
Institut für Parallele und Verteilte Systeme
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3101

Migration virtueller Knoten in
einer zeitvirtualisierten
Emulationsumgebung

Sebastian Bartmann

Studiengang: Informatik

Prüfer: Prof. Dr. Kurt Rothermel

Betreuer: Dipl.-Inf. Andreas Grau

begonnen am: 27. Juli 2010

beendet am: 26. Januar 2010

CR-Klassifikation: H.2.4, I.6.7, C.4

Zusammenfassung

Ziel der Diplomarbeit ist die Erweiterung einer zeitvirtualisierten Emulationsumgebung namens
TVEE (Time Virtualized Emulation Environment) um eine Möglichkeit zur dynamischen Neuplat-
zierung virtueller Knoten. TVEE wurde für Test und Evaluation verteilter Software und Netzwerk-
protokolle entwickelt. Techniken wie Knoten und Zeitvirtualisierung ermöglichen eine Evalutation
von Testszenarien mit tausenden von Knoten. Durch Knotenvirtualisierung wird die Ausnutzung
bestehender Hardwareressourcen, durch Ausführung mehrerer Software Instanzen auf einem physika-
lischen Knoten, maximiert. Werden mehr Ressourcen benötigt als vorhanden, können diese mittels
Zeitvirtualisierung auf Kosten der Experimentlaufzeit künstlich erhöht werden. Für die Akzeptanz
eines Testsystems muss sich die Ausführungszeit eines Experiments in einem vertretbaren Rahmen
bewegen. Für die Reduktion der Experimentlaufzeit werden aktuell in TVEE zwei Ansätze verfolgt:
eine laufzeitoptimale initiale Platzierung und eine adaptive Anpassung der virtuellen Zeit. Durch
Lastschwankungen oder falsche Annahmen kann die ermittelte initiale Platzierung allerdings sub-
optimal sein. Eine Anpassung der Platzierung virtueller Knoten während eines Experiments kann
daher sinnvoll sein. Sind physikalische Knoten unterschiedlich stark ausgelastet kann durch Migra-
tion einzelner virtueller Knoten eine gleichmäßige Auslastung der Testumgebung erreicht werden.
Ressourcenengpesse einzelner Rechner können dadurch vermieden werden. Jede Migration von Knoten
ist allerdings mit Kosten verbunden.

In dieser Diplomarbeit werden zunächst Mechanismen zur transparenten Migration von virtuellen
Knoten erarbeitet. Darauf aufbauend wird ein Modell vorgestellt mit dem sich erwartete Migrations-
kosten voraussagen lassen. Dann werden verschiedene Ansätze zur Optimierung einer Platzierung
während eines Experiments vorgestellt und gegeneinander abgewogen. In Simulationen großer Sze-
narien zeigte sich, dass sich durch dynamische Neuplatzierung, die Experimentlaufzeit maßgeblich
senken lässt.

2

Abstract

In this diploma thesis a time virtualized emulation environment called TVEE is extended by a
technique named dynamic replacement of virtual nodes. TVEE was developed for test and evaluation
of distributed software and network protocols. Techniques like node and time virtualization, allow test
szenarios with thousands of nodes. Through node virtualization the hardware utilization is maximized
by parallel execution of software instances on the same physical node. If more ressources are needed as
provided, time virtualization is used to virtually increase ressources by slowing down the realtime by
a factor called time dilation factor(TDF). For the acceptance of an emulation system the runtime of
an experiment has to be short. To reduce the execution time TVEE currently uses two approaches:
an adaptive virtual time and a runtime optimal initial placement. Due to load variation and wrong
assumptions the initial placement can be suboptimal. Therefore an adaption of the placement during
the experiment can be useful. In case of an unequal load of physical nodes of the system the load can be
balanced by migrating several virtual nodes. Thereby ressource bottle necks can be avoided. However
each migration causes costs that have to be considered.

First in this diploma thesis concepts for the transparent virtual node migration in TVEE are developed.
Then a model for the prediction of migration costs is presented. After that different approaches to
optimize a current placement are presented and discussed. Simulations of large szenarios show that
the experiment runtime can be greatly reduced by dynamic replacement.

3

Inhaltsverzeichnis

1 Einleitung 9
1.1 Motivation . 9

1.2 Ziel der Arbeit . 11

1.3 Outline . 12

2 Zeitvirtualisierte Emulationsumgebung 13
2.1 Architektur . 13

2.2 Knoten Virtualisierung . 14

2.3 Zeit Virtualisierung . 15

2.4 Netzwerk Emulation . 16

2.5 Techniken zur Experimentlaufzeitminimierung 17

2.5.1 Epochen basierte virtuelle Zeit . 17

2.5.2 NETplace . 18

2.6 Konfiguration . 20

3 Related work 23
3.1 Load Balancing in verteilten/parallelen Systemen 23

3.1.1 Task Migration . 24

Task Migrationsalgorithmus . 24

Beispiele . 25

4 Dynamische Neuplatzierung 28
4.1 Einführung . 28

4.2 Architektur . 29

4.3 Rekonfiguration der TVEE . 30

4.3.1 Anforderungen . 31

4.3.2 Operationen . 31

Migration virtueller Knoten . 33

Migration von Netshaper Instanzen . 35

Anpassung der virtuellen Layer 2 Topologie 35

Verlangsamung der globalen virtuellen Zeit 38

Start/Stopp der Prozessausführung . 38

Zwischenspeichern von Paketen . 39

4.3.3 Reihenfolge der Operationen . 40

4

4.3.4 Synchronisation einer verteilten Operation 41

4.4 Kostenmodell Kommunikation . 43

4.5 Kostenmodell Rekonfiguration . 45

4.5.1 Start/Stopp der Prozessausführung . 46

4.5.2 Migration von virtuellen Knoten und Netshaper Instanzen 47

Sichern der Zustands virtueller Knoten 48

Sichern der Zustände von Netshaper Instanz 48

Transfer der Daten . 49

Wiederherstellen der Zustände virtueller Knoten 50

Wiederherstellen der Zustände von Netshaper Instanzen 51

Entfernen virtueller Knoten in Quell VMs 51

4.5.3 Anpassung Layer 2 Topologie . 51

4.6 Optimierung der Platzierung . 52

4.6.1 Zielfunktion . 54

Größe des Vorhersage Zeitfensters . 55

4.6.2 Optimierungsalgorithmus . 55

4.6.3 Ähnliche Platzierungen . 57

4.6.4 Berechnung des Zielfunktionswerts . 57

4.6.5 Verkleinerung des Suchraums . 60

4.6.6 Abbruchbedingung . 60

4.6.7 Cooling Schedule . 61

Geometrischer Cooling Schedule . 62

4.7 Lastvorhersage . 64

4.8 Lage . 67

4.8.1 Optimierung der Platzierung . 67

Zentraler Ansatz . 67

Verteilte Ansätze . 68

Diskussion der Ansätze . 74

4.8.2 Koordination der Rekonfiguration der TVEE 76

Zentraler Ansatz . 76

Verteilter Ansatz . 77

Diskussion der Ansätze . 79

5 Implementierung 82
5.1 Rekonfiguration . 82

5.1.1 Suspend/Resume virtueller Knoten . 82

5.1.2 Migration virtueller Knoten . 83

5.1.3 Migration von Netshaper Instanzen . 83

5.1.4 Anpassung der Layer 2 Topologie . 83

5.2 Optimierung der Platzierung . 84

5.3 Monitore . 84

5.3.1 Mittlere Datenraten . 84

5

5.3.2 Mittlere Auslastung . 85

5.4 Probleme Rekonfiguration . 85

5.4.1 Routing Tabelle . 85

5.4.2 Probleme im Zusammhang mit netperf und iperf 85

6 Evaluation 87
6.1 Konstanten Rekonfigurationskostenmodell . 87

6.2 Performance des Optimierungsalgorithmus . 92

6.2.1 Grid Szenario . 93

6.2.2 Waxman Graph Szenario . 94

6.2.3 Routerketten Szenario . 96

6.2.4 Fazit . 97

6.3 Performance Neuplatzierung . 98

6.3.1 Sensor Szenario . 98

6.3.2 Waxman Szenario . 101

7 Zusammenfassung und Ausblick 104
7.1 Zusammenfassung . 104

7.2 Offene Probleme und Ausblick . 105

Literaturverzeichnis 107

6

Abbildungsverzeichnis

2.1 TVEE Architektur . 14

2.2 Netshaper . 16

2.3 epochetime . 18

2.4 Beispiel für mögliches Testszenario . 20

2.5 Beispiel für Konfiguration der TVEE . 22

4.1 Beispiel für Lastverlauf eines virtuellen Knotens 28

4.2 Architektur Neuplatzierung . 30

4.3 Beispiel für Neuplatzierung durch Migration . 32

4.4 Migration eines virtuellen Knotens . 33

4.5 Anpassung von Netzwerkkomponenten - virtuelle Knoten verteilt 36

4.6 Anpassung von Netzwerkkomponenten - virtuelle Knoten zusammen 36

4.7 Anpassung von Netzwerkkomponenten - virtuelle Knoten verteilt 37

4.8 Synchronisation - zentraler Ansatz . 41

4.9 Synchronisation - verteilter Ansatz . 42

4.10 Beispiel Kosten Datentransfer . 49

4.11 Erwartete Laufzeiten zweier Platzierungen . 55

4.12 Beispiel zur Berechnung von Laständerungen 59

4.13 Typischer Cooling Schedule . 63

4.14 Historie der Last eines virtuellen Knoten . 65

4.15 Verteiltes Loadbalancing . 70

4.16 Bildung einer Domäne . 71

4.17 Verteilte Optimierung der Platzierung . 72

4.18 Lokales Topologiemodell . 73

4.19 Zentrale Rekonfiguration . 77

4.20 Zentrale Rekonfiguration . 78

6.1 Kosten für Suspend und Resume Operation in Abhängigkeit von der Anzahl
der Knoten . 87

6.2 Kosten für Dump und Undump eines Knotens in Abhängigkeit von erwarteter
Größe des Dumpfiles . 88

6.3 Kosten für Dump und Undump einer Netshaper Instanz in Abhängigkeit von
der Größe der gepufferten Frames . 89

7

6.4 Kosten für Dump und Undump einer Netshaper Instanz in Abhängigkeit von
der Größe der Parameterliste . 90

6.5 Kosten für das Beenden eines Knotens . 90

6.6 Kosten Transfer von Daten in Abhängigkeit vom zu übertragenden Datenvo-
lumen . 91

6.7 Grid Testszenario . 93

6.8 Performance des Optimierungsalgorithmus - Grid Szenario 94

6.9 Waxman Testszenario . 95

6.10 Performance des Optimierungsalgorithmus - Waxman Graph Szenario 95

6.11 Routerketten Testszenario . 96

6.12 Performance des Optimierungsalgorithmus - Router Chain Szenario 97

6.13 Beispiel Sensortestszenario . 99

6.14 Sensor Szenario - TDF Verlauf . 100

6.15 Sensor Szenario - Experimentlaufzeit . 100

6.16 Waxman Szenario - TDF Verlauf . 102

6.17 Waxman Szenario - Experimentlaufzeit . 102

Tabellenverzeichnis

4.1 Vergleich verschiedener Optimierungsansätze 74

4.2 Übersicht Nachrichten zentrale Koordination . 80

6.1 κ Konstanten . 91

6.2 c Konstanten . 92

Verzeichnis der Algorithmen

4.1 Algorithmus zur Optimierung einer Platzierung 56

4.2 Zentraler Neuplatzierungsalgorithmus . 68

8

1 Einleitung

1.1 Motivation

Testen und Evaluieren sind wichtige Schritte in der Entwicklung neuer verteilter Anwendun-
gen und Netzwerkprotokolle. Durch die Komplexität heutiger Anwendungen können diese
beiden Schritte zu einer herausfordernden Aufgabe werden. Peer-to-Peer Anwendungen wie
z.B. Gnutella [Gnu] bestehen meist aus tausenden von Knoten, die sich in einem Verbund
aus heterogenen Netzen befinden. Nicht selten nehmen deswegen Test und Evaluierung
einen großen Teil der Enwicklungszeit in Anspruch.

Aus der Literatur sind im wesentlich 3 Techniken für das Testen und Evaluieren neuer
verteilter Anwendungen bekannt: Live Testing [CCR+

03], Netzwerk Simulation [BTA+,
Kes88, Ril03] und Netzwerk Emulation [CS03, Hem05, NSNK97].

Beim Live Testing wird die Software vor der Auslieferung unverändert unter realen oder
fast realen Bedingungen getestet. Da realistische Testszenarien meist mehrere tausend
Knoten umfassen, ist der Aufbau einer Live-Testumgebung allerdings mit sehr hohen Kosten
verbunden. Zudem sind je nach eingesetzter Technologie z.B. Funk-LANs Messergebnisse
nicht reproduzierbar. Außerdem ist die Testumgebung auf bereits existierende Technologien
beschränkt. Live Testing ist also nur bedingt geeignet für das Testen und Evaluieren neuer
verteilter Anwendungen.

Netzwerk Simulation [GRL05] stellt im Gegensatz zum Live Testing eine kostengünstige
und kontrollierbare Alternative dar, die zu reproduzierbaren Messergebnissen führt. Bei der
Simulation wird das reale Netzwerk auf ein parametrisierbares Modell abgebildet. Dieses
Modell kann einen beliebigen Grad an Abstraktion aufweisen, weshalb Messergebnisse
in Hinblick auf die reale Welt mit Vorsicht zu genießen sind. Meist ist außerdem eine
Reimplementierung der zu testenden Software nötig.

Die dritte in der Literatur aufgeführte Technik ist die Netzwerk Emulation [GRL05]. Sie
stellt einen hybriden Ansatz aus Live Testing und Simulation dar und vereint Vorteile
beider Ansätze. In der Emulation werden reale Elemente, wie Ziel-Hosts und Protokolle,
mit künstlichen, simulierten oder abstrahierten Elementen,wie Netzwerkverbindungen und
Hintergrundverkehr, verbunden. Dadurch entsteht ein synthetische, parametrisierbare Netz-
werkumgebung, in der Eigenschaften wie z.B. Bandbreite, Verzögerung und Verlustrate

9

1.1 Motivation

festgelegt werden können. Dies ermöglicht die Erzeugung von reproduzierbare Messerger-
gebnisse. Im Gegensatz zur Simulation muss hierbei die zu testende Software nicht angepasst
werden. Getestet wird bei der Emulation meist in Realzeit [FTO, MI]. Die Emulation vereint
Vorteile des Livetestings und der Simulation: Realitätsnähe und Kontrollierbarkeit .

In vielen Emulationsumgebungen wird pro Kommunikationsknoten ein physikalischer
Computer eingesetzt. Realistische Testszenarien umfassen allerdings meist tausende Kommu-
nikationsknoten, was einen hohen Hardwareaufwand bedeutet. Für große Szenarien werden
daher besser skalierbare Ansätze benötigt. Aus der Literatur sind zwei Techniken bekannt,
die eine skalierbare Emulationsumgebung ermöglichen: Knoten- und Zeitvirtualisierung.

Bei der Knotenvirtualisierung [AH06] werden mehrere Instanzen der zu testenden Software
auf einem physikalischen Rechner genannt physical Node(PNode) ausgeführt. Jede Instanz
wird dabei in ihrer eigenen Ausführungsumgebung, genannt virtual node(VNode), gestartet.
Über diesen Ansatz kann eine bessere Ausnutzung der zu Verfügung stehenden Hardware
gewährleistet werden. Werden mehrere physikalische Rechner z.B. über ein LAN verbunden
ermöglicht der Knotenvirtualisierungsansatz die Segmentierung einer Netzwerk Topologie
durch die Verteilung der einzelnen VNodes auf die vorhandenen physikalischen Rechner.
Eine Emulationsumgebung, die aus mehreren physikalischen Rechnern besteht, wird verteilte
Emulationsumgebung genannt. Durch Knotenvirtualisierung lässt sich die Größe eines
Testszenarios, also die Anzahl der Knoten, massiv steigern. Durch den in [MHR] vorgestellten
Knotenvirtualisierungsansatz gelang es z.B. Testszenarien um das 28 fache zu vergrößern.
Die Testumgebung bestand aus einem Pentium 4 (2,4 Ghz) Cluster. Allerdings ist die Anzahl
virtueller Knoten durch die zur Verfügung stehenden Ressourcen wie CPU, Speicher und
Netzwerkbandbreite begrenzt.

Um die Anzahl der Knoten pro Test bei gleicher Hardware noch weiter erhöhen zu kön-
nen , wird eine Technik namens Zeitvirtualisierung [GYM+

06] eingesetzt. Dabei wird die
Wahrnehmung der Zeit eines Betriebssystems und aller darin befindlichen Anwendungen
verändert. Mittels eines Faktors, genannt time dilation factor (TDF), wird die Zeit verlangsamt.
Das Betriebssystem nimmt dabei die real vergehende Zeit kürzer wahr. Dadurch stehen pro
Zeiteinheit mehr Ressourcen zur Verfügung, was eine weitere Erhöhung der Knotenanzahl
möglich macht. Diese Technik geht allerdings zu Lasten der Experimentlaufzeit. Sie erhöht
sich proportional zum TDF.

Um die Experimentlaufzeit möglichst in einem vertretbaren Rahmen zu halten, können
verschiedene Techniken eingesetzt werden. Sind mittlere Datenraten sowie mittlere Auslas-
tungen der Knoten bekannt, kann ein Platzierungsalgorithmus [GHR] verwendet werden.
Dieser bildet vor dem Test virtuelle Knoten eines Testszenarios auf physikalische Knoten
derart ab, dass die erwartete Experimentlaufzeit minimal ist.

Eine andere Technik besteht in der adaptiven Anpassung des TDF Faktors [GHR09] an die
aktuelle Last. Ist das System überlastet so wird der TDF Faktor erhöht. Befindet sich das
System in einem Zustand mit ungenutzten Ressourcen wird der TDF Faktor erniedrigt.

10

1.2 Ziel der Arbeit

Auf diese Weise kann eine hohe Auslastung der Testumgebung über das ganze Experiment
erreicht werden.

Um keinen Knoten zu überlasten orientiert sich die Last des Systems an dem maximal
ausgelasteten physikalischen Knoten. Dadurch kann es, trotz adaptiver TDF Anpassung, zu
einer schlechten Auslastung einzelner Rechner kommen. Dies ist der Fall, wenn Knoten sehr
unterschiedliche ausgelastet sind. In einer solchen Situation kann es sinnvoll sein, während
des Experiments bestimmte virtuelle Knoten zu migrieren, z.B. virtuelle Knoten des am
stärksten ausgelasteten physikalischen Knotens zu einem weniger ausgelasteten. Dadurch
sinkt die Auslastung des Systems und der TDF Faktor kann erniedrigt werden, was zu einer
Verkürzung der Experimentlaufzeit führt. Bei einer Migration entstehen allerdings Kosten,
die berücksichtigt werden müssen.

1.2 Ziel der Arbeit

Im Rahmen dieser Diplomarbeit soll eine bestehende Emulationsumgebung, die Techni-
ken wie Knoten- und Zeitvirtualisierung einsetzt, um die Möglichkeit zur dynamischen
Neuplatzierung virtueller Knoten erweitert werden.

Bei unausgeglichener Last einzelner Rechner der Testumgebung sollen virtuelle Knoten
von überlasteten Rechnern auf weniger ausgelastete Rechner verschoben werden. Dazu
werden zunächst Mechanismen benötigt, die eine Migration virtueller Knoten erlauben.
Diese müssen z.B. die Sicherung des Zustands, den Transfer und die Wiederherstellung des
Zustands eines Knotens umfassen. Zudem gilt es, die Netzwerktopologie des Testszenarios
an die neue Situation anzupassen. Um Messergebnisse nicht zu verfälschen, muss dies in
einem sehr kurzen Zeitfenster geschehen.

Des weiteren wird ein Algorithmus benötigt, der bei ungünstiger Lastsituation, eine neue
Plazierung virtueller Knoten bestimmt. Eine neue Platzierung wird dabei durch Migration
einzelner Knoten erreicht. Durch die Migration entstehen Kosten, die bei der Auswahl einer
neuen Platzierung zu berücksichtigen sind.

Zur Beurteilung unterschiedlicher Platzierungen ist es nötig, diese vorab abschätzen zu
können. Es wird daher ein Modell gebraucht, mit dem sich Migrationskosten voraussagen
lassen. Migrationskosten können als Investition angesehen werden, die sich nur lohnen,
wenn die erwartete Kosteinsparungen höher sind als die Investition.

11

1.3 Outline

1.3 Outline

Die folgenden Kapitel der Diplomarbeit sind folgendermaßen gegliedert.

Im Kapitel 2 wird eine zeitvirtualisierte Emulationsumgebung namens TVEE (Time Virtuali-
zed Emulation Environment) vorgestellt. Diese bildet die Basis dieser Diplomarbeit.

Im darauf folgendem Kapitel 3 wird ein der dynamischen Neuplatzierung von virtuellen
Knoten sehr ähnliches Problem präsentiert: Taskmigration.

Kapitel 4 geht, dann näher auf die dynamische Neuplatzierung von virtuellen Knoten ein.
Unter anderem werden in diesem Kapitel unterschiedliche Lösungsansätze für Teilprobleme,
wie die Optimierung einer aktuellen Platzierung, oder die Umsetzung einer Platzierung,
vorgestellt und gegeneinander abgewogen.

In Kapitel 5 wird näher auf einen Prototype eingegangen, in dem Lösungsansätze und
vorgestellte Konzepte umsetzt wurden.

Dieser Prototype wird im folgenden Kapitel 6 evaluiert.

Im letzten Kapitel werden schließlich Resultate zusammengefasst und auf offene Probleme
eingegangen.

12

2 Zeitvirtualisierte Emulationsumgebung

Im Rahmen des NET (Network Emulation Testbed) [NP] Projekts wurde eine Emulations-
umgebung namens Time Virtualized Emulation Environment (TVEE) zum Testen verteilter
Anwendungen entwickelt. Sie besteht aktuell aus einem PC Cluster mit 20 Dual Core Xeons
(2.13 Ghz) mit jeweils 24 GB Ram. Jeder Rechner des Clusters ist mittels Ethernet Karten an
2 Netzwerke angebunden: dem Kontrollnetzwerk und dem Emulationsnetzwerk. Kontroll-
und Testdatenverkehr sind damit voneinander getrennt.

In TVEE kommen Techniken wie Knotenvirtualisierung und Zeitvirtualisierung zum Einsatz.
Diese machen das System skalierbarer und ermöglichen die Emulation von Testszenarien
mit tausenden von Knoten [GMHR08].

2.1 Architektur

Knoten- und Zeitvirtualisierung wird in TVEE durch einen geschachtelten Virtualisierungs-
ansatz erreicht. Dieser ist in Abbildung 2.1 dargestellt.

Auf jedem physikalischen Knoten (pNode) , wird pro CPU eine virtuelle Maschine (VM)
gestartet. Diese stellt eine virtuelle Zeit bereit, welche für das Betriebssystem innerhalb
der virtuellen Maschine völlig transparent ist. Ressourcen der VM werden mittels Virtual
Routing und Space Partitioning aufgeteilt (siehe Abschnitt 2.2). Pro Software Under Test(SuT)
Instanz wird ein virtueller Knoten (vNode) innerhalb der VM erzeugt.

Damit beliebige SuT Instanzen miteinander kommunizieren können, werden Software
Brücken eingesetzt. Diese verbinden virtuelle Netzwerkkarten der virtuellen Knoten, bzw. der
virtuellen Maschinen miteinander. Um eine Kommunikation über die Grenzen eines Rechners
hinweg zu ermöglichen, werden zudem Software Brücken an physikalische Netzwerkkarten
angebunden.

Im folgenden wird nun näher auf die Umsetzung der Netzwerk Emulation, Knoten- und
Zeitvirtualisierung eingegangen werden.

13

2.2 Knoten Virtualisierung

Physikalischer Knoten 1

Hypervisor

Host

Hardware

Virtuelle Maschine 1

V
ir

tu
el

le
r

K
n

o
te

n
 1

Virtuelle

NIC

Netzwerk
Emulation

V
ir

tu
el

le
r

K
n

o
te

n
 2

Virtuelle

NIC

Netzwerk
Emulation

Brücke

Virtuelle Maschine 2

Brücke

Brücke

NIC

NIC

Virtuelle Zeit Virtuelle Zeit

Phys.
Knoten 2

Virtuelle NIC Virtuelle NIC

V
ir

tu
el

le
r

K
n

o
te

n
 3

Virtuelle

NIC

Netzwerk
Emulation

Abbildung 2.1: TVEE Architektur

2.2 Knoten Virtualisierung

Knotenvirtualisierung ermöglicht die Ausführung mehrerer zu testender Software Instanzen
auf einem physikalischen Knoten. Jede Software Instanz wird dabei in ihrer eigenen virtuellen
Umgebung ausgeführt. Aus der Literatur sind mehrere Virtualisierungsansätze bekannt.

Einen möglichen Ansatz stellt die Nutzung von virtuellen Maschinen dar. Dabei wird die zu
testende Software in einem Betriebssystem ausgeführt, das keinen direkten Zugriff auf die
Hardware hat. Der Zugriff erfolgt stattdessen über eine Software, die zwischen Hardware
und Betriebssystem eingefügt wird. Diese wird virtual machine monitor (VMM) genannt. Sie
koordiniert den Zugriff unterschiedlicher virtueller Maschinen und den darin befindlichen
Betriebsystemen auf die Hardware. Jede SuT Instanz wird bei diesem Ansatz in einem
eigenen Betriebsystem ausgeführt.

Da bei diesem Ansatz Betriebsysteme unverändert benutzt werden können, ist die Virtuali-
sierung transparent für die zu testende Software. Allerdings sind für die Kommunikation
zwischen Software Instanzen in unterschiedlichen virtuellen Maschinen teure Kontextwechsel
nötig, was zu einem großen Virtualisierungsoverhead führt.

14

2.3 Zeit Virtualisierung

Einen günstigeren Ansatz stellt die Nutzung eines virtuellen Netzwerkstacks dar. Bei diesem
Ansatz wird nur der Netzwerkstack virtualisiert. Im Gegensatz zum virtuellen Maschinen
Ansatz werden alle SuT Instanzen im gleichen Betriebssystem ausgeführt.

SuT Instanzen können bei diesem Ansatz in sogenannten virtuellen Knoten voneinander
separiert werden. Ein virtueller Knoten umfasst dabei

• eine bestimmte Anzahl von Prozessen (z.B. die SuT)

• einen Netzwerkstack, der mit Prozessen des virtuellen Knotens verbunden ist

Im Gegensatz zum virtuellen Maschinenansatz ist der Speicheroverhead deutlich geringer.
Außerdem werden keine teuren Kontextwechsel für die Kommunikation zwischen SuT
Instanzen benötigt. Allerdings ist die Nutzung von virtuellen Netzwerkstacks nicht so
transparent wie der virtuelle Maschinen Ansatz.

In TVEE wurde sich für den Netzwerk Stack Ansatz entschieden. Dazu kommt OpenVZ
zum Einsatz.

OpenVz ist ein leichtgewichtiges Virtualisierungssystem, das unabhängige, sicher und
isolierte Container (virtuelle Knoten) auf einer physikalischen Maschine bereitstellt. Neben
Netzwerkstack Virtualisierung wird in OpenVZ noch Space Partitioning eingesetzt. Dadurch
erscheint jeder Container als einzelner Host mit eigenen Usern, autonomem Dateisystem
und Speicher, unabhängiger Ip Adresse und eigenen Anwendungen.

Laut [GMHR08] stellt OpenVZ eine Virtualisierungslösung mit sehr geringem Speiche-
roverhead dar. Für jeden Container (VNode) werden nur zusätzlich 300 kbyte Speicher
benötigt. Dies ermöglicht die Ausführung tausender virtueller Knoten auf einem einzelnen
physikalischen Knoten.

2.3 Zeit Virtualisierung

Zeitvirtualisierung stellt einen Ansatz dar, mit dessen Hilfe sich zur Verfügung stehende
Ressourcen künstlich erhöhen lassen. Sie kann unterschiedlich umgesetzt werden(siehe
[GYM+

06]). In TVEE wird eine angepasste virtuelle Maschine verwendet, um virtuelle Zeit
bereitzustellen.

Aktuell kommt in TVEE Xen [xen] als Hypervisor zum Einsatz. Xen nutzt eine Technik
namens Paravirtualisierung. Bei dieser Technik wird die Hardware nicht emuliert, sondern
den virtuellen Maschinen wird ein direkter Zugriff auf vorhandene Ressourcen ermöglicht.
Daher ist Xen effizient, erfordert aber eine Portierung der Betriebssysteme (üblicherweise
Gastsysteme genannt), die in den virtuellen Maschinen laufen sollen.

In Xen werden Gastsysteme als Domains bezeichnet. Unter den Domains nimmt die Domain
mit dem Index 0 (dom0) eine besondere Rolle ein. Diese wird beim Booten gestartet und

15

2.4 Netzwerk Emulation

besitzt spezielle Rechte, wie z.B. die Befugnis zum Starten und Verwalten anderer Domains,
meist domU genannt. Zur effizienten Unterstützung von Multicoresystemen wird in TVEE
aktuell auf jedem physikalischen Knoten eine dom0 und gleich viele domUs wie verfügbare
CPU gestartet([GHR]).

Standardmäßig unterstützt Xen keine virtuelle Zeit. Daher wurde die Schnittstelle zwischen
Hypervisor und den virtuellen Maschinen um eine Funktion für die Einstellung der virtuellen
Zeit erweitert. Über einen time dilation factor (TDF) kann die Geschwindigkeit, mit der die
virtuelle Zeit voranschreitet, gesteuert werden.

2.4 Netzwerk Emulation

domU

 v
N

o
d

e

eth

veth

NS NS

Abbildung 2.2: Netshaper

Netzwerk Emulation ermöglicht die Schaffung einer künstlichen Netwerkumgebung. In
TVEE erfolgt die Umsetzung der Netzwerk Emulation durch die Integration eines Tools
namens Netshaper in den Treiber der virtuellen Netzwerkkarte (veth). Dieser wird von
OpenVZ bereitgestellt und kann von jedem virtuellen Knoten zur Kommunikation mit
anderen Knoten oder dem Root Betriebsystem genutzt werden.

In OpenVz besteht der virtuelle Netzwerkkartentreiber aus zwei Komponenten. Einem
virtuellen Netzwerkgerät, das nur innerhalb des virtuellen Knoten sichtbar ist und einem
Netzwerkgerät, das nur für das außerhalb in der virtuellen Maschine laufenden Betriebs-
system sichtbar ist. Typischerweise werden Instanzen der einen Komponente eth0, eth1,...
genannt und die der anderen veth<id>.0, veth<id>.1,... wobei <id> für die Id eines virtuellen

16

2.5 Techniken zur Experimentlaufzeitminimierung

Knotens steht. Beide Geräte sind derart verbunden, dass Pakete, die an das eine Gerät
geschickt werden, auch auf dem anderen Gerät sichtbar werden.

Wie in Abbildung 2.2 dargestellt, wird für die Netzwerkemulation in TVEE zwischen beide
Netzerkgeräte eine zusätzliche Komponente eingefügt. Diese wird Netshaper genannt. Je
nach gewünschtem Verhalten des Netzwerkes, werden im Netshaper z.B. Frames verzögert
oder sogar verworfen. Das Verhalten des Netshapers richtet sich nach den Einstellungen,
die über das Proc-Dateisystem vorgenommen werden können. Mögliche Einstellungen sind
z.B. die Bandbreite, die Verlustrate und die Definition von Eigenschaften für bestimmte
Verbindungen zwischen virtuellen Knoten. Diese Einstellungen können jeweils separat für
die Sende- und Empfangsrichtung definiert werden.

Für beide Richtungen wird jeweils eine eigene Netshaper Instanz gestartet. Um Sendezeit-
punkte von Frames anzupassen, besitzt jede Netshaper Instanz einen Puffer, in dem noch zu
sendende Frames zwischengespeichert werden.

2.5 Techniken zur Experimentlaufzeitminimierung

Zur Minimierung der Experimentlaufzeit kommen in TVEE bisher zwei Techniken zum Ein-
satz: die Epochen basierte virtuelle Zeit und ein Platzierungsalgorithmus namens Netplace.
Beide Techniken sollen im folgenden kurz vorgestellt werden.

2.5.1 Epochen basierte virtuelle Zeit

Während eines Experiments ist es möglich, dass die Auslastung der Testumgebung variiert.
Ursache dafür kann z.B. eine sich ändernde Lastanforderung virtueller Knoten sein.

Zu keinem Zeitpunkt des Tests dürfen Rechner der Testumgebung überlastet werden. An-
sonsten kann es zur Verfälschung von Messergebnissen kommen. Daher muss der TDF
Faktor stets angemessen gewählt werden.

Um Überlasten zu verhindern und gleichzeitig das System möglichst gut auszulasten, ist
es sinnvoll, den TDF adaptiv zu wählen. Um Testergebnisse nicht zu verfälschen, muss
zudem die Anpassung des TDF auf allen physikalischen Knoten der Testumgebung nahezu
gleichzeitig erfolgen. Dies macht eine gewisse Synchronisation der einzelnen Knoten nötig.

Im Rahmen der TVEE wurde ein Verfahren entworfen, das den TDF Faktor adaptiv an die
aktuelle Lastsituation anpasst und dabei den Synchronisationsoverhead in einem vertretbaren
Rahmen hält. Dem Verfahren liegt eine Epochen basierte virtuelle Zeit zugrunde. Die Laufzeit
des Experiments wird dabei in Epochen unterschiedlicher Länge eingeteilt. Während einer
Epoche ist der TDF Faktor konstant. Erst beim Übergang zu einer neuen Epoche wird dieser
geändert und der geänderte Werte zeitgleich an alle virtuellen Maschinen der physikalischen

17

2.5 Techniken zur Experimentlaufzeitminimierung

PNode

Coordinator

Koordinator
Komponente für
Epochenwechsel

Lastmonitor
Virtuelle Maschine

mit virtuellen Knoten

Lastnachricht TDF Nachrichten

neuer TDF Wert

Prozessorlast

Abbildung 2.3: epochetime

Rechner weitergeleitet. Eine neue Epoche wird eingeleitet, falls die Last des Systems einen
Überlastschwellwert übersteigt oder einen Unterlastschwellwert unterschreitet.

Zur adaptiven Anpassung des TDF kommt ein Regelkreis zum Einsatz. Dieser ist in ??
dargestellt. Eine zentrale Rolle im Regelkreis bildet der Koordinator. Er passt den TDF an
die aktuelle Last an. Informationen über die aktuelle Last erhält er von einem verteilten
Lastmonitor. Dieser zeichnet für jede virtuelle Maschine eines physikalischen Knoten Lasten
auf und berechnet daraus die Last des physikalischen Knotens.

Da kein Knoten im System überlastet werden darf, bildet der Koordinator aus den einzelnen
Lasten physikalischer Knoten das Maximum, um die Last des Systems zu bestimmen. Auf
Basis dieser Last passt der Koordinator den TDF an und propagiert den geänderten TDF
über die Komponente für den Epochenwechsel an die physikalischen Knoten. Je nach Über-
oder Unterlastsituation wird der TDF schrittweise erhöht, bzw. erniedrigt.

2.5.2 NETplace

In TVEE wird die Laufzeit eines Experiments maßgeblich durch den TDF Faktor bestimmt.
Da kein physikalischer Knoten überlastet werden darf, richtet sich dieser nach dem am
stärksten ausgelasteten Knoten. Um eine möglichst hohe Auslastung des gesamten System zu

18

2.5 Techniken zur Experimentlaufzeitminimierung

gewährleisten, ist es daher sinnvoll, alle physikalischen Knoten möglichst gleich auszulasten.
Dies ermöglicht die Erhöhung der Geschwindigkeit mit der die virtuelle Zeit voranschreitet,
was wiederum zu einer Verkürzung der Experimentlaufzeit führt.

Eine möglichst günstige Lastverteilung wird in TVEE durch die Verwendung eines automati-
schen Platzierungsalgorithmus, namens NetPlace erreicht.

Eine Platzierung φ wird dabei als Funktion verstanden, die virtuelle Knoten n ∈ N auf
virtuelle Maschinen v ∈ V abbildet. Jede virtuelle Maschine kann durch den physikalischen
Knoten p ∈ P und die CPU c ∈ C, die der VM zugewiesen wurde, adressiert werden. Damit
ergibt sich:φ : x 7→ (p, c)

Der Platzierungsalgorithmus verteilt virtuelle Knoten des Testszenarios auf physikalische
Knoten der Testumgebung derart, dass die Gesamtlast und das Lastungleichgewicht zwi-
schen physikalischen Rechnern möglichst klein sind.

Der Berechnung der Platzierung liegt ein Kostenmodell zugrunde. Einen wesentlichen
Bestandteil dieses Modells bilden Kommunikationskosten. Diese werden auf Basis mittlerer
Datenraten von Verbindungen zwischen virtuellen Knoten und der Art der Verbindung
berechnet.

Im Kostenmodell werden 3 unterschiedliche Arten von Verbindungen zwischen virtuellen
Knoten unterschieden:

• Intra-vm Links

• inter-vm Links

• inter pnode Links

Kommunizieren zwei virtuelle Knoten innerhalb einer virtuellen Maschine miteinander,
so handelt es sich um einen intra-vm Link. Diese Kommunikatonsmethode verursacht die
geringsten Kosten.

Tauschen 2 virtuelle Knoten Informationen aus, die sich in unterschiedlichen virtuellen
Maschinen auf dem gleichem physikalischen Rechner befinden, so handelt es sich um
einen inter-vm Link. Dieser verursacht mehr Kosten, ist allerdings günstiger als ein inter-
pnode Link. Diese Art der Verbindung liegt vor wenn zwei virtuelle Maschinen miteinander
kommunizieren, die sich auf verschiedenen physikalischen Rechnern befinden.

Neben Kommunikationskosten berücksichtigt der Algorithmus zudem noch mittlere Lasten
der virtuellen Knoten.

Zur Platzierung der einzelnen Knoten kommt ein paralleler Algorithmus zum Einsatz. Dieser
berechnet gleichzeitig eine initiale Platzierung mithilfe eines Greedy Ansatzes und eine
Platzierung mithilfe eines Kantenschnitt basierten Ansatzes. Ergebnisse beider Ansätze
werden mittels eines Hill Climbing Algorithmus optimiert. Das bessere Ergebnis bildet die
Lösung des Algorithmus.

19

2.6 Konfiguration

2.6 Konfiguration

Verteilte Software kann in der Regel sehr unterschiedliche Anforderungen haben: z.B. Skalier-
barkeit, hohe Verfügbarkeit und Verlässlichkeit. Um sicher zu stellen, dass vorher definierte
Anforderungen von der Software eingehalten werden, ist es nötig, sie unter verschiedenen
Bedingungen zu testen.

Dazu müssen Testszenarien definiert werden. Diese können sich, z.B. in der verwendeten
Hardware (z.B. 100 mbit Ethernet 1 gbit Ehternet), der Netztopologie, oder der Anzahl
der physikalischen Rechner, auf denen die Software ausgeführt wird, unterscheiden. Ein
einfaches Testszenario ist in Abbildung 2.4 dargestellt.

pNode 1

pNode 2 pNode 3 pNode 4

1 Gbit
Ethernet NIC

Switch

100 mbit
Ethernet NIC

100 mbit
Ethernet NIC

100 mbit
Ethernet NIC

1 Gbit
Ethernet NIC

SuT

SuT SuT SuT

Abbildung 2.4: Beispiel für mögliches Testszenario

Um verteilte Software innerhalb der TVEE testen zu können, muss die Emulationsumgebung
je nach Testszenario unterschiedlich konfiguriert werden können.

Dies geschieht mittels des TVEE Manager Frameworks. Es bietet die Möglichkeit, Testszena-
rien zu beschreiben und die Emulationsumgebung nach dieser Beschreibung automatisch
zu konfigurieren. Eine manuelle, oft sehr aufwendige und fehleranfällige Konfiguration der
Testumgebung soll dadurch vermieden werden.

Die Beschreibung des Testszenarios erfolgt über ein Ruby Skript. In diesem können Kom-
munikationsknoten, in denen die SUT ausgeführt werden soll, und Verbindungen zwischen
ihnen definiert werden. Dazu stehen 2 Klassen zur Verfügung: VNode und CollisonDomain.

20

2.6 Konfiguration

Über die VNode Klasse können virtuelle Knoten spezifiziert werden. Physikalische Knoten
des Testszenarios müssen also zunächst auf virtuelle Knoten abgebildet werden. Die VNode
Klasse bietet dabei unterschiedliche Konfigurationsmöglichkeiten. So können z.B. die Anzahl
der verfügbaren Netwerkgeräte sowie CPU Limitierungen festgelegt werden.

Für jede VNode Instanz erzeugt das Framework später einen OpenVZ Container. Daher muss
für jeden Container spezifiziert werden, in welcher virtuellen Maschine er gestartet werden
soll. Eine Platzierung der Knoten kann z.B. vorab mittels NetPlace für das Testszenario
bestimmt werden.

Für jedes Netzwerkgerät(Instanz der VNic Klasse) einer VNode Instanz wird ein virtuel-
les Netzwerkgerät(veth) angelegt. Für jedes Netzwerkgerät können dabei Parameter wie
Bandbreite, Delay, Verlustrate eingestellt werden. Diese Parameter werden später an die
Netshaper Instanzen weitergegeben.

Im TVEE Manager werden 3 Arten von Netzwerken unterstützt: Netzwerke, die auf Punkt
zu Punkt Verbindungen beruhen, switch basierte Netzwerke und MANets(mobile adhoc
networks).

Die Beschreibung aller Netze basiert beim TVEE Manager auf Instanzen der Klasse Colli-
sionDomain. Mittels eines CollisionDomain Objekts lassen sich beliebig viele virtuelle Knoten
miteinander verbinden. Dazu werden virtuelle Netzwerkkarten von Knoten, die miteinander
kommunizieren möchten, an die gleiche CollisionDomain angebunden. Sind an einer Domain
nur zwei Knoten angeschlossen, so handelt es sich um eine Punkt zu Punkt Verbindung; bei
mehr Knoten, um ein switch basiertes Netzwerk. Eine Punkt zu Punkt Verbindung ist also
als Spezialfall eines geswitchten Netzwerks modelliert.

MANet Szenarien werden ebenfalls über CollisionDomains realisiert. Dazu werden alle mobile
Knoten an eine Collision Domain angebunden.

Für jedes CollisionDomain Objekt wird vom TVEE Manager später mindestens eine Linux
Software Brücke erzeugt. Diese befindet sich innerhalb einer virtuellen Maschine. Werden
VNodes der gleichen CollisionDomain auf unterschiedlichen virtuellen Maschinen platziert, so
wird in jeder virtuellen Maschine, in der sich einer der VNodes befindet, eine Software Brücke
erzeugt. Die unterschiedlichen Softwarebrücken werden dann mittels VLan verbunden.
So kann sichergestellt werden, dass Nachrichten, trotz Aufteilung der Knoten, auf unter-
schiedliche virtuelle Maschinen nur von Netzwerkkarten, die an die gleiche CollisionDomain
angeschlossen sind, empfangen werden.

Abbildung 2.5 zeigt wie eine konfigurierte Emulationsumgebung z.B. für das in Abbildung
2.4 dargestellte Testszenario aussehen könnte.

Für jeden physikalischen Knoten des Testszenarios wurde ein virtueller Knoten in der
Testumgebung erzeugt. Zwei dieser Knoten wurden dabei auf der virtuellen Maschine VM1,
die anderen auf der virtuellen Maschine VM2, platziert. Beide Maschinen befinden sich in
diesem Fall auf dem gleichen physikalischen Knoten.

21

2.6 Konfiguration

pNode

VM2VM1

vNode 1 vNode 2 vNode 3 vNode 4

Bridge1

VNic VNicVNic VNic VNic

Bridge2 Bridge2

VNic VNic

Vlan50Vlan50

SuT SuT SuT SuT

Abbildung 2.5: Beispiel für Konfiguration der TVEE

Für die Punkt zu Punkt Verbindung des Knotens pNode 1 und pNode 2 wurde eine Software-
brücke angelegt und die passenden virtuellen Netzwerkkarten an diese Brücke gehängt. Für
den geswitchten Teil des Netzwerks, also für die Verbindung der Knoten pNode2, pNode3
und pNode4, wurde in beiden virtuellen Maschinen jeweils eine Brücke mit der Id 2 angelegt.
Verbunden werden die Brücken über Netzwerkkarten beider virtuellen Maschinen. Damit
bei den beiden Brücken nur Nachrichten der jeweils anderen Brücke ankommen, wurde auf
beiden Seiten ein Vlan Gerät mit der Id 50 eingerichtet.

22

3 Related work

Für die Migration von virtuellen Knoten im Zusammenhang mit Load Balancing ließen sich
keine passenden Quellen finden. Daher sollen hier ein ähnliche Probleme vorgestellt werden:
Load Balancing in verteilten/parallelen Systemen

3.1 Load Balancing in verteilten/parallelen Systemen

Verteilte Systeme werden häufig zur Lösung von Problemen eingesetzt, die sich in Teilpro-
bleme zerlegen lassen. Zur Lösung dieser werden Tasks erzeugt, die von Prozessoren des
verteilten Systems verarbeitet werden. Durch die so erreichte Parallelisierung erhofft man
sich eine Verkürzung der Rechenzeit, die für die Lösung eines Problems nötig ist. Entschei-
dend für die Performance dieses verteilten Ansatzes ist die Verteilung der einzelnen Tasks
auf vorhandene Prozessoren. Um eine effiziente Nutzung der Ressourcen zu gewährleisten,
muss die Last, die einzelne Tasks verursachen, möglichst gleichmäßig auf alle Prozessoren
verteilt werden.

Zur gleichmäßigen Verteilung der Last sind aus der Literatur zwei Techniken bekannt:
Statische - und dynamische Lastverteilung.

Bei der statischen Lastverteilung [SKS92] erfolgt die Zuweisung von Tasks zu Prozessoren
zur Compilezeit. Mittels zur Verfügung stehendem a priori Wissen über Ressourcen(z.B.
Anzahl Prozessoren, Größe des Speichers) und Tasks (z.B. mittlere Laufzeit) wird versucht,
eine Platzierung der Tasks zu finden, die im Sinne der Lastverteilung optimal ist. Dazu
kommen z.B. Techniken wie Graphpartitionierung und Simulated Annealing [Kir84] zum
Einsatz.

Im Gegensatz zum statischen Verfahren erfolgt die Lastverteilung beim dynamischen Verfah-
ren [SKS92] zur Laufzeit. Die Verteilung der Tasks orientiert sich dabei an dem aktuellen
Systemzustand. Eine wichtige, in diesem Zusammenhang eingesetzte Technik bildet die
Migration von Tasks. Dabei werden Tasks von einem Prozessor zu einem anderen verschoben.
Auf diese Weise können Lastungleichgewichte im System beseitigt werden. Im Gegensatz
zur statischen Lastverteilung erzeugt das dynamische Verfahren einen gewissen Overhead
zur Laufzeit. So müssen z.B. für die Bildung des aktuellen Systemzustandes Lastnachrichten
verschickt werden. Außerdem entstehen Kosten für den Transfer von Knoten.

23

3.1 Load Balancing in verteilten/parallelen Systemen

Ziel beider Verfahren ist die Verkürzung der Task Laufzeiten, auch Antwortzeit genannt.
Dies wird durch eine gleichmäßigere Auslastung des gesamten Systems erreicht.

3.1.1 Task Migration

Task Migration ist eine Technik, die bei der dynamischen Lastverteilung zum Einsatz kommt.
Ziel der Task Migration ist eine gleichmäßigere Auslastung des gesamten Systems durch
den Transfer einzelner Tasks. Sie kann präemptiv oder nicht präemtiv sein [SKS92].

Bei der präemptiven Task Migration werden Knoten zur Laufzeit verschoben. Da hierfür
der aktuelle Status eines Task festgehalten werden muss, ist diese Methode mit zusätzlichen
Kosten verbunden. Typischerweise enthält der aktuelle Status ein virtuelles Speicher Abbild ,
nicht gelesene I/O Puffer und Nachrichten sowie Zeiger auf geöffnete Dateien.

Im Gegensatz zur präemptiven Task Migration erfolgt der Transfer eines Tasks bei der nicht
präemptiven Migration ausschließlich bevor der Task gestartet wurde. Ein Statusabbild ist
bei dieser Methode also nicht nötig.

Task Migrationsalgorithmus

Im Folgenden sollen nun wesentliche Bestandteile eines Migrationsalgorithmus vorgestellt
werden. Spätere Lösungsansätze für die dynamische Neuplatzierung werden sich an dem
hier vorgestellten Schema orientieren.

Im Wesentlichen lässt sich nach [WLR89] ein Migrationsalgorithmus in 4 Phasen aufteilen:
Processor Load Evaluation, Load Balancing Profitability Determination, Task Migration
Strategy und Task Selection Strategy.

• Processor Load Evaluation In dieser Phase wird die Last jedes physikalischen Knotens
im System ermittelt. Die Lastdaten dienen als Input für die Load Balancing Profitability
Phase.

• Load Balancing Profitability In dieser Phase wird der Grad des Lastungleichgewichts
ermittelt. Er dient als Indikator für mögliche SpeedUps, die durch den Transfer von
Tasks erreicht werden können. Ist eine Migration im aktuellen Zustand sinnvoll, sind
also Ersparnisse höher als Migrationskosten, so wird zur nächsten Phase übergegangen.

• Task Migration Strategy In dieser Phase werden physikalische Knoten ausgewählt,
die an der Migration teilnehmen sollen. Sie können entweder die Rolle der Quelle oder
des Empfängers einnehmen: also entweder Tasks abgeben oder Tasks bekommen.

• Task Selection Strategy In der letzten Phase werden Tasks der Quellknoten für den
Transfer ausgewählt und an die Empfängerknoten verschickt.

24

3.1 Load Balancing in verteilten/parallelen Systemen

Beispiele

Im Folgenden sollen Beispiele von Task Migrationsalgorithmen vorgestellt werden. Diese
lassen sich grob in verteilte und zentrale Algorithmen einteilen.

Zentrale Algorithmen sind eher wenig verbreitet. Eine mögliche Ursache besteht in der
begrenzten Skalierbarkeit zentraler Ansätze. Der physikalische Knoten, auf dem der Mi-
grationsalgorithmus ausgeführt wird, kann leicht zum Engpass werden. Dies liegt z.B.
am Aufwand, der benötigt wird, um die Last des Systems zu bestimmen. Er steigt mit
zunehmender Prozessoranzahl.

Meist werden deshalb verteilte Algorithmen eingesetzt. Ein verbreiteter Ansatz ist die
Einteilung des gesamten Systems in sich überlappende Domänen. Eine Domäne kann dabei
z.B. durch eine Nachbarschaftsrelation definiert sein, also z.B. einen Prozessor und seine
direkten Nachbarn umfassen. Load Balancing findet dann nur innerhalb einer Domäne
statt.

Rendezvous Algorithmus Der Rendezvous Algorithmus ist ein zentraler Migrationsalgo-
rithmus. In einer zentralen Komponente, auch Koordinator genannt, werden Lastinforma-
tionen eines jeden physikalischen Knotens des Systems gesammelt. Sind zwei Knoten sehr
unterschiedlich ausgelastet, arrangiert der Koordinator ein Rendezvous zwischen beiden. In
diesem kann der stärker ausgelastete Rechner Tasks an den weniger ausgelasteten abgeben.
Welche Tasks genau migriert werden, muss zwischen den Rendezvous Partnern ausgehandelt
werden.

Tiling Algorithmus Der Tiling Algorithmus [CPJL98] ist ein verteilter Migrationsalgorith-
mus. Ein wesentlicher Bestandteil des Algorithmus ist die Unterteilung des verteilten Systems
in kleine disjunkte Domänen, sogenannte Windows. In diesen Windows können physikalische
Knoten Wissen über Lasten austauschen.

Durch Migration von Knoten innerhalb einer Domäne wird in diesem Algorithmus ein
perfektes lokales Loadbalancing angestrebt.

Um ein globales Load Balancing zu erreichen, werden Windows verschoben. D.h. die Menge
der physikalischen Knoten, die eine Domäne bilden, wird verändert.

Gradient model load balancing method Die gradient model load balancing method [LK87]
gehört zur Klasse der verteilten Migrationsalgorithmen. Genau wie beim Tiling Algorithmus
wird das verteilte System in Domänen unterteilt. Allerdings werden hier überlappende und
nicht disjunkte Domänen verwendet. D.h. ein physikalischer Knoten ist bei dieser Methode
in mehr als einer Domäne vertreten.

25

3.1 Load Balancing in verteilten/parallelen Systemen

Die Definition einer Domäne basiert dabei auf Nachbarschaftsbeziehungen. Sie umfasst
einen Knoten und alle direkten Nachbarn des Knotens. Wichtig ist, dass Wissen über Last
und Tasks nur innerhalb einer Domäne ausgetauscht werden kann.

Die Gradient model load balancing method gehört zur Gruppe der Receiver Initiated
Algorithmen. Eine Migration wird von Knoten angestoßen, die sich in einem Zustand
geringer Last befinden, also bereit sind, Tasks zu empfangen.

Der Algorithmus basiert auf einer Gradientkarte, die die kürzesten Entfernungen (in hops)
zu einem wenig ausgelasteten Knoten enthält. Diese wird verteilt auf den physikalischen
Knoten des Systems gespeichert. Jeder Knoten hält dabei seine kürzeste Entfernung zu
einem wenig ausgelasteten Rechner fest. Diese wird auf Basis von Entfernungsinformationen
direkter Nachbarn bestimmt.

Zu migrierende Tasks werden entlang dieser Gradientenkarte verschoben. Tasks wandern
also auf dem kürzesten Weg von stark ausgelasteten zu weniger ausgelasteten Knoten. Jeder
Knoten routet dabei Tasks zu dem ihn bekannten Knoten mit der kürzesten Entfernung zu
einem wenig ausgelasteten Knoten.

Durch sukzessive lokale Migration kann dadurch ein globales Load Balancing erreicht
werden.

Sender Initiated Diffusion Bei Sender Initiated Diffusion [ELZ86] [LRCM95] Algorithmen
handelt es sich um Migrationsalgorithmen, die wie bei der Gradienten Methode auf lokalen,
sich überlappenden Domänen aufbauen.

Anders als bei der Gradienten Methode wird die Migration allerdings von einem überlasteten
physikalischen Knoten angestoßen. Dieser fungiert als Sender und gibt Tasks an seine
Nachbarn ab.

Bei Sender Initiated Diffusion Algorithmen schicken Knoten Nachrichten mit ihrer aktuellen
Last an alle Nachbarn. Beim Erhalten einer Lastnachricht wird ein lokaler Load Balancing
Algorithmus angestoßen.

Dieser berechnet zunächst die mittlere Auslastung der Domäne und die Lastabweichung
zum Mittelwert des Knotens, der die Nachricht empfangen hat. Falls dieser Knoten mehr
Last als seine Nachbarn aufweist, wird die Überlast durch Migration von Tasks auf die
Nachbarn verteilt. Der Anteil der Last, den ein Nachbarknoten erhält, richtet sich dabei nach
seiner Auslastung.

Die Überlast diffundiert bei diesem Ansatz von einem Prozessor zu seinen Nachbarn und
gleicht so das Lastungleichgewicht aus. Durch die Überlappung der einzelnen Domänen,
wird ein globales Load Balancing erreicht.

26

3.1 Load Balancing in verteilten/parallelen Systemen

Random Algorithm Beim Random Algorithmus handelt es sich um einen sehr einfachen
verteilten Migrationsalgorithmus. Jedes mal, wenn auf einem Rechner des System ein neuer
Task erzeugt wird, wird dieser zufällig auf einen anderen Rechner des Systems migriert.

Im Gegensatz zu den vorher zuvor vorgestellten Algorithmen setzt der Random Algorithmus
auf eine präemptive Migration. Im Mittel wird jeder physikalische Knoten des Systems gleich
belastet, unabhängig davon wo er sich im verteilten System befindet.

27

4 Dynamische Neuplatzierung

4.1 Einführung

In Abschnitt 2.5.2 wurde ein Algorithmus namens NETplace vorgestellt. Dieser berechnet
eine möglichst Laufzeit optimale initiale Platzierung virtueller Knoten. Das in Netplace
verwendete Kommunikationskostenmodell beruht auf Annahmen über mittlere Datenraten
von Verbindungen zwischen virtuellen Knoten und deren mittleren Lasten. Diese müssen
allerdings nicht unbedingt zutreffend sein. Zudem können Lasten virtueller Knoten während
des Experiments schwanken, wodurch sich Lastverhältnisse des Systems zeitweise ändern
können. Dadurch kann die initiale Platzierung suboptimal sein.

Abbildung 4.1 zeigt z.B. einen möglichen Lastverlauf eines virtuellen Knotens.

Der tatsächliche Ressoucenbedarf einer virtuellen Maschine kann sich, durch wechselnde
Bedürfnisse virtueller Knoten in ihr, während eines Experiments ändern. Dies kann Aus-
wirkungen auf die Experimentlaufzeit haben. Droht eine virtuelle Maschine überlastet zu
werden, so muss die virtuelle Zeit verlangsamt werden.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Last in %

Zeit

Last

mittlere Last

Abbildung 4.1: Beispiel für Lastverlauf eines virtuellen Knotens

28

4.2 Architektur

Um eine Überlast zu vermeiden, kann es daher sinnvoll sein, virtuelle Knoten neu zu
platzieren. Im Falle einer drohenden Überlast einer VM könnten z.B. virtuelle Knoten auf
weniger belasteten VMs migriert werden.

Je nach aktuellem Ressourcenbedarf virtueller Knoten, kann eine andere Platzierung sinnvoll
sein. Für eine gegebene Situation gilt es , eine möglichst optimale Platzierung zu finden.
Dies ist eine Platzierung unter der die erwartete Experimentlaufzeit minimal ist.

Dabei ist zu beachten, dass für den Übergang von der aktuellen zu einer neuen Platzierung
zunächst einige Kosten anfallen. So müssen beispielsweise virtuelle Knoten migriert sowie
Netzwerktopologien angepasst werden. Dadurch erhöht sich die Experimentlaufzeit, was
durch Einsparungen, die durch die neue Platzierung erreicht werden, zunächst ausgeglichen
werden muss.

4.2 Architektur

In diesem Abschnitt sollen nun wesentliche Bestandteile der dynamischen Neuplatzierung
von virtueller Knoten vorgestellt werden. Diese sind in Abbildung 4.2 dargestellt.

Zunächst werden die aktuellen Lastverhältnisse des Systems analysiert. Dies geschieht auf
Basis aktueller Lasten physikalischer Knoten. Herrscht zwischen den Lasten ein großes
Ungleichgewicht, so besteht ein hohes Optimierungspotential der aktuellen Platzierung.

Wurde von der Komponente Beurteilung der Lastverhältnisse ein Lastungleichgewicht festge-
stellt, wird der Neuplatzierungsalgorithmus angestoßen.

Dieser optimiert die aktuelle Platzierung in Hinblick auf die erwartete Experimentlauf-
zeit. Für die Abschätzung erwarteter Experimentlaufzeiten müssen nicht nur, wie in Net-
place vorgestellt, Kommunikationskosten, sondern auch Rekonfigurationskosten, die für
die Umsetzung einer Platzierung entstehen, betrachtet werden. Ein Modell für die Kom-
munikationskosten wird in 4.4 vorgestellt wird. Ein Modell zur Abschätzung erwarteter
Rekonfigurationskosten enthält Abschnitt 4.5.

Das Ergebnis der Optimierung ist eine alternative Platzierung. Diese wird in einem nächsten
Schritt in der Komponente Beurteilung der Platzierung bewertet. Senkt die alternative Platzie-
rung die erwartete Experimentlaufzeit nicht, oder nur kaum, so wird sie nicht umgesetzt.
Lohnt sich allerdings die Umsetzung, so muss die Emulationsumgebung rekonfiguriert
werden. Dies geschieht durch die Komponente Rekonfiguration . Diese veranlasst u.a die
Migration von virtuellen Knoten, deren Platzierung sich geändert hat. Darüber hinaus passt
sie die Netzwerktopologie der Emulationsumgebung an die neue Situation an. In Abschnitt
4.3 wird näher auf die Rekonfiguration der TVEE eingegangen.

Wie man in 4.2 sehen kann, ergeben die Emulationsumgebung und die dynamische Neuplat-
zierung zusammen einen Regelkreis. Dabei nimmt die Emulationsumgebung die Rolle der

29

4.3 Rekonfiguration der TVEE

 Neuplatzierungsalgorithmus

Rekonfiguration

Aktionen zur Anpassung
Last phys. Knoten

Optimierung

Beurteilung der
Lastverhätnisse

Beurteilung
Platzierung

Anstoß

Alternative Platzierung

Anstoß

Emulationsumgebung mit virtuellen Knoten

Aktuelle Platzierung

Abbildung 4.2: Architektur Neuplatzierung

Regelstrecke und die dynamische Neuplatzierung die des Reglers ein. Die Regelgröße ist
die erwartete Experimentlaufzeit unter der aktuellen Platzierung. Diese soll möglichst klein
sein.

In den folgenden Kapiteln wird nun näher auf die einzelnen Bestandteile der dynamischen
Neuplatzierung eingegangen.

4.3 Rekonfiguration der TVEE

In diesem Abschnitt wird näher auf die Rekonfiguration der TVEE eingegangen. Sollen
virtuelle Knoten neu platziert werden, muss die Emulationsumgebung angepasst werden. Es
müssen z.B. virtuelle Knoten migriert und die Netzwerktopologie, welche die Kommunikati-
on zwischen Knoten ermöglicht, angepasst werden.

In diesem Abschnitt wird auf wesentliche Bestandteile der Rekonfiguration eingegangen.
Zunächst werden allerdings Anforderungen, die an die Rekonfiguration gestellt werden,
vorgestellt.

30

4.3 Rekonfiguration der TVEE

4.3.1 Anforderungen

Zwei wesentliche Anforderungen der Rekonfiguration stellen Transparenz und geringe
Kosten dar.

Transparenz Um ein laufendes Experiment nicht zu beeinflussen - denn dadurch könnte
es zur Verfälschung von Messergebnissen kommen - ist es wichtig, dass die Rekonfiguration
der TVEE für den virtuellen Knoten und die darin befindliche Software under Test (SuT)
transparent ist.

Zwischen dem Ablauf des Experiments mit und ohne dynamische Neuplatzierung darf für
die SuT kein Unterschied erkennbar sein. Es dürfen also z.B. während der Rekonfiguration
keine Pakete verloren gehen.

Geringe Kosten Eine weitere Anforderung stellen geringe Kosten dar. Die Zeit, die für
den Übergang von einer alten in eine neue Platzierung benötigt wird, muss gering sein. Sie
verringert die Laufzeiteinsparung, die durch eine Neuplatzierung erreicht werden kann.

Daher sollten für die Neuplatzierung nötige Operationen möglichst effizient umgesetzt
werden sowie die zur Verfügung stehenden Ressourcen möglichst gut ausgenutzt werden.
Ein denkbarer Weg, um eine gute Ausnutzung bestehender Ressourcen zu erreichen, ist die
parallele Ausführung von nötigen Operationen.

4.3.2 Operationen

In diesem Abschnitt sollen nun nötige Operationen zur Rekonfiguration der TVEE im Zuge
einer neuen Platzierung vorgestellt werden. Als Einstieg betrachten wir zunächst Abbildung
4.3.

Sie zeigt eine Beispiel für eine Rekonfiguration der TVEE. In diesem wird die Position
des virtuellen Knotens vNode2 verändert. Er soll von der virtuellen Maschine VM1 auf die
virtuelle Maschine VM2 umplatziert werden.

Im Zuge der neuen Platzierung muss die TVEE rekonfiguriert werden. Dazu wird der virtu-
elle Knoten vNode2 sowie die Netshaper Instanzen (NS), die mit dem virtuellen Netzwergerät
veth2.0 verbunden sind, von der virtuellen Maschine VM1 zur Maschine VM2 migriert. Des
Weiteren findet eine Anpassung der virtuellen Layer 2 Topologie, bestehend aus Software-
brücken und Vlans, statt. Es wird ein Vlan Gerät mit er Id 50 in beiden virtuellen Maschinen
und eine Softwarebrücke bridge1 in der virtuellen Maschine VM2 erzeugt. Die so entstehende
neue Konfiguration der TVEE ist rechts in 4.3 dargestellt.

31

4.3 Rekonfiguration der TVEE

VM1

bridge1

VM2

 v
N

o
d

e1

veth1.0

NSNS

eth0
 v

N
o

d
e2

veth2.0

NSNS

eth0

VM1

bridge1

 v
N

o
d

e1

veth1.0

NSNS

eth0

vlan50

vnic

VM2

bridge1

 v
N

o
d

e2

veth2.0

NSNS

eth0

vlan50

vnic

Neuplatzierung
von vNode2

vnic vnic

Aktuelle Konfiguration der TVEE Neue Konfiguration der TVEE

Abbildung 4.3: Beispiel für Neuplatzierung durch Migration

Allgemein sind folgende Operationen für die Rekonfiguration der TVEE im Zuge einer
neuen Platzierung nötig.

• Migration virtueller Knoten

• Migration von Netshaper Instanzen

• Anpassung der virtuellen Layer 2 Topologie

Um der Forderung nach Transparenz nachzukommen, müssen darüber hinaus nachfolgende
Operationen ausgeführt werden.

• Verlangsamung der globalen virtuellen Zeit

• Start/Stopp der Prozessausführung in virtuellen Knoten

• Zwischenspeichern von Paketen

Alle Operationen werden im folgenden nun näher vorgestellt. Dabei werden auch die für die
Transparenz zusätzlich benötigten Operationen motiviert.

32

4.3 Rekonfiguration der TVEE

Migration virtueller Knoten

Die Migration virtueller Knoten bildet die Grundlage für den Übergang zu einer neuen
Platzierung.

Für die Migration eines Knotens muss dazu zunächst dessen Zustand gesichert werden.
Dabei muss der Zustand des Arbeitsspeichers,des Protokollstapels und des Dateisystem
des virtuellen Knotens berücksichtigt werden. Die entstandene Sicherung, in der Regel eine
Binärdatei, muss in einem nächsten Schritt zum Zielrechner transferiert werden. Dort ist der
Knoten dann wiederherzustellen. Dieser Ablauf wird in Abbildung 4.4 dargestellt.

VM1

vNode1

sa
ve

 s
ta

te

transfer

VM2

vNode1

R
es

to
re

 s
ta

te

Abbildung 4.4: Migration eines virtuellen Knotens

In TVEE wird für die Knotenvirtualisierung OpenVZ eingesetzt. OpenVZ bietet bereits die
Möglichkeit, virtuelle Knoten - in OpenVZ Container genannt- zu migrieren. Eine Sicherung
(Dump) umfasst alle privaten Daten eines Containers. Dies sind z.B. der Addressraum,
Registersätze, offene Dateien, offene Sockets, das aktuelle Arbeitsverzeichnis, Signal Handler,
Timer, User und Prozessdaten.

Bei einem Dump werden all diese Daten gesammelt und in einer Image Datei abgelegt.
Diese Image Datei kann dann zu einem anderen Rechner transferiert und dort als Container
wiederhergestellt werden.

In der aktuellen Implementierung umfasst die Sicherung allerdings nicht das Dateisystem,
also die „Festplatte“ auf dem der virtuelle Knoten arbeitet.

Aus diesem Grund müssen Maßnahmen getroffen werden, die sicherstellen, dass der Contai-
ner auf dem Zielsystem das gleiche Dateisystem vorfindet. Je nach Schwere der Änderungen
besteht ansonsten die Gefahr, dass Container nicht wiederhergestellt werden können, oder
Prozesse innerhalb von Containern externe Veränderungen an offenen Dateien bemerken.

33

4.3 Rekonfiguration der TVEE

Das Dateisystem eines Containers befindet sich in OpenVZ im Ordner /vz/priva-
te/<ContainerID> auf dem Host. Dieser Ordner muss auf dem Quell und ZielHost identisch
sein.

Mögliche Maßnahmen identische Ordner zu erreichen sind:

1. Transfer des kompletten Ordners auf den Zielhost

2. Synchronisation der Ordner auf den Ziel- und Quellhost z.B. mittels rsync

3. Nutzung eines verteilten Dateisystemprotokolls auf dem Ziel- und Quellhost

Beim Transfer der Ordners auf den Zielhost werden eventuell bereits vorhandene Dateien
überschrieben. So ist sichergestellt, dass alle Dateien auf dem Zielhost aktuell sind. Allerdings
fallen bei dieser Methode bei jeder Migration hohe Kosten an. Diese sind außerdem nicht
über mehrere Migrationen konstant. Im Laufe des Experiments können unter Umständen
große Logdateien erzeugt werden, die den Transfer des kompletten Ordners gegen Ende des
Experiments sehr teuer machen.

Weniger Daten müssen Übertragen werden, wenn beide Ordner mittels eines Synchronisati-
ontools abgeglichen werden. Bei dieser Methode werden nur Änderungen beider Ordner
übertragen. Um diese allerdings aufzuspüren, ist ein gewisser Overhead nötig. Beim rsync
Protokoll z.B. werden die zu synchronisierenden Dateien zunächst in Blöcke aufgeteilt, von
denen dann Prüfsummen berechnet werden. Dies geschieht sowohl auf dem Quell als auch
auf dem Zielhost.

Wird ein verteiltes Dateisystemprotokoll benutzt, können beide Hosts über das Netzwerk
auf den gleichen Ordner zugreifen. Dieser kann sich z.B. auf einem Fileserver befinden und
über NFS angebunden werden. Bei der Migration müssen bei dieser Methode keine Daten
übertragen werden. Allerdings ist der allgemeine Zugriff auf das Dateisystem langsamer
aufgrund des Overhead eines Dateisystemprotokolls. Da sich Daten nicht auf lokalen Fest-
platten der Hosts befinden, müssen sie bei einem Zugriff über das Netzwerk übertragen
werden. Dies führt zu einer höheren Belastung der Hosts. In Folge dessen steht weniger
Rechenleistung für virtuelle Knoten (Container) zur Verfügung.

Falls virtuelle Knoten während eines Experimients in geringerem Umfang auf das Dateisys-
tem zugreifen, empfiehlt sich die Verwendung des verteilten Dateisystemprotokolls. Werden
aber z.B. sehr häufig neue Logeinträge in Logdateien erzeugt, so ist die Verwendung eines
Synchronisationsprotokolls sinnvoller. Zwar sind die Kosten, die bei einer Migration für den
Abgleich der Dateisystem benötigt werden dann höher, aber die Kosten für den Zugriff auf
das Dateisystem sind deutlich niedriger. Zudem werden Migrationen sehr wahrscheinlich
mit einer niedrigeren Frequenz auftreten als Dateisystem Zugriffe.

34

4.3 Rekonfiguration der TVEE

Migration von Netshaper Instanzen

Wird ein virtueller Knoten migriert, so müssen auch für den Knoten relevante Netshaper
Instanzen migriert werden. Da diese, wie in 4.3 dargestellt, sich außerhalb des virtuellen
Knotens befinden, werden sie bei der Migration des virtuellen Knotens nicht automatisch
mit transferiert.

Daher muss für jede Instanz zunächst der aktuelle Zustand gesichert werden, um daraufhin
zum Zielrechner übertragen und dort wiederhergestellt werden zu können.

Eine Sicherung muss dabei alle aktuellen Einstellungen der Instanz beinhalten. Dies sind z.B.
Werte für Bandbreite, Verlustrate und Verzögerung. Außerdem müssen Pakete, die sich noch
im Puffer des Emulationstools befinden, festgehalten werden.

Eine Möglichkeit, die Migration umzusetzen, besteht in der Nutzung des Proc Dateisystems.
Dieses ermöglicht eine Kommunikation zwischen User und Kernelspace Programmen über
spezielle Dateien.

Der aktuelle Zustand des Netshapers kann von einem Usertool über das Proc Dateisystem
ausgelesen, transferiert und dann wiederhergestellt werden.

Anpassung der virtuellen Layer 2 Topologie

Für die Umsetzung einer neuen Platzierung muss die virtuelle Layer 2 Topologie der
TVEE angepasst werden. Die Anpassung umfasst Komponenten wie Software Brücken und
Vlans.

Wie in Kapitel 2.6 beschrieben, werden Netzwerktopologien von Testszenarien im TVEE
Manager über CollisionDomains beschrieben. Für jede der Domänen wird eine Softwarebrücke
innerhalb der virtuellen Maschinen erzeugt. Diese verbinden virtuelle Netzwerkkarten von
Knoten, die sich in der gleichen CollisonDomain befinden miteinander. Sind Knoten der
gleichen Domäne auf mehrere virtuelle Maschinen verteilt, so wird in jeder virtuellen
Maschine, in der sich einer der Knoten befindet, eine Brücke und ein Vlan erzeugt.

Wird ein Knoten migriert, muss die Netzwerkkonfiguration so angepasst werden, dass der
migrierte Knoten auch weiterhin mit anderen Knoten der gleichen Domäne kommunizieren
kann.

Wie genau die TVEE dafür angepasst werden muss, soll nun im Folgenden beschrieben
werden.

Zunächst muss für jede virtuelle Netzwerkkarte eines migrierten virtuellen Knotens bestimmt
werden, an welche Domäne sie angebunden war. Die Anpassung der TVEE richtet sich dann
danach, ob sich alle Knoten, die an diese Domäne angebunden sind, in der gleichen virtuellen
Maschine befinden oder ob sie auf verschiedene Maschinen verteilt sind.

35

4.3 Rekonfiguration der TVEE

VM1

bridge1

VM3
 v

N
o

d
e1

veth1.0

 v
N

o
d

e2

veth2.0 Neuplatzierung
von vNode 2

vnic vnic

 v
N

o
d

e3

veth3.0

bridge1

vlan50 vlan50

VM1

vnic

 v
N

o
d

e1

veth1.0

bridge1

vlan50

VM2 VM2

vnic

 v
N

o
d

e2

veth2.0

bridge1

vlan50

VM3

vnic

 v
N

o
d

e3

veth3.0

bridge1

vlan50

vnic

Abbildung 4.5: Anpassung von Netzwerkkomponenten - virtuelle Knoten verteilt

VM1

bridge1

VM2

 v
N

o
d

e1

veth1.0

 v
N

o
d

e2

veth2.0

VM1

bridge1

 v
N

o
d

e1

veth1.0

vlan50

vnic

VM2

bridge1

 v
N

o
d

e2

veth2.0

vlan50

vnic

Neuplatzierung
von vNode2

vnic vnic

Abbildung 4.6: Anpassung von Netzwerkkomponenten - virtuelle Knoten zusammen

• Knoten auf mehrere VMs verteilt: In dieser Situation lassen sich zwei Fälle unter-
scheiden. Befindet sich auf der Ziel virtuellen Maschine schon ein Knoten der zur
gleichen Domäne gehört, so muss die virtuelle Netzwerkkarte des migrierten Knotens
nur an die passende Brücke der Domäne angebunden werden. Abbildung 4.7 zeigt ein
Beispiel für diesen Fall

Ist dies nicht der Fall, muss eine Software Brücke und ein Vlan mit passender Vlan Id
erzeugt werden. Ein Beispiel ist in Abbildung 4.5 zu sehen.

• Alle Knoten in gleicher VM: Befanden sich vor der Migration alle Knoten der gleichen
Domäne in der gleichen virtuellen Maschine, so muss zunächst eine freie VlanId für

36

4.3 Rekonfiguration der TVEE

VM1

bridge1

VM2
 v

N
o

d
e1

veth1.0

 v
N

o
d

e2

veth2.0 Neuplatzierung
von vNode2

vnic vnic

 v
N

o
d

e3

veth3.0

bridge1

vlan50 vlan50

VM2

bridge1

VM1

 v
N

o
d

e2

veth2.0

vN
o

d
e3

veth3.0

vnicvnic

 v
N

o
d

e1

veth1.0

bridge1

vlan50vlan50

Abbildung 4.7: Anpassung von Netzwerkkomponenten - virtuelle Knoten verteilt

die Domäne gewählt werden. Danach ist in der Ziel VM eine Softwarebrücke und
ein VLan zu erzeugen. Zusätzlich muss auf der Quelle VM ein VLan eingerichtet
werden. Dies ist allerdings nur nötig, falls durch die Neuplatzierung nicht alle Knoten,
deren virtuelle Netzwerkkarte sich an der Brücke befanden, migriert werden konnten.
Abbildung 4.6 zeigt ein Beispiel für diesen Fall.

Wurden diese Änderungen für alle migrierten Knoten durchgeführt, so können in einem
letzten Schritt Software Brücken gelöscht werden, an die keine virtuelle Netzwerkkarte mehr
angebunden ist.

Zusammenfassend sind also für die Anpassung der Netzwerkkomponenten eine Auswahl
folgender Aktionen nötig.

• Erzeugung einer Softwarebrücke

• Erzeugung eines Vlans

• Anbindung einer virtuellen Netzwerkkarte an eine Softwarebrücke

• Löschen einer Softwarebrücke

• Löschen eines Vlans

Diese sind lokal in den einzelnen virtuellen Maschinen auszuführen. Wer die nötige Auswahl
der Aktionen erzeugt und auf welche Weise die Koordination der Operation abläuft, wird in
Abschnitt 4.8.2 vorgestellt.

37

4.3 Rekonfiguration der TVEE

Verlangsamung der globalen virtuellen Zeit

Wird ein Knoten im Zuge der Rekonfiguration migriert, so ist er für eine bestimmte Zeit
offline. Während dieser Zeit läuft die, von den Knoten zur Zeitmessung benutzte, virtu-
elle Zeit weiter. Timer, die von Anwendungen innerhalb des Containers genutzt werden,
können daher auslaufen. Ohne gewisse Maßnahmen ist die Rekonfiguration daher nicht
transparent.

Um eine transparente Rekonfiguration zu ermöglichen, muss diese in keiner oder in einem
sehr kleinen virtuellen Zeitintervall durchgeführt werden. Dies kann durch die Wahl eines
sehr hohen TDF Wertes beim Koordinator geschehen. Eine Rekonfiguration, die mehrere
Sekunden in realer Zeit dauert, kann dadurch in wenigen Millisekunden virtueller, von den
Knoten benutzter Zeit, durchgeführt werden. Dadurch kann der Auslauf von Timern in zu
migrierenden Knoten vermieden werden.

Start/Stopp der Prozessausführung

Die Rekonfiguration beinhalten Operationen wie die Migration von Knoten und die An-
passung der Netzwerktopologie. Diese können die Ausführung der zu testenden Software
beeinflussen.

So kann es z.B. zu Paketverlusten aufgrund der Migration kommen. Dies ist der Fall, wenn
SuT Instanzen während der Rekonfiguration Pakete an Knoten schicken, deren Zustand
gerade transferiert wird. Da während dieser Zeit der virtuelle Knoten nicht existiert, existiert
im Netzwerk auch keine Neztwerkkarte mit der richtigen Zieladresse. Pakete, die an diesen
Knoten geschickt werden, können daher nicht zugestellt werden.

Um eine transparente Rekonfiguration zu ermöglichen, sollte infolgedessen während der
Migration von Knoten keine SuT mehr ausgeführt werden. Dies kann z.B. durch das Setzen
aller virtuellen Knoten in einen Haltezustand vor der Migration erreicht werden. Beim Über-
gang in diesen Zustand werden alle Prozesse innerhalb der virtuellen Knotens gestoppt und
der Protokollstapel angehalten. Am Ende der Rekonfiguration müssen die virtuellen Knoten
dann wieder in einen ausführenden Zustand gesetzt werden, damit die Prozessausführung
wieder aufgenommen werden kann.

OpenVZ bietet bereits die Möglichkeit, einen virtuellen Knoten in einen Haltezustand,in
OpenVZ suspend genannt, zu setzen und daraus wieder zu lösen,in OpenVZ resume ge-
nannt.

Wird jeder virtuelle Knoten, in dem sich die zu testende Software befindet, in einen Haltezu-
stand gebracht, hat dies einen positiven Nebeneffekt für die Rekonfiguration. Es stehen in
diesem Fall mehr Ressourcen für die Rekonfiguration zur Verfügung.

38

4.3 Rekonfiguration der TVEE

Für den Übergang eines Knotens in den Haltezustand wird allerdings eine gewisse Rechen-
zeit benötigt. Da virtuellen Knoten, die sich in der gleichen virtuellen Maschine befinden, nur
eine CPU zur Verfügung steht, bedeutet dies, dass nicht alle Knoten gleichzeitig diesen Zu-
standswechsel vollziehen können. Je mehr Knoten sich in einer virtuellen Maschine befinden
(dies können mehrere Tausend sein), desto größer wird die Zeitspanne zwischen dem ersten
und dem letzten Knoten, der in den Haltezustand wechselt. Demzufolge kann es vorkommen,
dass Pakete an virtuelle Knoten geschickt werden, die sich schon im Haltezustand befinden
und aufgrund ihres Zustandes die gesendeten Pakete nicht mehr entgegennehmen können.
Der nächste Abschnitt befasst sich mit dieser Problematik.

Zwischenspeichern von Paketen

Wie im vorigen Abschnitt vorgestellt, ist es nicht möglich, alle Prozesse und Protokollstacks
gleichzeitig anzuhalten. Daher kann es vorkommen, dass SuT Instanzen Pakete verschicken,
die von anderen Instanzen nicht mehr entgegengenommen werden können. Dieses Phänomen
tritt auf, wenn die Prozessausführung und der Protokollstack des Containers, in dem sie sich
die Ziel SuT befindet, schon angehalten wurden.

In diesem Fall müssen Pakete außerhalb des Containers zwischengespeichert werden.

Dazu kann z.B. der Netshaper verwendet werden. Dieser speichert, falls aktiv, alle Pakete,
die an Netzwerkgeräte virtueller Knoten ausgeliefert werden sollen, zwischen. Wurde ein
virtueller Knoten in einen Haltezustand versetzt, so kann dies vom Netshaper detektiert und
die Zustellung von Nachrichten ausgesetzt werden. Damit werden Nachrichten automatisch
im Netshaper Puffer gesichert.

Wechselt der Knoten dann wieder in einen ausführenden Zustand, so kann mit der Zustel-
lung fortgefahren werden. Da der Netshaper allerdings nur beim Empfang neuer Pakete
aufgerufen wird, kann auch nur in diesem Fall ein Zustandswechsel festgestellt werden.
Werden also keine weiteren Pakete an den Knoten gesendet, so wird der Netshaper die
zwischengespeicherten Pakete nicht mehr ausliefern.

Diese Problematik kann auf verschiedene Weisen gelöst werden.

• Durch periodisches Nachfragen des Knotenzustandes

• Durch Hook in der Resume Methode des Knotens

• Durch Anstoß der Zustellung mitels Proc Dateizugriff

Wird periodisch nach dem aktuellen Zustand eines Knotens gefragt, so werden unnötig wich-
tige Ressourcen verbraucht, zumal für jede virtuelle Netzwerkkarte zwei Netshaper Instanzen
angelegt werden und ein Testszenario mehrere hundert Tausend virtuelle Netzwerkkarten
umfassen kann.

39

4.3 Rekonfiguration der TVEE

Sinnvoller ist da ein Hook in der Resume Methode des Knotens. In diesem Fall muss jedoch
direkt in die OpenVZ Implementierung eingegriffen werden.

Alternativ kann nach der Wiederaufnahme der Prozessausführung eines virtuellen Knotens
den angeschlossenen Netshaper Instanzen mitgeteilt werden, dass eine Auslieferung von
Paketen nun wieder möglich ist. Dies kann z.B. durch ein Userspace Tool erfolgen, dass über
das Proc Dateisystem mit dem Netshaper kommuniziert.

4.3.3 Reihenfolge der Operationen

Zwischen den Operationen, die für die Rekonfiguration benötigt werden, bestehen gewisse
Abhängigkeiten. Diese sollen im Folgenden nochmal kurz aufgelistet werden. Aus ihnen
lässt sich eine sinnvolle Reihenfolge der Operationen ableiten.

Es bestehen folgende Abhängigkeiten

• Operationen dürfen keine virtuelle Zeit kosten. Daher muss zu Beginn der TDF auf
einen hohen Wert gesetzt und am Ende diese Einstellung wieder rückgängig gemacht
werden.

• Während Knoten migriert werden, dürfen keine Pakete verschickt werden. Der Stopp
der Prozessausführung muss also vor der Migration geschehen.

• Netshaper Instanzen können erst wiederhergestellt werden, wenn die mit ihnen ver-
bundenen virtuellen Netzwerkkarten wiederhergestellt wurden.

Eine Reihenfolge, die die obigen Abhängigkeiten berücksichtigt sieht wie folgt aus.

1. Setzen eines hohen TDF

2. Stopp der Prozessausführung

3. Sicherung des Zustands zu migrierender Knoten

4. Sicherung des Zustands zu migrierender Netshaper Instanzen

5. Transfer aller gesicherten Daten

6. Wiederherstellung des Zustands zu migrierender Knoten

7. Wiederherstellung des Zustands zu migrierender Netshaper Instanzen

8. Anpassung der Layer 2 Topologie

9. Start der Prozessauführung

10. Rücksetzen der TDF Änderung

40

4.3 Rekonfiguration der TVEE

Koordinator VM1 VM2

fertig

fertig

Op abgeschlossen
Op abgeschlossen

Abbildung 4.8: Synchronisation - zentraler Ansatz

4.3.4 Synchronisation einer verteilten Operation

Im letzten Kapitel wurde eine Reihenfolge nötiger Rekonfigurationsoperationen festgelegt.
Diese beruhte auf Abhängigkeiten einzelner Operationen.

Unabhängig davon wie Operationen ausgeführt werden, muss diese Reihenfolge eingehalten
werden. In den meisten Fällen ist es möglich, eine Operation parallel auf mehreren virtuellen
Maschinen auszuführen

Betrachten man z.B. die Operation Stopp der Prozessausführung, so lässt sich diese sehr einfach
parallel ausführen. Das Ziel der Operation besteht im Setzen aller virtueller Knoten in den
Haltezustand. Dazu müssen in jeder virtuellen Maschine alle virtuellen Knoten „suspended“
werden, was gleichzeitig in allen VMs erfolgen kann.

Bei der verteilten Ausführung einer Operation, benötigen die beteiligten CPUs unter Um-
ständen eine unterschiedlich lange Rechenzeit. z.B. weil für die Operation unterschiedliche
Aktionen in den einzelnen VMs ausgeführt werden müssen. Bei der Anpassung der Layer 2

Topologie kann es beispielsweise vorkommen, dass in einer VM mehr Brücken als in einer
anderen erzeugt/gelöscht werden müssen. Daher ist es für eine VM schwierig festzustellen,
wann eine Operation abgearbeitet ist.

41

4.3 Rekonfiguration der TVEE

VM1 VM2 VM3

fertig

fertig

fertig

fertig

fertig
fertig

Abbildung 4.9: Synchronisation - verteilter Ansatz

Da aber Operationen in einer bestimmten Reihenfolge abgearbeitet werden müssen, wird
ein Mechanismus benötigt, der sicherstellt, dass folgende Operationen erst gestartet werden
können, wenn alle verteilten Arbeiten zur aktuellen Operation abgeschlossen sind.

Dazu müssen virtuelle Maschinen, die an der Operation beteiligt sind, synchronisiert werden.
Dies kann auf zwei Arten erfolgen.

• Zentral über einen Koordinator

• Verteilt

Der Zentrale Ansatz ist in Abbildung 4.8 dargestellt. Dabei läuft die Synchronisation über
einen Koordinator ab. Dieser signalisiert den VMs erst, dass die Folge-Operationen ausge-
führt werden kann, wenn er eine Nachricht von allen virtuellen Maschinen erhalten hat,
die an der verteilten Ausführung der aktuellen Operation beteiligt waren. Pro verteilter
Operation werden bei diesem Ansatz 2 ∗ |VM| Nachrichten benötigt.

Beim verteilten Ansatz wird die Ausführung der Operationen nicht durch einen Koordinator
gesteuert. Stattdessen kann eine VM eine neue Operation starten, wenn sie Nachrichten
aller VMs, die an der vorangegangenen Operation beteiligt waren, erhalten hat. Bei diesem
Ansatz werden pro verteilter Operation (|VM| − 1) ∗ |VM| ≈ ‖VM|2 Nachrichten benötigt.
Der verteilte Ansatz ist in 4.9 dargestellt.

42

4.4 Kostenmodell Kommunikation

Bei beiden Ansätzen wurde davon ausgegangen, dass eine VM genau weiß an welchen Ope-
rationen sie teilnimmt und welche Aktionen sie durchzuführen hat. Woher sie dieses Wissen
hat, wird in Abschnitt 4.8.2 erläutert. In diesem Kapitel wird näher auf die Koordination der
Rekonfiguration eingegangen.

Beim zentralen Ansatz werden weniger Nachrichten benötigt als beim verteilten Ansatz.
Dieser ist also dem verteilten Ansatz vorzuziehen. Zumal die Belastung des Koordinators
nur unwesentlich höher ist als die im verteilten Ansatz. Also der Koordinator nicht zum
„bottle neck“ werden kann.

4.4 Kostenmodell Kommunikation

In 2.5.2 wurde ein Kostenmodell angedeutet mit dessen Hilfe sich die Laufzeit eines Experi-
ments bei gegebener Platzierung virtueller Knoten voraussagen lässt. Für die Berechnung
der Laufzeit werden Prognosen über mittlere Datenraten von Verbindungen zwischen virtu-
ellen Knoten und Auslastungen virtueller Knoten benötigt. Dieses Modell soll im nächsten
Abschnitt im Detail vorgestellt werden.

Die TVEE besteht aus einer Reihe von physikalischen Rechnern p ∈ P. Jeder Rechner besitzt
|Cp| Prozessoren, wobei einem Prozessor c ∈ C eine virtuelle Maschine (VM) zugewiesen
werden kann. Jede VM wird durch ein Tupel (p, c) identifiziert. In allen virtuellen Maschinen
können virtuelle Knoten i ∈ N ausgeführt werden.

Jede Verbindung zwischen virtuellen Knoten verursacht eine bestimmte Last. Diese wird
aufgespalten in

• Last in der VM, in der sich der empfangende Knoten befindet. Im folgenden VMtx

genannt

• Last in der VM,in der sich der sendende Knoten befindet. Im folgenden VMrx genannt.

• Last im Host-Os beider VMs. Im folgenden HOST-OS genannt.

Die Gesamtlast für eine Verbindung ergibt sich damit zu L = VMtx + VMrx + 2 ∗HOST-OS.
Sie wird in CPU Zyklen pro Zeiteinheit angegeben. Maßgeblich für die Höhe der verursachten
Last ist die Art der Verbindung der Knoten. In der TVEE lassen sich 3 Verbindungsarten
unterscheiden:

• intra-vm Kommunizieren virtuelle Knoten in der gleichen VM über eine Softwa-
rebrücke miteinander, so handelt es sich um eine intra-vm Verbindung. Bei dieser
Verbindung wird nur die virtuelle Maschine, in der sich beide befinden, belastet.

43

4.4 Kostenmodell Kommunikation

• inter-vm Befinden sich die kommunizierenden Knoten in unterschiedlichen VMs,
aber auf dem gleichen physikalischen Rechner, so handelt es sich um eine inter-vm
Verbindung. Dabei werden beide virtuellen Maschinen sowie das HOST-OS belastet.
Nach [GHR] ist diese Arte der Verbindung ungefähr 10 mal teurer als die intra-vm
Verbindung.

• inter-pnode Befinden sich die Kommunikationspatner auf unterschiedlichen physikali-
schen Rechnern, so handelt es sich um eine inter-pnode Verbindung. Bei dieser Art
der Verbindung fallen die höchsten Kosten an. Laut [GHR] ist sie 2 mal teurer als eine
inter-vm Verbindung.

Sei nun eine Platzierung φ (Abbildung von virtuellen Knoten auf VMs), mittlere Datenraten
βij von Verbindungen zwischen virtuellen Knoten und Lasten λi aller virtuellen Knoten
i ∈ N gegeben , dann wird ein HOST-OS durch Verbindungen von virtuellen Knoten wie in
Formel (4.1) dargestellt, belastet.

(4.1) Λhost−os
p = ∑

i,j∈N
φ(i)=(p,c)∧φ(j)=(p′,c′)
∨φ(i)=(p′,c′)∧φ(j)=(p,c)

βij ∗


κintra−vm,Host−OS falls p = p′ ∧ c = c′

κinter−vm,Host−OS falls p = p′ ∧ c 6= c′

κinter−pNode,Host−OS falls p 6= p′ ∧ c 6= c′

Die Last des Host-OS entspricht der Summe der Lasten die durch Verbindungen verursacht
werden, bei denen sich ein Kommunikationspartner auf dem gleichen physikalischen Rechner
befindet wie das Host-OS. Die Art der Verbindung bestimmt dabei den Faktor κ.

Die Formeln zur Berechnung von Lasten in virtuellen Maschinen für ausgehende und
eingehende Verbindungen lassen sich analog zur Formel des Host-OS definieren. Diese sind
in (4.2) und (4.3) dargestellt.

(4.2) ΛVMrx
p,c = ∑

i,j∈N
φ(i)=(p′,c′)∧φ(j)=(p,c)

βij ∗


κintra−vm,VMrx falls p = p′ ∧ c = c′

κinter−vm,VMrx falls p = p′ ∧ c 6= c′

κinter−pNode,VMrx falls p 6= p′ ∧ c 6= c′

(4.3) ΛVMtx
p,c = ∑

i,j∈N
φ(i)=(p,c)∧φ(j)=(p′,c′)

βij ∗


κintra−vm,VMtx falls p = p′ ∧ c = c′

κinter−vm,VMtx falls p = p′ ∧ c 6= c′

κinter−pNode,VMtx falls p 6= p′ ∧ c 6= c′

44

4.5 Kostenmodell Rekonfiguration

Die Last einer virtuellen Maschine wird durch die Last für eingehende und ausgehende
Verbindungen zwischen virtuellen Knoten sowie durch die Last von virtuellen Knoten, die
sich in ihr befinden, bestimmt. Dies ist in Formel (4.4) dargestellt.

(4.4) Λvm
p,c = ΛVMtx

p,c + ΛVMtr
p,c + ∑

i∈N∧φ(i)=(p,c)
λi

Mit (4.5) lässt sich nun die Auslastung einer CPU bestimmen. Da virtuelle CPUs der VMs
physikalischen CPUs zugewiesen werden erfährt jede CPU mindestens die Last der virtuellen
Maschine. Zusätzlich wird aber noch die Last des Host-OS auf alle verfügbaren CPUs eines
physikalischen Rechners verteilt. Jede CPU erfährt daher noch einen gewissen Anteil der
Host-OS Last.

(4.5) Λp,c = max(Λvm
p,c , (

1
|Cp|
∗ (Λhost−os

p + ∑
c′∈Cp

Λvm
p,c′)))

Auf Basis errechneter Lasten einzelner Prozessoren lässt sich durch Formel (4.6) die erwartete
Experimentlaufzeit für ein bestimmtes virtuelles Zeitintervall θvirtual berechnen. νCPU steht
dabei für die Geschwindigkeit der CPU. Diese wird in Zyklen pro Zeiteinheit angegeben.

(4.6) θreal =

max
p∈P,c∈Cp

(Λp,c)

νCPU
∗ θvirtual = TDF ∗ θvirtual

Werden mehr Zyklen benötigt als der Prozessor pro Zeiteinheit zur Verfügung stellt, ist also
max

p∈P,c∈Cp
(Λp,c)

νCPU
> 0, so muss das Experiment verlangsamt werden. Dabei gibt der Quotient den

Faktor an, mit dem die Zeit skaliert werden muss. Dieser wird TDF (Time Dilation Factor)
genannt.

4.5 Kostenmodell Rekonfiguration

Bei der Rekonfiguration der TVEE entstehen Kosten. Diese verlängern die Experimentlaufzeit
und müssen daher bei der Beurteilung von möglichen neuen Platzierungen berücksichtigt
werden.

In diesem Kapitel soll ein Modell vorgestellt werden mit dem sich erwartete Kosten für
die Umsetzung einer neuen Platzierung ermitteln lassen. Es orientiert sich an den für die
Rekonfiguration benötigten Operationen. Diese wurden in Kapitel 4.3 vorgestellt. Sie sind:

45

4.5 Kostenmodell Rekonfiguration

• Setzen/Rücksetzen des TDF

• Start/Stopp der Prozessausführung in virtuellen Knoten (suspend/resume)

• Migration von virtuellen Knoten und Netshaper Instanzen (migration)

• Anpassung der Layer 2 Topology (layer2adaption)

Die Gesamtkosten der Rekonfiguration ergeben sich aus der Addition der Zeit, die für die
einzelnen Operationen benötigten wird, da diese, wie in 4.3.3 beschrieben, hintereinander
auszuführen sind. Dies ist in Formel (4.7) dargestellt. Das Setzen und Rücksetzen des TDF ist
mit konstanten, sehr geringen Kosten verbunden. Daher werden diese hier nicht aufgeführt.
In der Formel bezeichnet φ die aktuelle Platzierung und φ′ die durch die Rekonfiguration zu
erzeugende neue Platzierung.

(4.7) θ
φ,φ′

recon f iguration = θsuspend + θmigration + θlayer2adaption + θresume

Im Folgenden wird nun näher auf die Kosten einzelner Operationen eingegangen.

4.5.1 Start/Stopp der Prozessausführung

Zu Beginn der Rekonfiguration muss die Prozessausführung in allen Knoten gestoppt
werden. Dazu muss jedem Prozess eines virtuellen Knotens ein Stopp Signal geschickt
werden. Dies führt zu einem TaskStopped Eintrag in der Scheduler Tabelle, wodurch der
Prozess keine Rechenzeit mehr erhält.

Die Verarbeitung des Stopp Signals kann je nach Reaktionsverhalten eines Prozesses un-
terschiedlich lange dauern. Um sicherzugehen, dass alle Prozesse eines virtuellen Knotens
schließlich gestoppt sind, muss daher periodisch deren Zustand abgefragt werden. In
OpenVZ kann über das VZ Control Tool ein Suspend Befehl an einen Knoten geschickt
werden. Daraufhin werden alle Prozesse in diesem Knoten gestoppt und die virtuellen
Netzwerkgeräte abgeschaltet.

Der Aufwand, der für das „suspenden“ aller Knoten benötigt wird, richtet sich nach der
Anzahl der virtuellen Knoten und den sich darin befindlichen Prozessen. Die Kosten steigen
in etwa linear mit der Anzahl der Knoten und mit der Anzahl der sich darin befindlichen
Prozessen. Die Kosten erhöhen sich allerdings nur gering mit zunehmender Anzahl von
Prozessen innerhalb eines Knotens.

Da sich in TVEE in einem virtuellen Knoten nur wenig Prozesse befinden (im Normalfall
nur der Hauptprozess und die der SuT), wird die Anzahl hier als konstant angesehen.

46

4.5 Kostenmodell Rekonfiguration

(4.8) θsuspend = max
vm∈VM

(nvm) ∗ κsuspend

Jede virtuelle Maschine hat eine eigene CPU. Virtuelle Knoten unterschiedlicher VMs können
parallel in den Haltezustand gebracht werden. Die Gesamtkosten für den kompletten Stopp
der Prozessausführung im gesamten System werden daher durch die VM mit den meisten vir-
tuellen Knoten bestimmt. Dies ist in Formel (4.9) dargestellt. κsuspend stellt dabei eine Konstan-
te dar, die stark von der benutzten Hardware und Software abhängt. nv bezeichnet die Anzahl
der virtuellen Knoten in der virtuellen Maschine vm. Also nvm = | {n ∈ N|φ(n) = vm}

Die Einheit von θsuspend ist Millisekunden.

(4.9) θresume = max
vm∈VM

(nvm) ∗ κresume

Die Zeit, die für die Wiederaufnahme der Prozessausführung benötigt wird, ergibt sich
analog zur obigen Formel. Genau wie bei der komplementären Operation wird hier ein
Signal an den Prozess geschickt: das CONT Signal. Die Formel zur Berechnung ist in (4.9)
dargestellt. nvm steht für die Anzahl der Knoten, die sich in der neuen Platzierung auf der
virtuellen Maschine vm befinden. Also nvm = | {n ∈ N|φ′(n) = vm}

4.5.2 Migration von virtuellen Knoten und Netshaper Instanzen

Die Migration von virtuellen Knoten und Netshaper Instanzen lässt sich in 4 Teiloperationen
unterteilen.

• Sichern aktueller Zustände (dump)

• Transfer der gesicherten Daten (transfer)

• Entfernen virtueller Knoten in Quell VM (killVNodes)

• Wiederherstellen der Zustände (undump)

Die Gesamtkosten für die Migration sind durch (4.10) gegeben.

(4.10) θmigration = θdumpNs + θdumpVNodes + θkillVNodes + θtrans f erData + θundumpNs + θundumpVNode

Auf die einzelnen Anteile der Kosten wird nun näher eingegangen.

47

4.5 Kostenmodell Rekonfiguration

Sichern der Zustands virtueller Knoten

Der Zustand eines virtuellen Knotens umfasst im Wesentlichen Folgendes: Den Adressraum,
genutzte Registersätze, File und Signalhandler, Timer, User und Prozess Identitäten sowie
den von Prozessen genutzter Speicher.

Die Zeit, die für die Erstellung einer Sicherung (in Form einer Datei) benötigt wird, steigt line-
ar mit der Größe der Datei. Die Größe kann gut durch den gerade genutzten Arbeitsspeicher
abgeschätzt werden.

Formel (4.11) zeigt die Kosten, die für die Sicherung der Zustände aller zu migrierenden
Knoten entstehen. Jeder Knoten wird einzeln über das OpenVZ Control Tool gesichert.
Jeder Aufruf verursacht dabei gewisse Grundkosten cdumpVnode. Virtuelle Knoten, die sich
in unterschiedlichen virtuellen Maschinen befinden, können zeitgleich gesichert werden.
Wodurch die Gesamtlaufzeit für die Erstellung der Sicherungsdateien durch die virtuelle
Maschine mit den höchsten Kosten gegeben ist.

M steht für die Menge der zu migrierenden virtuellen Knoten (M =

{n ∈ N|φ(n) 6= φ′(n)})und ςm
mem kennzeichnet die Größe des vom Knoten m genutz-

ten Arbeitsspeichers.

(4.11) θdumpVNodes = max
vm∈VM

 ∑
m∈M ,φ(m)=vm

(
κdumpMem ∗ ςm

mem + cdumpVnode
)

Sichern der Zustände von Netshaper Instanz

Die Sicherung des Netshaper Zustands umfasst folgende Daten: Einstellungen wie Band-
breite, Verlustrate und Verzögerung, eine Parameterliste, die Verbindungseigenschaften
virtueller Knoten definiert und Frames, die sich derzeit noch im Netshaper Puffer befinden.
Maßgeblich für die Zeit, die für die Sicherung benötigt wird, ist die Gesamtgröße der Frames,
die sich noch im Puffer befinden sowie die Größe der Parameterliste.

Jeder Netshaper besteht aus 2 Instanzen: eine für die Sende- und eine für die Empfangs-
richtung. In der Netshaper Instanz der Senderichtung befindet sich in der Regel im Puffer
nur maximal ein Frame. Muss ein Frame verzögert ausgeliefert werden, so wird höheren
Schichten mitgeteilt, dass gerade keine Ressourcen zur Verfügung stehen. Diese stellen
daraufhin das Senden ein.

In der anderen Instanz können sich sehr viele Frames befinden. Dies hängt im Wesentlichen
von der Senderate der virtuellen Knoten und der Dauer der Suspend Operation ab. Sind
höhere Schichten nicht verfügbar, z.B. weil sich der virtuelle Knoten im Haltezustand
befindet, so werden eingehende Frames im Netshaper zwischengespeichert.

48

4.5 Kostenmodell Rekonfiguration

VM3

VM1

VM2

VM4
Data

Data
Data

Abbildung 4.10: Beispiel Kosten Datentransfer

Formel (4.12) zeigt die Kosten, die für die Sicherung aller Netshaper Instanzen zu migrie-
render Knoten entstehen. Dabei steht NS für die Menge aller Netshaper Instanzen und das
Prädikat belongsTo gibt an, ob eine Netshaper Instanz ns mit einer virtuellen Netzwerkkarte
eines Knotens m verbunden ist.

(4.12) θdumpNs = max
vm∈VM

 ∑
ns∈NS

belongsTo(ns,m)
φ(m)=vm

(
κdumpMac ∗ ςns

macs + κdumpFrame ∗ ςns
f rames + cdumpNs

)


Die Kosten für die Sicherung einer Netshaper Instanz ergeben sich aus den Kosten für das
Speichern der Parameterliste (κdumpMac ∗ ςns

macs) und dem Sichern der zwischengespeicherten
Frames κdumpFrame ∗ ςns

f rames. Außerdem ist jeder Aufruf für die Sicherung einer Netshaper
Instanz noch mit einem gewissen Grunkosten verbunden (cdumpNetshaper).

Transfer der Daten

Nachdem der Zustand virtueller Knoten und Netshaper Instanzen gesichert wurde, müssen
die erzeugten Daten zu den Ziel-VMs übertragen werden. Die Zeit, die dabei benötigt wird,
steigt linear mit der Größe der Daten. Jede virtuelle Maschine kann Daten empfangen und
Daten senden.

Die Menge an Daten, die eine virtuelle Maschine vm1 an eine andere virtuelle Maschine vm2
überträgt, ergibt sich durch die Formel (4.13).

(4.13) ςvm1,vm2 = ∑
ns∈NS,m∈M

belongsTo(ns,m)
φ(m)=vm1,φ′(m)=vm2

ςns
dumpNetshaper + ∑

m∈M
φ(m)=vm1,φ′(m)=vm2

ςm
dumpVNode

49

4.5 Kostenmodell Rekonfiguration

Dabei ist ςns
dumpNetshaper ≈ ςns

f rames + ςns
macs und ςm

dumpVNode ≈ ςm
mem.

Das zu übertragende Datenvolumen umfasst also alle Sicherungsdateien von Netshapern
und virtuellen Knoten, die sich in der neuen Platzierung φ′ nun auf der virtuellen Maschine
vm2 befinden.

Ist die Größe der auszutauschenden Daten zwischen zwei virtuellen Maschinen gegeben, so
wird die Zeit, die für die Übertragung benötigt wird, anhand der Formel (4.14) berechnet.

(4.14) θvm1,vm2
trans f erData = ςvm1,vm2 ∗ κ + ctrans f erData

Der Wert von κ ist dabei von der Art der Verbindung zwischen den virtuellen Maschinen
vm1 und vm2 abhängig. Befinden sich beide VMs auf dem gleichen physikalischen Knoten,
so werden Daten über das Host-Os ausgetauscht. Befinden sie sich allerdings auf unterschied-
lichen physikalischen Rechnern, so müssen die Daten über ein physikalisches Netzwerkgerät
verschickt werden. Dadurch entstehen höhere Kosten.

Die Gesamtkosten für den Transfer aller Daten ist durch die Formel (4.15) gegeben.

(4.15) θtrans f erData = max
vm∈VM

(
∑

vm=vm1∨vm=vm2
θvm1,vm2

trans f erData

)

Für jede VM werden die Kosten für den Austausch von Daten mit anderen VMs aufsummiert.
Die virtuelle Maschine mit dem höchsten Kosten legt dabei die benötigte Zeit fest.

Abbildung 4.10 zeigt ein Beispiel in dem virtuelle Maschinen Daten austauschen. Die Zeit,
die dabei die virtuelle Maschine VM3 für die Kommunikation aller Daten benötigt, ergibt
sich aus der Zeit für den Empfang von Daten der Maschine VM1, der Zeit für den Empfang
von Daten von VM2 und der Zeit für das Senden von Daten an die Maschine VM4.

Dabei hat die Anzahl der virtuellen Maschinen, mit der die virtuelle Maschie VM3 gleichzei-
tig Daten austauscht, keinen Einfluss auf die Gesamtlaufzeit. Bestehen gleichzeitig mehrere
Datenverbindungen zu unterschiedlichen VMs, so teilen sich alle die zur Verfügung stehen-
den Ressourcen.

Wiederherstellen der Zustände virtueller Knoten

Formel (4.16) zeigt die Kosten für die Wiederherstellung aller migrierten virtuellen Knoten.
Sie ist analog zu Formel (4.11).

(4.16) θundumpVNode = max
vm∈VM

 ∑
m∈M ,φ′(m)=vm

(
κundumpMem ∗ ςm

mem + cundumpVnode
)

50

4.5 Kostenmodell Rekonfiguration

Wiederherstellen der Zustände von Netshaper Instanzen

Formel (4.17) zeigt die Kosten für den Undump aller migrierten Netshaper Instanzen. Sie ist
analog zu Formel (4.12).

(4.17)

θundumpNs = max
vm∈VM

 ∑
ns∈NS,m∈M

belongsTo(ns,m)
φ′(m)=vm

(
κundumpMac ∗ ςns

macs + κundumpFrame ∗ ςns
f rames + cundumpNs

)


Entfernen virtueller Knoten in Quell VMs

Wurde der Zustand eines virtuellen Knotens zum Zielrechner transferiert, wird dieser auf
dem Quellrechner nicht mehr benötigt und kann beendet werden. Die Zeit, die für diese Ope-
ration benötigt wird, ist von der Anzahl der zu beendenden virtuellen Knoten abhängig und
von der Zahl der virtuellen Netzwerkgeräten eines Knotens (überraschenderweise). Da ein
virtueller Knoten in der Regel nur eine konstante, sehr geringe Anzahl an Netzwerkgeräten
hat, werden Netzwerkgeräte hier vernachlässigt.

In Formel (4.18) sind die Kosten für das Entfernen eines Knotens gegeben.

(4.18) θkillVNodes = max
vm∈VM

(mvm) ∗ κkillVNode + ckill

Dabei steht mvm für die Knoten, die sich in der neuen Platzierung φ′ nicht mehr auf der
virtuellen Maschine vm befinden. Also mvm = | {n ∈ N|φ(n) = vm ∧ φ′(n) 6= vm} |.

4.5.3 Anpassung Layer 2 Topologie

Für die Anpassung der Layer 2 Topologie können folgende Aktionen nötig sein.

• Erzeugung einer Softwarebrücke und Einrichtung eines Vlans

• Löschen einer Softwarebrücke und Entfernen des Vlans

• Anbindung einer virtuellen Netzwerkkarte an eine Softwarebrücke

51

4.6 Optimierung der Platzierung

Werden virtuelle Knoten migriert so müssen ihre virtuellen Netzwerkkarten in der Ziel VM
an die richtigen Brücken angebunden werden. Sind diese noch nicht vorhanden, müssen sie
erstellt werden. Das Anhängen einer Netzwerkkarte an eine Brücke ist mit geringen Kosten
verbunden. Da ein virtueller Knoten in der Regel nur über wenige Netzwerkkarten verfügt,
werden diese Kosten hier nicht betrachtet.

Das Löschen und Erzeugen von Softwarebrücken sind im Wesentlichen zeitkonstante Ope-
rationen. Die Zeit, die für die Anpassung der Layer 2 Topologie benötigt wird, ergibt sich
durch Formel (4.19)

(4.19) θlayer2adaption = max
vm∈VM

(
nvm

create ∗ κcreateBridge + nvm
destroy ∗ κdestroyBridge

)
Dabei steht nvm

create für die Anzahl der zu erzeugenden Brücken in der virtuellen Maschine vm
und nvm

destroy für die Anzahl der zu löschenden Brücken in der virtuellen Maschine vm. Die
Kosten für das Einrichten und Entfernen eines Vlans sind in den Kosten für das Erstellen
und Zerstören einer Softwarebrücke enthalten.

4.6 Optimierung der Platzierung

Einen wesentlichen Bestandteil der dynamischen Neuplatzierung stellt die Ermittlung einer
günstigeren Platzierung dar. An diese werden bestimmte Anforderungen gestellt. Sie muss
einen möglichst hohen Nutzen haben (also die Experimentlaufzeit verkürzen), darf aber für
die Umsetzung nicht zu viele Kosten verursachen. Es gilt eine Platzierung zu finden, die die
in Abschnitt 4.6.1 vorgestellte Zielfunktion maximiert.

Von einer optimalen Platzierung spricht man, wenn deren Zielfunktionswert maximal ist.
Falls möglich, gilt es, diese optimale Platzierung zu finden.

Ein Problem diese optimale Lösung zu finden stellt der sehr große Suchraum dar. Dieser
steigt exponentiell mit der Anzahl der Knoten O(|VM||N|). Der Rechenaufwand, der für
die Ermittlung der optimalen Platzierung benötigt wird, ist daher sehr hoch. Aufgrund
des dynamischen Verhaltens des Testsystems steht allerdings nur begrenzt Rechenzeit zur
Verfügung. Nehmen Berechnungen zu viel Zeit in Anspruch, können sie wertlos werden, da
sich die aktuelle Lastsituation bereits geändert haben kann.

Es wird daher ein Optimierungsverfahren benötigt, dass mit geringem Rechenaufwand eine
möglichst günstige Platzierung findet. Aus der Literatur sind z.B. folgende Optimierungsver-
fahren bekannt:

52

4.6 Optimierung der Platzierung

• Simulated Annealing

• Evolutionäre Algorithmen

• Hill Climbing

Beim Simulated Annealing handelt es sich um eine Optimierungsverfahren, das z.B. für
das Floor Planning beim Entwurf von Chips eingesetzt wird. Es gehört zu der Gruppe
der naturanalgonen Optimierungsverfahren und beruht auf der Nachbildung des aus der
Metallurgie bekannten Abkühlungsprozesses. Durch kontrolliertes Abkühlen soll, z.B. beim
Glühen, eine Maximierung der Kristallgröße erreicht werden.

Beim Simulated Annealing Ansatz wird mit einer beliebigen Lösung gestartet. Von dieser
ausgehend wird zufällig eine ähnliche Lösung bestimmt und bewertet. Ist diese besser als
die vorige Lösung, wird mit ihr fortgefahren. Ist sie schlechter , wird sie dennoch mit einer
bestimmten Wahrscheinlichkeit weiterverfolgt.

Die Wahrscheinlichkeit, mit der beim Simulated Annealing bergab gegangen wird, wird
durch den Kontrollparameter T beeinflusst. Dieser ist als Analogon zur Temperatur beim
Abkühlungsprozess zu sehen. Je kleiner der Kontrollparameter, desto unwahrscheinlicher ist
es, dass schlechtere Lösungen weiterverfolgt werden. Genau wie die Temperatur im Abküh-
lungsprozess wird der Wert des Kontrollparameters mit fortschreitender Zeit verringert.

Die anfängliche Verfolgung vermeintlich schlechter Lösungen birgt eine Möglichkeit in sich,
lokale Optima zu überwinden, und so mit einer höheren Wahrscheinlichkeit das globale
Optimum zu erreichen. Die Laufzeit ist bei diesem Verfahren sehr stark von dem sogenannten
Cooling Schedule abhängig. Dieser gibt die Veränderung des Kontrollparameters über die Zeit
an.

Bei evolutionären Algorithmen handelt es sich um Optimierungsverfahren, die sich an der
biologischen Evolution orientieren. Sie beruhen auf aus der Natur bekannten Mechanismen
wie Reproduktion, Mutation, Rekombination und Selektion. Mögliche Lösungen werden
als Individuen gesehen. Diese müssen sich zusammen mit anderen in einer bestimmten
Umgebung behaupten. Eine Fitnessfunktion gibt dabei an, wie gut sie an die Umgebung
angepasst sind. Durch die oben genannten Mechanismen sollen Individuen erzeugt werden,
deren Fitnessfunktionen möglichst optimale Werte aufweisen.

Der Hill Climbing Algorithmus ist im Wesentlichen eine lokale Greedy Suche. Gestartet
wird mit einer zufälligen Lösung. Von dieser Lösung aus wird mit der Nachbarlösung
fortgefahren, welche den höchsten Zielfunktionswert aufweist. Im Gegensatz zum Simulated
Annealing wird bei diesem Verfahren nur bergauf gegangen. Außerdem wird nicht zufällig
eine ähnliche Lösung ausgewählt, sondern alle ähnlichen Lösungen betrachtet. Werden als
ähnliche Lösungen, z.B. Lösungen definiert, die sich in der Position genau eines virtuellen
Knotens unterscheiden, so sind dies bereits O(|VM| ∗ |N|). Für jede dieser Lösungen muss
der Zielfunktionswert berechnet werden, was das Verfahren sehr aufwändig macht.

53

4.6 Optimierung der Platzierung

Hill-Climbing erfordert einen hohen Rechenaufwand pro Iterationsschritt. Beim Simulated
Annealing ist der Rechenaufwand pro Iteration eher gering. Je nach Temperaturfunktion wer-
den allerdings zunächst auch schlechtere Lösungen verfolgt. Bei Evolutionären Algorithmen
hängt der Aufwand sehr stark von der Ausprägung der einzelnen Operationen ab.

In dieser Diplomarbeit soll der Simulated Annealing Ansatz weiterverfolgt werden. Zur
Optimierung einer Platzierung wird in [GHR] ein sehr ähnlicher Ansatz verfolgt. In diesem
werden allerdings nur bergauf gegangen. Laut [GHR], konvergiert der Algorithmus in kurzer
Zeit gegen ein Optimum.

4.6.1 Zielfunktion

Das Ziel der dynamischen Neuplatzierung ist die Verkürzung der Experimentlaufzeit. Für
unterschiedliche Platzierung kann die erwartete Experimentlaufzeit θreal für ein virtuelles
Zeitintervall θvirtual (siehe 4.4) abgeschätzt werden. Um Doppeldeutigkeiten zu vermeiden,
wird im Folgenden θreal zu θcomm umbenannt.

Für die Umsetzung einer Platzierung entstehen Rekonfigurationskosten. Diese können durch
das in Abschnitt 4.5 vorgestellte Kostenmodell abgeschätzt werden. Für eine alternative
Platzierung φ′ entstehen damit die in (4.20) vorgestellten Kosten für ein bestimmtes virtuelles
Zeitintervall θvirtual .

(4.20) θ
φ′,θvirtual
real = θ

φ′,θvirtual
comm + θ

φ,φ′

recon f iguration

Die Kosten einer alternativen Platzierung erhöhen sich also um die Kosten für die Umsetzung
der Platzierung.

Trägt man die erwarteten Experimentlaufzeiten θreal der aktuellen Platzierung φ und einer
möglichen alternativen Platzierung φ′ über die virtuelle Zeit θvirtual ab, so ergibt sich bei-
spielsweise das in 4.11 dargestellte Diagramm. Eine alternative Platzierung, die weniger
Kommunikationskosten verursacht, lohnt sich erst nach einer bestimmten virtuellen Zeit.
Dies ist durch die Rekonfigurationszeit bedingt.

θvirtual kann als Zeitfenster gesehen werden, das in die Zukunft geblickt werden soll. Für
dieses Zeitfenster müssen sich sinnvolle Prognosen zu Lasten und Datenraten bestimmen
lassen, da auf diesen Daten das Kommunikationskostenmodell basiert. Dieses, bei der
Optimierung betrachtete virtuelle Zeitfenster, soll nachfolgend θwindow genannt werden.

Auf Basis der Kosten für die aktuelle und eine alternative Platzierung kann die in (4.21)
dargestellte Zielfunktion definiert werden.

54

4.6 Optimierung der Platzierung

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

virtual time [s]

re
al

 ti
m

e
[s

]

current placement
alternative placement

Abbildung 4.11: Erwartete Laufzeiten zweier Platzierungen

(4.21) quality(φ′) = θ
φ,θwindow
comm − θ

φ′,,θwindow
real

Diese stellt die Differenz der erwarteten Experimentlaufzeit der aktuellen Platzierung φ und
einer alternative Platzierung φ′ dar. Ist quality(φ′) > 0, so ist die Platzierung φ′ günstiger
als die aktuelle Platzierung.

Größe des Vorhersage Zeitfensters

Die Größe des Zeitfensters twindow ist entscheidend für die Performance der Neuplatzie-
rung.

Sinnvollerweise sollte es größer sein als die Rekonfigurationsfixkosten(tsuspend + tresume) und
kleiner als die Zeit, für die noch sinnvolle Prognosen für Last und Datenraten möglich
sind.

4.6.2 Optimierungsalgorithmus

In diesem Abschnitt soll nun näher auf eine mögliche Umsetzung des Simulated Annealing
Ansatzes zur Optimierung der Platzierung eingegangen werden.

55

4.6 Optimierung der Platzierung

Ziel der Optimierung ist die Maximierung der Zielfunktion quality(φ). Diese wurde in 4.6.1
vorgestellt.

Eine Möglichkeit dies mittels eines Simulated Annealing Ansatzes zu tun, ist als Pseudocode
in 4.1 dargestellt.

Gestartet wird mit der aktuellen Platzierung. Von dieser ausgehend wird eine ähnliche
Platzierungen betrachtet. Diese wird zufällig aus einer Menge von ähnlichen Platzierungen
ausgewählt. Die Menge dieser Platzierungen ist durch die Funktion like definiert. Diese
bildet eine Platzierung φ auf eine Untermenge ASS′ der möglichen Platzierungen ASS ab.
like : φ 7→ ASS′. Möglichkeiten diese Menge zu definieren, werden in 4.6.3 vorgestellt.

Algorithmus 4.1 Algorithmus zur Optimierung einer Platzierung
1: t← initialValue
2: while ¬exitCondition do
3: nextAssignment← random(like(currentAssignment))
4: if quality(nextAssignment) > quality(currentAssignment) then
5: currentAssignment← nextAssignment
6: end if
7: if e−(quality(nextAssignment)−quality(currentAssignment))/Tt > random() then
8: currentAssignment← nextAssignment
9: end if

10: t← t + 1
11: end while
12: return currentAssignment

Weist die zufällig ausgewählte Platzierung (nextAssignment) einen höheren Zielfunktions-
wert (quality(nextAssignment)) als die aktuelle Platzierung (currentAssignment) auf, so wird
sie zur aktuellen Platzierung.

Ist dies nicht der Fall, wird sie trotzdem mit einer bestimmten Wahrscheinlichkeit, die durch
e−(value−quality(currentAssignment))/T(t) gegeben ist, akzeptiert.

Die Wahrscheinlichkeit, mit der Bergab gegangen wird, hängt von dem Kontrollparameter
Tt und der Zielfunktionsnähe beider Platzierungen ab. Hat der Kontrollparameter einen
hohen Wert, so ist die Wahrscheinlichkeit hoch, dass eine schlechtere Platzierung verfolgt
wird. Unterscheidet sich die Qualität der aktuellen und der möglichen neuen Platzierung
stark, so ist die Wahrscheinlichkeit niedrig, dass die neue Platzierung übernommen wird.
Mögliche Verläufe des Kontrollparameters werden in Abschnitt 4.6.7 vorgestellt.

Der Algorithmus terminiert wenn eine bestimmte Abbruchbedingung erfüllt ist. Mögliche
Abbruchbedingungen werden in 4.6.6 diskutiert.

56

4.6 Optimierung der Platzierung

4.6.3 Ähnliche Platzierungen

Ähnliche Platzierungen sind Platzierungen, die sich in der Position weniger virtueller Knoten
unterscheiden. Ist eine Platzierung φ gegeben, so kann die Menge der Platzierungen, die sich
von φ in der Position genau eines virtuellen Knotens unterscheiden, z.B. folgendermaßen
definiert werden:

like(φ) =
{

φ′|∃x ∈ N(phi(x) 6= phi′(x) ∧ ∀y(x 6= y⇒ phi(x) = phi′(y)))
}

Die Anzahl der Unterschiede zweier Platzierung kann als Distanz der Platzierungen gesehen
werden. Im obigen Beispiel ist die Distanz 1 für die Platzierung φ zu allen Platzierungen der
Menge like. Lässt man höhere Distanzen zu, so steigt die Anzahl der durch like definierten
Menge exponentiell. Es gilt |like(φ)| = O

(
(N

D) ∗VMD
)

. Wobei VM für die Anzahl der
virtuellen Maschinen, D für die maximale Distanz und N für die Anzahl der virtuellen
Knoten steht.

Um lokale Optima zu überwinden, kann es sinnvoll sein, weniger ähnliche Platzierungen
zuzulassen, also die maximale Distanz höher zu wählen. Wählt man sie allerdings zu hoch,
so artet der Simulated Annealing Algorithmus zu einer Random Suche aus. In der aktuellen
Implementierung wird eine Distanz von 1 benutzt. Andere Distanzen könnten allerdings
evaluiert werden.

4.6.4 Berechnung des Zielfunktionswerts

In der Optimierungsphase des Neuplatzierungsalgorithmus werden verschiedene alternative
Platzierungen betrachtet. Für jede dieser Platzierungen muss der Wert der zu optimie-
renden Zielfunktion berechnet werden. Die in 4.6.1 vorgestellte Zielfunktion, basiert auf
Kommunikations- und Rekonfigurationskosten. Werden diese für jede betrachte Platzierung
neu berechnet, so entstehen hohe Kosten.

Für die Berechnung der Kommunikationskosten wird beispielsweise O(|links|) Zeit benötigt.
D.h. die Zeit steigt linear mit der Anzahl von Verbindungen zwischen virtuellen Knoten.
Dies ist gerade bei große Szenarien mit vielen Links problematisch. Da dem Optimierungs-
algorithmus nur ein bestimmtes Zeitfenster zur Ermittlung einer besseren Platzierung zur
Verfügung steht, sollten Kosten für die Berechnung des Zielfunktionswerts möglichst klein
sein.

Wirft man einen Blick auf den in 4.6.2 vorgestellten Optimierungsalgorithmus, so stellt man
fest, dass sich aufeinander folgende Platzierungen kaum unterscheiden. In jedem Schritt wird
eine Platzierung aus der Nachbarschaft der zuletzt betrachteten Platzierung ausgewählt.

57

4.6 Optimierung der Platzierung

Statt einer kompletten Neuberechnung der Kosten ist es daher sinnvoller die Kosten der
aktuell betrachteten Platzierung als Inkrement der Kosten der vorher betrachten Platzierung
zu sehen. In diesem Fall müssen nur Kostenänderungen berechnet werden. Dieses Vorgehen
soll am Beispiel des Kommunikationskostenmodells im Folgenden näher erläutert werden.

Angenommen φi sei die zuletzt betrachtete Platzierung und φi+1 eine neue Platzierung für
die Kommunikationskosten berechnet werden sollen, dann lässt sich die Last einer virtuellen
Maschine vm unter der neuen Platzierung φi+1 wie in Formel (4.22) berechnen:

(4.22) Λvm,φi+1
p,c = Λvm,φi

p,c + ∆Λvm
p,c

Die Last der virtuellen Maschine vm ergibt sich also zum einen aus der Last, der zuletzt be-
trachteten Platzierung φi, die in der virtuellen Maschine entstanden ist und zum anderen aus
der Laständerung ∆Λvm

p,c . Analog dazu kann auch die Last eines Host-OS ΛVM−Host−OS,φi+1
p,c

dargestellt werden.

Im Folgenden soll nun vorgestellt werden wie sich ∆Λvm
p,c berechnen lässt.

M sei eine Menge von virtuellen Knoten i ∈ N, für die sich die Platzierung geändert hat
M = {j ∈ N|φi+1(j) 6= φi(j)}. Zur Vereinfachung nachfolgender Formeln sei außerdem die
Gleichung (4.23) gegeben.

(4.23) κt
p,p′,c,c′ =


κintra−vm,t falls p = p′ ∧ c = c′

κinter−vm,t falls p = p′ ∧ c 6= c′

κinter−pNode,t falls p 6= p′ ∧ c 6= c′

Dann berechnet sich ∆Λvm
p,c durch die Formel (4.24).

(4.24) ∆Λvm
p,c = ∆ΛVMtx

p,c + ∆ΛVMrx
p,c + ∑

k∈M
φi+1(k)=(p,c)

λk − ∑
k∈M

φi(k)=(p,c)

λk

Die Änderung der Last einer virtuellen Maschine ist gegeben durch die Änderung von
Lasten für Verbindungen zwischen virtuellen Knoten und durch die Änderungen von Lasten,
die durch virtuelle Knoten in der VM verursacht werden. Erhält die virtuelle Maschine in
der neuen Platzierung φi+1 ein neuen virtuellen Knoten k, so wird sie nun mit λk belastet.
Verliert sie einen virtuellen Knoten k, so sinkt die Belastung um λk.

Laständerungen, die sich in einer virtuellen Maschine durch Verbindungsänderungen erge-
ben, lassen sich beispielsweise durch die Formel (4.25) berechnen. Diese zeigt Laständerungen

58

4.6 Optimierung der Platzierung

in einer VM für eingehende Verbindungen. Laständerungen für ausgehende Verbindungen
lassen sich analog dazu bestimmen.

(4.25) ∆ΛVMrx
p,c = − ∑

j,k∈N
j∈M∨k∈M

φi(j)=(p′,c′)
φi+1(k)=(p,c)

β jk ∗ κVMrx
p,p′,c,c′ + ∑

j,k∈N
j∈M∨k∈M

φi+1(j)=(p′,c′)
φi+1(k)=(p,c)

βik ∗ κVMrx
p,p′,c,c′

Für die Berechnung der Laständerung müssen Verbindungen betrachtet werden, bei denen
mindestens einer der beiden Kommunikationspartner migriert wurde. Für jede dieser Ver-
bindungen muss die Last angepasst werden. Hierzu werden Lasten , die unter der alten
Platzierung φi berechnet wurden, subtrahiert und Lasten, die durch Verbindungen in der
neuen Platzierung φi+1 entstehen, addiert. ∆ΛVMtx

p,c ergibt sich analog dazu.

pNode1

VM (1,2)VM (1,1)

vNode1

vNode2

Platzierung Φi Platzierung Φi+1

pNode1

VM (1,2)VM (1,1)

vNode1 vNode2

Abbildung 4.12: Beispiel zur Berechnung von Laständerungen

Zur Veranschaulichung der Formel betrachten wir nun das Beispiel in Abbildung 4.12. In
diesem sind die Änderungen der Lasten dargestellt, die sich für eine Umplatzierung des
Knotens vNode2 ergeben. In diesem Beispiel wird aus der intra− vm Verbindung zwischen
beiden Knoten, die nur die virtuelle Maschine VM(1, 1) belastet, eine inter− vm Verbindun-
gen. Diese verursacht eine Last auf beiden virtuelle Maschinen. Die Laständerung ∆ΛVMrx

1,1
der virtuellen Maschine VM(1, 1) ergibt sich zu −β1,2 ∗ κintra−vm,VMrx + β1,2 ∗ κinter−vm,VMrx .

Sind alle Lasten virtueller Maschinen Λvm,φi+1
p,c und Lasten der Host Betriebsysteme bestimmt,

lässt sich die erwartete Experimentlaufzeit bestimmen(siehe 4.4).

59

4.6 Optimierung der Platzierung

Bei dieser Variante wird für die Berechnung der Kommunikationskosten O(l′) Zeit benötigt.
Wobei l′ für die Anzahl der Verbindungen steht, bei denen mindestens einer der beiden
Verbindungspartner migriert wurde. Ändert sich die Platzierung nur weniger Knoten von φi
zu φi+1, so kann mit dieser Variante sehr viel Rechenzeit eingespart werden, da dann gilt
l′ << l.

4.6.5 Verkleinerung des Suchraums

Im Abschnitt 4.6.3 wurde die Menge ähnlicher Lösungen definiert. In jeder Iteration des
Algorithmus wird daraus zufällig ein Element ausgewählt. Fällt die Wahl auf ein Element,
dass die Zielfunktion nicht weiter minimiert, wird dieses mit einer bestimmten Wahrschein-
lichkeit weiter berücksichtigt. Um eine schnellere Konvergenz des Optimierungsalgorithmus
zu erreichen ist es sinnvoll Lösungen , die mit hoher Wahrscheinlichkeit nicht zu einer
optimalen Lösung führen, heraus zu filtern.

Wie in Kapitel 4.4 erläutert, sind Kommunikationskosten zwischen Knoten stark abhängig
von der Art der Verbindung zwischen ihnen. Wird ein Knoten zu einer virtuellen Maschine
migriert, auf der sich kein Knoten befindet, mit dem er eine Verbindung eingeht, so ist die
Wahrscheinlichkeit sehr hoch, dass sich die Kommunikationskosten erhöhen. In diesem Fall
kann der Knoten nur inter− vm und inter− pnode Verbindungen zu anderen Knoten einge-
hen. Diese verursachen höhere Kosten als intra− vm Verbindungen. Ähnliche Platzierungen,
die durch die Migration genau der eben genannten Knoten entstehen, sollten herausgefiltert
werden.

Neben den sich durch die Migration ändernden Verbindungen können auch Merkmale
wie Anzahl der Prozesse und genutzten Arbeitsspeicher eines Knotens betrachtet werden.
Nutzt ein Knoten viel Speicher, erzeugt aber nur eine geringe Kommunikationslast, so
ist die Wahrscheinlichkeit gering, dass die Migration eines solchen Knotens die Platzie-
rung verbessert. Es entstehen in diesem Fall hohe Migrationskosten, denen eher kleine
Kommunikationskosteneinsparung gegenüber stehen.

4.6.6 Abbruchbedingung

In diesem Abschnitt sollen Abbruchbedingungen für den Simulated Annealing Algorithmus
diskutiert werden.

Mögliche Abbruchbedingungen sind:

• Abbruch bei Konvergenz

• Abbruch nach einer bestimmten Anzahl von Iterationen

• Abbruch beim Überschreiten eines Zeitlimits

60

4.6 Optimierung der Platzierung

Eine häufig eingesetzte Möglichkeit einen Optimierungsalgorithmus zu beenden ist die
Konvergenz. Ist von der aktuellen Lösung keine bessere Lösung mehr erreichbar, so terminiert
der Algorithmus. Je nach Komplexität des Problems und der gewählten Startlösung kann
die Laufzeit des Algorithmus dabei allerdings sehr unterschiedlich sein. Ist der Algorithmus
zeitkritisch, sollte daher entweder nach einer festen Anzahl von Iterationen oder nach einem
bestimmten Zeitlimit abgebrochen werden.

Die in 4.6.1 vorgestellte Zielfunktion beruht auf Prognosen zu Datenraten von Verbindungen
und Auslastungen von Knoten. Diese sind nur für eine bestimmte Zeit gültig. Daher muss
der Optimierungsalgorithmus nach einer gewissen Zeit abgebrochen werden. Zusätzlich
kann der Algorithmus noch auf Konvergenz geprüft werden. Konvergiert dieser vor Ablauf
des Zeitlimits, kann er beendet werden.

4.6.7 Cooling Schedule

Maßgeblich für die Performance eines Simulated Annealing Algorithmus ist der Cooling
Schedule. Er wird spezifiziert durch:

• Den initialen Wert des Kontrollparameters (Temperatur)

• Änderung des Kontrollparameters über die Anzahl der Iterationen (Zeit)

• Den finalen Wert des Kontrollparameters (nicht unbedingt nötig)

In der Literatur wird zwischen dynamischen und statischen Cooling Schedules unterschie-
den.

Bei der statischen Variante werden Werte des Kontrollparameters vor der Ausführung des
Algorithmus festgelegt. Eine Änderung der Werte ist zur Laufzeit nicht möglich.

Bei der dynamischen Variante hingegen werden Kontrollparameterwerte zur Laufzeit adaptiv
angepasst. Zur Anpassung werden meist statistische Werte wie Mittelwerte und Standardab-
weichungen bisher errechneter Zielfunktionswerte verwendet. In der Literatur lassen sich
viele unterschiedliche dynamische Cooling Schedules finden z.B. die von Huang [RSV91]
und Lam [LJM88].

Ein dynamischer Schedule besitzt bessere Anpassungsmöglichkeiten an das Problem, ist
allerdings auch mit zusätzlichen Kosten verbunden. Da dem Algorithmus zur Optimierung
der Platzierung nur ein begrenztes Zeitfenster zur Verfügung steht und der Nutzen zusätzli-
cher Kosten nur schwer abgeschätzt werden kann, soll hier ein statischer Cooling Schedule
verwendet werden.

Ein oft in der Praxis eingesetzter statischer Cooling Schedule ist der geometrische Schedule.
Dieser wird z.B. im Simulated Annealing Algorithmus von Kirkpatrick [Kir84] genutzt.

61

4.6 Optimierung der Platzierung

Geometrischer Cooling Schedule

Der Simulated Annealing Algorithmus [Kir84] von Kirkpatrick gilt als die „Urversion“ der
Simulated Annealing Algorithmen. Er basiert auf dem Metropolis [MRR+

53] Algorithmus.

Der Metropolis Algorithmus wurde ursprünglich zur Ermittlung von Eigenschaften wie Volu-
men und Druck von Substanzen bei einer bestimmten Temperatur eingesetzt. Im Metropolis
Algorithmus werden dabei Substanzen durch eine Menge von Molekülen, die miteinander
interagieren, modelliert.

Zur Ermittlung der Eigenschaften wird der Gleichgewichtszustand dieses Systems ermit-
telt. Im Metropolis Algorithmus werden energetische Zustände unterschiedlicher Molekül-
Konfigurationen betrachtet. Die einzelnen Konfigurationen unterscheiden sich z.B. in der
Lage einzelner Moleküle.

Kirckpatrick nutzte das Prinzip des Metropolis Algorithmus zur Lösung kombinatorische
Optimierungsprobleme; Statt Molekülkonfigurationen werden Lösungen betrachtet; statt der
Energie einer Konfiguration, der Wert einer Kosten-/Zielfunktion und statt der Temperatur
wird ein Kontrollparameter T genutzt.

Genau wie im Metropolis Algorithmus werden Konfigurationen(Lösungen) bei einer be-
stimmten Temperatur (Wert des Kontrollparameters) betrachtet. Im Gegensatz zum Me-
tropolis Algorithmus wird die Temperatur beim Simulated Annealing jedoch mit der Zeit
verringert und damit ein Abkühlungsprozess simuliert.

Zuerst wird das zu optimierende System bei einer hohen Temperatur „geschmolzen“. Danach
folgen Schritte, in denen das System stufenweise und kontrolliert abgekühlt wird.

Jede Temperatur sollte solange gehalten werden bis sich ein Gleichgewichtszustand ein-
stellt.

Ein typischer Annealing Schedule nach Kirckpatrick ist in 4.13 dargestellt. Definiert werden
müssen

• initiale Temperatur

• Änderung der Temperatur

• Zeit(Iterationen) konstanter Temperatur

initiale Temperatur Werte von T0 sind extrem von der Skalierung der Zielfunktion abhängig.
Nach Kirckpatrick sollte die initiale Temperatur so gewählt werden, dass Lösungen, die den
Zielfunktionswert erniedrigen, mit einer Wahrscheinlichkeit von p = 0.8 akzeptiert werden.
Um ein initialen Wert auszuwählen, der dieses Kriterium erfüllt, kann man z.B. einen
Probelauf starten, in dem negative Änderungen des Zielfunktionswertes di f f− aufgezeichnet
werden. Mittels dieser lässt sich dann durch Formel (4.26) der Wert von T0 bestimmen. Zur

62

4.6 Optimierung der Platzierung

Te
m

p
er

at
u

r
T

Iterationen t

Zeit konstanter Temperatur

Initiale Temperatur

Änderung der Temperatur

Abbildung 4.13: Typischer Cooling Schedule

Erinnerung: Ein Funktionswert, der den Wert der Optimierungsfunktion verringert, wird
mit einer Wahrscheinlichkeit von p = e

∆ f
T akzeptiert.

(4.26) T0 =
di f f−

ln(p = 0.8)

Alternativ kann die Standardabweichung der Variation der Zielfunktion verwendet werden.
Also T0 = σ0. Nach Hall [Whi84] ist dieses Vorgehen sehr effektiv.

Beides erfordert allerdings einen hohen Aufwand zur Bestimmung der initialen Temperatur.
Daher soll hier eine einfachere, aber häufig in der Praxis verwendete Methode benutzt
werden. Dabei wird die maximale Differenz der Zielfunktion abgeschätzt und T0 dann auf
diesen Wert gesetzt. Also T0 = max (∆ f)

Wird die in Kapitel 4.6.1 vorgestellte Zielfunktion benutzt, kann die maximale Differenz, z.B.
durch das betrachtete virtuelle Zeitfenster twindow abgeschätzt werden. Dies soll im folgenden
Absatz kurz motiviert werden.

Ein virtueller Knoten benötigt mit hoher Wahrscheinlichkeit nicht mehr Ressourcen als
ein Prozessor zur Verfügung stellen kann: also usedCyclesvNode ≤ o f f eredCyclescpu. Beim
Übergang zu einer neuen Platzierung wird die Position weniger Knoten verändert(in der
Regel nur die eines Knotens). Im schlimmsten Fall erhöht sich die Last in der Ziel-VM bei
einer Migration eines Knotens um o f f eredCyclescpu. Damit steigt der TDF maximal um 1

63

4.7 Lastvorhersage

(z.b. wenn Ziel-VM höchst ausgelastete VM ist). Dadurch erhöht sich die erwartete Laufzeit
maximal um twindow.

Hierbei handelt es sich natürlich nur um eine sehr grobe Abschätzung; in der Regel wird
die maximale Differenz des Funktionswertes wesentlich kleiner sein. Die Evaluation des
Optimierungsalgorithmus zeigt aber, dass sich auch mit dieser groben Abschätzung gute
Ergebnisse erzielen lassen.

Zeit konstanter Temperatur Die Zeit bzw. die Zahl der Iterationen für die eine bestimmte
Temperatur gehalten werden muss, hängt von der Größe des Problems ab. Meist wird die
Anzahl der von einem Zustand aus erreichbaren Nachbarzustände als Richtwert herangezo-
gen.

Um eine gewisse Veränderung zu erreichen, wird die Temperatur für eine bestimmte Anzahl
von akzeptierten Veränderungen taccept gehalten. Diese kann sich z.B. an der Zahl der
Nachbarzustände orientieren. Gegen Ende der Optimierung werden in der Regel allerdings
kaum noch Änderungen akzeptiert. Daher bedarf es häufig vieler Versuche um taccept zu
erreichen. Deswegen ist es sinnvoll eine Obergrenze für die mögliche Versuche einzuführen
tmax. Typischerweise wird tmax = 1.66 ∗ taccept gewählt.

Wie in 4.6.3 vorgestellt, hat eine Lösung bei unserem Optimierungsproblem O(|N| ∗ |VM|)
ähnliche „Nachbar“-Lösungen (wenn nur die Position eines Knotens verändert wird). taccept

könnte daher z.B. wie folgt gewählt werden: taccept = |N| ∗ |VM|.

Funktion zur Absenkung der Temperatur Eine häufig eingesetzte, einfache Funktion zur
Erniedrigung der Temperatur ist die (4.27) dargestellte exponentiale Funktion.

(4.27) Tk+1 = α ∗ Tk

Dabei wird α aus dem Intervall]0, 1[gewählt. Kirckpatrick schlägt ein günstigen Wert von
α = 0.95 vor.

4.7 Lastvorhersage

Mit Hilfe des Kommunikationskostenmodell kann für ein virtuelles Zeit tvirtual die erwartete
Experimentlaufzeit treal berechnet werden. In der Optimierung ist dabei besonders das
auf die aktuelle virtuelle Zeit folgende Zeitintervall interessant. Dies wurde in 4.6.1 als
twindow bezeichnet. Um die erwartete Experimentlaufzeit für dieses Intervall möglichst

64

4.7 Lastvorhersage

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9
x 10

5

lo
ad

 [c
yc

le
s/

m
s]

time [s]

Abbildung 4.14: Historie der Last eines virtuellen Knoten

gut abschätzen zu können werden gute Prognosen der Last und Datenraten von Knoten
benötigt.

Mithilfe von Monitoren können vergangene mittlere Lasten und Datenraten aufgezeichnet
werden. Ein Beispiel für eine Historie von Lastwerten zeigt Abbildung 4.14. In dieser Grafik
wurden mittlere Lasten in einem konstant breiten virtuellen Zeitintervallen von 1 Sekunde
aufgezeichnet.

Auf Basis einer Historie müssen Lasten und Datenraten für das, bei der Optimierung
betrachtete zukünftige virtuelle Zeitintervall twindow, abgeschätzt werden.

Dazu können z.B. Verfahren zur „one step load prediction“ eingesetzt werden. Für eine
zeitlich aufeinander folgende Reihe von Messwerten {m1, m2, ..., mn}, auch Zeitreihe genannt,
lässt sich mit diesen der zu erwartetende, nächste Messwert mn+1 ermitteln.

In der Literatur werden zur Voraussage von mn+1 unterschiedliche Ansätze verfolgt. Ein
grober Überblick wird in dem nachfolgenden Paragraph gegeben.

letzter Wert Bei diesem Ansatz wird mn+1 = mn gesetzt.

Tendenz basierte Vorhersage In [YFS03] wird eine Ansatz vorgestellt, der Tendenz basierte
Vorhersage genannt wird. Auf Basis der letzten beiden Werte einer Zeitreihe, also mn

65

4.7 Lastvorhersage

und mn−1, wird eine Tendenz der Messreihe abgeleitet mn − mn−1. Steigt der Wert der
Messreihe mn −mn−1 > 0, so wird mn+1 = mn + incValue gesetzt, andernfalls gilt mn+1 =

mn − decValue . Werte für incValue und decValue orientieren sich an Vorhersagefehlern und
der Größe des Messwerte.

Untersucht wurden in [YFS03] Messreihen, bei denen Messpunkte mit einer Frequenz von
0.1 HZ, 0.05 HZ und 0.025 HZ aufgezeichnet wurden. Bei der niedrigsten Frequenz von 0.1
Hz lag die Abweichung der Voraussage vom tatsächlichen Wert bei unter 17 Prozent. Für ein
Intervall von 10 Sekunden lässt sich also der nächste Messwert mit diesem Verfahren relativ
gut abschätzen. Auffällig war, dass mit dem einfacheren „letzter Wert“ Verfahren in [YFS03]
ähnliche Ergebnisse erzielt werden konnten.

Polynomial Fitting In [ZSI06] wird ein Ansatz für die „one step ahead predicti-
on“vorgestellt, der auf Polinomial Fitting basiert. Beim Polinomial Fitting wird davon
ausgegangen, dass Datenpaare (xi, yi)(z.B Zeitpunkt einer Messung und zugehöriger Mess-
wert) korreliert sind.

Für die Korrelation wird eine Polynomfunktion f (x) = y mit f (x) = ∑N
i=0 Ai ∗ xi benutzt,

wobei N den Grad der Funktion bezeichnet. Durch ein kleinstes Qudrate Fitting werden für
eine Menge von Datenpaaren (xi, yi) die Konstanten Ai der Polynomfunktion bestimmt. Auf
Basis dieser Funktion wird dann der nächste Wert der Messreihe abgeschätzt.

In [ZSI06] wurden Polynomfunktion von Grad 2 und 3 betrachtet. Laut den Messergebnissen
von Thang sind mittlere Vorhersagefehler mit dem Polynomial Fitting Ansatz 38 bis 86

Prozent kleiner als bei dem Tendenz basierten Verfahren von Yang [YFS03].

Lineare Modelle Bei diesem Ansatz werden Zeitreihen als Realisierung stochastischer
Prozesse angesehen, die einen linearen Filter steuern, der als Input weißes Rauschen erhält.
Der lineare Filter hat dabei die Form m′i = ∑c

j=1 ωj ∗ ai−j + ai, wobei ωj Parameter des Filters
sind, aj ein Wert der weißen Rausch Sequenz ist und c den Grad des Filters darstellt.

Die Parameter des Filters ωj müssen so gewählt werden, dass die mittlere quadratische
Abweichung der Modellwerte m′i von den tatsächlichen Messwerten mi minimal ist.

In [DO00] werden verschiedene lineare Modelle vorgestellt und bewertet: unter anderem
Auto Regressive (AR) und Main Avarage (MA) Modelle, sowie Mischformen beider (ARMA).
Einfache Auto Regressive Modelle mit einem Grad von 16 oder höher stellten sich als
ausreichend für eine Vorhersage bei 1 HZ Daten(Messwerte in Abstand von einer Sekunde)
bis zu 30 Sekunden in die Zukunft heraus.

Um eine möglichst gute Voraussage zu erreichen, sollten die vorgestellten Ansätze in realen
Testszenarien auf ihre Tauglichtkeit geprüft werden. Dies war allerdings im Rahmen der

66

4.8 Lage

Diplomarbeit nicht möglich. Aufgrund des geringen Implementierungsaufwands wurde sich
daher zunächst für den einfachsten „letzter Wert“ Ansatz entschieden.

4.8 Lage

In verteilten Systemen stellt sich immer die Frage nach dem Ort der Ausführung eines Algo-
rithmus. Im Wesentlichen lassen sich 2 Ansätze unterscheiden: der verteilte und zentralen
Ansatz.

Beim zentralen Ansatz wird der Algorithmus auf einem Rechner, meist Koordinator genannt,
ausgeführt. Dieser Koordinator besitzt eine globale Sicht auf das System, was ihm ein hohes
Optimierungspotential ermöglicht. Gleichzeitig ist für die Erstellung dieser globalen Sicht
allerdings ein gewisser Aufwand nötig. Da ein Rechner nur über begrenzte Ressourcen
verfügt, kann der Koordinator leicht zum Flaschenhals werden. Meist skalieren zentrale
Ansätze deshalb nicht so gut wie verteilte.

Beim verteilten Ansatz wird der Algorithmus auf mehreren Rechner ausgeführt. Jeder
Rechner hat dabei in der Regel nur eine beschränkte lokale Sicht auf das System. Das
Optimierungspotential ist deshalb geringer als im zentralen Ansatz. Im Gegenzug entstehen
aber auch keine Kosten für die Erstellung einer globalen Sicht, was diesen Ansatz skalierbarer
macht.

4.8.1 Optimierung der Platzierung

Zentraler Ansatz

Beim zentralen Ansatz erfolgt die Optimierung der Platzierung zentral auf einem Rechner.
Dabei kann z.B. für die Optimierung der in 4.6.2 vorgestellte Simulated Annealing Algorith-
mus verwendet werden. 4.2 zeigt in Pseudocode eine Skizze des zentralen Algorithmus.

Basis der Optimierung bildet die in 4.6.1 vorgestellte Zielfunktion. Diese fußt auf zwei
Modellen: einem Kommunikationskostenmodell und einem Rekonfigurationskostenmodell.
Diese müssen vor einer Optimierung aktualisiert werden. Dazu müssen dem Koordinator,
z.B. Prognosen zu Lasten virtueller Knoten, Datenraten für Verbindungen und genutztem
Speicher eines virtuellen Knotens zur Verfügung gestellt werden. Dies ist mit gewissen
Kosten verbunden, die sehr stark von der Größe des jeweiligen Testszenarios abhängen.

Um diese Kosten möglichst niedrig zu halten, wird deshalb vorab der aktuelle Zustand
des Systems auf seine Optimierbarkeit geprüft ((isImprovablePlacement(currentPlacement)).
Dazu kann z.B. die Auslastung physikalischer Rechner des Testsystems herangezogen
werden. Weichen Lasten der Rechner sehr stark voneinander ab, ist dies ein Indiz für eine
ungünstige Platzierung. Da die Informationen, die für die Beurteilung der aktuellen Situation

67

4.8 Lage

herangezogen werden beschränkt sind, sollte in bestimmten Abständen eine Optimierung
der Platzierung erzwungen werden.

Der Optimierungsalgorithmus liefert eine alternative Platzierung. Diese wird, bevor sie
umgesetzt wird, geprüft. Da die Rekonfiguration der TVEE mit Kosten verbunden ist, muss
abgewogen werden, inwieweit sich diese Investition lohnt. Ist nur mit geringen Laufzei-
teinsparungen zu rechnen, so sollte die Platzierung nicht umgesetzt werden. Das Risiko
wäre in diesem Fall zu hoch, da die für die Zukunft getroffenen Prognosen nicht eintreten
müssen. Wurde sich für die Platzierung entschieden„ so wird die TVEE rekonfiguriert
(recon f igurateTVEE(alternativePlacement)).

Algorithmus 4.2 Zentraler Neuplatzierungsalgorithmus
1: currenPlacement← initialPlacement
2: loop
3: wait(TDFscaledIntervall)
4: if isImprovablePlacement(currentPlacement) then
5: updateModel()
6: alternativePlacement← optimizePlacement(currentPlacement)
7: if isBetterPlacement(alternativePlacement) then
8: recon f igurateTVEE(alternativePlacement)
9: end if

10: end if
11: end loop

Der zentrale Algorithmus wird periodisch ausgeführt (wait(TDFscaledIntervall)), wobei die
Dauer der Wartezeit mit dem aktuellen TDF skaliert wird. Dies ist nötig, da der Algorithmus
auf einem Rechner aufgeführt werden soll, der in Echtzeit arbeitet.

Nimmt der TDF gerade einen hohen Wert an, so ist die Frequenz, mit der der Neuplatzie-
rungsalgoritmus angestoßen wird, klein. Dies ermöglicht ihm mehr Zeit in die Optimierung
der Platzierung zu investieren . Für große Szenarien, die viele Ressourcen benötigen, be-
deutet dies, dass sich zwar die Komplexität des Optimierungsproblems erhöht, aber auch
gleichzeitig mehr Zeit für die Suche einer optimalen Lösung zur Verfügung steht.

Verteilte Ansätze

In diesem Abschnitt sollen zwei verteilte Ansätze vorgestellt werden. Beim ersten steht jedem
Rechner wie im zentralen Ansatz das Wissen über den globalen Zustand zur Verfügung. Bei
zweiten werden Optimierungen auf Basis von lokalem Wissen durchgeführt.

68

4.8 Lage

globales Wissen Im zentralen Ansatz wird der Optimierungsalgorithmus nur auf einem
Rechner ausgeführt. Unabhängig von der Größe des Testszenarios stehen in diesem Fall
immer die gleichen Ressourcen zur Verfügung. Mit zunehmender Komplexität des Szenarios
steigt allerdings die Größe des Suchraums für die Optimierung. Die Wahrscheinlichkeit, eine
optimale Lösung zu finden, sinkt dadurch.

Dies motiviert den Ansatz, den Optimierungsalgorithmus parallel auf mehreren Knoten
des Testsystems auszuführen. Durch mehr Rechenleistung ist es vielleicht möglich, eine
bessere Lösung zu finden. Anstatt also den Optimerungsalgorithmus nur auf dem Koor-
dinator auszuführen, wird er in allen oder einigen virtuellen Maschinen des Testsystems
ausgeführt.

Dabei ist es möglich, unterschiedliche Optimierungsalgorithmen zu verwenden sowie Para-
meter der Algorithmen zu variieren. Wird für die Optimierung der Simulated Annealing
Algorithmus verwendet, so kann z.B. der Temperaturverlauf variiert werden. Werden Nach-
barzustände ähnlich wie beim Simulated Annealing ausgewählt, so ist die Wahrscheinlich-
keit hoch, dass unterschiedliche Instanzen des Algorithmus auch unterschiedliche Wege
im Suchraum einschlagen. Dadurch lässt sich der Suchraum besser abdecken und die
Wahrscheinlichkeit die optimale Lösung zu finden steigt.

Allen virtuellen Maschinen wird bei diesem Ansatz ein bestimmtes Zeitfenster für die
Berechnung einer günstigeren Platzierung zur Verfügung gestellt. Ist die verfügbare Zeit
abgelaufen, so werden alle Lösungen verglichen und die beste Platzierung kann in einem
nächsten Schritt umgesetzt werden.

Ein Nachteil dieses Ansatzes sind hohe Optimierungskosten. Damit jede virtuelle Maschine
eine globale Optimierung durchführen kann, muss jeder virtuellen Maschine globales Wissen
zur Verfügung gestellt werden. Anstatt Prognosen über Last und Datenraten nur an den
Koordinator zu übertragen, müssen sie im globalen verteilten Ansatz an alle virtuellen
Maschinen verteilt werden. Dies kann z.B. per Multicast erfolgen. Jede Maschine wird dabei
zusätzlich durch die zu empfangenden Daten belastet.

Da die virtuellen Maschinen für die Ausführung des Experiments benutzt werden, erhöht
sich die Laufzeit des Experiments um die Laufzeitkosten der Optimierung.

Dieser Ansatz eignet sich also nur für große Szenarien mit einem hohen Optimierungspo-
tential. Die Frage ist allerdings, ob sich im Mittel in großen Szenarien nicht sowieso ein
Lastgleichgewicht einstellt.

lokales Wissen Der im Folgenden vorgestellte verteilte Ansatz orientiert sich an einem
Algorithmus namens Sender Initiated Diffusion. Dieser wird im Bereich der Taskmigration
eingesetzt und wurde in Abschnitt 3.1.1 vorgestellt.

69

4.8 Lage

Ziel des Algorithmus ist es, durch ein verteiltes lokales Loadbalancing ein globales Last-
gleichgewicht zu erreichen. Dafür wird das System in sich überlappende Domänen unterteilt:
siehe Abbildung 4.15.

optimize

optimize

optimize

Load Load

Load Load

Load Load

Domain1

Domain2

Domain3

Abbildung 4.15: Verteiltes Loadbalancing

Dieser Ansatz soll hier verwendet werden, um die Experimentlaufzeit eines Experiments
zu minimieren. Dabei wird angenommen, dass bei einer guten Platzierung, die Last der
einzelnen virtuellen Maschinen ausgeglichen ist. Da unterschiedliche Platzierungen aber zu
ungleich hohen Gesamtlasten führen können, ist dies nicht immer zutreffend. Eine Reduktion
der Last des höchst ausgelasteten Knoten wird sich allerdings mit hoher Wahrscheinlichkeit
durch dieses Verfahren erreichen lassen.

Im folgenden soll nun vorgestellt werden, wie sich der Sender Initiated Diffusion Algorith-
mus auf die Optimierung einer Platzierung anpassen lässt. Dazu muss zunächst das System,
das aus einer Menge von virtuellen Maschinen besteht, in sich überlappende Bereiche
aufgeteilt werden.

Dies kann z.B. auf Basis von Nachbarschaftbeziehungen erfolgen. Eine Domäne umfasst in
diesem Fall eine virtuelle Maschine und deren direkte Nachbarn. Ein Beispiel für die Bildung
einer Domäne, mithilfe von Nachbarschaftsbeziehungen, ist in Abbildung 4.16 dargestellt. Es
zeigt eine Routerkette, deren Knoten auf verschiedene Vms verteilt wurden und die Domäne,
in der sich die virtuelle Maschine VM1 befindet.

In 4.16 wurde die Nachbarschaft von VMs über Verbindungen virtueller Knoten definiert.
Dabei ist eine VM benachbart zu einer anderen VM, wenn es mindestens einen Knoten in der
VM gibt, der eine Verbindung zu einem Knoten der anderen virtuellen Maschine aufweist.

70

4.8 Lage

VM1 VM4

VM2 VM3

S

R

Domain (VM1)

Abbildung 4.16: Bildung einer Domäne

In 4.16 hat der Sender- und Empfängerknoten der Routerkette auf der virtuellen Maschine
vm1 eine Verbindung zu jeweils einem Knoten der virtuellen Maschine vm2. Damit sind
diese benachbart und gehören in eine Domäne.

Wird der Neuplatzierungsalgorithmus aufgerufen, so wird in jeder der Domänen ein Load
Balancing durchgeführt. Dazu holt jede virtuelle Maschine zunächst die aktuellen Prozessor-
lasten ihrer Nachbarn ein. Aus diesen Daten wird die mittlere Auslastung der Domäne, wie
in (4.28) gezeigt, ermittelt.

(4.28) λvm
avg =

1
|Nvm|+ 1

∗
(

λvm + ∑
i∈Nvm

λi

)

Dabei steht Nvm für die Menge der Nachbarn der virtuellen Maschine vm und λx für die
Last der Maschinen.

Liegt die Last der virtuelle Maschine vm über der mittleren Last der Domäne, so wird ein
Optimierungsalgorithmus angestoßen. Dieser minimiert die mittlere quadratische Abwei-
chung von der Durchschnittslast durch das Verteilen von Knoten der virtuellen Maschine
vm auf ihre Nachbarn (siehe Abbildung 4.17). Die Zielfunktion der Optimierung ist in (4.29)
dargestellt.

(4.29) δ2 =
1

|Nvm|+ 1
∗ ∑

i∈Nvm∪{vm}

(
λi − λvm

avg

)2

71

4.8 Lage

Dabei steht Nvm für die Menge der benachbarten VMs und λx für die Last einer virtuellen
Maschine x.

VM1

VM3

VM4

VM5

VM2

Abbildung 4.17: Verteilte Optimierung der Platzierung

Liegt die virtuelle Maschinen vm unter der mittleren Auslastung, so überspringt sie die
Optimierungsphase. Sie wird von anderen virtuellen Maschinen Knoten erhalten.

Für die Berechnung erwarteter Lasten kann das in 4.4 vorgestellte Kommunikationskos-
tenmodell werden. Dafür muss jede virtuelle Maschine einen Ausschnitt der Testszenario
Topologie kennen. Prognosen zur Auslastung virtueller Knoten und Datenraten von Ver-
bindungen können in einem Modell wie in Abbildung 4.18 dargestellt, gespeichert werden.
Dieses Modell enthält neben den Knoten, die sich auf der eigenen virtuellen Maschine
befinden, auch Knoten aus dem Randbereich zu anderen VMs. Bei diesen ist allerdings nur
die Information wichtig, auf welcher virtuellen VM sie sich befinden, da diese zur Bildung
der Nachbarschaftsbeziehungen benötigt wird.

Um zusätzlich die Gesamtlast zu minimieren, kann der Wert der angestrebten mittleren Last
niedriger gewählt werden.

Hat eine virtuelle Maschine wenig Last und eine große Zahl an hoch ausgelastete Nachbarn,
so wird sie viele Knoten erhalten. Damit es nicht zu einer Überlastung solcher Maschinen
kommt, sollte die Last, die eine virtuelle Maschine an ihre Nachbarn abgeben darf, beschränkt
werden.

Nachdem jede virtuelle Maschine Knoten ausgewählt hat, die zu ihren Nachbarn transferiert
werden sollen, kann die TVEE rekonfiguriert werden. Dies kann, wie in Abschnitt 4.20

72

4.8 Lage

VM1 VM2

20 %

80 %

60 %

80 % 80 %

20 %

80 %

60 %

50 kbit/s

150 kbit/s 150 kbit/s

50 kbit/s

Sichtbarer Ausschnitt der Topologie für VM1Sichtbarer Ausschnitt der Topologie für VM1

200 kbit/s

50 kbit/s

150 kbit/s 150 kbit/s

50 kbit/s

Abbildung 4.18: Lokales Topologiemodell

geschildert, verteilt erfolgen. Soll vor einer Umsetzung zunächst der erwartete Nutzen
der Platzierungsänderung bestimmt werden, so müssen lokale Platzierungsänderungen
kommuniziert werden. Diese können z.B. an einen Koordinator oder an alle geschickt
werden. Aus den lokalen Änderungen lässt sich die neue Gesamtplatzierung rekonstruieren.
Für diese können dann Rekonfigurations- und Kommunikationskosten bestimmt werden. Ein
Großteil der Berechnungen kann dabei schon lokal auf den jeweiligen virtuellen Maschinen
erfolgen. Jede virtuelle Maschine kann z.B. Kosten für das Anhalten der Prozessauführung
virtueller Knoten bestimmen. Lohnt sich die Umsetzung der Platzierung, so kann daraufhin
die Rekonfiguration angestoßen werden.

Durch die Rekonfiguration der TVEE können sich Nachbarschaftsbeziehungen zwischen
virtuellen Maschinen ändern. Erhält eine virtuelle Maschine einen Knoten, so kann sie
z.B. neue Nachbarn dazu gewinnen. Damit eine VM die Nachbarschaftsbeziehungen nach
einer Rekonfiguration aktualisieren kann, muss die Quell VM eines Knotens Informationen
über Verbindungen eines zu migrierenden Knontens mit anderen Knoten an die Ziel VM
weitergeben. Mit diesen Informationen kann das lokale Topologiemodell dann angepasst
werden.

Vorteil des lokalen verteilten Ansatzes besteht in dem geringen nötigen Austausch von
Informationen zwischen virtuellen Maschinen. Im Gegensatz zum zentralen Ansatz müssen
nur wenige Lastdaten ausgetauscht werden. Statt der Datenraten von Verbindungen zwischen
Knoten und deren Auslastungen, müssen nur aktuelle Lasten von virtuellen Maschinen
kommuniziert werden. Dadurch können Kosten gespart werden.

Dem gegenüber entstehen allerdings Kosten für die Ausführung des Optimierungsalgo-
rithmus. Während beim zentralen Ansatz die Optimierung auf einem Rechner ausgeführt
werden kann, auf dem keine Knoten des Experiments laufen, ist dies beim verteilten Ansatz
nicht möglich. Eine Ausführung des Optimierungsalgorithmus kostet also Ressourcen, die
für die das Experiment genutzt werden könnten.

73

4.8 Lage

Zudem wird für die lokale Optimierung ein Modell der Topologie zur Berechnung der
Kommunikations- und Rekonfigurationskosten benötigt. Dies kostet Speicher in den VMs,
der für zusätzliche virtuelle Knoten verwandt werden könnte.

Inwieweit sich durch diesen Ansatz eine Platzierung verbessern lässt, kann ohne Tests schwer
abgeschätzt werden.

Diskussion der Ansätze

In den letzten Abschnitten wurden mögliche Ansätze für die Optimierung einer Platzierung
im Detail vorgestellt. Dieses Kapitel soll nun einen Überblick über alle geben und diese
miteinander vergleichen. Beim Vergleich sollen Kosten für die Optimierung und erwarteter
Nutzen gegeneinander abgewogen werden. Kosten sind:

• Zusätzliche Rechenzeit bzw. Last in den VMs

• Benötigter Speicher in den VMs

Der erwartete Nutzen entspricht dem erwarteten Optimierungspotential des Ansatzes.

Tabelle 4.1 zeigt die vorgestellten Ansätze sowie Kosten und Nutzen. Dabei steht − für
geringe Kosten und −−− für hohe Kosten, + bezeichnet einen geringen erwarteten Nutzen
und +++ einen hohen erwarteten Nutzen.

Ansatz Last Speicher Optimerungspotential

Zentral − − ++

Verteilt(global) −−− −−− +++

Verteilt(lokal) −− −− +(+)

Tabelle 4.1: Vergleich verschiedener Optimierungsansätze

Speicher In allen Ansätzen werden in den virtuellen Maschinen Lastmonitore ausgeführt.
Diese nehmen zu zwei Zeitpunkten Messwerte wie die genutzte Anzahl von Zyklen eines
virtuellen Knotens oder die Anzahl der gesendeten Bytes an eine bestimmte Zieladresse auf.
Aus diesen Messwerten wird mit l = measuredValue(t2)−measuredValue(t1)

t2−t1
die Last eines Knotens

oder Datenraten für Verbindungen zwischen virtuellen Knoten ermitteln. Auf Basis dieser
Daten werden Prognosen über zukünftige Mittelwerte erstellt. Für die Speicherung der
Messwerte wird in allen Ansätzen Arbeitsspeicher benötigt.

Befinden sich auf einer virtuellen Maschine beispielsweise 5000 Knoten und hat jeder dieser
Knoten im Durschchnitt 5 Verbindungen zu anderen Knoten, so wird in der aktuellen
Implementierung ungefähr 2 mb Arbeitsspeicher in einer virtuellen Maschine, für die
Speicherung der letzten beiden Messwerte benötigt.

74

4.8 Lage

Zusätzlich zu Messwerten wird in den verteilten Ansätzen ein Topologiemodell des Testsze-
narios in jeder VM erstellt. In diesem Modell werden Prognosen zu mittleren Datenraten
von Verbindungen und Lasten einzelner Knoten hinterlegt.

In der aktuellen Implementierung wird die Topologie des Testszenarios auf einen Graph
abgebildet. Dabei werden virtuelle Knoten auf Knoten des Graphen und Verbindungen
zwischen virtuellen Knoten auf Kanten abgebildet. An jeder Kante des Graphen kann die
mittlere Datenrate und an jedem Knoten die mittlere Last gespeichert werden. Für dieses
Modell wird zusätzlicher Speicher benötigt.

Befinden sich wie im Beispiel oben 5000 Knoten auf einer virtuellen Maschine und hat jeder
dieser Knoten durchschnittlich 5 Verbindungen, so wird beim lokalen verteilten Ansatz etwa
8 mb für das Topologiemodell benötigt. Im lokalen Ansatz muss jede TVEE nur den für ihn
sichtbaren Teil der Topologie speichern. Dieser umfasst Randknoten und Knoten, die sich
auf ihr befinden.

Im globalen verteilten Ansatz hingegen benötigt jede VM die Sicht auf die komplette
Topologie. Nimmt man die gleiche Anzahl von Knoten pro VM an wie im vorigen Beispiel
und eine Gesamtzahl von 64 VMs, so ist der Speicherbedarf pro VM z.B. 512 mb - also
deutlich höher.

Im zentralen Ansatz wird hingegen das komplette Topologiemodell auf dem Koordinator
gespeichert. In den einzelnen VMs wird dafür also kein zusätzlicher Speicher benötigt.

Zusätzliche Rechenzeit, bzw. Last Beim zentralen Ansatz wird der Optimierungsalgorith-
mus auf dem Koordinator ausgeführt. Dieser ist nicht Teil des Experiments, verursacht
also keine Kosten in einer virtuellen Maschine. Pro virtueller Maschine entstehen im zen-
tralen Ansatz allerdings Kosten für das Übermitteln der Lasten und Datenraten an den
Koordinator.

Für 5000 Knoten pro VM und 5 Verbindungen pro Knoten muss jede VM beispielsweise 1

mb an Nutzdaten übertragen. Bei einer 1 Gbit Verbindung wird für den Transfer der Daten
ungefähr 10 Millisekunden Rechenzeit benötigt.

Im verteilten globalen Ansatz müssen Lastdaten an alle VMs verteilt werden. Da jede
VM gleichzeitig Sender und Empfänger ist, wird für den Transfer der Daten ungefähr
doppelt soviel Zeit benötigt. Zudem kommt noch die Rechenzeit, die für die Ausführung
des Optimierungsalgorithmus benötigt wird. Diese wird in höherer Größenordnung als
der Lastdatentransferzeit liegen. Wird zu wenig Zeit in die Optimierung investiert, ist mit
schlechten Resultaten zu rechnen.

Im verteilten lokalen Ansatz wird die benötigte Rechenzeit im Wesentlichen von dem Op-
timierungsalgorithmus bestimmt. Da jede VM nur einen Ausschnitt der Topologie kennt,
ist das Optimierungsproblem weniger komplex als im globalen Fall. Aus diesem Grund
muss für die Optimierung weniger Zeit eingeplant werden. Die benötigte Rechenzeit wird

75

4.8 Lage

voraussichtlich trotzdem um einiges höher sein als die im zentralen Fall für die Kommunika-
tion von Lasten benötigte Zeit. Diese betrug pro VM in einem großen Szenario ungefähr 10

Millisekunden.

Optimierungspotential Beim zentralen Ansatz wird der Optimierungsalgorithmus auf ei-
nem Rechner, genannt Koordinator, ausgeführt. Dieser optimiert die in 4.6.1 vorgestellte
Zielfunktion. Da der Koordinator über eine globale Sicht verfügt, ist das Optimierungspoten-
tial hoch.

Im zentralen Ansatz sind allerdings die Ressourcen beschränkt. Ist man an einer optimalen
Lösung interessiert, bietet sich daher der verteilt globale Ansatz an.

Das Optimierungspotential des verteilt lokalen Ansatzes kann nur schwer abgeschätzt
werden, zumal in diesem Ansatz nicht direkt die Experimentlaufzeit minimiert werden
kann.

4.8.2 Koordination der Rekonfiguration der TVEE

In Kapitel 4.3 wurden Operationen vorgestellt die zur Rekonfiguration der TVEE im Zuge
einer neuen Platzierung nötig sind. Außerdem wurde in Abschnitt 4.3.3 eine sinnvolle Reihen-
folge der Operationen motiviert. Wie diese Reihenfolge auch bei einer verteilten Ausführung
von Operationen eingehalten werden kann, wurde in Abschnitt 4.3.4 vorgestellt.

In diesem Abschnitt soll nun auf die Koordination der Rekonfiguration eingegangen wer-
den. Also z.B. auf die Frage, wer die zur Konfiguration der TVEE nötigen Aktionen einer
Operation , wie z.B. Erzeugung einer Software Brücke, Suspend eines Knotens, generiert.

Hier sollen zwei Ansätze vorgestellt werden: Ein verteilter und ein zentraler Ansatz.

Zentraler Ansatz

Bei der zentralen Rekonfiguration, dargestellt in 4.19, wird die Anpassung der TVEE zentral
von einem Koordinator gesteuert. Dieser bestimmt auf Basis gewünschter Platzierungsände-
rungen Aktionen, die im Zuge der Rekonfiguration auszuführen sind.

Um diese Aktionen bestimmen zu können, benötigt der Koordinator Informationen über
die aktuelle Konfiguration der Emulationsumgebung. Wichtige Informationen sind z.B.
die aktuelle Position virtueller Knoten sowie die Konfiguration von Softwarebrücken und
Vlans. Aus diesen Informationen kann er dann nötige Aktionen, wie z.B. das Erzeugen einer
Software-Brücke und das Anbinden eines Netzwerkgerätes, an eine Brücke ableiten.

Um diese Informationen nicht vor jeder Rekonfiguration ermitteln zu müssen, sollte zu
Beginn ein Abbild der Emulationsumgebung erstellt werden. Dies kann im Folgenden bei

76

4.8 Lage

jeder Rekonfiguration aktualisiert werden. Ein Beispiel, wie auf Basis dieses Abbildes die
Softwarebrücken-Konfiguration angepasst werden kann, wurde in 4.3.2 vorgestellt.

Wurden nötige Aktionen bestimmt, so müssen diese in einem nächsten Schritt in den
virtuellen Maschinen ausgeführt werden. Dazu wird in jeder VM ein Daemon gestartet, der
auf auszuführende Aktionen lauscht. Eine Verbindung zwischen dem Koordinator und einer
VM kann über TCP realisiert werden.

Rekonfigurations-
Koordinator

Änderung der Platzierung

führe aus

ausgeführt Daemon in
VMführe aus

ausgeführt

führe aus

ausgeführt

Operation 1

Aktion1 Aktion2

Aktion3

Operation 2
...

Daemon in
VM

Abbildung 4.19: Zentrale Rekonfiguration

Erhält eine VM eine Aktion, so führt sie diese aus und bestätigt die Ausführung mit einer
Nachricht („ausgeführt“). Besteht eine Operation, wie in 4.19 zu sehen, aus mehreren Aktion,
so kann durch diese Nachricht sichergestellt werden, dass alle Aktionen einer Operation
ausgeführt sind, bevor die nächste Operation gestartet wird. Wie in 4.3.3 vorgestellt ist eine
bestimmte Reihenfolge von Operationen einzuhalten.

Für jede auszuführende Aktion wird eine Nachricht an die VM geschickt, in der sie auszu-
führen ist. Um möglichst wenig Nachrichten verschicken zu müssen, können Nachrichten
für ähnliche Aktionen zusammengefasst werden. Muss z.B. der Zustand mehrerer Knoten in
einer VM gesichert werden, so muss nicht für jeden Knoten eine einzelne Nachricht geschickt
werden. Stattdessen kann eine Nachricht genutzt werden, die alle Knoten-IDs zu sichernder
Knoten enthält. Dadurch wird das zu kommunizierende Datenvolumen gesenkt.

Verteilter Ansatz

Ein möglicher verteilter Ansatz ist in Abbildung 4.20 dargestellt.

77

4.8 Lage

Im Gegensatz zum zentralen Ansatz werden auszuführende Aktionen nicht von einem Koor-
dinator, sondern von Daemons in den VMs bestimmt. Auf Basis der Platzierungsänderung
und einem lokalen Abbild der Emulationsumgebung ermittelt jeder Daemon Aktionen, die
in seiner VM auszuführen sind.

Wird ein zentraler Ansatz zur Optimierung der Platzierung gewählt, so können die als
Input benötigten Platzierungsänderungen jeder VM, z.B. über ein Broadcast, zur Verfü-
gung gestellt werden. Wird ein verteilter Ansatz gewählt, so liegen Informationen über
Platzierungsänderungen bereits vor; sie müssen also nicht kommuniziert werden.

Im Gegensatz zum zentralen Ansatz der Rekonfiguration wird im verteilten Ansatz in jeder
VM ein Abbild der Emulationsumgebung benötigt. Dieses muss virtuelle Knoten, die sich in
ihr befinden sowie aktuelle Brücken und Vlan Konfigurationen umfassen. Hauptsächlich
wird das Abbild für die Layer 2 Topologie Adaption benötigt.

Daemon in VM

Änderung der Platzierung

Operation 1

Aktion1

Operation 2
...

Daemon in VM

Operation 1

Aktion2

Aktion3

Operation 2
...

Änderung der Platzierung

Op 1 beendet

Op 1 beendet

Abbildung 4.20: Zentrale Rekonfiguration

Um sicherzugehen, dass Operationen in der richtigen Reihenfolge ausgeführt werden, wird
der in 4.3.4 vorgestellte verteilte Ansatz benutzt. Nach der erfolgreichen Ausführung einer
Operation schickt jede VM den anderen VMs eine Nachricht(z.B. „Op 1 beendet“). Im
Gegensatz zum zentralen Ansatz müssen allerdings für die Aktionen, aus denen sich eine
Operation zusammensetzt, keine Nachrichten verschickt werden.

Für die Anpassung der Layer 2 Topologie müssen allerdings zusätzliche Informationen in
die Sicherungsdatei eines Knotens aufgenommen werden. Da die Ziel-VM nur eine lokale
Sicht auf das Abbild der Emulationsumgebung hat, besitzt sie keine Informationen darüber,
an welche Brücken ein Knoten, den sie erhält, vorher angebunden war. Diese Informationen
werden allerdings zur erfolgreichen Anpassung der Layer 2 Topologie benötigt.

78

4.8 Lage

Diskussion der Ansätze

In den letzten beiden Abschnitten wurden zwei Ansätze zur Koordination der Rekonfigura-
tion vorgestellt: ein verteilter und ein zentraler Ansatz. In diesem Teil der Arbeit sollen nun
beiden Ansätze verglichen werden. Dabei soll besonders auf den Koordinations-Overhead
beider eingegangen werden. Betrachtet werden sollen:

• Zusätzliche Last in VM

• Benötigter Speicher in VM

Last Die Last in VMs, die durch die Koordination der Rekonfiguration entsteht, wird
hauptsächlich durch die nötige Kommunikation bestimmt. Daher sollen hier die Anzahl der
benötigten Nachrichten pro Rekonfiguraiton in beiden Ansätzen verglichen werden.

Die Rekonfiguration lässt sich wie in 4.3 vorgestellt, in folgende Operationen unterteilen:

• Setzen eines hohen TDF Wertes

• Setzen virtueller Knoten in einen Haltezustand(Suspend)

• Migration von virtuellen Knoten und Netshaper Instanzen. Zerfällt in Teiloperationen
Sichern(Dump), Transfer und Wiederherstellen (Undump)

• Anpassung Layer 2 Topologie (Layer 2 Adaption)

• Wiederaufnahme Prozessausführung in virtuellen Knoten(Resume virtueller Knoten)

• Wiederaufnahme Paketzustellung in Netshaper Instanzen(Resume Netshaper)

• Rücksetzen der TDF Änderung

Im verteilten Ansatz werden Nachrichten nach Ausführung aller Aktionen einer Operation
ausgetauscht. Jede virtuelle Maschine verschickt dabei eine Nachricht (kann über Mulicast
oder Broadcast an alle weitergeleitet werden) und empfängt |VM| − 1 Nachrichten nach
jeder Operation. Dies bedeutet, dass für die gesamte Rekonfiguration für eine konstante Zahl
an Operationen jede VM O((|VM|)) Nachrichten kommunizieren muss. Jede Nachricht kann
dabei sehr kurz sein, da sie nur als Bestätigung für eine ausgeführte Operation fungiert.

Im zentralen Ansatz empfängt und sendet jeder Daemon in einer VM eine Nachricht für
jede Aktion bzw. Gruppe von Aktionen, die er auszuführen hat.

Tabelle 4.2 zeigt wieviele Nachrichten eine VM pro Operation empfängt:

Für die Operationen Start und Stopp der globalen virtuellen Zeit muss nicht mit den VMs
kommuniziert werden (sondern mit dem Koordinator der Zeitvirtualisierung).

79

4.8 Lage

Operation Anzahl Nachrichten

Stopp globaler Zeit 0

Suspend 1

Dump nvm
dump

Transfer 1

Undump 1

Layer 2 Adaption |createBridgevm|+ |destroyBridgevm|+ |attachVNicvm|
Resume virtueller Knoten 1

Resume Netshaper 1

Start globaler Zeit 0

Tabelle 4.2: Übersicht Nachrichten zentrale Koordination

Ermittelt der Daemon vor Ausführung der Operationen Resume und Suspend die virtuellen
Knoten, die sich derzeit in seiner VM befinden (z.B. über vzlist), so müssen diese Operationen
nur vom Koordinator angestoßen werden. Es wird daher nur eine Nachricht benötigt, die
sehr klein sein kann.

Die Nachrichten, die für die Aktionen der Operation Dump eines virtuellen Knotens und
dessen Netshaper Instanzen benötigt werden, richten sich nach der Anzahl der zu sichernden
virtuellen Knoten in der VM (nvm

dump). Jede Nachricht muss die Id des zu sichernden Knoten
enthalten. Alternativ kann auch eine Nachricht mit allen Knoten IDs verschickt werden.

Die Anzahl der Nachricht, die für die Layer 2 Adaption benötigt werden, wird durch die
Zahl der zu erstellenden Softwarebrücken(|createBridgevm|), der zu zerstörenden Brücken
(|destroyBridgevm|) und der Zahl der wieder anzubindenden virtuellen Netzwerkgeräte
|attachVNicvm| an eine Brücke bestimmt. Jede Nachricht enthält dabei mindestens die Id
einer Brücke.

Wird die Rekonfiguration zentral koordiniert, werden 0(nvm
dump + |createBridgevm| +

|destroyBridgevm + |attachVNicvm|) Nachrichten benötigt. Jede Nachricht muss dabei
meist allerdings nur wenige Bytes an Nutzdaten enthalten. Zudem können die meisten
Nachrichten zu größeren Nachrichten zusammengefasst werden. Selbst wenn eine virtuelle
Maschine 5000 Knoten verliert und andere 5000 Knoten erhält und dabei 5000 Brücken
erzeugt und gelöscht werden, beläuft sich die Gesamtgröße der Nachrichten auf unter 200

kbyte.

In beiden Ansätzen ist der Overhead für die Kommunikation im Vergleich zu denen durch
Operationen entstehenden Kosten gering. Zwar ist der Kommunikationsaufwand für eine VM
im zentralen Ansatz höher, dafür entstehen allerdings auch keine Kosten für die Ermittlung
nötiger Aktionen in den VMs.

80

4.8 Lage

Speicher Im zentralen Ansatz wird kein zusätzlicher Speicher in den VMs benötigt. Das
komplette Abbild der Emulationsumgebung befindet sich bei der zentralen Koordination
auf dem Koordinator. Auf diesem befinden sich in der Regel keine virtuellen Knoten des
Experiments.

Im verteilten Ansatz speichert jede VM den für sie sichtbaren Teil des Abbildes. Dies umfasst
z.B. Knoten und Brücken, die sich in ihr befinden. Zwar wird dafür zusätzlicher Speicher
benötigt, dieser liegt allerdings höchstens im 1 mb Bereich(5000 Knoten in VM), ist also eher
zu vernachlässigen.

Zusammenfassend kann man sagen, dass für die Koordination der Rekonfiguration beide
Ansätze gleich gut geeignet sind. Ob die Koordination verteilt oder zentral ausgeführt wird,
sollte sich daher nach der Wahl des Optimierungsalgorithmus richten. Wird eine verteilter
Optimierungsansatz verfolgt, so sollte die Rekonfiguration auch verteilt sein. Dadurch wird
eine nötige Kommunikation von Platzierungsänderungen vermieden.

81

5 Implementierung

In diesem Kapitel wird nun näher auf den implementierten Prototypen eingegangen. Es
wurde sich für die Implementierung des zentralen Neuplatierungsansatzes entschieden, da
sich dieser als viel versprechend herausstellte.

Sowohl die Optimierung der Platzierung als auch die Rekonfiguration der TVEE werden zen-
tral koordiniert. Für die Implementierung des Koordinators wurde Java verwendet. Daemons,
die in den einzelnen virtuellen Maschinen ausgeführt werden, um z.B. Rekonfigurationsak-
tionen entgegen zu nehmen, wurden ebenfalls in Java realisiert.

Zur Umsetzung einzelner Aktionen der Rekonfiguration, wie z.B. das Setzen eines virtuellen
Knotens in den Haltezustand, wurden Bash Skripte verwendet.

Die Grundideen des zentralen Ansatzes wurden schon im Abschnitt 4.8 erläutert. Eine
Erläuterung der Rekonfiguration erfolgte in Abschnitt 4.3. Deshalb soll hier nur kurz auf
Implementierungsdetails eingegangen werden.

5.1 Rekonfiguration

In dem Prototyp wird die Rekonfiguration zentral von einem Koordinator gesteuert. Dieser
veranlasst den Aufruf von Tools und Skripten in den VMs, die für die Durchführung
einzelner Operationen wie z.B. dem Suspend von Knoten nötig sind. Genutzte Tools und
durchzuführende Erweiterungen bestehender Tools werden in diesem Abschnitt erläutert.

5.1.1 Suspend/Resume virtueller Knoten

Für Suspend und Resume von virtuellen Knoten wird das OpenVZ Tool vzctl eingesetzt.
Über vzctl chkpnt 1 –suspend lässt sich beispielsweise der Container mit der Id 1 in den
Haltezustand bringen.

Für jeden Knoten auf einer virtuellen Maschine muss das Tool einzeln aufgerufen werden.
Dabei terminiert ein Aufruf des Tools erst wenn alle Prozesse innerhalb eines Containers
gestoppt wurden. Der aktuelle Zustand eines Prozesses wird dabei periodisch überprüft. Um
die damit verbundenen Wartezyklen nicht zu verschwenden werden alle nötigen Aufrufe des
Tools parallel ausgeführt (vzctl...&). Um sicherzustellen, dass am Ende alle Container einer

82

5.1 Rekonfiguration

VM suspended/resumed sind, wird auf die Terminierung aller Tool Instanzen gewartet ((
„wait“)).

5.1.2 Migration virtueller Knoten

Einen wesentlichen Teil der Migration bilden das Sichern (dump) und Wiederherstellen
(undump) eines virtueller Knoten. Dafür wird das OpenVZ Tool vzctl genutzt. Mittels des
Befehls vzctl chkpnt 1 –dump –dumpfile /vz/dump/1.dump lässt sich z.B. der Zustand des
Containers mit der Id 1 in das Verzeichnis /vz/dump/1.dump sichern.

Der Transfer der Sicherung zum Zielrechner geschieht über das Tool netcat. netcat überträgt
Daten von der Standardeingabe über TCP zu einem entfernten Rechner. Dazu muss auf dem
Zielrechner das Tool im Listen Modus gestartet werden. Damit gleichzeitig unterschiedliche
VMs Daten übertragen können, werden im Hintergrund so viele netcat Instanzen im Listen
Modus gestartet wie virtuelle Maschinen an einem Experiment teilnehmen. Jeder VM steht
damit eine eigene TCP Verbindung zur Übertragung von Daten an eine bestimmte Ziel VM
zur Verfügung.

5.1.3 Migration von Netshaper Instanzen

Wie bereits in Abschnitt 4.3 erwähnt wird für die Sicherung der Netshaper Instanz das
Proc Dateisystem benutzt. Über diese Schnittstelle kann eine Netshaper Instanz konfigu-
riert werden; über echo 100 > /proc/vz/simple_ns/ve1_eth0_rcv/bandwidth kann z.B. die Band-
breite des empfangenden Netzwerkgeräts mit der Id 0 des Containers 1 gesetzt werden.
Kopiert man den kompletten Proc Ordner einer Netshaper Instanz beispielsweise /proc/vz/sim-
ple_ns/ve1_eth0_rcv mit allen darin enthaltenen Dateien, so lassen sich aktuelle Einstellungen
der Netshaper Instanz einfach festhalten.

Zur Sicherung von gepufferten Frames und der Parameterliste(wird in MANet Szenarien
benötigt) musste die bisherige Proc Schnittstelle des Netshaper Tools noch erweitert werden.
Über die Dateien macdump und framedump lassen sich nun Frames und Parameter auslesen.

Der Transfer der gesicherten Daten geschieht, wie bei der Migration der virtuellen Knoten,
über das netcat Tool. Wiederhergestellt wird eine NetshaperInstanz durch das Zurückkopie-
ren des gesicherten Ordners auf dem Zielrechner.

5.1.4 Anpassung der Layer 2 Topologie

Zur Anpassung der Layer 2 Topologie müssen Softwarebrücken erstellt und gelöscht werden.
Außerdem sind Vlans Einzurichten und mit Softwarbrücken zu verbinden.

83

5.2 Optimierung der Platzierung

Für die Konfiguration Softwarebrücken wird das Tool brctl genutzt. Für das Einrichten von
Vlans wird vconfig verwendet.

5.2 Optimierung der Platzierung

Die Optimierung der Platzierung geschieht zentral auf dem Koordinator mittels des in
4.6.2 vorgestellten Optimierungsalgorithmus. Die Zielfunktion des Optimierungsalgorithmus
baut dabei auf einem Kommunikationskostenmodell auf. Zur Berechnung der Kosten in
diesem Modell werden Informationen über die Topologie des Testszenarios und die ak-
tuelle Position virtueller Knoten benötigt. Zu Beginn des Experiments müssen diese dem
Neuplatzierungsalgorithmus zur Verfügung gestellt werden.

Um möglichst unabhängig von anderen Tools zu sein, die in der TVEE eingesetzt werden,
ermittelt der Neuplatzierungsalgorithmus zu Beginn die relevanten Informationen selber.
Damit dies funktioniert darf das Tool erst gestartet werden, wenn die TVEE bereits für ein
Experiment konfiguriert ist. Die nötigen Informationen werden über zwei Tools ausgelesen,
die in den virtuellen Maschinen des Testsystems auszuführen sind.

vzlist zeigt alle Container an die in einer virtuellen Maschine ausgeführt werden. Über dieses
Tool lässt sich also die Position jedes Knotens bestimmen.

brctl show liefert eine Übersicht über alle Softwarebrücken in einer VM. Zusätzlich zu den
Brücken werden alle Netzwerkgeräte angezeigt, die mit diesen verbunden sind. Mittels
dieser Daten lässt sich eine Kommunikatiosmatrix von Knoten bestimmen. Daraus lässt sich
dann das Topologiemodell ableiten.

5.3 Monitore

Dieser Abschnitt beschäftigt sich mit Implementierungsdetails der Monitore. Diese zeichnen
Daten wie mittlere Datenrate von Verbindungen zwischen Knoten sowie mittlere Lasten von
virtuellen Knoten auf.

5.3.1 Mittlere Datenraten

Zur Bestimmung der mittleren Datenrate einer Verbindung zwischen zwei Knoten muss
zu zwei Zeitpunkten die Datenmenge , die von einem zum anderen Knoten übertragene

wurde, erfasst werden. Über d =
txbytes(t2)−txbytes(t1)

t2−t1
lässt sich dann die mittlere Datenrate

bestimmen.

84

5.4 Probleme Rekonfiguration

Für die Ermittlung der mittleren Datenraten einer Verbindung musste die Statistik des
Netshapertools erweitert werden. Bisher wurde nur die Gesamtdatenmenge,die über die
Netshaper Instanz gesendet wurde, erfasst. (Z.B. txbytes = 50000). Für die Bestimmung
mittlerer Datenraten von Verbindungen muss die Statistik allerdings nach Ziel der Pakete
aufgeschlüsselt werden. Für jede mögliche Ziel Adresse (Mac Adresse) müssen die Anzahl
der gesendeten Bytes festgehalten werden.

Dies führte zu einer erweiterte Statistik, die über die Proc Datei statistic in dem proc Ordner
einer Netshaper Instanz ausgelesen werden kann. Der Inhalt der Datei hat dabei das Format
(macAdresse txBytes)*.

5.3.2 Mittlere Auslastung

Zur Bestimmung der mittleren Auslastung virtueller Knoten muss die Anzahl genutzter
Zyklen zu zwei Zeitpunkten erfasst werden. Diese Information wird der Datei „/proc/vz/-
vestat“ entnommen.

5.4 Probleme Rekonfiguration

Während des Tests der Rekonfiguration traten verschieden Probleme auf. Die, die bisher
noch nicht gelöst werden konnten, sollen hier kurz vorgestellt werden.

5.4.1 Routing Tabelle

Bei einem Routerketten Testszenario mit 8 Knoten, die auf zwei virtuelle Maschinen verteilt
wurden, konnten Routertabelleneinträge einzelner Knoten nach der Migration nicht korrekt
wiederhergestellt werden. Teilweise fehlten Einträge. Für jeden fehlenden Eintrag wird eine
Kernelmeldung ausgegeben. Z.B. „CPT ERR: e78f8800,5 :NLMERR: -101“. Bisher konnte
die Ursache dafür noch nicht ermittelt werden. Benutzt wurde der Kernel ovzkernel-2.6.18-
194.3.1.el5.028stab069.6 und die vzctl Tool Version 3.0.24.2.

5.4.2 Probleme im Zusammhang mit netperf und iperf

Netperf und iperf sollten als Traffic Generatoren für den Test der Rekonfiguration verwendet
werden. Allerdings traten Probleme im Zusammenhang mit der Rekonfiguration mit diesen
beiden Tools auf.

Wird ein Container, in dem sich eine netserver Instanz befindet in den Haltezustand versetzt
und danach weiter ausgeführt, so wird eine fin Nachricht an die mit ihm kommunizierende

85

5.4 Probleme Rekonfiguration

netperf Instanz geschickt. Die TCP Verbindung, die zwischen beiden besteht, wird dadurch
vorzeitig geschlossen.

Ein weiteres Problem mit netperf und iperf besteht im Zusammenhang mit der Zeitvirtuali-
sierung. Von Zeit zu Zeit springt der TDF kurz nach der Rekonfiguration in sehr kurzer Zeit
auf den Maximalwert. Betrachtet man die Last einzelner migrierter virtueller Knoten, so ist
diese sehr viel höher als normal. Lässt man einen massiven Anstieg des TDF durch die Wahl
eine sehr kleinen Maximalwerts nicht zu, so stellt sich nach kurzer Zeit wieder ein normales
Verhalten ein. Grund für das seltsame Verhalten könnte z.B. ein busy waiting sein.

Aufgrund dieser Probleme wurde für die Generierung von Traffic auf netcat gewechselt.
Zum Zeitpunkt der Abgabe der Diplomarbeit war allerdings noch nicht klar, ob sich dadurch
oben genannte Probleme vermeiden lassen.

Für eine transparente Rekonfiguration ist es wichtig die globale virtuelle Zeit nur sehr
langsam weiterlaufen zu lassen. Dazu wird zu Beginn der Rekonfiguration der TDF auf den
Maximalwert gesetzt: aktuell 1000. Eine Millisekunde vergeht damit in einer Sekunde. Dies
ist jedoch kritisch für die Performance der Rekonfiguration. In der OpenVZ Implementierung
der Operationen Kill, Suspend und Resume von Containern werden Timer benutzt. Meist liegen
Zeiten der Timer im Millisekunden Bereich. Durch die Zeitskalierung benötigen Operationen
allerdings teilweise mehrere Sekunden. Für eine effiziente Rekonfiguration müsste also der
entsprechende OpenVZ Code angepasst werden. Dies wurde für die Operation Suspend auch
schon bereits durchgeführt.

86

6 Evaluation

6.1 Konstanten Rekonfigurationskostenmodell

In diesem Abschnitt sollen die Konstanten des in 4.5 vorgestellten Rekonfigurationsmodells
für die aktuelle Hard- und Sofware Konfiguration der Testumgebung bestimmt werden.

In der aktuellen Hardware Konfiguration besitzt jeder physikalische Rechner der Testumge-
bung eine Intel Xeon CPU mit 8 Kernen und 24 Gigabyte Arbeitsspeicher. Jeder Kern wird
mit 2,4 Ghz getaktet.

Als Betriebssystem kommt ein modifiziertes Red Hat 4.1.2-48 zum Einsatz.

Abbildung 6.1 zeigt die Kosten für suspend und resume in Abhängigkeit von der Anzahl der
Knoten. In jedem Knoten wird ein Prozess ausgeführt. Dieser steht stellvertretend für die
Software Under Test. Jeder Prozess belastet das System nur leicht.

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

number of nodes

tim
e

[m
s]

suspend
resume

Abbildung 6.1: Kosten für Suspend und Resume Operation in Abhängigkeit von der Anzahl
der Knoten

87

6.1 Konstanten Rekonfigurationskostenmodell

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

50

100

150

200

250

300

size dumpfile [KB]

tim
e

 [m
s]

dumpContainer
undumpContainer

Abbildung 6.2: Kosten für Dump und Undump eines Knotens in Abhängigkeit von erwarte-
ter Größe des Dumpfiles

Man erkennt, dass die Zeit, die für die suspend Operation benötigt wird schwankt, aber im
Groben linear steigt. Warum die Zeit mit höherer Knotenanzahl sogar teilweise rückläufig
ist, kann ich mir nicht erklären. Antwortet ein Prozess nicht direkt auf das Stopp Signal, so
wird eine bestimmte Zeit gewartet. Aktuell bei einem TDF von 1000 1 Sekunde. Wie in 6.1
zu sehen kann bei geringem Unterschied der Knotenanzahl die benötigte Zeit um 1 Sekunde
schwanken. Daher lassen sich Kosten für die suspend Operation nicht besonders präzise
voraussagen.

6.2 zeigt die Kosten für das Sichern und Wiederherstellen des Zustands eines Knotens in
Abhängigkeit von der Größe der erzeugten Sicherungsdatei. Die Größe der erzeugten Datei
kann gut durch den genutzten Arbeitsspeicher des Knotens abgeschätzt werden.

’“Gedumpt“ wurde in diesem Test in den Arbeitsspeicher der virtuellen Maschine (/dev/s-
hm/). Man erkennt, dass die Kosten linear mit der Größe des Sicherungsdatei steigen.

6.3 zeigt die Kosten für das Sicher, und Wiederherstellen einer Netshaper Instanz in Abhän-
gigkeit von der Größe der sich derzeit im Puffer befindlichen Frames.

Man erkennt, dass das Sichern von Frames teurer ist als das Wiederherstellen. In der ak-
tuellen Implementierung werden Frames über die Proc Schnittstelle gesichert. Dabei wird
eine proc-read Funktion separat für jeden zu sichernden Frame aufgerufen. Beim Wiederher-
stellen, (dies geschieht über eine proc-write Funktion) werden mehrere Frames gleichzeitig
wiederhergestellt. Für das Sichern der Frames ist also der Overhead für Funktionsaufrufe
höher.

88

6.1 Konstanten Rekonfigurationskostenmodell

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

20

40

60

80

100

120

140

160

size queued frames [KB]

tim
e

 [m
s]

dumpSimpleNs (frames)
undumpSimpleNs (frames)

Abbildung 6.3: Kosten für Dump und Undump einer Netshaper Instanz in Abhängigkeit
von der Größe der gepufferten Frames

6.4 zeigt die Kosten für den Dump und Undump einer Netshaper Instanz in Abhängigkeit
von der Größe der Parameterliste. Auch hier lässt sich wieder beobachten, dass das Sichern
der Parameterliste teurer ist als das Wiederherstellen. Dies ist aus den gleichen Gründen wie
oben der Fall.

6.5 zeigt die Kosten für das Beenden von Knoten. Diese steigen mit der Anzahl der Knoten
schwanken allerdings sehr stark. Ähnlich wie bei der suspend Operation werden vermutlich
auch hier Timer benutzt, die unter bestimmten Umständen getriggert werden.

Wie lange das Beenden von einer bestimmten Anzahl von Knoten dauert lässt sich nur
sehr schwer abschätzen. Für eine grobe Abschätzung wird hier eine Ausgleichsgerade
verwendet.

6.6 zeigt als letztes die Dauer für den Transfer von Daten in Abhängigkeit von dem zu
übertragenden Datenvolumen und der Art der Verbindung zwischen den VMs. Liegt die
Ziel VM auf einem anderen physikalischen Knoten als die Quell VM so entstehen leicht
höhere Kosten.

Aus den vorgestellten Graphen lassen sich die für das Modell benötigten Konstanten bestim-
men. Diese sind in den Tabellen 6.1 und 6.2 dargestellt.

89

6.1 Konstanten Rekonfigurationskostenmodell

0 1000 2000 3000 4000 5000 6000
20

40

60

80

100

120

140

160

180

size parameter list [kb]

tim
e

[m
s]

dumpSimpleNs (parameter list)
undumpSimpleNs (parameter list)

Abbildung 6.4: Kosten für Dump und Undump einer Netshaper Instanz in Abhängigkeit
von der Größe der Parameterliste

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

number of nodes

tim
e

 [m
s]

kill Container
line of best fit

Abbildung 6.5: Kosten für das Beenden eines Knotens

90

6.1 Konstanten Rekonfigurationskostenmodell

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

100

200

300

400

500

600

700

800

inter-vm data transfer
inter-pnode data transfer

Abbildung 6.6: Kosten Transfer von Daten in Abhängigkeit vom zu übertragenden Datenvo-
lumen

suspend 6, 078464[ms]
resume 3, 602432[ms]
dumpMem 4, 632[ms/mb]
dumpFrame 5, 461[ms/mb]
dumpMac 26, 238[ms/mb]
trans f erintervm 13, 084[ms/mb]
trans f erinterpnode 14, 964[ms/mb]
undumpMem 1, 780[ms/mb]
undumpFrame 2, 124[ms/mb]
undumpMac 5, 753[ms/mb]
killVNode 38, 02[ms]
createBridge 200, 0[ms]
destroyBridge 210, 0[ms]

Tabelle 6.1: κ Konstanten

91

6.2 Performance des Optimierungsalgorithmus

dumpVnode 60, 324[ms]
dumpNs 40, 991[ms]
transferData 40, 452[ms]
undumpVnode 90, 754[ms]
undumpNs 35, 791[ms]
kill 1254, 321[ms]

Tabelle 6.2: c Konstanten

6.2 Performance des Optimierungsalgorithmus

In diesem Kapitel soll die Performance des in 4.6.2 vorgestellten Optimierungsalgorithmus
evaluiert werden. Dazu wird die in 4.6.1 erläuterte Zielfunktion verwendet.

Zur Evaluierung werden 3 unterschiedliche Testszenarien betrachtet:

• ein Grid Szenario

• ein Waxman Graph Szenario

• ein Routerketten Szenario

Für alle 3 Szenarien wird das Konvergenzverhalten des Simulated Annealing Algorithmus
untersucht. Dabei wird die Geschwindigkeit mit der der Wert des Kontrollparameters T
sinkt variiert. Dies geschieht durch unterschiedliche Wahl der Konstante α (siehe 4.6.7).

Für jedes Testszenario steht dem Algorithmus ein Zeitfenster von 30 Sekunden für die
Optimierung einer Platzierung zur Verfügung. Die Anzahl der Knoten variiert mit den
Testszenarien zwischen 6400 und 50000 Knoten. Jeder Knoten nutzt zwischen 200 kbyte und
10 mbyte Arbeitsspeicher. Der Puffer der Netshaper Instanzen haben eine Größe zwischen
0 kbyte und 200 kbyte. Eine Paramterliste, in der zusätzlich Einstellungen für bestimmte
Verbindungen zwischen Knoten abgelegt werden können, wird nicht verwendet. Ausgeführt
wird die Optimierung auf einem Rechner mit 2 Kernen, die mit 2,4 Ghz getaktet sind.

Für die Berechnung erwarteter Experimentlaufzeiten wird ein virtuelles Zeitfenster von
twindow = 60s verwendet.

Jedes Testszenario wird mit jeweils 2 unterschiedlichen Testbed Konfigurationen evaluiert. In
der einen Konfiguration besteht das Testbed aus 8 physikalischen Rechnern mit jeweils 8 vir-
tuellen Maschinen (8 ∗ 8 = 64VMs) und in der anderen Konfiguration aus 16 physikalischen
Rechnern mit 8 virtuellen Maschinen pro physikalischem Knoten (16 ∗ 8 = 128VMs).

Für jedes Testszenario wird der Optimierungsalgorithmus 5 mal für alle möglichen Konfigu-
rationen ausgeführt. Die unten aufgeführten Graphen zeigen jeweils Mittelwerte.

92

6.2 Performance des Optimierungsalgorithmus

6.2.1 Grid Szenario

Das erste betrachtete Testszenario ist ein Grid Szenario. In diesem werden 6400 Knoten in
einem regulären quadratischen Gitter angeordnet. Jeder Knoten besitzt Verbindungen zu
seinen direkten Nachbarn. Ein Knoten kann maximal 4 Verbindungen eingehen. Ein Beispiel
für eine reguläres quadratisches Grid zeigt Abbildung 6.7.

VM3 VM4

VM1 VM2

Abbildung 6.7: Grid Testszenario

Datenraten der Verbindungen zwischen virtuellen Knoten wurden zufällig zwischen 1

und 100 mbit gewählt. Die Last, die ein virtueller Knoten verursacht orientiert sich an der
Nutzung der Verbindungen zu seinen Nachbarknoten.

Die 6400 Knoten wurde zufällig auf alle virtuellen Maschinen der Testumgebung verteilt:in
der ersten Konfiguration der Testumgebung auf 64 und in der Zweiten auf 128 virtuelle
Maschinen.

In den beiden Abbildungen weiter unten ist die Optimierung der Randomverteilung dar-
gestellt. Links für die erste und rechts für die zweite Testumgebungskonfiguration. In
Abständen von einer Sekunde wurde die unter der aktuellen Platzierung erwartete Experim-
entlaufzeit festgehalten.

Man erkennt, dass in der Testbed Konfiguration mit 64 VMs die Optimierung bereits nach 10

Sekunden konvergiert. Die Geschwindigkeit mit der die Optimierung konvergiert ist dabei
maßgeblich von der Wahl des Faktors α abhängig. Für den höchsten Faktor α = 0.95 vergeht
z.B. wesentlich mehr Zeit bis sich Funktionswerte nur noch minimal ändern.

93

6.2 Performance des Optimierungsalgorithmus

0 5 10 15 20 25 30
200

300

400

500

600

700

800

time [s]

ex
pe

ct
ed

 r
un

tim
e

[s
]

α= 0.95

α= 0.85

α= 0.75

α= 0.65

(a) Testbed mit 64 VMs

0 5 10 15 20 25 30
100

150

200

250

300

350

400

time [s]

ex
pe

ct
ed

 r
un

tim
e

[s
]

α= 0.95

α= 0.85

α= 0.75

α= 0.65

(b) Testbed mit 128 VMs

Abbildung 6.8: Performance des Optimierungsalgorithmus - Grid Szenario

Man erkennt aber auch, dass sich mit einem langsameren Abkühlungsprozess, also mit
einer höheren Wahl von α, bessere Ergebnisse einstellen. In der Testbedkonfiguration mit 64

Knoten ergibt sich z.B. ein Unterschied von 14.5 Prozent in der erwarteten Experimentlaufzeit.
In der anderen Konfiguration scheint die Optimierung nach 30 Sekunden noch nicht zu
konvergieren.

Im der Testbedkonfiguation mit 64 Knoten sinkt der erwartete TDF von 12.69 auf 2.37. Für
die Umsetzung der Platzierung, die die Kosten auf 1

6 reduzieren, werden 511.79 Sekunden
Rekonfigurationszeit benötigt.

6.2.2 Waxman Graph Szenario

Bei dem nächsten Testszenario handelt es sich um einen Random Graph. Dieser wurde mit
Brite [MLMB01] erzeugt. Er besitzt 20000 Knoten, die zufällig nach einer Waxman Verteilung
verbunden sind. Genau wie im Grid Testszenario liegen Datenraten für Links zwischen
Knoten zwischen 1 und 100 mbit.

Die 20000 Knoten wurden gleich verteilt auf die zur Verfügung stehenden VMs verteilt. Ein
Beispiel für einen Random Graph ist in Abbildung 6.9 gegeben.

In den beiden Abbildungen weiter unten ist wieder die erwartete Experimentlaufzeit über die
Dauer der Optimierung abgetragen (für beide Testumgebungskonfigurationen). Man erkennt,
dass sich für α = 0.95 die Funktionwerte etwa 3 Sekunden zunächst wieder erhöhen. Für den

94

6.2 Performance des Optimierungsalgorithmus

VM3 VM4

VM1 VM2

Abbildung 6.9: Waxman Testszenario

höchsten α Wert ist außerdem die erwartete Experimentlaufzeit am Ende der Optimierung
sehr viel höher als bei den Anderen.

0 5 10 15 20 25 30
1400

1600

1800

2000

2200

2400

2600

2800

time [s]

ex
pe

ct
ed

 r
un

tim
e

[s
]

α= 0.95

α= 0.85

α= 0.75

α= 0.65

(a) Testbed mit 64 VMs

0 5 10 15 20 25 30
700

800

900

1000

1100

1200

1300

1400

1500

time [s]

ex
pe

ct
ed

 r
un

tim
e

[s
]

α= 0.95

α= 0.85

α= 0.75

α= 0.65

(b) Testbed mit 128 VMs

Abbildung 6.10: Performance des Optimierungsalgorithmus - Waxman Graph Szenario

Für eine Konvergenz reicht die Zeit von 30 Sekunden nicht aus. Durch die höhere Knotenan-
zahl (Faktor 3 zu Grid Szenario) und einer größeren Anzahl von Links ist der Suchraum sehr
viel größer als im Grid Szenario. Trotzdem ist auch bei einer hohen Wahl von α eine deutliche

95

6.2 Performance des Optimierungsalgorithmus

Verbesserung der Platzierung innerhalb von 30 Sekunden Optimierungszeit möglich. So sinkt
die erwartete Experimentlaufzeit in der Testbedkonfiguration mit 128 Knoten beispielsweise
um etwa 33%.

6.2.3 Routerketten Szenario

Im letzten Szenario soll eine Routerkette betrachtet werden. Ein Beispiel für eine Kette mit
16 Knoten ist in Abbildung 6.11 dargestellt.

In diesem Test besteht die Kette aus 50000 Knoten. Wobei sich an einen Ende der Kette
ein Sender und am anderen Ende ein Empfänger befindet. Der Sender schickt Daten mit
einer Datenrate von 100 mbit über die Routerknoten an den Empfänger. Jeder Link hat eine
mittlere Datenrate von 100mbit.

VM3 VM4

VM1 VM2

R

S

Abbildung 6.11: Routerketten Testszenario

Es wird davon ausgegangen, dass das Weiterleiten von Paketen die Router nur sehr wenig
belastet. Jeder Router wird daher mit einer Last von 12000 cycles/s belegt. Nur beim Sender
und Empfänger entstehen höhere Lasten.

Die Knoten werden wie in 6.11 gezeigt, gleichmäßig auf die virtuellen Maschinen derart
verteilt, dass Knoten nur inter − vm oder inter − pc Verbindungen zu anderen Knoten
eingehen können. Zwar sind Lasten der VMs durch diese Verteilung ungefähr gleich hoch.
Die Gesamtlast bietet allerdings ein hohes Optimierungspotential.

96

6.2 Performance des Optimierungsalgorithmus

Betrachtet man die in den beiden Abbildungen weiter unten dargestellte Performance des
Algorithmus in diesem Testszenario so stellt man fest, dass sich die Graphen für unterschied-
liche α Werte nur wenig unterscheiden. Im Gegensatz zum Waxman Szenario konvergiert
der Testlauf mit dem höchsten α Wert nicht viel langsamer als die Anderen. Der Grund dafür
liegt darin, dass zu Anfang fast alle Nachbarzustände mit hoher Wahrscheinlichkeit besser
sind als der Aktuelle. Knoten werden nur zu virtuellen Maschinen migriert auf denen sich
Knoten befinden, die mit ihnen verbunden sind. In diesem Szenario wird dadurch bei der
Migration eines beliebigen Knotens zu Anfang aus einer inter-vm bzw. inter-pc Verbindung
eine intra-vm Verbindung, was die Kosten erheblich senkt.

0 5 10 15 20 25 30
1000

1500

2000

2500

3000

3500

4000

4500

time [s]

ex
pe

ct
ed

 r
un

tim
e

[s
]

α= 0.95

α= 0.85

α= 0.75

α= 0.65

(a) Testbed mit 64 VMs

0 5 10 15 20 25 30
600

800

1000

1200

1400

1600

1800

2000

2200

time [s]

ex
pe

ct
ed

 r
un

tim
e

[s
]

α= 0.95

α= 0.85

α= 0.75

α= 0.65

(b) Testbed mit 128 VMs

Abbildung 6.12: Performance des Optimierungsalgorithmus - Router Chain Szenario

In der Testbedkonfiguration mit 64 virtuellen Maschinen ließ sich der TDF von 71.61 auf
17.2 senken. Dafür sind 528 Sekunden Rekonfigurationszeit nötig.

6.2.4 Fazit

Schon nach geringer Zeit von 30 Sekunden sind auch in großen Szenarien von bis zu 50000

Knoten deutliche Verbesserungen der Platzierung möglich.

Steht einem auch bei komplexen Szenarien nur ein kleines Zeitfenster zur Optimierung zur
Verfügung sollte der Abkühlungszeit möglichst kurz sein. Zwar wird dadurch die gefundene
Lösung mit hoher Wahrscheinlichkeit nicht optimal sein, das Verfahren konvergiert allerdings
in diesem Fall schneller. Wie im Waxman Szenario gezeigt, ließ sich mit niedrigerem α Wert
ein besseres Ergebnis innerhalb des Zeitfensters von 30 Sekunden erzielen als mit hohem α

Wert.

97

6.3 Performance Neuplatzierung

Im zentralen Ansatz der Optimierung wird in bestimmten virtuellen Zeitintervallen der
aktuelle Zustand des Systems überprüft. Je nach Auslastung des System ist dabei das reale
Zeitintervall länger oder kürzer.

Ist die aktuelle Platzierung verbesserungswürdig, so erfolgt eine Optimierung innerhalb
dieses realen Zeitintervalls. Dem Optimierungsalgorithmus steht also je nach Höhe der
Kosten, die das Testszenario aktuell verursacht, unterschiedlich viel Optimierungszeit zur
Verfügung.

In der Regel steigen die Kosten mit der Größe des Testszenarios. Im Routerketten Szenario
mit 50000 Knoten war z.B. der TDF sehr viel höher als im Grid Szenario mit 6400 Knoten.
Dem Algorithmus steht also für große Szenarien mehr Zeit zur Verfügung. Daher ist im
zentralen Ansatz eher noch mit besseren Resultaten zu rechnen als oben gezeigt. Dort stand
dem Algorithmus unabhängig von der Größe des Szenarios immer nur 30 Sekunden zur
Optimierung zur Verfügung.

6.3 Performance Neuplatzierung

In diesem Kapitel wird die Performance des Neuplatzierungsalgorithmus untersucht. Dazu
werden 2 Testszenarien betrachtet. Für beide Szenarien wird ein Experiment durchgeführt,
dass eine Laufzeit von 1200 Sekunden virtuelle Zeit hat.

In den zwei Testszenarien ändern sich alle 120 Sekunden Datenraten von bestimmten Verbin-
dungen zwischen Knoten. Auf diese Veränderung reagiert der Neuplatzierungsalgorithmus
z.B. mit der Umsetzung einer neuen Platzierung.

6.3.1 Sensor Szenario

Als erstes soll ein Sensorszenario betrachtet werden. Dieses besteht aus 400 Sensorknoten,
die in einem regulären quadratischen Gitter angeordnet sind. Jeder Sensorknoten wird auf
ein virtuellen Knoten abgebildet. Dieser wird zufällig auf eine von 32 virtuellen Maschinen
verteilt(4 physikalische Rechner, 8 virtuelle Maschinen).

Jeder Sensor nimmt in bestimmten Zeitabständen Messdaten auf. Die aufgezeichneten Daten
werden, z.B. zur Auswertung, an eine Senke geschickt. Eine Senke ist dabei ein Knoten des
Sensornetzwerks, der alle Daten anderer Knoten sammelt.

Für die Übertragung der Messwerte wird ein Spannbaum erzeugt, dessen Wurzel die Senke
ist. Entlang der Kanten des Spannbaums werden die Daten der Sensorknoten verschickt.
Jeder Knoten leitet dazu seine eigenen und Daten seiner Kinder an den Vaterknoten weiter.
Alle Knoten produzieren eine gewisse Datenmenge pro Zeit. In diesem Experiment beträgt
die Datenrate pro Knoten 10 mbit.

98

6.3 Performance Neuplatzierung

Sink
40 mbit 30 mbit

40 mbit

10 mbit

20 mbit

10 mbit

20 mbit

10 mbit

Abbildung 6.13: Beispiel Sensortestszenario

Ein Beispiel für einen Spannbaum und Datenraten an Kanten des Spannbaums ist in Abbil-
dung 6.13 dargestellt.

Alle 120 Sekunden ändert sich in diesem Szenario die Senke. Die neue Senke wird zufällig
aus allen Knoten ausgewählt. Nach der Änderung wird der Spannbaum neu bestimmt.
Datenraten von Links zwischen Knoten ändern sich daraufhin.

In diesem Szenario bestimmt der Neuplatzierungsalgorihtmus in Intervallen von 12 Sekun-
den virtueller Zeit mittlere Lasten und Datenraten der Knoten. Auf Basis dieser Daten erstellt
er mit dem „letzte Wert“ Ansatz (siehe Abschnitt 4.7) eine Prognose für die nächsten 12

Sekunden.

Diese Prognose dient als Input für die Optimierung der aktuellen Platzierung, die maximal 2

Sekunden virtueller Zeit dauern darf. Dabei wird bei der Optimierung das bis zur nächsten
Aktualisierung übrig bleibende Zeitfenster nach der Optimierung betrachtet. Also twindow =

10s

In 6.14 ist der TDF über die virtuelle Zeit für die Ausführung des Experiments mit und
ohne Migration dargestellt. Bleibt die Platzierung während der Ausführung des Experiments
konstant verändert sich der TDF alle 120 Sekunden fast beliebig. Mal passt die initiale
Platzierung besser mal schlechter.

Wird das Experiment mit Migration ausgeführt. Springt der TDF alle 120 Sekunden auf
einen hohen Wert, bleibt dort für 14 Sekunden und fällt dann wieder auf einen niedrigen
Wert ab.

99

6.3 Performance Neuplatzierung

0 200 400 600 800 1000 1200
2

4

6

8

10

12

14

16

T
D

F

virtual time [s]

with migration
without migration

Abbildung 6.14: Sensor Szenario - TDF Verlauf

0 200 400 600 800 1000 1200
0

2000

4000

6000

8000

10000

12000

re
al

 ti
m

e
[s

]

virtual time [s]

with migration
without migration

Abbildung 6.15: Sensor Szenario - Experimentlaufzeit

100

6.3 Performance Neuplatzierung

Dadurch dass Prognosen nur alle 12 Sekunden gemacht werden erhält der Neuplatzierungs-
algorithmus erst 12 Sekunden nach der Änderung passende Werte. Auf deren Basis optimiert
er 2 Sekunden und setzt dann die neue bessere Platzierung um. Dadurch sinkt der TDF
wieder.

Während ohne Migration TDF Werte sehr stark schwanken bewegen sich Werte des TDF mit
Migration um den Wert 5.

In 6.15 ist für beide Fälle also mit und ohne Migration die reale Experimentlaufzeit über die
virtuelle Zeit abgetragen. Durch Migration lässt sich in diesem Beispiel die Experimentlauf-
zeit von etwa 10000 Sekunden auf 6000 Sekunden senken, was eine Zeitersparnis von 40

Prozent bedeutet.

6.3.2 Waxman Szenario

Für den zweiten Test soll das Waxman Szenario verwendet werden, das bereits schon in
Abschnitt 6.2.2 vorgestellt wurde. Es umfasst 20000 Knoten, die zu Beginn des Experiments
auf 64 virtueller Maschinen gleichmäßig verteilt werden (8 physikalische Rechner mit je 8

virtuellen Maschinen).

Alle 120 Sekunden werden in diesem Szenario zufällig Datenraten von Verbindungen
zwischen Knoten geändert. Und zwar werden zufällig 80000 Links ausgewählt und deren
Datenrate neu gesetzt. Nach der Veränderung liegen Datenraten immer noch zwischen 1

und 10 mbit.

Jede Sekunde wird in diesem Szenario eine Prognose für die nächsten 120 Sekunden erstellt.
Der Neuplatzierungsalgorithmus geht davon aus das die gemessenen mittleren Lasten der
letzten Sekunde für 120 Sekunden gleich bleiben (in einem realen Szenario ist natürlich von
dieser Annahme abzuraten).

Optimiert werden soll in diesem Beispiel maximal 12 Sekunden virtuelle Zeit. Für die
Optimierung wird ein Zeitfenster twindow von 108 betrachtet.

Abbildung 6.16 zeigt wieder den Verlauf des TDF mit und ohne Migration. Im Gegensatz
zum Sensorszenario ist hier der TDF im Fall ohne Migration bis auf das erste Zeitintervall
immer höher. Er nähert sich außerdem einem bestimmten Wert an. Mit zunehmender Anzahl
von Veränderungen wird die Platzierung immer schlechter.

Mit Migration zeichnet sich ein ähnliches Bild wie im Sensorszenario ab. Allerdings sinkt der
TDF durch die Optimierung relativ gesehen nicht so stark wie im Sensorszenario. Während
sich im Sensorszenario die Werte des TDF halbierten wird hier nur eine Erniedrigung von
etwa 13 % erreicht.

Dies macht sich auch in der Laufzeitersparnis bemerkbar. Diese ist für das Waxman Szenario
wie man in Abbildung 6.17 sehen kann deutlich niedriger.

101

6.3 Performance Neuplatzierung

0 200 400 600 800 1000 1200
20

25

30

35

40

45

50

T
D

F

virtual time [s]

with migration
without migration

Abbildung 6.16: Waxman Szenario - TDF Verlauf

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

re
al

 ti
m

e
[s

]

virtual time [s]

with migration
without migration

Abbildung 6.17: Waxman Szenario - Experimentlaufzeit

102

6.3 Performance Neuplatzierung

Werden in großen Szenarien zufällig Datenraten verändert, so scheinen sich diese Änderun-
gen im Mittel auszugleichen. Dadurch ändert sich die Lastsituation und damit indirekt der
TDF kaum. Eine Neuplatzierung von Knoten spart daher kaum Experimentlaufzeit. Selbst
bei einem Zeitfenster von 120 Sekunden, welches realistisch gesehen viel zu hoch gewählt
ist, kann kaum Laufzeit eingespart werden.

103

7 Zusammenfassung und Ausblick

Dieses Kapitel fasst die Diplomarbeit zusammen und stellt wesentliche Resultate der Arbeit
vor. Des Weiteren wird kurz auf offene Probleme eingegangen.

7.1 Zusammenfassung

Das Ziel der Diplomarbeit war die Erweiterung einer zeitvirtualisierten Emulationsum-
gebung, namens TVEE, um eine Möglichkeit zur dynamischen Neuplatzierung virtueller
Knoten.

Kapitel 1 enthielt eine Motivation und Beschreibung des Ziels der Diplomarbeit.

In Kapitel 2 wurde ein genauerer Blick auf die zeitvirtualisierte Emulationsumgebung
geworfen. Neben der Architektur und Konfiguration der Emulationsumgebung, wurde vor
allem auf bestehende Techniken zur Laufzeitminimierung eines Experiments eingegangen.

In Kapitel 3 stand die Taskmigration in verteilten und parallelen Systemen, ein einfacheres,
aber artverwandtes Problem, im Zentrum der Betrachtung.

Kapitel 4.2 widmete sich dann dem eigentlichen Problem: der dynamische Neuplatzierung
von virtuellen Knoten. Zunächst wurden wesentliche Bestandteile der Neuplatzierung
herausgearbeitet. Hierzu zählen sowohl die Optimierung einer aktuellen Platzierung von
virtuellen Knoten also auch die Umsetzung einer neuen Platzierung (Rekonfiguration der
TVEE).

Im Folgenden wurden Mechanismen zur transparenten Rekonfiguraiton vorgestellt. Diese
umfassten z.B. die Migration von virtuellen Knoten und die Anpassung der Schicht 2

Architektur.

Zur Optimierung einer Platzierung mussten zukünftige Kosten alternativer Platzierung
abgeschätzt werden. Dazu wurden zwei Kostenmodelle definiert: das Kommunikationskos-
tenmodell und das Rekonfigurationskostenmodell. Auf Basis dieser beiden Modelle wurde
eine Zielfunktion für die Optimierung einer Platzierung entwickelt.

Für die Optimierung kamen unterschiedliche Algorithmen in Frage. Unter anderem Hill
Climbing, evolutionäre Algorithmen, und Simulated Annealing. Aufgrund der hohen Flexi-
bilität wurde sich für einen Simulated Annealing Ansatz entschieden.

104

7.2 Offene Probleme und Ausblick

Das oben erwähnte Kommunikationskostenmodell basierte auf Prognosen zu mittleren
Datenraten von Verbindungen zwischen virtuellen Knoten und deren Lasten. Für die Vor-
aussage zukünftiger Werte wurden verschiedene Ansätze zur One Step Ahead Prediction
vorgestellt.

An Ende des Kapitels wurde die mögliche Lage des Optimierungs- und des Rekonfigurati-
onsalgorithmus diskutiert. Für die Optimierung wurden mehrere verteilte und ein zentraler
Ansatz vorgestellt und gegeneinander abgewogen. Der zentrale Ansatz stellte sich als am
erfolgversprechendsten heraus.

In Kapitel 5 wurde auf die Implementierung der zentralen Neuplatzierung eingegangen.
Dabei standen Details im Vordergrund, die in vorigen Abschnitten noch nicht ausgeführt
wurden. So wurde z.B. näher auf die für die Rekonfiguration der TVEE benutzten Tools
eingegangen. Außerdem wurde auf aktuelle Probleme bei der Rekonfiguration aufmerksam
gemacht.

In Kapitel 6 wurden zunächst Konstanten des Rekonfigurationskostenmodells bestimmt.
Anschließend wurde die Performance des Optimierungsalgorithmus in 3 unterschiedlichen
Szenarien untersucht. Es stellte sich heraus, dass bereits nach geringer Optimierungszeit von
wenigen Sekunden auch für große Szenarien von 20000 Knoten sich erwartete Experiment-
laufzeiten stark senken lassen.

Abschließend wurden in 2 unterschiedlichen Szenarien die Auswirkungen der dynamischen
Neuplatzierung auf die Experimentlaufzeit untersucht. In beiden Szenarien ließ sich die
Experimentlaufzeiten senken; im Sensorszenario um fast 40 Prozent.

Zum Schluss sollen noch offene Probleme diskutiert werden.

7.2 Offene Probleme und Ausblick

Zur Zeit entstehen bei der Rekonfiguration der TVEE hohe Kosten für eigentlich günstige
Operationen (wie z.B. für das Beenden eines virtuellen Knotens und das Setzen eines
virtuellen Knotens in den Haltezustand). Durch die starke Verlangsamung der Zeit während
der Rekonfiguration verzögern sich Timer Events. Für eine effiziente Rekonfiguration sollten
sich daher Mechanismen überlegt werden, auf welche Weise diese unnötigen, durch Timer
entstehenden Kosten gesenkt werden können.

Die Rekonfiguration sollte mit Tools wie Netperf und Iperf als SuTs getestet werden. Eine
transparente Rekonfiguration mit diesen beiden Tools war allerdings nicht möglich (siehe
Abschnitt 5.4.2). Aus diesem Grund wäre es sinnvoll zu evaluieren, ob die aufgetretenen
Probleme rein Tool abhängig sind.

Des Weiteren sollten die vorgestellten Verfahren zur one step ahead prediction in unterschiedli-
chen Szenarien zu evaluiert werden. Eine gute Prognose zukünftiger Lasten und Datenraten

105

7.2 Offene Probleme und Ausblick

ist von entscheidender Bedeutung für die Qualität ermittelter neuer Platzierungen. In diesem
Zusammenhang wäre es sinnvoll Auswirkungen schlechter Prognosen auf die Experim-
entlaufzeit zu untersuchen. Bei schlechten Prognosen könnte sich im schlimmsten Fall die
Experimentlaufzeit sogar erhöhen.

106

Literaturverzeichnis

[AH06] G. Apostolopoulos, C. Hasapis. A Cluster of Virtual Machines for Robust,
Detailed, and High-Performance Network Emulation. Proceedings of the 14th IEEE
International Symposium on Modeling, Analysis, and Simulation, 14:11–14, September
2006. (Zitiert auf Seite 10)

[BTA+] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, M. Gerla. GloMoSim: A
Scalable Network Simulation Environment. (Zitiert auf Seite 9)

[CCR+
03] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, M. Bowman.

PlanetLab: an overlay testbed for broad-coverage services. SIGCOMM Comput.
Commun. Rev., 33(3):3–12, 2003. doi:http://doi.acm.org/10.1145/956993.956995.
(Zitiert auf Seite 9)

[CPJL98] F. C., M. P., D. J.-L. Data-parallel load balancing strategies. Parallel
Computing, 24:1665–1684(20), October 1998. doi:doi:10.1016/S0167-8191(98)
00049-0. URL http://www.ingentaconnect.com/content/els/01678191/1998/

00000024/00000011/art00049. (Zitiert auf Seite 25)

[CS03] M. Carson, D. Santay. NIST Net: a Linux-based network emulation tool. SIG-
COMM Comput. Commun. Rev., 33(3):111–126, 2003. doi:http://doi.acm.org/10.
1145/956993.957007. (Zitiert auf Seite 9)

[DO00] P. A. Dinda, D. R. O’Hallaron. Host load prediction using linear mo-
dels. Cluster Computing, 3:265–280, 2000. URL http://dx.doi.org/10.1023/A:

1019048724544. 10.1023/A:1019048724544. (Zitiert auf Seite 66)

[ELZ86] D. L. Eager, E. D. Lazowska, J. Zahorjan. Adaptive load sharing in homogeneous
distributed systems. IEEE Trans. Softw. Eng., 12:662–675, 1986. URL http://

portal.acm.org/citation.cfm?id=5527.5535. (Zitiert auf Seite 26)

[FTO] J. Flynn, H. Tewari, D. OMahony. JEmu: A Real Time Emulation System for
Mobile Ad Hoc Networks. (Zitiert auf Seite 10)

[GHR] A. Grau, K. Herrmann, K. Rothermel. NETplace: Efficient Runtime Minimization
of Network Emulation Experiments. (Zitiert auf den Seiten 10, 16, 44 und 54)

[GHR09] A. Grau, K. Herrmann, K. Rothermel. Efficient and Scalable Network Emula-
tion using Adaptive Virtual Time. Proceedings of 18th Internatonal Conference on
Computer Communications and Networks, 18:1–6, Aug 2009. (Zitiert auf Seite 10)

107

http://www.ingentaconnect.com/content/els/01678191/1998/00000024/00000011/art00049
http://www.ingentaconnect.com/content/els/01678191/1998/00000024/00000011/art00049
http://dx.doi.org/10.1023/A:1019048724544
http://dx.doi.org/10.1023/A:1019048724544
http://portal.acm.org/citation.cfm?id=5527.5535
http://portal.acm.org/citation.cfm?id=5527.5535

Literaturverzeichnis

[GMHR08] A. Grau, S. Maier, K. Herrmann, K. Rothermel. Time Jails: A Hybrid Approach
to Scalable Network Emulation. In Proceedings of the 22nd Workshop on Principles of
Advanced and Distributed Simulation, PADS ’08, pp. 7–14. IEEE Computer Society,
Washington, DC, USA, 2008. doi:http://dx.doi.org/10.1109/PADS.2008.19. URL
http://dx.doi.org/10.1109/PADS.2008.19. (Zitiert auf den Seiten 13 und 15)

[Gnu] Gnutella. http://rfc-gnutella.sourceforge.net/. (Zitiert auf Seite 9)

[GRL05] S. Guruprasad, R. Ricci, J. Lepreau. Integrated Network Experimentation using
Simulation and Emulation. Proceedings of the First International Conference on Test-
beds and Research Infrastructures for the DEvelopment of NeTworks and COMmunities,
2005. (Zitiert auf Seite 9)

[GYM+
06] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat, G. M. Voelker.

To Infinity and Beyond: Time-Warped Network Emulation. 3rd Symposium on
Networked Systems Design & Implementation, pp. 87–100, 2006. (Zitiert auf den
Seiten 10 und 15)

[Hem05] S. Hemminger. Network Emulation with NetEm, 2005. (Zitiert auf Seite 9)

[Kes88] S. Keshav. REAL : A Network Simulator, 1988. (Zitiert auf Seite 9)

[Kir84] S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies. Jour-
nal of Statistical Physics, 34:975–986, 1984. URL http://dx.doi.org/10.1007/

BF01009452. 10.1007/BF01009452. (Zitiert auf den Seiten 23, 61 und 62)

[LJM88] J. Lam, D. Jean-Marc. Performance of a new annealing schedule. In Proceedings
of the 25th ACM/IEEE Design Automation Conference, DAC ’88, pp. 306–311. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1988. URL http://portal.

acm.org/citation.cfm?id=285730.285780. (Zitiert auf Seite 61)

[LK87] F. Lin, R. Keller. The Gradient Model Load Balancing Method. IEEE Transactions
on Software Engineering, 13:32–38, 1987. doi:http://doi.ieeecomputersociety.org/
10.1109/TSE.1987.232563. (Zitiert auf Seite 25)

[LRCM95] E. Luque, A. Ripoll, A. Cortes, T. Margalef. A distributed diffusion method
for dynamic load balancing on parallel computers. Parallel, Distributed, and
Network-Based Processing, Euromicro Conference on, 0:43, 1995. doi:http://doi.
ieeecomputersociety.org/10.1109/EMPDP.1995.389156. (Zitiert auf Seite 26)

[MHR] S. Maier, D. Herrscher, K. Rothermel. On Node Virtualization for Scalable
Network Emulation. (Zitiert auf Seite 10)

[MI] D. Mahrenholz, S. Ivanov. Real-Time Network Emulation with ns-2. (Zitiert auf
Seite 10)

108

http://dx.doi.org/10.1109/PADS.2008.19
http://dx.doi.org/10.1007/BF01009452
http://dx.doi.org/10.1007/BF01009452
http://portal.acm.org/citation.cfm?id=285730.285780
http://portal.acm.org/citation.cfm?id=285730.285780

Literaturverzeichnis

[MLMB01] A. Medina, A. Lakhina, I. Matta, J. Byers. BRITE: An Approach to Universal
Topology Generation. In Proceedings of the International Workshop on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems (MASCOTS01),.
2001. (Zitiert auf Seite 94)

[MRR+
53] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller.

Equation of State Calculations by Fast Computing Machines. The Journal of
Chemical Physics, 21(6):1087–1092, 1953. doi:10.1063/1.1699114. URL http://dx.

doi.org/10.1063/1.1699114. (Zitiert auf Seite 62)

[NP] NET-Project. http://net.informatik.uni-stuttgart.de/. (Zitiert auf Seite 13)

[NSNK97] B. D. Noble, M. Satyanarayanan, G. T. Nguyen, R. H. Katz. Trace-based mobile
network emulation. SIGCOMM Comput. Commun. Rev., 27(4):51–61, 1997. doi:
http://doi.acm.org/10.1145/263109.263140. (Zitiert auf Seite 9)

[Ril03] G. F. Riley. The Georgia Tech Network Simulator. In MoMeTools ’03: Proceedings of
the ACM SIGCOMM workshop on Models, methods and tools for reproducible network
research, pp. 5–12. ACM, New York, NY, USA, 2003. doi:http://doi.acm.org/10.
1145/944773.944775. (Zitiert auf Seite 9)

[RSV91] F. Romeo, A. Sangiovanni-Vincentelli. A theoretical framework for simulated
annealing. Algorithmica, 6:302–345, 1991. URL http://dx.doi.org/10.1007/

BF01759049. 10.1007/BF01759049. (Zitiert auf Seite 61)

[SKS92] N. G. Shivaratri, P. Krueger, M. Singhal. Load Distributing for Locally Distributed
Systems. Computer, 25:33–44, 1992. doi:http://doi.ieeecomputersociety.org/10.
1109/2.179115. (Zitiert auf den Seiten 23 und 24)

[Whi84] S. R. White. Concepts of scale in simulated annealing. In American Institute of
Physics Conference Series, volume 122 of American Institute of Physics Conference
Series, pp. 261–270. 1984. doi:10.1063/1.34823. (Zitiert auf Seite 63)

[WLR89] M. Willebeek-LeMair, A. P. Reeves. A general dynamic load balancing model
for parallel computers. In Tech. Rep. EE-CEG-89- 1, Cornell School of Electrical
Engineering. 1989. (Zitiert auf Seite 24)

[xen] Xen User’s Manual. (Zitiert auf Seite 15)

[YFS03] L. Yang, I. Foster, J. M. Schopf. Homeostatic and Tendency-Based CPU Load
Predictions. In Proceedings of the 17th International Symposium on Parallel and Dis-
tributed Processing, IPDPS ’03, pp. 42.2–. IEEE Computer Society, Washington, DC,
USA, 2003. URL http://portal.acm.org/citation.cfm?id=838237.838601.
(Zitiert auf den Seiten 65 und 66)

109

http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1007/BF01759049
http://dx.doi.org/10.1007/BF01759049
http://portal.acm.org/citation.cfm?id=838237.838601

Literaturverzeichnis

[ZSI06] Y. Zhang, W. Sun, Y. Inoguchi. CPU Load Predictions on the Computational Grid
*. In Proceedings of the Sixth IEEE International Symposium on Cluster Computing
and the Grid, CCGRID ’06, pp. 321–326. IEEE Computer Society, Washington,
DC, USA, 2006. doi:http://dx.doi.org/10.1109/CCGRID.2006.27. URL http:

//dx.doi.org/10.1109/CCGRID.2006.27. (Zitiert auf Seite 66)

Alle URLs wurden zuletzt am 21.01.2011 geprüft.

110

http://dx.doi.org/10.1109/CCGRID.2006.27
http://dx.doi.org/10.1109/CCGRID.2006.27

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Sebastian Bartmann)

	1 Einleitung
	1.1 Motivation
	1.2 Ziel der Arbeit
	1.3 Outline

	2 Zeitvirtualisierte Emulationsumgebung
	2.1 Architektur
	2.2 Knoten Virtualisierung
	2.3 Zeit Virtualisierung
	2.4 Netzwerk Emulation
	2.5 Techniken zur Experimentlaufzeitminimierung
	2.5.1 Epochen basierte virtuelle Zeit
	2.5.2 NETplace

	2.6 Konfiguration

	3 Related work
	3.1 Load Balancing in verteilten/parallelen Systemen
	3.1.1 Task Migration
	Task Migrationsalgorithmus
	Beispiele

	4 Dynamische Neuplatzierung
	4.1 Einführung
	4.2 Architektur
	4.3 Rekonfiguration der TVEE
	4.3.1 Anforderungen
	4.3.2 Operationen
	Migration virtueller Knoten
	Migration von Netshaper Instanzen
	Anpassung der virtuellen Layer 2 Topologie
	Verlangsamung der globalen virtuellen Zeit
	Start/Stopp der Prozessausführung
	Zwischenspeichern von Paketen

	4.3.3 Reihenfolge der Operationen
	4.3.4 Synchronisation einer verteilten Operation

	4.4 Kostenmodell Kommunikation
	4.5 Kostenmodell Rekonfiguration
	4.5.1 Start/Stopp der Prozessausführung
	4.5.2 Migration von virtuellen Knoten und Netshaper Instanzen
	Sichern der Zustands virtueller Knoten
	Sichern der Zustände von Netshaper Instanz
	Transfer der Daten
	Wiederherstellen der Zustände virtueller Knoten
	Wiederherstellen der Zustände von Netshaper Instanzen
	Entfernen virtueller Knoten in Quell VMs

	4.5.3 Anpassung Layer 2 Topologie

	4.6 Optimierung der Platzierung
	4.6.1 Zielfunktion
	Größe des Vorhersage Zeitfensters

	4.6.2 Optimierungsalgorithmus
	4.6.3 Ähnliche Platzierungen
	4.6.4 Berechnung des Zielfunktionswerts
	4.6.5 Verkleinerung des Suchraums
	4.6.6 Abbruchbedingung
	4.6.7 Cooling Schedule
	Geometrischer Cooling Schedule

	4.7 Lastvorhersage
	4.8 Lage
	4.8.1 Optimierung der Platzierung
	Zentraler Ansatz
	Verteilte Ansätze
	Diskussion der Ansätze

	4.8.2 Koordination der Rekonfiguration der TVEE
	Zentraler Ansatz
	Verteilter Ansatz
	Diskussion der Ansätze

	5 Implementierung
	5.1 Rekonfiguration
	5.1.1 Suspend/Resume virtueller Knoten
	5.1.2 Migration virtueller Knoten
	5.1.3 Migration von Netshaper Instanzen
	5.1.4 Anpassung der Layer 2 Topologie

	5.2 Optimierung der Platzierung
	5.3 Monitore
	5.3.1 Mittlere Datenraten
	5.3.2 Mittlere Auslastung

	5.4 Probleme Rekonfiguration
	5.4.1 Routing Tabelle
	5.4.2 Probleme im Zusammhang mit netperf und iperf

	6 Evaluation
	6.1 Konstanten Rekonfigurationskostenmodell
	6.2 Performance des Optimierungsalgorithmus
	6.2.1 Grid Szenario
	6.2.2 Waxman Graph Szenario
	6.2.3 Routerketten Szenario
	6.2.4 Fazit

	6.3 Performance Neuplatzierung
	6.3.1 Sensor Szenario
	6.3.2 Waxman Szenario

	7 Zusammenfassung und Ausblick
	7.1 Zusammenfassung
	7.2 Offene Probleme und Ausblick

	Literaturverzeichnis

