Institut fir Parallele und Verteilte Systeme
Universitat Stuttgart
Universitatsstra3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3101

Migration virtueller Knoten in
einer zeitvirtualisierten
Emulationsumgebung

Sebastian Bartmann

Studiengang: Informatik

Prifer: Prof. Dr. Kurt Rothermel
Betreuer: Dipl.-Inf. Andreas Grau
begonnen am: 27.Juli 2010

beendet am: 26.Januar 2010

CR-Klassifikation: H.2.4,16.7,C.4

Zusammenfassung

Ziel der Diplomarbeit ist die Erweiterung einer zeitvirtualisierten Emulationsumgebung namens
TVEE (Time Virtualized Emulation Environment) um eine Moglichkeit zur dynamischen Neuplat-
zierung virtueller Knoten. TVEE wurde fiir Test und Evaluation verteilter Software und Netzwerk-
protokolle entwickelt. Techniken wie Knoten und Zeitvirtualisierung ermoglichen eine Evalutation
von Testszenarien mit tausenden von Knoten. Durch Knotenvirtualisierung wird die Ausnutzung
bestehender Hardwareressourcen, durch Ausfiihrung mehrerer Software Instanzen auf einem physika-
lischen Knoten, maximiert. Werden mehr Ressourcen benotigt als vorhanden, konnen diese mittels
Zeitvirtualisierung auf Kosten der Experimentlaufzeit kiinstlich erhoht werden. Fiir die Akzeptanz
eines Testsystems muss sich die Ausfiihrungszeit eines Experiments in einem vertretbaren Rahmen
bewegen. Fiir die Reduktion der Experimentlaufzeit werden aktuell in TVEE zwei Ansiitze verfolgt:
eine laufzeitoptimale initiale Platzierung und eine adaptive Anpassung der virtuellen Zeit. Durch
Lastschwankungen oder falsche Annahmen kann die ermittelte initiale Platzierung allerdings sub-
optimal sein. Eine Anpassung der Platzierung virtueller Knoten wihrend eines Experiments kann
daher sinnvoll sein. Sind physikalische Knoten unterschiedlich stark ausgelastet kann durch Migra-
tion einzelner virtueller Knoten eine gleichmif$ige Auslastung der Testumgebung erreicht werden.
Ressourcenengpesse einzelner Rechner konnen dadurch vermieden werden. Jede Migration von Knoten
ist allerdings mit Kosten verbunden.

In dieser Diplomarbeit werden zuniichst Mechanismen zur transparenten Migration von virtuellen
Knoten erarbeitet. Darauf aufbauend wird ein Modell vorgestellt mit dem sich erwartete Migrations-
kosten voraussagen lassen. Dann werden verschiedene Ansiitze zur Optimierung einer Platzierung
wihrend eines Experiments vorgestellt und gegeneinander abgewogen. In Simulationen grofSer Sze-
narien zeigte sich, dass sich durch dynamische Neuplatzierung, die Experimentlaufzeit mafgeblich
senken lisst.

Abstract

In this diploma thesis a time virtualized emulation environment called TVEE is extended by a
technique named dynamic replacement of virtual nodes. TVEE was developed for test and evaluation
of distributed software and network protocols. Techniques like node and time virtualization, allow test
szenarios with thousands of nodes. Through node virtualization the hardware utilization is maximized
by parallel execution of software instances on the same physical node. If more ressources are needed as
provided, time virtualization is used to virtually increase ressources by slowing down the realtime by
a factor called time dilation factor(TDF). For the acceptance of an emulation system the runtime of
an experiment has to be short. To reduce the execution time TVEE currently uses two approaches:
an adaptive virtual time and a runtime optimal initial placement. Due to load variation and wrong
assumptions the initial placement can be suboptimal. Therefore an adaption of the placement during
the experiment can be useful. In case of an unequal load of physical nodes of the system the load can be
balanced by migrating several virtual nodes. Thereby ressource bottle necks can be avoided. However
each migration causes costs that have to be considered.

First in this diploma thesis concepts for the transparent virtual node migration in TVEE are developed.
Then a model for the prediction of migration costs is presented. After that different approaches to
optimize a current placement are presented and discussed. Simulations of large szenarios show that
the experiment runtime can be greatly reduced by dynamic replacement.

Inhaltsverzeichnis

4.3.3 Reihenfolge der Operationen

1 Einleitung
1.1 Motivation
1.2 Zielder Arbeit
1.3 Outline
2 Zeitvirtualisierte Emulationsumgebung
21 Architektur.
2.2 Knoten Virtualisierung Lo
2.3 Zeit Virtualisierung oo Lo
2.4 Netzwerk Emulation L
2.5 Techniken zur Experimentlaufzeitminimierung
2.5.1 Epochen basierte virtuelle Zeit
252 NETplace
2.6 Konfiguration
3 Related work
3.1 Load Balancing in verteilten/parallelen Systemen
3.1.1 Task Migration
Task Migrationsalgorithmus
Beispiele
4 Dynamische Neuplatzierung
41 Einfthrung
4.2 Architektur.
4.3 Rekonfigurationder TVEE
43.1 Anforderungen o
432 Operationen L L o
Migration virtueller Knoten
Migration von Netshaper Instanzen
Anpassung der virtuellen Layer 2 Topologie
Verlangsamung der globalen virtuellen Zeit
Start/Stopp der Prozessausfithrung
Zwischenspeichern von Paketen

11
12

13
13
14
15
16
17
17
18
20

23
23
24
24
25

28
28
29
30
31
31
33
35
35
38
38
39
40

5

4.3.4 Synchronisation einer verteilten Operation 41

4.4 Kostenmodell Kommunikation 43
4.5 Kostenmodell Rekonfiguration 45
4.5.1 Start/Stopp der Prozessausfithrung 46
4.5.2 Migration von virtuellen Knoten und Netshaper Instanzen 47
Sichern der Zustands virtueller Knoten 48

Sichern der Zustiande von Netshaper Instanz 48

Transfer der Daten 49
Wiederherstellen der Zustande virtueller Knoten 50
Wiederherstellen der Zustdnde von Netshaper Instanzen. 51

Entfernen virtueller Knoten in Quell VMs 51

4.5.3 Anpassung Layer 2 Topologie 51

4.6 Optimierung der Platzierung 52
4.6.1 Zielfunktion 54
Grofie des Vorhersage Zeitfensters 55

4.6.2 Optimierungsalgorithmus 55

4.6.3 Ahnliche Platzierungen 57

4.6.4 Berechnung des Zielfunktionswerts 57

4.6.5 Verkleinerung des Suchraums 60
4.6.6 Abbruchbedingung 0 .. 60
4.6.7 Cooling Schedule 0 . 61
Geometrischer Cooling Schedule 62

4.7 Lastvorhersage 64
4.8 Lage. 67
4.8.1 Optimierung der Platzierung 67
Zentraler Ansatz 67

Verteilte Ansdtze 68

Diskussion der Ansédtze e 74

4.8.2 Koordination der Rekonfigurationder TVEE 76
Zentraler Ansatz 76

Verteilter Ansatz 77

Diskussion der Ansédtze 79
Implementierung 82
51 Rekonfiguration L oo 82
5.1.1 Suspend/Resume virtueller Knoten 82

5.1.2 Migration virtueller Knoten 83

5.1.3 Migration von Netshaper Instanzen 83

5.1.4 Anpassung der Layer 2 Topologie 83

5.2 Optimierung der Platzierung 84
5.3 Monitore e 84
5.3.1 Mittlere Datenraten L. 84

5.3.2 Mittlere Auslastung L oL oo L

5.4 Probleme Rekonfiguration
54.1 Routing Tabelle
5.4.2 Probleme im Zusammhang mit netperf und iperf

6 Evaluation

6.1 Konstanten Rekonfigurationskostenmodell
6.2 Performance des Optimierungsalgorithmus
6.2.1 GridSzenario L
6.2.2 Waxman Graph Szenario
6.2.3 Routerketten Szenario L.
6.24 Fazit
6.3 Performance Neuplatzierung
6.3.1 Sensor Szenario L L i
6.3.2 Waxman Szenario. Lo oo
7 Zusammenfassung und Ausblick
7.1 Zusammenfassungo
7.2 Offene Probleme und Ausblick

Literaturverzeichnis

104
104
105

107

Abbildungsverzeichnis

2.1
2.2
2.3
2.4
2.5

4.1
4.2
4.3
4-4
4.5
4.6
4.7
4.8
49
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

6.1
6.2

6.3

TVEE Architektur
Netshaper
epochetime
Beispiel fiir mogliches Testszenario
Beispiel fiir Konfigurationder TVEE

Beispiel fiir Lastverlauf eines virtuellen Knotens
Architektur Neuplatzierung
Beispiel fiir Neuplatzierung durch Migration
Migration eines virtuellen Knotens
Anpassung von Netzwerkkomponenten - virtuelle Knoten verteilt
Anpassung von Netzwerkkomponenten - virtuelle Knoten zusammen
Anpassung von Netzwerkkomponenten - virtuelle Knoten verteilt
Synchronisation - zentraler Ansatz
Synchronisation - verteilter Ansatz
Beispiel Kosten Datentransfer
Erwartete Laufzeiten zweier Platzierungen
Beispiel zur Berechnung von Lastdnderungen
Typischer Cooling Schedule
Historie der Last eines virtuellen Knoten
Verteiltes Loadbalancing o o L
Bildung einer Domédne
Verteilte Optimierung der Platzierung
Lokales Topologiemodell
Zentrale Rekonfiguration L.
Zentrale Rekonfiguration L

Kosten fiir Suspend und Resume Operation in Abhdngigkeit von der Anzahl
derKnoten
Kosten fiir Dump und Undump eines Knotens in Abhingigkeit von erwarteter
Grole des Dumpfiles Lo
Kosten fiir Dump und Undump einer Netshaper Instanz in Abhédngigkeit von
der Grofle der gepufferten Frames

6.4 Kosten fiir Dump und Undump einer Netshaper Instanz in Abhédngigkeit von

der Grofle der Parameterliste o L. 90
6.5 Kosten fiir das Beenden eines Knotens 90
6.6 Kosten Transfer von Daten in Abhédngigkeit vom zu iibertragenden Datenvo-

lumen L 91
6.7 Grid Testszenario i e e 93
6.8 Performance des Optimierungsalgorithmus - Grid Szenario 94
6.9 Waxman Testszenario 95
6.10 Performance des Optimierungsalgorithmus - Waxman Graph Szenario 95
6.11 Routerketten Testszenario 96
6.12 Performance des Optimierungsalgorithmus - Router Chain Szenario 97
6.13 Beispiel Sensortestszenario L L L. 99
6.14 Sensor Szenario - TDF Verlauf. 100
6.15 Sensor Szenario - Experimentlaufzeit, 100
6.16 Waxman Szenario - TDF Verlauf 102
6.17 Waxman Szenario - Experimentlaufzeit 102

Tabellenverzeichnis
4.1 Vergleich verschiedener Optimierungsansdtze 74
4.2 Ubersicht Nachrichten zentrale Koordination 8o
6.1 xKonstanten. 91
6.2 cKonstanten e 92
Verzeichnis der Algorithmen

4.1 Algorithmus zur Optimierung einer Platzierung 56
4.2 Zentraler Neuplatzierungsalgorithmus 68

1 Einleitung

1.1 Motivation

Testen und Evaluieren sind wichtige Schritte in der Entwicklung neuer verteilter Anwendun-
gen und Netzwerkprotokolle. Durch die Komplexitit heutiger Anwendungen konnen diese
beiden Schritte zu einer herausfordernden Aufgabe werden. Peer-to-Peer Anwendungen wie
z.B. Gnutella [Gnu] bestehen meist aus tausenden von Knoten, die sich in einem Verbund
aus heterogenen Netzen befinden. Nicht selten nehmen deswegen Test und Evaluierung
einen grofsen Teil der Enwicklungszeit in Anspruch.

Aus der Literatur sind im wesentlich 3 Techniken fiir das Testen und Evaluieren neuer
verteilter Anwendungen bekannt: Live Testing [CCR" 03], Netzwerk Simulation [BTA™T,
Kes88, Rilo3] und Netzwerk Emulation [CSo3, Hemos, NSNKo7].

Beim Live Testing wird die Software vor der Auslieferung unverdndert unter realen oder
fast realen Bedingungen getestet. Da realistische Testszenarien meist mehrere tausend
Knoten umfassen, ist der Aufbau einer Live-Testumgebung allerdings mit sehr hohen Kosten
verbunden. Zudem sind je nach eingesetzter Technologie z.B. Funk-LANs Messergebnisse
nicht reproduzierbar. Aufserdem ist die Testumgebung auf bereits existierende Technologien
beschrankt. Live Testing ist also nur bedingt geeignet fiir das Testen und Evaluieren neuer
verteilter Anwendungen.

Netzwerk Simulation [GRLo5] stellt im Gegensatz zum Live Testing eine kostengiinstige
und kontrollierbare Alternative dar, die zu reproduzierbaren Messergebnissen fiihrt. Bei der
Simulation wird das reale Netzwerk auf ein parametrisierbares Modell abgebildet. Dieses
Modell kann einen beliebigen Grad an Abstraktion aufweisen, weshalb Messergebnisse
in Hinblick auf die reale Welt mit Vorsicht zu geniefien sind. Meist ist aufSerdem eine
Reimplementierung der zu testenden Software notig.

Die dritte in der Literatur aufgefiihrte Technik ist die Netzwerk Emulation [GRLos5]. Sie
stellt einen hybriden Ansatz aus Live Testing und Simulation dar und vereint Vorteile
beider Ansitze. In der Emulation werden reale Elemente, wie Ziel-Hosts und Protokolle,
mit kiinstlichen, simulierten oder abstrahierten Elementen,wie Netzwerkverbindungen und
Hintergrundverkehr, verbunden. Dadurch entsteht ein synthetische, parametrisierbare Netz-
werkumgebung, in der Eigenschaften wie z.B. Bandbreite, Verzogerung und Verlustrate

1.1 Motivation

festgelegt werden konnen. Dies ermoglicht die Erzeugung von reproduzierbare Messerger-
gebnisse. Im Gegensatz zur Simulation muss hierbei die zu testende Software nicht angepasst
werden. Getestet wird bei der Emulation meist in Realzeit [FTO, MI]. Die Emulation vereint
Vorteile des Livetestings und der Simulation: Realitdtsndhe und Kontrollierbarkeit .

In vielen Emulationsumgebungen wird pro Kommunikationsknoten ein physikalischer
Computer eingesetzt. Realistische Testszenarien umfassen allerdings meist tausende Kommu-
nikationsknoten, was einen hohen Hardwareaufwand bedeutet. Fiir grofse Szenarien werden
daher besser skalierbare Ansitze benotigt. Aus der Literatur sind zwei Techniken bekannt,
die eine skalierbare Emulationsumgebung ermoglichen: Knoten- und Zeitvirtualisierung.

Bei der Knotenvirtualisierung [AH06] werden mehrere Instanzen der zu testenden Software
auf einem physikalischen Rechner genannt physical Node(PNode) ausgefiihrt. Jede Instanz
wird dabei in ihrer eigenen Ausfiihrungsumgebung, genannt virtual node(VNode), gestartet.
Uber diesen Ansatz kann eine bessere Ausnutzung der zu Verfiigung stehenden Hardware
gewdhrleistet werden. Werden mehrere physikalische Rechner z.B. iiber ein LAN verbunden
ermoglicht der Knotenvirtualisierungsansatz die Segmentierung einer Netzwerk Topologie
durch die Verteilung der einzelnen VNodes auf die vorhandenen physikalischen Rechner.
Eine Emulationsumgebung, die aus mehreren physikalischen Rechnern besteht, wird verteilte
Emulationsumgebung genannt. Durch Knotenvirtualisierung ldsst sich die Grofse eines
Testszenarios, also die Anzahl der Knoten, massiv steigern. Durch den in [MHR] vorgestellten
Knotenvirtualisierungsansatz gelang es z.B. Testszenarien um das 28 fache zu vergrofiern.
Die Testumgebung bestand aus einem Pentium 4 (2,4 Ghz) Cluster. Allerdings ist die Anzahl
virtueller Knoten durch die zur Verfiigung stehenden Ressourcen wie CPU, Speicher und
Netzwerkbandbreite begrenzt.

Um die Anzahl der Knoten pro Test bei gleicher Hardware noch weiter erh6hen zu kon-
nen , wird eine Technik namens Zeitvirtualisierung [GYM™ 06] eingesetzt. Dabei wird die
Wahrnehmung der Zeit eines Betriebssystems und aller darin befindlichen Anwendungen
verdndert. Mittels eines Faktors, genannt time dilation factor (TDF), wird die Zeit verlangsamt.
Das Betriebssystem nimmt dabei die real vergehende Zeit kiirzer wahr. Dadurch stehen pro
Zeiteinheit mehr Ressourcen zur Verfiigung, was eine weitere Erhohung der Knotenanzahl
moglich macht. Diese Technik geht allerdings zu Lasten der Experimentlaufzeit. Sie erhoht
sich proportional zum TDFE.

Um die Experimentlaufzeit moglichst in einem vertretbaren Rahmen zu halten, konnen
verschiedene Techniken eingesetzt werden. Sind mittlere Datenraten sowie mittlere Auslas-
tungen der Knoten bekannt, kann ein Platzierungsalgorithmus [GHR] verwendet werden.
Dieser bildet vor dem Test virtuelle Knoten eines Testszenarios auf physikalische Knoten
derart ab, dass die erwartete Experimentlaufzeit minimal ist.

Eine andere Technik besteht in der adaptiven Anpassung des TDF Faktors [GHRog] an die
aktuelle Last. Ist das System tiberlastet so wird der TDF Faktor erhoht. Befindet sich das
System in einem Zustand mit ungenutzten Ressourcen wird der TDF Faktor erniedrigt.

10

1.2 Ziel der Arbeit

Auf diese Weise kann eine hohe Auslastung der Testumgebung tiber das ganze Experiment
erreicht werden.

Um keinen Knoten zu iiberlasten orientiert sich die Last des Systems an dem maximal
ausgelasteten physikalischen Knoten. Dadurch kann es, trotz adaptiver TDF Anpassung, zu
einer schlechten Auslastung einzelner Rechner kommen. Dies ist der Fall, wenn Knoten sehr
unterschiedliche ausgelastet sind. In einer solchen Situation kann es sinnvoll sein, wiahrend
des Experiments bestimmte virtuelle Knoten zu migrieren, z.B. virtuelle Knoten des am
starksten ausgelasteten physikalischen Knotens zu einem weniger ausgelasteten. Dadurch
sinkt die Auslastung des Systems und der TDF Faktor kann erniedrigt werden, was zu einer
Verkiirzung der Experimentlaufzeit fiithrt. Bei einer Migration entstehen allerdings Kosten,
die berticksichtigt werden miissen.

1.2 Ziel der Arbeit

Im Rahmen dieser Diplomarbeit soll eine bestehende Emulationsumgebung, die Techni-
ken wie Knoten- und Zeitvirtualisierung einsetzt, um die Moglichkeit zur dynamischen
Neuplatzierung virtueller Knoten erweitert werden.

Bei unausgeglichener Last einzelner Rechner der Testumgebung sollen virtuelle Knoten
von iiberlasteten Rechnern auf weniger ausgelastete Rechner verschoben werden. Dazu
werden zundchst Mechanismen benétigt, die eine Migration virtueller Knoten erlauben.
Diese miissen z.B. die Sicherung des Zustands, den Transfer und die Wiederherstellung des
Zustands eines Knotens umfassen. Zudem gilt es, die Netzwerktopologie des Testszenarios
an die neue Situation anzupassen. Um Messergebnisse nicht zu verfdlschen, muss dies in
einem sehr kurzen Zeitfenster geschehen.

Des weiteren wird ein Algorithmus benotigt, der bei ungiinstiger Lastsituation, eine neue
Plazierung virtueller Knoten bestimmt. Eine neue Platzierung wird dabei durch Migration
einzelner Knoten erreicht. Durch die Migration entstehen Kosten, die bei der Auswahl einer
neuen Platzierung zu berticksichtigen sind.

Zur Beurteilung unterschiedlicher Platzierungen ist es notig, diese vorab abschdtzen zu
konnen. Es wird daher ein Modell gebraucht, mit dem sich Migrationskosten voraussagen
lassen. Migrationskosten konnen als Investition angesehen werden, die sich nur lohnen,
wenn die erwartete Kosteinsparungen hoher sind als die Investition.

11

1.3 Outline

1.3 Outline

Die folgenden Kapitel der Diplomarbeit sind folgendermafien gegliedert.

Im Kapitel 2 wird eine zeitvirtualisierte Emulationsumgebung namens TVEE (Time Virtuali-
zed Emulation Environment) vorgestellt. Diese bildet die Basis dieser Diplomarbeit.

Im darauf folgendem Kapitel 3 wird ein der dynamischen Neuplatzierung von virtuellen
Knoten sehr dhnliches Problem prasentiert: Taskmigration.

Kapitel 4 geht, dann nidher auf die dynamische Neuplatzierung von virtuellen Knoten ein.
Unter anderem werden in diesem Kapitel unterschiedliche Losungsansétze fiir Teilprobleme,
wie die Optimierung einer aktuellen Platzierung, oder die Umsetzung einer Platzierung,
vorgestellt und gegeneinander abgewogen.

In Kapitel 5 wird ndher auf einen Prototype eingegangen, in dem Losungsansitze und
vorgestellte Konzepte umsetzt wurden.

Dieser Prototype wird im folgenden Kapitel 6 evaluiert.

Im letzten Kapitel werden schliefilich Resultate zusammengefasst und auf offene Probleme
eingegangen.

12

2 Zeitvirtualisierte Emulationsumgebung

Im Rahmen des NET (Network Emulation Testbed) [NP] Projekts wurde eine Emulations-
umgebung namens Time Virtualized Emulation Environment (TVEE) zum Testen verteilter
Anwendungen entwickelt. Sie besteht aktuell aus einem PC Cluster mit 20 Dual Core Xeons
(2.13 Ghz) mit jeweils 24 GB Ram. Jeder Rechner des Clusters ist mittels Ethernet Karten an
2 Netzwerke angebunden: dem Kontrollnetzwerk und dem Emulationsnetzwerk. Kontroll-
und Testdatenverkehr sind damit voneinander getrennt.

In TVEE kommen Techniken wie Knotenvirtualisierung und Zeitvirtualisierung zum Einsatz.
Diese machen das System skalierbarer und ermoglichen die Emulation von Testszenarien
mit tausenden von Knoten [GMHRO08].

2.1 Architektur

Knoten- und Zeitvirtualisierung wird in TVEE durch einen geschachtelten Virtualisierungs-
ansatz erreicht. Dieser ist in Abbildung 2.1 dargestellt.

Auf jedem physikalischen Knoten (pNode) , wird pro CPU eine virtuelle Maschine (VM)
gestartet. Diese stellt eine virtuelle Zeit bereit, welche fiir das Betriebssystem innerhalb
der virtuellen Maschine vollig transparent ist. Ressourcen der VM werden mittels Virtual
Routing und Space Partitioning aufgeteilt (siehe Abschnitt 2.2). Pro Software Under Test(SuT)
Instanz wird ein virtueller Knoten (vINode) innerhalb der VM erzeugt.

Damit beliebige SuT Instanzen miteinander kommunizieren konnen, werden Software
Briicken eingesetzt. Diese verbinden virtuelle Netzwerkkarten der virtuellen Knoten, bzw. der
virtuellen Maschinen miteinander. Um eine Kommunikation tiber die Grenzen eines Rechners
hinweg zu ermoglichen, werden zudem Software Briicken an physikalische Netzwerkkarten
angebunden.

Im folgenden wird nun niher auf die Umsetzung der Netzwerk Emulation, Knoten- und
Zeitvirtualisierung eingegangen werden.

13

2.2 Knoten Virtualisierung

Physikalischer Knoten 1 Phys.
Knoten 2

Host

— o~)
c = c
2 2 2
o o o
= = <
< ~ ~
= u o
2 9 1]
© © ©
S S =
£ b= E
> > >

Virtuelle Virtuelle Virtuelle

Virtuelle NIC Virtuelle NIC

Briicke

il

’ Virtuelle Zeit ‘ ’ Virtuelle Zeit ‘

Hypervisor

NIC Hardware

Abbildung 2.1: TVEE Architektur

2.2 Knoten Virtualisierung

Knotenvirtualisierung ermdoglicht die Ausfithrung mehrerer zu testender Software Instanzen
auf einem physikalischen Knoten. Jede Software Instanz wird dabei in ihrer eigenen virtuellen
Umgebung ausgefiihrt. Aus der Literatur sind mehrere Virtualisierungsansatze bekannt.

Einen moglichen Ansatz stellt die Nutzung von virtuellen Maschinen dar. Dabei wird die zu
testende Software in einem Betriebssystem ausgefiihrt, das keinen direkten Zugriff auf die
Hardware hat. Der Zugriff erfolgt stattdessen {iber eine Software, die zwischen Hardware
und Betriebssystem eingefiigt wird. Diese wird virtual machine monitor (VMM) genannt. Sie
koordiniert den Zugriff unterschiedlicher virtueller Maschinen und den darin befindlichen
Betriebsystemen auf die Hardware. Jede SuT Instanz wird bei diesem Ansatz in einem
eigenen Betriebsystem ausgefiihrt.

Da bei diesem Ansatz Betriebsysteme unverandert benutzt werden konnen, ist die Virtuali-
sierung transparent fiir die zu testende Software. Allerdings sind fiir die Kommunikation
zwischen Software Instanzen in unterschiedlichen virtuellen Maschinen teure Kontextwechsel
notig, was zu einem groflen Virtualisierungsoverhead fiihrt.

14

2.3 Zeit Virtualisierung

Einen giinstigeren Ansatz stellt die Nutzung eines virtuellen Netzwerkstacks dar. Bei diesem
Ansatz wird nur der Netzwerkstack virtualisiert. Im Gegensatz zum virtuellen Maschinen
Ansatz werden alle SuT Instanzen im gleichen Betriebssystem ausgefiihrt.

SuT Instanzen konnen bei diesem Ansatz in sogenannten virtuellen Knoten voneinander
separiert werden. Ein virtueller Knoten umfasst dabei

e eine bestimmte Anzahl von Prozessen (z.B. die SuT)

e cinen Netzwerkstack, der mit Prozessen des virtuellen Knotens verbunden ist

Im Gegensatz zum virtuellen Maschinenansatz ist der Speicheroverhead deutlich geringer.
Auflerdem werden keine teuren Kontextwechsel fiir die Kommunikation zwischen SuT
Instanzen benétigt. Allerdings ist die Nutzung von virtuellen Netzwerkstacks nicht so
transparent wie der virtuelle Maschinen Ansatz.

In TVEE wurde sich fiir den Netzwerk Stack Ansatz entschieden. Dazu kommt OpenVZ
zum Einsatz.

OpenVz ist ein leichtgewichtiges Virtualisierungssystem, das unabhidngige, sicher und
isolierte Container (virtuelle Knoten) auf einer physikalischen Maschine bereitstellt. Neben
Netzwerkstack Virtualisierung wird in OpenVZ noch Space Partitioning eingesetzt. Dadurch
erscheint jeder Container als einzelner Host mit eigenen Usern, autonomem Dateisystem
und Speicher, unabhingiger Ip Adresse und eigenen Anwendungen.

Laut [GMHROo08] stellt OpenVZ eine Virtualisierungslosung mit sehr geringem Speiche-
roverhead dar. Fiir jeden Container (VNode) werden nur zusatzlich 300 kbyte Speicher
benotigt. Dies ermoglicht die Ausfithrung tausender virtueller Knoten auf einem einzelnen
physikalischen Knoten.

2.3 Zeit Virtualisierung

Zeitvirtualisierung stellt einen Ansatz dar, mit dessen Hilfe sich zur Verfligung stehende
Ressourcen kiinstlich erhdhen lassen. Sie kann unterschiedlich umgesetzt werden(siehe
[GYM " 06]). In TVEE wird eine angepasste virtuelle Maschine verwendet, um virtuelle Zeit
bereitzustellen.

Aktuell kommt in TVEE Xen [xen] als Hypervisor zum Einsatz. Xen nutzt eine Technik
namens Paravirtualisierung. Bei dieser Technik wird die Hardware nicht emuliert, sondern
den virtuellen Maschinen wird ein direkter Zugriff auf vorhandene Ressourcen ermoglicht.
Daher ist Xen effizient, erfordert aber eine Portierung der Betriebssysteme (iiblicherweise
Gastsysteme genannt), die in den virtuellen Maschinen laufen sollen.

In Xen werden Gastsysteme als Domains bezeichnet. Unter den Domains nimmt die Domain
mit dem Index 0 (dom0) eine besondere Rolle ein. Diese wird beim Booten gestartet und

15

2.4 Netzwerk Emulation

besitzt spezielle Rechte, wie z.B. die Befugnis zum Starten und Verwalten anderer Domains,
meist domU genannt. Zur effizienten Unterstiitzung von Multicoresystemen wird in TVEE
aktuell auf jedem physikalischen Knoten eine domo und gleich viele domUs wie verftigbare
CPU gestartet([GHR]).

Standardmaéfiig unterstiitzt Xen keine virtuelle Zeit. Daher wurde die Schnittstelle zwischen
Hypervisor und den virtuellen Maschinen um eine Funktion fiir die Einstellung der virtuellen
Zeit erweitert. Uber einen time dilation factor (TDF) kann die Geschwindigkeit, mit der die
virtuelle Zeit voranschreitet, gesteuert werden.

2.4 Netzwerk Emulation

domU

vNode

Abbildung 2.2: Netshaper

Netzwerk Emulation ermoglicht die Schaffung einer kiinstlichen Netwerkumgebung. In
TVEE erfolgt die Umsetzung der Netzwerk Emulation durch die Integration eines Tools
namens Netshaper in den Treiber der virtuellen Netzwerkkarte (veth). Dieser wird von
OpenVZ bereitgestellt und kann von jedem virtuellen Knoten zur Kommunikation mit
anderen Knoten oder dem Root Betriebsystem genutzt werden.

In OpenVz besteht der virtuelle Netzwerkkartentreiber aus zwei Komponenten. Einem
virtuellen Netzwerkgerét, das nur innerhalb des virtuellen Knoten sichtbar ist und einem
Netzwerkgerit, das nur fiir das aufserhalb in der virtuellen Maschine laufenden Betriebs-
system sichtbar ist. Typischerweise werden Instanzen der einen Komponente etho, ethi,...
genannt und die der anderen veth<id>.o, veth<id>.1,... wobei <id> fiir die Id eines virtuellen

16

2.5 Techniken zur Experimentlaufzeitminimierung

Knotens steht. Beide Gerite sind derart verbunden, dass Pakete, die an das eine Gerét
geschickt werden, auch auf dem anderen Gerét sichtbar werden.

Wie in Abbildung 2.2 dargestellt, wird fiir die Netzwerkemulation in TVEE zwischen beide
Netzerkgerite eine zusitzliche Komponente eingefiigt. Diese wird Netshaper genannt. Je
nach gewtinschtem Verhalten des Netzwerkes, werden im Netshaper z.B. Frames verzogert
oder sogar verworfen. Das Verhalten des Netshapers richtet sich nach den Einstellungen,
die tiber das Proc-Dateisystem vorgenommen werden konnen. Mogliche Einstellungen sind
z.B. die Bandbreite, die Verlustrate und die Definition von Eigenschaften fiir bestimmte
Verbindungen zwischen virtuellen Knoten. Diese Einstellungen konnen jeweils separat fiir
die Sende- und Empfangsrichtung definiert werden.

Fiir beide Richtungen wird jeweils eine eigene Netshaper Instanz gestartet. Um Sendezeit-
punkte von Frames anzupassen, besitzt jede Netshaper Instanz einen Puffer, in dem noch zu
sendende Frames zwischengespeichert werden.

2.5 Techniken zur Experimentlaufzeitminimierung

Zur Minimierung der Experimentlaufzeit kommen in TVEE bisher zwei Techniken zum Ein-
satz: die Epochen basierte virtuelle Zeit und ein Platzierungsalgorithmus namens Netplace.
Beide Techniken sollen im folgenden kurz vorgestellt werden.

2.5.1 Epochen basierte virtuelle Zeit

Wihrend eines Experiments ist es moglich, dass die Auslastung der Testumgebung variiert.
Ursache dafiir kann z.B. eine sich dndernde Lastanforderung virtueller Knoten sein.

Zu keinem Zeitpunkt des Tests diirfen Rechner der Testumgebung tiberlastet werden. An-
sonsten kann es zur Verfdlschung von Messergebnissen kommen. Daher muss der TDF
Faktor stets angemessen gewdahlt werden.

Um Uberlasten zu verhindern und gleichzeitig das System moglichst gut auszulasten, ist
es sinnvoll, den TDF adaptiv zu wéhlen. Um Testergebnisse nicht zu verfdlschen, muss
zudem die Anpassung des TDF auf allen physikalischen Knoten der Testumgebung nahezu
gleichzeitig erfolgen. Dies macht eine gewisse Synchronisation der einzelnen Knoten nétig.

Im Rahmen der TVEE wurde ein Verfahren entworfen, das den TDF Faktor adaptiv an die
aktuelle Lastsituation anpasst und dabei den Synchronisationsoverhead in einem vertretbaren
Rahmen hilt. Dem Verfahren liegt eine Epochen basierte virtuelle Zeit zugrunde. Die Laufzeit
des Experiments wird dabei in Epochen unterschiedlicher Liange eingeteilt. Wahrend einer
Epoche ist der TDF Faktor konstant. Erst beim Ubergang zu einer neuen Epoche wird dieser
gedndert und der gednderte Werte zeitgleich an alle virtuellen Maschinen der physikalischen

17

2.5 Techniken zur Experimentlaufzeitminimierung

Virtuelle Maschine

Lastmonitor L
astmonito mit virtuellen Knoten

Lastnachricht TDF Nachrichten

Komponente fiir
Epochenwechsel

Koordinator

Abbildung 2.3: epochetime

Rechner weitergeleitet. Eine neue Epoche wird eingeleitet, falls die Last des Systems einen
Uberlastschwellwert iibersteigt oder einen Unterlastschwellwert unterschreitet.

Zur adaptiven Anpassung des TDF kommt ein Regelkreis zum Einsatz. Dieser ist in ??
dargestellt. Eine zentrale Rolle im Regelkreis bildet der Koordinator. Er passt den TDF an
die aktuelle Last an. Informationen tiber die aktuelle Last erhélt er von einem verteilten
Lastmonitor. Dieser zeichnet fiir jede virtuelle Maschine eines physikalischen Knoten Lasten
auf und berechnet daraus die Last des physikalischen Knotens.

Da kein Knoten im System tiberlastet werden darf, bildet der Koordinator aus den einzelnen
Lasten physikalischer Knoten das Maximum, um die Last des Systems zu bestimmen. Auf
Basis dieser Last passt der Koordinator den TDF an und propagiert den gednderten TDF
tiber die Komponente fiir den Epochenwechsel an die physikalischen Knoten. Je nach Uber-
oder Unterlastsituation wird der TDF schrittweise erhtht, bzw. erniedrigt.

2.5.2 NETplace

In TVEE wird die Laufzeit eines Experiments mafsgeblich durch den TDF Faktor bestimmt.
Da kein physikalischer Knoten {iberlastet werden darf, richtet sich dieser nach dem am
starksten ausgelasteten Knoten. Um eine moglichst hohe Auslastung des gesamten System zu

18

2.5 Techniken zur Experimentlaufzeitminimierung

gewdhrleisten, ist es daher sinnvoll, alle physikalischen Knoten moglichst gleich auszulasten.
Dies ermoglicht die Erhohung der Geschwindigkeit mit der die virtuelle Zeit voranschreitet,
was wiederum zu einer Verkiirzung der Experimentlaufzeit fiihrt.

Eine moglichst giinstige Lastverteilung wird in TVEE durch die Verwendung eines automati-
schen Platzierungsalgorithmus, namens NetPlace erreicht.

Eine Platzierung ¢ wird dabei als Funktion verstanden, die virtuelle Knoten n € N auf
virtuelle Maschinen v € V abbildet. Jede virtuelle Maschine kann durch den physikalischen
Knoten p € P und die CPU c € C, die der VM zugewiesen wurde, adressiert werden. Damit
ergibt sich:¢ : x — (p,)

Der Platzierungsalgorithmus verteilt virtuelle Knoten des Testszenarios auf physikalische
Knoten der Testumgebung derart, dass die Gesamtlast und das Lastungleichgewicht zwi-
schen physikalischen Rechnern mdglichst klein sind.

Der Berechnung der Platzierung liegt ein Kostenmodell zugrunde. Einen wesentlichen
Bestandteil dieses Modells bilden Kommunikationskosten. Diese werden auf Basis mittlerer
Datenraten von Verbindungen zwischen virtuellen Knoten und der Art der Verbindung
berechnet.

Im Kostenmodell werden 3 unterschiedliche Arten von Verbindungen zwischen virtuellen
Knoten unterschieden:

e Intra-vm Links
e inter-vm Links

e inter pnode Links

Kommunizieren zwei virtuelle Knoten innerhalb einer virtuellen Maschine miteinander,
s0 handelt es sich um einen intra-vm Link. Diese Kommunikatonsmethode verursacht die
geringsten Kosten.

Tauschen 2 virtuelle Knoten Informationen aus, die sich in unterschiedlichen virtuellen
Maschinen auf dem gleichem physikalischen Rechner befinden, so handelt es sich um
einen inter-vm Link. Dieser verursacht mehr Kosten, ist allerdings giinstiger als ein inter-
pnode Link. Diese Art der Verbindung liegt vor wenn zwei virtuelle Maschinen miteinander
kommunizieren, die sich auf verschiedenen physikalischen Rechnern befinden.

Neben Kommunikationskosten berticksichtigt der Algorithmus zudem noch mittlere Lasten
der virtuellen Knoten.

Zur Platzierung der einzelnen Knoten kommt ein paralleler Algorithmus zum Einsatz. Dieser
berechnet gleichzeitig eine initiale Platzierung mithilfe eines Greedy Ansatzes und eine
Platzierung mithilfe eines Kantenschnitt basierten Ansatzes. Ergebnisse beider Ansitze
werden mittels eines Hill Climbing Algorithmus optimiert. Das bessere Ergebnis bildet die
Losung des Algorithmus.

19

2.6 Konfiguration

2.6 Konfiguration

Verteilte Software kann in der Regel sehr unterschiedliche Anforderungen haben: z.B. Skalier-
barkeit, hohe Verfiigbarkeit und Verladsslichkeit. Um sicher zu stellen, dass vorher definierte
Anforderungen von der Software eingehalten werden, ist es notig, sie unter verschiedenen
Bedingungen zu testen.

Dazu miissen Testszenarien definiert werden. Diese konnen sich, z.B. in der verwendeten
Hardware (z.B. 100 mbit Ethernet 1 gbit Ehternet), der Netztopologie, oder der Anzahl
der physikalischen Rechner, auf denen die Software ausgefiihrt wird, unterscheiden. Ein
einfaches Testszenario ist in Abbildung 2.4 dargestellt.

pNode 1
SuT
1 Gbhit
Ethernet NIC
1 Gbit
Ethernet NIC
pNode 2 pNode 3 pNode 4
SuT SuT SuT
100 mbit 100 mbit 100 mbit
Ethernet NIC Ethernet NIC Ethernet NIC

Switch

Abbildung 2.4: Beispiel fiir mogliches Testszenario

Um verteilte Software innerhalb der TVEE testen zu konnen, muss die Emulationsumgebung
je nach Testszenario unterschiedlich konfiguriert werden kénnen.

Dies geschieht mittels des TVEE Manager Frameworks. Es bietet die Moglichkeit, Testszena-
rien zu beschreiben und die Emulationsumgebung nach dieser Beschreibung automatisch
zu konfigurieren. Eine manuelle, oft sehr aufwendige und fehleranfillige Konfiguration der
Testumgebung soll dadurch vermieden werden.

Die Beschreibung des Testszenarios erfolgt tiber ein Ruby Skript. In diesem konnen Kom-
munikationsknoten, in denen die SUT ausgefiihrt werden soll, und Verbindungen zwischen
ihnen definiert werden. Dazu stehen 2 Klassen zur Verfiigung: VNode und CollisonDomain.

20

2.6 Konfiguration

Uber die VNode Klasse konnen virtuelle Knoten spezifiziert werden. Physikalische Knoten
des Testszenarios miissen also zundchst auf virtuelle Knoten abgebildet werden. Die VNode
Klasse bietet dabei unterschiedliche Konfigurationsmoglichkeiten. So kénnen z.B. die Anzahl
der verfiigbaren Netwerkgerdte sowie CPU Limitierungen festgelegt werden.

Fiir jede VNode Instanz erzeugt das Framework spater einen OpenVZ Container. Daher muss
tiir jeden Container spezifiziert werden, in welcher virtuellen Maschine er gestartet werden
soll. Eine Platzierung der Knoten kann z.B. vorab mittels NetPlace fiir das Testszenario
bestimmt werden.

Fiir jedes Netzwerkgerat(Instanz der VNic Klasse) einer VNode Instanz wird ein virtuel-
les Netzwerkgerat(veth) angelegt. Fiir jedes Netzwerkgerdt konnen dabei Parameter wie
Bandbreite, Delay, Verlustrate eingestellt werden. Diese Parameter werden spater an die
Netshaper Instanzen weitergegeben.

Im TVEE Manager werden 3 Arten von Netzwerken unterstiitzt: Netzwerke, die auf Punkt
zu Punkt Verbindungen beruhen, switch basierte Netzwerke und MANets(mobile adhoc
networks).

Die Beschreibung aller Netze basiert beim TVEE Manager auf Instanzen der Klasse Colli-
sionDomain. Mittels eines CollisionDomain Objekts lassen sich beliebig viele virtuelle Knoten
miteinander verbinden. Dazu werden virtuelle Netzwerkkarten von Knoten, die miteinander
kommunizieren mochten, an die gleiche CollisionDomain angebunden. Sind an einer Domain
nur zwei Knoten angeschlossen, so handelt es sich um eine Punkt zu Punkt Verbindung; bei
mehr Knoten, um ein switch basiertes Netzwerk. Eine Punkt zu Punkt Verbindung ist also
als Spezialfall eines geswitchten Netzwerks modelliert.

MANet Szenarien werden ebenfalls tiber CollisionDomains realisiert. Dazu werden alle mobile
Knoten an eine Collision Domain angebunden.

Fiir jedes CollisionDomain Objekt wird vom TVEE Manager spater mindestens eine Linux
Software Briicke erzeugt. Diese befindet sich innerhalb einer virtuellen Maschine. Werden
VNodes der gleichen CollisionDomain auf unterschiedlichen virtuellen Maschinen platziert, so
wird in jeder virtuellen Maschine, in der sich einer der VNodes befindet, eine Software Briicke
erzeugt. Die unterschiedlichen Softwarebriicken werden dann mittels VLan verbunden.
So kann sichergestellt werden, dass Nachrichten, trotz Aufteilung der Knoten, auf unter-
schiedliche virtuelle Maschinen nur von Netzwerkkarten, die an die gleiche CollisionDomain
angeschlossen sind, empfangen werden.

Abbildung 2.5 zeigt wie eine konfigurierte Emulationsumgebung z.B. fiir das in Abbildung
2.4 dargestellte Testszenario aussehen konnte.

Fiir jeden physikalischen Knoten des Testszenarios wurde ein virtueller Knoten in der
Testumgebung erzeugt. Zwei dieser Knoten wurden dabei auf der virtuellen Maschine VM1,
die anderen auf der virtuellen Maschine VM2, platziert. Beide Maschinen befinden sich in
diesem Fall auf dem gleichen physikalischen Knoten.

21

2.6 Konfiguration

pNode

VM1

SuT

SuT

VM2

VNic VNic | | VNic VNic VNic
Bridgel Bridge2 Bridge2
VNic VNic

Abbildung 2.5: Beispiel fiir Konfiguration der TVEE

Fiir die Punkt zu Punkt Verbindung des Knotens pNode 1 und pNode 2 wurde eine Software-
briicke angelegt und die passenden virtuellen Netzwerkkarten an diese Briicke gehangt. Fiir
den geswitchten Teil des Netzwerks, also fiir die Verbindung der Knoten pNode2, pNode3
und pNode4, wurde in beiden virtuellen Maschinen jeweils eine Briicke mit der Id 2 angelegt.
Verbunden werden die Briicken iiber Netzwerkkarten beider virtuellen Maschinen. Damit
bei den beiden Briicken nur Nachrichten der jeweils anderen Briicke ankommen, wurde auf
beiden Seiten ein Vlan Gerét mit der Id 50 eingerichtet.

22

3 Related work

Fiir die Migration von virtuellen Knoten im Zusammenhang mit Load Balancing lieffen sich
keine passenden Quellen finden. Daher sollen hier ein dhnliche Probleme vorgestellt werden:
Load Balancing in verteilten/parallelen Systemen

3.1 Load Balancing in verteilten/parallelen Systemen

Verteilte Systeme werden hédufig zur Losung von Problemen eingesetzt, die sich in Teilpro-
bleme zerlegen lassen. Zur Losung dieser werden Tasks erzeugt, die von Prozessoren des
verteilten Systems verarbeitet werden. Durch die so erreichte Parallelisierung erhofft man
sich eine Verkiirzung der Rechenzeit, die fiir die Losung eines Problems notig ist. Entschei-
dend fiir die Performance dieses verteilten Ansatzes ist die Verteilung der einzelnen Tasks
auf vorhandene Prozessoren. Um eine effiziente Nutzung der Ressourcen zu gewéhrleisten,
muss die Last, die einzelne Tasks verursachen, moglichst gleichméfsig auf alle Prozessoren
verteilt werden.

Zur gleichméfligen Verteilung der Last sind aus der Literatur zwei Techniken bekannt:
Statische - und dynamische Lastverteilung.

Bei der statischen Lastverteilung [SKS92] erfolgt die Zuweisung von Tasks zu Prozessoren
zur Compilezeit. Mittels zur Verfligung stehendem a priori Wissen tiber Ressourcen(z.B.
Anzahl Prozessoren, Grofle des Speichers) und Tasks (z.B. mittlere Laufzeit) wird versucht,
eine Platzierung der Tasks zu finden, die im Sinne der Lastverteilung optimal ist. Dazu
kommen z.B. Techniken wie Graphpartitionierung und Simulated Annealing [Kir84] zum
Einsatz.

Im Gegensatz zum statischen Verfahren erfolgt die Lastverteilung beim dynamischen Verfah-
ren [SKS92] zur Laufzeit. Die Verteilung der Tasks orientiert sich dabei an dem aktuellen
Systemzustand. Eine wichtige, in diesem Zusammenhang eingesetzte Technik bildet die
Migration von Tasks. Dabei werden Tasks von einem Prozessor zu einem anderen verschoben.
Auf diese Weise konnen Lastungleichgewichte im System beseitigt werden. Im Gegensatz
zur statischen Lastverteilung erzeugt das dynamische Verfahren einen gewissen Overhead
zur Laufzeit. So miissen z.B. fiir die Bildung des aktuellen Systemzustandes Lastnachrichten
verschickt werden. Auflerdem entstehen Kosten fiir den Transfer von Knoten.

23

3.1 Load Balancing in verteilten/parallelen Systemen

Ziel beider Verfahren ist die Verkiirzung der Task Laufzeiten, auch Antwortzeit genannt.
Dies wird durch eine gleichméfligere Auslastung des gesamten Systems erreicht.

3.1.1 Task Migration

Task Migration ist eine Technik, die bei der dynamischen Lastverteilung zum Einsatz kommt.
Ziel der Task Migration ist eine gleichméfiigere Auslastung des gesamten Systems durch
den Transfer einzelner Tasks. Sie kann prdemptiv oder nicht prademtiv sein [SKSg2].

Bei der praemptiven Task Migration werden Knoten zur Laufzeit verschoben. Da hierfiir
der aktuelle Status eines Task festgehalten werden muss, ist diese Methode mit zusédtzlichen
Kosten verbunden. Typischerweise enthdlt der aktuelle Status ein virtuelles Speicher Abbild ,
nicht gelesene I/O Puffer und Nachrichten sowie Zeiger auf gedffnete Dateien.

Im Gegensatz zur praemptiven Task Migration erfolgt der Transfer eines Tasks bei der nicht
praemptiven Migration ausschliefslich bevor der Task gestartet wurde. Ein Statusabbild ist
bei dieser Methode also nicht nétig.

Task Migrationsalgorithmus

Im Folgenden sollen nun wesentliche Bestandteile eines Migrationsalgorithmus vorgestellt
werden. Spétere Losungsansitze fiir die dynamische Neuplatzierung werden sich an dem
hier vorgestellten Schema orientieren.

Im Wesentlichen lasst sich nach [WLR89] ein Migrationsalgorithmus in 4 Phasen aufteilen:
Processor Load Evaluation, Load Balancing Profitability Determination, Task Migration
Strategy und Task Selection Strategy.

e Processor Load Evaluation In dieser Phase wird die Last jedes physikalischen Knotens
im System ermittelt. Die Lastdaten dienen als Input fiir die Load Balancing Profitability
Phase.

¢ Load Balancing Profitability In dieser Phase wird der Grad des Lastungleichgewichts
ermittelt. Er dient als Indikator fiir mogliche SpeedUps, die durch den Transfer von
Tasks erreicht werden koénnen. Ist eine Migration im aktuellen Zustand sinnvoll, sind
also Ersparnisse hoher als Migrationskosten, so wird zur ndchsten Phase iibergegangen.

e Task Migration Strategy In dieser Phase werden physikalische Knoten ausgewdhlt,
die an der Migration teilnehmen sollen. Sie konnen entweder die Rolle der Quelle oder
des Empfangers einnehmen: also entweder Tasks abgeben oder Tasks bekommen.

e Task Selection Strategy In der letzten Phase werden Tasks der Quellknoten fiir den
Transfer ausgewdhlt und an die Empfangerknoten verschickt.

24

3.1 Load Balancing in verteilten/parallelen Systemen

Beispiele

Im Folgenden sollen Beispiele von Task Migrationsalgorithmen vorgestellt werden. Diese
lassen sich grob in verteilte und zentrale Algorithmen einteilen.

Zentrale Algorithmen sind eher wenig verbreitet. Eine mogliche Ursache besteht in der
begrenzten Skalierbarkeit zentraler Ansdtze. Der physikalische Knoten, auf dem der Mi-
grationsalgorithmus ausgefiihrt wird, kann leicht zum Engpass werden. Dies liegt z.B.
am Aufwand, der benoétigt wird, um die Last des Systems zu bestimmen. Er steigt mit
zunehmender Prozessoranzahl.

Meist werden deshalb verteilte Algorithmen eingesetzt. Ein verbreiteter Ansatz ist die
Einteilung des gesamten Systems in sich tiberlappende Doménen. Eine Doméne kann dabei
z.B. durch eine Nachbarschaftsrelation definiert sein, also z.B. einen Prozessor und seine
direkten Nachbarn umfassen. Load Balancing findet dann nur innerhalb einer Doméne
statt.

Rendezvous Algorithmus Der Rendezvous Algorithmus ist ein zentraler Migrationsalgo-
rithmus. In einer zentralen Komponente, auch Koordinator genannt, werden Lastinforma-
tionen eines jeden physikalischen Knotens des Systems gesammelt. Sind zwei Knoten sehr
unterschiedlich ausgelastet, arrangiert der Koordinator ein Rendezvous zwischen beiden. In
diesem kann der stiarker ausgelastete Rechner Tasks an den weniger ausgelasteten abgeben.
Welche Tasks genau migriert werden, muss zwischen den Rendezvous Partnern ausgehandelt
werden.

Tiling Algorithmus Der Tiling Algorithmus [CPJLg8] ist ein verteilter Migrationsalgorith-
mus. Ein wesentlicher Bestandteil des Algorithmus ist die Unterteilung des verteilten Systems
in kleine disjunkte Doménen, sogenannte Windows. In diesen Windows konnen physikalische
Knoten Wissen iiber Lasten austauschen.

Durch Migration von Knoten innerhalb einer Doméane wird in diesem Algorithmus ein
perfektes lokales Loadbalancing angestrebt.

Um ein globales Load Balancing zu erreichen, werden Windows verschoben. D.h. die Menge
der physikalischen Knoten, die eine Doméne bilden, wird verdndert.

Gradient model load balancing method Die gradient model load balancing method [LK87]
gehort zur Klasse der verteilten Migrationsalgorithmen. Genau wie beim Tiling Algorithmus
wird das verteilte System in Doménen unterteilt. Allerdings werden hier {iberlappende und
nicht disjunkte Domé&nen verwendet. D.h. ein physikalischer Knoten ist bei dieser Methode
in mehr als einer Doméne vertreten.

25

3.1 Load Balancing in verteilten/parallelen Systemen

Die Definition einer Doméne basiert dabei auf Nachbarschaftsbeziehungen. Sie umfasst
einen Knoten und alle direkten Nachbarn des Knotens. Wichtig ist, dass Wissen iiber Last
und Tasks nur innerhalb einer Doméne ausgetauscht werden kann.

Die Gradient model load balancing method gehort zur Gruppe der Receiver Initiated
Algorithmen. Eine Migration wird von Knoten angestofien, die sich in einem Zustand
geringer Last befinden, also bereit sind, Tasks zu empfangen.

Der Algorithmus basiert auf einer Gradientkarte, die die kiirzesten Entfernungen (in hops)
zu einem wenig ausgelasteten Knoten enthilt. Diese wird verteilt auf den physikalischen
Knoten des Systems gespeichert. Jeder Knoten hilt dabei seine kiirzeste Entfernung zu
einem wenig ausgelasteten Rechner fest. Diese wird auf Basis von Entfernungsinformationen
direkter Nachbarn bestimmt.

Zu migrierende Tasks werden entlang dieser Gradientenkarte verschoben. Tasks wandern
also auf dem kiirzesten Weg von stark ausgelasteten zu weniger ausgelasteten Knoten. Jeder
Knoten routet dabei Tasks zu dem ihn bekannten Knoten mit der kiirzesten Entfernung zu
einem wenig ausgelasteten Knoten.

Durch sukzessive lokale Migration kann dadurch ein globales Load Balancing erreicht
werden.

Sender Initiated Diffusion Bei Sender Initiated Diffusion [ELZ86] [LRCMgs5] Algorithmen
handelt es sich um Migrationsalgorithmen, die wie bei der Gradienten Methode auf lokalen,
sich iiberlappenden Doménen aufbauen.

Anders als bei der Gradienten Methode wird die Migration allerdings von einem tiberlasteten
physikalischen Knoten angestofien. Dieser fungiert als Sender und gibt Tasks an seine
Nachbarn ab.

Bei Sender Initiated Diffusion Algorithmen schicken Knoten Nachrichten mit ihrer aktuellen
Last an alle Nachbarn. Beim Erhalten einer Lastnachricht wird ein lokaler Load Balancing
Algorithmus angestofien.

Dieser berechnet zundchst die mittlere Auslastung der Domé&ne und die Lastabweichung
zum Mittelwert des Knotens, der die Nachricht empfangen hat. Falls dieser Knoten mehr
Last als seine Nachbarn aufweist, wird die Uberlast durch Migration von Tasks auf die
Nachbarn verteilt. Der Anteil der Last, den ein Nachbarknoten erhilt, richtet sich dabei nach
seiner Auslastung.

Die Uberlast diffundiert bei diesem Ansatz von einem Prozessor zu seinen Nachbarn und
gleicht so das Lastungleichgewicht aus. Durch die Uberlappung der einzelnen Doménen,
wird ein globales Load Balancing erreicht.

26

3.1 Load Balancing in verteilten/parallelen Systemen

Random Algorithm Beim Random Algorithmus handelt es sich um einen sehr einfachen
verteilten Migrationsalgorithmus. Jedes mal, wenn auf einem Rechner des System ein neuer
Task erzeugt wird, wird dieser zuféllig auf einen anderen Rechner des Systems migriert.

Im Gegensatz zu den vorher zuvor vorgestellten Algorithmen setzt der Random Algorithmus
auf eine praemptive Migration. Im Mittel wird jeder physikalische Knoten des Systems gleich
belastet, unabhéngig davon wo er sich im verteilten System befindet.

27

4 Dynamische Neuplatzierung

4.1 Einflihrung

In Abschnitt 2.5.2 wurde ein Algorithmus namens NETplace vorgestellt. Dieser berechnet
eine moglichst Laufzeit optimale initiale Platzierung virtueller Knoten. Das in Netplace
verwendete Kommunikationskostenmodell beruht auf Annahmen {iber mittlere Datenraten
von Verbindungen zwischen virtuellen Knoten und deren mittleren Lasten. Diese miissen
allerdings nicht unbedingt zutreffend sein. Zudem koénnen Lasten virtueller Knoten wéahrend
des Experiments schwanken, wodurch sich Lastverhdltnisse des Systems zeitweise d&ndern
konnen. Dadurch kann die initiale Platzierung suboptimal sein.

Abbildung 4.1 zeigt z.B. einen moglichen Lastverlauf eines virtuellen Knotens.

Der tatsdchliche Ressoucenbedarf einer virtuellen Maschine kann sich, durch wechselnde
Bediirfnisse virtueller Knoten in ihr, wiahrend eines Experiments d&ndern. Dies kann Aus-
wirkungen auf die Experimentlaufzeit haben. Droht eine virtuelle Maschine {iberlastet zu
werden, so muss die virtuelle Zeit verlangsamt werden.

100
80
60
Lastin %

20

/
N

[¥ |

mittlere Last

/7

12345678910

Zeit

Abbildung 4.1: Beispiel fiir Lastverlauf eines virtuellen Knotens

28

4.2 Architektur

Um eine Uberlast zu vermeiden, kann es daher sinnvoll sein, virtuelle Knoten neu zu
platzieren. Im Falle einer drohenden Uberlast einer VM koénnten z.B. virtuelle Knoten auf
weniger belasteten VMs migriert werden.

Je nach aktuellem Ressourcenbedarf virtueller Knoten, kann eine andere Platzierung sinnvoll
sein. Fiir eine gegebene Situation gilt es , eine moglichst optimale Platzierung zu finden.
Dies ist eine Platzierung unter der die erwartete Experimentlaufzeit minimal ist.

Dabei ist zu beachten, dass fiir den Ubergang von der aktuellen zu einer neuen Platzierung
zundchst einige Kosten anfallen. So miissen beispielsweise virtuelle Knoten migriert sowie
Netzwerktopologien angepasst werden. Dadurch erhoht sich die Experimentlaufzeit, was
durch Einsparungen, die durch die neue Platzierung erreicht werden, zunichst ausgeglichen
werden muss.

4.2 Architektur

In diesem Abschnitt sollen nun wesentliche Bestandteile der dynamischen Neuplatzierung
von virtueller Knoten vorgestellt werden. Diese sind in Abbildung 4.2 dargestellt.

Zunichst werden die aktuellen Lastverhéltnisse des Systems analysiert. Dies geschieht auf
Basis aktueller Lasten physikalischer Knoten. Herrscht zwischen den Lasten ein grofies
Ungleichgewicht, so besteht ein hohes Optimierungspotential der aktuellen Platzierung.

Wurde von der Komponente Beurteilung der Lastverhiltnisse ein Lastungleichgewicht festge-
stellt, wird der Neuplatzierungsalgorithmus angestofSen.

Dieser optimiert die aktuelle Platzierung in Hinblick auf die erwartete Experimentlauf-
zeit. Fiir die Abschitzung erwarteter Experimentlaufzeiten miissen nicht nur, wie in Net-
place vorgestellt, Kommunikationskosten, sondern auch Rekonfigurationskosten, die fiir
die Umsetzung einer Platzierung entstehen, betrachtet werden. Ein Modell fiir die Kom-
munikationskosten wird in 4.4 vorgestellt wird. Ein Modell zur Abschdtzung erwarteter
Rekonfigurationskosten enthilt Abschnitt 4.5.

Das Ergebnis der Optimierung ist eine alternative Platzierung. Diese wird in einem nédchsten
Schritt in der Komponente Beurteilung der Platzierung bewertet. Senkt die alternative Platzie-
rung die erwartete Experimentlaufzeit nicht, oder nur kaum, so wird sie nicht umgesetzt.
Lohnt sich allerdings die Umsetzung, so muss die Emulationsumgebung rekonfiguriert
werden. Dies geschieht durch die Komponente Rekonfiguration . Diese veranlasst u.a die
Migration von virtuellen Knoten, deren Platzierung sich gedndert hat. Dariiber hinaus passt
sie die Netzwerktopologie der Emulationsumgebung an die neue Situation an. In Abschnitt
4.3 wird ndher auf die Rekonfiguration der TVEE eingegangen.

Wie man in 4.2 sehen kann, ergeben die Emulationsumgebung und die dynamische Neuplat-
zierung zusammen einen Regelkreis. Dabei nimmt die Emulationsumgebung die Rolle der

29

4.3 Rekonfiguration der TVEE

‘ Emulationsumgebung mit virtuellen Knoten

Last phys. Knoten Aktionen zur Anpassung

Beurteilung der
Lastverhatnisse

I
AnstoR

AnstoR

Rekonfiguration

Neuplatzierungsalgorithmus

Aktuelle Platzierung Alternative Platzierung Beurteilung
"l Platzierung

Abbildung 4.2: Architektur Neuplatzierung

Regelstrecke und die dynamische Neuplatzierung die des Reglers ein. Die Regelgrofie ist
die erwartete Experimentlaufzeit unter der aktuellen Platzierung. Diese soll moglichst klein
sein.

In den folgenden Kapiteln wird nun niher auf die einzelnen Bestandteile der dynamischen
Neuplatzierung eingegangen.

4.3 Rekonfiguration der TVEE

In diesem Abschnitt wird ndher auf die Rekonfiguration der TVEE eingegangen. Sollen
virtuelle Knoten neu platziert werden, muss die Emulationsumgebung angepasst werden. Es
miissen z.B. virtuelle Knoten migriert und die Netzwerktopologie, welche die Kommunikati-
on zwischen Knoten ermdoglicht, angepasst werden.

In diesem Abschnitt wird auf wesentliche Bestandteile der Rekonfiguration eingegangen.
Zunichst werden allerdings Anforderungen, die an die Rekonfiguration gestellt werden,
vorgestellt.

30

4.3 Rekonfiguration der TVEE

4.3.1 Anforderungen

Zwei wesentliche Anforderungen der Rekonfiguration stellen Transparenz und geringe
Kosten dar.

Transparenz Um ein laufendes Experiment nicht zu beeinflussen - denn dadurch kénnte
es zur Verfdlschung von Messergebnissen kommen - ist es wichtig, dass die Rekonfiguration
der TVEE fiir den virtuellen Knoten und die darin befindliche Software under Test (SuT)
transparent ist.

Zwischen dem Ablauf des Experiments mit und ohne dynamische Neuplatzierung darf fiir
die SuT kein Unterschied erkennbar sein. Es diirfen also z.B. wiahrend der Rekonfiguration
keine Pakete verloren gehen.

Geringe Kosten FEine weitere Anforderung stellen geringe Kosten dar. Die Zeit, die fiir
den Ubergang von einer alten in eine neue Platzierung benétigt wird, muss gering sein. Sie
verringert die Laufzeiteinsparung, die durch eine Neuplatzierung erreicht werden kann.

Daher sollten fiir die Neuplatzierung notige Operationen moglichst effizient umgesetzt
werden sowie die zur Verfligung stehenden Ressourcen moglichst gut ausgenutzt werden.
Ein denkbarer Weg, um eine gute Ausnutzung bestehender Ressourcen zu erreichen, ist die
parallele Ausfithrung von notigen Operationen.

4.3.2 Operationen

In diesem Abschnitt sollen nun nétige Operationen zur Rekonfiguration der TVEE im Zuge
einer neuen Platzierung vorgestellt werden. Als Einstieg betrachten wir zundchst Abbildung

4.3.
Sie zeigt eine Beispiel fiir eine Rekonfiguration der TVEE. In diesem wird die Position

des virtuellen Knotens vNode2 verandert. Er soll von der virtuellen Maschine VM1 auf die
virtuelle Maschine VM2 umplatziert werden.

Im Zuge der neuen Platzierung muss die TVEE rekonfiguriert werden. Dazu wird der virtu-
elle Knoten vNode2 sowie die Netshaper Instanzen (NS), die mit dem virtuellen Netzwergeréat
veth2.0 verbunden sind, von der virtuellen Maschine VM1 zur Maschine VM2 migriert. Des
Weiteren findet eine Anpassung der virtuellen Layer 2 Topologie, bestehend aus Software-
briicken und Vlans, statt. Es wird ein Vlan Gerét mit er Id 50 in beiden virtuellen Maschinen
und eine Softwarebriicke bridge1 in der virtuellen Maschine VM2 erzeugt. Die so entstehende
neue Konfiguration der TVEE ist rechts in 4.3 dargestellt.

31

4.3 Rekonfiguration der TVEE

Aktuelle Konfiguration der TVEE Neue Konfiguration der TVEE

eth0 | eth0 |

Neuplatzierung

von vNode2

— “vethl1.0 veth2.0

bridgel bridgel

vnic vnic vnic vnic

Abbildung 4.3: Beispiel fiir Neuplatzierung durch Migration

Allgemein sind folgende Operationen fiir die Rekonfiguration der TVEE im Zuge einer
neuen Platzierung notig.

e Migration virtueller Knoten
e Migration von Netshaper Instanzen

e Anpassung der virtuellen Layer 2 Topologie

Um der Forderung nach Transparenz nachzukommen, miissen dariiber hinaus nachfolgende
Operationen ausgefiihrt werden.

o Verlangsamung der globalen virtuellen Zeit
e Start/Stopp der Prozessausfithrung in virtuellen Knoten

e Zwischenspeichern von Paketen

Alle Operationen werden im folgenden nun niher vorgestellt. Dabei werden auch die fiir die
Transparenz zusitzlich benotigten Operationen motiviert.

32

4.3 Rekonfiguration der TVEE

Migration virtueller Knoten

Die Migration virtueller Knoten bildet die Grundlage fiir den Ubergang zu einer neuen
Platzierung.

Fiir die Migration eines Knotens muss dazu zunéchst dessen Zustand gesichert werden.
Dabei muss der Zustand des Arbeitsspeichers,des Protokollstapels und des Dateisystem
des virtuellen Knotens beriicksichtigt werden. Die entstandene Sicherung, in der Regel eine
Bindrdatei, muss in einem nidchsten Schritt zum Zielrechner transferiert werden. Dort ist der
Knoten dann wiederherzustellen. Dieser Ablauf wird in Abbildung 4.4 dargestellt.

VM1 VM2

vNodel vNodel

)
B

N
J

Abbildung 4.4: Migration eines virtuellen Knotens

In TVEE wird fiir die Knotenvirtualisierung OpenVZ eingesetzt. OpenVZ bietet bereits die
Moglichkeit, virtuelle Knoten - in OpenVZ Container genannt- zu migrieren. Eine Sicherung
(Dump) umfasst alle privaten Daten eines Containers. Dies sind z.B. der Addressraum,
Registersitze, offene Dateien, offene Sockets, das aktuelle Arbeitsverzeichnis, Signal Handler,
Timer, User und Prozessdaten.

Bei einem Dump werden all diese Daten gesammelt und in einer Image Datei abgelegt.
Diese Image Datei kann dann zu einem anderen Rechner transferiert und dort als Container
wiederhergestellt werden.

In der aktuellen Implementierung umfasst die Sicherung allerdings nicht das Dateisystem,
also die , Festplatte” auf dem der virtuelle Knoten arbeitet.

Aus diesem Grund miissen Mafinahmen getroffen werden, die sicherstellen, dass der Contai-
ner auf dem Zielsystem das gleiche Dateisystem vorfindet. Je nach Schwere der Anderungen
besteht ansonsten die Gefahr, dass Container nicht wiederhergestellt werden kénnen, oder
Prozesse innerhalb von Containern externe Verdnderungen an offenen Dateien bemerken.

33

4.3 Rekonfiguration der TVEE

Das Dateisystem eines Containers befindet sich in OpenVZ im Ordner /vz/priva-
te/<ContainerID> auf dem Host. Dieser Ordner muss auf dem Quell und ZielHost identisch
sein.

Mogliche Mafinahmen identische Ordner zu erreichen sind:

1. Transfer des kompletten Ordners auf den Zielhost
2. Synchronisation der Ordner auf den Ziel- und Quellhost z.B. mittels rsync

3. Nutzung eines verteilten Dateisystemprotokolls auf dem Ziel- und Quellhost

Beim Transfer der Ordners auf den Zielhost werden eventuell bereits vorhandene Dateien
tiberschrieben. So ist sichergestellt, dass alle Dateien auf dem Zielhost aktuell sind. Allerdings
fallen bei dieser Methode bei jeder Migration hohe Kosten an. Diese sind aufierdem nicht
tiber mehrere Migrationen konstant. Im Laufe des Experiments konnen unter Umstdnden
grofie Logdateien erzeugt werden, die den Transfer des kompletten Ordners gegen Ende des
Experiments sehr teuer machen.

Weniger Daten miissen Ubertragen werden, wenn beide Ordner mittels eines Synchronisati-
ontools abgeglichen werden. Bei dieser Methode werden nur Anderungen beider Ordner
tibertragen. Um diese allerdings aufzuspiiren, ist ein gewisser Overhead notig. Beim rsync
Protokoll z.B. werden die zu synchronisierenden Dateien zunéchst in Blocke aufgeteilt, von
denen dann Priifsummen berechnet werden. Dies geschieht sowohl auf dem Quell als auch
auf dem Zielhost.

Wird ein verteiltes Dateisystemprotokoll benutzt, konnen beide Hosts iiber das Netzwerk
auf den gleichen Ordner zugreifen. Dieser kann sich z.B. auf einem Fileserver befinden und
tiber NFS angebunden werden. Bei der Migration miissen bei dieser Methode keine Daten
tibertragen werden. Allerdings ist der allgemeine Zugriff auf das Dateisystem langsamer
aufgrund des Overhead eines Dateisystemprotokolls. Da sich Daten nicht auf lokalen Fest-
platten der Hosts befinden, miissen sie bei einem Zugriff tiber das Netzwerk tibertragen
werden. Dies fiihrt zu einer hoheren Belastung der Hosts. In Folge dessen steht weniger
Rechenleistung fiir virtuelle Knoten (Container) zur Verfiigung.

Falls virtuelle Knoten wéhrend eines Experimients in geringerem Umfang auf das Dateisys-
tem zugreifen, empfiehlt sich die Verwendung des verteilten Dateisystemprotokolls. Werden
aber z.B. sehr hdufig neue Logeintrdge in Logdateien erzeugt, so ist die Verwendung eines
Synchronisationsprotokolls sinnvoller. Zwar sind die Kosten, die bei einer Migration fiir den
Abgleich der Dateisystem benotigt werden dann hoher, aber die Kosten fiir den Zugriff auf
das Dateisystem sind deutlich niedriger. Zudem werden Migrationen sehr wahrscheinlich
mit einer niedrigeren Frequenz auftreten als Dateisystem Zugriffe.

34

4.3 Rekonfiguration der TVEE

Migration von Netshaper Instanzen

Wird ein virtueller Knoten migriert, so miissen auch fiir den Knoten relevante Netshaper
Instanzen migriert werden. Da diese, wie in 4.3 dargestellt, sich aufSerhalb des virtuellen
Knotens befinden, werden sie bei der Migration des virtuellen Knotens nicht automatisch
mit transferiert.

Daher muss fiir jede Instanz zunédchst der aktuelle Zustand gesichert werden, um daraufhin
zum Zielrechner tibertragen und dort wiederhergestellt werden zu kénnen.

Eine Sicherung muss dabei alle aktuellen Einstellungen der Instanz beinhalten. Dies sind z.B.
Werte fiir Bandbreite, Verlustrate und Verzogerung. Aufierdem miissen Pakete, die sich noch
im Puffer des Emulationstools befinden, festgehalten werden.

Eine Moglichkeit, die Migration umzusetzen, besteht in der Nutzung des Proc Dateisystems.
Dieses ermoglicht eine Kommunikation zwischen User und Kernelspace Programmen iiber
spezielle Dateien.

Der aktuelle Zustand des Netshapers kann von einem Usertool {iber das Proc Dateisystem
ausgelesen, transferiert und dann wiederhergestellt werden.

Anpassung der virtuellen Layer 2 Topologie

Fiir die Umsetzung einer neuen Platzierung muss die virtuelle Layer 2 Topologie der
TVEE angepasst werden. Die Anpassung umfasst Komponenten wie Software Briicken und
Vlans.

Wie in Kapitel 2.6 beschrieben, werden Netzwerktopologien von Testszenarien im TVEE
Manager tiber CollisionDomains beschrieben. Fiir jede der Doméanen wird eine Softwarebriicke
innerhalb der virtuellen Maschinen erzeugt. Diese verbinden virtuelle Netzwerkkarten von
Knoten, die sich in der gleichen CollisonDomain befinden miteinander. Sind Knoten der
gleichen Doméne auf mehrere virtuelle Maschinen verteilt, so wird in jeder virtuellen
Maschine, in der sich einer der Knoten befindet, eine Briicke und ein Vlan erzeugt.

Wird ein Knoten migriert, muss die Netzwerkkonfiguration so angepasst werden, dass der
migrierte Knoten auch weiterhin mit anderen Knoten der gleichen Domdne kommunizieren
kann.

Wie genau die TVEE dafiir angepasst werden muss, soll nun im Folgenden beschrieben
werden.

Zunidchst muss fiir jede virtuelle Netzwerkkarte eines migrierten virtuellen Knotens bestimmt
werden, an welche Doméne sie angebunden war. Die Anpassung der TVEE richtet sich dann
danach, ob sich alle Knoten, die an diese Doméne angebunden sind, in der gleichen virtuellen
Maschine befinden oder ob sie auf verschiedene Maschinen verteilt sind.

35

4.3 Rekonfiguration der TVEE

veth1.0 || veth2.0 veth3.0 Neuplatzierung veth1.0
von vNode 2

bridgel bridgel

vnic vnic vnic

vethl.0 veth2.0 Neuplatzierung veth1.0
von vNode2

bridgel

vnic vnic

Abbildung 4.6: Anpassung von Netzwerkkomponenten - virtuelle Knoten zusammen

e Knoten auf mehrere VMs verteilt: In dieser Situation lassen sich zwei Fille unter-
scheiden. Befindet sich auf der Ziel virtuellen Maschine schon ein Knoten der zur
gleichen Domaéne gehort, so muss die virtuelle Netzwerkkarte des migrierten Knotens
nur an die passende Briicke der Doméane angebunden werden. Abbildung 4.7 zeigt ein
Beispiel fiir diesen Fall

Ist dies nicht der Fall, muss eine Software Briicke und ein Vlan mit passender Vlan Id
erzeugt werden. Ein Beispiel ist in Abbildung 4.5 zu sehen.

o Alle Knoten in gleicher VM: Befanden sich vor der Migration alle Knoten der gleichen
Domaine in der gleichen virtuellen Maschine, so muss zunédchst eine freie Vlanld fiir

36

4.3 Rekonfiguration der TVEE

Neuplatzierung
von vNode2

bridgel bridgel

Vnic vnic

Abbildung 4.7: Anpassung von Netzwerkkomponenten - virtuelle Knoten verteilt

die Doméne gewihlt werden. Danach ist in der Ziel VM eine Softwarebriicke und
ein VLan zu erzeugen. Zusitzlich muss auf der Quelle VM ein VLan eingerichtet
werden. Dies ist allerdings nur notig, falls durch die Neuplatzierung nicht alle Knoten,
deren virtuelle Netzwerkkarte sich an der Briicke befanden, migriert werden konnten.
Abbildung 4.6 zeigt ein Beispiel fiir diesen Fall.

Wurden diese Anderungen fiir alle migrierten Knoten durchgefiihrt, so kénnen in einem
letzten Schritt Software Briicken geloscht werden, an die keine virtuelle Netzwerkkarte mehr
angebunden ist.

Zusammenfassend sind also fiir die Anpassung der Netzwerkkomponenten eine Auswahl
folgender Aktionen notig.

e Erzeugung einer Softwarebriicke

e Erzeugung eines Vlans

Anbindung einer virtuellen Netzwerkkarte an eine Softwarebriicke
o Loschen einer Softwarebriicke
e Loschen eines Vlans

Diese sind lokal in den einzelnen virtuellen Maschinen auszufiihren. Wer die notige Auswahl
der Aktionen erzeugt und auf welche Weise die Koordination der Operation ablauft, wird in
Abschnitt 4.8.2 vorgestellt.

37

4.3 Rekonfiguration der TVEE

Verlangsamung der globalen virtuellen Zeit

Wird ein Knoten im Zuge der Rekonfiguration migriert, so ist er fiir eine bestimmte Zeit
offline. Wahrend dieser Zeit lduft die, von den Knoten zur Zeitmessung benutzte, virtu-
elle Zeit weiter. Timer, die von Anwendungen innerhalb des Containers genutzt werden,
konnen daher auslaufen. Ohne gewisse Mafinahmen ist die Rekonfiguration daher nicht
transparent.

Um eine transparente Rekonfiguration zu ermdéglichen, muss diese in keiner oder in einem
sehr kleinen virtuellen Zeitintervall durchgefiihrt werden. Dies kann durch die Wahl eines
sehr hohen TDF Wertes beim Koordinator geschehen. Eine Rekonfiguration, die mehrere
Sekunden in realer Zeit dauert, kann dadurch in wenigen Millisekunden virtueller, von den
Knoten benutzter Zeit, durchgefiihrt werden. Dadurch kann der Auslauf von Timern in zu
migrierenden Knoten vermieden werden.

Start/Stopp der Prozessausfiihrung

Die Rekonfiguration beinhalten Operationen wie die Migration von Knoten und die An-
passung der Netzwerktopologie. Diese konnen die Ausfithrung der zu testenden Software
beeinflussen.

So kann es z.B. zu Paketverlusten aufgrund der Migration kommen. Dies ist der Fall, wenn
SuT Instanzen wiahrend der Rekonfiguration Pakete an Knoten schicken, deren Zustand
gerade transferiert wird. Da wihrend dieser Zeit der virtuelle Knoten nicht existiert, existiert
im Netzwerk auch keine Neztwerkkarte mit der richtigen Zieladresse. Pakete, die an diesen
Knoten geschickt werden, konnen daher nicht zugestellt werden.

Um eine transparente Rekonfiguration zu ermoglichen, sollte infolgedessen wéahrend der
Migration von Knoten keine SuT mehr ausgefiihrt werden. Dies kann z.B. durch das Setzen
aller virtuellen Knoten in einen Haltezustand vor der Migration erreicht werden. Beim Uber-
gang in diesen Zustand werden alle Prozesse innerhalb der virtuellen Knotens gestoppt und
der Protokollstapel angehalten. Am Ende der Rekonfiguration miissen die virtuellen Knoten
dann wieder in einen ausfiihrenden Zustand gesetzt werden, damit die Prozessausfiihrung
wieder aufgenommen werden kann.

OpenVZ bietet bereits die Moglichkeit, einen virtuellen Knoten in einen Haltezustand,in
OpenVZ suspend genannt, zu setzen und daraus wieder zu 16sen,in OpenVZ resume ge-
nannt.

Wird jeder virtuelle Knoten, in dem sich die zu testende Software befindet, in einen Haltezu-
stand gebracht, hat dies einen positiven Nebeneffekt fiir die Rekonfiguration. Es stehen in
diesem Fall mehr Ressourcen fiir die Rekonfiguration zur Verfiigung.

4.3 Rekonfiguration der TVEE

Fiir den Ubergang eines Knotens in den Haltezustand wird allerdings eine gewisse Rechen-
zeit benotigt. Da virtuellen Knoten, die sich in der gleichen virtuellen Maschine befinden, nur
eine CPU zur Verfiigung steht, bedeutet dies, dass nicht alle Knoten gleichzeitig diesen Zu-
standswechsel vollziehen konnen. Je mehr Knoten sich in einer virtuellen Maschine befinden
(dies konnen mehrere Tausend sein), desto grofler wird die Zeitspanne zwischen dem ersten
und dem letzten Knoten, der in den Haltezustand wechselt. Demzufolge kann es vorkommen,
dass Pakete an virtuelle Knoten geschickt werden, die sich schon im Haltezustand befinden
und aufgrund ihres Zustandes die gesendeten Pakete nicht mehr entgegennehmen kénnen.
Der nachste Abschnitt befasst sich mit dieser Problematik.

Zwischenspeichern von Paketen

Wie im vorigen Abschnitt vorgestellt, ist es nicht moglich, alle Prozesse und Protokollstacks
gleichzeitig anzuhalten. Daher kann es vorkommen, dass SuT Instanzen Pakete verschicken,
die von anderen Instanzen nicht mehr entgegengenommen werden kénnen. Dieses Phanomen
tritt auf, wenn die Prozessausfiihrung und der Protokollstack des Containers, in dem sie sich
die Ziel SuT befindet, schon angehalten wurden.

In diesem Fall miissen Pakete aufSerhalb des Containers zwischengespeichert werden.

Dazu kann z.B. der Netshaper verwendet werden. Dieser speichert, falls aktiv, alle Pakete,
die an Netzwerkgerite virtueller Knoten ausgeliefert werden sollen, zwischen. Wurde ein
virtueller Knoten in einen Haltezustand versetzt, so kann dies vom Netshaper detektiert und
die Zustellung von Nachrichten ausgesetzt werden. Damit werden Nachrichten automatisch
im Netshaper Puffer gesichert.

Wechselt der Knoten dann wieder in einen ausfithrenden Zustand, so kann mit der Zustel-
lung fortgefahren werden. Da der Netshaper allerdings nur beim Empfang neuer Pakete
aufgerufen wird, kann auch nur in diesem Fall ein Zustandswechsel festgestellt werden.
Werden also keine weiteren Pakete an den Knoten gesendet, so wird der Netshaper die
zwischengespeicherten Pakete nicht mehr ausliefern.

Diese Problematik kann auf verschiedene Weisen gelost werden.

e Durch periodisches Nachfragen des Knotenzustandes
e Durch Hook in der Resume Methode des Knotens

e Durch Anstofs der Zustellung mitels Proc Dateizugriff

Wird periodisch nach dem aktuellen Zustand eines Knotens gefragt, so werden unnétig wich-
tige Ressourcen verbraucht, zumal fiir jede virtuelle Netzwerkkarte zwei Netshaper Instanzen
angelegt werden und ein Testszenario mehrere hundert Tausend virtuelle Netzwerkkarten
umfassen kann.

39

4.3 Rekonfiguration der TVEE

Sinnvoller ist da ein Hook in der Resume Methode des Knotens. In diesem Fall muss jedoch
direkt in die OpenVZ Implementierung eingegriffen werden.

Alternativ kann nach der Wiederaufnahme der Prozessausfiihrung eines virtuellen Knotens
den angeschlossenen Netshaper Instanzen mitgeteilt werden, dass eine Auslieferung von
Paketen nun wieder moglich ist. Dies kann z.B. durch ein Userspace Tool erfolgen, dass tiber
das Proc Dateisystem mit dem Netshaper kommuniziert.

4.3.3 Reihenfolge der Operationen

Zwischen den Operationen, die fiir die Rekonfiguration benétigt werden, bestehen gewisse
Abhédngigkeiten. Diese sollen im Folgenden nochmal kurz aufgelistet werden. Aus ihnen
lasst sich eine sinnvolle Reihenfolge der Operationen ableiten.

Es bestehen folgende Abhdngigkeiten

e Operationen diirfen keine virtuelle Zeit kosten. Daher muss zu Beginn der TDF auf
einen hohen Wert gesetzt und am Ende diese Einstellung wieder riickgéngig gemacht
werden.

e Wihrend Knoten migriert werden, diirfen keine Pakete verschickt werden. Der Stopp
der Prozessausfiihrung muss also vor der Migration geschehen.

e Netshaper Instanzen konnen erst wiederhergestellt werden, wenn die mit ihnen ver-
bundenen virtuellen Netzwerkkarten wiederhergestellt wurden.

Eine Reihenfolge, die die obigen Abhingigkeiten beriicksichtigt sieht wie folgt aus.

1. Setzen eines hohen TDF

2. Stopp der Prozessausfithrung

Sicherung des Zustands zu migrierender Knoten

Sicherung des Zustands zu migrierender Netshaper Instanzen

Transfer aller gesicherten Daten

SANE LN

Wiederherstellung des Zustands zu migrierender Knoten

Wiederherstellung des Zustands zu migrierender Netshaper Instanzen

~

8. Anpassung der Layer 2 Topologie
9. Start der Prozessaufiihrung

10. Riicksetzen der TDF Anderung

40

4.3 Rekonfiguration der TVEE

<
=
<
o

Koordinator

Abbildung 4.8: Synchronisation - zentraler Ansatz

4.3.4 Synchronisation einer verteilten Operation

Im letzten Kapitel wurde eine Reihenfolge notiger Rekonfigurationsoperationen festgelegt.
Diese beruhte auf Abhidngigkeiten einzelner Operationen.

Unabhéngig davon wie Operationen ausgefiihrt werden, muss diese Reihenfolge eingehalten
werden. In den meisten Féllen ist es moglich, eine Operation parallel auf mehreren virtuellen
Maschinen auszufithren

Betrachten man z.B. die Operation Stopp der Prozessausfiihrung, so lasst sich diese sehr einfach
parallel ausfiihren. Das Ziel der Operation besteht im Setzen aller virtueller Knoten in den
Haltezustand. Dazu miissen in jeder virtuellen Maschine alle virtuellen Knoten ,,suspended”
werden, was gleichzeitig in allen VMs erfolgen kann.

Bei der verteilten Ausfiihrung einer Operation, benotigen die beteiligten CPUs unter Um-
stinden eine unterschiedlich lange Rechenzeit. z.B. weil fiir die Operation unterschiedliche
Aktionen in den einzelnen VMs ausgefiihrt werden miissen. Bei der Anpassung der Layer 2
Topologie kann es beispielsweise vorkommen, dass in einer VM mehr Briicken als in einer
anderen erzeugt/geloscht werden miissen. Daher ist es fiir eine VM schwierig festzustellen,
wann eine Operation abgearbeitet ist.

41

4.3 Rekonfiguration der TVEE

VM1 VM2 vm3
i ! i
. } I
fertig
/~ ertig
fertig

Abbildung 4.9: Synchronisation - verteilter Ansatz

Da aber Operationen in einer bestimmten Reihenfolge abgearbeitet werden miissen, wird
ein Mechanismus benétigt, der sicherstellt, dass folgende Operationen erst gestartet werden
konnen, wenn alle verteilten Arbeiten zur aktuellen Operation abgeschlossen sind.

Dazu miissen virtuelle Maschinen, die an der Operation beteiligt sind, synchronisiert werden.
Dies kann auf zwei Arten erfolgen.

e Zentral iiber einen Koordinator
e Verteilt

Der Zentrale Ansatz ist in Abbildung 4.8 dargestellt. Dabei lduft die Synchronisation tiber
einen Koordinator ab. Dieser signalisiert den VMs erst, dass die Folge-Operationen ausge-
fitlhrt werden kann, wenn er eine Nachricht von allen virtuellen Maschinen erhalten hat,
die an der verteilten Ausfithrung der aktuellen Operation beteiligt waren. Pro verteilter
Operation werden bei diesem Ansatz 2 * |V M| Nachrichten benétigt.

Beim verteilten Ansatz wird die Ausfithrung der Operationen nicht durch einen Koordinator
gesteuert. Stattdessen kann eine VM eine neue Operation starten, wenn sie Nachrichten
aller VMs, die an der vorangegangenen Operation beteiligt waren, erhalten hat. Bei diesem
Ansatz werden pro verteilter Operation ([VM| — 1) x |VM| ~ ||V M)|? Nachrichten benétigt.
Der verteilte Ansatz ist in 4.9 dargestellt.

42

4.4 Kostenmodell Kommunikation

Bei beiden Ansédtzen wurde davon ausgegangen, dass eine VM genau weifl an welchen Ope-
rationen sie teilnimmt und welche Aktionen sie durchzufiihren hat. Woher sie dieses Wissen
hat, wird in Abschnitt 4.8.2 erldutert. In diesem Kapitel wird ndher auf die Koordination der
Rekonfiguration eingegangen.

Beim zentralen Ansatz werden weniger Nachrichten benétigt als beim verteilten Ansatz.
Dieser ist also dem verteilten Ansatz vorzuziehen. Zumal die Belastung des Koordinators
nur unwesentlich hoher ist als die im verteilten Ansatz. Also der Koordinator nicht zum
,bottle neck” werden kann.

4.4 Kostenmodell Kommunikation

In 2.5.2 wurde ein Kostenmodell angedeutet mit dessen Hilfe sich die Laufzeit eines Experi-
ments bei gegebener Platzierung virtueller Knoten voraussagen ldsst. Fiir die Berechnung
der Laufzeit werden Prognosen {iber mittlere Datenraten von Verbindungen zwischen virtu-
ellen Knoten und Auslastungen virtueller Knoten benétigt. Dieses Modell soll im néchsten
Abschnitt im Detail vorgestellt werden.

Die TVEE besteht aus einer Reihe von physikalischen Rechnern p € P. Jeder Rechner besitzt
|Cp| Prozessoren, wobei einem Prozessor ¢ € C eine virtuelle Maschine (VM) zugewiesen
werden kann. Jede VM wird durch ein Tupel (p, c) identifiziert. In allen virtuellen Maschinen
konnen virtuelle Knoten i € N ausgefiihrt werden.

Jede Verbindung zwischen virtuellen Knoten verursacht eine bestimmte Last. Diese wird
aufgespalten in

e Last in der VM, in der sich der empfangende Knoten befindet. Im folgenden V M;,
genannt

e Last in der VM,in der sich der sendende Knoten befindet. Im folgenden V M,, genannt.
e Last im Host-Os beider VMs. Im folgenden HOST-OS genannt.

Die Gesamtlast fiir eine Verbindung ergibt sich damit zu L = VM, + VM, + 2 * HOST-OS.
Sie wird in CPU Zyklen pro Zeiteinheit angegeben. Mafigeblich fiir die Hohe der verursachten
Last ist die Art der Verbindung der Knoten. In der TVEE lassen sich 3 Verbindungsarten
unterscheiden:

e intra-vm Kommunizieren virtuelle Knoten in der gleichen VM tiber eine Softwa-
rebriicke miteinander, so handelt es sich um eine intra-vm Verbindung. Bei dieser
Verbindung wird nur die virtuelle Maschine, in der sich beide befinden, belastet.

43

4.4 Kostenmodell Kommunikation

e inter-vim Befinden sich die kommunizierenden Knoten in unterschiedlichen VMs,
aber auf dem gleichen physikalischen Rechner, so handelt es sich um eine inter-vim
Verbindung. Dabei werden beide virtuellen Maschinen sowie das HOST-OS belastet.
Nach [GHR] ist diese Arte der Verbindung ungefahr 10 mal teurer als die intra-vm
Verbindung.

e inter-pnode Befinden sich die Kommunikationspatner auf unterschiedlichen physikali-
schen Rechnern, so handelt es sich um eine inter-pnode Verbindung. Bei dieser Art
der Verbindung fallen die hochsten Kosten an. Laut [GHR] ist sie 2 mal teurer als eine
inter-vm Verbindung.

Sei nun eine Platzierung ¢ (Abbildung von virtuellen Knoten auf VMs), mittlere Datenraten
Bij von Verbindungen zwischen virtuellen Knoten und Lasten A; aller virtuellen Knoten
i € N gegeben , dann wird ein HOST-OS durch Verbindungen von virtuellen Knoten wie in
Formel (4.1) dargestellt, belastet.

Kintra—om,Host—OS falls p= P/ Ac=c
(4'1) AZOSFOS - :Bif * § Kinter—om,Host—OS falls p= }7/ AcC 75 c
i,jeN
())=(p,c)\p(j)=(p',c") Kinter—pNode,Host—0s ~ falls p # p' Ac # ¢’
V(i)=(p") A(j)=(p.c)

Die Last des Host-OS entspricht der Summe der Lasten die durch Verbindungen verursacht
werden, bei denen sich ein Kommunikationspartner auf dem gleichen physikalischen Rechner
befindet wie das Host-OS. Die Art der Verbindung bestimmt dabei den Faktor «.

Die Formeln zur Berechnung von Lasten in virtuellen Maschinen fiir ausgehende und
eingehende Verbindungen lassen sich analog zur Formel des Host-OS definieren. Diese sind
in (4.2) und (4.3) dargestellt.

Kintra—om,V M,y fallsp=p' Ac=<¢

(4-2) A]‘;,]C\Arx — Z ,Bij % 9 Kinter—om,VM,. falls p = p/ Ac#c
4’(i)=(P/,lc”])€AI;(j)=(p,C) Kinter—pNode,yM,, falls p # p' Ac # ¢

Kintra—vm,V Mgy falls p = p/ ANe=c

(4-3) AF"//]CVIM - Z Bij * Kinter—om,V My, fallsp=p'Nc#
¢(i)=(P/Cl)’]/\E¢ZE]j):(p’,C’) Kinter—pNode,yM;, falls p # p' Nc # ¢’

44

4.5 Kostenmodell Rekonfiguration

Die Last einer virtuellen Maschine wird durch die Last fiir eingehende und ausgehende
Verbindungen zwischen virtuellen Knoten sowie durch die Last von virtuellen Knoten, die
sich in ihr befinden, bestimmt. Dies ist in Formel (4.4) dargestellt.

(4.4) Ay =AM Mg Y,
iENAP(i)=(p,c)

Mit (4.5) lasst sich nun die Auslastung einer CPU bestimmen. Da virtuelle CPUs der VMs
physikalischen CPUs zugewiesen werden erfahrt jede CPU mindestens die Last der virtuellen
Maschine. Zusétzlich wird aber noch die Last des Host-OS auf alle verfiigbaren CPUs eines
physikalischen Rechners verteilt. Jede CPU erfahrt daher noch einen gewissen Anteil der
Host-OS Last.

1 _
(4-5) Ape = max(A;’fg,(@ x (AR5 4 ZC AYE)))
c'eCy

Auf Basis errechneter Lasten einzelner Prozessoren lasst sich durch Formel (4.6) die erwartete
Experimentlaufzeit fiir ein bestimmtes virtuelles Zeitintervall 0,;,, berechnen. vcpy; steht
dabei fiir die Geschwindigkeit der CPU. Diese wird in Zyklen pro Zeiteinheit angegeben.

A
ppax. (Ape)

(46) ereal = * Gvirtuul = TDF * Gvirtual

Vcru

Werden mehr Zyklen benétigt als der Prozessor pro Zeiteinheit zur Verfiigung stellt, ist also

max (Ap,c)
% > 0, so muss das Experiment verlangsamt werden. Dabei gibt der Quotient den

Faktor an, mit dem die Zeit skaliert werden muss. Dieser wird TDF (Time Dilation Factor)
genannt.

4.5 Kostenmodell Rekonfiguration

Bei der Rekonfiguration der TVEE entstehen Kosten. Diese verldngern die Experimentlaufzeit
und miissen daher bei der Beurteilung von moglichen neuen Platzierungen beriicksichtigt
werden.

In diesem Kapitel soll ein Modell vorgestellt werden mit dem sich erwartete Kosten fiir
die Umsetzung einer neuen Platzierung ermitteln lassen. Es orientiert sich an den fiir die
Rekonfiguration benotigten Operationen. Diese wurden in Kapitel 4.3 vorgestellt. Sie sind:

45

4.5 Kostenmodell Rekonfiguration

e Setzen/Riicksetzen des TDF
e Start/Stopp der Prozessausfithrung in virtuellen Knoten (suspend/resume)
e Migration von virtuellen Knoten und Netshaper Instanzen (migration)

e Anpassung der Layer 2 Topology (layer2adaption)

Die Gesamtkosten der Rekonfiguration ergeben sich aus der Addition der Zeit, die fiir die
einzelnen Operationen benétigten wird, da diese, wie in 4.3.3 beschrieben, hintereinander
auszufiihren sind. Dies ist in Formel (4.7) dargestellt. Das Setzen und Riicksetzen des TDF ist
mit konstanten, sehr geringen Kosten verbunden. Daher werden diese hier nicht aufgefiihrt.
In der Formel bezeichnet ¢ die aktuelle Platzierung und ¢’ die durch die Rekonfiguration zu
erzeugende neue Platzierung.

/
(4'7) eg)e’imfigumtion = quspend + emigmtion + elayerZaduption + Hresume

Im Folgenden wird nun nédher auf die Kosten einzelner Operationen eingegangen.

4.5.1 Start/Stopp der Prozessausfiihrung

Zu Beginn der Rekonfiguration muss die Prozessausfithrung in allen Knoten gestoppt
werden. Dazu muss jedem Prozess eines virtuellen Knotens ein Stopp Signal geschickt
werden. Dies fithrt zu einem TaskStopped Eintrag in der Scheduler Tabelle, wodurch der
Prozess keine Rechenzeit mehr erhilt.

Die Verarbeitung des Stopp Signals kann je nach Reaktionsverhalten eines Prozesses un-
terschiedlich lange dauern. Um sicherzugehen, dass alle Prozesse eines virtuellen Knotens
schliefdlich gestoppt sind, muss daher periodisch deren Zustand abgefragt werden. In
OpenVZ kann tiber das VZ Control Tool ein Suspend Befehl an einen Knoten geschickt
werden. Daraufhin werden alle Prozesse in diesem Knoten gestoppt und die virtuellen
Netzwerkgerdte abgeschaltet.

Der Aufwand, der fiir das ,,suspenden” aller Knoten benétigt wird, richtet sich nach der
Anzahl der virtuellen Knoten und den sich darin befindlichen Prozessen. Die Kosten steigen
in etwa linear mit der Anzahl der Knoten und mit der Anzahl der sich darin befindlichen
Prozessen. Die Kosten erhohen sich allerdings nur gering mit zunehmender Anzahl von
Prozessen innerhalb eines Knotens.

Da sich in TVEE in einem virtuellen Knoten nur wenig Prozesse befinden (im Normalfall
nur der Hauptprozess und die der SuT), wird die Anzahl hier als konstant angesehen.

46

4.5 Kostenmodell Rekonfiguration

(4.8) esuspend = Un%%}?\/{(”vm) * Ksuspend

Jede virtuelle Maschine hat eine eigene CPU. Virtuelle Knoten unterschiedlicher VMs kénnen
parallel in den Haltezustand gebracht werden. Die Gesamtkosten fiir den kompletten Stopp
der Prozessausfiihrung im gesamten System werden daher durch die VM mit den meisten vir-
tuellen Knoten bestimmt. Dies ist in Formel (4.9) dargestellt. «g;spenq stellt dabei eine Konstan-
te dar, die stark von der benutzten Hardware und Software abhingt. n, bezeichnet die Anzahl
der virtuellen Knoten in der virtuellen Maschine vm. Also 1y, = |{n € N|¢(n) = vm}

Die Einheit von 6g;spenq ist Millisekunden.

(4-9) Oresume = mMAax (”vm) * Kresume
omeVM

Die Zeit, die fiir die Wiederaufnahme der Prozessausfithrung benotigt wird, ergibt sich
analog zur obigen Formel. Genau wie bei der komplementidren Operation wird hier ein
Signal an den Prozess geschickt: das CONT Signal. Die Formel zur Berechnung ist in (4.9)
dargestellt. n,,, steht fiir die Anzahl der Knoten, die sich in der neuen Platzierung auf der
virtuellen Maschine vm befinden. Also 1y, = | {n € N|¢'(n) = vm}

4.5.2 Migration von virtuellen Knoten und Netshaper Instanzen

Die Migration von virtuellen Knoten und Netshaper Instanzen ldsst sich in 4 Teiloperationen
unterteilen.

e Sichern aktueller Zustdnde (dump)
e Transfer der gesicherten Daten (transfer)
e Entfernen virtueller Knoten in Quell VM (killVNodes)

e Wiederherstellen der Zustinde (undump)

Die Gesamtkosten fiir die Migration sind durch (4.10) gegeben.

(4-10) emigmtion = GdumpNs + edumpVNodes + gkillVNodes + QtrunsferData + eundumpNs + QundumpVNode

Auf die einzelnen Anteile der Kosten wird nun nédher eingegangen.

47

4.5 Kostenmodell Rekonfiguration

Sichern der Zustands virtueller Knoten

Der Zustand eines virtuellen Knotens umfasst im Wesentlichen Folgendes: Den Adressraum,
genutzte Registersitze, File und Signalhandler, Timer, User und Prozess Identitdten sowie
den von Prozessen genutzter Speicher.

Die Zeit, die fiir die Erstellung einer Sicherung (in Form einer Datei) benotigt wird, steigt line-
ar mit der Grofse der Datei. Die Grofie kann gut durch den gerade genutzten Arbeitsspeicher
abgeschitzt werden.

Formel (4.11) zeigt die Kosten, die fiir die Sicherung der Zustdnde aller zu migrierenden
Knoten entstehen. Jeder Knoten wird einzeln iiber das OpenVZ Control Tool gesichert.
Jeder Aufruf verursacht dabei gewisse Grundkosten cguupvuode- Virtuelle Knoten, die sich
in unterschiedlichen virtuellen Maschinen befinden, konnen zeitgleich gesichert werden.
Wodurch die Gesamtlaufzeit fiir die Erstellung der Sicherungsdateien durch die virtuelle
Maschine mit den hochsten Kosten gegeben ist.

M steht fir die Menge der zu migrierenden virtuellen Knoten (M =
{n € N|¢(n) # ¢'(n)})und g7, kennzeichnet die GroBe des vom Knoten m genutz-
ten Arbeitsspeichers.

m
(4-11) GdumpVNodes = vnr;leeﬁl/)i\/l Z (KdumpMem * Cmem + Cdumanode)
meM ,p(m)=vm

Sichern der Zustdnde von Netshaper Instanz

Die Sicherung des Netshaper Zustands umfasst folgende Daten: Einstellungen wie Band-
breite, Verlustrate und Verzogerung, eine Parameterliste, die Verbindungseigenschaften
virtueller Knoten definiert und Frames, die sich derzeit noch im Netshaper Puffer befinden.
Mafsgeblich fiir die Zeit, die fiir die Sicherung benétigt wird, ist die Gesamtgrofie der Frames,
die sich noch im Puffer befinden sowie die Grofle der Parameterliste.

Jeder Netshaper besteht aus 2 Instanzen: eine fiir die Sende- und eine fiir die Empfangs-
richtung. In der Netshaper Instanz der Senderichtung befindet sich in der Regel im Puffer
nur maximal ein Frame. Muss ein Frame verzogert ausgeliefert werden, so wird htheren
Schichten mitgeteilt, dass gerade keine Ressourcen zur Verfiigung stehen. Diese stellen
daraufhin das Senden ein.

In der anderen Instanz konnen sich sehr viele Frames befinden. Dies hangt im Wesentlichen
von der Senderate der virtuellen Knoten und der Dauer der Suspend Operation ab. Sind
hohere Schichten nicht verfiigbar, z.B. weil sich der virtuelle Knoten im Haltezustand
befindet, so werden eingehende Frames im Netshaper zwischengespeichert.

4.5 Kostenmodell Rekonfiguration

VM1

\Data

VM3 —Data—» VM4

Data

VM2

Abbildung 4.10: Beispiel Kosten Datentransfer

Formel (4.12) zeigt die Kosten, die fiir die Sicherung aller Netshaper Instanzen zu migrie-
render Knoten entstehen. Dabei steht NS fiir die Menge aller Netshaper Instanzen und das
Pradikat belongsTo gibt an, ob eine Netshaper Instanz ns mit einer virtuellen Netzwerkkarte
eines Knotens m verbunden ist.

(4-12) edumpNs = mi%/)%/l Z <KdumpMac * g):rfacs + KdumpFrame * g?iames + CdumpNs)
ome nseENS
belongsTo(ns,m)
$(m)=ovm

Die Kosten fiir die Sicherung einer Netshaper Instanz ergeben sich aus den Kosten fiir das
Speichern der Parameterliste (Kgumpmac * Gacs) und dem Sichern der zwischengespeicherten
Frames XgympFrame * g?ﬁ ames- Auflerdem ist jeder Aufruf fiir die Sicherung einer Netshaper
Instanz noch mit einem gewissen Grunkosten verbunden (Cgumpnetshaper)-

Transfer der Daten

Nachdem der Zustand virtueller Knoten und Netshaper Instanzen gesichert wurde, miissen
die erzeugten Daten zu den Ziel-VMs {iibertragen werden. Die Zeit, die dabei benétigt wird,
steigt linear mit der Grofse der Daten. Jede virtuelle Maschine kann Daten empfangen und
Daten senden.

Die Menge an Daten, die eine virtuelle Maschine vm1 an eine andere virtuelle Maschine vm?2
tibertragt, ergibt sich durch die Formel (4.13).

oml,om2 __ ns m
(4-13) ¢ - Z gdumpNetshaper + Z gdumpVNode
nseNS,meM meM
belongsTo(ns,m) ¢(m)=vm1,¢' (m)=om2

¢(m)=vml,$' (m)=vm2

49

4.5 Kostenmodell Rekonfiguration

s 3 ns ~ ~NS ns m ~ ~m
Dabel ist Gdump]\]gtshapgr ~ gfrgmgs + GTHIJCS und gdumpVNode ~ gmem.

Das zu tibertragende Datenvolumen umfasst also alle Sicherungsdateien von Netshapern
und virtuellen Knoten, die sich in der neuen Platzierung ¢’ nun auf der virtuellen Maschine
vm2 befinden.

Ist die Grofie der auszutauschenden Daten zwischen zwei virtuellen Maschinen gegeben, so
wird die Zeit, die fiir die Ubertragung benétigt wird, anhand der Formel (4.14) berechnet.

val,vm2 __ oml,om2

(4-14) transferData — & * K+ CransferData

Der Wert von « ist dabei von der Art der Verbindung zwischen den virtuellen Maschinen
vml und vm?2 abhédngig. Befinden sich beide VMs auf dem gleichen physikalischen Knoten,
so werden Daten tiber das Host-Os ausgetauscht. Befinden sie sich allerdings auf unterschied-
lichen physikalischen Rechnern, so miissen die Daten iiber ein physikalisches Netzwerkgerat
verschickt werden. Dadurch entstehen hohere Kosten.

Die Gesamtkosten fiir den Transfer aller Daten ist durch die Formel (4.15) gegeben.

_ vml,om2
(4.15) thnsferData = Unr{é%/)j\/l (Z etmnsferDutu)

vm=vmlVom=vm2

Fiir jede VM werden die Kosten fiir den Austausch von Daten mit anderen VMs aufsummiert.
Die virtuelle Maschine mit dem hdchsten Kosten legt dabei die bendtigte Zeit fest.

Abbildung 4.10 zeigt ein Beispiel in dem virtuelle Maschinen Daten austauschen. Die Zeit,
die dabei die virtuelle Maschine VM3 fiir die Kommunikation aller Daten benotigt, ergibt
sich aus der Zeit fiir den Empfang von Daten der Maschine VM1, der Zeit fiir den Empfang
von Daten von VM2 und der Zeit fiir das Senden von Daten an die Maschine V M4.

Dabei hat die Anzahl der virtuellen Maschinen, mit der die virtuelle Maschie V M3 gleichzei-
tig Daten austauscht, keinen Einfluss auf die Gesamtlaufzeit. Bestehen gleichzeitig mehrere
Datenverbindungen zu unterschiedlichen VMs, so teilen sich alle die zur Verfiigung stehen-
den Ressourcen.

Wiederherstellen der Zustande virtueller Knoten

Formel (4.16) zeigt die Kosten fiir die Wiederherstellung aller migrierten virtuellen Knoten.
Sie ist analog zu Formel (4.11).

— m
(4-16) eundumpVNode - m&‘l/);/[Z (KundumpMem * Grnem T+ Cundumanode)
ome meM ' (m)=vm

50

4.5 Kostenmodell Rekonfiguration

Wiederherstellen der Zustande von Netshaper Instanzen

Formel (4.17) zeigt die Kosten fiir den Undump aller migrierten Netshaper Instanzen. Sie ist
analog zu Formel (4.12).

(4.17)
_ ns ns
GundumpNs = m?%w Z (KundumpMac * Goacs T KundumpFrame * Qfmmes + CundumpNs)
ome nseNS,meM
belongsTo(ns,m)
¢ (m)=om

Entfernen virtueller Knoten in Quell VMs

Wurde der Zustand eines virtuellen Knotens zum Zielrechner transferiert, wird dieser auf
dem Quellrechner nicht mehr benétigt und kann beendet werden. Die Zeit, die fiir diese Ope-
ration benotigt wird, ist von der Anzahl der zu beendenden virtuellen Knoten abhéngig und
von der Zahl der virtuellen Netzwerkgeriten eines Knotens (iiberraschenderweise). Da ein
virtueller Knoten in der Regel nur eine konstante, sehr geringe Anzahl an Netzwerkgerdten
hat, werden Netzwerkgeréte hier vernachldssigt.

In Formel (4.18) sind die Kosten fiir das Entfernen eines Knotens gegeben.

om
(4.18) OkittvNodes = max (m™™) * KgitjvNode + Crill
omeVM

Dabei steht m”™ fiir die Knoten, die sich in der neuen Platzierung ¢’ nicht mehr auf der
virtuellen Maschine vm befinden. Also m*™ = |{n € N|¢p(n) = vm A ¢'(n) # om} |.

4.5.3 Anpassung Layer 2 Topologie

Fiir die Anpassung der Layer 2 Topologie konnen folgende Aktionen nétig sein.

e Erzeugung einer Softwarebriicke und Einrichtung eines Vlans
e Loschen einer Softwarebriicke und Entfernen des Vlans

¢ Anbindung einer virtuellen Netzwerkkarte an eine Softwarebriicke

51

4.6 Optimierung der Platzierung

Werden virtuelle Knoten migriert so miissen ihre virtuellen Netzwerkkarten in der Ziel VM
an die richtigen Briicken angebunden werden. Sind diese noch nicht vorhanden, miissen sie
erstellt werden. Das Anhédngen einer Netzwerkkarte an eine Briicke ist mit geringen Kosten
verbunden. Da ein virtueller Knoten in der Regel nur iiber wenige Netzwerkkarten verfiigt,
werden diese Kosten hier nicht betrachtet.

Das Loschen und Erzeugen von Softwarebriicken sind im Wesentlichen zeitkonstante Ope-
rationen. Die Zeit, die fiir die Anpassung der Layer 2 Topologie benétigt wird, ergibt sich
durch Formel (4.19)

om om
. . — % . % .
(4 19) QluyerZadaptzon mﬁ%\/f (ncreate KcreateBrzdge + ndestmy KdestroyBrldge)

Dabei steht 177 ., fiir die Anzahl der zu erzeugenden Briicken in der virtuellen Maschine vm

und nggtroy fiir die Anzahl der zu loschenden Briicken in der virtuellen Maschine vm. Die
Kosten fiir das Einrichten und Entfernen eines Vlans sind in den Kosten fiir das Erstellen

und Zerstoren einer Softwarebriicke enthalten.

4.6 Optimierung der Platzierung

Einen wesentlichen Bestandteil der dynamischen Neuplatzierung stellt die Ermittlung einer
glinstigeren Platzierung dar. An diese werden bestimmte Anforderungen gestellt. Sie muss
einen moglichst hohen Nutzen haben (also die Experimentlaufzeit verkiirzen), darf aber fiir
die Umsetzung nicht zu viele Kosten verursachen. Es gilt eine Platzierung zu finden, die die
in Abschnitt 4.6.1 vorgestellte Zielfunktion maximiert.

Von einer optimalen Platzierung spricht man, wenn deren Zielfunktionswert maximal ist.
Falls moglich, gilt es, diese optimale Platzierung zu finden.

Ein Problem diese optimale Losung zu finden stellt der sehr grofie Suchraum dar. Dieser
steigt exponentiell mit der Anzahl der Knoten O(|VM]|NI). Der Rechenaufwand, der fiir
die Ermittlung der optimalen Platzierung benotigt wird, ist daher sehr hoch. Aufgrund
des dynamischen Verhaltens des Testsystems steht allerdings nur begrenzt Rechenzeit zur
Verfiigung. Nehmen Berechnungen zu viel Zeit in Anspruch, kdnnen sie wertlos werden, da
sich die aktuelle Lastsituation bereits gedndert haben kann.

Es wird daher ein Optimierungsverfahren benétigt, dass mit geringem Rechenaufwand eine
moglichst giinstige Platzierung findet. Aus der Literatur sind z.B. folgende Optimierungsver-
fahren bekannt:

52

4.6 Optimierung der Platzierung

e Simulated Annealing
e Evolutiondre Algorithmen

¢ Hill Climbing

Beim Simulated Annealing handelt es sich um eine Optimierungsverfahren, das z.B. fiir
das Floor Planning beim Entwurf von Chips eingesetzt wird. Es gehort zu der Gruppe
der naturanalgonen Optimierungsverfahren und beruht auf der Nachbildung des aus der
Metallurgie bekannten Abkiihlungsprozesses. Durch kontrolliertes Abkiihlen soll, z.B. beim
Gliihen, eine Maximierung der Kristallgrofie erreicht werden.

Beim Simulated Annealing Ansatz wird mit einer beliebigen Losung gestartet. Von dieser
ausgehend wird zufillig eine dhnliche Losung bestimmt und bewertet. Ist diese besser als
die vorige Losung, wird mit ihr fortgefahren. Ist sie schlechter , wird sie dennoch mit einer
bestimmten Wahrscheinlichkeit weiterverfolgt.

Die Wahrscheinlichkeit, mit der beim Simulated Annealing bergab gegangen wird, wird
durch den Kontrollparameter T beeinflusst. Dieser ist als Analogon zur Temperatur beim
Abkiihlungsprozess zu sehen. Je kleiner der Kontrollparameter, desto unwahrscheinlicher ist
es, dass schlechtere Losungen weiterverfolgt werden. Genau wie die Temperatur im Abkiih-
lungsprozess wird der Wert des Kontrollparameters mit fortschreitender Zeit verringert.

Die anfangliche Verfolgung vermeintlich schlechter Losungen birgt eine Moglichkeit in sich,
lokale Optima zu tiberwinden, und so mit einer hoheren Wahrscheinlichkeit das globale
Optimum zu erreichen. Die Laufzeit ist bei diesem Verfahren sehr stark von dem sogenannten
Cooling Schedule abhéngig. Dieser gibt die Veranderung des Kontrollparameters tiber die Zeit
an.

Bei evolutiondren Algorithmen handelt es sich um Optimierungsverfahren, die sich an der
biologischen Evolution orientieren. Sie beruhen auf aus der Natur bekannten Mechanismen
wie Reproduktion, Mutation, Rekombination und Selektion. Mogliche Losungen werden
als Individuen gesehen. Diese miissen sich zusammen mit anderen in einer bestimmten
Umgebung behaupten. Eine Fitnessfunktion gibt dabei an, wie gut sie an die Umgebung
angepasst sind. Durch die oben genannten Mechanismen sollen Individuen erzeugt werden,
deren Fitnessfunktionen mdoglichst optimale Werte aufweisen.

Der Hill Climbing Algorithmus ist im Wesentlichen eine lokale Greedy Suche. Gestartet
wird mit einer zufdlligen Losung. Von dieser Losung aus wird mit der Nachbarlosung
fortgefahren, welche den hochsten Zielfunktionswert aufweist. Im Gegensatz zum Simulated
Annealing wird bei diesem Verfahren nur bergauf gegangen. AufSerdem wird nicht zufallig
eine dhnliche Losung ausgewihlt, sondern alle dhnlichen Losungen betrachtet. Werden als
dhnliche Losungen, z.B. Losungen definiert, die sich in der Position genau eines virtuellen
Knotens unterscheiden, so sind dies bereits O(|VM| = |N|). Fiir jede dieser Losungen muss
der Zielfunktionswert berechnet werden, was das Verfahren sehr aufwéandig macht.

53

4.6 Optimierung der Platzierung

Hill-Climbing erfordert einen hohen Rechenaufwand pro Iterationsschritt. Beim Simulated
Annealing ist der Rechenaufwand pro Iteration eher gering. Je nach Temperaturfunktion wer-
den allerdings zunéchst auch schlechtere Losungen verfolgt. Bei Evolutiondren Algorithmen
hiangt der Aufwand sehr stark von der Auspragung der einzelnen Operationen ab.

In dieser Diplomarbeit soll der Simulated Annealing Ansatz weiterverfolgt werden. Zur
Optimierung einer Platzierung wird in [GHR] ein sehr dhnlicher Ansatz verfolgt. In diesem
werden allerdings nur bergauf gegangen. Laut [GHR], konvergiert der Algorithmus in kurzer
Zeit gegen ein Optimum.

4.6.1 Zielfunktion

Das Ziel der dynamischen Neuplatzierung ist die Verkiirzung der Experimentlaufzeit. Fiir
unterschiedliche Platzierung kann die erwartete Experimentlaufzeit 0,,, fiir ein virtuelles
Zeitintervall 6,1, (siehe 4.4) abgeschédtzt werden. Um Doppeldeutigkeiten zu vermeiden,
wird im Folgenden 6,.,; zu 6.0m» umbenannt.

Fiir die Umsetzung einer Platzierung entstehen Rekonfigurationskosten. Diese konnen durch
das in Abschnitt 4.5 vorgestellte Kostenmodell abgeschétzt werden. Fiir eine alternative
Platzierung ¢’ entstehen damit die in (4.20) vorgestellten Kosten fiir ein bestimmtes virtuelles
Zeitintervall 6,401

/9 . / 9 R /
(4‘20) efgélwrtual — eépofmz;;zrtual + G(P/(P

recon figuration

Die Kosten einer alternativen Platzierung erhthen sich also um die Kosten fiir die Umsetzung
der Platzierung.

Tragt man die erwarteten Experimentlaufzeiten 6,,, der aktuellen Platzierung ¢ und einer
moglichen alternativen Platzierung ¢’ iiber die virtuelle Zeit 6,4, ab, so ergibt sich bei-
spielsweise das in 4.11 dargestellte Diagramm. Eine alternative Platzierung, die weniger
Kommunikationskosten verursacht, lohnt sich erst nach einer bestimmten virtuellen Zeit.
Dies ist durch die Rekonfigurationszeit bedingt.

Ovirtuar kann als Zeitfenster gesehen werden, das in die Zukunft geblickt werden soll. Fiir
dieses Zeitfenster miissen sich sinnvolle Prognosen zu Lasten und Datenraten bestimmen
lassen, da auf diesen Daten das Kommunikationskostenmodell basiert. Dieses, bei der
Optimierung betrachtete virtuelle Zeitfenster, soll nachfolgend 60,i,40,, genannt werden.

Auf Basis der Kosten fiir die aktuelle und eine alternative Platzierung kann die in (4.21)
dargestellte Zielfunktion definiert werden.

54

4.6 Optimierung der Platzierung

35 T T T T T T T T T -
ffffff current placement e
alternative placement 7

real time [s]

0 I L I I I I I I I

virtual time [s]

Abbildung 4.11: Erwartete Laufzeiten zweier Platzierungen

('21) ualit N = Og)(;emu%’d"w — 6¢,"6wind0w
4 quatity

real

Diese stellt die Differenz der erwarteten Experimentlaufzeit der aktuellen Platzierung ¢ und
einer alternative Platzierung ¢’ dar. Ist quality(¢’) > 0, so ist die Platzierung ¢’ giinstiger
als die aktuelle Platzierung.

GréBe des Vorhersage Zeitfensters

Die Grofie des Zeitfensters t;in40, ist entscheidend fiir die Performance der Neuplatzie-
rung.

Sinnvollerweise sollte es grofier sein als die Rekonfigurationsfixkosten(ts,spend + tresume) und
kleiner als die Zeit, fiir die noch sinnvolle Prognosen fiir Last und Datenraten moglich
sind.

4.6.2 Optimierungsalgorithmus

In diesem Abschnitt soll nun nédher auf eine mogliche Umsetzung des Simulated Annealing
Ansatzes zur Optimierung der Platzierung eingegangen werden.

55

4.6 Optimierung der Platzierung

Ziel der Optimierung ist die Maximierung der Zielfunktion quality(¢). Diese wurde in 4.6.1
vorgestellt.

Eine Moglichkeit dies mittels eines Simulated Annealing Ansatzes zu tun, ist als Pseudocode
in 4.1 dargestellt.

Gestartet wird mit der aktuellen Platzierung. Von dieser ausgehend wird eine dhnliche
Platzierungen betrachtet. Diese wird zuféllig aus einer Menge von dhnlichen Platzierungen
ausgewdhlt. Die Menge dieser Platzierungen ist durch die Funktion /ike definiert. Diese
bildet eine Platzierung ¢ auf eine Untermenge ASS’ der moglichen Platzierungen ASS ab.
like : ¢ — ASS'. Moglichkeiten diese Menge zu definieren, werden in 4.6.3 vorgestellt.

Algorithmus 4.1 Algorithmus zur Optimierung einer Platzierung
1 t < initialValue
2: while —exitCondition do
3: nextAssignment <— random(like(current Assignment))
if quality(nextAssignment) > quality(current Assignment) then
current Assignment <— nextAssignment

end if
if ¢~ (quality(nextAssignment)—quality(current Assignment)) / Ty > random() then

current Assignment <— nextAssignment
end if
10: t—t+1
11: end while
12: return current Assignment

L PN >k

Weist die zufillig ausgewéhlte Platzierung (next Assignment) einen hoheren Zielfunktions-
wert (quality(next Assignment)) als die aktuelle Platzierung (current Assignment) auf, so wird
sie zur aktuellen Platzierung.

Ist dies nicht der Fall, wird sie trotzdem mit einer bestimmten Wahrscheinlichkeit, die durch
e—(value—quality(currentAssignment))/T(t) gegeben ist, akzeptiert.

Die Wahrscheinlichkeit, mit der Bergab gegangen wird, hangt von dem Kontrollparameter
T; und der Zielfunktionsnidhe beider Platzierungen ab. Hat der Kontrollparameter einen
hohen Wert, so ist die Wahrscheinlichkeit hoch, dass eine schlechtere Platzierung verfolgt
wird. Unterscheidet sich die Qualitdt der aktuellen und der moglichen neuen Platzierung
stark, so ist die Wahrscheinlichkeit niedrig, dass die neue Platzierung iibernommen wird.
Mogliche Verldufe des Kontrollparameters werden in Abschnitt 4.6.7 vorgestellt.

Der Algorithmus terminiert wenn eine bestimmte Abbruchbedingung erfiillt ist. Mogliche
Abbruchbedingungen werden in 4.6.6 diskutiert.

56

4.6 Optimierung der Platzierung

4.6.3 Ahnliche Platzierungen

Ahnliche Platzierungen sind Platzierungen, die sich in der Position weniger virtueller Knoten
unterscheiden. Ist eine Platzierung ¢ gegeben, so kann die Menge der Platzierungen, die sich
von ¢ in der Position genau eines virtuellen Knotens unterscheiden, z.B. folgendermafien
definiert werden:

like(p) = {¢'|Fx € N(phi(x) # phi' (x) AVy(x # y = phi(x) = phi'(y)))}

Die Anzahl der Unterschiede zweier Platzierung kann als Distanz der Platzierungen gesehen
werden. Im obigen Beispiel ist die Distanz 1 fiir die Platzierung ¢ zu allen Platzierungen der
Menge like. Lasst man hohere Distanzen zu, so steigt die Anzahl der durch like definierten

Menge exponentiell. Es gilt |like(¢)| = O ((g) * VMP) Wobei VM fiir die Anzahl der

virtuellen Maschinen, D fiir die maximale Distanz und N fiir die Anzahl der virtuellen
Knoten steht.

Um lokale Optima zu {iberwinden, kann es sinnvoll sein, weniger dhnliche Platzierungen
zuzulassen, also die maximale Distanz hoher zu wéhlen. Wahlt man sie allerdings zu hoch,
so artet der Simulated Annealing Algorithmus zu einer Random Suche aus. In der aktuellen
Implementierung wird eine Distanz von 1 benutzt. Andere Distanzen konnten allerdings
evaluiert werden.

4.6.4 Berechnung des Zielfunktionswerts

In der Optimierungsphase des Neuplatzierungsalgorithmus werden verschiedene alternative
Platzierungen betrachtet. Fiir jede dieser Platzierungen muss der Wert der zu optimie-
renden Zielfunktion berechnet werden. Die in 4.6.1 vorgestellte Zielfunktion, basiert auf
Kommunikations- und Rekonfigurationskosten. Werden diese fiir jede betrachte Platzierung
neu berechnet, so entstehen hohe Kosten.

Fiir die Berechnung der Kommunikationskosten wird beispielsweise O(|links|) Zeit benétigt.
D.h. die Zeit steigt linear mit der Anzahl von Verbindungen zwischen virtuellen Knoten.
Dies ist gerade bei grofie Szenarien mit vielen Links problematisch. Da dem Optimierungs-
algorithmus nur ein bestimmtes Zeitfenster zur Ermittlung einer besseren Platzierung zur
Verfiigung steht, sollten Kosten fiir die Berechnung des Zielfunktionswerts moglichst klein
sein.

Wirft man einen Blick auf den in 4.6.2 vorgestellten Optimierungsalgorithmus, so stellt man
fest, dass sich aufeinander folgende Platzierungen kaum unterscheiden. In jedem Schritt wird
eine Platzierung aus der Nachbarschaft der zuletzt betrachteten Platzierung ausgewdahlt.

57

4.6 Optimierung der Platzierung

Statt einer kompletten Neuberechnung der Kosten ist es daher sinnvoller die Kosten der
aktuell betrachteten Platzierung als Inkrement der Kosten der vorher betrachten Platzierung
zu sehen. In diesem Fall miissen nur Kostendnderungen berechnet werden. Dieses Vorgehen
soll am Beispiel des Kommunikationskostenmodells im Folgenden néher erldutert werden.

Angenommen ¢; sei die zuletzt betrachtete Platzierung und ¢;;, eine neue Platzierung fiir
die Kommunikationskosten berechnet werden sollen, dann lasst sich die Last einer virtuellen
Maschine vm unter der neuen Platzierung ¢; 1 wie in Formel (4.22) berechnen:

(4-22) Ape?™ = Ape? + AND™

Die Last der virtuellen Maschine vm ergibt sich also zum einen aus der Last, der zuletzt be-
trachteten Platzierung ¢;, die in der virtuellen Maschine entstanden ist und zum anderen aus
der Lastdnderung AAJE. Analog dazu kann auch die Last eines Host-OS A;,/,ICM_HO“—OS’WH

dargestellt werden.
Im Folgenden soll nun vorgestellt werden wie sich AAYT berechnen ldsst.

M sei eine Menge von virtuellen Knoten i € N, fiir die sich die Platzierung geédndert hat
M = {j € N|pi+1(j) # ¢i(j)}. Zur Vereinfachung nachfolgender Formeln sei aulerdem die
Gleichung (4.23) gegeben.

Kintra—om,t falls p= Pl Ac=c
(4-23) K;,P’,C,C’ = Kinter—om,t fallsp=p' Ac# ¢
Kinter—pNode,t fallsp #p' Nc#

Dann berechnet sich AAJT durch die Formel (4.24).

(4.24) AN =AY AN+ Y = Y &
keM keM
is1(k)=(p.c) $i(k)=(p.c)

Die Anderung der Last einer virtuellen Maschine ist gegeben durch die Anderung von
Lasten fiir Verbindungen zwischen virtuellen Knoten und durch die Anderungen von Lasten,
die durch virtuelle Knoten in der VM verursacht werden. Erhélt die virtuelle Maschine in
der neuen Platzierung ¢;., ein neuen virtuellen Knoten k, so wird sie nun mit A belastet.
Verliert sie einen virtuellen Knoten k, so sinkt die Belastung um Ay.

Lastdnderungen, die sich in einer virtuellen Maschine durch Verbindungsdnderungen erge-
ben, lassen sich beispielsweise durch die Formel (4.25) berechnen. Diese zeigt Lastainderungen

4.6 Optimierung der Platzierung

in einer VM fiir eingehende Verbindungen. Lastinderungen fiir ausgehende Verbindungen
lassen sich analog dazu bestimmen.

VM, __ VM,, VM,
(4.25) ANy = — Z Bik * Kppee T Z Bir * Koy
jkeN jkeN
jeMVkeM jeMvkeM
¢i(/)=(p',c) $i1(/)=(p'.c)
¢iy1(k)=(p.c) $ir1(k)=(p.c)

Fiir die Berechnung der Lastanderung miissen Verbindungen betrachtet werden, bei denen
mindestens einer der beiden Kommunikationspartner migriert wurde. Fiir jede dieser Ver-
bindungen muss die Last angepasst werden. Hierzu werden Lasten , die unter der alten
Platzierung ¢; berechnet wurden, subtrahiert und Lasten, die durch Verbindungen in der

neuen Platzierung ¢, entstehen, addiert. AAK?/I” ergibt sich analog dazu.

Platzierung ®i Platzierung ®i+1
pNodel pNodel
VM (1,1) VM (1,2) VM (1,1) VM (1,2)
vNodel vNodel » vNode2
vNode2

Abbildung 4.12: Beispiel zur Berechnung von Lastdnderungen

Zur Veranschaulichung der Formel betrachten wir nun das Beispiel in Abbildung 4.12. In
diesem sind die Anderungen der Lasten dargestellt, die sich fiir eine Umplatzierung des
Knotens vNode2 ergeben. In diesem Beispiel wird aus der intra — vm Verbindung zwischen
beiden Knoten, die nur die virtuelle Maschine VM(1, 1) belastet, eine inter — vm Verbindun-
gen. Diese verursacht eine Last auf beiden virtuelle Maschinen. Die Lastdnderung AAK{VI &

der virtuellen Maschine VM(1, 1) ergibt sich zu —B12 * Kintra—om vM,. + B12 * Kinter—om VM, -
Sind alle Lasten virtueller Maschinen AZ?Z"P"“ und Lasten der Host Betriebsysteme bestimmt,

lasst sich die erwartete Experimentlaufzeit bestimmen(siehe 4.4).

59

4.6 Optimierung der Platzierung

Bei dieser Variante wird fiir die Berechnung der Kommunikationskosten O(1") Zeit benétigt.
Wobei I’ fiir die Anzahl der Verbindungen steht, bei denen mindestens einer der beiden
Verbindungspartner migriert wurde. Andert sich die Platzierung nur weniger Knoten von ¢;
zu ¢;;1, so kann mit dieser Variante sehr viel Rechenzeit eingespart werden, da dann gilt
I'<<L

4.6.5 Verkleinerung des Suchraums

Im Abschnitt 4.6.3 wurde die Menge dhnlicher Losungen definiert. In jeder Iteration des
Algorithmus wird daraus zufillig ein Element ausgewahlt. Fallt die Wahl auf ein Element,
dass die Zielfunktion nicht weiter minimiert, wird dieses mit einer bestimmten Wahrschein-
lichkeit weiter berticksichtigt. Um eine schnellere Konvergenz des Optimierungsalgorithmus
zu erreichen ist es sinnvoll Losungen , die mit hoher Wahrscheinlichkeit nicht zu einer
optimalen Losung fithren, heraus zu filtern.

Wie in Kapitel 4.4 erldutert, sind Kommunikationskosten zwischen Knoten stark abhingig
von der Art der Verbindung zwischen ihnen. Wird ein Knoten zu einer virtuellen Maschine
migriert, auf der sich kein Knoten befindet, mit dem er eine Verbindung eingeht, so ist die
Wahrscheinlichkeit sehr hoch, dass sich die Kommunikationskosten erhohen. In diesem Fall
kann der Knoten nur inter — vm und inter — pnode Verbindungen zu anderen Knoten einge-
hen. Diese verursachen hohere Kosten als intra — vm Verbindungen. Ahnliche Platzierungen,
die durch die Migration genau der eben genannten Knoten entstehen, sollten herausgefiltert
werden.

Neben den sich durch die Migration d&ndernden Verbindungen kénnen auch Merkmale
wie Anzahl der Prozesse und genutzten Arbeitsspeicher eines Knotens betrachtet werden.
Nutzt ein Knoten viel Speicher, erzeugt aber nur eine geringe Kommunikationslast, so
ist die Wahrscheinlichkeit gering, dass die Migration eines solchen Knotens die Platzie-
rung verbessert. Es entstehen in diesem Fall hohe Migrationskosten, denen eher kleine
Kommunikationskosteneinsparung gegeniiber stehen.

4.6.6 Abbruchbedingung

In diesem Abschnitt sollen Abbruchbedingungen fiir den Simulated Annealing Algorithmus
diskutiert werden.

Mogliche Abbruchbedingungen sind:

e Abbruch bei Konvergenz
e Abbruch nach einer bestimmten Anzahl von Iterationen

e Abbruch beim Uberschreiten eines Zeitlimits

60

4.6 Optimierung der Platzierung

Eine hédufig eingesetzte Moglichkeit einen Optimierungsalgorithmus zu beenden ist die
Konvergenz. Ist von der aktuellen Losung keine bessere Losung mehr erreichbar, so terminiert
der Algorithmus. Je nach Komplexitdt des Problems und der gewéhlten Startlosung kann
die Laufzeit des Algorithmus dabei allerdings sehr unterschiedlich sein. Ist der Algorithmus
zeitkritisch, sollte daher entweder nach einer festen Anzahl von Iterationen oder nach einem
bestimmten Zeitlimit abgebrochen werden.

Die in 4.6.1 vorgestellte Zielfunktion beruht auf Prognosen zu Datenraten von Verbindungen
und Auslastungen von Knoten. Diese sind nur fiir eine bestimmte Zeit giiltig. Daher muss
der Optimierungsalgorithmus nach einer gewissen Zeit abgebrochen werden. Zusitzlich
kann der Algorithmus noch auf Konvergenz gepriift werden. Konvergiert dieser vor Ablauf
des Zeitlimits, kann er beendet werden.

4.6.7 Cooling Schedule

Mafsgeblich fiir die Performance eines Simulated Annealing Algorithmus ist der Cooling
Schedule. Er wird spezifiziert durch:

e Den initialen Wert des Kontrollparameters (Temperatur)
¢ Anderung des Kontrollparameters iiber die Anzahl der Iterationen (Zeit)

e Den finalen Wert des Kontrollparameters (nicht unbedingt notig)

In der Literatur wird zwischen dynamischen und statischen Cooling Schedules unterschie-
den.

Bei der statischen Variante werden Werte des Kontrollparameters vor der Ausfithrung des
Algorithmus festgelegt. Eine Anderung der Werte ist zur Laufzeit nicht moglich.

Bei der dynamischen Variante hingegen werden Kontrollparameterwerte zur Laufzeit adaptiv
angepasst. Zur Anpassung werden meist statistische Werte wie Mittelwerte und Standardab-
weichungen bisher errechneter Zielfunktionswerte verwendet. In der Literatur lassen sich
viele unterschiedliche dynamische Cooling Schedules finden z.B. die von Huang [RSV91]
und Lam [LJMS88].

Ein dynamischer Schedule besitzt bessere Anpassungsmoglichkeiten an das Problem, ist
allerdings auch mit zusitzlichen Kosten verbunden. Da dem Algorithmus zur Optimierung
der Platzierung nur ein begrenztes Zeitfenster zur Verfiigung steht und der Nutzen zusitzli-
cher Kosten nur schwer abgeschétzt werden kann, soll hier ein statischer Cooling Schedule
verwendet werden.

Ein oft in der Praxis eingesetzter statischer Cooling Schedule ist der geometrische Schedule.
Dieser wird z.B. im Simulated Annealing Algorithmus von Kirkpatrick [Kir84] genutzt.

61

4.6 Optimierung der Platzierung

Geometrischer Cooling Schedule

Der Simulated Annealing Algorithmus [Kir84] von Kirkpatrick gilt als die , Urversion” der
Simulated Annealing Algorithmen. Er basiert auf dem Metropolis [MRR™ 53] Algorithmus.

Der Metropolis Algorithmus wurde urspriinglich zur Ermittlung von Eigenschaften wie Volu-
men und Druck von Substanzen bei einer bestimmten Temperatur eingesetzt. Im Metropolis
Algorithmus werden dabei Substanzen durch eine Menge von Molekiilen, die miteinander
interagieren, modelliert.

Zur Ermittlung der Eigenschaften wird der Gleichgewichtszustand dieses Systems ermit-
telt. Im Metropolis Algorithmus werden energetische Zustande unterschiedlicher Molekiil-
Konfigurationen betrachtet. Die einzelnen Konfigurationen unterscheiden sich z.B. in der
Lage einzelner Molekiile.

Kirckpatrick nutzte das Prinzip des Metropolis Algorithmus zur Losung kombinatorische
Optimierungsprobleme; Statt Molekiilkonfigurationen werden Losungen betrachtet; statt der
Energie einer Konfiguration, der Wert einer Kosten-/Zielfunktion und statt der Temperatur
wird ein Kontrollparameter T genutzt.

Genau wie im Metropolis Algorithmus werden Konfigurationen(Losungen) bei einer be-
stimmten Temperatur (Wert des Kontrollparameters) betrachtet. Im Gegensatz zum Me-
tropolis Algorithmus wird die Temperatur beim Simulated Annealing jedoch mit der Zeit
verringert und damit ein Abkiihlungsprozess simuliert.

Zuerst wird das zu optimierende System bei einer hohen Temperatur ,geschmolzen”. Danach
folgen Schritte, in denen das System stufenweise und kontrolliert abgekiihlt wird.

Jede Temperatur sollte solange gehalten werden bis sich ein Gleichgewichtszustand ein-
stellt.

Ein typischer Annealing Schedule nach Kirckpatrick ist in 4.13 dargestellt. Definiert werden
miissen

e initiale Temperatur
e Anderung der Temperatur

o Zeit(Iterationen) konstanter Temperatur

initiale Temperatur Werte von Tj sind extrem von der Skalierung der Zielfunktion abhingig.
Nach Kirckpatrick sollte die initiale Temperatur so gewédhlt werden, dass Losungen, die den
Zielfunktionswert erniedrigen, mit einer Wahrscheinlichkeit von p = 0.8 akzeptiert werden.
Um ein initialen Wert auszuwihlen, der dieses Kriterium erfiillt, kann man z.B. einen
Probelauf starten, in dem negative Anderungen des Zielfunktionswertes dif f ~ aufgezeichnet
werden. Mittels dieser lasst sich dann durch Formel (4.26) der Wert von Ty bestimmen. Zur

62

4.6 Optimierung der Platzierung

Initiale Temperatur

[Anderung der Temperatur

Temperatur T

Zeit konstanter Temperatur

\/

Iterationen t

Abbildung 4.13: Typischer Cooling Schedule

Erinnerung: Ein Funktionswert, der den Wert der Optimierungsfunktion verringert, wird
A
mit einer Wahrscheinlichkeit von p = et akzeptiert.

Tfr
(4.26) To = ln(plfzf()S)

Alternativ kann die Standardabweichung der Variation der Zielfunktion verwendet werden.
Also Tp = 0p. Nach Hall [Whi84] ist dieses Vorgehen sehr effektiv.

Beides erfordert allerdings einen hohen Aufwand zur Bestimmung der initialen Temperatur.
Daher soll hier eine einfachere, aber hédufig in der Praxis verwendete Methode benutzt
werden. Dabei wird die maximale Differenz der Zielfunktion abgeschitzt und Ty dann auf
diesen Wert gesetzt. Also Ty = max (Af)

Wird die in Kapitel 4.6.1 vorgestellte Zielfunktion benutzt, kann die maximale Differenz, z.B.
durch das betrachtete virtuelle Zeitfenster t,,;,4,,, abgeschitzt werden. Dies soll im folgenden
Absatz kurz motiviert werden.

Ein virtueller Knoten bendétigt mit hoher Wahrscheinlichkeit nicht mehr Ressourcen als
ein Prozessor zur Verfligung stellen kann: also usedCycles,no4. < 0f feredCyclescp,. Beim
Ubergang zu einer neuen Platzierung wird die Position weniger Knoten verandert(in der
Regel nur die eines Knotens). Im schlimmsten Fall erhoht sich die Last in der Ziel-VM bei
einer Migration eines Knotens um of feredCyclesc,,. Damit steigt der TDF maximal um 1

63

4.7 Lastvorhersage

(z.b. wenn Ziel-VM hochst ausgelastete VM ist). Dadurch erhoht sich die erwartete Laufzeit
maximal um f,;,400-

Hierbei handelt es sich natiirlich nur um eine sehr grobe Abschidtzung; in der Regel wird
die maximale Differenz des Funktionswertes wesentlich kleiner sein. Die Evaluation des
Optimierungsalgorithmus zeigt aber, dass sich auch mit dieser groben Abschitzung gute
Ergebnisse erzielen lassen.

Zeit konstanter Temperatur Die Zeit bzw. die Zahl der Iterationen fiir die eine bestimmte
Temperatur gehalten werden muss, hdngt von der Grofie des Problems ab. Meist wird die
Anzahl der von einem Zustand aus erreichbaren Nachbarzustidnde als Richtwert herangezo-
gen.

Um eine gewisse Verdnderung zu erreichen, wird die Temperatur fiir eine bestimmte Anzahl
von akzeptierten Verdnderungen taccept gehalten. Diese kann sich z.B. an der Zahl der
Nachbarzustdnde orientieren. Gegen Ende der Optimierung werden in der Regel allerdings
kaum noch Anderungen akzeptiert. Daher bedarf es hiufig vieler Versuche um tuccepr zu
erreichen. Deswegen ist es sinnvoll eine Obergrenze fiir die mogliche Versuche einzufiihren
tmax. Typischerweise wird ty5x = 1.66 * taccepr gewdhlt.

Wie in 4.6.3 vorgestellt, hat eine Losung bei unserem Optimierungsproblem O(|N| * |V M]|)
dhnliche ,Nachbar”-Lésungen (wenn nur die Position eines Knotens verdndert wird). #sccept
konnte daher z.B. wie folgt gewahlt werden: toccepr = |N| * [VM|.

Funktion zur Absenkung der Temperatur Eine hiufig eingesetzte, einfache Funktion zur
Erniedrigung der Temperatur ist die (4.27) dargestellte exponentiale Funktion.
(4.27) Tip1 = ax T

Dabei wird a aus dem Intervall |0, 1] gewéhlt. Kirckpatrick schldgt ein giinstigen Wert von
x = 0.95 vor.

4.7 Lastvorhersage

Mit Hilfe des Kommunikationskostenmodell kann fiir ein virtuelles Zeit t,;,,, die erwartete
Experimentlaufzeit t,.,; berechnet werden. In der Optimierung ist dabei besonders das
auf die aktuelle virtuelle Zeit folgende Zeitintervall interessant. Dies wurde in 4.6.1 als
twindow bezeichnet. Um die erwartete Experimentlaufzeit fiir dieses Intervall moglichst

64

4.7 Lastvorhersage

(o2}
T
1

load [cycles/ms]
(6]
1

IN
T
1

1 L L L L L L L
1 2 3 4 5 6 7 8 9 10

time [s]

Abbildung 4.14: Historie der Last eines virtuellen Knoten

gut abschidtzen zu konnen werden gute Prognosen der Last und Datenraten von Knoten
bendtigt.

Mithilfe von Monitoren konnen vergangene mittlere Lasten und Datenraten aufgezeichnet
werden. Ein Beispiel fiir eine Historie von Lastwerten zeigt Abbildung 4.14. In dieser Grafik
wurden mittlere Lasten in einem konstant breiten virtuellen Zeitintervallen von 1 Sekunde
aufgezeichnet.

Auf Basis einer Historie miissen Lasten und Datenraten fiir das, bei der Optimierung
betrachtete zukiinftige virtuelle Zeitintervall ¢,);,4,,,, abgeschétzt werden.

Dazu konnen z.B. Verfahren zur ,,one step load prediction” eingesetzt werden. Fiir eine
zeitlich aufeinander folgende Reihe von Messwerten {m1,m2, ...,m, }, auch Zeitreihe genannt,
lasst sich mit diesen der zu erwartetende, nachste Messwert m,,, 1 ermitteln.

In der Literatur werden zur Voraussage von m,,,1 unterschiedliche Ansitze verfolgt. Ein
grober Uberblick wird in dem nachfolgenden Paragraph gegeben.

letzter Wert Bei diesem Ansatz wird m,, 1 = m, gesetzt.

Tendenz basierte Vorhersage In [YFSo3] wird eine Ansatz vorgestellt, der Tendenz basierte
Vorhersage genannt wird. Auf Basis der letzten beiden Werte einer Zeitreihe, also m,

65

4.7 Lastvorhersage

und m,_q, wird eine Tendenz der Messreihe abgeleitet m, — m,_;. Steigt der Wert der
Messreihe m, — m,_1 > 0, so wird m, 1 = m, + incValue gesetzt, andernfalls gilt m,;; =
my, — decValue . Werte flir incValue und decValue orientieren sich an Vorhersagefehlern und
der Grofse des Messwerte.

Untersucht wurden in [YFSo3] Messreihen, bei denen Messpunkte mit einer Frequenz von
0.1 HZ, 0.05 HZ und 0.025 HZ aufgezeichnet wurden. Bei der niedrigsten Frequenz von 0.1
Hz lag die Abweichung der Voraussage vom tatsdchlichen Wert bei unter 17 Prozent. Fiir ein
Intervall von 10 Sekunden ldsst sich also der ndchste Messwert mit diesem Verfahren relativ
gut abschdtzen. Auffillig war, dass mit dem einfacheren ,letzter Wert” Verfahren in [YFSo3]
dhnliche Ergebnisse erzielt werden konnten.

Polynomial Fitting In [ZSIo6] wird ein Ansatz fiir die ,one step ahead predicti-
on“vorgestellt, der auf Polinomial Fitting basiert. Beim Polinomial Fitting wird davon
ausgegangen, dass Datenpaare (x;, y;)(z.B Zeitpunkt einer Messung und zugehoriger Mess-
wert) korreliert sind.

Fiir die Korrelation wird eine Polynomfunktion f(x) = y mit f(x) = YN, A; * ' benutzt,
wobei N den Grad der Funktion bezeichnet. Durch ein kleinstes Qudrate Fitting werden fiir
eine Menge von Datenpaaren (x;,y;) die Konstanten A; der Polynomfunktion bestimmt. Auf
Basis dieser Funktion wird dann der ndchste Wert der Messreihe abgeschatzt.

In [ZSIo6] wurden Polynomfunktion von Grad 2 und 3 betrachtet. Laut den Messergebnissen
von Thang sind mittlere Vorhersagefehler mit dem Polynomial Fitting Ansatz 38 bis 86
Prozent kleiner als bei dem Tendenz basierten Verfahren von Yang [YFSo3].

Lineare Modelle Bei diesem Ansatz werden Zeitreihen als Realisierung stochastischer
Prozesse angesehen, die einen linearen Filter steuern, der als Input weifses Rauschen erhilt.
Der lineare Filter hat dabei die Form m] = Z/C':1 wj * a;_j+a;, wobei w; Parameter des Filters
sind, aj ein Wert der weiflen Rausch Sequenz ist und c den Grad des Filters darstellt.

Die Parameter des Filters w; miissen so gewidhlt werden, dass die mittlere quadratische
Abweichung der Modellwerte m/ von den tatsdchlichen Messwerten n; minimal ist.

In [DOoo0] werden verschiedene lineare Modelle vorgestellt und bewertet: unter anderem
Auto Regressive (AR) und Main Avarage (MA) Modelle, sowie Mischformen beider (ARMA).
Einfache Auto Regressive Modelle mit einem Grad von 16 oder hoher stellten sich als
ausreichend fiir eine Vorhersage bei 1 HZ Daten(Messwerte in Abstand von einer Sekunde)
bis zu 30 Sekunden in die Zukunft heraus.

Um eine moglichst gute Voraussage zu erreichen, sollten die vorgestellten Ansdtze in realen
Testszenarien auf ihre Tauglichtkeit gepriift werden. Dies war allerdings im Rahmen der

66

4.8 Lage

Diplomarbeit nicht moglich. Aufgrund des geringen Implementierungsaufwands wurde sich
daher zunéachst fiir den einfachsten ,letzter Wert” Ansatz entschieden.

4.8 Lage

In verteilten Systemen stellt sich immer die Frage nach dem Ort der Ausfiithrung eines Algo-
rithmus. Im Wesentlichen lassen sich 2 Ansitze unterscheiden: der verteilte und zentralen
Ansatz.

Beim zentralen Ansatz wird der Algorithmus auf einem Rechner, meist Koordinator genannt,
ausgefiihrt. Dieser Koordinator besitzt eine globale Sicht auf das System, was ihm ein hohes
Optimierungspotential ermoglicht. Gleichzeitig ist fiir die Erstellung dieser globalen Sicht
allerdings ein gewisser Aufwand nétig. Da ein Rechner nur iiber begrenzte Ressourcen
verfiigt, kann der Koordinator leicht zum Flaschenhals werden. Meist skalieren zentrale
Ansitze deshalb nicht so gut wie verteilte.

Beim verteilten Ansatz wird der Algorithmus auf mehreren Rechner ausgefiihrt. Jeder
Rechner hat dabei in der Regel nur eine beschrankte lokale Sicht auf das System. Das
Optimierungspotential ist deshalb geringer als im zentralen Ansatz. Im Gegenzug entstehen
aber auch keine Kosten fiir die Erstellung einer globalen Sicht, was diesen Ansatz skalierbarer
macht.

4.8.1 Optimierung der Platzierung
Zentraler Ansatz

Beim zentralen Ansatz erfolgt die Optimierung der Platzierung zentral auf einem Rechner.
Dabei kann z.B. fiir die Optimierung der in 4.6.2 vorgestellte Simulated Annealing Algorith-
mus verwendet werden. 4.2 zeigt in Pseudocode eine Skizze des zentralen Algorithmus.

Basis der Optimierung bildet die in 4.6.1 vorgestellte Zielfunktion. Diese fufst auf zwei
Modellen: einem Kommunikationskostenmodell und einem Rekonfigurationskostenmodell.
Diese miissen vor einer Optimierung aktualisiert werden. Dazu miissen dem Koordinator,
z.B. Prognosen zu Lasten virtueller Knoten, Datenraten fiir Verbindungen und genutztem
Speicher eines virtuellen Knotens zur Verfligung gestellt werden. Dies ist mit gewissen
Kosten verbunden, die sehr stark von der Grofle des jeweiligen Testszenarios abhéngen.

Um diese Kosten moglichst niedrig zu halten, wird deshalb vorab der aktuelle Zustand
des Systems auf seine Optimierbarkeit gepriift ((isImprovablePlacement(currentPlacement)).
Dazu kann z.B. die Auslastung physikalischer Rechner des Testsystems herangezogen
werden. Weichen Lasten der Rechner sehr stark voneinander ab, ist dies ein Indiz fiir eine
ungiinstige Platzierung. Da die Informationen, die fiir die Beurteilung der aktuellen Situation

67

4.8 Lage

herangezogen werden beschriankt sind, sollte in bestimmten Abstdnden eine Optimierung
der Platzierung erzwungen werden.

Der Optimierungsalgorithmus liefert eine alternative Platzierung. Diese wird, bevor sie
umgesetzt wird, gepriift. Da die Rekonfiguration der TVEE mit Kosten verbunden ist, muss
abgewogen werden, inwieweit sich diese Investition lohnt. Ist nur mit geringen Laufzei-
teinsparungen zu rechnen, so sollte die Platzierung nicht umgesetzt werden. Das Risiko
wiére in diesem Fall zu hoch, da die fiir die Zukunft getroffenen Prognosen nicht eintreten
miissen. Wurde sich fiir die Platzierung entschieden,, so wird die TVEE rekonfiguriert
(recon figurateTV EE (alternativePlacement)).

Algorithmus 4.2 Zentraler Neuplatzierungsalgorithmus

1: currenPlacement < initial Placement
2: loop
3: wait(TDFscaledIntervall)

4 if isImprovablePlacement (currentPlacement) then

5: updateModel ()

6: alternativePlacement < optimizePlacement(currentPlacement)
7: if isBetterPlacement (alternativePlacement) then

8: recon figurateTV EE(alternativePlacement)

9: end if

10: end if

11: end loop

Der zentrale Algorithmus wird periodisch ausgefiihrt (wait(TDFscaledIntervall)), wobei die
Dauer der Wartezeit mit dem aktuellen TDF skaliert wird. Dies ist nétig, da der Algorithmus
auf einem Rechner aufgefiihrt werden soll, der in Echtzeit arbeitet.

Nimmt der TDF gerade einen hohen Wert an, so ist die Frequenz, mit der der Neuplatzie-
rungsalgoritmus angestofien wird, klein. Dies ermoglicht ihm mehr Zeit in die Optimierung
der Platzierung zu investieren . Fiir grofSe Szenarien, die viele Ressourcen benotigen, be-
deutet dies, dass sich zwar die Komplexitdt des Optimierungsproblems erhoht, aber auch
gleichzeitig mehr Zeit fiir die Suche einer optimalen Losung zur Verfiigung steht.

Verteilte Ansatze
In diesem Abschnitt sollen zwei verteilte Ansdtze vorgestellt werden. Beim ersten steht jedem

Rechner wie im zentralen Ansatz das Wissen tiber den globalen Zustand zur Verfiigung. Bei
zweiten werden Optimierungen auf Basis von lokalem Wissen durchgefiihrt.

68

4.8 Lage

globales Wissen Im zentralen Ansatz wird der Optimierungsalgorithmus nur auf einem
Rechner ausgefiihrt. Unabhéngig von der Grofse des Testszenarios stehen in diesem Fall
immer die gleichen Ressourcen zur Verfiigung. Mit zunehmender Komplexitidt des Szenarios
steigt allerdings die Grofse des Suchraums fiir die Optimierung. Die Wahrscheinlichkeit, eine
optimale Losung zu finden, sinkt dadurch.

Dies motiviert den Ansatz, den Optimierungsalgorithmus parallel auf mehreren Knoten
des Testsystems auszufiihren. Durch mehr Rechenleistung ist es vielleicht moglich, eine
bessere Losung zu finden. Anstatt also den Optimerungsalgorithmus nur auf dem Koor-
dinator auszufiihren, wird er in allen oder einigen virtuellen Maschinen des Testsystems
ausgefiihrt.

Dabei ist es moglich, unterschiedliche Optimierungsalgorithmen zu verwenden sowie Para-
meter der Algorithmen zu variieren. Wird fiir die Optimierung der Simulated Annealing
Algorithmus verwendet, so kann z.B. der Temperaturverlauf variiert werden. Werden Nach-
barzustdnde dhnlich wie beim Simulated Annealing ausgewdhlt, so ist die Wahrscheinlich-
keit hoch, dass unterschiedliche Instanzen des Algorithmus auch unterschiedliche Wege
im Suchraum einschlagen. Dadurch lédsst sich der Suchraum besser abdecken und die
Wahrscheinlichkeit die optimale Losung zu finden steigt.

Allen virtuellen Maschinen wird bei diesem Ansatz ein bestimmtes Zeitfenster fiir die
Berechnung einer giinstigeren Platzierung zur Verfiigung gestellt. Ist die verfiigbare Zeit
abgelaufen, so werden alle Losungen verglichen und die beste Platzierung kann in einem
ndchsten Schritt umgesetzt werden.

Ein Nachteil dieses Ansatzes sind hohe Optimierungskosten. Damit jede virtuelle Maschine
eine globale Optimierung durchfiihren kann, muss jeder virtuellen Maschine globales Wissen
zur Verfiigung gestellt werden. Anstatt Prognosen iiber Last und Datenraten nur an den
Koordinator zu iibertragen, miissen sie im globalen verteilten Ansatz an alle virtuellen
Maschinen verteilt werden. Dies kann z.B. per Multicast erfolgen. Jede Maschine wird dabei
zusétzlich durch die zu empfangenden Daten belastet.

Da die virtuellen Maschinen fiir die Ausfithrung des Experiments benutzt werden, erhcht
sich die Laufzeit des Experiments um die Laufzeitkosten der Optimierung.

Dieser Ansatz eignet sich also nur fiir grofle Szenarien mit einem hohen Optimierungspo-
tential. Die Frage ist allerdings, ob sich im Mittel in grofien Szenarien nicht sowieso ein
Lastgleichgewicht einstellt.

lokales Wissen Der im Folgenden vorgestellte verteilte Ansatz orientiert sich an einem
Algorithmus namens Sender Initiated Diffusion. Dieser wird im Bereich der Taskmigration
eingesetzt und wurde in Abschnitt 3.1.1 vorgestellt.

69

4.8 Lage

Ziel des Algorithmus ist es, durch ein verteiltes lokales Loadbalancing ein globales Last-
gleichgewicht zu erreichen. Dafiir wird das System in sich tiberlappende Doménen unterteilt:
siehe Abbildung 4.15.

- Domain2

- _ /// \\\
Domainl T
NN [optimize ’ /
N — > /
\\ \ //
: . Load load .~
‘ optimize) // s) 7

.. Load Load -~ .~ Domain3
‘ optimiz{ [I:I:]] ”J
Load Load L

Abbildung 4.15: Verteiltes Loadbalancing

Dieser Ansatz soll hier verwendet werden, um die Experimentlaufzeit eines Experiments
zu minimieren. Dabei wird angenommen, dass bei einer guten Platzierung, die Last der
einzelnen virtuellen Maschinen ausgeglichen ist. Da unterschiedliche Platzierungen aber zu
ungleich hohen Gesamtlasten fiithren konnen, ist dies nicht immer zutreffend. Eine Reduktion
der Last des hochst ausgelasteten Knoten wird sich allerdings mit hoher Wahrscheinlichkeit
durch dieses Verfahren erreichen lassen.

Im folgenden soll nun vorgestellt werden, wie sich der Sender Initiated Diffusion Algorith-
mus auf die Optimierung einer Platzierung anpassen ldsst. Dazu muss zundchst das System,
das aus einer Menge von virtuellen Maschinen besteht, in sich iiberlappende Bereiche
aufgeteilt werden.

Dies kann z.B. auf Basis von Nachbarschaftbeziehungen erfolgen. Eine Doméane umfasst in
diesem Fall eine virtuelle Maschine und deren direkte Nachbarn. Ein Beispiel fiir die Bildung
einer Doméne, mithilfe von Nachbarschaftsbeziehungen, ist in Abbildung 4.16 dargestellt. Es
zeigt eine Routerkette, deren Knoten auf verschiedene Vms verteilt wurden und die Doméne,
in der sich die virtuelle Maschine V M1 befindet.

In 4.16 wurde die Nachbarschaft von VMs iiber Verbindungen virtueller Knoten definiert.
Dabei ist eine VM benachbart zu einer anderen VM, wenn es mindestens einen Knoten in der
VM gibt, der eine Verbindung zu einem Knoten der anderen virtuellen Maschine aufweist.

70

4.8 Lage

//E/)émain (VMi\)\\\
@ VM1l VM4 /<>
A

VM2 | VM3

Abbildung 4.16: Bildung einer Domane

In 4.16 hat der Sender- und Empfangerknoten der Routerkette auf der virtuellen Maschine
vml eine Verbindung zu jeweils einem Knoten der virtuellen Maschine vm2. Damit sind
diese benachbart und gehoren in eine Domaéne.

Wird der Neuplatzierungsalgorithmus aufgerufen, so wird in jeder der Doménen ein Load
Balancing durchgefiihrt. Dazu holt jede virtuelle Maschine zunéchst die aktuellen Prozessor-
lasten ihrer Nachbarn ein. Aus diesen Daten wird die mittlere Auslastung der Domane, wie
in (4.28) gezeigt, ermittelt.

1
om

i€ Ny

Dabei steht Ny, fiir die Menge der Nachbarn der virtuellen Maschine vm und A, fiir die
Last der Maschinen.

Liegt die Last der virtuelle Maschine vm tiber der mittleren Last der Doméne, so wird ein
Optimierungsalgorithmus angestofien. Dieser minimiert die mittlere quadratische Abwei-
chung von der Durchschnittslast durch das Verteilen von Knoten der virtuellen Maschine
vm auf ihre Nachbarn (siehe Abbildung 4.17). Die Zielfunktion der Optimierung ist in (4.29)
dargestellt.

1 2
(429) 0* = —————*) Aj — AU
Nl 717 o, (4 45%)

71

4.8 Lage

Dabei steht N, fiir die Menge der benachbarten VMs und A, fiir die Last einer virtuellen
Maschine x.

VM3

VM2 VM1 VM4

VM5

Abbildung 4.17: Verteilte Optimierung der Platzierung

Liegt die virtuelle Maschinen vm unter der mittleren Auslastung, so tiberspringt sie die
Optimierungsphase. Sie wird von anderen virtuellen Maschinen Knoten erhalten.

Fiir die Berechnung erwarteter Lasten kann das in 4.4 vorgestellte Kommunikationskos-
tenmodell werden. Dafiir muss jede virtuelle Maschine einen Ausschnitt der Testszenario
Topologie kennen. Prognosen zur Auslastung virtueller Knoten und Datenraten von Ver-
bindungen kénnen in einem Modell wie in Abbildung 4.18 dargestellt, gespeichert werden.
Dieses Modell enthilt neben den Knoten, die sich auf der eigenen virtuellen Maschine
befinden, auch Knoten aus dem Randbereich zu anderen VMs. Bei diesen ist allerdings nur
die Information wichtig, auf welcher virtuellen VM sie sich befinden, da diese zur Bildung
der Nachbarschaftsbeziehungen bendotigt wird.

Um zusitzlich die Gesamtlast zu minimieren, kann der Wert der angestrebten mittleren Last
niedriger gewdhlt werden.

Hat eine virtuelle Maschine wenig Last und eine grofse Zahl an hoch ausgelastete Nachbarn,
so wird sie viele Knoten erhalten. Damit es nicht zu einer Uberlastung solcher Maschinen
kommt, sollte die Last, die eine virtuelle Maschine an ihre Nachbarn abgeben darf, beschrankt
werden.

Nachdem jede virtuelle Maschine Knoten ausgewdhlt hat, die zu ihren Nachbarn transferiert
werden sollen, kann die TVEE rekonfiguriert werden. Dies kann, wie in Abschnitt 4.20

72

4.8 Lage

/Sichtbarer Ausschnitt der Topologie fiir VM1

\\
'
|
P M
50 kbit/s 50 kbit/s 50 kbit/s 50 kbit/s

80 %

i
150 kbit/s 150 kbit/s 150 kbit/s 150 kbit/s
A4 "o
\\ /’

Abbildung 4.18: Lokales Topologiemodell

‘
|
I
I
I
I
|
|
I
I
| (80% [80% 200 kbit/ > 80%
|
|
I
I
I
I
I
|
\

geschildert, verteilt erfolgen. Soll vor einer Umsetzung zundchst der erwartete Nutzen
der Platzierungsanderung bestimmt werden, so miissen lokale Platzierungsdnderungen
kommuniziert werden. Diese konnen z.B. an einen Koordinator oder an alle geschickt
werden. Aus den lokalen Anderungen lasst sich die neue Gesamtplatzierung rekonstruieren.
Fiir diese konnen dann Rekonfigurations- und Kommunikationskosten bestimmt werden. Ein
Grofsteil der Berechnungen kann dabei schon lokal auf den jeweiligen virtuellen Maschinen
erfolgen. Jede virtuelle Maschine kann z.B. Kosten fiir das Anhalten der Prozessaufiihrung
virtueller Knoten bestimmen. Lohnt sich die Umsetzung der Platzierung, so kann daraufhin
die Rekonfiguration angestofSen werden.

Durch die Rekonfiguration der TVEE koénnen sich Nachbarschaftsbeziehungen zwischen
virtuellen Maschinen dndern. Erhilt eine virtuelle Maschine einen Knoten, so kann sie
z.B. neue Nachbarn dazu gewinnen. Damit eine VM die Nachbarschaftsbeziehungen nach
einer Rekonfiguration aktualisieren kann, muss die Quell VM eines Knotens Informationen
tiber Verbindungen eines zu migrierenden Knontens mit anderen Knoten an die Ziel VM
weitergeben. Mit diesen Informationen kann das lokale Topologiemodell dann angepasst
werden.

Vorteil des lokalen verteilten Ansatzes besteht in dem geringen notigen Austausch von
Informationen zwischen virtuellen Maschinen. Im Gegensatz zum zentralen Ansatz miissen
nur wenige Lastdaten ausgetauscht werden. Statt der Datenraten von Verbindungen zwischen
Knoten und deren Auslastungen, miissen nur aktuelle Lasten von virtuellen Maschinen
kommuniziert werden. Dadurch konnen Kosten gespart werden.

Dem gegeniiber entstehen allerdings Kosten fiir die Ausfiihrung des Optimierungsalgo-
rithmus. Wahrend beim zentralen Ansatz die Optimierung auf einem Rechner ausgefiihrt
werden kann, auf dem keine Knoten des Experiments laufen, ist dies beim verteilten Ansatz
nicht moglich. Eine Ausfiithrung des Optimierungsalgorithmus kostet also Ressourcen, die
tir die das Experiment genutzt werden konnten.

73

4.8 Lage

Zudem wird fiir die lokale Optimierung ein Modell der Topologie zur Berechnung der
Kommunikations- und Rekonfigurationskosten benétigt. Dies kostet Speicher in den VMs,
der fiir zusitzliche virtuelle Knoten verwandt werden konnte.

Inwieweit sich durch diesen Ansatz eine Platzierung verbessern ldsst, kann ohne Tests schwer
abgeschitzt werden.

Diskussion der Ansatze

In den letzten Abschnitten wurden mogliche Ansétze fiir die Optimierung einer Platzierung
im Detail vorgestellt. Dieses Kapitel soll nun einen Uberblick iiber alle geben und diese
miteinander vergleichen. Beim Vergleich sollen Kosten fiir die Optimierung und erwarteter
Nutzen gegeneinander abgewogen werden. Kosten sind:

e Zusiatzliche Rechenzeit bzw. Last in den VMs

e Benotigter Speicher in den VMs

Der erwartete Nutzen entspricht dem erwarteten Optimierungspotential des Ansatzes.

Tabelle 4.1 zeigt die vorgestellten Ansdtze sowie Kosten und Nutzen. Dabei steht — fiir
geringe Kosten und — — — fiir hohe Kosten, + bezeichnet einen geringen erwarteten Nutzen
und + + + einen hohen erwarteten Nutzen.

’ Ansatz H Last ‘ Speicher | Optimerungspotential
Zentral — — 44
Verteilt(global) || — — — | — —— 44+
Verteilt(lokal) - — +(+)

Tabelle 4.1: Vergleich verschiedener Optimierungsansétze

Speicher In allen Ansédtzen werden in den virtuellen Maschinen Lastmonitore ausgefiihrt.
Diese nehmen zu zwei Zeitpunkten Messwerte wie die genutzte Anzahl von Zyklen eines
virtuellen Knotens oder die Anzahl der gesendeten Bytes an eine bestimmte Zieladresse auf.
Aus diesen Messwerten wird mit [= measu””dVﬂl”e(tiz:Z”SWW’ZZ”E(“) die Last eines Knotens
oder Datenraten fiir Verbindungen zwischen virtuellen Knoten ermitteln. Auf Basis dieser
Daten werden Prognosen tiber zukiinftige Mittelwerte erstellt. Fiir die Speicherung der

Messwerte wird in allen Ansédtzen Arbeitsspeicher benotigt.

Befinden sich auf einer virtuellen Maschine beispielsweise 5000 Knoten und hat jeder dieser
Knoten im Durschchnitt 5 Verbindungen zu anderen Knoten, so wird in der aktuellen
Implementierung ungefdhr 2 mb Arbeitsspeicher in einer virtuellen Maschine, fiir die
Speicherung der letzten beiden Messwerte benotigt.

74

4.8 Lage

Zusitzlich zu Messwerten wird in den verteilten Ansédtzen ein Topologiemodell des Testsze-
narios in jeder VM erstellt. In diesem Modell werden Prognosen zu mittleren Datenraten
von Verbindungen und Lasten einzelner Knoten hinterlegt.

In der aktuellen Implementierung wird die Topologie des Testszenarios auf einen Graph
abgebildet. Dabei werden virtuelle Knoten auf Knoten des Graphen und Verbindungen
zwischen virtuellen Knoten auf Kanten abgebildet. An jeder Kante des Graphen kann die
mittlere Datenrate und an jedem Knoten die mittlere Last gespeichert werden. Fiir dieses
Modell wird zusétzlicher Speicher benétigt.

Befinden sich wie im Beispiel oben 5000 Knoten auf einer virtuellen Maschine und hat jeder
dieser Knoten durchschnittlich 5 Verbindungen, so wird beim lokalen verteilten Ansatz etwa
8 mb fiir das Topologiemodell benotigt. Im lokalen Ansatz muss jede TVEE nur den fiir ihn
sichtbaren Teil der Topologie speichern. Dieser umfasst Randknoten und Knoten, die sich
auf ihr befinden.

Im globalen verteilten Ansatz hingegen benétigt jede VM die Sicht auf die komplette
Topologie. Nimmt man die gleiche Anzahl von Knoten pro VM an wie im vorigen Beispiel
und eine Gesamtzahl von 64 VMs, so ist der Speicherbedarf pro VM z.B. 512 mb - also
deutlich hoher.

Im zentralen Ansatz wird hingegen das komplette Topologiemodell auf dem Koordinator
gespeichert. In den einzelnen VMs wird dafiir also kein zusétzlicher Speicher benétigt.

Zusatzliche Rechenzeit, bzw. Last Beim zentralen Ansatz wird der Optimierungsalgorith-
mus auf dem Koordinator ausgefiihrt. Dieser ist nicht Teil des Experiments, verursacht
also keine Kosten in einer virtuellen Maschine. Pro virtueller Maschine entstehen im zen-
tralen Ansatz allerdings Kosten fiir das Ubermitteln der Lasten und Datenraten an den
Koordinator.

Fiir 5000 Knoten pro VM und 5 Verbindungen pro Knoten muss jede VM beispielsweise 1
mb an Nutzdaten {ibertragen. Bei einer 1 Gbit Verbindung wird fiir den Transfer der Daten
ungefdhr 10 Millisekunden Rechenzeit benétigt.

Im verteilten globalen Ansatz miissen Lastdaten an alle VMs verteilt werden. Da jede
VM gleichzeitig Sender und Empféanger ist, wird fiir den Transfer der Daten ungefihr
doppelt soviel Zeit benotigt. Zudem kommt noch die Rechenzeit, die fiir die Ausfithrung
des Optimierungsalgorithmus benottigt wird. Diese wird in hoherer Grofienordnung als
der Lastdatentransferzeit liegen. Wird zu wenig Zeit in die Optimierung investiert, ist mit
schlechten Resultaten zu rechnen.

Im verteilten lokalen Ansatz wird die benotigte Rechenzeit im Wesentlichen von dem Op-
timierungsalgorithmus bestimmt. Da jede VM nur einen Ausschnitt der Topologie kennt,
ist das Optimierungsproblem weniger komplex als im globalen Fall. Aus diesem Grund
muss fiir die Optimierung weniger Zeit eingeplant werden. Die benétigte Rechenzeit wird

75

4.8 Lage

voraussichtlich trotzdem um einiges hoher sein als die im zentralen Fall fiir die Kommunika-
tion von Lasten benotigte Zeit. Diese betrug pro VM in einem grofien Szenario ungefihr 10
Millisekunden.

Optimierungspotential Beim zentralen Ansatz wird der Optimierungsalgorithmus auf ei-
nem Rechner, genannt Koordinator, ausgefiihrt. Dieser optimiert die in 4.6.1 vorgestellte
Zielfunktion. Da der Koordinator iiber eine globale Sicht verfiigt, ist das Optimierungspoten-
tial hoch.

Im zentralen Ansatz sind allerdings die Ressourcen beschrénkt. Ist man an einer optimalen
Losung interessiert, bietet sich daher der verteilt globale Ansatz an.

Das Optimierungspotential des verteilt lokalen Ansatzes kann nur schwer abgeschéatzt
werden, zumal in diesem Ansatz nicht direkt die Experimentlaufzeit minimiert werden
kann.

4.8.2 Koordination der Rekonfiguration der TVEE

In Kapitel 4.3 wurden Operationen vorgestellt die zur Rekonfiguration der TVEE im Zuge
einer neuen Platzierung notig sind. Aufierdem wurde in Abschnitt 4.3.3 eine sinnvolle Reihen-
folge der Operationen motiviert. Wie diese Reihenfolge auch bei einer verteilten Ausfiihrung
von Operationen eingehalten werden kann, wurde in Abschnitt 4.3.4 vorgestellt.

In diesem Abschnitt soll nun auf die Koordination der Rekonfiguration eingegangen wer-
den. Also z.B. auf die Frage, wer die zur Konfiguration der TVEE nétigen Aktionen einer
Operation , wie z.B. Erzeugung einer Software Briicke, Suspend eines Knotens, generiert.

Hier sollen zwei Ansédtze vorgestellt werden: Ein verteilter und ein zentraler Ansatz.

Zentraler Ansatz

Bei der zentralen Rekonfiguration, dargestellt in 4.19, wird die Anpassung der TVEE zentral
von einem Koordinator gesteuert. Dieser bestimmt auf Basis gewiinschter Platzierungsande-
rungen Aktionen, die im Zuge der Rekonfiguration auszufiihren sind.

Um diese Aktionen bestimmen zu kdnnen, benétigt der Koordinator Informationen tiber
die aktuelle Konfiguration der Emulationsumgebung. Wichtige Informationen sind z.B.
die aktuelle Position virtueller Knoten sowie die Konfiguration von Softwarebriicken und
Vlans. Aus diesen Informationen kann er dann notige Aktionen, wie z.B. das Erzeugen einer
Software-Briicke und das Anbinden eines Netzwerkgerites, an eine Briicke ableiten.

Um diese Informationen nicht vor jeder Rekonfiguration ermitteln zu miissen, sollte zu
Beginn ein Abbild der Emulationsumgebung erstellt werden. Dies kann im Folgenden bei

76

4.8 Lage

jeder Rekonfiguration aktualisiert werden. Ein Beispiel, wie auf Basis dieses Abbildes die
Softwarebriicken-Konfiguration angepasst werden kann, wurde in 4.3.2 vorgestellt.

Wurden nétige Aktionen bestimmt, so miissen diese in einem ndchsten Schritt in den
virtuellen Maschinen ausgefiihrt werden. Dazu wird in jeder VM ein Daemon gestartet, der
auf auszufithrende Aktionen lauscht. Eine Verbindung zwischen dem Koordinator und einer
VM kann iiber TCP realisiert werden.

Anderung der Platzierung

Rekonfigurations-
Koordinator

Operation 1
<«——fiihre aus [Aktionl} EAktionZ fihre aus—»
Daemon in ——ausgefiihrt—» <—ausgeflihrt—— Daemon in
VM Aktion3 fihre aus—» VM
€«—ausgeflihrt—
Operation 2

Abbildung 4.19: Zentrale Rekonfiguration

Erhélt eine VM eine Aktion, so fiihrt sie diese aus und bestitigt die Ausfiihrung mit einer
Nachricht (,,ausgefiihrt”). Besteht eine Operation, wie in 4.19 zu sehen, aus mehreren Aktion,
so kann durch diese Nachricht sichergestellt werden, dass alle Aktionen einer Operation
ausgefiihrt sind, bevor die nédchste Operation gestartet wird. Wie in 4.3.3 vorgestellt ist eine
bestimmte Reihenfolge von Operationen einzuhalten.

Fiir jede auszufiihrende Aktion wird eine Nachricht an die VM geschickt, in der sie auszu-
fithren ist. Um moglichst wenig Nachrichten verschicken zu miissen, konnen Nachrichten
tiir ahnliche Aktionen zusammengefasst werden. Muss z.B. der Zustand mehrerer Knoten in
einer VM gesichert werden, so muss nicht fiir jeden Knoten eine einzelne Nachricht geschickt
werden. Stattdessen kann eine Nachricht genutzt werden, die alle Knoten-IDs zu sichernder
Knoten enthilt. Dadurch wird das zu kommunizierende Datenvolumen gesenkt.

Verteilter Ansatz

Ein moglicher verteilter Ansatz ist in Abbildung 4.20 dargestellt.

77

4.8 Lage

Im Gegensatz zum zentralen Ansatz werden auszufiihrende Aktionen nicht von einem Koor-
dinator, sondern von Daemons in den VMs bestimmt. Auf Basis der Platzierungsanderung
und einem lokalen Abbild der Emulationsumgebung ermittelt jeder Daemon Aktionen, die
in seiner VM auszufiihren sind.

Wird ein zentraler Ansatz zur Optimierung der Platzierung gewdhlt, so konnen die als
Input benétigten Platzierungsanderungen jeder VM, z.B. {iber ein Broadcast, zur Verfii-
gung gestellt werden. Wird ein verteilter Ansatz gewdahlt, so liegen Informationen iiber
Platzierungsanderungen bereits vor; sie miissen also nicht kommuniziert werden.

Im Gegensatz zum zentralen Ansatz der Rekonfiguration wird im verteilten Ansatz in jeder
VM ein Abbild der Emulationsumgebung benétigt. Dieses muss virtuelle Knoten, die sich in
ihr befinden sowie aktuelle Briicken und Vlan Konfigurationen umfassen. Hauptséachlich
wird das Abbild fiir die Layer 2 Topologie Adaption benotigt.

Anderung der Platzierung Anderung der Platzierung
Daemon in VM Daemon in VM
Operation 1 N (Operation 1 N
(Aktion1) (Aktion2)
Aktion3
L Op 1 beendet—>| aitons)
«—O0p 1 beendet - -
Ve .
h K Operation 2 }

[Operation 2 |

Abbildung 4.20: Zentrale Rekonfiguration

Um sicherzugehen, dass Operationen in der richtigen Reihenfolge ausgefiihrt werden, wird
der in 4.3.4 vorgestellte verteilte Ansatz benutzt. Nach der erfolgreichen Ausfiihrung einer
Operation schickt jede VM den anderen VMs eine Nachricht(z.B. ,Op 1 beendet”). Im
Gegensatz zum zentralen Ansatz miissen allerdings fiir die Aktionen, aus denen sich eine
Operation zusammensetzt, keine Nachrichten verschickt werden.

Fiir die Anpassung der Layer 2 Topologie miissen allerdings zuséatzliche Informationen in
die Sicherungsdatei eines Knotens aufgenommen werden. Da die Ziel-VM nur eine lokale
Sicht auf das Abbild der Emulationsumgebung hat, besitzt sie keine Informationen dartiber,
an welche Briicken ein Knoten, den sie erhilt, vorher angebunden war. Diese Informationen
werden allerdings zur erfolgreichen Anpassung der Layer 2 Topologie benotigt.

78

4.8 Lage

Diskussion der Ansatze

In den letzten beiden Abschnitten wurden zwei Ansidtze zur Koordination der Rekonfigura-
tion vorgestellt: ein verteilter und ein zentraler Ansatz. In diesem Teil der Arbeit sollen nun
beiden Anséitze verglichen werden. Dabei soll besonders auf den Koordinations-Overhead
beider eingegangen werden. Betrachtet werden sollen:

e Zusiatzliche Last in VM

¢ Benotigter Speicher in VM

Last Die Last in VMs, die durch die Koordination der Rekonfiguration entsteht, wird
hauptsichlich durch die nétige Kommunikation bestimmt. Daher sollen hier die Anzahl der
benotigten Nachrichten pro Rekonfiguraiton in beiden Ansadtzen verglichen werden.

Die Rekonfiguration ldsst sich wie in 4.3 vorgestellt, in folgende Operationen unterteilen:

e Setzen eines hohen TDF Wertes
e Setzen virtueller Knoten in einen Haltezustand(Suspend)

e Migration von virtuellen Knoten und Netshaper Instanzen. Zerféllt in Teiloperationen
Sichern(Dump), Transfer und Wiederherstellen (Undump)

Anpassung Layer 2 Topologie (Layer 2 Adaption)

Wiederaufnahme Prozessausfiihrung in virtuellen Knoten(Resume virtueller Knoten)
e Wiederaufnahme Paketzustellung in Netshaper Instanzen(Resume Netshaper)

e Riicksetzen der TDF Anderung

Im verteilten Ansatz werden Nachrichten nach Ausfiihrung aller Aktionen einer Operation
ausgetauscht. Jede virtuelle Maschine verschickt dabei eine Nachricht (kann tiber Mulicast
oder Broadcast an alle weitergeleitet werden) und empfangt |V M| — 1 Nachrichten nach
jeder Operation. Dies bedeutet, dass fiir die gesamte Rekonfiguration fiir eine konstante Zahl
an Operationen jede VM O((|VM|)) Nachrichten kommunizieren muss. Jede Nachricht kann
dabei sehr kurz sein, da sie nur als Bestadtigung fiir eine ausgefiihrte Operation fungiert.

Im zentralen Ansatz empfangt und sendet jeder Daemon in einer VM eine Nachricht fiir
jede Aktion bzw. Gruppe von Aktionen, die er auszufiihren hat.

Tabelle 4.2 zeigt wieviele Nachrichten eine VM pro Operation empfangt:

Fiir die Operationen Start und Stopp der globalen virtuellen Zeit muss nicht mit den VMs
kommuniziert werden (sondern mit dem Koordinator der Zeitvirtualisierung).

79

4.8 Lage

Operation Anzahl Nachrichten

Stopp globaler Zeit 0

Suspend 1

Dump i

Transfer 1

Undump 1

Layer 2 Adaption |createBridge,n| + |destroyBridgey, | + |attachV Nicypy|
Resume virtueller Knoten 1

Resume Netshaper 1

Start globaler Zeit 0

Tabelle 4.2: Ubersicht Nachrichten zentrale Koordination

Ermittelt der Daemon vor Ausfithrung der Operationen Resume und Suspend die virtuellen
Knoten, die sich derzeit in seiner VM befinden (z.B. iiber vzlist), so miissen diese Operationen
nur vom Koordinator angestofien werden. Es wird daher nur eine Nachricht benétigt, die
sehr klein sein kann.

Die Nachrichten, die fiir die Aktionen der Operation Dump eines virtuellen Knotens und
dessen Netshaper Instanzen benéttigt werden, richten sich nach der Anzahl der zu sichernden
virtuellen Knoten in der VM (n3" p). Jede Nachricht muss die Id des zu sichernden Knoten
enthalten. Alternativ kann auch eine Nachricht mit allen Knoten IDs verschickt werden.

Die Anzahl der Nachricht, die fiir die Layer 2 Adaption benotigt werden, wird durch die
Zahl der zu erstellenden Softwarebriicken(|createBridge,y,|), der zu zerstorenden Briicken
(|destroyBridge,y,|) und der Zahl der wieder anzubindenden virtuellen Netzwerkgeréte
|attachV Nicyy,| an eine Briicke bestimmt. Jede Nachricht enthilt dabei mindestens die Id
einer Briicke.

Wird die Rekonfiguration zentral koordiniert, werden O(n%mp + |createBridge,m| +
|destroyBridge,, + |attachV Nicyy,|) Nachrichten benotigt. Jede Nachricht muss dabei
meist allerdings nur wenige Bytes an Nutzdaten enthalten. Zudem konnen die meisten
Nachrichten zu grofleren Nachrichten zusammengefasst werden. Selbst wenn eine virtuelle
Maschine 5000 Knoten verliert und andere 5000 Knoten erhalt und dabei 5000 Briicken
erzeugt und geloscht werden, belduft sich die Gesamtgrofie der Nachrichten auf unter 200
kbyte.

In beiden Ansétzen ist der Overhead fiir die Kommunikation im Vergleich zu denen durch
Operationen entstehenden Kosten gering. Zwar ist der Kommunikationsaufwand fiir eine VM
im zentralen Ansatz hoher, dafiir entstehen allerdings auch keine Kosten fiir die Ermittlung
notiger Aktionen in den VMs.

8o

4.8 Lage

Speicher Im zentralen Ansatz wird kein zusétzlicher Speicher in den VMs benétigt. Das
komplette Abbild der Emulationsumgebung befindet sich bei der zentralen Koordination
auf dem Koordinator. Auf diesem befinden sich in der Regel keine virtuellen Knoten des
Experiments.

Im verteilten Ansatz speichert jede VM den fiir sie sichtbaren Teil des Abbildes. Dies umfasst
z.B. Knoten und Briicken, die sich in ihr befinden. Zwar wird dafiir zusatzlicher Speicher
benotigt, dieser liegt allerdings hochstens im 1 mb Bereich(5000 Knoten in VM), ist also eher
zu vernachldssigen.

Zusammenfassend kann man sagen, dass fiir die Koordination der Rekonfiguration beide
Ansitze gleich gut geeignet sind. Ob die Koordination verteilt oder zentral ausgefiihrt wird,
sollte sich daher nach der Wahl des Optimierungsalgorithmus richten. Wird eine verteilter
Optimierungsansatz verfolgt, so sollte die Rekonfiguration auch verteilt sein. Dadurch wird
eine notige Kommunikation von Platzierungsanderungen vermieden.

81

5 Implementierung

In diesem Kapitel wird nun ndher auf den implementierten Prototypen eingegangen. Es
wurde sich fiir die Implementierung des zentralen Neuplatierungsansatzes entschieden, da
sich dieser als viel versprechend herausstellte.

Sowohl die Optimierung der Platzierung als auch die Rekonfiguration der TVEE werden zen-
tral koordiniert. Fiir die Implementierung des Koordinators wurde Java verwendet. Daemons,
die in den einzelnen virtuellen Maschinen ausgefiihrt werden, um z.B. Rekonfigurationsak-
tionen entgegen zu nehmen, wurden ebenfalls in Java realisiert.

Zur Umsetzung einzelner Aktionen der Rekonfiguration, wie z.B. das Setzen eines virtuellen
Knotens in den Haltezustand, wurden Bash Skripte verwendet.

Die Grundideen des zentralen Ansatzes wurden schon im Abschnitt 4.8 erldutert. Eine
Erlauterung der Rekonfiguration erfolgte in Abschnitt 4.3. Deshalb soll hier nur kurz auf
Implementierungsdetails eingegangen werden.

5.1 Rekonfiguration

In dem Prototyp wird die Rekonfiguration zentral von einem Koordinator gesteuert. Dieser
veranlasst den Aufruf von Tools und Skripten in den VMs, die fiir die Durchfithrung
einzelner Operationen wie z.B. dem Suspend von Knoten nétig sind. Genutzte Tools und
durchzufiihrende Erweiterungen bestehender Tools werden in diesem Abschnitt erldutert.

5.1.1 Suspend/Resume virtueller Knoten

Fiir Suspend und Resume von virtuellen Knoten wird das OpenVZ Tool vzctl eingesetzt.
Uber vzctl chkpnt 1 —suspend lasst sich beispielsweise der Container mit der Id 1 in den
Haltezustand bringen.

Fiir jeden Knoten auf einer virtuellen Maschine muss das Tool einzeln aufgerufen werden.
Dabei terminiert ein Aufruf des Tools erst wenn alle Prozesse innerhalb eines Containers
gestoppt wurden. Der aktuelle Zustand eines Prozesses wird dabei periodisch tiberpriift. Um
die damit verbundenen Wartezyklen nicht zu verschwenden werden alle nétigen Aufrufe des
Tools parallel ausgefiihrt (vzctl...&). Um sicherzustellen, dass am Ende alle Container einer

82

5.1 Rekonfiguration

VM suspended /resumed sind, wird auf die Terminierung aller Tool Instanzen gewartet ((
Lwait”)).

5.1.2 Migration virtueller Knoten

Einen wesentlichen Teil der Migration bilden das Sichern (dump) und Wiederherstellen
(undump) eines virtueller Knoten. Dafiir wird das OpenVZ Tool vzctl genutzt. Mittels des
Befehls vzctl chkpnt 1 —dump —dumpfile /vz/dump/1.dump lasst sich z.B. der Zustand des
Containers mit der Id 1 in das Verzeichnis /vz/dump/1.dump sichern.

Der Transfer der Sicherung zum Zielrechner geschieht tiber das Tool netcat. netcat iibertragt
Daten von der Standardeingabe tiber TCP zu einem entfernten Rechner. Dazu muss auf dem
Zielrechner das Tool im Listen Modus gestartet werden. Damit gleichzeitig unterschiedliche
VMs Daten tibertragen konnen, werden im Hintergrund so viele netcat Instanzen im Listen
Modus gestartet wie virtuelle Maschinen an einem Experiment teilnehmen. Jeder VM steht
damit eine eigene TCP Verbindung zur Ubertragung von Daten an eine bestimmte Ziel VM
zur Verfiigung.

5.1.3 Migration von Netshaper Instanzen

Wie bereits in Abschnitt 4.3 erwdhnt wird fiir die Sicherung der Netshaper Instanz das
Proc Dateisystem benutzt. Uber diese Schnittstelle kann eine Netshaper Instanz konfigu-
riert werden; tiber echo 100 > /proc/vz/simple_ns/ve1_etho_rcv/bandwidth kann z.B. die Band-
breite des empfangenden Netzwerkgerdts mit der Id o des Containers 1 gesetzt werden.
Kopiert man den kompletten Proc Ordner einer Netshaper Instanz beispielsweise /proc/vz/sim-
ple_ns/ve1_etho_rcv mit allen darin enthaltenen Dateien, so lassen sich aktuelle Einstellungen
der Netshaper Instanz einfach festhalten.

Zur Sicherung von gepufferten Frames und der Parameterliste(wird in MANet Szenarien
benotigt) musste die bisherige Proc Schnittstelle des Netshaper Tools noch erweitert werden.
Uber die Dateien macdump und framedump lassen sich nun Frames und Parameter auslesen.

Der Transfer der gesicherten Daten geschieht, wie bei der Migration der virtuellen Knoten,
tiber das netcat Tool. Wiederhergestellt wird eine NetshaperInstanz durch das Zuriickkopie-
ren des gesicherten Ordners auf dem Zielrechner.

5.1.4 Anpassung der Layer 2 Topologie

Zur Anpassung der Layer 2 Topologie miissen Softwarebriicken erstellt und geloscht werden.
Aufierdem sind Vlans Einzurichten und mit Softwarbriicken zu verbinden.

83

5.2 Optimierung der Platzierung

Fiir die Konfiguration Softwarebriicken wird das Tool brctl genutzt. Fiir das Einrichten von
Vlans wird vconfig verwendet.

5.2 Optimierung der Platzierung

Die Optimierung der Platzierung geschieht zentral auf dem Koordinator mittels des in
4.6.2 vorgestellten Optimierungsalgorithmus. Die Zielfunktion des Optimierungsalgorithmus
baut dabei auf einem Kommunikationskostenmodell auf. Zur Berechnung der Kosten in
diesem Modell werden Informationen iiber die Topologie des Testszenarios und die ak-
tuelle Position virtueller Knoten benétigt. Zu Beginn des Experiments miissen diese dem
Neuplatzierungsalgorithmus zur Verfiigung gestellt werden.

Um moglichst unabhingig von anderen Tools zu sein, die in der TVEE eingesetzt werden,
ermittelt der Neuplatzierungsalgorithmus zu Beginn die relevanten Informationen selber.
Damit dies funktioniert darf das Tool erst gestartet werden, wenn die TVEE bereits fiir ein
Experiment konfiguriert ist. Die nétigen Informationen werden iiber zwei Tools ausgelesen,
die in den virtuellen Maschinen des Testsystems auszufiihren sind.

vzlist zeigt alle Container an die in einer virtuellen Maschine ausgefiihrt werden. Uber dieses
Tool lasst sich also die Position jedes Knotens bestimmen.

bretl show liefert eine Ubersicht iiber alle Softwarebriicken in einer VM. Zusatzlich zu den
Briicken werden alle Netzwerkgerite angezeigt, die mit diesen verbunden sind. Mittels
dieser Daten lisst sich eine Kommunikatiosmatrix von Knoten bestimmen. Daraus lasst sich
dann das Topologiemodell ableiten.

5.3 Monitore

Dieser Abschnitt beschiftigt sich mit Implementierungsdetails der Monitore. Diese zeichnen
Daten wie mittlere Datenrate von Verbindungen zwischen Knoten sowie mittlere Lasten von
virtuellen Knoten auf.

5.3.1 Mittlere Datenraten

Zur Bestimmung der mittleren Datenrate einer Verbindung zwischen zwei Knoten muss

zu zwei Zeitpunkten die Datenmenge , die von einem zum anderen Knoten {ibertragene

txbytes (tZ) 7txhytfs (tl)

Tl lasst sich dann die mittlere Datenrate

wurde, erfasst werden. Uber d =
bestimmen.

84

5.4 Probleme Rekonfiguration

Fiir die Ermittlung der mittleren Datenraten einer Verbindung musste die Statistik des
Netshapertools erweitert werden. Bisher wurde nur die Gesamtdatenmenge,die iiber die
Netshaper Instanz gesendet wurde, erfasst. (Z.B. txp,rs = 50000). Fiir die Bestimmung
mittlerer Datenraten von Verbindungen muss die Statistik allerdings nach Ziel der Pakete
aufgeschliisselt werden. Fiir jede mogliche Ziel Adresse (Mac Adresse) miissen die Anzahl
der gesendeten Bytes festgehalten werden.

Dies fiihrte zu einer erweiterte Statistik, die tiber die Proc Datei statistic in dem proc Ordner
einer Netshaper Instanz ausgelesen werden kann. Der Inhalt der Datei hat dabei das Format
(macAdresse txBytes)*.

5.3.2 Mittlere Auslastung

Zur Bestimmung der mittleren Auslastung virtueller Knoten muss die Anzahl genutzter
Zyklen zu zwei Zeitpunkten erfasst werden. Diese Information wird der Datei ,,/proc/vz/-
vestat” entnommen.

5.4 Probleme Rekonfiguration

Wihrend des Tests der Rekonfiguration traten verschieden Probleme auf. Die, die bisher
noch nicht gelost werden konnten, sollen hier kurz vorgestellt werden.

5.4.1 Routing Tabelle

Bei einem Routerketten Testszenario mit 8 Knoten, die auf zwei virtuelle Maschinen verteilt
wurden, konnten Routertabelleneintrége einzelner Knoten nach der Migration nicht korrekt
wiederhergestellt werden. Teilweise fehlten Eintrage. Fiir jeden fehlenden Eintrag wird eine
Kernelmeldung ausgegeben. Z.B. ,CPT ERR: e78{8800,5 :NLMERR: -101”. Bisher konnte
die Ursache dafiir noch nicht ermittelt werden. Benutzt wurde der Kernel ovzkernel-2.6.18-
194.3.1.el5.028stabo69.6 und die vzctl Tool Version 3.0.24.2.

5.4.2 Probleme im Zusammhang mit netperf und iperf

Netperf und iperf sollten als Traffic Generatoren fiir den Test der Rekonfiguration verwendet
werden. Allerdings traten Probleme im Zusammenhang mit der Rekonfiguration mit diesen
beiden Tools auf.

Wird ein Container, in dem sich eine netserver Instanz befindet in den Haltezustand versetzt
und danach weiter ausgefiihrt, so wird eine fin Nachricht an die mit ihm kommunizierende

85

5.4 Probleme Rekonfiguration

netperf Instanz geschickt. Die TCP Verbindung, die zwischen beiden besteht, wird dadurch
vorzeitig geschlossen.

Ein weiteres Problem mit netperf und iperf besteht im Zusammenhang mit der Zeitvirtuali-
sierung. Von Zeit zu Zeit springt der TDF kurz nach der Rekonfiguration in sehr kurzer Zeit
auf den Maximalwert. Betrachtet man die Last einzelner migrierter virtueller Knoten, so ist
diese sehr viel hoher als normal. Lisst man einen massiven Anstieg des TDF durch die Wahl
eine sehr kleinen Maximalwerts nicht zu, so stellt sich nach kurzer Zeit wieder ein normales
Verhalten ein. Grund fiir das seltsame Verhalten konnte z.B. ein busy waiting sein.

Aufgrund dieser Probleme wurde fiir die Generierung von Traffic auf netcat gewechselt.
Zum Zeitpunkt der Abgabe der Diplomarbeit war allerdings noch nicht klar, ob sich dadurch
oben genannte Probleme vermeiden lassen.

Fiir eine transparente Rekonfiguration ist es wichtig die globale virtuelle Zeit nur sehr
langsam weiterlaufen zu lassen. Dazu wird zu Beginn der Rekonfiguration der TDF auf den
Maximalwert gesetzt: aktuell 1000. Eine Millisekunde vergeht damit in einer Sekunde. Dies
ist jedoch kritisch fiir die Performance der Rekonfiguration. In der OpenVZ Implementierung
der Operationen Kill, Suspend und Resume von Containern werden Timer benutzt. Meist liegen
Zeiten der Timer im Millisekunden Bereich. Durch die Zeitskalierung benétigen Operationen
allerdings teilweise mehrere Sekunden. Fiir eine effiziente Rekonfiguration miisste also der
entsprechende OpenVZ Code angepasst werden. Dies wurde fiir die Operation Suspend auch
schon bereits durchgefiihrt.

86

6 Evaluation

6.1 Konstanten Rekonfigurationskostenmodell

In diesem Abschnitt sollen die Konstanten des in 4.5 vorgestellten Rekonfigurationsmodells
fiir die aktuelle Hard- und Sofware Konfiguration der Testumgebung bestimmt werden.

In der aktuellen Hardware Konfiguration besitzt jeder physikalische Rechner der Testumge-
bung eine Intel Xeon CPU mit 8 Kernen und 24 Gigabyte Arbeitsspeicher. Jeder Kern wird
mit 2,4 Ghz getaktet.

Als Betriebssystem kommt ein modifiziertes Red Hat 4.1.2-48 zum Einsatz.

Abbildung 6.1 zeigt die Kosten fiir suspend und resume in Abhdngigkeit von der Anzahl der
Knoten. In jedem Knoten wird ein Prozess ausgefiihrt. Dieser steht stellvertretend fiir die
Software Under Test. Jeder Prozess belastet das System nur leicht.

7000 -

suspend
ffffff resume

6000

5000

B
o
o
o

time [ms]

w
o
[}
o

2000

1000

ol== - 1 1 1 1 1 1 1 1 1]
0 100 200 300 400 500 600 700 800 900 1000

number of nodes

Abbildung 6.1: Kosten fiir Suspend und Resume Operation in Abhéngigkeit von der Anzahl
der Knoten

87

6.1 Konstanten Rekonfigurationskostenmodell

300

ffffff dumpContainer 7
undumpContainer /

250 K

200

time [ms]

150

100

L L L L L J
0.5 1 1.5 2 2.5 3 35 4 4.5 5
size dumpfile [KB] x10*

50 I I I I
0

Abbildung 6.2: Kosten fiir Dump und Undump eines Knotens in Abhingigkeit von erwarte-
ter Grofse des Dumpfiles

Man erkennt, dass die Zeit, die fiir die suspend Operation bendtigt wird schwankt, aber im
Groben linear steigt. Warum die Zeit mit hoherer Knotenanzahl sogar teilweise riicklaufig
ist, kann ich mir nicht erkldren. Antwortet ein Prozess nicht direkt auf das Stopp Signal, so
wird eine bestimmte Zeit gewartet. Aktuell bei einem TDF von 1000 1 Sekunde. Wie in 6.1
zu sehen kann bei geringem Unterschied der Knotenanzahl die benétigte Zeit um 1 Sekunde
schwanken. Daher lassen sich Kosten fiir die suspend Operation nicht besonders prazise
voraussagen.

6.2 zeigt die Kosten fiir das Sichern und Wiederherstellen des Zustands eines Knotens in
Abhédngigkeit von der Grofle der erzeugten Sicherungsdatei. Die Grofle der erzeugten Datei
kann gut durch den genutzten Arbeitsspeicher des Knotens abgeschétzt werden.

"Gedumpt” wurde in diesem Test in den Arbeitsspeicher der virtuellen Maschine (/dev/s-
hm/). Man erkennt, dass die Kosten linear mit der Grofse des Sicherungsdatei steigen.

6.3 zeigt die Kosten fiir das Sicher, und Wiederherstellen einer Netshaper Instanz in Abhén-
gigkeit von der Grofie der sich derzeit im Puffer befindlichen Frames.

Man erkennt, dass das Sichern von Frames teurer ist als das Wiederherstellen. In der ak-
tuellen Implementierung werden Frames tiber die Proc Schnittstelle gesichert. Dabei wird
eine proc-read Funktion separat fiir jeden zu sichernden Frame aufgerufen. Beim Wiederher-
stellen, (dies geschieht iiber eine proc-write Funktion) werden mehrere Frames gleichzeitig

wiederhergestellt. Fiir das Sichern der Frames ist also der Overhead fiir Funktionsaufrufe
hoher.

88

6.1 Konstanten Rekonfigurationskostenmodell

160

ffffff dumpSimpleNs (frames)
undumpSimpleNs (frames) -~
140 -

120

time [ms]
N
o
o

o]
o

60

40

Il Il
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

20 I I I
0

size queued frames [KB] x10*

Abbildung 6.3: Kosten fiir Dump und Undump einer Netshaper Instanz in Abhangigkeit
von der Grofle der gepufferten Frames

6.4 zeigt die Kosten fiir den Dump und Undump einer Netshaper Instanz in Abhangigkeit
von der Grofle der Parameterliste. Auch hier lasst sich wieder beobachten, dass das Sichern
der Parameterliste teurer ist als das Wiederherstellen. Dies ist aus den gleichen Griinden wie
oben der Fall.

6.5 zeigt die Kosten fiir das Beenden von Knoten. Diese steigen mit der Anzahl der Knoten
schwanken allerdings sehr stark. Ahnlich wie bei der suspend Operation werden vermutlich
auch hier Timer benutzt, die unter bestimmten Umstidnden getriggert werden.

Wie lange das Beenden von einer bestimmten Anzahl von Knoten dauert ldsst sich nur
sehr schwer abschitzen. Fiir eine grobe Abschdtzung wird hier eine Ausgleichsgerade
verwendet.

6.6 zeigt als letztes die Dauer fiir den Transfer von Daten in Abhdngigkeit von dem zu
tibertragenden Datenvolumen und der Art der Verbindung zwischen den VMs. Liegt die
Ziel VM auf einem anderen physikalischen Knoten als die Quell VM so entstehen leicht
hohere Kosten.

Aus den vorgestellten Graphen lassen sich die fiir das Modell benétigten Konstanten bestim-
men. Diese sind in den Tabellen 6.1 und 6.2 dargestellt.

89

6.1 Konstanten Rekonfigurationskostenmodell

180

dumpSimpleNs (parameter list) .
undumpSimpleNs (parameter list) e

160 -

140

120

100 -

time [ms]

20

L L L L L J
1000 2000 3000 4000 5000 6000
size parameter list [kb]

Abbildung 6.4: Kosten fiir Dump und Undump einer Netshaper Instanz in Abhangigkeit
von der Grofle der Parameterliste

kill Container e
line of best fit e

time [ms]

Abbildung 6.5: Kosten fiir

O |
100 200 300 400 500 600 700 800 900 1000

number of nodes

das Beenden eines Knotens

90

6.1 Konstanten Rekonfigurationskostenmodell

800

inter-vm data transfer
inter-pnode data transfer

700 -

600 -

500 -

400 -

300+

200 -

100 -

Abbildung 6.6: Kosten Transfer von Daten in Abhéangigkeit vom zu tibertragenden Datenvo-

lumen

Tabelle 6.1: ¥ Konstanten

suspend
resume
dumpMem
dumpFrame
dumpMac
trunsferintervm
transferinterpnode
undumpMem
undumpFrame
undumpMac
killVNode
createBridge
destroyBridge

6,078464ms]
3,602432[ms]
4,632[ms/mb]
5,461[ms/mb]
26,238[ms/mb]
13,084[ms/mb]
14,964 [ms / mb]
1,780[ms / mb]
2,124[ms/mb]
5,753[ms /mb]
38, 02[ms]
200, 0[ms]
210, 0[ms]

91

6.2 Performance des Optimierungsalgorithmus

dumpVnode 60, 324[ms]
dumpNs 40,991 [ms]
transferData 40,452[ms]
undumpVnode | 90,754 [ms]
undumpNs 35,791 [ms]
Kill 1254, 321 [ms]

Tabelle 6.2: ¢ Konstanten

6.2 Performance des Optimierungsalgorithmus

In diesem Kapitel soll die Performance des in 4.6.2 vorgestellten Optimierungsalgorithmus
evaluiert werden. Dazu wird die in 4.6.1 erlduterte Zielfunktion verwendet.

Zur Evaluierung werden 3 unterschiedliche Testszenarien betrachtet:
e ein Grid Szenario
e ein Waxman Graph Szenario
e ein Routerketten Szenario

Fiir alle 3 Szenarien wird das Konvergenzverhalten des Simulated Annealing Algorithmus
untersucht. Dabei wird die Geschwindigkeit mit der der Wert des Kontrollparameters T
sinkt variiert. Dies geschieht durch unterschiedliche Wahl der Konstante « (siehe 4.6.7).

Fiir jedes Testszenario steht dem Algorithmus ein Zeitfenster von 30 Sekunden fiir die
Optimierung einer Platzierung zur Verfiigung. Die Anzahl der Knoten variiert mit den
Testszenarien zwischen 6400 und 50000 Knoten. Jeder Knoten nutzt zwischen 200 kbyte und
10 mbyte Arbeitsspeicher. Der Puffer der Netshaper Instanzen haben eine Grofie zwischen
o kbyte und 200 kbyte. Eine Paramterliste, in der zusétzlich Einstellungen fiir bestimmte
Verbindungen zwischen Knoten abgelegt werden konnen, wird nicht verwendet. Ausgefiihrt
wird die Optimierung auf einem Rechner mit 2 Kernen, die mit 2,4 Ghz getaktet sind.

Fiir die Berechnung erwarteter Experimentlaufzeiten wird ein virtuelles Zeitfenster von
twindow = 60s verwendet.

Jedes Testszenario wird mit jeweils 2 unterschiedlichen Testbed Konfigurationen evaluiert. In
der einen Konfiguration besteht das Testbed aus 8 physikalischen Rechnern mit jeweils 8 vir-
tuellen Maschinen (8 * 8 = 64V Ms) und in der anderen Konfiguration aus 16 physikalischen
Rechnern mit 8 virtuellen Maschinen pro physikalischem Knoten (16 * 8 = 128V Ms).

Fiir jedes Testszenario wird der Optimierungsalgorithmus 5 mal fiir alle méglichen Konfigu-
rationen ausgefiihrt. Die unten aufgefiithrten Graphen zeigen jeweils Mittelwerte.

92

6.2 Performance des Optimierungsalgorithmus

6.2.1 Grid Szenario

Das erste betrachtete Testszenario ist ein Grid Szenario. In diesem werden 6400 Knoten in
einem reguldren quadratischen Gitter angeordnet. Jeder Knoten besitzt Verbindungen zu
seinen direkten Nachbarn. Ein Knoten kann maximal 4 Verbindungen eingehen. Ein Beispiel
fiir eine reguldres quadratisches Grid zeigt Abbildung 6.7.

VM1 VM2
T %H@

Abbildung 6.7: Grid Testszenario

Datenraten der Verbindungen zwischen virtuellen Knoten wurden zufillig zwischen 1
und 100 mbit gewdhlt. Die Last, die ein virtueller Knoten verursacht orientiert sich an der
Nutzung der Verbindungen zu seinen Nachbarknoten.

Die 6400 Knoten wurde zufillig auf alle virtuellen Maschinen der Testumgebung verteilt:in
der ersten Konfiguration der Testumgebung auf 64 und in der Zweiten auf 128 virtuelle
Maschinen.

In den beiden Abbildungen weiter unten ist die Optimierung der Randomverteilung dar-
gestellt. Links fiir die erste und rechts fiir die zweite Testumgebungskonfiguration. In
Abstdnden von einer Sekunde wurde die unter der aktuellen Platzierung erwartete Experim-
entlaufzeit festgehalten.

Man erkennt, dass in der Testbed Konfiguration mit 64 VMs die Optimierung bereits nach 10
Sekunden konvergiert. Die Geschwindigkeit mit der die Optimierung konvergiert ist dabei
mafsgeblich von der Wahl des Faktors a abhédngig. Fiir den hochsten Faktor a = 0.95 vergeht
z.B. wesentlich mehr Zeit bis sich Funktionswerte nur noch minimal &ndern.

93

6.2 Performance des Optimierungsalgorithmus

8001 4001
a=0.95

-~ —a=0.85

3501

a=0.75

a=0.65

w

o

=]
T

expected runtime [s]
expected runtime [s]
N
ul
o

N

(=]

o
T

N

=]

]
T

3001 1501

200 I I I I I) 100 I I I I I)
0 5 10 15 20 25 30 0 5 10 15 20 25 30

time [s] time [s]

(a) Testbed mit 64 VMs (b) Testbed mit 128 VMs

Abbildung 6.8: Performance des Optimierungsalgorithmus - Grid Szenario

Man erkennt aber auch, dass sich mit einem langsameren Abkiihlungsprozess, also mit
einer hoheren Wahl von «, bessere Ergebnisse einstellen. In der Testbedkonfiguration mit 64
Knoten ergibt sich z.B. ein Unterschied von 14.5 Prozent in der erwarteten Experimentlaufzeit.
In der anderen Konfiguration scheint die Optimierung nach 30 Sekunden noch nicht zu
konvergieren.

Im der Testbedkonfiguation mit 64 Knoten sinkt der erwartete TDF von 12.69 auf 2.37. Fiir
die Umsetzung der Platzierung, die die Kosten auf % reduzieren, werden 511.79 Sekunden
Rekonfigurationszeit bendotigt.

6.2.2 Waxman Graph Szenario

Bei dem néchsten Testszenario handelt es sich um einen Random Graph. Dieser wurde mit
Brite [MLMBo1] erzeugt. Er besitzt 20000 Knoten, die zuféllig nach einer Waxman Verteilung
verbunden sind. Genau wie im Grid Testszenario liegen Datenraten fiir Links zwischen
Knoten zwischen 1 und 100 mbit.

Die 20000 Knoten wurden gleich verteilt auf die zur Verfiigung stehenden VMs verteilt. Ein
Beispiel fiir einen Random Graph ist in Abbildung 6.9 gegeben.

In den beiden Abbildungen weiter unten ist wieder die erwartete Experimentlaufzeit tiber die
Dauer der Optimierung abgetragen (fiir beide Testumgebungskonfigurationen). Man erkennt,
dass sich fiir &« = 0.95 die Funktionwerte etwa 3 Sekunden zundchst wieder erhohen. Fiir den

94

6.2 Performance des Optimierungsalgorithmus

VM1 VM2

VM3 \ M4y

Abbildung 6.9: Waxman Testszenario

hochsten & Wert ist aufierdem die erwartete Experimentlaufzeit am Ende der Optimierung
sehr viel hoher als bei den Anderen.

28001 15001

2600+ 14001

1300

24001

12001
22001

11001

20001
10001

expectea runume |s)
expected runume |s]

1800+
900+

1600+ 800}

1400 ‘ ‘ ‘ ‘ ‘ ‘ 700 ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 0 5 10 15 20 25 30
time [s] time [s]
(a) Testbed mit 64 VMs (b) Testbed mit 128 VMs

Abbildung 6.10: Performance des Optimierungsalgorithmus - Waxman Graph Szenario

Fiir eine Konvergenz reicht die Zeit von 30 Sekunden nicht aus. Durch die hohere Knotenan-
zahl (Faktor 3 zu Grid Szenario) und einer grofieren Anzahl von Links ist der Suchraum sehr
viel grofser als im Grid Szenario. Trotzdem ist auch bei einer hohen Wahl von « eine deutliche

95

6.2 Performance des Optimierungsalgorithmus

Verbesserung der Platzierung innerhalb von 30 Sekunden Optimierungszeit moglich. So sinkt
die erwartete Experimentlaufzeit in der Testbedkonfiguration mit 128 Knoten beispielsweise
um etwa 33%.

6.2.3 Routerketten Szenario

Im letzten Szenario soll eine Routerkette betrachtet werden. Ein Beispiel fiir eine Kette mit
16 Knoten ist in Abbildung 6.11 dargestellt.

In diesem Test besteht die Kette aus 50000 Knoten. Wobei sich an einen Ende der Kette
ein Sender und am anderen Ende ein Empfanger befindet. Der Sender schickt Daten mit
einer Datenrate von 100 mbit tiber die Routerknoten an den Empfanger. Jeder Link hat eine
mittlere Datenrate von 10ombit.

o000

VM3

¢

Abbildung 6.11: Routerketten Testszenario

Es wird davon ausgegangen, dass das Weiterleiten von Paketen die Router nur sehr wenig
belastet. Jeder Router wird daher mit einer Last von 12000 cycles/s belegt. Nur beim Sender
und Empfanger entstehen hohere Lasten.

Die Knoten werden wie in 6.11 gezeigt, gleichméfiig auf die virtuellen Maschinen derart
verteilt, dass Knoten nur inter — vm oder inter — pc Verbindungen zu anderen Knoten
eingehen konnen. Zwar sind Lasten der VMs durch diese Verteilung ungefdhr gleich hoch.
Die Gesamtlast bietet allerdings ein hohes Optimierungspotential.

6.2 Performance des Optimierungsalgorithmus

Betrachtet man die in den beiden Abbildungen weiter unten dargestellte Performance des
Algorithmus in diesem Testszenario so stellt man fest, dass sich die Graphen fiir unterschied-
liche « Werte nur wenig unterscheiden. Im Gegensatz zum Waxman Szenario konvergiert
der Testlauf mit dem hochsten &« Wert nicht viel langsamer als die Anderen. Der Grund dafiir
liegt darin, dass zu Anfang fast alle Nachbarzustande mit hoher Wahrscheinlichkeit besser
sind als der Aktuelle. Knoten werden nur zu virtuellen Maschinen migriert auf denen sich
Knoten befinden, die mit ihnen verbunden sind. In diesem Szenario wird dadurch bei der
Migration eines beliebigen Knotens zu Anfang aus einer inter-vm bzw. inter-pc Verbindung
eine intra-vm Verbindung, was die Kosten erheblich senkt.

45001 22001

4000} 2000

18001

35001

=

@

=]

]
T

30001
1400+

25001
1200+

expectea runume |s)
expected runume |s]

20001
1000+

15001 800}

1000 I I I I I) 600 I I I I I)
0 5 10 15 20 25 30 0 5 10 15 20 25 30

time [s] time [s]

(a) Testbed mit 64 VMs (b) Testbed mit 128 VMs
Abbildung 6.12: Performance des Optimierungsalgorithmus - Router Chain Szenario

In der Testbedkonfiguration mit 64 virtuellen Maschinen liefs sich der TDF von 71.61 auf
17.2 senken. Dafiir sind 528 Sekunden Rekonfigurationszeit notig.

6.2.4 Fazit

Schon nach geringer Zeit von 30 Sekunden sind auch in grofien Szenarien von bis zu 50000
Knoten deutliche Verbesserungen der Platzierung moglich.

Steht einem auch bei komplexen Szenarien nur ein kleines Zeitfenster zur Optimierung zur
Verfiigung sollte der Abkiihlungszeit moglichst kurz sein. Zwar wird dadurch die gefundene
Losung mit hoher Wahrscheinlichkeit nicht optimal sein, das Verfahren konvergiert allerdings
in diesem Fall schneller. Wie im Waxman Szenario gezeigt, liefs sich mit niedrigerem « Wert
ein besseres Ergebnis innerhalb des Zeitfensters von 30 Sekunden erzielen als mit hohem «
Wert.

97

6.3 Performance Neuplatzierung

Im zentralen Ansatz der Optimierung wird in bestimmten virtuellen Zeitintervallen der
aktuelle Zustand des Systems {iiberpriift. Je nach Auslastung des System ist dabei das reale
Zeitintervall langer oder kiirzer.

Ist die aktuelle Platzierung verbesserungswiirdig, so erfolgt eine Optimierung innerhalb
dieses realen Zeitintervalls. Dem Optimierungsalgorithmus steht also je nach Hohe der
Kosten, die das Testszenario aktuell verursacht, unterschiedlich viel Optimierungszeit zur
Verfiigung.

In der Regel steigen die Kosten mit der Grofse des Testszenarios. Im Routerketten Szenario
mit 50000 Knoten war z.B. der TDF sehr viel hoher als im Grid Szenario mit 6400 Knoten.
Dem Algorithmus steht also fiir grofie Szenarien mehr Zeit zur Verfiigung. Daher ist im
zentralen Ansatz eher noch mit besseren Resultaten zu rechnen als oben gezeigt. Dort stand
dem Algorithmus unabhédngig von der Grofie des Szenarios immer nur 30 Sekunden zur
Optimierung zur Verfiigung.

6.3 Performance Neuplatzierung

In diesem Kapitel wird die Performance des Neuplatzierungsalgorithmus untersucht. Dazu
werden 2 Testszenarien betrachtet. Fiir beide Szenarien wird ein Experiment durchgefiihrt,
dass eine Laufzeit von 1200 Sekunden virtuelle Zeit hat.

In den zwei Testszenarien dndern sich alle 120 Sekunden Datenraten von bestimmten Verbin-
dungen zwischen Knoten. Auf diese Verdnderung reagiert der Neuplatzierungsalgorithmus
z.B. mit der Umsetzung einer neuen Platzierung.

6.3.1 Sensor Szenario

Als erstes soll ein Sensorszenario betrachtet werden. Dieses besteht aus 400 Sensorknoten,
die in einem reguldren quadratischen Gitter angeordnet sind. Jeder Sensorknoten wird auf
ein virtuellen Knoten abgebildet. Dieser wird zufillig auf eine von 32 virtuellen Maschinen
verteilt(4 physikalische Rechner, 8 virtuelle Maschinen).

Jeder Sensor nimmt in bestimmten Zeitabstéanden Messdaten auf. Die aufgezeichneten Daten
werden, z.B. zur Auswertung, an eine Senke geschickt. Eine Senke ist dabei ein Knoten des
Sensornetzwerks, der alle Daten anderer Knoten sammelt.

Fiir die Ubertragung der Messwerte wird ein Spannbaum erzeugt, dessen Wurzel die Senke
ist. Entlang der Kanten des Spannbaums werden die Daten der Sensorknoten verschickt.
Jeder Knoten leitet dazu seine eigenen und Daten seiner Kinder an den Vaterknoten weiter.
Alle Knoten produzieren eine gewisse Datenmenge pro Zeit. In diesem Experiment betragt
die Datenrate pro Knoten 10 mbit.

6.3 Performance Neuplatzierung

40 mbit : 20 mbit

Q-@ -

:T :T : T

10 mbit 10 mbit 10 mbit

® O @

Abbildung 6.13: Beispiel Sensortestszenario

Ein Beispiel fiir einen Spannbaum und Datenraten an Kanten des Spannbaums ist in Abbil-
dung 6.13 dargestellt.

Alle 120 Sekunden dndert sich in diesem Szenario die Senke. Die neue Senke wird zufallig
aus allen Knoten ausgewihlt. Nach der Anderung wird der Spannbaum neu bestimmt.
Datenraten von Links zwischen Knoten dndern sich daraufhin.

In diesem Szenario bestimmt der Neuplatzierungsalgorihtmus in Intervallen von 12 Sekun-
den virtueller Zeit mittlere Lasten und Datenraten der Knoten. Auf Basis dieser Daten erstellt
er mit dem ,letzte Wert” Ansatz (siehe Abschnitt 4.7) eine Prognose fiir die nidchsten 12
Sekunden.

Diese Prognose dient als Input fiir die Optimierung der aktuellen Platzierung, die maximal 2
Sekunden virtueller Zeit dauern darf. Dabei wird bei der Optimierung das bis zur ndchsten
Aktualisierung tibrig bleibende Zeitfenster nach der Optimierung betrachtet. Also tingow =
10s

In 6.14 ist der TDF tiber die virtuelle Zeit fiir die Ausfithrung des Experiments mit und
ohne Migration dargestellt. Bleibt die Platzierung wahrend der Ausfithrung des Experiments
konstant verdndert sich der TDF alle 120 Sekunden fast beliebig. Mal passt die initiale
Platzierung besser mal schlechter.

Wird das Experiment mit Migration ausgefiihrt. Springt der TDF alle 120 Sekunden auf
einen hohen Wert, bleibt dort fiir 14 Sekunden und fallt dann wieder auf einen niedrigen
Wert ab.

99

6.3 Performance Neuplatzierung

16

14

12

10

TDF

with migration
777777 without migration

.
200

.
400

Il Il Il J
600 800 1000 1200

Abbildung 6.14: Sensor Szenario - TDF Verlauf

real time [s]

12000

10000

8000

6000

4000

2000

with migration
without migration

virtual time [s]
L L L J
600 800 1000 1200

virtual time [s]

Abbildung 6.15: Sensor Szenario - Experimentlaufzeit

100

6.3 Performance Neuplatzierung

Dadurch dass Prognosen nur alle 12 Sekunden gemacht werden erhilt der Neuplatzierungs-
algorithmus erst 12 Sekunden nach der Anderung passende Werte. Auf deren Basis optimiert
er 2 Sekunden und setzt dann die neue bessere Platzierung um. Dadurch sinkt der TDF
wieder.

Wihrend ohne Migration TDF Werte sehr stark schwanken bewegen sich Werte des TDF mit
Migration um den Wert 5.

In 6.15 ist fiir beide Falle also mit und ohne Migration die reale Experimentlaufzeit tiber die
virtuelle Zeit abgetragen. Durch Migration ldsst sich in diesem Beispiel die Experimentlauf-
zeit von etwa 10000 Sekunden auf 6000 Sekunden senken, was eine Zeitersparnis von 40
Prozent bedeutet.

6.3.2 Waxman Szenario

Fiir den zweiten Test soll das Waxman Szenario verwendet werden, das bereits schon in
Abschnitt 6.2.2 vorgestellt wurde. Es umfasst 20000 Knoten, die zu Beginn des Experiments
auf 64 virtueller Maschinen gleichméfig verteilt werden (8 physikalische Rechner mit je 8
virtuellen Maschinen).

Alle 120 Sekunden werden in diesem Szenario zufdllig Datenraten von Verbindungen
zwischen Knoten gedndert. Und zwar werden zufillig 8oooo Links ausgewahlt und deren
Datenrate neu gesetzt. Nach der Verdnderung liegen Datenraten immer noch zwischen 1
und 10 mbit.

Jede Sekunde wird in diesem Szenario eine Prognose fiir die ndchsten 120 Sekunden erstellt.
Der Neuplatzierungsalgorithmus geht davon aus das die gemessenen mittleren Lasten der
letzten Sekunde fiir 120 Sekunden gleich bleiben (in einem realen Szenario ist nattirlich von
dieser Annahme abzuraten).

Optimiert werden soll in diesem Beispiel maximal 12 Sekunden virtuelle Zeit. Fiir die
Optimierung wird ein Zeitfenster t ;40 von 108 betrachtet.

Abbildung 6.16 zeigt wieder den Verlauf des TDF mit und ohne Migration. Im Gegensatz
zum Sensorszenario ist hier der TDF im Fall ohne Migration bis auf das erste Zeitintervall
immer hoher. Er ndhert sich auflerdem einem bestimmten Wert an. Mit zunehmender Anzahl
von Verdanderungen wird die Platzierung immer schlechter.

Mit Migration zeichnet sich ein dhnliches Bild wie im Sensorszenario ab. Allerdings sinkt der
TDF durch die Optimierung relativ gesehen nicht so stark wie im Sensorszenario. Wahrend
sich im Sensorszenario die Werte des TDF halbierten wird hier nur eine Erniedrigung von
etwa 13 % erreicht.

Dies macht sich auch in der Laufzeitersparnis bemerkbar. Diese ist fiir das Waxman Szenario
wie man in Abbildung 6.17 sehen kann deutlich niedriger.

101

6.3 Performance Neuplatzierung

50

45

40

35

TDF

30

25

20

with migration
1 (e without migration
P et
L L L L L J
200 400 600 800 1000 1200

virtual time [s]

Abbildung 6.16: Waxman Szenario - TDF Verlauf

35

25

N

L
&

real time [s]

0.5

with migration
without migration

Il Il
200 400 600 800
virtual time [s]

Abbildung 6.17: Waxman Szenario - Experimentlaufzeit

Il J
1000 1200

102

6.3 Performance Neuplatzierung

Werden in grofien Szenarien zuféllig Datenraten verdndert, so scheinen sich diese Anderun-
gen im Mittel auszugleichen. Dadurch dndert sich die Lastsituation und damit indirekt der
TDF kaum. Eine Neuplatzierung von Knoten spart daher kaum Experimentlaufzeit. Selbst
bei einem Zeitfenster von 120 Sekunden, welches realistisch gesehen viel zu hoch gewéhlt
ist, kann kaum Laufzeit eingespart werden.

103

7 Zusammenfassung und Ausblick

Dieses Kapitel fasst die Diplomarbeit zusammen und stellt wesentliche Resultate der Arbeit
vor. Des Weiteren wird kurz auf offene Probleme eingegangen.

7.1 Zusammenfassung

Das Ziel der Diplomarbeit war die Erweiterung einer zeitvirtualisierten Emulationsum-
gebung, namens TVEE, um eine Moglichkeit zur dynamischen Neuplatzierung virtueller
Knoten.

Kapitel 1 enthielt eine Motivation und Beschreibung des Ziels der Diplomarbeit.

In Kapitel 2 wurde ein genauerer Blick auf die zeitvirtualisierte Emulationsumgebung
geworfen. Neben der Architektur und Konfiguration der Emulationsumgebung, wurde vor
allem auf bestehende Techniken zur Laufzeitminimierung eines Experiments eingegangen.

In Kapitel 3 stand die Taskmigration in verteilten und parallelen Systemen, ein einfacheres,
aber artverwandtes Problem, im Zentrum der Betrachtung.

Kapitel 4.2 widmete sich dann dem eigentlichen Problem: der dynamische Neuplatzierung
von virtuellen Knoten. Zundchst wurden wesentliche Bestandteile der Neuplatzierung
herausgearbeitet. Hierzu zdhlen sowohl die Optimierung einer aktuellen Platzierung von
virtuellen Knoten also auch die Umsetzung einer neuen Platzierung (Rekonfiguration der
TVEE).

Im Folgenden wurden Mechanismen zur transparenten Rekonfiguraiton vorgestellt. Diese
umfassten z.B. die Migration von virtuellen Knoten und die Anpassung der Schicht 2
Architektur.

Zur Optimierung einer Platzierung mussten zukiinftige Kosten alternativer Platzierung
abgeschitzt werden. Dazu wurden zwei Kostenmodelle definiert: das Kommunikationskos-
tenmodell und das Rekonfigurationskostenmodell. Auf Basis dieser beiden Modelle wurde
eine Zielfunktion fiir die Optimierung einer Platzierung entwickelt.

Fiir die Optimierung kamen unterschiedliche Algorithmen in Frage. Unter anderem Hill
Climbing, evolutiondre Algorithmen, und Simulated Annealing. Aufgrund der hohen Flexi-
bilitat wurde sich fiir einen Simulated Annealing Ansatz entschieden.

104

7.2 Offene Probleme und Ausblick

Das oben erwdhnte Kommunikationskostenmodell basierte auf Prognosen zu mittleren
Datenraten von Verbindungen zwischen virtuellen Knoten und deren Lasten. Fiir die Vor-
aussage zukiinftiger Werte wurden verschiedene Ansdtze zur One Step Ahead Prediction
vorgestellt.

An Ende des Kapitels wurde die mogliche Lage des Optimierungs- und des Rekonfigurati-
onsalgorithmus diskutiert. Fiir die Optimierung wurden mehrere verteilte und ein zentraler
Ansatz vorgestellt und gegeneinander abgewogen. Der zentrale Ansatz stellte sich als am
erfolgversprechendsten heraus.

In Kapitel 5 wurde auf die Implementierung der zentralen Neuplatzierung eingegangen.
Dabei standen Details im Vordergrund, die in vorigen Abschnitten noch nicht ausgefiihrt
wurden. So wurde z.B. ndher auf die fiir die Rekonfiguration der TVEE benutzten Tools
eingegangen. Aufierdem wurde auf aktuelle Probleme bei der Rekonfiguration aufmerksam
gemacht.

In Kapitel 6 wurden zundchst Konstanten des Rekonfigurationskostenmodells bestimmt.
Anschlieffend wurde die Performance des Optimierungsalgorithmus in 3 unterschiedlichen
Szenarien untersucht. Es stellte sich heraus, dass bereits nach geringer Optimierungszeit von
wenigen Sekunden auch fiir grofse Szenarien von 20000 Knoten sich erwartete Experiment-
laufzeiten stark senken lassen.

Abschlieffend wurden in 2 unterschiedlichen Szenarien die Auswirkungen der dynamischen
Neuplatzierung auf die Experimentlaufzeit untersucht. In beiden Szenarien lief3 sich die
Experimentlaufzeiten senken; im Sensorszenario um fast 40 Prozent.

Zum Schluss sollen noch offene Probleme diskutiert werden.

7.2 Offene Probleme und Ausblick

Zur Zeit entstehen bei der Rekonfiguration der TVEE hohe Kosten fiir eigentlich giinstige
Operationen (wie z.B. fiir das Beenden eines virtuellen Knotens und das Setzen eines
virtuellen Knotens in den Haltezustand). Durch die starke Verlangsamung der Zeit wihrend
der Rekonfiguration verzogern sich Timer Events. Fiir eine effiziente Rekonfiguration sollten
sich daher Mechanismen {iiberlegt werden, auf welche Weise diese unnétigen, durch Timer
entstehenden Kosten gesenkt werden konnen.

Die Rekonfiguration sollte mit Tools wie Netperf und Iperf als SuTs getestet werden. Eine
transparente Rekonfiguration mit diesen beiden Tools war allerdings nicht moglich (siehe
Abschnitt 5.4.2). Aus diesem Grund wére es sinnvoll zu evaluieren, ob die aufgetretenen
Probleme rein Tool abhdngig sind.

Des Weiteren sollten die vorgestellten Verfahren zur one step ahead prediction in unterschiedli-
chen Szenarien zu evaluiert werden. Eine gute Prognose zukiinftiger Lasten und Datenraten

105

7.2 Offene Probleme und Ausblick

ist von entscheidender Bedeutung fiir die Qualitdt ermittelter neuer Platzierungen. In diesem
Zusammenhang wére es sinnvoll Auswirkungen schlechter Prognosen auf die Experim-
entlaufzeit zu untersuchen. Bei schlechten Prognosen kénnte sich im schlimmsten Fall die
Experimentlaufzeit sogar erhohen.

106

Literaturverzeichnis

[AHo6]

[BTA*]

[CCR* 03]

[CPJL98]

[CSo3]

[DOoo]

[ELZ86]

[ETO]

[GHR]

[GHRo9]

G. Apostolopoulos, C. Hasapis. A Cluster of Virtual Machines for Robust,
Detailed, and High-Performance Network Emulation. Proceedings of the 14th IEEE
International Symposium on Modeling, Analysis, and Simulation, 14:11-14, September
2006. (Zitiert auf Seite 10)

L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, M. Gerla. GloMoSim: A
Scalable Network Simulation Environment. (Zitiert auf Seite 9)

B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, M. Bowman.
PlanetLab: an overlay testbed for broad-coverage services. SIGCOMM Comput.
Commun. Rev., 33(3):3—12, 2003. doi:http://doi.acm.org/10.1145/956993.956995.
(Zitiert auf Seite 9)

F. C, M. P, D. J-L. Data-parallel load balancing strategies. Parallel
Computing, 24:1665-1684(20), October 1998. doi:doi:10.1016/S0167-8191(98)
00049-0. URL http://www.ingentaconnect.com/content/els/01678191/1998/
00000024/00000011/art00049. (Zitiert auf Seite 25)

M. Carson, D. Santay. NIST Net: a Linux-based network emulation tool. SIG-
COMM Comput. Commun. Rev., 33(3):111-126, 2003. doi:http://doi.acm.org/10.
1145/956993.957007. (Zitiert auf Seite 9)

P. A. Dinda, D. R. O’'Hallaron. Host load prediction using linear mo-
dels. Cluster Computing, 3:265-280, 2000. URL http://dx.doi.org/10.1023/A:
1019048724544. 10.1023/A:1019048724544. (Zitiert auf Seite 66)

D. L. Eager, E. D. Lazowska, J. Zahorjan. Adaptive load sharing in homogeneous
distributed systems. IEEE Trans. Softw. Eng., 12:662—675, 1986. URL http://
portal.acm.org/citation.cfm?id=5527.5535. (Zitiert auf Seite 26)

J. Flynn, H. Tewari, D. OMahony. JEmu: A Real Time Emulation System for
Mobile Ad Hoc Networks. (Zitiert auf Seite 10)

A. Grau, K. Herrmann, K. Rothermel. NETplace: Efficient Runtime Minimization
of Network Emulation Experiments. (Zitiert auf den Seiten 10, 16, 44 und 54)

A. Grau, K. Herrmann, K. Rothermel. Efficient and Scalable Network Emula-
tion using Adaptive Virtual Time. Proceedings of 18th Internatonal Conference on
Computer Communications and Networks, 18:1-6, Aug 2009. (Zitiert auf Seite 10)

107

http://www.ingentaconnect.com/content/els/01678191/1998/00000024/00000011/art00049
http://www.ingentaconnect.com/content/els/01678191/1998/00000024/00000011/art00049
http://dx.doi.org/10.1023/A:1019048724544
http://dx.doi.org/10.1023/A:1019048724544
http://portal.acm.org/citation.cfm?id=5527.5535
http://portal.acm.org/citation.cfm?id=5527.5535

Literaturverzeichnis

[GMHRo08] A. Grau, S. Maier, K. Herrmann, K. Rothermel. Time Jails: A Hybrid Approach

[Gnu]
[GRLos5]

[GYM™06]

[Hemos]
[Kes88]
[Kir84]

[L]MSS]

[LK87]

[LRCMos]

[MHR]

[MI]

to Scalable Network Emulation. In Proceedings of the 22nd Workshop on Principles of
Advanced and Distributed Simulation, PADS "08, pp. 7-14. IEEE Computer Society,
Washington, DC, USA, 2008. doi:http://dx.doi.org/10.1109/PADS.2008.19. URL
http://dx.doi.org/10.1109/PADS.2008.19. (Zitiert auf den Seiten 13 und 15)

Gnutella. http://rfc-gnutella.sourceforge.net/. (Zitiert auf Seite 9)

S. Guruprasad, R. Ricci, J. Lepreau. Integrated Network Experimentation using
Simulation and Emulation. Proceedings of the First International Conference on Test-
beds and Research Infrastructures for the DEvelopment of NeTworks and COMmunities,
2005. (Zitiert auf Seite 9)

D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat, G. M. Voelker.
To Infinity and Beyond: Time-Warped Network Emulation. 3rd Symposium on
Networked Systems Design & Implementation, pp. 87—100, 2006. (Zitiert auf den
Seiten 10 und 15)

S. Hemminger. Network Emulation with NetEm, 2005. (Zitiert auf Seite 9)
S. Keshav. REAL : A Network Simulator, 1988. (Zitiert auf Seite 9)

S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies. Jour-
nal of Statistical Physics, 34:975-986, 1984. URL http://dx.doi.org/10.1007/
BF01009452. 10.1007/BF01009452. (Zitiert auf den Seiten 23, 61 und 62)

J. Lam, D. Jean-Marc. Performance of a new annealing schedule. In Proceedings
of the 25th ACM/IEEE Design Automation Conference, DAC “88, pp. 306—311. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1988. URL http://portal.
acm.org/citation.cfm?id=285730.285780. (Zitiert auf Seite 61)

F. Lin, R. Keller. The Gradient Model Load Balancing Method. IEEE Transactions
on Software Engineering, 13:32—38, 1987. doi:http://doi.ieeecomputersociety.org/
10.1109/TSE.1987.232563. (Zitiert auf Seite 25)

E. Luque, A. Ripoll, A. Cortes, T. Margalef. A distributed diffusion method
for dynamic load balancing on parallel computers. Parallel, Distributed, and
Network-Based Processing, Euromicro Conference on, 0:43, 1995. doi:http://doi.
ieeecomputersociety.org/10.1109/ EMPDP.1995.389156. (Zitiert auf Seite 26)

S. Maier, D. Herrscher, K. Rothermel. On Node Virtualization for Scalable
Network Emulation. (Zitiert auf Seite 10)

D. Mahrenholz, S. Ivanov. Real-Time Network Emulation with ns-2. (Zitiert auf
Seite 10)

108

http://dx.doi.org/10.1109/PADS.2008.19
http://dx.doi.org/10.1007/BF01009452
http://dx.doi.org/10.1007/BF01009452
http://portal.acm.org/citation.cfm?id=285730.285780
http://portal.acm.org/citation.cfm?id=285730.285780

Literaturverzeichnis

[MLMBo1] A. Medina, A. Lakhina, I. Matta, J. Byers. BRITE: An Approach to Universal

[MRR "53]

[NP]
[NSNKog7]

[Rilos]

[RSVo1]

[SKS92]

[Whi84]

[WLRS9]

[xen]

[YFSo3]

Topology Generation. In Proceedings of the International Workshop on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems (MASCOTSo1),.
2001. (Zitiert auf Seite 94)

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller.
Equation of State Calculations by Fast Computing Machines. The Journal of
Chemical Physics, 21(6):1087-1092, 1953. d0i:10.1063/1.1699114. URL http://dx.
doi.org/10.1063/1.1699114. (Zitiert auf Seite 62)

NET-Project. http:/ /net.informatik.uni-stuttgart.de/. (Zitiert auf Seite 13)

B. D. Noble, M. Satyanarayanan, G. T. Nguyen, R. H. Katz. Trace-based mobile
network emulation. SIGCOMM Comput. Commun. Rev., 27(4):51-61, 1997. doi:
http://doi.acm.org/10.1145/263109.263140. (Zitiert auf Seite 9)

G. F. Riley. The Georgia Tech Network Simulator. In MoMeTools ‘03: Proceedings of
the ACM SIGCOMM workshop on Models, methods and tools for reproducible network
research, pp. 5-12. ACM, New York, NY, USA, 2003. doi:http://doi.acm.org/10.

1145/ 944773.944775. (Zitiert auf Seite 9)

F. Romeo, A. Sangiovanni-Vincentelli. A theoretical framework for simulated
annealing. Algorithmica, 6:302—345, 1991. URL http://dx.doi.org/10.1007/
BF01759049. 10.1007/BF01759049. (Zitiert auf Seite 61)

N. G. Shivaratri, P. Krueger, M. Singhal. Load Distributing for Locally Distributed
Systems. Computer, 25:33—44, 1992. doi:http://doi.ieeecomputersociety.org/10.
1109/2.179115. (Zitiert auf den Seiten 23 und 24)

S. R. White. Concepts of scale in simulated annealing. In American Institute of
Physics Conference Series, volume 122 of American Institute of Physics Conference
Series, pp. 261—270. 1984. doi:10.1063/1.34823. (Zitiert auf Seite 63)

M. Willebeek-LeMair, A. P. Reeves. A general dynamic load balancing model
for parallel computers. In Tech. Rep. EE-CEG-89- 1, Cornell School of Electrical
Engineering. 1989. (Zitiert auf Seite 24)

Xen User’s Manual. (Zitiert auf Seite 15)

L. Yang, I. Foster, J. M. Schopf. Homeostatic and Tendency-Based CPU Load
Predictions. In Proceedings of the 17th International Symposium on Parallel and Dis-
tributed Processing, IPDPS “03, pp. 42.2—. IEEE Computer Society, Washington, DC,

USA, 2003. URL http://portal.acm.org/citation.cfm?id=838237.838601.
(Zitiert auf den Seiten 65 und 66)

109

http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1007/BF01759049
http://dx.doi.org/10.1007/BF01759049
http://portal.acm.org/citation.cfm?id=838237.838601

Literaturverzeichnis

[ZSIo6] Y. Zhang, W. Sun, Y. Inoguchi. CPU Load Predictions on the Computational Grid
*. In Proceedings of the Sixth IEEE International Symposium on Cluster Computing
and the Grid, CCGRID ’06, pp. 321—-326. IEEE Computer Society, Washington,
DC, USA, 2006. doi:http://dx.doi.org/10.1109/CCGRID.2006.27. URL http:
//dx.doi.org/10.1109/CCGRID.2006.27. (Zitiert auf Seite 66)

Alle URLs wurden zuletzt am 21.01.2011 gepriift.

110

http://dx.doi.org/10.1109/CCGRID.2006.27
http://dx.doi.org/10.1109/CCGRID.2006.27

Erklarung

Hiermit versichere ich, diese Arbeit selbstandig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Sebastian Bartmann)

	1 Einleitung
	1.1 Motivation
	1.2 Ziel der Arbeit
	1.3 Outline

	2 Zeitvirtualisierte Emulationsumgebung
	2.1 Architektur
	2.2 Knoten Virtualisierung
	2.3 Zeit Virtualisierung
	2.4 Netzwerk Emulation
	2.5 Techniken zur Experimentlaufzeitminimierung
	2.5.1 Epochen basierte virtuelle Zeit
	2.5.2 NETplace

	2.6 Konfiguration

	3 Related work
	3.1 Load Balancing in verteilten/parallelen Systemen
	3.1.1 Task Migration
	Task Migrationsalgorithmus
	Beispiele

	4 Dynamische Neuplatzierung
	4.1 Einführung
	4.2 Architektur
	4.3 Rekonfiguration der TVEE
	4.3.1 Anforderungen
	4.3.2 Operationen
	Migration virtueller Knoten
	Migration von Netshaper Instanzen
	Anpassung der virtuellen Layer 2 Topologie
	Verlangsamung der globalen virtuellen Zeit
	Start/Stopp der Prozessausführung
	Zwischenspeichern von Paketen

	4.3.3 Reihenfolge der Operationen
	4.3.4 Synchronisation einer verteilten Operation

	4.4 Kostenmodell Kommunikation
	4.5 Kostenmodell Rekonfiguration
	4.5.1 Start/Stopp der Prozessausführung
	4.5.2 Migration von virtuellen Knoten und Netshaper Instanzen
	Sichern der Zustands virtueller Knoten
	Sichern der Zustände von Netshaper Instanz
	Transfer der Daten
	Wiederherstellen der Zustände virtueller Knoten
	Wiederherstellen der Zustände von Netshaper Instanzen
	Entfernen virtueller Knoten in Quell VMs

	4.5.3 Anpassung Layer 2 Topologie

	4.6 Optimierung der Platzierung
	4.6.1 Zielfunktion
	Größe des Vorhersage Zeitfensters

	4.6.2 Optimierungsalgorithmus
	4.6.3 Ähnliche Platzierungen
	4.6.4 Berechnung des Zielfunktionswerts
	4.6.5 Verkleinerung des Suchraums
	4.6.6 Abbruchbedingung
	4.6.7 Cooling Schedule
	Geometrischer Cooling Schedule

	4.7 Lastvorhersage
	4.8 Lage
	4.8.1 Optimierung der Platzierung
	Zentraler Ansatz
	Verteilte Ansätze
	Diskussion der Ansätze

	4.8.2 Koordination der Rekonfiguration der TVEE
	Zentraler Ansatz
	Verteilter Ansatz
	Diskussion der Ansätze

	5 Implementierung
	5.1 Rekonfiguration
	5.1.1 Suspend/Resume virtueller Knoten
	5.1.2 Migration virtueller Knoten
	5.1.3 Migration von Netshaper Instanzen
	5.1.4 Anpassung der Layer 2 Topologie

	5.2 Optimierung der Platzierung
	5.3 Monitore
	5.3.1 Mittlere Datenraten
	5.3.2 Mittlere Auslastung

	5.4 Probleme Rekonfiguration
	5.4.1 Routing Tabelle
	5.4.2 Probleme im Zusammhang mit netperf und iperf

	6 Evaluation
	6.1 Konstanten Rekonfigurationskostenmodell
	6.2 Performance des Optimierungsalgorithmus
	6.2.1 Grid Szenario
	6.2.2 Waxman Graph Szenario
	6.2.3 Routerketten Szenario
	6.2.4 Fazit

	6.3 Performance Neuplatzierung
	6.3.1 Sensor Szenario
	6.3.2 Waxman Szenario

	7 Zusammenfassung und Ausblick
	7.1 Zusammenfassung
	7.2 Offene Probleme und Ausblick

	Literaturverzeichnis

