UNIVERSITAT STUTTGART ~ ¢22%6%%,¢

FAKULTAT FUR INFORMATIK UND ELEKTROTECHNIK 0010:0:0:0:0::
Institut fiir Softwaretechnologie, Abteilung Software Engineering 0:0‘,:,0’0.0,’:0.

Fachstudie

Lésungen fur die Testfallverwaltung

Simon Brodtmann
Ralf Ebert

Tim Schmidt

13. Januar 2011

Betreuer
Markus Knauf3
Holger Réder

1

Inhaltsverzeichnis

Einleitung 4
1.1 Zustandekommen 4
1.2 FleetBoard 4
1.3 Aufgabenstellung 4
1.4 Aufbaudieses Berichts oL 4
1.5 Vorgehensweiseund Quellen 5
Organisation 6
2.1 Analyse e 6
2.1.1 Linienorganisation 6
2.1.2 Projektorganisation 7
2.2 Schwachstellen 7
2.3 Anforderungen 8
24 Bestehendes e 8
Prozess 9
3.1 Analyse e 9
3.1.1 Dokumentation 11
3.2 Bewertung durch die Mitarbeiter 12
33 Schwachstellen L 13
3.3.1 Testprozessallgemein 13
3.3.2 Dokumentation Lol 13
3.3.3 Kundenakzeptanztests Lo 14
3.3.4 Anforderungsverfolgung 14
335 Manuelle Tests o 14
34 Anforderungen 14
341 Allgemein. Lo 15
342 Dokumentation oL o L 16
3.4.3 Kundenakzeptanztests oL 16
3.4.4 Anforderungsverfolgung L. 16

4

5

345 Manuelle Tests e

34.6 Bestehendes.
Werkzeuge
4.1 Analyse e e e
4.1.1 ClearQuest e e
4.1.2 ITT - Testmanagement o v v v v v v v i v o
4.13 Functional Tester
414 soapUl
415 Manual Tester. L
4.1.6 FocalPoint
4177 RequisitePro Lo
4.2 Bewertung durch die Mitarbeiter oL
42.1 ClearQuest e
422 ITT - Testmanagemento v v ...
423 Functional Tester
424 soapUl
425 Manual Tester. L
43 Schwachstellen
431 ClearQuest o i i i e e e e e e
4.3.2 ITT Testmanagemento v v v v v v v ..
433 Functional Tester
434 soapUl e
435 Manual Tester. L
43.6 FocalPoint
4377 RequisitePro
4.4 Anforderungen
44.1 ClearQuest e
442 ITT-Testmanagement v v v v v v v v v
443 Functional Tester
444 soapUl
445 Manual Tester. L.
446 Bestehendes. L
Ideall6sung
5.1 Organisationund Prozess
5.1.1 Mehr Mitarbeiter zum Testen
5.1.2 Lizenzen
5.1.3 Prozess-QS

5.2 Werkzeuge

18
18
18
20
21
23
23
23
24
24
25
26
27
27
27
28
29
33
34
36
37
39
39
39
39
41
42
42
43
43

45
45
45
45
45
47

5.2.1
522

Testverwaltung

Automatisierte Tests

6 Wirtschaftlicher Losungsvorschlag

C Priorisierun

D Beispiele
D.1 Betrieb
D.2 Telema
D.3 DispoP
D.4 Server-

Literatur . .

6.1 Bewertung der Anforderungen
6.2 Verbesserung von Organisation und Prozess
6.3 Verbesserungen im Umgang mit vorhandenen Werkzeugen
6.3.1 ClearQuest e e
6.3.2 Functional Tester
6.4 Alternativen zu bestehenden Werkzeugen
6.4.1 Quality Manager
6.4.2 FEigenentwicklung L oo
A Begriffslexikon
B Fragenkatalog
B.1 Einleitung e
B.2 Werkzeuge
B.3 Testprozess e e e
B4 Testfille. e
B.4.1 Spezifikation
B.42 Implementierung
B.43 Durchfilhrung oo
B4.4 Auswertung

g der Anforderungen

tikplattform-Test
ot-Test o

und Soap-Schnittstellen-Test

55
55
56
56
57
57
57
57
58

61

62
62
62
63
63
63
64
64
64

65

Einleitung

1.1 Zustandekommen

Diese Fachstudie wurde in Zusammenarbeit der Abteilung Softwareengineering des Instituts
fiir Softwaretechnologie der Universitit Stuttgart mit der Daimler Fleetboard GmbH initiiert.
Die Aufgabenstellung wurde von Volker Werner, als Vertreter der Daimler FleetBoard GmbH
und Holger Roder und Markus Knauf3 von der Abteilung Softwareengineering gemeinsam er-
arbeitet. Die Aufgabenstellung wurde uns am 23.06.2010 vorgelegt.

1.2 FleetBoard !

Die Daimler FleetBoard GmbH wurde im Jahr 2003 als 100%ige Tochter der Daimler AG
gegriindet und vereint langjdhrige Erfahrungen aus der LKW-Branche und Informationstech-
nologie-Know-how unter einem Dach. Das DEKRA-zertifizierte Unternehmen stattete seit
Markteinfiihrung der FleetBoard Dienste im Jahr 2000 tiber 55.000 Lkw bei mehr als 1.200
Speditionen aus (Stand: 12/2009).

Die FleetBoard Zentrale befindet sich in Stuttgart-Vaihingen. Fiir den Einbau der FleetBoard
Hardware sorgt das Einbauteam in der unternehmenseigenen Halle auf dem Worther Werksge-
lande oder beim Kunden vor Ort.

Weltweit beschiftigt FleetBoard derzeit mehr als 140 Mitarbeiter (Stand: 12/2009), deren obers-
te Prioritét auf der Weiterentwicklung zukunftstrachtiger Losungen fiir das Alltagsgeschift von
Transportunternehmen und Logistikern liegt.

1.3 Aufgabenstellung

Aufgabe der Fachstudie ist die Analyse und Bewertung der bestehenden Test-Werkzeuge und
-Prozesse beim Industriepartner und die Konzeption eines Losungsansatzes zur Optimierung
der Testfallverwaltung. Dabei soll insbesondere die Umsetzbarkeit des Losungsansatzes in ei-
nem etablierten, industriellen Umfeld beriicksichtigt werden.

1.4 Aufbau dieses Berichts

Die Vorbereitung unseres Losungsvorschlags besteht aus drei Arbeitsschritten: Analyse des
Ist-Zustands, Ermittlung von Schwachstellen und Erhebung von Anforderungen. Die zu unter-
suchenden Bereiche sind die Organisation, der Testprozess und die eingesetzten Werkzeuge.

1. Quelle http://www.fleetboard.com/info/de/unternehmensportrait.html (19.11.2010)

Unsere Fachstudie hat sich an den Arbeitsschritten orientiert, den Endbericht haben wir zur
Verbesserung der Ubersicht aber in die untersuchten Bereiche unterteilt, welche jeweils die drei
Arbeitsschritte enthalten. Zu dem Testprozess und den Werkzeugen haben wir jeweils noch die
Meinung der befragten Mitarbeiter zusammengefasst.

Anhand der erhobenen Anforderungen formulieren wir anschlieend eine Ideallosung, die
einen Grofteil der Anforderungen aber nicht die entstehenden Kosten beachtet. Zusammen mit
einer subjektiven Gewichtung der Anforderungen bieten wir anschlieend einen wirtschaftlich
umsetzbaren Losungsvorschlag.

Ein Begriffslexikon, der verwendete Fragenkatalog fiir die Interviews, Beispiele aus Clear-
Quest, sowie die vollstindige Priorisierung der Anforderungen ergénzen dieses Dokument.

1.5 Vorgehensweise und Quellen

Wir hatten wihrend der gesamten Bearbeitungszeit der Fachstudie uneingeschrinkten Zugang
zu den Mitarbeitern und den von ihnen genutzten und hier vorgestellten Werkzeugen mit Test-
und Produktivdaten, sowie den firmeninternen Wikis erhalten, die zusammen die Grundlage
unserer Recherchen bilden.

Fiir die Analyse haben wir einen Fragebogen entworfen und insgesamt zehn Mitarbeiter aus
verschiedenen Abteilungen interviewt. Grundlage fiir die Wahl der verschiedenen Mitarbeiter
sind die verschiedenen Testarten, die es bei FleetBoard gibt. So wurden beispielsweise Mit-
arbeiter aus den Teams fiir Hardwaretests, Betriebstests und Serverschnittstellentests befragt
(sieche Abbildung 1.1).

| E3- Prodult und Produldion

— - L " T

‘ E4 - Spezifikation und Q5 ‘ ‘ E4 - Realisizrung ‘ ‘ E4 - Produktprogramm ‘ ‘ E4 - Fahrzeughardware ‘ ‘ E4 - [T-Betrich ‘

Abbildung 1.1: Interviewte Mitarbeiter (anonymisiert)

Organisation

2.1 Analyse

Bei FleetBoard findet sich in der Abteilung Produkt und Produktion eine klassische Matrixor-
ganisation, die sich vertikal aus der Daimler-Linienorganisation zusammensetzt und horizontal
aus mehreren Scrum-Teams.

| E3- Produkt und Produlktion

— P k. Y ————

‘ E4 - Spezifikation und Q5 ‘ ‘ E4- Realisizrung ‘ ‘ E4- Produktprogramm ‘ ‘ E4 - Fahrzeughardware ‘ ‘ E4 - [T-Betrieh

‘ Schwazes Team ‘

| GrinesTeam |

| RotesTeam |

Abbildung 2.1: Organisationsstruktur

2.1.1 Linienorganisation

Die Linienorganisation untersteht dem Abteilungsleiter ,,Produkt und Produktion* im Daimler-
Rang ,,E3*. Unter ihm befinden sich fiinf Teamleiter der Ebene ,,E4%, die die Teams ,,Spezi-
fikation und Qualititssicherung®, , IT-Betrieb®, ,,Produktprogramm®, ,,Fahrzeughardware* und
,Realisierung® leiten.

Spezifikation und Qualitatssicherung

Das Team ,,Spezifikation und Qualititssicherung®, das auch Aufgabensteller der Fachstudie
ist, besteht aus sieben Mitgliedern. Es beschiftigt sich mit der Spezifikation von Anforderun-
gen, die vom Produktteam geliefert werden, und mit der Qualitétssicherung der Ergebnisse der
Realisierung. Dabei fiihren sie vor allem Integrationstests durch.

Produktprogramm

Das Team ,,Produktprogramm® dient als Vermittler zwischen den Kunden, dem Vertrieb und
der Entwicklung. Thre Aufgabe ist dabei die Sammlung, Formalisierung und Biindelung von
Anforderungen der Kunden. Zusétzlich werden — bisher noch nicht formalisiert oder mit einem
Prozess — Anforderungen aus Sicht des Kunden getestet. Da das Produktteam untypischerweise

der Produktionsabteilung zugeordnet ist, sind einige Mitglieder auch als Projektleiter in der
Entwicklung beschaftigt.

Betrieb

Das Team IT-Betrieb ist fiir die FleetBoard-Rechnersysteme zustindig. Dazu gehoren nicht nur
die Arbeitsplatzrechner der Mitarbeiter, sondern auch die Server und Datenbanken der Testsys-
teme und des Produktivsystems. Die Aufgabe der Mitarbeiter dieses Teams ist die Installation
und Wartung dieser Systeme, wozu auch das Deployment neuer Releases mit anschlieBendem
Test der Serverinstallation gehort.

Fahrzeughardware

Zum Gesamtprodukt FleetBoard gehoren auch Gerite, die in die Fahrzeuge des Kunden ver-
baut werden. Das ist zum einen die ,,Telematikplattform®, ein Gerit, das an den CAN-Bus des
Fahrzeuges angeschlossen ist und Fahrzeugdaten an die FleetBoard-Zentrale sendet, und zum
anderen der ,,Dispo-Pilot*, ein Gerit fiir den Fahrer zur Abwicklung von Transportauftrigen,
zur Navigation und Kommunikation. Da diese Gerite und die Software von Zulieferern entwi-
ckelt werden, ist das Hardware-Team fiir die Qualititssicherung dieser Gerite zustindig, wozu
beispielsweise auch Testfahrten gehoren.

Realisierung

Das grofite der E4-Teams der Produktabteilung besteht aus Softwareentwicklern, die die An-
forderungen umsetzen und Server- und Clientsoftware entwickeln.

2.1.2 Projektorganisation

Quer zur Linienorganisation sind die Mitarbeiter in sechs Teams aufgeteilt, die verschiedene
Aufgabenbereiche haben und sich aus verschieden vielen Mitgliedern unterschiedlicher Vertei-
lung der Linienteams zusammensetzen. Diese Teams verwenden einen an Scrum angelehnten
Prozess. Diese Teams sind nach den Farben Rot, Griin, Gelb, Orange, Blau und Schwarz be-
nannt, wobei das schwarze Team fiir Integrationstests und Qualititssicherung zustindig ist.
Die ,,farbigen* Teams spezifizieren und realisieren Anforderungen, die ihnen vom Team ,,Pro-
duktprogramm* geliefert werden. Dazu gehért auch die Implementierung von automatisierten
Testskripts. Dabei sind einzelnen Teams verschiedene Aufgabenbereiche der FleetBoard-Welt
zugeteilt. So kiimmert sich ein Team beispielsweise um die serverseitigen Themen, wihrend
sich andere Teams um die Cliententwicklung kiimmern.

Das schwarze Team nimmt eine Sonderrolle ein. Es setzt sich groftenteils aus Mitgliedern des
Linienteams ,,Spezifikation und Qualititssicherung* zusammen, wihrend die farbigen Teams
(sie werden meist einfach ,,Scrum-Teams* genannt), grof3teils aus Mitgliedern des Teams ,,Rea-
lisierung® bestehen. Das schwarze Team befasst sich mit Qualitiitssicherung auf hoherer Ebene.
Das sind insbesondere Testplanung, Testaufwandsplanung (Zuweisen von Testfédllen an Tester)
und Integrationstests. Nebenher kiimmert es sich stindig um die Weiterentwicklung und Ver-
besserung der Testinfrastruktur. Beispielsweise mit Hilfe dieser Fachstudie.

In den farbigen Entwicklungsteams arbeiten zusitzlich zu den Realisierern je ein Mitglied des
Teams ,,Spezifikation und Qualitétssicherung® als Spezifikateur und Tester, sowie ein Mitglied
des Teams ,,Produktprogramm® als Product-Owner und Projektleiter.

2.2 Schwachstellen

Anfangs machte die Organisationsstruktur einen soliden Eindruck, denn es gibt immerhin ex-
plizit ein Team fiir die Qualitiitssicherung und delegierte Mitarbeiter in jedem Entwicklerteam.

Im Laufe der Analyse wurde aber klar, dass die Qualitédtssicherung nicht die Stellung hat, die
sie eigentlich braucht.

Es werden Prozesse erarbeitet und definiert. Tools werden ausgesucht und eingefiihrt. Doku-
mentation wird angefangen. Die Analyse ergab, dass aber nichts von all dem wirklich bis zum
Ende durchdacht und umgesetzt wurde.

Prozesse sind nur implizit und teilweise weifl auch der betroffene Mitarbeiter nicht Bescheid.
Tools werden zwar verwendet, aber nicht wie vorgesehen. Datenstrukturen entstehen zufillig
und wachsen eher, statt definiert zu werden. Dokumentation fehlt oft komplett. Wenn es sie
doch gibt, dann meist unvollstindig oder mit einem falschen Fokus.

(§§2.1)

Es gab bereits eine Umstellung dahingehend, dass ein Entwickler nun nicht mehr selbst die
Testfélle zu seinem Code schreiben soll. Sprich, es gibt full-time Tester, die den Code der
Entwickler testen sollen. Allerdings reicht die Zahl der Tester bei weitem nicht aus.

(SS2.2)

2.3 Anforderungen

2.1 Probleme auf organisatorischer Ebene

* Ursache: Prozesse sind nicht gut genug dokumentiert. Richtlinien werden nicht einge-
halten, oft gibt es aber auch keine.

* Anforderung: Es muss eine Person geben, die sich den Aufgaben gemif3 LLO7, Kap.
13.1.3 widmet. Die gibt es grundsitzlich zwar schon, aber die Zeit zur Umsetzung ist
nicht festgelegt und die Aufgaben sind nicht klar definiert.

2.2 Zu wenig Tester

e Ursache: Das Wachstum bei FleetBoard beschrinkt sich auf die Einstellung von Ent-
wicklern. Die Zahl der Tester wéchst nicht mit.

* Anforderung: Es miissen mehr Mitarbeiter fiir die Tests reserviert werden, damit die
Entwickler nicht mehr testen miissen. Werden zusétzliche Entwickler eingestellt, so muss
auch sichergestellt sein, dass es einen Tester gibt, der Zeit hat dessen Code zu testen.

2.4 Bestehendes

Die Matrixorganisation scheint gut zu funktionieren. Sie sollte daher so bleiben. Zwar ist es
schwierig, die Strukturen bei FleetBoard zu verstehen, allerdings ist das nur ein Dokumentati-
onsproblem.

Sehr gut ist, dass das Bewusstsein fiir Qualitédtssicherung und Tests bei FleetBoard stark aus-
geprigt ist. Das sollte erhalten bleiben. Die meiste Kritik von uns bewegt sich daher auf einem
sehr hohen Niveau. Lobenswert ist, dass es zwei Mitarbeiter fiir die Entwicklung der Testinfra-
struktur gibt.

Prozess

3.1 Analyse

Um einen Uberblick iiber den Testprozess mit den eingesetzten Dokumenten, den entstehenden
Artefakten und den involvierten Personen zu liefern, folgt ein Diagramm (siehe Abbildung 3.1).

Entwickelt wird iterativ mit einem ,,Release* als Grundlage fiir einen Zyklus. Ein Release ent-
hilt mehrere Entwicklungssprints. Wiahrend ein Release ca. alle sechs Monate fertiggestellt
wird, dauert ein Sprint genau einen Monat. Innerhalb der Entwicklungssprints wird meist nur
die neue Funktionalitit getestet. In zwei Sprints wird ausschlieBlich die komplette Funktiona-
litat der FleetBoard Soft- und Hardware getestet.

Ein Sprint lduft wie folgt ab:

Nachdem die Testfille spezifiziert sind, werden sie je nach Testtyp und Automatisierungsgrad
mit unterschiedlichen Werkzeugen implementiert. Das Produktmanagement gibt die geplanten
Features fiir das nichste Release mit dem Werkzeug Focal Point an die Entwicklerteams. Eine
Anforderung in Focal Point heif3t ebenfalls ,,Focal Point*.

Ein Mitarbeiter aus dem Entwicklerteam, welches fiir eine Anforderung zusténdig ist, erstellt
aus dem Focal Point (meist mit zusédtzlichen Riickfragen) die Spezifikation und legt diese in
RequisitePro ab. Diese Spezifikation dient als Grundlage fiir alle Entwickler sowie fiir das
schwarze Team.

Die Spezifikation in RequisitePro dient der Entwicklung selbst und der Spezifikation der Test-
fille in ClearQuest als Grundlage. Das wird teilweise von den Entwicklern selbst gemacht (so
ist es vom schwarzen Team auch gedacht), teilweise schreibt aber auch das schwarze Team
die Testfallspezifikationen. Manchmal werden die Testfallspezifikationen nur ,,Spezifikation*
genannt, wodurch die Bezeichnungen in der Praxis schwammig werden.

Am Ende eines Sprints werden die Tests vom schwarzen Team ausgefiihrt. Im letzten Sprint
eines Releases wird ausschlieBlich getestet. Einen Uberblick fiir die Planung und Durchfiihrung
der Tests soll die Restaufwandsschitzung, eine selbst geschriebene Weboberfliche (siehe 4.2.2
ITT - Testmanagement), bieten. Diese arbeitet mit den Daten von ClearQuest und bereitet diese
grafisch auf.

Gefundene Fehler landen in einem Bugzilla und werden am Ende des Tests von einem Buggre-
mium besprochen und priorisiert. Anhand dieser Informationen wird ein Release freigegeben
oder nicht.

Grundsitzlich wird bei FleetBoard ein Test als ,,erfolgreich® bezeichnet, wenn er durchgelaufen
ist ohne einen Fehler zu finden. Es wird sehr viel Wert auf ,,griine* Testergebnisse gelegt.

TIBAAL DG LUES |

12353] [ERUEly

Bungqiaayasaq
|ﬁw|_-

IR IS LB S|
+WEE] NG

|rceos

dlaysiss]

UsLuosl= 4

ETEN T E

ENERETENT

EWNyog

SEPUALEISIUT

zseldssazony

puzEz

ZIBARL IS LLIES]

ZIEAL IS RS]

ZIBAALIE WIES]

IR IS LB S|
+WEE] NG

TIBAALZG LIES |
+WES] WG

WES] WNI3S

W ESe R
pnpolg

JzLURERLE Y BEENDIE 2D Uz e LR Jaysa] LT T =ET g apsinbay Julng [e3od

=1 111 =1 L1 [EuCRaUn 4

ang
lERS= (-0
Aunpizyasuz TENIETTEIITR] (yayuzse)
-z ied|s14 Bosa) uejdiss] wlysiss] ue|diE=1-n0 Sunizpaoguy Suntzpaoguy
Bunpsmsng Bunaynjyaanpiss] Bunuedss] Bunizis|EEEE] uoeqipzadsEe) uoneqzads Bunizmplopuy
M

snpAzEeEuoEsaIEay

Abbildung 3.1: Der Testprozess bei FleetBoard

10

Anforderungsverfolgung

Um verfolgen zu konnen, welche Testergebnisse die Implementierung einer Anforderung hat,
wurde bei FleetBoard eine Anforderungsverfolgung eingefiihrt. Diese besteht aus Verweisen
der verschiedenen Artefakte aus verschiedenen Tools im Spezifikations- und Testprozess un-
tereinander. So werden durchgehende Verbindungen von der Anforderung in RequisitePro tiber
Testfall und Testskript zum Testergebnis in der ClearQuest-Datenbank hergestellt. Diese Ver-
weise sind teilweise programmatisch nachverfolgbar realisiert, also tiber Referenzen in Daten-
bankfeldern, oder sie sind nur iiber textuelle Verweise vorhanden, die sich nicht automatisch
auswerten lassen. Abbildung 3.2 stellt diese durchaus komplexen Zusammenhénge dar. Eine
gestrichelte Linie in der Grafik stellt eine ,,weiche®, nicht automatisch auswertbare Verbindung
dar, wihrend eine durchgehende Linie eine auswertbare Verbindung darstellt. Eine gepunkte-
te Linie reprisentiert keine tatsdchliche Verbindung, sondern zeigt nur, wie die verschiedenen
Artefakte zusammengehoren.

=l RequisitePro
Anforderung
A
) A= ClearQuest [=] Functional Tester
r referenziert
]
l _
: Testfall = CQ-Prifpunkt =-t-——-—-—— ———— FT-Testlog-Eintrag
. gehdrt zu referenziert
|
:g A "?\ A
| @ Kindelement von \
| = s,
| o ~
| 2 \
] @ Y
G Konf. Testfall " referenziert u.
|2 e ~, [Implementiert
I E A st zugeordnet .
12 T >
= — N, besteht aus
: Kindelement von] .
| TS
]
: CQ-TESt'Og L oosacoaasaassaasaascasscasasasseaanoas raocas | i FT—Testskript
i schreibt in Datenbank
|
T, enthalt . erzeugt
T v erzeugt
A <
Testergebnis ~onnnannanaannnaannnanoananaasnnnaanneannnaanana. SRR o ooo o0 oo anaanasaanaananag FT-TESt|Og
enthalt
Abbildung 3.2: Anforderungsverfolgung bei FleetBoard
3.1.1 Dokumentation

Die beste Dokumentation des Testprozesses bei FleetBoard konnten wir im Wiki des schwarzen
Teams finden. Dort wird schrittweise das Vorgehen von der Testplanung bis zum Testabschluss
beschrieben. Allerdings stimmt der dokumentierte Ablauf nicht mit dem realen iiberein.

Der Prozess laut Wiki sieht wie folgt aus:

Die zeitliche und personelle Einplanung der Testaktivititen wird im Testplan von IBM Rational
ClearQuest festgehalten.

Nach der Testplanung folgt die Testanalyse und das Testdesign. Die Umsetzung erfolgt mit
IBM Rational ClearQuest durch das Anlegen und Spezifizieren von Testféllen. Die Realisie-

11

rung erfolgt durch Umsetzung der spezifizierten Testfille in Testskripte mit Hilfe von Testtools.
Die GUI Tests werden mit Functional Tester umgesetzt.

Bei der Durchfiihrung werden die geplanten Testfille in definierter Reihenfolge ausgefiihrt und
protokolliert. Die gefundenen Fehler werden in das Fehlermanagementsystem eingetragen und
an den zustiandigen Entwickler weitergereicht.

Die Testauswertung soll den aktuellen Qualitétsstatus sichtbar machen. Testprotokolle und
Meldungen der gefundenen Fehler werden dabei ausgewertet. Dieser Qualititsstatus ermog-
licht die Steuerung im Sprint. Der Testabschluss wird am Ende eines Sprints im Sprint Review
Meeting vorgestellt, wo der aktuelle Qualitétsstatus ausgewertet und berichtet wird.

Ein Problem ist, dass den Mitarbeitern nicht bekannt ist, dass dieser Prozess nachlesbar ist.
Dazu kommt, dass Fehler in der Dokumentation enthalten sind. So werden unserer Analyse zu-
folge die zeitliche und personelle Planung nicht im Testplan, sondern im konfigurierten Testfall
vorgenommen (siche 4.1.1 ClearQuest).

Zur Veranschaulichung des Prozesses ist im Wiki Abbildung 3.3 zu finden. Diese Grafik ist
von sehr geringer Qualitit, ist nicht mehr aktuell und belegt den aktuellen Zustand der Doku-
mentation.

Anforderung RequisitePro

Verbesserungen fiir den nachsten Testdurchlauf

Test muss ergénzt werden

I ek
Fehler- <
Management
Testplan Tesffall | Testskript Eintragin Testprotokoll Testbericht
Fehler-DB

ClearQuest-TestManager | Testtool (RFT) BugZilla ClearQuest-TM BIRT

Abbildung 3.3: Grafik zum Testprozess im Wiki des Integrationstestteams

3.2 Bewertung durch die Mitarbeiter

Einen kompletten Uberblick iiber den Entwicklungsprozess von den Anforderungen bis zum
Releasetest hat von allen Befragten, wenn iiberhaupt, nur Volker Werner. Es gibt ein paar Be-
schreibungen in diversen Wikis, diese sind aber schlecht auffindbar und bieten keine Ubersicht
iiber das ganze Konzept. Wenigstens die Mitglieder des Integrationstestteams miissten den Pro-
zess sehr gut kennen. Bei den meisten Mitarbeitern ist der Prozess nur implizit durch Einlernen
und Nachfragen angekommen.

Der Testprozess ist nicht allen Mitarbeitern klar. Sie wissen teilweise nicht, an welcher Stelle
sie sich im Prozess befinden und wirken teilweise unmotiviert, da sie nicht wissen, was mit
ihrer Arbeit geschieht. Thnen ist nicht klar, wer die Ergebnisse des Testens erhélt und ob diese
iiberhaupt angesehen werden.

12

3.3 Schwachstellen

(SS3.1)

(SS 3.2)

(SS 3.3)

(SS 3.4)

(S5 3.5)

(S5 3.6)

(S8 3.7)

(SS 3.8)

(S8 3.1)

Jedes der eingesetzten Werkzeuge bei FleetBoard deckt einen Bereich des Testprozesses ab.
Um die Werkzeuge in einen Kontext zu bringen und die Verkniipfungen untereinander verste-
hen zu kénnen, brauchen wir einen Uberblick iiber den Testprozess. Viele der Probleme, die
fiir den einzelnen Entwickler augenscheinlich bei einem konkreten Werkzeug liegen, sind aber
eher im Prozess begriindet, was erst durch unsere ganzheitliche Analyse aufgedeckt werden
konnte.

3.3.1 Testprozess allgemein

Der Prozess wird aufgrund der Tatsache, dass die Mitarbeiter ihn nur miindlich iiberliefert
bekommen, nicht reproduzierbar durchgefiihrt. Zustindigkeiten sind nicht klar. So werden
manchmal Testfallspezifikationen von den Entwicklern selbst geschrieben, in anderen Fillen
werden diese jedoch vom schwarzen Team geschrieben. Eine schriftlich festgehaltene Linie
wer was spezifiziert existiert nicht.

Es gibt pro Entwicklungsteam nur einen Spezifizierer und Tester. Da dieser nicht alle Tests
alleine durchfithren kann, helfen die Entwickler bei der Testdurchfithrung aus. Das bedeutet,
dass Entwickler ihren eigenen Code testen. Ihnen fehlt aber nicht nur Objektivitit, sondern
auch die notige Motivation.

Die Kommunikation zwischen dem schwarzen Team und den Entwicklungsteams wird durch
verschiedene Versionsbezeichnungen der FleetBoard-Software erschwert. Entwickler wissen
nicht, auf welche Version sich eine Bug-Meldung bezieht und verschwenden so Zeit bei der
Suche nach dem Fehler.

Erwihnt werden sollte noch, dass mehrere Mitarbeiter, insbesondere bei den Hardwaretests,
sagten, zur Testautomatisierung hétten sie keine Zeit. Man hat also keine Zeit, Zeit zu sparen.
Es sollte also iiberlegt werden, ob nicht ein fest eingeplantes Zeitbudget zur Automatisierung
von Testfillen angebracht wire, was jeden weiteren Sprint zu mehr Einsparungen fiithren wiir-
de. Dass dem so ist, weill man von der Automatisierung bei der Software.

Vor allem die Uberginge zwischen den Phasen des Testprozesses bereiten Probleme. Sie sind
oft unzureichend definiert und Artefakte haben nicht die Qualitit, die fiir den nichsten Arbeits-
schritt erforderlich ist. Viel miindliches Nachfragen ist notwendig.

Generell sollte Redundanz so gut wie moglich vermieden werden. Uns ist aufgefallen, dass
viele Daten bei FleetBoard redundant sind. Das wird meist technisch begriindet. Bei Doku-
mentation ist es meist fehlende Zusammenarbeit und fehlende Korrekturen.

FleetBoard hat eine umfassende, fiir das Unternehmen spezifische, Terminologie. Das bereitet
oft Probleme wenn unterschiedliche Teams zusammenarbeiten miissen. Abkiirzungen werden
selbstverstindlich verwendet, die das andere Team nicht kennt. Begriffe werden eingefiihrt aber
nirgends definiert.

Tester konnen sich oft nicht voll auf ihre Arbeit konzentrieren, sondern miissen sich mit archi-
tektonischen Besonderheiten rumérgern. Das Starten von SSH-Verbindungen oder Testservern
wie z.B. bei soapUI sollte so gut es geht durch die Infrastruktur abgenommen oder wenigstens
vereinfacht werden.

3.3.2 Dokumentation

Ein Problem des Prozesses besteht darin, dass er im Wesentlichen miindlich verbreitet wird.
Als Folge daraus ergibt sich, dass die Motivation mancher Mitarbeiter etwas geddmpft ist, da
sie nicht wissen an welcher Stelle im Prozess sie sich befinden und wo die Ergebnisse ihrer
Arbeit landen. Sie wiirden es begriilen, wenn der Prozess schriftlich festgehalten wire.

13

Eine ausfiihrliche Dokumentation zum Entwicklungsprozess ist bei FleetBoard nirgendwo zu
finden. Es existiert lediglich eine Wikiseite (im IT Realisierungs-Wiki), auf der erwihnt wird,
dass bei FleetBoard nach dem Scrum Prozess entwickelt wird. Dort wird auf externe Seiten zu
Scrum verlinkt. Die Mitarbeiter wissen zwar ungefihr iiber die Abldufe, die sie direkt betreffen,
Bescheid, jedoch fehlt ihnen der Uberblick.

Zum Testprozess gibt es zwar eine Dokumentation im Wiki des schwarzen Teams, jedoch ist
diese weder vollstindig, noch entspricht sie durchgehend der Realitét. Es gibt eine Schritt-
fiir-Schritt- Anleitung von der zeitlichen und personellen Einplanung bis zur Realisierung mit
Functional Tester. Diese ist jedoch sehr grob und nicht ausreichend fiir die Dokumentation
eines Prozesses.

(85 3.9)

An der Dokumentation der einzelnen Teams ist zu beméngeln, dass diese nicht immer fiir alle
zugénglich ist. AuBerdem ist das Wiki-Konzept fleetboardweit weder einheitlich noch {iber-
haupt geregelt. Verschiedene Teams verwenden verschiedene (insgesamt vier) Wikis, die ver-
schiedene Zugangsdaten bendtigen und verschiedene Wiki-Software einsetzen.

(SS 3.10)

3.3.3 Kundenakzeptanztests

Eine Sonderstellung in unserer Fachstudie haben die Kundenakzeptanztests, denn es gibt sie
bisher noch nicht explizit. Sie wurden bereits vor geraumer Zeit vom schwarzen Team ange-
dacht, sind also geplant, umgesetzt wurde der Plan allerdings nie. Der momentane Stand ist,
dass das Produktmanagement komplett manuell und undokumentiert die fertige Anwendung,
oder schon vor Releaseende fertige Teilergebnisse, grob kontrolliert. Testfdlle und Einschét-
zung des Ergebnisses liegen im Ermessen des jeweiligen Produktmanagers.

(SS3.11)

3.3.4 Anforderungsverfolgung (siehe Abbildung 3.2)

Die Nachverfolgbarkeit der Ergebnisse von Priifpunkten ist automatisiert nicht moglich. Priif-
punkte existieren zwar in der ClearQuest-Datenbank und werden in den Logs von Functional
Tester referenziert, allerdings 14sst sich keine programmatische Verbindung einem Priifpunkt
und seinen Testergebnissen herstellen. Auch ist in ClearQuest nicht vorgesehen, dass ein Priif-
punkt iiberhaupt ein Testergebnis haben kann. Die Ergebnisverfolgbarkeit ist somit nur auf
Testfall-Ebene — und damit nur fiir eine Gruppe von Lehrbuch-Testfdllen — gegeben.

(SS3.12)

Nach der Testausfiihrung wird zwar das Testergebnis in der ClearQuest-Datenbank gespeichert,
nicht aber das gesamte Testlog. Wenn ein Fehler aufgetreten ist, dann ist es im Nachhinein nicht
mehr moglich, mit Hilfe der Datenbank den genauen Fehler zu ermitteln.

3.3.5 Manuelle Tests

Wie sich in den Interviews herausgestellt hat, gibt es fiir die manuellen Tests in dem Team
fiir die Telematikplattform mehrere Schichten von Testfdllen. In ClearQuest gibt es jeweils
nur eine grobe Beschreibung des Testfalls ohne genauere Angaben und ohne Erwéhnung von
Teilautomatisierungen durch ausfiihrbare Testprogramme. Manual Tester enthilt alle Einzel-
schritte ohne Semantik und ebenfalls ohne Erlduterung der ausfiihrbaren Testprogramme. Als
Drittes gibt es die Testprogramme, die erst im Quellcode ihre Vorgehensweise und den Nut-
zen preisgeben. Dadurch werden die Testfélle sehr uniibersichtlich. Niemand blickt komplett
durch.

(SS3.13)

3.4 Anforderungen

14

3.4.1 Aligemein
3.1 Fehlender Uberblick iiber den Testprozess
» Ursache: Es gibt keine aktuelle und gute Dokumentation dazu

» Anforderung: Es sollte eine Dokumentation geben, die den neuen und bestehenden Mit-
arbeitern einen Uberblick iiber den Testprozess vermittelt. Rollen und Artefakte miissen
dabei bereits eingefiithrt werden.

3.2 Entwickler testen ihren eigenen Code

» Ursache: Die Zeit zum Testen ist vorhanden, weil es gemacht werden muss, aber sie wird
auf die Entwickler aufgeteilt, anstatt full-time Tester dafiir einzusetzen.

» Anforderung: Die benétigte Zeit abschitzen und ausreichend Mitarbeiter fiir die Test-
spezifikation und -automatisierung zur Verfiigung stellen.
3.3 Kommunikationsprobleme bei verschiedenen Versionen der eigenen Software

» Ursache: Es gibt keine einheitliche Versionsbezeichnung der Software- und Hardware-
komponenten bei FleetBoard zwischen den verschiedenen Teams.

* Anforderung: Versionsbezeichnungen aller Produkte aus dem Hause FleetBoard miissen
vereinheitlicht sein.

e Verweis: Anf. 2.1

3.4 Zu wenig Zeit zur Automatisierung von Tests

¢ Ursache: Obwohl offensichtlich ist, dass dies ein Henne-Ei-Problem ist (wiirde man au-
tomatisieren, dann hitte man anschlieBend auch Zeit dafiir), fehlt es an der Zeit zur
Implementierung der Automatisierung.

* Anforderung: Es muss zusitzliche Zeit zur Automatisierung von Tests zur Verfiigung
gestellt werden. Am besten je Sprint eine fest definierte Menge.

3.5 Problematische Ubergénge zwischen den Phasen des Testprozesses

* Ursache: Es fehlt an Dokumentation und Richtlinien fiir Prozessiibergiinge. Eine Kon-
trolle gibt es nicht.

» Anforderung: Es muss eine Dokumentation und Richtlinien fiir Prozessiiberginge geben.
Die Richtlinien miissen kontrolliert werden.
3.6 Vermeidung von Redundanz

» Ursache: Redundanz ist bei FleetBoard recht prisent, verursacht durch technische Gege-
benheiten, fehlende Zusammenarbeit und fehlende Korrekturen von Dokumentation.

» Anforderung: Allgemein sollte dieser Aspekt bei architektonischen Verdnderungen stir-
ker beachtet werden. Im Nachhinnein ist es schwierig bis unmdglich dieses Problem zu
beheben.

15

3.7 Terminologie

* Ursache: Nicht definierte Begriffe und Abkiirzungen fithren zu Kommunikationsschwie-
rigkeiten.

» Anforderung: Es sollte ein FleetBoard-weites Begriffslexikon angelegt werden. Auf die
Verwendung von Abkiirzungen sollte moglichst verzichtet werden.

3.8 Verbesserung der Testinfrastruktur

* Ursache: Obwohl die Testinfrastruktur bereits sehr gut ist, so ldsst sich im Detail noch
Arger bei der Arbeit vermeiden.

* Anforderung: Umstindliches Starten von SSH-Verbindungen und Testservern sollte so
gut wie moglich vermieden werden, sodass Tester sich auf die eigentliche Arbeit kon-
zentrieren konnen.

3.4.2 Dokumentation
3.9 Unzureichende Qualitat der Dokumentation

» Ursache: Die Dokumentation zum Testprozess ist unfertig, ungepflegt und hilt keinen
einheitlichen Qualititsstandard ein.

 Anforderung: Neben der Ubersicht iiber den Testprozess (sieche Abbildung 3.1), bedarf
es einer qualitativ hochwertigen Dokumentation, die ausreichend ins Detail geht um die
tagliche Arbeit erledigen zu konnen, sich aber trotzdem auf das Wesentliche konzentriert.

3.10 Nicht einheitliche Verwaltung der verschiedenen Dokumentationen

» Ursache: Jedes Team hat sein eigenes Wiki, teilweise nicht einsehbar fiir die anderen
Teams. Das fiihrte bisher schon einmal zu Reibung und machte es schwierig sich in
anderen Wikis zurecht zu finden.

* Anforderung: Teamiibergreifende Dokumentationsregeln. Eine Sorte Wiki, einheitlich
aufgebaut, zugénglich fiir alle Mitarbeiter.

3.4.3 Kundenakzeptanztests
3.11 Einfihrung der Kundenakzeptanztests

» Ursache: Kundenakzeptanztests sind angedacht, wurden aber nie eingefiihrt.

* Anforderung: Dies ist eine Anforderung von FleetBoard selbst. Unsere Anforderung da-
zu ist, dass die Kundenakzeptanztests erfolgreich eingefiihrt werden.

3.4.4 Anforderungsverfolgung
3.12 Mangelhafte Verkniipfung von Testergebnissen mit den Tests

» Ursache: Es wird lediglich ein Ergebnis zu einem Testfall gespeichert. Auf Priifpunk-
tebene gibt es keine Zuordnung. Da das erzeugte Testlog nicht gespeichert wird, ist ein
manuelles Nachlesen auch nicht moglich.

* Anforderung: Die Testergebnisse miissen exakter werden, indem sie nicht an einen Test-
fall, sondern an einen Priifpunkt gehiingt werden. Mindestens fiir fehlgeschlagene (au-
tomatisierte) Tests muss das Testlog gespeichert werden um die genaue Ursache nach-
schauen zu konnen.

16

3.4.5 Manuelle Tests
3.13 Manuelle Tests sind zu vielschichtig

* Ursache: Durch die drei Ebenen, in denen die manuellen Tests angelegt werden, werden
diese sehr uniibersichtlich und die Wartbarkeit leidet.

* Anforderung: Zusammenfiihrung der Ebenen auf eine. ClearQuest ist der sinnvollste Ort
um manuelle Tests umfassend und mit allen notwendigen Daten abzuspeichern. Eine
Durchfiihrung sollte allein mit den Daten aus ClearQuest moglich sein. Es wird lediglich
ein Werkzeug benotigt, was diese Durchfithrung unterstiitzt. Der Manual Tester wird
dafiir eigentlich nicht benéotigt.

3.4.6 Bestehendes

Nachdem wir ein aktuelles Diagramm vom Testprozess erstellt hatten, stellten wir fest, dass
der Prozess selbst sehr gut durchdacht und auch sinnvoll ist. Alle Schwachstellen zum Prozess
betreffen nur die Dokumentation, die Umsetzung und kleine Details. Die Grundstruktur sollte
aber bleiben wie sie ist.

17

Werkzeuge

4.1 Analyse

Die Daimler FleetBoard GmbH verwendet fiir die Testfallverwaltung und -durchfiihrung einige
Produkte von IBM Rational, Eviware soapUI und eine teilweise selbst entwickelte Webober-
flache. Diese Werkzeuge untersuchen wir in diesem Kapitel genauer auf Schwachstellen.

4.1.1 ClearQuest

™M Rational ClearQuest

atei Bearbeiten Ansicht Tools Hilfe

[E= |8 -8 -5-R-|@-]85

Konsole | Eigenschaften ‘ ClearGuest-havigator f&ﬁ Test Manager - Planung &3 =0

4-%|E|¢d| O

~lojx]

= se X =0
ClearQuest Abfrageergebnisse (rebert, ENT@CQPOP) ’gl = (ﬁ‘ =Y %4? = =
Sid

B < rebert, ENT@CQPOP -~
B~ asset-Registrys

-2 Betriebstest

=17 Testplane

IT-Betrich Anderbarkeit 150 9126

Analysierbarkeit

Modifizierbarkeit

Stabilitat

Testharkeit

-Betrieb Benutzbarkeit ISO 9126

IT-Betrich Effizienz 150 2126

IT-Betrieb Erforderliche Messdaten aus der Wargéngerversion

IT-Betrieh Funktionalitat 150 9126
IT-Betrieb Ubertragbarkeit [50 9126
IT-Betrieb Zuverldssigheit 150 9126
B Testsutes

-+ Therationen

*-(J Dateipositionen

-4 DispaPiot

% Produkk-Programm

“3{% Scrum - NICHT MEHR WERWEMDEN TESTTEST
3% TelematikPlattform

El-32 Telematikzentrale

B3 Testplane

52 admiristration (HTML & SWT)
Customeridrmin

FP 1350: Erweiterung Userverwaltung Fahrer- und Fahrzeuggruppen
FP 1406; Mandantenkonzepk
FP 1620: Akkivierung durch Kunden

Ei| Berutzer
: EI"E_ Benutzergruppen

o

P\anungl AusFlihrung

| postcondition -
Das Testlog enthalt keinen Fehler, Browser ist wied
Das Testlog enthalt keinen Fehler, Browser ist wied
Das Testlog enthlt keinen Fehler. Browser ist wied
Das Testlog enthlt keinen Fehler. Browser ist wied
Das Testlog enthélt keinen Fehler, Browser ist wied—
Das Testlog enthalk keinen Fehler, Browser ist wied
Das Testlog enthalk keinen Fehler, Browser ist wied
Das Testlog enthalt keinen Fehler, Browser ist wied
2 - die Yorlage wird gedffnet 4 - die Vorlage enthalt
1 - Anmeldung ist erfolgreich 2 - Die Hauptmaske w

| name

Yorlage bearbeiten
Login mit Umlauten

1658

494 Yorlage 3schen 2 - Best&tigungsdialog erscheint 3 - die Vorlage ist ¢
11 Das Testlog enthlt keinen Fehler, Browser ist wied
1659 Login mit Umlauten 1 - Diensteportal wird angezeigt Z - der Logindialog
13 Das Testlog enthalt keinen Fehler, Browser ist wied
14 Das Testlog enthélt keinen Fehler, Browser ist wied
15 Das Testlog enthalt keinen Fehler, Browser ist wied
16 Das Testlog enthalt keinen Fehler, Browser ist wisd
17 Das Testlog enthalt keinen Fehler, Browser ist wied
16 Zuordnung Fahrer -> DTCO-ID Manfred Mustermann ist der obersten DTCO-ID zug
1660 | Login mit Umlauten 1 - Diensteportal wird angezeigt 2 - der Logindialog
1662 Zeitwirtschaft aufrufen

21 Zuordnung Fahrer - FE-ID

Fahrer Manfred Mustermann ist der obersten FEiEiﬂ

4 3
&= ¢.| Seite: |1 ;l Summe der Seiten; 46

Abfrage; Personal Queries) TMCheckpoints

Summe der Datensétze: 459

Typ: TMCheckpoint
A-E-4-a°0

=) ClearQuest-Satzdetails &2

ClearQuest-Satzdetails

Testergebnisse ‘

Summe der Datensatze: 100 Typ: TMCheckpaint

Abbildung 4.1: ClearQuest

ClearQuest ein Anderungsmanagementwerkzeug mit Unterstiitzung fiir Bugtracking und Pro-
zessautomatisierung. Bei FleetBoard wird allerdings nur die Komponente ,,ClearQuest Test-
Manager* verwendet. Der ClearQuest TestManager ist ein Werkzeug, das die Testplanung und
Spezifikation unter einem Hut vereinen soll. Es besitzt eine zentrale Datenbank, in der alle Da-
ten der Testplanung, -spezifikation, des Testfortschritts sowie Testergebnisse gespeichert wer-

18

den. Jeder Mitarbeiter kann mit seinem ClearQuest-Client auf die zentrale Datenbank zugreifen
und Anderungen an ihr vornehmen.

ClearQuest ist ein sehr frei konfigurierbares Werkzeug. Sowohl die Oberflache, als auch die
Datenstruktur sind bis auf wenige Einschrinkungen frei dnderbar. In neuen Projekten stehen in
ClearQuest einige vorkonfigurierte Profile zur Verfiigung, aus denen eines ausgesucht werden
kann. FleetBoard hat sich bei der ClearQuest-Einfiihrung 2007 fiir ein sehr umfangreiches
Profil entschieden und die darin fiir den FleetBoard-Prozess fehlenden Dialoge ergidnzt. Dabei
wurde versdumt, die nicht bendtigten Dialoge zu entfernen, wodurch das Programm relativ
uniibersichtlich wurde.

Zur Datenstruktur: ClearQuest verwendet zur Strukturierung der Testdaten einen Baum. Die
hochste Ebene sind sogenannte ,,Asset-Registries®. Sie sind dazu gedacht, die Tests nach ver-
schiedenen Softwarekomponenten oder komplett verschiedener Software zu unterteilen. Bei
FleetBoard wird hier die Unterteilung zwischen Betriebstest, Telematikplattform, Dispopilot
usw. vorgenommen.

Den Asset-Registries untergeordnet sind die Testplidne, die lediglich ein Strukturelement dar-
stellen. Die Testpline konnen ineinander geschachtelt werden, sodass ein Testplan weitere
Testplidne enthalten kann. Beim Betriebstest wird z.B. durch die Testplidne eine Unterteilung
in Anderbarkeit, Benutzbarkeit, Effizienz, usw. nach ISO 8126 vorgenommen.

Den Testplinen untergeordnet sind die Testfille. Dem Testfall sind die zum Testen und zur
Testaufwandsplanung wichtigen Daten zugeordnet. Dazu gehoren die Testfallspezifikation, die
,Priifpunkte® und die ,.konfigurierten Testfille®. Ein Testfall in ClearQuest entspricht nicht dem
Begriff des Testfalls aus dem Lehrbuch [vgl. LLO7, Kap. 19.1.1]. Der Lehrbuchtestfall enthilt
die Vorbedingung, die Aktion und das Sollresultat. Der Testfall in ClearQuest kann durch das
Konzept der Priifpunkte mehrere Lehrbuchtestfille enthalten.

Ein Priifpunkt enthilt genau die Daten, die der Lehrbuchtestfall vorsieht. Er wurde bei Fleet-
Board aus technischen Griinden eingefiihrt, da der Priifpunkt in Functional Tester bereits exis-
tierte und eine Verfolgung des Priifpunktes zur Spezifikation des Testfalles ohne die Einbin-
dung des Priifpunktes in ClearQuest nicht oder nur schwer méglich war. In Functional Tester
werden zur Reduktion des Programmieraufwandes mehrere Priifpunkte von einem Testskript
abgedeckt. Daher enthalten die Testfille, die mit Functional Tester automatisiert sind, in der
Regel mehrere Priifpunkte.

Ein ,konfigurierter Testfall* ist mit einem Testfall verkniipft. Ein Testfall kann beliebig vie-
le konfigurierte Testfélle enthalten. In einem konfigurierten Testfall kann festgehalten wer-
den, auf welchem System mit welcher Konfiguration getestet werden soll. So konnte man
fiir verschiedene Rechner mit verschiedenen Betriebssystemen und Hardwarekonfigurationen
konfigurierte Testfélle anlegen. Diese kdnnten dann von einem Rechner gestartet werden und
ClearQuest wiirde den Test auf dem entsprechenden Zielrechner ausfithren und die Testlogs
in die ClearQuest-Datenbank schreiben. Bei FleetBoard wird diese Funktionalitit nur von den
Hardware-Teams genutzt. Bei den Software-Teams hat jeder Testfall genau einen konfigurier-
ten Testfall. Dieser muss vorhanden sein, da die Testlogs, der Tester und der geplante Aufwand
an konfigurierte Testfdlle angehingt werden.

Dokumentation

Die Dokumentation beschrinkt sich auf das Wiki des schwarzen Teams. Sie ist auf zwei Seiten
verteilt, die untereinander nicht verlinkt sind. Auf der einen Seite, ,, Tipps rund um ClearQuest*,
die unter der Kategorie ,, Testing Tools* -> ,,Anleitungen‘ zu finden ist, werden nur die Konfigu-
ration des Programms fiir den Einstieg in die FleetBoard Entwicklungs-ClearQuest-Datenbank
und ein paar technische Details wie zum Beispiel das unlocken einer Datenbank erklart. Fiir
Fragen rund um das Programm verweist die Wiki Seite auf verschiedene externe Seiten z.B.
von IBM. Wie ein neuer Testplan oder -fall angelegt werden kann, wird hier nicht geklart.

19

Eine recht oberflichlich gehaltene Beschreibung zur Verwendung von ClearQuest bei Fleet-
Board ist auf der zweiten Wiki Seite zu finden. Diese Seite liefert fiir den Einstieg etwas zu
knappe Informationen. Hier wird lediglich das Anlegen von Testpldnen, jedoch nicht das An-
legen von Testféllen erklért.

4.1.2 ITT - Testmanagement (auf BiRT basierend)

) ITT-Testmanagement - Mozilla Firefox P] o2
Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe

S 0
'S 1?7 A c x ar I @ | http:/{fbsproz ftest-management fpages/start. jsf ﬁ M I'F_"| doom uac P

J @ITT—Testmanagement I == |T

RELEASEPLANUNG AUSWERTUNGEN

ITT-TESTMANAGEMENT

Ein Unternehmen der Daimler AG

Releaseplanun i .
4 S48 Aufwandplanung Analysen lepediments
Q9
Auswertungen e é F
4 Langzeittests L] Anfarderungsahdeckung [x] Regressionstests 7 Testfallspezifikationen
l.J/Restaufwénde
@ 2009 DaimlerFleetBoard GmbH Anbieter, rechtliche Hinweise, Datanschutz
Fertig Enabled v

Abbildung 4.2: ITT - Testmanagement

Das ITT-Testmanagement Tool ist eine vom Integrations-Test-Team entwickelte Weboberfli-
che. Es ist an die Datenbank von ClearQuest angebunden und wird zum Eintragen von geplan-
ten Aufwinden und Restaufwiinden verwendet. Zudem konnen iiber diese Oberflache Tester-
gebnisse, die nicht iiber Functional Tester oder Manual Tester in die ClearQuest Datenbank
gelangt sind, von Hand eingetragen werden.

Das Tool hat eine Startseite, auf der es eine klare Trennung zwischen den beiden abgedeck-
ten Bereichen gibt. Zum einen die Releaseplanung und zum anderen die Auswertungen. Diese
klare Trennung ist allerdings nur oberflachlich vorhanden. Klickt man sich durch das Tool, ge-
langt man auf Seiten, die einen anderen Titel haben, als der Link, auf den man geklickt hat. So
entsprechen sich z.B. die Ansicht Aufwandsplanung in der Releaseplanung und Restaufwénde
in den Auswertungen.

Die Releaseplanung bietet nur eine fiir unsere Fachstudie relevante Ansicht: ,,Aufwandspla-
nung‘.

In der Aufwandsplanung konnen konfigurierte Testfille nach verschiedenen Kriterien gefil-

20

http://www.eclipse.org/birt

) ITT-Testmanagement - Mozilla Firefox o (]

Datei Bearbeiten Ansicht Chronk Lesezeichen Extras Hife

@ - c Y I|http:ﬂﬂFbsprUZﬂtest-managementﬂpagesf\ttﬂtestplanungftestp\anung.isf W I-'_l"duom uac rF
J [&] 1TT-Testmanagement + ’T

RELEASEPLANUNG AUSWERTUNGEN

Restaufwandplanung

i e
e
" . " Gepl.
AssetReg\swITeIemamkzentrale j Iteration | ITT1.45RC02 j Dlenstl SOAP Admin - Teaterl

Gesamtsumme der Restaufwinde (min): 0

Technik Komponente Konf. Testfall Gesch. Aufw. Restaufw. Gepl. Tester Verdict Testdatum Beschreibung
P - - = = Bug 12857 - Auffalligkeiten bei
I ?dummsuap craateProfie FBSC ID ID | nnielsen J Ifa\l accepted J E} 07.2010 Unsetzung von CukdminNethoden
: Standardkonfig r nniglsen @
Rights +
2 1a|1ﬂmmsnap createProfile EEESECIDHS_ |D |D Inﬂielsen = _3 2_8 o72mo
nnlaisen
Standardkonfiy
adrminsoap Wersion - FBSC = _zl 26.07.2010
3 10 createPrafile Stangardkonfig 0 |El |nme|sen p—— ks

4| | »
| Fertig | Eratled

Abbildung 4.3: ITT - Testmanagement

tert angezeigt werden. In dieser Ansicht nimmt einerseits das schwarze Team die Einplanung
des Testpersonals vor, andererseits wird die selbe Ansicht von den Testern genutzt, um ihre
geplanten Aufwénde und den Restaufwand einzutragen. Hier erhalten sowohl die Tester, als
auch das schwarze Team einen Uberblick iiber die noch durchzufiihrenden Testfille und den
Restaufwand, der hierfiir noch benétigt wird.

Die Testfallspezifikationsansicht bietet eine einfache Moglichkeit, sich einzelne Testfélle mit
den dazugehorigen Priifpunkten anzeigen zu lassen.

Der Anforderungsabdeckungsbericht liefert eine Statistik zur Gesamtzahl der Anforderungen
(aus Focal Point) und denen, die in Form von Testfillen in ClearQuest abgebildet sind.

Die restlichen Ansichten im Bereich Auswertungen sind fiir die Fachstudie uninteressant und
ihr Nutzen erscheint grundsitzlich fragwiirdig.

Dokumentation

Es wird im Wiki des schwarzen Teams auf die Seite des BiRT Projektes verwiesen und erklirt,
dass das ITT-Testmanagement innerhalb der Auswertung der automatisierten Tests zum Einsatz
kommt. Zudem gibt es ein langes PDF als Dokumentation zur Verwendung welches ein sehr
niedriges Niveau hat.

4.1.3 Functional Tester

IBM Rational Functional Tester ist ein auf Eclipse aufsetzendes Werkzeug fiir die Aufnahme,
Wiedergabe und Protokollierung von GUI-Tests. Es unterstiitzt dabei u.a. Windows-, HTML-,
Swing- und SWT-Oberflichen. Die Testskripte werden als Java-Programme gespeichert, kon-
nen nach der automatischen Aufnahme beliebig bearbeitet werden und bieten den vollen Funk-
tionsumfang von Java. Neben der Navigation in Oberflichen bietet Functional Tester umfang-
reiche Moglichkeiten zum Auslesen von Daten aus der getesteten Oberflache und zum Ab-
gleich mit Soll-Ergebnissen. Wihrend der Testdurchfiihrung erstellt Functional Tester auf3er-
dem ein detailliertes Testlog im HTML-Format.

Eng betrachtet ist Functional Tester also eine API, die das Auslesen von Stuktur- und Inhalts-
informationen aus verschiedenen Benutzeroberflichen ermdglicht. Um Objekte und Inhalte in
der zu testenden Software einfacher und zuverlédssiger auffinden zu kénnen, werden Objek-
te in den FleetBoard-Oberflichen mit eindeutigen Objekt-IDs versehen. Da diese Objekt-IDs

21

. Functional Test - FT_Telediagnose/Telediagnose/Mozilla/FP2110_SFTP/Fehlerspeicher/Fehlerspeicher.java - Ratiol _|EI ﬂ
Datei Bearbeiten Quelle Refactoring Mavigiersn Suchen Projekk Script Korfigurieren Ausfibren Fenster Hilfe
It-flg 8| c@vg B0 |e% 0% | Fudh | WU S Q@-|v- 8 -4-0a- 0 =R
2! Functional Test-Pro 52 = run_plLL.java ("9 stammdaten.java (m Fehlerspeicher_run.j (@ Fehlerspeicher java &2 P10 S0z~ 2 =0
e s & IEad A Fehilerspeicher
= * i i [C]
=| FT_DCAdmin_logs :I ?IVErlflcatlun Foint 3873 o E| Eih‘lj::i;t
9 FT_Fahrtenaufzeichnung R R Poom - "
=1 FT_Fahrtenaufzsichnung logs private void checkVP3978() { - Testdatenpr
9 FTiMs\dun on - loginFhscNoConEig () ; E‘@ Prifpunlkte
= Ma\dungen [HtmlGuilUtils. findlinkByText ("Telediagnose™) .click(); sftp_Feb
_g FT_Serviceg o8 HemlGuilUtils. fiadLinkByText ("Fehlerspeicher™) .click(] =+~ Testobjekte
— Private
= FT_service_lngs @ .
S FT S0 /4 B Einfacher Testfall - image _c
= " - B rable_fe
=l FT_soap_logs N CE .
£ FT_Telediagnose /4 Prifung 1 [T table_is
- sun ITestDatalist pulldownlList = [ITestDatalist) HtmlGuiltils
E— lDI’DDeI’tIeS LFindPullDownEByName ("ecuFilcer™) .gecTestlbaca("liac™) :
=
B Telediagnase boolean containsSftpECUs = false:
= n for (int i = 0; i < pulldownlist.getElementCount(); i++) {
= .
- Motivators Fystem.out.println{"Found ECT " + pulldownList.getElementsi)
Li_| . Mozl .getElement (i) .getElement () .todtring (])¢
=
B .svn if feontrolUnicsSfep.containsipulldownlist.getElementsi)
-
- Fahreeugatfrage .getElement (i) .getElement () .toString(})) {
[FP1406_ Mandantanks containsSfcpECls = true;
- FP2110_SFTP , break;
Bl s , =
[-L=- Fahrzeugabfrage
-2 Fehlerspeicher B
B svn if jcontains3ftpECUs) {
: ; ‘D Fehlerspeiche Logl .
~~* Fehlerspeiche ’ N
(= Steuergerdte "Dropdown Jteuergerdte enthalt ME-3FTP-3teusrgerate”,
, fal. H
L= Verifizierung ' el ¢ sel
-1 Nutzdaten else N N X N
(- tachnische_daten log (3978, "Dropdown 3teuergerdte enthiélt keine ME-SFTP-Steuergerite
-2 x
- |J] aktFehlerDatensatz al true): | _bILI
% akkive_Fehler_run
% aktive_Fehler = Eigenschaften | v Tasks | & Konsole 52 B_Fehlsrw B Tsstdatsnpuuq =B -r5-70
% fahrzeugsbfrage_run | |Momentan kiinnen keine Konsolen angezeigt werden,
ce P Fabwmmninshfrane
Kl [2l a
J e ‘ schreibzugriff | Initell...nFgen | 4715 J

Abbildung 4.4: Functional Tester

das Verhalten der zu testenden Software nicht beeinflussen, ist dies keine Instrumentierung im
klassischen Sinne. Die Produkte werden mit Objekt-IDs zum Kunden ausgeliefert.

Um Functional Tester einfacher verwendbar zu machen und um ihn an die FleetBoard-Ober-
flachen anzupassen, wurden verschiedene Erweiterungen vorgenommen, insbesondere um die
Verfolgbarkeit von Anforderungen iiber Testfille zu Testergebnissen zu ermdglichen. Dazu
wird die sogenannte Priifpunkt-ID aus ClearQuest (,,ClearQuest-ID* oder kurz ,,cqid*) in Test-
skripte und Testprotokolle aufgenommen. Weiterhin gibt es einen Wrapper, um soapUI-Test-
fille in Skripte von Functional Tester einzubinden und um die soapUI-Testergebnisse in das
von Functional Tester erstellte Testlog zu integrieren. Das Testergebnis (,,fail®, ,,pass®, ,,known
bug*) wird nach der Testdurchfithrung zum zugehdorigen Testfall (falls vorhanden) in die Clear-
Quest-Datenbank geschrieben.

Verwendet wird Functional Tester zur Testautomatisierung:

* Von den Spezifizierern und Qualitétssicherern in den farbigen Scrum-Teams.
* Von den Mitgliedern des Teams I'T-Betrieb.
* Von den Mitgliedern des schwarzen Teams.

» Zukiinftig von den Mitarbeitern im Hardware-Team, wo momentan keine Zeit zur Test-
automatisierung zur Verfiigung steht.

Dokumentation

Im Wiki des schwarzen Teams existieren mehrere Seiten zu Functional Tester. Dort sind die
Einrichtung von Projekten, die grundsitzliche Bedienung, die ersten Schritte sowie Tipps und
Tricks ausfiihrlich beschrieben. Zusitzlich existieren Beschreibungen der selbst erstellten Zu-

22

sdtze und Wrapper, beispielsweise der soapUI-Integration. Diese sind allerdings teilweise ver-
altet. Durch die hohe Komplexitit ist eine personliche Einfithrung in Functional Tester ohnehin
notwendig. Richtlinien zur Testskriptgestaltung sind vorhanden, aber durch die Weiterentwick-
lung der Testinfrastruktur ebenfalls nicht mehr aktuell.

4.1.4 soapUl

Eviware soapUI ist ein OpenSource-Werkzeug zur Durchfithrung von Tests von SOAP-Schnitt-
stellen. Es lassen sich mit Hilfe von WSDL schnell SOAP-Abfragen erstellen, parametrisieren
und durchfithren. Allerdings reicht der normale Funktionsumfang von soapUI nicht fiir die
komplexen Tests bei FleetBoard aus, weswegen das Tool stark erweitert wurde. Das erhoht zu-
sétzlich die Einstiegshiirde. Diese Erweiterungen bestehen in einem komplexen Mock-Service,
der lokal eine Webservice-Schnittstelle simuliert, die in Java implementiert ist und wiederum
komplexe Aufgaben wie Direktzugriffe auf die Datenbank erledigt.

Testfélle bestehen aus einzelnen Testschritten und werden in Testsuiten gruppiert, die sich be-
liebig verschachteln lassen. Die Ergebnisse von Testschritten konnen mit sogenannten Asserti-
ons (Annahmen) gepriift werden. Dabei werden unter anderem XPath-Ausdriicke verwendet.
Bei der Testdurchfiihrung in soapUI wird kein Log erzeugt. Es wird dem Benutzer lediglich
angezeigt, ob sein Test erfolgreich war oder nicht.

Dokumentation

soapUI ist im Wiki des schwarzen Teams sehr ausfiihrlich beschrieben. Beschrieben werden
das Layout der Testsuite, die enthaltenen Projekte, die Bedienung des Programms und die
Richtlinien zum Schreiben von Testfillen. Die Erweiterungen zu soapUI sind ebenso doku-
mentiert, wie deren Entwicklung und die soapUI-Seite der Functional Tester Integration.

4.1.5 Manual Tester

IBM Rational Manual Tester ist ein Werkzeug zur Unterstiitzung von manuellen Tests, das mit
Functional Tester mitgeliefert wird und sein Pendant fiir manuelle Tests darstellt. Hier kénnen
Testschritte, Priifschritte und Sollergebnisse genau in Form eines stark annotierten Dokumen-
tes beschrieben werden. Diese Testbeschreibung aus Benutzeraktionen und Priifungen kann
bei der Durchfiihrung des Tests abgearbeitet werden. Dabei wird der Tester Schritt fiir Schritt
durch den Testablauf gefiihrt. Es konnen bei einzelnen Testschritten automatisch Texte in oder
aus der Zwischenablage kopiert werden oder dem Tester andere niitzliche Informationen ein-
geblendet werden.

Wihrend der Testdurchfithrung erzeugt Manual Tester ein Testlog, das die durchgefiihrten Test-
schritte sowie die Soll- und Istergebnisse enthélt. Manual Tester Skripte konnen iiber Clear-
Quest gestartet werden, um das Zuriickschreiben der Ergebnisse in die ClearQuest-Datenbank
zu ermoglichen.

Dokumentation

Fiir Manual Tester gibt es keine allgemeine Dokumentation. Wir konnten lediglich eine Kopf-
zeile finden, die fiir Manual Tester Skripte verwendet werden soll und einige Anderungsricht-
linien, die die Verfolgung von Anderungen in Manual Tester Skripten erleichtern soll.

4.1.6 Focal Point

Das Produktmanagement verwendet Focal Point um seine Anforderungen einzutragen, zu prio-
risieren und zu verwalten. Die Entwickler holen aus Focal Point die Anforderungen als Da-
tengrundlage fiir die Spezifikation. Gegebenenfalls werden Bugs mit Anforderungen in Focal
Point verkniipft. Wir haben dieses Tool fiir die Fachstudie nicht weiter untersucht, da es nicht

23

BM Rational Manual Tester
e Bearbeiten - Erfassen Suchen Ausfilhren Fenster Hife
| B E LB FEE|yEH v =3 E:E | =l =l@lls 7 U
Gliederung Eg Frojektexplorer &3 = Q;)(h ¥ =08 M =Ny =0
B Seripts | [= =
EE sn & lTest Sequence #04, Alarm Buttons = T
H014_ROLE00_Driver_Id.rmt E’l ks | xl E‘l
-E a1 _R01602_DTCOcard_DODdownload.rmt ¥ Re quirements """ B mr_te
722723i:giﬁiggz:gﬁgggz:;:z:g::zi The largest part of thiz test puist be accomplished on @
_A4_RO1602_DTCOrard_DDDdownload. rrt dashbaard with additional box, in whick the ext alarm
_C1_R01602_DTCOcard_DDDdownload. switches are blacked and attached. Caonnsct P00 af this
_C2_RO160Z_DTCOcard_DDDdownload, rmk box to free CAN port of Dashboard. s
_D1_p01602_DTCOcard_DDDdownload. ik
_DE_R01602_DTCOcard_DDDdownload. ik = Conﬂguration for Buttons on DCTP
_F1_RO1602_DTCOcard_DDDdownload. rmt e R .
201_RO1 600 Irstaliation. it z Send bluna.ry message "-9- ALARN messages buttons
-+ 002_RO1401_DS_synta.rmit internal . .
. 003_R01401_SIMeard_change.rmt ¢ Send binary message "-9- ALARM general messages
¢ D04_RO1401_alarm_buttons.rmt - 2 Zend binary message "-1- ALARM only internal buttons”
005_R01401_basic_config.emk ¥ [Configuration for Buttons on TP]
005_RO1602_hasic_config, rmk All messages must be confirmed.
’ 005_R01700_basic_config.rmk H EL15 offfon
: 006_RO1401_KOM_parameters.rmk ¥ TPress the home button on the TP
2 pgmn e, * [Contpusonts Eurs o 9
DD?b:RD1401:TEST:SWID:MB.rmt Configured text must appear on the TS display
0083 ROL401_AMDG. ME.rmt Text after pressing alarm 2@ "int alarm 2 pressed™ Texi
DDBa:Rnlsnz:AMDG:MB.rmt after alarm 2 has been sent: "ini alarm 2 sent" Texi if
-~ 00Ba_RO1704_AMDG_MB.rmt sending af alarm 2 has failed: “failure int alarm 27
i D0Eb_ROL401_AMDG_FMS.rmk ¥ [Configuration for Buttons on TF) @
008b_POL604_AMDG_FMS.rmt The home alarm (packet 2517 must receive the server.)
008b_ROL704_AMDG_FMS.rmt 2 Press the Event button on the TP e A e
S oo (g s)
011_RO1401_DS0_exceptions.rmt gonﬁgured text must appear on the display .
012_RO1401_Part_configuration.rmk ext after presoing alarm 3 "int alarm’ pressed" Text
013_RO1401_Parameter_setting_and_data_sav after alarmm 3 has been sent: "int alarml sent" Text if
013_R01602_Parameter_setting_and_data_sav sending af alarm 3 has failed: “sanding af int alarmi
- 013_R41606_Parameter_setting_and_data_sav Failed"
-E 014_R01401_Driver_Id.rmt - ¢ [Configuration for Buttons on TP] i|
| | _>|_I The ewent slarem fraclat 2513 muet receive the earrer b2
|

Abbildung 4.5: Manual Tester

fiir die Testfallverwaltung relevant ist. Lediglich die Anbindung an die anderen Werkzeuge per
ID wurde von uns beachtet.

Dokumentation

Zu Focal Point haben wir keine Dokumentation gefunden.

4.1.7 RequisitePro

RequisitePro ist ein Werkzeug zur Verwaltung von Spezifikationsdokumenten und Use Cases.
Die Dokumente werden dabei als annotierte Microsoft Word Dokumente gespeichert, in denen
einzelne Anforderungen markiert sind. Datengrundlage fiir die Spezifikationen in Requisite-
Pro sind die Anforderungen aus Focal Point und die miindliche Absprache mit den Produkt-
managern. Verwendet wird RequisitePro von den Spezifizierern, die in den Entwicklerteams
arbeiten, um Spezifikationen zu schreiben. RequisitePro hat fiir diese Fachstudie die gleiche
Bedeutung wie Focal Point.

Dokumentation

Zu RequisitePro gibt es lediglich Informationen zum Einrichten des Programms. Diese sind im
IT-Realisierungs-Wiki hinterlegt. Zur Verwendung konnten wir keine Dokumentation finden.

4.2 Bewertung durch die Mitarbeiter

24

Bei FleetBoard werden einige Werkzeuge im Zusammenhang mit den Tests verwendet, welche
teilweise auf die gleichen Daten zugreifen. Es gibt eine enge Verzahnung der Aufgaben in den
einzelnen Werkzeugen, die meist nicht zufriedenstellend unterstiitzt wird, und oft fiir Reibung
und Frust bei der tdglichen Arbeit sorgt.

4.2.1 ClearQuest

Als Verwaltungswerkzeug fiir die Testfille ist es nicht nur fiir unsere Fachstudie, sondern auch
fiir den Testprozess von zentraler Bedeutung. Fast alle Mitarbeiter, die etwas mit Tests zu tun
haben, verwenden ClearQuest. Entsprechend viele Meinungen haben wir erhalten.

Allgemeine Verwendung von ClearQuest

Generell wird ClearQuest so eingesetzt, wie es vom schwarzen Team gedacht ist. Es werden
Testfille strukturiert und spezifiziert bzw. wer die Automatisierung implementiert findet darin
seine Datengrundlage. Aus diesem Rahmen fallen allerdings die Hardware-Teams. Das Team
der Telematikplattform verwendet ClearQuest fiir die Spezifikation im eigentlichen Sinne und
spezifiziert seine Testfdlle im Manual Tester. Fiir die Tests des DispoPilots gibt es in ClearQuest
nur eine leere Hiille von Testféllen ohne Priifpunkte um eine Strukturierung zu erreichen, an
die die Manual Tester Skripte gekoppelt sind. Zu erwéhnen ist noch, dass die SOAP-Tests nur
in ClearQuest existieren um die Ergebnisse eintragen zu konnen. Priifpunkte gibt es keine.
ClearQuest bildet lediglich die Projektstruktur aus soapUI ab.

Strukturierung der Daten

Dadurch, dass es keine einheitlichen Richtlinien zur Strukturierung gibt, sieht der Datenbaum
fiir jedes Team anders aus. Es gibt alte Daten, die nach Sprint strukturiert waren. Spiter wurde
dann nach Funktionalitit umstrukturiert. Innerhalb der Funktionalitidten trennen manche Teams
aber wiederum nach Versionen. Dann ist die Trennung zwischen Testfall und Priifpunkt nicht
klar. Es gibt Teams, die in einen Testfall genau einen Priifpunkt stecken (z.B. das Team, das die
Telematikplattform testet), andere haben pro Testfall eine lange Liste von 30 Priifpunkten. Das
DispoPilot-Testteam verwendet eine Nummerierung vor dem Testfallnamen fiir verschiedene
Konfigurationen. Es gibt also momentan zehn Kopien eines Testfalls mit jeweils der Zahl dazu
vor dem Namen, obwohl ein Testfall eigentlich mehrere Konfigurationen zulésst. Innerhalb der
eigenen Daten wird z.B. fiir den DispoPilot die Suchfunktion von ClearQuest verwendet, um
die passende Konfiguration ,,auszuwéhlen®. Durch vorherige Migrationen gibt es zudem sehr
viele leere Testfallhiilsen ohne Priifpunkte.

Die Existenz der Priifpunkte, die eigentlich das sind, was laut Lehrbuch ein Testfall ist, und
die Verwendung der Testfille als weitere Kategorisierungsmdoglichkeit neben den Testplinen,
kommt niemandem falsch vor und wird akzeptiert, da es anscheinend von ClearQuest so vor-
gegeben ist. Der Ursprung dieser Strukturierung ist allerdings technischer Natur und eine Er-
findung des schwarzen Teams. Das war niemandem aus den anderen Teams klar.

Testfalle

Testfélle sind bei FleetBoard lediglich Container fiir Priifpunkte. Diese Priifpunkte werden in
einem extra Fenster an einen Testfall gehéingt. Bemingelt wurde dabei, dass keinerlei Abhén-
gigkeiten oder Reihenfolge zwischen Priifpunkten moglich ist. In der Praxis lduft man durch
einen Priifpunkt durch, der z.B. alle Tests in einem Abschnitt der grafischen Oberfldche enthilt,
und hat dafiir eine gemeinsame Vorbedingung und Nachbedingung. Zwischen den einzelnen
Schritten gibt es eine bestimmte Reihenfolge, da sie aneinander ankniipfen. Diese Vorgehens-
weise ist momentan nicht sinnvoll in ClearQuest abbildbar. Umgangen wird das Problem fast
einheitlich durch einen ,,Setup-Priifpunkt®, der Vorbedingung fiir alle anderen Priifpunkte ist.
Ebenfalls beméngelt wird, dass man Testfélle nicht in einer Ansicht ,,runterschreiben kann,

25

sondern umstéindlich fiir jeden Priifpunkt ein extra Fenster braucht, in dem man vor dem Bear-
beiten noch einen ,,Bearbeiten-Knopf* driicken muss.

Auffillig bei den Testféllen ist weiterhin, dass es viele von niemandem verwendete Eingabefel-
der gibt. Es handelt sich meist um Standardfelder, die ClearQuest mitbringt, die aber auch ohne
weiteres entfernt werden konnten. Die ,,Beschreibung des Testfalls* hat einen Knopf zum Ak-
tualisieren, welcher von Hand gedriickt werden muss, wenn man diese Daten aktuell braucht.

Prifpunkte

Die Eingabe ist recht iibersichtlich, da sie nicht so iiberladen ist wie bei den Testfdllen. Die
drei Felder fiir Vorbedingung, Aktion und Nachbedingung sind fiir die meisten Tester ausrei-
chend, da sie Freitext zulassen. Manche bemiingeln daran, dass Freitext zu viel Spielraum lisst
und somit eine einheitliche Verwendung kaum moglich ist. Andere bemingeln, dass die meis-
ten ihrer Testfille gleich aufgebaut sind und die Felder somit fast immer den gleichen Inhalt
bekommen. Man wiinscht sich Vorlagen. Die GUI-Tester priifen z.B. sdmtliche Eingabefelder
auf standardisierte Wertebereiche. Das ist fiir alle Felder identisch. SOAP-Tests sind ebenfalls
immer gleich aufgebaut. Die Idee der Templates geht allerdings einher mit der Annahme, dass
drei Freitextfelder die passende Eingabe fiir die Priifpunkte sind.

Suchfunktion

Um Mingel der Werkzeuge zu umgehen sind einige Mitarbeiter gezwungen, die Suchfunktion
von ClearQuest zu verwenden. Beméngelt wurde dabei, dass die angebotene Methode iiber das
grafische Zusammenklicken von SQL-Queries unflexibel und kompliziert ist, zusétzlich ist der
Funktionsumfang von SQL nicht ausschopfbar. Die Ausgabe wiederum stellt keinen Zusam-
menhang zwischen dem Suchergebnis und der Baumstruktur der Testplédne und Testfélle her,
da nur eine Liste gefundener Datensitze angezeigt wird. Die Suche eines gefundenen Testfalls
in der Baumstruktur geschieht von Hand!

Allgemeine Bewertung

Dass ClearQuest nicht schwer zu erlernen ist, finden eigentlich alle. Auch wir als Auflenste-
hende kommen relativ schnell damit zurecht. Es wurde allerdings durchgehend von allen Betei-
ligten beméngelt, dass ClearQuest bei der tiglichen Verwendung viel zu umsténdlich ist. Man
benotigt extrem viele Klicks, selbst fiir die einfachsten Aufgaben. Fiir alles gibt es ein neues
Fenster.

Etwas paradox scheint, dass ClearQuest extrem starr und unflexibel ist, obwohl es doch als
extrem flexibles Werkzeug fiir vielerlei Aufgaben konzipiert ist. Leider ist es nur fiir den Admin
bei der einmaligen Konfiguration flexibel. Im Alltag nervt es jeden, der damit arbeiten muss
mit seinen unzdhligen unsinnigen Macken. Die Bewertungen auf einer Skala von 1-10 gehen
zwar weit auseinander und reichen von 2 bis 9,5, allerdings werden die positiven Meinungen
nur durch das bloBe Erfiillen der Aufgaben von ClearQuest begriindet. Angenehm findet das
Werkzeug keiner der Befragten.

4.2.2 ITT - Testmanagement

Diese Sammlung von diversen selbst entwickelten Werkzeugen arbeitet komplett auf den Daten
von ClearQuest und gleicht dadurch im Grunde lediglich dessen Schwichen aus. Daher ist die
Bewertung dieser Werkzeuge recht positiv.

Die Ansicht ,, Testfallspezifikation® zeigt alle Testfélle aus der Baumstruktur von ClearQuest ta-
bellarisch wie man es von fritheren Excel-Tabellen kennt. Der Nutzen ist uns nicht klar. Keiner
der Befragten hat diese Ansicht erwihnt. Sie scheint nicht verwendet zu werden.

26

,Restaufwandplanung* bietet die Moglichkeit, die Dauer von Tests vorab zu schitzen, sowie
Ergebnisse der Tests manuell einzutragen. Viele Testfille haben hier den Standardwert von 20
Minuten. Anstatt zur Planung wird das Werkzeug vor allem zum Eintragen der Ergebnisse von
manuellen Tests verwendet. Wir haben festgestellt, dass mit dieser Ubersicht die Planung der
manuellen Tests gemacht wird. Durch das noch fehlende Ergebnis sieht der Tester die Tests,
die nach den automatisierten Tests noch nicht durchgefiihrt wurden. Wenn sie nicht ausgelassen
wurden, handelt es sich dabei dann um manuelle Tests.

Mit ,,Anforderungsabdeckungsbericht* wird eine Verbindung der Anforderungen in Focal Point
und den dazugehorigen Testfillen in ClearQuest hergestellt. Man kann damit recht gut sehen
wofiir noch Testfille erstellt werden miissen. Beméngelt wurde daran nichts.

4.2.3 Functional Tester

IBM Rational Functional Tester wird von den Mitarbeitern, die ihn verwenden, durchweg po-
sitiv bewertet. Insbesondere der Funktionsumfang und die Flexibilitit des Werkzeugs wurden
von den Befragten hervorgehoben. Durch die Verwendbarkeit des vollen Java-Funktionsumfangs
ist Functional Tester sehr méchtig und kann von den Mitarbeitern fiir Zwecke eingesetzt wer-
den, die urspriinglich nicht zum Funktionsumfang gehorten, beispielsweise die Fernsteuerung
von Servern iiber SSH.

Weniger gut bewertet wurden Erlernbarkeit und Bedienbarkeit. Der Einarbeitungsaufwand sei
recht hoch und die Bedienung lieBe zu wiinschen iibrig. Allerdings ist nach der Einarbeitung
ein effizienter Betrieb gut moglich.

4.2.4 soapUl

soapUI wird von allen als sehr niitzlich empfunden. Sein purer Zweck, das Testen von SOAP-
Schnittstellen, verschafft diesem Werkzeug eine durchweg positive Bewertung, dabei wird die
Einstiegshiirde von allen als sehr hoch empfunden und es gibt doch einige Macken.

Problematisch ist, dass grofle Teilbdume aus der Datenstruktur als Projekt in einer einzigen
sehr grolen XML-Datei abgespeichert werden. Da XML sich tiber SVN nicht zuverlassig zu-
sammenfiihren 1dsst, werden ganze Projekte von einem einzigen Mitarbeiter gesperrt, sodass
nur er daran arbeiten kann. Eine Zusammenarbeit mehrerer Benutzer ist also dulerst schwierig
bzw. in der Praxis unméglich und produziert sehr hdaufig Wartezeiten und die Notwendigkeit
der miindlichen Absprache.

In Kauf genommen wird ohne groe Beschwerden, dass es manchmal Darstellungsfehler hat
und gelegentlich abstiirzt. Immerhin gibt es keine bessere Alternative zu dem Programm.

Die Verbindung mit ClearQuest und Functional Tester ist nicht optimal. soapUI hat eine ei-
gene Datenstruktur, die in ClearQuest lediglich mit Dummy-Testfdllen abgebildet wird um
die Testergebnisse hinterlegen zu konnen. Fiir diese Verbindung sorgt Functional Tester in-
dem es zu einem Testfall aus ClearQuest das passende soapUI-Skript startet. Zusitzlich gibt
es ,,Mockup“-Services, SOAP-Server, die dazu da sind um beliebigen Code ausfiihren zu kon-
nen. Bei der Verwendung dieser ganzen Verbindungen werden diverse SSH-Verbindungen und
gestartete Server benotigt, was dem Tester das Leben unnotig schwer macht.

In soapUI gibt es mit der Strukturierung der Daten das gleiche Problem wie in ClearQuest: Es
gibt keine Richtlinien.

Erwihnenswert sind noch die riesigen Property-Dateien, welche Einstellungen sowie eine Art
Datenbank enthalten. Diese sind weder iibersichtlich noch wartbar.

4.2.5 Manual Tester

Wir haben zwei Personen zum Manual Tester befragt. Je eine aus dem Team fiir die Tele-
matikplattform und fiir den DispoPilot. Manual Tester wird lediglich fiir die Hardwaretests

27

verwendet, da eine Automatisierung nicht in dem MaBle moglich ist wie bei den reinen Soft-
waretests. Beide Personen bewerten den Manual Tester vollig unterschiedlich. Im Team der
Telematikplattform ist man ziemlich ungliicklich mit dem Werkzeug. Das Team des DispoPi-
lots ist halbwegs zufrieden.

Vorteile des Manual Testers sind die Anbindungsméglichkeit an die ClearQuest-Datenbank
sowie die automatische Erstellung eines Testlogs.

Zu den Nachteilen:

Auf den ersten Blick #hnelt ein geoffnetes ,, Test-Skript“ einem Word-Dokument. Es gibt Uber-
schriften, Absitze und Aufzdhlungen. Zwar hat jedes Element eine formale Bedeutung im Sin-
ne des Tests, in der Praxis spielt das aber keine Rolle, da es sich ja ohnehin um einen manuellen
Test handelt, der daher auch nicht automatisch verarbeitet werden kann. Der Unterschied zu
Word besteht daher nur in der Anwesenheit eines Pfeils neben dem Dokument wihrend der
Durchfiihrung, welcher auch durch einen Finger ersetzt werden konnte, sowie dem automa-
tischen Anlegen einer Kopie des Dokuments in Form eines Testlogs. Dazu kommen diverse
Bedienungsschwichen vom Manual Tester. So geht z.B. kein Copy & Paste, auf Reaktionen
der Software bei Eingaben wartet man schon mal mehrere Sekunden, Bedienelemente sind viel
zu klein fiir den enthaltenen Text und generell ist die Usability sehr schlecht.

Aus der Abteilung Telematikplattform kam nun die Idee, Test-Skripte in ein XML-Format zu
stecken, einen ,,GUI-Wrapper* fiir den Functional Tester zu basteln um anschlieend die ma-
nuellen Test ebenfalls mit Functional Tester starten zu konnen. Der Sinn und die Umsetzbarkeit
dieses Vorhabens ist fraglich und wir haben dazu geraten zuerst das Ergebnis dieser Fachstudie
abzuwarten.

4.3 Schwachstellen

Die Werkzeuge, die sich in der Analyse als relevant herausgestellt hatten, wurden néher be-
trachtet und ausgewertet. Einen zentralen Stellenwert hat ClearQuest, da es die Testfallver-
waltung iibernimmt. Dazu gehdren erweiterte Ansichten in Form von Webinterfaces im ITT
Testmanagement. Direkt im Anschluss in der Priorititenliste kommen Functional Tester und
soapUI, da sie die engste Anbindung an die ClearQuest-Datenbank haben und die meiste Ar-
beitszeit einsparen. Nicht weniger wichtig, aber weniger priasent bei FleetBoard, ist Manual
Tester. Bei FocalPoint und RequisitePro ist fiir uns nur die Anbindung an die ClearQuest-
Datenbank relevant.

Die Abschnitte der einzelnen Werkzeuge sind wie folgt unterteilt:

* Dokumentation: Das ist die Grundlage zur Einlernung in das Werkzeug. Sie wird daher
zuerst iiberpriift.

 Strukturierung der Daten: Alle Programme haben eine Datenstruktur auf der sie arbei-
ten. Wir werten sowohl das Datenmodell auf technischer Ebene, als auch die sichtbare
Strukturierung auf Anwendungsebene aus.

* Erlernbarkeit, Effizienz und Usability sind die drei Kernpunkte, die ein Programm ange-
nehm benutzbar machen. Usability ist sicher auch eine Ursache fiir die anderen beiden
Eigenschaften. Die Aufteilung wurde aber wegen der Auswirkungen so gewihlt. Erlern-
barkeit sagt aus, wie leicht es fiir neue Mitarbeiter ist, sich mit dem neuen Programm
zurecht zu finden. Effizienz lasst indirekte Riickschliisse auf bendtigte Arbeitszeit zu
und Usability allgemein korreliert mit der Mitarbeiterzufriedenheit.

* Anbindung an andere Werkzeuge: Da sdmtliche betrachtete Werkzeuge recht eng mit-
einander verzahnt sind, ist es besonders wichtig dort Schwachstellen zu finden und An-
forderungen an neue Losungen festzuhalten.

28

(SS4.1)

(SS 4.2)

(SS 4.3)

(SS 4.4)

(S5 4.5)

(SS 4.6)

» Kosten: Dieser Aspekt ist notwendig fiir den Vergleich mit neuen Losungen. Besonders
teure Werkzeuge fallen hier auf. Beachtet wurden verschiedene Arten von Kosten, wie
sie auch in LL.O7 Kapitel 2.1 vorkommen. Allerdings werden hier nur auffillige Aspekte
erwahnt.

4.3.1 ClearQuest
Dokumentation

Generell wird die Dokumentation zu ClearQuest im internen Wiki der zentralen Aufgabe die-
ses Werkzeugs nicht gerecht. Es sind lediglich zwei Seiten zu ClearQuest vorhanden. Die eine
beschrinkt sich auf die Einrichtung auf einem lokalen Entwicklungssystem. Solch eine Seite
ist notwendig und muss gepflegt werden. Die zweite Seite beschiftigt sich mit der Verwendung
von ClearQuest, geht dabei aber nicht genug ins Detail, deckt nicht den gesamten Aufgabenbe-
reich ab und vermittelt kein Gesamtkonzept der Anwendung. Ebenfalls fehlt die Positionierung
von ClearQuest relativ zu den anderen Anwendungen im Bereich Test.

Bisher wurde die Aufgabe der Dokumentation komplett durch miindliches Einlernen iibernom-
men. Das ist generell sehr gut, auf eine schriftliche Dokumentation zum Nachschlagen sollte
aber dennoch nicht verzichtet werden.

Strukturierung der Daten

ClearQuest ist ein sehr generisches Werkzeug. Leider ist das auch im Alltag sehr gut sichtbar.
So sind zum Beispiel die ersten beiden Ebenen im Datenbaum fiir den Anwender komplett
iberfliissig, denn sie verraten lediglich den eigenen Benutzernamen und die Datenbank zu der
verbunden wurde, und liefern zusétzlich die leere Worthiilse ,,Asset-Registries* als eigene Hier-
archieebene. Das Konzept der ,,Asset-Registries* ist im Fall von FleetBoard weder verstindlich
noch niitzlich und vermischt sich mit den Testpldnen und Testféllen, die die eigentliche Daten-
struktur darstellen.

Die Strukturierung der Testplidne und Testfille wurde urspriinglich vom schwarzen Team er-
dacht. Im Laufe der Zeit musste man die Struktur allerdings @ndern, da sie sich als ungeeignet
herausgestellt hat. Dadurch gibt es Altlasten, die aufgrund von Schwéchen von ClearQuest nie
umsortiert wurden und bis heute existieren. Seither wachst die Struktur in ClearQuest weiter
ohne Kontrolle durch das schwarze Team. Beispiele dazu sind im Anhang zu finden.

Zu dem Knoten ,,Asset-Registries*, den Asset-Registries selbst, einer von ClearQuest vorgege-
benen Ordnerstruktur innerhalb der Asset-Registries, sowie den Testpldnen, welche alle auch
einfach als Ordner oder Container bezeichnet werden konnten und somit keine Unterscheidung
brauchten, gesellt sich zusétzlich der Testfall, welcher eigentlich als Blatt im Baum gedacht
ist, aber nur ein weiteres Containerelement zur Biindelung von Priifpunkten darstellt. Es gibt
also sechs unterschiedliche Containertypen, die sich in der Oberfliche aber lediglich durch ih-
ren Namen unterscheiden und somit keine Typisierung briduchten. Diese aufwendige Struktur
ist sicherlich in manchen Anwendungen sinnvoll, ist fiir den Test bei FleetBoard aber unnotig
kompliziert.

Das Konzept der Testfélle und Priifpunkte wurde bisher technisch begriindet. Ein Priifpunkt bei
FleetBoard ist ein Testfall im eigentlichen Sinne. Ein Testfall bei FleetBoard gruppiert lediglich
Priifpunkte und enthilt einige Zusatzinformationen, die aber genau so gut in einem Testplan
gespeichert werden konnten. Von den Mitarbeitern wird beméngelt, dass das Konzept eine
Abfolge von Testschritten mit Priorisierung nicht abdecken kann. Es fehlt die Moglichkeit, die
Reihenfolge von Priifpunkten zu definieren und Abhéngigkeiten zwischen ihnen herzustellen.
Zudem fehlt die Moglichkeit, fiir einen Testfall eine Vorbedingung anzugeben, die fiir alle
enthaltenen Priifpunkte gilt.

Es existiert keine Vorgabe zum Umfang und Inhalt eines Testfalls. Der Mitarbeiter entschei-

29

(SS4.7)

(SS 4.8)

‘Datenbankverbindungen ‘
3

0.n

1

Wurzel "Asset-Registrys"
3

0.n

‘ Asset-Reqgistry ‘
)

4

‘ “orgegebener Ordner

0.n
o '\\ 0

‘ Testplan | n
) d
0.n

‘ Testfall ‘

o -
o.n - g 0.. n{inderRegel 0. 1)
e \‘\\
Priifpunkt ‘ ‘ Konfigurierter Testfall ‘

Abbildung 4.6: Datenstruktur in ClearQuest

det also selbst nach unbekannten Kriterien, ob er einen Testfall mit 25 Priifpunkten, oder 5
Testfille mit je 5 Priifpunkten erstellt. Auch in seinem Ermessen liegt die Positionierung des
Testfalls in der Hierarchie. Wird ein neuer Testplan angelegt? Gehort der Testfall zu schon vor-
handenen Testpldnen? Hierfiir miissen Vorgaben eingefiihrt werden. Die Kontrolle dessen ist
schwierig, weil es keinen Testfallverantwortlichen gibt. Bei Priifpunkten wird nicht einmal der
Autor gespeichert.

Die Konfigurierten Testfélle sind grundsitzlich nur fiir die Hardware-Teams relevant. Alle an-
deren Teams verwenden dieses Konzept nur, weil es eine technische Notwendigkeit fiir die
Integration von Functional Tester ist. Dort hat dann ein Testfall genau eine Konfiguration. Bei
denen, die es richtig verwenden, fehlt allerdings eine Filterfunktion fiir Konfigurationen.

Erlernbarkeit

In diesem Punkt haben wir keine gravierenden Mingel zu beanstanden. Der Einstieg in Clear-
Quest ist relativ unproblematisch. Auch dem Team der Fachstudie war schnell klar, wie dieses
Werkzeug funktioniert.

Effizienz

ClearQuest kann bei dem einmaligen Einrichten der Architektur sowie der Einlernung der be-
nutzenden Mitarbeiter punkten. Leider schwichelt es bei der Effizienz und zwar in seiner kom-
pletten verwendeten Funktionalitit.

Beginnend mit der Ubersicht in Form der Baumstruktur gibt es zu bemingeln, dass die Struk-
tur nicht einheitlich definiert ist und entsprechend von jedem anders verwendet wird. Eine gute
Suchfunktion kénnte dies bis zu einem gewissen Grad kompensieren, aber die Suchfunktion in
ClearQuest schafft es weder schnell zielstrebige Eingaben zu ermoglichen, noch eine Verbin-
dung zwischen Suchergebnis und Baumstruktur, und damit eine Ubersicht im mentalen Modell
des Benutzers, zu schaffen. Die Folge ist, dass man sehr viel Zeit damit verbringt, sich in den
Datenstrukturen anderer Mitarbeiter oder sogar seiner eigenen zurecht zu finden, ohne dabei

30

(SS 4.9)

(SS 4.10)

(SS4.11)

(SS4.12)

produktiv arbeiten zu kénnen.

Fiir die Eingabe eines neuen Testfalls 6ffnet sich ein neues Fenster. Das ist unproblematisch,
da ein Testfall bei FleetBoard sehr umfangreich werden kann. Weniger praktisch ist, dass fiir
die Eingabe eines Priifpunktes erneut ein weiteres Fenster erscheint. Damit sind wir bei drei
offenen Ebenen auf dem Bildschirm, was dem Ganzen etwas die Ubersicht nimmt. Um Ande-
rungen an einem Formular machen zu konnen, muss zuerst der Bearbeiten-Modus durch Klick
auf einen dafiir vorgesehenen Knopf aktiviert werden. Anschliefend verldsst man diesen Mo-
dus durch Speichern des Formulars. Mochte man schnell diverse Testfélle ,,runterschreiben
muss man bei jedem Testfall und jedem seiner Priifpunkte diesen Bearbeiten-Modus verwen-
den. Man muss also diverse Male von der Tastatur zur Maus wechseln um unsinnige Klicks zu
titigen. In Excel z.B. wiirde man die komplette Arbeit am Stiick erledigen ohne die Maus zu
verwenden und dabei erheblich Zeit und Nerven sparen.

Die fehlende Moglichkeit fiir Drag & Drop, sowie Copy & Paste von Testfdllen und Priif-
punkten macht den Benutzern das Leben unnotig schwer. Umsortieren ist so aufwindig, dass
man es in der Praxis einfach nicht macht. Viele Testfille in bestimmten Bereichen sind sehr
ghnlich und auch Priifpunkte sind oft nahezu identisch. Trotzdem muss man alles von Hand
tippen. Hier gibt es ein gro3es Einsparungspotenzial. Zusitzlich wurde von den Benutzern eine
Funktionalitit fiir Vorlagen (Templates) gewiinscht. Damit wéren Testfélle nicht nur wesentlich
schneller, sondern auch einheitlich befiillt.

Ebenfalls Zeit kostet die Tatsache, dass es zwar grundsitzlich moglich ist, Tests von ClearQuest
heraus zu starten, was in der Praxis wegen Problemen mit der verwendeten Architektur aber
nicht geht. Da aber die ClearQuest-Daten zur Planung der Tests verwendet werden, muss man
zuerst anhand der ClearQuest-Daten feststellen, welcher Test als nichstes folgt und diesen
anschlieBend in der Datenstruktur des verwendeten Testwerkzeugs finden und ausfiihren.

Die Generierung von Java Code fiir den Funktional Tester hingegen ist sehr niitzlich und spart
Zeit. Auch wenn hier sicher noch eine engere Anbindung mit mehr Automatisierung denkbar
wire, so spart sie auch so schon Arbeit.

Usability

Effizienz und Usability hingen sehr stark zusammen. Entsprechend schlecht féllt auch die Be-
wertung der Usability aus.

Die Baumstruktur an sich bietet enorme Vorteile in der Ubersicht gegeniiber der fritheren Struk-
turierung in Exceltabellen, allerdings wird dieser Vorteil {iberhaupt nicht ausgespielt. Mit Drag
& Drop Funktionalititen wie man sie z.B. aus dem Windows Explorer kennt, hitte man ein
michtiges Strukturierungswerkzeug welches jeder Exceltabelle iiberlegen ist. Die Suchfunkti-
on miisste ihr lineares Ergebnis mit dem Baum verkniipfen, sodass dem Benutzer die Naviga-
tion an die entsprechende Stelle im Baum abgenommen wird. Die Folge ist ein Strukturchaos
in den Daten und eine fehlende Moglichkeit, sich trotzdem in dem Chaos zurecht zu finden.

Neben der Ergebnisdarstellung der Suche ist auch die Eingabe sehr unintuitiv. Es kann nur
nach verschiedenen Feldern gesucht werden, die mit und- und oder-Operatoren in Form einer
Baumstruktur verkniipft sind. Diese Umsetzung einer Sucheingabe ist vollig ungeeignet und
ist nicht nur uniibersichtlich, sondern schrinkt auch in den Moglichkeiten ein.

Sehr storend bei sdmtlichen Eingaben ist der ,,Bearbeiten-Modus. Es handelt sich bei der Dar-
stellung sowieso um Formularfelder, die im Normalfall einfach nur deaktiviert sind, um Bear-
beitungen zu verhindern. Jede Textbearbeitung hat diese Probleme aber schon vor 15 Jahren
besser behandelt als ClearQuest.

Der Arbeitsfluss bei der Eingabe eines Testfalls mit allen Priifpunkten ist verbesserungswiir-
dig, denn das ist momentan nicht ohne Unterbrechung méglich. Beméngelt wurden zu viele
unndtige Klicks und wechselnde Ansichten.

31

(SS 4.13)

Fern von jeglicher Usability ist die Implementierung der textuellen Zusammenfassung eines
kompletten Testfalls fiir die weitere Verwendung in externen Werkzeugen. Die Generierung
der Zusammenfassung muss nach Anderungen von Hand angestoBen werden, was natiirlich
schnell mal vergessen wird. Das ist besonders gravierend, da man sich bei FleetBoard im Laufe
der Zeit immer mehr von ClearQuest wegbewegt hat und vermehrt auf die externen Werkzeuge
setzt.

Anbindung an andere Werkzeuge

Grundsitzlich bietet ClearQuest die technischen Voraussetzungen fiir eine Anbindung an ex-
terne Werkzeuge an. Leider kamen bei der Einrichtung der gewiinschten Architektur Probleme
auf, die die Anbindung erschwerten. Tests, die mit Functional Tester automatisiert wurden,
konnen momentan nicht von ClearQuest heraus gestartet werden, obwohl das urspriinglich so
vorgesehen war. Stattdessen werden die Tests in Functional Tester selbst gestartet, welche an-
schlieBend die Ergebnisse in die ClearQuest-Datenbank schreiben. Mochte man Testergebnisse
der Tests in soapUI ebenfalls in der ClearQuest-Datenbank speichern, so muss man diese in ein
Functional Tester Skript integrieren und von dort aus starten. Die Anbindung von Manual Tes-
ter ist besser, da diese Tests von ClearQuest aus gestartet werden kénnen. Tut man das nicht,
dann werden auch keine Testergebnisse gespeichert.

Die Anbindung der Webinterfaces spielt nur bei deren Implementierung eine Rolle, ist aber bei
der Verwendung (bis auf die Zusammenfassung der Testfille) nicht sichtbar.

Kosten

Laut Aussage der Mitarbeiter spart ClearQuest in Zusammenhang mit Functional Tester und
soapUI, trotz aller Macken, erheblich Zeit und Nerven. Frither wurde anhand von Excelta-
bellen komplett manuell getestet. Fiir einen kompletten Durchlauf hat man ca. drei Wochen
benotigt. Aktuell bendtigt man zwei Wochen, allerdings mit hoherem Funktionsumfang der
zu testenden Software, dem Vielfachen an Testféllen und jeweils deutlich mehr Eingaben. Der
Verwaltungsaufwand ist hochstens genau so hoch wie zu Excel-Zeiten. Die Automatisierung
ist Mehraufwand, den es vorher nicht gab. Man kann also sagen, dass ClearQuest im Vergleich
zur Zeit vor seiner Einfithrung weniger Kosten verursacht als es einspart. Die Einfithrung war
also sinnvoll.

Kennt man die Situation vorher nicht, dann erkennt man aber trotzdem noch sehr viele Mog-
lichkeiten zu sparen. Ein Werkzeug, das die Benutzer weniger nervt und nicht von der ei-
gentlichen Arbeit abhilt, kann die Arbeit noch deutlich effizienter erledigen als es ClearQuest
momentan tut.

Abgesehen von der reinen Zeit, die ClearQuest bei der Verwendung beansprucht, kommt noch
hinzu, dass ein genervter Mitarbeiter wesentlich weniger produktiv ist als ein zufriedener. Lei-
der ist so gut wie niemand bei FleetBoard mit ClearQuest wirklich zufrieden, sondern regt sich
eher noch lauthals dariiber auf.

Die Lizenzkosten sind auch nicht zu vernachlidssigen. Mit mehreren tausend Euro pro Floating
License ist die Software von IBM kein Schnidppchen. Man konnte vermuten, fiir so viel Geld
bekommt man eine Software, die bei der Verwendung Einsparungen von Mitarbeiterzeit mit
sich bringt. Im Vergleich zu dem, was theoretisch moglich wire (wir machen hier ja relativ
viele konkrete Vorschlidge), scheint dem aber leider nicht so.

Sonstiges

Allgemein wurde noch beméngelt, dass es kein einheitliches Vokabular gibt und teilweise Ab-
kiirzungen verwendet werden, die nicht jeder kennt. Auch wird toleriert, wenn jemand Testfille
auf englisch beschreibt.

32

(SS4.14)

(SS 4.15)

(SS 4.15)

Abbildung 4.7: Missverstiandliche Icons

AuBerdem sollte auf iiberfliissige Formularfelder verzichtet werden. Die Standardformulare
von ClearQuest zur Eingabe eines Testfalls sind alle noch vorhanden, werden aber grof3tenteils
nicht verwendet.

Fazit

Die von FleetBoard selbst entwickelten Webinterfaces iibernehmen mehr und mehr Aufga-
ben, die ClearQuest so nicht gut unterstiitzt. Es kann seiner zentralen Rolle also nicht gerecht
werden. Viel mehr wird eine Werkzeugwelt drum herum aufgebaut, die es ermoglicht, so viel
wie moglich auf ClearQuest zu verzichten. Das zeigt uns, wie unangenehm ClearQuest all-
gemein fiir die Mitarbeiter ist und wie grofl die Schwéchen sind, wenn es darum geht, die
Daten fiir mehr zu verwenden, als sie nur zu verwalten. Da die Verwaltung aber ohne weitere
Verwendung reiner Selbstzweck ist, kann man von einem guten Testfallverwaltungswerkzeug
die Anbindung an andere Werkzeuge und die Moglichkeit zur weiteren Auswertung der Daten
eigentlich erwarten.

4.3.2 ITT Testmanagement
Dokumentation

Direkt im ITT-Wiki gibt es nur eine Seite, die fiir die Entwickler des Testmanagement-Werk-
zeugs interessant ist.

Der Teil, der fiir den normalen Benutzer gedacht ist, ist auch im I'TT Wiki verlinkt, weicht aber
von der sonstigen Dokumentation ab, da es ein PDF ist und nicht wie der Rest im Wiki direkt
dokumentiert wurde. Dieses Dokument wird dem Niveau von FleetBoard nicht ganz gerecht. Es
beschreibt einzelne Oberflichen auf niedriger Ebene indem einzelne Schaltflachen beschrieben
werden. Das reicht, um eine aus Usability-Sicht schlechte Oberfliche benutzbar zu machen,
aber die Konzepte und der Nutzen der Oberflichen werden nicht beschrieben. Ein Zusammen-
hang zum Testprozess wird in diesem Dokument nicht ausreichend hergestellt. Beispiel: Es
wird inklusive Screenshot ausfiihrlichst erkldrt wie der Login zur Weboberflidche funktioniert,
allerdings nicht, warum ein Login iiberhaupt erforderlich ist. Begrifflichkeiten, wie z.B. der
,Langzeittest™, werden hier nicht erklért. Es wird lediglich jede Ansicht mit dem Kommentar
vorgestellt, dass sie selbsterkldarend ist. Die Erkldarung der Begriffe erfolgt miindlich bei der
Einlernung durch Kollegen.

Erlernbarkeit

Abgesehen von ein paar kleineren Mingeln ist der Umgang mit dem Werkzeug schnell erlern-
bar. Es gibt Icons, die eher Verwirrung stiften, als zum besseren oder schnelleren Verstind-
nis beizutragen. So ist ein griiner Button, der nach ,,Ansicht aktualisieren* aussieht, fiir die
Funktion ,,Aktion riickgidngig machen* zustindig. Ein weilles Kreuz auf rotem Grund steht fiir
,»zuriick zur Hauptseite® und nicht etwa fiir Loschen oder dhnliches (siehe Abbildung 4.7).

Auch Unklar ist die Bedeutung mancher Begriffe. Was bedeutet ,,Langzeittest*“? Von was fiir
Analysen ist in der ,,Analyseniibersicht* die Rede? Warum gibt es eine Ansicht fiir ,,Regressi-
onstests*, wenn doch alle Tests bei FleetBoard Regressionstests sind?

Der Rest ist tatsdchlich selbsterkliarend.

33

(SS 4.16)

(SS4.17)

(SS 4.18)

(S5 4.19)

Effizienz

Die Effizienz der Weboberfliche wird dadurch negativ beeinflusst, dass teilweise noch nicht
automatisierte Tests mit Hilfe dieser Oberfliche durchgefiihrt werden und die dafiir angebote-
nen Funktionen etwas unpraktisch sind. Es gibt keine Moglichkeit, mehrere Tests zu gruppieren
und hintereinander ,,durchzuklicken‘. Daher miissen die Tester in der Oberfliche mehrfach auf-
und abscrollen bzw. vor und zuriick. Ein fehlender Filter nach Restaufwand macht die Suche
nach manuell durchzufiihrenden Tests aufwéndiger als nétig. AuBBerdem skalieren einige An-
sichten mit den enormen Datenmengen relativ schlecht, was sich teilweise durch Ladezeiten,
die groBer als 20 Sekunden sind, duflert.

Usability

Auf den ersten Blick erweckt das Werkzeug den Eindruck einer gut durchdachten Oberfliche,
die klar strukturiert ist. Doch bei genauerem Hinsehen wird klar, dass diese vermeintlich gut
durchdachte Struktur wohl im Nachhinein angepasst wurde, was sich dadurch dufert, dass man
teilweise auf anderen Seiten landet, als denen, die man erwartet, wenn man in der Ubersicht
auf einen Link klickt. So landet man nach dem Klick auf ,,Aufwandplanung® auf einer Seite
mit der Uberschrift ,,Restaufwandplanung*. Die Bezeichner fiir die Seiten wurden also nicht
einheitlich gew#hlt und sorgen fiir Verwirrung beim Benutzer.

Neben der Namensverwirrung fillt ein Detail erst bei tieferen Uberlegungen auf: Das ITT Test-
management wurde allein fiir den Zweck entwickelt Aufgaben zu erleichtern, die ClearQuest
nicht ausreichend unterstiitzt. Es liegt nahe das ITT entsprechend diesen Aufgaben zu struktu-
rieren und jede Zielgruppe dadurch auf die richtige Seite zu fiihren. Die Ubersichtsseite ist aber
nur eine Feature-Aufzihlung, aus der sich jeder Mitarbeiter die passenden raussuchen muss,
um seine Aufgaben zu erledigen. Dadurch weist das ITT ebenfalls Schwichen auf, die eine
Dokumentation iiberhaupt erst notwendig machen.

Weitere Minuspunkte sammelt die Anwendung bei Darstellungen, die tiber die dreifache Breite
eines Bildschirmes hinausreichen und einem somit den Uberblick iiber das Angezeigte verweh-
ren. Die Buttons, die schon unter dem Punkt Erlernbarkeit erwédhnt wurden, tragen auch nicht
zu einer guten Usability bei.

Anbindung an andere Werkzeuge

Das ITT Testmanagement ist ein zusitzliches Frontend fiir die ClearQuest-Datenbank. Eine
Anbindung an andere Werkzeuge speziell fiir das ITT Testmanagement existiert daher nicht.

Kosten

Lizenzkosten entstehen bei diesem Werkzeug keine, da es eine Eigenentwicklung ist. Daraus
resultiert allerdings, dass Kosten in Form von Arbeitszeit der Mitarbeiter entstehen. Diese sind
fiir uns aber nicht quantitativ nachvollziehbar.

Die Nutzer sind mit dem Werkzeug bis auf eine etwas umstidndliche Bedienung beim Durch-
fiihren manueller Tests zufrieden.

4.3.3 Functional Tester
Dokumentation

Das Wiki des schwarzen Teams enthilt folgende Anleitungen bzw. Informationen:

* Installation und Konfiguration von Functional Tester

* Anlegen und Konfigurieren bzw. Importieren eines Projekts

34

(SS 4.20)

(SS4.21)

» Schreiben, Aufnehmen und Wiedergeben eines einfachen Skriptes
¢ Funktionsweise der einzelnen selbst entwickelten Frameworks

* Beschreibungen und Losungen zu hiufig auftretenden Problemen
Es fehlen:

* Ein aktueller Styleguide mit Code- und Qualitétsrichtlinien fiir Testskripte (der vorhan-
dene ist ldngst iiberholt)

* FEine Schritt-fiir-Schritt-Anleitung fiir ein gutes Testskript

Erlernbarkeit

Functional Tester ist nicht selbsterkldarend. Ohne ldngere Auseinandersetzung mit der Doku-
mentation und einer personlichen Einweisung ist das Schreiben von Testskripten auf ,Fleet-
Board-Niveau® nicht zu erlernen. Dabei wirkt besonders erschwerend, dass Functional Tester
Skripte bei FleetBoard kaum etwas mit typischen Functional Tester Skripten zu tun haben, da
das selbst gebaute Objekterkennungsframework die Methoden von Functional Tester grof3teils
ersetzt. Zusitzlich gibt es fiir verschiedene GUI-Arten (HTML, Swing, SWT) spezielle Metho-
den und Frameworks.

Functional Tester zeigt an mehreren Stellen eigenartige Bugs oder unerwartete Verhaltenswei-
sen, die ohne Erkldrung eines erfahrenen Benutzers viel Zeit und Nerven kosten.

Fiir eine gute Einarbeitung sind ca. zwei Stunden mit einem erfahrenen Mitarbeiter notwendig,
plus einige Stunden zum Lesen vorhandener Skripte, der Dokumentation und zum Ausprobie-
ren.

Effizienz

Zur Effizienz gab es keine Beschwerden. Alle Benutzer waren durchweg der Meinung, dass
das Schreiben von Testskripten schnell genug geht und dass es keine unnétigen Arbeitsschritte
gibt. Auch die Ausfithrung verbraucht nicht unnétig Zeit. Einige Mitarbeiter wiinschten sich
eine Moglichkeit, die Texte der zu implementierenden Priifpunkte in Funktional Tester neben
dem aktuellen Testskript zu sehen.

Ein Problem ist allerdings, dass die Testskripte keinen festen Richtlinien folgen. Beispielswei-
se werden teilweise Testdaten hardcoded, spezielle Testflotten und Daten verwendet, die nicht
reproduzierbar sind. Das sorgt dafiir, dass ein Testskript im néchsten Release nur schlecht funk-
tioniert. Bei der Ausfithrung des Skriptes im ndchsten Releasetest fiihrt dies moglicherweise
zu Schwierigkeiten und vergroBert den Wartungsaufwand fiir die Testskripte.

Usability

Fiir den eingelernten Benutzer hat Functional Tester keine groferen Schwichen in der Bedie-
nung.

Anbindung an andere Werkzeuge

Functional Tester ist das einzige Werkzeug, das Testergebnisse automatisch in die ClearQuest-
Datenbank schreiben kann. Es wird daher benétigt, um die Ergebnisse von soapUI-Tests zu
speichern. Dafiir gibt es einen Wrapper zur Ausfithrung von soapUI-Testfillen, der die Log-
ausgaben von soapUI in das Testlog von Functional Tester libertrdgt. Die Anbindung an soapUI
scheint ausgereift und durchdacht zu sein und wird sehr viel eingesetzt.

35

(SS 4.22)

(55 4.23)

Ein Testskript kann seine Ergebnisse nur an einen Konfigurierten Testfall anhéngen. Manche
Mitarbeiter wiinschen sich, dass Functional Tester seine Ergebnisse flexibler mit mehreren
Testféllen oder mehreren Priifpunkten verbinden kann.

Lizenzkosten

Bei FleetBoard gibt es vier Floating-Lizenzen (flexibel zwischen PCs tauschbar) und neun
Node-Locked-Lizenzen (an PCs gebunden). Die Kosten hierfiir belaufen sich laut Listenpreis
auf insgesamt ca. 95.000 €.

Fazit

Functional Tester wird von den FleetBoard-Mitarbeitern und den Autoren der Fachstudie fiir
gut befunden. Die Integration zu ClearQuest ist in Details verbesserungsfihig und sollte vor
allem flexibler werden.

4.3.4 soapUl
Dokumentation

soapUI ist im Wiki sehr gut beschrieben. Es geht daraus die Einrichtung und Verwendung von
soapUI, sowie die Strukturierung der Daten hervor. Natiirlich sind einige unten beschriebene
Probleme hier verwurzelt, weil es nicht anders dokumentiert ist. Ansonsten gibt es aber nichts
zu beméingeln.

Strukturierung der Daten

Wihrend soapUI eigentlich sehr niitzlich ist und dafiir von den meisten Mitarbeitern gelobt
wird, stellt die Strukturierung der Daten eine sehr grole Schwiche dar, die in Form des Da-
tenformats bei der Zusammenarbeit und der Wartbarkeit stért und in der sichtbaren Form der
Baumstruktur dhnliche Probleme aufweist, wie die Daten in ClearQuest.

soapUI enthilt bei FleetBoard Projekte als oberste Hierarchieebene. Jedes dieser Projekte ent-
hilt sehr viele Testfille und wird jeweils komplett in einer einzelnen XML-Datei gespeichert.
Da SVN von Haus aus keine gute Moglichkeit bietet, XML zuverldssig zusammen zu fiithren,
wird das entsprechend auch nicht gemacht, sondern ein Mitarbeiter sperrt ein Projekt auf SVN-
Ebene, wenn er Anderungen vornehmen mochte. Die Folge ist, dass man andauernd von der
Arbeit abgehalten wird, weil das benétigte Projekt gerade von jemand anderem gesperrt ist.
Eine Zusammenarbeit ist so nicht wirtschaftlich moglich.

Bei der sichtbaren Baumstruktur gibt es zum einen das Problem, wie bei ClearQuest auch,
dass keine klaren Regeln zur Strukturierung vorgegeben sind. Neue Daten werden von den
Mitarbeitern nach besten Gewissen eingefiigt, aber es gibt keine Kontrolle durch das schwarze
Team. Zum anderen ist die Baumstruktur in soapUI eine Parallelstruktur zu der Baumstruktur
in ClearQuest und muss stets damit synchronisiert werden. Auffillig ist, dass soapUI eigentlich
viel mehr macht, als einfach nur SOAP-Schnittstellen zu testen.

Zusitzlich zu den Projektdaten gibt es noch globale Daten, welche fiir Tests verwendet wer-
den konnen. Dabei handelt es sich um relativ groe Datenmengen, die alle in einer einzigen
Properties-Datei abgespeichert werden. Dadurch ist es aufwindig, diese Daten zu verwalten
und zu warten.

Erlernbarkeit, Effizienz und Usability

Hier weist soapUI einige Schwichen auf, die aber im Rahmen des Ertragbaren bleiben. Da soa-
pUI selbst nicht im Fokus unserer Fachstudie steht, sondern nur die Strukturierung der Daten

36

(SS 4.24)

(SS 4.25)

(SS 4.26)

sowie die Anbindung an die anderen Werkzeuge, werden wir hier nicht weiter auf Erlernbar-
keit, Effizienz und Usability eingehen. Es ist nicht vorgesehen, soapUI selbst zu ersetzen, zumal
es die gingigste Losung im Bereich der SOAP-Tests ist.

Anbindung an andere Werkzeuge

Eigentlich braucht soapUI lediglich eine Anbindung an ClearQuest, um die Ergebnisse der
Tests speichern zu konnen. In der Realitidt wird Functional Tester aber verwendet, um die Tes-
tergebnisse in die ClearQuest-Datenbank zu speichern, denn mit soapUI selbst geht das nicht.
Die Testfille, die noch keine Anbindung an Functional Tester haben, werden aus soapUI heraus
gestartet und das Ergebnis wird von Hand eingetragen. Damit ist die Verbindung zu Functional
Tester ebenfalls notwendig.

In die andere Richtung kommt noch hinzu, dass man aus soapUI heraus beliebigen Code aus-
fiihren konnen mochte. Als Losung verwendet man sogenannte ,,Mockup Services* welche per
SOAP in soapUI verwendet werden kdnnen und ein, oft lokal laufendes, Programm starten. Et-
was umstédndlich ist die Notwendigkeit diverse SSH-Verbindungen aufbauen und Server starten
zu miissen. Das hilt von der eigentlichen Arbeit ab.

Kosten

soapUI selbst ist Open Source, bringt also keine Lizenzkosten mit sich. Relevante Kosten ent-
stehen durch die Wartung von eigenen Anpassungen am Quellcode, die gemacht wurden, um
soapUI mit Functional Tester zu verbinden.

Trotz der gefundenen Schwéchen sorgt soapUI auch fiir eine hohe Zufriedenheit, denn manuell
Testen ist sehr viel aufwéndiger. Es entstehen also keine zusétzlichen Kosten durch unzufrie-
dene Benutzer.

4.3.5 Manual Tester
Dokumentation

Zu Manual Tester gibt es keine allgemeine Dokumentation. Es gibt lediglich ein paar Richt-
linien zur besseren Verfolgung von Anderungen an Manual Tester Skripten und eine vorge-
schriebene Kopfzeile, die bei den Skripten verwendet werden soll.

Erlernbarkeit

Da Manual Tester keinen groBen Funktionsumfang hat, ist es auch schnell erlernt.

Effizienz

Die Effizienz ist sehr viel niedriger als sie sein konnte und auch sein miisste. Schlechte Usabili-
ty, lange Wartezeiten bei jeglichen Bearbeitungs- und Durchfithrungsaktionen, sowie fehlende
Unterstiitzung fiir Copy & Paste, rauben Manual Tester jeden Vorteil gegeniiber dem manuellen
Testen.

Usability

Die Oberfldche lédsst sich nicht intuitiv bedienen. Es werden Symbole verwendet, deren Bedeu-
tung a priori nicht klar ist. Die Hauptfunktionen beim Durchfiihren eines Tests sind nicht als
solche zu erkennen und zum Teil noch nicht einmal richtig lesbar. So gibt es ein Dropdown Me-
nii zur Auswahl ob ein Testschritt bestanden ist oder nicht, das so schmal ist, dass nur ,,Fehl*
von Fehlgeschlagen angezeigt wird. Es ist weder ersichtlich, wofiir das Dropdown Menii ist,
noch wofiir der Button links davon ist, von dem nur ,,nwende‘ zu erkennen ist und das obwohl

37

(SS 4.27)

S 16M Rational Manual Tester [_To]x]
Datsi Fenster Ausfihren Hife

| B B3 W 1
— e) TS e T
& 1 - Configuration for Buttons on DCTP S ES =
W ¥ Send binary message "-5- ALARM messages buttons internal" = I:
i ¥ Send binary message "-9- ALARM general messages" Hauptdaten E
W ¥ Send binary message "-1- ALARM only internal buttons" Mg F
Erfolgreich * [Configuration for Buttons on TP] Anlagen 2u Ergebnissen 4
All messages must be confirmed B I
i = EL15 offfon Fehler o
bl & Prees the home button on the TP Angepasst ﬁ
Erfolgreich ¥ [Configuration for Buttons en TF] Kommentars
Configured test must appear on the INS display
Texi after pressing alarm 2: "int alarm 2 prassed"” Text afier alarm 2 has been sant: "int
alarm 2 sent" Text if sending of alarm 2 has failed: “failure ini alarm 2"
Fehlgeschlagen ¥ [Configuration for Buttons on TF]
The home alarm (packet 251) must receive the server.
& # Press the Event button on the TP
Fehlgeschlagen ¥ [Configuration for Buttons on TP]
Configured text must appear on the display
Text after pressing alarm 3: “int alarm3 pressed" Text afier alarm 3 has been sent: "int
2 alarm3 sent" Text if sending af alarm 3 has failed: "sending of int alarm3 failed"
(=) . * [Configuration for Buttons en TF]
The event alarm (packet 251) must receive the server
Press the Service butten (> 2 sec) in the TP ﬂ
¥ [Confisuration for Buttons on TP1 2 L3

Abbildung 4.8: Manual Tester Screenshot

rwendefFehl > | 51 00 <Y |

Abbildung 4.9: Unkenntlicher Button und zu kleines Dropdown Menii

mehr als geniigend Platz fiir die beiden Felder vorhanden ist. (siehe 1. in Abbildung 4.8 bzw.
Abbildung 4.9)

Anbindung an andere Werkzeuge

Manual Tester wird bei FleetBoard ausschlieBlich mit ClearQuest verbunden. Diese Anbindung
funktioniert so, wie sie von IBM gedacht ist. Wenn Testskripte aus ClearQuest gestartet werden,
wird das Testlog in die ClearQuest-Datenbank geschrieben. Wird das Skript direkt aus Manual
Tester gestartet, wird das Ergebnis lokal gespeichert.

Kosten

Lizenzkosten entstehen durch die Verwendung nicht, da Manual Tester bei Functional Tester
mitgeliefert wird. Inzwischen wurde die Entwicklung von Manual Tester durch IBM eingestellt
und dessen Funktionalitit in den ,,Quality Manager* iibernommen.

Zur Zufriedenheit der Benutzer:
Der Manual Tester wird nur von zwei Benutzergruppen bei FleetBoard eingesetzt: Von den
Teams DispoPilot und Telematikplattform.

Das Team DispoPilot verwendet ihn nicht so wie er gedacht ist, sondern testen iiberwiegend
manuell auf Papier. Die Mingel die beim ,,richtigen‘ Betrieb auftreten, fallen ihnen daher nicht
auf. Somit ist auch niemand unzufrieden mit dem Werkzeug.

Anders sieht es bei dem Team der Telematikplattform-Tests aus, das versucht, den Manual
Tester so einzusetzen, wie er gedacht ist. Die schlechte Usability schldgt in der Zufriedenheit
voll zu Buche. Die Mitarbeiter sind sehr unzufrieden mit Manual Tester und haben sich bereits
andere Losungsansitze iiberlegt, um Manual Tester zu umgehen. Selbst mit Excel, was zuvor
verwendet wurde, wiren die Mitarbeiter zufriedener.

38

Sonstiges

Eine sehr markante Eigenart in der Verwendung von Manual Tester ist, dass das Team Dispo-
Pilot-Test die Skripte nicht am PC ausfiihrt, sondern ausdruckt und dann mit einem Stift Punkt
fiir Punkt abarbeitet. Das ausgefiillte Formular wird dann als Ergebnis des Tests von Hand in
das ,,ITT-Testmanagement* Werkzeug eingetragen. Begriindet ist das durch fehlende Lizenzen,
denn zum Testen wurden einige Werkstudenten eingestellt, dabei gibt es nur vier verfiigbare
Lizenzen die allein durch die reguldren Mitarbeiter verbraucht werden.

(SS 4.28)

4.3.6 Focal Point

Als Werkzeug zur Verwaltung von Anforderungen ist Focal Point nicht direkt fiir die Fachstudie
relevant. Lediglich die Anbindung an andere Werkzeuge ist interessant. Es wird durchweg mit
IDs gearbeitet. Ein Testfall in ClearQuest speichert eine Focal Point ID. Man muss fiir die
Verbindung also lediglich beide Programme offen haben und die ID vom einen in das andere
eintragen. Das ist die einfachst mogliche Verkniipfung und bisher ausreichend. Wenn eine neue
Losung eine bessere Anbindung ermdglicht, ist das wiinschenswert, aber nicht notwendig.

4.3.7 RequisitePro

Fiir RequisitePro gilt das gleiche wie fiir Focal Point. Es wird ebenfalls mit IDs gearbeitet, die
in andere Werkzeuge eingetragen werden. Eine engere Verbindung gibt es auch hier nicht.

4.4 Anforderungen

4.41 ClearQuest
4.1 Unzureichende Dokumentation zu ClearQuest
» Ursache: Die Dokumentation zu ClearQuest ist nicht umfangreich und aktuell genug.

* Anforderung: Die Dokumentation zum verwendeten Testfallverwaltungswerkzeug muss
auf dem aktuellen Stand gehalten werden. Ein neuer Benutzer sollte sich mit Hilfe der
vorhandenen Dokumentation mit den Konzepten und Methoden in ClearQuest vertraut
machen kénnen.

4.2 Unnétige Elemente im Testfallbaum

» Ursache: Von ClearQuest vorgegebene Strukturierungselemente im Testdatenbaum wer-
den von FleetBoard nicht (richtig) verwendet und erschweren die Ubersichtlichkeit.

* Anforderung: Der Testdatenbaum sollte genau die wesentlichen Elemente anzeigen, die
fiir die Arbeit mit dem Testfallverwaltungswerkzeug notwendig sind.

4.3 Unkontrollierte Struktur des Testfallbaums

* Ursache: Durch mangelnde Kontrolle und ungeniigende Vorgaben ist die Strukturierung
des Testfallbaums in ClearQuest inkonsistent und redundant.

* Anforderung: Klare Vorgaben zur Platzierung und Ordnung von Testféllen sollten exis-
tieren und deren Einhaltung muss tiberwacht werden. Die vorhandenen Daten miissen
neu strukturiert werden.

39

4.4 ClearQuest-Testfall ist kein Testfall

e Ursache: Der ClearQuest-Testfall ist kein Testfall im Sinne des Lehrbuchs. Er enthilt
keine Vorbedingung, keine Benutzeraktion und keine Nachbedingung. Diese Daten sind
in einer extra Entity dem Testfall untergeordnet. Der Testfall ist damit nur ein Struktur-
element.

* Anforderung: Der Testfallbaum sollte nur aus Strukturelementen und Testféllen beste-
hen, wobei die Testfille die eigentlichen Testdaten wie Vorbedingung usw. enthalten
und Kindelemente im Baum sind.

4.5 Aktuelle Methode zur Testfallspeicherung erlaubt keine Ordnung

* Ursache: Weil momentan Priifpunkte in Testfillen nicht geordnet werden konnen, sind
keine Reihenfolge der Durchfiihrung und keine Abhéngigkeiten definierbar.

* Anforderung: Es miissen eine Ordnung und Abhéngigkeiten zwischen Testféllen ange-
geben werden konnen.

4.6 Soll-Umfang und Soll-Inhalt eines Testfalls ist nicht definiert

» Ursache: Weil es keine Vorgabe zu Umfang und Inhalt eines Testfalls gibt, unterscheidet
sich der Aufbau der Testfélle sehr.

* Anforderung: Es sollte eine Vorgabe zum Umfang des Testfalls geben. Auch zur Positio-
nierung bzw. Einordnung im Testfallbaum sollte es eine Richtlinie geben, deren Einhal-
tung kontrolliert werden muss.

4.7 Uneinheitliche Verwendung von Konfigurierten Testféllen

* Ursache: Nur das Hardware-Team verwendet bei FleetBoard Konfigurierte Testfille. Fiir
alle anderen Teams sind diese nicht notwendig und werden nur verwendet, weil es tech-
nisch notwendig ist.

* Anforderung: Konfigurationen von Testfdllen miissen ein optionales Element sein.

4.8 Schwer bedienbare Suchfunktion

* Ursache: Die vorhandene Suchfunktion unterstiitzt komplexe Suchanfragen, die Teile der
SQL-Funktionalitédt unterstiitzen und als Queries gespeichert werden. Dabei ist es nicht
moglich, ,,kurz mal“ nach einem Testfall zu suchen.

* Anforderung: Das Testfallverwaltungswerkzeug sollte fiir die Suche im Testdatenbaum
eine einfache, schnell erreichbare Suchfunktion bereitstellen, die die wesentlichen Da-
ten der Testfdlle durchsucht. Als Darstellung wire eine gefilterte Ansicht des Baumes
denkbar.

4.9 Klick- und fensteranzahlintensive Bedienung

» Ursache: Fiir viele Bearbeitungen in ClearQuest wird ein neues Fenster geoffnet. Die
rechte Seite der Ansicht neben dem Testfallbaum wird fiir die eigentliche Arbeit nicht
verwendet und bleibt im Alltag nutzlos. Der Bearbeiten-Modus sorgt fiir zusétzliche
Klicks.

» Anforderung: Ansichten zum Bearbeiten miissen besser integriert werden und mit weni-
ger Klicks bedienbar sein. Im Alltag braucht man eine Moglichkeit schnell viele Testfille
einzugeben.

40

4.10 Schlechte Unterstiitzung der Strukturierung von Testféllen und Strukturierungselementen

» Ursache: Sind Testfélle oder Strukurierungselemente erst einmal angelegt, so gibt es
keine einfache Moglichkeit, diese zu verschieben oder zu kopieren.

* Anforderung: Eine bessere Unterstiitzung zur Strukturierung von Testféllen und Struk-
turierungselementen durch z.B. Drag & Drop, sowie Copy & Paste muss geschaffen
werden.

4.11 Fehlende Templates fiir Texte

* Ursache: Obwohl viele Testfallinhalte wie Vorbedingungen héufig gleichformig sind,
gibt es keine Layout- oder Inhaltsvorlagen.

» Anforderung: Fiir die verschiedenen Arten von Testfdllen sollten die Ansichten zum An-
legen und Veridndern von Testféllen Layout- und Inhaltsvorlagen anbieten.
4.12 Tests konnen nicht aus dem Testfallverwaltungswerkzeug gestartet werden

* Ursache: Wegen technischer Schwierigkeiten in der Vergangenheit wird die Moglichkeit
des Anstoflens von Tests aus der Testfallverwaltung heraus nicht genutzt.

* Anforderung: Es sollte moglich sein, Testskripte und manuelle Tests aus dem Testfall-
verwaltungswerkzeug zu starten.
4.13 Generierung der Testfallzusammenfassung nicht vollautomatisch

» Ursache: Da ein Testfall momentan bei FleetBoard aus mehreren Priifpunkten besteht,
sind die einzelnen Priifpunkttexte nur schwer zuginglich. Daher gibt es eine textuel-
le Zusammenfassung dieser Priifpunkte, die im zugeordneten Testfall gespeichert wird.
Diese Zusammenfassung wird jedoch unter manchen Umsténden nicht aktualisiert, was
Inkonsistenzen und veraltete Testdaten verursacht.

* Anforderung: Die Konsistenz der Testfalldaten muss gewihrleistet sein. Auf eine manu-
elle Aktualisierung der Daten darf man sich nicht verlassen.

4.14 Uberfliissige Formularfelder

* Ursache: Die ClearQuest-Standardformulare wurden nicht von unnétigen Feldern berei-
nigt. Diese werden nicht verwendet und iiberladen die Ansicht.

* Anforderung: Es sollten nur die in der Praxis verwendeten Formularfelder und Daten
angezeigt werden.
4.4.2 ITT-Testmanagement
4.15 Fehlende einheitliche und gute Dokumentation

¢ Ursache: Die Dokumentation ist nicht wie sonst iiblich im Wiki zu finden, sondern in
einem PDF. Sie ist zudem auf einem zu niedrigen Niveau. Es wird z.B. der Login-Prozess
erklirt. Welche Ubersicht wofiir verwendet werden kann ist aber nirgends zu finden.

» Anforderung: Die Dokumentation muss an den Testprozess angelehnt werden und Infor-
mationen iiber Begrifflichkeiten beinhalten. Sie sollte wie die anderen Dokumentationen
direkt im Wiki zu finden sein.

41

4.16 Umstandliche Bedienung der Oberflache

¢ Ursache: Die Anwendung wird zur Unterstiitzung des manuellen Tests verwendet und ist
dafiir nicht ausgelegt.

* Anforderung: Ein Werkzeug zur Unterstiitzung der manuellen Tests auf Basis der Clear-
Quest-Datenbank.

4.17 Konsistenz bei den Seitennamen

* Ursache: Verschiedene Seitennamen sorgen fiir Verwirrung bei der Navigation durch die
Anwendung.

* Anforderung: Klare eindeutige Namensgebung der einzelnen Seiten und deren Links.

4.18 Feature-Orientierung

* Ursache: Das ITT ist eine Ansammlung von Features, die auch als Ansammlung préisen-
tiert wird. Der Ursprung liegt aber in der Ergédnzung von Aufgaben, die ganz konkret als
Ziele aufgezihlt werden konnen.

* Anforderung: Die Ubersichtsseite muss die Ziele, fiir die das ITT entwickelt wurde, tiber-
sichtlich als solche darstellen. Eine optische Einteilung (Kategorien) in unterschiedliche
Benutzergruppen ist wiinschenswert.

4.19 Skalierbarkeit der Darstellung

» Ursache: Es gibt Darstellungen, die das dreifache einer 19”-Bildschirmbreite an Platz
einnehmen.

» Anforderung: Die Daten miissen so angezeigt werden, dass sie auf eine Bildschirmseite
passen.

4.4.3 Functional Tester
4.20 Mangel in der Dokumentation

* Ursache: Fehlende Vorschriften und Anleitungen fiihren zu schlecht wartbaren und un-
einheitlichen Testskripten.

* Anforderung: Ein aktueller Styleguide mit Code- und Qualitétsrichtlinien fiir Testskripte
sowie eine Schritt-fiir-Schritt-Anleitung fiir ein gutes Testskript sind notwendig.

4.21 Fehlende Kontrolle der nach Anforderung 20. eingefiihrten Richtlinien

* Ursache: Die Testskripte werden geschrieben und ohne Kontrolle verwendet, was zu
uneinheitlichen, teilweise schlecht wartbaren Skripten fiihrt.

* Anforderung: Eine Kontrolle (z.B. ein Review) der Umsetzung der Richtlinien fiir Test-
skripte.

4.4.4 soapUl
4.22 Mergeprobleme

» Ursache: Grofle XML Dateien sind quasi nicht mergebar und sorgen fiir grole Verzoge-
rungen.

* Anforderung: Dateien miissen mergebar sein oder es muss ein Zeitplan zur Bearbeitung
der Dateien existieren.

42

4.23 Riesige globale Properties-Datei

» Ursache: Fiir alle Projekte gibt es eine riesige Properties-Datei die uniibersichtlich und
schlecht wartbar ist.

* Anforderung: Priifen, ob es eine bessere Losung gibt.

* Bemerkung: Das liegt nicht mehr im Rahmen unserer Fachstudie, soll aber nicht giinzlich
unerwihnt bleiben.

4.4.5 Manual Tester
4.24 Fehlende Dokumentation
¢ Ursache: Mitarbeiter verwenden Manual Tester sehr unterschiedlich.

* Anforderung: Dokumentation zu Manual Tester muss angelegt werden.

4.25 Ineffizient und langsam

» Ursache: Durch schlechte Usability und lange Wartezeiten ist die Arbeit mit Manual
Tester sehr ineffizient.

* Anforderung: Werkzeug zur Unterstiitzung manueller Tests mit kurzen Antwortzeiten
und Copy & Paste Moglichkeit.

4.26 Schlechte Usability

» Ursache: Abgeschnittene Texte bei Buttons oder Dropdownmeniis sowie unklare Sym-
bole.

* Anforderung: Richtige vollstindige Beschriftung von Bedienelementen.

4.27 Unzufriedenheit der Mitarbeiter
» Ursache: Die Mitarbeiter sehen keinen Vorteil von Manual Tester gegeniiber Excel.

* Anforderung: Werkzeug mit erkennbarem Vorteil und echter Unterstiitzung des manuel-
len Tests.

4.28 Fehlende Lizenzen

» Ursache: Manuelle Tests werden auf Papier ausgefiihrt, da zu wenige Lizenzen zur Ver-
fligung stehen.

* Anforderung: Geniigend Lizenzen fiir das Werkzeug zur Unterstiitzung der manuellen
Tests.

4.4.6 Bestehendes

Generell ist es sehr wichtig, eine konkrete Auswahl an Werkzeugen zu haben und deren Ver-
wendung obligatorisch zu machen. Das stérkt die Fahigkeit zur Zusammenarbeit und die Kom-
patibilitit der Arbeit unterschiedlicher Mitarbeiter. Anderungen an der Auswahl sollten weiter-
hin daran festhalten.

43

ClearQuest

Auch wenn ClearQuest nicht das perfekte Testfallverwaltungswerkzeug ist, so ist es weder
sinnvoll noch machbar auf ein anderes proprietires Werkzeug umzusteigen. Die riesigen Da-
tenmengen lassen sich nicht ohne Weiteres automatisiert portieren. Manuelles Portieren ist zu
aufwindig. Bei einer webbasierten Eigenentwicklung eines neuen Werkzeugs wire die Portie-
rung noch am einfachsten, allerdings ist der Aufwand durch die Eigenentwicklung dennoch
grof3. Zwei Alternativen fiir einen ClearQuest-Ersatz werden im letzten Kapitel erldutert.

ITT Testmanagement

Auch wenn dieses Werkzeug iiberwiegend Schwichen von ClearQuest kompensiert, so ist es
fiir die bestehende Situation eine mehr als niitzliche Hilfe, die Zeit und Miihe spart. Bleibt
man bei ClearQuest als Testfallverwaltung, so ist es sinnvoll auch am ITT Testmanagement
festzuhalten und es weiter zu verbessern.

Functional Tester

Functional Tester ist ein sehr gutes Werkzeug zur Automatisierung von GUI-Tests. Es haben
sich keine Schwichen gezeigt, die einen Umstieg auf ein anderes Werkzeug rechtfertigen wiir-
den. Anforderungen gehen daher nur in die Richtung der einheitlichen Verwendung und der
Anbindung an die anderen Werkzeuge.

soapUl

In den Interviews hat sich gezeigt, dass soapUI sehr niitzlich und unverzichtbar ist. Trotz der
groben Schwichen wird es sehr geschitzt. Wie bei ClearQuest wire ein Wechsel auf ein ande-
res Werkzeug mit sehr groem Aufwand verbunden.

Gut ist auch, dass eine Schnittstelle fiir den Functional Tester nachimplementiert wurde.

44

Ideallosung

In diesem Kapitel skizzieren wir eine ideale Testumgebung, die die gefundenen Probleme 16sen
wiirde. Der Aufwand und damit die Kosten spielen in der Ideallosung keine Rolle. Sie bildet
die Grundlage fiir die realistisch umsetzbare Losung im folgenden Kapitel.

5.1 Organisation und Prozess

(Anf. 2.2, 3.2,
3.4)

(Anf. 4.28)

(Anf. 2.1, 3.2)

(Anf. 3.10)

Fiir einen Losungsvorschlag bietet es sich an, die Organisation und den Prozess gemeinsam zu
betrachten, da fiir die Verbesserungen im Prozess erst die Voraussetzungen in der Organisation
geschaffen werden miissen.

Grundlegend schlagen wir drei Veridnderungen vor, wovon eine die Optimierung der gesamten
Prozessqualititssicherung (Prozess-QS) beinhaltet.

5.1.1 Mehr Mitarbeiter zum Testen

Die optimale Anzahl an Mitarbeitern ist schwer objektiv zu ermitteln. Wir wissen aber, dass es
momentan zu wenige sind. Es sollten so viele eingestellt werden, dass keine wichtigen Aufga-
ben mehr ausgelassen werden miissen.

5.1.2 Lizenzen

Es miissend geniigend Lizenzen von jeder Software vorhanden sein, sodass kein Leerlauf durch
Lizenzmangel entsteht.

5.1.3 Prozess-QS

Es muss eine klare Trennung zwischen Entwicklern, Testern (Produkt-QS) und den Personen,
die Prozessentwicklung betreiben und Infrastruktur zur Verfiigung stellen (Prozess-QS), ge-
schaffen werden. Diese Rollen konzentrieren sich ausschlielich auf ihre zugeteilte Aufgabe.

Aufgaben der Prozess-QS

Die Prozess-QS benétigt eine konkrete Aufgabenliste. Wir bieten keine vollstdndige Liste mit
allen Aufgaben der Prozess-QS, sondern bieten Vorschlige fiir zusétzliche Aufgaben zu den
bisherigen.

Zu den Angaben der Wartungsintervalle: Diese spiegeln subjektive Einschitzungen der Ande-
rungshiufigkeit sowie Wichtigkeit der Aktualitdt wieder. Sie sind daher nur ein Vorschlag, der
ohne Weiteres angepasst werden kann.

* Einrichtung eines zentralen Wikis fiir alle hier aufgelisteten Dokumente. Weitere Wikis
werden damit iiberfliissig und sind nicht linger erlaubt.

45

* Erstellung einer Aufgabendokumentation fiir die Prozess-QS. Wartung dieser Dokumen-
tation in einem jahrlichen Intervall.

(Anf. 3.7) * Erstellung eines Begriffslexikons fiir sdmtliche FleetBoard-spezifischen Begriffe und
Abkiirzungen. Verschiedene Begriffe fiir eine Sache sollten vermieden werden. Jeder
sollte daran mitarbeiten, aber die Prozess-QS priift und verbessert deren Qualitét 1-2

Mal jéhrlich.
(Anf. 2.1) * Erstellung je einer Dokumentationsseite zur Organisation, zum Entwicklungsprozess
(Anf. 3.1) und zum Testprozess . Das Ziel dieser Dokumentation ist, einen Uberblick zu liefern und

neuen Mitarbeiten den Einstieg zu erleichtern. Dafiir ist ein geringer Detailgrad notwen-
dig. Wartung dieser Dokumentation in einem jéhrlichen Intervall oder bei Anderungen.

(Anf. 3.9, 3.11, * Erstellung einer prazisen Dokumentation zum Entwicklungsprozess sowie zum Testpro-
4.3) zess. Der gesamte Prozess wird in seine Einzelteile zerlegt und Schritt fiir Schritt mit den
wichtigen Details befiillt. Richtlinien, sowie eine Ubersicht iiber verschiedene Testarten
werden ebenfalls hier untergebracht. Wartung dieser Dokumentation in einem sechsmo-

natigen Intervall.

(Anf. 4.1, 4.15, * Erstellung von Dokumentationsrichtlinien bzw. einem Schema fiir einzelne Werkzeuge
4.20, 4.24) sowie der Benennung je eines Beauftragten, der dieses Werkzeug dokumentiert. Bei den
wichtigsten Werkzeugen kann das ebenfalls die Prozess-QS sein. Wartung der Richtlini-

en/Schemata sowie Priifung derer Einhaltung und Qualitét in einem jdhrlichen Intervall.

(Anf. 3.8) » Kontinuierliche Verbesserung der Infrastruktur durch Ermitteln von automatisierbaren
Zwischenschritten, die nicht zur eigentlichen Aufgabe des Testens gehoren.

Benétigte Richtlinien in der Prozessdokumentation

In der detaillierten Prozessdokumentation wurde die Unterbringung von Richtlinien erwihnt.
Folgende Richtlinien ergeben sich aus unseren Anforderungen.

(Anf. 3.3) * Eine einheitliche Firmenweite Versionierungsrichtlinie, die fiir jedes Team verstiandlich
ist und teamiibergreifend funktioniert.

(Anf. 3.5, 4.6) * Es gibt folgende Vorgaben fiir produktive Dokumente: notwendiger Inhalt, Detailgrad
und erwarteter Umfang.

(Anf. 4.11) » Unterscheidung verschiedener Testarten mit jeweils einer grundsitzlichen Strukturierung
fiir Vorbedingung, Aktion und Nachbedingung. Diese Strukturierung dient als Grundlage
fiir Vorlagen (Templates).

Aufbau einer Werkzeugdokumentation

Eine Dokumentation zu einem eingesetzten Werkzeug muss folgende Aspekte abdecken.

* Einrichtung und Start des Werkzeugs

* Grundlegende Funktionsweise

» Verweis auf die Richtlinien zur Strukturierung der Daten in der Prozessdokumentation
* Funktionsweise der Anbindung an andere Werkzeuge

* FAQ

46

5.2 Werkzeuge

(Anf. 3.13, 4.2,
4.4,4.13,4.14,
4.16,4.17,
4.18, 4.19,
4.24-28)

Durch die umfassende Testverwaltung werden folgende bisher unterschiedene Werkzeugarten
obsolet:

* Spezifikation
* Manuelle Tests

* Planungs- und Auswertungshilfe

Ubrig bleiben, neben der Testverwaltung, lediglich Werkzeuge zur Testautomatisierung. Die
Anforderungserhebung konnte man theoretisch auch mit unterbringen, allerdings liegt diese
Uberlegung nicht im Rahmen unserer Fachstudie.

5.2.1 Testverwaltung

Urspriinglich wurde von einer Testfallverwaltung gesprochen. In dem Losungsvorschlag heil3t
es nun Testverwaltung. Das ist dadurch begriindet, dass eine Testfallverwaltung fiir sich kei-
nen Nutzen hat, wenn sie mit den verwalteten Daten in keiner Weise arbeiten kann. Samtli-
che Ubersichts- und Bearbeitungswerkzeuge die es momentan zusitzlich gibt, gehoren in der
idealen Losung in die Testverwaltung und sind eng mit einander verkniipft. Ob man fiir ver-
schiedene Benutzergruppen getrennte Werkzeuge erstellt, die auf den selben Daten arbeiten
und eventuell nur Teilansichten gemeinsam haben, ist fiir unseren Vorschlag nicht relevant.

Bei einer idealen Losung fiir ein Werkzeug spielt es keine Rolle, ob es sich um eine gekaufte
Software handelt, oder um eine Eigenentwicklung. Es wird nicht beachtet, was ein Feature
kosten wiirde, sondern nur was fiir den Zweck des Werkzeugs die optimale Losung wire. Es
ist daher ohne Weiteres moglich, dass dieser Vorschlag unwirtschaftlich scheint bzw. ist.

Durch die Integrierung mehrerer bisheriger Werkzeuge in einer neuen einheitlichen Losung,
sind nebenstehende Anforderungen automatisch erfiillt.

Rollen

Um verschiedenen Benutzergruppen jeweils die passenden Ansichten zur Verfiigung stellen zu
konnen miissen zunichst die Benutzergruppen ermittelt werden. Eine Person kann fiir mehr als
eine Aufgabe zustindig sein, daher nehmen wir die Rolle als atomares Element. Jede Rolle
hat klare Ziele, die mit dem Werkzeug fiir die Testverwaltung erledigt werden sollen. Jeder
Mitarbeiter kennt seine Rollen bei FleetBoard und wird daher keine Schwierigkeiten haben die
passende Rolle im Werkzeug auszuwihlen.

Die Rollen leiten sich aus dem Testprozess bei FleetBoard ab (siehe Abbildung 3.1). Die fol-
genden Betrachten wir:

* Spezifizierer

* Testfallspezifizierer
» Testautomatisierer
* Testplaner

e Tester

¢ Testauswerter

Im Folgenden werden die Rollen beschrieben und Ziele definiert.

47

(Anf. 4.9, 4.10,
4.11)

(Anf. 4.7)

Spezifizierer

Der Spezifizierer setzt Anforderungen in ein Gesamtkonzept um und formuliert daraus die
Spezifikation. Der Einfachheit halber bekommt jedes Feature eine Spezifikation wodurch die
kleinste Einheit in der Datenstruktur des Spezifizierers definiert ist. Spezifikationen werden mit
Anforderungen verkniipft.

Zur Ubersicht iiber die verbleibende Arbeit wird eine Filterung nach offenen Anforderungen
benotigt.

Testfallspezifizierer

Der Testfallspezifizierer erstellt aus den Spezifikationen Testfzlle. Mit Testfall ist ein Testfall
im Sinne der Literatur gemeint. Die Ansicht zu den Daten baut auf der des Spezifizierers auf,
ebenso wie die Daten selbst. Testfille werden durch den Testfallspezifizierer jeweils einer Spe-
zifikation zugeordnet.

Da die Eingabe von Testfillen fiir einige Gebiete Routinearbeit ist und viele dhnliche Testfdlle
angelegt werden miissen, will der Testfallspezifizierer eine gute Unterstiitzung fiir die Arbeit
mit der Tastatur, eine Ubersicht iiber mehrere Testfille und deren Abhiingigkeiten gleichzeitig,
sowie Vorlagen fiir standardisierte Inhalte. Zu beachten ist, dass unterschiedliche Kategorien
von Tests unterschiedliche Kategorien von Vorlagen bendtigen. Ein Mitarbeiter wechselt aber
nicht tiglich sein Arbeitsgebiet und mochte daher nur eine personliche Liste von Kategorien
angezeigt bekommen. Viele dhnliche Testfille mochte man zudem dadurch erzeugen koénnen,
dass vorhandene Testfélle kopiert, an die richtige Position verschoben und angepasst werden.

Beachtet werden muss ebenfalls, dass bei manchen Produkten unterschiedliche Versionen un-
terschiedlich getestet werden miissen. Dazu werden optionale Konfigurationen im Sinne einer
Verkniipfung des Testfalls mit der Zielumgebung angeboten.

Bei den umfangreichen Anforderungen des Testfallspezifizierers darf allerdings niemals die,
bei den anderen Rollen bereits geforderte, Ubersicht durch Auswahl von Produkt und Versi-
onsnummern, sowie Filterung nach bereits erledigter Arbeit, unterpriorisiert werden.

Testautomatisierer

Ahnlich wie der Implementierer benotigt der Testautomatisierer lediglich eine Ubersichtliche
Anzeige der fiir ihn momentan anstehenden Arbeit. Er arbeitet allerdings auf der Ebene der
Testfille und weist ihnen nach getaner Arbeit je ein Testskript zu. Er muss, falls notwendig,
zwischen unterschiedlichen Konfigurationen unterscheiden und diese, falls der Testfallspezifi-
zierer das nicht beachtet hat, diese selbst anlegen konnen.

Zur Ubersicht iiber die verbleibende Arbeit wird eine Filterung nach offenen Automatisierun-
gen benotigt.

Testplaner

Ein Testplaner legt Testpldne an, die Produkte und Versionsnummern aus dem vorhandenen
Datenbestand selektieren und biindeln. Zur Verplanung der Mitarbeiter trégt er deren vorhan-
dene Arbeitszeit ein und verteilt diese Zeit in einem Testplan auf die zu testenden Testfille.
Damit dies moglich ist werden Testfélle vorher mit einem Schétzwert fiir die Ausfiihrungs-
dauer versehen. Fine automatisierte Unterstiitzung der Zeiterfassung nimmt dem Testplaner
nervige Arbeit der Aufwandserfassung ab.

Ist ein Testplan erstellt, wihlt der Testplaner ihn als momentan aktiven Testplan aus und gibt
damit die Arbeit fiir die Tester vor.

Fiir die Inhalte eines Testplans (welche Teilmenge an Tests wird durchgefiihrt) werden Versi-
onsnummern von Produkten ausgew#hlt. Damit man aber zuordnen kann fiir welche Version

48

(Anf. 4.12)

getestet wird, legt der Testplaner auBerdem eine Zielversion fest. Diese Zielversion ist der Pro-
band und somit Grundlage aller durchgefiihrten Tests. Eine Version eines Produktes entspricht
bei Software in der Regel einem Stand in der Versionsverwaltung auf Dateiebene (SVN). Da-
mit kann ein Testplan spiter erneut mit gleichen Ergebnissen getestet werden. Bei Fleetboard
entspricht so ein testbarer Stand einer Freigabe des Betriebsteams, die alle Versionen der Kom-
ponenten der FleetBoard-Software enthilt.

Wihrend des Tests muss der Testplaner die Auslastung der Tester kontrollieren und notfalls
anpassen konnen. Ebenfalls mochte er sehen, wie weit die Dauer der Tests von den Schiétzungen
abweicht.

Tester

Der Tester mochte eine Ubersicht iiber momentan noch offene Aufgaben (auszufiihrende Tests).
Neben einer tibersichtlichen Anzeige der von Testfallspezifizierer und Testautomatisierer pro-
duzierter Daten, benétigt der Tester diverse Filtermoglichkeiten um z.B. Konfigurationen in
seiner gewiinschten Reihenfolge zu testen.

Eine Zusammenfassung tiber Umfang, geschitzter Dauer und verbleibender Arbeit ldsst ihn die
Arbeit besser einteilen und das Ende besser abschétzen.

Samtliche Tests werden aus der gleichen Ansicht heraus gestartet. Manuelle Tests werden —
visuell unterstiitzt — Schritt fiir Schritt durchgefiihrt. Eine Ermittlung der tatsichlich benotig-
ten Zeit gibt dem Tester Informationen iiber sein Arbeitstempo und bietet die Mdoglichkeit,
Schitzwerte durch gemessene Werte anzupassen.

Am Ende eines Testdurchlaufs bekommt der Tester eine knappe sowie zusitzlich eine um-
fassende Zusammenfassung der Testergebnisse. Eine Filterung nach fehlgeschlagenen Tests
vereinfacht zudem die Arbeit der Fehlerprotokollierung in einem Bugtrackingsystem.

Testauswerter

Zur Auswertung der Tests benotigt der Testauswerter eine Ubersicht iiber alle durchgefiihrten
Tests zu einem Testplan. Wihrend des Tests mochte der Testauswerter tibersichtlich sehen was
noch alles offen ist und welche Mitarbeiter daran arbeiten.

Mit dem Fokus auf die gefunden Fehler, mochte der Testauswerter diese gefiltert und iiber-
sichtlich mit Details aus den Testergebnissen angezeigt bekommen. Liegt der Fokus auf die
eingeteilte Zeit der Tester, dann mochte er dafiir eine Ubersicht, die ihm zeigt, welche Tester
unterfordert oder iiberlastet waren. Bei einem Fokus auf den Test selbst, méchte der Testaus-
werter berechnete Daten wie Zahl der durchgefiihrten Tests, welcher Teil davon Manuell, wie
lange haben die Tests gedauert, was war die geschitzte Zeit, inwiefern wurde diese angepasst.

Anforderungen

Aus den Beschreibungen der Rollen, zusammen mit den Anforderungen, die sich aus den bishe-
rigen Analysen ergeben haben, ergeben sich folgende Anforderungen an die Ideallosung einer
Testverwaltung.

Spezifizierer
Eine Spezifikation wird als ein Element gespeichert und dargestellt. Solch ein Element besitzt

ebenfalls einen Umsetzungsstatus, welcher initial auf ,,Offen* gesetzt wird.

Der Spezifizierer legt die Position seiner Spezifikation in der Baumstruktur fest. Er hat die
Moglichkeit, nach Produkten, Versionen und Umsetzungsstatus der Anforderungen zu filtern,
was ihn dabei unterstiitzt, offene Anforderungen zu erkennen. Anforderungen werden als Ord-
ner eingebunden, sind aber deutlich als Anforderung zu erkennen. Einer Anforderung kdnnen

49

(Anf. 4.5)

(Anf. 3.13)

(Anf. 4.7)

beliebig viele Spezifikationen zugeordnet werden, denn es ist oft so, dass Anforderungen sehr
grob sind und in der Spezifikation aufgeteilt werden miissen. Nachdem der Spezifizierer eine
Anforderung fertig hat, kann er dieser den Umsetzungsstatus ,,spezifiziert* geben, welcher fiir
den Produktmanager sichtbar ist.

Testfallspezifizierer

Der Testfallspezifizierer bekommt er eine Ansicht mit der Baumstruktur des Spezifizierers. Ei-
ne Spezifikation wird als Ordner dargestellt und sichtbar als solche gekennzeichnet. Ein Testfall
wird als Element gespeichert und dargestellt, welches einer Spezifikation zugewiesen werden
kann und ebenfalls einen initial auf ,,Offen,, gesetzten Umsetzungsstatus hat. Testfille inner-
halb einer Spezifikation haben eine Reihenfolge, welche in diesem Baum beliebig festgelegt
werden kann, und kdnnen von Vorgédngern abhingig sein. Zusitzlich zum Umsetzungsstatus
gibt es einen Automatisierungsgrad, welcher bei der Testfallspezifikation angegeben werden
kann. Initial hat er den Wert ,,Automatisiert (nicht implementiert). Fiir manuelle Tests kann
dieser Grad direkt bei der Testfallspezifikation auf ,,Manuell* gesetzt werden. Durch die kom-
plette Integrierung der manuellen Tests in dieses Werkzeug ist die Anforderung automatisch
erfiillt.

Da es vorkommt, dass neue Versionen eines Produkts einen Testfall iiberfliissig machen, gibt es
im Testfall die Moglichkeit die Eigenschaft ,,Veraltet seit™ mit einer Version zu versehen. Fiir
Versionen nach dieser kann dann keine neue Konfiguration mehr angelegt werden. Veraltete
Testfdlle werden in der Baumstruktur als solche markiert.

Werden fiir verschiedene Produkte unterschiedliche Konfigurationen benétigt, so gibt es die
Moglichkeit einem Testfall beliebig viele Konfigurationen zuzuordnen (ebenfalls im Baum dar-
gestellt). Eine Konfiguration kann Eigenschaften des Testfalls iiberschreiben und ist mit einem
Produkt und einer Version verkniipft. Der Ubergeordnete Testfall dient in dem Fall dazu, das
allgemeine Vorgehen bei dem Test zu dokumentieren. Die Konfigurationen passen dieses Vor-
gehen fiir eine Version eines Produktes an. Solange es nur eine Konfiguration fiir einen Testfall
gibt, wird dieses Element nicht benétigt, sondern es reicht aus nur mit dem Testfall selbst zu
arbeiten.

Zur Ubersicht kann die Baumstruktur nach Produkt, Version sowie Umsetzungsstatus der An-
forderungen und Spezifikationen gefiltert werden. Wird nach Produkt und Version gefiltert, so
werden sdmtliche Konfigurationen von Testféllen ausgeblendet und in der Ansicht des Testfalls
direkt der Inhalt der gefilterten Version angezeigt. Die Tatsache, dass es weitere Konfiguratio-
nen zu dem Testfall gibt, wird durch eine kurze Information sichtbar gemacht.

Sind zu einer Spezifikation vorerst alle Testfille erstellt, so kann der Umsetzungsstatus der
Spezifikation auf ,, Testfall spezifiziert” gesetzt werden. Sind alle Spezifikationen innerhalb ei-
ner Anforderung testfallspezifiziert, so wird der Status der Anforderung ebenfalls auf ,, Testfall
spezifiziert* gesetzt.

Ein Testfall hat einen Umsetzungsstatus, weil ein manueller Test im Normalfall nach der Spe-
zifikationen noch verfeinert werden muss und weil ein automatisierbarer Testfall evtl. noch
automatisiert wird. Erst wenn fest steht, dass der Testfall so getestet werden soll, wird der
Status auf ,,Abgeschlossen‘* gesetzt.

Testautomatisierer

Der Testautomatisierer bekommt eine Ansicht mit einer Baumstruktur gleich der des Test-
fallspezifizierers, mit dem Unterschied, dass der Testautomatisierer Testfdlle nicht bearbeitet,
sondern primir anschaut. Er kann aber ein Testskript mit einem Testfall oder einer Konfigura-
tion verkniipfen und den Automatisierungsgrad auf ,,Automatisiert” setzen. In dem Fall wird
der Umsetzungsstatus automatisch auf ,,Abgeschlossen‘ gesetzt. Fiir den Fall, dass noch keine
Konfiguration angelegt wurde, aber eine bendotigt wird, kann der Testautomatisierer selbst eine

50

Konfiguration anlegen.

Testplaner

Der Testplaner benétigt folgende Ansichten:

« 1. Ubersicht iiber die aktuell vorhandenen Testpline mit dem neusten an erster Stelle. Der
aktive Testplan wird gut sichtbar markiert und kann hier gesetzt werden. Neue Testplidne
konnen von hier aus angelegt werden.

* 2. Einstellungsansicht zu einem Testplan. Produkte und Version werden hier ausgewihlt.
Es gibt eine Ubersicht iiber die Tester und deren verfiigbare Zeit.

¢ 3. Zuordnung der Testfille zu den Testern mit Baumstruktur der Testdaten die entspre-
chend des Testplans gefiltert werden.

Zu Ansicht 1:

Um den Testern die Auswahl des Testplans abzunehmen, legt der Testplaner fest welcher Plan
aktuell getestet werden soll. Wird ein neuer Testplan angelegt, wird vorgeschlagen diesen als
den aktuellen Testplan zu speichern.

Zu Ansicht 3:

Zur Zuordnung der Testfélle erhélt der Testplaner eine Ansicht mit einer Baumstruktur, wel-
che alle relevanten Testfélle und Konfigurationen anzeigt. Konfigurationen werden nur explizit
angezeigt, wenn es fiir einen Testfall mehr als eine gibt die zum Testplan passt. Ansonsten
wird sie anstelle des Testfalls angezeigt. Gibt es offene Anforderungen, Spezifikationen oder
Testfélle, dann werden diese gut sichtbar markiert.

Zur Verplanung von Arbeitskréften bendtigt der Testplaner Schitzwerte fiir die Dauer einer
Durchfiihrung. Diese Schitzwerte werden in den Testféllen gespeichert und kénnen von Konfi-
gurationen iiberschrieben werden. Zusitzlich wird die Anzahl der bisher durchgefiihrten Tests
gespeichert um Schitzwerte besser anpassen zu konnen. Gibt es noch keine Daten von vorheri-
gen Durchfiihrungen, dann bekommt ein manueller Testfall den Anfangswert 15 Minuten. Ein
automatisierter Testfall 5 Minuten. Zusammen mit der Zahl der bisherigen Durchfithrungen
kann der Schitzwert bei jeder Durchfiihrung an die durchschnittliche Dauer angepasst werden
und néhert sich mit der Zeit einem praxisnahen Wert.

Ziel der Testplanung ist, einen Plan zu erstellen, der Testern Testfzlle zuordnet. Grundlage fiir
die Planung ist die verfiigbare Arbeitszeit des Testers welche miindlich eingeholt wird und bei
dem jeweiligen Tester gespeichert werden kann, sowie die geschétzte Dauer von Testfillen.
Daher wird direkt in der Baumstruktur die geschitzte Dauer mit angezeigt. Elemente die kein
Blatt im Baum sind, zeigen die summierte Dauer all ihrer Kindelemente. Einem ausgewihlten
Element kann nun ein Tester zugewiesen werden. Die Auswabhl fiir die Tester zeigt die bereits
zugeteilte geschitzte Testdauer, sowie die verbleibende Zeit mit an, sodass auf einen Blick klar
ist welcher Tester noch Zeit fiir weitere Tests hat. Tester mit ausreichend freier Zeit werden
farblich hervorgehoben.

Da die Einteilung der Testfdlle nicht auf Testfallebene geplant werden muss, sondern auch
ganze Spezifikationen und Anforderungen ausgewihlt werden konnen, kann der Testplaner
ganze Blocke gleichzeitig zuteilen und spart dadurch Aufwand.

Zur besseren Unterstiitzung der Planung kann in der Baumstruktur nach noch nicht zugeteilten
Testféllen gefiltert werden. Zudem ist es moglich offene Testfdlle auszublenden.

Ein Testplan wird immer in Zusammenhang mit einer Version gespeichert. Eine Historie vorhe-
riger Testdurchfiihrungen bleibt daher erhalten. Dafiir muss ein Testplan neben den gewéihlten

51

Produkten und Versionen die Zuordnung von Testfall und Tester speichern, sowie die verfiig-
bare Zeit der Tester. Schiatzwerte der Durchfithrungsdauer sind nicht abhéngig von einem Test-
plan. Anhand der Historie ist es moglich einen vorherigen Testplan als Grundlage fiir einen
neuen Testplan zu verwenden. Der neue Testplan muss dann nur noch um die neuen Testfille
ergénzt werden und Zuordnungen entsprechend der aktuell verfiigbaren Zeit der Tester ange-
passt werden.

Tester

Ein Tester bekommt als erstes eine Baumstruktur, die passend zum aktuellen Testplan und sei-
nen zugewiesenen Testfillen gefiltert wird. Der Automatisierungsgrad wird im Baum farblich
hervorgehoben, damit der Tester einen ersten Eindruck bekommt. Es kann auch danach gefil-
tert werden. Zusitzlich kann nach Konfigurationen gefiltert werden, sofern denn mehrere zur
Auswahl stehen. Zur aktuellen Auswahl wird stets eine {ibersichtliche, fiir den Test angepasste,
Zusammenfassung des Inhalts angezeigt. Enthalten sind z.B. Anzahl der Testfélle und Gesamt-
dauer der Testfille.

Aus dieser ersten Ansicht heraus konnen Testdurchldufe gestartet werden. Dabei gibt es fol-
gende Moglichkeiten:

* Komplettdurchlauf des gesamten Testplans
» Komplettdurchlauf fortsetzen

e Durchlauf des gewéhlten Teilbaums

AnschlieBend erscheint eine neue Ansicht, bei der es noch folgende Optionen beziiglich Auto-
matisierungsgrad und Konfigurationen gibt (falls mehr als eine Konfiguration vorhanden):

* Filterung nach Automatisierungsgrad
¢ Falls automatisiert und nicht automatisiert: Wahl eines Modus

— Alle manuellen Tests zuerst
— Reihenfolge behalten

— Dynamisch: Wihrend ein manueller Test durchgefiihrt wird, kann ein nicht abhén-
giger automatisierter Test bereits gestartet werden.

* Filterung nach Konfiguration
* Falls nicht nach Konfiguration gefiltert: Wahl eines Modus fiir Konfigurationen

— Kompletter Durchlauf einer Anforderung pro Konfiguration
— Kompletter Durchlauf einer Spezifikation pro Konfiguration

— Kompletter Durchlauf nur fiir die erste Konfiguration. AnschlieBend minimaler
Durchlauf.

Im néchsten Schritt wird eine lineare Zusammenfassung des Testdurchlaufs angezeigt. Alle
Testfélle und Konfigurationen werden in der Reihenfolge angezeigt wie sie tatsdchlich durch-
gefiihrt werden sollen. Der Automatisierungsgrad wird farblich hervorgehoben. Anforderun-
gen und Spezifikationen werden unauffilliger gestaltet, da sie hier eher unwichtig sind. Es gibt
eine Zusammenfassung der Gesamtdauer, des gesamten Automatisierungsgrades, der Anzahl
der Unterbrechungen von automatisierten durch manuelle Tests, falls zutreffend der Einspa-
rung durch paralleles starten von manuellen und automatisierten Tests. Unterbrechungen von
automatisierten Tests durch manuelle Tests werden zudem zusammengefasst und zur entspre-
chenden Stelle in der eigentlichen Ansicht verlinkt.

52

(Anf. 3.12)

Nach dem Betrachten der Zusammenfassung wird der Testdurchlauf gestartet. Die Zeit fiir je-
den Testfall wird nebenher ermittelt und gespeichert. Manuelle Tests werden durch jeweilige
Anzeige einer Zusammenfassung des Testfalls sowie dessen Umgebung (Anforderung, Spe-
zifikation, Konfiguration, vorheriger und nichster Testfall) und der Moglichkeit das Ergebnis
abzuspeichern unterstiitzt. Eine Fortschrittsanzeige mit Restzeitanzeige verschafft dem Tester
einen besseren Uberblick. Ergebnisse werden mit einem Testfall oder, falls vorhanden, einer
Testfallkonfiguration verkniipft. Teil des Ergebnisses ist eine Verdnderung des Umsetzungs-
status des Testfalls oder der Konfiguration. Er kann auf ,,Getestet™ oder ,,Getestet mit Fehler*
gedndert werden, was automatisch anhand des Testergebnisses geschieht.

Ein Durchlauf kann unterbrochen werden. Es ist nicht notwendig, den Durchlauf mit Einstel-
lungen und aktuellem Stand explizit speichern zu konnen, da die Anwendung sich Einstel-
lungen des Benutzers grundsitzlich merken sollte. Ein Fortsetzen kann so ohne weiteres neu
berechnet werden.

Nach dem Durchlauf wird eine Testauswertung mit allen Ergebnissen angezeigt und abgespei-
chert.

Testauswerter

Zur Auswertung der Tests benotigt der Testauswerter eine Ubersicht iiber alle durchgefiihrten
Tests zu einem Testplan. Es wird der vom Testplaner eingestellte aktuelle Testplan ausgewihlt.
Ein Wechsel auf andere Testplédne ist aber moglich.

Die Ubersicht enthilt eine Baumstruktur mit allen enthaltenen Anforderungen, Spezifikatio-
nen, Testféllen und Konfigurationen. Es kann nach Produkt und Testergebnis gefiltert werden.
Zu der jeweiligen Auswahl im Baum wird stets die passende Zusammenfassung aus dem Test-
durchlauf angezeigt.

Migration

Die Migration der Daten fiir die Testverwaltung muss bisherige Daten aus drei Werkzeugen
zusammenfithren. Daten von Focal Point und Requisite Pro miissen von Hand migriert (neu
eingetragen) werden. Dabei sollte eine iiberarbeitete Datenstruktur bereits beachtet werden.
Fiir die Migration der Daten aus ClearQuest kann ein grafisches Hilfswerkzeug erstellt werden
welches die Migration plant und den Benutzer dabei unterstiitzt. Anhand dieses Plans kann
die Migration innerhalb von wenigen Minuten automatisiert durchgefiihrt werden um einen
Reibungslosen Ubergang im Betrieb zu ermoglichen.

5.2.2 Automatisierte Tests

An die Werkzeuge fiir Testautomatisierung haben wir im Rahmen der Fachstudie eigentlich
keine Anforderungen. Relevant ist aber die Anbindung an die Testverwaltung.

Bei der Ideallosung gibt es an Werkzeuge zur Testautomatisierung folgende Anforderungen:

Datenstruktur

Durch Richtlinien wird eine einheitliche Datenstruktur eingehalten. Das Vorkommen von Ver-
sionsnummern in der Datenstruktur ist auch hier zu vermeiden.

Implementierung

Code und Kommentare die aus den Daten der Testverwaltung generiert werden konnen, sollen
auch generiert werden.

53

Aufruf

Der Aufruf eines Testskripts ist durch die Testverwaltung im Rahmen einer Testdurchfithrung
moglich. Die Auswahl der zu testenden Testfille ist auf genau dieser Ebene durch die Test-
verwaltung moglich. Eine statische Biindelung von Tests in einem einzigen Skript ist nicht
vorgesehen.

Auswertung

Nach einer Durchfiihrung steht das Testergebnis, die Ausfithrungsdauer sowie in einem Feh-
lerfall eine moglichst genaue Fehlerbeschreibung zur Verfiigung und kann durch die Testver-
waltung abgespeichert werden.

Migration

Ein Austausch der Werkzeuge ist nicht gefordert, da das den Rahmen der Fachstudie sprengt.
Eine Migration von Daten wird daher nicht besprochen. Da bisherige Daten aber sehr spezifisch
fiir ein Werkzeug sind, ist es kaum moglich diese sinnvoll zu migrieren.

54

Wirtschaftlicher Losungsvorschlag

Grundlage des wirtschaftlichen Losungsvorschlags ist eine subjektive Bewertung aller Anfor-
derungen nach Kosten und Nutzen.

Darauf aufbauend setzt sich der wirtschaftliche Losungsvorschlag aus der Verbesserung der
Organisation und des Prozesses, sowie der Verbesserung der Werkzeuge oder deren Austauschs
zusammen. Im Bereich der Werkzeuge zeigen wir FleetBoard bewusst mehrere umsetzbare
Losungsvarianten auf und treffen keine Entscheidung, welche der Losungen die beste ist. Wir
machen Verbesserungsvorschlige zum Umgang mit den bestehenden Werkzeugen und erortern
die Vor- und Nachteile des teilweisen Austauschs bestehender Werkzeuge durch eine integrierte
externe Losung im Vergleich zu einer flexiblen Eigenentwicklung.

6.1 Bewertung der Anforderungen

Nicht jede unserer Anforderungen ist gleich wichtig. AuBBerdem gibt es starke Unterschiede in
den geschitzten Umsetzungskosten. Daher haben wir alle Anforderungen rein subjektiv nach
Nutzen und Kosten bewertet und dann eine sinnvolle Auswahl getroffen. Das Ergebnis ist fol-
gende Liste.

¢ Hohe Prioritit:

2.1 Person, die sich den Aufgaben gemi3 LL.O7, Kap. 13.1.3 widmet. Klar definier-
te Aufgaben und festgelegte Zeit zur Umsetzung.

— 3.1 Dokumentation, die einen Uberblick iiber den Testprozess vermittelt. Rollen
und Artefakte bereits eingefiihrt.

— 3.4 Zusitzliche Zeit zur Automatisierung von Tests. Am besten je Sprint eine fest
definierte Menge.

— 3.7 FleetBoard-weites Begriffslexikon. Verzicht auf Abkiirzungen.
— 3.11 Kundenakzeptanztests erfolgreich einfiihren.

— 3.12 Exaktere Testergebnisse durch Anhingen an einen Priifpunkt. Speicherung
des Testlogs fiir Ursachenermittlung.

— 4.5 Ordnung und Abhéngigkeiten zwischen Testfzllen
— 4.11 Layout- und Inhaltsvorlagen zum Anlegen und Verdandern von Testfillen

— 4.20 Ein aktueller Styleguide mit Code- und Qualitétsrichtlinien fiir Testskripte
sowie eine Schritt-fiir-Schritt-Anleitung fiir ein gutes Testskript sind notwendig

— 4.21 Kontrolle (z.B. ein Review) der Umsetzung der Richtlinien fiir Testskripte

— Die folgenden Anforderungen sind nur gemeinsam durch Ablosung von Manual
Tester moglich:

55

* 4.25 Werkzeug zur Unterstiitzung manueller Tests mit kurzen Antwortzeiten
und Copy & Paste Moglichkeit.
x 4.26 Richtige vollstindige Beschriftung von Buttons usw.

* 4.27 Werkzeug mit erkennbarem Vorteil und echter Unterstiitzung des manu-
ellen Tests

¢ Mittlere Prioritit:

— 2.2 Mehr Mitarbeiter fiir die Tests.

— 3.2 Die bendétigte Zeit abschitzen und ausreichend Mitarbeiter fiir die Testspezifi-
kation und -automatisierung zur Verfiigung stellen

— 3.9 Qualitativ hochwertige Dokumentation, die ausreichend ins Detail geht um die
tiagliche Arbeit erledigen zu konnen, sich aber trotzdem auf das Wesentliche kon-
zentriert.

— 4.3 Klare Vorgaben zur Platzierung und Ordnung von Testfillen in ClearQuest und
Uberwachung deren Einhaltung. Die vorhandenen Daten miissen neu strukturiert
werden.

— 4.12 Testskripte und manuelle Tests miissen aus dem Testfallverwaltungswerkzeug
gestartet werden konnen.

— 4.14 In ClearQuest werden nur die in der Praxis verwendeten Formularfelder und
Daten angezeigt.

— 4.15 Die Dokumentation des ITT-Testmanagements muss sich an den tatsdchlichen
Aufgaben des Testbetriebs orientieren, Informationen iiber Begrifflichkeiten bein-
halten und im Wiki zu finden sein

— 4.17 Klare eindeutige Namensgebung der einzelnen Seiten des ITT-Testmanagements
und deren Links

— 4.18 Die Ubersichtsseite des ITT-Testmanagements muss die Ziele, fiir die das ITT
entwickelt wurde, tibersichtlich als solche darstellen. Eine optische Einteilung (Ka-
tegorien) in unterschiedliche Benutzergruppen ist wiinschenswert

— 4.24 Dokumentation zu Manual Tester muss angelegt werden
— 4.28 Geniigend Lizenzen fiir das Werkzeug zur Unterstiitzung der manuellen Tests

miissen vorhanden sein.

* Niedrige Prioritit: Alle Ubrigen. Deren Einschitzung und Umsetzung iiberlassen wir
FleetBoard. Die vollstindige Liste mit allen Prioritéten ist als Anhang beigefiigt.

6.2 Verbesserung von Organisation und Prozess

Unsere Ideallosung hierzu beinhaltet im Wesentlichen Finetuning an Organisation und Pro-
zess und verursacht somit nur den Aufwand fiir die eigentliche Umstellung sowie zusitzliche
Personalkosten. Teure Datenmigrationen fallen nicht an.

Daher schlagen wir vor, die Ideallosung fiir die Organisation und den Prozess, so wie sie for-
muliert ist, umzusetzen.

6.3 Verbesserungen im Umgang mit vorhandenen Werkzeugen

56

6.3.1 ClearQuest

ClearQuest bietet aus zwei Griinden das grof3te Potential fiir Verbesserungen. Zum einen ist es
das zentrale Werkzeug der Testverwaltung, zum anderen kann es mit dem ClearQuest Designer
an individuelle Bediirfnisse angepasst werden, wenn auch nur in begrenztem Maf3e. Es ist mog-
lich, neue Datentypen anzulegen, diese mit Werten und Verkniipfungen zu anderen Datentypen
auszustatten, sowie einfache Oberfldchen fiir diese Typen zu erstellen.

Trotz dieser Moglichkeiten bleibt die Usability der erstellten Oberflachen weit hinter den theo-
retischen Moglichkeiten zuriick. So ist bei den Vorschlidgen zu ClearQuest zu iiberlegen, ob
diese nicht besser mit Hilfe eines neuen Tools umgesetzt werden. Im Abschnitt 6.4 werden
zwei Alternativen fiir ein neues Werkzeug vorgestellt.

6.3.2 Functional Tester
Erstellung von Code- und Qualitatsrichtlinen fiir Testskripte

Um das Problem der schwankenden Qualitét von Testskripten in den Griff zu bekommen, emp-
fehlen wir, dass das schwarze Team zusammen mit einigen Testskriptentwicklern Richtlinien
fiir Functional Tester Skripte aufstellt. Diese Richtlinien sollten eine Liste von zu verwenden-
den und zu vermeidenden Strukturen enthalten, also eine Liste von ,,Do*s and ,,Don’t“s. Ebenso
sollte die Unabhingigkeit von nicht einfach reproduzierbaren Testflotten vorgeschrieben wer-
den. Dariiber hinaus sollten alle Skripte eines Dienstes wenn moglich ohne Flottenwechsel
auskommen und vom Tester wenig Insiderwissen verlangen.

Die Einhaltung dieser Richtlinien sollten beim Durchfiihren der Regressionstests vom schwar-
zen Team gepriift werden. Ein Regressionstester muss dann ein Skript als nachbesserungs-
bediirftig empfehlen und zum Entwickler zuriickgeben konnen. Die Kosten einer zeitnahen
Korrektur sind gering im Vergleich zu den Kosten, die entstehen, wenn ein Problem beim Test
des nédchsten Releases entdeckt werden.

6.4 Alternativen zu bestehenden Werkzeugen

Die Analyse hat ergeben, dass die Wahl der Werkzeuge nicht optimal war. Sie hat aber auch
ergeben, dass ein Austausch eines Werkzeugs ohne automatisierte Migration nahezu ausge-
schlossen ist, da bereits zu viel Arbeitszeit in die Erstellung der Daten geflossen ist. Zudem
gab es vor drei Jahren bereits eine aufwiindige Migration, die man nun ungern wiederholen
mochte. Diesen Aspekt haben wir bei unserem Vorschlag beachtet.

6.4.1 Quality Manager

Der IBM Rational Quality Manager baut auf das Jazz-Projekt auf und ist das aktuelle Werkzeug
von IBM zur Testfallverwaltung, aber auch Anforderungserhebung, Testplanung, Testauswer-
tung, Fehlerverwaltung und Durchfithrung manueller Tests. Es wiirde damit ClearQuest, ITT-
Testmanagement und Manual Tester ersetzen und kdme der Ideallosung in vielen Bereichen
nahe.

Folgende Anforderungen wiren damit abgedeckt: 3.13, 4.9, 4.13, 4.14, sowie die Anforderun-
gen zum ITT-Testmanagement und Manual Tester.

Als problematisch sehen wir die Migration der Daten. Grundsitzlich konnen alle Standard-
daten aus anderen Rational-Produkten importiert werden. Allerdings gibt es momentan etliche
selbstprogrammierte Erweiterungen, die nicht ohne Weiteres iibernommen werden konnen. Die
tatsidchliche Migrierbarkeit 14sst sich fiir uns nur schwer abschétzen, ohne einen Versuch mit
echten Daten zu starten. Dazu wére eine Kopie des Produktivsystems mit Adminrechten, eine
freie Lizenz jedes verwendeten Rational-Produkts, sowie Kenntnis iiber die Serverarchitek-

57

http://jazz.net

tur bei FleetBoard notwendig. Wir iiberlassen nihere Untersuchen daher den Mitarbeitern von
FleetBoard.

Ebenfalls FleetBoard iiberlassen mochten wir die Abwigung zwischen dem Vorteil einer inte-
grierten externen Losung und einer flexiblen Eigenimplementierung, die die bisherigen Daten
weiter verwenden und Stiick fiir Stiick die alten Werkzeuge ablosen kann.

6.4.2 Eigenentwicklung

Um den zahlreichen, nicht durch Tools von der Stange abdeckbaren, Anforderungen des Quali-
tatsicherungsprozesses bei FleetBoard gerecht zu werden und um aufwendige Datenmigratio-
nen zu vermeiden, bietet sich der Einsatz eines selbst entwickelten Werkzeugs an.

Bei einer Eigenentwicklung ist es moglich, sich an der vorgeschlagenen Ideallosung zu orien-
tieren, mit dem Unterschied, dass die bisherige Datenbank weiter verwendet wird und deren
Einschriankungen beachtet werden miissen. Die Frage, ob eine Webanwendung oder ein Fat
Client entwickelt werden soll, wird leicht beantwortbar, wenn man iiberlegt, dass die Anwen-
dung eine enge Anbindung an andere lokal laufende Anwendungen bendtigt. Das ist mit einer
Webanwendung kaum umsetzbar, weswegen aus technischen Griinden ein Fat Client notwen-
dig ist.

Die Einfithrung einer Eigenentwicklung wird dadurch erleichtert, dass keine Migration und
kein Toolwechsel auf einen Schlag nétig sind. Die Funktionen des im folgenden skizzier-
ten Programms lassen sich schrittweise implementieren, wodurch der alte ClearQuest-Client
schleichend abgelost werden kann. Da keine Kompatibilititsprobleme verursachende Anderun-
gen vorgeschlagen werden, kann in der Ubergangszeit und auch spiter der normale ClearQuest-
Client weiter verwendet werden.

Die Unterscheidung der Rollen in der Idealldsung muss auch in der tatsdchlichen Umsetzung
beachtet werden. Der Einstieg in die Anwendung (Ubersichtsseite) sollte sich daran orientieren.
Da eine umfassende Losung mit allen Rollen nicht nur fiir die Fachstudie, sondern auch fiir die
Umsetzung bei FleetBoard sehr umfangreich ist, haben wir die Rollen priorisiert und drei davon
ausgearbeitet.

Wir schlagen folgende Reihenfolge fiir die Umsetzung der Ansichten fiir die Rollen vor:

1. Testfallspezifizierer
. Tester

. Testautomatisierer

2

3

4. Testauswerter
5. Testplaner

6

. Spezifizierer

Eine neue Anwendung fiir den Testfallspezifizierer bringt unserer Meinung nach den groB-
ten Nutzen. Der Tester kommt direkt im Anschluss, da wir dringend zur Abschaffung von
Manual Tester raten. Testauswerter und Testplaner kommen spiter, weil sie mit dem ITT-
Testmanagement bereits eine gute Werkzeugunterstiitzung haben. Sollten die Funktionen dieser
beiden Rollen aus dem ITT-Testmanagement in das neue Tool migriert werden, schlagen wir
eine Orientierung an den Vorschldgen der Ideallosung vor. Die Ansicht des Spezifierers hat die
geringste Prioritit, weil nicht klar ist, ob die Spezifikation tiberhaupt aus Requisite Pro ausge-
lagert werden sollte. Da dies aber eine Moglichkeit ist, wird es hier mit aufgefiihrt, ohne dass
eine genaue Beschreibung dieser Ansicht folgt.

Die Anforderungen an die Ansichten der hochst priorisierten drei Rollen werden im Folgenden
skizziert. Eine detaillierte Spezifikation sprengt hier den Rahmen.

58

(Anf. 4.2)

(Anf. 4.5, 4.11)

(Anf. 3.13)

(Anf. 4.7)

Testfallspezifizierer

Der Testfallspezifizierer bekommt eine Ansicht, die links eine Baumstruktur (dhnlich wie Clear-
Quest) anzeigt. Diese stellt die Datenstruktur der ClearQuest-Datenbank dar. Beachtet wer-
den muss, dass unnotige Elemente (siehe Anforderung 4.2) nicht angezeigt und Elemente mit
gleicher Funktion (Strukturierung) gleich dargestellt werden. So werden Asset-Registries und
Testplane gleich dargestellt. (Asset-Registries sind auch nur eine Gruppierung fiir Testfdlle und
damit mit Testplidnen, die auch keine weitergehende Funktion haben, gleichwertig.) Unnotige
Zwischenelemente aus dem ClearQuest-Client werden nicht iibernommen.

Die Ansicht ist grundsitzlich zweigeteilt. Wahrend links stets der Baum angezeigt wird, wer-
den rechts im Falle des Testfalls die aus ClearQuest bekannten Felder fiir Daten angezeigt.
Unnotige Felder werden weggelassen. Darunter werden die Priifpunkte des ausgewéhlten Test-
falls in einer Tabelle angezeigt. Bei der Tabelle sollte besonders auf Usability wert gelegt wer-
den. Hiufige Wechsel zwischen Tastatur und Maus miissen vermieden werden. Copy & Pas-
te und Drag & Drop miissen moglich sein. Neben der Tabelle sind zum schnellen Einfiigen
iiber Buttons konfigurierbare Vorlagen verfiigbar, um Anforderung 4.11 zu erfiillen. Zwischen
den Priifpunkten kann eine Ordnung angegeben werden. Die Reihenfolge der Priifpunkte kann
nachtréglich verdndert werden.

Ein Testfall wird hat initial den Umsetzungsstatus ,,Offen,,. Zusétzlich zum Umsetzungsstatus
gibt es einen Automatisierungsgrad, welcher bei der Testfallspezifikation angegeben werden
kann. Initial hat er den Wert ,,Automatisiert (nicht implementiert). Fiir manuelle Tests kann
dieser Grad direkt bei der Testfallspezifikation auf ,,Manuell* gesetzt werden. Durch die kom-
plette Integrierung der manuellen Tests in dieses Werkzeug ist die Anforderung 3.13 automa-
tisch erfiillt.

Da es vorkommt, dass neue Versionen eines Produkts einen Testfall iiberfliissig machen, gibt es
im Testfall die Moglichkeit die Eigenschaft ,,Veraltet seit* mit einer Version zu versehen. Fiir
Versionen nach dieser kann dann keine neue Konfiguration mehr angelegt werden. Veraltete
Testfille werden in der Baumstruktur als solche markiert. Hierfiir muss die Datenstruktur der
ClearQuest-Datenbank mit Hilfe des Designers angepasst werden.

Werden fiir verschiedene Produkte unterschiedliche Konfigurationen bendtigt, so gibt es die
Moglichkeit, einem Testfall beliebig viele Konfigurationen zuzuordnen (ebenfalls im Baum
dargestellt). Eine Konfiguration kann Eigenschaften des Testfalls iiberschreiben und ist mit
einem Produkt und einer Version verkniipft. Der {ibergeordnete Testfall dient in dem Fall dazu,
das allgemeine Vorgehen bei dem Test zu dokumentieren. Die Konfigurationen passen dieses
Vorgehen fiir eine Version eines Produktes an. Solange es nur eine Konfiguration fiir einen
Testfall gibt, wird dieses Element nicht benétigt, sondern es reicht aus nur mit dem Testfall
selbst zu arbeiten.

Zur Ubersicht kann die Baumstruktur nach Produkt, Version sowie Umsetzungsstatus der An-
forderungen und Spezifikationen gefiltert werden. Wird nach Produkt und Version gefiltert, so
werden simtliche Konfigurationen von Testféllen ausgeblendet und in der Ansicht des Testfalls
direkt der Inhalt der gefilterten Version angezeigt. Die Tatsache, dass es weitere Konfiguratio-
nen zu dem Testfall gibt, wird durch eine kurze Information sichtbar gemacht.

Ein Testfall hat einen Umsetzungsstatus, weil ein manueller Test im Normalfall nach der Spe-
zifikationen noch verfeinert werden muss und weil ein automatisierbarer Testfall evtl. noch
automatisiert wird. Erst wenn fest steht, dass der Testfall so getestet werden soll, wird der
Status auf ,,Abgeschlossen‘* gesetzt.

Tester

Auch die zweite Ansicht fiir den Tester zeigt links den Testfallbaum an. Der Testfallbaum kann
gefiltert werden. Jetzt sind allerdings Testpldne und Testfille darin markierbar. Rechts des Bau-

59

mes kann mit Hilfe eines Buttons die Testdurchfiihrung gestartet werden. Dabei werden manu-
elle Testfille direkt zur Bearbeitung angeboten, in dem die Priifpunkte nacheinander angezeigt
werden und mit ,,0k®, ,,Nicht Ok*, ,,Ok mit Anmerkung® oder ,,Nicht ausgefiithrt* quittiert
werden konnen. Die Ergebnisse werden direkt in die ClearQuest-Datenbank eingetragen. Au-
tomatisierte Testfélle, also solche, die eine Verkniipfung mit Functional Tester haben, kénnen
durch Klick auf einen Button automatisch von Functional Tester ausgefiihrt werden. Zusétz-
lich kann ein automatischer Modus aktiviert werden, bei dem aufeinanderfolgende Functional
Tester Skripte ohne weitere Bestitigung nacheinander ausgefiihrt werden.

Wihrend der Testdurchfithrung wird die benétigte Zeit zur Ausfithrung der Testfille erfasst
und fiir die Testplanung und Restaufwandsschétzung gespeichert. Die hier beschriebene einfa-
che Durchfiihrung von manuellen Tests ist der aktuellen Losung mit Manual Tester um einiges
voraus. Bei der Ablosung von Manual Tester entsteht allerdings Migrationsaufwand, weil Ma-
nual Tester Testbeschreibungen nicht automatisiert in ClearQuest-Priifpunkte iiberfiihrt werden
konnen. Dem gegeniiber steht der Vorteil, samtliche Testbeschreibungen in einer Datenbank zu
haben und nicht wie bisher auf ClearQuest und Manual Tester verteilt.

Testautomatisierer

Der Testautomatisierer bekommt im Wesentlichen die gleiche Ansicht wie der Testfallspezifi-
zierer. Im Gegensatz zu diesem sieht der Testautomatisierer generierte Priifpunktkommentare
und Methodenriimpfe, wie es aus dem bisherigen ClearQuest-Client bekannt ist. Da der Tes-
tautomatisierer die Priifpunkte nicht verdndern muss, ist seine Ansicht im Nur-Lesen-Modus.
Die Ansicht des Testautomatisierers unterstiitzt eine kompakte Darstellung der Priifpunkte des
ausgewdhlten Testfalls. Diese Ansicht kann in ein extra Fenster verlegt werden, das auf ,,im-
mer im Vordergrund® eingestellt werden kann. So kann der Testautomatisierer wihrend seiner
Arbeit im Functional Tester stets ohne Platz- und Zeitverschwendung seine Aufgabe sehen.

60

Begriff
Bedeutung

Begriff
Bedeutung

Begriff
Bedeutung

Begriff
Bedeutung

Synonym

Begriff
Bedeutung

Synonym
Begriff
Bedeutung
Abkiirzung
Begriff

Bedeutung

Querverweis

Begriffslexikon

DispoPilot
Der DispoPilot ist ein Handgerit mit Barcodescanner und Navigations-
funktion, das im LKW fiir die Disposition eingesetzt wird.

Konfigurierter Testfall

Ein Konfigurierter Testfall ist ein Kindelement des Testfalls in Clear-
Quest. Er dient zur Anpassung des Testfalls an spezifische Hardware-
oder Softwarekonfigurationen, die fiir die Ausfiithrung des Testfalls ver-
wendet werden. Functional Tester Skripte werden mit Konfigurierten
Testféllen verkniipft und Testlogs werden an sie angehéngt.

Priifpunkt

Ein Priifpunkt ist ein Kindelement des Testfalls in ClearQuest. Ein
Testfall enthélt 0-n Priifpunkte. Der Priifpunkt ist ein selbst entwickel-
tes Element und enthilt Felder fiir Vorbedingung, Aktion, Nachbedin-
gung und Automatisierungsstatus. Damit entspricht er dem ,,Lehrbuch-
Testfall®.

Schwarzes Team

Das schwarze Team ist ein Scrum-Team, das die Integrationstests leitet
und koordiniert. Zu diesen Aufgaben zédhlen nicht nur die Durchfiih-
rung im Rahmen von Regressionstests, sondern auch die Entwicklung
der Testinfrastruktur.

Black Team, Integrationstestteam

Scrum Team

Alle Entwicklungsteams, die nicht das schwarze Team sind, werden bei
FleetBoard einfach ,,Scrum-Team* genannt.
Entwicklungs-Scrum-Team, Entwicklungsteam

Telematikplattform

Die Telematikplattform ist ein Gerit, das in die LKW der Kunden ein-
gebaut wird und dort Fahrzeugdaten vom CAN-Bus zusammentrigt
und diese iiber GPRS an FleetBoard-Server schickt.

TP

Testfall

Ein Testfall bei FleetBoard ist ein Container, der Priifpunkte enthilt. Er
entspricht nicht dem ,,Lehrbuch-Testfall*. Seine Verwendung bei Fleet-
Board unterscheidet sich kaum von der des Testplans.

Priifpunkt

61

Fragenkatalog

Es folgt der Fragebogen, den wir fiir die Interviews bei FleetBoard verwendet haben.

B.1 Einleitung

Ziel der Fachstudie, Zweck des Interviews.
Was ist deine Aufgabe bei Fleetboard?

Was ist deine Aufgabe in Bezug auf Tests? (Spezifizierst du Testfille?, Implementierst
du Testfille?, Verwaltest du Testfille?, Fiihrst du Tests durch?)

Mit welcher Art von Testfillen hast du zu tun? (GUI, Betrieb, Oberfldche, Last, ,,Kun-
denakzeptanz®,)

Welche Groienordnung von Testfillen verwaltest du?

B.2 Werkzeuge

Welche Werkzeuge setzt du ein?

Fiir jedes Werkzeug:

Allgemeinbewertung: Was hiltst du von diesem Werkzeug auf einer Skala von 1-10 (1
ungeniigend, 10 sehr gut)

Welche Probleme gibt es mit diesem Werkzeug? Was konnte man an diesem Werkzeug
verbessern?

Was findest du gut an diesem Werkzeug?

Kennst du ein anderes Werkzeug, welches die Aufgabe besser 16sen kann? Was konkret
ist dort besser?

62

B.3 Testprozess

Beschreibe den Testprozess aus deiner Sicht

Was hiltst du vom Testprozess auf einer Skala von 1-10?

Brauchst du Informationen oder Daten von jemand anderem? Von wem? Was?
Woher weiBit du, was du zu testen hast?

Wer bekommt die Ergebnisse deiner Arbeit?

Wie funktioniert die Testaufwandsplanung? Was kann man daran verbessern?
Enthilt der Testprozess unnétige Schritte?

Fehlen im Testprozess deiner Meinung nach erforderliche Schritte?

Was gefillt dir am Testprozess?

Was stort dich am Testprozess?

Wer legt fest / Wo steht was liberhaupt getestet wird? (alle Features?, eine Teilmenge?
welche?)

B.4 Testfalle

B.4.1

Spezifikation

Unterscheiden sich deine Testfiélle in irgendeiner Form von ,,anderen‘ Testfdllen bei
FleetBoard? Haben sie spezielle Merkmale? Benoétigst du eventuell andere Eingabefel-
der, kannst du mit vorhandenen Feldern nichts anfangen?

Welche Daten bendtigst du dabei und wo nimmst du diese her?

Wie beurteilst du die Qualitit dieser Daten auf einer Skala von 1-10? (Sind die Testfille
verstiandlich?, eindeutig formuliert?)

Wie sind die Testfille strukturiert? Wie ist die Gliederung in ClearQuest? Gibt es dafiir
eine Vorgabe?

Wie sind die einzelnen Felder zu benutzen? Werden sie auch so benutzt? Wenn ja, warum
nicht? Machen ,,die anderen‘ das auch richtig?

Gibt es eine Priorisierung von Testfillen?
Wird der bendtige Aufwand fiir die Durchfiihrung abgeschitzt? Wie?
Wie kann man die Aufwandsabschitzung verbessern?

Problematik des Testfalls als Gruppierung fiir Priifpunkte ansprechen (Zuordnung von
Priifpunkten zu Testfillen moglicherweise nicht sinnvoll). Wie siehst du das? Entstehen
daraus deiner Meinung nach Probleme?

63

B.4.2

B.4.3

B.4.4

Implementierung
Welche Daten bendtigst du dabei und wo nimmst du diese her?

Wie beurteilst du die Qualitit dieser Daten auf einer Skala von 1-10? (Sind die Testfille
verstiandlich?, eindeutig formuliert?)

Wie findest du die Verbindung zwischen ClearQuest und Functional Tester (Werkzeug A
und B falls andere Tools bei z.B. den Hardware-Leuten).

Was stort? Was ldsst sich besser machen?
Was ist gut?

Was ldsst sich eventuell noch automatisieren? Welchen Aufwand wiirde das bedeuten?
(Wie viel Zeit spart man durch die Automatisierung? Wie lange dauert die Automatisie-
rung? (Wartung der Automatisierung?))

Durchfiihrung

Wie funktioniert die Testdurchfithrung auf deinem Arbeitsgebiet? Welche Schritte sind
dafiir notwendig?

Welche Daten benétigst du dabei und wo nimmst du diese her?

Wie beurteilst du die Qualitit dieser Daten auf einer Skala von 1-10? (Sind die Testfille
verstiandlich?, eindeutig formuliert?)

Wo gehen die Ergebnisse hin? (Personen)

Welche Schritte werden dabei manuell erledigt und kénnten unabhingig vom verwende-
ten Werkzeug automatisiert werden? (Theoretisch automatisierbar) (Wie viel Zeit spart
man durch die Automatisierung? Wie lange dauert die Automatisierung? (Wartung der
Automatisierung?))

In welcher Form liegen die Testergebnisse vor und wie werden diese weiterverarbeitet?
Falls komplett manuell: Gibt es eine Form-Vorgabe? (Formular)

Haltst du diese Form fiir sinnvoll? (Was kann man besser machen?)
Falls manuelle Ergebnisse: Wie kommen diese in die ClearQuest-Datenbank?

Was passiert, wenn ein Fehler gefunden wird, der weiteres Testen unmoglich macht, bzw.
wenn wesentliche Features nicht funktionieren?

Was ist das Testendekriterium?

Auswertung

In welcher Form werden dir die Testergebnisse préisentiert? Welches Tool? Wo kommen
die Daten her?

‘Was ist daran schlecht?
Was konnte verbessert werden?

Was ist gut?

64

Priorisierung der Anforderungen

In dem Losungsvorschlag konzentrieren wir uns nur auf die wichtigsten Anforderungen. Der
Rest bleibt dort teilweise unbeachtet. Der Auswahl liegt eine subjektive Priorisierung unserseits
zugrunde, die wir der Vollstdandigkeit halber hier noch mit einfiigen.

Bei der Priorisierung handelt es sich um eine Tabelle, welche alle Schwachstellen und dazuge-
horige Anforderungen auflistet und jeweils einen geschitzten Wert fiir den Nutzen (N) und fiir
die Kosten (K) bekommen hat. Da wir die Organisatorische Ebene grundsitzlich fiir wichtiger
halten als des Rest, bekommt jeder Nutzen-Wert zwei hinzu addiert. Der Prozess bekommt
plus eins. Dies ist eine Gewichtung (GN) nach Kategorie. Auf Grund dieser Schitzungen gibt
es eine Empfehlung (E) zur Umsetzung der Anforderung.

Zu den Skalen: Der Nutzen wurde auf einer Skala von 1 bis 5 geschitzt, wobei 5 der hochste
Nutzen ist. Durch die Gewichtung hat der gewichtete Nutzen eine Skala von 1 bis 7. Einen
Nutzen von 5 und hoher haben wir griin (sehr hoch) markiert. 4 ist gelb (hoch) markiert und 3
rot (mittel). 2 und 1 sind nicht markiert (niedrig). Die Kosten haben ebenfalls eine Skala von 1
bis 5, wobei 5 sehr teuer ist. Wir haben zur Ubersicht auch hier Farben verwendet: Griin fiir 1
(sehr billig), Gelb fiir 2 (billig), Rot fiir 3 (mittel).

Zu der Empfehlung: Es handelt sich dabei um eine sehr subjektive Einschitzung. Grundsitzlich
wurden Nutzen und Kosten abgewégt. Es flieen aber auch Wiinsche der Mitarbeiter mit ein.
Vergeben wurde stark (Griin), mittel (Gelb) und niedrig (Rot) als empfohlene Priorisierung. Es
ist natiirlich trotzdem sinnvoll nicht priorisierte Anforderungen umzusetzen. Wir geben ledig-
lich eine Hilfestellung zur Selektion, falls aus Zeitmangel nicht alle umgesetzt werden kénnen.

65

Gewichtung der Anforderungen und unsere Empfehlung

Anf. |Schwachstelle GN K E

2.1 |Probleme auf Organisatorischer Ebene 5 7 3 Stark

2.2 |Zu wenig Tester 5 7 5|Mittel

3.1 Fehlender Uberblick iiber den Testprozess 3 4 1 Stark

3.2 |Entwickler testen ihren eigenen Code 4 5 3 Mittel

3.3 |Kommunikationsprobleme bei verschiedenen Versionen der eigenen Software 1 2 1 Niedrig

3.4 |Zu wenig Zeit zur Automatisierung von Tests 5 6 2 Stark

3.5 |Problematische Uberginge zwischen den Phasen des Testprozesses 3 4 3

3.6 | Vermeidung von Redundanz 3 4 1

3.7 |Terminologie 4 5 2 ‘Stark

3.8 |Verbesserung der Testinfrastruktur 2 3 3

3.9 |Unzureichende Qualitdt der Dokumentation 4 5 3 ‘ Mittel

3.10 |Nicht einheitliche Verwaltung der verschiedenen Dokumentationen 3 4 3

3.11 |Einfihrung der Kundenakzeptanztests 4 5 4 Stark

3.12 |Mangelhafte Verkniipfung von Testergebnissen mit den Tests 5 6 2 |Stark

3.13 |Manuelle Tests sind zu vielschichtig 4 5 4

4.1 |Unzureichende Dokumentation zu ClearQuest 2 2 2

4.2 |Unnotige Elemente im Testfallbaum 3 3 5

4.3 |Unkontrollierte Struktur des Testfallbaums 5 5 3 Mittel

4.4 | ClearQuest-Testfall ist kein Testfall 2 2 4

4.5 |Aktuelle Methode zur Testfallspeicherung erlaubt keine Ordnung 4 4 2 |Stark

4.6 |Soll-Umfang und Soll-Inhalt eines Testfalls ist nicht definiert 1 1 1 Niedrig

4.7 |Uneinheitliche Verwendung von Konfigurierten Testfallen 2 2 3

4.8 |Schwer bedienbare Suchfunktion 3 3 5

4.9 |Klick- und fensteranzahlintensive Bedienung 5 5 5/|Niedrig

4.10 Schlechte Unterstitzung der Strukturierung von Testfallen und 4 4 5
Strukturierungselementen

4.11 |Fehlende Templates fir Texte 5 5 4|Stark

4.12 |Tests kdnnen nicht aus dem Testfallverwaltungswerkzeug gestartet werden 4 4 2 Mittel

4.13 |Generierung der Testfallzusammenfassung nicht vollautomatisch 3 3 2

4.14 |Uberflussige Formularfelder 3 3 1 Mittel

4.15 |Fehlende einheitliche und gute Dokumentation 3 3 1 Mittel

4.16 |Umstandliche Bedienung der Oberflache 3 3 2

4.17 |Konsistenz bei den Seitennamen 1 1 1| Mittel

4.18 |Feature-Orientierung 4 4 2 Mittel

4.19 |Skalierbarkeit der Darstellung 2 2 2

4.20 |Mangel in der Dokumentation 4 4 2 Mittel

4.21 |Fehlende Kontrolle der nach Anforderung 20. eingefiihrten Richtlinien 5 5 1 Stark

4.22 |Mergeprobleme 4 4 3

4.23 |Riesige globale Properties-Datei 2 2 2

4.24 |Fehlende Dokumentation 3 3 1| Mittel

4.25 |Ineffizient und langsam 4 4 5|Stark

4.26 |Schlechte Usability 1 1/mit 4.25 Stark

4.27 |Unzufriedenheit der Mitarbeiter 5 5/mit 4.25 |Stark

4.28 |Fehlende Lizenzen 4 4 2 Mittel

66

Beispiele

Es folgen einige Beispieldaten fiir die Strukturierung der Testfélle und fiir Priifpunkte, um dem
Leser ein Gefiihl fiir die Daten bei FleetBoard zu geben. Die Daten wurden ausgewéhlt, um
verschiedene Arten und Auspriagungen von Testfédllen und deren Strukturierung im Ist-Zustand
zu zeigen. Die gezeigten Priifpunkte stammen aus verschiedenen Testfdllen und wurden aus-
gewihlt, um die Verschiedenheit der Priifpunkte zu demonstrieren. Sie entsprechen dem Origi-
nalzustand der Darstellung in der Ansicht ,,Testfallspezifikation* in ClearQuest. Diese Ansicht
bildet auch fiir die Entwickler die Grundlage zum Implementieren von Testfillen. Inhalt und
Formatierung wurden daher nicht verdndert. Kiirzungen sind durch das Wort ,,gekiirzt* in ecki-

gen Klammern gekennzeichnet.

D.1 Betrieb

ID: 2140 Kurzbeschr.: Batchjob - beenden
Automatisierung: N

[Vorbedingung]
Batchjob muss gestartet sein.

[Benutzeraktion]

Die Batchjobs beenden sich nach abarbeitung der aktuellen Flotte.

[Soll-Ergebnis]
Batchjobs wurden korrekt beendet.

ID: 2141 Kurzbeschr.: Batchjobs - neu anlegen
Automatisierung: N

[Vorbedingung]
Batchjobs miissen beendet sein.

[Benutzeraktion 1]
Die Batchjobs werden auf einem andern WAS-Member neu angelegt.

[Soll-Ergebnis 1]
Batchjobs wurden auf einem anderen Member neu angelegt.

ID: 2142 Kurzbeschr.: Batchjobs - starten
Automatisierung: N

[Vorbedingung]
Batchjobs miissen auf einem WAS-Member angelegt sein.

[Benutzeraktion 1]

Die Batchjobs starten automatisch an den angegebenen Zeitpunkten.

[Soll-Ergebnis 1]
Alle Batchjobs wurden gestartet.

ID: 2143 Kurzbeschr.: Priifen der Logfiles
Automatisierung: N

[Vorbedingung]
Logfiles miissen vorhanden sein.

67

Konsole | Eigenschaften | ClearQuest-favigatar

=8 Test Manager - Planuni

= O

8 -4 |k

G

| O

=l <+ rebert, Telematikzentrale@CQPOQP
ED Asset-Registrys

EI_:'E Betriebskest

El[:l Testpléne

i

IT-Betrieh Anderbarksit 150 9126

S| IT-Betrieb Benutzbarkeit 150 9126

= Abkrakbivitat

Bedienbarkeit

Erlernbarkeit

2| Analvse Applikation

DEZ

FleetBoard FESC
Mapping

Message Master
Dokurmetation Installations- und Migrationswerfahren
Review Dokurnentation
Software-Dokurment ation
Yerstandlichkeit

- [E
=
=

~[:=] IT-Betrieb Effizienz IS0 9126

S| IT-Betrieb Erforderliche Messdaten aus der Yorgdngerversion

= Ressourcenverbrauch eines Members jeweils separat erfasst unter definierter Last
E! Maximale Messagingraten Fir definierte Machrichtentvpen.

----- 7 Maximale Requestraten FOr definierte Requesttypen,

- E| Maximale Requestraten Fir definierte Requesttypen,

#-- £ Taming - GUI Referenztest

----- i Tamin - Machrichten Referenztest

[#-|El Zeitdauer zum Starten aller Listenerports sines Members ohne Last
----- E: Zeitdauer zum Starten eines Members ohne Last

[#-|E{ Zeitdauer zum Stoppen aller Listenerports eines Members ohne Last
i Zeitdauer zum Stoppen eines Members ohne Last

- E IT-Betrieb Funktionalitdt IS0 9126

Angemessenheik

Interopet abilikat
Crdnungsmalighkeit

Richtigkeit

Sicherheit

IT-Betrieh Ubertragbarkeit IS0 9126
IT-Betrieb Zuverlassigkeit IS0 9126

-0 Testsuites
[:l Iterationen
[:I Dateipasitionen
= DispoPilot

5133"? Produkt-Pragramm

Abbildung D.1: Testfallstrukturierung der Betriebstests

[+
E{ Mittlere Einarbeitungszeit Fir Machrichken getrennt nach Y 2,26, WM 3.1, FMS and T,

68

[Benutzeraktion 1]
Priifung ob die zum Abbruchzeitpunkt des Batchjobs aktive Flotte
ordnungsgemdff abgearbeitet wurde.

[Soll-Ergebnis 1]
Keine Fehler in der Logfile.

D.2 Telematikplattform-Test

ID: 6754 Kurzbeschr.: query_all
Automatisierung: N

[Vorbedingung]
Setup_Testcase_IES executed.

[Benutzeraktion 1]
1) Send the following dynamic telediagnose frame query to TP

Reference DS#19 (dynamic telediagnose frame query):

Source # 19 0x13

Length 0x008B

Number of Queries PreDo0Ones 0x02

ECU address 0x01

Query Protocol Version (IES) 0x00

Query length (1.1) 0x14

Query frame (1.1) 0x06 00 11 04 98
22 20 20 98 22 20 21 98 22 20 22 98 22 20 23

ECU address 0x02

Query Protocol Version (IES) 0x00

Query length (1.2) 0x14

Query frame (1.2) 0x06 00 11 04 98

22 20 20 98 22 20 21 98 22 20 22 98 22 20 23
[gekiirzt]

2) Simulate the positive response on CAN to the dynamic
telediagnose frame from 1.)

Reference positive response for every query to a ECU using IES:
06002408986220203937323008986220213231314
B08986220223732393008986220233537FFFF

[Soll-Ergebnis 1]
1) TP sends CAN messages, corresponding to the query protocol, to the
ECUs in the folowing order:

ECU1 (query 1.1)
ECU2 (query 1.2)
ECU1 (query 2.1+2.2)
ECU2 (query 2.1+2.2)
ECU1 (query 3.1)
ECU2 (query 3.2)

2)TP replies to DS#19 containing positive and negative response
for the query

Source # 19 0x13

Length 0x01F9

Number of Queries PreDoOnes 0x02

ECU address 0x01

Query Protocol Version (IES) 0x00

Query length (1.1) 0x14

Query frame (1.1) 0x06 00 11 04 98
22 20 20 98 22 20 21 98 22 20 22 98 22 20 23

Response length (1.1) 0x27

Response frame (1.1) 0
x0600240898622020393732300 8986220213231314B0898622022373
2393008986220233537FFFF

ECU address 0x02

Query Protocol Version (IES) 0x00

Query length (1.2) 0x14

Query frame (1.2) 0x06 00 11 04 98
22 20 20 98 22 20 21 98 22 20 22 98 22 20 23

Response length (1.2) 0x27

Response frame (1.2) 0
x0600240898622020393732300 8986220213231314B0898622022373
2393008986220233537FFFF

69

=
Konsole | Eigenschaften | Clearduest-Mavigator

- Tesk Manager - Planung X

E

TelermatikPlattform

: [Testplane

S| Basic Functions
Cormunication
DispoPilak
DTCO DriverCardDownload
External
Fahrtests
FPOS6_Track&Trace
FP1339_SignalPooliMatrix
FPZ110_5FTP
FP2119_FP1935_Gebietiberwachung
FPz209_Telediagnosealarm
FPzZz49 TellTales
: - i=| Communication ko Server
El,_E, IndividuahJuery
,lﬁf 0_Setup-Testcase

-5 Ignition onfoff
,E, Query and Response
== TTER

EI,_E, Adhoc)Cyelic
E Adhoc transmission of DP#F300
,E, Cyclic transmission of DP#300
- E 0_Setup-Testcase
~Ei &l unread TTER (DP#300)
~|E: Ask specific TTER (DP#301)
-|E] ask ¥ lakest TTER (DP#302)
~|E: Ignition onjoff
|| Configuration
|2 Datasource skructure
5]

TTER mechanism
|i=] TTER. struckure
FPZZ49_TextToDisplay
FPz400_GPRS port config
FP2409_FMS-Router
FPZ550_CrvnamicTelediagnoseFrameQuety
11939
KLine
TER
TestTestplan
Tour Characteristics

- Testsuites
B[Terationen
-0 Dateipositionen

Abbildung D.2: Testfallstrukturierung der TP-Tests

70

Number of Queries Do4All 0x04

ECU address 0x01

Query Protocol Version (IES) 0x00

Query length (2.1) 0x14

Query frame (2.1) 0x06 00 11 04 98
22 20 20 98 22 20 21 98 22 20 22 98 22 20 23

Response length (2.1) 0x27

Response frame (2.1) 0

x0600240898622020393732300 8986220213231314B0898622022373
2393008986220233537FFFF
ECU address 0x01

[gekiirzt]

ID: 5035 Kurzbeschr.: Event "Yellow"
Automatisierung: N

[Vorbedingung 1]
Setup testcase executed

[Benutzeraktion 1]

1. Set status of tell-tale ID 1 to "Info". (ref_telltaleStat01=03)

2. Wait for longer than the time given in TP-config Parameter 247 coded
in third byte. (see Setup-TestCase)

3. Set status of tell-tale ID 1 to "Yellow". (ref_telltaleStat01=02) -

(time t1)
4. Wait till the threshold given in TP-config Parameter 247 coded in

third byte is overcome. (see Setup-TestCase)
5. Verify recieved DS#100.

[Soll-Ergebnis]

5. DP#300 is sent adhoc from TP to FBSC, containing DS#100 with TTER3 "
Yellow" which tell-tale ID is 1 an the timestamp is equal to tl1. (
Perhaps TTER3 "Info" is included)

ID: 6349 Kurzbeschr.: Configuration
Automatisierung: N

[Vorbedingung]
SFTP dashboard prepared.

TP installed and activated.

[Benutzeraktion]

[Soll-Ergebnis 1]

D.3 DispoPilot-Test

ID: 3073 Kurzbeschr.: Einstellungen-Navigation-Kartenausrichtung
Automatisierung: J

[Vorbedingung]

[Benutzeraktion 1]

Es wird gebprueft ob folgende Buttons bzw. Listenelemente angezeigt
werden:

Nordausrichtung

Fahrtausrichtung

Back

Ok

[Soll-Ergebnis]

Folgende Buttons bzw. Listenelemente werden angezeigt:
Nordausrichtung

Fahrtausrichtung

Back

Ok

ID: 3074 Kurzbeschr.: Einstellunge-Navigation-Sonderziel Radius
Automatisierung: J

[Vorbedingung]

71

s
Konsole | Eigenschaften | ClearQuest-Mavigator

= Test Manager - Planun

=

[:l Dateipasitionen

=

5 DispoPilok
=+ Testplane

= _old

Bugfixes

Device Manager

Disposition Allgemein

- |i2| Fahrtests

- B 0065-400 Auftrag-Ziel-Zsit

; g 0356-320 Gehietsusherwachung bei DP aff

=& Formulare

E [H~|E]| 0343-320 Status- FormDefs Semantilken
=| Lasttests

- B 0008-105 Dispo Last

= Scanning

0021-400 Scanprofile

0106-230 Signalisieruna von Fehlscans

[+-|E]| 0230-300 Keine doppelten Packsticks

Disposition TM2.0

Disposition TM3G

aaraphical User Interface

Mavigation

Software Update

=| System

Allgemein

Komrmunil:ation

|:=| Lasttests

- 0001-320 System Last Dauertest

= Parametrierung

ﬁ 0009-320 AT3-Fabrikeinstelung

0003-320 AT3-Fabrikeinstelung erweitert

0011-320 AT&F Einstellung

0333-320 Status- FormDefs ConfigDownload
0334-320 Status- FormDefs Handling alter TPs und RESET
03358-320 Status- FormDefs wvom FBSC verwerfen
0341-320 Status- FormDefs Parallelisierung Lasktest
-|E! Ubernahme Fabrikwert wenn Device-\Werk unglilkig
Femoke Logaing

Syskemzeit

TastaturjZeichensatz

| 0318-320 Restricted User Setkings

=]
&
-
-
-

[][]][] [T

= Zeibwirkschaft

Abbildung D.3: Testfallstrukturierung der DispoPilot-Tests

72

[Benutzeraktion 1]

Es wird gebprueft ob folgende Buttons bzw. Listenelemente angezeigt
werden:

3 km

5 km

10 km

15 km

25 km

Back

0K

[Soll-Ergebnis]

Folgende Buttons und Listenelemente werden angezeigt
3 km

5 km

10 km

15 km

25 km

Back

ID: 3075 Kurzbeschr.: PLZ Meldung ’Mind. 2 Zeichen’
Automatisierung: J

[Vorbedingung]

[Benutzeraktion 1]

Eine Ziffer eingeben (default=1) in PLZ Eingabefeld
[Soll-Ergebnis 1]

Suche wird abgelehnt mit der Meldung ’Bitte geben Sie mindestens 2
Zeichen ein!’ ab 2.3.0 Navi2G

D.4 Server- und Soap-Schnittstellen-Test

ID: 7709 Kurzbeschr.: Parameterkombinationen
Automatisierung: J

[Vorbedingung 1]
Nutzer ist angemeldet (hat Session)
Nutzer hat Recht, SOAP-Methode getTm3GMessageln auszufiihren

[Benutzeraktion 1]

1) SOAP Aufruf von getMessageln mit giltiger Tm3gReferenceNo und
VehicleID

2) SOAP Aufruf von getMessageIn mit giiltiger Tm3gReferenceNo und
VehicleID = null

3) SOAP Aufruf von getMessageIn mit giiltiger VehicleID und
Tm3gReferenceNo = null

[Soll-Ergebnis]

1) kein SO0AP Fault - Im Response-Dokument sind alle Messages mit der
abgefragten Tm3GReferenceNo enthalten

2) kein SO0AP Fault - leerer Response

3) kein SOAP Fault - leerer Response

ID: 2863 Kurzbeschr.: Phase 1 (Fahrzeug in MF)
Automatisierung: M

[Vorbedingung]
Ein Fahrzeug muf in der Masterflotte MF vorhanden sein.

[Benutzeraktion 1]
Mapping in MF 6ffnen und eine Positionsabfrage ausfiihren

[Soll-Ergebnis]
Positionsabfrage erfolgreich ausgefiihrt

ID: 2864 Kurzbeschr.: Phase 2 (an PF1 verliehen)
Automatisierung: M

[Vorbedingung 1]
Masterflotte (MF) zu Partnerflotte (PF1) Beziehung erstellen und ein
Fahrzeug an PF1 verleihen.

[Benutzeraktion]

73

e
Konsole

Eigenschaften | ClearQuesk-ravigakar B Test Manager - Plarung X

E;_E Telematikzentrale

E||:l Testplane

Adminiskrakion (HTML 8 SWT)

Archivierung

Dispositionz

=| Einsatzanalyse

|| Dienst

Batch-Jobs

FP 017 \Weiterenbwicklung Universal EA

FF 1223 Berechnungsalgorithrmen

=] Uriversal EA

TourCharackeristic_RecordCounter
HTML

,_E, FP 1406: Mandantenkonzept

|I||:III

- [E Fahrzeuganalyse

= Universal

|E:| Batch-Berechnung bei verliehenenfoelishenen Fahrzeugen
E Einsatzanalyse
E Fahrzeugabfrage

,L,-‘:’:{ Fahrzeuafilker nach Fahrzeuagriickgabe
ME
Fahreranalyse
Fahrzeuganalyse
[+-[= Universal
..... IEI SOAP
= 25| Yerifizierung

SRR

E Einzelkouren Fahreranalyse

-
* i

E Einzeltouren Fahrzeuganalyse
- E| On the Fly-analyse (OTF)

: - El o lakest tours

15 Universal

EEI---E Schnellcest {Skaging)SOP)

i=| FS&; Set Pos

Fahrergruppen

Fahrtenaufzeichnung

il E- -

fi

Flottentransfer

FormularEditar {nicht benutzen)
Inbetriebnabime - Aktivierung
Infrastruktur

KukoTo {nicht benukzen)
Mapping

Mapping3G

Abbildung D.4: Testfallstrukturierung der Server- und GUI-Tests

74

Mapping in MF und PF1 6ffnen und jeweils eine Positionsabfrage ausfiihren

[Soll-Ergebnis]
Positionsabfrage jeweils erfolgreich ausgefiihrt

ID: 3643 Kurzbeschr.: Einzeltouren (Fahrzeug-/Fahreranalyse)
Automatisierung: N

[Vorbedingung]

[Benutzeraktion]

Verifizierung Zeitstempel Tourbeginn / Tourende in GUI mit Tourbeginn/
Tourende -Zeitstempel des Fahrprotokolls (SB-Wechsel bei MB-
Einzeltouren und DriverCard-Wechsel bei Universal-Einzeltouren)

[Soll-Ergebnis 1]

75

Literaturverzeichnis

[LLO7] LUDEWIG, Jochen ; LICHTER, Horst: Software Engineering. 1. Auflage. Heidelberg
: dpunkt.verlag, 2007

76

	 Einleitung
	 Zustandekommen
	 FleetBoard
	 Aufgabenstellung
	 Aufbau dieses Berichts
	 Vorgehensweise und Quellen

	 Organisation
	 Analyse
	Linienorganisation
	Projektorganisation

	 Schwachstellen
	 Anforderungen
	 Bestehendes

	 Prozess
	 Analyse
	Dokumentation

	 Bewertung durch die Mitarbeiter
	 Schwachstellen
	Testprozess allgemein
	Dokumentation
	Kundenakzeptanztests
	Anforderungsverfolgung
	Manuelle Tests

	 Anforderungen
	Allgemein
	Dokumentation
	Kundenakzeptanztests
	Anforderungsverfolgung
	Manuelle Tests
	Bestehendes

	 Werkzeuge
	 Analyse
	ClearQuest
	ITT - Testmanagement
	Functional Tester
	soapUI
	Manual Tester
	Focal Point
	RequisitePro

	 Bewertung durch die Mitarbeiter
	ClearQuest
	ITT - Testmanagement
	Functional Tester
	soapUI
	Manual Tester

	 Schwachstellen
	ClearQuest
	ITT Testmanagement
	Functional Tester
	soapUI
	Manual Tester
	Focal Point
	RequisitePro

	 Anforderungen
	ClearQuest
	ITT-Testmanagement
	Functional Tester
	soapUI
	Manual Tester
	Bestehendes

	 Ideallösung
	 Organisation und Prozess
	Mehr Mitarbeiter zum Testen
	Lizenzen
	Prozess-QS

	 Werkzeuge
	Testverwaltung
	Automatisierte Tests

	 Wirtschaftlicher Lösungsvorschlag
	 Bewertung der Anforderungen
	 Verbesserung von Organisation und Prozess
	 Verbesserungen im Umgang mit vorhandenen Werkzeugen
	ClearQuest
	Functional Tester

	 Alternativen zu bestehenden Werkzeugen
	Quality Manager
	Eigenentwicklung

	 Begriffslexikon
	 Fragenkatalog
	 Einleitung
	 Werkzeuge
	 Testprozess
	 Testfälle
	Spezifikation
	Implementierung
	Durchführung
	Auswertung

	 Priorisierung der Anforderungen
	 Beispiele
	 Betrieb
	 Telematikplattform-Test
	 DispoPilot-Test
	 Server- und Soap-Schnittstellen-Test
	Literatur

