GDB server |SDK
Processing
Block 1

Figure 4.1: Architecture involved to debug a program on a FPGA board

The GDB Remote Protocol is used when a program has to be debugged on a machine that
can not run GDB in the usual way. It works over TCP/IP interfaces. It uses a generic serial
protocol that is specific to GDB but not to any particular target system. A GDB server has to
be started first, and then a GDB can act as a client and connect to it. An usual structure while
debugging a program on a single processing block can be seen on 4.1. Here is an example of
a connection between GDB and a GDB server running a program called hello_world at the
address 192.168.2.3 and port 1234 :

Initial server side :
server$ gdbserver localhost:1234 ./hello_world

Process ./hello_world created; pid = 1800
Listening on port 1234

35

http://sourceware.org/gdb/current/onlinedocs/gdbint/

4 A numerical accuracy analyser based on GDB

On the client side :

GNU gdb 6.5

Copyright (C) 2006 Free Software Foundation, Inc.

Modified by Sylvain Burlet in 2010.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditioms.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i1686-pc-linux-gnu"

(gdb) target remote 192.168.2.3:1234

Remote debugging using 192.168.2.3:1234

(gdb) run

Starting program: /home/burlet/Desktop/prgm/hello_world

hello_world !

Program exited normally.

(gdb)

The server side shows then :

server$ gdbserver localhost:1234 ./hello_world
Process ./hello_world created; pid = 1800
Listening on port 1234

Remote debugging from host 192.168.2.2

Killing inferior

server$

GDB can be used for different sorts of targets, in particular targets can be a board with
microblaze processors or PowerPC processors. In these cases the description of the target
has to be previously known and cross-compiler taken into account. For the GDB used as
analyser (the client), the targets seems to be the processing block on the board, but it only
happens through a GDB server interface running on the computer used to program the
board. These implies different versions of the program. It also allows to use ".elf" files as
source code. Then the last line of the informations about GDB can become :

e In case of a 1686 processor running linux :

This GDB was configured as "i686-pc-linux-gnu"
e In case of a microblaze processor, using the same computer to run the debugger :

This GDB was configured as "--host=i686-pc-linux-gnu --target=microblaze-xilinx-elf"

¢ In case of a PowerPC processor, using the same computer to run the debugger :

36

4.2 software debugging using Remote connections

This GDB was configured as "--host=1686-pc-linux-gnu --target=powerpc-eabi"

The host is the computer running the client, in this can the analyser. The target has gives the
type of processing block that is effectively used to execute the program. The GDB server is
just an intermediate interface.

TCP Connection

As the previous example shows, the GDB client uses a TCP connection and does then not
have to run on the same computer. The accuracy analyser needs to be connected to two
processing blocks. It means that first two servers have to be started. Then the analyser
has to connect to both of them. The two TCP connection are then established. It uses both
connection to send the necessary command and retrieve the values of the variables. A simple
version of an accuracy analyser would simply be to have two debuggers running, connect
each one to a server, and tell both of them to execute the program. The two processing blocks
on the FPGA would then execute the program and return the value of the variables. The two
debuggers would each be able to display the value for the variable and the user would have
to calculate manually the accuracy. The aim of modifying GDB is to integrate the two TCP
connections in one debugger, automatically duplicate the commands and retrieval of values
and display it.

4.2.2 Connecting the hardware platform

In the previous example, the TCP connection between the server and the client uses IP
addresses. However, the FPGA used for the hardware part does not contain an Ethernet
interface and therefore can not run directly used as GDB server.

JTAG chain

Indeed the FPGA is connected to a computer through an USB cable and a JTAG (Joint Test
Action Group) interface. This cable is used for the connection of a computer to the Board.
This computer uses Xilinx tools to interact with the FPGA. This JTAG chain is first used
to configure the FPGA and then used to communicate with the two processing blocks :
hardware breakpoints can be set, memory read or written. Access to all memories is granted,
including registers. It can also be used to start a processing block.

37

4 A numerical accuracy analyser based on GDB

GDB Server interface

The JTAG chain allows to configure and control the two processing blocks. Thus the Xilinx
tools are able to use this connection to the FPGA to realise a more useful interface for
debugging. Indeed Xilinx tools provide a software called XMD (Xilinx Microprocessor
Debug) that runs on the computer connected to the board and offers a GDB server interface.
As the GDB server interface is not architecture specific, it simplifies the debugging of the
processing blocks. The complex architecture using the JTAG chain disappear behind the
GDB server interface available. Two instances of XMD can use the same JTAG chain without
interferences and thus the complex hardware system can be seen as two GDB server interfaces
by the GDB modified to act as an accuracy analyser.

4.2.3 System Overview

In order to analyse the accuracy of a computed result, a complex system has to be build
using an hardware system, a debugger and a complex system to allow them to interact.
However, the analyser itself does not need all of the system to be developed.

Test Platform

The hardware part of the system is complex. The configuration of the FPGA have to be
compiled, and such a structure has two processing blocks represent a lot of logic blocks .
Then this code is used to programme the FPGA. After it two instances of XMD running
with one single USB cable have to be started. It automatically provide then two GDB server
interfaces for the processing blocks.

The analyser itself only needs to be connected at two GDB servers running the same program.
Then it simply sets breakpoints, start the targets and retrieve the values without having to
know what kind of hardware really executes the program. The architecture used by the
target only has to be known for the interpretation of machine code. Thus all the complex
system does not have to be build to develop the analyser. It is possible to run two normal
GDB server with the same executable file on a computer and also run a modified version of
GDB on this computer that connect to these two servers. Such a test architecture can be seen
on the figure 4.2

This architecture has been used to develop the accuracy analyser. The only difference with
the real system is that the two instances of the program used in the GDB servers are running
completely independently when they would have to synchronize on the real architecture. It
has to be taken into account during the development.

38

4.2 software debugging using Remote connections

Computer running the accuracy analyser

GDB
server
TCP/IP
Connections
Modified GDB
GDB server

Figure 4.2: System used to develop the accuracy analyser

Real System

An easy system can admittedly be used to develop the accuracy analyser, but the real system
still have to be build for the real application. First, the FPGA Board have to be programmed
to implement the hardware system including two processing blocks running independently
except for the synchronisation part between the two instances of the custom Floating Point
Units. These two processing blocks are linked to a computer running XPS (Xilinx Platform
Studio) through an USB cable connected two a JTAG interface. This computer then runs two
instances of XMD, which opens two GDB server interfaces. The modified debugger used
as accuracy analyser has then to be connected to these two interfaces through two TCP/IP
connections. This architecture is showed on figure : 4.3

Computer running Computer connected to the FPGA Board
the accuracy FPGA
analyser
S JTAG
chain
TCP/IP Xiling
Connections SDK
. Processing Processing
Modified GDB Block 1 Block 2
GDB server

Figure 4.3: Complete overview of the system

Note : Although the modified version of GDB can connect to the two instances of the GDB
server through TCP/IP connection, there is not real need for the modified version of GDB

39

4 A numerical accuracy analyser based on GDB

to run on a different computer than the one running the server, which result in the same
architecture except that the TCP/IP connection is a connection to the local host.

4.3 Modified functionalities

4.3.1 Set a Breakpoint

One of the expected functionalities of the accuracy analyser is to be able to stop the execution
when the program reaches a given instruction and check the numerical accuracy of the
intermediate result. In order to do it, the processing blocks have to stop before executing
this chosen instruction. This is called a breakpoint.

Nature of a breakpoint

The user writes code in a programming language. This code consists of a list of ordered
instructions regrouped in functions. Some of these instructions are conditional jump : a
function or an other can be used depending on the values of some variables. The value
of these variables often is the result of previous instructions. In order for the user to be
sure that the program is doing what it is expected to do, it is useful to be able to follow
the execution of the program and to know the value of different variables when reaching a
given instruction. Similarly, while using an accuracy analyser, the user want to know the
accuracy of a variable when reaching an instruction. For example the user might want to
know using which function is used to calculate ¢ in the following code section. The * marks
were a breakpoint would have to be set.

int main(void) {
int a, b, ¢ ;

[V
1]

calculate_a() ;
read_b() ;

o
Il

* if (a==b) {
c = equal() ;
} else {
¢ = unequal() ;

40

4.3 Modified functionalities

The code written by the user has to be compiled into machine code to be executed. Machine
code is also a list of instructions regrouped as functions. Some of them allows to jump
from a function to an other. The processor knows the current position of the execution-flow
through a Program Counter, which is basically the index of the instruction that is executed.
During the compilation the instruction written by the user are translated into instructions
that the machine understands. It is then possible to match the instruction of the user with
those of the machine code. This part also explains why different variants of GDB are used
for different architectures. The previous example result on a i386-architecture in :

-0x80483e4 <main>: push %ebp

-0x80483e5 <main+1>: mov hesp,hebp

-0x80483e7 <main+3>: and $OxfEE£E£50, Yesp
-0x80483ea <main+6>: sub $0x10,%esp
-0x80483ed <main+9>: call 0x8048423 <calculate_a>
-0x80483f2 <main+14>: mov %eax,0xc (%esp)
-0x80483f6 <main+18>: call 0x804843f <read_b>
-0x80483fb <main+23>: mov %eax,0x8 (Yesp)

* 0x80483ff <main+27>: mov 0xc (%esp) , %heax
-0x8048403 <main+31>: cmp 0x8 (%esp) , heax
-0x8048407 <main+35>: jne 0x8048414 <main+48>
-0x8048409 <main+37>: call 0x804845b <equal>
-0x804840e <main+42>: mov %eax,0x4 (%esp)
-0x8048412 <main+46>: jmp 0x804841d <main+57>
-0x8048414 <main+48>: call 0x8048477 <unequal>
-0x8048419 <main+53>: mov %eax,0x4 (%esp)
-0x804841d <main+57>: mov 0x4 (%esp) ,%eax
-0x8048421 <main+61>: leave

-0x8048422 <main+62>: ret

Setting a breakpoint for the user consists of deciding the instruction at witch the execution
of the program should halt. It can then be determined with which value of the program
counter the processor should stop.

Accuracy Analyser breakpoints

The previous paragraph explained what a breakpoint is in a normal debugger. It is the same
in the accuracy analyser, but in this case there are not only one processing block. This means
the breakpoint defined by the user is unchanged and it is translated into a line of its code. It
is translated into a given instruction of machine code. However, this machine code is written
into the memories of two different processing blocks. Thus, the description of the stop for

41

4 A numerical accuracy analyser based on GDB

the processor might be translated into different values of the program counter for the two
different processing blocks. These values have to be stored by the analyser in order to set
them properly for each processing block.

There are two ways to set breakpoints for the embedded PowerPC Processors. First, the
breakpoints are set in dedicated registers and when the program register is equal to one
of them, the processor stops. However, the number of this these registers is limited and
thus software breakpoints are introduced. A software breakpoint is realised by replacing the
given instruction by an illegal operation (for example dividing by o). It causes an exception
to be raised while reaching this instruction, and stop the processors. The instruction has to
be restored before continuing the execution.

While running the program with breakpoints defined, an exception is raised and reported
to the analyser. This one then have to wait until the second processor reaches the same
breakpoint.

4.3.2 Run the program

A special Floating Point Unit as been designed to implement the principles of stochastic
arithmetic. This FPU is instantiated in two processing blocks that have to work in parallel
in order to verify that the two version of the program running with independent random
rounding are staying inside the limitations of stochastic arithmetic. In order to work properly,
a key feature of the debugger is to be able to run the two instances simultaneously.

Running a program with GDB

While using GDB, the user usually first sets the target, then sets some breakpoints in its
code, and finally tells GDB to run the program. Then the program runs and either reaches
a breakpoint or finished its execution. The user can then inspect the different variables.
Internally, a TCP connection is opened with the GDB server as the user specifies the target.
when the user sets breakpoints, they are only listed locally into a chain until a "run" command
is issued. Then, these breakpoints are send to the GDB server that has to set them for the
target. After this phase, the client send a command to the server to run the target and
waits until an error occurs in the connection or a message telling that the targets is stopped
arrives. During this phase, the GDB client is stalled waiting for something to happen in the
connection.

42

4.3 Modified functionalities

Let the processing Blocks run simultaneously

In order to have the two processing blocks running simultaneously, the accuracy analyser can
not get stalled after telling one of them to start. To set the two connections, it was possible
to duplicate the variable describing its states and call the functions establishing it twice
one after the other. The same adaptation have been done to set the breakpoint for the two
processing blocks. Two list of breakpoint are update one after the other. However, such a
workaround can not be used in this case. As the two targets can be connected independently
for each other and have breakpoints set without interacting, the analyser can do it for one
after the other. However, while running the program, the two targets are not independent
and can not be finished when not running simultaneously.

While a target runs a program, GDB wait for messages from it telling that it is finished or
that a breakpoint as been reached. In order to modify GDB at an high level, it was chosen
not to do any modifications in the program at the level of the connection but were operations
of the target are described. Thus this mode of functioning could not be changed. In order
to run the two targets simultaneously, there has to be two processes each one telling one
processing block to run and then waiting for it to be finished.

Continue working

To develop an analyser based on a hardware implementation of discrete stochastic arithmetic,
the debugger had to be modified to interact with several targets. In order to do so, the
variables that describes the state of a target had to be duplicated. The same had to be done
with the variables used to set, maintain and use the connection with the target. Each instance
could be allocated one after the other, and initialised the same way. Each command of the
debugger had then to be modified in order to modify each of these instance in correlation
with the modification, for example defining a new breakpoint or removing one.

When the command running the program is used, the process is duplicated and each of
the process uses one of the instances of the variables, the one corresponding to the target
connected. Thus, the different targets can be started and run simultaneously. To compute the
accuracy of the computed results, the different values of the variables have to be collected.

4.3.3 Compute the accuracy
Retrieve the values
As previously explained, after a processing block stops, a symbol table is build by GDB

containing information about the different variables of the program. This table contains
among others informations about the type of every variable. According to the equation

43

4 A numerical accuracy analyser based on GDB

(2.1) all the computed values of a single floating point variable are needed to compute its
accuracy. As these values are stored in the different process running the targets, they have
to be collected. The numerical accuracy analyser needs then all of this tables to be able to
retrieve the different values.

Compute the accuracy

Once that the different values of each instances of a variable are known, the accuracy of a
result can be calculated. First, the type of the variable has to be known. The variables of the
type "float" or "double" are the results of computations done in the FPU. Thus, they have to
be compared : sign, exponent and mantissa.

As the values are displayed in the debugger as decimal values, the accuracy has to be
calculated corresponding to the notation. The formula is :

2 N-1

Cz= 10810(

Displayed nearby the result, this value tells the user the number of significant digits of this
result.

44

5 Use of the analyser

Useful terms

o client wikipedia : "A client is an application or system that accesses a remote service
on another computer system, known as a server, by way of a network". In our case the
analyser acts as a client that accesses two server.

e server wikipedia : "a computer program running as a service, to serve the needs or
requests of other programs (referred to in this context as "clients") which may or may
not be running on the same computer". In this case the GDB server runs an interface
allowing the client to interact with a processing block.

o target The target is here the processing block that have to run the program. It is only
known from the client as a GDB server interface at a given network address.

5.1 Functionalities

5.1.1 Connecting Processors

In order to develop an automatic numerical stability analyser based on a hardware imple-
mentation of discrete stochastic arithmetic, the GNU Project Debugger has been modified to
be able to use an hardware platform developed with the principles of stochastic arithmetic.
Two processing blocks are implemented on an FPGA and each ot them is able to run the
same programme with random rounding. The analyser is used to check the numerical
accuracy of any intermediate result without any source-code modification.

Choosing the targets

When the user uses the GDB on his own computer("client") for remote debugging, a TCP
connection is set between the debugger and the GDB server. To set this connection, the
address of the GDB server is needed. Once this address is given, it is used to connect to the
target. The properties of this connection are stored in several variables regrouped in a C
struct.

45

5 Use of the analyser

Once the target is connected, the debugger still needs to know some information about the
targets, in particular, it requires the information of the architecture of the processing block.
This information is sent by the GDB server in form of an XML file.

These mechanisms are triggered by using the "target" command of GDB. An example of the
use of this command can be seen at 4.2.1.

Switching between targets

As two targets have to be used, informations about the connection and the target are not
unique any more. They each have their own set of variables. It has to be possible to use
one set of variables or the other. To do so, two new instances of these variables have been
introduced. These two set of variables are backup of the variables used in the initial version
of GDB. Thus, after using a target, they are saved and the other set is set to be used.

Here a simplified version of this functioning is showed :

struct all_informations_about_a_target *target_description ;//GDB original variable
struct all_informations_about_a_target *target_description_1 ;
struct all_informations_about_a_target *target_description_2 ;

int active_target_number;//new variable used to know which target is currently used

/*
to save descriptions of a target
*/
void save_target(int number) {
if (number==1) {
target_description_1 = target_description ;
} else if (number==2) {
target_description_2
} else {
printf ("ERROR: unable to save the state of this target\n") ;

target_description ;

if (debug_target_switch==1) printf("target nr : %d saved\n", number) ;

/*
to set the target description to be used

*/

46

5.1 Functionalities

void set_target(int number) {

if (number==1) {
target_description = target_description_1 ;
active_target_number = 1;

} else if (number==2) {
target_description = target_description_2 ;
active_target_number = 2;

} else {
printf ("ERROR: non-existent target\n") ;
active_target_number = O;

}
if (debug_target_switch==1) printf("target nr : %d set\n", number) ;
}
/*
changing the target used
*/

extern void switch_target(int number) {
if (number==1 || number==2) {
save_target(active_target_number) ;
if (active_target_number!=number) {
set_target (number) ;
} else {
printf ("WARNING : target nr:j%d already used\n", number) ;
}
} else {
printf ("ERROR : only target 1 and 2 can be used\n") ;

The two functions are used to store and restore the entire description of a target. Actually,
these informations are not in a single C struct, but in several, and some informations are not
accessed through pointers but are real variables. All occupied memory pointed to had to be
allocated twice before these functions can be used. The variables also had to be properly
declared to be visible wherever needed. The original variable used by GDB could not simply
be replace by a choice between the two new variable because it as also been used in multiple
"define" instructions.

A new command have been introduce in GDB. It is the command "switch". it simply has to
be followed by the number of the target to be used. An example of its use follows :

e starting the first server(the last line only appears after connecting to it) :

47

5 Use of the analyser

burlet@burlet-laptop:~/test_program$ gdbserver localhost:1234 ./hello_world
Process ./hello_world created; pid = 2316

Listening on port 1234

Remote debugging from host 127.0.0.1

starting the second server(the last line only appears after connecting to it) :

burlet@burlet-laptop:~/test_program$ gdbserver localhost:1235 ./hello_world
Process ./hello_world created; pid = 2318

Listening on port 1235

Remote debugging from host 127.0.0.1

starting the modified GDB and connecting to two targets :

burlet@burlet-laptop:~$ modified-gdb -nw ../test_program/hello_world

GNU gdb 6.5

Copyright (C) 2006 Free Software Foundation, Inc.

Modified by Sylvain Burlet in 2010.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditioms.
Type "show copying" to see the conditioms.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu"

(gdb) target remote localhost:1234
Remote debugging using localhost:1234

(gdb) switch 2
target nr : 1 saved
target nr : 2 set

(gdb) target remote localhost:1235
Remote debugging using localhost:1235

(gdb)

This command was introduced not only to connect two targets, but also to be able to choose
which target is used when using command that have only to use one target during the
developing stage. In order to know which target is used. The command "targetsinfo" has
been introduced. It prints all the information of the current targets.

(gdb) targetsinfo

target 1 is running the file
* target 2 is running the file
(gdb)

48

: /home/bubu/Bureau/prgm/hello_world at localhost:1234
: /home/bubu/Bureau/prgm/hello_world at localhost:1235

5.1 Functionalities

5.1.2 Use of the debugger

Once the two targets are connected to the analyser, they are is used to run the two programs
simultaneously. It means that they have to be started concurrently and expected to reach the
same breakpoint.

Set a breakpoint
Lets take the following program, as an example :
.#include<stdio.h>

1

2

3.int main(void) {

4. while (1==1) {

5 printf("hello_world !\n") ;
6. printf("\n") ;
7

8

9

}

return 0 ;

When the user want the program to stop right after "hello world !", he has to set a breakpoint
to the next instruction. Here setting a breakpoint line 6 means that before printing a new
line after the "hello world" message, the program would stop. The command in GDB is then
used as follow :

(gdb) b 6

Breakpoint 1 at 0x80483cd: file ./hello_world.c, line 6.

Now setting the breakpoint for the second target (principal is nr 2)
target nr : 2 saved

target nr : 1 set

Breakpoint 2 at 0x80483cd: file ./hello_world.c, line 6.

Now restoring previous target

target nr : 1 saved

target nr : 2 set

(gdb)

As we can see, the breakpoint is stored for both of the target one after the other. Thus when
running the two instances of the program, they will stop at the same point.

49

5 Use of the analyser

Run the program

To be able to debug a program, it has to be compiled without optimisations. Debugging
informations also have to be introduced to be able to retrieve informations about the symbols
(as there are here no variables, it is not really needed) :

burlet@burlet-laptop:~/test_program$gcc -g -00 -o hello_world ./hello_world.c
burlet@burlet-laptop:~$

A breakpoint is set line 6 as previously showed. The two target can then be set to run as
following :

burlet@burlet-laptop:~$ modified-gdb -nw ../test_program/hello_world

GNU gdb 6.5

Copyright (C) 2006 Free Software Foundation, Inc.

Modified by Sylvain Burlet in 2010.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditioms.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i1686-pc-linux-gnu"

(gdb) target remote localhost:1234

Remote debugging using localhost:1234

(gdb) switch 2

target nr : 1 saved

target nr : 2 set

(gdb) target remote localhost:1235

Remote debugging using localhost:1235

(gdb) b 6

Breakpoint 1 at 0x80483cd: file ./hello_world.c, line 6.

Now setting the breakpoint for the second target (principal is nr 2)

target nr : 2 saved

target nr : 1 set

Breakpoint 2 at 0x80483cd: file ./hello_world.c, line 6.

Now restoring previous target

target nr : 1 saved

target nr : 2 set

(gdb) continue

target nr : 2 saved

target nr : 1 set

50

5.1 Functionalities

Continuing.

WARNING : target nr:2 already used

Continuing.

Breakpoint 1, main () at ./hello_world.c:6
6 printf("hello_world !\n") ;

target nr : 2 saved

======gecond process done ======

Breakpoint 2, main () at ./hello_world.c:6
6 printf("hello_world !'\n") ;

target nr : 1 saved

======first process done ======

target nr : 2 set

(gdb)

The GDB server shows (the two are similar) :

burlet@burlet-laptop:~/test_program$ gdbserver localhost:1234 ./hello_world
Process ./hello_world created; pid = 1865

Listening on port 1234

Remote debugging from host 127.0.0.1

hello_world !

As we can see, the two targets ran the same program. However the GDB servers used are
normal servers. Thus they do not have to be synchronized. It can be proven that they run
simultaneously and not one after the other by using input. For example a "scanf" function
blocks the two targets before reaching a breakpoint. When the user give an input, only the
one processing blocks corresponding can continue. It has been tested thus that the order in
which they finish have no influence, and that the analyser waits for both targets to reach the
breakpoint.

5.1.3 Accuracy measure
Previously, an example has been showed, where two targets run a simple program simulta-

neously. This is only half of the aim of the analyser. Indeed, it is meant to compute accuracy
of computed values.

51

5 Use of the analyser

Calculated Values

To be able to run the two targets simultaneously a call to the function "fork" is used
to duplicate the needed handling in two process, each one using one GDB server. A
simplification of the code used while using the command continue can be seen here :

void
continue_command (char *proc_count_exp, int from_tty) {

int save_target = active_target_number ;

/*
create shared memory
*/
memory *shared = create_shared_memory() ;
//create shared memory for the symbol tables of the second target

/*
The two targets have to run each one in a process.
Target 2 runs with the child, target 1 with the parent
*/
int pid = fork() ;//creates the two processes
if (pid==-1) {
printf ("ERROR: the duplication into two processes did not work\n") ;
} else if (pid==0) {
printf ("======second process starting=====\n") ;
switch_target(2) ;

continue_command_single (proc_count_exp, from_tty) ;
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0) ;

save_symbol_tables(shared) ;
//saves the symbol tables read in the second target into the shared memory

printf (""'======second process done ======\n") ;
exit(0) ;

} else {
printf ("======first process starting======\n") ;

switch_target(1) ;

continue_command_single (proc_count_exp, from_tty) ;
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0) ;

52

5.1 Functionalities

switch_target(save_target) ;
printf ("======first process done ======\n") ;

wait() ;//We have to wait for the second process to be finished to continue running

copy_symbol_table_second_target (shared) ;//store the symbol table at its place
free_shared_memory(shared) ;

After running the program, part of the data are stored in the client size. For example the
values stored in every register is known by the debugger. Currently, the memory used to
store these values is allocated after running the program. As the addresses of the values for
the second target only exists in the child process, it get loss while closing. To be able to store
these values, shared memory should be allocated before continuing the execution of the
two instances. The current version still has some bugs in the implementation. However, the
concept is verified with the following code which uses the retrieved symbol table to compute
the accuracy. The corresponding part of code is then :

void

continue_command {(char *proc_count_exp, int from_tty) {

int saved_target_number = active_target_number ;

continue_command_single (proc_count_exp, from_tty) ;
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0) ;

printf ("======preparing and running second target=====\n") ;

if (saved_target_number==1) switch_target(2) ;
if (saved_target_number==2) switch_target(1l) ;

continue_command_single (proc_count_exp, from_tty) ;
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0) ;

switch_target (saved_target_number) ;

53

5 Use of the analyser

In this code the two targets are not running simultaneously but one after the other. It can
not work with the designed hardware platform, because the synchronisation part would
prevent the first processing block to get finished, and then second one would never be started.
However it still is able to show the different values of a variable and generate the numerical
accuracy information. This is a proof of the concept of using several instances of the variables
corresponding to the targets.

A table of symbols is stored for each instance of the program containing informations about
the variables. Thus, their types are known. It has been possible to modify the part of code
printing the values to display additional informations about it. An example of such a result
can be seen in the following :

e program used :

#include<stdio.h>

int main(void) {

int 1i;

float radius ;

float pi = 3.141592654 ;
float circumference ;

for (i=0;i<5;i++) {
printf ("enter the radius of the circle:") ;
scanf ("%f", &radius) ;

circumference = 2 * radius * pi ;

printf ("the circumference is :%f\n", circumference) ;
printf ("\n") ;//for breakpoint convenience

}

}

o first server :

burlet@burlet-laptop:~/demo$ gdbserver localhost:1234 ./demo
Process ./demo created; pid = 19834

Listening on port 1234

Remote debugging from host 127.0.0.1

enter the radius of the circle:0.500

the circumference is :3.141593

54

5.1 Functionalities

e second server :

burlet@burlet-laptop:~/demo$ gdbserver localhost:1235 ./demo
Process ./demo created; pid = 19836

Listening on port 1235

Remote debugging from host 127.0.0.1

enter the radius of the circle:0.499

the circumference is :3.135310

e in the analyser :

burlet@burlet-laptop:~/demo$ modified-gdb ./demo -nw

GNU gdb 6.5

Copyright (C) 2006 Free Software Foundation, Inc.

Modified by Sylvain Burlet in 2010.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditionms.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu'"...

Using host libthread_db library "/lib/libthread_db.so.1".

(gdb) target remote localhost:1234

Remote debugging using localhost:1234

(gdb) switch 2

(gdb) target remote localhost:1235

Remote debugging using localhost:1235

(gdb) b 16

Breakpoint 1 at 0x80484a5: file ./demo.c, line 16.
(gdb) continue

Continuing.

Breakpoint 1, main () at ./demo.c:16
16 printf("\n") ;//for breakpoint convenience
Continuing.

Breakpoint 1, main () at ./demo.c:16

16 printf("\n") ;//for breakpoint convenience

it seems everything worked fine

(gdb) display circumference

2: circumference = 3.14159274 [_second value : O accuracy : -0.456344_]

55

5 Use of the analyser

(gdb)

As it can be seen, it has been possible to integrate additional informations while displaying
the value of a variable. The numerical accuracy information can be calculated based on
equation (2.1). Currently, only the sequential version of the analyser is able to retrieve the
two values. Here the synchronous version have been used and does not read the real value
for the second target.

5.2 Possible extensions

5.2.1 Graphic interface

The version of GDB used inside Xilinx tools is already integrated with a graphical interface
called "insight". This interface has been written in Tcl/ Tk by people working for Red Hat,
Inc. and Cygnus Solutions. This code is freely available and can be modified and used for
the purposes of the analyser.

Insight

Insight provides the same functionalities as GDB itself, but with graphical interface. The
interface can be seen on the figure 5.1

As it can be seen, it is possible using the integrated console to run the modified GDB as
needed for its purpose.

Integration with insight

Basically, using the graphical interface in insight provokes the use of command in the
underlying GDB, and thus uses the modified ones. However, some adaptations would have
to be made to make the use of insight with the modified GDB as user-friendly as currently.
The response of GDB to these commands is retrieved and parsed. For example a test have
been executed in which the value of the variables are displayed with additional informations.
These informations are also displayed inside insight.

The informations about modifying insight can be found at http://sources.redhat.com/
insight/faq.php

56

http://sources.redhat.com/insight/faq.php
http://sources.redhat.com/insight/faq.php

5.2 Possible extensions

File Run Wiew Control Preferences Help

AM0 00 OF A8 e-38 Find:| | e o et
[demo.c > |main =] SQURCE ~|

1 #include=etdio.h>

int main(void) {
Tt i
float radius ;
float pi = 3.141592854 ;
float circumference ;

3
4
5
6
7
8
9 for (i=0;i<h;i++) {
- 10 printf("enter the radius of the circle:™) ;

11 gocanf ("&£, &radius) ;

12

13 circumference = 2 % radius % pi ;

14

- 15 rintfi"the circumference iz :%f%n", circumference) ;
Ilii...................................

17 1

{gdb) target remote localhost:1234
Remote debugging u=zing localhost:1234
0x00157850 in *¢7¢ ()

(gdb)l switch 2

[gdb) target remote localhost:1235
Remote debugging u=zing localho=st:1235
000760850 in 7?79 ()

(gdb) b 1le
Mote: breakpoint 1 also get at po 0x280484a5.
Breakpoint 3 at 0x80484a5: file ./demo.c, line 16.

(gdb) continue
Continuing.

Breakpoint 1, main () at ./demo.c:16
Continuing.

Breakpoint 1, main ()1 at ./demo.c:16

(gdb)

Figure 5.1: Insight, a graphical interface for GDB, allows to directly use GDB and thus use
some modified commands.

5.2.2 More processors

Discrete stochastic arithmetic provides a way to estimate the accuracy of a computed result
using the result provided by several execution of a program on several processing blocks.
The hardware implementation of these principle that has been considered all along this work
only consists of two processing blocks. However, it is possible to use a board with more

57

5 Use of the analyser

File Bun View Control Preferences Help
AH000 DH L8428 Find | g e al
[demo . o > main | SOURCE =
1 #include<gtdio.h>
- 3 int mainf(void) {
4 int i;
5 float radiug ;
L] B float pi = 3.141592854 ;
T float circumference ;
8
- 9 for (i=0;i<5;i++) {
- 10 printf("enter the radiusg of the circle:™ ;
- 11 agcanf("g£", aradius) ;
12
- 13 circumference = 2 & radius & pi ;
14
- ks rintf("the circumference iz :2f%n", circumference) ;
L —
17 1
- 18 1
. = Local Variables ==
i = FimEi 0
radiug = (f£loat) 0.5[accuracy]
pi = (float) 3.14159274[accurac¥]
circumference = (float) 3.14159274[accuracy]
N
|ngmnﬂsmnMng |8048Qa5 16

Figure 5.2: Insight directly uses the response from GDB at given commands.

processors. It is straight-forward to adapt the proposed numerical accuracy analyser to work
the new system with multiple processors.

Extensible structure

The number of processing blocks in the implementation dictates the number of GDB server
that has to run. Indeed each one can only be used for one processing block. It has also to be

58

5.2 Possible extensions

taken into consideration that the JTAG chain has to support the same number of processing
block. Then the analyser has to be able to use all of these processing blocks. When even one
is not programmed and started with the others, the entire structure can not run due to the
synchronisation part.

It has been previously explained that the debugger normally uses several informations that
had to be duplicated to be able to connect to two processing blocks. When more of them
would be used, these variables and memory would have to be as many as the number of
processing blocks. For example, a list of all the breakpoint would have to be maintained for
each of the processing blocks. It would also be the case for the descriptions of the connection
to each processing block, and the description of the architecture. Then as many symbol table
as the number of processing blocks should be build.

Use loops instead of multiple functions calls

To be able to run the two processing blocks, the function fork() has been used. The child
has been meant to write the retrieves informations about symbols in previously allocated
shared memory. The parent has to start its corresponding processing blocks and wait for its
child to be done. Then it is able to use the symbol tables retrieved to compute the estimated
accuracy. With N processing blocks, N-1 child would have to run simultaneously to start
each a processing block and write the necessary informations each one in a different area
allocated in a shared memory.

Calculate the accuracy

Using two or more processing blocks, calculating the estimation of the accuracy of the
computed results uses the same formula given by the stochastic arithmetic :

UNIZI. o, 1 N2
Thus, the analyser would simply have to read the N values of the floating point vari-
ables retrieved from the N processing block and use the value of the Student distribution
corresponding to N-1 degrees of freedom.

Using more processing block should not change anything to the interface except the settings
used to connect to the corresponding additional processing block. Internally, the modifica-
tions of the analyser should be minimal. However, the estimation of the numerical accuracy
should then be more precise.

59

5 Use of the analyser

5.2.3 Detecting instability

The discrete stochastic arithmetic does not only provide a method to estimate the accuracy
of the final results, but it also allows to detect during the execution numerical instabilities.

Accuracy Check at given Point

Checking the accuracy of several intermediate results would be possible as soon as the
accuracy can be displayed. Indeed, it means no more than setting a breakpoint at this point
and then display the value of the variable of interest. Then the estimation of the accuracy for
these variables should be displayed. An example follows :

#include <stdio.h>
#include <math.h>

int main(void) {
int i ;

double thefloat ;
printf ("please, enter the value to use :") ;
scanf ("}1f",&thefloat) ;

for (i=0;i<9999;i++) thefloat += 1.01 ;
for (i=0;i<9999;i++) thefloat -= 1.01 ;

printf ("After the addition phase, thefloat is: %21f\n", thefloat) ;
printf ("\n") ;//set a breakpoint here

for (i=0;i<9999;i++) thefloat *= 1.01 ;
for (i=0;i<9999;i++) thefloat /= 1.01 ;

printf ("After the multiplication phase, thefloat is : %21f\n", thefloat) ;
printf ("\n") ;//set a breakpoint here

for (i=0;i<10;i++) thefloat *= thefloat ;
for (i=0;i<10;i++) thefloat = sqrt(thefloat) ;

printf("After the three steps, thefloat is: %21f\n", thefloat) ;

printf("\n") ;//set a breakpoint here
}

60

5.2 Possible extensions

An example of a run of this program is :

burlet@burlet-laptop:~/dummy_programs$ gcc -g -o accuracy_loss ./accuracy_loss.c -1lm -00
burlet@burlet-laptop:~/dummy_programs$./accuracy_loss

please, enter the value to use :3.141592654

After the addition phase, thefloat is: 3.141593

After the multiplication phase, thefloat is : 3.141593
After the three steps, thefloat is: inf
burlet@burlet-laptop:~/dummy_programs$

When the user wants to know in which part of the program the infinite value appear without
adding all the printfs that are used here, he would simply have to had breakpoints between
them and then watch the accuracy of the results.

Interrupt Handling

The hardware platform introduced in section 3.1 is able to detect numerical instabilities,
and to generate interrupt in this case. This interrupt is visible by the GDB server, which is
sending it back to the GDB client connected.

The actual developed modified versions of GDB would simply signal the user that an
interrupt was raised and then shut down. However it should be possible to match the
program counter with the positions in the code and acting like if a breakpoint had been
reached. Thus, it would be possible to watch the different variables at this point to see which
one causes the interrupt. Thus it would be much easier to detect were the algorithm should
be modified to better use the processor in order to generate more accurate results.

61

6 Conclusion

In the work, the development of an automatic numerical stability analyser based on a
hardware implementation of discrete stochastic arithmetic has been investigated. Discrete
stochastic arithmetic provides estimation of the propagation of rounding errors on computed
results. In a previous project, a floating point unit has been developed which supports
the discrete stochastic arithmetic. This platform is able to provide necessary information
to estimate the numerical accuracy information of any computed value. In this work, a
numerical accuracy analyser has been developed to gather information from the dedicated
hardware system and provide the numerical accuracy information based on the discrete
stochastic arithmetic.

In order to do so, the GNU debugger has been modified to be able to connect to the
two processing blocks on the dedicated hardware and then execute the same program on
both of them. Breakpoints can be set for both instances simultaneously. The different
values of variables can be collected and used to compute the accuracy of these values in
an asynchronous version of the analyser. However, the asynchronous version does not
support self validation of the discrete stochastic arithmetic, and is unable to make an unitive
decision for conditional branches. To cover these issues, an synchronous version of the
analyser has been investigated. The concept of the synchronous implementation has been
verified. However, the current release still has some bugs in retrieving variables from all the
processing blocks and additional work is required to complete the necessary functionalities.
From the user’s point of view, there is no difference from using a state-of-the-art debugger,
while it can provide numerical accuracy information without any source code modification
for the package under test.

63

Bibliography

[1] Roselyne Avot-Chotin and habib Mehrez. Hardware implementation of discrete stochas-
tic arithmetic. Numerical Algorithms, 2004.

[2] Jean-Marie Chesneaux. Study of the computing accuracy by using probabilistic approach.
In C.Ullrich, editor, Contributions to computer arithmetic and Self-Validating numerical
methods.].C. Baltzer AG, Scientific Publishing CO.

[3] Jean-Marie Chesneaux. Validité du logiciel numérique.

[4] Jean-Marie Chesneaux. Etude théorique et implementation en ADA de la méthode CESTAC.
PhD thesis, Université Paris 6, 1988.

[5] Jean-Marie Chesneaux. Les fondements de l'arithmétique stochastique. C.R. Acad.
Sci.Paris, 315:1435-1440, 1992.

[6] Jean-Marie Chesneaux. Arithmétique des ordinateurs. Polytech’Paris-UPMC, 2003.

[7] Brian Hill. Software Debugging Techniques for PowerPC 440 Processor Embedded Platforms.
Xilinx, 2008. This application note discusses the use of the Xilinx Microprocessor
Debugger (XMD) and the GNU software debugger (GDB) to debug software defects.

[8] Wenbin Li and Sven Simon. An fpu hardware architecture for automatic numerical
accuracy analysis. submitted to IEEE Transactions on computer, 2011.

[9] Stan Shebs et al.s Richard Stallman, Roland Pesch. Debugging with GDB, 2003. The gnu
Source-Level Debugger.

[10] John Gilmore Cygnus Solutions Second Edition: Stan Shebs Cygnus Solutions. GDB
Internals, 2003. A guide to the internals of the GNU debugger.

[11] F. Stummel. Forward analysis of gaussian elimination- part i and ii. Numerische
Mathematik, 46:365—415, 1985.

[12] James H. Wilknson. Rounding Erros in algebraic processes. Englewood Cliffs, N.]J., Prentice-
Hall, 1963.

65

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no

stage was any collaboration entered into
with any other party.

(Sylvain Burlet)

	1 Introduction
	1.1 Motivation
	1.2 Overview

	2 Numerical Accuracy analysis
	2.1 Rounding Errors in the Computed Results
	2.1.1 Finite representation of numbers
	2.1.2 Rounding errors
	2.1.3 Propagation of rounding errors

	2.2 Numerical Accuracy analysis
	2.2.1 Overview of numerical accuracy analysis methods
	2.2.2 Discrete Stochastic Arithmetic
	2.2.3 Stability analysis

	3 Structure of the Analyser
	3.1 Introduction to the dedicated Hardware for numerical accuracy analysis
	3.1.1 Discrete Stochastic Floating Point Unit
	3.1.2 Random Rounding
	3.1.3 Parallel Processing Blocks

	3.2 Utilisation of the dedicated hardware
	3.2.1 Running One program on several Processing Blocks
	3.2.2 One execution Flow
	3.2.3 A state-of-the-art debugger

	3.3 Numerical accuracy analysis
	3.3.1 Several Calculated Results
	3.3.2 Retrieving the accuracy

	4 A numerical accuracy analyser based on GDB
	4.1 GDB as initial debugger
	4.1.1 Integration with hardware Part
	4.1.2 Developing possibility

	4.2 software debugging using Remote connections
	4.2.1 Client/Server Structure
	4.2.2 Connecting the hardware platform
	4.2.3 System Overview

	4.3 Modified functionalities
	4.3.1 Set a Breakpoint
	4.3.2 Run the program
	4.3.3 Compute the accuracy

	5 Use of the analyser
	5.1 Functionalities
	5.1.1 Connecting Processors
	5.1.2 Use of the debugger
	5.1.3 Accuracy measure

	5.2 Possible extensions
	5.2.1 Graphic interface
	5.2.2 More processors
	5.2.3 Detecting instability

	6 Conclusion
	Bibliography

