Institut fur Architektur von Anwendungssystemen

Universitat Stuttgart
UniversitatsstraRe 38
D — 70569 Stuttgart

Diplomarbeit Nr. 3121

Unterstiitzung des ,,Model-as-you-go“-Ansatzes durch

Modell-Versionierung und Instanzmigration

Tina Schliemann

Studiengang: Softwaretechnik

Priifer: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova
Betreuer: Dipl.-Inf. Mirko Sonntag

begonnen am: 30.08.2010

beendet am: 01.03.2011

CR-Klassifikation: H.4.1 Workflow-Management

H.3.5 Web-based Services

*
*
*
*
+*

* .
+e
*
’0

*

*
*
*

"
*,
0
+*

*
*

&
X

+
‘0
*
*
*
+*

5%
o
&5

*
'R J
»>®
0‘0 W
L)
L)
L)
o
+ &
‘e
*

*

&K

0

X
$5
55
&
"

*
00.
L)
* b

+

*
+*

*
*

*
‘0
*
’0

*

*

‘ Inhaltsverzeichnis

Inhaltsverzeichnis
ADKUIZUNGSVEIZEICRNIS ..eeiiiiieee ettt e e s sttt e e s sbee e e s sbteeeesabteeessabtaeessstaeessseeeassses 4
R 310 1= T 0 oYU 5
11 IMOTIVATION ceeiiii et s 5
1.2 Ziele der ArDEIT ..o 6
13 AUTDAU I AIDEIT..eiiiieeetee ettt et e st e st e e st e e sbe e e s abe e sbeeesareens 6
1.4 D<) T TEd Lo o T=T o I PO TP P PP PO PRPPPTO 7
15 Verwandte ArbEItENco i e 7
1.5.1 Migrating WS-BPEL Process INSTanCesooovvvveiiieiiiiiieeeeeeeeeeeeeeee e, 7
1.5.2 Enforcement auf laufenden BPEL-ProzeSSencccceereeriinieeiieenieenee e 7
N C1 V|V | - T={T o [T 9
2.1 Serviceorientierte ArchiteKEUT........cuii i 9
2.2 Workflows und Workflow-Maschinenccccoeiiiiiiiniiii e 10
221 WOTKFIOWS .ttt ettt st e st e e sab e e sbbe e sabeesbaeesareens 10
2.2.2 WOTKFIOW-MasChiNeN ...c..cooueiiiiiieee et st s 11
2.3 Verwendete Web TEChNOIOZIENccuiiiiieeee e e e e e 12
231 WED SEIVICE ...ttt sttt et e be e sbe e st st e b b nes 12
2.3.2)L OO 13
233 Web Service Description LANGUAEEuvvvieciiiieieiiiieeeciree e eree st e e vae e e s e s esaraeeeas 14
234 2] o = OO OP PSPPSR PPRRPRRPO 17
2.35 SO ettt b e bt bt e sh ettt et e e bt e ebe e eheesateeabeebe e beebs 19
Vo T- Yol s Y= TN @] B 1 SRR 22
3.1 Grundlagen der APAche ODE.........oo ittt e e et e e e e ate e e e erreeaeeanes 22
3.1.1 Abweichungen vom WS-BPEL 2.0 Standardcccueeieiiiiieiiieee e ecee e 23
3.2 Architektur der APAche ODEooiiiciiiiiiiieeeeciree et e et e e s srre e s e sba e e e srasaeeesensaeaeens 24
3.3 Q0T 0] oo 1T 01 =T o TN 24
331 ODE BPEL COMPIIBT ... utiiieetieee ettt ettt ettt e e tte e e e et e e e e s tte e e e ebteeaeebteeeeebenaaeennes 25
3.3.2 ODE BPEL ENGINE RUNTIME...cciieiiieeeeeeeeeeeeeeeeeeeeeeeeeeteeeeee et ee e ee e e e ee e e e e e e e e e e e e e e e e s e eeeeeeeees 25
333 JACOB ...ttt st s b e et b e she e sae e e n e et e e reennee e 25
3.34 ODE INte8ration LAYer ..cccciiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseseseeeeeseeseeseseseseseasenes 26
3.35 (0]0] S F | = 1 A Yolol T @] o] [=Tot £ J U RPUPRPRt 27
34 MaANAZEMENT AP —a———————————————————————————_. 27
34.1 ProcessManagemMEeNt ... 27

Inhaltsverzeichnis

3.4.2 INSTANCEMANAZEMENT ..o 27

35 (BT<T o] Lo}V 00 =T o) dl [0l W= = ol PR 28
3.6 (0] o =15 i F-Tol s T C1 U | TSPV P RO TOPSRPR 28
3.7 D T=T o] (o]V a1 o | SO P PRSP 29
3.8 VBISIONIEIUNE «.eeeeieeeee e ettt ettt e e e e ettt et e e e e sttt e e e e e s e s saabtbteeeeeesaannsbaeaeeeesesanssraeaeesesssanrenes 29

4 Konzeption einer Deploy New Version-Strategie........ccceecuvieeieiiieeiciieeececieee et e et e e evaeee e 31
4.1 SEAte OF TN @It . s s 33
411 APACHE ODE 1.3.4 ..ttt ettt sttt sttt b e sbe e s e et et e e naeesaee e 33
4.1.2 Oracle Application SErVEr L0cuiiiciieiiiiieee ettt e e e e s sbee e e s sbeeeesennee 34
4.1.3 [2T0] o1 1Yo i A PO TP P PO URTUPPO 34
4.1.4 FAN L I 1 PSP 34
4.15 E-BIOFIOW ..ttt ettt sttt et e b e heesaeena 35
4.1.6 IBM WEDSPNEIrE PrOCESS SEIVETevieeeetiee e eettee ettt eette e e e tte e e e bte e e e eabae e e s eabaee e enreeas 35

4.2 INSTANZ-LEDENSZYKIUS ...ttt ettt e e e e e bree e e e abe e e e e abee e e enbaeeeennnanas 36
4.3 Versionierung und DePloYMENTooi i e e 37
4.4 FaEy T a V4 g g T =4 &) (o] o VOO PP PP U PPPPPPPPTN 39
4.4.1 Standard-Elemente und Standard-Attribute.........cccooveeiiiiniiiie 39
4.4.2 PrOCESS. .ttt 40
443 BaSIC ACTIVITIES ..eeiiiiiiii et 41
4.4.4 SErUCLUIEd ACTIVITIES «..veeeeeieee et st 43

5 Prototypische Umsetzung der Strategiecccveiiiiiiiii it 51
5.1 Deploy NeW Version-ClIENTcocciiiiiiiiieeecciiee e ectee ettt ssre e e e sire e e s sabe e e e s abae e s e snbaeessnseeas 52
5.2 Erweiterung des ODE Deployment-MechaniSmuS.........ccceeeeeciieeeeiiieececieee e e 54
5.3 Abgelaufene Instanzen am Leben erhalten..........c..oooeiiiiecciiii e 55
54 Migration der ProzeSSiNStaANZcuciii ittt e e e e e e verre e e e e e e e eanbaaeeeeeeeeenns 57
5.5 Beenden von am Leben gehaltenen Prozessinstanzenccceeevecieeeiscieeeccciiee e, 61
5.6 WED-GUI .ottt st s st es 64
5.7 Erweiterung auf die FIOW-AKEIVILAL........cccueiiiiiieiececcce s e 65

I a1V =T o To [0 o =4 o TT o1 =] PSSR 67
7 Zusammenfassung Und AUSDIICKooooiiiii i 72
ADDIlAUNGSVEIZEICANISt e e e e e e e e e e e e e e sttt e e e e e e e e s nbasaeeeeeeeesannrnnns 73
VErzeIChNIS AeI LISTINGS ..veiiiiiiiiiiiiee ettt e et e e et e e e e sat e e e e s asaeeeeataeeesasaeeesnnsaneenns 74
QUEITENVEIZEICNNIS ...ttt ettt s e st st s bt e b e n e e beesneesaeeenneen 75
FAN 2] T o= PR 77

Inhaltsverzeichnis

I. BPEL.ccvrrennne
II. MySQL-Schema

IIl. Process and Instance Management APlc.uevi i e e

‘ Abkirzungsverzeichnis

Abkiirzungsverzeichnis

AJAX — Asynchronous JavaScript and XML
Apache ODE — Apache Orchestration Director Engine
BPEL — Business Process Execution Language
BPMN — Business Process Modeling Notation
DAO — ODE Data Access Objects

GUI — Graphical User Interface

IL— ODE Integration Layer

JACOB — ODE’s Java Concurrent Objects

NMR — Normalized Message Router

RPC — Remote Procedure Call

SGML - Standard Generalized Markup Language
SMX4 — Apache ServiceMix 4.0

SOA — Service Oriented Architecture

VPU — Virtual Processing Unit

W3C - World Wide Web Consortium

WSDL — Web Service Description Language
XML — Extensible Markup Language

XSD — XML Schema Definition

1

Einleitung

1 Einleitung

Seit kurzem gibt es Bestrebungen, die konventionelle Workflow-Technologie in der Wissenschaft
einzusetzen. Fir die Lésung komplexer Probleme in der Medizin oder anderen Wissenschaften sind
Simulationstechnologien essentiell wichtig geworden. Die Erwartungen der Wissenschaftler an die
Workflow-Technologie sind in den letzten Jahren durch neue Entwicklungen in der Hardware sowie
der Modellierungs- und Simulationstechnik stetig gestiegen. Diese Anforderungen zu erfiillen, ist
Aufgabe des SimTech-Clusters, einem Forschungsprojekt der Universitat Stuttgart, in dessen Rahmen
auch diese Diplomarbeit stattfindet.

Mit Hilfe der Workflow-Technologie sollen Wissenschaftler, um den Programmieraufwand gering zu
halten, ihre Simulationen und Experimente graphisch modellieren kdnnen. Diese graphischen
Modelle sollen danach ausgefiihrt werden. Durch diese Neuerungen sollen die Wissenschaftler mehr
Konzentration auf ihr eigentliches Forschungsgebiet lenken kénnen. Sehr von Vorteil sind dabei die
Automatisierung und Robustheit der Software.

In den letzten Jahren wurde die Anwendung von BPEL fir wissenschaftliche Workflows untersucht
[1][2][3]. Die Sprache BPEL bietet Wissenschaftlern einige entscheidende Vorteile. Durch die
Fehlerbehandlung kénnen auftretende Probleme abgefangen werden und Anwendungen
miteinander Uiber Web Service verbunden werden. Alle Aktivitdten werden als einzelne
Transaktionen abgearbeitet. Es existieren mehrere BPEL-Engines, die eine persistente Speicherung
von Prozessinstanzen ermdglichen und sich durch ihre Robustheit auszeichnen.

1.1 Motivation

BPEL konzentriert sich hauptsachlich auf die Erstellung von geschaftlichen Workflows. Im Gegensatz
zu einem wissenschaftlichen Workflow kennt man bei einem geschaftlichen Workflow die
Prozesslogik meist bereits zur Designtime. Bei wissenschaftlichen Workflows ist das anders. Hier
werden haufig zur Laufzeit die Workflows noch gedandert bzw. sogar erst wahrend der Laufzeit
entwickelt. Durch das experimentelle Vorgehen des Wissenschaftlers verschmelzen die Phasen zur
Erstellung und Ausfiihrung von Workflows.

Heutige Workflowmaschinen bieten die Moglichkeit, mehrere Versionen eines Workflows parallel zur
Verfligung zu stellen. StandardmaRig ist nur eine der Versionen aktiv. Eine neue Workflow-Instanz
lauft dann in der Regel nach der aktuellsten Version des Workflows. Durch die in der Wissenschaft
tiblichen Anderungen zur Laufzeit reicht dies nicht aus, um die Anforderungen eines Einsatzes in
einem wissenschaftlichen Umfeld zu erfillen. Es muss moglich sein, auch dltere Modell-Versionen zu
instanziieren, um zum Beispiel altere Experimente erneut ausfiihren zu kénnen.

Eine weitere Eigenschaft der traditionellen Workflow-Technologie ist, dass Workflow-Instanzen nach
der Ausfiihrung ihrer letzten Aktivitat automatisch beendet sind. Um der explorativen Workflow-
Entwicklung von Wissenschaftlern gerecht zu werden, ist es erforderlich, abgelaufene Workflow-
Instanzen im ,Suspended”-Zustand zu halten. Dadurch, dass die Instanz am Leben erhalten wird,
kénnen Wissenschaftler das Experiment noch beeinflussen und beispielsweise weitere Aktivitdten
einfligen oder Teile des Experiments wiederholen.

1 ‘ Einleitung

1.2 Ziele der Arbeit

Ziel der Arbeit ist es, ein Konzept fir BPEL zu entwickeln, das es Wissenschaftlern erlaubt, weitere
Logik in laufende Prozessinstanzen einzufligen und dadurch ihre Experimente fortfiihren zu kénnen.
Dadurch wird die explorative Entwicklung von Workflows erméglicht. Folgende Aufgaben gilt es
dabei zu losen:

e Eine Instanz soll nach erfolgreicher Beendigung automatisch am Leben erhalten werden, um
ein spateres Hinzufligen von weiterer Logik zu ermdglichen.

e Essoll moglich sein, eine neue Version eines Prozessmodells zu deployen und dabei sowohl
die neue als auch die alte Prozessmodell-Version aktiv (d.h. instanziierbar) zu halten.

e Eine oder mehrere laufende Instanzen der alten Modellversion sollen auf die neue
Modellversion migriert werden kénnen. Zur Vereinfachung dieser komplexen Aufgabe wird
in dieser Arbeit davon ausgegangen, dass die betrachtete(n) Instanz(en) migriert werden
kann/kénnen. Das heillt die Modellanderungen betreffen nur das zukinftige Verhalten der
Instanzen. Das Priifen der Migrierbarkeit von Instanzen ist bereits in vorherigen Arbeiten
behandelt worden [4].

e Es wird ein Mechanismus bendétigt, um laufende Prozessinstanzen zu beenden.

e Um die Anwendbarkeit des Konzeptes zu zeigen, wird es prototypisch fiir eine bereits
vorhandene BPEL Workflow Engine implementiert.

1.3 Aufbau der Arbeit
Kapitel 1 Im weiteren Verlauf dieses Kapitels wird die Arbeit zu anderen wissenschaftlichen Arbeiten
abgegrenzt.

Kapitel 2 — Grundlagen Dieses Kapitel beschaftigt sich mit den fir das Verstandnis der Diplomarbeit
benotigten Technologien.

Kapitel 3 — Apache ODE Hier werden der grundlegende Aufbau sowie die benoétigten Komponenten
der Apache ODE beschrieben.

Kapitel 4 — Konzeption einer Deploy New Version-Strategie In diesem Kapitel wird zuerst der aktuelle
Stand der Wissenschaft beschrieben. AnschlieBend wird auf den gewiinschten Funktionsumfang der
Deploy New Version-Funktionalitit eingegangen, sowie auf die méglichen Anderungen an den
einzelnen BPEL-Aktivitaten.

Kapitel 5 — Prototypische Umsetzung der Strategie Hier wird die prototypische Implementierung der
Deploy New Version-Funktion an der Apache ODE beschrieben.

Kapitel 6 — Anwendungsbeispiel Dieses Kapitel beschreibt ein Anwendungsbeispiel des Prototyps.

Kapitel 7 — Zusammenfassung und Ausblick Abgeschlossen wird diese Diplomarbeit mit einer
Zusammenfassung und einem Ausblick auf offene Fragenstellungen.

1 ‘ Einleitung

1.4 Definitionen
In dieser Arbeit werden die Begriffe Prozess, Instanz und Modell folgendermalRen verwendet:

Prozessmodell / Workflowmodell / Modell bezeichnet das undeployte aber deploybare BPEL-
Prozessmodell im Sinne des Deployment Bundles.

Prozess / Workflow bezeichnet das auf der Apache ODE deployte Prozessmodell.

Instanz eine Ausfliihrung des Prozesses.

1.5 Verwandte Arbeiten
In diesem Kapitel werden Arbeiten, die sich mit ahnlichen Problemstellungen wie der Deploy New
Version-Funktionalitat beschaftigen, vorgestellt.

1.5.1 Migrating WS-BPEL Process Instances

Andreas Fritzler behandelt in seiner Diplomarbeit Migrating WS-BPEL Process Instances [5] einen
Ansatz zur Migration einer Prozessinstanz von einer Workflow-Maschine zu einer anderen Workflow-
Maschine. Die Workflow-Maschine, auf die migriert wird, ist in diesem Fall die Apache ODE. Dazu
wird die Instanz in den Zustand SUSPENDED (berfiihrt und die Instanzdaten in ein Zwischenformat
gespeichert. Dieses Zwischenformat ist ein XML-Format. Beim Import der Instanzdaten gibt es zwei
mogliche Szenarien:

e Die Prozess-ID ist dieselbe ID wie auf der alten ODE Instanz
e Die Prozess-ID ist eine andere ID wie auf der alten ODE Instanz.

Wenn die Prozess-ID dieselbe ID ist, wird das Zwischenformat mit den Instanzdaten importiert und
Uber eine recreatelnstance()-Methode als Instanz abgespeichert. Der Ausfiihrungszustand der Instanz
beinhaltet alle Daten, die zum Fortfiihren der Instanz beno6tigt werden. Die Instanz kann jetzt wieder
gestartet werden. Wenn die Prozess-ID eine andere ID ist, missen in den Instanzdaten, die im
Zwischenformat vorliegen, zuerst jede Prozess-ID der alten ODE Instanz durch die korrekte Prozess-ID
der neuen ODE Instanz ersetzt werden. Daraufhin wird die Instanz wie im anderen Szenario
beschrieben importiert.

1.5.2 Enforcement auf laufenden BPEL-Prozessen

M.Kern beschreibt in seiner Diplomarbeit Enforcement® auf laufenden BPEL-Prozessen [6] einen
Ansatz zur Modifikation von laufenden Prozessinstanzen. Der Ansatz der eventbasierten
Instanzmodifikation beruht auf Events, die jede ausgefiihrte Aktivitat ausldst. Die Modifikation wird
erst unmittelbar vor der Ausfiihrung der vorhergegangenen Aktivitat, die das entsprechende Event
ausgelost hat, vorgenommen.

Um eine neue Aktivitat einzufigen wird vom Workflow-Administrator Gber ein Web Service die neue
Aktivitat im Eventhandler registriert. Registriert werden die Daten (ber die Position der neuen
Aktivitat im Prozessverlauf, sowie die Definition der Aktivitat. Die Modifikation wird ausgefiihrt
sobald ein Event auftritt, fiir das die Modifikation registriert wurde. Daraufhin wird die zusatzlich
eingefligte Aktivitat ausgefiihrt. Das Entfernen von Aktivitdten innerhalb einer Instanz wird realisiert

! Enforcement: Englisch fur Durchfihrung oder Erzwingung

1 | Einleitung

durch das Ersetzen einer Aktivitit durch eine leere Aktivitit oder das Uberspringen einer Aktivitat.
Mit diesem Ansatz ist es moglich, einzelne Instanzen oder alle Instanzen ,,on-the-fly“ zu andern. Die
Modifikation findet entweder in der Execution Queue oder im Event Handler der Workflow-Maschine
statt.

2 ‘ Grundlagen

2 Grundlagen

In diesem Kapitel werden die Grundlagen, die zum Verstandnis dieser Arbeit notwendig sind,
erldutert. Da es sich bei dieser Arbeit um eine Modifikation einer bestehenden Workflowmaschine
handelt, werden als erstes Workflow und Workflowmaschinen im Allgemeinen erklart. Die
Modifikation der Workflowmaschine soll das Deployen einer neuen Version eines Prozessmodells
ermoglichen. Deshalb werden als nachstes die fiir ein Prozessmodell bendtigten Web Service-
Technologien erklart.

2.1 Serviceorientierte Architektur
Gernot Starke und Stefan Tilkov definieren SOA [7] folgendermaRen:

,Eine serviceorientierte Architektur (SOA) ist eine unternehmensweite IT-Architektur, deren zentrales
Konstruktionsprinzip lose gekoppelte Services (Dienste) sind. Services realisieren Geschdftsfunktionen,
die sie liber eine implementierungsunabhdngige Schnittstelle kapseln. Zu jeder Schnittstelle gibt es
einen Servicevertrag, der die funktionalen und nichtfunktionalen Merkmale (Metadaten) der
Schnittstelle beschreibt. Die Nutzung (und Wiederverwendung) von Services geschieht iiber
(entfernte) Aufrufe (»Remote Invocation«).”

Dienste, Uber die Funktionalitdten bereitgestellt werden, sind der grundlegende Bestandteil einer
serviceorientierten Architektur. Die wohl bekannteste Darstellung ist das SOA-Dreieck, das die
Grundprinzipien von SOA darstellt.

Service Requestor

Service Discovery

Abbildung 1: SOA-Dreieck angelehnt an [8].

Die Discovery Facility stellt einen Suchmechanismus fiir die Dienste zur Verfligung und stellt die
Metadaten der Dienste bereit. Der Service Requestor, der einen Dienst benutzen mdchte, stellt seine
Suchanfrage an die Discovery Facility und bekommt die Metadaten eines passenden Dienstes
zuriickgeliefert. Mit Hilfe dieser Daten kann der Service Requestor den Dienst aufrufen. Wenn dies
zur Laufzeit passiert, wird es als dynamic binding bezeichnet.

2 ‘ Grundlagen

2.2 Workflows und Workflow-Maschinen
In diesem Kapitel werden Workflows und Workflowmaschinen grundlegend erlautert, ohne auf
Techniken, die zur Umsetzung bendtigt werden, einzugehen.

2.2.1 Workflows

Ein Workflow entsteht aus einem Prozess- oder Geschaftsmodell aus der realen Welt, indem das
Modell auf einem Rechner ausfiihrbar gemacht wird®. Ein Workflowmodell kann dabei ein Teil eines
grofleren Prozessmodells sein oder aber das gesamte Prozessmodell abbilden. Einzelne Aktivitaten
bilden dabei die Grundlage eines Workflows. Immer stehen diese Aktivitaten in einer Abhdngigkeit
zueinander. Eine Aktivitat kann dabei entweder eine atomare Aktivitdt sein oder einen
untergeordneten Prozess aufrufen. Der Anfang und das Ende eines Workflows sind definiert, der
Ablauf ist organisiert.

Real World Computer
Process Model > Workflow Model
Instance Instance
Process Workflow

Abbildung 2: Prozesse und Workflows. Angelehnt an [9]

Prozess- und Workflowmodelle haben drei voneinander unabhangige Dimensionen [9]. Die erste
Dimension stellt die Prozesslogik dar. Sie wird auch als ,,what“-Dimension bezeichnet und beschreibt,
welche Aktivitdaten in welcher Reihenfolge ausgefiihrt werden mussen. Die Aktivitdten kdnnen
entweder sequentiell, also nacheinander, oder parallel ausgefiihrt werden. Als zweite Dimension gibt
es die ,who“-Dimension, auch Organisations-Dimension genannt. Diese Dimension beschreibt den
Aufbau eines Unternehmens, Abteilungen, Rollen und Menschen. Diese Informationen werden
gebraucht, um festzulegen, wer eine bestimmte Aktivitat ausfiihren soll. Dieses wer kann dabei eine
einzelne Person aber auch eine Gruppe von Personen sein, die alle die Fahigkeit haben, diese
Aktivitat zu bearbeiten. Falls die Aktivitat keine Interaktion mit einem Menschen erforderlich macht,
wird sie vom Workflowsystem weiterverarbeitet. Als ,,with“-Dimension wird die dritte Dimension
bezeichnet, die IT (Information Technology)-Dimension. Sie legt fest, welche Techniken zur
Ausfiihrung der Aktivitdten bendtigt werden.

® http://www.wfmc.org/

10

2 | Grundlagen

T qer
Address

Worklists

Abbildung 3: Dimensionen eines Workflows [9].

2.2.2 Workflow-Maschinen
M. Béhm, S. Jablonski, und W. Schulze definieren ein Workflow-Management-System [10]
folgendermalien:

»Workflow-Management-Systeme haben eine mdglichst vollsténdige Rechnerunterstiitzung der
Ablauforganisation von Unternehmen zum Ziel. Es ist offensichtlich, dass sie im Kern dem
Management von Arbeitsvorgdngen (Arbeitsabldufen) dienen. Unter Management ist auch die
Verantwortung fiir die Steuerung eines Systems - insbesondere fiir die Steuerung seiner Prozesse - zu
verstehen. Daher ist als deutsche Ubersetzung fiir Workflow-Management-System die Bezeichnung
Vorgangssteuerungssystem gebréuchlich.

Workflow-Management-Systeme haben viele verschiedene Aufgaben:

e das Bereitstellen von bendtigten Daten und Tools,

e das Verwalten von Daten,

e das Steuern von Aufgabenbearbeitung und Kontrollflissen,

e das Aufrufen von Applikationsprogrammen sowie

e das Benachrichtigen der Benutzer liber anstehende Aufgaben.

In Abbildung 4 sind die Hauptkomponenten eines Workflow-Management-Systems und ihre
Beziehung zueinander abgebildet. Fiir diese Arbeit ist die Workflow-Maschine, im Bild als Workflow-
Engine bezeichnet, von zentraler Bedeutung.

11

2 | Grundlagen

Process Design Business Process Analysis
& Definition Modelling & Definition Tools
Build Time Process

Run Time Definition

' Process changes

Process Instanciation
Workflow Engine

& Control

| |
Interaction with = | Applications
Users & Application Tools < & | T-Tools

Abbildung 4: Charakteristik eines Workflow-Management-Systems. Angelehnt an [11].

Eine Workflow-Maschine kann die modellierten Prozessmodelle ausfiihrbar machen und eine
Prozessinstanz davon erzeugen. Diese Instanz wird von der Workflow-Maschine gesteuert und
verwaltet. Alle relevanten Daten werden von der Workflow-Maschine verwaltet und
weiterverarbeitet. Beispielsweise werden Workitems erzeugt und den passenden Workflow-
Teilnehmern zugewiesen. Ein Workitem ist die Darstellung einer Aufgabe. Diese Teilnehmer kénnen
in Organisationseinheiten oder Rollen gruppiert werden.

2.3 Verwendete Web Technologien
In diesem Kapitel werden die Technologien, die zur Umsetzung von Workflows benétigt werden,
erlautert.

2.3.1 Web Service
Das World Wide Web Consortium (W3C) definiert einen Web Service wie folgt:

“A Web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format (specifically
wspL).”?

Web Services sollen eine standardisierte Interoperabilitat zwischen verschiedenen Systemen, die auf
unterschiedlichen Rechnern betrieben werden, ermdglichen. Dabei sollen Informationen in moglichst
oft wiederverwendbaren und voneinander unabhangigen Diensten gebiindelt werden. Dem Benutzer

3http://www.w3.org/TR/ws-arch - W3C WS-Architektur

12

2 | Grundlagen

soll die Implementierung der Dienste moglichst verborgen bleiben. Der Anbieter stellt die Dienste
Uber eine Schnittstelle bereit. Dabei werden an die Umgebung unterschiedliche Anforderungen
gestellt, die in [12] und [13] wie folgt beschrieben sind.

e Geheimhaltung der Anwendungslogik, nur die Schnittstellenbeschreibungen werden
veroffentlicht

e Wiederverwendbarkeit von Diensten

e Lose Kopplung

e Orchestrierung von Diensten

e Alle zur Nutzung der Dienste bendtigten Informationen sind in einem formalen Vertrag
zusammengefasst. Solche Informationen sind beispielsweise die Spezifikationen der
Schnittstellen, einzelne Methoden und Protokoll- und Adressierungsinformationen.

2.3.2 XML
Die Extensible Markup Language (XML) ist ein vom W3C definierter Standard zur strukturierten
Darstellung von Daten. Bei der Entwicklung von XML waren die wichtigsten Ziele®:

XML soll Gberall im Internet benutzbar sein

XML soll eine Vielfalt von Applikationen unterstiitzen

XML soll kompatibel zu SGML (Standard Generalized Markup Language) sein
Es soll einfach sein, Programme zu schreiben, die XML-Dateien verarbeiten

vk wnN e

Die Anzahl optionaler Features soll auf ein Minimum beschrankt werden, idealerweise bei
null liegen

XML-Dokumente sollen moglichst leserlich und klar strukturiert sein

Das XML-Design soll sich schnell erstellen lassen

Das XML-Design soll formal und prazise sein

© o N

. XML-Dokumente sollen einfach zu erstellen sein
10. Kirze im XML Markup ist von geringer Bedeutung

XML wird vor allem im Internet fiir den plattformunabhadngigen Austausch von Daten eingesetzt. Ein
XML-Dokument ist vom Menschen lesbar, da es aus Textzeichen besteht und per Definition keine
Bindrdaten enthalt.

Der Aufbau eines XML-Dokumentes stellt eine Baumstruktur dar. Es besitzt genau ein
Wurzelelement. In diesem Element werden die globalen Namespaces definiert, die sicherstellen, dass
keine Doppeldeutigkeiten bei Uberschneidungen mit anderen XML-Daten entstehen kénnen. Alle
Elemente des Baumes beginnen mit einem Start-Tag <active> und enden mit einem End-Tag
</active>. Elemente ohne Kind-Elemente kdnnen auch in sich geschlossen werden <service
name="wns:Hello Service” />. Ein Kind-Element muss geschlossen werden, bevor ein Gbergeordnetes
Element geschlossen werden kann oder ein Geschwisterelement ge6ffnet werden kann. Ein Element
kann Attribute, die zusatzliche Informationen bereitstellen und Verarbeitungsanweisungen
beinhalten. Des Weiteren kann lber </-- Kommentartext--> ein Kommentar in das XML-Dokument
eingefligt werden. XML-Dokumente kdnnen in drei Dokumentarten unterteilt werden:

* http://www.w3.0rg/TR/2008/REC-xmI-20081126/

13

2 | Grundlagen

o dokumentzentriert: hauptsachlich fiir den menschlichen Gebrauch erstellte Dokumente
e datenzentriert: hauptsachlich zur maschinellen Verarbeitung erstellte Dokumente und
e semistrukturiert: eine Mischung von datenzentriert und dokumentzentriert.

XML-Dokumente kdnnen von Parsern ausgelesen, interpretiert und modifiziert werden.
In Listing 1 ist der beispielhafte Aufbau eines XML-Dokumentes zu sehen.

<deploy xmlns=
xmlns:pns="http://ode/bpel/unit-test"
xmlns:wns="http://ode/bpel/unit-test.wsdl">
<process name="pns:HelloWorld2">
<active>true</active>
<provide partnerLink="helloPartnerLink">
<service name="wns:HelloService" port="HelloPort"/>
</provide>
</process>
</deploy>
Listing 1: Aufbau eines XML-Dokumentes

2.3.3 Web Service Description Language

Die Web Service Description Language (WSDL) *ist eine vom World Wide Web Consortium
entwickelte Sprache, um Web Services zu beschreiben. Der neueste Standard ist der W3C WSDL 2.0.
Diese Arbeit beruht jedoch auf dem WSDL 1.1 Standard, der hier auch vorgestellt wird.

WSDL beschreibt die verwendeten Nachrichten und Datentypen, die zum Aufruf eines Web Services
benotigt werden. Des Weiteren wird die Schnittstelle der Operation beschrieben. Eine Web Service-
Beschreibung in WSDL besteht aus zwei Teilen, dem abstrakten und dem konkreten Teil. Der
abstrakte Teil beschreibt die Funktionalitdt des Web Services. Da in diesem Teil keine sprach- oder
maschinenspezifischen Elemente vorkommen, kann dieser wiederverwendet werden. Der konkrete
Teil definiert, wo der Web Service zur Verfligung steht und wie auf ihn zugegriffen werden kann.

In WSDL sind dafiir folgende Konzepte spezifiziert. Diese Konzepte und ihr Zusammenspiel werden
spater erlautert.

e PortType
<wsdl:definitions>
<wsdl:portType name="nmtoken”>
<wsdl:operation name="“nmtoken“. ... />*
</wsdl:portType>
</wsdl:definitions>
Listing 2: WSDL-Port Type

> http://www.w3.org/TR/wsdl/

14

2 | Grundlagen

e Port
<wsdl:definitions.....>
<wsdl:service....>*
<wsdl:port name="“nmtoken” binding="qname”> *
< - - extensibility element (1) - - >
</wsdl:port>
</wsdl:service>
</wsdl:definitions>
Listing 3: Port

e QOperation
<definitions >
<binding >
<operation >
<input>
<soap:body parts="nmtokens"? use="literal|encoded"?
encodingStyle="uri-list"? namespace="uri"?>
</input>
<output>
<soap:body parts="nmtokens"? use="literal|encoded"?
encodingStyle="uri-list"? namespace="uri"?>
</output>
</operation>
</binding>
</definitions>
Listing 4: WSDL-Operation Binding

e Message
<definitions >
<message name="nmtoken"”> *
<part name="nmtoken” element="gname”? type=“qname“?/> *
</message>
</definitions>
Listing 5: WSDL-Message

e Service
<wsdl:definitions....>
<wsdl:service name="nmtoken”> *
<wsdl:port..../>*
</wsdl:service
</wsdl:definitions>
Listing 6: WSDL-Service

15

2 | Grundlagen

Binding
<definitions >
<binding ... >
<soap:binding transport="uri"? style="rpc|document”?>?
</binding>
</definitions>
Listing 7: WSDL-Binding

Type
<definitions >
<types>
<xsd:schema.... />*
</types>
</definitions>
Listing 8: WSDL-Type

Das Zusammenspiel der Konzepte wird in Abbildung 5 erlautert.

Hosts & Implements

Interface (,What")

Supports

Operation
Input, Output
& Faults

Message

Transport
Format & Protocols

Access Specification (,,How") 9

Binding

Implements

Provides _
Port Service

Endpoints (,Where*)

Abbildung 5: Aufbau einer WSDL-Datei. Angelehnt an [8].

16

2 | Grundlagen

Ein Port Type besteht aus mehreren abstrakten Operations und definiert die vom Web Service zur
Verfligung gestellte Funktionalitat. Ein Port Type hat innerhalb des WSDL-Dokuments einen
eindeutigen Namen, der Gber das name-Attribut zugewiesen wird. Mit Hilfe von WSDL kénnen vier
Message Exchange Pattern realisiert werden.
e One-way: Der Endpoint empfangt eine Nachricht.
e Request-response: Der Endpoint empfangt eine Nachricht und versendet eine dazugehorige
Nachricht.
e Solicit-response: Der Endpoint versendet eine Nachricht und empfangt eine dazugehorige
Nachricht.
e Notification: Der Endpoint versendet eine Nachricht.

Eine Operation hat Ein- und Ausgange. Diese werden durch abstrakte Nachrichten definiert, die eine
als XML Schema angegebene abstrakte Datenstruktur beschreiben. Diese Struktur definiert die
Nachrichten, die fiir die Kommunikation mit dem Web Service erwartet werden.

Das Binding konkretisiert die abstrakten Konzepte. Es definiert das Nachrichtenformat und das
Protokoll, wie auf den Web Service lber den Port Type zugegriffen werden soll. Es kann mehrere
Bindings fiir einen einzelnen Port Type innerhalb eines Dokumentes geben, wobei das Binding durch
einen eindeutigen Namen definiert ist. Der zu dem Binding gehorende Port Type wird lber das type-
Attribut zugewiesen. Durch Kombination einer Netzwerkadresse und eines Bindings wird ein Port
definiert. Ahnliche Ports werden in einem Service-Element zusammengefasst. Das Type-Element
gruppiert Definitionen von Datentypen, die fir den Nachrichtenaustausch relevant sind. WSDL
bevorzugt XSD, um ein Maximum an Plattformneutralitat und Kompatibilitat zu gewahrleisten.

Die Implementierung des durch WSDL beschriebenen Web Services ist von der Programmiersprache
unabhangig.

2.3.4 BPEL

Die Business Process Execution Language (BPEL) [14] hat sich als Standard zur Beschreibung von
Geschaftsprozessen durchgesetzt. BPEL ist eine XML-basierte Sprache, die von IBM, BEA Systems und
Microsoft entwickelt wurde. Ein Geschaftsprozess ist eine Komposition von Web Services, dessen
Geschaftslogik durch XML beschreiben wird. Nach auRen wird der Geschéaftsprozess wieder als Dienst
angeboten, dessen Schnittstelle durch WSDL beschreiben ist.

Die Sprache BPEL ermdglicht die Modellierung von komplexen Kontrollflissen und die Moglichkeit,
mit anderen Web Services zu kommunizieren.

Aktivitaten sind die grundlegenden BPEL-Konstrukte. Diese kdnnen in zwei Kategorien aufgeteilt
werden. Zum einen die Basic Activities, die die atomaren Aktivitdten darstellen, zum anderen die
Structured Activities, die aus Basic und Structured Activities bestehen und die Modellierung von
komplexen Prozessen zulassen.

Basic Acitivities:
e gssign: Zuweisen eines Variablenwertes
e invoke: Aufruf eines Web Services
e receive: Warten auf eine Nachricht
e reply: Antwort an einen Web Service versenden
e throw: Fehler wird signalisiert

17

2 | Grundlagen

e rethrow: Fault wird von fault- handler an scope weitergegeben

e wait: Eine bestimmte Zeitspanne oder bis zu einem Zeitpunkt warten

e empty: Leere Aktivitat

e exit: Beendet eine Instanz sofort

e compensate: Ruft compensation-handler aller scopes auf

e compensateScope: Ruft compensation-handler eines bestimmten scopes auf
e validate: Validiert XML-Messages

e extensionActivity: Erweiterung von BPEL um eine neue Aktivitat

Um die Programmlogik zu definieren, existieren folgende Structured Activities:

e sequence: sequentielle Abarbeitung von Aktivitaten

e flow: parallele Ausfiihrung von Aktivitaten

e while: Ausfiihren von Aktivitdten, solange eine boolesche Bedingung erfiillt ist

e if: Ausfiihren einer Aktivitat, wenn Bedingung erfillt ist

e pick: Ausfihren einer Aktivitat durch ein Ereignis

e scope: Biindelung von Aktivitaten. Diesem Biindel kann beispielsweise ein fault- handler, ein
compensation-handler, ein termination-handler oder ein event- handler zugewiesen werden

e repeatUntil: Ausfiihren einer Aktivitat bis eine Bedingung erfillt ist

e forEach: Mehrfaches Ausfiihren derselben Aktivitdt mit verschiedenen Daten

Der fault-handler, compensation-handler, und termination-handler sind Konzepte zur
Transaktionssteuerung in Prozessen. Jeder fault-handler enthalt eine Anweisung in Form einer
Aktivitat. Wahrend der Designtime werden fir jede scope-Aktivitdt und den process catch und catch-
all-fault-handler definiert. Wenn ein Fehler bei der Verarbeitung der Aktivitaten auftritt, wird ein
fault geworfen, der von dem von der Workflow-Maschine aktivierten fault-handler abgefangen wird.
Alle laufenden Aktivitaten innerhalb des scope oder process werden beendet, das fault-handling
beginnt. Alle nicht behandelten faults werden in den libergeordneten scope weitergegeben, fiir die
behandelten fault werden die jeweilig definierten Aktivitaten ausgefiihrt. Ein catch-all-fault-handler
fangt im Gegensatz zum normalen fault-handler alle faults ab und verarbeitet sie weiter. Scopes sind
verschachtelt und der Wurzelknoten stellt immer das process Element dar.

Der compensation-handler wird nach erfolgreicher Ausfiihrung eines scopes aktiviert. Dort werden
Informationen zum Undo des scopes gespeichert. Ziel ist es, eine Mdglichkeit zu schaffen, die Instanz
in den Zustand, die sie vor Ausfiihrung dieses scopes gehabt hat, zuriickzusetzen. Ein compensation-
handler kann nur durch den libergeordneten scope aufgerufen werden. Ist kein compensation-
handler definiert, wird ein impliziter aufgerufen. Der implizite compensation handler ruft das
Kompensieren aller innerhalb des scopes installierter compensation-handler auf.

Wenn ein scope terminiert, wird das sogenannte termination-handling gestartet, entweder das
implizite oder das definierte termination-handling. Aus diesem termination-handler wird dann
beispielsweise das compensate aufgerufen.

Zusatzlich zu diesen handlern gibt es noch den event-handler. Dieser reagiert durch Ausfiihrung
bestimmter Aktivitdaten auf definierte application-messages oder Timeouts.

BPEL ermdglicht die Modellierung von ausfiihrbaren und abstrakten Prozessen. Im Gegensatz zu
abstrakten Prozessen, die der Beschreibung des Verhaltens von Prozessen dienen, kénnen
ausfuhrbare Prozesse auf einer Workflow-Maschine deployed werden. Abstrakte Prozesse kénnen

18

2 | Grundlagen

eine Sicht auf einen ausfiihrbaren Prozess oder ein Template flir das Entwickeln von Prozessen
darstellen. Deswegen werden sie auch als Behavioral Interface bezeichnet. In Abbildung 6 ist der
Zusammenhang zwischen einem abstrakten und einem ausfiihrbaren Prozess grafisch dargestellt.

©

= @ @ q
P i

‘ q
‘ ,Executable Process”

,Abstract Process”

Abbildung 6: Zusammenhang abstrakter und ausfiihrbarer Prozess. Angelehnt an [9].

Im Vergleich zu héheren Programmiersprachen bietet BPEL einen reduzierten Sprachumfang an.
BPEL ist auf das prozessorientierte Komponieren von Web Services, was auch als ,,Programmieren im
GrolRen” bekannt ist, optimiert. Im Anhang in Abbildung 33 ist die graphische Modellierung eines
BPEL-Prozesses dargestellt. Abbildung 34 stellt den Code des BPEL-Prozesses dar. Dieser zeigt die
enge Verknilipfung zwischen WSDL und BPEL. Aufzurufende Web Services werden tiber WSDL-
Konstrukte spezifiziert, ebenso werden WSDL-Messages verwendet.

2.3.5 SOAP
SOAP stand urspriinglich fiir Simple Object Access Protocol und ist eine vom W3C definierte
Nachrichtenarchitektur fir den strukturierten Austausch von Daten in einem Netzwerk. Die Apache
ODE unterstitzt derzeit nur Version 1.1. Seit Version 1.2 wird SOAP nicht mehr als Akronym
gebraucht. SOAP kann unabhangig von dem darunterliegenden Protokoll eingesetzt werden, wobei
die Struktur als XML-Infoset definiert wird. In der aktuellen Spezifikation 1.2 wird ein Framework
durch folgende Punkte spezifiziert®:
e SOAP Processing Model: Ein Verarbeitungsmodell, das Regeln zum Abarbeiten der SOAP-
Nachrichten definiert.
e SOAP Extensibility Model: Ein Erweiterungsmodell, das die Konzepte und Funktionen der
SOAP-Module definiert.
e SOAP Protocol Binding Framework: Ein Framework fiir die Protokollbindung , das das
Versenden der SOAP-Nachrichten {iber das darunterliegende Protokoll zwischen den Knoten
(Nodes) definiert.

e SOAP Message Construct: Gibt den Aufbau und die Struktur von SOAP-Nachrichten an.

Das aulerste Element einer SOAP-Nachricht ist der Envelope. Darin enthalten sind maximal ein
Header-Element und genau ein Body-Element. Ein Header- Element besteht aus beliebig vielen
Headern, ein Body-Element kann beliebig viele Kind-Elemente haben. Die SOAP-Spezifikation gibt vor,

® http://www.w3.org/TR/soap/

19

2 | Grundlagen

wie die Elemente verarbeitet werden, nicht aber den Inhalt der Elemente, der durch die Anwendung
bestimmt wird. Das SOAP-Header-Element beinhaltet Daten, um eine SOAP-Nachricht auf eine
dezentrale und modulare Weise zu erweitern. Es dient dazu, Informationen, die nichts mit dem
eigentlichen Payload der Anwendung zu tun haben, zu transportieren. Der SOAP-Body beinhaltet den
eigentlichen Inhalt der SOAP-Nachricht, der vom Sender zum endgiltigen Empfanger (Ultimate SOAP
Receiver) Ubermittelt werden soll.

Es gibt zwei verschiedene Typen von SOAP-Nachrichten. Die Document-Style und die RPC-Style
(Remote Procedure Call) Nachrichten. Abbildung 7 ist die Struktur einer RPC-Style SOAP-Nachricht zu
sehen.

SOAP Envelope

SOAP Header

Header Block 1

Header Block n

Abbildung 7: Struktur einer RPC-Style SOAP-Nachricht. Angelehnt an [8].

RPC-Style Nachrichten bilden einen entfernten Methodenaufruf in einer SOAP-Nachricht ab. Dazu
werden alle notwendigen Informationen in die Nachricht kodiert. Der Name der aufzurufenden
Methode steht im Wurzelelement des Bodys. Da in diesem Fall nur genau ein Body-Element existiert,
wird die Interpretation der Nachricht durch die SOAP-Spezifikation vorgegeben. Der Empfanger
generiert eine Antwort-Nachricht, die die Riickgabewerte des Methodenaufrufs enthilt.
Document-Style Nachrichten enthalten keine Informationen, wie sie zu interpretieren sind. Die
Anwendung definiert im Voraus die Semantik der Nachricht. Eine SOAP-Nachricht kann dann
mehrere Body-Elemente besitzen und der Empfanger muss nicht zwangslaufig eine Response-
Nachricht generieren. Das SOAP Processing Model geht davon aus, dass die Zustellung der
Nachrichten von einem Sender zum eigentlichen Empfanger, dem Ultimate SOAP Receiver, nicht
direkt erfolgt sondern lGber mehrere Zwischenknoten, die SOAP Intermediaries. Es wird beschrieben,
wie die Empfanger eine SOAP-Nachricht verarbeiten sollen. Im SOAP-Header stehen die
Anweisungen fiir den Empfanger. Uber ein Role-Attribut wird der Header an den entsprechenden
Knoten auf dem Pfad zum Ultimate Receiver adressiert. Im Role-Attribut wird definiert, welche
Header-Elemente der Empfanger verarbeiten soll. Header-Elemente kdnnen von den Intermediariers
verandert, geldscht oder neu hinzugefiigt werden. Des Weiteren diirfen Intermediaries Anderungen
am SOAP-Body vornehmen. Dadurch lassen sich Quality-of-Service-Eigenschaften, die nicht durch das
darunterliegende Protokoll gegeben sind, realisieren. Ein Beispiel hierfiir ist die Verschllsselung einer

20

2 | Grundlagen

SOAP-Nachricht. Der SOAP-Body ist immer an den Ultimate Receiver bestimmt. Dieses

Verarbeitungsmodell ist in der Abbildung 8 dargestellt.

Initial
SOAP
Sender

SOAP

Message

SOAP

| Intermediary

SOAP___
Message

SOAP
Intermediary

SOAP |
Message

Ultimate
SOAP
Receiver

SOAP Message Path

21

Abbildung 8: SOAP Verarbeitungsmodell

3 ‘ Apache ODE

3 Apache ODE

3.1 Grundlagen der Apache ODE

Die Apache ODE (Orchestration Director Engine)’ wird von der Apache Software Foundation als Top-
Level-Projekt entwickelt. Sie ist ein Open Source Workflow-Management-System fiir BPEL-
Prozessmodelle, lizenziert unter der Apache License Version 2.0. Implementiert wird die Apache ODE
in Java und basiert auf dem Java Development Kit (JDK) 5.0. Die aktuelle stabile Version ist 1.3.4, auf
der auch diese Arbeit beruht.

Die Apache ODE kommuniziert mit Web Services, sendet und empfangt Nachrichten, verarbeitet
Daten und Fehler nach den Beschreibungen im BPEL-Prozess. Sie unterstiitzt lang- und kurzlebige
Prozessinstanzen und orchestriert Web Services.

Es gibt drei unterschiedliche Umgebungen, in denen die Apache ODE deployed werden kann:

e Als Web Service in Axis 2. Daflr wird die ODE als WAR gepackt und kann in jedem Application
Server deployed und aufgerufen werden.

e Als JBI Servicegruppe. Dafiir wird die ODE als ZIP gepackt und kann in einem JBI Container
deployed und tGber NMR aufgerufen werden.

e Als OSGi Bundle in SMX4

Folgende Standards werden in der aktuellen stabilen Version unterstitzt:

e WS-BPEL 2.0, bis auf wenige Abweichungen. Ziel ist es die Abwarts-Kompatibilitat zu
BPEL4AWS 1.1 zu erhalten

e WSDL 1.1 und teilweise WSDL 2.0

e SOAP11

e XPath2.0

Die Apache ODE kann auf jedem Betriebssystem, das Java 5 unterstiitzt, ausgefiihrt werden. Dazu
wird nur eine der oben genannten Umgebungen benétigt, da momentan keine Standalone-Version
der ODE verfligbar ist. DAOs (data access objects) bilden die Grundlage zur Kommunikation mit den
Datenbanken der ODE. Es werden zwei DAO-Implementierungen angeboten, OpenJPA und
Hibernate. ODE unterstiitzt die meisten relationalen Datenbanken. StandardmaRig mitgeliefert
werden Datenbank-Schemas flir Derby und MySQL sowie eine bereits konfigurierte Derby-
Datenbank.

Bisher sind keine Instanzmodifikationen mdéglich. Beim Deployen einer aktualisierten Version eines
Prozesses mit demselben Namen, werden alle Instanzen auf der alten Version des Prozesses
geloscht. In der Praxis bedeutet das, dass Prozessmodelle unter einem anderen Namen veroffentlicht
werden missen, wenn Instanzen, die nicht geléscht werden sollen, auf ihnen aktiv sind und
Aktualisierungen am Prozessmodell nétig sind.

7 http://www.ode.apache.org/

22

3

Apache ODE

3.1.1 Abweichungen vom WS-BPEL 2.0 Standard
Bis auf wenige Abweichungen wird der WS-BPEL 2.0 Standard unterstiitzt. Diese Abweichungen
betreffen folgende Aktivitaten:

e <receijve>: kein Support der <fromPart>-Syntax, dafiir wird das variable Attribut genutzt. Des
Weiteren kénnen im variable Attribut nur Nachrichten-Variablen referenziert werden,
obwohl die Spezifikation auch Element-Variablen erlaubt.

Mehrere Start-Aktivitaten werden nicht unterstiitzt, ebenso wenig die Anordnungsrichtlinien
der Spezifikation, die ODE ist hier deutlich toleranter als die Spezifikation. conflictingRequest
wird wie conflictingReceive behandelt. Es wird immer, wenn conflictingRequest auftritt,
conflictingReceive geworfen. Ein existierendes validate-Attribut wird ignoriert.

e <reply>: Einschrankungen wie <receive>.

e <invoke>: <toPart> und <fromPart> werden nicht unterstiitzt. Die Attribute inputVariable
und outputVariable missen auf eine Nachrichten-basierte (message-typed) Variable
referenzieren.

e <assign>: Das Validieren von Variablen wird nicht unterstitzt, ebenso wenig Zuweisungen
innerhalb der Variablendeklaration. Die ODE verwendet derzeit das expressionLanguage statt
des queryLanguage Attributs, um die verwendeten Sprachen innerhalb einer Anweisung
festzulegen.

e <pick>: Einschrankungen wie <receive>.

e <compensate>: Entspricht der <compensateScope>-Aktivitat.

e <validate>: Bisher nicht implementiert. Wenn validate in einem Prozessmodell vorkommt,
wird ein Kompilationsfehler geworfen.

23

3 ‘ Apache ODE

3.2 Architektur der Apache ODE

Bei der Entwicklung der Apache ODE [15] waren die Hauptziele, eine zuverldssige, kompakte und aus
mehreren eingebetteten Komponenten bestehende Workflow-Maschine zu entwickeln, die
langlebige BPEL-Prozesse ausfiihren kann. Der Fokus bestand darin, kleine losgekoppelte Module zu
entwickeln, die zu einer voll funktionsfahigen Workflow-Maschine gruppiert werden kénnen. In
Abbildung 9 ist die Architektur der ODE graphisch dargestellt. Es wird das Zusammenspiel der
Komponenten erldutert.

BPEL Process Definition, WsD

Ode BPEL Compiler

Compiled Process Definitions

Ode BPEL Runtime
sInstantiation of Processes
simplementation of BPEL Constructs

O *Routing of Incoming Messages

JACOB
=Persistency of Exe cution State O

=Concurrency
=MNavigation

340

eleq3ao

Web

O Services

Jzhejuoneldz g

spalgo sy

Abbildung 9: ODE Architektur. Angelehnt an [15].

3.3 Komponenten

Die Hauptkomponenten der Apache ODE Architektur sind ODE BPEL Compiler, ODE BPEL Engine
Runtime, ODE Data Access Objects (DAOs) und der ODE Integration Layer (IL). Zusammenfassend
kann die Architektur folgendermallen beschrieben werden [15]:

“The compiler converts BPEL documents into a form executable by the run-time, which executes them
in a reliable fashion by relying on a persistent store accessible via the DAOs; the run-time executes in
the context of an Integration Layer which connects the engine to the broader execution environment
(i.e. the "world").”

24

3

Apache ODE

3.3.1 ODE BPEL Compiler

Der ODE BPEL Compiler kompiliert die einzelnen BPEL-Artefakte, das BPEL-Prozess-Dokument, WSDL-
Dokumente und XML Schemas in einen ausflihrbaren Prozess. Bei erfolgreicher Kompilierung ist das
Ergebnis des ODE BPEL Compilers der ausfiihrbare Prozess. Bei nicht erfolgreicher Kompilierung wird
eine Fehlerliste, die auf die fehlerhaften Artefakte hinweist, ausgegeben.

Die Struktur des ausfiihrbaren Prozesses ahnelt der Struktur des BPEL-Prozess-Dokuments. Allerdings
sind Namen und Typen aus der WSDL-Beschreibung aufgelost und weitere Objekte, beispielsweise
implizite Compensation Handler angelegt. Das kompilierte Prozessmodell wird als .cbp-Datei
gespeichert und stellt das wichtigste Artefakt der BPEL Runtime. Die ODE BPEL Engine Runtime kann
diese kompilierten Prozesse ausfiihren.

3.3.2 ODE BPEL Engine Runtime
Innerhalb des BPEL-Runtime Moduls stellt die ODE BPEL Engine Runtime alles zur Ausfiihrung von
kompilierten BPEL-Prozessen zur Verfligung:

e Die Implementierung verschiedenster BPEL-Konstrukte,

e die Logik, wann eine neue Instanz kreiert werden muss,

e zu welcher Instanz eine eingehende Nachricht gehért und

e die Process Management API, die zur Interaktion des Benutzers mit der Maschine benétigt

wird.

Um die verlassliche Ausfiihrung von Prozessen in einer unzuverldssigen Umgebung zu gewahrleisten,
baut die Runtime auf Data Access Objects, die die Persistenz sicherstellen.

3.3.3 JACOB

Die Implementierung der BPEL-Konstrukte zur Laufzeit auf Instanz-Ebene ist mit Hilfe des ODE Java
Concurrent Objects (Jacob) Framework umgesetzt. Das Framework stellt Funktionalitdten zum
Umgang mit Nebenldufigkeit und der Persistenz des Ausfiihrungsstatus zur Verfiigung.

Dadurch, dass diese beiden Objekte im Framework implementiert sind, gestaltet sich die
Implementierung der BPEL-Artefakte deutlich einfacher, da nur die BPEL-Logik und nicht die
Infrastruktur erstellt werden muss. Hieraus resultiert eine strikte Trennung der Ebenen. Jacob stellt
eine persistente virtuelle Maschine zur Ausfiihrung von BPEL-Konstrukten dar.

3.3.3.1 Channels

Channels sind Interfaces, die zur Kommunikation zwischen Aktivitaten in der ODE benétigt werden.
TerminationChannel, ParentScopeChannel und CompensationChannel sind einige der
unterschiedlichen Channels. Einige grundlegende Channels werden jeder Aktivitat bei der Erstellung
zur Verfligung gestellt, um ihnen die Kommunikation mit der Umgebung zu erméglichen.

Es existiert keine Implementierung der Channels, sie werden {iber einen dynamischen Proxy zur
Verfligung gestellt. Dies ist eine der Ebenen zur Trennung von Ausfiihrung und Aufruf in Jacob.

25

3

Apache ODE

3.3.3.2 JacobObject / JacobRunnable

JacobObject stellt ein Closure da. Closures werden standardmaRig nicht von Java unterstitzt. Closures
reproduzieren einen Teil ihres Erstellungskontextes beim Aufruf, auch wenn dieser Kontext
auBerhalb der Funktion nicht mehr existiert. Closures sind also Programmfunktionen, die ihren
eigenen Kontext erhalten. JacobObject stellen keine wirklichen Closures dar, da sie statisch
programmiert sind. Sie erheben aber den Anspruch, die Liicke der fehlenden Closures in Java zu
schlieBen. Aufgabe der JacobObjects ist es, Methoden zu implementieren, Methoden zur
Manipulation von Channels zur Verfligung zu stellen und sich selbst zu vervielfaltigen.

JacobRunnable sind JacobObjects, die nur eine Methode run() implementieren. Da alle Aktivitdten
von JacobRunnable erben, miissen sie auch ihre Hauptfunktionalitdt in der run()-Methode
implementieren. Die Initialisierung findet in den jeweiligen Konstruktoren statt.

3.3.3.3 Channel Listener

Channel Listener stellen das andere Ende eines Channels dar. Sie werden allerdings nicht direkt beim
Aufruf des Channels aufgerufen. Normalerweise werden Channel Listener innerhalb der run()-
Methode einer Aktivitdt definiert. Oft erben die Objekte von JacobObject, so dass die Jacob-Runtime
spater eine eingehende Nachricht zum dazugehorigen Channel Listener weiterreichen kann.

3.3.3.4 Virtual Processing Unit and ExecutionQueue

Innerhalb der Virtual Processing Unit (VPU) findet die komplette Jacob-Verarbeitung statt. Bei Aufruf
eines JacobObjects innerhalb der VPU wird dieses als Continuation registriert. Eine Continuation
verbindet das JacobObject mit der run()-Methode des JacobObjects, um es auszufihren.

Alle von der VPU verarbeiteten Teile werden in der ExecutionQueue abgelegt. Sie stellt einen
Container dar, um alle Artefakte in Queues zu organisieren, von denen sie geholt und darauf gelegt
werden kdnnen. Gleichzeitig werden einige Ausfiihrungs-Statistiken von der ExecutionQueue
aufgezeichnet.

Die VPU ist zudem verantwortlich fiir die Persistierung des eigenen internen Status. Wenn eine
Ausflihrung gestoppt wird, wird der VPU Status serialisiert und fiir den spateren Gebrauch
gespeichert. Continuations bleiben nicht dauerhaft in den VPU-Queues, sondern werden geholt,
ausgefihrt und verworfen.

3.3.4 ODE Integration Layer

Die ODE BPEL Engine Runtime kann nicht alleine existieren, da sie nicht in der Lage ist, mit der
»restlichen Welt” zu kommunizieren. Deswegen baut sie auf dem ODE Intergration Layer (IL) auf. Der
Integration Layer bindet die Runtime in die Umgebung ein, beispielsweise existieren Integration
Layer fiir AXIS2 und JBI. Die Hauptfunktion eines Integration Layers ist es, die Kommunikationskandle
fiir die Runtime zur Verfligung zu stellen. Beim AXIS2 Intergation Layer wird dies tiber die AXIS2-
Libraries, die es der Runtime ermoglichen iber Web Services zu kommunizieren, realisiert. Beim JB/
Integration Layer wird die Runtime mit dem JBI Message Bus verbunden und kann dariiber
kommunizieren.

Zusatzlich zur Kommunikation sind die Aufgaben des Integration Layers der Runtime, eine Thread-
Planung zur Verfiigung zu stellen und den Lebenszyklus der Runtime zu leiten.

26

3

Apache ODE

3.3.5 ODE Data Access Objects

Die ODE Data Access Objects (DAO) sind fir die Interaktion zwischen der ODE BPEL Engine Runtime
und der darunterliegenden Datenbank zustandig. StandardmaRig mitgeliefert wird die Unterstiitzung
einer relationalen JDBC Datenbank. In diesem Fall sind die DAOs mit Hilfen von OpenlJPA oder
Hibernate implementiert. Es besteht die Moglichkeit, eigene DAOs zu implementieren, um die
Unterstlitzung anderer Datenbanken zu erreichen.

DAOs werden von der ODE BPEL Engine Runtime bendtigt, um die folgenden Persistenz-Probleme zu
[6sen:

e Aktive Instanzen — Welche Instanzen wurden gestartet oder laufen

e Nachrichtenverarbeitung — Welche Instanz wartet auf welche Nachricht

e Variablen — Der aktuelle Wert der BPEL Variablen fiir jede Instanz

e Partner Links — Der aktuelle Inhalt der BPEL Partner Links fiir jede Instanz

e Status der Prozessausfiihrung — Der serialisierte Status von Jacob “persistent virtual
machine”

3.4 Management API

Die Management API kann genutzt werden, um zu sehen, welche Prozesse deployed wurden, welche
Instanzen gerade ausgefiihrt werden oder schon beendet sind und um Variablenwerte abzufragen.
Hauptsachlich besteht die Management APl aus den zwei Interfaces ProcessManagement und
InstanceManagement, die als Web Service zur Verfligung gestellt werden.

3.4.1 ProcessManagement
ProcessManagement dient der allgemeinen Verwaltung aller Prozessmodelle. Folgende Methoden
stehen zur Verflgung:

listAllProcesses(): Listet alle verfiigbaren Prozesse mit Informationen, wie ID, Zustand,
Version, Status und Endpunkten auf.

getProcessinfo(): Listet fur einen einzelnen Prozess die Informationen auf.

activate(): Aktiviert einen Prozess.

setRetired(): Verandert den Prozessstatus auf RETIRED. Dadurch kann der Prozess
nicht mehr gestartet werden.

3.4.2 InstanceManagement
InstanceManagement dient zur Verwaltung von Prozessinstanzen der Apache ODE.

e listAllinstances(): Listet alle existierenden Instanzen auf.

e resume(): Flhrt eine pausierte Instanz fort.

e suspend(): Pausiert eine Instanz.

e terminate(): Beendet eine Instanz sofort, ohne fault oder compensation handler.

o fault(): Wirft einen Fehler und verhindert die erfolgreiche Ausfiihrung der
Instanz.

o delete(): Loscht eine Prozessinstanz.

e getinstancelnfo(): Listet flr eine Instanz die Informationen auf.
e getVariableinfo(): Listet alle Informationen Uiber eine Variable auf.

27

3 ‘ Apache ODE

3.5 Deployment Interface
Das Deployment Interface der Apache ODE dient dem Deployment von Prozessen innerhalb der
Apache ODE. Dazu stellt es fiinf Operationen zur Verfligung:

e deploy(): Deployed einen Prozess auf der Apache ODE.

e undeploy(): Entfernt einen Prozess von der Apache ODE.

o listDeployedPackages(): Listet alle bereits auf der Apache ODE vorhandenen Prozesspakete
auf.

o listProcesses(): Listet alle in einem Prozesspaket vorhandenen Prozesse auf.

e getProcessPackage(): Liefert den Namen des zum Prozess gehorigen Pakets, in dem der
Prozess deployed wurde, zurlick.

£5 DeploymentService El €9 DeploymentPortType
> DeploymentPort 8k deploy
http://localhost:B080/0... [P name [=] string
[input
[/ package package
{output | [response deploylUnit
& undeploy
[+ input [packageMName [=] QName
{output | [response [=] boolean
%8 listDeployedPackages
[»] input
{Noutput | [deployedPackages packageMames
i listProcesses
[+ input [F packageMName [=] string
{Noutput | [processlds processlds
4 getProcessPackage
[+ input [processMame [=] QMame
<lloutput | [packageMame [=] string

Abbildung 10: Deployment-API der Apache ODE

3.6 Oberfliche GUI
Die Oberflache der Apache ODE besteht aus vier Reitern.

e Home: ist eine Ubersichtsseite tiber die derzeitigen Prozesse und Instanzen

e Processes: zeigt alle ausfiihrbaren Prozesse mit zusatzlichen Informationen an und stellt die
Retitre- und Activate-Funktionalitdt zur Verfiigung

e Instances: zeigt alle Instanzen und ihren Status an. Je nach Status der Instanz steht die
Terminate-, Suspend- oder Resume-Funktionalitat zur Verfligung

e Deployed: zeigt alle in der Apache ODE verfiigbaren Prozesse an und stellt die Undeploy-
Funktionalitat zur Verfligung

28

3

Apache ODE

Alle Funktionalitaten, die tGber Buttons aus der Apache ODE Oberflache aufrufbar sind, stehen auch
als Web Service zur Verflgung.

3.7 Deployment

Die Apache ODE unterstitzt zwei unterschiedliche Wege, ein Prozessmodell zu deployen. Der erste
Weg fuhrt Gber einen Deployment-Web Service, der zweite Gber das direkte Kopieren des
Deployment-Bundles in das WEB-INF/processes Verzeichnis der Apache ODE im Dateisystem. Fiir
diese Arbeit ist nur das Deployen lber den Web Service interessant.

Prozesse werden in der ODE in einem Deployment-Bundle deployed. Das Deployment-Bundle ist
entweder ein Ordner oder eine zip-Datei und enthélt den Deployment Descriptor, die BPEL-Datei und
alle weiteren Artefakte, wie die WSDLs oder Schemas, die zur Ausfiihrung benétigt werden. Die ODE
identifiziert Prozesse ausschlieRlich am Namen des Deployment-Bundles. Im Deployment Descriptor
wird festgelegt, welche Prozesse mit welchen Servicen kommunizieren. Jeder Partner Link, der tGber
eine receive-Aktivitat benutzt wird, muss einem provide-Element zugeordnet werden, jeder Partner
Link mit einer invoke-Aktivitdat muss mit einem invoke-Element verbunden werden.

Beim Deployment werden die BPEL-Prozesse in eine fiir die ODE BPEL Engine Runtime lesbare Form
umgewandelt. Dabei wird die Kompatibilitdt zum ODE Objekt Modell Giberpriift und in das ODE
Objekt Modell Gberfihrt. Dieser BPEL-Prozess wird daraufhin als .cbp-Datei abgespeichert. Ab
diesem Zeitpunkt wird nur noch auf die .cbp-Datei zugegriffen. Die eigentliche BPEL-Datei wird bei
der Ausflihrung eines Prozesses nicht mehr bendétigt. Mit Hilfe von DAOs werden die BPEL-Prozesse,
die als ODE Objekt Modell vorliegen, ausgefiihrt und die Persistenz und Speicherung der Daten
sichergestellt.

3.8 Versionierung

In der Apache ODE gibt es eine Versionierung, die im Gegensatz zu einer klassischen Versionierung
Uber alle Deployment-Bundles angewandt wird. Es ist hierbei egal, ob das Deployment-Bundle
bereits friiher deployed wurde oder ob es sich um ein komplett neues Bundle handelt.
StandardmaRig werden Prozessmodelle, wenn von ihnen eine neue Version deployed wird, retired.
Prozessmodelle, die retired sind, konnen nicht mehr instanziiert werden. Die laufenden Instanzen
werden ausgefiihrt bis sie beendet sind.

Beim Deployen eines Bundles werden in Bezug auf die Versionierung folgende Schritte ausgefiihrt®:

1. Eine neue Versionsnummer, die um eins hoher ist als die Versionsnummer des vorherigen,
wird an das Deployment-Bundle angefiigt.

2. Es wird gepriift, ob dasselbe Deployment-Bundle schon einmal deployed wurde. Dies
ermittelt die Apache ODE anhand des Namens des Deployment-Bundles. Wenn dies der Fall
ist, werden alle alten Deployment-Bundles retired.

3. Die Prozesse werden in der ODE unter derselben Versionsnummer wie das Deployment-
Bundle deployed.

4. Daraufhin kénnen die neuen Prozesse gestartet werden.

® http://ode.apache.org/process-versioning.html

29

3 | Apache ODE

Die Versionsnummer ist eine einfache ansteigende Nummer. Alle Prozesse innerhalb eines
Deployment-Bundles haben die Versionsnummer des Deployment-Bundles.

Beim Deployen eines Deployment-Bundles, das dieselben Prozesse enthalt wie ein anderes Bundle,
aber mit einem anderen Namen versehen ist, bemerkt die ODE nicht, dass es sich um dieselben
Prozesse handelt. In diesem Fall wird nichts retired sondern es gibt zwei identische Prozesse mit
unterschiedlichem Namen und unterschiedlicher Versionsnummer. Das Verhalten der ODE ist fiir
diesen Fall nicht genau spezifiziert. Die Frage, welcher der beiden Prozesse die Nachricht bekommt,
kann durch unterschiedliche Endpoints geklart werden.

Prozesse kénnen auch manuell (iber den entsprechenden Web Service oder die Oberflache der
Apache ODE retired oder wieder aktiviert werden.

30

4 ‘ Konzeption einer Deploy New Version-Strategie

4 Konzeption einer Deploy New Version-Strategie

Wissenschaftler gehen beim Erstellen neuer Berechnungen im Bereich von computergestitzten
Experimenten und Simulationen oft iterativ bzw. experimentell vor. Sie haben bei der
Modellerstellung eine grobe Vorstellung von den benétigten Programmen, das genaue
Zusammenspiel steht jedoch noch nicht fest. Es entwickelt sich oft erst im Laufe der Berechnung. Je
nach deren Verlauf konnen sich auch die Anforderungen an die zu erstellende Berechnungssoftware
zur Laufzeit andern. Beispielsweise konnte eine andere Visualisierungsmethode nétig werden. Eine
iterative Entwicklung von Workflows wird weder von geschéftlichen noch von wissenschaftlichen
Workflow-Maschinen zufriedenstellend erfiillt. Insbesondere ist eine konzeptionelle Betrachtung der
experimentellen Workflow-Entwicklung nétig. Um diesen Anforderungen gerecht zu werden, wird in
dieser Arbeit die Deploy New Version-Funktionalitdt entwickelt. Ziel der Deploy New Version-
Funktionalitat ist es, eine Mdglichkeit zu schaffen, ein Prozessmodell so verandern zu kénnen, dass
eine oder mehrere ausgewdhlte Prozessinstanzen ein anderes zukinftiges Verhalten verfolgen
werden als durch das urspriingliche Modell vorgegeben. Dazu soll es moglich sein, Instanzen zu
pausieren, deren zukiinftiges Verhalten zu verandern und sie daraufhin weiterlaufen zu lassen.
Instanzen, die ihr Ausfiihrungsende erreicht haben, sollen automatisch am Leben erhalten werden,
so dass weitere Funktionalitat angehdangt werden kann. Mit diesen Funktionalitaten soll verhindert
werden, dass Instanzen, an deren Anforderungen sich etwas andert, neu gestartet werden miissen.
Damit kdnnen Zeit- und Datenverluste und somit finanzielle Verluste verhindert werden.

Nachfolgend ein Anwendungsbeispiel. Ein Oberarzt soll eine Entscheidung seines Assistenzarztes
genehmigen, ist aber der Ansicht, dass zuerst eine weitere Untersuchung zur Bestatigung der
Diagnose notwendig ist. Wunsch des Oberarztes ist es, die neue Untersuchung, eine neue Aktivitat,
in die Instanz einzuftigen. Dies wird durch die Deploy New Version-Funktionalitdt ermdglicht. Ein
weiteres Beispiel ist das Andern der Behandlungsmethoden aufgrund einer Fehldiagnose.

Ein Beispiel aus dem wissenschaftlichen Bereich ist die Stromungssimulation. Bei der Simulation von
Meeresstromungen wird anhand der globalen Erwdarmung und einigen anderen Faktoren liberprift,
wie sich die Stromungen innerhalb der Meere verdndern oder ob es zum Versiegen einzelner Strome
kommt. Anhand dieser Ergebnisse kann daraufhin simuliert werden, welche Auswirkungen die
Veranderungen der Strome auf das Klima haben. Die einzelnen Simulationen bauen dabei
aufeinander auf. Allerdings hangt der nachste Schritt oft von den Ergebnissen der vorangegangenen
Simulation ab. Diese Schritt fir Schritt-Entwicklung des Prozessmodells wird durch die Deploy New
Version-Funktionalitdt moglich.

Der Punkt, an dem die Ausfiihrung einer Instanz aktuell ist, wird als Wavefront bezeichnet. Da die
Vergangenheit von Instanzen nicht gedndert werden kann, ist die Wavefront die Stelle, ab der die
Instanz nach dem neuen Modell laufen soll.

31

4 | Konzeption einer Deploy New Version-Strategie

Instanz Altes Modell Neues Maodell

Wavefront o s e S e

Abbildung 11: Wavefront einer Instanz

Zu Beginn dieser Arbeit gab es zwei Ansatze um die Deploy New Version-Funktionalitdat umzusetzen:

1. Die pausierte Instanz auf ein neues Prozessmodell umzuziehen.
2. Den Teil des alten Modells ab der Wavefront durch den Teil des neuen Modells ab der

Wavefront zu ersetzen.
Die drei Hauptanforderungen an die Deploy New Version-Funktionalitat sind:

1. Instanzen sollen nach ihrer erfolgreichen Ausfiihrung auf eine neuere Prozessmodell-Version
migrierbar und dann nach dem neuen Modell fortzufiihren sein. Dadurch missen Instanzen,
auch wenn sie erfolgreich beendet wurden, am Leben erhalten werden.

2. Instanzen sollen wahrend ihrer Ausfiihrung in den Status SUSPENDED Uberfihrbar sein, um
sie dann auf eine neue Prozessmodell-Version umzuziehen.

3. Essollen beide Versionen des Prozessmodells weiterhin aktiv und instanziierbar sein und bei
der Migration dirfen keine aktiven Instanzen verloren gehen.

Die dritte Anforderung ist mit dem zweiten Ansatz nicht kompatibel, da bei diesem Ansatz das alte
Modell verloren ginge und nur noch das neue Modell existieren wiirde. Aus diesem Grund wird in
dieser Arbeit der erste Ansatz behandelt. Zusatzlich zu den neuen Anforderungen an die
Versionierung und das Deployment stehen die Migration von Instanzen und die Veranderung des
Lebenszyklus von Instanzen im Vordergrund. In Abbildung 12 ist der konzeptionelle Ansatz der
Deploy New Version-Funktionalitat graphisch dargestellt. Nachdem eine neue Prozessversion
deployed wurde und beide Prozessversionen aktiv sind, wird die Instanz auf die neue Prozessmodell-

32

4

Konzeption einer Deploy New Version-Strategie

Version migriert. Die Instanz kann dann reaktiviert werden und es wird die durch die Migration neu
hinzugefligte Logik ausgefiihrt. Des Weiteren werden Instanzen nach ihrer Ausfiihrung am Leben
gehalten, um sie spater migrieren zu kdnnen und weiter auszufiihren.

@ @ @ Instanz 1 und 2 sind
PM

aktiv, Instanz 3 ist
beendet und im Status
SUSPENDED

@ Deployment einer
IID I 1:::J:_iznProzessmcndeII—
1 2 ’
@ Instanzen kénnen von
fritheren
Prozessmodell-
Versionen migriert
werden.
PM
Vi @ Beendete Instanzen
kinnen reaktiviert
| werden und die neue
Logik wird ausgefihrt.
1o 1D 11D 1D 11D
1 2 4 3 > @ Neue Instanzen fir alle

Prozess-Versionen kéinnen
erstellt werden.
Deploytes Prozessmaodell Aktive Instanz Instanz im Status Neu erstellte Instanz
SUSPENDED

-------- > Migration

Abbildung 12: Die drei Hauptfunktionalititen der Deploy New Version-Funktionalitat

4.1 State of the art

In diesem Kapitel werden andere Workflow-Maschinen mit ihrem Funktionsumfang vorgestellt. Der
Funktionsumfang bezieht sich hier hauptsachlich auf Funktionen, die mit der Deploy New Version-
Funktionalitat vergleichbar sind.

Alle vorgestellten Workflow-Maschinen erhalten erfolgreich ausgefiihrte Instanzen nicht am Leben,
sondern beenden die Instanzen nach ihrer Ausfiihrung endgiiltig.

4.1.1 Apache ODE 1.3.4
Seit der Apache ODE Version 1.3.4 existiert die Instance Replayer-Funktionalitat’. Der Replayer
erweitert die Management APl der Apache ODE um zwei Operationen:

1. replay()
2. getCommunications()

replay migriert langlaufende Instanzen auf ein neueres Prozessmodell anhand ihrer Kommunikation.
Dazu wird ein zweiter Scheduler, der Replay Scheduler, eingefiihrt. Auf diesem werden die in der
Instanz schon abgearbeiteten Aktivitdten ,erneut ausgefiihrt”. Die noch nicht bearbeiteten

? http://ode.apache.org/instance-replayer.html

33

4

Konzeption einer Deploy New Version-Strategie

Aktivitaten werden auf dem Apache ODE Scheduler registriert. ,, Erneut ausgefiihrt” steht in diesem
Fall fiir das Wiederholen der Aktivitaten. Dabei werden die Aktivitaten, die einen
Nachrichtenaustausch erzeugen, nicht noch mal ausgefiihrt, sondern es werden die alten
Nachrichten verwendet. Probleme entstehen, wenn die Instanz beispielsweise innerhalb einer wait-
Aktivitat migriert wird, da beim Nachspielen nochmals der komplette Zeitraum gewartet wird.
getCommunications dient dem Nachbilden von Fehlerszenarien von einer ODE-Instanz zu einer
anderen ODE-Instanz, beispielsweise von einem Produktiv- hin zu einem Entwicklungssystem. Dazu
wird als erstes mit Hilfe von getCommunications der Nachrichtenaustausch der Instanz abgefragt und
in ein ,, Instanz-Kommunikations“-Format gebracht. Damit kénnen die bereits ausgetauschten
Nachrichten auf die zweite ODE-Instanz migriert werden, so dass sie dort zur Verfligung stehen.
Daraufhin wird replay auf der anderen ODE-Instanz ausgefiihrt, um die Instanz zu replizieren.

Erfolgreich ausgefiihrte Instanzen sind beendet und kénnen nicht migriert werden. Beim Deployment
einer neuen Prozessmodell-Version wird die alte Prozessmodell-Version inaktiv gesetzt. Die
Versionierung der Apache Ode ist vom Prozessmodell unabhéangig, wie in Kapitel 3.8 ausfiihrlich
beschrieben.

4.1.2 Oracle Application Server 10g

Der Oracle BPEL Process Manager'® unterstiitzt die Instanzmigration und Versionierung von
Prozessmodellen in der Version 10g. Instanzmigration ist nur moglich zwischen Prozessmodellen, die
denselben Prozessnamen besitzen, genauer gesagt nur zwischen unterschiedlichen Prozessmodell-
Versionen. Es kdnnen nur asynchrone Prozesse migriert werden, wobei jedoch einige Regeln zu
beachten sind. Die zwei Prozessmodell-Versionen miissen kompatible Interfaces besitzen, die
Variablentypen und -namen sowie Partner Link Definitionen missen kompatibel sein.

4.1.3 Bonitasoft

In der Open Source Workflow-Maschine Bonitasoft'**?

[16] ist es moglich, Prozess-Versionierung
vorzunehmen und mehrere Versionen eines Prozessmodells parallel aktiv zu halten. Dies ist moglich,
da die Instanzen manuell in der GUI gestartet werden und dabei eine Prozessmodell-Version
ausgesucht wird. BPEL-Prozesse dagegen werden Uber eine Nachricht gestartet, wodurch
instanziierbare Operationen von mehreren aktiven Versionen eines Prozessmodells in Konflikt stehen
konnen. Ein Vorteil von Bonitasoft gegeniliber anderen Workflow-Maschinen ist, dass sie eine einfach
zu bedienende graphische Oberflache anbietet, um Workflows in BPMN 2.0, einer graphischen
Spezifikationssprache zur Modellierung von Geschaftsprozessen, zu zeichnen. Diese kdnnen per
Knopfdruck zu einer lauffahigen AJAX-Webanwendung kompiliert werden.

Instanzmigration wird von Bonitasoft in der derzeitig aktuellen Version 5.3 nicht unterstiitzt.

4.1.4 ADEPTflex

ADEPTflex steht flr Application Development Based on Pre-Modeled Templates. In [17] und [18] wird
der Funktionsumfang von ADEPTflex beschrieben. Unter anderem werden Ad-hoc—Modifikationen
und Schema-Evolution zur Migration von Instanzen unterstiitzt. Die Migration von Instanzen ist unter

10 http://www.oracle.com/technetwork/middleware/ias/overview/index.html
11

http://www.ancud.de/
2 http://www.bonitasoft.com/

34

4

Konzeption einer Deploy New Version-Strategie

den unterschiedlichen Prozessmodell-Versionen méglich. Uber die Funktionsweise der Versionierung
von Prozessen in ADEPTflex werden keine genauen Aussagen getroffen.

4.1.5 E-BioFlow

I. Wassink, M. Ooms und P. van der Vet [19] haben einen Ad-Hoc-Editor fiir die E-BioFlow Workflow-
Maschine entwickelt, der den Anspriichen von explorativen Entwicklungsansatzen von
Wissenschaftlern gerecht wird. Bei der E-BioFlow sind das Design und die Ausfiihrung von Workflows
im Gegensatz zu anderen Workflow-Maschinen nicht getrennt. Der Ad-Hoc-Editor ermoglicht ein Ad-
Hoc-Design von Workflows. Einzelne Aktivitdten oder Gruppen von Aktivitdten kénnen in dem Ad-
Hoc-Editor ausgewahlt und ausgefiihrt werden. Dazu erstellt der Editor einen partiellen Workflow
aus den ausgewahlten Aktivitaten und zusatzlich zwei Aktivitaten, die vom Benutzer bearbeitet
werden missen. Die erste dieser zwei Aktivitdten ist die sogenannte inputTask, die zum Starten des
Workflow-Fragments benétigt wird. Diese inputTask-Aktivitat zeigt die schon verfiigbaren bendtigten
und die noch fehlenden Daten an. Der Benutzer tragt die fehlenden Daten ein und kann die bereits
verfligbaren Daten dndern. Die zweite Aktivitdt wird an das Ende des Workflows angeftigt und wird
als outputTask bezeichnet. Diese Aktivitat zeigt nach erfolgreicher Ausfiihrung des Workflow-
Fragments die Ergebnisdaten an.

Dieser partielle Workflow wird auf der Workflow-Maschine ausgefiihrt und die Ergebnisse und
Zwischenergebnisse im Ad-Hoc-Editor angezeigt. Anhand der einzelnen Ergebnisse der partiellen
Workflows kann entschieden werden, wie weiter vorgegangen werden soll. Ebenso ist es moglich, ein
Fragment zu korrigieren und es nochmals auszufiihren. Nicht moglich ist es jedoch, ein Fragment
wahrend der Ausfiihrung anzuhalten und daraufhin zu verandern. Ein Fragment wird immer komplett
ausgefiihrt. Das Debuggen von Aktivitdten oder Fragmenten wird ebenfalls moglich, da man sie
einzeln und isoliert ausfiihren kann. Vor allem das spate Binding von Fragmenten an den Service, das
bei der E-BioFlow erst bei der Ausfihrung zum Tragen kommt, ermoglicht dieses Vorgehen.

E-BioFlow unterstiitzt die Versionierung von Prozessen. Uber die genaue Funktionsweise wird keine
Aussage getroffen.

4.1.6 IBM WebSphere Process Server

Der IBM WebSphere Process Server unterstiitzt in der derzeit aktuellen Version 7 Instanzmigration
und Prozess-Versionierung [20]. Prozess-Versionierung bedeutet in diesem Fall, tatsachlich eine neue
Version eines Prozessmodells zu deployen. Um die Instanzmigration erfolgreich abzuschlieBen und
das neue Modell als Version des alten Modells zu erkennen, existieren folgende Einschrankungen
[21]:

e Keine Namespace-Anderungen oder charakteristischen Anderungen an den implementierten
Interfaces von langlaufenden Prozessen.

e Keine Namespace-Anderungen an den Geschifts-Objekten, die von den langlaufenden
Prozessen implementiert werden.

e Keine Anderungen an den Correlation Sets oder den Correlation-Eigenschaften, die benétigt
werden.

e Alle Anderungen sollten abwérts kompatibel sein. Nur optionale Attribute sollten zu den
Geschafts-Objekten, die von den Prozessen bendtigt werden, hinzugefiigt werden

35

4

Konzeption einer Deploy New Version-Strategie

Als neue Version wird nur eine tatsachlich neue Version eines Prozessmodell erkannt, das iber den
Menupunkt ,,New Process Version” angelegt wird. Es kann immer nur eine Version eines
Prozessmodells aktiv sein. Entweder ist die neue Version sofort aktiv und dadurch alle alteren nicht
mehr oder die neue Version wird erst in der Zukunft aktiv und bis dahin ist die zuletzt gliltige Version
aktiv.

4.2 Instanz-Lebenszyklus
Eine Instanz kann sechs Zustande haben. Das Zusammenspiel dieser Zustande ist in Abbildung 13
dargestellt:

e ACTIVE: Die Instanz wird gerade ausgefiihrt.

e SUSPENDED: Die Instanz wurde ,pausiert”.

e COMPLETED: Die Instanz wurde erfolgreich beendet.

e TERMINATED: Die Instanz wurde Uber die exit-Aktivitdt beendet.

e FAILED: Ein Fehler im globalen Scope ist aufgetreten.

e ERROR: Ein Fehler, der nicht die Ausflihrung verhindert, aber Beachtung erfordert, ist

aufgetreten.
start
W suspend .
ACTIVE _ SUSPENDED
= resume
@)
m
N = J
v . .
g :
COMPLETED i FAILED :
TERMIMNATED ERROR

Abbildung 13: Instanz-Lebenszyklus

Eine gestartete Instanz ist im Zustand ACTIVE und geht nach erfolgreicher Ausfiihrung in den Zustand
COMPLETED Uber. Eine aktive Instanz kann Uber die suspend-Funktionalitdt pausiert werden und
befindet sich dann im Status SUSPENDED. Aus dem Status SUSPENDED kann die Instanz iber die
resume-Funktionalitat weiter ausgefiihrt werden. Dadurch wird die Instanz wieder aktiv. Tritt ein
Fehler im globalen Scope auf und die Instanz kann nicht beendet werden, geht sie in den Status
FAILED Gber. Wenn ein Fehler auftritt, der die Ausfihrung der Instanz nicht verhindert, geht die
Instanz in den Status ERROR uber.

Die drei Funktionalitaten suspend, resume und terminate werden normalerweise als Web Services
zur Verfligung gestellt.

36

4

Konzeption einer Deploy New Version-Strategie

Die sechs Zustande bleiben auch bei dem neuen Instanz-Lebenszyklus erhalten, allerdings soll eine
Instanz nach erfolgreicher Ausfiihrung nicht mehr automatisch in den Zustand COMPLETED
Ubergehen sondern in den Status SUSPENDED. Dadurch wird die Instanz am Leben erhalten und die
Moglichkeit geschaffen, liber die resume-Funktionalitat die Instanz spater weiter auszufiihren. Um
weiterhin die Moéglichkeit zu haben, eine Instanz erfolgreich und endgiiltig zu beenden, soll eine neue
Funktion finish implementiert werden. Diese finish-Funktion soll wie die anderen Funktionen als Web
Service zur Verfligung stehen. Der gewiinschte Instanz Lebenszyklus ist in Abbildung 14 dargestellt.

Ein Sonderfall, der nicht Gegenstand dieser Arbeit ist, entsteht durch die fehlerhafte Beendigung
einer Prozessinstanz. Tritt ein Fehler auf, der die erfolgreiche Ausfiihrung verhindert, so wird die
Instanz je nach Fehler in den Status FAILED oder ERROR uberfiihrt. Es ist dadurch nicht moglich,
weitere Logik hinzuzufiigen und die Instanz auf die neue Prozessversion zu migrieren, um sie weiter
auszufiihren. Zur Behandlung dieses Sonderfalls musste eine Moglichkeit geschaffen werden, an
eine Stelle in der Vergangenheit der Instanz zu springen, quasi ein Verschieben der Wavefront durch
das Kompensieren aller Aktivitaten einschlieflich der fehlerhaften Aktivitat. Daraufhin muss die
Instanz in den Zustand SUSPENDED tberfiihrt werden, wonach die Instanz migriert und von der
Wavefront aus weiter ausgefiihrt werden kdnnte.

start
i suspend .
ACTIVE _ > SUSPENDED
= resume
g
=
[k} =
=
E .
o '
= FAILED I ACTIVE
TERMINATED ERROR
COMPLETED

Abbildung 14: gewiinschter Instanz Lebenszyklus

4.3 Versionierung und Deployment

Um die Deploy New Version-Funktionalitat zu erméglichen, werden neue Anforderungen an das
Deployment und die Versionierung gestellt. Wenn sich die Anforderungen an einen Prozess dndern,
wird ein neues Prozessmodell erstellt und deployed. Dieser neue Prozess ist eine neue Version des
alten Prozesses. Es sollen weiterhin beide Prozessversionen aktiv bleiben. Aktiv bedeutet, dass beide
Prozessversionen weiterhin instanziierbar sein missen. Da die BPEL-Prozesse als Web Service
angeboten werden, kann es hierbei zu Konflikten zwischen den einzelnen Versionen kommen. Wenn
nur eine aktive Prozessversion existiert, wird diese Uiber eine von der Workflow-Maschine vergebene

37

4

Konzeption einer Deploy New Version-Strategie

Versionsnummer eindeutig gekennzeichnet. Diese Versionsnummer wird allerdings nicht fiir den
Nachrichtenaustausch verwendet sondern nur innerhalb der Workflow-Maschine. Um einen Prozess
zu instanziieren, wird die Versionsnummer nicht bendtigt, da es nur einen aktiven Prozess geben
kann. Durch die Deploy New Version-Funktionalitat ist es jetzt erforderlich, mehrere aktive
Prozessversionen parallel aktiv zu halten. Dadurch ist es nicht mehr moglich, eine Instanz einer
bestimmten Prozessversion zu erzeugen, da der Client nicht weiR, an welche Prozessversion er die
Nachricht zum Instanziieren senden soll. In [22] werden einige L6sungsanséatze vorgestellt:

e Um eine Prozessversion zu instanziieren, wird die Prozessversionsnummer mitgesendet.
Dadurch wird Kopplung zwischen Client und Workflow-Maschine erhéht, da verschiedene
Workflow-Maschinen verschiedene Arten der Versionierung unterstiitzen.

e Eine zweite Moglichkeit ist der Gebrauch von Metadaten. Zur Designtime des Prozessmodells
werden Metadaten spezifiziert und sind Teil des Deployment Bundles. Die Metadaten
kénnen beispielsweise durch Schliisselpaare realisiert werden. Die Workflow-Maschine muss
die Eindeutigkeit der Metadaten garantieren. Metadaten adressieren eine Prozessversion,
um eine bestimmte Prozessversion zu instanziieren.

In beiden Ansatzen wird ein zusatzlicher Parameter benétigt, damit der Client eine eindeutige
Adressierung vornehmen kann. Dieser Parameter kann optional sein, wenn nur eine aktive Version
eines Prozesses existiert oder ein Standard-Prozess spezifiziert wurde, der instanziiert wird, wenn
kein Parameter angegeben wird. Der spatere Nachrichtenaustausch zwischen Client und Instanz kann
weiterhin ohne Parameter stattfinden, da die bekannten Correlation-Mechanismen dafiir genutzt
werden.

In dieser Arbeit wird ein Konzept vorgestellt, das sich am ersten Losungsansatz orientiert. Um
unterschiedliche Versionen desselben Prozessmodells eindeutig adressieren zu kénnen, wird die
Adressierung in Abhangigkeit von der Versionsnummer durchgefiihrt.

<wsdl:service name="HelloService.v2">
<wsdl:port binding="tns:HelloSoapBinding" name="HelloPort">
<soap:address location="http://localhost:8080/0de/processes/helloWorld.v2" />
</wsdl:port>

</wsdl:service>

Listing 9: WSDL Adressierung

In der WSDL-Datei werden der Service-Name und die SOAP address location durch das Anhangen der
eindeutigen Versionsnummer identifizierbar. Die SOAP-Nachricht wird, um den BPEL-Prozess zu
instanziieren, an die SOAP address location (http://localhost:8080/0de/processes/helloWorld.v2)
gesendet.

38

4

Konzeption einer Deploy New Version-Strategie

Workflow-Maschine

Sendender Soap-Nachricht %
‘ [%]

E address loction:
http://localhost:2080/ ode/processes/ helloW orld.v2

D

Abbildung 15: Konzept der Adressierung

Wie in Abbildung 15 graphisch dargestellt ist es durch das Senden der Nachricht an die eindeutige
SOAP address location moglich, jede Prozessversion zu instanziieren. Dadurch wird gewéhrleistet,
dass mehrere Versionen eines Prozessmodells parallel aktiv und instanziierbar sein kdnnen.

4.4 Instanzmigration

Ziel ist es, bei der Migration von Prozessinstanzen, moglichst viele Anderungen an den einzelnen
BPEL-Aktivitidten zuzulassen. In diesem Abschnitt werden alle theoretisch méglichen Anderungen an
den einzelnen BPEL-Aktivitaten erldutert. Die Aktivitdten werden in zwei Kategorien unterschieden.
Structured Activitites sind strukturierende Aktivitaten, die wiederum andere Aktivitdten beinhalten.
Basic Activities sind atomar, sie beinhalten keine weiteren Aktivitaten.

Generell gilt, dass in der Zukunft, also nach der Wavefront liegende Aktivitdten ohne
Einschrankungen verdndert oder geléscht werden kdnnen. AuRerdem kdnnen neue Aktivitaten
hinzugefiigt werden. Da das Konzept so viele Anderungen wie méglich zulassen soll, kénnen auch die
Aktivititen in der Wavefront gedndert werden. Unter Umstidnden kénnen sich diese Anderungen
auch auf das zukiinftige Verhalten der Instanz auswirken. Anderungen an Aktivititen, die in der
Zukunft liegen sind uneingeschrankt moglich. Im Folgenden werden zu jeder Aktivitat die
Einschrankungen aufgezeigt, die flr Aktivitaten in der Wavefront gelten. Prinzipiell ist es bei
Aktivitaten in der Wavefront moglich, ausgehende Links zu verandern, da diese noch nicht evaluiert
wurden.

4.4.1 Standard-Elemente und Standard-Attribute
Jede BPEL-Aktivitat kann optionale Standard-Elemente und Standard-Attribute enthalten. Es
existieren zwei Standard-Attribute:

e name=“NCName“?
e suppressloinFailure="yes|no“?

Das name-Attribut dient dazu, maschinenlesbare Aktivitatsnamen zu vergeben. Das
suppressJoinFailure-Attribut gibt an, ob Join-Fehler unterdriickt werden sollen. Ein Join-Fehler tritt
auf, wenn die Evaluierung eines Links fehlschlagt. Anderungen an diesen Attributen stellen im
GroRen und Ganzen bei laufenden Aktivitdten kein Problem dar. Beim Andern des name-Attributs
muss beachtet werden, dass die Aktivitdt dadurch unter Umstanden nicht mehr gefunden werden

39

4 | Konzeption einer Deploy New Version-Strategie

kann. Beispielsweise werden bei der Kompensierung von Scopes die Namen der Scopes fiir die
Referenzierung genutzt.

Die Standard Elemente sind zwei Container. Zum einen der <sources>- und zum anderen der
<targets>-Container. In diesen Containern sind Links enthalten. Beim Andern der Container muss
beachtet werden, dass die Anderungen im kompletten Prozessmodell konsistent umgesetzt werden.
Beispielsweise missen die Links angepasst werden, wenn sich der <sources>- oder <target>-
Container andert. Wenn sich der Link dndert, missen <sources>-und <targets>-Container angepasst
werden. Unter dieser Bedingung sind Anderungen an den Containern unproblematisch.

4.4.2 Process
Das process-Element stellt das dulRerste Element eines BPEL-Prozesses dar. Es wird nicht als BPEL-
Aktivitdt angesehen. Innerhalb des process-Elements werden folgende Elemente definiert:

e querylLanguage: Definiert die Sprache, um innerhalb von Zuweisungen Knoten auszuwahlen.
StandardmaRig ist die Sprache XPath.

e expressionLanguage: Definiert die Sprache innerhalb des process-Elements. Der Standard-
Wert ist XPath.

e suppressjoinFailure: Definiert, ob Join-Fehler unterdriickt werden oder von einem fault-
handler bearbeitet werden sollen. Ist das Attribut in einer untergeordneten Aktivitat nicht
definiert, so wird der Wert aus dem process-Element vererbt. StandardmaRig ist der Wert
des Attributs no.

e exitOnStandardFault: Der Standard-Wert ist no. Wenn das Attribut den Wert yes hat, muss
der Process beim Auftreten eines Fehlers sofort beendet werden. Wenn der Wert no ist,
werden auftretende Fehler durch einen fault-handler behandelt. Ebenso wie das
suppressjoinFailure-Attribut wird es vererbt.

e import: Beschreibt eine Abhangigkeit zu externen XML-Schemas oder WSDL-Definitionen.

e partnerLinks: Definiert die beno6tigten Partner Links.

e messageExchanges: Wird benétigt, um die Zuordnung zwischen eingehenden Nachrichten
und den reply-Aktivitdten eindeutig zu machen.

e variables: Definiert alle innerhalb des Prozesses bendtigten Variablen.

e correlationSets: Ermoglicht dem Prozess wahrend der Ausfiihrung, Nachrichten zu
empfangen und der korrekten Prozessinstanz zuzuordnen. Dazu werden bestimmte Daten
aus der empfangenen Nachricht (sogenannte Properties) genutzt.

e faultHandler: Definiert die Fehlerbehandlung.

e eventHandler: Definiert einen event-handler, der aufgerufen wird, wenn das definierte Event
auftritt. Das Event kann entweder ein wirkliches Event sein und wird dann durch das
onEvent-Attribut angegeben. Es kann aber auch ein Timer-Event sein, das durch das
onAlarm-Attribut beschrieben wird.

Jeder Prozess beinhaltet mindestens eine Aktivitat. Diese Aktivitdt kann entweder eine Structured
oder Basic Activity sein.

Aktivitaten, die sich gerade in der Ausfiihrung befinden, kdnnen mit Einschrankungen verandert oder
geloscht werden. Diese Einschrankungen sind von der jeweiligen Aktivitat abhangig. Die einzelnen
Aktivitaten, ihre Einschrankungen und Probleme werden im weiteren Verlauf dieses Kapitels

40

4 | Konzeption einer Deploy New Version-Strategie

beschrieben. Aktivitdten, die nach der Wavefront, also in der Zukunft liegen, kdnnen problemlos
gedandert werden.

Das Andern der Attribute ist nur teilweise méglich. Das queryLanguage- und das
expressionLanguage-Attribut kdnnen nur flr noch nicht ausgewertete Ausdriicke gedndert werden.
Das Correlation Set darf gedndert werden so lange alle dazugehdérigen Correlations noch nicht
initialisiert sind. Der fault-handler und der event-handler konnen verdandert, geldscht und hinzugefigt
werden, wenn sie sich gerade nicht in der Ausfiihrung befinden. Beim Hinzufligen eines fault- oder
event-handlers ist zu beachten, dass der Process Scope dann neu initialisiert werden muss. Das
messageExchange-Element darf nur dann veridndert werden, wenn die Anderungen keinen
Nachrichtenaustausch betreffen, der schon begonnen hat. Die suppressJoinFailure-,
exitOnStandardFault-Attribute und das partnerLinks-Element kdnnen problemlos gedandert werden.
Die innerhalb des variables-Attributs definierten Variablen kénnen geldscht und verdndert werden,
wenn sie noch nicht initialisiert wurden, d.h. noch nicht benutzt wurden. Dabei muss sichergestellt
werden, dass alle innerhalb des Prozesses verwendeten Variablen definiert sind. Es kénnen auch
neue Variablen hinzugefligt werden. Fir Partner Links gelten dieselben Regeln wie fiir Variablen.
Beim Verandern des import-Attributs muss darauf geachtet werden, dass die zu importierenden
Schemas und WSDLs an den jeweiligen Stellen vorhanden sind.

Um diese Anderungen zu erméglichen, miissen alle Attribute nachgeladen werden bevor die
migrierte Instanz weiter ausgefiihrt wird. Das Nachladen der Anderungen wird iiber sogenannte
Change Operations realisiert [22].

4.4.3 Basic Activities

Basic Activities beschreiben einen einzelnen Ausfiihrungsschritt des Prozessmodells. Sie kénnen,
wenn sie sich gerade in der Ausfiihrung befinden, nur bedingt verandert werden. Dies gilt nicht fir
Standard Elemente und Attribute. Genauer gesagt kénnen nur die ausgehenden Links angepasst
werden, da diese noch nicht evaluiert wurden. Warum Basic Activities nicht verandert werden
kénnen, werden anhand der invoke- und der receive-Aktivitat beispielhaft erldutert.

invoke-Aktivitdt

Die invoke-Aktivitat ruft von Service Providern angebotene Web Services auf. Es kénnen
inputVariable und outputVariable angegeben werden Die invoke-Aktivitat kann weitere Aktivitaten
innerhalb eines compensation- oder fault-handlers beinhalten. Es existieren zwei verschiede invoke
Arten: request-response und one-way. Bei einem synchronem invoke, also request-response, werden
inputVariable und outputVariable bendtigt, da auf die Antwort gewartet wird und die invoke-
Aktivitat gleichzeitig den Riicksprung-Punkt darstellt.

Bei einem one-way-invoke wird nur die inputVariable bendtigt, da es sich um einen asynchronen
Aufruf handelt.

In beiden Féllen sind Anderungen an der aktiven invoke-Aktivitat nicht méglich. Bei einem one-way-
invoke wird sofort beim Betreten der Aktivitdt der Web Service aufgerufen, die invoke-Aktivitat ist
daraufhin beendet. Bei einem request-response-invoke wird ebenfalls wie beim one-way-invoke der
Web Service aufgerufen. Die invoke-Aktivitat bleibt so lange aktiv, bis die Antwort-Nachricht eintrifft.

41

4

Konzeption einer Deploy New Version-Strategie

Anderungen sind nicht erlaubt, da durch Anderungen an der output-Variablen die Antwort-Nachricht
unter Umstanden nicht mehr zugeordnet werden kann.

receive-Aktivitat

Die receive-Aktivitat empfangt eingehende Nachrichten. Die Start-Aktivitat eines Prozessmodells ist
entweder eine receive-Aktivitdt oder eine pick-Aktivitat mit dem Attribut createlnstance= yes.
Innerhalb der receive-Aktivitat werden Partner Links, optional Port Types und Operationen definiert.
Wenn das receive die Startaktivitat ist, wird nach dem Eintreffen der Nachricht die receive-Aktivitat
aktiv und instanziiert sofort das Prozessmodell. Wenn die receive-Aktivitat keine Start-Aktivitat ist,
wird der Inhalt der Nachricht sofort in die davor vorgesehene Variable kopiert. In beiden Fallen kann
nichts an der aktiven Aktivitat gedndert werden, da diese sofort ausgefiihrt sind.

Alle Basic Activities fihren sobald sie aktiv sind sofort ihre Logik aus. Danach sind sie entweder sofort
beendet oder warten auf eine Antwort. In beiden Fallen kann nichts an ihnen gedandert werden, da
sie entweder schon zur Vergangenheit gehoren oder aber die Antwort-Nachricht nicht mehr
zugeordnet werden kann.

Es existieren Ausnahmen, wenn sich eine Basic Activity innerhalb einer Structured Activity befindet.
Diese werden bei den einzelnen Structured Activities behandelt. Eine weitere Ausnahme ist die wait-
Aktivitat. Diese Basic Activity darf wie folgt verdndert werden, wenn sie sich gerade in der
Ausfihrung befindet:

wait-Aktivitat

Die wait-Aktivitat (Listing 10) pausiert die Ausfiihrung fir eine bestimmte Zeitspanne oder bis zu
einem bestimmten Zeitpunkt.

<wait standard-attributes>
standard-elements

(

<for expressionLanguage="anyURI"?>duration-expr</for>

<until expressionLanguage="anyURI"?>deadline-expr</until>

)
</wait>
Listing 10: wait-Aktivitat [14]

Die wait-Aktivitat ist die einzige Basic Activity, bei der es moglich ist, den Inhalt der Aktivitat zu
verandern. Wenn beispielsweise eine wait-Aktivitat existiert, die drei Jahre warten soll und nach
einem Jahr dann festgestellt wird, dass genug Zeit vergangen ist und der Prozess weiterlaufen soll,
muss die wait-Aktivitdt verdandert werden kdnnen. Es wird die Dauer der wait-Aktivitadt in einer neuen
Prozessversion auf ein Jahr gedndert und die Instanz migriert. Daraufhin wird die Instanz weiter
ausgefiihrt. Die wait-Aktivitat wird beendet, da ein Jahr bereits vergangen ist und die Instanz weiter
ausgefihrt. Dies funktioniert problemlos, da der Zeitpunkt an dem die wait-Aktivitat gestartet wurde,
bekannt ist. Ist die zu wartende Zeitspanne noch nicht verstrichen, bleibt die wait-Aktivitdt solange
aktiv, bis die Zeitspanne verstrichen ist. Ist innerhalb der wait-Aktivitdt eine until-Bedingung
angegeben, funktioniert es nach demselben Prinzip. Liegt die until-Bedingung in der Vergangenheit,

42

4

Konzeption einer Deploy New Version-Strategie

wenn die Instanz weiter ausgefiihrt wird, wird die Aktivitat beendet. Ansonsten wird bis zum
vorgegebenen Zeitpunkt gewartet.

4.4.4 Structured Activities

Structured Activities stellen den Kontrollfluss eines Prozessmodells dar. Sie kdnnen rekursiv weitere
Basic und Structured Activities beinhalten. Im weiteren Verlauf sind die einzelnen Aktivitaten mit
ihren méglichen Anderungen und Einschrankungen aufgefiihrt.

scope-Aktivitat

Eine scope-Aktivitat (Listing 11) bietet die Moglichkeit das Ausfiihrungs-Verhalten der beinhalteten
Aktivitaten zu bestimmen. Dazu werden Variablen, Partner Links, der Nachrichtenaustausch
(message exchange), Correlation Sets, event-, fault-, compensation- und termination-handler
innerhalb des Scopes definiert. Der Kontext der scope-Aktivitdten kann hierarchisch verschachtelt
sein, der "Wurzel"-Kontext wird innerhalb des process-Elementes definiert.

Obwohl das process-Element und die scope-Aktivitat in ihrem Aufbau sehr dhnlich sind, gibt es doch
Unterschiede:

e Das process-Element stellt keine Aktivitdt im eigentlichen Sinne dar, deshalb kénnen die
Standard-Attribute und Elemente nicht fiir das process-Element verwendet werden.

e Ein compensation- und termination-handler konnen nicht an das process-Element angehangt
werden.

e Das isolated-Attribut, das die Kontrolle von Datenzugriffen bei paralleler Ausfiihrung zweier
Scopes steuert, existiert nicht fiir das process-Element.

Jede scope-Aktivitdt benétigt eine so genannte ,,primary activity”, die das Standard-Verhalten des
Scopes definiert. Sie kann eine Structured oder Basic Activity darstellen. Alle anderen Konstrukte
einer scope-Aktivitat sind optional. Das innerhalb der scope-Aktivitat definierte Verhalten gilt fiir alle
innerhalb des Scopes vernetzten Aktivitaten.

<scope isolated="yes|no"? exitOnStandardFault="yes|no"?
standard-attributes>
standard-elements
<variables>?

</variables>
<partnerLinks>

</partnerLinks>
<messageExchanges>

</messageExchanges>
<correlationSets>

</correlationSets>
<eventHandlers>

43

4 | Konzeption einer Deploy New Version-Strategie

</eventHandlers>
<faultHandlers>

</faultHandlers>
<compensationHandler>

</compensationHandler>
<terminationHandler>

</terminationHandler>
activity

</scope>

Listing 11: Scope-Aktivitat [14]

Beim Andern des variables-, partnerLinks-, correlationSets- messageExchanges-Elements oder des
exitOnStandardFault-Attributs gelten die in Kapitel 4.4.2 beschriebenen Einschréankungen. Es konnen
keine zwei ineinander verschachtelten Scopes, die beide das Attribut isolated mit dem Wert yes
besitzen, parallel ausgefiihrt werden. Deshalb darf das isolated-Attribut nur dann von yes auf no
gedndert werden, wenn weder der Eltern-Scope noch ein Kind-Scope isolated sind. Das Andern des
isolated-Attributs von yes auf no ist immer moglich. Samtliche Handler kénnen verandert und
geloscht werden, wenn sie sich gerade nicht in der Ausfiihrung befinden. Das Hinzufligen der
unterschiedlichen Handler ist problemlos moglich. Wie auch beim process-Element muss nach
Anderungen an einem Scope eine Re-Initialisierung erfolgen, bevor die migrierte Instanz weiter
ausgefihrt wird.

sequence-Aktivitat

Die sequence-Aktivitat (Listing 12) beinhaltet eine oder mehrere Aktivitdten, die sequentiell
abgearbeitet werden. Sie ist beendet, wenn die letzte Aktivitdt in der Sequenz abgearbeitet wurde.

<sequence standard-attributes>
standard-elements
activity+

</sequence>

Listing 12: sequence-Aktivitat [14]

Anderungen innerhalb der sequence-Aktivitit kdnnen das Hinzufiigen, Andern und Léschen von noch
nicht ausgefiihrten Aktivitaten sein. Des Weiteren konnen Links verdandert, hinzugefligt oder geldscht
werden. Bezieht sich die Anderung auf die gerade in der Wavefront liegende Aktivitit, gelten bei
Basic Activitities folgende Einschrankungen:

e Der Inhalt der Aktivitat darf nicht verandert werden.
e Die eingehenden Links kénnen nicht verdandert werden

Bei Structured Activities gelten die Einschrankungen der jeweiligen Aktivitat. Ausgehende Links
kénnen bei Basic und Structured Activities angepasst werden. Nach dem Andern der Sequence-
Aktivitdt muss die Liste von auszufiihrenden Aktivitdten in der Sequence-Aktivitatsinstanz aktualisiert
werden, wenn die Ausfiihrung der migrierten Prozessinstanz wieder aufgenommen wird.

44

4

Konzeption einer Deploy New Version-Strategie

flow-Aktivitat

Die flow-Aktivitat (Listing 13) ermdglicht die nebenldufige und synchronisierte Ausfiihrung von
Aktivitaten. Ein Flow ist beendet, wenn alle beinhalteten Aktivitaten beendet sind. Aktivitdten, die
Uber Bedingungen gesteuert werden, werden auch als beendet angesehen, wenn ihre Bedingung
false ist und sie dadurch nie ausgefiihrt werden. Die Aktivitaten innerhalb eines Flows kdnnen durch
Links miteinander verbunden sein und beliebig tief verschachtelt werden. Im /inks-Element sind alle
Synchronisations-Abhangigkeiten zwischen den Aktivitdaten des Flows definiert.

<flow standard-attributes>
standard-elements
<links>?
<link name="NCName">+
</links>
activity+
</flow>
Listing 13: flow-Aktivitat [14]

Das Hinzufligen von Aktivitdaten innerhalb eines Flows ist problemlos mdglich. Beim Loschen von
Aktivitaten innerhalb eines Flows muss darauf geachtet werden, dass die Verlinkungen zwischen den
einzelnen Aktivitaten nicht zerstort werden. Beim Weiterlaufen der Prozessinstanz miissen
eingefligte Aktivitaten, die keine eingehenden Links besitzen, direkt gestartet werden. Das Loschen
und Andern von Aktivitdten ist fiir bereits beendete Aktivititen nicht moglich. Innerhalb des Flows
konnen Aktuell laufende Structured oder Basic Activities unter Beachtung der jeweiligen
Einschrankungen verandert werden. Das link-Attribut kann umbenannt werden. Allerdings muss
beachtet werden, dass die Referenzen auf die umbenannten Links ebenfalls gedndert werden.

Eine Ausnahme innerhalb eines Flows ist es, dass ausgehende Links an bereits beendeten Aktivitaten
verdandert werden kdnnen. Innerhalb eines aktiven Flows sind unter Umstanden schon einige
Aktivitdaten beendet und andere noch aktiv. Da der Flow noch aktiv ist, ist es moglich, eine neue
Aktivitat in den Flow einzufiigen und an eine bereits abgeschlossene Aktivitat zu verlinken. Wenn der
Link keine Transition Condition besitzt, ist dies problemlos moglich. Wenn eine Transition Condition
verwendet wird, um die Aktivitat zu starten, muss sichergestellt werden, dass die Daten, die zur
Auswertung der Transition Condition benétigt werden, vorliegen. Da die vorhergegangene Aktivitat
bereits beendet ist, ware eine Moglichkeit, um die Daten nach einer Migration weiterhin zur
Verfligung zu haben, die Daten durch Snapshots vorzuhalten.

45

4

Konzeption einer Deploy New Version-Strategie

while-Aktivitat

Die while-Aktivitat (Listing 14) besteht aus einer booleschen Bedingung und einer Aktivitdt. Diese
Aktivitat kann eine strukturierende Aktivitat sein, die wiederum weitere Aktivitdten beinhaltet. Die
Aktivitat wird so oft hintereinander ausgefiihrt, wie die Bedingung giiltig ist.

<while standard-attributes>
standard-elements
<condition expressionLanguage="anyURI"?>bool-expr</condition>
activity

</while>

Listing 14: while-Aktivitat [14]

Befindet sich die while-Aktivitat gerade in der Wavefront, konnen ausgehende Links sowie die
boolesche Bedingung nach Belieben, also unabhangig von den jeweiligen Einschrankungen, verandert
werden. Die beinhaltete Aktivitdt kann im aktiven Zustand mit den jeweiligen Einschrankungen oder
vor und nach jeder Iteration beliebig gedndert werden. Es gilt zu beachten, dass Anderungen an der
laufenden while-Aktivitat oder einer beinhalteten Basic Activity erst bei der darauffolgenden
Iteration greifen. Aus diesem Grund kann auch eine beinhaltete Basic Activity nach Belieben
verandert werden. Bei spaterer Betrachtung des Prozessmodells kénnen diese Anderungen nicht
mehr im Detail nachvollzogen werden.

if-Aktivitat

Die if-Aktivitat (Listing 15) besteht aus einer Liste von einem oder mehreren elseif- oder else-
Zweigen. Die einzelnen Zweige werden in der Reihenfolge, wie sie angeordnet sind, betrachtet. Ein
Zweig kann genau eine Aktivitat beinhalten, die wiederum weitere Aktivitdten beinhalten kann. Der
erste Zweig, dessen Bedingung wahr ist, wird ausgefiihrt. Wenn keine Bedingung wahr ist, wird der
else-Zweig ausgefihrt. Die if-Aktivitat ist beendet, wenn die Aktivitat des auszuflihrenden Zweiges
beendet ist oder wenn keine Bedingung wahr ist und kein else-Zweig existiert.

<if standard-attributes>
standard-elements
<condition expressionLanguage="anyURI"?>bool-expr</condition>
activity
<elseif>*
<condition expressionLanguage="anyURI"?>bool-expr</condition>
activity
</elseif>
<else>?
activity
</else>
</if>
Listing 15: if-Aktivitat [14]

Bei einer laufenden if-Aktivitdat konnen die beinhalteten Aktivitdten gedandert werden, wenn sie noch
nicht ausgefiihrt werden. Das bedeutet, dass alle inaktiven Zweige gedndert werden kdnnen. Sobald
die beinhaltete Aktivitat lauft, kann die beinhaltete Aktivitat entsprechend ihrer Einschrankungen
verandert werden. Die Bedingungen der if-Aktivitit diirfen verdndert werden. Anderungen an den

46

4

Konzeption einer Deploy New Version-Strategie

nicht gewahlten Zweigen, an allen Bedingungen und den beinhalteten Basic Activities, auch des
gewahlten Zweiges, sind nur dann sinnvoll, wenn die if-Aktivitat sich innerhalb einer Schleife
befindet. Die Anderungen an der Bedingung werden ab der nichsten Auswertung der Bedingung,
also der nachsten Iteration der Schleife, giiltig.

pick-Aktivitat

Die pick-Aktivitat (Listing 16) wartet darauf, dass ein bestimmtes Event aus einer Liste von Events
auftritt. Wenn dies geschieht, wird die mit diesem Event verknilpfte Aktivitat ausgefihrt. Nach dem
Auftreten eines Events werden die anderen Events von dieser pick-Aktivitat nicht mehr betrachtet.
Pick besteht aus mehreren Zweigen und jeder Zweig enthalt ein Event-Aktivitdts-Paar. Die pick-
Aktivitat ist beendet, wenn die Aktivitdt des gewahlten Zweiges beendet ist. Es gibt zwei
Moglichkeiten, ein Event zu definieren:

e <onMessage>: verhdlt sich dhnlich wie die receive-Aktivitat. Es wartet auf eine eingehende
Nachricht.

e <onAlarm>: ist zeitgesteuert. Wenn die definierte Dauer innerhalb des <for>-Elementes null
oder negativ oder der im <until>-Element definierte Zeitpunkt erreicht ist, wird das Event
ausgefihrt.

Jede pick-Aktivitdt muss mindestens ein <onMessage>-Event enthalten.

<pick createlnstance="yes|no"? standard-attributes>
standard-elements
<onMessage partnerLink="NCName"
portType="QName"?
operation="NCName"
variable="BPELVariableName"
messageExchange="NCName">+
<correlations>?
<correlation set="NCName" initiate="yes|join|no" />+

</correlations>
<fromParts>
<fromPart part="NCName" toVariable="BPELVariableName" />+
</fromParts>
activity
</onMessage>
<onAlarm>*
(

<for expressionLanguage="anyURI"?>duration-expr</for>
I
<until expressionLanguage="anyURI"?>deadline-expr</until>
)
activity
</onAlarm>
</pick>
Listing 16: pick-Aktivitdt [14]

47

4

Konzeption einer Deploy New Version-Strategie

Die onMessage- und onAlarm-Attribute kdnnen geandert, geloscht oder hinzugefligt werden. Beim
Léschen oder Andern gibt es die Einschrinkung, dass ein bereits aktiver Zweig nicht mehr
geloscht/gedndert werden kann. AuRerdem gilt zu beachten, dass mindestens ein onMessage-Event
vorhanden sein muss. Zusatzlich muss nach der Migration einer Instanz tiberprift werden, ob eine
der Nachrichten, auf die gewartet wird, unter Umstanden schon eingetroffen ist. Ist dies der Fall,
wird der dementsprechende pick-Zweig ausgefiihrt. Fiir den Fall, dass mehrere passende Nachrichten
nach der Migration vorhanden sind, muss eine Bedingung definiert werden, anhand der entschieden
wird, welcher pick-Zweig ausgefiihrt wird. Eine Moglichkeit ware es, anhand des Eingangszeitpunkts
der Nachrichten zu entscheiden. Der Zweig, dessen Nachricht als erstes eintraf, wird ausgefihrt. Ein
zweiter denkbarer Ansatz ware es, die Zweige unterschiedlich zu gewichten und wenn mehrere
Nachrichten bereits eingetroffen sind, den Zweig mit der hochsten Gewichtung auszufiihren.
Dasselbe gilt fir das onAlarm-Event. Das Correlation Set darf gedndert werden, so lange alle
dazugehdorigen Correlations noch nicht initialisiert sind. Das createlnstance-Attribut darf aus
folgenden Griinden nicht gedndert werden. Die Instanz ist instanziiert sobald die pick-Aktivitat aktiv
wird, wenn createlnstance den Wert yes hatte. Wenn createlnstance no ist, wurde die Instanz bereits
Uber eine andere pick-Aktivitat oder eine receive-Aktivitat instanziiert. Alle anderen Attribute
innerhalb der pick-Aktivitat kbnnen problemlos geandert werden.

forEach-Aktivitat

Die forEach-Aktivitat (Listing 17) fihrt den beinhalteten Scope N+1 mal aus. N entspricht dem Wert
des finalCounterValue-Elements. Beim Starten der forEach-Aktivitat werden die Ausdriicke im
startCounterValue- und finalCounterValue-Element evaluiert. Die Ausdriicke bleiben wahrend der
Ausfiihrung der forEach-Aktivitat konstant und giiltig. Falls der Startwert groRer als der Endwert ist,
wird die forEach-Aktivitat nicht ausgefiihrt und ist beendet. Die Kind-Aktivitat einer forEach-Aktivitat
muss eine scope-Aktivitat sein.

Eine forEach-Aktivitat kann entweder parallel oder seriell sein. Dies wird tiber das parallel-Attribut
festgelegt. Bei der parallelen forEach-Aktivitdt werden beim Start der Aktivitdt N+1-Instanzen des
beinhalteten Scope erstellt und parallel ausgefiihrt. Bei der seriellen forEach-Aktivitat wird eine
Instanz des beinhalteten Scopes nach der anderen ausgefiihrt. Die Anzahl der auszufiihrenden Scope-
Aktivitaten kann mit der completionCondition auf den in der completionCondition spezifizierten Wert
begrenzt werden. Durch das successfulBranchesOnly-Attribut werden entweder nur erfolgreich
ausgefiihrte Scopes gezahlt (yes) oder alle beendeten Scopes (no). Wenn die completionCondition
erfillt ist, werden im seriellen Fall keine weiteren Iterationen mehr durchgefihrt. Im parallelen Fall
werden noch nicht beendete Scope-Aktivitaten terminiert, wenn die completionCondition erfillt ist.
Die completionCondition ist optional.

<forEach counterName="BPELVariableName" parallel="yes|no"

standard-attributes>

standard-elements

<startCounterValue expressionLanguage="anyURI"?>
unsigned-integer-expression

</startCounterValue>

<finalCounterValue expressionLanguage="anyURI"?>
unsigned-integer-expression

</finalCounterValue>

48

4

Konzeption einer Deploy New Version-Strategie

<completionCondition>?
<branches expressionLanguage="anyURI"?
successfulBranchesOnly="yes|no">?
unsigned-integer-expression
</branches>
</completionCondition>
<scope ...>..</scope>
</forEach>
Listing 17: forEach-Aktivitat [14]

Bei der forEach-Aktivitdt missen zwei Falle, die serielle und die parallele forEach-Aktivitat, betrachtet
werden. In beiden Fallen kann der startCounterValue nicht gedndert werden, da er schon evaluiert
wurde. Bei der parallelen Ausfiihrung miissen alle Anderungen am Scope oder seinen Kindelementen
an alle N+1 Scope-Instanzen propagiert werden. Die erlaubten Anderungen hiangen von den
jeweiligen Aktivitaten ab. Die completionCondition kann gedandert werden. Es muss aber nach der
Anderung der completionCondition tiberpriift werden, ob diese direkt beendet werden muss, da
unter Umstanden die Bedingung schon in der Vergangenheit erfillt war oder gerade erfillt ist. Das
finalCounterValue-Attribut kann vergrofRert, jedoch nicht verkleinert werden. Wenn es vergrofRRert
wird, missen bei der parallelen Ausfiihrung nachtraglich Scope-Instanzen gestartet werden.

Bei der seriellen forEach-Aktivitat kénnen beinhaltete Aktivitdten beliebig verdndert, hinzugefiigt und
geloscht werden. Wenn Aktivitaten in die Zukunft hinzugefiigt oder aus der Zukunft des Scopes
geldscht werden, werden die Anderungen sofort giiltig. Aktivititen, die in die Vergangenheit des
Scopes eingefligt oder aus der Vergangenheit geloscht werden, werden ab der nachsten Iteration
beachtet. Der finalCounterValue kann auch problemlos gedndert werden, so lange der neue Wert
grofer ist als die derzeitige Iteration. Veranderungen an der completionCondition, dem
finalCounterValue und den beinhalteten Basic Activities sind erst bei der darauffolgenden Iteration
glltig. Verdnderungen an den Structured Activities hangen von den Einschrankungen der jeweiligen
Aktivitat ab und sind zum Teil sofort giiltig.

repeatUntil-Aktivitat

Die repeatUntil-Aktivitat (Listing 18) besteht wie die while-Aktivitadt aus einer booleschen Bedingung
und einer Aktivitat. Die Aktivitdt wird so lange ausgefihrt bis die boolesche Bedingung wahr ist. Im
Gegensatz zur while-Aktivitat wird die repeatUntil-Aktivitat mindestens einmal ausgefiihrt.

<repeatUntil standard-attributes>

standard-elements

activity

<condition expressionLanguage="anyURI"?>bool-expr</condition>
</repeatUntil>
Listing 18: repeatUntil-Aktivitat [14]

Befindet sich die RepeatUntil-Schleife gerade in der Ausflihrung, kann die Bedingung der
RepeatUntil-Schleife nach Belieben verandert werden, da die veranderte Bedingung erst nach der
laufenden Iteration neu ausgewertet wird. Beinhaltete Aktivitdten diirfen beliebig verandert werden,
auch wenn sie gerade ausgefiihrt werden, da die Anderungen erst fiir die niachste Iteration der
repeatUntil-Aktivitat glltig sind. Beinhaltete strukturierende Aktivitdten, die gerade ausgefiihrt

49

4 | Konzeption einer Deploy New Version-Strategie

werden, kdnnen zusitzlich anhand ihrer Einschrankungen verindert werden. Diese Anderungen sind
sofort giiltig. Bei spaterer Betrachtung des Prozessmodells kénnen all diese Anderungen nicht mehr

im Detail nachvollzogen werden.

50

5 ‘ Prototypische Umsetzung der Strategie

5 Prototypische Umsetzung der Strategie

In diesem Kapitel wird die prototypische Umsetzung der Deploy New Version-Funktionalitat
erlautert. Der Prototyp besitzt die Einschrankung, dass der Prozess von einer Sequence-Aktivitat als
umschliefendes Element umgeben sein muss. Beginnt der Prozess mit einem anderen Element,
beispielsweise einer Flow-Aktivitat, wird die Deploy New Version-Funktionalitdt derzeit nicht
unterstutzt.

Innerhalb des Deployment Web Service wurde eine neue Funktion implementiert, die den Deploy
New Version-Mechanismus, wie in Kapitel 4.3 beschrieben, realisiert. Zuerst wird die neue Version
des Prozessmodells deployed, wobei die alte Version weiterhin aktiv bleibt. Daraufhin soll die
Migration der ausgewadhlten Instanz erfolgen. Hierzu sind folgende Schritte notwendig, die in den
nachsten Kapiteln aufgefiihrt und ausfihrlich erklart werden:

1. Der XML-Parser wird aufgerufen, um die neue Version des Prozessmodells so zu verandern,
dass beide Versionen parallel aktiv bleiben konnen.

2. Das eigentliche Deployment wird wie in Kapitel 3.7 beschrieben ausgefiihrt.

3. Die Datenbank-Anderungen, die zum Migrieren der Instanz auf die neue Prozessmodell-
Version notig sind, werden durchgefiihrt.

Danach ist die Migration der Instanz auf das neue Prozessmodell abgeschlossen und die Instanz kann
Uber die resume-Funktion weiter ausgefiihrt werden.

In Abbildung 16 ist der DeploymentService mit der neu integrierten DeployNewVersion-Operation
und den bereits frilher existierenden Operationen dargestellt.

25 DeploymentService &9 DeploymentPortType
> DeploymentPort g deploy
http://localhost:8080/0... . [name [=] string
[+ input
[package package
<lloutput | [response deployUnit
i deployMewVersion
Biinput [name [=] string
[package package
<lloutput | [response deployUnit
i undeploy
[input [packageMame [=] QName
Jloutput | [7 response [=] boolean
3 listDeployedPackages
[input
<Noutput | [deployedPackages packageMames
& listProcesses
[input [packageMame [=] string
Noutput | [processlds processlds
getProcessPackage
[+ input [processMame [=] QName
Jloutput | [packageMame [=] string

51

Abbildung 16: graphische Darstellung des Deploy-Web Services mit deployNewVersion-Operation

5

Prototypische Umsetzung der Strategie

Abbildung 17 zeigt einen Ausschnitt der Architektur der Apache ODE mit allen Komponenten, die bei
der prototypischen Implementierung gedndert wurden. Zuséatzlich wird in diesem Bild der Client
dargestellt, der zwar keine Komponente der Apache ODE ist, aber fiir die Deploy New Version-
Funktionalitat benotigt wird. Der Client wurde hauptsachlich zu Testzwecken der Deploy New
Version-Funktionalitdt entwickelt. In das Web-Interface der Apache ODE und die Process and
Instance Management-APIl wurde die finish()-Operation integriert, um am Leben gehaltene
Prozessinstanzen beenden zu kénnen. Die finish()-Operation machte eine Anderung am MySQL-
Schema der Apache Ode erforderlich. Der Deploy-Web Service wurde um die DeployNewVersion()-
Operation erweitert. Um die Funktionalitdt der DeployNewVersion()-Operation zu realisieren, wurde
innerhalb des ODE BPEL Compilers ein Parser implementiert. Aufgabe des Parsers ist es, eine
eindeutige Adressierung der Prozessversionen zu ermdoglichen. Innerhalb der ODE BPEL Runtime
wurde die Deploy New Version-Funktionalitat prototypisch fiir die sequence-Aktivitdt implementiert.
Die veranderte Implementierung der sequence-Aktivitat ermoglicht zusatzlich, dass eine
Prozessinstanz am Leben erhalten werden kann. Alle Anderungen werden im Detail in diesem Kapitel
beschrieben.

Deploy- ™ .
. Client
WebService
- Deploy() = Deploy()
Ode BPEL Compiler - DeployNew : IJeziovlne!TmeG
Parser - ° Jndeploy "
Version() + Suspend() e
= Undeployl() e . L
s Ly
= Terminate ~, ‘.
#
l”
Qde BPEL Runtime a
=Instantiation of Processes PMAPI- N, b o /,’
*Implementation of BPEL Constructs WebService Weblnterface ','
=Routing of Incoming Messages Undeploy() ~
* Suspend() Suspend() #~
= Resume() Resume() !
Control Flow (sequence) * Finish{) Terminate()
= Terminate() Finish(}
€ SOAP-Nachricht D Apache ODE Komponente

Interne Apache ODE Kommunikation D Sonstige Komponente

Abbildung 17: Architekturbild der Apache ODE mit Anderungen

5.1 Deploy New Version-Client

Der Deploy New Version-Client ist ein einfacher Java-Command-Line-Client, der mit dem Web
Service-Interface der Apache ODE kommuniziert. Der Client dient dem Aufruf von Operationen des
Deploy- und InstanceManagement -Web Services der Apache ODE. Unterstitzt werden die deploy()-,
undeploy()-, suspend()-, resume()- und terminate()-Funktionen. Der bereits zu Testzwecken
bestehende Client wurde im Zuge dieser Arbeit erweitert, um die neue deployNewVersion()-Funktion
der ODE aufrufen zu kénnen. Zusatzlich wurde eine GUI erstellt (siehe Abbildung 18), die es
Benutzern auf einfache und graphische Weise erlaubt, die Deploy New Version-Funktionalitat der

52

5 | Prototypische Umsetzung der Strategie

ODE zu nutzen. Die GUI wurde in erster Linie zu Testzwecken erstellt, da in Zukunft die Deploy New
Version-Funktion direkt von einem erweiterten Modellierungswerkzeug aus aufgerufen werden wird.

r N

| £| Deploy New Version | oSl

1. Bitte geben Sie die Instance 1D ein

2. Klicken Sie OK und wahlen den Pfad zur BPEL Datei.

Instance ID li

| OK | | Cancel |

e 4

Abbildung 18: graphische Oberflache des Deploy New Version-Client

Um die Deploy New Version-Funktionalitat aufzurufen, muss zuerst die Instanz-ID der zu
migrierenden Instanz eingetragen werden. Diese kann der Benutzer beispielsweise in der Web-
Oberflache der Apache ODE unter dem Reiter “Instances” finden. Durch Driicken des OK-Buttons
wird ein Dateiauswahl-Dialog gedffnet, in dem die BPEL-Datei der neuen Prozessmodell-Version
ausgewahlt wird.

Die Klasse ODEClientAdapter des Clients wurde um die deployNewVersionProcess()-Methode
erweitert (Listing 19). Innerhalb der Methode werden alle Dateien des Verzeichnisses, in dem die
BPEL-Datei liegt, das Deployment Bundle, zu einer zip-Datei gepackt. Daraufhin werden das zip-Paket
und die Instanz-ID Uber deployNewVersionService.deploy() an die DeployNewVersion-Operation des
ODE Deploy-Web Service gesendet.

public static String deployNewVersionProcess(IPath path, String InstancelD) {
String processFileName = "test";
processFileName = path.removeFileExtension().lastSegment();

try {

//send Instance ID to the server

DeployUnit ID = new DeployUnit();

ID.setInstancelD(InstancelD);

File processFolder = path.toFile().getParentFile();

System.out.println(processFolder);

ByteArrayOutputStream dataOut = ManagementAPIHandle..zipFolder(processFolder);
DeployNewVersionServicePortType deployNewVersionService = new
DeployNewVersionService().getDeployNewVersionServiceSOAP11PortHttp();

Package zipPackage = new Package();
Base64Binary zip = new Base64Binary();
zip.setValue(dataOut.toByteArray());
dataOut.close();

zipPackage.setZip(zip);

53

5

Prototypische Umsetzung der Strategie

DeployUnit response = deployNewVersionService.deploy(processFileName, zipPackage,
InstancelD);

return response.getName();

} catch (RemoteException e) {
JOptionPane.showMessageDialog(null, "Error Message: " + e.getMessage(), "Exception
during Deploy New Version", JOptionPane.ERROR_MESSAGE);

} catch (IOException e) {
JOptionPane.showMessageDialog(null, "Error Message: " + e.getMessage(), "Exception
during Deploy New Version", JOptionPane.ERROR_MESSAGE);

} catch (Exception e) {
JOptionPane.showMessageDialog(null, "Error Message: " + e.getMessage(), "Exception
during Deploy New Version", JOptionPane.ERROR_MESSAGE);

}

return null;

}

Listing 19: deployNewVersionProcess()-Methode innerhalb des ODE-Clients

5.2 Erweiterung des ODE Deployment-Mechanismus

Zu Beginn dieser Arbeit gab es einige Uberlegungen, wie man die eindeutige Adressierung von
Prozessversionen innerhalb der Apache ODE ermdglichen kann, etwa tiber das Andern von
Namespaces oder Ports. Der Ablauf der Erweiterung des ODE Deployment Mechanismus ist in
Abbildung 19 durch ein UML-Sequenzdiagramm graphisch dargestellt. Der letzte Schritt dieses
Mechanismus, das Umhangen der Instanz in der ODE Datenbank, wird in Kapitel 5.4 detailliert
beschrieben. Die vorherigen Schritte sind Teil des erweiterten ODE Deployment Mechanismus und
werden nachfolgend beschrieben.

Wissenschaftler Client DeploymentService ODE BPEL Compiler Parser ODE Datenbank

InstanzIDund Pfad

zum Deployment
Bundle angeben
DeployNew\Version()-

Operation aufrufen

Deployment Bundle
zippen und Instance ID
und Deployment
Bundle senden

Weiterreichen der Prozess-

Kompilieren des
Prozessmodells

Abfragen der aktuellen Prozess-Versionsnummer -,
_Senden der aktuellen Prozess-Versionsnummer I

Parsender
Prozessmaodell-Dateien

Abbildung 19: Sequenzdiagramm DeployNewVersion()-Operation

Zuerst sendet der Client das Deployment-Bundle an die Apache ODE. Daraufhin wird das
Deployment-Bundle von der Apache ODE im Dateiverzeichnis im Ordner WEB-INF/processes

Datenbank

=Pl nstanzin der
umhangen

gespeichert. Bevor es in der Apache ODE deployed wird, werden die BPEL-, die WSDL- und die

deploy.xml-Datei von einem XML-Parser eingelesen und verdandert. Diese Verdanderungen sind

notwendig, um eindeutige Prozessversionen zu erhalten und dadurch Konflikte zwischen den

54

5

Prototypische Umsetzung der Strategie

einzelnen Prozessversionen zu verhindern. Zusatzlich wird dadurch eine eindeutige Adressierung der
einzelnen Prozessversionen moglich. Dazu wird die aktuelle und eindeutige Versionsnummer der
Apache ODE fiir deployte Prozesse aus der Datenbank abgefragt und zur Identifizierung des
Prozesses an Elemente innerhalb der Dateien gehangt. Genauer gesagt wird der Text .v und die
Versionsnummer NR hinter folgenden Elementen angefligt.

e BPEL-Datei
o <process name="HelloWorld2.vNr">
= Der Prozessname wird gedndert, um eine eindeutige Identifizierung
innerhalb der ODE zu ermdglichen.
e WSDL-Datei
o <wsdl:service name="HelloService.vNr">
= Das Attribut service name wird zur eindeutigen ldentifizierung des Services
angepasst.
o <soap:address location="http://localhost:8080/ode/processes/helloWorld.vNr"/>
= Das Attribut address location wird zur eindeutigen Adressierung des
Prozessmodells fir eingehende Nachrichten gedandert.
e Deployment Descriptor
o <process name="pns:HelloWorld2.vNr">
= Muss aufgrund der Anpassungen in der BPEL-Datei angepasst werden.
o <service name="wns:HelloService.vNr" port="HelloPort"/>
= Muss aufgrund der Anderungen in der WSDL-Datei angepasst werden.

Nachdem die Anderungen des Parsers in das Datei-System geschrieben sind, wird der Deploy-
Mechanismus aufgerufen.

Das Andern der SOAP address location ist die am besten geeignete Lésung fiir die Apache ODE. Bei
allen anderen Losungsversuchen wurde die neue Version des Prozessmodells als neue Version
erkannt und die vorherige Version automatisch retired. Dies ist nur zu verhindern, wenn der
Erkennungsmechanismus, der eine neue Version identifiziert, in seiner Implementierung geandert

wird.

5.3 Abgelaufene Instanzen am Leben erhalten

Um der Anforderung gerecht zu werden, dass abgelaufene Prozessinstanzen in den Zustand
SUSPENDED wechseln und somit am Leben bleiben, wurden verschiedene Ansatze untersucht. Die
erste Idee war eine Dummy-Aktivitat, an der erkannt wird, wann das Prozessmodell zu Ende ist,
einzufiihren. Diese Aktivitat wird als letzte Aktivitat in die duRerste Sequence eingefiigt. Dazu wird
ein zweites Mal der Parser aufgerufen, der in die duBerste Sequence als letzte Aktivitat eine wait-
Aktivitat mit einer Dauer von einer Sekunde in die BPEL-Datei schreibt. Oberhalb der Dummy-
Aktivitat kdnnen innerhalb der Sequence beliebig viele verschachtelte Aktivitdten stehen. Der
Navigationsmechanismus wurde so verandert, dass die Prozessinstanz suspended wird, wenn nur
noch eine Aktivitat auszufiihren bleibt und diese eine Instanz von OWait mit dem Namen ,,dummy*
ist. Dadurch wird die Ausfiihrung der letzten Aktivitat (d.h. der Dummy-Aktivitat) nie begonnen und
die Instanz kann spater Uber die resume-Funktion weiter ausgefiihrt werden.

55

5

Prototypische Umsetzung der Strategie

Da dieser Ansatz einen Eingriff in das Prozessmodell erforderlich macht, wurde ein zweiter Ansatz
entwickelt. Dieser Ansatz wurde prototypisch implementiert, da er im Gegensatz zum ersten Ansatz
nur eine Veranderung der Engine beinhaltet und nicht eine Veranderung am Prozessmodell. Auch
dieser Ansatz wurde im Rahmen der sequence-Aktivitat untersucht. Die Implementierung der
sequence-Aktivitat wurde so verandert, dass die Prozessinstanz pausiert wird anstatt diese zu
beenden. Insbesondere werden nur Instanzen am Leben erhalten, die normal (d.h. ohne Fehler)
beendet werden. Das heilt, nach der Ausfiihrung eines fault-handlers geht eine Instanz nicht
automatisch in den Zustand SUSPENDED (iber, sondern je nach Fehler in den Zustand ERROR oder
FAILED. Wenn Instanzen auch am Leben erhalten werden sollen, nachdem ein Fehler aufgetreten ist,
ist eine Erweiterung der Implementierung notig.

Innerhalb der Klasse SEQUENCE wurde zuerst die completed()-Methode der Sequence verdndert.
Anstatt die Instanz zu beenden, wird diese zurlick in die Execution Queue geschrieben und in den
Zustand SUSPENDED uberfihrt. In der Execution Queue befindet sich dann die Sequence, die in ihrer

__remaining-Liste die als letztes ausgeflihrte Aktivitat beinhaltet. Die _remaining-Liste gehort zur

Prozessinstanz und beinhaltet normalerweise alle noch auszufiihrenden Aktivitaten der Sequence-
Instanz. In diesem Sonderfall beinhaltet sie eine bereits ausgefiihrte Aktivitat, da es sich um die letzte
Aktivitat gehandelt hat und diese bendtigt wird, um die Instanz am Leben zu erhalten.

Wenn die Instanz nach der Migration fortgefiihrt wird, muss darauf geachtet werden, dass diese
Aktivitat nicht nochmals ausgefiihrt wird.

In Listing 20 ist der innerhalb der completed()-Methode eingefiigte Code dargestellt. Wenn die
Sequence die duRerste Aktivitat ist, die Instanz nicht beendet werden soll und in der _remaining-Liste
genau eine Aktivitdt vorhanden ist, wird wie beschrieben die Sequence in die Execution Queue
zuriickgeschrieben und daraufhin suspended.

if (_self.o.getParent().getParent() == null &&!letltFinish && _remaining.size() == 1)
{
// SEQUENCE in Execution Queue schreiben
ArrayList<OActivity> remaining = new ArrayList<OActivity>(_remaining);
instance(new SEQUENCE(_self, _scopeFrame, _linkFrame,
remaining, comps, false));

// suspend Instance

DebuggerSupport debugSupport =
getBpelRuntimeContext().getBpelProcess().getDebuggerSupport();
debugSupport.suspend(process_ID);

// SUSPEND-Flag setzen

try {
st = conn.createStatement();
int result = st.executeUpdate("INSERT INTO ode_instance_migration (InstancelD,
SUSPENDED) VALUES (" + process_ID + ", 1) ON DUPLICATE KEY
UPDATE SUSPENDED = 1");
} catch (SQLException e) {
e.printStackTrace();

}

Listing 20: Am Leben erhalten der Prozessinstanz

56

5

Prototypische Umsetzung der Strategie

Um zu gewahrleisten, dass innerhalb der Apache ODE liberall bekannt ist, dass die Instanz am Leben
erhalten wurde, wurde in der Datenbank eine neue Tabelle erstellt. In dieser Tabelle wird, nachdem
die Instanz suspended wurde, die Spalte SUSPENDED fir diese Instanz auf 1 gesetzt. Wenn die
Instanz-ID noch nicht in der Tabelle existiert, so wird eine neue Zeile erstellt. Dies ist erforderlich, um
sicherzustellen, dass beim Resumen der Instanz bekannt ist, ob sie in ihrer _remaining-Liste eine
schon abgearbeitete Aktivitat beinhaltet oder nicht.

ode_instance_migration

ef" InstancelD bigint
SUSPENDED tinyint(1) unsigned
MIGRATED tinyint(1) unsigned
FINISH tinyint(1) unsigned

Abbildung 20: ode_instance_migration-Tabelle

Wenn eine am Leben gehaltene Instanz resumed wird, ohne davor migriert worden zu sein, muss
innerhalb der run()-Methode zu Beginn der Klasse SEQUENCE, der ersten Methode, die nach dem
resume ausgefihrt wird, dieser Fall behandelt werden. Zuerst werden die Variablen runOutofWork,
letitFinish und wasMigrated aus der Tabelle ode_instance_migration ausgelesen. Diese Variablen
sind true, wenn der Wert in der jeweiligen Spalte fir die Instanz 1 ist. Wenn genau eine Aktivitat in

__remaining ist, runOutofWork true ist und letitFinish false ist, darf die eine Aktivitat nicht ausgefihrt

werden, da es sich um die Aktivitdt handelt, die bereits ausgefiihrt wurde bevor die Instanz am Leben
erhalte wurde. In diesem Fall wird die Sequence einfach zuriick in die Execution Queue geschrieben
und wieder in den Zustand SUSPENDED Uberfiihrt (Listing 21).

else if (_remaining.size() == 1 && runOutofWork && !letltFinish)

{
// SEQUENCE in Execution Queue schreiben

TreeSet<CompensationHandler> comps = new TreeSet<CompensationHandler>(
_compensations);

ArrayList<OActivity> remaining = new ArrayList<OActivity>(

_remaining);

instance(new SEQUENCE(_self, _scopeFrame, _linkFrame, remaining, comps, false));

//SEQUENCE in Zustand SUSPENDED {iberfiithren
DebuggerSupport debugSupport =
getBpelRuntimeContext().getBpelProcess().getDebuggerSupport();
debugSupport.suspend(process_ID);

}

Listing 21: Am Leben erhalten einer Instanz die resumed aber nicht migriert wurde

5.4 Migration der Prozessinstanz

Fiir die Apache ODE gibt es Datenbank-Schemas fiir Derby und MySQL. In dieser Arbeit wird nur das
MySQL-Schema betrachtet. In Abbildung 21 sind die wichtigsten Tabellen fiir die Deploy New
Version-Funktionalitdt abgebildet. In jeder dieser drei Tabellen besteht eine Beziehung zwischen
Prozess-ID und Instanz-ID. In der Tabelle ode_process_instance stellt die Spalte /D, die Instanz-ID dar.

57

5

Prototypische Umsetzung der Strategie

Hier werden eine Instanz, ihre Status-Informationen, ihr Ausfiihrungsstatus sowie das dazugehorige
Prozessmodell, das durch die ID identifiziert ist, hinterlegt. Ebenfalls wird in dieser Tabelle der
dazugehorige Correlator Gber seine ID einer Instanz zugewiesen. In ode_event werden alle Events,
die zu einer Instanz gehoren, gespeichert. Zusatzlich zu der Instanz-ID ist auch die dazugehorige
Prozess-ID hinterlegt.

ode_message_exchange ist die Tabelle, in der alle Nachrichten mit allen dazugehérigen
Informationen abgelegt werden, unter anderem auch die Instanz- und Prozess-ID, zu denen eine
Nachricht gehért. Im Anhang MySQL-Schema sind die Tabellen des Schemas und ihre Primarschliissel
graphisch dargestellt.

ode_message_exchange ode_process_instance

& MESSAGE_EXCHANGE ID varchar(256) £ bigint
CALLEE varchar(255) DATE_CREATED datetime
CHANMEL varchar(255) EXECUTION_STATE blob
CORRELATION_ID varchar(255) FAULT_ID bigint
CORRELATION_KEYS varchar(255) LAST_ACTIVE_TIME datetime
CORRELATION_STATUS varchar(255) LAST_RECOVERY_DATE datetime
CREATE_TIME datetime PREVIOUS_STATE smallint
DIRECTION int SEQUENCE bigint
EPR text INSTANCE_STATE smallint
FAULT varchar(255) INSTANTIATING_CORRELATOR_ID bigint
FAULT_EXPLANATION varchar(255) PROCESS_ID bigint
OPERATION varchar(255) ROOT_SCOPE_ID bigint
PARTNER_LINK MCODEL_ID it
PATTERN varchar({255)
PIPED_ID varchar(255)
PORT_TYPE varchar(255)
PROPAGATE_TRANS bit ode_event
STATUS varchar({255) \,l"' EVENT_ID bigint
SUBSCRIBER_COUNT int DETAIL varchar(255)
PROCESS _INSTANCE_ID bigint DATA blob
CORR_ID bigint SCOPE_ID bigint
PARTNER_LINK_ID bigint TSTAMP datetime
PROCESS_ID bigint TYPE varchar(255)
REQUEST MESSAGE_ID bigint INSTANCE_ID bigint
RESPONSE_MESSAGE_ID bigint PROCESS_ID bigint
ode_instance_migration

& Instanceld bigint
SUSPENDED tinyint(1) unsigned
MIGRATED tinyint(1) unsigned
FINISH tinyint(1) unsigned

Abbildung 21: Schema der fiir diese Arbeit wichtigsten Tabellen

Nach Ausfiihrung des in Kapitel 5.2 beschriebenen Deployment-Mechanismus, ist die neue
Prozessmodell-Version deployed und in der Datenbank angelegt. Um eine Instanz von einer alten
Prozessmodell-Version auf eine neue Version zu migrieren, miissen in der Datenbank an manchen
Stellen die Prozess-ID der alten Prozessversion auf die der neuen Prozessversion umgeschrieben
werden. Die ID der Instanz, die migriert werden soll, ist bekannt, da sie vom Deploy New Version-
Client mitgeschickt wird. Alle weiteren benétigten IDs werden zuerst aus der Datenbank ausgelesen,
um dann folgende Anderungen an den drei Tabellen aus Abbildung 21 durchzufiihren:

58

5

Prototypische Umsetzung der Strategie

ode_process_instance:

e Ersetzen der Prozess-ID durch die ID der neuen Prozessversion fiir die gegebene Instanz-ID.
e Ersetzen der Correlator-ID durch die Correlator-ID der neuen Prozessversion fir die
gegebene Instanz-ID.

ode_event:

e Ersetzen der Prozess-ID durch die ID der neuen Prozessversion fiir die gegebene Instanz-ID.
ode_message_exchange:

e Ersetzen der Prozess-ID durch die ID der neuen Prozessversion fiir die gegebene Instanz-ID.

Zusitzlich zu den oben beschriebenen Datenbank Anderungen wird in der Tabelle
ode_instance_migration die Spalte MIGRATED fir die jeweilige Instanz-ID auf 1 gesetzt. Dadurch ist
Uberall bekannt, ob die Instanz migriert worden ist oder nicht und es kann sichergestellt werden,
dass die Logik zur Migration nur wenn notig ausgefihrt wird.

In der SEQUENCE-KIasse, die die sequence-Aktivitat reprasentiert, gibt es eine Liste _remaining. In
dieser Liste stehen alle Aktivitdten, die noch abgearbeitet werden miissen. StandardmaRig wird diese
Liste beim Beginn der Sequence erstellt und daraufhin abgearbeitet. Zusatzlich gibt es eine Liste
sequence. Diese Liste wird in der Klasse OSequence implementiert, die eine Aktivitat des Modells
reprasentiert, aber innerhalb der SEQUENCE-Klasse bekannt ist Sie beinhaltet alle Aktivitaten, die in
der Sequence vorhanden sind. Diese Liste wird nach der Migration auf eine neue Prozessversion
automatisch aktualisiert. Die _remaining-Liste dagegen beinhaltet nach Migration der Instanz immer
noch die Aktivitaten der alten Prozessversion, da die Liste von der Instanz abhangig ist.

Die erste Methode innerhalb der SEQUENCE-Klasse, die nach resumen der Instanz ausgefiihrt wird,
ist run(). Innerhalb dieser Methode ist die Logik zum Migrieren einer Instanz auf eine neue
Prozessversion implementiert. Zuerst werden die Werte aus der ode_instance_migration-Tabelle
ausgelesen und in Variablen gespeichert. Fiir die jeweilige Instanz ist wasMigrated true, wenn die
Spalte MIGRATED den Wert 1 hat. In Listing 22 ist der Code, der ausgefiihrt wird, wenn die Instanz
migriert wurde, dargestellt. Wenn wasMigrated true ist, wird die _remaining-Liste aktualisiert. Die
Variable runOutofWork ist true, wenn die SUSPENDED Spalte den Wert 1 beinhaltet. Dies ist der Fall,
wenn die Instanz davor automatisch am Leben erhalten wurde, wie in Kapitel Abgelaufene Instanzen
am Leben erhalten5.3 beschrieben. Fir diese Konstellation wird zuerst die erste Aktivitat aus der

_remaining-Liste entfernt. Diese erste Aktivitat ist die vor dem suspenden der Instanz ausgefiihrte

Aktivitat. Danach ist die _remaining-Liste korrekt und die Ausfiihrung der Aktivitaten kann beginnen.
Um zu gewahrleisten, dass eine Instanz mehrmals migriert werden kann, werden vor der Ausfiihrung
noch die Werte fiir die Instanz in den Spalten SUSPENDED und MIGRATED auf 0 gesetzt.

if (wasMigrated)
{
List<OActivity> aSequence = ((0OSequence) _self.0).sequence;
Integer size = aSequence.size();
Object oAcivity = _remaining.get(0);
Integer sIndex = aSequence.indexOf(oAcivity);

59

5 | Prototypische Umsetzung der Strategie

List<OActivity> remaining = aSequence.subList(sIndex,
size);
_remaining = remaining;

//Fall 3: Instanz war automatisch im Zustand SUSPENDED wurde migriert und resumed
if (runOutofWork)
{
_remaining.remove(0);
runOutofWork = false;
}
try {

st = conn.createStatement();
int result = st.executeUpdate("UPDATE ode_instance_migration SET SUSPENDED
=0, MIGRATED = 0 WHERE InstancelD = " + process_ID);
} catch (SQLException e) {
e.printStackTrace();

}

Listing 22: Implementierung der Aktualisierung von _remaining

Abbildung 22 veranschaulicht die grundlegende Aktualisierung der Aktivitaten-Liste nach
erfolgreicher Migration der Prozessinstanz auf eine neue Prozessversion.

oActivity

PM
List<OActivity>sequence
oActivity
Insta
nz

OActivity

List<oActivity>_remaining
wird ersetzt durch:

Aktivitat Aktivititsmodell implementiert in OSequence

aktuelle Aktivititen

Inst
anz

Aktivitdtsinstanz implementiert in SEQUENCE

alte Aktivitdten

Abbildung 22: Aktualisieren der _remaining-Liste

Die derzeitige aktuelle (d.h. laufende) Aktivitat ist oActivity. _remaining wird durch eine Teilliste der
moglicherweise veranderten Aktivitatsliste der Sequence (sequence-Liste) ersetzt. Die erste Aktivitat
der Teilliste ist die laufende Aktivitat (d.h. oActivity), die letzte Aktivitat ist die letzte Aktivitat der
sequence-Liste. Das heil3t, die Teilliste ist die sequence-Liste ohne die bereits ausgefiihrten

60

5

Prototypische Umsetzung der Strategie

Aktivitaten. Dadurch wird sichergestellt, dass in _remaining auch nach Migration der Instanz immer
die aktuellen Aktivitaten stehen.

5.5 Beenden von am Leben gehaltenen Prozessinstanzen

Um eine am Leben gehaltene Prozessinstanz zu beenden, wird die Spalte FINISH in der Tabelle
ode_instance_migration bendtigt. Der Wert dieser Spalte ist standardmaRig 0 und wird auf 1 gesetzt,
wenn fir eine Instanz die finish()-Funktion aufgerufen wird. Dadurch wird gewdhrleistet, dass die
Instanz, auch wenn sie zwischenzeitlich nochmals suspended wurde oder ein Fehler in der Apache
ODE auftritt, definitiv beendet wird sobald die Instanz wieder ausgefihrt wird.

Die Management API stellt wie in Kapitel 3.4 beschrieben alle Funktionen zur Verfliigung, um
Prozesse und Instanzen zu verwalten. Der InstanceManagement-Teil der Management APl wurde um
die finish()-Funktionalitat erweitert. Die finish()-Funktionalitat lasst eine Instanz zu Ende laufen. Bei
erfolgreicher Ausfiihrung befindet sich die Instanz anschlieRend im Status COMPLETED. Dazu wurde
in der Klasse ProcessAndinstanceManagementimpl folgende Methode implementiert:

public InstancelnfoDocument finish(Long iid) throws ManagementException

{
DebuggerSupport debugSupport = getDebugger(iid);

assert debugSupport != null : "getDebugger(Long) returned NULL!";
debugSupport.finish(iid);
return getlnstancelnfo(iid);

}

Listing 23: Implementierung der finish-Funktionalitat in ProcessAndinstanceMangementmpl

AulRerdem wurde die Methoden-Signatur in das Instance-Management-Interface eingefiigt:

/**
* Finishes the (previously suspended) instance. This operation only affects
* process instances that are in the suspended state.
* @param iid
* instance id
* @return post-change instance information

*/

InstancelnfoDocument finish(Long iid);
Listing 24: finish-Funktion in der Mangement API

Die Funktionalitat steht als Web Service und als Button in der Web-Oberflache der Apache ODE zur
Verfligung. Die graphische Darstellung der Management-API ist im Anhang Process and Instance
Management API zu finden.

Die finish()-Funktion, um abgearbeitete Prozess-Instanzen endgiiltig als beendet zu markieren, wird
in der Klasse BpelProcess realisiert (Listing 25). Bei Aufruf der finish()-Funktion wird die Spalte FINISH
der Tabelle ode_instance_migration fiir die zugehorige Instanz auf 1 gesetzt. Dadurch wird es
moglich, aus anderen Klassen heraus abzufragen, ob die Instanz beendet oder standardmaRig wieder
suspended werden soll. Die Prozessinstanz wird wie beim Aufruf der resume()-Funktion fortgesetzt.

case FINISH:
if (_log.isDebugEnabled()) {

61

5

Prototypische Umsetzung der Strategie

break;

_log.debug("handleWorkEvent: ResumeWork (and let it finish) event for iid "
+ we.getlnstanceld());

// set finish flag in database
Connection conn = DatabaseConnection.getInstance().getConnection();
Statement st = null;

try {
st = conn.createStatement();
int result = st.executeUpdate("INSERT INTO ode_instance_migration (InstancelD,
FINISH) VALUES (" + we.getInstanceld() + ", 1) ON DUPLICATE KEY UPDATE
FINISH =1");

} catch (SQLException €) {
e.printStackTrace();

}

BpelRuntimeContextlmpl processinstance5 = createRuntimeContext(proclnstance, null,
null);

processinstance5.execute();

Listing 25: case FINISH in BpelProcess

In Listing 26 ist der Code dargestellt, der innerhalb der completed()- und run()-Operation der

SEQUENCE-Klasse priift, ob fir die Instanz die finish-Funktion aufgerufen wurde und dadurch in der

Tabelle ode_instance_migration die Spalte FINISH fir die Instanz den Wert 1 hat.

Connection conn = DatabaseConnection.getInstance().getConnection();
Statement st = null;

ResultSet rs = null;

// get data from ode_instance_migration table

boolean letItFinish = false;

try {

st = conn.createStatement();
rs = st.executeQuery("SELECT FINISH FROM ode_instance_migration WHERE InstancelD
="+ process_ID);

if (rs.next())

{
int finish = rs.getInt("FINISH");

letltFinish = (finish == 1);
}

} catch (SQLException e) {

}

e.printStackTrace();

Listing 26: run()- und completed()-Methode check letitFinish

62

5 | Prototypische Umsetzung der Strategie

Es sind drei verschiedene Szenarien moglich:

e Die finish()-Operation wurde aufgerufen. Davor wurde die Instanz am Leben erhalten und
nicht migriert.
Ist dies der Fall, so sind die Variablen letltFinish und runOutofWork true. Die _remaining-Liste
enthalt genau eine Aktivitat. Diese Aktivitat wurde bevor die Instanz in den Status
SUSPENDED uberfihrt wurde, bereits ausgefiihrt. Aus diesem Grund wird die Aktivitat aus
der _remaining-Liste entfernt und die Methode completed aufgerufen. Innerhalb der
completed-Methode wird die Instanz dann nicht weiter am Leben erhalten, sondern da
letitFinish true ist beendet.

if (_remaining.size() == 1 && runOutofWork && letItFinish)

{
_remaining.remove(0);
TreeSet<CompensationHandler> comps = new TreeSet<CompensationHandler>(
_compensations);
Activity_Complete(false, comps);
}

Listing 27: run()-Methode Instanz beenden

e Die finish()-Operation wurde aufgerufen. Davor wurde die Instanz am Leben erhalten und
migriert.
In diesem Fall sind beim Betreten der run()-Methode runOutofWork, wasMigrated und
letltFinish true. Es wird wie in Kapitel 5.4 beschrieben die _remaining-Liste aktualisiert und
die erste Aktivitat aus der _remaining-Liste entfernt. runOutofWork und wasMigrated
werden auf false gesetzt. Daraufhin wird die Instanz normal ausgefiihrt. Wenn die letzte
Aktivitat ausgefiihrt worden ist, wird die completed()-Methode aufgerufen. Innerhalb der
Methode wird der else-Zweig ausgefihrt da let/tFInish den Wert true hat. Es wird die Zeile
der Instanz in der ode_instance_migration-Tabelle geldscht und die ActivityComplete()-
Methode aufgerufen, die die Instanz endgliltig beendet.

// finish Instance
else

try {
st = conn.createStatement();

rs = st.executeQuery("DELETE ode_instance_migration WHERE
InstancelD =" + process_ID);
} catch (SQLException e) {

e.printStackTrace();
}
Activity_Complete(_terminateRequested, comps);
}

Listing 28: completed()-Methode Instanz beenden

e Die finish()-Operation wurde aufgerufen. Davor wurde die Instanz migriert und nicht am
Leben erhalten.

63

5 | Prototypische Umsetzung der Strategie

In diesem Fall ist der Ablauf derselbe, wie wenn die Instanz zuséatzlich auch noch am Leben
gehalten wurde. Der einzige Unterschied ist, dass die erste Aktivitat aus der _remaining-Liste
nicht geldscht wird. Dies ist nicht erforderlich, da nur Aktivitaten in der _remaining-Liste
stehen, die noch nie ausgefiihrt wurden.

In Abbildung 23 wird das Zusammenspiel der einzelnen Komponenten bei der finish()-Operation mit
Hilfe eines Sequenzdiagramms veranschaulicht.

Wissenschaftler PMAPI ODE BPEL Runtime ODE Datenbank
| Jinish(}-Operation ______|
aufrufen
I FINISH-Flagsetzen
Ausfuhrung der Instanz
Abfragen desFINISH-Flags” I
Beendender Instanz
Abbildung 23: Sequenzdiagramm finish()-Operation
5.6 Web-GUI

Um die finish()-Funktion auch aus der Web-Oberflache der Apache ODE heraus aufzurufen, wurde
dort ein weiterer Button eingefiigt. Dieser Button befindet sich auf dem Reiter Instances bei jeder
einzelnen Instanz neben den Buttons , Terminate”, ,Suspend” und , Resume”.

Instance ID: 851 -
Process: {http:fode/bpeliunit-testiHelloWorld2.v8-8 Status: COMPLETED
Date Started: 2010-12-13T10:50:20.000+01:00 Date Last Active 2010-12-13T11:01:47.000+01:00

Instance ID: 1351 -

Process: World2-5 Status: SUSPEMDED

Date Started: 2011-01-02T12:53:51.000+01:00 Date Last Active 2011-01-02T12:53:52.000+01:00

Abbildung 24: Instances-Reiter aus der Apache ODE Oberflache

Der Finish-Button ist nur aktiv, wenn die Instanz im Status SUSPENDED ist. Beim Klicken des Finish-
Buttons wird die Instanz zu Ende ausgefiihrt. Bei erfolgreicher Ausfiihrung ist die Instanz dann im
Status COMPLETED.

64

5 ‘ Prototypische Umsetzung der Strategie

5.7 Erweiterung auf die Flow-Aktivitit

Im Gegensatz zur sequence-Aktivitat werden bei einer flow-Aktivitat alle beinhalteten Aktivitaten
parallel ausgefihrt. Wird der Flow betreten wird von der Apache ODE eine Liste erstellt, die die
Aktivitats-Informationen von allen Aktivitaten innerhalb des Flows, beinhaltet. Aus der jeweiligen
Activitylnfo werden Activity Guards erstellt und in die Execution Queue geschrieben. Die Activity
Guards evaluieren die JoinConditions der einzelnen Aktivitaten und fiihren die Aktivitat aus, wenn die
JoinCondition ,true” ist. Wenn die JoinCondition fur eine Aktivitat , false” ist, wird die
DeadPathElimination angestoBen. In Listing 29 ist der oben beschriebene Code der Apache ODE aus
der FLOW-Klasse dargestellt.

for (Iterator<OActivity> i = _oflow.parallelActivities.iterator(); i
.hasNext();) {

OActivity ochild = i.next();

ChildInfo childInfo = new ChildInfo(new ActivityInfo(
genMonotonic(), ochild,
newChannel(TerminationChannel.class),
newChannel(ParentScopeChannel.class)));

_children.add(childInfo);

instance(createChild(childInfo.activity, _scopeFrame, myLinkFrame));

}
instance(new ACTIVE());

}

Listing 29: Instanziierung der Aktivitdten innerhalb des Flows

Nachdem alle Aktivitaten innerhalb des Flows beendet sind, wird der Flow beendet. Das am Leben
erhalten der Prozess-Instanz, wie in Kapitel 5.3 beschrieben, ist fiir die Flow-Aktivitat so nicht
moglich. Beim ersten Losungsansatz wirde die Dummy-Aktivitat sofort mit ausgefiihrt werden und
die Apache ODE wiirde bemerken, dass alle Aktivitdten der Instanz ausgefiihrt sind und die Instanz in
den Status COMPLETED Uberfihren. Der zweite Ansatz kann in einem gewissen Rahmen auf die flow-
Aktivitat Gbertragen werden. Eine flow-Aktivitat, die sich gerade in der Ausfiihrung also innerhalb der
Wavefront befindet und auf eine neue Prozess-Version migriert werden soll, kann nicht so viele
Anderungen unterstiitzen wie beispielsweise die sequence-Aktivitit. Wurden innerhalb der flow-
Aktivitat Aktivititen hinzugefiigt, miissen diese Anderungen direkt in die Execution Queue
Ubertragen werden, da es nicht wie bei der Sequence die Moglichkeit gibt, die Liste der
Kindelemente nachzuladen. Das Loschen von Aktivitaten innerhalb eines Flows ist eingeschrankt
moglich, da von allen beinhalteten Aktivitdten nur die Activity Guards in die ExecutionQueue
geschrieben werden. So lange die eigentliche Ausfiihrung der Aktivitat nicht gestartet wurde, kénnen
die Activity Guards aus der Execution Queue geldscht werden. Dabei muss darauf geachtet werden,
dass die Verlinkungen zwischen den einzelnen Aktivitdten nicht zerstrt werden. Das Andern von
Aktivitaten ist, so lange sie noch nicht gestartet wurden, moglich. Dazu missen die Activity Guards
aktualisiert werden, wenn die flow-Aktivitat weiter ausgeftihrt wird. Basic Activities, mit Ausnahme
der wait-Aktivitat, konnen nicht gedndert werden, wenn sie gerade ausgefihrt werden. Fir das
Andern von strukturierenden Aktivititen innerhalb des Flows gelten die in Kapitel 4.4 vorgestellten
Einschrankungen. Problemlos ist es moglich, das am Leben erhalten der Prozessinstanz, sowie das
Beenden von am Leben erhaltenen Prozessinstanzen auf die flow-Aktivitat zu Gbertragen.

65

5 | Prototypische Umsetzung der Strategie

Das Verandern der flow-Aktivitat innerhalb einer sequence-Aktivitat ist, so lange der Flow sich noch
nicht in der Ausfiihrung befindet, mit der prototypischen Implementierung maoglich.

66

6 | Anwendungsbeispiel

6 Anwendungsbeispiel

In diesem Kapitel soll anhand eines einfachen Beispiels der Prototyp und seine Funktionsweise
erklart werden. In Abbildung 25 ist ein Prozessmodell zu sehen, das im BPEL-Designer von einem
Benutzer entwickelt wurde. Die Einschrdankung des Prototyps, dass alle Logik von einer Sequence-
Aktivitdt umschlossen sein muss, ist erfillt. Dieses Modell wird auf der Apache ODE deployed.

—

= Sequence

o | start
= Assignl
(%) Wait1
@
If Else
-::_7\::2- Wait 2 = Assign 2

= Assign 3

= Assignd = Assign5 (L) Wait 3

2| end

®

Abbildung 25: Urspriingliches Prozessmodell

Daraufhin startet der Benutzer eine Instanz des Prozesses und pausiert sie kurz danach. In diesem
Beispiel wird die Instanz wahrend der Aktivitat Waitl suspended. In Abbildung 26 ist zu sehen,
welche Aktivitaten bis zu diesem Zeitpunkt abgearbeitet wurden. Abbildung 27 zeigt den Status der
Instanz im Reiter Instances in der Apache ODE Web-GUI. Dort ist sichtbar, auf welche Prozessversion
die Instanz verlinkt ist, welchen Status sie hat, wann sie gestartet wurde und wann sie zuletzt aktiv
war. In diesem Fall ist das zugehorige Prozessmodell HelloWorld-1 und die Instanz befindet sich im
Status SUSPENDED. Des Weiteren sind alle Operationen, die im derzeitigen Status der Instanz zur
Verfligung stehen durch aktive Buttons erkennbar. Funktionen, die aufgrund des Status nicht
verfligbar sind, werden durch ausgegraute Buttons dargestellt.

67

6

Anwendungsbeispiel

instance 251}

Event Source Timestamp Persisted State Persisted
Process_Instantiated Wed Feb 02 17:19:41 CET 2... |false

Instance_Running Wed Feb 02 17:19:41 CET 2... |false

Activity_Ready /process Wed Feb 02 17:19:41 CET 2... |false Ready true
Activity_Executing /process Wed Feb 02 17:19:41 CET 2... |false Executing true
Activity_Ready /process/sequence[1] Wed Feb 02 17:19:41 CET 2... |falze Ready true
Activity_Executing /process/sequence[1] Wed Feb 02 17:19:41 CET 2... |false Executing true
Activity_Ready /process/sequence[1] freceive[1] Wed Feb 02 17:19:41 CET 2... |false Ready true
Activity_Executing [process sequence[1] freceive[1] Wed Feb 02 17:19:41 CET 2... |false Executing true
Variable_Modification jprocessfvariables[1] jvariable[1] Wed Feb 02 17:19:41 CET 2... [false

Activity_Executed /processjsequence[1] freceive[1] Wed Feb 02 17:19:41 CET 2... |false Waiting true
Activity_Complete /processjsequence[1] freceive[1] Wed Feb 02 17:19:41 CET 2... |false Completed true
Activity_Ready /processfsequence[[1] fassign[1] Wed Feb 02 17:19:42 CET 2... |false Ready true
Activity_Executing Jprocess /sequence[1] fassign[1] Wed Feb 02 17:19:42 CET 2... |false Executing true
Variable_Modification Jprocess jvariables[1] jvariable[2] Wed Feb 02 17:19:42 CET 2... |false

Variable_Modification Jprocess/variables[1] jvariable[1] Wed Feb 02 17:19:42 CET 2... |falze

Activity_Executed /process/sequence[[1] /assign[1] Wed Feb 02 17:19:42 CET 2... |false Waiting true
Activity_Complete /process/sequence[[1] /assign[1] Wed Feb 02 17:19:42 CET 2... |false Completed true
Activity_Ready /process/sequence[1] fwait[1] Wed Feb 02 17:19:42 CET 2... |false Ready true
Activity_Executing [process sequence[1] fwait[1] Wed Feb 02 17:19:42 CET 2... |false Executing true
Instance_Suspended Wed Feb 02 17:19:52 CET 2... |false

Abbildung 26: Auditing der Instanz (1)

Currently Available Instances

Instance ID: 251

Process:

Date Started:

2

elfunittestiHelloWorld-1

2011-02-02T17:19:41.000+01:00

Status:

Date Last Active

SUSPENDED

2011-02-02T17:19:42.000+01:00

Terminate

Resume ” Finish |

Im ndchsten Schritt méchte der Benutzer das Prozessmodell verdandern. Die Aktivitat Wait2 aus dem
if-Zweig ersetzt er durch eine empty-Aktivitdat und verschiebt die Wait2-Aktivitat in die flow-Aktivitat.
Die Aktivitat Assign4 wird aus der flow-Aktivitat geloscht und die Aktivitat Empty2 hinzugefiigt. Das

geanderte Prozessmodell ist in Abbildung 28 zu sehen. Die so genannte Wavefront der Instanz ist auf

Abbildung 27: Status der Instanz in der Apache ODE GUI (1)

Hohe der Aktivitat Waitl, da wahrend dieser Aktivitat die Instanz in den Zustand SUSPENDED

Uberfuhrt wurde.

Nachdem der Apache ODE Client gestartet wurde und die Instanz-ID 251 der zu migrierenden Instanz

in die Oberflache eingegeben, sowie der Pfad zu BPEL-Datei des neuen Prozessmodells angegeben

wurde, wird das neue Prozessmodell deployed. Dabei werden samtliche in Kapitel 5 beschriebenen

Anderungen an der Datenbank und den Prozessbeschreibungs-Dokumenten durchgefiihrt.

68

6

Anwendungsbeispiel

@

= Sequence
=]

) start
= Assignl
(© wait1
@K
=
If Else
|| Empty1 = Assign2
=

= Assign 3

= Assign 5 (L) Wait 3 (L) Wait 2 [| Empty2

@) end
=

®

Abbildung 28: Neue Prozessmodell-Version

Nachdem das gednderte Prozessmodell erfolgreich deployed und die Instanz migriert wurde,
aktualisiert sich der Reiter Instances der Apache ODE Web-GUI (Abbildung 29). Der Status der Instanz
bleibt weiterhin unverandert SUSPENDED ebenso wie das Startdatum der Instanz und der

Zeitstempel, der die letzte Aktivitdt der Instanz bestimmt. Der Name des zu der Instanz gehérenden

Prozessmodells hat sich allerdings von HelloWorld-1 zu HelloWorld.v2-2 gedndert. Die Benennung

des Prozessmodells hangt wie in Kapitel 5.2 beschrieben von der aktuellen Versionsnummer

innerhalb der Apache ODE ab.

Currently Available Instances

Instance ID: 251

Process: hitp:ifode/bpeliunit-testiHelloWorld.v2-2

Date Started:

2011-02-02T17:19:41.000+01:00

Status:

Date Last Active

SUSPENDED

2011-02-02T17:20:12.000+01:00

Abbildung 29: Status der Instanz in der Apache ODE GUI (2)

69

6

Anwendungsbeispiel

Als nachstes lasst der Benutzer die Instanz weiter laufen. Der tber eine Auditing-Komponente
mitgeschriebene Instanz-Verlauf ist in Abbildung 30 zu sehen. Die Instanz wird wieder aktiv und fuhrt
das gednderte Prozessmodell aus. Nachdem die letzte Aktivitat aus Abbildung 28, die reply-Aktivitat,
ausgefihrt wurde, wird die Instanz wieder in den Status SUSPENDED (Uberfiihrt, dieses Mal jedoch
automatisch, da fiir die Sequence-Klasse das am Leben erhalten einer Prozessinstanz implementiert

worden ist.

Event Source Timestamp Persis... State Persisted
Activity_Executing /processfsequence[1] fassign[1] Wed Feb 02 17:19:42 CET 2... false Executing true -
Variable_Modification Jjprocess fvariables[1] fvariable[2] Wed Feb 02 17:19:42 CET 2... false
Variable_Modification Jprocess fvariables[1] fvariable[1] Wed Feb 02 17:19:42 CET 2...|false
Activity_Executed Jprocessfsequence[1] fassign[1] Wed Feb 02 17:19:42 CET 2...|false Waiting true
Activity_Complete Jprocessfsequence[1] fassign[1] Wed Feb 02 17:19:42 CET 2...|false Completed true
Activity_Ready Jprocess feequence[1] fwait[1] Wed Feb 02 17:19:42 CET 2...|false Ready true
Activity_Executing Jprocess feequence[1] fwait[1] Wed Feb 02 17:19:42 CET 2...|false Executing true
Instance_Suspended Wed Feb 02 17:19:52 CET 2... false
Instance_Running Wed Feb 02 17:24:47 CET 2... false
Activity_Executed Jprocessfsequence[1] fwait[1] Wed Feb 02 17:24:47 CET 2... false Waiting true
Activity_Complete Jprocessfsequence[1] fwait[1] Wed Feb 02 17:24:47 CET 2... false Completed true | _
Activity_Ready Jprocessfsequence[1]Af[1] Wed Feb 02 17:24:47 CET 2... false Ready true
Activity_Executing Jprocessfsequence[1]Af[1] Wed Feb 02 17:24:47 CET 2... false Executing true
Activity_Dead_Path Jprocess fsequence[1]/if[1] fempty[1] Wed Feb 02 17:24:47 CET 2... false DeadPath true
Activity_Ready Jprocessfsequence[1]/if[1] felse[1] fass... Wed Feb 02 17:24:47 CET 2...|false Ready true
Activity_Executing /processfsequence[1]/if[1] felse[1]fass... |Wed Feb 02 17:24:47 CET 2...|false Executing true
Variable_Modification /processfvariables[1] fvariable[2] Wed Feb 02 17:24:47 CET 2... false
Variable_Modification /processfvariables[1] fvariable[1] Wed Feb 02 17:24:47 CET 2... false
Activity_Executed /processfsequence[1]/if[1] felse[1] fass... Wed Feb 02 17:24:47 CET 2...|false Waiting true
Activity_Complete Jprocessfsequence[1]/if[1] /else[1] fass... Wed Feb 02 17:24:47 CET 2...|false Completed true
Activity_Executed Jprocessfsequence[1]/if[1] Wed Feb 02 17:24:47 CET 2... (false Waiting true
Activity_Complete Jprocessfsequence[1]/if[1] Wed Feb 02 17:24:47 CET 2... (false Completed true
Activity_Ready /processfsequence[1] fassign[2] Wed Feb 02 17:24:47 CET 2... false Ready true
Activity_Executing /processfsequence[1] fassign[2] Wed Feb 02 17:24:47 CET 2... false Executing true
Variable_Modification Jprocessfvariables[1] fvariable[2] Wed Feb 02 17:24:47 CET 2... false
Variable_Modification Jprocess fvariables[1] fvariable[1] Wed Feb 02 17:24:47 CET 2... false
Activity_Executed Jprocessfsequence[1] fassign[2] Wed Feb 02 17:24:47 CET 2... false Waiting true
Activity_Complete Jprocessfsequence[1] fassign[2] Wed Feb 02 17:24:47 CET 2...|false Completed true
Activity_Ready Jprocessfsequence[1] fow[1] Wed Feb 02 17:24:47 CET 2...|false Ready true
Activity_Executing fprocessfsequence[1] fow[1] Wed Feb 02 17:24:47 CET 2...|false Executing true
Activity_Ready fprocess fsequence[1] flow[1] fwait[2] Wed Feb 02 17:24:47 CET 2...|false Ready true
Activity_Executing fprocess fsequence[1] flow[1] fwait[2] Wed Feb 02 17:24:47 CET 2...|false Executing true
Activity_Ready Jorocessfsequence[1]fflow[1] fassign[1] |Wed Feb 02 17:24:47 CET 2...|false Ready true £
Activity_Executing Jprocessfsequence[1] fflow[1] fassign[1] |Wed Feb 02 17:24:47 CET 2...|false Executing true
Variable_Modification Jprocess fvariables[1] fvariable[2] Wed Feb 02 17:24:47 CET 2... false
Variable_Modification Jprocess fvariables[1] fvariable[1] Wed Feb 02 17:24:47 CET 2... false
Activity_Executed Jprocessfsequence[1] fflow[1]fassign[1] |Wed Feb 02 17:24:48 CET 2...|false Waiting true
Activity_Complete Jprocessfsequence[1] fflow[1]fassign[1] |Wed Feb 02 17:24:48 CET 2...|false Completed true
Activity_Ready Jprocessfsequence[1]fflow[1]/fempty[1] |Wed Feb 02 17:24:48 CET 2...|false Ready true
Activity_Executing jprocessfsequence[1]flow[1]/fempty[1] |Wed Feb 02 17:24:48 CET 2...|false Executing true
Activity _Executed jprocessfsequence[1]flow[1]/fempty[1] |Wed Feb 02 17:24:48 CET 2...|false Waiting true
Activity_Complete jprocessfsequence[1]flow[1]/fempty[1] |Wed Feb 02 17:24:48 CET 2...|false Completed true
Activity_Ready /processfsequence[1]flow[1] wait[1] Wed Feb 02 17:24:48 CET 2... false Ready true
Activity_Executing /processfsequence[1] fow[1] fwait[1] Wed Feb 02 17:24:48 CET 2... false Executing true
Activity_Executed Jprocessfsequence[1] fow[1] wait[2] Wed Feb 02 17:25:18 CET 2... (false Waiting true
Activity_Complete Jprocessfsequence[1] fow[1] wait[2] Wed Feb 02 17:25:18 CET 2... (false Completed true
Activity_Executed /processfsequence[1] ffow[1] wait[1] Wed Feb 02 17:25:18 CET 2... (false Waiting true
Activity_Complete Jprocessfsequence[1]flow[1] wait[1] Wed Feb 02 17:25:18 CET 2... false Completed true
Activity_Executed Jprocessfsequence[1]flow[1] Wed Feb 02 17:25:18 CET 2... false Waiting true
Activity_Complete Jprocessfsequence[1]flow[1] Wed Feb 02 17:25:18 CET 2... false Completed true
Activity_Ready Jprocessfsequence[1]/freply[1] Wed Feb 02 17:25:18 CET 2... false Ready true
Activity_Executing Jprocessfsequence[1] freply[1] Wed Feb 02 17:25:18 CET 2...|false Executing true
Activity_Executed Jprocessfsequence[1] freply[1] Wed Feb 02 17:25:18 CET 2...|false Waiting true
Activity_Complete Jprocessfsequence[1] freply[1] Wed Feb 02 17:25:13 CET 2...|false Completed true |4
Instance_Suspended Wed Feb 02 17:25:13 CET 2...|false -

Abbildung 30: Auditing der Instanz (2)

70

6 | Anwendungsbeispiel

Nach diesem Schritt sieht der Reiter Instances in der Apache ODE GUI exakt aus wie nach der
Migration in Abbildung 29. Das Prozessmodell, auf das die Instanz verlinkt ist, bleibt HelloWorld.v2-2
und die Instanz befindet sich wieder im Status SUSPENDED. Der einzige Unterschied ist der
Aktivitatszeitstempel, der jetzt die Zeit angibt, zu der die Instanz zuletzt aktiv war.

AnschlieBend gibt es zwei denkbare Szenarien. Die Instanz kénnte wieder auf ein neues
Prozessmodell migriert werden oder die Instanz soll in den Status COMPLETED tiberfiihrt werden.
Wenn die Instanz abermals migriert werden soll, l[duft die zweite Migration identisch zur ersten
Migration ab. In diesem Beispiel ist der Benutzer mit dem experimentellen Erstellen des
Prozessmodells fertig und mdchte keine weiteren Aktivitaten einfligen. Er wahlt die finish()-
Operation, entweder lber den Web Service oder die Apache ODE GUI, woraufhin die Prozessinstanz
beendet wird.

In Abbildung 31 ist zu sehen, dass nach dem Instance_Suspended Event die Instanz wieder aktiv wird.
Es werden die sequence- und process-Aktivitdt geschlossen und die Instanz in den Status
COMPLETED Uberfiihrt.

[] instance 251

Ewvent Source Timestamp Persis... State Persisted
Activity_Executing fprocess sequence[1] freply[1] Wed Feb 02 17:25:18 CET 2...|false Executing true
Activity_Executed fprocess sequence[1] freply[1] Wed Feb 02 17:25:18 CET 2...|false Waiting true
Activity_Complete fprocess sequence[1] reply[1] Wed Feb 02 17:25:18 CET 2...|false Completed true
Instance_Suspended Wed Feb 02 17:25:18 CET 2...|false

Instance_Running Wed Feb 02 17:27:08 CET 2...|false

Activity_Fxecuted fprocess sequence[1] Wed Feb 02 17:27:08 CET 2...|false Waiting true
Activity_Complete fprocess sequence[1] Wed Feb 02 17:27:08 CET 2...|false Completed true
Activity_Fxecuted fprocess Wed Feb 02 17:27:08 CET 2...|false Waiting true
Activity_Complete fprocess Wed Feb 02 17:27:08 CET 2...|false Completed true |:|
Instance_Completed Wed Feb 02 17:27:08 CET 2...|false -

Abbildung 31: Auditing der Instanz (3)

Im Reiter Instance in der Apache ODE GUI verandert sich der Status der Instanz auf COMPLETED. Der
Aktivitatszeitstempel zeigt den Zeitpunkt an, bei dem die Instanz zuletzt aktiv war. Die Buttons
»Resume” und ,Finish” wurden inaktiv gesetzt. Die Instanz ist jetzt beendet und kann nicht weiter
ausgefiihrt oder migriert werden.

Currently Available Instances

Instance 1D: 251 -

Process: Status: COMPLETED

Date Started: Date Last Active 2011-02-02T17:27:08.000+01:00

Abbildung 32: Status der Instanz in der Apache ODE GUI (3)

71

7 ‘ Zusammenfassung und Ausblick

7 Zusammenfassung und Ausblick

Im Rahmen dieser Diplomarbeit wurde eine Moéglichkeit untersucht, Workflow-Maschinen an die
Anspriiche von Wissenschaftlern anzupassen und eine explorative Workflow-Entwicklung zu
ermoglichen. Dazu wurden die Moéglichkeiten der Modell-Versionierung und Instanzmigration auf
eine neue Version eines Prozessmodells untersucht. Es werden die benétigten Anderungen am
Lebenszyklus einer Instanz und am Deployment von Prozessmodellen aufgezeigt und teilweise
mehrere Lésungsmoglichkeiten vorgeschlagen. Ein Konzept zur Instanzmigration wurde fir die
Sprache BPEL fiir die einzelnen Aktivitaten erarbeitet.

Auf Basis dieser Erkenntnisse wurde die Apache ODE prototypisch um die Deploy New Version-
Funktionalitat erweitert. Die Deploy New Version-Funktionalitdt ermoglicht es, mehrere Versionen
eines Prozessmodells aktiv zu halten. Des Weiteren werden Prozessinstanzen nach dem Beenden
ihrer letzten Aktivitdt am Leben erhalten und die Moglichkeit geschaffen, Instanzen auf neue
Prozessmodell-Versionen zu migrieren. Anhand eines Beispiels wurde gezeigt, wie die Deploy New
Version-Funktionalitat angewendet werden kann.

Die Untersuchungen im Rahmen dieser Diplomarbeit haben gezeigt, dass BPEL-Prozessmodelle dazu
geeignet sind, den wissenschaftlichen Anspriichen einer explorativen Prozess-Entwicklung gerecht zu
werden.

Die im Rahmen dieser Arbeit entwickelte Deploy New Version-Funktionalitat kann als Grundlage zur
Entwicklung einer Workflow-Maschine, die die Deploy New Version-Funktionalitat anbietet oder zur
Weiterentwicklung der Apache ODE verwendet werden. Die prototypische Implementierung der
sequence-Aktivitat kann als Vorlage dienen, alle weiteren BPEL-Aktivitdten zu unterstiitzen, um die
Einschrankungen des gegenwartigen Prototypens Schritt fiir Schritt aufzuldsen.

Da der Wunsch nach Flexibilitat in unserer Gesellschaft immer wichtiger wird, werden auf dem
Gebiet der Workflow Technologie weiterhin Entwicklungen stattfinden, um die Flexibilitdt und
Adaptivitdat von Workflows zu erhéhen. Aullerdem ware eine Entwicklung einer Monitoring-
Anwendung, die die Instanzmigration sowie die Anderungen, die an dem Prozessmodell
vorgenommen wurden, aufzeigt, denkbar. Diese Monitoring-Anwendung ist notwendig, da
ansonsten nicht nachvollzogen werden kann, welche migrierte Instanz welche Aktivitdaten ausgefiihrt
hat. Um Ergebnisse zuverlassig auswerten zu kdnnen, ist es essentiell wichtig, zu wissen, welche
Aktivitaten ausgefiuhrt wurden.

72

‘ Abbildungsverzeichnis

Abbildungsverzeichnis

Abbildung 1: SOA-Dreieck angelehnt an [8]......cccuuiiiiiiiiiicieee et e et e e e e bae e e e eanes 9
Abbildung 2: Prozesse und Workflows. Angelehnt an [9]........coocviiiiiiiie i 10
Abbildung 3: Dimensionen eines WoOrkfloWs [9].....cicioicciiiieie ettt rree e e e e e annnes 11
Abbildung 4: Charakteristik eines Workflow-Management-Systems. Angelehnt an [11]. 12
Abbildung 5: Aufbau einer WSDL-Datei. Angelehnt an [8].ccoccuiiiiiiiiiiiiiiiiieecre e 16
Abbildung 6: Zusammenhang abstrakter und ausfiihrbarer Prozess. Angelehnt an [9]...........ccouuue. 19
Abbildung 7: Struktur einer RPC-Style SOAP-Nachricht. Angelehnt an [8].cccccovveiiiiiieiiiieeeeiieen, 20
Abbildung 8: SOAP Verarbeitungsmodell...........ccuiiiiiiiiiiiiiiece et saee e 21
Abbildung 9: ODE Architektur. Angelehnt an [15]. ..coccuiiiiiiiiiiiie e e saee e 24
Abbildung 10: Deployment-APl der APache ODE............ooiiiuiiieeiiiie et e e estee e e saae e e e saaeeeens 28
Abbildung 11: Wavefront @iNer INSTANZevviieciiii e e e e seaee e 32
Abbildung 12: Die drei Hauptfunktionalitaten der Deploy New Version-Funktionalitat...................... 33
Abbildung 13: INStaNz-LeDENSZYKIUS........ccoeuiiiieeiiie et e e e e et e e e arae e e eensaeeeeas 36
Abbildung 14: gewlinschter INstanz LeBENSZYKIUSuveiiiciiiiiiiiieecieee e saee e 37
Abbildung 15: KONzept der AdreSSIEIUNE.......uiiiiciiieieciiee et ectree et e e e sree e e s sar e e e ssraeeessasaeeesnsseeeesns 39
Abbildung 16: graphische Darstellung des Deploy-Web Services mit deployNewVersion-Operation. 51
Abbildung 17: Architekturbild der Apache ODE mit ANAE@rUNGEN.......c.ccvvveeereeereieteeeeteeeereeee et eseneas 52
Abbildung 18: graphische Oberflache des Deploy New Version-Clientccccveeeeeeeeiiiivieeeeeeeeeccnnns 53
Abbildung 19: Sequenzdiagramm DeployNewVersion()-Operationccccccueeeeeciieeeeiiieeeeciieeeecveeeens 54
Abbildung 20: ode_instance_migration-Tabelleccvvviriiiiiiiiiiiee e 57
Abbildung 21: Schema der fiir diese Arbeit wichtigsten Tabellencccocvvveeiiiiiiiiiciiie e, 58
Abbildung 22: Aktualisieren der _remaining-LiSte......ccueiiiiiiiiiecciiie e e e e e eaaee e 60
Abbildung 23: Sequenzdiagramm finish()-OpPeration..........ccccueecieeeeeeeiiiecieeecre e esee e sreeeraeesvee s 64
Abbildung 24: Instances-Reiter aus der Apache ODE Oberflache........ccccocvveeeeciiieecciiee e 64
Abbildung 25: Urspriingliches Prozessmodell...........c..oooouiieiiciiiie ettt et et 67
Abbildung 26: Auditing der INSTANZ (1).....ccccieeeiie ettt et e re e e tre e s be e ertaeesreeebaeesaseeenes 68
Abbildung 27: Status der Instanz in der Apache ODE GUI (1) ...c.oeeeeciiieeeiiiee ettt 68
Abbildung 28: Neue Prozessmodell-VerSiONcocciiiiieciiee ettt e e et e e e et e e e e raeeeeeanes 69
Abbildung 29: Status der Instanz in der Apache ODE GUI (2) ...cecveeeieeeiiieeiee et eciee e e svee s 69
Abbildung 30: Auditing der INSTANZ (2)..eecccuiiee ettt e e e et e e e e ette e e e ebteeeeebeeeeeebaeeeeeanes 70
Abbildung 31: Auditing der INSTANZ (3)..eecccuiiee ettt e e et e e e et e e e e bt e e e e ebeeeeeebeeeeeeanes 71
Abbildung 32: Status der Instanz in der Apache ODE GUI (3) ...cccveeeeiieeiieeeiie et eeiee e evee s 71
Abbildung 33: Grafisches Modell @iNeS BPEL-PrOZESSESccccccuueeeeeirireeeeitieeeeeitieeeeeitreeeeesreeeeeessseeeesnnes 77
Abbildung 34: Code INES BPEL-PrOZESSESccccuviieietieeeeectieeeeectteeeeectteeeeeitteeeeeetteeeesasteeeseassseessnsseeeesnes 79
Abbildung 35: Alle Tabellen des Apache ODE MySQL-Schema........cccccveeeiiiieeeiiiiiecceee e 80
Abbildung 36: graphische Darstellung der Management APlc..uvieiee i 83

73

Verzeichnis der Listings

Verzei
Listing 1:
Listing 2:
Listing 3:
Listing 4:
Listing 5:
Listing 6:
Listing 7:
Listing 8:
Listing 9:
Listing 10

Listing 11:
Listing 12:
Listing 13:
Listing 14
Listing 15:
Listing 16:
Listing 17:

chnis der Listings

Aufbau eines XIML-DOKUMENLES.......ccivciiiiiiciiie ittt e s e e e e e srbaeeessasaeeeeas 14
RTAT A D1 2o T N o 1T N 14
oY PSP PPPPPPPPTN 15
WSDL-0peration BiNAINGc..ceeiiiiiiiiiiiie ettt ssrte e e s stre e s sseae e s ssaaeesssbeeeesnssseeesas 15
AT A DI =T Y T <L TN 15
WV SDL-SEIVICE 1.ttt ettt e ettt e e e e ettt e e e e e s ettt a e e e e s s s s ssbeeeeeeesesaansbeeaeesesasannrnes 15
L LYY BT =11 e o V- PPN 16
RTAT A 1 AV o 1= N 16
WWSDL AQIESSIEIUNE ..eeietiiieieiiieeeeetteeeeeetteeeesetteeeesttteessstaeeesassaeeesassaeeesnsseeeesnssseessnssseessnssenenns 38

BV T N a1V = L ol [2 SRR URURROt 42
Yoo o Toay AN a7 = A U 44
SEQUENCE-AKEIVITAT [L4] . uuuiriiieei ettt e e e e eerrtare e e e e e e e e sstaraeeeeeeee s nabssaeeeeeesessnnssnns 44
FIOW=AKEIVIEEE [14] +.vveveeeeveeeeeeeeeeeeeeesseseeesssesesssssessssessssesseessesssseesesssesesessssssesesssesssssseessenes 45
WHIlE-AKLIVITAT [L14].eiieiiiiiee ettt s e te e st e st e e ste e etae e ssbeeesaeessteesneessnseeenes 46
FF=AKEIVIEEE [14] cvrvrveeeeeeeeeeeeeeeeeeseeeeeeeeseeeeeeeesessesessesseseseessaeesseesesesesesssesseessessaeessesseeseseeseeesees 46
DICKAKEIVIEEE [14] v veevreeeveeereeeeeeesseeseseesseseeseesessseesssesasessessssesseseesesesessessssesseeessssseeseseeseessees 47
o) d = Tel Y V7 = | o 1 49

Listing 18: repeatUntil-AKtIVITAt [L14] e et ree e e e e s s abee e e s aneeas 49
Listing 19: deployNewVersionProcess()-Methode innerhalb des ODE-Clients..........ccccceevcvveeiieencveeens 54
Listing 20: Am Leben erhalten der ProzessinStanz.........c.eeeccuieeeeciieeecciiiee ettt 56
Listing 21: Am Leben erhalten einer Instanz die resumed aber nicht migriert wurdecc......... 57
Listing 22: Implementierung der Aktualisierung von _remaining......cccccccveeevvveeeeriiieeeesiiieeescieee e 60
Listing 23: Implementierung der finish-Funktionalitat in ProcessAndInstanceMangementmpl 61
Listing 24: finish-Funktion in der Mangement APlcuuiiiiiiiie it 61
Listing 25: case FINISH iN BPEIPIOCESSceieecuuiiieeiiiieeeciieeeeeite e e eettee e e e aeee e e s atee e e e eataeeeenteeesenseeesenrenas 62
Listing 26: run()- und completed()-Methode check letitFinish...........cccccoiiiieiiii i, 62
Listing 27: run()-Methode INStanzZ DEENAENcccviiiiieeciii ettt e e e ree e bae e sbee e 63
Listing 28: completed()-Methode INStanz BEENAENooeeeiiiiiiiiiee e e e 63
Listing 29: Instanziierung der Aktivitdten innerhalb des FIOWS.........cococciiiiiciiiee e, 65

74

‘ Quellenverzeichnis

Quellenverzeichnis

1.

10.

11.

12.

13.

14.

15.

16.

17.

Akram et al., Evaluation of BPEL to scientific workflows, Proc. of 6th IEEE International
Symposium on Cluster Computing and the Grid, 2006.

Wassermann et al., Sedna: A BPEL-based environment for visual scientific workflow
modeling, In: Taylor et al. (Eds.), Workflows for e-science — Scientific workflows for grids
(Springer, 2007).

Sonntag et al., Towards simulation workflows with BPEL: Deriving missing features from
GriCol, In: Alhajj, R.S. (Hrsg); Leung, V.C.M. (Hrsg);

M. Reichert and S. Rinderle, On design principles for realizing adaptive service flows with
BPEL. Proc. of EMISA 2006, Gl Lecture Nots in Informatics, LNI P-95, 2006.

A. Fritzler: Migrating WS_BPEL Process Instances -Diplomarbeit Nr. 2966 Uni Stuttgart
M. Kern: Enforcement auf laufenden BPEL-Prozessen — Diplomarbeit Nr. 2898 Uni Stuttgart

G.Starke, S. Tilkov : SOA_Expertenwissen: Praxis, Methoden und Konzepte serviceorientierter
Architektur — dpunkt-Verlag, 2007

F. Leymann, S. Weeawarana, F. Curbera, D. F. Derguson : Web Service Platform Architecture,
Prentice Hall, 2005

Frank Leymann, Dieter Roller: Production Workflow: Concepts and Techniques, Prentice Hall,
1999

M. Béhm, S. Jablonski, und W. Schulze : Workflow-Management - Entwicklung von
Anwendungen und Systemen - Facetten einer neuen Technologie -, dpunkt-Verlag, 1997

D. Hollingsworth: The Workflow Reference Model. Technical report, Workflow Management
Coalition, 1995.

T.Erl: Service-oriented architecture: concepts, technology, and design, Prentice Hall, 2005

M.E. Stevens : “Service-Oriented Architecture”, Java Web Services Architecture, Morgan
Kaufmann, 2003

OASIS: “Web Services Business Process Execution Language (WS-BPEL) Version 2.0”, 2007
http://www.ode.apache.org/
BOS V5.3 - User & Reference Guide — 19 Oct 10

P.Dadam, M.Reichert, S. Rinderle-Ma: Prozessmanagementsysteme — Nur ein wenig
Flexibilitat wird nicht reichen — 2011 Informatik-Spektrum

75

‘ Quellenverzeichnis

18. P. Dadam, M.Reichert: ADEPTflex — Supporting Dynamic Changes of Workflows Without
Losing Control — 1998 Kluwer Academic Publishers

19. I. Wassink, M. Ooms, P. van der Vet: Designing workflows on the fly using e-BioFlow

20. Lab exercise - WebSphere Process Server V7.0 — Process evolution and instance migration,
IBM 2010

21. 0. Cline, M. Surya: WebSphere Process Server Versioning: From Design to Production, IBM
2010

22. Sonntag, Mirko; Karastoyanova, Dimka: Concurrent Workflow Evolution. In: Proceedings of
the Workshop on Flexible Workflows in Distributed Systems (WiVS), Conference on
Communications in Distributed Systems (KiVS), GI-Edition Lecture Notes in Informatics (LNI),
2011. (to appear)

76

Anhang

Anhang

I. BPEL

Abbildung 33: Grafisches Modell eines BPEL-Prozesses

77

Anhang

<process name="HelloWorldi" targetNamsspace="http:/ ode /bpel sunit-test™
xmlns="http:/ /docs.oasis-open.org/wsbpel 2.0/process/ executable"™
xmlns:tns="http: ode/bpel /unit-test" xmlns:xsd="http: / vwv.w3.org 2001/ XML5chema™
xmlns:test="http: /Sfode bpel /unit-test.wsdl"
queryLanguage="urn:oasis:names: tc:wsbhpel: 2. 0:rsublang:xpathl. o"
expressionlanguage="urn:casis:names:tc:wshpsl 2. 0:sublang:xpaths. 0"
xmlns:bpel="http: ./ docs.o0asis-opsn. org/wshpsl/ 2. 0/ process/executable ™

<import location="HelloWorld2.wsdl"™ namespace="http:/ ode/bpel /unit-test.wsdl"
importIype="http://schemas.xmlsoap.org /wrsdl/" />

<partnerLinks>
<partnerlLink nams="helloPartnerLink"
partnerlinkTvpe="test:HelloPartnerLinkTyps"
myRole="me" />
</partnerLinks>

<wariables>
<variable name="myVar" messagelype="test:HelloMessage"™ (>
<variable name="tmpVar" tvpe="xsd:string” />
<hbpel:variable name="number® type="xsd:integer"></bpel:variables:
</wvariables>

<bpel:faultHandlers>
<bpel:catchill:>
<bpel:sequence>
<bpel:empty name="Empty"=</bpel:empty>
</bpel:seguence>
</bpel:catchAll>
<bpel:emptvy></bpel:empty>
</bpel:faultHandlers>

<3equence

<receive name="start" partnerlink="helloFartnsrLink"
createlnatance="yes" operation="hello"™ portlIvpe="test:HelloPortIype"
variable="myVar"=

</receive>

<bpel:assign validate="no" name="Ass3ign">
<bpel:copy>
<bpel:from>
<bpel:literal xml:space="preserve":1l</bpel:literal>
</bpel:from>
<bpel:to wariable="number"></bpsl:to>
</bpel:copy>
</bpel:assign>

<hbpel:wait name="Fait">
<bpel:for><![CDATA["PTe05"]] ></bpel:for>
</bpel:wait>
<bpel:if name="If"-
<bpel:conditicon><![CDATA[($number > 2)]]></bpel:condition:>
<bpel:sequence>
<@ssign namse="assignl">
<Copy>
<from wvariable="myVar® part="TestPart™ />
<to variable="tmpVar"™ />
< fcopy>
<Copy>
<from=concat ($tmpVar, ' World')</from>

78

Anhang

<to variable="myVar" part="TestPart" />
< /copy>
</assign>
<reply name="snd" partnerlink="helloPartnsrlLink"
portIyvpe="testrHelloPortType"
operation="hello" variable="myVar"-
<bpel :documentation></bpel :documnentation>
<freply>
</bpel:sequence>
<bpel:elss>
<bpel:throw name="Throw"
faultHame="tns:ThrovDefaul tFaul tNams "=< /bpel: throw>
</bpel:else>
</bpel:if>
</ sequence
</process>

Abbildung 34: Code eines BPEL-Prozesses

79

‘ Anhang

II. MySQL-Schema
ode_message_exchange ode_correlation_set
& MESSAGE_EXCHANGE_ID varchai255) &” CORRELATION_SET_ID bigint

ode_message_route

MESSAGE_ROUTE_ID bigint

openjpa_sequence_tahle

ode_instance_migration

£ o

tinyint

<;’5' InstancelD

bigint

ode_partner_link

ode_process_instance

ode_activity recovery

PARTHER_LINK_ID bigint

£ o

bigint

£ o

bigint

" SCOPE_ID bigint

& EVENT_ID bigint

ode_correlator ode_xml_data_prop store_process_prop
4 CORRELATOR_ID bigint £ o bigint £ i bigint
ode_xml_data ode_message store_du ode_corset_prop
& MML_DATA_ID bigint 4 MESSAGE_ID bigint & NAME varchan258) £ bigint
ode_scope ode_event store_process ode_fault

& PID wvarchan2s5)

& FAULT_ID bigint

ode_mex_prop

store_wversions

ode_job

ode_process

& o £ id

bigint

bigint

& jobid charE)

& o

bigint

ode_schema_version

store_proc_to_prop

Abbildung 35: Alle Tabellen des Apache ODE MySQL-Schema

80

‘ Anh

ang

Process and Instance Management API

5 InstanceManagementService

@ InstanceManagementPort
httpy//localhost:8080/0.. |

& ProcessManagementService

= ProcessManagementPort

httpy/flocalhost8080/0.. |}

) InstanceManagementPortType

4 listinstances

7 filter [=] string
Plinput 7 order [=] string
7 limit =l int
<Iloutput 7 instance-info-list [=] tinstancelnfolist
[gManagementFault | [managementFault [€] Managementfault
listinstancesSummary
7 filter [=] string
1input [order [=] string
i limit =l int
<output 7 instance-info-list [=] tinstancelnfolist
[@ManagementFault | [managementFault (€] ManagementFault
% querylnstances
B1input [payload [=] string
{1 output [instance-info-list [=] tinstancelnfolist
[[gManagementFault | [managementFault [e] ManagementFault
listAllinstances
[1input f
@ output [/ instance-info-list =] tinstancelnfolist

[gManagementFault | 7

managementFault

[e] ManagementFault

& listAllinstancesWithLimit

|

1input

payload

= int

@1 output

=

instance-info-list

[=] tinstancelnfolist

[gManagementFault | [

managementFault

(€] ManagementFault

getlnstancelnfo

[1input P iid [=llong

1 output 7 instance-info [=] tInstancelnfo

[gManagementFault | [managementFault (€] ManagementFault
getScopelnfo

P1input [siid =] long

Il output i scope-info [=] tScopelnfo

ManagementFault | 7

managementFault

[e] ManagementFault

% getScopelnfoWithActivity

i sid =l long
1input

i activitylnfo [=] boolean
{ioutput [scope-info [=] tScopelnfo
[[ggManagementFault | [managementFault [e] ManagementFault

& getVariablelnfo

[sid [=] string
Plinput

' varName [=] string
£l output [scope-info [=] tVariableInfo

[[ManagementFault i

managementFault

[e] ManagementFault

& listEvents

[instanceFilter [=] string
linput [f evenfFilter [=] string

[maxCount =l int
{1 output [bpel-event-list [=] tEventinfoList
[gManagementFault | [managementFault [€] ManagementFault

81

Anhang

& listEvents
[/ instanceFilter [=] string
[1input [’ eventFilter [=] string
[maxCount = int
§loutput [bpel-event-list [=] tEventinfolist
[@ManagementFault | [managementFault [€] Managementfault
3 getEventTimeline
o [7* instanceFilter [=] string
[eventFilter [=] string
<I1output [7 dates [&] listType
[gManagementFault | [managementFault [e] ManagementFault
% suspend
Biinput [iid =] long
1output [instance-info [=] tinstancelnfo
[g ManagementFault | [managementFault [e] ManagementFault
% resume
Blinput [iid [Z] long
Qioutput [instance-info [=] tinstancelnfo
[[ggManagementFault | [managementFault [e] ManagementFault
% terminate
[p1input [P iid [=) long
<1 output [/ instance-info [tinstancelnfo
[[ggManagementFault | [managementFault [¢] ManagementFault
finish
1input [iid [= long
¢lloutput [/ instance-info [=] tinstancelnfo
[gManagementFault | (7 managementFault [e] ManagementFault
fault
P1input [iid [=llong
4 output [instance-info [=] tinstancelnfo
[gManagementFault | [managementFault [e] ManagementFault
4 delete
Blinput 7 filter string
Il output P list [©] listType
[ManagementFault | [7 managementFault [e] Managementfault
& recoverActivity
[iid =l long
[1input [aid =] long
[action [=] string
{1 output [7 instance-info [=] tinstancelnfo
[gManagementFault | [managementFault [e] ManagementFauit
% replay
[1input [replay [=] Replay
)1 output ' replayResponse [=] ReplayRespcnse
[ggManagementFault | [managementFault [e] ManagementFauit
|| @& getCommunication
[1input ' getCommunication [=] GetCommunication
4 output ' getCommunicationResponse] GetCommunicationResponse
[gManagementFault | [managementFault [e] ManagementFauit

82

—p

7
—

b7 3
—

P73

—

Anhang

© ProcessManagementPortType
4 listProcesses
i filter [=] string
Dlinput
[orderKeys [=] string
{1 output [process-info-list =] tProcessInfolist “
[gManagementFault | [managementFault [e] ManagementFault ey
% listAllProcesses
linput
@ output [process-info-list [=] tProcessInfolist 7
[[ggManagementFault | [managementFault (€] ManagementFault e
listProcessesCustom
[filter [=] string
1 input [orderKeys [=] string
[customizer (=] string
{1 output [process-info-list [=] tProcessInfolist
[@ManagementFault | [managementFault [€] ManagementFault =
getProcessinfo
Plinput 7 pid =] QName
$output [’ process-info [=) tProcessInfo o
[’ ManagementFault [managementFault €] ManagementFault e
& getProcessinfoCustom
7 pid [=] QName
plinput - :
7 customizer [=] string
<1 output 7 process-info [=] tProcessinfo L 2
[gManagementFault | [7 managementFault (€] ManagementFault e
& setProcessProperty
[pid [=] QName
D1input [propertyName [=] QName
[propertyValue [=] string
{Jloutput [’ process-info [=] tProcessinfo b
[[gManagementFault | [managementFault [e] ManagementFault ==y
& setProcessPropertyNode
[pid [=] QName
Blinput [propertyName [=] QName
[propertyValue [£] anyType
4l output [process-info [=] tProcessinfo e 2
[gManagementFault | [managementFault [e] ManagementFault —p
getExtensibilityElements
[pid [=] QName
1input
[aids aidsType —
4 output [/ process-info (=] tProcessinfo viP
[gManagementFault | [managementFault [e] ManagementFault e
activate
1input [pid =] QName
@ioutput [i process-info [=] tProcessinfo
[gManagementfault | [managementfFault [€] ManagementFault e
% setRetired
7 pid =] QName
linput
7 retired =] boolean
<J1output [process-info [=] tProcessInfo 7 2
[Manag itFault | P gementFault (€] ManagementFault o

83

Abbildung 36: graphische Darstellung der Management API

Erkldarung

Hiermit versichere ich, diese Arbeit selbststandig verfasst und nur die angegebenen Quellen benutzt
zu haben.

Waiblingen, den 7. Februar 2011

Tina Schliemann

