
UNIVERSITÄT STUTTGART

FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK
Institut für Softwaretechnologie, Abteilung Software Engineering

Fachstudie

Lösungen für die Testfallverwaltung
Simon Brodtmann
Ralf Ebert
Tim Schmidt
13. Januar 2011

Betreuer
Markus Knauß
Holger Röder

Inhaltsverzeichnis

1 Einleitung 4

1.1 Zustandekommen . 4

1.2 FleetBoard . 4

1.3 Aufgabenstellung . 4

1.4 Aufbau dieses Berichts . 4

1.5 Vorgehensweise und Quellen . 5

2 Organisation 6

2.1 Analyse . 6

2.1.1 Linienorganisation . 6

2.1.2 Projektorganisation . 7

2.2 Schwachstellen . 7

2.3 Anforderungen . 8

2.4 Bestehendes . 8

3 Prozess 9

3.1 Analyse . 9

3.1.1 Dokumentation . 11

3.2 Bewertung durch die Mitarbeiter . 12

3.3 Schwachstellen . 13

3.3.1 Testprozess allgemein . 13

3.3.2 Dokumentation . 13

3.3.3 Kundenakzeptanztests . 14

3.3.4 Anforderungsverfolgung . 14

3.3.5 Manuelle Tests . 14

3.4 Anforderungen . 14

3.4.1 Allgemein . 15

3.4.2 Dokumentation . 16

3.4.3 Kundenakzeptanztests . 16

3.4.4 Anforderungsverfolgung . 16

1

3.4.5 Manuelle Tests . 17

3.4.6 Bestehendes . 17

4 Werkzeuge 18

4.1 Analyse . 18

4.1.1 ClearQuest . 18

4.1.2 ITT - Testmanagement . 20

4.1.3 Functional Tester . 21

4.1.4 soapUI . 23

4.1.5 Manual Tester . 23

4.1.6 Focal Point . 23

4.1.7 RequisitePro . 24

4.2 Bewertung durch die Mitarbeiter . 24

4.2.1 ClearQuest . 25

4.2.2 ITT - Testmanagement . 26

4.2.3 Functional Tester . 27

4.2.4 soapUI . 27

4.2.5 Manual Tester . 27

4.3 Schwachstellen . 28

4.3.1 ClearQuest . 29

4.3.2 ITT Testmanagement . 33

4.3.3 Functional Tester . 34

4.3.4 soapUI . 36

4.3.5 Manual Tester . 37

4.3.6 Focal Point . 39

4.3.7 RequisitePro . 39

4.4 Anforderungen . 39

4.4.1 ClearQuest . 39

4.4.2 ITT-Testmanagement . 41

4.4.3 Functional Tester . 42

4.4.4 soapUI . 42

4.4.5 Manual Tester . 43

4.4.6 Bestehendes . 43

5 Ideallösung 45

5.1 Organisation und Prozess . 45

5.1.1 Mehr Mitarbeiter zum Testen . 45

5.1.2 Lizenzen . 45

5.1.3 Prozess-QS . 45

5.2 Werkzeuge . 47

2

5.2.1 Testverwaltung . 47

5.2.2 Automatisierte Tests . 53

6 Wirtschaftlicher Lösungsvorschlag 55

6.1 Bewertung der Anforderungen . 55

6.2 Verbesserung von Organisation und Prozess 56

6.3 Verbesserungen im Umgang mit vorhandenen Werkzeugen 56

6.3.1 ClearQuest . 57

6.3.2 Functional Tester . 57

6.4 Alternativen zu bestehenden Werkzeugen . 57

6.4.1 Quality Manager . 57

6.4.2 Eigenentwicklung . 58

A Begriffslexikon 61

B Fragenkatalog 62

B.1 Einleitung . 62

B.2 Werkzeuge . 62

B.3 Testprozess . 63

B.4 Testfälle . 63

B.4.1 Spezifikation . 63

B.4.2 Implementierung . 64

B.4.3 Durchführung . 64

B.4.4 Auswertung . 64

C Priorisierung der Anforderungen 65

D Beispiele 67

D.1 Betrieb . 67

D.2 Telematikplattform-Test . 69

D.3 DispoPilot-Test . 71

D.4 Server- und Soap-Schnittstellen-Test . 73

Literatur . 76

3

1 Einleitung

1.1 Zustandekommen

Diese Fachstudie wurde in Zusammenarbeit der Abteilung Softwareengineering des Instituts
für Softwaretechnologie der Universität Stuttgart mit der Daimler Fleetboard GmbH initiiert.
Die Aufgabenstellung wurde von Volker Werner, als Vertreter der Daimler FleetBoard GmbH
und Holger Röder und Markus Knauß von der Abteilung Softwareengineering gemeinsam er-
arbeitet. Die Aufgabenstellung wurde uns am 23.06.2010 vorgelegt.

1.2 FleetBoard 1

Die Daimler FleetBoard GmbH wurde im Jahr 2003 als 100%ige Tochter der Daimler AG
gegründet und vereint langjährige Erfahrungen aus der LKW-Branche und Informationstech-
nologie-Know-how unter einem Dach. Das DEKRA-zertifizierte Unternehmen stattete seit
Markteinführung der FleetBoard Dienste im Jahr 2000 über 55.000 Lkw bei mehr als 1.200
Speditionen aus (Stand: 12/2009).

Die FleetBoard Zentrale befindet sich in Stuttgart-Vaihingen. Für den Einbau der FleetBoard
Hardware sorgt das Einbauteam in der unternehmenseigenen Halle auf dem Wörther Werksge-
lände oder beim Kunden vor Ort.

Weltweit beschäftigt FleetBoard derzeit mehr als 140 Mitarbeiter (Stand: 12/2009), deren obers-
te Priorität auf der Weiterentwicklung zukunftsträchtiger Lösungen für das Alltagsgeschäft von
Transportunternehmen und Logistikern liegt.

1.3 Aufgabenstellung

Aufgabe der Fachstudie ist die Analyse und Bewertung der bestehenden Test-Werkzeuge und
-Prozesse beim Industriepartner und die Konzeption eines Lösungsansatzes zur Optimierung
der Testfallverwaltung. Dabei soll insbesondere die Umsetzbarkeit des Lösungsansatzes in ei-
nem etablierten, industriellen Umfeld berücksichtigt werden.

1.4 Aufbau dieses Berichts

Die Vorbereitung unseres Lösungsvorschlags besteht aus drei Arbeitsschritten: Analyse des
Ist-Zustands, Ermittlung von Schwachstellen und Erhebung von Anforderungen. Die zu unter-
suchenden Bereiche sind die Organisation, der Testprozess und die eingesetzten Werkzeuge.

1. Quelle http://www.fleetboard.com/info/de/unternehmensportrait.html (19.11.2010)

4

Unsere Fachstudie hat sich an den Arbeitsschritten orientiert, den Endbericht haben wir zur
Verbesserung der Übersicht aber in die untersuchten Bereiche unterteilt, welche jeweils die drei
Arbeitsschritte enthalten. Zu dem Testprozess und den Werkzeugen haben wir jeweils noch die
Meinung der befragten Mitarbeiter zusammengefasst.

Anhand der erhobenen Anforderungen formulieren wir anschließend eine Ideallösung, die
einen Großteil der Anforderungen aber nicht die entstehenden Kosten beachtet. Zusammen mit
einer subjektiven Gewichtung der Anforderungen bieten wir anschließend einen wirtschaftlich
umsetzbaren Lösungsvorschlag.

Ein Begriffslexikon, der verwendete Fragenkatalog für die Interviews, Beispiele aus Clear-
Quest, sowie die vollständige Priorisierung der Anforderungen ergänzen dieses Dokument.

1.5 Vorgehensweise und Quellen

Wir hatten während der gesamten Bearbeitungszeit der Fachstudie uneingeschränkten Zugang
zu den Mitarbeitern und den von ihnen genutzten und hier vorgestellten Werkzeugen mit Test-
und Produktivdaten, sowie den firmeninternen Wikis erhalten, die zusammen die Grundlage
unserer Recherchen bilden.

Für die Analyse haben wir einen Fragebogen entworfen und insgesamt zehn Mitarbeiter aus
verschiedenen Abteilungen interviewt. Grundlage für die Wahl der verschiedenen Mitarbeiter
sind die verschiedenen Testarten, die es bei FleetBoard gibt. So wurden beispielsweise Mit-
arbeiter aus den Teams für Hardwaretests, Betriebstests und Serverschnittstellentests befragt
(siehe Abbildung 1.1).

Abbildung 1.1: Interviewte Mitarbeiter (anonymisiert)

5

2 Organisation

2.1 Analyse

Bei FleetBoard findet sich in der Abteilung Produkt und Produktion eine klassische Matrixor-
ganisation, die sich vertikal aus der Daimler-Linienorganisation zusammensetzt und horizontal
aus mehreren Scrum-Teams.

Abbildung 2.1: Organisationsstruktur

2.1.1 Linienorganisation

Die Linienorganisation untersteht dem Abteilungsleiter „Produkt und Produktion“ im Daimler-
Rang „E3“. Unter ihm befinden sich fünf Teamleiter der Ebene „E4“, die die Teams „Spezi-
fikation und Qualitätssicherung“, „IT-Betrieb“, „Produktprogramm“, „Fahrzeughardware“ und
„Realisierung“ leiten.

Spezifikation und Qualitätssicherung

Das Team „Spezifikation und Qualitätssicherung“, das auch Aufgabensteller der Fachstudie
ist, besteht aus sieben Mitgliedern. Es beschäftigt sich mit der Spezifikation von Anforderun-
gen, die vom Produktteam geliefert werden, und mit der Qualitätssicherung der Ergebnisse der
Realisierung. Dabei führen sie vor allem Integrationstests durch.

Produktprogramm

Das Team „Produktprogramm“ dient als Vermittler zwischen den Kunden, dem Vertrieb und
der Entwicklung. Ihre Aufgabe ist dabei die Sammlung, Formalisierung und Bündelung von
Anforderungen der Kunden. Zusätzlich werden – bisher noch nicht formalisiert oder mit einem
Prozess – Anforderungen aus Sicht des Kunden getestet. Da das Produktteam untypischerweise

6

der Produktionsabteilung zugeordnet ist, sind einige Mitglieder auch als Projektleiter in der
Entwicklung beschäftigt.

Betrieb

Das Team IT-Betrieb ist für die FleetBoard-Rechnersysteme zuständig. Dazu gehören nicht nur
die Arbeitsplatzrechner der Mitarbeiter, sondern auch die Server und Datenbanken der Testsys-
teme und des Produktivsystems. Die Aufgabe der Mitarbeiter dieses Teams ist die Installation
und Wartung dieser Systeme, wozu auch das Deployment neuer Releases mit anschließendem
Test der Serverinstallation gehört.

Fahrzeughardware

Zum Gesamtprodukt FleetBoard gehören auch Geräte, die in die Fahrzeuge des Kunden ver-
baut werden. Das ist zum einen die „Telematikplattform“, ein Gerät, das an den CAN-Bus des
Fahrzeuges angeschlossen ist und Fahrzeugdaten an die FleetBoard-Zentrale sendet, und zum
anderen der „Dispo-Pilot“, ein Gerät für den Fahrer zur Abwicklung von Transportaufträgen,
zur Navigation und Kommunikation. Da diese Geräte und die Software von Zulieferern entwi-
ckelt werden, ist das Hardware-Team für die Qualitätssicherung dieser Geräte zuständig, wozu
beispielsweise auch Testfahrten gehören.

Realisierung

Das größte der E4-Teams der Produktabteilung besteht aus Softwareentwicklern, die die An-
forderungen umsetzen und Server- und Clientsoftware entwickeln.

2.1.2 Projektorganisation

Quer zur Linienorganisation sind die Mitarbeiter in sechs Teams aufgeteilt, die verschiedene
Aufgabenbereiche haben und sich aus verschieden vielen Mitgliedern unterschiedlicher Vertei-
lung der Linienteams zusammensetzen. Diese Teams verwenden einen an Scrum angelehnten
Prozess. Diese Teams sind nach den Farben Rot, Grün, Gelb, Orange, Blau und Schwarz be-
nannt, wobei das schwarze Team für Integrationstests und Qualitätssicherung zuständig ist.
Die „farbigen“ Teams spezifizieren und realisieren Anforderungen, die ihnen vom Team „Pro-
duktprogramm“ geliefert werden. Dazu gehört auch die Implementierung von automatisierten
Testskripts. Dabei sind einzelnen Teams verschiedene Aufgabenbereiche der FleetBoard-Welt
zugeteilt. So kümmert sich ein Team beispielsweise um die serverseitigen Themen, während
sich andere Teams um die Cliententwicklung kümmern.
Das schwarze Team nimmt eine Sonderrolle ein. Es setzt sich größtenteils aus Mitgliedern des
Linienteams „Spezifikation und Qualitätssicherung“ zusammen, während die farbigen Teams
(sie werden meist einfach „Scrum-Teams“ genannt), großteils aus Mitgliedern des Teams „Rea-
lisierung“ bestehen. Das schwarze Team befasst sich mit Qualitätssicherung auf höherer Ebene.
Das sind insbesondere Testplanung, Testaufwandsplanung (Zuweisen von Testfällen an Tester)
und Integrationstests. Nebenher kümmert es sich ständig um die Weiterentwicklung und Ver-
besserung der Testinfrastruktur. Beispielsweise mit Hilfe dieser Fachstudie.
In den farbigen Entwicklungsteams arbeiten zusätzlich zu den Realisierern je ein Mitglied des
Teams „Spezifikation und Qualitätssicherung“ als Spezifikateur und Tester, sowie ein Mitglied
des Teams „Produktprogramm“ als Product-Owner und Projektleiter.

2.2 Schwachstellen

Anfangs machte die Organisationsstruktur einen soliden Eindruck, denn es gibt immerhin ex-
plizit ein Team für die Qualitätssicherung und delegierte Mitarbeiter in jedem Entwicklerteam.

7

Im Laufe der Analyse wurde aber klar, dass die Qualitätssicherung nicht die Stellung hat, die
sie eigentlich braucht.

Es werden Prozesse erarbeitet und definiert. Tools werden ausgesucht und eingeführt. Doku-
mentation wird angefangen. Die Analyse ergab, dass aber nichts von all dem wirklich bis zum
Ende durchdacht und umgesetzt wurde.
Prozesse sind nur implizit und teilweise weiß auch der betroffene Mitarbeiter nicht Bescheid.

(SS 2.1)
Tools werden zwar verwendet, aber nicht wie vorgesehen. Datenstrukturen entstehen zufällig
und wachsen eher, statt definiert zu werden. Dokumentation fehlt oft komplett. Wenn es sie
doch gibt, dann meist unvollständig oder mit einem falschen Fokus.

Es gab bereits eine Umstellung dahingehend, dass ein Entwickler nun nicht mehr selbst die
(SS 2.2)

Testfälle zu seinem Code schreiben soll. Sprich, es gibt full-time Tester, die den Code der
Entwickler testen sollen. Allerdings reicht die Zahl der Tester bei weitem nicht aus.

2.3 Anforderungen

2.1 Probleme auf organisatorischer Ebene

• Ursache: Prozesse sind nicht gut genug dokumentiert. Richtlinien werden nicht einge-
halten, oft gibt es aber auch keine.

• Anforderung: Es muss eine Person geben, die sich den Aufgaben gemäß LL07, Kap.
13.1.3 widmet. Die gibt es grundsätzlich zwar schon, aber die Zeit zur Umsetzung ist
nicht festgelegt und die Aufgaben sind nicht klar definiert.

2.2 Zu wenig Tester

• Ursache: Das Wachstum bei FleetBoard beschränkt sich auf die Einstellung von Ent-
wicklern. Die Zahl der Tester wächst nicht mit.

• Anforderung: Es müssen mehr Mitarbeiter für die Tests reserviert werden, damit die
Entwickler nicht mehr testen müssen. Werden zusätzliche Entwickler eingestellt, so muss
auch sichergestellt sein, dass es einen Tester gibt, der Zeit hat dessen Code zu testen.

2.4 Bestehendes

Die Matrixorganisation scheint gut zu funktionieren. Sie sollte daher so bleiben. Zwar ist es
schwierig, die Strukturen bei FleetBoard zu verstehen, allerdings ist das nur ein Dokumentati-
onsproblem.

Sehr gut ist, dass das Bewusstsein für Qualitätssicherung und Tests bei FleetBoard stark aus-
geprägt ist. Das sollte erhalten bleiben. Die meiste Kritik von uns bewegt sich daher auf einem
sehr hohen Niveau. Lobenswert ist, dass es zwei Mitarbeiter für die Entwicklung der Testinfra-
struktur gibt.

8

3 Prozess

3.1 Analyse

Um einen Überblick über den Testprozess mit den eingesetzten Dokumenten, den entstehenden
Artefakten und den involvierten Personen zu liefern, folgt ein Diagramm (siehe Abbildung 3.1).

Entwickelt wird iterativ mit einem „Release“ als Grundlage für einen Zyklus. Ein Release ent-
hält mehrere Entwicklungssprints. Während ein Release ca. alle sechs Monate fertiggestellt
wird, dauert ein Sprint genau einen Monat. Innerhalb der Entwicklungssprints wird meist nur
die neue Funktionalität getestet. In zwei Sprints wird ausschließlich die komplette Funktiona-
lität der FleetBoard Soft- und Hardware getestet.

Ein Sprint läuft wie folgt ab:

Nachdem die Testfälle spezifiziert sind, werden sie je nach Testtyp und Automatisierungsgrad
mit unterschiedlichen Werkzeugen implementiert. Das Produktmanagement gibt die geplanten
Features für das nächste Release mit dem Werkzeug Focal Point an die Entwicklerteams. Eine
Anforderung in Focal Point heißt ebenfalls „Focal Point“.

Ein Mitarbeiter aus dem Entwicklerteam, welches für eine Anforderung zuständig ist, erstellt
aus dem Focal Point (meist mit zusätzlichen Rückfragen) die Spezifikation und legt diese in
RequisitePro ab. Diese Spezifikation dient als Grundlage für alle Entwickler sowie für das
schwarze Team.

Die Spezifikation in RequisitePro dient der Entwicklung selbst und der Spezifikation der Test-
fälle in ClearQuest als Grundlage. Das wird teilweise von den Entwicklern selbst gemacht (so
ist es vom schwarzen Team auch gedacht), teilweise schreibt aber auch das schwarze Team
die Testfallspezifikationen. Manchmal werden die Testfallspezifikationen nur „Spezifikation“
genannt, wodurch die Bezeichnungen in der Praxis schwammig werden.

Am Ende eines Sprints werden die Tests vom schwarzen Team ausgeführt. Im letzten Sprint
eines Releases wird ausschließlich getestet. Einen Überblick für die Planung und Durchführung
der Tests soll die Restaufwandsschätzung, eine selbst geschriebene Weboberfläche (siehe 4.2.2
ITT - Testmanagement), bieten. Diese arbeitet mit den Daten von ClearQuest und bereitet diese
grafisch auf.

Gefundene Fehler landen in einem Bugzilla und werden am Ende des Tests von einem Buggre-
mium besprochen und priorisiert. Anhand dieser Informationen wird ein Release freigegeben
oder nicht.

Grundsätzlich wird bei FleetBoard ein Test als „erfolgreich“ bezeichnet, wenn er durchgelaufen
ist ohne einen Fehler zu finden. Es wird sehr viel Wert auf „grüne“ Testergebnisse gelegt.

9

Abbildung 3.1: Der Testprozess bei FleetBoard

10

Anforderungsverfolgung

Um verfolgen zu können, welche Testergebnisse die Implementierung einer Anforderung hat,
wurde bei FleetBoard eine Anforderungsverfolgung eingeführt. Diese besteht aus Verweisen
der verschiedenen Artefakte aus verschiedenen Tools im Spezifikations- und Testprozess un-
tereinander. So werden durchgehende Verbindungen von der Anforderung in RequisitePro über
Testfall und Testskript zum Testergebnis in der ClearQuest-Datenbank hergestellt. Diese Ver-
weise sind teilweise programmatisch nachverfolgbar realisiert, also über Referenzen in Daten-
bankfeldern, oder sie sind nur über textuelle Verweise vorhanden, die sich nicht automatisch
auswerten lassen. Abbildung 3.2 stellt diese durchaus komplexen Zusammenhänge dar. Eine
gestrichelte Linie in der Grafik stellt eine „weiche“, nicht automatisch auswertbare Verbindung
dar, während eine durchgehende Linie eine auswertbare Verbindung darstellt. Eine gepunkte-
te Linie repräsentiert keine tatsächliche Verbindung, sondern zeigt nur, wie die verschiedenen
Artefakte zusammengehören.

Abbildung 3.2: Anforderungsverfolgung bei FleetBoard

3.1.1 Dokumentation

Die beste Dokumentation des Testprozesses bei FleetBoard konnten wir im Wiki des schwarzen
Teams finden. Dort wird schrittweise das Vorgehen von der Testplanung bis zum Testabschluss
beschrieben. Allerdings stimmt der dokumentierte Ablauf nicht mit dem realen überein.

Der Prozess laut Wiki sieht wie folgt aus:

Die zeitliche und personelle Einplanung der Testaktivitäten wird im Testplan von IBM Rational
ClearQuest festgehalten.
Nach der Testplanung folgt die Testanalyse und das Testdesign. Die Umsetzung erfolgt mit
IBM Rational ClearQuest durch das Anlegen und Spezifizieren von Testfällen. Die Realisie-

11

rung erfolgt durch Umsetzung der spezifizierten Testfälle in Testskripte mit Hilfe von Testtools.
Die GUI Tests werden mit Functional Tester umgesetzt.

Bei der Durchführung werden die geplanten Testfälle in definierter Reihenfolge ausgeführt und
protokolliert. Die gefundenen Fehler werden in das Fehlermanagementsystem eingetragen und
an den zuständigen Entwickler weitergereicht.

Die Testauswertung soll den aktuellen Qualitätsstatus sichtbar machen. Testprotokolle und
Meldungen der gefundenen Fehler werden dabei ausgewertet. Dieser Qualitätsstatus ermög-
licht die Steuerung im Sprint. Der Testabschluss wird am Ende eines Sprints im Sprint Review
Meeting vorgestellt, wo der aktuelle Qualitätsstatus ausgewertet und berichtet wird.

Ein Problem ist, dass den Mitarbeitern nicht bekannt ist, dass dieser Prozess nachlesbar ist.
Dazu kommt, dass Fehler in der Dokumentation enthalten sind. So werden unserer Analyse zu-
folge die zeitliche und personelle Planung nicht im Testplan, sondern im konfigurierten Testfall
vorgenommen (siehe 4.1.1 ClearQuest).

Zur Veranschaulichung des Prozesses ist im Wiki Abbildung 3.3 zu finden. Diese Grafik ist
von sehr geringer Qualität, ist nicht mehr aktuell und belegt den aktuellen Zustand der Doku-
mentation.

Abbildung 3.3: Grafik zum Testprozess im Wiki des Integrationstestteams

3.2 Bewertung durch die Mitarbeiter

Einen kompletten Überblick über den Entwicklungsprozess von den Anforderungen bis zum
Releasetest hat von allen Befragten, wenn überhaupt, nur Volker Werner. Es gibt ein paar Be-
schreibungen in diversen Wikis, diese sind aber schlecht auffindbar und bieten keine Übersicht
über das ganze Konzept. Wenigstens die Mitglieder des Integrationstestteams müssten den Pro-
zess sehr gut kennen. Bei den meisten Mitarbeitern ist der Prozess nur implizit durch Einlernen
und Nachfragen angekommen.

Der Testprozess ist nicht allen Mitarbeitern klar. Sie wissen teilweise nicht, an welcher Stelle
sie sich im Prozess befinden und wirken teilweise unmotiviert, da sie nicht wissen, was mit
ihrer Arbeit geschieht. Ihnen ist nicht klar, wer die Ergebnisse des Testens erhält und ob diese
überhaupt angesehen werden.

12

3.3 Schwachstellen

Jedes der eingesetzten Werkzeuge bei FleetBoard deckt einen Bereich des Testprozesses ab.
Um die Werkzeuge in einen Kontext zu bringen und die Verknüpfungen untereinander verste-
hen zu können, brauchen wir einen Überblick über den Testprozess. Viele der Probleme, die
für den einzelnen Entwickler augenscheinlich bei einem konkreten Werkzeug liegen, sind aber
eher im Prozess begründet, was erst durch unsere ganzheitliche Analyse aufgedeckt werden
konnte.

3.3.1 Testprozess allgemein

Der Prozess wird aufgrund der Tatsache, dass die Mitarbeiter ihn nur mündlich überliefert
(SS 3.1)

bekommen, nicht reproduzierbar durchgeführt. Zuständigkeiten sind nicht klar. So werden
manchmal Testfallspezifikationen von den Entwicklern selbst geschrieben, in anderen Fällen
werden diese jedoch vom schwarzen Team geschrieben. Eine schriftlich festgehaltene Linie
wer was spezifiziert existiert nicht.

Es gibt pro Entwicklungsteam nur einen Spezifizierer und Tester. Da dieser nicht alle Tests
(SS 3.2)

alleine durchführen kann, helfen die Entwickler bei der Testdurchführung aus. Das bedeutet,
dass Entwickler ihren eigenen Code testen. Ihnen fehlt aber nicht nur Objektivität, sondern
auch die nötige Motivation.

Die Kommunikation zwischen dem schwarzen Team und den Entwicklungsteams wird durch
(SS 3.3)

verschiedene Versionsbezeichnungen der FleetBoard-Software erschwert. Entwickler wissen
nicht, auf welche Version sich eine Bug-Meldung bezieht und verschwenden so Zeit bei der
Suche nach dem Fehler.

Erwähnt werden sollte noch, dass mehrere Mitarbeiter, insbesondere bei den Hardwaretests,
(SS 3.4)

sagten, zur Testautomatisierung hätten sie keine Zeit. Man hat also keine Zeit, Zeit zu sparen.
Es sollte also überlegt werden, ob nicht ein fest eingeplantes Zeitbudget zur Automatisierung
von Testfällen angebracht wäre, was jeden weiteren Sprint zu mehr Einsparungen führen wür-
de. Dass dem so ist, weiß man von der Automatisierung bei der Software.

Vor allem die Übergänge zwischen den Phasen des Testprozesses bereiten Probleme. Sie sind
(SS 3.5)

oft unzureichend definiert und Artefakte haben nicht die Qualität, die für den nächsten Arbeits-
schritt erforderlich ist. Viel mündliches Nachfragen ist notwendig.

Generell sollte Redundanz so gut wie möglich vermieden werden. Uns ist aufgefallen, dass
(SS 3.6)

viele Daten bei FleetBoard redundant sind. Das wird meist technisch begründet. Bei Doku-
mentation ist es meist fehlende Zusammenarbeit und fehlende Korrekturen.

FleetBoard hat eine umfassende, für das Unternehmen spezifische, Terminologie. Das bereitet
(SS 3.7)

oft Probleme wenn unterschiedliche Teams zusammenarbeiten müssen. Abkürzungen werden
selbstverständlich verwendet, die das andere Team nicht kennt. Begriffe werden eingeführt aber
nirgends definiert.

Tester können sich oft nicht voll auf ihre Arbeit konzentrieren, sondern müssen sich mit archi-
(SS 3.8)

tektonischen Besonderheiten rumärgern. Das Starten von SSH-Verbindungen oder Testservern
wie z.B. bei soapUI sollte so gut es geht durch die Infrastruktur abgenommen oder wenigstens
vereinfacht werden.

3.3.2 Dokumentation

Ein Problem des Prozesses besteht darin, dass er im Wesentlichen mündlich verbreitet wird.(SS 3.1)

Als Folge daraus ergibt sich, dass die Motivation mancher Mitarbeiter etwas gedämpft ist, da
sie nicht wissen an welcher Stelle im Prozess sie sich befinden und wo die Ergebnisse ihrer
Arbeit landen. Sie würden es begrüßen, wenn der Prozess schriftlich festgehalten wäre.

13

Eine ausführliche Dokumentation zum Entwicklungsprozess ist bei FleetBoard nirgendwo zu
finden. Es existiert lediglich eine Wikiseite (im IT Realisierungs-Wiki), auf der erwähnt wird,
dass bei FleetBoard nach dem Scrum Prozess entwickelt wird. Dort wird auf externe Seiten zu
Scrum verlinkt. Die Mitarbeiter wissen zwar ungefähr über die Abläufe, die sie direkt betreffen,
Bescheid, jedoch fehlt ihnen der Überblick.

Zum Testprozess gibt es zwar eine Dokumentation im Wiki des schwarzen Teams, jedoch ist
(SS 3.9)

diese weder vollständig, noch entspricht sie durchgehend der Realität. Es gibt eine Schritt-
für-Schritt-Anleitung von der zeitlichen und personellen Einplanung bis zur Realisierung mit
Functional Tester. Diese ist jedoch sehr grob und nicht ausreichend für die Dokumentation
eines Prozesses.

An der Dokumentation der einzelnen Teams ist zu bemängeln, dass diese nicht immer für alle
(SS 3.10)

zugänglich ist. Außerdem ist das Wiki-Konzept fleetboardweit weder einheitlich noch über-
haupt geregelt. Verschiedene Teams verwenden verschiedene (insgesamt vier) Wikis, die ver-
schiedene Zugangsdaten benötigen und verschiedene Wiki-Software einsetzen.

3.3.3 Kundenakzeptanztests

Eine Sonderstellung in unserer Fachstudie haben die Kundenakzeptanztests, denn es gibt sie
(SS 3.11)

bisher noch nicht explizit. Sie wurden bereits vor geraumer Zeit vom schwarzen Team ange-
dacht, sind also geplant, umgesetzt wurde der Plan allerdings nie. Der momentane Stand ist,
dass das Produktmanagement komplett manuell und undokumentiert die fertige Anwendung,
oder schon vor Releaseende fertige Teilergebnisse, grob kontrolliert. Testfälle und Einschät-
zung des Ergebnisses liegen im Ermessen des jeweiligen Produktmanagers.

3.3.4 Anforderungsverfolgung (siehe Abbildung 3.2)

Die Nachverfolgbarkeit der Ergebnisse von Prüfpunkten ist automatisiert nicht möglich. Prüf-
(SS 3.12)

punkte existieren zwar in der ClearQuest-Datenbank und werden in den Logs von Functional
Tester referenziert, allerdings lässt sich keine programmatische Verbindung einem Prüfpunkt
und seinen Testergebnissen herstellen. Auch ist in ClearQuest nicht vorgesehen, dass ein Prüf-
punkt überhaupt ein Testergebnis haben kann. Die Ergebnisverfolgbarkeit ist somit nur auf
Testfall-Ebene – und damit nur für eine Gruppe von Lehrbuch-Testfällen – gegeben.

Nach der Testausführung wird zwar das Testergebnis in der ClearQuest-Datenbank gespeichert,
nicht aber das gesamte Testlog. Wenn ein Fehler aufgetreten ist, dann ist es im Nachhinein nicht
mehr möglich, mit Hilfe der Datenbank den genauen Fehler zu ermitteln.

3.3.5 Manuelle Tests

Wie sich in den Interviews herausgestellt hat, gibt es für die manuellen Tests in dem Team
(SS 3.13)

für die Telematikplattform mehrere Schichten von Testfällen. In ClearQuest gibt es jeweils
nur eine grobe Beschreibung des Testfalls ohne genauere Angaben und ohne Erwähnung von
Teilautomatisierungen durch ausführbare Testprogramme. Manual Tester enthält alle Einzel-
schritte ohne Semantik und ebenfalls ohne Erläuterung der ausführbaren Testprogramme. Als
Drittes gibt es die Testprogramme, die erst im Quellcode ihre Vorgehensweise und den Nut-
zen preisgeben. Dadurch werden die Testfälle sehr unübersichtlich. Niemand blickt komplett
durch.

3.4 Anforderungen

14

3.4.1 Allgemein

3.1 Fehlender Überblick über den Testprozess

• Ursache: Es gibt keine aktuelle und gute Dokumentation dazu

• Anforderung: Es sollte eine Dokumentation geben, die den neuen und bestehenden Mit-
arbeitern einen Überblick über den Testprozess vermittelt. Rollen und Artefakte müssen
dabei bereits eingeführt werden.

3.2 Entwickler testen ihren eigenen Code

• Ursache: Die Zeit zum Testen ist vorhanden, weil es gemacht werden muss, aber sie wird
auf die Entwickler aufgeteilt, anstatt full-time Tester dafür einzusetzen.

• Anforderung: Die benötigte Zeit abschätzen und ausreichend Mitarbeiter für die Test-
spezifikation und -automatisierung zur Verfügung stellen.

3.3 Kommunikationsprobleme bei verschiedenen Versionen der eigenen Software

• Ursache: Es gibt keine einheitliche Versionsbezeichnung der Software- und Hardware-
komponenten bei FleetBoard zwischen den verschiedenen Teams.

• Anforderung: Versionsbezeichnungen aller Produkte aus dem Hause FleetBoard müssen
vereinheitlicht sein.

• Verweis: Anf. 2.1

3.4 Zu wenig Zeit zur Automatisierung von Tests

• Ursache: Obwohl offensichtlich ist, dass dies ein Henne-Ei-Problem ist (würde man au-
tomatisieren, dann hätte man anschließend auch Zeit dafür), fehlt es an der Zeit zur
Implementierung der Automatisierung.

• Anforderung: Es muss zusätzliche Zeit zur Automatisierung von Tests zur Verfügung
gestellt werden. Am besten je Sprint eine fest definierte Menge.

3.5 Problematische Übergänge zwischen den Phasen des Testprozesses

• Ursache: Es fehlt an Dokumentation und Richtlinien für Prozessübergänge. Eine Kon-
trolle gibt es nicht.

• Anforderung: Es muss eine Dokumentation und Richtlinien für Prozessübergänge geben.
Die Richtlinien müssen kontrolliert werden.

3.6 Vermeidung von Redundanz

• Ursache: Redundanz ist bei FleetBoard recht präsent, verursacht durch technische Gege-
benheiten, fehlende Zusammenarbeit und fehlende Korrekturen von Dokumentation.

• Anforderung: Allgemein sollte dieser Aspekt bei architektonischen Veränderungen stär-
ker beachtet werden. Im Nachhinnein ist es schwierig bis unmöglich dieses Problem zu
beheben.

15

3.7 Terminologie

• Ursache: Nicht definierte Begriffe und Abkürzungen führen zu Kommunikationsschwie-
rigkeiten.

• Anforderung: Es sollte ein FleetBoard-weites Begriffslexikon angelegt werden. Auf die
Verwendung von Abkürzungen sollte möglichst verzichtet werden.

3.8 Verbesserung der Testinfrastruktur

• Ursache: Obwohl die Testinfrastruktur bereits sehr gut ist, so lässt sich im Detail noch
Ärger bei der Arbeit vermeiden.

• Anforderung: Umständliches Starten von SSH-Verbindungen und Testservern sollte so
gut wie möglich vermieden werden, sodass Tester sich auf die eigentliche Arbeit kon-
zentrieren können.

3.4.2 Dokumentation

3.9 Unzureichende Qualität der Dokumentation

• Ursache: Die Dokumentation zum Testprozess ist unfertig, ungepflegt und hält keinen
einheitlichen Qualitätsstandard ein.

• Anforderung: Neben der Übersicht über den Testprozess (siehe Abbildung 3.1), bedarf
es einer qualitativ hochwertigen Dokumentation, die ausreichend ins Detail geht um die
tägliche Arbeit erledigen zu können, sich aber trotzdem auf das Wesentliche konzentriert.

3.10 Nicht einheitliche Verwaltung der verschiedenen Dokumentationen

• Ursache: Jedes Team hat sein eigenes Wiki, teilweise nicht einsehbar für die anderen
Teams. Das führte bisher schon einmal zu Reibung und machte es schwierig sich in
anderen Wikis zurecht zu finden.

• Anforderung: Teamübergreifende Dokumentationsregeln. Eine Sorte Wiki, einheitlich
aufgebaut, zugänglich für alle Mitarbeiter.

3.4.3 Kundenakzeptanztests

3.11 Einführung der Kundenakzeptanztests

• Ursache: Kundenakzeptanztests sind angedacht, wurden aber nie eingeführt.

• Anforderung: Dies ist eine Anforderung von FleetBoard selbst. Unsere Anforderung da-
zu ist, dass die Kundenakzeptanztests erfolgreich eingeführt werden.

3.4.4 Anforderungsverfolgung

3.12 Mangelhafte Verknüpfung von Testergebnissen mit den Tests

• Ursache: Es wird lediglich ein Ergebnis zu einem Testfall gespeichert. Auf Prüfpunk-
tebene gibt es keine Zuordnung. Da das erzeugte Testlog nicht gespeichert wird, ist ein
manuelles Nachlesen auch nicht möglich.

• Anforderung: Die Testergebnisse müssen exakter werden, indem sie nicht an einen Test-
fall, sondern an einen Prüfpunkt gehängt werden. Mindestens für fehlgeschlagene (au-
tomatisierte) Tests muss das Testlog gespeichert werden um die genaue Ursache nach-
schauen zu können.

16

3.4.5 Manuelle Tests

3.13 Manuelle Tests sind zu vielschichtig

• Ursache: Durch die drei Ebenen, in denen die manuellen Tests angelegt werden, werden
diese sehr unübersichtlich und die Wartbarkeit leidet.

• Anforderung: Zusammenführung der Ebenen auf eine. ClearQuest ist der sinnvollste Ort
um manuelle Tests umfassend und mit allen notwendigen Daten abzuspeichern. Eine
Durchführung sollte allein mit den Daten aus ClearQuest möglich sein. Es wird lediglich
ein Werkzeug benötigt, was diese Durchführung unterstützt. Der Manual Tester wird
dafür eigentlich nicht benötigt.

3.4.6 Bestehendes

Nachdem wir ein aktuelles Diagramm vom Testprozess erstellt hatten, stellten wir fest, dass
der Prozess selbst sehr gut durchdacht und auch sinnvoll ist. Alle Schwachstellen zum Prozess
betreffen nur die Dokumentation, die Umsetzung und kleine Details. Die Grundstruktur sollte
aber bleiben wie sie ist.

17

4 Werkzeuge

4.1 Analyse

Die Daimler FleetBoard GmbH verwendet für die Testfallverwaltung und -durchführung einige
Produkte von IBM Rational, Eviware soapUI und eine teilweise selbst entwickelte Webober-
fläche. Diese Werkzeuge untersuchen wir in diesem Kapitel genauer auf Schwachstellen.

4.1.1 ClearQuest

Abbildung 4.1: ClearQuest

ClearQuest ein Änderungsmanagementwerkzeug mit Unterstützung für Bugtracking und Pro-
zessautomatisierung. Bei FleetBoard wird allerdings nur die Komponente „ClearQuest Test-
Manager“ verwendet. Der ClearQuest TestManager ist ein Werkzeug, das die Testplanung und
Spezifikation unter einem Hut vereinen soll. Es besitzt eine zentrale Datenbank, in der alle Da-
ten der Testplanung, -spezifikation, des Testfortschritts sowie Testergebnisse gespeichert wer-

18

den. Jeder Mitarbeiter kann mit seinem ClearQuest-Client auf die zentrale Datenbank zugreifen
und Änderungen an ihr vornehmen.

ClearQuest ist ein sehr frei konfigurierbares Werkzeug. Sowohl die Oberfläche, als auch die
Datenstruktur sind bis auf wenige Einschränkungen frei änderbar. In neuen Projekten stehen in
ClearQuest einige vorkonfigurierte Profile zur Verfügung, aus denen eines ausgesucht werden
kann. FleetBoard hat sich bei der ClearQuest-Einführung 2007 für ein sehr umfangreiches
Profil entschieden und die darin für den FleetBoard-Prozess fehlenden Dialoge ergänzt. Dabei
wurde versäumt, die nicht benötigten Dialoge zu entfernen, wodurch das Programm relativ
unübersichtlich wurde.

Zur Datenstruktur: ClearQuest verwendet zur Strukturierung der Testdaten einen Baum. Die
höchste Ebene sind sogenannte „Asset-Registries“. Sie sind dazu gedacht, die Tests nach ver-
schiedenen Softwarekomponenten oder komplett verschiedener Software zu unterteilen. Bei
FleetBoard wird hier die Unterteilung zwischen Betriebstest, Telematikplattform, Dispopilot
usw. vorgenommen.
Den Asset-Registries untergeordnet sind die Testpläne, die lediglich ein Strukturelement dar-
stellen. Die Testpläne können ineinander geschachtelt werden, sodass ein Testplan weitere
Testpläne enthalten kann. Beim Betriebstest wird z.B. durch die Testpläne eine Unterteilung
in Änderbarkeit, Benutzbarkeit, Effizienz, usw. nach ISO 8126 vorgenommen.

Den Testplänen untergeordnet sind die Testfälle. Dem Testfall sind die zum Testen und zur
Testaufwandsplanung wichtigen Daten zugeordnet. Dazu gehören die Testfallspezifikation, die
„Prüfpunkte“ und die „konfigurierten Testfälle“. Ein Testfall in ClearQuest entspricht nicht dem
Begriff des Testfalls aus dem Lehrbuch [vgl. LL07, Kap. 19.1.1]. Der Lehrbuchtestfall enthält
die Vorbedingung, die Aktion und das Sollresultat. Der Testfall in ClearQuest kann durch das
Konzept der Prüfpunkte mehrere Lehrbuchtestfälle enthalten.
Ein Prüfpunkt enthält genau die Daten, die der Lehrbuchtestfall vorsieht. Er wurde bei Fleet-
Board aus technischen Gründen eingeführt, da der Prüfpunkt in Functional Tester bereits exis-
tierte und eine Verfolgung des Prüfpunktes zur Spezifikation des Testfalles ohne die Einbin-
dung des Prüfpunktes in ClearQuest nicht oder nur schwer möglich war. In Functional Tester
werden zur Reduktion des Programmieraufwandes mehrere Prüfpunkte von einem Testskript
abgedeckt. Daher enthalten die Testfälle, die mit Functional Tester automatisiert sind, in der
Regel mehrere Prüfpunkte.

Ein „konfigurierter Testfall“ ist mit einem Testfall verknüpft. Ein Testfall kann beliebig vie-
le konfigurierte Testfälle enthalten. In einem konfigurierten Testfall kann festgehalten wer-
den, auf welchem System mit welcher Konfiguration getestet werden soll. So könnte man
für verschiedene Rechner mit verschiedenen Betriebssystemen und Hardwarekonfigurationen
konfigurierte Testfälle anlegen. Diese könnten dann von einem Rechner gestartet werden und
ClearQuest würde den Test auf dem entsprechenden Zielrechner ausführen und die Testlogs
in die ClearQuest-Datenbank schreiben. Bei FleetBoard wird diese Funktionalität nur von den
Hardware-Teams genutzt. Bei den Software-Teams hat jeder Testfall genau einen konfigurier-
ten Testfall. Dieser muss vorhanden sein, da die Testlogs, der Tester und der geplante Aufwand
an konfigurierte Testfälle angehängt werden.

Dokumentation

Die Dokumentation beschränkt sich auf das Wiki des schwarzen Teams. Sie ist auf zwei Seiten
verteilt, die untereinander nicht verlinkt sind. Auf der einen Seite, „Tipps rund um ClearQuest“,
die unter der Kategorie „Testing Tools“ -> „Anleitungen“ zu finden ist, werden nur die Konfigu-
ration des Programms für den Einstieg in die FleetBoard Entwicklungs-ClearQuest-Datenbank
und ein paar technische Details wie zum Beispiel das unlocken einer Datenbank erklärt. Für
Fragen rund um das Programm verweist die Wiki Seite auf verschiedene externe Seiten z.B.
von IBM. Wie ein neuer Testplan oder -fall angelegt werden kann, wird hier nicht geklärt.

19

Eine recht oberflächlich gehaltene Beschreibung zur Verwendung von ClearQuest bei Fleet-
Board ist auf der zweiten Wiki Seite zu finden. Diese Seite liefert für den Einstieg etwas zu
knappe Informationen. Hier wird lediglich das Anlegen von Testplänen, jedoch nicht das An-
legen von Testfällen erklärt.

4.1.2 ITT - Testmanagement (auf BiRT basierend)

Abbildung 4.2: ITT - Testmanagement

Das ITT-Testmanagement Tool ist eine vom Integrations-Test-Team entwickelte Weboberflä-
che. Es ist an die Datenbank von ClearQuest angebunden und wird zum Eintragen von geplan-
ten Aufwänden und Restaufwänden verwendet. Zudem können über diese Oberfläche Tester-
gebnisse, die nicht über Functional Tester oder Manual Tester in die ClearQuest Datenbank
gelangt sind, von Hand eingetragen werden.

Das Tool hat eine Startseite, auf der es eine klare Trennung zwischen den beiden abgedeck-
ten Bereichen gibt. Zum einen die Releaseplanung und zum anderen die Auswertungen. Diese
klare Trennung ist allerdings nur oberflächlich vorhanden. Klickt man sich durch das Tool, ge-
langt man auf Seiten, die einen anderen Titel haben, als der Link, auf den man geklickt hat. So
entsprechen sich z.B. die Ansicht Aufwandsplanung in der Releaseplanung und Restaufwände
in den Auswertungen.

Die Releaseplanung bietet nur eine für unsere Fachstudie relevante Ansicht: „Aufwandspla-
nung“.

In der Aufwandsplanung können konfigurierte Testfälle nach verschiedenen Kriterien gefil-

20

http://www.eclipse.org/birt

Abbildung 4.3: ITT - Testmanagement

tert angezeigt werden. In dieser Ansicht nimmt einerseits das schwarze Team die Einplanung
des Testpersonals vor, andererseits wird die selbe Ansicht von den Testern genutzt, um ihre
geplanten Aufwände und den Restaufwand einzutragen. Hier erhalten sowohl die Tester, als
auch das schwarze Team einen Überblick über die noch durchzuführenden Testfälle und den
Restaufwand, der hierfür noch benötigt wird.

Die Testfallspezifikationsansicht bietet eine einfache Möglichkeit, sich einzelne Testfälle mit
den dazugehörigen Prüfpunkten anzeigen zu lassen.
Der Anforderungsabdeckungsbericht liefert eine Statistik zur Gesamtzahl der Anforderungen
(aus Focal Point) und denen, die in Form von Testfällen in ClearQuest abgebildet sind.

Die restlichen Ansichten im Bereich Auswertungen sind für die Fachstudie uninteressant und
ihr Nutzen erscheint grundsätzlich fragwürdig.

Dokumentation

Es wird im Wiki des schwarzen Teams auf die Seite des BiRT Projektes verwiesen und erklärt,
dass das ITT-Testmanagement innerhalb der Auswertung der automatisierten Tests zum Einsatz
kommt. Zudem gibt es ein langes PDF als Dokumentation zur Verwendung welches ein sehr
niedriges Niveau hat.

4.1.3 Functional Tester

IBM Rational Functional Tester ist ein auf Eclipse aufsetzendes Werkzeug für die Aufnahme,
Wiedergabe und Protokollierung von GUI-Tests. Es unterstützt dabei u.a. Windows-, HTML-,
Swing- und SWT-Oberflächen. Die Testskripte werden als Java-Programme gespeichert, kön-
nen nach der automatischen Aufnahme beliebig bearbeitet werden und bieten den vollen Funk-
tionsumfang von Java. Neben der Navigation in Oberflächen bietet Functional Tester umfang-
reiche Möglichkeiten zum Auslesen von Daten aus der getesteten Oberfläche und zum Ab-
gleich mit Soll-Ergebnissen. Während der Testdurchführung erstellt Functional Tester außer-
dem ein detailliertes Testlog im HTML-Format.
Eng betrachtet ist Functional Tester also eine API, die das Auslesen von Stuktur- und Inhalts-
informationen aus verschiedenen Benutzeroberflächen ermöglicht. Um Objekte und Inhalte in
der zu testenden Software einfacher und zuverlässiger auffinden zu können, werden Objek-
te in den FleetBoard-Oberflächen mit eindeutigen Objekt-IDs versehen. Da diese Objekt-IDs

21

Abbildung 4.4: Functional Tester

das Verhalten der zu testenden Software nicht beeinflussen, ist dies keine Instrumentierung im
klassischen Sinne. Die Produkte werden mit Objekt-IDs zum Kunden ausgeliefert.
Um Functional Tester einfacher verwendbar zu machen und um ihn an die FleetBoard-Ober-
flächen anzupassen, wurden verschiedene Erweiterungen vorgenommen, insbesondere um die
Verfolgbarkeit von Anforderungen über Testfälle zu Testergebnissen zu ermöglichen. Dazu
wird die sogenannte Prüfpunkt-ID aus ClearQuest („ClearQuest-ID“ oder kurz „cqid“) in Test-
skripte und Testprotokolle aufgenommen. Weiterhin gibt es einen Wrapper, um soapUI-Test-
fälle in Skripte von Functional Tester einzubinden und um die soapUI-Testergebnisse in das
von Functional Tester erstellte Testlog zu integrieren. Das Testergebnis („fail“, „pass“, „known
bug“) wird nach der Testdurchführung zum zugehörigen Testfall (falls vorhanden) in die Clear-
Quest-Datenbank geschrieben.
Verwendet wird Functional Tester zur Testautomatisierung:

• Von den Spezifizierern und Qualitätssicherern in den farbigen Scrum-Teams.

• Von den Mitgliedern des Teams IT-Betrieb.

• Von den Mitgliedern des schwarzen Teams.

• Zukünftig von den Mitarbeitern im Hardware-Team, wo momentan keine Zeit zur Test-
automatisierung zur Verfügung steht.

Dokumentation

Im Wiki des schwarzen Teams existieren mehrere Seiten zu Functional Tester. Dort sind die
Einrichtung von Projekten, die grundsätzliche Bedienung, die ersten Schritte sowie Tipps und
Tricks ausführlich beschrieben. Zusätzlich existieren Beschreibungen der selbst erstellten Zu-

22

sätze und Wrapper, beispielsweise der soapUI-Integration. Diese sind allerdings teilweise ver-
altet. Durch die hohe Komplexität ist eine persönliche Einführung in Functional Tester ohnehin
notwendig. Richtlinien zur Testskriptgestaltung sind vorhanden, aber durch die Weiterentwick-
lung der Testinfrastruktur ebenfalls nicht mehr aktuell.

4.1.4 soapUI

Eviware soapUI ist ein OpenSource-Werkzeug zur Durchführung von Tests von SOAP-Schnitt-
stellen. Es lassen sich mit Hilfe von WSDL schnell SOAP-Abfragen erstellen, parametrisieren
und durchführen. Allerdings reicht der normale Funktionsumfang von soapUI nicht für die
komplexen Tests bei FleetBoard aus, weswegen das Tool stark erweitert wurde. Das erhöht zu-
sätzlich die Einstiegshürde. Diese Erweiterungen bestehen in einem komplexen Mock-Service,
der lokal eine Webservice-Schnittstelle simuliert, die in Java implementiert ist und wiederum
komplexe Aufgaben wie Direktzugriffe auf die Datenbank erledigt.
Testfälle bestehen aus einzelnen Testschritten und werden in Testsuiten gruppiert, die sich be-
liebig verschachteln lassen. Die Ergebnisse von Testschritten können mit sogenannten Asserti-
ons (Annahmen) geprüft werden. Dabei werden unter anderem XPath-Ausdrücke verwendet.
Bei der Testdurchführung in soapUI wird kein Log erzeugt. Es wird dem Benutzer lediglich
angezeigt, ob sein Test erfolgreich war oder nicht.

Dokumentation

soapUI ist im Wiki des schwarzen Teams sehr ausführlich beschrieben. Beschrieben werden
das Layout der Testsuite, die enthaltenen Projekte, die Bedienung des Programms und die
Richtlinien zum Schreiben von Testfällen. Die Erweiterungen zu soapUI sind ebenso doku-
mentiert, wie deren Entwicklung und die soapUI-Seite der Functional Tester Integration.

4.1.5 Manual Tester

IBM Rational Manual Tester ist ein Werkzeug zur Unterstützung von manuellen Tests, das mit
Functional Tester mitgeliefert wird und sein Pendant für manuelle Tests darstellt. Hier können
Testschritte, Prüfschritte und Sollergebnisse genau in Form eines stark annotierten Dokumen-
tes beschrieben werden. Diese Testbeschreibung aus Benutzeraktionen und Prüfungen kann
bei der Durchführung des Tests abgearbeitet werden. Dabei wird der Tester Schritt für Schritt
durch den Testablauf geführt. Es können bei einzelnen Testschritten automatisch Texte in oder
aus der Zwischenablage kopiert werden oder dem Tester andere nützliche Informationen ein-
geblendet werden.
Während der Testdurchführung erzeugt Manual Tester ein Testlog, das die durchgeführten Test-
schritte sowie die Soll- und Istergebnisse enthält. Manual Tester Skripte können über Clear-
Quest gestartet werden, um das Zurückschreiben der Ergebnisse in die ClearQuest-Datenbank
zu ermöglichen.

Dokumentation

Für Manual Tester gibt es keine allgemeine Dokumentation. Wir konnten lediglich eine Kopf-
zeile finden, die für Manual Tester Skripte verwendet werden soll und einige Änderungsricht-
linien, die die Verfolgung von Änderungen in Manual Tester Skripten erleichtern soll.

4.1.6 Focal Point

Das Produktmanagement verwendet Focal Point um seine Anforderungen einzutragen, zu prio-
risieren und zu verwalten. Die Entwickler holen aus Focal Point die Anforderungen als Da-
tengrundlage für die Spezifikation. Gegebenenfalls werden Bugs mit Anforderungen in Focal
Point verknüpft. Wir haben dieses Tool für die Fachstudie nicht weiter untersucht, da es nicht

23

Abbildung 4.5: Manual Tester

für die Testfallverwaltung relevant ist. Lediglich die Anbindung an die anderen Werkzeuge per
ID wurde von uns beachtet.

Dokumentation

Zu Focal Point haben wir keine Dokumentation gefunden.

4.1.7 RequisitePro

RequisitePro ist ein Werkzeug zur Verwaltung von Spezifikationsdokumenten und Use Cases.
Die Dokumente werden dabei als annotierte Microsoft Word Dokumente gespeichert, in denen
einzelne Anforderungen markiert sind. Datengrundlage für die Spezifikationen in Requisite-
Pro sind die Anforderungen aus Focal Point und die mündliche Absprache mit den Produkt-
managern. Verwendet wird RequisitePro von den Spezifizierern, die in den Entwicklerteams
arbeiten, um Spezifikationen zu schreiben. RequisitePro hat für diese Fachstudie die gleiche
Bedeutung wie Focal Point.

Dokumentation

Zu RequisitePro gibt es lediglich Informationen zum Einrichten des Programms. Diese sind im
IT-Realisierungs-Wiki hinterlegt. Zur Verwendung konnten wir keine Dokumentation finden.

4.2 Bewertung durch die Mitarbeiter

24

Bei FleetBoard werden einige Werkzeuge im Zusammenhang mit den Tests verwendet, welche
teilweise auf die gleichen Daten zugreifen. Es gibt eine enge Verzahnung der Aufgaben in den
einzelnen Werkzeugen, die meist nicht zufriedenstellend unterstützt wird, und oft für Reibung
und Frust bei der täglichen Arbeit sorgt.

4.2.1 ClearQuest

Als Verwaltungswerkzeug für die Testfälle ist es nicht nur für unsere Fachstudie, sondern auch
für den Testprozess von zentraler Bedeutung. Fast alle Mitarbeiter, die etwas mit Tests zu tun
haben, verwenden ClearQuest. Entsprechend viele Meinungen haben wir erhalten.

Allgemeine Verwendung von ClearQuest

Generell wird ClearQuest so eingesetzt, wie es vom schwarzen Team gedacht ist. Es werden
Testfälle strukturiert und spezifiziert bzw. wer die Automatisierung implementiert findet darin
seine Datengrundlage. Aus diesem Rahmen fallen allerdings die Hardware-Teams. Das Team
der Telematikplattform verwendet ClearQuest für die Spezifikation im eigentlichen Sinne und
spezifiziert seine Testfälle im Manual Tester. Für die Tests des DispoPilots gibt es in ClearQuest
nur eine leere Hülle von Testfällen ohne Prüfpunkte um eine Strukturierung zu erreichen, an
die die Manual Tester Skripte gekoppelt sind. Zu erwähnen ist noch, dass die SOAP-Tests nur
in ClearQuest existieren um die Ergebnisse eintragen zu können. Prüfpunkte gibt es keine.
ClearQuest bildet lediglich die Projektstruktur aus soapUI ab.

Strukturierung der Daten

Dadurch, dass es keine einheitlichen Richtlinien zur Strukturierung gibt, sieht der Datenbaum
für jedes Team anders aus. Es gibt alte Daten, die nach Sprint strukturiert waren. Später wurde
dann nach Funktionalität umstrukturiert. Innerhalb der Funktionalitäten trennen manche Teams
aber wiederum nach Versionen. Dann ist die Trennung zwischen Testfall und Prüfpunkt nicht
klar. Es gibt Teams, die in einen Testfall genau einen Prüfpunkt stecken (z.B. das Team, das die
Telematikplattform testet), andere haben pro Testfall eine lange Liste von 30 Prüfpunkten. Das
DispoPilot-Testteam verwendet eine Nummerierung vor dem Testfallnamen für verschiedene
Konfigurationen. Es gibt also momentan zehn Kopien eines Testfalls mit jeweils der Zahl dazu
vor dem Namen, obwohl ein Testfall eigentlich mehrere Konfigurationen zulässt. Innerhalb der
eigenen Daten wird z.B. für den DispoPilot die Suchfunktion von ClearQuest verwendet, um
die passende Konfiguration „auszuwählen“. Durch vorherige Migrationen gibt es zudem sehr
viele leere Testfallhülsen ohne Prüfpunkte.

Die Existenz der Prüfpunkte, die eigentlich das sind, was laut Lehrbuch ein Testfall ist, und
die Verwendung der Testfälle als weitere Kategorisierungsmöglichkeit neben den Testplänen,
kommt niemandem falsch vor und wird akzeptiert, da es anscheinend von ClearQuest so vor-
gegeben ist. Der Ursprung dieser Strukturierung ist allerdings technischer Natur und eine Er-
findung des schwarzen Teams. Das war niemandem aus den anderen Teams klar.

Testfälle

Testfälle sind bei FleetBoard lediglich Container für Prüfpunkte. Diese Prüfpunkte werden in
einem extra Fenster an einen Testfall gehängt. Bemängelt wurde dabei, dass keinerlei Abhän-
gigkeiten oder Reihenfolge zwischen Prüfpunkten möglich ist. In der Praxis läuft man durch
einen Prüfpunkt durch, der z.B. alle Tests in einem Abschnitt der grafischen Oberfläche enthält,
und hat dafür eine gemeinsame Vorbedingung und Nachbedingung. Zwischen den einzelnen
Schritten gibt es eine bestimmte Reihenfolge, da sie aneinander anknüpfen. Diese Vorgehens-
weise ist momentan nicht sinnvoll in ClearQuest abbildbar. Umgangen wird das Problem fast
einheitlich durch einen „Setup-Prüfpunkt“, der Vorbedingung für alle anderen Prüfpunkte ist.
Ebenfalls bemängelt wird, dass man Testfälle nicht in einer Ansicht „runterschreiben“ kann,

25

sondern umständlich für jeden Prüfpunkt ein extra Fenster braucht, in dem man vor dem Bear-
beiten noch einen „Bearbeiten-Knopf“ drücken muss.

Auffällig bei den Testfällen ist weiterhin, dass es viele von niemandem verwendete Eingabefel-
der gibt. Es handelt sich meist um Standardfelder, die ClearQuest mitbringt, die aber auch ohne
weiteres entfernt werden könnten. Die „Beschreibung des Testfalls“ hat einen Knopf zum Ak-
tualisieren, welcher von Hand gedrückt werden muss, wenn man diese Daten aktuell braucht.

Prüfpunkte

Die Eingabe ist recht übersichtlich, da sie nicht so überladen ist wie bei den Testfällen. Die
drei Felder für Vorbedingung, Aktion und Nachbedingung sind für die meisten Tester ausrei-
chend, da sie Freitext zulassen. Manche bemängeln daran, dass Freitext zu viel Spielraum lässt
und somit eine einheitliche Verwendung kaum möglich ist. Andere bemängeln, dass die meis-
ten ihrer Testfälle gleich aufgebaut sind und die Felder somit fast immer den gleichen Inhalt
bekommen. Man wünscht sich Vorlagen. Die GUI-Tester prüfen z.B. sämtliche Eingabefelder
auf standardisierte Wertebereiche. Das ist für alle Felder identisch. SOAP-Tests sind ebenfalls
immer gleich aufgebaut. Die Idee der Templates geht allerdings einher mit der Annahme, dass
drei Freitextfelder die passende Eingabe für die Prüfpunkte sind.

Suchfunktion

Um Mängel der Werkzeuge zu umgehen sind einige Mitarbeiter gezwungen, die Suchfunktion
von ClearQuest zu verwenden. Bemängelt wurde dabei, dass die angebotene Methode über das
grafische Zusammenklicken von SQL-Queries unflexibel und kompliziert ist, zusätzlich ist der
Funktionsumfang von SQL nicht ausschöpfbar. Die Ausgabe wiederum stellt keinen Zusam-
menhang zwischen dem Suchergebnis und der Baumstruktur der Testpläne und Testfälle her,
da nur eine Liste gefundener Datensätze angezeigt wird. Die Suche eines gefundenen Testfalls
in der Baumstruktur geschieht von Hand!

Allgemeine Bewertung

Dass ClearQuest nicht schwer zu erlernen ist, finden eigentlich alle. Auch wir als Außenste-
hende kommen relativ schnell damit zurecht. Es wurde allerdings durchgehend von allen Betei-
ligten bemängelt, dass ClearQuest bei der täglichen Verwendung viel zu umständlich ist. Man
benötigt extrem viele Klicks, selbst für die einfachsten Aufgaben. Für alles gibt es ein neues
Fenster.

Etwas paradox scheint, dass ClearQuest extrem starr und unflexibel ist, obwohl es doch als
extrem flexibles Werkzeug für vielerlei Aufgaben konzipiert ist. Leider ist es nur für den Admin
bei der einmaligen Konfiguration flexibel. Im Alltag nervt es jeden, der damit arbeiten muss
mit seinen unzähligen unsinnigen Macken. Die Bewertungen auf einer Skala von 1-10 gehen
zwar weit auseinander und reichen von 2 bis 9,5, allerdings werden die positiven Meinungen
nur durch das bloße Erfüllen der Aufgaben von ClearQuest begründet. Angenehm findet das
Werkzeug keiner der Befragten.

4.2.2 ITT - Testmanagement

Diese Sammlung von diversen selbst entwickelten Werkzeugen arbeitet komplett auf den Daten
von ClearQuest und gleicht dadurch im Grunde lediglich dessen Schwächen aus. Daher ist die
Bewertung dieser Werkzeuge recht positiv.

Die Ansicht „Testfallspezifikation“ zeigt alle Testfälle aus der Baumstruktur von ClearQuest ta-
bellarisch wie man es von früheren Excel-Tabellen kennt. Der Nutzen ist uns nicht klar. Keiner
der Befragten hat diese Ansicht erwähnt. Sie scheint nicht verwendet zu werden.

26

„Restaufwandplanung“ bietet die Möglichkeit, die Dauer von Tests vorab zu schätzen, sowie
Ergebnisse der Tests manuell einzutragen. Viele Testfälle haben hier den Standardwert von 20
Minuten. Anstatt zur Planung wird das Werkzeug vor allem zum Eintragen der Ergebnisse von
manuellen Tests verwendet. Wir haben festgestellt, dass mit dieser Übersicht die Planung der
manuellen Tests gemacht wird. Durch das noch fehlende Ergebnis sieht der Tester die Tests,
die nach den automatisierten Tests noch nicht durchgeführt wurden. Wenn sie nicht ausgelassen
wurden, handelt es sich dabei dann um manuelle Tests.

Mit „Anforderungsabdeckungsbericht“ wird eine Verbindung der Anforderungen in Focal Point
und den dazugehörigen Testfällen in ClearQuest hergestellt. Man kann damit recht gut sehen
wofür noch Testfälle erstellt werden müssen. Bemängelt wurde daran nichts.

4.2.3 Functional Tester

IBM Rational Functional Tester wird von den Mitarbeitern, die ihn verwenden, durchweg po-
sitiv bewertet. Insbesondere der Funktionsumfang und die Flexibilität des Werkzeugs wurden
von den Befragten hervorgehoben. Durch die Verwendbarkeit des vollen Java-Funktionsumfangs
ist Functional Tester sehr mächtig und kann von den Mitarbeitern für Zwecke eingesetzt wer-
den, die ursprünglich nicht zum Funktionsumfang gehörten, beispielsweise die Fernsteuerung
von Servern über SSH.
Weniger gut bewertet wurden Erlernbarkeit und Bedienbarkeit. Der Einarbeitungsaufwand sei
recht hoch und die Bedienung ließe zu wünschen übrig. Allerdings ist nach der Einarbeitung
ein effizienter Betrieb gut möglich.

4.2.4 soapUI

soapUI wird von allen als sehr nützlich empfunden. Sein purer Zweck, das Testen von SOAP-
Schnittstellen, verschafft diesem Werkzeug eine durchweg positive Bewertung, dabei wird die
Einstiegshürde von allen als sehr hoch empfunden und es gibt doch einige Macken.

Problematisch ist, dass große Teilbäume aus der Datenstruktur als Projekt in einer einzigen
sehr großen XML-Datei abgespeichert werden. Da XML sich über SVN nicht zuverlässig zu-
sammenführen lässt, werden ganze Projekte von einem einzigen Mitarbeiter gesperrt, sodass
nur er daran arbeiten kann. Eine Zusammenarbeit mehrerer Benutzer ist also äußerst schwierig
bzw. in der Praxis unmöglich und produziert sehr häufig Wartezeiten und die Notwendigkeit
der mündlichen Absprache.

In Kauf genommen wird ohne große Beschwerden, dass es manchmal Darstellungsfehler hat
und gelegentlich abstürzt. Immerhin gibt es keine bessere Alternative zu dem Programm.

Die Verbindung mit ClearQuest und Functional Tester ist nicht optimal. soapUI hat eine ei-
gene Datenstruktur, die in ClearQuest lediglich mit Dummy-Testfällen abgebildet wird um
die Testergebnisse hinterlegen zu können. Für diese Verbindung sorgt Functional Tester in-
dem es zu einem Testfall aus ClearQuest das passende soapUI-Skript startet. Zusätzlich gibt
es „Mockup“-Services, SOAP-Server, die dazu da sind um beliebigen Code ausführen zu kön-
nen. Bei der Verwendung dieser ganzen Verbindungen werden diverse SSH-Verbindungen und
gestartete Server benötigt, was dem Tester das Leben unnötig schwer macht.

In soapUI gibt es mit der Strukturierung der Daten das gleiche Problem wie in ClearQuest: Es
gibt keine Richtlinien.

Erwähnenswert sind noch die riesigen Property-Dateien, welche Einstellungen sowie eine Art
Datenbank enthalten. Diese sind weder übersichtlich noch wartbar.

4.2.5 Manual Tester

Wir haben zwei Personen zum Manual Tester befragt. Je eine aus dem Team für die Tele-
matikplattform und für den DispoPilot. Manual Tester wird lediglich für die Hardwaretests

27

verwendet, da eine Automatisierung nicht in dem Maße möglich ist wie bei den reinen Soft-
waretests. Beide Personen bewerten den Manual Tester völlig unterschiedlich. Im Team der
Telematikplattform ist man ziemlich unglücklich mit dem Werkzeug. Das Team des DispoPi-
lots ist halbwegs zufrieden.

Vorteile des Manual Testers sind die Anbindungsmöglichkeit an die ClearQuest-Datenbank
sowie die automatische Erstellung eines Testlogs.

Zu den Nachteilen:
Auf den ersten Blick ähnelt ein geöffnetes „Test-Skript“ einem Word-Dokument. Es gibt Über-
schriften, Absätze und Aufzählungen. Zwar hat jedes Element eine formale Bedeutung im Sin-
ne des Tests, in der Praxis spielt das aber keine Rolle, da es sich ja ohnehin um einen manuellen
Test handelt, der daher auch nicht automatisch verarbeitet werden kann. Der Unterschied zu
Word besteht daher nur in der Anwesenheit eines Pfeils neben dem Dokument während der
Durchführung, welcher auch durch einen Finger ersetzt werden könnte, sowie dem automa-
tischen Anlegen einer Kopie des Dokuments in Form eines Testlogs. Dazu kommen diverse
Bedienungsschwächen vom Manual Tester. So geht z.B. kein Copy & Paste, auf Reaktionen
der Software bei Eingaben wartet man schon mal mehrere Sekunden, Bedienelemente sind viel
zu klein für den enthaltenen Text und generell ist die Usability sehr schlecht.

Aus der Abteilung Telematikplattform kam nun die Idee, Test-Skripte in ein XML-Format zu
stecken, einen „GUI-Wrapper“ für den Functional Tester zu basteln um anschließend die ma-
nuellen Test ebenfalls mit Functional Tester starten zu können. Der Sinn und die Umsetzbarkeit
dieses Vorhabens ist fraglich und wir haben dazu geraten zuerst das Ergebnis dieser Fachstudie
abzuwarten.

4.3 Schwachstellen

Die Werkzeuge, die sich in der Analyse als relevant herausgestellt hatten, wurden näher be-
trachtet und ausgewertet. Einen zentralen Stellenwert hat ClearQuest, da es die Testfallver-
waltung übernimmt. Dazu gehören erweiterte Ansichten in Form von Webinterfaces im ITT
Testmanagement. Direkt im Anschluss in der Prioritätenliste kommen Functional Tester und
soapUI, da sie die engste Anbindung an die ClearQuest-Datenbank haben und die meiste Ar-
beitszeit einsparen. Nicht weniger wichtig, aber weniger präsent bei FleetBoard, ist Manual
Tester. Bei FocalPoint und RequisitePro ist für uns nur die Anbindung an die ClearQuest-
Datenbank relevant.

Die Abschnitte der einzelnen Werkzeuge sind wie folgt unterteilt:

• Dokumentation: Das ist die Grundlage zur Einlernung in das Werkzeug. Sie wird daher
zuerst überprüft.

• Strukturierung der Daten: Alle Programme haben eine Datenstruktur auf der sie arbei-
ten. Wir werten sowohl das Datenmodell auf technischer Ebene, als auch die sichtbare
Strukturierung auf Anwendungsebene aus.

• Erlernbarkeit, Effizienz und Usability sind die drei Kernpunkte, die ein Programm ange-
nehm benutzbar machen. Usability ist sicher auch eine Ursache für die anderen beiden
Eigenschaften. Die Aufteilung wurde aber wegen der Auswirkungen so gewählt. Erlern-
barkeit sagt aus, wie leicht es für neue Mitarbeiter ist, sich mit dem neuen Programm
zurecht zu finden. Effizienz lässt indirekte Rückschlüsse auf benötigte Arbeitszeit zu
und Usability allgemein korreliert mit der Mitarbeiterzufriedenheit.

• Anbindung an andere Werkzeuge: Da sämtliche betrachtete Werkzeuge recht eng mit-
einander verzahnt sind, ist es besonders wichtig dort Schwachstellen zu finden und An-
forderungen an neue Lösungen festzuhalten.

28

• Kosten: Dieser Aspekt ist notwendig für den Vergleich mit neuen Lösungen. Besonders
teure Werkzeuge fallen hier auf. Beachtet wurden verschiedene Arten von Kosten, wie
sie auch in LL07 Kapitel 2.1 vorkommen. Allerdings werden hier nur auffällige Aspekte
erwähnt.

4.3.1 ClearQuest

Dokumentation

Generell wird die Dokumentation zu ClearQuest im internen Wiki der zentralen Aufgabe die-
(SS 4.1)

ses Werkzeugs nicht gerecht. Es sind lediglich zwei Seiten zu ClearQuest vorhanden. Die eine
beschränkt sich auf die Einrichtung auf einem lokalen Entwicklungssystem. Solch eine Seite
ist notwendig und muss gepflegt werden. Die zweite Seite beschäftigt sich mit der Verwendung
von ClearQuest, geht dabei aber nicht genug ins Detail, deckt nicht den gesamten Aufgabenbe-
reich ab und vermittelt kein Gesamtkonzept der Anwendung. Ebenfalls fehlt die Positionierung
von ClearQuest relativ zu den anderen Anwendungen im Bereich Test.

Bisher wurde die Aufgabe der Dokumentation komplett durch mündliches Einlernen übernom-
men. Das ist generell sehr gut, auf eine schriftliche Dokumentation zum Nachschlagen sollte
aber dennoch nicht verzichtet werden.

Strukturierung der Daten

ClearQuest ist ein sehr generisches Werkzeug. Leider ist das auch im Alltag sehr gut sichtbar.
(SS 4.2)

So sind zum Beispiel die ersten beiden Ebenen im Datenbaum für den Anwender komplett
überflüssig, denn sie verraten lediglich den eigenen Benutzernamen und die Datenbank zu der
verbunden wurde, und liefern zusätzlich die leere Worthülse „Asset-Registries“ als eigene Hier-
archieebene. Das Konzept der „Asset-Registries“ ist im Fall von FleetBoard weder verständlich
noch nützlich und vermischt sich mit den Testplänen und Testfällen, die die eigentliche Daten-
struktur darstellen.

Die Strukturierung der Testpläne und Testfälle wurde ursprünglich vom schwarzen Team er-
(SS 4.3)

dacht. Im Laufe der Zeit musste man die Struktur allerdings ändern, da sie sich als ungeeignet
herausgestellt hat. Dadurch gibt es Altlasten, die aufgrund von Schwächen von ClearQuest nie
umsortiert wurden und bis heute existieren. Seither wächst die Struktur in ClearQuest weiter
ohne Kontrolle durch das schwarze Team. Beispiele dazu sind im Anhang zu finden.

Zu dem Knoten „Asset-Registries“, den Asset-Registries selbst, einer von ClearQuest vorgege-
(SS 4.4)

benen Ordnerstruktur innerhalb der Asset-Registries, sowie den Testplänen, welche alle auch
einfach als Ordner oder Container bezeichnet werden könnten und somit keine Unterscheidung
bräuchten, gesellt sich zusätzlich der Testfall, welcher eigentlich als Blatt im Baum gedacht
ist, aber nur ein weiteres Containerelement zur Bündelung von Prüfpunkten darstellt. Es gibt
also sechs unterschiedliche Containertypen, die sich in der Oberfläche aber lediglich durch ih-
ren Namen unterscheiden und somit keine Typisierung bräuchten. Diese aufwendige Struktur
ist sicherlich in manchen Anwendungen sinnvoll, ist für den Test bei FleetBoard aber unnötig
kompliziert.

Das Konzept der Testfälle und Prüfpunkte wurde bisher technisch begründet. Ein Prüfpunkt bei
(SS 4.5)

FleetBoard ist ein Testfall im eigentlichen Sinne. Ein Testfall bei FleetBoard gruppiert lediglich
Prüfpunkte und enthält einige Zusatzinformationen, die aber genau so gut in einem Testplan
gespeichert werden könnten. Von den Mitarbeitern wird bemängelt, dass das Konzept eine
Abfolge von Testschritten mit Priorisierung nicht abdecken kann. Es fehlt die Möglichkeit, die
Reihenfolge von Prüfpunkten zu definieren und Abhängigkeiten zwischen ihnen herzustellen.
Zudem fehlt die Möglichkeit, für einen Testfall eine Vorbedingung anzugeben, die für alle
enthaltenen Prüfpunkte gilt.

Es existiert keine Vorgabe zum Umfang und Inhalt eines Testfalls. Der Mitarbeiter entschei-
(SS 4.6)

29

Abbildung 4.6: Datenstruktur in ClearQuest

det also selbst nach unbekannten Kriterien, ob er einen Testfall mit 25 Prüfpunkten, oder 5
Testfälle mit je 5 Prüfpunkten erstellt. Auch in seinem Ermessen liegt die Positionierung des
Testfalls in der Hierarchie. Wird ein neuer Testplan angelegt? Gehört der Testfall zu schon vor-
handenen Testplänen? Hierfür müssen Vorgaben eingeführt werden. Die Kontrolle dessen ist
schwierig, weil es keinen Testfallverantwortlichen gibt. Bei Prüfpunkten wird nicht einmal der
Autor gespeichert.

Die Konfigurierten Testfälle sind grundsätzlich nur für die Hardware-Teams relevant. Alle an-
(SS 4.7)

deren Teams verwenden dieses Konzept nur, weil es eine technische Notwendigkeit für die
Integration von Functional Tester ist. Dort hat dann ein Testfall genau eine Konfiguration. Bei
denen, die es richtig verwenden, fehlt allerdings eine Filterfunktion für Konfigurationen.

Erlernbarkeit

In diesem Punkt haben wir keine gravierenden Mängel zu beanstanden. Der Einstieg in Clear-
Quest ist relativ unproblematisch. Auch dem Team der Fachstudie war schnell klar, wie dieses
Werkzeug funktioniert.

Effizienz

ClearQuest kann bei dem einmaligen Einrichten der Architektur sowie der Einlernung der be-
nutzenden Mitarbeiter punkten. Leider schwächelt es bei der Effizienz und zwar in seiner kom-
pletten verwendeten Funktionalität.

Beginnend mit der Übersicht in Form der Baumstruktur gibt es zu bemängeln, dass die Struk-
(SS 4.8)

tur nicht einheitlich definiert ist und entsprechend von jedem anders verwendet wird. Eine gute
Suchfunktion könnte dies bis zu einem gewissen Grad kompensieren, aber die Suchfunktion in
ClearQuest schafft es weder schnell zielstrebige Eingaben zu ermöglichen, noch eine Verbin-
dung zwischen Suchergebnis und Baumstruktur, und damit eine Übersicht im mentalen Modell
des Benutzers, zu schaffen. Die Folge ist, dass man sehr viel Zeit damit verbringt, sich in den
Datenstrukturen anderer Mitarbeiter oder sogar seiner eigenen zurecht zu finden, ohne dabei

30

produktiv arbeiten zu können.

Für die Eingabe eines neuen Testfalls öffnet sich ein neues Fenster. Das ist unproblematisch,
(SS 4.9)

da ein Testfall bei FleetBoard sehr umfangreich werden kann. Weniger praktisch ist, dass für
die Eingabe eines Prüfpunktes erneut ein weiteres Fenster erscheint. Damit sind wir bei drei
offenen Ebenen auf dem Bildschirm, was dem Ganzen etwas die Übersicht nimmt. Um Ände-
rungen an einem Formular machen zu können, muss zuerst der Bearbeiten-Modus durch Klick
auf einen dafür vorgesehenen Knopf aktiviert werden. Anschließend verlässt man diesen Mo-
dus durch Speichern des Formulars. Möchte man schnell diverse Testfälle „runterschreiben“
muss man bei jedem Testfall und jedem seiner Prüfpunkte diesen Bearbeiten-Modus verwen-
den. Man muss also diverse Male von der Tastatur zur Maus wechseln um unsinnige Klicks zu
tätigen. In Excel z.B. würde man die komplette Arbeit am Stück erledigen ohne die Maus zu
verwenden und dabei erheblich Zeit und Nerven sparen.

Die fehlende Möglichkeit für Drag & Drop, sowie Copy & Paste von Testfällen und Prüf-
(SS 4.10)

punkten macht den Benutzern das Leben unnötig schwer. Umsortieren ist so aufwändig, dass
man es in der Praxis einfach nicht macht. Viele Testfälle in bestimmten Bereichen sind sehr
ähnlich und auch Prüfpunkte sind oft nahezu identisch. Trotzdem muss man alles von Hand
tippen. Hier gibt es ein großes Einsparungspotenzial. Zusätzlich wurde von den Benutzern eine

(SS 4.11)
Funktionalität für Vorlagen (Templates) gewünscht. Damit wären Testfälle nicht nur wesentlich
schneller, sondern auch einheitlich befüllt.

Ebenfalls Zeit kostet die Tatsache, dass es zwar grundsätzlich möglich ist, Tests von ClearQuest
(SS 4.12)

heraus zu starten, was in der Praxis wegen Problemen mit der verwendeten Architektur aber
nicht geht. Da aber die ClearQuest-Daten zur Planung der Tests verwendet werden, muss man
zuerst anhand der ClearQuest-Daten feststellen, welcher Test als nächstes folgt und diesen
anschließend in der Datenstruktur des verwendeten Testwerkzeugs finden und ausführen.

Die Generierung von Java Code für den Funktional Tester hingegen ist sehr nützlich und spart
Zeit. Auch wenn hier sicher noch eine engere Anbindung mit mehr Automatisierung denkbar
wäre, so spart sie auch so schon Arbeit.

Usability

Effizienz und Usability hängen sehr stark zusammen. Entsprechend schlecht fällt auch die Be-
wertung der Usability aus.

Die Baumstruktur an sich bietet enorme Vorteile in der Übersicht gegenüber der früheren Struk-
turierung in Exceltabellen, allerdings wird dieser Vorteil überhaupt nicht ausgespielt. Mit Drag
& Drop Funktionalitäten wie man sie z.B. aus dem Windows Explorer kennt, hätte man ein
mächtiges Strukturierungswerkzeug welches jeder Exceltabelle überlegen ist. Die Suchfunkti-
on müsste ihr lineares Ergebnis mit dem Baum verknüpfen, sodass dem Benutzer die Naviga-
tion an die entsprechende Stelle im Baum abgenommen wird. Die Folge ist ein Strukturchaos
in den Daten und eine fehlende Möglichkeit, sich trotzdem in dem Chaos zurecht zu finden.

Neben der Ergebnisdarstellung der Suche ist auch die Eingabe sehr unintuitiv. Es kann nur
nach verschiedenen Feldern gesucht werden, die mit und- und oder-Operatoren in Form einer
Baumstruktur verknüpft sind. Diese Umsetzung einer Sucheingabe ist völlig ungeeignet und
ist nicht nur unübersichtlich, sondern schränkt auch in den Möglichkeiten ein.

Sehr störend bei sämtlichen Eingaben ist der „Bearbeiten“-Modus. Es handelt sich bei der Dar-
stellung sowieso um Formularfelder, die im Normalfall einfach nur deaktiviert sind, um Bear-
beitungen zu verhindern. Jede Textbearbeitung hat diese Probleme aber schon vor 15 Jahren
besser behandelt als ClearQuest.

Der Arbeitsfluss bei der Eingabe eines Testfalls mit allen Prüfpunkten ist verbesserungswür-
dig, denn das ist momentan nicht ohne Unterbrechung möglich. Bemängelt wurden zu viele
unnötige Klicks und wechselnde Ansichten.

31

Fern von jeglicher Usability ist die Implementierung der textuellen Zusammenfassung eines
(SS 4.13)

kompletten Testfalls für die weitere Verwendung in externen Werkzeugen. Die Generierung
der Zusammenfassung muss nach Änderungen von Hand angestoßen werden, was natürlich
schnell mal vergessen wird. Das ist besonders gravierend, da man sich bei FleetBoard im Laufe
der Zeit immer mehr von ClearQuest wegbewegt hat und vermehrt auf die externen Werkzeuge
setzt.

Anbindung an andere Werkzeuge

Grundsätzlich bietet ClearQuest die technischen Voraussetzungen für eine Anbindung an ex-
terne Werkzeuge an. Leider kamen bei der Einrichtung der gewünschten Architektur Probleme
auf, die die Anbindung erschwerten. Tests, die mit Functional Tester automatisiert wurden,
können momentan nicht von ClearQuest heraus gestartet werden, obwohl das ursprünglich so
vorgesehen war. Stattdessen werden die Tests in Functional Tester selbst gestartet, welche an-
schließend die Ergebnisse in die ClearQuest-Datenbank schreiben. Möchte man Testergebnisse
der Tests in soapUI ebenfalls in der ClearQuest-Datenbank speichern, so muss man diese in ein
Functional Tester Skript integrieren und von dort aus starten. Die Anbindung von Manual Tes-
ter ist besser, da diese Tests von ClearQuest aus gestartet werden können. Tut man das nicht,
dann werden auch keine Testergebnisse gespeichert.

Die Anbindung der Webinterfaces spielt nur bei deren Implementierung eine Rolle, ist aber bei
der Verwendung (bis auf die Zusammenfassung der Testfälle) nicht sichtbar.

Kosten

Laut Aussage der Mitarbeiter spart ClearQuest in Zusammenhang mit Functional Tester und
soapUI, trotz aller Macken, erheblich Zeit und Nerven. Früher wurde anhand von Excelta-
bellen komplett manuell getestet. Für einen kompletten Durchlauf hat man ca. drei Wochen
benötigt. Aktuell benötigt man zwei Wochen, allerdings mit höherem Funktionsumfang der
zu testenden Software, dem Vielfachen an Testfällen und jeweils deutlich mehr Eingaben. Der
Verwaltungsaufwand ist höchstens genau so hoch wie zu Excel-Zeiten. Die Automatisierung
ist Mehraufwand, den es vorher nicht gab. Man kann also sagen, dass ClearQuest im Vergleich
zur Zeit vor seiner Einführung weniger Kosten verursacht als es einspart. Die Einführung war
also sinnvoll.

Kennt man die Situation vorher nicht, dann erkennt man aber trotzdem noch sehr viele Mög-
lichkeiten zu sparen. Ein Werkzeug, das die Benutzer weniger nervt und nicht von der ei-
gentlichen Arbeit abhält, kann die Arbeit noch deutlich effizienter erledigen als es ClearQuest
momentan tut.

Abgesehen von der reinen Zeit, die ClearQuest bei der Verwendung beansprucht, kommt noch
hinzu, dass ein genervter Mitarbeiter wesentlich weniger produktiv ist als ein zufriedener. Lei-
der ist so gut wie niemand bei FleetBoard mit ClearQuest wirklich zufrieden, sondern regt sich
eher noch lauthals darüber auf.

Die Lizenzkosten sind auch nicht zu vernachlässigen. Mit mehreren tausend Euro pro Floating
License ist die Software von IBM kein Schnäppchen. Man könnte vermuten, für so viel Geld
bekommt man eine Software, die bei der Verwendung Einsparungen von Mitarbeiterzeit mit
sich bringt. Im Vergleich zu dem, was theoretisch möglich wäre (wir machen hier ja relativ
viele konkrete Vorschläge), scheint dem aber leider nicht so.

Sonstiges

Allgemein wurde noch bemängelt, dass es kein einheitliches Vokabular gibt und teilweise Ab-
kürzungen verwendet werden, die nicht jeder kennt. Auch wird toleriert, wenn jemand Testfälle
auf englisch beschreibt.

32

Abbildung 4.7: Missverständliche Icons

Außerdem sollte auf überflüssige Formularfelder verzichtet werden. Die Standardformulare
(SS 4.14)

von ClearQuest zur Eingabe eines Testfalls sind alle noch vorhanden, werden aber größtenteils
nicht verwendet.

Fazit

Die von FleetBoard selbst entwickelten Webinterfaces übernehmen mehr und mehr Aufga-
ben, die ClearQuest so nicht gut unterstützt. Es kann seiner zentralen Rolle also nicht gerecht
werden. Viel mehr wird eine Werkzeugwelt drum herum aufgebaut, die es ermöglicht, so viel
wie möglich auf ClearQuest zu verzichten. Das zeigt uns, wie unangenehm ClearQuest all-
gemein für die Mitarbeiter ist und wie groß die Schwächen sind, wenn es darum geht, die
Daten für mehr zu verwenden, als sie nur zu verwalten. Da die Verwaltung aber ohne weitere
Verwendung reiner Selbstzweck ist, kann man von einem guten Testfallverwaltungswerkzeug
die Anbindung an andere Werkzeuge und die Möglichkeit zur weiteren Auswertung der Daten
eigentlich erwarten.

4.3.2 ITT Testmanagement

Dokumentation

Direkt im ITT-Wiki gibt es nur eine Seite, die für die Entwickler des Testmanagement-Werk-
(SS 4.15)

zeugs interessant ist.

Der Teil, der für den normalen Benutzer gedacht ist, ist auch im ITT Wiki verlinkt, weicht aber
von der sonstigen Dokumentation ab, da es ein PDF ist und nicht wie der Rest im Wiki direkt
dokumentiert wurde. Dieses Dokument wird dem Niveau von FleetBoard nicht ganz gerecht. Es
beschreibt einzelne Oberflächen auf niedriger Ebene indem einzelne Schaltflächen beschrieben
werden. Das reicht, um eine aus Usability-Sicht schlechte Oberfläche benutzbar zu machen,
aber die Konzepte und der Nutzen der Oberflächen werden nicht beschrieben. Ein Zusammen-
hang zum Testprozess wird in diesem Dokument nicht ausreichend hergestellt. Beispiel: Es
wird inklusive Screenshot ausführlichst erklärt wie der Login zur Weboberfläche funktioniert,
allerdings nicht, warum ein Login überhaupt erforderlich ist. Begrifflichkeiten, wie z.B. der
„Langzeittest“, werden hier nicht erklärt. Es wird lediglich jede Ansicht mit dem Kommentar
vorgestellt, dass sie selbsterklärend ist. Die Erklärung der Begriffe erfolgt mündlich bei der
Einlernung durch Kollegen.

Erlernbarkeit

Abgesehen von ein paar kleineren Mängeln ist der Umgang mit dem Werkzeug schnell erlern-
bar. Es gibt Icons, die eher Verwirrung stiften, als zum besseren oder schnelleren Verständ-
nis beizutragen. So ist ein grüner Button, der nach „Ansicht aktualisieren“ aussieht, für die
Funktion „Aktion rückgängig machen“ zuständig. Ein weißes Kreuz auf rotem Grund steht für
„zurück zur Hauptseite“ und nicht etwa für Löschen oder ähnliches (siehe Abbildung 4.7).

Auch Unklar ist die Bedeutung mancher Begriffe. Was bedeutet „Langzeittest“? Von was für(SS 4.15)

Analysen ist in der „Analysenübersicht“ die Rede? Warum gibt es eine Ansicht für „Regressi-
onstests“, wenn doch alle Tests bei FleetBoard Regressionstests sind?

Der Rest ist tatsächlich selbsterklärend.

33

Effizienz

Die Effizienz der Weboberfläche wird dadurch negativ beeinflusst, dass teilweise noch nicht
(SS 4.16)

automatisierte Tests mit Hilfe dieser Oberfläche durchgeführt werden und die dafür angebote-
nen Funktionen etwas unpraktisch sind. Es gibt keine Möglichkeit, mehrere Tests zu gruppieren
und hintereinander „durchzuklicken“. Daher müssen die Tester in der Oberfläche mehrfach auf-
und abscrollen bzw. vor und zurück. Ein fehlender Filter nach Restaufwand macht die Suche
nach manuell durchzuführenden Tests aufwändiger als nötig. Außerdem skalieren einige An-
sichten mit den enormen Datenmengen relativ schlecht, was sich teilweise durch Ladezeiten,
die größer als 20 Sekunden sind, äußert.

Usability

Auf den ersten Blick erweckt das Werkzeug den Eindruck einer gut durchdachten Oberfläche,
(SS 4.17)

die klar strukturiert ist. Doch bei genauerem Hinsehen wird klar, dass diese vermeintlich gut
durchdachte Struktur wohl im Nachhinein angepasst wurde, was sich dadurch äußert, dass man
teilweise auf anderen Seiten landet, als denen, die man erwartet, wenn man in der Übersicht
auf einen Link klickt. So landet man nach dem Klick auf „Aufwandplanung“ auf einer Seite
mit der Überschrift „Restaufwandplanung“. Die Bezeichner für die Seiten wurden also nicht
einheitlich gewählt und sorgen für Verwirrung beim Benutzer.

Neben der Namensverwirrung fällt ein Detail erst bei tieferen Überlegungen auf: Das ITT Test-
(SS 4.18)

management wurde allein für den Zweck entwickelt Aufgaben zu erleichtern, die ClearQuest
nicht ausreichend unterstützt. Es liegt nahe das ITT entsprechend diesen Aufgaben zu struktu-
rieren und jede Zielgruppe dadurch auf die richtige Seite zu führen. Die Übersichtsseite ist aber
nur eine Feature-Aufzählung, aus der sich jeder Mitarbeiter die passenden raussuchen muss,
um seine Aufgaben zu erledigen. Dadurch weist das ITT ebenfalls Schwächen auf, die eine
Dokumentation überhaupt erst notwendig machen.

Weitere Minuspunkte sammelt die Anwendung bei Darstellungen, die über die dreifache Breite
(SS 4.19)

eines Bildschirmes hinausreichen und einem somit den Überblick über das Angezeigte verweh-
ren. Die Buttons, die schon unter dem Punkt Erlernbarkeit erwähnt wurden, tragen auch nicht
zu einer guten Usability bei.

Anbindung an andere Werkzeuge

Das ITT Testmanagement ist ein zusätzliches Frontend für die ClearQuest-Datenbank. Eine
Anbindung an andere Werkzeuge speziell für das ITT Testmanagement existiert daher nicht.

Kosten

Lizenzkosten entstehen bei diesem Werkzeug keine, da es eine Eigenentwicklung ist. Daraus
resultiert allerdings, dass Kosten in Form von Arbeitszeit der Mitarbeiter entstehen. Diese sind
für uns aber nicht quantitativ nachvollziehbar.

Die Nutzer sind mit dem Werkzeug bis auf eine etwas umständliche Bedienung beim Durch-
führen manueller Tests zufrieden.

4.3.3 Functional Tester

Dokumentation

Das Wiki des schwarzen Teams enthält folgende Anleitungen bzw. Informationen:

• Installation und Konfiguration von Functional Tester

• Anlegen und Konfigurieren bzw. Importieren eines Projekts

34

• Schreiben, Aufnehmen und Wiedergeben eines einfachen Skriptes

• Funktionsweise der einzelnen selbst entwickelten Frameworks

• Beschreibungen und Lösungen zu häufig auftretenden Problemen

Es fehlen:
(SS 4.20)

• Ein aktueller Styleguide mit Code- und Qualitätsrichtlinien für Testskripte (der vorhan-
dene ist längst überholt)

• Eine Schritt-für-Schritt-Anleitung für ein gutes Testskript

Erlernbarkeit

Functional Tester ist nicht selbsterklärend. Ohne längere Auseinandersetzung mit der Doku-
mentation und einer persönlichen Einweisung ist das Schreiben von Testskripten auf „Fleet-
Board-Niveau“ nicht zu erlernen. Dabei wirkt besonders erschwerend, dass Functional Tester
Skripte bei FleetBoard kaum etwas mit typischen Functional Tester Skripten zu tun haben, da
das selbst gebaute Objekterkennungsframework die Methoden von Functional Tester großteils
ersetzt. Zusätzlich gibt es für verschiedene GUI-Arten (HTML, Swing, SWT) spezielle Metho-
den und Frameworks.
Functional Tester zeigt an mehreren Stellen eigenartige Bugs oder unerwartete Verhaltenswei-
sen, die ohne Erklärung eines erfahrenen Benutzers viel Zeit und Nerven kosten.
Für eine gute Einarbeitung sind ca. zwei Stunden mit einem erfahrenen Mitarbeiter notwendig,
plus einige Stunden zum Lesen vorhandener Skripte, der Dokumentation und zum Ausprobie-
ren.

Effizienz

Zur Effizienz gab es keine Beschwerden. Alle Benutzer waren durchweg der Meinung, dass
das Schreiben von Testskripten schnell genug geht und dass es keine unnötigen Arbeitsschritte
gibt. Auch die Ausführung verbraucht nicht unnötig Zeit. Einige Mitarbeiter wünschten sich
eine Möglichkeit, die Texte der zu implementierenden Prüfpunkte in Funktional Tester neben
dem aktuellen Testskript zu sehen.

Ein Problem ist allerdings, dass die Testskripte keinen festen Richtlinien folgen. Beispielswei-
(SS 4.21)

se werden teilweise Testdaten hardcoded, spezielle Testflotten und Daten verwendet, die nicht
reproduzierbar sind. Das sorgt dafür, dass ein Testskript im nächsten Release nur schlecht funk-
tioniert. Bei der Ausführung des Skriptes im nächsten Releasetest führt dies möglicherweise
zu Schwierigkeiten und vergrößert den Wartungsaufwand für die Testskripte.

Usability

Für den eingelernten Benutzer hat Functional Tester keine größeren Schwächen in der Bedie-
nung.

Anbindung an andere Werkzeuge

Functional Tester ist das einzige Werkzeug, das Testergebnisse automatisch in die ClearQuest-
Datenbank schreiben kann. Es wird daher benötigt, um die Ergebnisse von soapUI-Tests zu
speichern. Dafür gibt es einen Wrapper zur Ausführung von soapUI-Testfällen, der die Log-
ausgaben von soapUI in das Testlog von Functional Tester überträgt. Die Anbindung an soapUI
scheint ausgereift und durchdacht zu sein und wird sehr viel eingesetzt.

35

Ein Testskript kann seine Ergebnisse nur an einen Konfigurierten Testfall anhängen. Manche
Mitarbeiter wünschen sich, dass Functional Tester seine Ergebnisse flexibler mit mehreren
Testfällen oder mehreren Prüfpunkten verbinden kann.

Lizenzkosten

Bei FleetBoard gibt es vier Floating-Lizenzen (flexibel zwischen PCs tauschbar) und neun
Node-Locked-Lizenzen (an PCs gebunden). Die Kosten hierfür belaufen sich laut Listenpreis
auf insgesamt ca. 95.000 C.

Fazit

Functional Tester wird von den FleetBoard-Mitarbeitern und den Autoren der Fachstudie für
gut befunden. Die Integration zu ClearQuest ist in Details verbesserungsfähig und sollte vor
allem flexibler werden.

4.3.4 soapUI

Dokumentation

soapUI ist im Wiki sehr gut beschrieben. Es geht daraus die Einrichtung und Verwendung von
soapUI, sowie die Strukturierung der Daten hervor. Natürlich sind einige unten beschriebene
Probleme hier verwurzelt, weil es nicht anders dokumentiert ist. Ansonsten gibt es aber nichts
zu bemängeln.

Strukturierung der Daten

Während soapUI eigentlich sehr nützlich ist und dafür von den meisten Mitarbeitern gelobt
wird, stellt die Strukturierung der Daten eine sehr große Schwäche dar, die in Form des Da-
tenformats bei der Zusammenarbeit und der Wartbarkeit stört und in der sichtbaren Form der
Baumstruktur ähnliche Probleme aufweist, wie die Daten in ClearQuest.

soapUI enthält bei FleetBoard Projekte als oberste Hierarchieebene. Jedes dieser Projekte ent-
(SS 4.22)

hält sehr viele Testfälle und wird jeweils komplett in einer einzelnen XML-Datei gespeichert.
Da SVN von Haus aus keine gute Möglichkeit bietet, XML zuverlässig zusammen zu führen,
wird das entsprechend auch nicht gemacht, sondern ein Mitarbeiter sperrt ein Projekt auf SVN-
Ebene, wenn er Änderungen vornehmen möchte. Die Folge ist, dass man andauernd von der
Arbeit abgehalten wird, weil das benötigte Projekt gerade von jemand anderem gesperrt ist.
Eine Zusammenarbeit ist so nicht wirtschaftlich möglich.

Bei der sichtbaren Baumstruktur gibt es zum einen das Problem, wie bei ClearQuest auch,
dass keine klaren Regeln zur Strukturierung vorgegeben sind. Neue Daten werden von den
Mitarbeitern nach besten Gewissen eingefügt, aber es gibt keine Kontrolle durch das schwarze
Team. Zum anderen ist die Baumstruktur in soapUI eine Parallelstruktur zu der Baumstruktur
in ClearQuest und muss stets damit synchronisiert werden. Auffällig ist, dass soapUI eigentlich
viel mehr macht, als einfach nur SOAP-Schnittstellen zu testen.

Zusätzlich zu den Projektdaten gibt es noch globale Daten, welche für Tests verwendet wer-
(SS 4.23)

den können. Dabei handelt es sich um relativ große Datenmengen, die alle in einer einzigen
Properties-Datei abgespeichert werden. Dadurch ist es aufwändig, diese Daten zu verwalten
und zu warten.

Erlernbarkeit, Effizienz und Usability

Hier weist soapUI einige Schwächen auf, die aber im Rahmen des Ertragbaren bleiben. Da soa-
pUI selbst nicht im Fokus unserer Fachstudie steht, sondern nur die Strukturierung der Daten

36

sowie die Anbindung an die anderen Werkzeuge, werden wir hier nicht weiter auf Erlernbar-
keit, Effizienz und Usability eingehen. Es ist nicht vorgesehen, soapUI selbst zu ersetzen, zumal
es die gängigste Lösung im Bereich der SOAP-Tests ist.

Anbindung an andere Werkzeuge

Eigentlich braucht soapUI lediglich eine Anbindung an ClearQuest, um die Ergebnisse der
Tests speichern zu können. In der Realität wird Functional Tester aber verwendet, um die Tes-
tergebnisse in die ClearQuest-Datenbank zu speichern, denn mit soapUI selbst geht das nicht.
Die Testfälle, die noch keine Anbindung an Functional Tester haben, werden aus soapUI heraus
gestartet und das Ergebnis wird von Hand eingetragen. Damit ist die Verbindung zu Functional
Tester ebenfalls notwendig.

In die andere Richtung kommt noch hinzu, dass man aus soapUI heraus beliebigen Code aus-
führen können möchte. Als Lösung verwendet man sogenannte „Mockup Services“ welche per
SOAP in soapUI verwendet werden können und ein, oft lokal laufendes, Programm starten. Et-
was umständlich ist die Notwendigkeit diverse SSH-Verbindungen aufbauen und Server starten
zu müssen. Das hält von der eigentlichen Arbeit ab.

Kosten

soapUI selbst ist Open Source, bringt also keine Lizenzkosten mit sich. Relevante Kosten ent-
stehen durch die Wartung von eigenen Anpassungen am Quellcode, die gemacht wurden, um
soapUI mit Functional Tester zu verbinden.

Trotz der gefundenen Schwächen sorgt soapUI auch für eine hohe Zufriedenheit, denn manuell
Testen ist sehr viel aufwändiger. Es entstehen also keine zusätzlichen Kosten durch unzufrie-
dene Benutzer.

4.3.5 Manual Tester

Dokumentation

Zu Manual Tester gibt es keine allgemeine Dokumentation. Es gibt lediglich ein paar Richt-
(SS 4.24)

linien zur besseren Verfolgung von Änderungen an Manual Tester Skripten und eine vorge-
schriebene Kopfzeile, die bei den Skripten verwendet werden soll.

Erlernbarkeit

Da Manual Tester keinen großen Funktionsumfang hat, ist es auch schnell erlernt.

Effizienz

Die Effizienz ist sehr viel niedriger als sie sein könnte und auch sein müsste. Schlechte Usabili-
(SS 4.25)

ty, lange Wartezeiten bei jeglichen Bearbeitungs- und Durchführungsaktionen, sowie fehlende
Unterstützung für Copy & Paste, rauben Manual Tester jeden Vorteil gegenüber dem manuellen
Testen.

Usability

Die Oberfläche lässt sich nicht intuitiv bedienen. Es werden Symbole verwendet, deren Bedeu-
(SS 4.26)

tung a priori nicht klar ist. Die Hauptfunktionen beim Durchführen eines Tests sind nicht als
solche zu erkennen und zum Teil noch nicht einmal richtig lesbar. So gibt es ein Dropdown Me-
nü zur Auswahl ob ein Testschritt bestanden ist oder nicht, das so schmal ist, dass nur „Fehl“
von Fehlgeschlagen angezeigt wird. Es ist weder ersichtlich, wofür das Dropdown Menü ist,
noch wofür der Button links davon ist, von dem nur „nwende“ zu erkennen ist und das obwohl

37

Abbildung 4.8: Manual Tester Screenshot

Abbildung 4.9: Unkenntlicher Button und zu kleines Dropdown Menü

mehr als genügend Platz für die beiden Felder vorhanden ist. (siehe 1. in Abbildung 4.8 bzw.
Abbildung 4.9)

Anbindung an andere Werkzeuge

Manual Tester wird bei FleetBoard ausschließlich mit ClearQuest verbunden. Diese Anbindung
funktioniert so, wie sie von IBM gedacht ist. Wenn Testskripte aus ClearQuest gestartet werden,
wird das Testlog in die ClearQuest-Datenbank geschrieben. Wird das Skript direkt aus Manual
Tester gestartet, wird das Ergebnis lokal gespeichert.

Kosten

Lizenzkosten entstehen durch die Verwendung nicht, da Manual Tester bei Functional Tester
mitgeliefert wird. Inzwischen wurde die Entwicklung von Manual Tester durch IBM eingestellt
und dessen Funktionalität in den „Quality Manager“ übernommen.

Zur Zufriedenheit der Benutzer:
Der Manual Tester wird nur von zwei Benutzergruppen bei FleetBoard eingesetzt: Von den
Teams DispoPilot und Telematikplattform.

Das Team DispoPilot verwendet ihn nicht so wie er gedacht ist, sondern testen überwiegend
manuell auf Papier. Die Mängel die beim „richtigen“ Betrieb auftreten, fallen ihnen daher nicht
auf. Somit ist auch niemand unzufrieden mit dem Werkzeug.

Anders sieht es bei dem Team der Telematikplattform-Tests aus, das versucht, den Manual
(SS 4.27)

Tester so einzusetzen, wie er gedacht ist. Die schlechte Usability schlägt in der Zufriedenheit
voll zu Buche. Die Mitarbeiter sind sehr unzufrieden mit Manual Tester und haben sich bereits
andere Lösungsansätze überlegt, um Manual Tester zu umgehen. Selbst mit Excel, was zuvor
verwendet wurde, wären die Mitarbeiter zufriedener.

38

Sonstiges

Eine sehr markante Eigenart in der Verwendung von Manual Tester ist, dass das Team Dispo-
(SS 4.28)

Pilot-Test die Skripte nicht am PC ausführt, sondern ausdruckt und dann mit einem Stift Punkt
für Punkt abarbeitet. Das ausgefüllte Formular wird dann als Ergebnis des Tests von Hand in
das „ITT-Testmanagement“ Werkzeug eingetragen. Begründet ist das durch fehlende Lizenzen,
denn zum Testen wurden einige Werkstudenten eingestellt, dabei gibt es nur vier verfügbare
Lizenzen die allein durch die regulären Mitarbeiter verbraucht werden.

4.3.6 Focal Point

Als Werkzeug zur Verwaltung von Anforderungen ist Focal Point nicht direkt für die Fachstudie
relevant. Lediglich die Anbindung an andere Werkzeuge ist interessant. Es wird durchweg mit
IDs gearbeitet. Ein Testfall in ClearQuest speichert eine Focal Point ID. Man muss für die
Verbindung also lediglich beide Programme offen haben und die ID vom einen in das andere
eintragen. Das ist die einfachst mögliche Verknüpfung und bisher ausreichend. Wenn eine neue
Lösung eine bessere Anbindung ermöglicht, ist das wünschenswert, aber nicht notwendig.

4.3.7 RequisitePro

Für RequisitePro gilt das gleiche wie für Focal Point. Es wird ebenfalls mit IDs gearbeitet, die
in andere Werkzeuge eingetragen werden. Eine engere Verbindung gibt es auch hier nicht.

4.4 Anforderungen

4.4.1 ClearQuest

4.1 Unzureichende Dokumentation zu ClearQuest

• Ursache: Die Dokumentation zu ClearQuest ist nicht umfangreich und aktuell genug.

• Anforderung: Die Dokumentation zum verwendeten Testfallverwaltungswerkzeug muss
auf dem aktuellen Stand gehalten werden. Ein neuer Benutzer sollte sich mit Hilfe der
vorhandenen Dokumentation mit den Konzepten und Methoden in ClearQuest vertraut
machen können.

4.2 Unnötige Elemente im Testfallbaum

• Ursache: Von ClearQuest vorgegebene Strukturierungselemente im Testdatenbaum wer-
den von FleetBoard nicht (richtig) verwendet und erschweren die Übersichtlichkeit.

• Anforderung: Der Testdatenbaum sollte genau die wesentlichen Elemente anzeigen, die
für die Arbeit mit dem Testfallverwaltungswerkzeug notwendig sind.

4.3 Unkontrollierte Struktur des Testfallbaums

• Ursache: Durch mangelnde Kontrolle und ungenügende Vorgaben ist die Strukturierung
des Testfallbaums in ClearQuest inkonsistent und redundant.

• Anforderung: Klare Vorgaben zur Platzierung und Ordnung von Testfällen sollten exis-
tieren und deren Einhaltung muss überwacht werden. Die vorhandenen Daten müssen
neu strukturiert werden.

39

4.4 ClearQuest-Testfall ist kein Testfall

• Ursache: Der ClearQuest-Testfall ist kein Testfall im Sinne des Lehrbuchs. Er enthält
keine Vorbedingung, keine Benutzeraktion und keine Nachbedingung. Diese Daten sind
in einer extra Entity dem Testfall untergeordnet. Der Testfall ist damit nur ein Struktur-
element.

• Anforderung: Der Testfallbaum sollte nur aus Strukturelementen und Testfällen beste-
hen, wobei die Testfälle die eigentlichen Testdaten wie Vorbedingung usw. enthalten
und Kindelemente im Baum sind.

4.5 Aktuelle Methode zur Testfallspeicherung erlaubt keine Ordnung

• Ursache: Weil momentan Prüfpunkte in Testfällen nicht geordnet werden können, sind
keine Reihenfolge der Durchführung und keine Abhängigkeiten definierbar.

• Anforderung: Es müssen eine Ordnung und Abhängigkeiten zwischen Testfällen ange-
geben werden können.

4.6 Soll-Umfang und Soll-Inhalt eines Testfalls ist nicht definiert

• Ursache: Weil es keine Vorgabe zu Umfang und Inhalt eines Testfalls gibt, unterscheidet
sich der Aufbau der Testfälle sehr.

• Anforderung: Es sollte eine Vorgabe zum Umfang des Testfalls geben. Auch zur Positio-
nierung bzw. Einordnung im Testfallbaum sollte es eine Richtlinie geben, deren Einhal-
tung kontrolliert werden muss.

4.7 Uneinheitliche Verwendung von Konfigurierten Testfällen

• Ursache: Nur das Hardware-Team verwendet bei FleetBoard Konfigurierte Testfälle. Für
alle anderen Teams sind diese nicht notwendig und werden nur verwendet, weil es tech-
nisch notwendig ist.

• Anforderung: Konfigurationen von Testfällen müssen ein optionales Element sein.

4.8 Schwer bedienbare Suchfunktion

• Ursache: Die vorhandene Suchfunktion unterstützt komplexe Suchanfragen, die Teile der
SQL-Funktionalität unterstützen und als Queries gespeichert werden. Dabei ist es nicht
möglich, „kurz mal“ nach einem Testfall zu suchen.

• Anforderung: Das Testfallverwaltungswerkzeug sollte für die Suche im Testdatenbaum
eine einfache, schnell erreichbare Suchfunktion bereitstellen, die die wesentlichen Da-
ten der Testfälle durchsucht. Als Darstellung wäre eine gefilterte Ansicht des Baumes
denkbar.

4.9 Klick- und fensteranzahlintensive Bedienung

• Ursache: Für viele Bearbeitungen in ClearQuest wird ein neues Fenster geöffnet. Die
rechte Seite der Ansicht neben dem Testfallbaum wird für die eigentliche Arbeit nicht
verwendet und bleibt im Alltag nutzlos. Der Bearbeiten-Modus sorgt für zusätzliche
Klicks.

• Anforderung: Ansichten zum Bearbeiten müssen besser integriert werden und mit weni-
ger Klicks bedienbar sein. Im Alltag braucht man eine Möglichkeit schnell viele Testfälle
einzugeben.

40

4.10 Schlechte Unterstützung der Strukturierung von Testfällen und Strukturierungselementen

• Ursache: Sind Testfälle oder Strukurierungselemente erst einmal angelegt, so gibt es
keine einfache Möglichkeit, diese zu verschieben oder zu kopieren.

• Anforderung: Eine bessere Unterstützung zur Strukturierung von Testfällen und Struk-
turierungselementen durch z.B. Drag & Drop, sowie Copy & Paste muss geschaffen
werden.

4.11 Fehlende Templates für Texte

• Ursache: Obwohl viele Testfallinhalte wie Vorbedingungen häufig gleichförmig sind,
gibt es keine Layout- oder Inhaltsvorlagen.

• Anforderung: Für die verschiedenen Arten von Testfällen sollten die Ansichten zum An-
legen und Verändern von Testfällen Layout- und Inhaltsvorlagen anbieten.

4.12 Tests können nicht aus dem Testfallverwaltungswerkzeug gestartet werden

• Ursache: Wegen technischer Schwierigkeiten in der Vergangenheit wird die Möglichkeit
des Anstoßens von Tests aus der Testfallverwaltung heraus nicht genutzt.

• Anforderung: Es sollte möglich sein, Testskripte und manuelle Tests aus dem Testfall-
verwaltungswerkzeug zu starten.

4.13 Generierung der Testfallzusammenfassung nicht vollautomatisch

• Ursache: Da ein Testfall momentan bei FleetBoard aus mehreren Prüfpunkten besteht,
sind die einzelnen Prüfpunkttexte nur schwer zugänglich. Daher gibt es eine textuel-
le Zusammenfassung dieser Prüfpunkte, die im zugeordneten Testfall gespeichert wird.
Diese Zusammenfassung wird jedoch unter manchen Umständen nicht aktualisiert, was
Inkonsistenzen und veraltete Testdaten verursacht.

• Anforderung: Die Konsistenz der Testfalldaten muss gewährleistet sein. Auf eine manu-
elle Aktualisierung der Daten darf man sich nicht verlassen.

4.14 Überflüssige Formularfelder

• Ursache: Die ClearQuest-Standardformulare wurden nicht von unnötigen Feldern berei-
nigt. Diese werden nicht verwendet und überladen die Ansicht.

• Anforderung: Es sollten nur die in der Praxis verwendeten Formularfelder und Daten
angezeigt werden.

4.4.2 ITT-Testmanagement

4.15 Fehlende einheitliche und gute Dokumentation

• Ursache: Die Dokumentation ist nicht wie sonst üblich im Wiki zu finden, sondern in
einem PDF. Sie ist zudem auf einem zu niedrigen Niveau. Es wird z.B. der Login-Prozess
erklärt. Welche Übersicht wofür verwendet werden kann ist aber nirgends zu finden.

• Anforderung: Die Dokumentation muss an den Testprozess angelehnt werden und Infor-
mationen über Begrifflichkeiten beinhalten. Sie sollte wie die anderen Dokumentationen
direkt im Wiki zu finden sein.

41

4.16 Umständliche Bedienung der Oberfläche

• Ursache: Die Anwendung wird zur Unterstützung des manuellen Tests verwendet und ist
dafür nicht ausgelegt.

• Anforderung: Ein Werkzeug zur Unterstützung der manuellen Tests auf Basis der Clear-
Quest-Datenbank.

4.17 Konsistenz bei den Seitennamen

• Ursache: Verschiedene Seitennamen sorgen für Verwirrung bei der Navigation durch die
Anwendung.

• Anforderung: Klare eindeutige Namensgebung der einzelnen Seiten und deren Links.

4.18 Feature-Orientierung

• Ursache: Das ITT ist eine Ansammlung von Features, die auch als Ansammlung präsen-
tiert wird. Der Ursprung liegt aber in der Ergänzung von Aufgaben, die ganz konkret als
Ziele aufgezählt werden können.

• Anforderung: Die Übersichtsseite muss die Ziele, für die das ITT entwickelt wurde, über-
sichtlich als solche darstellen. Eine optische Einteilung (Kategorien) in unterschiedliche
Benutzergruppen ist wünschenswert.

4.19 Skalierbarkeit der Darstellung

• Ursache: Es gibt Darstellungen, die das dreifache einer 19”-Bildschirmbreite an Platz
einnehmen.

• Anforderung: Die Daten müssen so angezeigt werden, dass sie auf eine Bildschirmseite
passen.

4.4.3 Functional Tester

4.20 Mängel in der Dokumentation

• Ursache: Fehlende Vorschriften und Anleitungen führen zu schlecht wartbaren und un-
einheitlichen Testskripten.

• Anforderung: Ein aktueller Styleguide mit Code- und Qualitätsrichtlinien für Testskripte
sowie eine Schritt-für-Schritt-Anleitung für ein gutes Testskript sind notwendig.

4.21 Fehlende Kontrolle der nach Anforderung 20. eingeführten Richtlinien

• Ursache: Die Testskripte werden geschrieben und ohne Kontrolle verwendet, was zu
uneinheitlichen, teilweise schlecht wartbaren Skripten führt.

• Anforderung: Eine Kontrolle (z.B. ein Review) der Umsetzung der Richtlinien für Test-
skripte.

4.4.4 soapUI

4.22 Mergeprobleme

• Ursache: Große XML Dateien sind quasi nicht mergebar und sorgen für große Verzöge-
rungen.

• Anforderung: Dateien müssen mergebar sein oder es muss ein Zeitplan zur Bearbeitung
der Dateien existieren.

42

4.23 Riesige globale Properties-Datei

• Ursache: Für alle Projekte gibt es eine riesige Properties-Datei die unübersichtlich und
schlecht wartbar ist.

• Anforderung: Prüfen, ob es eine bessere Lösung gibt.

• Bemerkung: Das liegt nicht mehr im Rahmen unserer Fachstudie, soll aber nicht gänzlich
unerwähnt bleiben.

4.4.5 Manual Tester

4.24 Fehlende Dokumentation

• Ursache: Mitarbeiter verwenden Manual Tester sehr unterschiedlich.

• Anforderung: Dokumentation zu Manual Tester muss angelegt werden.

4.25 Ineffizient und langsam

• Ursache: Durch schlechte Usability und lange Wartezeiten ist die Arbeit mit Manual
Tester sehr ineffizient.

• Anforderung: Werkzeug zur Unterstützung manueller Tests mit kurzen Antwortzeiten
und Copy & Paste Möglichkeit.

4.26 Schlechte Usability

• Ursache: Abgeschnittene Texte bei Buttons oder Dropdownmenüs sowie unklare Sym-
bole.

• Anforderung: Richtige vollständige Beschriftung von Bedienelementen.

4.27 Unzufriedenheit der Mitarbeiter

• Ursache: Die Mitarbeiter sehen keinen Vorteil von Manual Tester gegenüber Excel.

• Anforderung: Werkzeug mit erkennbarem Vorteil und echter Unterstützung des manuel-
len Tests.

4.28 Fehlende Lizenzen

• Ursache: Manuelle Tests werden auf Papier ausgeführt, da zu wenige Lizenzen zur Ver-
fügung stehen.

• Anforderung: Genügend Lizenzen für das Werkzeug zur Unterstützung der manuellen
Tests.

4.4.6 Bestehendes

Generell ist es sehr wichtig, eine konkrete Auswahl an Werkzeugen zu haben und deren Ver-
wendung obligatorisch zu machen. Das stärkt die Fähigkeit zur Zusammenarbeit und die Kom-
patibilität der Arbeit unterschiedlicher Mitarbeiter. Änderungen an der Auswahl sollten weiter-
hin daran festhalten.

43

ClearQuest

Auch wenn ClearQuest nicht das perfekte Testfallverwaltungswerkzeug ist, so ist es weder
sinnvoll noch machbar auf ein anderes proprietäres Werkzeug umzusteigen. Die riesigen Da-
tenmengen lassen sich nicht ohne Weiteres automatisiert portieren. Manuelles Portieren ist zu
aufwändig. Bei einer webbasierten Eigenentwicklung eines neuen Werkzeugs wäre die Portie-
rung noch am einfachsten, allerdings ist der Aufwand durch die Eigenentwicklung dennoch
groß. Zwei Alternativen für einen ClearQuest-Ersatz werden im letzten Kapitel erläutert.

ITT Testmanagement

Auch wenn dieses Werkzeug überwiegend Schwächen von ClearQuest kompensiert, so ist es
für die bestehende Situation eine mehr als nützliche Hilfe, die Zeit und Mühe spart. Bleibt
man bei ClearQuest als Testfallverwaltung, so ist es sinnvoll auch am ITT Testmanagement
festzuhalten und es weiter zu verbessern.

Functional Tester

Functional Tester ist ein sehr gutes Werkzeug zur Automatisierung von GUI-Tests. Es haben
sich keine Schwächen gezeigt, die einen Umstieg auf ein anderes Werkzeug rechtfertigen wür-
den. Anforderungen gehen daher nur in die Richtung der einheitlichen Verwendung und der
Anbindung an die anderen Werkzeuge.

soapUI

In den Interviews hat sich gezeigt, dass soapUI sehr nützlich und unverzichtbar ist. Trotz der
groben Schwächen wird es sehr geschätzt. Wie bei ClearQuest wäre ein Wechsel auf ein ande-
res Werkzeug mit sehr großem Aufwand verbunden.

Gut ist auch, dass eine Schnittstelle für den Functional Tester nachimplementiert wurde.

44

5 Ideallösung

In diesem Kapitel skizzieren wir eine ideale Testumgebung, die die gefundenen Probleme lösen
würde. Der Aufwand und damit die Kosten spielen in der Ideallösung keine Rolle. Sie bildet
die Grundlage für die realistisch umsetzbare Lösung im folgenden Kapitel.

5.1 Organisation und Prozess

Für einen Lösungsvorschlag bietet es sich an, die Organisation und den Prozess gemeinsam zu
betrachten, da für die Verbesserungen im Prozess erst die Voraussetzungen in der Organisation
geschaffen werden müssen.

Grundlegend schlagen wir drei Veränderungen vor, wovon eine die Optimierung der gesamten
Prozessqualitätssicherung (Prozess-QS) beinhaltet.

5.1.1 Mehr Mitarbeiter zum Testen

Die optimale Anzahl an Mitarbeitern ist schwer objektiv zu ermitteln. Wir wissen aber, dass es(Anf. 2.2, 3.2,
3.4) momentan zu wenige sind. Es sollten so viele eingestellt werden, dass keine wichtigen Aufga-

ben mehr ausgelassen werden müssen.

5.1.2 Lizenzen

Es müssend genügend Lizenzen von jeder Software vorhanden sein, sodass kein Leerlauf durch(Anf. 4.28)

Lizenzmangel entsteht.

5.1.3 Prozess-QS

Es muss eine klare Trennung zwischen Entwicklern, Testern (Produkt-QS) und den Personen,(Anf. 2.1, 3.2)

die Prozessentwicklung betreiben und Infrastruktur zur Verfügung stellen (Prozess-QS), ge-
schaffen werden. Diese Rollen konzentrieren sich ausschließlich auf ihre zugeteilte Aufgabe.

Aufgaben der Prozess-QS

Die Prozess-QS benötigt eine konkrete Aufgabenliste. Wir bieten keine vollständige Liste mit
allen Aufgaben der Prozess-QS, sondern bieten Vorschläge für zusätzliche Aufgaben zu den
bisherigen.

Zu den Angaben der Wartungsintervalle: Diese spiegeln subjektive Einschätzungen der Ände-
rungshäufigkeit sowie Wichtigkeit der Aktualität wieder. Sie sind daher nur ein Vorschlag, der
ohne Weiteres angepasst werden kann.

• Einrichtung eines zentralen Wikis für alle hier aufgelisteten Dokumente. Weitere Wikis(Anf. 3.10)

werden damit überflüssig und sind nicht länger erlaubt.

45

• Erstellung einer Aufgabendokumentation für die Prozess-QS. Wartung dieser Dokumen-
tation in einem jährlichen Intervall.

• Erstellung eines Begriffslexikons für sämtliche FleetBoard-spezifischen Begriffe und(Anf. 3.7)

Abkürzungen. Verschiedene Begriffe für eine Sache sollten vermieden werden. Jeder
sollte daran mitarbeiten, aber die Prozess-QS prüft und verbessert deren Qualität 1-2
Mal jährlich.

• Erstellung je einer Dokumentationsseite zur Organisation, zum Entwicklungsprozess(Anf. 2.1)

und zum Testprozess . Das Ziel dieser Dokumentation ist, einen Überblick zu liefern und(Anf. 3.1)

neuen Mitarbeiten den Einstieg zu erleichtern. Dafür ist ein geringer Detailgrad notwen-
dig. Wartung dieser Dokumentation in einem jährlichen Intervall oder bei Änderungen.

• Erstellung einer präzisen Dokumentation zum Entwicklungsprozess sowie zum Testpro-(Anf. 3.9, 3.11,
4.3) zess. Der gesamte Prozess wird in seine Einzelteile zerlegt und Schritt für Schritt mit den

wichtigen Details befüllt. Richtlinien, sowie eine Übersicht über verschiedene Testarten
werden ebenfalls hier untergebracht. Wartung dieser Dokumentation in einem sechsmo-
natigen Intervall.

• Erstellung von Dokumentationsrichtlinien bzw. einem Schema für einzelne Werkzeuge(Anf. 4.1, 4.15,
4.20, 4.24) sowie der Benennung je eines Beauftragten, der dieses Werkzeug dokumentiert. Bei den

wichtigsten Werkzeugen kann das ebenfalls die Prozess-QS sein. Wartung der Richtlini-
en/Schemata sowie Prüfung derer Einhaltung und Qualität in einem jährlichen Intervall.

• Kontinuierliche Verbesserung der Infrastruktur durch Ermitteln von automatisierbaren(Anf. 3.8)

Zwischenschritten, die nicht zur eigentlichen Aufgabe des Testens gehören.

Benötigte Richtlinien in der Prozessdokumentation

In der detaillierten Prozessdokumentation wurde die Unterbringung von Richtlinien erwähnt.
Folgende Richtlinien ergeben sich aus unseren Anforderungen.

• Eine einheitliche Firmenweite Versionierungsrichtlinie, die für jedes Team verständlich(Anf. 3.3)

ist und teamübergreifend funktioniert.

• Es gibt folgende Vorgaben für produktive Dokumente: notwendiger Inhalt, Detailgrad(Anf. 3.5, 4.6)

und erwarteter Umfang.

• Unterscheidung verschiedener Testarten mit jeweils einer grundsätzlichen Strukturierung(Anf. 4.11)

für Vorbedingung, Aktion und Nachbedingung. Diese Strukturierung dient als Grundlage
für Vorlagen (Templates).

Aufbau einer Werkzeugdokumentation

Eine Dokumentation zu einem eingesetzten Werkzeug muss folgende Aspekte abdecken.

• Einrichtung und Start des Werkzeugs

• Grundlegende Funktionsweise

• Verweis auf die Richtlinien zur Strukturierung der Daten in der Prozessdokumentation

• Funktionsweise der Anbindung an andere Werkzeuge

• FAQ

46

5.2 Werkzeuge

Durch die umfassende Testverwaltung werden folgende bisher unterschiedene Werkzeugarten
obsolet:

• Spezifikation

• Manuelle Tests

• Planungs- und Auswertungshilfe

Übrig bleiben, neben der Testverwaltung, lediglich Werkzeuge zur Testautomatisierung. Die
Anforderungserhebung könnte man theoretisch auch mit unterbringen, allerdings liegt diese
Überlegung nicht im Rahmen unserer Fachstudie.

5.2.1 Testverwaltung

Ursprünglich wurde von einer Testfallverwaltung gesprochen. In dem Lösungsvorschlag heißt
es nun Testverwaltung. Das ist dadurch begründet, dass eine Testfallverwaltung für sich kei-
nen Nutzen hat, wenn sie mit den verwalteten Daten in keiner Weise arbeiten kann. Sämtli-
che Übersichts- und Bearbeitungswerkzeuge die es momentan zusätzlich gibt, gehören in der
idealen Lösung in die Testverwaltung und sind eng mit einander verknüpft. Ob man für ver-
schiedene Benutzergruppen getrennte Werkzeuge erstellt, die auf den selben Daten arbeiten
und eventuell nur Teilansichten gemeinsam haben, ist für unseren Vorschlag nicht relevant.

Bei einer idealen Lösung für ein Werkzeug spielt es keine Rolle, ob es sich um eine gekaufte(Anf. 3.13, 4.2,
4.4, 4.13, 4.14,

4.16, 4.17,
4.18, 4.19,

4.24-28)

Software handelt, oder um eine Eigenentwicklung. Es wird nicht beachtet, was ein Feature
kosten würde, sondern nur was für den Zweck des Werkzeugs die optimale Lösung wäre. Es
ist daher ohne Weiteres möglich, dass dieser Vorschlag unwirtschaftlich scheint bzw. ist.

Durch die Integrierung mehrerer bisheriger Werkzeuge in einer neuen einheitlichen Lösung,
sind nebenstehende Anforderungen automatisch erfüllt.

Rollen

Um verschiedenen Benutzergruppen jeweils die passenden Ansichten zur Verfügung stellen zu
können müssen zunächst die Benutzergruppen ermittelt werden. Eine Person kann für mehr als
eine Aufgabe zuständig sein, daher nehmen wir die Rolle als atomares Element. Jede Rolle
hat klare Ziele, die mit dem Werkzeug für die Testverwaltung erledigt werden sollen. Jeder
Mitarbeiter kennt seine Rollen bei FleetBoard und wird daher keine Schwierigkeiten haben die
passende Rolle im Werkzeug auszuwählen.

Die Rollen leiten sich aus dem Testprozess bei FleetBoard ab (siehe Abbildung 3.1). Die fol-
genden Betrachten wir:

• Spezifizierer

• Testfallspezifizierer

• Testautomatisierer

• Testplaner

• Tester

• Testauswerter

Im Folgenden werden die Rollen beschrieben und Ziele definiert.

47

Spezifizierer

Der Spezifizierer setzt Anforderungen in ein Gesamtkonzept um und formuliert daraus die
Spezifikation. Der Einfachheit halber bekommt jedes Feature eine Spezifikation wodurch die
kleinste Einheit in der Datenstruktur des Spezifizierers definiert ist. Spezifikationen werden mit
Anforderungen verknüpft.

Zur Übersicht über die verbleibende Arbeit wird eine Filterung nach offenen Anforderungen
benötigt.

Testfallspezifizierer

Der Testfallspezifizierer erstellt aus den Spezifikationen Testfälle. Mit Testfall ist ein Testfall
im Sinne der Literatur gemeint. Die Ansicht zu den Daten baut auf der des Spezifizierers auf,
ebenso wie die Daten selbst. Testfälle werden durch den Testfallspezifizierer jeweils einer Spe-
zifikation zugeordnet.

Da die Eingabe von Testfällen für einige Gebiete Routinearbeit ist und viele ähnliche Testfälle(Anf. 4.9, 4.10,
4.11) angelegt werden müssen, will der Testfallspezifizierer eine gute Unterstützung für die Arbeit

mit der Tastatur, eine Übersicht über mehrere Testfälle und deren Abhängigkeiten gleichzeitig,
sowie Vorlagen für standardisierte Inhalte. Zu beachten ist, dass unterschiedliche Kategorien
von Tests unterschiedliche Kategorien von Vorlagen benötigen. Ein Mitarbeiter wechselt aber
nicht täglich sein Arbeitsgebiet und möchte daher nur eine persönliche Liste von Kategorien
angezeigt bekommen. Viele ähnliche Testfälle möchte man zudem dadurch erzeugen können,
dass vorhandene Testfälle kopiert, an die richtige Position verschoben und angepasst werden.

Beachtet werden muss ebenfalls, dass bei manchen Produkten unterschiedliche Versionen un-(Anf. 4.7)

terschiedlich getestet werden müssen. Dazu werden optionale Konfigurationen im Sinne einer
Verknüpfung des Testfalls mit der Zielumgebung angeboten.

Bei den umfangreichen Anforderungen des Testfallspezifizierers darf allerdings niemals die,
bei den anderen Rollen bereits geforderte, Übersicht durch Auswahl von Produkt und Versi-
onsnummern, sowie Filterung nach bereits erledigter Arbeit, unterpriorisiert werden.

Testautomatisierer

Ähnlich wie der Implementierer benötigt der Testautomatisierer lediglich eine Übersichtliche
Anzeige der für ihn momentan anstehenden Arbeit. Er arbeitet allerdings auf der Ebene der
Testfälle und weist ihnen nach getaner Arbeit je ein Testskript zu. Er muss, falls notwendig,
zwischen unterschiedlichen Konfigurationen unterscheiden und diese, falls der Testfallspezifi-
zierer das nicht beachtet hat, diese selbst anlegen können.

Zur Übersicht über die verbleibende Arbeit wird eine Filterung nach offenen Automatisierun-
gen benötigt.

Testplaner

Ein Testplaner legt Testpläne an, die Produkte und Versionsnummern aus dem vorhandenen
Datenbestand selektieren und bündeln. Zur Verplanung der Mitarbeiter trägt er deren vorhan-
dene Arbeitszeit ein und verteilt diese Zeit in einem Testplan auf die zu testenden Testfälle.
Damit dies möglich ist werden Testfälle vorher mit einem Schätzwert für die Ausführungs-
dauer versehen. Eine automatisierte Unterstützung der Zeiterfassung nimmt dem Testplaner
nervige Arbeit der Aufwandserfassung ab.

Ist ein Testplan erstellt, wählt der Testplaner ihn als momentan aktiven Testplan aus und gibt
damit die Arbeit für die Tester vor.

Für die Inhalte eines Testplans (welche Teilmenge an Tests wird durchgeführt) werden Versi-
onsnummern von Produkten ausgewählt. Damit man aber zuordnen kann für welche Version

48

getestet wird, legt der Testplaner außerdem eine Zielversion fest. Diese Zielversion ist der Pro-
band und somit Grundlage aller durchgeführten Tests. Eine Version eines Produktes entspricht
bei Software in der Regel einem Stand in der Versionsverwaltung auf Dateiebene (SVN). Da-
mit kann ein Testplan später erneut mit gleichen Ergebnissen getestet werden. Bei Fleetboard
entspricht so ein testbarer Stand einer Freigabe des Betriebsteams, die alle Versionen der Kom-
ponenten der FleetBoard-Software enthält.

Während des Tests muss der Testplaner die Auslastung der Tester kontrollieren und notfalls
anpassen können. Ebenfalls möchte er sehen, wie weit die Dauer der Tests von den Schätzungen
abweicht.

Tester

Der Tester möchte eine Übersicht über momentan noch offene Aufgaben (auszuführende Tests).
Neben einer übersichtlichen Anzeige der von Testfallspezifizierer und Testautomatisierer pro-
duzierter Daten, benötigt der Tester diverse Filtermöglichkeiten um z.B. Konfigurationen in
seiner gewünschten Reihenfolge zu testen.

Eine Zusammenfassung über Umfang, geschätzter Dauer und verbleibender Arbeit lässt ihn die
Arbeit besser einteilen und das Ende besser abschätzen.

Sämtliche Tests werden aus der gleichen Ansicht heraus gestartet. Manuelle Tests werden –(Anf. 4.12)

visuell unterstützt – Schritt für Schritt durchgeführt. Eine Ermittlung der tatsächlich benötig-
ten Zeit gibt dem Tester Informationen über sein Arbeitstempo und bietet die Möglichkeit,
Schätzwerte durch gemessene Werte anzupassen.

Am Ende eines Testdurchlaufs bekommt der Tester eine knappe sowie zusätzlich eine um-
fassende Zusammenfassung der Testergebnisse. Eine Filterung nach fehlgeschlagenen Tests
vereinfacht zudem die Arbeit der Fehlerprotokollierung in einem Bugtrackingsystem.

Testauswerter

Zur Auswertung der Tests benötigt der Testauswerter eine Übersicht über alle durchgeführten
Tests zu einem Testplan. Während des Tests möchte der Testauswerter übersichtlich sehen was
noch alles offen ist und welche Mitarbeiter daran arbeiten.

Mit dem Fokus auf die gefunden Fehler, möchte der Testauswerter diese gefiltert und über-
sichtlich mit Details aus den Testergebnissen angezeigt bekommen. Liegt der Fokus auf die
eingeteilte Zeit der Tester, dann möchte er dafür eine Übersicht, die ihm zeigt, welche Tester
unterfordert oder überlastet waren. Bei einem Fokus auf den Test selbst, möchte der Testaus-
werter berechnete Daten wie Zahl der durchgeführten Tests, welcher Teil davon Manuell, wie
lange haben die Tests gedauert, was war die geschätzte Zeit, inwiefern wurde diese angepasst.

Anforderungen

Aus den Beschreibungen der Rollen, zusammen mit den Anforderungen, die sich aus den bishe-
rigen Analysen ergeben haben, ergeben sich folgende Anforderungen an die Ideallösung einer
Testverwaltung.

Spezifizierer

Eine Spezifikation wird als ein Element gespeichert und dargestellt. Solch ein Element besitzt
ebenfalls einen Umsetzungsstatus, welcher initial auf „Offen“ gesetzt wird.

Der Spezifizierer legt die Position seiner Spezifikation in der Baumstruktur fest. Er hat die
Möglichkeit, nach Produkten, Versionen und Umsetzungsstatus der Anforderungen zu filtern,
was ihn dabei unterstützt, offene Anforderungen zu erkennen. Anforderungen werden als Ord-
ner eingebunden, sind aber deutlich als Anforderung zu erkennen. Einer Anforderung können

49

beliebig viele Spezifikationen zugeordnet werden, denn es ist oft so, dass Anforderungen sehr
grob sind und in der Spezifikation aufgeteilt werden müssen. Nachdem der Spezifizierer eine
Anforderung fertig hat, kann er dieser den Umsetzungsstatus „spezifiziert“ geben, welcher für
den Produktmanager sichtbar ist.

Testfallspezifizierer

Der Testfallspezifizierer bekommt er eine Ansicht mit der Baumstruktur des Spezifizierers. Ei-
ne Spezifikation wird als Ordner dargestellt und sichtbar als solche gekennzeichnet. Ein Testfall
wird als Element gespeichert und dargestellt, welches einer Spezifikation zugewiesen werden
kann und ebenfalls einen initial auf „Offen„ gesetzten Umsetzungsstatus hat. Testfälle inner-(Anf. 4.5)

halb einer Spezifikation haben eine Reihenfolge, welche in diesem Baum beliebig festgelegt
werden kann, und können von Vorgängern abhängig sein. Zusätzlich zum Umsetzungsstatus
gibt es einen Automatisierungsgrad, welcher bei der Testfallspezifikation angegeben werden
kann. Initial hat er den Wert „Automatisiert (nicht implementiert)“. Für manuelle Tests kann
dieser Grad direkt bei der Testfallspezifikation auf „Manuell“ gesetzt werden. Durch die kom-
plette Integrierung der manuellen Tests in dieses Werkzeug ist die Anforderung automatisch(Anf. 3.13)

erfüllt.

Da es vorkommt, dass neue Versionen eines Produkts einen Testfall überflüssig machen, gibt es
im Testfall die Möglichkeit die Eigenschaft „Veraltet seit“ mit einer Version zu versehen. Für
Versionen nach dieser kann dann keine neue Konfiguration mehr angelegt werden. Veraltete
Testfälle werden in der Baumstruktur als solche markiert.

Werden für verschiedene Produkte unterschiedliche Konfigurationen benötigt, so gibt es die(Anf. 4.7)

Möglichkeit einem Testfall beliebig viele Konfigurationen zuzuordnen (ebenfalls im Baum dar-
gestellt). Eine Konfiguration kann Eigenschaften des Testfalls überschreiben und ist mit einem
Produkt und einer Version verknüpft. Der Übergeordnete Testfall dient in dem Fall dazu, das
allgemeine Vorgehen bei dem Test zu dokumentieren. Die Konfigurationen passen dieses Vor-
gehen für eine Version eines Produktes an. Solange es nur eine Konfiguration für einen Testfall
gibt, wird dieses Element nicht benötigt, sondern es reicht aus nur mit dem Testfall selbst zu
arbeiten.

Zur Übersicht kann die Baumstruktur nach Produkt, Version sowie Umsetzungsstatus der An-
forderungen und Spezifikationen gefiltert werden. Wird nach Produkt und Version gefiltert, so
werden sämtliche Konfigurationen von Testfällen ausgeblendet und in der Ansicht des Testfalls
direkt der Inhalt der gefilterten Version angezeigt. Die Tatsache, dass es weitere Konfiguratio-
nen zu dem Testfall gibt, wird durch eine kurze Information sichtbar gemacht.

Sind zu einer Spezifikation vorerst alle Testfälle erstellt, so kann der Umsetzungsstatus der
Spezifikation auf „Testfall spezifiziert“ gesetzt werden. Sind alle Spezifikationen innerhalb ei-
ner Anforderung testfallspezifiziert, so wird der Status der Anforderung ebenfalls auf „Testfall
spezifiziert“ gesetzt.

Ein Testfall hat einen Umsetzungsstatus, weil ein manueller Test im Normalfall nach der Spe-
zifikationen noch verfeinert werden muss und weil ein automatisierbarer Testfall evtl. noch
automatisiert wird. Erst wenn fest steht, dass der Testfall so getestet werden soll, wird der
Status auf „Abgeschlossen“ gesetzt.

Testautomatisierer

Der Testautomatisierer bekommt eine Ansicht mit einer Baumstruktur gleich der des Test-
fallspezifizierers, mit dem Unterschied, dass der Testautomatisierer Testfälle nicht bearbeitet,
sondern primär anschaut. Er kann aber ein Testskript mit einem Testfall oder einer Konfigura-
tion verknüpfen und den Automatisierungsgrad auf „Automatisiert“ setzen. In dem Fall wird
der Umsetzungsstatus automatisch auf „Abgeschlossen“ gesetzt. Für den Fall, dass noch keine
Konfiguration angelegt wurde, aber eine benötigt wird, kann der Testautomatisierer selbst eine

50

Konfiguration anlegen.

Testplaner

Der Testplaner benötigt folgende Ansichten:

• 1. Übersicht über die aktuell vorhandenen Testpläne mit dem neusten an erster Stelle. Der
aktive Testplan wird gut sichtbar markiert und kann hier gesetzt werden. Neue Testpläne
können von hier aus angelegt werden.

• 2. Einstellungsansicht zu einem Testplan. Produkte und Version werden hier ausgewählt.
Es gibt eine Übersicht über die Tester und deren verfügbare Zeit.

• 3. Zuordnung der Testfälle zu den Testern mit Baumstruktur der Testdaten die entspre-
chend des Testplans gefiltert werden.

Zu Ansicht 1:

Um den Testern die Auswahl des Testplans abzunehmen, legt der Testplaner fest welcher Plan
aktuell getestet werden soll. Wird ein neuer Testplan angelegt, wird vorgeschlagen diesen als
den aktuellen Testplan zu speichern.

Zu Ansicht 3:

Zur Zuordnung der Testfälle erhält der Testplaner eine Ansicht mit einer Baumstruktur, wel-
che alle relevanten Testfälle und Konfigurationen anzeigt. Konfigurationen werden nur explizit
angezeigt, wenn es für einen Testfall mehr als eine gibt die zum Testplan passt. Ansonsten
wird sie anstelle des Testfalls angezeigt. Gibt es offene Anforderungen, Spezifikationen oder
Testfälle, dann werden diese gut sichtbar markiert.

Zur Verplanung von Arbeitskräften benötigt der Testplaner Schätzwerte für die Dauer einer
Durchführung. Diese Schätzwerte werden in den Testfällen gespeichert und können von Konfi-
gurationen überschrieben werden. Zusätzlich wird die Anzahl der bisher durchgeführten Tests
gespeichert um Schätzwerte besser anpassen zu können. Gibt es noch keine Daten von vorheri-
gen Durchführungen, dann bekommt ein manueller Testfall den Anfangswert 15 Minuten. Ein
automatisierter Testfall 5 Minuten. Zusammen mit der Zahl der bisherigen Durchführungen
kann der Schätzwert bei jeder Durchführung an die durchschnittliche Dauer angepasst werden
und nähert sich mit der Zeit einem praxisnahen Wert.

Ziel der Testplanung ist, einen Plan zu erstellen, der Testern Testfälle zuordnet. Grundlage für
die Planung ist die verfügbare Arbeitszeit des Testers welche mündlich eingeholt wird und bei
dem jeweiligen Tester gespeichert werden kann, sowie die geschätzte Dauer von Testfällen.
Daher wird direkt in der Baumstruktur die geschätzte Dauer mit angezeigt. Elemente die kein
Blatt im Baum sind, zeigen die summierte Dauer all ihrer Kindelemente. Einem ausgewählten
Element kann nun ein Tester zugewiesen werden. Die Auswahl für die Tester zeigt die bereits
zugeteilte geschätzte Testdauer, sowie die verbleibende Zeit mit an, sodass auf einen Blick klar
ist welcher Tester noch Zeit für weitere Tests hat. Tester mit ausreichend freier Zeit werden
farblich hervorgehoben.

Da die Einteilung der Testfälle nicht auf Testfallebene geplant werden muss, sondern auch
ganze Spezifikationen und Anforderungen ausgewählt werden können, kann der Testplaner
ganze Blöcke gleichzeitig zuteilen und spart dadurch Aufwand.

Zur besseren Unterstützung der Planung kann in der Baumstruktur nach noch nicht zugeteilten
Testfällen gefiltert werden. Zudem ist es möglich offene Testfälle auszublenden.

Ein Testplan wird immer in Zusammenhang mit einer Version gespeichert. Eine Historie vorhe-
riger Testdurchführungen bleibt daher erhalten. Dafür muss ein Testplan neben den gewählten

51

Produkten und Versionen die Zuordnung von Testfall und Tester speichern, sowie die verfüg-
bare Zeit der Tester. Schätzwerte der Durchführungsdauer sind nicht abhängig von einem Test-
plan. Anhand der Historie ist es möglich einen vorherigen Testplan als Grundlage für einen
neuen Testplan zu verwenden. Der neue Testplan muss dann nur noch um die neuen Testfälle
ergänzt werden und Zuordnungen entsprechend der aktuell verfügbaren Zeit der Tester ange-
passt werden.

Tester

Ein Tester bekommt als erstes eine Baumstruktur, die passend zum aktuellen Testplan und sei-
nen zugewiesenen Testfällen gefiltert wird. Der Automatisierungsgrad wird im Baum farblich
hervorgehoben, damit der Tester einen ersten Eindruck bekommt. Es kann auch danach gefil-
tert werden. Zusätzlich kann nach Konfigurationen gefiltert werden, sofern denn mehrere zur
Auswahl stehen. Zur aktuellen Auswahl wird stets eine übersichtliche, für den Test angepasste,
Zusammenfassung des Inhalts angezeigt. Enthalten sind z.B. Anzahl der Testfälle und Gesamt-
dauer der Testfälle.

Aus dieser ersten Ansicht heraus können Testdurchläufe gestartet werden. Dabei gibt es fol-
gende Möglichkeiten:

• Komplettdurchlauf des gesamten Testplans

• Komplettdurchlauf fortsetzen

• Durchlauf des gewählten Teilbaums

Anschließend erscheint eine neue Ansicht, bei der es noch folgende Optionen bezüglich Auto-
matisierungsgrad und Konfigurationen gibt (falls mehr als eine Konfiguration vorhanden):

• Filterung nach Automatisierungsgrad

• Falls automatisiert und nicht automatisiert: Wahl eines Modus

– Alle manuellen Tests zuerst

– Reihenfolge behalten

– Dynamisch: Während ein manueller Test durchgeführt wird, kann ein nicht abhän-
giger automatisierter Test bereits gestartet werden.

• Filterung nach Konfiguration

• Falls nicht nach Konfiguration gefiltert: Wahl eines Modus für Konfigurationen

– Kompletter Durchlauf einer Anforderung pro Konfiguration

– Kompletter Durchlauf einer Spezifikation pro Konfiguration

– Kompletter Durchlauf nur für die erste Konfiguration. Anschließend minimaler
Durchlauf.

Im nächsten Schritt wird eine lineare Zusammenfassung des Testdurchlaufs angezeigt. Alle
Testfälle und Konfigurationen werden in der Reihenfolge angezeigt wie sie tatsächlich durch-
geführt werden sollen. Der Automatisierungsgrad wird farblich hervorgehoben. Anforderun-
gen und Spezifikationen werden unauffälliger gestaltet, da sie hier eher unwichtig sind. Es gibt
eine Zusammenfassung der Gesamtdauer, des gesamten Automatisierungsgrades, der Anzahl
der Unterbrechungen von automatisierten durch manuelle Tests, falls zutreffend der Einspa-
rung durch paralleles starten von manuellen und automatisierten Tests. Unterbrechungen von
automatisierten Tests durch manuelle Tests werden zudem zusammengefasst und zur entspre-
chenden Stelle in der eigentlichen Ansicht verlinkt.

52

Nach dem Betrachten der Zusammenfassung wird der Testdurchlauf gestartet. Die Zeit für je-
den Testfall wird nebenher ermittelt und gespeichert. Manuelle Tests werden durch jeweilige
Anzeige einer Zusammenfassung des Testfalls sowie dessen Umgebung (Anforderung, Spe-
zifikation, Konfiguration, vorheriger und nächster Testfall) und der Möglichkeit das Ergebnis
abzuspeichern unterstützt. Eine Fortschrittsanzeige mit Restzeitanzeige verschafft dem Tester
einen besseren Überblick. Ergebnisse werden mit einem Testfall oder, falls vorhanden, einer(Anf. 3.12)

Testfallkonfiguration verknüpft. Teil des Ergebnisses ist eine Veränderung des Umsetzungs-
status des Testfalls oder der Konfiguration. Er kann auf „Getestet“ oder „Getestet mit Fehler“
geändert werden, was automatisch anhand des Testergebnisses geschieht.

Ein Durchlauf kann unterbrochen werden. Es ist nicht notwendig, den Durchlauf mit Einstel-
lungen und aktuellem Stand explizit speichern zu können, da die Anwendung sich Einstel-
lungen des Benutzers grundsätzlich merken sollte. Ein Fortsetzen kann so ohne weiteres neu
berechnet werden.

Nach dem Durchlauf wird eine Testauswertung mit allen Ergebnissen angezeigt und abgespei-
chert.

Testauswerter

Zur Auswertung der Tests benötigt der Testauswerter eine Übersicht über alle durchgeführten
Tests zu einem Testplan. Es wird der vom Testplaner eingestellte aktuelle Testplan ausgewählt.
Ein Wechsel auf andere Testpläne ist aber möglich.

Die Übersicht enthält eine Baumstruktur mit allen enthaltenen Anforderungen, Spezifikatio-
nen, Testfällen und Konfigurationen. Es kann nach Produkt und Testergebnis gefiltert werden.
Zu der jeweiligen Auswahl im Baum wird stets die passende Zusammenfassung aus dem Test-
durchlauf angezeigt.

Migration

Die Migration der Daten für die Testverwaltung muss bisherige Daten aus drei Werkzeugen
zusammenführen. Daten von Focal Point und Requisite Pro müssen von Hand migriert (neu
eingetragen) werden. Dabei sollte eine überarbeitete Datenstruktur bereits beachtet werden.
Für die Migration der Daten aus ClearQuest kann ein grafisches Hilfswerkzeug erstellt werden
welches die Migration plant und den Benutzer dabei unterstützt. Anhand dieses Plans kann
die Migration innerhalb von wenigen Minuten automatisiert durchgeführt werden um einen
Reibungslosen Übergang im Betrieb zu ermöglichen.

5.2.2 Automatisierte Tests

An die Werkzeuge für Testautomatisierung haben wir im Rahmen der Fachstudie eigentlich
keine Anforderungen. Relevant ist aber die Anbindung an die Testverwaltung.

Bei der Ideallösung gibt es an Werkzeuge zur Testautomatisierung folgende Anforderungen:

Datenstruktur

Durch Richtlinien wird eine einheitliche Datenstruktur eingehalten. Das Vorkommen von Ver-
sionsnummern in der Datenstruktur ist auch hier zu vermeiden.

Implementierung

Code und Kommentare die aus den Daten der Testverwaltung generiert werden können, sollen
auch generiert werden.

53

Aufruf

Der Aufruf eines Testskripts ist durch die Testverwaltung im Rahmen einer Testdurchführung
möglich. Die Auswahl der zu testenden Testfälle ist auf genau dieser Ebene durch die Test-
verwaltung möglich. Eine statische Bündelung von Tests in einem einzigen Skript ist nicht
vorgesehen.

Auswertung

Nach einer Durchführung steht das Testergebnis, die Ausführungsdauer sowie in einem Feh-
lerfall eine möglichst genaue Fehlerbeschreibung zur Verfügung und kann durch die Testver-
waltung abgespeichert werden.

Migration

Ein Austausch der Werkzeuge ist nicht gefordert, da das den Rahmen der Fachstudie sprengt.
Eine Migration von Daten wird daher nicht besprochen. Da bisherige Daten aber sehr spezifisch
für ein Werkzeug sind, ist es kaum möglich diese sinnvoll zu migrieren.

54

6 Wirtschaftlicher Lösungsvorschlag

Grundlage des wirtschaftlichen Lösungsvorschlags ist eine subjektive Bewertung aller Anfor-
derungen nach Kosten und Nutzen.

Darauf aufbauend setzt sich der wirtschaftliche Lösungsvorschlag aus der Verbesserung der
Organisation und des Prozesses, sowie der Verbesserung der Werkzeuge oder deren Austauschs
zusammen. Im Bereich der Werkzeuge zeigen wir FleetBoard bewusst mehrere umsetzbare
Lösungsvarianten auf und treffen keine Entscheidung, welche der Lösungen die beste ist. Wir
machen Verbesserungsvorschläge zum Umgang mit den bestehenden Werkzeugen und erörtern
die Vor- und Nachteile des teilweisen Austauschs bestehender Werkzeuge durch eine integrierte
externe Lösung im Vergleich zu einer flexiblen Eigenentwicklung.

6.1 Bewertung der Anforderungen

Nicht jede unserer Anforderungen ist gleich wichtig. Außerdem gibt es starke Unterschiede in
den geschätzten Umsetzungskosten. Daher haben wir alle Anforderungen rein subjektiv nach
Nutzen und Kosten bewertet und dann eine sinnvolle Auswahl getroffen. Das Ergebnis ist fol-
gende Liste.

• Hohe Priorität:

– 2.1 Person, die sich den Aufgaben gemäß LL07, Kap. 13.1.3 widmet. Klar definier-
te Aufgaben und festgelegte Zeit zur Umsetzung.

– 3.1 Dokumentation, die einen Überblick über den Testprozess vermittelt. Rollen
und Artefakte bereits eingeführt.

– 3.4 Zusätzliche Zeit zur Automatisierung von Tests. Am besten je Sprint eine fest
definierte Menge.

– 3.7 FleetBoard-weites Begriffslexikon. Verzicht auf Abkürzungen.

– 3.11 Kundenakzeptanztests erfolgreich einführen.

– 3.12 Exaktere Testergebnisse durch Anhängen an einen Prüfpunkt. Speicherung
des Testlogs für Ursachenermittlung.

– 4.5 Ordnung und Abhängigkeiten zwischen Testfällen

– 4.11 Layout- und Inhaltsvorlagen zum Anlegen und Verändern von Testfällen

– 4.20 Ein aktueller Styleguide mit Code- und Qualitätsrichtlinien für Testskripte
sowie eine Schritt-für-Schritt-Anleitung für ein gutes Testskript sind notwendig

– 4.21 Kontrolle (z.B. ein Review) der Umsetzung der Richtlinien für Testskripte

– Die folgenden Anforderungen sind nur gemeinsam durch Ablösung von Manual
Tester möglich:

55

* 4.25 Werkzeug zur Unterstützung manueller Tests mit kurzen Antwortzeiten
und Copy & Paste Möglichkeit.

* 4.26 Richtige vollständige Beschriftung von Buttons usw.

* 4.27 Werkzeug mit erkennbarem Vorteil und echter Unterstützung des manu-
ellen Tests

• Mittlere Priorität:

– 2.2 Mehr Mitarbeiter für die Tests.

– 3.2 Die benötigte Zeit abschätzen und ausreichend Mitarbeiter für die Testspezifi-
kation und -automatisierung zur Verfügung stellen

– 3.9 Qualitativ hochwertige Dokumentation, die ausreichend ins Detail geht um die
tägliche Arbeit erledigen zu können, sich aber trotzdem auf das Wesentliche kon-
zentriert.

– 4.3 Klare Vorgaben zur Platzierung und Ordnung von Testfällen in ClearQuest und
Überwachung deren Einhaltung. Die vorhandenen Daten müssen neu strukturiert
werden.

– 4.12 Testskripte und manuelle Tests müssen aus dem Testfallverwaltungswerkzeug
gestartet werden können.

– 4.14 In ClearQuest werden nur die in der Praxis verwendeten Formularfelder und
Daten angezeigt.

– 4.15 Die Dokumentation des ITT-Testmanagements muss sich an den tatsächlichen
Aufgaben des Testbetriebs orientieren, Informationen über Begrifflichkeiten bein-
halten und im Wiki zu finden sein

– 4.17 Klare eindeutige Namensgebung der einzelnen Seiten des ITT-Testmanagements
und deren Links

– 4.18 Die Übersichtsseite des ITT-Testmanagements muss die Ziele, für die das ITT
entwickelt wurde, übersichtlich als solche darstellen. Eine optische Einteilung (Ka-
tegorien) in unterschiedliche Benutzergruppen ist wünschenswert

– 4.24 Dokumentation zu Manual Tester muss angelegt werden

– 4.28 Genügend Lizenzen für das Werkzeug zur Unterstützung der manuellen Tests
müssen vorhanden sein.

• Niedrige Priorität: Alle Übrigen. Deren Einschätzung und Umsetzung überlassen wir
FleetBoard. Die vollständige Liste mit allen Prioritäten ist als Anhang beigefügt.

6.2 Verbesserung von Organisation und Prozess

Unsere Ideallösung hierzu beinhaltet im Wesentlichen Finetuning an Organisation und Pro-
zess und verursacht somit nur den Aufwand für die eigentliche Umstellung sowie zusätzliche
Personalkosten. Teure Datenmigrationen fallen nicht an.

Daher schlagen wir vor, die Ideallösung für die Organisation und den Prozess, so wie sie for-
muliert ist, umzusetzen.

6.3 Verbesserungen im Umgang mit vorhandenen Werkzeugen

56

6.3.1 ClearQuest

ClearQuest bietet aus zwei Gründen das größte Potential für Verbesserungen. Zum einen ist es
das zentrale Werkzeug der Testverwaltung, zum anderen kann es mit dem ClearQuest Designer
an individuelle Bedürfnisse angepasst werden, wenn auch nur in begrenztem Maße. Es ist mög-
lich, neue Datentypen anzulegen, diese mit Werten und Verknüpfungen zu anderen Datentypen
auszustatten, sowie einfache Oberflächen für diese Typen zu erstellen.

Trotz dieser Möglichkeiten bleibt die Usability der erstellten Oberflächen weit hinter den theo-
retischen Möglichkeiten zurück. So ist bei den Vorschlägen zu ClearQuest zu überlegen, ob
diese nicht besser mit Hilfe eines neuen Tools umgesetzt werden. Im Abschnitt 6.4 werden
zwei Alternativen für ein neues Werkzeug vorgestellt.

6.3.2 Functional Tester

Erstellung von Code- und Qualitätsrichtlinen für Testskripte

Um das Problem der schwankenden Qualität von Testskripten in den Griff zu bekommen, emp-
fehlen wir, dass das schwarze Team zusammen mit einigen Testskriptentwicklern Richtlinien
für Functional Tester Skripte aufstellt. Diese Richtlinien sollten eine Liste von zu verwenden-
den und zu vermeidenden Strukturen enthalten, also eine Liste von „Do“s and „Don’t“s. Ebenso
sollte die Unabhängigkeit von nicht einfach reproduzierbaren Testflotten vorgeschrieben wer-
den. Darüber hinaus sollten alle Skripte eines Dienstes wenn möglich ohne Flottenwechsel
auskommen und vom Tester wenig Insiderwissen verlangen.

Die Einhaltung dieser Richtlinien sollten beim Durchführen der Regressionstests vom schwar-
zen Team geprüft werden. Ein Regressionstester muss dann ein Skript als nachbesserungs-
bedürftig empfehlen und zum Entwickler zurückgeben können. Die Kosten einer zeitnahen
Korrektur sind gering im Vergleich zu den Kosten, die entstehen, wenn ein Problem beim Test
des nächsten Releases entdeckt werden.

6.4 Alternativen zu bestehenden Werkzeugen

Die Analyse hat ergeben, dass die Wahl der Werkzeuge nicht optimal war. Sie hat aber auch
ergeben, dass ein Austausch eines Werkzeugs ohne automatisierte Migration nahezu ausge-
schlossen ist, da bereits zu viel Arbeitszeit in die Erstellung der Daten geflossen ist. Zudem
gab es vor drei Jahren bereits eine aufwändige Migration, die man nun ungern wiederholen
möchte. Diesen Aspekt haben wir bei unserem Vorschlag beachtet.

6.4.1 Quality Manager

Der IBM Rational Quality Manager baut auf das Jazz-Projekt auf und ist das aktuelle Werkzeug
von IBM zur Testfallverwaltung, aber auch Anforderungserhebung, Testplanung, Testauswer-
tung, Fehlerverwaltung und Durchführung manueller Tests. Es würde damit ClearQuest, ITT-
Testmanagement und Manual Tester ersetzen und käme der Ideallösung in vielen Bereichen
nahe.

Folgende Anforderungen wären damit abgedeckt: 3.13, 4.9, 4.13, 4.14, sowie die Anforderun-
gen zum ITT-Testmanagement und Manual Tester.

Als problematisch sehen wir die Migration der Daten. Grundsätzlich können alle Standard-
daten aus anderen Rational-Produkten importiert werden. Allerdings gibt es momentan etliche
selbstprogrammierte Erweiterungen, die nicht ohne Weiteres übernommen werden können. Die
tatsächliche Migrierbarkeit lässt sich für uns nur schwer abschätzen, ohne einen Versuch mit
echten Daten zu starten. Dazu wäre eine Kopie des Produktivsystems mit Adminrechten, eine
freie Lizenz jedes verwendeten Rational-Produkts, sowie Kenntnis über die Serverarchitek-

57

http://jazz.net

tur bei FleetBoard notwendig. Wir überlassen nähere Untersuchen daher den Mitarbeitern von
FleetBoard.

Ebenfalls FleetBoard überlassen möchten wir die Abwägung zwischen dem Vorteil einer inte-
grierten externen Lösung und einer flexiblen Eigenimplementierung, die die bisherigen Daten
weiter verwenden und Stück für Stück die alten Werkzeuge ablösen kann.

6.4.2 Eigenentwicklung

Um den zahlreichen, nicht durch Tools von der Stange abdeckbaren, Anforderungen des Quali-
tätsicherungsprozesses bei FleetBoard gerecht zu werden und um aufwendige Datenmigratio-
nen zu vermeiden, bietet sich der Einsatz eines selbst entwickelten Werkzeugs an.

Bei einer Eigenentwicklung ist es möglich, sich an der vorgeschlagenen Ideallösung zu orien-
tieren, mit dem Unterschied, dass die bisherige Datenbank weiter verwendet wird und deren
Einschränkungen beachtet werden müssen. Die Frage, ob eine Webanwendung oder ein Fat
Client entwickelt werden soll, wird leicht beantwortbar, wenn man überlegt, dass die Anwen-
dung eine enge Anbindung an andere lokal laufende Anwendungen benötigt. Das ist mit einer
Webanwendung kaum umsetzbar, weswegen aus technischen Gründen ein Fat Client notwen-
dig ist.

Die Einführung einer Eigenentwicklung wird dadurch erleichtert, dass keine Migration und
kein Toolwechsel auf einen Schlag nötig sind. Die Funktionen des im folgenden skizzier-
ten Programms lassen sich schrittweise implementieren, wodurch der alte ClearQuest-Client
schleichend abgelöst werden kann. Da keine Kompatibilitätsprobleme verursachende Änderun-
gen vorgeschlagen werden, kann in der Übergangszeit und auch später der normale ClearQuest-
Client weiter verwendet werden.

Die Unterscheidung der Rollen in der Ideallösung muss auch in der tatsächlichen Umsetzung
beachtet werden. Der Einstieg in die Anwendung (Übersichtsseite) sollte sich daran orientieren.
Da eine umfassende Lösung mit allen Rollen nicht nur für die Fachstudie, sondern auch für die
Umsetzung bei FleetBoard sehr umfangreich ist, haben wir die Rollen priorisiert und drei davon
ausgearbeitet.

Wir schlagen folgende Reihenfolge für die Umsetzung der Ansichten für die Rollen vor:

1. Testfallspezifizierer

2. Tester

3. Testautomatisierer

4. Testauswerter

5. Testplaner

6. Spezifizierer

Eine neue Anwendung für den Testfallspezifizierer bringt unserer Meinung nach den größ-
ten Nutzen. Der Tester kommt direkt im Anschluss, da wir dringend zur Abschaffung von
Manual Tester raten. Testauswerter und Testplaner kommen später, weil sie mit dem ITT-
Testmanagement bereits eine gute Werkzeugunterstützung haben. Sollten die Funktionen dieser
beiden Rollen aus dem ITT-Testmanagement in das neue Tool migriert werden, schlagen wir
eine Orientierung an den Vorschlägen der Ideallösung vor. Die Ansicht des Spezifierers hat die
geringste Priorität, weil nicht klar ist, ob die Spezifikation überhaupt aus Requisite Pro ausge-
lagert werden sollte. Da dies aber eine Möglichkeit ist, wird es hier mit aufgeführt, ohne dass
eine genaue Beschreibung dieser Ansicht folgt.

Die Anforderungen an die Ansichten der höchst priorisierten drei Rollen werden im Folgenden
skizziert. Eine detaillierte Spezifikation sprengt hier den Rahmen.

58

Testfallspezifizierer

Der Testfallspezifizierer bekommt eine Ansicht, die links eine Baumstruktur (ähnlich wie Clear-(Anf. 4.2)

Quest) anzeigt. Diese stellt die Datenstruktur der ClearQuest-Datenbank dar. Beachtet wer-
den muss, dass unnötige Elemente (siehe Anforderung 4.2) nicht angezeigt und Elemente mit
gleicher Funktion (Strukturierung) gleich dargestellt werden. So werden Asset-Registries und
Testpläne gleich dargestellt. (Asset-Registries sind auch nur eine Gruppierung für Testfälle und
damit mit Testplänen, die auch keine weitergehende Funktion haben, gleichwertig.) Unnötige
Zwischenelemente aus dem ClearQuest-Client werden nicht übernommen.

Die Ansicht ist grundsätzlich zweigeteilt. Während links stets der Baum angezeigt wird, wer-(Anf. 4.5, 4.11)

den rechts im Falle des Testfalls die aus ClearQuest bekannten Felder für Daten angezeigt.
Unnötige Felder werden weggelassen. Darunter werden die Prüfpunkte des ausgewählten Test-
falls in einer Tabelle angezeigt. Bei der Tabelle sollte besonders auf Usability wert gelegt wer-
den. Häufige Wechsel zwischen Tastatur und Maus müssen vermieden werden. Copy & Pas-
te und Drag & Drop müssen möglich sein. Neben der Tabelle sind zum schnellen Einfügen
über Buttons konfigurierbare Vorlagen verfügbar, um Anforderung 4.11 zu erfüllen. Zwischen
den Prüfpunkten kann eine Ordnung angegeben werden. Die Reihenfolge der Prüfpunkte kann
nachträglich verändert werden.

Ein Testfall wird hat initial den Umsetzungsstatus „Offen„. Zusätzlich zum Umsetzungsstatus
gibt es einen Automatisierungsgrad, welcher bei der Testfallspezifikation angegeben werden
kann. Initial hat er den Wert „Automatisiert (nicht implementiert)“. Für manuelle Tests kann(Anf. 3.13)

dieser Grad direkt bei der Testfallspezifikation auf „Manuell“ gesetzt werden. Durch die kom-
plette Integrierung der manuellen Tests in dieses Werkzeug ist die Anforderung 3.13 automa-
tisch erfüllt.

Da es vorkommt, dass neue Versionen eines Produkts einen Testfall überflüssig machen, gibt es
im Testfall die Möglichkeit die Eigenschaft „Veraltet seit“ mit einer Version zu versehen. Für
Versionen nach dieser kann dann keine neue Konfiguration mehr angelegt werden. Veraltete
Testfälle werden in der Baumstruktur als solche markiert. Hierfür muss die Datenstruktur der
ClearQuest-Datenbank mit Hilfe des Designers angepasst werden.

Werden für verschiedene Produkte unterschiedliche Konfigurationen benötigt, so gibt es die(Anf. 4.7)

Möglichkeit, einem Testfall beliebig viele Konfigurationen zuzuordnen (ebenfalls im Baum
dargestellt). Eine Konfiguration kann Eigenschaften des Testfalls überschreiben und ist mit
einem Produkt und einer Version verknüpft. Der übergeordnete Testfall dient in dem Fall dazu,
das allgemeine Vorgehen bei dem Test zu dokumentieren. Die Konfigurationen passen dieses
Vorgehen für eine Version eines Produktes an. Solange es nur eine Konfiguration für einen
Testfall gibt, wird dieses Element nicht benötigt, sondern es reicht aus nur mit dem Testfall
selbst zu arbeiten.

Zur Übersicht kann die Baumstruktur nach Produkt, Version sowie Umsetzungsstatus der An-
forderungen und Spezifikationen gefiltert werden. Wird nach Produkt und Version gefiltert, so
werden sämtliche Konfigurationen von Testfällen ausgeblendet und in der Ansicht des Testfalls
direkt der Inhalt der gefilterten Version angezeigt. Die Tatsache, dass es weitere Konfiguratio-
nen zu dem Testfall gibt, wird durch eine kurze Information sichtbar gemacht.

Ein Testfall hat einen Umsetzungsstatus, weil ein manueller Test im Normalfall nach der Spe-
zifikationen noch verfeinert werden muss und weil ein automatisierbarer Testfall evtl. noch
automatisiert wird. Erst wenn fest steht, dass der Testfall so getestet werden soll, wird der
Status auf „Abgeschlossen“ gesetzt.

Tester

Auch die zweite Ansicht für den Tester zeigt links den Testfallbaum an. Der Testfallbaum kann
gefiltert werden. Jetzt sind allerdings Testpläne und Testfälle darin markierbar. Rechts des Bau-

59

mes kann mit Hilfe eines Buttons die Testdurchführung gestartet werden. Dabei werden manu-
elle Testfälle direkt zur Bearbeitung angeboten, in dem die Prüfpunkte nacheinander angezeigt
werden und mit „Ok“, „Nicht Ok“, „Ok mit Anmerkung“ oder „Nicht ausgeführt“ quittiert
werden können. Die Ergebnisse werden direkt in die ClearQuest-Datenbank eingetragen. Au-
tomatisierte Testfälle, also solche, die eine Verknüpfung mit Functional Tester haben, können
durch Klick auf einen Button automatisch von Functional Tester ausgeführt werden. Zusätz-
lich kann ein automatischer Modus aktiviert werden, bei dem aufeinanderfolgende Functional
Tester Skripte ohne weitere Bestätigung nacheinander ausgeführt werden.

Während der Testdurchführung wird die benötigte Zeit zur Ausführung der Testfälle erfasst
und für die Testplanung und Restaufwandsschätzung gespeichert. Die hier beschriebene einfa-
che Durchführung von manuellen Tests ist der aktuellen Lösung mit Manual Tester um einiges
voraus. Bei der Ablösung von Manual Tester entsteht allerdings Migrationsaufwand, weil Ma-
nual Tester Testbeschreibungen nicht automatisiert in ClearQuest-Prüfpunkte überführt werden
können. Dem gegenüber steht der Vorteil, sämtliche Testbeschreibungen in einer Datenbank zu
haben und nicht wie bisher auf ClearQuest und Manual Tester verteilt.

Testautomatisierer

Der Testautomatisierer bekommt im Wesentlichen die gleiche Ansicht wie der Testfallspezifi-
zierer. Im Gegensatz zu diesem sieht der Testautomatisierer generierte Prüfpunktkommentare
und Methodenrümpfe, wie es aus dem bisherigen ClearQuest-Client bekannt ist. Da der Tes-
tautomatisierer die Prüfpunkte nicht verändern muss, ist seine Ansicht im Nur-Lesen-Modus.
Die Ansicht des Testautomatisierers unterstützt eine kompakte Darstellung der Prüfpunkte des
ausgewählten Testfalls. Diese Ansicht kann in ein extra Fenster verlegt werden, das auf „im-
mer im Vordergrund“ eingestellt werden kann. So kann der Testautomatisierer während seiner
Arbeit im Functional Tester stets ohne Platz- und Zeitverschwendung seine Aufgabe sehen.

60

A Begriffslexikon

Begriff DispoPilot
Bedeutung Der DispoPilot ist ein Handgerät mit Barcodescanner und Navigations-

funktion, das im LKW für die Disposition eingesetzt wird.

Begriff Konfigurierter Testfall
Bedeutung Ein Konfigurierter Testfall ist ein Kindelement des Testfalls in Clear-

Quest. Er dient zur Anpassung des Testfalls an spezifische Hardware-
oder Softwarekonfigurationen, die für die Ausführung des Testfalls ver-
wendet werden. Functional Tester Skripte werden mit Konfigurierten
Testfällen verknüpft und Testlogs werden an sie angehängt.

Begriff Prüfpunkt
Bedeutung Ein Prüfpunkt ist ein Kindelement des Testfalls in ClearQuest. Ein

Testfall enthält 0-n Prüfpunkte. Der Prüfpunkt ist ein selbst entwickel-
tes Element und enthält Felder für Vorbedingung, Aktion, Nachbedin-
gung und Automatisierungsstatus. Damit entspricht er dem „Lehrbuch-
Testfall“.

Begriff Schwarzes Team
Bedeutung Das schwarze Team ist ein Scrum-Team, das die Integrationstests leitet

und koordiniert. Zu diesen Aufgaben zählen nicht nur die Durchfüh-
rung im Rahmen von Regressionstests, sondern auch die Entwicklung
der Testinfrastruktur.

Synonym Black Team, Integrationstestteam

Begriff Scrum Team
Bedeutung Alle Entwicklungsteams, die nicht das schwarze Team sind, werden bei

FleetBoard einfach „Scrum-Team“ genannt.
Synonym Entwicklungs-Scrum-Team, Entwicklungsteam

Begriff Telematikplattform
Bedeutung Die Telematikplattform ist ein Gerät, das in die LKW der Kunden ein-

gebaut wird und dort Fahrzeugdaten vom CAN-Bus zusammenträgt
und diese über GPRS an FleetBoard-Server schickt.

Abkürzung TP

Begriff Testfall
Bedeutung Ein Testfall bei FleetBoard ist ein Container, der Prüfpunkte enthält. Er

entspricht nicht dem „Lehrbuch-Testfall“. Seine Verwendung bei Fleet-
Board unterscheidet sich kaum von der des Testplans.

Querverweis Prüfpunkt

61

B Fragenkatalog

Es folgt der Fragebogen, den wir für die Interviews bei FleetBoard verwendet haben.

B.1 Einleitung

• Ziel der Fachstudie, Zweck des Interviews.

• Was ist deine Aufgabe bei Fleetboard?

• Was ist deine Aufgabe in Bezug auf Tests? (Spezifizierst du Testfälle?, Implementierst
du Testfälle?, Verwaltest du Testfälle?, Führst du Tests durch?)

• Mit welcher Art von Testfällen hast du zu tun? (GUI, Betrieb, Oberfläche, Last, „Kun-
denakzeptanz“,)

• Welche Größenordnung von Testfällen verwaltest du?

B.2 Werkzeuge

• Welche Werkzeuge setzt du ein?

Für jedes Werkzeug:

• Allgemeinbewertung: Was hältst du von diesem Werkzeug auf einer Skala von 1-10 (1
ungenügend, 10 sehr gut)

• Welche Probleme gibt es mit diesem Werkzeug? Was könnte man an diesem Werkzeug
verbessern?

• Was findest du gut an diesem Werkzeug?

• Kennst du ein anderes Werkzeug, welches die Aufgabe besser lösen kann? Was konkret
ist dort besser?

62

B.3 Testprozess

• Beschreibe den Testprozess aus deiner Sicht

• Was hältst du vom Testprozess auf einer Skala von 1-10?

• Brauchst du Informationen oder Daten von jemand anderem? Von wem? Was?

• Woher weißt du, was du zu testen hast?

• Wer bekommt die Ergebnisse deiner Arbeit?

• Wie funktioniert die Testaufwandsplanung? Was kann man daran verbessern?

• Enthält der Testprozess unnötige Schritte?

• Fehlen im Testprozess deiner Meinung nach erforderliche Schritte?

• Was gefällt dir am Testprozess?

• Was stört dich am Testprozess?

• Wer legt fest / Wo steht was überhaupt getestet wird? (alle Features?, eine Teilmenge?
welche?)

B.4 Testfälle

B.4.1 Spezifikation

• Unterscheiden sich deine Testfälle in irgendeiner Form von „anderen“ Testfällen bei
FleetBoard? Haben sie spezielle Merkmale? Benötigst du eventuell andere Eingabefel-
der, kannst du mit vorhandenen Feldern nichts anfangen?

• Welche Daten benötigst du dabei und wo nimmst du diese her?

• Wie beurteilst du die Qualität dieser Daten auf einer Skala von 1-10? (Sind die Testfälle
verständlich?, eindeutig formuliert?)

• Wie sind die Testfälle strukturiert? Wie ist die Gliederung in ClearQuest? Gibt es dafür
eine Vorgabe?

• Wie sind die einzelnen Felder zu benutzen? Werden sie auch so benutzt? Wenn ja, warum
nicht? Machen „die anderen“ das auch richtig?

• Gibt es eine Priorisierung von Testfällen?

• Wird der benötige Aufwand für die Durchführung abgeschätzt? Wie?

• Wie kann man die Aufwandsabschätzung verbessern?

• Problematik des Testfalls als Gruppierung für Prüfpunkte ansprechen (Zuordnung von
Prüfpunkten zu Testfällen möglicherweise nicht sinnvoll). Wie siehst du das? Entstehen
daraus deiner Meinung nach Probleme?

63

B.4.2 Implementierung

• Welche Daten benötigst du dabei und wo nimmst du diese her?

• Wie beurteilst du die Qualität dieser Daten auf einer Skala von 1-10? (Sind die Testfälle
verständlich?, eindeutig formuliert?)

• Wie findest du die Verbindung zwischen ClearQuest und Functional Tester (Werkzeug A
und B falls andere Tools bei z.B. den Hardware-Leuten).

• Was stört? Was lässt sich besser machen?

• Was ist gut?

• Was lässt sich eventuell noch automatisieren? Welchen Aufwand würde das bedeuten?
(Wie viel Zeit spart man durch die Automatisierung? Wie lange dauert die Automatisie-
rung? (Wartung der Automatisierung?))

B.4.3 Durchführung

• Wie funktioniert die Testdurchführung auf deinem Arbeitsgebiet? Welche Schritte sind
dafür notwendig?

• Welche Daten benötigst du dabei und wo nimmst du diese her?

• Wie beurteilst du die Qualität dieser Daten auf einer Skala von 1-10? (Sind die Testfälle
verständlich?, eindeutig formuliert?)

• Wo gehen die Ergebnisse hin? (Personen)

• Welche Schritte werden dabei manuell erledigt und könnten unabhängig vom verwende-
ten Werkzeug automatisiert werden? (Theoretisch automatisierbar) (Wie viel Zeit spart
man durch die Automatisierung? Wie lange dauert die Automatisierung? (Wartung der
Automatisierung?))

• In welcher Form liegen die Testergebnisse vor und wie werden diese weiterverarbeitet?
Falls komplett manuell: Gibt es eine Form-Vorgabe? (Formular)

• Hältst du diese Form für sinnvoll? (Was kann man besser machen?)

• Falls manuelle Ergebnisse: Wie kommen diese in die ClearQuest-Datenbank?

• Was passiert, wenn ein Fehler gefunden wird, der weiteres Testen unmöglich macht, bzw.
wenn wesentliche Features nicht funktionieren?

• Was ist das Testendekriterium?

B.4.4 Auswertung

• In welcher Form werden dir die Testergebnisse präsentiert? Welches Tool? Wo kommen
die Daten her?

• Was ist daran schlecht?

• Was könnte verbessert werden?

• Was ist gut?

64

C Priorisierung der Anforderungen

In dem Lösungsvorschlag konzentrieren wir uns nur auf die wichtigsten Anforderungen. Der
Rest bleibt dort teilweise unbeachtet. Der Auswahl liegt eine subjektive Priorisierung unserseits
zugrunde, die wir der Vollständigkeit halber hier noch mit einfügen.

Bei der Priorisierung handelt es sich um eine Tabelle, welche alle Schwachstellen und dazuge-
hörige Anforderungen auflistet und jeweils einen geschätzten Wert für den Nutzen (N) und für
die Kosten (K) bekommen hat. Da wir die Organisatorische Ebene grundsätzlich für wichtiger
halten als des Rest, bekommt jeder Nutzen-Wert zwei hinzu addiert. Der Prozess bekommt
plus eins. Dies ist eine Gewichtung (GN) nach Kategorie. Auf Grund dieser Schätzungen gibt
es eine Empfehlung (E) zur Umsetzung der Anforderung.

Zu den Skalen: Der Nutzen wurde auf einer Skala von 1 bis 5 geschätzt, wobei 5 der höchste
Nutzen ist. Durch die Gewichtung hat der gewichtete Nutzen eine Skala von 1 bis 7. Einen
Nutzen von 5 und höher haben wir grün (sehr hoch) markiert. 4 ist gelb (hoch) markiert und 3
rot (mittel). 2 und 1 sind nicht markiert (niedrig). Die Kosten haben ebenfalls eine Skala von 1
bis 5, wobei 5 sehr teuer ist. Wir haben zur Übersicht auch hier Farben verwendet: Grün für 1
(sehr billig), Gelb für 2 (billig), Rot für 3 (mittel).

Zu der Empfehlung: Es handelt sich dabei um eine sehr subjektive Einschätzung. Grundsätzlich
wurden Nutzen und Kosten abgewägt. Es fließen aber auch Wünsche der Mitarbeiter mit ein.
Vergeben wurde stark (Grün), mittel (Gelb) und niedrig (Rot) als empfohlene Priorisierung. Es
ist natürlich trotzdem sinnvoll nicht priorisierte Anforderungen umzusetzen. Wir geben ledig-
lich eine Hilfestellung zur Selektion, falls aus Zeitmangel nicht alle umgesetzt werden können.

65

Gewichtung der Anforderungen und unsere Empfehlung

Anf. Schwachstelle N GN K E

2.1 Probleme auf Organisatorischer Ebene 5 7 3 Stark

2.2 Zu wenig Tester 5 7 5 Mittel

3.1 Fehlender Überblick über den Testprozess 3 4 1 Stark

3.2 Entwickler testen ihren eigenen Code 4 5 3 Mittel

3.3 Kommunikationsprobleme bei verschiedenen Versionen der eigenen Software 1 2 1 Niedrig

3.4 Zu wenig Zeit zur Automatisierung von Tests 5 6 2 Stark

3.5 Problematische Übergänge zwischen den Phasen des Testprozesses 3 4 3

3.6 Vermeidung von Redundanz 3 4 1

3.7 Terminologie 4 5 2 Stark

3.8 Verbesserung der Testinfrastruktur 2 3 3

3.9 Unzureichende Qualität der Dokumentation 4 5 3 Mittel

3.10 Nicht einheitliche Verwaltung der verschiedenen Dokumentationen 3 4 3

3.11 Einführung der Kundenakzeptanztests 4 5 4 Stark

3.12 Mangelhafte Verknüpfung von Testergebnissen mit den Tests 5 6 2 Stark

3.13 Manuelle Tests sind zu vielschichtig 4 5 4

4.1 Unzureichende Dokumentation zu ClearQuest 2 2 2

4.2 Unnötige Elemente im Testfallbaum 3 3 5

4.3 Unkontrollierte Struktur des Testfallbaums 5 5 3 Mittel

4.4 ClearQuest-Testfall ist kein Testfall 2 2 4

4.5 Aktuelle Methode zur Testfallspeicherung erlaubt keine Ordnung 4 4 2 Stark

4.6 Soll-Umfang und Soll-Inhalt eines Testfalls ist nicht definiert 1 1 1 Niedrig

4.7 Uneinheitliche Verwendung von Konfigurierten Testfällen 2 2 3

4.8 Schwer bedienbare Suchfunktion 3 3 5

4.9 Klick- und fensteranzahlintensive Bedienung 5 5 5 Niedrig

4.10
Schlechte Unterstützung der Strukturierung von Testfällen und

Strukturierungselementen
4 4 5

4.11 Fehlende Templates für Texte 5 5 4 Stark

4.12 Tests können nicht aus dem Testfallverwaltungswerkzeug gestartet werden 4 4 2 Mittel

4.13 Generierung der Testfallzusammenfassung nicht vollautomatisch 3 3 2

4.14 Überflüssige Formularfelder 3 3 1 Mittel

4.15 Fehlende einheitliche und gute Dokumentation 3 3 1 Mittel

4.16 Umständliche Bedienung der Oberfläche 3 3 2

4.17 Konsistenz bei den Seitennamen 1 1 1 Mittel

4.18 Feature-Orientierung 4 4 2 Mittel

4.19 Skalierbarkeit der Darstellung 2 2 2

4.20 Mängel in der Dokumentation 4 4 2 Mittel

4.21 Fehlende Kontrolle der nach Anforderung 20. eingeführten Richtlinien 5 5 1 Stark

4.22 Mergeprobleme 4 4 3

4.23 Riesige globale Properties-Datei 2 2 2

4.24 Fehlende Dokumentation 3 3 1 Mittel

4.25 Ineffizient und langsam 4 4 5 Stark

4.26 Schlechte Usability 1 1 mit 4.25 Stark

4.27 Unzufriedenheit der Mitarbeiter 5 5 mit 4.25 Stark

4.28 Fehlende Lizenzen 4 4 2 Mittel

66

D Beispiele

Es folgen einige Beispieldaten für die Strukturierung der Testfälle und für Prüfpunkte, um dem
Leser ein Gefühl für die Daten bei FleetBoard zu geben. Die Daten wurden ausgewählt, um
verschiedene Arten und Ausprägungen von Testfällen und deren Strukturierung im Ist-Zustand
zu zeigen. Die gezeigten Prüfpunkte stammen aus verschiedenen Testfällen und wurden aus-
gewählt, um die Verschiedenheit der Prüfpunkte zu demonstrieren. Sie entsprechen dem Origi-
nalzustand der Darstellung in der Ansicht „Testfallspezifikation“ in ClearQuest. Diese Ansicht
bildet auch für die Entwickler die Grundlage zum Implementieren von Testfällen. Inhalt und
Formatierung wurden daher nicht verändert. Kürzungen sind durch das Wort „gekürzt“ in ecki-
gen Klammern gekennzeichnet.

D.1 Betrieb
ID: 2140 Kurzbeschr .: Batchjob - beenden

Automatisierung: N

[Vorbedingung]
Batchjob muss gestartet sein.

[Benutzeraktion]
Die Batchjobs beenden sich nach abarbeitung der aktuellen Flotte.

[Soll -Ergebnis]
Batchjobs wurden korrekt beendet.

======================================

ID: 2141 Kurzbeschr .: Batchjobs - neu anlegen
Automatisierung: N

[Vorbedingung]
Batchjobs müssen beendet sein.

[Benutzeraktion]
Die Batchjobs werden auf einem andern WAS -Member neu angelegt.

[Soll -Ergebnis]
Batchjobs wurden auf einem anderen Member neu angelegt.

======================================

ID: 2142 Kurzbeschr .: Batchjobs - starten
Automatisierung: N

[Vorbedingung]
Batchjobs müssen auf einem WAS -Member angelegt sein.

[Benutzeraktion]
Die Batchjobs starten automatisch an den angegebenen Zeitpunkten.

[Soll -Ergebnis]
Alle Batchjobs wurden gestartet.

======================================

ID: 2143 Kurzbeschr .: Prüfen der Logfiles
Automatisierung: N

[Vorbedingung]
Logfiles müssen vorhanden sein.

67

Abbildung D.1: Testfallstrukturierung der Betriebstests

68

[Benutzeraktion]
Prüfung ob die zum Abbruchzeitpunkt des Batchjobs aktive Flotte

ordnungsgemäÿ abgearbeitet wurde.

[Soll -Ergebnis]
Keine Fehler in der Logfile.

D.2 Telematikplattform-Test
ID: 6754 Kurzbeschr .: query_all

Automatisierung: N

[Vorbedingung]
Setup_Testcase_IES executed.

[Benutzeraktion]
1) Send the following dynamic telediagnose frame query to TP

Reference DS#19 (dynamic telediagnose frame query):

Source # 19 0x13
Length 0x008B

Number of Queries PreDoOnes 0x02
ECU address 0x01
Query Protocol Version(IES) 0x00
Query length (1.1) 0x14
Query frame (1.1) 0x06 00 11 04 98

22 20 20 98 22 20 21 98 22 20 22 98 22 20 23
ECU address 0x02
Query Protocol Version(IES) 0x00
Query length (1.2) 0x14
Query frame (1.2) 0x06 00 11 04 98

22 20 20 98 22 20 21 98 22 20 22 98 22 20 23

.... [gekürzt]

2) Simulate the positive response on CAN to the dynamic
telediagnose frame from 1.)

Reference positive response for every query to a ECU using IES:
06002408986220203937323008986220213231314

B08986220223732393008986220233537FFFF

[Soll -Ergebnis]
1) TP sends CAN messages , corresponding to the query protocol , to the

ECUs in the folowing order:
ECU1(query 1.1)
ECU2(query 1.2)
ECU1(query 2.1+2.2)
ECU2(query 2.1+2.2)
ECU1(query 3.1)
ECU2(query 3.2)

2)TP replies to DS#19 containing positive and negative response
for the query

Source # 19 0x13
Length 0x01F9

Number of Queries PreDoOnes 0x02
ECU address 0x01
Query Protocol Version(IES) 0x00
Query length (1.1) 0x14
Query frame (1.1) 0x06 00 11 04 98

22 20 20 98 22 20 21 98 22 20 22 98 22 20 23
Response length (1.1) 0x27
Response frame (1.1) 0

x0600240898622020393732300 8986220213231314 B0898622022373
2393008986220233537 FFFF

ECU address 0x02
Query Protocol Version(IES) 0x00
Query length (1.2) 0x14
Query frame (1.2) 0x06 00 11 04 98

22 20 20 98 22 20 21 98 22 20 22 98 22 20 23
Response length (1.2) 0x27
Response frame (1.2) 0

x0600240898622020393732300 8986220213231314 B0898622022373
2393008986220233537 FFFF

69

Abbildung D.2: Testfallstrukturierung der TP-Tests

70

Number of Queries Do4All 0x04
ECU address 0x01
Query Protocol Version(IES) 0x00
Query length (2.1) 0x14
Query frame (2.1) 0x06 00 11 04 98

22 20 20 98 22 20 21 98 22 20 22 98 22 20 23
Response length (2.1) 0x27
Response frame (2.1) 0

x0600240898622020393732300 8986220213231314 B0898622022373
2393008986220233537 FFFF

ECU address 0x01

.... [gekürzt]

======================================

ID: 5035 Kurzbeschr .: Event "Yellow"
Automatisierung: N

[Vorbedingung]
Setup testcase executed

[Benutzeraktion]
1. Set status of tell -tale ID 1 to "Info". (ref_telltaleStat01 =03)
2. Wait for longer than the time given in TP -config Parameter 247 coded

in third byte. (see Setup -TestCase)
3. Set status of tell -tale ID 1 to "Yellow ". (ref_telltaleStat01 =02) -

(time t1)
4. Wait till the threshold given in TP-config Parameter 247 coded in

third byte is overcome. (see Setup -TestCase)
5. Verify recieved DS#100.

[Soll -Ergebnis]
5. DP#300 is sent adhoc from TP to FBSC , containing DS#100 with TTER3 "

Yellow" which tell -tale ID is 1 an the timestamp is equal to t1. (
Perhaps TTER3 "Info" is included)

======================================

ID: 6349 Kurzbeschr .: Configuration
Automatisierung: N

[Vorbedingung]
SFTP dashboard prepared.

TP installed and activated.

[Benutzeraktion]

[Soll -Ergebnis]

D.3 DispoPilot-Test
ID: 3073 Kurzbeschr .: Einstellungen -Navigation -Kartenausrichtung

Automatisierung: J

[Vorbedingung]

[Benutzeraktion]
Es wird gebprueft ob folgende Buttons bzw. Listenelemente angezeigt

werden:
Nordausrichtung
Fahrtausrichtung
Back
Ok

[Soll -Ergebnis]
Folgende Buttons bzw. Listenelemente werden angezeigt:
Nordausrichtung
Fahrtausrichtung
Back
Ok

======================================

ID: 3074 Kurzbeschr .: Einstellunge -Navigation -Sonderziel Radius
Automatisierung: J

[Vorbedingung]

71

Abbildung D.3: Testfallstrukturierung der DispoPilot-Tests

72

[Benutzeraktion]
Es wird gebprueft ob folgende Buttons bzw. Listenelemente angezeigt

werden:
3 km
5 km
10 km
15 km
25 km
Back
OK

[Soll -Ergebnis]
Folgende Buttons und Listenelemente werden angezeigt
3 km
5 km
10 km
15 km
25 km
Back
OK

======================================

ID: 3075 Kurzbeschr .: PLZ Meldung 'Mind. 2 Zeichen '
Automatisierung: J

[Vorbedingung]

[Benutzeraktion]
Eine Ziffer eingeben (default =1) in PLZ Eingabefeld

[Soll -Ergebnis]
Suche wird abgelehnt mit der Meldung 'Bitte geben Sie mindestens 2

Zeichen ein!' ab 2.3.0 Navi2G

D.4 Server- und Soap-Schnittstellen-Test
ID: 7709 Kurzbeschr .: Parameterkombinationen

Automatisierung: J

[Vorbedingung]
Nutzer ist angemeldet (hat Session)
Nutzer hat Recht , SOAP -Methode getTm3GMessageIn auszuführen

[Benutzeraktion]
1) SOAP Aufruf von getMessageIn mit gültiger Tm3gReferenceNo und

VehicleID
2) SOAP Aufruf von getMessageIn mit gültiger Tm3gReferenceNo und

VehicleID = null
3) SOAP Aufruf von getMessageIn mit gültiger VehicleID und

Tm3gReferenceNo = null

[Soll -Ergebnis]
1) kein SOAP Fault - Im Response -Dokument sind alle Messages mit der

abgefragten Tm3GReferenceNo enthalten
2) kein SOAP Fault - leerer Response
3) kein SOAP Fault - leerer Response

======================================

ID: 2863 Kurzbeschr .: Phase 1 (Fahrzeug in MF)
Automatisierung: M

[Vorbedingung]
Ein Fahrzeug muÿ in der Masterflotte MF vorhanden sein.

[Benutzeraktion]
Mapping in MF öffnen und eine Positionsabfrage ausführen

[Soll -Ergebnis]
Positionsabfrage erfolgreich ausgeführt

======================================

ID: 2864 Kurzbeschr .: Phase 2 (an PF1 verliehen)
Automatisierung: M

[Vorbedingung]
Masterflotte (MF) zu Partnerflotte (PF1) Beziehung erstellen und ein

Fahrzeug an PF1 verleihen.

[Benutzeraktion]

73

Abbildung D.4: Testfallstrukturierung der Server- und GUI-Tests

74

Mapping in MF und PF1 öffnen und jeweils eine Positionsabfrage ausführen

[Soll -Ergebnis]
Positionsabfrage jeweils erfolgreich ausgeführt

======================================

ID: 3643 Kurzbeschr .: Einzeltouren (Fahrzeug -/ Fahreranalyse)
Automatisierung: N

[Vorbedingung]

[Benutzeraktion]
Verifizierung Zeitstempel Tourbeginn / Tourende in GUI mit Tourbeginn/

Tourende -Zeitstempel des Fahrprotokolls (SB-Wechsel bei MB-
Einzeltouren und DriverCard -Wechsel bei Universal -Einzeltouren)

[Soll -Ergebnis]

======================================

75

Literaturverzeichnis

[LL07] LUDEWIG, Jochen ; LICHTER, Horst: Software Engineering. 1. Auflage. Heidelberg
: dpunkt.verlag, 2007

76

	 Einleitung
	 Zustandekommen
	 FleetBoard
	 Aufgabenstellung
	 Aufbau dieses Berichts
	 Vorgehensweise und Quellen

	 Organisation
	 Analyse
	Linienorganisation
	Projektorganisation

	 Schwachstellen
	 Anforderungen
	 Bestehendes

	 Prozess
	 Analyse
	Dokumentation

	 Bewertung durch die Mitarbeiter
	 Schwachstellen
	Testprozess allgemein
	Dokumentation
	Kundenakzeptanztests
	Anforderungsverfolgung
	Manuelle Tests

	 Anforderungen
	Allgemein
	Dokumentation
	Kundenakzeptanztests
	Anforderungsverfolgung
	Manuelle Tests
	Bestehendes

	 Werkzeuge
	 Analyse
	ClearQuest
	ITT - Testmanagement
	Functional Tester
	soapUI
	Manual Tester
	Focal Point
	RequisitePro

	 Bewertung durch die Mitarbeiter
	ClearQuest
	ITT - Testmanagement
	Functional Tester
	soapUI
	Manual Tester

	 Schwachstellen
	ClearQuest
	ITT Testmanagement
	Functional Tester
	soapUI
	Manual Tester
	Focal Point
	RequisitePro

	 Anforderungen
	ClearQuest
	ITT-Testmanagement
	Functional Tester
	soapUI
	Manual Tester
	Bestehendes

	 Ideallösung
	 Organisation und Prozess
	Mehr Mitarbeiter zum Testen
	Lizenzen
	Prozess-QS

	 Werkzeuge
	Testverwaltung
	Automatisierte Tests

	 Wirtschaftlicher Lösungsvorschlag
	 Bewertung der Anforderungen
	 Verbesserung von Organisation und Prozess
	 Verbesserungen im Umgang mit vorhandenen Werkzeugen
	ClearQuest
	Functional Tester

	 Alternativen zu bestehenden Werkzeugen
	Quality Manager
	Eigenentwicklung

	 Begriffslexikon
	 Fragenkatalog
	 Einleitung
	 Werkzeuge
	 Testprozess
	 Testfälle
	Spezifikation
	Implementierung
	Durchführung
	Auswertung

	 Priorisierung der Anforderungen
	 Beispiele
	 Betrieb
	 Telematikplattform-Test
	 DispoPilot-Test
	 Server- und Soap-Schnittstellen-Test
	Literatur

