

Institut für Architektur von Anwendungssystemen

Universität Stuttgart

Universitätsstraße 38

D – 70569 Stuttgart

Diplomarbeit Nr. 3121

Unterstützung des „Model-as-you-go“-Ansatzes durch

Modell-Versionierung und Instanzmigration

Tina Schliemann

Studiengang: Softwaretechnik

Prüfer: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova

Betreuer: Dipl.-Inf. Mirko Sonntag

begonnen am: 30.08.2010

beendet am: 01.03.2011

CR-Klassifikation: H.4.1 Workflow-Management

 H.3.5 Web-based Services

 Inhaltsverzeichnis

1

Inhaltsverzeichnis

Abkürzungsverzeichnis .. 4

1 Einleitung ... 5

1.1 Motivation ... 5

1.2 Ziele der Arbeit .. 6

1.3 Aufbau der Arbeit .. 6

1.4 Definitionen ... 7

1.5 Verwandte Arbeiten .. 7

1.5.1 Migrating WS-BPEL Process Instances .. 7

1.5.2 Enforcement auf laufenden BPEL-Prozessen .. 7

2 Grundlagen .. 9

2.1 Serviceorientierte Architektur ... 9

2.2 Workflows und Workflow-Maschinen .. 10

2.2.1 Workflows ... 10

2.2.2 Workflow-Maschinen .. 11

2.3 Verwendete Web Technologien .. 12

2.3.1 Web Service ... 12

2.3.2 XML .. 13

2.3.3 Web Service Description Language ... 14

2.3.4 BPEL ... 17

2.3.5 SOAP .. 19

3 Apache ODE ... 22

3.1 Grundlagen der Apache ODE ... 22

3.1.1 Abweichungen vom WS-BPEL 2.0 Standard .. 23

3.2 Architektur der Apache ODE ... 24

3.3 Komponenten .. 24

3.3.1 ODE BPEL Compiler.. 25

3.3.2 ODE BPEL Engine Runtime ... 25

3.3.3 JACOB .. 25

3.3.4 ODE Integration Layer ... 26

3.3.5 ODE Data Access Objects... 27

3.4 Management API ... 27

3.4.1 ProcessManagement ... 27

 Inhaltsverzeichnis

2

3.4.2 InstanceManagement ... 27

3.5 Deployment Interface ... 28

3.6 Oberfläche GUI .. 28

3.7 Deployment ... 29

3.8 Versionierung .. 29

4 Konzeption einer Deploy New Version-Strategie .. 31

4.1 State of the art .. 33

4.1.1 Apache ODE 1.3.4 .. 33

4.1.2 Oracle Application Server 10g ... 34

4.1.3 Bonitasoft .. 34

4.1.4 ADEPTflex .. 34

4.1.5 E-BioFlow ... 35

4.1.6 IBM WebSphere Process Server .. 35

4.2 Instanz-Lebenszyklus ... 36

4.3 Versionierung und Deployment .. 37

4.4 Instanzmigration .. 39

4.4.1 Standard-Elemente und Standard-Attribute ... 39

4.4.2 Process ... 40

4.4.3 Basic Activities ... 41

4.4.4 Structured Activities .. 43

5 Prototypische Umsetzung der Strategie ... 51

5.1 Deploy New Version-Client ... 52

5.2 Erweiterung des ODE Deployment-Mechanismus .. 54

5.3 Abgelaufene Instanzen am Leben erhalten... 55

5.4 Migration der Prozessinstanz .. 57

5.5 Beenden von am Leben gehaltenen Prozessinstanzen ... 61

5.6 Web-GUI .. 64

5.7 Erweiterung auf die Flow-Aktivität.. 65

6 Anwendungsbeispiel ... 67

7 Zusammenfassung und Ausblick ... 72

Abbildungsverzeichnis ... 73

Verzeichnis der Listings ... 74

Quellenverzeichnis .. 75

Anhang .. 77

 Inhaltsverzeichnis

3

I. BPEL ... 77

II. MySQL-Schema .. 80

III. Process and Instance Management API .. 81

 Abkürzungsverzeichnis

4

Abkürzungsverzeichnis

AJAX – Asynchronous JavaScript and XML

Apache ODE – Apache Orchestration Director Engine

BPEL – Business Process Execution Language

BPMN – Business Process Modeling Notation

DAO – ODE Data Access Objects

GUI – Graphical User Interface

IL – ODE Integration Layer

JACOB – ODE’s Java Concurrent Objects

NMR – Normalized Message Router

RPC – Remote Procedure Call

SGML – Standard Generalized Markup Language

SMX4 – Apache ServiceMix 4.0

SOA – Service Oriented Architecture

VPU – Virtual Processing Unit

W3C – World Wide Web Consortium

WSDL – Web Service Description Language

XML – Extensible Markup Language

XSD – XML Schema Definition

1 Einleitung

5

1 Einleitung
Seit kurzem gibt es Bestrebungen, die konventionelle Workflow-Technologie in der Wissenschaft

einzusetzen. Für die Lösung komplexer Probleme in der Medizin oder anderen Wissenschaften sind

Simulationstechnologien essentiell wichtig geworden. Die Erwartungen der Wissenschaftler an die

Workflow-Technologie sind in den letzten Jahren durch neue Entwicklungen in der Hardware sowie

der Modellierungs- und Simulationstechnik stetig gestiegen. Diese Anforderungen zu erfüllen, ist

Aufgabe des SimTech-Clusters, einem Forschungsprojekt der Universität Stuttgart, in dessen Rahmen

auch diese Diplomarbeit stattfindet.

Mit Hilfe der Workflow-Technologie sollen Wissenschaftler, um den Programmieraufwand gering zu

halten, ihre Simulationen und Experimente graphisch modellieren können. Diese graphischen

Modelle sollen danach ausgeführt werden. Durch diese Neuerungen sollen die Wissenschaftler mehr

Konzentration auf ihr eigentliches Forschungsgebiet lenken können. Sehr von Vorteil sind dabei die

Automatisierung und Robustheit der Software.

In den letzten Jahren wurde die Anwendung von BPEL für wissenschaftliche Workflows untersucht

[1][2][3]. Die Sprache BPEL bietet Wissenschaftlern einige entscheidende Vorteile. Durch die

Fehlerbehandlung können auftretende Probleme abgefangen werden und Anwendungen

miteinander über Web Service verbunden werden. Alle Aktivitäten werden als einzelne

Transaktionen abgearbeitet. Es existieren mehrere BPEL-Engines, die eine persistente Speicherung

von Prozessinstanzen ermöglichen und sich durch ihre Robustheit auszeichnen.

1.1 Motivation
BPEL konzentriert sich hauptsächlich auf die Erstellung von geschäftlichen Workflows. Im Gegensatz

zu einem wissenschaftlichen Workflow kennt man bei einem geschäftlichen Workflow die

Prozesslogik meist bereits zur Designtime. Bei wissenschaftlichen Workflows ist das anders. Hier

werden häufig zur Laufzeit die Workflows noch geändert bzw. sogar erst während der Laufzeit

entwickelt. Durch das experimentelle Vorgehen des Wissenschaftlers verschmelzen die Phasen zur

Erstellung und Ausführung von Workflows.

Heutige Workflowmaschinen bieten die Möglichkeit, mehrere Versionen eines Workflows parallel zur

Verfügung zu stellen. Standardmäßig ist nur eine der Versionen aktiv. Eine neue Workflow-Instanz

läuft dann in der Regel nach der aktuellsten Version des Workflows. Durch die in der Wissenschaft

üblichen Änderungen zur Laufzeit reicht dies nicht aus, um die Anforderungen eines Einsatzes in

einem wissenschaftlichen Umfeld zu erfüllen. Es muss möglich sein, auch ältere Modell-Versionen zu

instanziieren, um zum Beispiel ältere Experimente erneut ausführen zu können.

Eine weitere Eigenschaft der traditionellen Workflow-Technologie ist, dass Workflow-Instanzen nach

der Ausführung ihrer letzten Aktivität automatisch beendet sind. Um der explorativen Workflow-

Entwicklung von Wissenschaftlern gerecht zu werden, ist es erforderlich, abgelaufene Workflow-

Instanzen im „Suspended“-Zustand zu halten. Dadurch, dass die Instanz am Leben erhalten wird,

können Wissenschaftler das Experiment noch beeinflussen und beispielsweise weitere Aktivitäten

einfügen oder Teile des Experiments wiederholen.

1 Einleitung

6

1.2 Ziele der Arbeit
Ziel der Arbeit ist es, ein Konzept für BPEL zu entwickeln, das es Wissenschaftlern erlaubt, weitere

Logik in laufende Prozessinstanzen einzufügen und dadurch ihre Experimente fortführen zu können.

Dadurch wird die explorative Entwicklung von Workflows ermöglicht. Folgende Aufgaben gilt es

dabei zu lösen:

 Eine Instanz soll nach erfolgreicher Beendigung automatisch am Leben erhalten werden, um

ein späteres Hinzufügen von weiterer Logik zu ermöglichen.

 Es soll möglich sein, eine neue Version eines Prozessmodells zu deployen und dabei sowohl

die neue als auch die alte Prozessmodell-Version aktiv (d.h. instanziierbar) zu halten.

 Eine oder mehrere laufende Instanzen der alten Modellversion sollen auf die neue

Modellversion migriert werden können. Zur Vereinfachung dieser komplexen Aufgabe wird

in dieser Arbeit davon ausgegangen, dass die betrachtete(n) Instanz(en) migriert werden

kann/können. Das heißt die Modelländerungen betreffen nur das zukünftige Verhalten der

Instanzen. Das Prüfen der Migrierbarkeit von Instanzen ist bereits in vorherigen Arbeiten

behandelt worden [4].

 Es wird ein Mechanismus benötigt, um laufende Prozessinstanzen zu beenden.

 Um die Anwendbarkeit des Konzeptes zu zeigen, wird es prototypisch für eine bereits

vorhandene BPEL Workflow Engine implementiert.

1.3 Aufbau der Arbeit
Kapitel 1 Im weiteren Verlauf dieses Kapitels wird die Arbeit zu anderen wissenschaftlichen Arbeiten

abgegrenzt.

Kapitel 2 – Grundlagen Dieses Kapitel beschäftigt sich mit den für das Verständnis der Diplomarbeit

benötigten Technologien.

Kapitel 3 – Apache ODE Hier werden der grundlegende Aufbau sowie die benötigten Komponenten

der Apache ODE beschrieben.

Kapitel 4 – Konzeption einer Deploy New Version-Strategie In diesem Kapitel wird zuerst der aktuelle

Stand der Wissenschaft beschrieben. Anschließend wird auf den gewünschten Funktionsumfang der

Deploy New Version-Funktionalität eingegangen, sowie auf die möglichen Änderungen an den

einzelnen BPEL-Aktivitäten.

Kapitel 5 – Prototypische Umsetzung der Strategie Hier wird die prototypische Implementierung der

Deploy New Version-Funktion an der Apache ODE beschrieben.

Kapitel 6 – Anwendungsbeispiel Dieses Kapitel beschreibt ein Anwendungsbeispiel des Prototyps.

Kapitel 7 – Zusammenfassung und Ausblick Abgeschlossen wird diese Diplomarbeit mit einer

Zusammenfassung und einem Ausblick auf offene Fragenstellungen.

1 Einleitung

7

1.4 Definitionen
In dieser Arbeit werden die Begriffe Prozess, Instanz und Modell folgendermaßen verwendet:

Prozessmodell / Workflowmodell / Modell bezeichnet das undeployte aber deploybare BPEL-

Prozessmodell im Sinne des Deployment Bundles.

Prozess / Workflow bezeichnet das auf der Apache ODE deployte Prozessmodell.

Instanz eine Ausführung des Prozesses.

1.5 Verwandte Arbeiten
In diesem Kapitel werden Arbeiten, die sich mit ähnlichen Problemstellungen wie der Deploy New

Version-Funktionalität beschäftigen, vorgestellt.

1.5.1 Migrating WS-BPEL Process Instances

Andreas Fritzler behandelt in seiner Diplomarbeit Migrating WS-BPEL Process Instances [5] einen

Ansatz zur Migration einer Prozessinstanz von einer Workflow-Maschine zu einer anderen Workflow-

Maschine. Die Workflow-Maschine, auf die migriert wird, ist in diesem Fall die Apache ODE. Dazu

wird die Instanz in den Zustand SUSPENDED überführt und die Instanzdaten in ein Zwischenformat

gespeichert. Dieses Zwischenformat ist ein XML-Format. Beim Import der Instanzdaten gibt es zwei

mögliche Szenarien:

 Die Prozess-ID ist dieselbe ID wie auf der alten ODE Instanz

 Die Prozess-ID ist eine andere ID wie auf der alten ODE Instanz.

Wenn die Prozess-ID dieselbe ID ist, wird das Zwischenformat mit den Instanzdaten importiert und

über eine recreateInstance()-Methode als Instanz abgespeichert. Der Ausführungszustand der Instanz

beinhaltet alle Daten, die zum Fortführen der Instanz benötigt werden. Die Instanz kann jetzt wieder

gestartet werden. Wenn die Prozess-ID eine andere ID ist, müssen in den Instanzdaten, die im

Zwischenformat vorliegen, zuerst jede Prozess-ID der alten ODE Instanz durch die korrekte Prozess-ID

der neuen ODE Instanz ersetzt werden. Daraufhin wird die Instanz wie im anderen Szenario

beschrieben importiert.

1.5.2 Enforcement auf laufenden BPEL-Prozessen

M.Kern beschreibt in seiner Diplomarbeit Enforcement1 auf laufenden BPEL-Prozessen [6] einen

Ansatz zur Modifikation von laufenden Prozessinstanzen. Der Ansatz der eventbasierten

Instanzmodifikation beruht auf Events, die jede ausgeführte Aktivität auslöst. Die Modifikation wird

erst unmittelbar vor der Ausführung der vorhergegangenen Aktivität, die das entsprechende Event

ausgelöst hat, vorgenommen.

Um eine neue Aktivität einzufügen wird vom Workflow-Administrator über ein Web Service die neue

Aktivität im Eventhandler registriert. Registriert werden die Daten über die Position der neuen

Aktivität im Prozessverlauf, sowie die Definition der Aktivität. Die Modifikation wird ausgeführt

sobald ein Event auftritt, für das die Modifikation registriert wurde. Daraufhin wird die zusätzlich

eingefügte Aktivität ausgeführt. Das Entfernen von Aktivitäten innerhalb einer Instanz wird realisiert

1
 Enforcement: Englisch für Durchführung oder Erzwingung

1 Einleitung

8

durch das Ersetzen einer Aktivität durch eine leere Aktivität oder das Überspringen einer Aktivität.

Mit diesem Ansatz ist es möglich, einzelne Instanzen oder alle Instanzen „on-the-fly“ zu ändern. Die

Modifikation findet entweder in der Execution Queue oder im Event Handler der Workflow-Maschine

statt.

2 Grundlagen

9

2 Grundlagen
In diesem Kapitel werden die Grundlagen, die zum Verständnis dieser Arbeit notwendig sind,

erläutert. Da es sich bei dieser Arbeit um eine Modifikation einer bestehenden Workflowmaschine

handelt, werden als erstes Workflow und Workflowmaschinen im Allgemeinen erklärt. Die

Modifikation der Workflowmaschine soll das Deployen einer neuen Version eines Prozessmodells

ermöglichen. Deshalb werden als nächstes die für ein Prozessmodell benötigten Web Service-

Technologien erklärt.

2.1 Serviceorientierte Architektur
Gernot Starke und Stefan Tilkov definieren SOA [7] folgendermaßen:

„Eine serviceorientierte Architektur (SOA) ist eine unternehmensweite IT-Architektur, deren zentrales

Konstruktionsprinzip lose gekoppelte Services (Dienste) sind. Services realisieren Geschäftsfunktionen,

die sie über eine implementierungsunabhängige Schnittstelle kapseln. Zu jeder Schnittstelle gibt es

einen Servicevertrag, der die funktionalen und nichtfunktionalen Merkmale (Metadaten) der

Schnittstelle beschreibt. Die Nutzung (und Wiederverwendung) von Services geschieht über

(entfernte) Aufrufe (»Remote Invocation«).“

Dienste, über die Funktionalitäten bereitgestellt werden, sind der grundlegende Bestandteil einer

serviceorientierten Architektur. Die wohl bekannteste Darstellung ist das SOA-Dreieck, das die

Grundprinzipien von SOA darstellt.

Abbildung 1: SOA-Dreieck angelehnt an [8].

Die Discovery Facility stellt einen Suchmechanismus für die Dienste zur Verfügung und stellt die

Metadaten der Dienste bereit. Der Service Requestor, der einen Dienst benutzen möchte, stellt seine

Suchanfrage an die Discovery Facility und bekommt die Metadaten eines passenden Dienstes

zurückgeliefert. Mit Hilfe dieser Daten kann der Service Requestor den Dienst aufrufen. Wenn dies

zur Laufzeit passiert, wird es als dynamic binding bezeichnet.

2 Grundlagen

10

2.2 Workflows und Workflow-Maschinen
In diesem Kapitel werden Workflows und Workflowmaschinen grundlegend erläutert, ohne auf

Techniken, die zur Umsetzung benötigt werden, einzugehen.

2.2.1 Workflows

Ein Workflow entsteht aus einem Prozess- oder Geschäftsmodell aus der realen Welt, indem das

Modell auf einem Rechner ausführbar gemacht wird2. Ein Workflowmodell kann dabei ein Teil eines

größeren Prozessmodells sein oder aber das gesamte Prozessmodell abbilden. Einzelne Aktivitäten

bilden dabei die Grundlage eines Workflows. Immer stehen diese Aktivitäten in einer Abhängigkeit

zueinander. Eine Aktivität kann dabei entweder eine atomare Aktivität sein oder einen

untergeordneten Prozess aufrufen. Der Anfang und das Ende eines Workflows sind definiert, der

Ablauf ist organisiert.

Abbildung 2: Prozesse und Workflows. Angelehnt an [9]

Prozess- und Workflowmodelle haben drei voneinander unabhängige Dimensionen [9]. Die erste

Dimension stellt die Prozesslogik dar. Sie wird auch als „what“-Dimension bezeichnet und beschreibt,

welche Aktivitäten in welcher Reihenfolge ausgeführt werden müssen. Die Aktivitäten können

entweder sequentiell, also nacheinander, oder parallel ausgeführt werden. Als zweite Dimension gibt

es die „who“-Dimension, auch Organisations-Dimension genannt. Diese Dimension beschreibt den

Aufbau eines Unternehmens, Abteilungen, Rollen und Menschen. Diese Informationen werden

gebraucht, um festzulegen, wer eine bestimmte Aktivität ausführen soll. Dieses wer kann dabei eine

einzelne Person aber auch eine Gruppe von Personen sein, die alle die Fähigkeit haben, diese

Aktivität zu bearbeiten. Falls die Aktivität keine Interaktion mit einem Menschen erforderlich macht,

wird sie vom Workflowsystem weiterverarbeitet. Als „with“-Dimension wird die dritte Dimension

bezeichnet, die IT (Information Technology)-Dimension. Sie legt fest, welche Techniken zur

Ausführung der Aktivitäten benötigt werden.

2
 http://www.wfmc.org/

2 Grundlagen

11

Abbildung 3: Dimensionen eines Workflows [9].

2.2.2 Workflow-Maschinen

M. Böhm, S. Jablonski, und W. Schulze definieren ein Workflow-Management-System [10]

folgendermaßen:

„Workflow-Management-Systeme haben eine möglichst vollständige Rechnerunterstützung der

Ablauforganisation von Unternehmen zum Ziel. Es ist offensichtlich, dass sie im Kern dem

Management von Arbeitsvorgängen (Arbeitsabläufen) dienen. Unter Management ist auch die

Verantwortung für die Steuerung eines Systems - insbesondere für die Steuerung seiner Prozesse - zu

verstehen. Daher ist als deutsche Übersetzung für Workflow-Management-System die Bezeichnung

Vorgangssteuerungssystem gebräuchlich.“

Workflow-Management-Systeme haben viele verschiedene Aufgaben:

 das Bereitstellen von benötigten Daten und Tools,

 das Verwalten von Daten,

 das Steuern von Aufgabenbearbeitung und Kontrollflüssen,

 das Aufrufen von Applikationsprogrammen sowie

 das Benachrichtigen der Benutzer über anstehende Aufgaben.

In Abbildung 4 sind die Hauptkomponenten eines Workflow-Management-Systems und ihre

Beziehung zueinander abgebildet. Für diese Arbeit ist die Workflow-Maschine, im Bild als Workflow-

Engine bezeichnet, von zentraler Bedeutung.

2 Grundlagen

12

Abbildung 4: Charakteristik eines Workflow-Management-Systems. Angelehnt an [11].

Eine Workflow-Maschine kann die modellierten Prozessmodelle ausführbar machen und eine

Prozessinstanz davon erzeugen. Diese Instanz wird von der Workflow-Maschine gesteuert und

verwaltet. Alle relevanten Daten werden von der Workflow-Maschine verwaltet und

weiterverarbeitet. Beispielsweise werden Workitems erzeugt und den passenden Workflow-

Teilnehmern zugewiesen. Ein Workitem ist die Darstellung einer Aufgabe. Diese Teilnehmer können

in Organisationseinheiten oder Rollen gruppiert werden.

2.3 Verwendete Web Technologien
In diesem Kapitel werden die Technologien, die zur Umsetzung von Workflows benötigt werden,

erläutert.

2.3.1 Web Service

Das World Wide Web Consortium (W3C) definiert einen Web Service wie folgt:

“A Web service is a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-processable format (specifically

WSDL).” 3

Web Services sollen eine standardisierte Interoperabilität zwischen verschiedenen Systemen, die auf

unterschiedlichen Rechnern betrieben werden, ermöglichen. Dabei sollen Informationen in möglichst

oft wiederverwendbaren und voneinander unabhängigen Diensten gebündelt werden. Dem Benutzer

3
http://www.w3.org/TR/ws-arch - W3C WS-Architektur

2 Grundlagen

13

soll die Implementierung der Dienste möglichst verborgen bleiben. Der Anbieter stellt die Dienste

über eine Schnittstelle bereit. Dabei werden an die Umgebung unterschiedliche Anforderungen

gestellt, die in [12] und [13] wie folgt beschrieben sind.

 Geheimhaltung der Anwendungslogik, nur die Schnittstellenbeschreibungen werden

veröffentlicht

 Wiederverwendbarkeit von Diensten

 Lose Kopplung

 Orchestrierung von Diensten

 Alle zur Nutzung der Dienste benötigten Informationen sind in einem formalen Vertrag

zusammengefasst. Solche Informationen sind beispielsweise die Spezifikationen der

Schnittstellen, einzelne Methoden und Protokoll- und Adressierungsinformationen.

2.3.2 XML

Die Extensible Markup Language (XML) ist ein vom W3C definierter Standard zur strukturierten

Darstellung von Daten. Bei der Entwicklung von XML waren die wichtigsten Ziele4:

1. XML soll überall im Internet benutzbar sein

2. XML soll eine Vielfalt von Applikationen unterstützen

3. XML soll kompatibel zu SGML (Standard Generalized Markup Language) sein

4. Es soll einfach sein, Programme zu schreiben, die XML-Dateien verarbeiten

5. Die Anzahl optionaler Features soll auf ein Minimum beschränkt werden, idealerweise bei

null liegen

6. XML-Dokumente sollen möglichst leserlich und klar strukturiert sein

7. Das XML-Design soll sich schnell erstellen lassen

8. Das XML-Design soll formal und präzise sein

9. XML-Dokumente sollen einfach zu erstellen sein

10. Kürze im XML Markup ist von geringer Bedeutung

XML wird vor allem im Internet für den plattformunabhängigen Austausch von Daten eingesetzt. Ein

XML-Dokument ist vom Menschen lesbar, da es aus Textzeichen besteht und per Definition keine

Binärdaten enthält.

Der Aufbau eines XML-Dokumentes stellt eine Baumstruktur dar. Es besitzt genau ein

Wurzelelement. In diesem Element werden die globalen Namespaces definiert, die sicherstellen, dass

keine Doppeldeutigkeiten bei Überschneidungen mit anderen XML-Daten entstehen können. Alle

Elemente des Baumes beginnen mit einem Start-Tag <active> und enden mit einem End-Tag

</active>. Elemente ohne Kind-Elemente können auch in sich geschlossen werden <service

name=“wns:Hello Service“ />. Ein Kind-Element muss geschlossen werden, bevor ein übergeordnetes

Element geschlossen werden kann oder ein Geschwisterelement geöffnet werden kann. Ein Element

kann Attribute, die zusätzliche Informationen bereitstellen und Verarbeitungsanweisungen

beinhalten. Des Weiteren kann über <!-- Kommentartext--> ein Kommentar in das XML-Dokument

eingefügt werden. XML-Dokumente können in drei Dokumentarten unterteilt werden:

4
 http://www.w3.org/TR/2008/REC-xml-20081126/

2 Grundlagen

14

 dokumentzentriert: hauptsächlich für den menschlichen Gebrauch erstellte Dokumente

 datenzentriert: hauptsächlich zur maschinellen Verarbeitung erstellte Dokumente und

 semistrukturiert: eine Mischung von datenzentriert und dokumentzentriert.

XML-Dokumente können von Parsern ausgelesen, interpretiert und modifiziert werden.

In Listing 1 ist der beispielhafte Aufbau eines XML-Dokumentes zu sehen.

<deploy xmlns=

xmlns:pns="http://ode/bpel/unit-test"

xmlns:wns="http://ode/bpel/unit-test.wsdl">

 <process name="pns:HelloWorld2">

 <active>true</active>

 <provide partnerLink="helloPartnerLink">

 <service name="wns:HelloService" port="HelloPort"/>

 </provide>

 </process>

</deploy>

Listing 1: Aufbau eines XML-Dokumentes

2.3.3 Web Service Description Language

Die Web Service Description Language (WSDL) 5ist eine vom World Wide Web Consortium

entwickelte Sprache, um Web Services zu beschreiben. Der neueste Standard ist der W3C WSDL 2.0.

Diese Arbeit beruht jedoch auf dem WSDL 1.1 Standard, der hier auch vorgestellt wird.

WSDL beschreibt die verwendeten Nachrichten und Datentypen, die zum Aufruf eines Web Services

benötigt werden. Des Weiteren wird die Schnittstelle der Operation beschrieben. Eine Web Service-

Beschreibung in WSDL besteht aus zwei Teilen, dem abstrakten und dem konkreten Teil. Der

abstrakte Teil beschreibt die Funktionalität des Web Services. Da in diesem Teil keine sprach- oder

maschinenspezifischen Elemente vorkommen, kann dieser wiederverwendet werden. Der konkrete

Teil definiert, wo der Web Service zur Verfügung steht und wie auf ihn zugegriffen werden kann.

In WSDL sind dafür folgende Konzepte spezifiziert. Diese Konzepte und ihr Zusammenspiel werden

später erläutert.

 Port Type

<wsdl:definitions >

<wsdl:portType name=“nmtoken”>

<wsdl:operation name=“nmtoken“ /> *

</wsdl:portType>

</wsdl:definitions>

Listing 2: WSDL-Port Type

5
 http://www.w3.org/TR/wsdl/

2 Grundlagen

15

 Port

<wsdl:definitions >

<wsdl:service > *

<wsdl:port name=“nmtoken” binding=”qname”> *

< - - extensibility element (1) - - >

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Listing 3: Port

 Operation

<definitions >

<binding >

<operation >

 <input>

<soap:body parts="nmtokens"? use="literal|encoded"?

encodingStyle="uri-list"? namespace="uri"?>

 </input>

 <output>

<soap:body parts="nmtokens"? use="literal|encoded"?

encodingStyle="uri-list"? namespace="uri"?>

 </output>

</operation>

</binding>

</definitions>

Listing 4: WSDL-Operation Binding

 Message

<definitions >

<message name=”nmtoken”> *

<part name=”nmtoken” element=”qname”? type=“qname“?/> *

</message>

</definitions>

Listing 5: WSDL-Message

 Service

<wsdl:definitions >

<wsdl:service name=”nmtoken”> *

<wsdl:port/> *

</wsdl:service

</wsdl:definitions>

Listing 6: WSDL-Service

2 Grundlagen

16

 Binding

<definitions >

<binding >

<soap:binding transport="uri"? style="rpc|document"?>?

</binding>

</definitions>

Listing 7: WSDL-Binding

 Type

<definitions >

<types>

<xsd:schema / > *

</types>

</definitions>

Listing 8: WSDL-Type

Das Zusammenspiel der Konzepte wird in Abbildung 5 erläutert.

Abbildung 5: Aufbau einer WSDL-Datei. Angelehnt an [8].

2 Grundlagen

17

Ein Port Type besteht aus mehreren abstrakten Operations und definiert die vom Web Service zur

Verfügung gestellte Funktionalität. Ein Port Type hat innerhalb des WSDL-Dokuments einen

eindeutigen Namen, der über das name-Attribut zugewiesen wird. Mit Hilfe von WSDL können vier

Message Exchange Pattern realisiert werden.

 One-way: Der Endpoint empfängt eine Nachricht.

 Request-response: Der Endpoint empfängt eine Nachricht und versendet eine dazugehörige

Nachricht.

 Solicit-response: Der Endpoint versendet eine Nachricht und empfängt eine dazugehörige

Nachricht.

 Notification: Der Endpoint versendet eine Nachricht.

Eine Operation hat Ein- und Ausgänge. Diese werden durch abstrakte Nachrichten definiert, die eine

als XML Schema angegebene abstrakte Datenstruktur beschreiben. Diese Struktur definiert die

Nachrichten, die für die Kommunikation mit dem Web Service erwartet werden.

Das Binding konkretisiert die abstrakten Konzepte. Es definiert das Nachrichtenformat und das

Protokoll, wie auf den Web Service über den Port Type zugegriffen werden soll. Es kann mehrere

Bindings für einen einzelnen Port Type innerhalb eines Dokumentes geben, wobei das Binding durch

einen eindeutigen Namen definiert ist. Der zu dem Binding gehörende Port Type wird über das type-

Attribut zugewiesen. Durch Kombination einer Netzwerkadresse und eines Bindings wird ein Port

definiert. Ähnliche Ports werden in einem Service-Element zusammengefasst. Das Type-Element

gruppiert Definitionen von Datentypen, die für den Nachrichtenaustausch relevant sind. WSDL

bevorzugt XSD, um ein Maximum an Plattformneutralität und Kompatibilität zu gewährleisten.

Die Implementierung des durch WSDL beschriebenen Web Services ist von der Programmiersprache

unabhängig.

2.3.4 BPEL

Die Business Process Execution Language (BPEL) [14] hat sich als Standard zur Beschreibung von

Geschäftsprozessen durchgesetzt. BPEL ist eine XML-basierte Sprache, die von IBM, BEA Systems und

Microsoft entwickelt wurde. Ein Geschäftsprozess ist eine Komposition von Web Services, dessen

Geschäftslogik durch XML beschreiben wird. Nach außen wird der Geschäftsprozess wieder als Dienst

angeboten, dessen Schnittstelle durch WSDL beschreiben ist.

Die Sprache BPEL ermöglicht die Modellierung von komplexen Kontrollflüssen und die Möglichkeit,

mit anderen Web Services zu kommunizieren.

Aktivitäten sind die grundlegenden BPEL-Konstrukte. Diese können in zwei Kategorien aufgeteilt

werden. Zum einen die Basic Activities, die die atomaren Aktivitäten darstellen, zum anderen die

Structured Activities, die aus Basic und Structured Activities bestehen und die Modellierung von

komplexen Prozessen zulassen.

Basic Acitivities:

 assign: Zuweisen eines Variablenwertes

 invoke: Aufruf eines Web Services

 receive: Warten auf eine Nachricht

 reply: Antwort an einen Web Service versenden

 throw: Fehler wird signalisiert

2 Grundlagen

18

 rethrow: Fault wird von fault- handler an scope weitergegeben

 wait: Eine bestimmte Zeitspanne oder bis zu einem Zeitpunkt warten

 empty: Leere Aktivität

 exit: Beendet eine Instanz sofort

 compensate: Ruft compensation-handler aller scopes auf

 compensateScope: Ruft compensation-handler eines bestimmten scopes auf

 validate: Validiert XML-Messages

 extensionActivity: Erweiterung von BPEL um eine neue Aktivität

Um die Programmlogik zu definieren, existieren folgende Structured Activities:

 sequence: sequentielle Abarbeitung von Aktivitäten

 flow: parallele Ausführung von Aktivitäten

 while: Ausführen von Aktivitäten, solange eine boolesche Bedingung erfüllt ist

 if: Ausführen einer Aktivität, wenn Bedingung erfüllt ist

 pick: Ausführen einer Aktivität durch ein Ereignis

 scope: Bündelung von Aktivitäten. Diesem Bündel kann beispielsweise ein fault- handler, ein

compensation-handler, ein termination-handler oder ein event- handler zugewiesen werden

 repeatUntil: Ausführen einer Aktivität bis eine Bedingung erfüllt ist

 forEach: Mehrfaches Ausführen derselben Aktivität mit verschiedenen Daten

Der fault-handler, compensation-handler, und termination-handler sind Konzepte zur

Transaktionssteuerung in Prozessen. Jeder fault-handler enthält eine Anweisung in Form einer

Aktivität. Während der Designtime werden für jede scope-Aktivität und den process catch und catch-

all-fault-handler definiert. Wenn ein Fehler bei der Verarbeitung der Aktivitäten auftritt, wird ein

fault geworfen, der von dem von der Workflow-Maschine aktivierten fault-handler abgefangen wird.

Alle laufenden Aktivitäten innerhalb des scope oder process werden beendet, das fault-handling

beginnt. Alle nicht behandelten faults werden in den übergeordneten scope weitergegeben, für die

behandelten fault werden die jeweilig definierten Aktivitäten ausgeführt. Ein catch-all-fault-handler

fängt im Gegensatz zum normalen fault-handler alle faults ab und verarbeitet sie weiter. Scopes sind

verschachtelt und der Wurzelknoten stellt immer das process Element dar.

Der compensation-handler wird nach erfolgreicher Ausführung eines scopes aktiviert. Dort werden

Informationen zum Undo des scopes gespeichert. Ziel ist es, eine Möglichkeit zu schaffen, die Instanz

in den Zustand, die sie vor Ausführung dieses scopes gehabt hat, zurückzusetzen. Ein compensation-

handler kann nur durch den übergeordneten scope aufgerufen werden. Ist kein compensation-

handler definiert, wird ein impliziter aufgerufen. Der implizite compensation handler ruft das

Kompensieren aller innerhalb des scopes installierter compensation-handler auf.

Wenn ein scope terminiert, wird das sogenannte termination-handling gestartet, entweder das

implizite oder das definierte termination-handling. Aus diesem termination-handler wird dann

beispielsweise das compensate aufgerufen.

Zusätzlich zu diesen handlern gibt es noch den event-handler. Dieser reagiert durch Ausführung

bestimmter Aktivitäten auf definierte application-messages oder Timeouts.

BPEL ermöglicht die Modellierung von ausführbaren und abstrakten Prozessen. Im Gegensatz zu

abstrakten Prozessen, die der Beschreibung des Verhaltens von Prozessen dienen, können

ausführbare Prozesse auf einer Workflow-Maschine deployed werden. Abstrakte Prozesse können

2 Grundlagen

19

eine Sicht auf einen ausführbaren Prozess oder ein Template für das Entwickeln von Prozessen

darstellen. Deswegen werden sie auch als Behavioral Interface bezeichnet. In Abbildung 6 ist der

Zusammenhang zwischen einem abstrakten und einem ausführbaren Prozess grafisch dargestellt.

Abbildung 6: Zusammenhang abstrakter und ausführbarer Prozess. Angelehnt an [9].

Im Vergleich zu höheren Programmiersprachen bietet BPEL einen reduzierten Sprachumfang an.

BPEL ist auf das prozessorientierte Komponieren von Web Services, was auch als „Programmieren im

Großen“ bekannt ist, optimiert. Im Anhang in Abbildung 33 ist die graphische Modellierung eines

BPEL-Prozesses dargestellt. Abbildung 34 stellt den Code des BPEL-Prozesses dar. Dieser zeigt die

enge Verknüpfung zwischen WSDL und BPEL. Aufzurufende Web Services werden über WSDL-

Konstrukte spezifiziert, ebenso werden WSDL-Messages verwendet.

2.3.5 SOAP

SOAP stand ursprünglich für Simple Object Access Protocol und ist eine vom W3C definierte

Nachrichtenarchitektur für den strukturierten Austausch von Daten in einem Netzwerk. Die Apache

ODE unterstützt derzeit nur Version 1.1. Seit Version 1.2 wird SOAP nicht mehr als Akronym

gebraucht. SOAP kann unabhängig von dem darunterliegenden Protokoll eingesetzt werden, wobei

die Struktur als XML-Infoset definiert wird. In der aktuellen Spezifikation 1.2 wird ein Framework

durch folgende Punkte spezifiziert6:

 SOAP Processing Model: Ein Verarbeitungsmodell, das Regeln zum Abarbeiten der SOAP-

Nachrichten definiert.

 SOAP Extensibility Model: Ein Erweiterungsmodell, das die Konzepte und Funktionen der

SOAP-Module definiert.

 SOAP Protocol Binding Framework: Ein Framework für die Protokollbindung , das das

Versenden der SOAP-Nachrichten über das darunterliegende Protokoll zwischen den Knoten

(Nodes) definiert.

 SOAP Message Construct: Gibt den Aufbau und die Struktur von SOAP-Nachrichten an.

Das äußerste Element einer SOAP-Nachricht ist der Envelope. Darin enthalten sind maximal ein

Header-Element und genau ein Body-Element. Ein Header- Element besteht aus beliebig vielen

Headern, ein Body-Element kann beliebig viele Kind-Elemente haben. Die SOAP-Spezifikation gibt vor,

6
 http://www.w3.org/TR/soap/

2 Grundlagen

20

wie die Elemente verarbeitet werden, nicht aber den Inhalt der Elemente, der durch die Anwendung

bestimmt wird. Das SOAP-Header-Element beinhaltet Daten, um eine SOAP-Nachricht auf eine

dezentrale und modulare Weise zu erweitern. Es dient dazu, Informationen, die nichts mit dem

eigentlichen Payload der Anwendung zu tun haben, zu transportieren. Der SOAP-Body beinhaltet den

eigentlichen Inhalt der SOAP-Nachricht, der vom Sender zum endgültigen Empfänger (Ultimate SOAP

Receiver) übermittelt werden soll.

Es gibt zwei verschiedene Typen von SOAP-Nachrichten. Die Document-Style und die RPC-Style

(Remote Procedure Call) Nachrichten. Abbildung 7 ist die Struktur einer RPC-Style SOAP-Nachricht zu

sehen.

Abbildung 7: Struktur einer RPC-Style SOAP-Nachricht. Angelehnt an [8].

RPC-Style Nachrichten bilden einen entfernten Methodenaufruf in einer SOAP-Nachricht ab. Dazu

werden alle notwendigen Informationen in die Nachricht kodiert. Der Name der aufzurufenden

Methode steht im Wurzelelement des Bodys. Da in diesem Fall nur genau ein Body-Element existiert,

wird die Interpretation der Nachricht durch die SOAP-Spezifikation vorgegeben. Der Empfänger

generiert eine Antwort-Nachricht, die die Rückgabewerte des Methodenaufrufs enthält.

Document-Style Nachrichten enthalten keine Informationen, wie sie zu interpretieren sind. Die

Anwendung definiert im Voraus die Semantik der Nachricht. Eine SOAP-Nachricht kann dann

mehrere Body-Elemente besitzen und der Empfänger muss nicht zwangsläufig eine Response-

Nachricht generieren. Das SOAP Processing Model geht davon aus, dass die Zustellung der

Nachrichten von einem Sender zum eigentlichen Empfänger, dem Ultimate SOAP Receiver, nicht

direkt erfolgt sondern über mehrere Zwischenknoten, die SOAP Intermediaries. Es wird beschrieben,

wie die Empfänger eine SOAP-Nachricht verarbeiten sollen. Im SOAP-Header stehen die

Anweisungen für den Empfänger. Über ein Role-Attribut wird der Header an den entsprechenden

Knoten auf dem Pfad zum Ultimate Receiver adressiert. Im Role-Attribut wird definiert, welche

Header-Elemente der Empfänger verarbeiten soll. Header-Elemente können von den Intermediariers

verändert, gelöscht oder neu hinzugefügt werden. Des Weiteren dürfen Intermediaries Änderungen

am SOAP-Body vornehmen. Dadurch lassen sich Quality-of-Service-Eigenschaften, die nicht durch das

darunterliegende Protokoll gegeben sind, realisieren. Ein Beispiel hierfür ist die Verschlüsselung einer

2 Grundlagen

21

SOAP-Nachricht. Der SOAP-Body ist immer an den Ultimate Receiver bestimmt. Dieses

Verarbeitungsmodell ist in der Abbildung 8 dargestellt.

Abbildung 8: SOAP Verarbeitungsmodell

3 Apache ODE

22

3 Apache ODE

3.1 Grundlagen der Apache ODE
Die Apache ODE (Orchestration Director Engine)7 wird von der Apache Software Foundation als Top-

Level-Projekt entwickelt. Sie ist ein Open Source Workflow-Management-System für BPEL-

Prozessmodelle, lizenziert unter der Apache License Version 2.0. Implementiert wird die Apache ODE

in Java und basiert auf dem Java Development Kit (JDK) 5.0. Die aktuelle stabile Version ist 1.3.4, auf

der auch diese Arbeit beruht.

Die Apache ODE kommuniziert mit Web Services, sendet und empfängt Nachrichten, verarbeitet

Daten und Fehler nach den Beschreibungen im BPEL-Prozess. Sie unterstützt lang- und kurzlebige

Prozessinstanzen und orchestriert Web Services.

Es gibt drei unterschiedliche Umgebungen, in denen die Apache ODE deployed werden kann:

 Als Web Service in Axis 2. Dafür wird die ODE als WAR gepackt und kann in jedem Application

Server deployed und aufgerufen werden.

 Als JBI Servicegruppe. Dafür wird die ODE als ZIP gepackt und kann in einem JBI Container

deployed und über NMR aufgerufen werden.

 Als OSGi Bundle in SMX4

Folgende Standards werden in der aktuellen stabilen Version unterstützt:

 WS-BPEL 2.0, bis auf wenige Abweichungen. Ziel ist es die Abwärts-Kompatibilität zu

BPEL4WS 1.1 zu erhalten

 WSDL 1.1 und teilweise WSDL 2.0

 SOAP 1.1

 XPath 2.0

Die Apache ODE kann auf jedem Betriebssystem, das Java 5 unterstützt, ausgeführt werden. Dazu

wird nur eine der oben genannten Umgebungen benötigt, da momentan keine Standalone-Version

der ODE verfügbar ist. DAOs (data access objects) bilden die Grundlage zur Kommunikation mit den

Datenbanken der ODE. Es werden zwei DAO-Implementierungen angeboten, OpenJPA und

Hibernate. ODE unterstützt die meisten relationalen Datenbanken. Standardmäßig mitgeliefert

werden Datenbank-Schemas für Derby und MySQL sowie eine bereits konfigurierte Derby-

Datenbank.

Bisher sind keine Instanzmodifikationen möglich. Beim Deployen einer aktualisierten Version eines

Prozesses mit demselben Namen, werden alle Instanzen auf der alten Version des Prozesses

gelöscht. In der Praxis bedeutet das, dass Prozessmodelle unter einem anderen Namen veröffentlicht

werden müssen, wenn Instanzen, die nicht gelöscht werden sollen, auf ihnen aktiv sind und

Aktualisierungen am Prozessmodell nötig sind.

7
 http://www.ode.apache.org/

3 Apache ODE

23

3.1.1 Abweichungen vom WS-BPEL 2.0 Standard

Bis auf wenige Abweichungen wird der WS-BPEL 2.0 Standard unterstützt. Diese Abweichungen

betreffen folgende Aktivitäten:

 <receive>: kein Support der <fromPart>-Syntax, dafür wird das variable Attribut genutzt. Des

Weiteren können im variable Attribut nur Nachrichten-Variablen referenziert werden,

obwohl die Spezifikation auch Element-Variablen erlaubt.

Mehrere Start-Aktivitäten werden nicht unterstützt, ebenso wenig die Anordnungsrichtlinien

der Spezifikation, die ODE ist hier deutlich toleranter als die Spezifikation. conflictingRequest

wird wie conflictingReceive behandelt. Es wird immer, wenn conflictingRequest auftritt,

conflictingReceive geworfen. Ein existierendes validate-Attribut wird ignoriert.

 <reply>: Einschränkungen wie <receive>.

 <invoke>: <toPart> und <fromPart> werden nicht unterstützt. Die Attribute inputVariable

und outputVariable müssen auf eine Nachrichten-basierte (message-typed) Variable

referenzieren.

 <assign>: Das Validieren von Variablen wird nicht unterstützt, ebenso wenig Zuweisungen

innerhalb der Variablendeklaration. Die ODE verwendet derzeit das expressionLanguage statt

des queryLanguage Attributs, um die verwendeten Sprachen innerhalb einer Anweisung

festzulegen.

 <pick>: Einschränkungen wie <receive>.

 <compensate>: Entspricht der <compensateScope>-Aktivität.

 <validate>: Bisher nicht implementiert. Wenn validate in einem Prozessmodell vorkommt,

wird ein Kompilationsfehler geworfen.

3 Apache ODE

24

3.2 Architektur der Apache ODE
Bei der Entwicklung der Apache ODE [15] waren die Hauptziele, eine zuverlässige, kompakte und aus

mehreren eingebetteten Komponenten bestehende Workflow-Maschine zu entwickeln, die

langlebige BPEL-Prozesse ausführen kann. Der Fokus bestand darin, kleine losgekoppelte Module zu

entwickeln, die zu einer voll funktionsfähigen Workflow-Maschine gruppiert werden können. In

Abbildung 9 ist die Architektur der ODE graphisch dargestellt. Es wird das Zusammenspiel der

Komponenten erläutert.

Abbildung 9: ODE Architektur. Angelehnt an [15].

3.3 Komponenten
Die Hauptkomponenten der Apache ODE Architektur sind ODE BPEL Compiler, ODE BPEL Engine

Runtime, ODE Data Access Objects (DAOs) und der ODE Integration Layer (IL). Zusammenfassend

kann die Architektur folgendermaßen beschrieben werden [15]:

“The compiler converts BPEL documents into a form executable by the run-time, which executes them

in a reliable fashion by relying on a persistent store accessible via the DAOs; the run-time executes in

the context of an Integration Layer which connects the engine to the broader execution environment

(i.e. the "world").”

3 Apache ODE

25

3.3.1 ODE BPEL Compiler

Der ODE BPEL Compiler kompiliert die einzelnen BPEL-Artefakte, das BPEL-Prozess-Dokument, WSDL-

Dokumente und XML Schemas in einen ausführbaren Prozess. Bei erfolgreicher Kompilierung ist das

Ergebnis des ODE BPEL Compilers der ausführbare Prozess. Bei nicht erfolgreicher Kompilierung wird

eine Fehlerliste, die auf die fehlerhaften Artefakte hinweist, ausgegeben.

Die Struktur des ausführbaren Prozesses ähnelt der Struktur des BPEL-Prozess-Dokuments. Allerdings

sind Namen und Typen aus der WSDL-Beschreibung aufgelöst und weitere Objekte, beispielsweise

implizite Compensation Handler angelegt. Das kompilierte Prozessmodell wird als .cbp-Datei

gespeichert und stellt das wichtigste Artefakt der BPEL Runtime. Die ODE BPEL Engine Runtime kann

diese kompilierten Prozesse ausführen.

3.3.2 ODE BPEL Engine Runtime

Innerhalb des BPEL-Runtime Moduls stellt die ODE BPEL Engine Runtime alles zur Ausführung von

kompilierten BPEL-Prozessen zur Verfügung:

 Die Implementierung verschiedenster BPEL-Konstrukte,

 die Logik, wann eine neue Instanz kreiert werden muss,

 zu welcher Instanz eine eingehende Nachricht gehört und

 die Process Management API, die zur Interaktion des Benutzers mit der Maschine benötigt

wird.

Um die verlässliche Ausführung von Prozessen in einer unzuverlässigen Umgebung zu gewährleisten,

baut die Runtime auf Data Access Objects, die die Persistenz sicherstellen.

3.3.3 JACOB

Die Implementierung der BPEL-Konstrukte zur Laufzeit auf Instanz-Ebene ist mit Hilfe des ODE Java

Concurrent Objects (Jacob) Framework umgesetzt. Das Framework stellt Funktionalitäten zum

Umgang mit Nebenläufigkeit und der Persistenz des Ausführungsstatus zur Verfügung.

Dadurch, dass diese beiden Objekte im Framework implementiert sind, gestaltet sich die

Implementierung der BPEL-Artefakte deutlich einfacher, da nur die BPEL-Logik und nicht die

Infrastruktur erstellt werden muss. Hieraus resultiert eine strikte Trennung der Ebenen. Jacob stellt

eine persistente virtuelle Maschine zur Ausführung von BPEL-Konstrukten dar.

3.3.3.1 Channels

Channels sind Interfaces, die zur Kommunikation zwischen Aktivitäten in der ODE benötigt werden.

TerminationChannel, ParentScopeChannel und CompensationChannel sind einige der

unterschiedlichen Channels. Einige grundlegende Channels werden jeder Aktivität bei der Erstellung

zur Verfügung gestellt, um ihnen die Kommunikation mit der Umgebung zu ermöglichen.

Es existiert keine Implementierung der Channels, sie werden über einen dynamischen Proxy zur

Verfügung gestellt. Dies ist eine der Ebenen zur Trennung von Ausführung und Aufruf in Jacob.

3 Apache ODE

26

3.3.3.2 JacobObject / JacobRunnable

JacobObject stellt ein Closure da. Closures werden standardmäßig nicht von Java unterstützt. Closures

reproduzieren einen Teil ihres Erstellungskontextes beim Aufruf, auch wenn dieser Kontext

außerhalb der Funktion nicht mehr existiert. Closures sind also Programmfunktionen, die ihren

eigenen Kontext erhalten. JacobObject stellen keine wirklichen Closures dar, da sie statisch

programmiert sind. Sie erheben aber den Anspruch, die Lücke der fehlenden Closures in Java zu

schließen. Aufgabe der JacobObjects ist es, Methoden zu implementieren, Methoden zur

Manipulation von Channels zur Verfügung zu stellen und sich selbst zu vervielfältigen.

JacobRunnable sind JacobObjects, die nur eine Methode run() implementieren. Da alle Aktivitäten

von JacobRunnable erben, müssen sie auch ihre Hauptfunktionalität in der run()-Methode

implementieren. Die Initialisierung findet in den jeweiligen Konstruktoren statt.

3.3.3.3 Channel Listener

Channel Listener stellen das andere Ende eines Channels dar. Sie werden allerdings nicht direkt beim

Aufruf des Channels aufgerufen. Normalerweise werden Channel Listener innerhalb der run()-

Methode einer Aktivität definiert. Oft erben die Objekte von JacobObject, so dass die Jacob-Runtime

später eine eingehende Nachricht zum dazugehörigen Channel Listener weiterreichen kann.

3.3.3.4 Virtual Processing Unit and ExecutionQueue

Innerhalb der Virtual Processing Unit (VPU) findet die komplette Jacob-Verarbeitung statt. Bei Aufruf

eines JacobObjects innerhalb der VPU wird dieses als Continuation registriert. Eine Continuation

verbindet das JacobObject mit der run()-Methode des JacobObjects, um es auszuführen.

Alle von der VPU verarbeiteten Teile werden in der ExecutionQueue abgelegt. Sie stellt einen

Container dar, um alle Artefakte in Queues zu organisieren, von denen sie geholt und darauf gelegt

werden können. Gleichzeitig werden einige Ausführungs-Statistiken von der ExecutionQueue

aufgezeichnet.

Die VPU ist zudem verantwortlich für die Persistierung des eigenen internen Status. Wenn eine

Ausführung gestoppt wird, wird der VPU Status serialisiert und für den späteren Gebrauch

gespeichert. Continuations bleiben nicht dauerhaft in den VPU-Queues, sondern werden geholt,

ausgeführt und verworfen.

3.3.4 ODE Integration Layer

Die ODE BPEL Engine Runtime kann nicht alleine existieren, da sie nicht in der Lage ist, mit der

„restlichen Welt“ zu kommunizieren. Deswegen baut sie auf dem ODE Intergration Layer (IL) auf. Der

Integration Layer bindet die Runtime in die Umgebung ein, beispielsweise existieren Integration

Layer für AXIS2 und JBI. Die Hauptfunktion eines Integration Layers ist es, die Kommunikationskanäle

für die Runtime zur Verfügung zu stellen. Beim AXIS2 Intergation Layer wird dies über die AXIS2-

Libraries, die es der Runtime ermöglichen über Web Services zu kommunizieren, realisiert. Beim JBI

Integration Layer wird die Runtime mit dem JBI Message Bus verbunden und kann darüber

kommunizieren.

Zusätzlich zur Kommunikation sind die Aufgaben des Integration Layers der Runtime, eine Thread-

Planung zur Verfügung zu stellen und den Lebenszyklus der Runtime zu leiten.

3 Apache ODE

27

3.3.5 ODE Data Access Objects

Die ODE Data Access Objects (DAO) sind für die Interaktion zwischen der ODE BPEL Engine Runtime

und der darunterliegenden Datenbank zuständig. Standardmäßig mitgeliefert wird die Unterstützung

einer relationalen JDBC Datenbank. In diesem Fall sind die DAOs mit Hilfen von OpenJPA oder

Hibernate implementiert. Es besteht die Möglichkeit, eigene DAOs zu implementieren, um die

Unterstützung anderer Datenbanken zu erreichen.

DAOs werden von der ODE BPEL Engine Runtime benötigt, um die folgenden Persistenz-Probleme zu

lösen:

 Aktive Instanzen – Welche Instanzen wurden gestartet oder laufen

 Nachrichtenverarbeitung – Welche Instanz wartet auf welche Nachricht

 Variablen – Der aktuelle Wert der BPEL Variablen für jede Instanz

 Partner Links – Der aktuelle Inhalt der BPEL Partner Links für jede Instanz

 Status der Prozessausführung – Der serialisierte Status von Jacob “persistent virtual

machine”

3.4 Management API
Die Management API kann genutzt werden, um zu sehen, welche Prozesse deployed wurden, welche

Instanzen gerade ausgeführt werden oder schon beendet sind und um Variablenwerte abzufragen.

Hauptsächlich besteht die Management API aus den zwei Interfaces ProcessManagement und

InstanceManagement, die als Web Service zur Verfügung gestellt werden.

3.4.1 ProcessManagement

ProcessManagement dient der allgemeinen Verwaltung aller Prozessmodelle. Folgende Methoden

stehen zur Verfügung:

 listAllProcesses(): Listet alle verfügbaren Prozesse mit Informationen, wie ID, Zustand,

 Version, Status und Endpunkten auf.

 getProcessInfo(): Listet für einen einzelnen Prozess die Informationen auf.

 activate(): Aktiviert einen Prozess.

 setRetired(): Verändert den Prozessstatus auf RETIRED. Dadurch kann der Prozess

 nicht mehr gestartet werden.

3.4.2 InstanceManagement

InstanceManagement dient zur Verwaltung von Prozessinstanzen der Apache ODE.

 listAllInstances(): Listet alle existierenden Instanzen auf.

 resume(): Führt eine pausierte Instanz fort.

 suspend(): Pausiert eine Instanz.

 terminate(): Beendet eine Instanz sofort, ohne fault oder compensation handler.

 fault(): Wirft einen Fehler und verhindert die erfolgreiche Ausführung der

 Instanz.

 delete(): Löscht eine Prozessinstanz.

 getInstanceInfo(): Listet für eine Instanz die Informationen auf.

 getVariableInfo(): Listet alle Informationen über eine Variable auf.

3 Apache ODE

28

3.5 Deployment Interface
Das Deployment Interface der Apache ODE dient dem Deployment von Prozessen innerhalb der

Apache ODE. Dazu stellt es fünf Operationen zur Verfügung:

 deploy(): Deployed einen Prozess auf der Apache ODE.

 undeploy(): Entfernt einen Prozess von der Apache ODE.

 listDeployedPackages(): Listet alle bereits auf der Apache ODE vorhandenen Prozesspakete

auf.

 listProcesses(): Listet alle in einem Prozesspaket vorhandenen Prozesse auf.

 getProcessPackage(): Liefert den Namen des zum Prozess gehörigen Pakets, in dem der

Prozess deployed wurde, zurück.

Abbildung 10: Deployment-API der Apache ODE

3.6 Oberfläche GUI
Die Oberfläche der Apache ODE besteht aus vier Reitern.

 Home: ist eine Übersichtsseite über die derzeitigen Prozesse und Instanzen

 Processes: zeigt alle ausführbaren Prozesse mit zusätzlichen Informationen an und stellt die

Retitre- und Activate-Funktionalität zur Verfügung

 Instances: zeigt alle Instanzen und ihren Status an. Je nach Status der Instanz steht die

Terminate-, Suspend- oder Resume-Funktionalität zur Verfügung

 Deployed: zeigt alle in der Apache ODE verfügbaren Prozesse an und stellt die Undeploy-

Funktionalität zur Verfügung

3 Apache ODE

29

Alle Funktionalitäten, die über Buttons aus der Apache ODE Oberfläche aufrufbar sind, stehen auch

als Web Service zur Verfügung.

3.7 Deployment
Die Apache ODE unterstützt zwei unterschiedliche Wege, ein Prozessmodell zu deployen. Der erste

Weg führt über einen Deployment-Web Service, der zweite über das direkte Kopieren des

Deployment-Bundles in das WEB-INF/processes Verzeichnis der Apache ODE im Dateisystem. Für

diese Arbeit ist nur das Deployen über den Web Service interessant.

Prozesse werden in der ODE in einem Deployment-Bundle deployed. Das Deployment-Bundle ist

entweder ein Ordner oder eine zip-Datei und enthält den Deployment Descriptor, die BPEL-Datei und

alle weiteren Artefakte, wie die WSDLs oder Schemas, die zur Ausführung benötigt werden. Die ODE

identifiziert Prozesse ausschließlich am Namen des Deployment-Bundles. Im Deployment Descriptor

wird festgelegt, welche Prozesse mit welchen Servicen kommunizieren. Jeder Partner Link, der über

eine receive-Aktivität benutzt wird, muss einem provide-Element zugeordnet werden, jeder Partner

Link mit einer invoke-Aktivität muss mit einem invoke-Element verbunden werden.

Beim Deployment werden die BPEL-Prozesse in eine für die ODE BPEL Engine Runtime lesbare Form

umgewandelt. Dabei wird die Kompatibilität zum ODE Objekt Modell überprüft und in das ODE

Objekt Modell überführt. Dieser BPEL-Prozess wird daraufhin als .cbp-Datei abgespeichert. Ab

diesem Zeitpunkt wird nur noch auf die .cbp-Datei zugegriffen. Die eigentliche BPEL-Datei wird bei

der Ausführung eines Prozesses nicht mehr benötigt. Mit Hilfe von DAOs werden die BPEL-Prozesse,

die als ODE Objekt Modell vorliegen, ausgeführt und die Persistenz und Speicherung der Daten

sichergestellt.

3.8 Versionierung
In der Apache ODE gibt es eine Versionierung, die im Gegensatz zu einer klassischen Versionierung

über alle Deployment-Bundles angewandt wird. Es ist hierbei egal, ob das Deployment-Bundle

bereits früher deployed wurde oder ob es sich um ein komplett neues Bundle handelt.

Standardmäßig werden Prozessmodelle, wenn von ihnen eine neue Version deployed wird, retired.

Prozessmodelle, die retired sind, können nicht mehr instanziiert werden. Die laufenden Instanzen

werden ausgeführt bis sie beendet sind.

Beim Deployen eines Bundles werden in Bezug auf die Versionierung folgende Schritte ausgeführt8:

1. Eine neue Versionsnummer, die um eins höher ist als die Versionsnummer des vorherigen,

wird an das Deployment-Bundle angefügt.

2. Es wird geprüft, ob dasselbe Deployment-Bundle schon einmal deployed wurde. Dies

ermittelt die Apache ODE anhand des Namens des Deployment-Bundles. Wenn dies der Fall

ist, werden alle alten Deployment-Bundles retired.

3. Die Prozesse werden in der ODE unter derselben Versionsnummer wie das Deployment-

Bundle deployed.

4. Daraufhin können die neuen Prozesse gestartet werden.

8
 http://ode.apache.org/process-versioning.html

3 Apache ODE

30

Die Versionsnummer ist eine einfache ansteigende Nummer. Alle Prozesse innerhalb eines

Deployment-Bundles haben die Versionsnummer des Deployment-Bundles.

Beim Deployen eines Deployment-Bundles, das dieselben Prozesse enthält wie ein anderes Bundle,

aber mit einem anderen Namen versehen ist, bemerkt die ODE nicht, dass es sich um dieselben

Prozesse handelt. In diesem Fall wird nichts retired sondern es gibt zwei identische Prozesse mit

unterschiedlichem Namen und unterschiedlicher Versionsnummer. Das Verhalten der ODE ist für

diesen Fall nicht genau spezifiziert. Die Frage, welcher der beiden Prozesse die Nachricht bekommt,

kann durch unterschiedliche Endpoints geklärt werden.

Prozesse können auch manuell über den entsprechenden Web Service oder die Oberfläche der

Apache ODE retired oder wieder aktiviert werden.

4 Konzeption einer Deploy New Version-Strategie

31

4 Konzeption einer Deploy New Version-Strategie
Wissenschaftler gehen beim Erstellen neuer Berechnungen im Bereich von computergestützten

Experimenten und Simulationen oft iterativ bzw. experimentell vor. Sie haben bei der

Modellerstellung eine grobe Vorstellung von den benötigten Programmen, das genaue

Zusammenspiel steht jedoch noch nicht fest. Es entwickelt sich oft erst im Laufe der Berechnung. Je

nach deren Verlauf können sich auch die Anforderungen an die zu erstellende Berechnungssoftware

zur Laufzeit ändern. Beispielsweise könnte eine andere Visualisierungsmethode nötig werden. Eine

iterative Entwicklung von Workflows wird weder von geschäftlichen noch von wissenschaftlichen

Workflow-Maschinen zufriedenstellend erfüllt. Insbesondere ist eine konzeptionelle Betrachtung der

experimentellen Workflow-Entwicklung nötig. Um diesen Anforderungen gerecht zu werden, wird in

dieser Arbeit die Deploy New Version-Funktionalität entwickelt. Ziel der Deploy New Version-

Funktionalität ist es, eine Möglichkeit zu schaffen, ein Prozessmodell so verändern zu können, dass

eine oder mehrere ausgewählte Prozessinstanzen ein anderes zukünftiges Verhalten verfolgen

werden als durch das ursprüngliche Modell vorgegeben. Dazu soll es möglich sein, Instanzen zu

pausieren, deren zukünftiges Verhalten zu verändern und sie daraufhin weiterlaufen zu lassen.

Instanzen, die ihr Ausführungsende erreicht haben, sollen automatisch am Leben erhalten werden,

so dass weitere Funktionalität angehängt werden kann. Mit diesen Funktionalitäten soll verhindert

werden, dass Instanzen, an deren Anforderungen sich etwas ändert, neu gestartet werden müssen.

Damit können Zeit- und Datenverluste und somit finanzielle Verluste verhindert werden.

Nachfolgend ein Anwendungsbeispiel. Ein Oberarzt soll eine Entscheidung seines Assistenzarztes

genehmigen, ist aber der Ansicht, dass zuerst eine weitere Untersuchung zur Bestätigung der

Diagnose notwendig ist. Wunsch des Oberarztes ist es, die neue Untersuchung, eine neue Aktivität,

in die Instanz einzufügen. Dies wird durch die Deploy New Version-Funktionalität ermöglicht. Ein

weiteres Beispiel ist das Ändern der Behandlungsmethoden aufgrund einer Fehldiagnose.

Ein Beispiel aus dem wissenschaftlichen Bereich ist die Strömungssimulation. Bei der Simulation von

Meeresströmungen wird anhand der globalen Erwärmung und einigen anderen Faktoren überprüft,

wie sich die Strömungen innerhalb der Meere verändern oder ob es zum Versiegen einzelner Ströme

kommt. Anhand dieser Ergebnisse kann daraufhin simuliert werden, welche Auswirkungen die

Veränderungen der Ströme auf das Klima haben. Die einzelnen Simulationen bauen dabei

aufeinander auf. Allerdings hängt der nächste Schritt oft von den Ergebnissen der vorangegangenen

Simulation ab. Diese Schritt für Schritt-Entwicklung des Prozessmodells wird durch die Deploy New

Version-Funktionalität möglich.

Der Punkt, an dem die Ausführung einer Instanz aktuell ist, wird als Wavefront bezeichnet. Da die

Vergangenheit von Instanzen nicht geändert werden kann, ist die Wavefront die Stelle, ab der die

Instanz nach dem neuen Modell laufen soll.

4 Konzeption einer Deploy New Version-Strategie

32

Abbildung 11: Wavefront einer Instanz

Zu Beginn dieser Arbeit gab es zwei Ansätze um die Deploy New Version-Funktionalität umzusetzen:

1. Die pausierte Instanz auf ein neues Prozessmodell umzuziehen.

2. Den Teil des alten Modells ab der Wavefront durch den Teil des neuen Modells ab der

Wavefront zu ersetzen.

Die drei Hauptanforderungen an die Deploy New Version-Funktionalität sind:

1. Instanzen sollen nach ihrer erfolgreichen Ausführung auf eine neuere Prozessmodell-Version

migrierbar und dann nach dem neuen Modell fortzuführen sein. Dadurch müssen Instanzen,

auch wenn sie erfolgreich beendet wurden, am Leben erhalten werden.

2. Instanzen sollen während ihrer Ausführung in den Status SUSPENDED überführbar sein, um

sie dann auf eine neue Prozessmodell-Version umzuziehen.

3. Es sollen beide Versionen des Prozessmodells weiterhin aktiv und instanziierbar sein und bei

der Migration dürfen keine aktiven Instanzen verloren gehen.

Die dritte Anforderung ist mit dem zweiten Ansatz nicht kompatibel, da bei diesem Ansatz das alte

Modell verloren ginge und nur noch das neue Modell existieren würde. Aus diesem Grund wird in

dieser Arbeit der erste Ansatz behandelt. Zusätzlich zu den neuen Anforderungen an die

Versionierung und das Deployment stehen die Migration von Instanzen und die Veränderung des

Lebenszyklus von Instanzen im Vordergrund. In Abbildung 12 ist der konzeptionelle Ansatz der

Deploy New Version-Funktionalität graphisch dargestellt. Nachdem eine neue Prozessversion

deployed wurde und beide Prozessversionen aktiv sind, wird die Instanz auf die neue Prozessmodell-

4 Konzeption einer Deploy New Version-Strategie

33

Version migriert. Die Instanz kann dann reaktiviert werden und es wird die durch die Migration neu

hinzugefügte Logik ausgeführt. Des Weiteren werden Instanzen nach ihrer Ausführung am Leben

gehalten, um sie später migrieren zu können und weiter auszuführen.

Abbildung 12: Die drei Hauptfunktionalitäten der Deploy New Version-Funktionalität

4.1 State of the art
In diesem Kapitel werden andere Workflow-Maschinen mit ihrem Funktionsumfang vorgestellt. Der

Funktionsumfang bezieht sich hier hauptsächlich auf Funktionen, die mit der Deploy New Version-

Funktionalität vergleichbar sind.

Alle vorgestellten Workflow-Maschinen erhalten erfolgreich ausgeführte Instanzen nicht am Leben,

sondern beenden die Instanzen nach ihrer Ausführung endgültig.

4.1.1 Apache ODE 1.3.4

Seit der Apache ODE Version 1.3.4 existiert die Instance Replayer-Funktionalität9. Der Replayer

erweitert die Management API der Apache ODE um zwei Operationen:

1. replay()

2. getCommunications()

replay migriert langlaufende Instanzen auf ein neueres Prozessmodell anhand ihrer Kommunikation.

Dazu wird ein zweiter Scheduler, der Replay Scheduler, eingeführt. Auf diesem werden die in der

Instanz schon abgearbeiteten Aktivitäten „erneut ausgeführt“. Die noch nicht bearbeiteten

9
 http://ode.apache.org/instance-replayer.html

4 Konzeption einer Deploy New Version-Strategie

34

Aktivitäten werden auf dem Apache ODE Scheduler registriert. „Erneut ausgeführt“ steht in diesem

Fall für das Wiederholen der Aktivitäten. Dabei werden die Aktivitäten, die einen

Nachrichtenaustausch erzeugen, nicht noch mal ausgeführt, sondern es werden die alten

Nachrichten verwendet. Probleme entstehen, wenn die Instanz beispielsweise innerhalb einer wait-

Aktivität migriert wird, da beim Nachspielen nochmals der komplette Zeitraum gewartet wird.

getCommunications dient dem Nachbilden von Fehlerszenarien von einer ODE-Instanz zu einer

anderen ODE-Instanz, beispielsweise von einem Produktiv- hin zu einem Entwicklungssystem. Dazu

wird als erstes mit Hilfe von getCommunications der Nachrichtenaustausch der Instanz abgefragt und

in ein „Instanz-Kommunikations“-Format gebracht. Damit können die bereits ausgetauschten

Nachrichten auf die zweite ODE-Instanz migriert werden, so dass sie dort zur Verfügung stehen.

Daraufhin wird replay auf der anderen ODE-Instanz ausgeführt, um die Instanz zu replizieren.

Erfolgreich ausgeführte Instanzen sind beendet und können nicht migriert werden. Beim Deployment

einer neuen Prozessmodell-Version wird die alte Prozessmodell-Version inaktiv gesetzt. Die

Versionierung der Apache Ode ist vom Prozessmodell unabhängig, wie in Kapitel 3.8 ausführlich

beschrieben.

4.1.2 Oracle Application Server 10g

Der Oracle BPEL Process Manager10 unterstützt die Instanzmigration und Versionierung von

Prozessmodellen in der Version 10g. Instanzmigration ist nur möglich zwischen Prozessmodellen, die

denselben Prozessnamen besitzen, genauer gesagt nur zwischen unterschiedlichen Prozessmodell-

Versionen. Es können nur asynchrone Prozesse migriert werden, wobei jedoch einige Regeln zu

beachten sind. Die zwei Prozessmodell-Versionen müssen kompatible Interfaces besitzen, die

Variablentypen und -namen sowie Partner Link Definitionen müssen kompatibel sein.

4.1.3 Bonitasoft

In der Open Source Workflow-Maschine Bonitasoft1112 [16] ist es möglich, Prozess-Versionierung

vorzunehmen und mehrere Versionen eines Prozessmodells parallel aktiv zu halten. Dies ist möglich,

da die Instanzen manuell in der GUI gestartet werden und dabei eine Prozessmodell-Version

ausgesucht wird. BPEL-Prozesse dagegen werden über eine Nachricht gestartet, wodurch

instanziierbare Operationen von mehreren aktiven Versionen eines Prozessmodells in Konflikt stehen

können. Ein Vorteil von Bonitasoft gegenüber anderen Workflow-Maschinen ist, dass sie eine einfach

zu bedienende graphische Oberfläche anbietet, um Workflows in BPMN 2.0, einer graphischen

Spezifikationssprache zur Modellierung von Geschäftsprozessen, zu zeichnen. Diese können per

Knopfdruck zu einer lauffähigen AJAX-Webanwendung kompiliert werden.

Instanzmigration wird von Bonitasoft in der derzeitig aktuellen Version 5.3 nicht unterstützt.

4.1.4 ADEPTflex

ADEPTflex steht für Application Development Based on Pre-Modeled Templates. In [17] und [18] wird

der Funktionsumfang von ADEPTflex beschrieben. Unter anderem werden Ad-hoc–Modifikationen

und Schema-Evolution zur Migration von Instanzen unterstützt. Die Migration von Instanzen ist unter

10

 http://www.oracle.com/technetwork/middleware/ias/overview/index.html
11

 http://www.ancud.de/
12

 http://www.bonitasoft.com/

4 Konzeption einer Deploy New Version-Strategie

35

den unterschiedlichen Prozessmodell-Versionen möglich. Über die Funktionsweise der Versionierung

von Prozessen in ADEPTflex werden keine genauen Aussagen getroffen.

4.1.5 E-BioFlow

I. Wassink, M. Ooms und P. van der Vet [19] haben einen Ad-Hoc-Editor für die E-BioFlow Workflow-

Maschine entwickelt, der den Ansprüchen von explorativen Entwicklungsansätzen von

Wissenschaftlern gerecht wird. Bei der E-BioFlow sind das Design und die Ausführung von Workflows

im Gegensatz zu anderen Workflow-Maschinen nicht getrennt. Der Ad-Hoc-Editor ermöglicht ein Ad-

Hoc-Design von Workflows. Einzelne Aktivitäten oder Gruppen von Aktivitäten können in dem Ad-

Hoc-Editor ausgewählt und ausgeführt werden. Dazu erstellt der Editor einen partiellen Workflow

aus den ausgewählten Aktivitäten und zusätzlich zwei Aktivitäten, die vom Benutzer bearbeitet

werden müssen. Die erste dieser zwei Aktivitäten ist die sogenannte inputTask, die zum Starten des

Workflow-Fragments benötigt wird. Diese inputTask-Aktivität zeigt die schon verfügbaren benötigten

und die noch fehlenden Daten an. Der Benutzer trägt die fehlenden Daten ein und kann die bereits

verfügbaren Daten ändern. Die zweite Aktivität wird an das Ende des Workflows angefügt und wird

als outputTask bezeichnet. Diese Aktivität zeigt nach erfolgreicher Ausführung des Workflow-

Fragments die Ergebnisdaten an.

Dieser partielle Workflow wird auf der Workflow-Maschine ausgeführt und die Ergebnisse und

Zwischenergebnisse im Ad-Hoc-Editor angezeigt. Anhand der einzelnen Ergebnisse der partiellen

Workflows kann entschieden werden, wie weiter vorgegangen werden soll. Ebenso ist es möglich, ein

Fragment zu korrigieren und es nochmals auszuführen. Nicht möglich ist es jedoch, ein Fragment

während der Ausführung anzuhalten und daraufhin zu verändern. Ein Fragment wird immer komplett

ausgeführt. Das Debuggen von Aktivitäten oder Fragmenten wird ebenfalls möglich, da man sie

einzeln und isoliert ausführen kann. Vor allem das späte Binding von Fragmenten an den Service, das

bei der E-BioFlow erst bei der Ausführung zum Tragen kommt, ermöglicht dieses Vorgehen.

E-BioFlow unterstützt die Versionierung von Prozessen. Über die genaue Funktionsweise wird keine

Aussage getroffen.

4.1.6 IBM WebSphere Process Server

Der IBM WebSphere Process Server unterstützt in der derzeit aktuellen Version 7 Instanzmigration

und Prozess-Versionierung [20]. Prozess-Versionierung bedeutet in diesem Fall, tatsächlich eine neue

Version eines Prozessmodells zu deployen. Um die Instanzmigration erfolgreich abzuschließen und

das neue Modell als Version des alten Modells zu erkennen, existieren folgende Einschränkungen

[21]:

 Keine Namespace-Änderungen oder charakteristischen Änderungen an den implementierten

Interfaces von langlaufenden Prozessen.

 Keine Namespace-Änderungen an den Geschäfts-Objekten, die von den langlaufenden

Prozessen implementiert werden.

 Keine Änderungen an den Correlation Sets oder den Correlation-Eigenschaften, die benötigt

werden.

 Alle Änderungen sollten abwärts kompatibel sein. Nur optionale Attribute sollten zu den

Geschäfts-Objekten, die von den Prozessen benötigt werden, hinzugefügt werden

4 Konzeption einer Deploy New Version-Strategie

36

Als neue Version wird nur eine tatsächlich neue Version eines Prozessmodell erkannt, das über den

Menüpunkt „New Process Version“ angelegt wird. Es kann immer nur eine Version eines

Prozessmodells aktiv sein. Entweder ist die neue Version sofort aktiv und dadurch alle älteren nicht

mehr oder die neue Version wird erst in der Zukunft aktiv und bis dahin ist die zuletzt gültige Version

aktiv.

4.2 Instanz-Lebenszyklus
Eine Instanz kann sechs Zustände haben. Das Zusammenspiel dieser Zustände ist in Abbildung 13

dargestellt:

 ACTIVE: Die Instanz wird gerade ausgeführt.

 SUSPENDED: Die Instanz wurde „pausiert“.

 COMPLETED: Die Instanz wurde erfolgreich beendet.

 TERMINATED: Die Instanz wurde über die exit-Aktivität beendet.

 FAILED: Ein Fehler im globalen Scope ist aufgetreten.

 ERROR: Ein Fehler, der nicht die Ausführung verhindert, aber Beachtung erfordert, ist

aufgetreten.

Abbildung 13: Instanz-Lebenszyklus

Eine gestartete Instanz ist im Zustand ACTIVE und geht nach erfolgreicher Ausführung in den Zustand

COMPLETED über. Eine aktive Instanz kann über die suspend-Funktionalität pausiert werden und

befindet sich dann im Status SUSPENDED. Aus dem Status SUSPENDED kann die Instanz über die

resume-Funktionalität weiter ausgeführt werden. Dadurch wird die Instanz wieder aktiv. Tritt ein

Fehler im globalen Scope auf und die Instanz kann nicht beendet werden, geht sie in den Status

FAILED über. Wenn ein Fehler auftritt, der die Ausführung der Instanz nicht verhindert, geht die

Instanz in den Status ERROR über.

Die drei Funktionalitäten suspend, resume und terminate werden normalerweise als Web Services

zur Verfügung gestellt.

4 Konzeption einer Deploy New Version-Strategie

37

Die sechs Zustände bleiben auch bei dem neuen Instanz-Lebenszyklus erhalten, allerdings soll eine

Instanz nach erfolgreicher Ausführung nicht mehr automatisch in den Zustand COMPLETED

übergehen sondern in den Status SUSPENDED. Dadurch wird die Instanz am Leben erhalten und die

Möglichkeit geschaffen, über die resume-Funktionalität die Instanz später weiter auszuführen. Um

weiterhin die Möglichkeit zu haben, eine Instanz erfolgreich und endgültig zu beenden, soll eine neue

Funktion finish implementiert werden. Diese finish-Funktion soll wie die anderen Funktionen als Web

Service zur Verfügung stehen. Der gewünschte Instanz Lebenszyklus ist in Abbildung 14 dargestellt.

Ein Sonderfall, der nicht Gegenstand dieser Arbeit ist, entsteht durch die fehlerhafte Beendigung

einer Prozessinstanz. Tritt ein Fehler auf, der die erfolgreiche Ausführung verhindert, so wird die

Instanz je nach Fehler in den Status FAILED oder ERROR überführt. Es ist dadurch nicht möglich,

weitere Logik hinzuzufügen und die Instanz auf die neue Prozessversion zu migrieren, um sie weiter

auszuführen. Zur Behandlung dieses Sonderfalls müsste eine Möglichkeit geschaffen werden, an

eine Stelle in der Vergangenheit der Instanz zu springen, quasi ein Verschieben der Wavefront durch

das Kompensieren aller Aktivitäten einschließlich der fehlerhaften Aktivität. Daraufhin muss die

Instanz in den Zustand SUSPENDED überführt werden, wonach die Instanz migriert und von der

Wavefront aus weiter ausgeführt werden könnte.

Abbildung 14: gewünschter Instanz Lebenszyklus

4.3 Versionierung und Deployment
Um die Deploy New Version-Funktionalität zu ermöglichen, werden neue Anforderungen an das

Deployment und die Versionierung gestellt. Wenn sich die Anforderungen an einen Prozess ändern,

wird ein neues Prozessmodell erstellt und deployed. Dieser neue Prozess ist eine neue Version des

alten Prozesses. Es sollen weiterhin beide Prozessversionen aktiv bleiben. Aktiv bedeutet, dass beide

Prozessversionen weiterhin instanziierbar sein müssen. Da die BPEL-Prozesse als Web Service

angeboten werden, kann es hierbei zu Konflikten zwischen den einzelnen Versionen kommen. Wenn

nur eine aktive Prozessversion existiert, wird diese über eine von der Workflow-Maschine vergebene

4 Konzeption einer Deploy New Version-Strategie

38

Versionsnummer eindeutig gekennzeichnet. Diese Versionsnummer wird allerdings nicht für den

Nachrichtenaustausch verwendet sondern nur innerhalb der Workflow-Maschine. Um einen Prozess

zu instanziieren, wird die Versionsnummer nicht benötigt, da es nur einen aktiven Prozess geben

kann. Durch die Deploy New Version-Funktionalität ist es jetzt erforderlich, mehrere aktive

Prozessversionen parallel aktiv zu halten. Dadurch ist es nicht mehr möglich, eine Instanz einer

bestimmten Prozessversion zu erzeugen, da der Client nicht weiß, an welche Prozessversion er die

Nachricht zum Instanziieren senden soll. In [22] werden einige Lösungsansätze vorgestellt:

 Um eine Prozessversion zu instanziieren, wird die Prozessversionsnummer mitgesendet.

Dadurch wird Kopplung zwischen Client und Workflow-Maschine erhöht, da verschiedene

Workflow-Maschinen verschiedene Arten der Versionierung unterstützen.

 Eine zweite Möglichkeit ist der Gebrauch von Metadaten. Zur Designtime des Prozessmodells

werden Metadaten spezifiziert und sind Teil des Deployment Bundles. Die Metadaten

können beispielsweise durch Schlüsselpaare realisiert werden. Die Workflow-Maschine muss

die Eindeutigkeit der Metadaten garantieren. Metadaten adressieren eine Prozessversion,

um eine bestimmte Prozessversion zu instanziieren.

In beiden Ansätzen wird ein zusätzlicher Parameter benötigt, damit der Client eine eindeutige

Adressierung vornehmen kann. Dieser Parameter kann optional sein, wenn nur eine aktive Version

eines Prozesses existiert oder ein Standard-Prozess spezifiziert wurde, der instanziiert wird, wenn

kein Parameter angegeben wird. Der spätere Nachrichtenaustausch zwischen Client und Instanz kann

weiterhin ohne Parameter stattfinden, da die bekannten Correlation-Mechanismen dafür genutzt

werden.

In dieser Arbeit wird ein Konzept vorgestellt, das sich am ersten Lösungsansatz orientiert. Um

unterschiedliche Versionen desselben Prozessmodells eindeutig adressieren zu können, wird die

Adressierung in Abhängigkeit von der Versionsnummer durchgeführt.

<wsdl:service name="HelloService.v2">

 <wsdl:port binding="tns:HelloSoapBinding" name="HelloPort">

 <soap:address location="http://localhost:8080/ode/processes/helloWorld.v2"/>

 </wsdl:port>

</wsdl:service>

Listing 9: WSDL Adressierung

In der WSDL-Datei werden der Service-Name und die SOAP address location durch das Anhängen der

eindeutigen Versionsnummer identifizierbar. Die SOAP-Nachricht wird, um den BPEL-Prozess zu

instanziieren, an die SOAP address location (http://localhost:8080/ode/processes/helloWorld.v2)

gesendet.

4 Konzeption einer Deploy New Version-Strategie

39

Abbildung 15: Konzept der Adressierung

Wie in Abbildung 15 graphisch dargestellt ist es durch das Senden der Nachricht an die eindeutige

SOAP address location möglich, jede Prozessversion zu instanziieren. Dadurch wird gewährleistet,

dass mehrere Versionen eines Prozessmodells parallel aktiv und instanziierbar sein können.

4.4 Instanzmigration
Ziel ist es, bei der Migration von Prozessinstanzen, möglichst viele Änderungen an den einzelnen

BPEL-Aktivitäten zuzulassen. In diesem Abschnitt werden alle theoretisch möglichen Änderungen an

den einzelnen BPEL-Aktivitäten erläutert. Die Aktivitäten werden in zwei Kategorien unterschieden.

Structured Activitites sind strukturierende Aktivitäten, die wiederum andere Aktivitäten beinhalten.

Basic Activities sind atomar, sie beinhalten keine weiteren Aktivitäten.

Generell gilt, dass in der Zukunft, also nach der Wavefront liegende Aktivitäten ohne

Einschränkungen verändert oder gelöscht werden können. Außerdem können neue Aktivitäten

hinzugefügt werden. Da das Konzept so viele Änderungen wie möglich zulassen soll, können auch die

Aktivitäten in der Wavefront geändert werden. Unter Umständen können sich diese Änderungen

auch auf das zukünftige Verhalten der Instanz auswirken. Änderungen an Aktivitäten, die in der

Zukunft liegen sind uneingeschränkt möglich. Im Folgenden werden zu jeder Aktivität die

Einschränkungen aufgezeigt, die für Aktivitäten in der Wavefront gelten. Prinzipiell ist es bei

Aktivitäten in der Wavefront möglich, ausgehende Links zu verändern, da diese noch nicht evaluiert

wurden.

4.4.1 Standard-Elemente und Standard-Attribute

Jede BPEL-Aktivität kann optionale Standard-Elemente und Standard-Attribute enthalten. Es

existieren zwei Standard-Attribute:

 name=“NCName“?

 suppressJoinFailure=“yes|no“?

Das name-Attribut dient dazu, maschinenlesbare Aktivitätsnamen zu vergeben. Das

suppressJoinFailure-Attribut gibt an, ob Join-Fehler unterdrückt werden sollen. Ein Join-Fehler tritt

auf, wenn die Evaluierung eines Links fehlschlägt. Änderungen an diesen Attributen stellen im

Großen und Ganzen bei laufenden Aktivitäten kein Problem dar. Beim Ändern des name-Attributs

muss beachtet werden, dass die Aktivität dadurch unter Umständen nicht mehr gefunden werden

4 Konzeption einer Deploy New Version-Strategie

40

kann. Beispielsweise werden bei der Kompensierung von Scopes die Namen der Scopes für die

Referenzierung genutzt.

Die Standard Elemente sind zwei Container. Zum einen der <sources>- und zum anderen der

<targets>-Container. In diesen Containern sind Links enthalten. Beim Ändern der Container muss

beachtet werden, dass die Änderungen im kompletten Prozessmodell konsistent umgesetzt werden.

Beispielsweise müssen die Links angepasst werden, wenn sich der <sources>- oder <target>-

Container ändert. Wenn sich der Link ändert, müssen <sources>-und <targets>-Container angepasst

werden. Unter dieser Bedingung sind Änderungen an den Containern unproblematisch.

4.4.2 Process

Das process-Element stellt das äußerste Element eines BPEL-Prozesses dar. Es wird nicht als BPEL-

Aktivität angesehen. Innerhalb des process-Elements werden folgende Elemente definiert:

 queryLanguage: Definiert die Sprache, um innerhalb von Zuweisungen Knoten auszuwählen.

Standardmäßig ist die Sprache XPath.

 expressionLanguage: Definiert die Sprache innerhalb des process-Elements. Der Standard-

Wert ist XPath.

 suppressJoinFailure: Definiert, ob Join-Fehler unterdrückt werden oder von einem fault-

handler bearbeitet werden sollen. Ist das Attribut in einer untergeordneten Aktivität nicht

definiert, so wird der Wert aus dem process-Element vererbt. Standardmäßig ist der Wert

des Attributs no.

 exitOnStandardFault: Der Standard-Wert ist no. Wenn das Attribut den Wert yes hat, muss

der Process beim Auftreten eines Fehlers sofort beendet werden. Wenn der Wert no ist,

werden auftretende Fehler durch einen fault-handler behandelt. Ebenso wie das

suppressJoinFailure-Attribut wird es vererbt.

 import: Beschreibt eine Abhängigkeit zu externen XML-Schemas oder WSDL-Definitionen.

 partnerLinks: Definiert die benötigten Partner Links.

 messageExchanges: Wird benötigt, um die Zuordnung zwischen eingehenden Nachrichten

und den reply-Aktivitäten eindeutig zu machen.

 variables: Definiert alle innerhalb des Prozesses benötigten Variablen.

 correlationSets: Ermöglicht dem Prozess während der Ausführung, Nachrichten zu

empfangen und der korrekten Prozessinstanz zuzuordnen. Dazu werden bestimmte Daten

aus der empfangenen Nachricht (sogenannte Properties) genutzt.

 faultHandler: Definiert die Fehlerbehandlung.

 eventHandler: Definiert einen event-handler, der aufgerufen wird, wenn das definierte Event

auftritt. Das Event kann entweder ein wirkliches Event sein und wird dann durch das

onEvent-Attribut angegeben. Es kann aber auch ein Timer-Event sein, das durch das

onAlarm-Attribut beschrieben wird.

Jeder Prozess beinhaltet mindestens eine Aktivität. Diese Aktivität kann entweder eine Structured

oder Basic Activity sein.

Aktivitäten, die sich gerade in der Ausführung befinden, können mit Einschränkungen verändert oder

gelöscht werden. Diese Einschränkungen sind von der jeweiligen Aktivität abhängig. Die einzelnen

Aktivitäten, ihre Einschränkungen und Probleme werden im weiteren Verlauf dieses Kapitels

4 Konzeption einer Deploy New Version-Strategie

41

beschrieben. Aktivitäten, die nach der Wavefront, also in der Zukunft liegen, können problemlos

geändert werden.

Das Ändern der Attribute ist nur teilweise möglich. Das queryLanguage- und das

expressionLanguage-Attribut können nur für noch nicht ausgewertete Ausdrücke geändert werden.

Das Correlation Set darf geändert werden so lange alle dazugehörigen Correlations noch nicht

initialisiert sind. Der fault-handler und der event-handler können verändert, gelöscht und hinzugefügt

werden, wenn sie sich gerade nicht in der Ausführung befinden. Beim Hinzufügen eines fault- oder

event-handlers ist zu beachten, dass der Process Scope dann neu initialisiert werden muss. Das

messageExchange-Element darf nur dann verändert werden, wenn die Änderungen keinen

Nachrichtenaustausch betreffen, der schon begonnen hat. Die suppressJoinFailure-,

exitOnStandardFault-Attribute und das partnerLinks-Element können problemlos geändert werden.

Die innerhalb des variables-Attributs definierten Variablen können gelöscht und verändert werden,

wenn sie noch nicht initialisiert wurden, d.h. noch nicht benutzt wurden. Dabei muss sichergestellt

werden, dass alle innerhalb des Prozesses verwendeten Variablen definiert sind. Es können auch

neue Variablen hinzugefügt werden. Für Partner Links gelten dieselben Regeln wie für Variablen.

Beim Verändern des import-Attributs muss darauf geachtet werden, dass die zu importierenden

Schemas und WSDLs an den jeweiligen Stellen vorhanden sind.

Um diese Änderungen zu ermöglichen, müssen alle Attribute nachgeladen werden bevor die

migrierte Instanz weiter ausgeführt wird. Das Nachladen der Änderungen wird über sogenannte

Change Operations realisiert [22].

4.4.3 Basic Activities

Basic Activities beschreiben einen einzelnen Ausführungsschritt des Prozessmodells. Sie können,

wenn sie sich gerade in der Ausführung befinden, nur bedingt verändert werden. Dies gilt nicht für

Standard Elemente und Attribute. Genauer gesagt können nur die ausgehenden Links angepasst

werden, da diese noch nicht evaluiert wurden. Warum Basic Activities nicht verändert werden

können, werden anhand der invoke- und der receive-Aktivität beispielhaft erläutert.

invoke-Aktivität

Die invoke-Aktivität ruft von Service Providern angebotene Web Services auf. Es können

inputVariable und outputVariable angegeben werden Die invoke-Aktivität kann weitere Aktivitäten

innerhalb eines compensation- oder fault-handlers beinhalten. Es existieren zwei verschiede invoke

Arten: request-response und one-way. Bei einem synchronem invoke, also request-response, werden

inputVariable und outputVariable benötigt, da auf die Antwort gewartet wird und die invoke-

Aktivität gleichzeitig den Rücksprung-Punkt darstellt.

Bei einem one-way-invoke wird nur die inputVariable benötigt, da es sich um einen asynchronen

Aufruf handelt.

In beiden Fällen sind Änderungen an der aktiven invoke-Aktivität nicht möglich. Bei einem one-way-

invoke wird sofort beim Betreten der Aktivität der Web Service aufgerufen, die invoke-Aktivität ist

daraufhin beendet. Bei einem request-response-invoke wird ebenfalls wie beim one-way-invoke der

Web Service aufgerufen. Die invoke-Aktivität bleibt so lange aktiv, bis die Antwort-Nachricht eintrifft.

4 Konzeption einer Deploy New Version-Strategie

42

Änderungen sind nicht erlaubt, da durch Änderungen an der output-Variablen die Antwort-Nachricht

unter Umständen nicht mehr zugeordnet werden kann.

receive-Aktivität

Die receive-Aktivität empfängt eingehende Nachrichten. Die Start-Aktivität eines Prozessmodells ist

entweder eine receive-Aktivität oder eine pick-Aktivität mit dem Attribut createInstance= yes.

Innerhalb der receive-Aktivität werden Partner Links, optional Port Types und Operationen definiert.

Wenn das receive die Startaktivität ist, wird nach dem Eintreffen der Nachricht die receive-Aktivität

aktiv und instanziiert sofort das Prozessmodell. Wenn die receive-Aktivität keine Start-Aktivität ist,

wird der Inhalt der Nachricht sofort in die davor vorgesehene Variable kopiert. In beiden Fällen kann

nichts an der aktiven Aktivität geändert werden, da diese sofort ausgeführt sind.

Alle Basic Activities führen sobald sie aktiv sind sofort ihre Logik aus. Danach sind sie entweder sofort

beendet oder warten auf eine Antwort. In beiden Fällen kann nichts an ihnen geändert werden, da

sie entweder schon zur Vergangenheit gehören oder aber die Antwort-Nachricht nicht mehr

zugeordnet werden kann.

Es existieren Ausnahmen, wenn sich eine Basic Activity innerhalb einer Structured Activity befindet.

Diese werden bei den einzelnen Structured Activities behandelt. Eine weitere Ausnahme ist die wait-

Aktivität. Diese Basic Activity darf wie folgt verändert werden, wenn sie sich gerade in der

Ausführung befindet:

wait-Aktivität

Die wait-Aktivität (Listing 10) pausiert die Ausführung für eine bestimmte Zeitspanne oder bis zu

einem bestimmten Zeitpunkt.

<wait standard-attributes>

standard-elements

(

<for expressionLanguage="anyURI"?>duration-expr</for>

|

<until expressionLanguage="anyURI"?>deadline-expr</until>

)

</wait>

Listing 10: wait-Aktivität [14]

Die wait-Aktivität ist die einzige Basic Activity, bei der es möglich ist, den Inhalt der Aktivität zu

verändern. Wenn beispielsweise eine wait-Aktivität existiert, die drei Jahre warten soll und nach

einem Jahr dann festgestellt wird, dass genug Zeit vergangen ist und der Prozess weiterlaufen soll,

muss die wait-Aktivität verändert werden können. Es wird die Dauer der wait-Aktivität in einer neuen

Prozessversion auf ein Jahr geändert und die Instanz migriert. Daraufhin wird die Instanz weiter

ausgeführt. Die wait-Aktivität wird beendet, da ein Jahr bereits vergangen ist und die Instanz weiter

ausgeführt. Dies funktioniert problemlos, da der Zeitpunkt an dem die wait-Aktivität gestartet wurde,

bekannt ist. Ist die zu wartende Zeitspanne noch nicht verstrichen, bleibt die wait-Aktivität solange

aktiv, bis die Zeitspanne verstrichen ist. Ist innerhalb der wait-Aktivität eine until-Bedingung

angegeben, funktioniert es nach demselben Prinzip. Liegt die until-Bedingung in der Vergangenheit,

4 Konzeption einer Deploy New Version-Strategie

43

wenn die Instanz weiter ausgeführt wird, wird die Aktivität beendet. Ansonsten wird bis zum

vorgegebenen Zeitpunkt gewartet.

4.4.4 Structured Activities

Structured Activities stellen den Kontrollfluss eines Prozessmodells dar. Sie können rekursiv weitere

Basic und Structured Activities beinhalten. Im weiteren Verlauf sind die einzelnen Aktivitäten mit

ihren möglichen Änderungen und Einschränkungen aufgeführt.

scope-Aktivität

Eine scope-Aktivität (Listing 11) bietet die Möglichkeit das Ausführungs-Verhalten der beinhalteten

Aktivitäten zu bestimmen. Dazu werden Variablen, Partner Links, der Nachrichtenaustausch

(message exchange), Correlation Sets, event-, fault-, compensation- und termination-handler

innerhalb des Scopes definiert. Der Kontext der scope-Aktivitäten kann hierarchisch verschachtelt

sein, der "Wurzel"-Kontext wird innerhalb des process-Elementes definiert.

Obwohl das process-Element und die scope-Aktivität in ihrem Aufbau sehr ähnlich sind, gibt es doch

Unterschiede:

 Das process-Element stellt keine Aktivität im eigentlichen Sinne dar, deshalb können die

Standard-Attribute und Elemente nicht für das process-Element verwendet werden.

 Ein compensation- und termination-handler können nicht an das process-Element angehängt

werden.

 Das isolated-Attribut, das die Kontrolle von Datenzugriffen bei paralleler Ausführung zweier

Scopes steuert, existiert nicht für das process-Element.

Jede scope-Aktivität benötigt eine so genannte „primary activity“, die das Standard-Verhalten des

Scopes definiert. Sie kann eine Structured oder Basic Activity darstellen. Alle anderen Konstrukte

einer scope-Aktivität sind optional. Das innerhalb der scope-Aktivität definierte Verhalten gilt für alle

innerhalb des Scopes vernetzten Aktivitäten.

<scope isolated="yes|no"? exitOnStandardFault="yes|no"?

standard-attributes>

standard-elements

<variables>?

...

</variables>

<partnerLinks>

...

</partnerLinks>

<messageExchanges>

...

</messageExchanges>

<correlationSets>

...

</correlationSets>

<eventHandlers>

...

4 Konzeption einer Deploy New Version-Strategie

44

</eventHandlers>

<faultHandlers>

...

</faultHandlers>

<compensationHandler>

...

</compensationHandler>

<terminationHandler>

...

</terminationHandler>

activity

</scope>

Listing 11: Scope-Aktivität [14]

Beim Ändern des variables-, partnerLinks-, correlationSets- messageExchanges-Elements oder des

exitOnStandardFault-Attributs gelten die in Kapitel 4.4.2 beschriebenen Einschränkungen. Es können

keine zwei ineinander verschachtelten Scopes, die beide das Attribut isolated mit dem Wert yes

besitzen, parallel ausgeführt werden. Deshalb darf das isolated-Attribut nur dann von yes auf no

geändert werden, wenn weder der Eltern-Scope noch ein Kind-Scope isolated sind. Das Ändern des

isolated-Attributs von yes auf no ist immer möglich. Sämtliche Handler können verändert und

gelöscht werden, wenn sie sich gerade nicht in der Ausführung befinden. Das Hinzufügen der

unterschiedlichen Handler ist problemlos möglich. Wie auch beim process-Element muss nach

Änderungen an einem Scope eine Re-Initialisierung erfolgen, bevor die migrierte Instanz weiter

ausgeführt wird.

sequence-Aktivität

Die sequence-Aktivität (Listing 12) beinhaltet eine oder mehrere Aktivitäten, die sequentiell

abgearbeitet werden. Sie ist beendet, wenn die letzte Aktivität in der Sequenz abgearbeitet wurde.

<sequence standard-attributes>

standard-elements

activity+

</sequence>

Listing 12: sequence-Aktivität [14]

Änderungen innerhalb der sequence-Aktivität können das Hinzufügen, Ändern und Löschen von noch

nicht ausgeführten Aktivitäten sein. Des Weiteren können Links verändert, hinzugefügt oder gelöscht

werden. Bezieht sich die Änderung auf die gerade in der Wavefront liegende Aktivität, gelten bei

Basic Activitities folgende Einschränkungen:

 Der Inhalt der Aktivität darf nicht verändert werden.

 Die eingehenden Links können nicht verändert werden

Bei Structured Activities gelten die Einschränkungen der jeweiligen Aktivität. Ausgehende Links

können bei Basic und Structured Activities angepasst werden. Nach dem Ändern der Sequence-

Aktivität muss die Liste von auszuführenden Aktivitäten in der Sequence-Aktivitätsinstanz aktualisiert

werden, wenn die Ausführung der migrierten Prozessinstanz wieder aufgenommen wird.

4 Konzeption einer Deploy New Version-Strategie

45

flow-Aktivität

Die flow-Aktivität (Listing 13) ermöglicht die nebenläufige und synchronisierte Ausführung von

Aktivitäten. Ein Flow ist beendet, wenn alle beinhalteten Aktivitäten beendet sind. Aktivitäten, die

über Bedingungen gesteuert werden, werden auch als beendet angesehen, wenn ihre Bedingung

false ist und sie dadurch nie ausgeführt werden. Die Aktivitäten innerhalb eines Flows können durch

Links miteinander verbunden sein und beliebig tief verschachtelt werden. Im links-Element sind alle

Synchronisations-Abhängigkeiten zwischen den Aktivitäten des Flows definiert.

<flow standard-attributes>

standard-elements

<links>?

<link name="NCName">+

</links>

activity+

</flow>

Listing 13: flow-Aktivität [14]

Das Hinzufügen von Aktivitäten innerhalb eines Flows ist problemlos möglich. Beim Löschen von

Aktivitäten innerhalb eines Flows muss darauf geachtet werden, dass die Verlinkungen zwischen den

einzelnen Aktivitäten nicht zerstört werden. Beim Weiterlaufen der Prozessinstanz müssen

eingefügte Aktivitäten, die keine eingehenden Links besitzen, direkt gestartet werden. Das Löschen

und Ändern von Aktivitäten ist für bereits beendete Aktivitäten nicht möglich. Innerhalb des Flows

können Aktuell laufende Structured oder Basic Activities unter Beachtung der jeweiligen

Einschränkungen verändert werden. Das link-Attribut kann umbenannt werden. Allerdings muss

beachtet werden, dass die Referenzen auf die umbenannten Links ebenfalls geändert werden.

Eine Ausnahme innerhalb eines Flows ist es, dass ausgehende Links an bereits beendeten Aktivitäten

verändert werden können. Innerhalb eines aktiven Flows sind unter Umständen schon einige

Aktivitäten beendet und andere noch aktiv. Da der Flow noch aktiv ist, ist es möglich, eine neue

Aktivität in den Flow einzufügen und an eine bereits abgeschlossene Aktivität zu verlinken. Wenn der

Link keine Transition Condition besitzt, ist dies problemlos möglich. Wenn eine Transition Condition

verwendet wird, um die Aktivität zu starten, muss sichergestellt werden, dass die Daten, die zur

Auswertung der Transition Condition benötigt werden, vorliegen. Da die vorhergegangene Aktivität

bereits beendet ist, wäre eine Möglichkeit, um die Daten nach einer Migration weiterhin zur

Verfügung zu haben, die Daten durch Snapshots vorzuhalten.

4 Konzeption einer Deploy New Version-Strategie

46

while-Aktivität

Die while-Aktivität (Listing 14) besteht aus einer booleschen Bedingung und einer Aktivität. Diese

Aktivität kann eine strukturierende Aktivität sein, die wiederum weitere Aktivitäten beinhaltet. Die

Aktivität wird so oft hintereinander ausgeführt, wie die Bedingung gültig ist.

<while standard-attributes>

standard-elements

<condition expressionLanguage="anyURI"?>bool-expr</condition>

activity

</while>

Listing 14: while-Aktivität [14]

Befindet sich die while-Aktivität gerade in der Wavefront, können ausgehende Links sowie die

boolesche Bedingung nach Belieben, also unabhängig von den jeweiligen Einschränkungen, verändert

werden. Die beinhaltete Aktivität kann im aktiven Zustand mit den jeweiligen Einschränkungen oder

vor und nach jeder Iteration beliebig geändert werden. Es gilt zu beachten, dass Änderungen an der

laufenden while-Aktivität oder einer beinhalteten Basic Activity erst bei der darauffolgenden

Iteration greifen. Aus diesem Grund kann auch eine beinhaltete Basic Activity nach Belieben

verändert werden. Bei späterer Betrachtung des Prozessmodells können diese Änderungen nicht

mehr im Detail nachvollzogen werden.

if-Aktivität

Die if-Aktivität (Listing 15) besteht aus einer Liste von einem oder mehreren elseif- oder else-

Zweigen. Die einzelnen Zweige werden in der Reihenfolge, wie sie angeordnet sind, betrachtet. Ein

Zweig kann genau eine Aktivität beinhalten, die wiederum weitere Aktivitäten beinhalten kann. Der

erste Zweig, dessen Bedingung wahr ist, wird ausgeführt. Wenn keine Bedingung wahr ist, wird der

else-Zweig ausgeführt. Die if-Aktivität ist beendet, wenn die Aktivität des auszuführenden Zweiges

beendet ist oder wenn keine Bedingung wahr ist und kein else-Zweig existiert.

<if standard-attributes>

standard-elements

<condition expressionLanguage="anyURI"?>bool-expr</condition>

activity

<elseif>*

<condition expressionLanguage="anyURI"?>bool-expr</condition>

activity

</elseif>

<else>?

activity

</else>

</if>

Listing 15: if-Aktivität [14]

Bei einer laufenden if-Aktivität können die beinhalteten Aktivitäten geändert werden, wenn sie noch

nicht ausgeführt werden. Das bedeutet, dass alle inaktiven Zweige geändert werden können. Sobald

die beinhaltete Aktivität läuft, kann die beinhaltete Aktivität entsprechend ihrer Einschränkungen

verändert werden. Die Bedingungen der if-Aktivität dürfen verändert werden. Änderungen an den

4 Konzeption einer Deploy New Version-Strategie

47

nicht gewählten Zweigen, an allen Bedingungen und den beinhalteten Basic Activities, auch des

gewählten Zweiges, sind nur dann sinnvoll, wenn die if-Aktivität sich innerhalb einer Schleife

befindet. Die Änderungen an der Bedingung werden ab der nächsten Auswertung der Bedingung,

also der nächsten Iteration der Schleife, gültig.

pick-Aktivität

Die pick-Aktivität (Listing 16) wartet darauf, dass ein bestimmtes Event aus einer Liste von Events

auftritt. Wenn dies geschieht, wird die mit diesem Event verknüpfte Aktivität ausgeführt. Nach dem

Auftreten eines Events werden die anderen Events von dieser pick-Aktivität nicht mehr betrachtet.

Pick besteht aus mehreren Zweigen und jeder Zweig enthält ein Event-Aktivitäts-Paar. Die pick-

Aktivität ist beendet, wenn die Aktivität des gewählten Zweiges beendet ist. Es gibt zwei

Möglichkeiten, ein Event zu definieren:

 <onMessage>: verhält sich ähnlich wie die receive-Aktivität. Es wartet auf eine eingehende

Nachricht.

 <onAlarm>: ist zeitgesteuert. Wenn die definierte Dauer innerhalb des <for>-Elementes null

oder negativ oder der im <until>-Element definierte Zeitpunkt erreicht ist, wird das Event

ausgeführt.

Jede pick-Aktivität muss mindestens ein <onMessage>-Event enthalten.

<pick createInstance="yes|no"? standard-attributes>

standard-elements

<onMessage partnerLink="NCName"

portType="QName"?

operation="NCName"

variable="BPELVariableName"

messageExchange="NCName">+

<correlations>?

<correlation set="NCName" initiate="yes|join|no" />+

</correlations>

<fromParts>

 <fromPart part="NCName" toVariable="BPELVariableName" />+

</fromParts>

activity

</onMessage>

<onAlarm>*

(

<for expressionLanguage="anyURI"?>duration-expr</for>

|

<until expressionLanguage="anyURI"?>deadline-expr</until>

)

activity

</onAlarm>

</pick>

Listing 16: pick-Aktivität [14]

4 Konzeption einer Deploy New Version-Strategie

48

Die onMessage- und onAlarm-Attribute können geändert, gelöscht oder hinzugefügt werden. Beim

Löschen oder Ändern gibt es die Einschränkung, dass ein bereits aktiver Zweig nicht mehr

gelöscht/geändert werden kann. Außerdem gilt zu beachten, dass mindestens ein onMessage-Event

vorhanden sein muss. Zusätzlich muss nach der Migration einer Instanz überprüft werden, ob eine

der Nachrichten, auf die gewartet wird, unter Umständen schon eingetroffen ist. Ist dies der Fall,

wird der dementsprechende pick-Zweig ausgeführt. Für den Fall, dass mehrere passende Nachrichten

nach der Migration vorhanden sind, muss eine Bedingung definiert werden, anhand der entschieden

wird, welcher pick-Zweig ausgeführt wird. Eine Möglichkeit wäre es, anhand des Eingangszeitpunkts

der Nachrichten zu entscheiden. Der Zweig, dessen Nachricht als erstes eintraf, wird ausgeführt. Ein

zweiter denkbarer Ansatz wäre es, die Zweige unterschiedlich zu gewichten und wenn mehrere

Nachrichten bereits eingetroffen sind, den Zweig mit der höchsten Gewichtung auszuführen.

Dasselbe gilt für das onAlarm-Event. Das Correlation Set darf geändert werden, so lange alle

dazugehörigen Correlations noch nicht initialisiert sind. Das createInstance-Attribut darf aus

folgenden Gründen nicht geändert werden. Die Instanz ist instanziiert sobald die pick-Aktivität aktiv

wird, wenn createInstance den Wert yes hatte. Wenn createInstance no ist, wurde die Instanz bereits

über eine andere pick-Aktivität oder eine receive-Aktivität instanziiert. Alle anderen Attribute

innerhalb der pick-Aktivität können problemlos geändert werden.

forEach-Aktivität

Die forEach-Aktivität (Listing 17) führt den beinhalteten Scope N+1 mal aus. N entspricht dem Wert

des finalCounterValue-Elements. Beim Starten der forEach-Aktivität werden die Ausdrücke im

startCounterValue- und finalCounterValue-Element evaluiert. Die Ausdrücke bleiben während der

Ausführung der forEach-Aktivität konstant und gültig. Falls der Startwert größer als der Endwert ist,

wird die forEach-Aktivität nicht ausgeführt und ist beendet. Die Kind-Aktivität einer forEach-Aktivität

muss eine scope-Aktivität sein.

Eine forEach-Aktivität kann entweder parallel oder seriell sein. Dies wird über das parallel-Attribut

festgelegt. Bei der parallelen forEach-Aktivität werden beim Start der Aktivität N+1-Instanzen des

beinhalteten Scope erstellt und parallel ausgeführt. Bei der seriellen forEach-Aktivität wird eine

Instanz des beinhalteten Scopes nach der anderen ausgeführt. Die Anzahl der auszuführenden Scope-

Aktivitäten kann mit der completionCondition auf den in der completionCondition spezifizierten Wert

begrenzt werden. Durch das successfulBranchesOnly-Attribut werden entweder nur erfolgreich

ausgeführte Scopes gezählt (yes) oder alle beendeten Scopes (no). Wenn die completionCondition

erfüllt ist, werden im seriellen Fall keine weiteren Iterationen mehr durchgeführt. Im parallelen Fall

werden noch nicht beendete Scope-Aktivitäten terminiert, wenn die completionCondition erfüllt ist.

Die completionCondition ist optional.

<forEach counterName="BPELVariableName" parallel="yes|no"

standard-attributes>

standard-elements

<startCounterValue expressionLanguage="anyURI"?>

unsigned-integer-expression

</startCounterValue>

<finalCounterValue expressionLanguage="anyURI"?>

unsigned-integer-expression

</finalCounterValue>

4 Konzeption einer Deploy New Version-Strategie

49

<completionCondition>?

<branches expressionLanguage="anyURI"?

successfulBranchesOnly="yes|no">?

unsigned-integer-expression

</branches>

</completionCondition>

<scope ...>...</scope>

</forEach>

Listing 17: forEach-Aktivität [14]

Bei der forEach-Aktivität müssen zwei Fälle, die serielle und die parallele forEach-Aktivität, betrachtet

werden. In beiden Fällen kann der startCounterValue nicht geändert werden, da er schon evaluiert

wurde. Bei der parallelen Ausführung müssen alle Änderungen am Scope oder seinen Kindelementen

an alle N+1 Scope-Instanzen propagiert werden. Die erlaubten Änderungen hängen von den

jeweiligen Aktivitäten ab. Die completionCondition kann geändert werden. Es muss aber nach der

Änderung der completionCondition überprüft werden, ob diese direkt beendet werden muss, da

unter Umständen die Bedingung schon in der Vergangenheit erfüllt war oder gerade erfüllt ist. Das

finalCounterValue-Attribut kann vergrößert, jedoch nicht verkleinert werden. Wenn es vergrößert

wird, müssen bei der parallelen Ausführung nachträglich Scope-Instanzen gestartet werden.

Bei der seriellen forEach-Aktivität können beinhaltete Aktivitäten beliebig verändert, hinzugefügt und

gelöscht werden. Wenn Aktivitäten in die Zukunft hinzugefügt oder aus der Zukunft des Scopes

gelöscht werden, werden die Änderungen sofort gültig. Aktivitäten, die in die Vergangenheit des

Scopes eingefügt oder aus der Vergangenheit gelöscht werden, werden ab der nächsten Iteration

beachtet. Der finalCounterValue kann auch problemlos geändert werden, so lange der neue Wert

größer ist als die derzeitige Iteration. Veränderungen an der completionCondition, dem

finalCounterValue und den beinhalteten Basic Activities sind erst bei der darauffolgenden Iteration

gültig. Veränderungen an den Structured Activities hängen von den Einschränkungen der jeweiligen

Aktivität ab und sind zum Teil sofort gültig.

repeatUntil-Aktivität

Die repeatUntil-Aktivität (Listing 18) besteht wie die while-Aktivität aus einer booleschen Bedingung

und einer Aktivität. Die Aktivität wird so lange ausgeführt bis die boolesche Bedingung wahr ist. Im

Gegensatz zur while-Aktivität wird die repeatUntil-Aktivität mindestens einmal ausgeführt.

<repeatUntil standard-attributes>

standard-elements

activity

<condition expressionLanguage="anyURI"?>bool-expr</condition>

</repeatUntil>

Listing 18: repeatUntil-Aktivität [14]

Befindet sich die RepeatUntil-Schleife gerade in der Ausführung, kann die Bedingung der

RepeatUntil-Schleife nach Belieben verändert werden, da die veränderte Bedingung erst nach der

laufenden Iteration neu ausgewertet wird. Beinhaltete Aktivitäten dürfen beliebig verändert werden,

auch wenn sie gerade ausgeführt werden, da die Änderungen erst für die nächste Iteration der

repeatUntil-Aktivität gültig sind. Beinhaltete strukturierende Aktivitäten, die gerade ausgeführt

4 Konzeption einer Deploy New Version-Strategie

50

werden, können zusätzlich anhand ihrer Einschränkungen verändert werden. Diese Änderungen sind

sofort gültig. Bei späterer Betrachtung des Prozessmodells können all diese Änderungen nicht mehr

im Detail nachvollzogen werden.

5 Prototypische Umsetzung der Strategie

51

5 Prototypische Umsetzung der Strategie
In diesem Kapitel wird die prototypische Umsetzung der Deploy New Version-Funktionalität

erläutert. Der Prototyp besitzt die Einschränkung, dass der Prozess von einer Sequence-Aktivität als

umschließendes Element umgeben sein muss. Beginnt der Prozess mit einem anderen Element,

beispielsweise einer Flow-Aktivität, wird die Deploy New Version-Funktionalität derzeit nicht

unterstützt.

Innerhalb des Deployment Web Service wurde eine neue Funktion implementiert, die den Deploy

New Version-Mechanismus, wie in Kapitel 4.3 beschrieben, realisiert. Zuerst wird die neue Version

des Prozessmodells deployed, wobei die alte Version weiterhin aktiv bleibt. Daraufhin soll die

Migration der ausgewählten Instanz erfolgen. Hierzu sind folgende Schritte notwendig, die in den

nächsten Kapiteln aufgeführt und ausführlich erklärt werden:

1. Der XML-Parser wird aufgerufen, um die neue Version des Prozessmodells so zu verändern,

dass beide Versionen parallel aktiv bleiben können.

2. Das eigentliche Deployment wird wie in Kapitel 3.7 beschrieben ausgeführt.

3. Die Datenbank-Änderungen, die zum Migrieren der Instanz auf die neue Prozessmodell-

Version nötig sind, werden durchgeführt.

Danach ist die Migration der Instanz auf das neue Prozessmodell abgeschlossen und die Instanz kann

über die resume-Funktion weiter ausgeführt werden.

In Abbildung 16 ist der DeploymentService mit der neu integrierten DeployNewVersion-Operation

und den bereits früher existierenden Operationen dargestellt.

Abbildung 16: graphische Darstellung des Deploy-Web Services mit deployNewVersion-Operation

5 Prototypische Umsetzung der Strategie

52

Abbildung 17 zeigt einen Ausschnitt der Architektur der Apache ODE mit allen Komponenten, die bei

der prototypischen Implementierung geändert wurden. Zusätzlich wird in diesem Bild der Client

dargestellt, der zwar keine Komponente der Apache ODE ist, aber für die Deploy New Version-

Funktionalität benötigt wird. Der Client wurde hauptsächlich zu Testzwecken der Deploy New

Version-Funktionalität entwickelt. In das Web-Interface der Apache ODE und die Process and

Instance Management-API wurde die finish()-Operation integriert, um am Leben gehaltene

Prozessinstanzen beenden zu können. Die finish()-Operation machte eine Änderung am MySQL-

Schema der Apache Ode erforderlich. Der Deploy-Web Service wurde um die DeployNewVersion()-

Operation erweitert. Um die Funktionalität der DeployNewVersion()-Operation zu realisieren, wurde

innerhalb des ODE BPEL Compilers ein Parser implementiert. Aufgabe des Parsers ist es, eine

eindeutige Adressierung der Prozessversionen zu ermöglichen. Innerhalb der ODE BPEL Runtime

wurde die Deploy New Version-Funktionalität prototypisch für die sequence-Aktivität implementiert.

Die veränderte Implementierung der sequence-Aktivität ermöglicht zusätzlich, dass eine

Prozessinstanz am Leben erhalten werden kann. Alle Änderungen werden im Detail in diesem Kapitel

beschrieben.

Abbildung 17: Architekturbild der Apache ODE mit Änderungen

5.1 Deploy New Version-Client
Der Deploy New Version-Client ist ein einfacher Java-Command-Line-Client, der mit dem Web

Service-Interface der Apache ODE kommuniziert. Der Client dient dem Aufruf von Operationen des

Deploy- und InstanceManagement -Web Services der Apache ODE. Unterstützt werden die deploy()-,

undeploy()-, suspend()-, resume()- und terminate()-Funktionen. Der bereits zu Testzwecken

bestehende Client wurde im Zuge dieser Arbeit erweitert, um die neue deployNewVersion()-Funktion

der ODE aufrufen zu können. Zusätzlich wurde eine GUI erstellt (siehe Abbildung 18), die es

Benutzern auf einfache und graphische Weise erlaubt, die Deploy New Version-Funktionalität der

5 Prototypische Umsetzung der Strategie

53

ODE zu nutzen. Die GUI wurde in erster Linie zu Testzwecken erstellt, da in Zukunft die Deploy New

Version-Funktion direkt von einem erweiterten Modellierungswerkzeug aus aufgerufen werden wird.

Abbildung 18: graphische Oberfläche des Deploy New Version-Client

Um die Deploy New Version-Funktionalität aufzurufen, muss zuerst die Instanz-ID der zu

migrierenden Instanz eingetragen werden. Diese kann der Benutzer beispielsweise in der Web-

Oberfläche der Apache ODE unter dem Reiter “Instances“ finden. Durch Drücken des OK-Buttons

wird ein Dateiauswahl-Dialog geöffnet, in dem die BPEL-Datei der neuen Prozessmodell-Version

ausgewählt wird.

Die Klasse ODEClientAdapter des Clients wurde um die deployNewVersionProcess()-Methode

erweitert (Listing 19). Innerhalb der Methode werden alle Dateien des Verzeichnisses, in dem die

BPEL-Datei liegt, das Deployment Bundle, zu einer zip-Datei gepackt. Daraufhin werden das zip-Paket

und die Instanz-ID über deployNewVersionService.deploy() an die DeployNewVersion-Operation des

ODE Deploy-Web Service gesendet.

public static String deployNewVersionProcess(IPath path, String InstanceID) {

String processFileName = "test";

 processFileName = path.removeFileExtension().lastSegment();

 try {

 //send Instance ID to the server

 DeployUnit ID = new DeployUnit();

 ID.setInstanceID(InstanceID);

 File processFolder = path.toFile().getParentFile();

 System.out.println(processFolder);

 ByteArrayOutputStream dataOut = ManagementAPIHandle..zipFolder(processFolder);

DeployNewVersionServicePortType deployNewVersionService = new

DeployNewVersionService().getDeployNewVersionServiceSOAP11PortHttp();

 Package zipPackage = new Package();

 Base64Binary zip = new Base64Binary();

 zip.setValue(dataOut.toByteArray());

 dataOut.close();

 zipPackage.setZip(zip);

5 Prototypische Umsetzung der Strategie

54

DeployUnit response = deployNewVersionService.deploy(processFileName, zipPackage,

InstanceID);

 return response.getName();

 } catch (RemoteException e) {

JOptionPane.showMessageDialog(null, "Error Message: " + e.getMessage(), "Exception

during Deploy New Version", JOptionPane.ERROR_MESSAGE);

 } catch (IOException e) {

JOptionPane.showMessageDialog(null, "Error Message: " + e.getMessage(), "Exception

during Deploy New Version", JOptionPane.ERROR_MESSAGE);

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, "Error Message: " + e.getMessage(), "Exception

during Deploy New Version", JOptionPane.ERROR_MESSAGE);

 }

 return null;

}

Listing 19: deployNewVersionProcess()-Methode innerhalb des ODE-Clients

5.2 Erweiterung des ODE Deployment-Mechanismus
Zu Beginn dieser Arbeit gab es einige Überlegungen, wie man die eindeutige Adressierung von

Prozessversionen innerhalb der Apache ODE ermöglichen kann, etwa über das Ändern von

Namespaces oder Ports. Der Ablauf der Erweiterung des ODE Deployment Mechanismus ist in

Abbildung 19 durch ein UML-Sequenzdiagramm graphisch dargestellt. Der letzte Schritt dieses

Mechanismus, das Umhängen der Instanz in der ODE Datenbank, wird in Kapitel 5.4 detailliert

beschrieben. Die vorherigen Schritte sind Teil des erweiterten ODE Deployment Mechanismus und

werden nachfolgend beschrieben.

Abbildung 19: Sequenzdiagramm DeployNewVersion()-Operation

Zuerst sendet der Client das Deployment-Bundle an die Apache ODE. Daraufhin wird das

Deployment-Bundle von der Apache ODE im Dateiverzeichnis im Ordner WEB-INF/processes

gespeichert. Bevor es in der Apache ODE deployed wird, werden die BPEL-, die WSDL- und die

deploy.xml-Datei von einem XML-Parser eingelesen und verändert. Diese Veränderungen sind

notwendig, um eindeutige Prozessversionen zu erhalten und dadurch Konflikte zwischen den

5 Prototypische Umsetzung der Strategie

55

einzelnen Prozessversionen zu verhindern. Zusätzlich wird dadurch eine eindeutige Adressierung der

einzelnen Prozessversionen möglich. Dazu wird die aktuelle und eindeutige Versionsnummer der

Apache ODE für deployte Prozesse aus der Datenbank abgefragt und zur Identifizierung des

Prozesses an Elemente innerhalb der Dateien gehängt. Genauer gesagt wird der Text .v und die

Versionsnummer NR hinter folgenden Elementen angefügt.

 BPEL-Datei

o <process name="HelloWorld2.vNr">

 Der Prozessname wird geändert, um eine eindeutige Identifizierung

innerhalb der ODE zu ermöglichen.

 WSDL-Datei

o <wsdl:service name="HelloService.vNr">

 Das Attribut service name wird zur eindeutigen Identifizierung des Services

angepasst.

o <soap:address location="http://localhost:8080/ode/processes/helloWorld.vNr"/>

 Das Attribut address location wird zur eindeutigen Adressierung des

Prozessmodells für eingehende Nachrichten geändert.

 Deployment Descriptor

o <process name="pns:HelloWorld2.vNr">

 Muss aufgrund der Anpassungen in der BPEL-Datei angepasst werden.

o <service name="wns:HelloService.vNr" port="HelloPort"/>

 Muss aufgrund der Änderungen in der WSDL-Datei angepasst werden.

Nachdem die Änderungen des Parsers in das Datei-System geschrieben sind, wird der Deploy-

Mechanismus aufgerufen.

Das Ändern der SOAP address location ist die am besten geeignete Lösung für die Apache ODE. Bei

allen anderen Lösungsversuchen wurde die neue Version des Prozessmodells als neue Version

erkannt und die vorherige Version automatisch retired. Dies ist nur zu verhindern, wenn der

Erkennungsmechanismus, der eine neue Version identifiziert, in seiner Implementierung geändert

wird.

5.3 Abgelaufene Instanzen am Leben erhalten
Um der Anforderung gerecht zu werden, dass abgelaufene Prozessinstanzen in den Zustand

SUSPENDED wechseln und somit am Leben bleiben, wurden verschiedene Ansätze untersucht. Die

erste Idee war eine Dummy-Aktivität, an der erkannt wird, wann das Prozessmodell zu Ende ist,

einzuführen. Diese Aktivität wird als letzte Aktivität in die äußerste Sequence eingefügt. Dazu wird

ein zweites Mal der Parser aufgerufen, der in die äußerste Sequence als letzte Aktivität eine wait-

Aktivität mit einer Dauer von einer Sekunde in die BPEL-Datei schreibt. Oberhalb der Dummy-

Aktivität können innerhalb der Sequence beliebig viele verschachtelte Aktivitäten stehen. Der

Navigationsmechanismus wurde so verändert, dass die Prozessinstanz suspended wird, wenn nur

noch eine Aktivität auszuführen bleibt und diese eine Instanz von OWait mit dem Namen „dummy“

ist. Dadurch wird die Ausführung der letzten Aktivität (d.h. der Dummy-Aktivität) nie begonnen und

die Instanz kann später über die resume-Funktion weiter ausgeführt werden.

5 Prototypische Umsetzung der Strategie

56

Da dieser Ansatz einen Eingriff in das Prozessmodell erforderlich macht, wurde ein zweiter Ansatz

entwickelt. Dieser Ansatz wurde prototypisch implementiert, da er im Gegensatz zum ersten Ansatz

nur eine Veränderung der Engine beinhaltet und nicht eine Veränderung am Prozessmodell. Auch

dieser Ansatz wurde im Rahmen der sequence-Aktivität untersucht. Die Implementierung der

sequence-Aktivität wurde so verändert, dass die Prozessinstanz pausiert wird anstatt diese zu

beenden. Insbesondere werden nur Instanzen am Leben erhalten, die normal (d.h. ohne Fehler)

beendet werden. Das heißt, nach der Ausführung eines fault-handlers geht eine Instanz nicht

automatisch in den Zustand SUSPENDED über, sondern je nach Fehler in den Zustand ERROR oder

FAILED. Wenn Instanzen auch am Leben erhalten werden sollen, nachdem ein Fehler aufgetreten ist,

ist eine Erweiterung der Implementierung nötig.

Innerhalb der Klasse SEQUENCE wurde zuerst die completed()-Methode der Sequence verändert.

Anstatt die Instanz zu beenden, wird diese zurück in die Execution Queue geschrieben und in den

Zustand SUSPENDED überführt. In der Execution Queue befindet sich dann die Sequence, die in ihrer

_remaining-Liste die als letztes ausgeführte Aktivität beinhaltet. Die _remaining-Liste gehört zur

Prozessinstanz und beinhaltet normalerweise alle noch auszuführenden Aktivitäten der Sequence-

Instanz. In diesem Sonderfall beinhaltet sie eine bereits ausgeführte Aktivität, da es sich um die letzte

Aktivität gehandelt hat und diese benötigt wird, um die Instanz am Leben zu erhalten.

Wenn die Instanz nach der Migration fortgeführt wird, muss darauf geachtet werden, dass diese

Aktivität nicht nochmals ausgeführt wird.

In Listing 20 ist der innerhalb der completed()-Methode eingefügte Code dargestellt. Wenn die

Sequence die äußerste Aktivität ist, die Instanz nicht beendet werden soll und in der _remaining-Liste

genau eine Aktivität vorhanden ist, wird wie beschrieben die Sequence in die Execution Queue

zurückgeschrieben und daraufhin suspended.

if (_self.o.getParent().getParent() == null &&!letItFinish && _remaining.size() == 1)

{

// SEQUENCE in Execution Queue schreiben

ArrayList<OActivity> remaining = new ArrayList<OActivity>(_remaining);

instance(new SEQUENCE(_self, _scopeFrame, _linkFrame,

remaining, comps, false));

// suspend Instance

DebuggerSupport debugSupport =

getBpelRuntimeContext().getBpelProcess().getDebuggerSupport();

debugSupport.suspend(process_ID);

// SUSPEND-Flag setzen

try {

st = conn.createStatement();

int result = st.executeUpdate("INSERT INTO ode_instance_migration (InstanceID,

SUSPENDED) VALUES (" + process_ID + ", 1) ON DUPLICATE KEY

UPDATE SUSPENDED = 1");

} catch (SQLException e) {

e.printStackTrace();

}

}

Listing 20: Am Leben erhalten der Prozessinstanz

5 Prototypische Umsetzung der Strategie

57

Um zu gewährleisten, dass innerhalb der Apache ODE überall bekannt ist, dass die Instanz am Leben

erhalten wurde, wurde in der Datenbank eine neue Tabelle erstellt. In dieser Tabelle wird, nachdem

die Instanz suspended wurde, die Spalte SUSPENDED für diese Instanz auf 1 gesetzt. Wenn die

Instanz-ID noch nicht in der Tabelle existiert, so wird eine neue Zeile erstellt. Dies ist erforderlich, um

sicherzustellen, dass beim Resumen der Instanz bekannt ist, ob sie in ihrer _remaining-Liste eine

schon abgearbeitete Aktivität beinhaltet oder nicht.

Abbildung 20: ode_instance_migration-Tabelle

Wenn eine am Leben gehaltene Instanz resumed wird, ohne davor migriert worden zu sein, muss

innerhalb der run()-Methode zu Beginn der Klasse SEQUENCE, der ersten Methode, die nach dem

resume ausgeführt wird, dieser Fall behandelt werden. Zuerst werden die Variablen runOutofWork,

letItFinish und wasMigrated aus der Tabelle ode_instance_migration ausgelesen. Diese Variablen

sind true, wenn der Wert in der jeweiligen Spalte für die Instanz 1 ist. Wenn genau eine Aktivität in

_remaining ist, runOutofWork true ist und letItFinish false ist, darf die eine Aktivität nicht ausgeführt

werden, da es sich um die Aktivität handelt, die bereits ausgeführt wurde bevor die Instanz am Leben

erhalte wurde. In diesem Fall wird die Sequence einfach zurück in die Execution Queue geschrieben

und wieder in den Zustand SUSPENDED überführt (Listing 21).

else if (_remaining.size() == 1 && runOutofWork && !letItFinish)

{

// SEQUENCE in Execution Queue schreiben

TreeSet<CompensationHandler> comps = new TreeSet<CompensationHandler>(

_compensations);

ArrayList<OActivity> remaining = new ArrayList<OActivity>(

_remaining);

instance(new SEQUENCE(_self, _scopeFrame, _linkFrame, remaining, comps, false));

//SEQUENCE in Zustand SUSPENDED überführen

DebuggerSupport debugSupport =

getBpelRuntimeContext().getBpelProcess().getDebuggerSupport();

debugSupport.suspend(process_ID);

}

Listing 21: Am Leben erhalten einer Instanz die resumed aber nicht migriert wurde

5.4 Migration der Prozessinstanz
Für die Apache ODE gibt es Datenbank-Schemas für Derby und MySQL. In dieser Arbeit wird nur das

MySQL-Schema betrachtet. In Abbildung 21 sind die wichtigsten Tabellen für die Deploy New

Version-Funktionalität abgebildet. In jeder dieser drei Tabellen besteht eine Beziehung zwischen

Prozess-ID und Instanz-ID. In der Tabelle ode_process_instance stellt die Spalte ID, die Instanz-ID dar.

5 Prototypische Umsetzung der Strategie

58

Hier werden eine Instanz, ihre Status-Informationen, ihr Ausführungsstatus sowie das dazugehörige

Prozessmodell, das durch die ID identifiziert ist, hinterlegt. Ebenfalls wird in dieser Tabelle der

dazugehörige Correlator über seine ID einer Instanz zugewiesen. In ode_event werden alle Events,

die zu einer Instanz gehören, gespeichert. Zusätzlich zu der Instanz-ID ist auch die dazugehörige

Prozess-ID hinterlegt.

ode_message_exchange ist die Tabelle, in der alle Nachrichten mit allen dazugehörigen

Informationen abgelegt werden, unter anderem auch die Instanz- und Prozess-ID, zu denen eine

Nachricht gehört. Im Anhang MySQL-Schema sind die Tabellen des Schemas und ihre Primärschlüssel

graphisch dargestellt.

Abbildung 21: Schema der für diese Arbeit wichtigsten Tabellen

Nach Ausführung des in Kapitel 5.2 beschriebenen Deployment-Mechanismus, ist die neue

Prozessmodell-Version deployed und in der Datenbank angelegt. Um eine Instanz von einer alten

Prozessmodell-Version auf eine neue Version zu migrieren, müssen in der Datenbank an manchen

Stellen die Prozess-ID der alten Prozessversion auf die der neuen Prozessversion umgeschrieben

werden. Die ID der Instanz, die migriert werden soll, ist bekannt, da sie vom Deploy New Version-

Client mitgeschickt wird. Alle weiteren benötigten IDs werden zuerst aus der Datenbank ausgelesen,

um dann folgende Änderungen an den drei Tabellen aus Abbildung 21 durchzuführen:

5 Prototypische Umsetzung der Strategie

59

ode_process_instance:

 Ersetzen der Prozess-ID durch die ID der neuen Prozessversion für die gegebene Instanz-ID.

 Ersetzen der Correlator-ID durch die Correlator-ID der neuen Prozessversion für die

gegebene Instanz-ID.

ode_event:

 Ersetzen der Prozess-ID durch die ID der neuen Prozessversion für die gegebene Instanz-ID.

ode_message_exchange:

 Ersetzen der Prozess-ID durch die ID der neuen Prozessversion für die gegebene Instanz-ID.

Zusätzlich zu den oben beschriebenen Datenbank Änderungen wird in der Tabelle

ode_instance_migration die Spalte MIGRATED für die jeweilige Instanz-ID auf 1 gesetzt. Dadurch ist

überall bekannt, ob die Instanz migriert worden ist oder nicht und es kann sichergestellt werden,

dass die Logik zur Migration nur wenn nötig ausgeführt wird.

In der SEQUENCE-Klasse, die die sequence-Aktivität repräsentiert, gibt es eine Liste _remaining. In

dieser Liste stehen alle Aktivitäten, die noch abgearbeitet werden müssen. Standardmäßig wird diese

Liste beim Beginn der Sequence erstellt und daraufhin abgearbeitet. Zusätzlich gibt es eine Liste

sequence. Diese Liste wird in der Klasse OSequence implementiert, die eine Aktivität des Modells

repräsentiert, aber innerhalb der SEQUENCE-Klasse bekannt ist Sie beinhaltet alle Aktivitäten, die in

der Sequence vorhanden sind. Diese Liste wird nach der Migration auf eine neue Prozessversion

automatisch aktualisiert. Die _remaining-Liste dagegen beinhaltet nach Migration der Instanz immer

noch die Aktivitäten der alten Prozessversion, da die Liste von der Instanz abhängig ist.

Die erste Methode innerhalb der SEQUENCE-Klasse, die nach resumen der Instanz ausgeführt wird,

ist run(). Innerhalb dieser Methode ist die Logik zum Migrieren einer Instanz auf eine neue

Prozessversion implementiert. Zuerst werden die Werte aus der ode_instance_migration-Tabelle

ausgelesen und in Variablen gespeichert. Für die jeweilige Instanz ist wasMigrated true, wenn die

Spalte MIGRATED den Wert 1 hat. In Listing 22 ist der Code, der ausgeführt wird, wenn die Instanz

migriert wurde, dargestellt. Wenn wasMigrated true ist, wird die _remaining-Liste aktualisiert. Die

Variable runOutofWork ist true, wenn die SUSPENDED Spalte den Wert 1 beinhaltet. Dies ist der Fall,

wenn die Instanz davor automatisch am Leben erhalten wurde, wie in Kapitel Abgelaufene Instanzen

am Leben erhalten5.3 beschrieben. Für diese Konstellation wird zuerst die erste Aktivität aus der

_remaining-Liste entfernt. Diese erste Aktivität ist die vor dem suspenden der Instanz ausgeführte

Aktivität. Danach ist die _remaining-Liste korrekt und die Ausführung der Aktivitäten kann beginnen.

Um zu gewährleisten, dass eine Instanz mehrmals migriert werden kann, werden vor der Ausführung

noch die Werte für die Instanz in den Spalten SUSPENDED und MIGRATED auf 0 gesetzt.

if (wasMigrated)

{

List<OActivity> aSequence = ((OSequence) _self.o).sequence;

Integer size = aSequence.size();

Object oAcivity = _remaining.get(0);

Integer sIndex = aSequence.indexOf(oAcivity);

5 Prototypische Umsetzung der Strategie

60

List<OActivity> remaining = aSequence.subList(sIndex,

size);

_remaining = remaining;

//Fall 3: Instanz war automatisch im Zustand SUSPENDED wurde migriert und resumed

if (runOutofWork)

{

_remaining.remove(0);

runOutofWork = false;

}

try {

st = conn.createStatement();

int result = st.executeUpdate("UPDATE ode_instance_migration SET SUSPENDED

= 0, MIGRATED = 0 WHERE InstanceID = " + process_ID);

} catch (SQLException e) {

e.printStackTrace();

}

}

 Listing 22: Implementierung der Aktualisierung von _remaining

Abbildung 22 veranschaulicht die grundlegende Aktualisierung der Aktivitäten-Liste nach

erfolgreicher Migration der Prozessinstanz auf eine neue Prozessversion.

Abbildung 22: Aktualisieren der _remaining-Liste

Die derzeitige aktuelle (d.h. laufende) Aktivität ist oActivity. _remaining wird durch eine Teilliste der

möglicherweise veränderten Aktivitätsliste der Sequence (sequence-Liste) ersetzt. Die erste Aktivität

der Teilliste ist die laufende Aktivität (d.h. oActivity), die letzte Aktivität ist die letzte Aktivität der

sequence-Liste. Das heißt, die Teilliste ist die sequence-Liste ohne die bereits ausgeführten

5 Prototypische Umsetzung der Strategie

61

Aktivitäten. Dadurch wird sichergestellt, dass in _remaining auch nach Migration der Instanz immer

die aktuellen Aktivitäten stehen.

5.5 Beenden von am Leben gehaltenen Prozessinstanzen
Um eine am Leben gehaltene Prozessinstanz zu beenden, wird die Spalte FINISH in der Tabelle

ode_instance_migration benötigt. Der Wert dieser Spalte ist standardmäßig 0 und wird auf 1 gesetzt,

wenn für eine Instanz die finish()-Funktion aufgerufen wird. Dadurch wird gewährleistet, dass die

Instanz, auch wenn sie zwischenzeitlich nochmals suspended wurde oder ein Fehler in der Apache

ODE auftritt, definitiv beendet wird sobald die Instanz wieder ausgeführt wird.

Die Management API stellt wie in Kapitel 3.4 beschrieben alle Funktionen zur Verfügung, um

Prozesse und Instanzen zu verwalten. Der InstanceManagement-Teil der Management API wurde um

die finish()-Funktionalität erweitert. Die finish()-Funktionalität lässt eine Instanz zu Ende laufen. Bei

erfolgreicher Ausführung befindet sich die Instanz anschließend im Status COMPLETED. Dazu wurde

in der Klasse ProcessAndInstanceManagementImpl folgende Methode implementiert:

 public InstanceInfoDocument finish(Long iid) throws ManagementException

 {

 DebuggerSupport debugSupport = getDebugger(iid);

 assert debugSupport != null : "getDebugger(Long) returned NULL!";

 debugSupport.finish(iid);

 return getInstanceInfo(iid);

 }

 Listing 23: Implementierung der finish-Funktionalität in ProcessAndInstanceMangementmpl

Außerdem wurde die Methoden-Signatur in das Instance-Management-Interface eingefügt:

 /**

 * Finishes the (previously suspended) instance. This operation only affects

 * process instances that are in the suspended state.

 * @param iid

 * instance id

 * @return post-change instance information

 */

 InstanceInfoDocument finish(Long iid);

Listing 24: finish-Funktion in der Mangement API

Die Funktionalität steht als Web Service und als Button in der Web-Oberfläche der Apache ODE zur

Verfügung. Die graphische Darstellung der Management-API ist im Anhang Process and Instance

Management API zu finden.

Die finish()-Funktion, um abgearbeitete Prozess-Instanzen endgültig als beendet zu markieren, wird

in der Klasse BpelProcess realisiert (Listing 25). Bei Aufruf der finish()-Funktion wird die Spalte FINISH

der Tabelle ode_instance_migration für die zugehörige Instanz auf 1 gesetzt. Dadurch wird es

möglich, aus anderen Klassen heraus abzufragen, ob die Instanz beendet oder standardmäßig wieder

suspended werden soll. Die Prozessinstanz wird wie beim Aufruf der resume()-Funktion fortgesetzt.

case FINISH:

 if (__log.isDebugEnabled()) {

5 Prototypische Umsetzung der Strategie

62

 __log.debug("handleWorkEvent: ResumeWork (and let it finish) event for iid "

 + we.getInstanceId());

}

// set finish flag in database

 Connection conn = DatabaseConnection.getInstance().getConnection();

Statement st = null;

try {

 st = conn.createStatement();

int result = st.executeUpdate("INSERT INTO ode_instance_migration (InstanceID,

FINISH) VALUES (" + we.getInstanceId() + ", 1) ON DUPLICATE KEY UPDATE

FINISH = 1");

 } catch (SQLException e) {

 e.printStackTrace();

 }

BpelRuntimeContextImpl processInstance5 = createRuntimeContext(procInstance, null,

null);

 processInstance5.execute();

break;

Listing 25: case FINISH in BpelProcess

In Listing 26 ist der Code dargestellt, der innerhalb der completed()- und run()-Operation der

SEQUENCE-Klasse prüft, ob für die Instanz die finish-Funktion aufgerufen wurde und dadurch in der

Tabelle ode_instance_migration die Spalte FINISH für die Instanz den Wert 1 hat.

Connection conn = DatabaseConnection.getInstance().getConnection();

Statement st = null;

ResultSet rs = null;

// get data from ode_instance_migration table

boolean letItFinish = false;

try {

st = conn.createStatement();

rs = st.executeQuery("SELECT FINISH FROM ode_instance_migration WHERE InstanceID

= " + process_ID);

if (rs.next())

{

int finish = rs.getInt("FINISH");

letItFinish = (finish == 1);

}

} catch (SQLException e) {

e.printStackTrace();

}

Listing 26: run()- und completed()-Methode check letitFinish

5 Prototypische Umsetzung der Strategie

63

Es sind drei verschiedene Szenarien möglich:

 Die finish()-Operation wurde aufgerufen. Davor wurde die Instanz am Leben erhalten und

nicht migriert.

Ist dies der Fall, so sind die Variablen letItFinish und runOutofWork true. Die _remaining-Liste

enthält genau eine Aktivität. Diese Aktivität wurde bevor die Instanz in den Status

SUSPENDED überführt wurde, bereits ausgeführt. Aus diesem Grund wird die Aktivität aus

der _remaining-Liste entfernt und die Methode completed aufgerufen. Innerhalb der

completed-Methode wird die Instanz dann nicht weiter am Leben erhalten, sondern da

letItFinish true ist beendet.

if (_remaining.size() == 1 && runOutofWork && letItFinish)

{

_remaining.remove(0);

TreeSet<CompensationHandler> comps = new TreeSet<CompensationHandler>(

_compensations);

Activity_Complete(false, comps);

}

Listing 27: run()-Methode Instanz beenden

 Die finish()-Operation wurde aufgerufen. Davor wurde die Instanz am Leben erhalten und

migriert.

In diesem Fall sind beim Betreten der run()-Methode runOutofWork, wasMigrated und

letItFinish true. Es wird wie in Kapitel 5.4 beschrieben die _remaining-Liste aktualisiert und

die erste Aktivität aus der _remaining-Liste entfernt. runOutofWork und wasMigrated

werden auf false gesetzt. Daraufhin wird die Instanz normal ausgeführt. Wenn die letzte

Aktivität ausgeführt worden ist, wird die completed()-Methode aufgerufen. Innerhalb der

Methode wird der else-Zweig ausgeführt da letItFInish den Wert true hat. Es wird die Zeile

der Instanz in der ode_instance_migration-Tabelle gelöscht und die ActivityComplete()-

Methode aufgerufen, die die Instanz endgültig beendet.

// finish Instance

else

{

try {

st = conn.createStatement();

rs = st.executeQuery("DELETE ode_instance_migration WHERE

InstanceID = " + process_ID);

} catch (SQLException e) {

e.printStackTrace();

}

Activity_Complete(_terminateRequested, comps);

}

Listing 28: completed()-Methode Instanz beenden

 Die finish()-Operation wurde aufgerufen. Davor wurde die Instanz migriert und nicht am

Leben erhalten.

5 Prototypische Umsetzung der Strategie

64

In diesem Fall ist der Ablauf derselbe, wie wenn die Instanz zusätzlich auch noch am Leben

gehalten wurde. Der einzige Unterschied ist, dass die erste Aktivität aus der _remaining-Liste

nicht gelöscht wird. Dies ist nicht erforderlich, da nur Aktivitäten in der _remaining-Liste

stehen, die noch nie ausgeführt wurden.

In Abbildung 23 wird das Zusammenspiel der einzelnen Komponenten bei der finish()-Operation mit

Hilfe eines Sequenzdiagramms veranschaulicht.

Abbildung 23: Sequenzdiagramm finish()-Operation

5.6 Web-GUI
Um die finish()-Funktion auch aus der Web-Oberfläche der Apache ODE heraus aufzurufen, wurde

dort ein weiterer Button eingefügt. Dieser Button befindet sich auf dem Reiter Instances bei jeder

einzelnen Instanz neben den Buttons „Terminate“, „Suspend“ und „Resume“.

Abbildung 24: Instances-Reiter aus der Apache ODE Oberfläche

Der Finish-Button ist nur aktiv, wenn die Instanz im Status SUSPENDED ist. Beim Klicken des Finish-

Buttons wird die Instanz zu Ende ausgeführt. Bei erfolgreicher Ausführung ist die Instanz dann im

Status COMPLETED.

5 Prototypische Umsetzung der Strategie

65

5.7 Erweiterung auf die Flow-Aktivität
Im Gegensatz zur sequence-Aktivität werden bei einer flow-Aktivität alle beinhalteten Aktivitäten

parallel ausgeführt. Wird der Flow betreten wird von der Apache ODE eine Liste erstellt, die die

Aktivitäts-Informationen von allen Aktivitäten innerhalb des Flows, beinhaltet. Aus der jeweiligen

ActivityInfo werden Activity Guards erstellt und in die Execution Queue geschrieben. Die Activity

Guards evaluieren die JoinConditions der einzelnen Aktivitäten und führen die Aktivität aus, wenn die

JoinCondition „true“ ist. Wenn die JoinCondition für eine Aktivität „false“ ist, wird die

DeadPathElimination angestoßen. In Listing 29 ist der oben beschriebene Code der Apache ODE aus

der FLOW-Klasse dargestellt.

for (Iterator<OActivity> i = _oflow.parallelActivities.iterator(); i

 .hasNext();) {

 OActivity ochild = i.next();

 ChildInfo childInfo = new ChildInfo(new ActivityInfo(

 genMonotonic(), ochild,

 newChannel(TerminationChannel.class),

 newChannel(ParentScopeChannel.class)));

 _children.add(childInfo);

 instance(createChild(childInfo.activity, _scopeFrame, myLinkFrame));

 }

 instance(new ACTIVE());

 }

Listing 29: Instanziierung der Aktivitäten innerhalb des Flows

Nachdem alle Aktivitäten innerhalb des Flows beendet sind, wird der Flow beendet. Das am Leben

erhalten der Prozess-Instanz, wie in Kapitel 5.3 beschrieben, ist für die Flow-Aktivität so nicht

möglich. Beim ersten Lösungsansatz würde die Dummy-Aktivität sofort mit ausgeführt werden und

die Apache ODE würde bemerken, dass alle Aktivitäten der Instanz ausgeführt sind und die Instanz in

den Status COMPLETED überführen. Der zweite Ansatz kann in einem gewissen Rahmen auf die flow-

Aktivität übertragen werden. Eine flow-Aktivität, die sich gerade in der Ausführung also innerhalb der

Wavefront befindet und auf eine neue Prozess-Version migriert werden soll, kann nicht so viele

Änderungen unterstützen wie beispielsweise die sequence-Aktivität. Wurden innerhalb der flow-

Aktivität Aktivitäten hinzugefügt, müssen diese Änderungen direkt in die Execution Queue

übertragen werden, da es nicht wie bei der Sequence die Möglichkeit gibt, die Liste der

Kindelemente nachzuladen. Das Löschen von Aktivitäten innerhalb eines Flows ist eingeschränkt

möglich, da von allen beinhalteten Aktivitäten nur die Activity Guards in die ExecutionQueue

geschrieben werden. So lange die eigentliche Ausführung der Aktivität nicht gestartet wurde, können

die Activity Guards aus der Execution Queue gelöscht werden. Dabei muss darauf geachtet werden,

dass die Verlinkungen zwischen den einzelnen Aktivitäten nicht zerstört werden. Das Ändern von

Aktivitäten ist, so lange sie noch nicht gestartet wurden, möglich. Dazu müssen die Activity Guards

aktualisiert werden, wenn die flow-Aktivität weiter ausgeführt wird. Basic Activities, mit Ausnahme

der wait-Aktivität, können nicht geändert werden, wenn sie gerade ausgeführt werden. Für das

Ändern von strukturierenden Aktivitäten innerhalb des Flows gelten die in Kapitel 4.4 vorgestellten

Einschränkungen. Problemlos ist es möglich, das am Leben erhalten der Prozessinstanz, sowie das

Beenden von am Leben erhaltenen Prozessinstanzen auf die flow-Aktivität zu übertragen.

5 Prototypische Umsetzung der Strategie

66

Das Verändern der flow-Aktivität innerhalb einer sequence-Aktivität ist, so lange der Flow sich noch

nicht in der Ausführung befindet, mit der prototypischen Implementierung möglich.

6 Anwendungsbeispiel

67

6 Anwendungsbeispiel
In diesem Kapitel soll anhand eines einfachen Beispiels der Prototyp und seine Funktionsweise

erklärt werden. In Abbildung 25 ist ein Prozessmodell zu sehen, das im BPEL-Designer von einem

Benutzer entwickelt wurde. Die Einschränkung des Prototyps, dass alle Logik von einer Sequence-

Aktivität umschlossen sein muss, ist erfüllt. Dieses Modell wird auf der Apache ODE deployed.

Abbildung 25: Ursprüngliches Prozessmodell

Daraufhin startet der Benutzer eine Instanz des Prozesses und pausiert sie kurz danach. In diesem

Beispiel wird die Instanz während der Aktivität Wait1 suspended. In Abbildung 26 ist zu sehen,

welche Aktivitäten bis zu diesem Zeitpunkt abgearbeitet wurden. Abbildung 27 zeigt den Status der

Instanz im Reiter Instances in der Apache ODE Web-GUI. Dort ist sichtbar, auf welche Prozessversion

die Instanz verlinkt ist, welchen Status sie hat, wann sie gestartet wurde und wann sie zuletzt aktiv

war. In diesem Fall ist das zugehörige Prozessmodell HelloWorld-1 und die Instanz befindet sich im

Status SUSPENDED. Des Weiteren sind alle Operationen, die im derzeitigen Status der Instanz zur

Verfügung stehen durch aktive Buttons erkennbar. Funktionen, die aufgrund des Status nicht

verfügbar sind, werden durch ausgegraute Buttons dargestellt.

6 Anwendungsbeispiel

68

Abbildung 26: Auditing der Instanz (1)

Abbildung 27: Status der Instanz in der Apache ODE GUI (1)

Im nächsten Schritt möchte der Benutzer das Prozessmodell verändern. Die Aktivität Wait2 aus dem

if-Zweig ersetzt er durch eine empty-Aktivität und verschiebt die Wait2-Aktivität in die flow-Aktivität.

Die Aktivität Assign4 wird aus der flow-Aktivität gelöscht und die Aktivität Empty2 hinzugefügt. Das

geänderte Prozessmodell ist in Abbildung 28 zu sehen. Die so genannte Wavefront der Instanz ist auf

Höhe der Aktivität Wait1, da während dieser Aktivität die Instanz in den Zustand SUSPENDED

überführt wurde.

Nachdem der Apache ODE Client gestartet wurde und die Instanz-ID 251 der zu migrierenden Instanz

in die Oberfläche eingegeben, sowie der Pfad zu BPEL-Datei des neuen Prozessmodells angegeben

wurde, wird das neue Prozessmodell deployed. Dabei werden sämtliche in Kapitel 5 beschriebenen

Änderungen an der Datenbank und den Prozessbeschreibungs-Dokumenten durchgeführt.

6 Anwendungsbeispiel

69

Abbildung 28: Neue Prozessmodell-Version

Nachdem das geänderte Prozessmodell erfolgreich deployed und die Instanz migriert wurde,

aktualisiert sich der Reiter Instances der Apache ODE Web-GUI (Abbildung 29). Der Status der Instanz

bleibt weiterhin unverändert SUSPENDED ebenso wie das Startdatum der Instanz und der

Zeitstempel, der die letzte Aktivität der Instanz bestimmt. Der Name des zu der Instanz gehörenden

Prozessmodells hat sich allerdings von HelloWorld-1 zu HelloWorld.v2-2 geändert. Die Benennung

des Prozessmodells hängt wie in Kapitel 5.2 beschrieben von der aktuellen Versionsnummer

innerhalb der Apache ODE ab.

Abbildung 29: Status der Instanz in der Apache ODE GUI (2)

6 Anwendungsbeispiel

70

Als nächstes lässt der Benutzer die Instanz weiter laufen. Der über eine Auditing-Komponente

mitgeschriebene Instanz-Verlauf ist in Abbildung 30 zu sehen. Die Instanz wird wieder aktiv und führt

das geänderte Prozessmodell aus. Nachdem die letzte Aktivität aus Abbildung 28, die reply-Aktivität,

ausgeführt wurde, wird die Instanz wieder in den Status SUSPENDED überführt, dieses Mal jedoch

automatisch, da für die Sequence-Klasse das am Leben erhalten einer Prozessinstanz implementiert

worden ist.

Abbildung 30: Auditing der Instanz (2)

6 Anwendungsbeispiel

71

Nach diesem Schritt sieht der Reiter Instances in der Apache ODE GUI exakt aus wie nach der

Migration in Abbildung 29. Das Prozessmodell, auf das die Instanz verlinkt ist, bleibt HelloWorld.v2-2

und die Instanz befindet sich wieder im Status SUSPENDED. Der einzige Unterschied ist der

Aktivitätszeitstempel, der jetzt die Zeit angibt, zu der die Instanz zuletzt aktiv war.

Anschließend gibt es zwei denkbare Szenarien. Die Instanz könnte wieder auf ein neues

Prozessmodell migriert werden oder die Instanz soll in den Status COMPLETED überführt werden.

Wenn die Instanz abermals migriert werden soll, läuft die zweite Migration identisch zur ersten

Migration ab. In diesem Beispiel ist der Benutzer mit dem experimentellen Erstellen des

Prozessmodells fertig und möchte keine weiteren Aktivitäten einfügen. Er wählt die finish()-

Operation, entweder über den Web Service oder die Apache ODE GUI, woraufhin die Prozessinstanz

beendet wird.

In Abbildung 31 ist zu sehen, dass nach dem Instance_Suspended Event die Instanz wieder aktiv wird.

Es werden die sequence- und process-Aktivität geschlossen und die Instanz in den Status

COMPLETED überführt.

Abbildung 31: Auditing der Instanz (3)

Im Reiter Instance in der Apache ODE GUI verändert sich der Status der Instanz auf COMPLETED. Der

Aktivitätszeitstempel zeigt den Zeitpunkt an, bei dem die Instanz zuletzt aktiv war. Die Buttons

„Resume“ und „Finish“ wurden inaktiv gesetzt. Die Instanz ist jetzt beendet und kann nicht weiter

ausgeführt oder migriert werden.

Abbildung 32: Status der Instanz in der Apache ODE GUI (3)

7 Zusammenfassung und Ausblick

72

7 Zusammenfassung und Ausblick
Im Rahmen dieser Diplomarbeit wurde eine Möglichkeit untersucht, Workflow-Maschinen an die

Ansprüche von Wissenschaftlern anzupassen und eine explorative Workflow-Entwicklung zu

ermöglichen. Dazu wurden die Möglichkeiten der Modell-Versionierung und Instanzmigration auf

eine neue Version eines Prozessmodells untersucht. Es werden die benötigten Änderungen am

Lebenszyklus einer Instanz und am Deployment von Prozessmodellen aufgezeigt und teilweise

mehrere Lösungsmöglichkeiten vorgeschlagen. Ein Konzept zur Instanzmigration wurde für die

Sprache BPEL für die einzelnen Aktivitäten erarbeitet.

Auf Basis dieser Erkenntnisse wurde die Apache ODE prototypisch um die Deploy New Version-

Funktionalität erweitert. Die Deploy New Version-Funktionalität ermöglicht es, mehrere Versionen

eines Prozessmodells aktiv zu halten. Des Weiteren werden Prozessinstanzen nach dem Beenden

ihrer letzten Aktivität am Leben erhalten und die Möglichkeit geschaffen, Instanzen auf neue

Prozessmodell-Versionen zu migrieren. Anhand eines Beispiels wurde gezeigt, wie die Deploy New

Version-Funktionalität angewendet werden kann.

Die Untersuchungen im Rahmen dieser Diplomarbeit haben gezeigt, dass BPEL-Prozessmodelle dazu

geeignet sind, den wissenschaftlichen Ansprüchen einer explorativen Prozess-Entwicklung gerecht zu

werden.

Die im Rahmen dieser Arbeit entwickelte Deploy New Version-Funktionalität kann als Grundlage zur

Entwicklung einer Workflow-Maschine, die die Deploy New Version-Funktionalität anbietet oder zur

Weiterentwicklung der Apache ODE verwendet werden. Die prototypische Implementierung der

sequence-Aktivität kann als Vorlage dienen, alle weiteren BPEL-Aktivitäten zu unterstützen, um die

Einschränkungen des gegenwärtigen Prototypens Schritt für Schritt aufzulösen.

Da der Wunsch nach Flexibilität in unserer Gesellschaft immer wichtiger wird, werden auf dem

Gebiet der Workflow Technologie weiterhin Entwicklungen stattfinden, um die Flexibilität und

Adaptivität von Workflows zu erhöhen. Außerdem wäre eine Entwicklung einer Monitoring-

Anwendung, die die Instanzmigration sowie die Änderungen, die an dem Prozessmodell

vorgenommen wurden, aufzeigt, denkbar. Diese Monitoring-Anwendung ist notwendig, da

ansonsten nicht nachvollzogen werden kann, welche migrierte Instanz welche Aktivitäten ausgeführt

hat. Um Ergebnisse zuverlässig auswerten zu können, ist es essentiell wichtig, zu wissen, welche

Aktivitäten ausgeführt wurden.

 Abbildungsverzeichnis

73

Abbildungsverzeichnis

Abbildung 1: SOA-Dreieck angelehnt an [8]. ... 9

Abbildung 2: Prozesse und Workflows. Angelehnt an [9] ... 10

Abbildung 3: Dimensionen eines Workflows [9]. .. 11

Abbildung 4: Charakteristik eines Workflow-Management-Systems. Angelehnt an [11]. 12

Abbildung 5: Aufbau einer WSDL-Datei. Angelehnt an [8]. .. 16

Abbildung 6: Zusammenhang abstrakter und ausführbarer Prozess. Angelehnt an [9]. 19

Abbildung 7: Struktur einer RPC-Style SOAP-Nachricht. Angelehnt an [8]. .. 20

Abbildung 8: SOAP Verarbeitungsmodell .. 21

Abbildung 9: ODE Architektur. Angelehnt an [15]. ... 24

Abbildung 10: Deployment-API der Apache ODE .. 28

Abbildung 11: Wavefront einer Instanz .. 32

Abbildung 12: Die drei Hauptfunktionalitäten der Deploy New Version-Funktionalität 33

Abbildung 13: Instanz-Lebenszyklus.. 36

Abbildung 14: gewünschter Instanz Lebenszyklus .. 37

Abbildung 15: Konzept der Adressierung .. 39

Abbildung 16: graphische Darstellung des Deploy-Web Services mit deployNewVersion-Operation . 51

Abbildung 17: Architekturbild der Apache ODE mit Änderungen ... 52

Abbildung 18: graphische Oberfläche des Deploy New Version-Client .. 53

Abbildung 19: Sequenzdiagramm DeployNewVersion()-Operation ... 54

Abbildung 20: ode_instance_migration-Tabelle ... 57

Abbildung 21: Schema der für diese Arbeit wichtigsten Tabellen .. 58

Abbildung 22: Aktualisieren der _remaining-Liste .. 60

Abbildung 23: Sequenzdiagramm finish()-Operation .. 64

Abbildung 24: Instances-Reiter aus der Apache ODE Oberfläche ... 64

Abbildung 25: Ursprüngliches Prozessmodell ... 67

Abbildung 26: Auditing der Instanz (1) .. 68

Abbildung 27: Status der Instanz in der Apache ODE GUI (1) ... 68

Abbildung 28: Neue Prozessmodell-Version ... 69

Abbildung 29: Status der Instanz in der Apache ODE GUI (2) ... 69

Abbildung 30: Auditing der Instanz (2) .. 70

Abbildung 31: Auditing der Instanz (3) .. 71

Abbildung 32: Status der Instanz in der Apache ODE GUI (3) ... 71

Abbildung 33: Grafisches Modell eines BPEL-Prozesses ... 77

Abbildung 34: Code eines BPEL-Prozesses .. 79

Abbildung 35: Alle Tabellen des Apache ODE MySQL-Schema ... 80

Abbildung 36: graphische Darstellung der Management API ... 83

 Verzeichnis der Listings

74

Verzeichnis der Listings
Listing 1: Aufbau eines XML-Dokumentes... 14

Listing 2: WSDL-Port Type ... 14

Listing 3: Port ... 15

Listing 4: WSDL-Operation Binding ... 15

Listing 5: WSDL-Message ... 15

Listing 6: WSDL-Service ... 15

Listing 7: WSDL-Binding ... 16

Listing 8: WSDL-Type ... 16

Listing 9: WSDL Adressierung .. 38

Listing 10: wait-Aktivität [14] .. 42

Listing 11: Scope-Aktivität [14] .. 44

Listing 12: sequence-Aktivität [14] .. 44

Listing 13: flow-Aktivität [14] .. 45

Listing 14: while-Aktivität [14]... 46

Listing 15: if-Aktivität [14] ... 46

Listing 16: pick-Aktivität [14] ... 47

Listing 17: forEach-Aktivität [14] ... 49

Listing 18: repeatUntil-Aktivität [14] ... 49

Listing 19: deployNewVersionProcess()-Methode innerhalb des ODE-Clients 54

Listing 20: Am Leben erhalten der Prozessinstanz .. 56

Listing 21: Am Leben erhalten einer Instanz die resumed aber nicht migriert wurde 57

Listing 22: Implementierung der Aktualisierung von _remaining ... 60

Listing 23: Implementierung der finish-Funktionalität in ProcessAndInstanceMangementmpl 61

Listing 24: finish-Funktion in der Mangement API .. 61

Listing 25: case FINISH in BpelProcess .. 62

Listing 26: run()- und completed()-Methode check letitFinish .. 62

Listing 27: run()-Methode Instanz beenden .. 63

Listing 28: completed()-Methode Instanz beenden .. 63

Listing 29: Instanziierung der Aktivitäten innerhalb des Flows ... 65

 Quellenverzeichnis

75

Quellenverzeichnis

1. Akram et al., Evaluation of BPEL to scientific workflows, Proc. of 6th IEEE International

Symposium on Cluster Computing and the Grid, 2006.

2. Wassermann et al., Sedna: A BPEL-based environment for visual scientific workflow

modeling, In: Taylor et al. (Eds.), Workflows for e-science – Scientific workflows for grids

(Springer, 2007).

3. Sonntag et al., Towards simulation workflows with BPEL: Deriving missing features from

GriCoL, In: Alhajj, R.S. (Hrsg); Leung, V.C.M. (Hrsg);

4. M. Reichert and S. Rinderle, On design principles for realizing adaptive service flows with

BPEL. Proc. of EMISA 2006, GI Lecture Nots in Informatics, LNI P-95, 2006.

5. A. Fritzler: Migrating WS_BPEL Process Instances -Diplomarbeit Nr. 2966 Uni Stuttgart

6. M. Kern: Enforcement auf laufenden BPEL-Prozessen – Diplomarbeit Nr. 2898 Uni Stuttgart

7. G.Starke, S. Tilkov : SOA_Expertenwissen: Praxis, Methoden und Konzepte serviceorientierter

Architektur –– dpunkt-Verlag, 2007

8. F. Leymann, S. Weeawarana, F. Curbera , D. F. Derguson : Web Service Platform Architecture,

Prentice Hall, 2005

9. Frank Leymann, Dieter Roller: Production Workflow: Concepts and Techniques, Prentice Hall,

1999

10. M. Böhm, S. Jablonski, und W. Schulze : Workflow-Management - Entwicklung von

Anwendungen und Systemen - Facetten einer neuen Technologie -, dpunkt-Verlag, 1997

11. D. Hollingsworth: The Workflow Reference Model. Technical report, Workflow Management

Coalition, 1995.

12. T.Erl: Service-oriented architecture: concepts, technology, and design, Prentice Hall, 2005

13. M.E. Stevens : “Service-Oriented Architecture”, Java Web Services Architecture, Morgan

Kaufmann, 2003

14. OASIS: “Web Services Business Process Execution Language (WS-BPEL) Version 2.0”, 2007

15. http://www.ode.apache.org/

16. BOS V5.3 - User & Reference Guide – 19 Oct 10

17. P.Dadam, M.Reichert, S. Rinderle-Ma: Prozessmanagementsysteme – Nur ein wenig

Flexibilität wird nicht reichen – 2011 Informatik-Spektrum

 Quellenverzeichnis

76

18. P. Dadam, M.Reichert: ADEPTflex – Supporting Dynamic Changes of Workflows Without

Losing Control – 1998 Kluwer Academic Publishers

19. I. Wassink, M. Ooms, P. van der Vet: Designing workflows on the fly using e-BioFlow

20. Lab exercise - WebSphere Process Server V7.0 – Process evolution and instance migration,

IBM 2010

21. O. Cline, M. Surya: WebSphere Process Server Versioning: From Design to Production, IBM

2010

22. Sonntag, Mirko; Karastoyanova, Dimka: Concurrent Workflow Evolution. In: Proceedings of

the Workshop on Flexible Workflows in Distributed Systems (WiVS), Conference on

Communications in Distributed Systems (KiVS), GI-Edition Lecture Notes in Informatics (LNI),

2011. (to appear)

 Anhang

77

Anhang

I. BPEL

Abbildung 33: Grafisches Modell eines BPEL-Prozesses

 Anhang

78

 Anhang

79

Abbildung 34: Code eines BPEL-Prozesses

 Anhang

80

II. MySQL-Schema

Abbildung 35: Alle Tabellen des Apache ODE MySQL-Schema

 Anhang

81

III. Process and Instance Management API

 Anhang

82

 Anhang

83

Abbildung 36: graphische Darstellung der Management API

Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen Quellen benutzt

zu haben.

Waiblingen, den 7. Februar 2011

__

Tina Schliemann

