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1 Einleitung

1.1 Motivation

Sprachen, die sich in Logik erster Stufe (FO[<]) definieren lassen, wurden von Schiitzerberger
in [Sch1965] und McNaughton und Papert in [MP1971] untersucht. Die Sprachen in FO[<]
lassen sich algebraisch durch die Varietdt A der aperiodischen Monoide charakterisieren. Auf
Ebene der Logik entspricht dies auch Intervall-Temporal-Logik (ITL) bzw. Temporal-Logik
(TL). Dieses hat insbesondere Anwendungen im Bereich des Model-Checking.

Ausgehend von diesen Resultaten wurden Fragmente von FO[<] betrachtet. Diese liefern eine
bessere Komplexitét fiir relevante Algorithmen. Eine natiirliche Einschrankung ist es, Formeln
erster Stufe mit nur zwei Variablen zu betrachten. Dieses Fragment bezeichnen wir mit FO?[<].
FO?[<] hat zahlreiche Charakterisierungen. Die syntaktischen Monoide von Sprachen aus FO?[<
] liegen in der Varietit DA. Als Charakterisierungen von FO?[<] auf Ebene der Logik ergeben
sich unter anderem Ranker iiber Buchstaben, TL[X,, Y,] und TL[XF, YP]. Eine Ubersicht iiber
DA findet sich in [TT2002], eine generelle Ubersicht iiber die Charakterisierungen von FO?[<]
findet sich in [DGK2008|.

In dieser Arbeit wird FO?[<] um ein Pridikat +1 erweitert. Es wird sich zeigen, dass dies den
Varietdten DA * D und LDA entspricht. Das Wreath Product Principle von Straubing, das
in Satz 2.23 bewiesen wird, liefert Anhaltspunkte, dass man von Rankern iiber Buchstaben
zu Rankern iiber Wortern tibergehen muss. Genauso erahnt man, dass somit TL[X,,, Y] ein
Logikfragment ist, das die Sprachen aus FO?[<, +1] beschreibt. In Kapitel 4 werden diese
Vermutungen bewiesen.

Es wird die sogenannte Lokalitdt von DA bewiesen. Dies wurde bereits von Almeida in
[Alm1996] bewiesen, dort wurde allerdings kein kombinatorischer sondern ein syntaktischer
Beweis vorgestellt.

In [LPS2010] wird die Aquivalenz von FO?[<, +1] zur dort definierten Automatenklasse po2dla
und zu einer Intervall-Logik LITL bewiesen. Die Intervall-Logik LITL unterscheidet sich zu
der deterministischen Intervall-Logik mit Faktor-Modalitdten aus dieser Arbeit insofern, dass
Intervalle um eine Position verkleinert werden kénnen. Auferdem kann in LITL die Stelle, an
der das Intervall aufgeteilt wird, genauer spezifiziert werden.



1 Einleitung

1.2 Aufbau der Arbeit

In Kapitel 2 werden die notwendigen Grundlagen der Algebra und der Theorie der formalen
Sprachen gelegt. Es werden Varietdten eingefiihrt und der Zusammenhang zwischen formalen
Sprachen und Varietdten herausgearbeitet. In den Abschnitten 2.6 und 2.7 wird néher auf ein
Produkt von Varietdten eingegangen. Insbesondere wird das Wreath Product Principle von
Straubing in Abschnitt 2.7 bewiesen.

In Kapitel 3 werden die Grundlagen zu Beschreibungen von Sprachen durch Logiken beschrieben.
Es werden die fiir diese Arbeit notwendigen Logik-Fragmente definiert. Als grundlegende
Operatoren, auch fiir die Logik-Fragmente, werden dazu Ranker iiber Wortern definiert. Als
Hilfsmittel fiir spatere Beweise werden Ehrenfeucht-Fraissé-Spiele eingefiihrt.

In Kapitel 4 wird die Aquivalenz der in den Kapiteln 2 und 3 beschriebenen Konzepte untersucht
und bewiesen. Fiir die Bereitstellung der Propositionen 4.9, 4.10 und 4.12 danke ich Alexander
Lauser.

In Kapitel 5 werden die Resultate aus Kapitel 4 basierend auf [KKL2011] auf unendliche Wérter
iibertragen.



2 Algebra und formale Sprachen

In diesem Kapitel werden die notwendigen Grundlagen der Algebra und der Theorie der
formalen Sprachen behandelt. In Abschnitt 2.1 behandeln wir Monoide und Halbgruppen.
Dann werden in Abschnitt 2.2 Greens Relationen eingefiihrt. Mit diesen lassen sich bestimmte
Eigenschaften von Monoiden oder Halbgruppen beschreiben. In Abschnitt 2.3 werden dann
Varietéten eingefiihrt. Dieses Konzept bildet eines der Beschreibungsmodelle der Sprachen, die
in dieser Arbeit untersucht werden. Der Zusammenhang von Varietdten und formalen Sprachen
wird in Abschnitt 2.4 erklért. Dies wird in Abschnitt 2.5 auf unendliche Wérter erweitert. In
Abschnitt 2.6 wird dann das Produkt V *« W fiir Varietiaten V und W eingefiihrt, welches in
Abschnitt 2.7 genauer fiir die Varietdt V x D untersucht wird.

2.1 Algebraische Strukturen

In diesem Abschnitt werden die grundlegenden Begriffe fiir das Studium von Monoiden und
Halbgruppen geliefert. Wir definieren zunéchst Monoide und Halbgruppen.

Definition 2.1. Sei S eine Menge und - : S x S — S eine innere Verkniipfung. Wir nennen
(S,-) eine Halbgruppe, falls - assoziativ ist, d. h. es gilt - (y - 2) = (v - y) - z fiir alle Elemente
x,y, z € S. Existiert zusétzlich ein Element 1g € S so, dass lg-x =x-1g =z flir allex € S
gilt, so nennen wir (S, -) ein Monoid.

Ist die Verkniipfung - klar so schreibt man statt (S,-) auch S. Das Verkniipfungssymbol -
wird auch oft weggelassen. Man schreibt also zy := x - y. Fiir das n-fache Produkt von x mit
sich selbst schreiben wir x™. Fiir eine Halbgruppe S definieren wir das zugehorige Monoid
Sl := S U {1g}, indem wir formal eine 1 adjungieren. Ein Element e € S heiflt idempotent,
falls 2 = e. Fiir die Menge der Idempotenten von S schreiben wir E(S). Sei S nun endlich. Zu
jedem Element x € S gibt es eine Potenz k, so dass 2* idempotent ist. Man kann beispielsweise
k = |S|! wéhlen. Wir schreiben fiir dieses Idempotente dann auch z*.

Lemma 2.2. Sei S eine endliche Halbgruppe, n > |S| und s1,...,s, € S. Dann wird eines der
Produkte sy ...s; firl <i<mn, von einem Idempotent e € E(S) stabilisiert. D. h. es existiert
emn Index j € N mit s1...55-e=51...5;.

Beweis. Da n > |S| ist, gibt es 4,7 € N, j < i mit s1...5; = s1...5;. Setze e := (sj41...5;)".
Esist s1...s5e = 51...5j. ]
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Fiir zwei Halbgruppen (S, -) und (S’, ®) wird das kartesische Produkt S x S’ zu einer Halbgruppe
durch die Verkiipfung
(51,8)) * (s2,55) = (51 - 52, 8] @ sh).

Wir nennen S x S’ das direkte Produkt von S mit S’. Sind S, S’ Monoide, so ist das direkte
Produkt S x S” auch ein Monoid mit Einselement (1g,1g/).

Wir nennen aufterdem ein Element s € S regulér, falls es ein § € .S gibt mit s5s = s.

Definition 2.3. Sei p: S — S’ eine Abbildung zwischen den Halbgruppen (S, -) und (5, ®).
Wir nennen g einen Halbgruppenhomomorphismus, falls p(z - y) = p(z) © p(y) fiir alle
x,y € S gilt. Sind S, S’ Monoide, so nennen wir p einen Monoidhomomorphismus, falls y ein
Halbgruppenhomomorphismus ist und zusétzlich u(lg) = 1g gilt.

Homomorphismen sind ein wichtiges Mittel um algebraische Strukturen zu untersuchen. Mit
ihnen lassen sich auch die folgenden Begriffe definieren.

Definition 2.4. Seien S, T Monoide. Wir nennen 71" einen Untermonoid von S, falls es einen
injektiven Monoidhomomorphismus g : T" — S gibt. Wir schreiben dann 7' < S. T heifst
Quotient von S, falls es einen surjektiven Monoidhomomorphismus p : .S — T gibt. T heifst
Divisor von S, falls T' der Quotient eines Untermonoids von S ist. Wir schreiben dann T' < S.

Analog lassen sich Unterhalbgruppen, Quotienten und Divisoren von Halbgruppen definieren.
Wie man schnell nachrechnen kann, ist < transitiv. Aufierdem folgt aus T' < S bereits T' < S.
Die Definition von Untermonoiden (Unterhalbgruppen) entspricht der iiblichen Definition als
abgeschlossene Teilmenge, die im Falle von Monoiden das neutrale Element enthalten muss, bis
auf Isomorphie.

2.2 Greens Relationen

In diesem Abschnitt fiihren wir Greens Relationen ein. Green untersuchte diese Relationen in
[Grel951] erstmals.

Definition 2.5. Sei S eine Halbgruppe und s,t € S. Wir definieren folgende Quasiordnungen:

s<pt & s = tu fiir ein u € S*,
s<gt = s = ut fiir ein u € S,
s<gt & s = utv fiir u,v € S*,
s<yt & s <p tund s <, t.



2.3 Varietiten

Die Interpretation von <g,<p, <7 als Prafix, Suffix und Faktor ist d&quivalent zu folgender
Beschreibung als Teilmengenbeziehungen von Idealen.

s<pt & sSt C st
s<gt &  Slscsht
s<gst & Slsstcsls?

Die von diesen Quasiordnungen erzeugten Aquivalenzrelationen R, £, J, H nennen wir Greens
Relationen. Die Aquivalenzklassen nennen wir dann R-, £-, J-, H-Klassen.

Lemma 2.6. Die Relationen <g und <p (bzw. R und L) kommutieren.
Beweis. Vergleiche |[Pin1986]. O

Wir definieren eine weitere Aquivalenzrelation D als die kleinste Aquivalenzrelation, die sowohl
R als auch £ enthédlt. Wir schreiben dafiir D = R V L. Ausgehend von Lemma 2.6 kann man
folgern, dass D = L o R = R o L ist. Ein detaillierter Beweis findet sich wieder in [Pin1986].

Wir nennen eine D-Klasse regulér, falls alle ihre Elemente regulér sind.

2.3 Varietaten

Definition 2.7. Eine Halbgruppenvarietit V ist eine Klasse von endlichen Halbgruppen,
sodass folgende Bedingungen erfiillt sind:

1. Ist SeVund T < S, so ist auch T € V
2. {1} eV
3. Fir S TeVist SxT eV

Man beachte, dass mit Punkt 1 bereits folgt, dass Unterhalbgruppen und Quotienten von
Halbgruppen aus V wieder in V sind. Eine Monoidvarietét lasst sich analog definieren. Man
ersetze dazu jeweils in der Definition den Begriff der Halbgruppe durch den Begriff des
Monoids.

Zu einer Monoidvarietdt V lésst sich eine Halbgruppenvarietdt L'V definieren, die Lokalisierung
von V. Esist LV = {S'| eSe € V Ve € E(5)}.

Sei V. = {x1,...,z,} eine Menge von Variablen und seien u,v € V*. Sei M ein Monoid.
Wir sagen, M erfiillt die Gleichung v = v, falls fiir alle Homomorphismen p : V* — M gilt
p(u) = p(v). Dies entspricht auch der Intuition, man darf fiir alle Variablen ein Element aus
M einsetzen.
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Beispiel 2.8. Sei V' = {xz,y}. Die Gleichung xy = yx erfiillen genau die kommutativen
Monoide.

Zu einer Menge von Gleichungen u; = vy, ..., u; = vy definieren wir die Menge von Monoiden,
die diese Gleichungen erfiillen, als [u; = v1,...,ur = v]. Diese Menge ist eine Varietat. Um in
Gleichungen auch die Potenz x* benutzen zu kénnen, erweitern wir dieses Konzept. Wir sagen,
M erfiillt die Familie von Gleichungen (u; = v;);en ultimativ, falls ein Index j € N existiert,
sodass M die Gleichungen (u; = v;);>; erfiillt. Fiir die Klasse der Monoide, die (u; = v;)ien
ultimativ erfiillt, schreiben wir analog [(u; = v;);en]. Auch diese bildet eine Varietdt. Genauer
gilt sogar:

Lemma 2.9. Jede Varietdt lisst sich von einer Familie von Gleichungen ultimativ definieren.

Der Beweis zu diesen Behauptungen findet sich beispielsweise in [Pin1986].

Beispiel 2.10. Die Varietét [(uv)“u(uv)” = (uv)“] ldsst sich beschreiben durch die ultimativ
definierte Varietit [((uv)"u(uv)? = (uv)");en].

Wir fithren einige wichtige Varietéten ein.

Wir nennen ein Monoid M aperiodisch, falls 2 = z%*! fiir alle z € M gilt. Wir setzen
A = [[x“’ = :c‘*’“]]. A ist also die Varietdt der aperiodischen Monoide.

Wir setzen DA = [(uv)“u(uv)® = (uv)*]. Weitere Gleichungsbeschreibungen von DA sind
[(uv)“v(uv)® = (uv)¥] und [(vow)*v(vvw)® = (uvw)®]. Der Bezeichner DA kommt von einer
weiteren Charakterisierung dieser Varietét, jede reguldre D-Klasse ist ein aperiodisches Monoid.
Diese Varietédt hat viele Charakterisierungen. Fiir weitere Informationen und Beweise der
Behauptungen vergleiche [TT2002] und [DGK2008]. Eine wichtige Eigenschaft von DA ist,
dass Elemente in DA aperiodisch sind.

Lemma 2.11. FEs ist DA C A.

Beweis. Sei M € DA und z € M. Wahle u = v = z. Dann gilt

2 = (wv)* = (w)?u(uww)® = 2¥zz® = za® = 27,

Also ist M € A. O

Als stéarkere Aussage konnen wir mit demselben Beweisprinzip auch folgendes Lemma bewei-
sen.

Lemma 2.12. Es ist LDA C A.



2.4 Formale Sprachen

Beweis. Sei z € S € LDA. Setze e := 2. eSe ist in DA. Also gilt nach Lemma 2.11

w+1 +1

« =z%(exe) = ¥ .

¥ = (exe)® = (exe)

Also ist S € A. O

Fiir k € N definieren wir Dy, = [xy1 ... yx = y1 - . . yx]. Intuitiv kénnen sich Elemente aus Dy,
also die letzten k Zeichen merken. Wir setzen nun

D:UDk.

keN

Dies ist wieder eine Varietdt, da Dy C Dy ist. Man beachte, dass insbesondere keine
nicht-trivialen Monoide M in Dy liegen, denn = = x1; = xlﬁ/[ = 1’]“\4 = 1 fiir alle x € M.

Wir setzen I = {1}. I ist also die triviale Varietdt. Wie oben definiert ist dann LI die
Lokalisierung von I. Es gilt insbesondere folgendes Lemma.

Lemma 2.13. Es ist D C LI.

Beweis. Sei M € D. Dann existiert ein k € N, sodass M € Dy ist. Sei e € E(M) ein Idempotent
und s € M. Es ist ese = ese® = e¥ = e. Also ist eMe = {e} € I und damit M € LI O

2.4 Formale Sprachen

Sei I' eine endliche Menge. Wir nennen I' dann ein Alphabet, Elemente von I' nennen wir
Buchstaben. Eine Teilmenge L des freien Monoids I'* heifft (formale) Sprache. Elemente von
I nennen wir Worter. Fiir ein Wort w = a; ... aj, definieren wir das Teilwort u[i;j] = a; ... q;
fir 1 <i < j < k. Fur den Buchstaben an Stelle ¢ schreiben wir u(i) = u[é;é]. Mit € bezeichnen
wir das leere Wort. Ein Wort v heifst Préafix von wu, falls ein Wort w existiert, mit u = vw. v
heifst Suffix von wu, falls ein Wort w existiert, mit v = wv. v heift Faktor, oder Teilwort, von u,
falls Worter wy, we existieren mit u = wivwsg. Fiir ein Wort u € I'* bezeichnen wir mit alph(u)
das Alphabet des Wortes u, d. h. jene Buchstaben, die in u vorkommen. Mit

alphy (u) = {U e TF | u = wo mit w,w € F*}

bezeichnen wir die Faktoren der Lange &k von u. Es ist also alph(u) = alph; (u). Wir konstruieren
nun zu jeder Sprache L ein Monoid. Zuerst definieren wir dazu eine Kongruenz.

Definition 2.14. Sei L eine Sprache. Wir definieren die syntaktische Kongruenz =; durch

u=pveVp,gel™: puge L & pvge L



2 Algebra und formale Sprachen

Wir rechnen schnell nach, dass =;, eine Aquivalenzrelation ist. =, ist auch stabil, d. h. aus
u=p v und v =g, v folgt uv =7, v'v/, da

puvq € L < pu(vq) € L & pu'(vq) € L & (pu')vg € L < pu'v'q € L.

Da =, damit eine Kongruenz ist, ist I'*/ =1 ein Monoid. Wir nennen dieses Monoid das
syntaktische Monoid von L und bezeichnen es mit Synt(L). Wir stellen nun den Zusammenhang
zwischen Sprachen und Monoiden her.

Definition 2.15. Eine Sprache L C I'* wird von einem Monoid M erkannt, falls ein Monoid-
homomorphismus p : I'* — M existiert, sodass p~(u(L)) = L ist.

Die Bedingung ist dquivalent dazu, dass u € L < p(u) € p(L). Die Teilmenge u(L) € M
erkennt also die Sprache. Man sieht, dass L von M via u erkannt wird, falls es ein P C M gibt
mit u~1(P) = L. Ist p surjektiv, so gilt bereits P = u(L).

Lemma 2.16. Synt(L) erkennt L via der Projektion 7 : I'* — Synt(L),u — [u]=, .
Beweis. Sei w(u) € w(L), dann gibt es ein v € L, sodass 7(u) = 7(v). Also gilt [u]=, = [v]=, .
Da v € L ist, impliziert dies nach Definition (mit p = ¢ = ¢), dass u € L ist. Also erkennt
Synt(L) die Sprache L via der Projektion . O

Ohne Beweis wird noch folgende Charakterisierung des syntaktischen Monoids vorgestellt.

Lemma 2.17. Sei L CT™ und ¢ : I'" — M ein Monoidhomomorphismus, der L erkennt, dann
ist Synt(L) < M.

Das syntaktische Monoid ist also das kleinste Monoid, das L erkennt. Uber das Transformati-
onsmonoid eines endlichen Automaten zeigt man dann auch, dass L regulér ist genau dann,
wenn L von einem endlichen Monoid erkannt wird.

Lemma 2.18. Seien S1,S2 Monoide und Ly, Ly Sprachen, sodass L; von S; (i € {1,2})
erkannt wird. Dann wird L1 U Lo, L1 N Ly von S1 X S und I'*\ Ly von Sy erkannt.

Beweis. Seien p; : I'* — S; Homomorphismen und P; C S; mit u;l(Pi) = L; fir i € {1,2}.
Es ist I\ Ly = pu;'(S1 \ P1), also wird I'* \ L; von S; erkannt. Setze P := P; x P, und
p: T = Sy x So,u = (u1(u), pa(u)). Bsist p='(P) = uy (P1) Ny (P2) = Ly N Ly. Fiir
P = (5; x P) U (P, x S9) gilt u="(P) = pu;*(P1) Upy'(P2) = Ly U Ly. Dies zeigt die
Behauptung. O



2.5 Unendliche Wérter

Analog lasst sich auch die Erkennbarkeit von Sprachen mit Halbgruppen definieren, man muss
in der Definition nur I'* durch I' und Monoid durch Halbgruppe ersetzen. Obige Resultate
lassen sich dann auch auf Halbgruppen iibertragen.

Fiir eine Sprache L und eine Varietdt V sagen wir L € V, falls Synt(L) € V. Nach obigem ist
dies dquivalent dazu, dass ein Monoid M € V existiert, das L erkennt. Die Sprachen, die mit

einer Varietét beschrieben werden, sind also insbesondere regulér. Mit Lemma 2.18 sieht man,
dass fiir Sprachen Li, Lo € V auch I'*\ Ly, L1 N Ly, L1 U Ly € V sind.

Wir nennen eine Varietit V entscheidbar, falls bei gegebener reguldre Sprache L das Problem
entscheidbar ist, ob L € V. Es gilt folgende Eigenschaft:

Lemma 2.19. Ist 'V eine Varietdt von Monoiden und ist V entscheidbar, dann ist auch L'V
entscheidbar.

Beweis. Klar. O

2.5 Unendliche Worter

Fiir ein endliches Alphabet I' setzen wir
Fw:{alaz... | a; EF}

als die Menge der unendlichen Worter iiber I'. Formal ist ein unendliches Wort eine Abbildung
von N nach I'. Um endliche und unendliche Wérter gleichzeitig zu betrachten, setzen wir

r~<=r*urv.

Analog lassen sich fiir Teilmengen A C T'* fiir ein k& € N die Mengen A* und A“ definieren.
Wir sagen auch hier, dass eine Teilmenge L von I'* eine Sprache (iiber unendlichen Wértern)
heifst. Fiir o € I'™ setzen wir

alphy, (o) = {v eT* | a=wvf mit wel* ge FO"}.

Wir schreiben imyg(«) fiir jene Faktoren in alphy(«), die unendlich oft in « vorkommen. Fiir
A C T'* definieren wir
A ={a € I'™ | imy(a) = A}

Um Erkennbarkeit auf unendliche Woérter zu iibertragen, benutzt man sogenannte linked pairs.
Ein Tupel (s,e) € M x M fiir ein Monoid M heift linked pair, falls se = s und € = e
gilt. Sei h : I'* — M ein surjektiver Homomorphismus und L C I'* eine Sprache. Falls der
Homomorphismus & klar ist, schreiben wir [s] fiir die Menge h~!(s) mit s € M. h erkennt L
schwach, falls

L= U {[s][e]” | (s,e) ist linked pair und [s][e]* C L}.
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h erkennt L stark, falls
L= U {[s][e]” | (s,e) ist linked pair und [s][e]“ N L # 0} .
Sei e € M ein Idempotent. Die Menge P, besteht aus allen Produkten der Form

xOfl cee xmflfmxm

mit Idempotenten fi,..., fm € A(I'") und Elementen zq,...,z, € M, die die folgenden
Bedingungen erfiillen

e <R Tof1
e <7 fixifit1 firallel1 <i<m-—1

e<c fmxm-
Wir iibernehmen die Verkniipfung oy aus [KKL2011|. Fir u € T, k > 1 und o € T'™ sei

w oy o = v falls es ein z € TF~! gibt mit w = vz und a = 2.

Aufserdem setzen wir w oy ¢ = w und € o & = . In allen anderen Féllen sei diese Verkniipfung
undefiniert. Wir erweitern diese Verkniipfung auch auf Mengen. Sei A C I'*. Wir setzen

A*k:{wlok...okwn|n207wi€A}
Awk:{wlokU)QOk‘wZEA}
A%k = Ak U AYF,

Mit diesen Bezeichnungen lasst sich jetzt die strikte k-Faktor-Topologie definieren. Eine Basis
von dieser Topologie ist gegeben durch die Mengen w o, A% N A™+ mit v € I'* und A C T'*.

2.6 Die Operation V «+ W

Zunéchst fihren wir in diesem Abschnitt das semidirekte Produkt und das Kranzprodukt ein.
Mit Hilfe dieser Produkte lasst sich das Produkt V « W fiir Varietdten V, W definieren.

Seien (S, ®) und (7, -) Halbgruppen. Wir nennen eine Abbildung (¢,s) — ts von T'x S in S
eine Linksoperation, falls

(t1 - t2)s = t1(t2s)
t(s1 © s2) =ts1 O tsa

fiir alle s, 81,89 € S und t,t1,t € T gilt. Wir sagen dann, dass T auf .S von links operiert. Man
schreibt oft auch !s fiir die Operation von ¢ auf s. Sei nun eine solche Linksoperation gegeben.

10



2.6 Die Operation V x W

Wir definieren das semidirekte Produkt S« T" von S mit T" auf der Menge S x T' zusammen
mit der Multiplikation
(s1,t1)(s2,t2) = (51 © Msg, by - L).

Diese Verkniipfung ist assoziativ, da

((s1,t1)(s2,t2)) (83, t3) =(s1 © s, 11 - t2)(s3,t3) = (510 "sy ©@ NP5, 1y -ty - t3)
(51 @ (s20s3),t1 - ta-t3) = (s1,t1)((s2® 283,10 - t3)
=(s1,t1)((52,t2)(83,t3))

Man rechnet leicht nach, dass S x T eine Halbgruppe ergibt. Ist S ein Monoid, so sagen wir,
dass die Linksoperation unitér ist, falls {1g = 1g fiir alle t € T gilt. In diesem Fall nennen wir
das semidirekte Produkt S T unitér in S.

Wir definieren nun ein spezielles semidirektes Produkt. Seien dazu wieder (S,®) und (T, -)
Halbgruppen. Die Menge der Abbildungen ST" von T nach S wird zu einem Monoid durch

(fO9)@):=f(t)©g(t)

fir f,g € ST" und t € T*. Wir betrachten nun die Abbildung T x ST STI, (t, f) —tf,
wobei

bft) = f(t-t) firteT?

gesetzt wird. Diese Abbildung ist eine Linksoperation von 71" auf ST" . Falls S ein Monoid ist, so
ist diese Operation unitar. Das semidirekte Produkt ST % T nennen wir das Kranzprodukt von
S mit T'. Wir schreiben dafiir S?T'. Es gilt folgender Zusammenhang zwischen dem semidirekten
Produkt und dem Kranzprodukt:

Lemma 2.20. Seien S und T Halbgruppen. Dann ist jedes semidirekte Produkt zwischen S
und T, das unitdr in S ist, eine Unterhalbgruppe von S T.

Beweis. Siehe [Pin1986]. O

Wir kénnen mit diesen Begriffen nun eine Definition von V x* W geben.

Definition 2.21. Sei V eine Monoidvarietdt und W eine Halbgruppenvarietdt. V « W sei die
Menge aller Divisoren von Halbgruppen der Form ST fir S € Vund T € W.

Eine technische Rechnung zeigt nun, dass V * W eine Varietdt von Halbgruppen ist. Falls
S € V ist, dann ist auch ST ¢ V, da dies nur ein |T'|-faches direktes Produkt von S ist.
Man kann nach Lemma 2.20 die Varietdt V x* W also auch als die Menge aller Divisoren von
semidirekten Produkten S x T, die unitér in S sind, mit S € V und T' € W definieren. Dies ist
auch der Grund fiir die Schreibweise V x« W.
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2 Algebra und formale Sprachen

2.7 Die Varietat V x D

In diesem Abschnitt untersuchen wir die Varietdt V * D genauer. Das zentrale Resultat dieses
Abschnittes ist es, eine Beschreibung der Sprachen in V x D zu erhalten. Dies liefert eine
greifbare Beschreibung von V x D.

Zunéchst definieren wir die Rhodes-Expansion. Diese weist jedem Wort ein Fensterwort zu. Sei
k € N die Fenstergréke. Wir definieren uns dann ein neues Alphabet ¥, = (I' U {<,>})¥. Wir
definieren die Funktion py : (I'U {<,>})* — 3} durch

i ull; Kl (ul2: ul))  falls Ju] > k
Pr(u) =
€ sonst.
Die Rhodes-Expansion py, : I'* — 37 ist dann gegeben durch pg(u) = pg (Dkudk). Das Wort
pr(u) besteht also aus Fenstern der Grofse k die ein Teilwort von u zeigen. Diese Fenster passen
jeweils zusammen, d. h. man kann sich pg(u) so vorstellen, dass iiber das Wort u das Fenster
der Grofse k nach rechts geschoben wird.

Beispiel 2.22. Sei £k = 2, ' = {a,b}, u = abbba. Dann ist px(u) = ppr(>Pu<<) =
(>>) (>a) (ab)(bb)(bb)(ba)(a<)(<<).

Es gilt nun folgender Zusammenhang zwischen Sprachen aus V * D und V|, welches als Wreath
Product Principle von Straubing bekannt ist.

Satz 2.23. Sei L CT'*. L € V%D genau dann, wenn es eine Zahl k € N und eine Sprache
K C %} gibt, mit K € V und p, ' (K) = L.

Beweis. <" Es gibt S € V und ¢ : ¥} — 5, sodass ¢ die Sprache K erkennt. Sei T' =
T = (X5F,.) mit der Verkniipfung t1 - to := suffix;(t1t2). Damit ist T € Dj. Wir zeigen,
dass L = plzl(K) von ST erkannt wird. Definiere s, : T — S,t — ¢ (suffix;, (>F¢)) und
¢ : It — ST durch a — (s, a). Wir zeigen, ¢(u) € (L) = u € L, also ¢ erkennt L. Sei also
Y(ay...an) € Y(L). Dann gibt es ein Wort by ... b, € L mit ¥(ay...a,) = (b1 ...by). Es ist

P(ar...an) = (g - sy, .. i =ts, suffixg(ar ... an))

= (8- sy, ebmotg | suffixg(by ... b))

=(by...by)
Es gilt somit insbesondere
n—1
(8 "sp... M =1s Y1) = ® (sufﬁxk (Dkal e ai>>
i=0
m—1
= o) (sufﬁxk (Dkbl PN bz))
1=0

= (54 by Sp .- bl"'bmfls@)(lT)

12



2.7 Die Varietat V « D

Falls n < k oder m < k ist, so gilt bereits a;...a, = b1...b,. Wir konnen also annehmen,

dass n > k und m > k gilt. Damit gilt a,—g11...an = bn—g+t1---bm. Insbesondere ist also

suffix; (>Fay . . . ap,<’) = suffix;, (5%b; . . . by,<?) fiir i € N. Zusammen ergibt sich also

olprlal...ap)) = ﬁgp (sufﬁxk ( k .ai)) mit a; =< fiiri > n
i=0
n—1
T ().
= H ® <sufﬁxk (Dkbl ))
m))

—M%( € o(K)

>"aq
Dkal

.

~
I
o

% (sufﬁxk (Dkal ... an<1i>)

% (sufﬁxk (Dkbl o bmqi))

.

ﬁ
Il
o

Da ¢ die Sprache K erkennt, ist damit px(ay...a,) € K und damit a;...a, € L, was zu
zeigen war.

»=" Sei L € V% Dy, dann existieren S € V,T € Dy, ¢ : It — ST mit ¢y} (¢(L)) = L. Wir
setzen die Fenstergrofse auf 2k und definieren uns einen Homomorphismus

@: Y5 — S x ST
[>kCL1 LA (51 Lt S9 ... tl'“tkflsk 1ST)
l>ia1 . A2k —; (tl tok—i- LS9k, 1ST) firo<i<k
by...bp—1a1...ap<d— (157Xt1 tk)
= (

>aj ... DL QN S1 - S ~t1"'tl*131,Xt1_._tl) fir1 <lI<2k-1

wobei a; € I' und b; € ' U {p, <} gilt. AuRerdem seien in jeder Zeile ¢ (a;) = (s;,t;). Fiir
die restlichen Buchstaben von Yo, auf denen ¢ noch nicht definiert wurde, setzen wir den
Funktionswert auf (1g,1gr). Die Funktion x; fiir ¢ € T sei definiert durch

~ 15 falls ¢ 7& f

xi(t) = .

c falls t = ¢,
wobei 1g # ¢ € S beliebig aber fest gewéhlt ist. ¢ ist also so definiert, dass fiir ¥(w) = (s, )
gilt p(par(w)) = (s,x¢). Wir setzen P := {(s,x:) | (s,t) € (L)} und K := ¢ }(P). Nach
Konstruktion ist also K € V. Zu zeigen ist noch, dass p,; (K) = L gilt. Sei also pax(w) € K.

Zu zeigen ist, dass w € L ist. Nach Definition von K ist ¢(por(w)) € P. Daraus folgt nach
Konstruktion von ¢, dass ¢ (w) € (L) ist. Da 1) erkennend ist, ist somit w € L. O

Definition 2.24. Eine Varietdt V heifit lokal, falls V x D = LV gilt.

Kann man also fiir eine entscheidbare Varietdt V nachweisen, dass sie lokal ist, so kann man
folgendes Lemma benutzen.

13



2 Algebra und formale Sprachen

Lemma 2.25. Sei V entscheidbar und lokal, dann ist V x D entscheidbar.

Beweis. Folgt direkt aus Lemma 2.19 und der Definition von lokal.
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3 Logik

In diesem Kapitel untersuchen wir bestimmte Logikfragmente. Jeder Formel aus einem die-
ser Fragmente kénnen wir dann eine Sprache zuweisen. In Kapitel 4 werden wir dann den
Zusammenhang zwischen solchen Sprachen und denen, die wir mit Methoden aus Kapitel
2 definiert haben, beschreiben. In Abschnitt 3.1 fithren wir Ranker iiber Wortern und die
zugehorigen Rankersprachen ein. In Abschnitt 3.2 definieren wir dann zwei Fragmente der
temporalen Logik. Das Konzept der Intervall-Temporal-Logik wird in Abschnitt 3.3 eingefiihrt.
In Abschnitt 3.4 wenden wir uns dann der Logik erster Stufe zu. In Abschnitt 3.5 werden
Ehrenfeucht-Fraissé-Spiele eingefiihrt, ein Hilfsmittel, um Aquivalenzen von Wértern beziiglich
Formeln einer bestimmtem Tiefe zu beweisen.

3.1 Ranker

Ein Ranker tiber Wortern ist ein Wort iber dem Alphabet {Xy, Y, | w € I'*}. Dabei inter-
pretieren wir X, als die Anweisung, zum néchsten Vorkommen des Teilwortes w zu springen.
Genauso interpretieren wir Y, als die Anweisung, zum letzten Vorkommen des Teilwortes w zu
springen. Wir formalisieren dies wie folgt. Sei o € I'*® ein Wort und ¢ € N eine Position im
Wort a.. Dann ist

w(

a,i) ;= min{j | j > ¢ und w ist Préfix von a[j;|a|]}
w(ayi) :==max{j | j < i und w ist Suffix von «a[1;j]}

X
Y

Dabei setzen wir den Wert auf undefiniert, falls das Minimum bzw. Maximum nicht existiert.
Sei ein Ranker r gegeben. Wir nennen r einen X-Ranker, falls es ein Wort w € I'* und einen
Ranker s gibt, mit » = X, s. Analog heifst r ein Y-Ranker, falls es ein Wort w € I'* und einen
Ranker s gibt, mit r = Y., s. Damit ldsst sich sich die obige Definition der Operatoren X, Y,
induktiv auf Ranker fortsetzen.

r(a, 1) := s(a, Xy(a, 1)) fir r =Xy s

r(a,i) = s(a, Yy, 1)) fir r =Yy s

15



3 Logik

Yy
Xay
v
Xy
—_——

| | | |
[ | 1 — | |

—_— —_—

u w

Abbildung 3.1: Illustration zu Rankern

Falls der Ranker s undefiniert ist, so soll auch r undefiniert sein. Abhéngig davon, ob r ein
X-Ranker oder Y-Ranker ist, definieren wir nun die Position, die ein Ranker auf ein Wort «
zuriickgibt.

(@) r(a,0)  falls r ein X-Ranker ist
r(a) =
r(a,00) falls r ein Y-Ranker ist

Abbildung 3.1 illustriert die Wirkungsweise eines Rankers. Wir sagen, dass r auf « definiert
ist, falls r(«) nicht undefiniert liefert. Die hier definierten Ranker entsprechen auf unendlichen
Wortern den Eager-Rankern aus [DKL2010]. Es ist manchmal sinnvoll, auch an das Ende des
Wortes zu springen. Wir definieren deswegen die Abkiirzungen

Xw = Xy Xw(2) e Xw(\w\)

PR

Yw: =Yy Yw(|w|71) .. -Yw(l) .
Die von einem Ranker r erzeugte Sprache ist
L(r) = {a € T*° | r ist definiert auf a}.

Wir nennen eine Sprache L eine Rankersprache, falls L die boolsche Kombination von Sprachen
des Typs L(r) fiir Ranker r ist.

3.2 Temporal-Logik

Wir fiihren nun die Temporal-Logik ein. Syntaktisch ist eine Formel ¢ in TL gegeben durch

pu=Tlal vV |YvAY| Y| XY |YP[FY|PY|Xpt) | Yy

wobei @ € T und v, ¢ € TL rekursiv definiert wurden. Wir interpretieren Formeln in TL iiber
Wortern in I'*° und Positionen auf diesen Wortern. Wir schreiben a, x |= ¢, falls die Formel
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3.2 Temporal-Logik

¢ € TL wahr ist auf o € '™ an Position 2 € NU {oo}. Ist dies nicht der Fall, so schreiben wir
a,x [~ ¢. Die Semantik wird induktiv definiert. o,z = T sei immer wahr.

arEa &
ax =Y VY
az =AY
a,x =
a,x = X
a,z =Y
a,x | F
a,x EPy
a,x = Xy ¥
a,z =Yyt

S R

¢

alr) =a
o,z |= 1 oder o,z |= 1)
a,m):wunda,x):@/;
a,x 1
a,x+1EY
a,x—1FE1
Jyry>r Aoy
Jy:y<azhoaykEy
a, Xy () =9

o, Yu(z) ¢

Wir definieren nun, wann ein Wort « eine Formel ¢ erfiillt. Wir schreiben dafiir « = ¢. Wir
setzen wieder o |= T auf wahr. Fiir jedes a € T setzen wir a |= a auf falsch. Die boolschen
Operatoren —, A,V werden wie oben definiert. Fiir die temporalen Modalitdten setzen wir

a =Xy
aEYy
akE=Fy
aEPY
a = Xyt
aEYyt

¢

a, 1 Ev¢
o, |af =1
a,0 = F
a,00 = P
a,0 | Xyt
a,00 =Yy

te o0

Jeder Formel ¢ € TL lésst sich so in natiirlicher Weise eine Sprache

L(¢) ={a el [ak ¢}

zuweisen. Wir nennen eine Sprache L definierbar in TL, falls eine Formel ¢ € TL existiert, mit

L=L(9).

Wir fithren die Fragmente TL[X,Y,F,P] und TL[X,,, Y] ein. In beiden Fragmenten darf man
die atomaren Modalitdten und boolsche Operatoren benutzen. In TL[X, Y, F, P| darf man nur die

temporalen Modalitiaten X, Y, F, P, wohingegen in TL[X,,, Y] nur die temporalen Modalitdten

Xw, Y gebraucht werden diirfen. Wie zuvor nennen wir eine Sprache L definierbar in einem
der Fragmente, falls es eine Formel ¢ in diesem Fragment gibt mit L = L(¢).

Beispiel 3.1. Seien a,b € I'. Wir definieren die Sprache

L ={uaba € T™ |u eT*, a €' ab ¢ alphy(u) U alphy(«)}.
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3 Logik

Betrachte die folgende TL[X,, Y]-Formel und TL[X,Y, F, P]-Formel

QZ):Xab_‘XabT

¢ =F(a ANX( AN —F(a A XD))).

Es gilt L(¢) = L(¢) = L. Damit ist L sowohl in TL[X,, Y], als auch in TL[X,Y,F,P]

definierbar.

3.3 Intervall-Temporal-Logik

Eine Formel ¢ € ITL[F,, L] ist gegeben durch
ou=T| OV YAD| 0 |¥Fud | 9Lyt

fiir Worter w € I'* und Formeln 4, ¢ € ITL[F,,, L,]. Die Semantik von I'TL[F,,, L,,]-Formeln ist
iiber Intervallen und Wortern definiert. Die Operatoren F,, und L,, erzeugen zwei Teilintervalle,
indem das erst- bzw. letztvorkommende Wort w herausgeschnitten wird. Der Schnittpunkt ist
das erste bzw. letzte Vorkommen von w im Intervall. Als Anschauung dient Abbildung 3.2.
Wir formalisieren diese Anschauung. «, (z,y) = T ist immer wahr. Die boolschen Operatoren
=, A,V werden wie bereits im Abschnitt 3.2 definiert. Es gilt
o, (z,y) EYFu? e Xela,z) existiert A Xy (o, z) <y A
o, (2, Xu (o, 2)) E ¥ A o, (Xu(a,2),9) 9,
o, (@) EvLetd & Yelo,y) existiert A Yy(a,y) > 2 A
a, (,Yu(a, ) v A, (Yula,y),y) .
Ein Wort « ist nun ein Modell fiir ¢, falls o, (0, 00) = ¢. Wir schreiben dann o = ¢. Ausgehend

davon kénnen wir die zu einer Formel ¢ zugehorige Sprache

L(¢) ={a el [ak ¢}

definieren. Wir sagen, dass eine Sprache L in ITL[F,,L,] definierbar ist, falls eine Formel
¢ € ITL[F,, L] existiert, mit L = L(¢).

Beispiel 3.2. Wir betrachten die Sprache L aus Beispiel 3.1. Fiir
=T Fab(ﬁ(T Fap T)) S ITL[Fw, Lw]

gilt L = L(¢). Also ist L definierbar in ITL[F,, L,,].
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3.4 Logik erster Stufe

o w o

Abbildung 3.2: Ilustration zu ¥ Fy, ¢

3.4 Logik erster Stufe

Wir definieren Préadikatenlogik erster Stufe FO iiber dem Modell der Wérter. Atomare Formeln
in FO sind T, das einstellige Pradikat A(z) = a, fiir eine Variable x und einen Buchstaben a € T,
und die zweistelligen Préadikate x < y und x < y fiir Variablen x und y. Zusammengesetzte
Formeln ¢ sind dann

$u=—p | YV Y| AD|Vay | Jay

fiir beliebige Formeln 1, @E € FO und beliebige Variablenbezeichner x. Wir nennen ein Vor-
kommen einer Variablen x gebunden, falls das Vorkommen von x in einer Teilformel der Form
Jxtp oder V) auftritt. Ansonsten heifst das Vorkommen von z frei. Eine Formel ohne freie
Variablen nennen wir geschlossen oder einen Satz.

Fiir die Semantik der Formeln in FO stellen wir uns die Variablen als Positionen auf den
Woértern «, also als Elemente der Menge {1,...,|a|} NN, vor. Die Ordnungsrelation ist dann in
natiirlicher Weise definiert. Das Pradikat A(z) = a iiberpriift, ob die Beschriftung des Wortes
an der Stelle z dem Buchstaben a entspricht. Die Semantik der zusammengesetzten Formeln
wird wie {iblich definiert. Fiir einen Satz ¢ schreiben wir u |= ¢ falls ¢ auf dem Wort u mit
wahr ausgewertet wird.

Das Fragment FO?[<] enthilt alle FO-Formeln, die maximal zwei Variablenbezeichner benutzen.
Ublicherweise bezeichnen wir diese mit = und y.

Wir definieren ein Pradikat x = y 4 1, kurz als +1 bezeichnet. Die Semantik ist gegeben durch
die FO-Formel Vz (xz < 2z V z < y), wobei z ein bisher nicht benutzter Variablenbezeichner sein
soll. Dieses Pridikat ist nicht in FO?[<] definierbar, da man dafiir drei Variablen benétigt.
Deswegen ist das Fragment FO2[<7 +1], in dem wir zusétzlich das Pradikat +1 erlauben, eine
echte Erweiterung von FO?[<].

Weitere Fragmente ergeben sich durch Restriktion der Quantorenalternierungen. Wir sagen, eine
Formel ¢ € FO[<, +1] ist in ¥a[<, +1], falls ¢ eine dquivalente Formel in Prénex-Normalform
besitzt, die nur zwei Blocke von Quantoren besitzt, beginnend mit einem Block von Exis-
tenzquantoren. Eine Formel ¢ ist in IIs[<, +1], falls —¢ € ¥a[<,+1]. Aufserdem setzen wir
Ag[<, +1] = So[<, +1] N 1L [<, +1].

Fiir einen Satz ¢ € FO definieren wir die zugehérige Sprache

L(¢) = {a el™ | a|=¢}.
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3 Logik

Eine Sprache L heifit definierbar in FO, falls eine Formel ¢ € FO existiert, mit L = L(¢).
Analog definiert man dies fiir FO?[<], FO?[<, +1], As[<, +1], Ba[<, +1] und TIx[<, +1].

Beispiel 3.3. Wir betrachten nochmals die Sprache L aus Beispiel 3.1. Fiir die Formel

p=3xFy(y=x+1AXNz)=aAAy)=>bA
Ve((x >y AXNz)=a)=>TJyly=x+1AXNy) =0)))

gilt L = L(¢) und ¢ € FO?[<,+1]. L ist also auch in FO?[<, 41] definierbar.

3.5 Ehrenfeucht-Fraissé-Spiele

Ehrenfeucht-Fraissé-Spiele sind ein Hilfsmittel aus der Modelltheorie. Sie wurden erstmals von
Fraissé in [Fral950] beschrieben und dann von Ehrenfeucht als Spiel in [Ehr1961]| formuliert.
Wir fiihren diese Spiele fiir die Logikfragmente FO?[<, +1] und FO?[<] ein.

Ein Ehrenfeucht-Fraissé-Spiel wird von zwei Spielern gespielt, oft Spoiler und Duplicator
genannt. Kin Spiel wird auf zwei Strukturen gespielt, in unserem Fall sind dies zwei Worter
u und v. Spoilers Ziel ist zu zeigen, dass u und v eine verschiedene Teilstruktur haben,
Duplicator versucht dies durch seine Spielziige zu vertuschen. Ein FO? (u,v)-Spiel wird mit
zwei Spielsteinen auf den Wortern w, v und n Spielziigen gespielt. Diese Spielsteine werden
auch Marken oder Pebbles genannt.

Im ersten Schritt sucht sich Spoiler ein Wort aus und legt eine Marke an eine bestimmte
Position des Wortes. Duplicator legt auf das andere Wort einen Spielstein. Im zweiten Schritt
wiederholt sich dieses Prozedere mit den anderen beiden Spielsteinen. In jedem nachfolgenden
Schritt sucht sich jetzt Spoiler ein Wort aus, nimmt einen der Spielsteine und versetzt ihn.
Duplicator macht dasselbe auf dem anderen Wort.

Dabei muss nach jedem Schritt gelten, dass die relative Ordnung der beiden Spielsteine auf den
Wortern gleich ist. Ist also der erste Spielstein in Wort « vor dem zweiten Spielstein gesetzt,
so muss dies auch in Wort v gelten. Aufferdem muss die Beschriftung an den Positionen der
Spielsteine gleich sein. Wird das Spiel tiber F02[<, +1] gespielt, so sind die Spielsteine genau
dann benachbart in u, falls sie benachbart in v sind. Ist eine dieser Bedingungen wéahrend
einem der Schritte nicht erfiillt, so hat Spoiler das Spiel gewonnen, ansonsten hat Duplicator
das Spiel gewonnen.

Wir sagen, dass Duplicator eine Gewinnstrategie auf FO?2 (u, v)-Spielen hat, falls er fiir alle

Spielziige von Spoiler entsprechende Ziige ziehen kann, sodass er gewinnt.
Fiir zwei Worter u, v sagen wir, dass u =, v bzw. u =/ v, falls v und v diesselben Formeln
in FO?[<] bzw. FO?[<, +1] der Tiefe n erfiillen. Es gilt nun folgender Satz, der Ehrenfeucht-

Fraissé-Spiele fiir uns interessant macht.
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3.5 Ehrenfeucht-Fraissé-Spiele

Satz 3.4. Duplicator hat eine Gewinnstrategie auf allen FO2(u,v)-Spielen fir FO*[<] (bzw.
FO?[<, +1]) genau dann, wenn v =, v (bzw. u =" v)

Beweis. Siehe [Ehr1961]. O
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4 Das Fragment FO*[<, +1] auf endlichen
Wortern

In diesem Kapitel werden endliche Worter untersucht. Dabei wurde versucht die Beweise
allgemein genug zu formulieren, sodass die meisten Beweise auch fiir das Kapitel 5 benutzt
werden kénnen. Das Hauptresultat der Arbeit ist der folgende Satz. Er zeigt die Aquivalenz
zwischen den eingefiihrten Konzepten.

Satz 4.1. Sei L CT'™. Dann sind dquivalent:
1. L wird erkannt in DA x D.
2. L wird erkannt in LDA.
3. L ist definierbar in ITL[F,,, Ly].
. L st definierbar in TL[Xy, Y]

4

5. L ist eine Rankersprache.

6. L ist definierbar in TL[X,F,Y,P].
. L ist definierbar in FO?*[<, +1].

8

. L ist definierbar in Aq[<,+1].

Die folgenden beiden Lemmata stehen auch in dhnlicher Form in [Eil1976].
Lemma 4.2. Es gilt:

1. Seien S, T Halbgruppen. Falls S < T, dann gibt es fir jedes Idempotent e € E(S) ein
Idempotent f € E(T) so, dass eSe < fTf.

2. Sei (g,e) ein Idempotent des Kranzprodukts S?T. Dann gilt

(g,€)(S1T)(g,e) < S (eTe).
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4 Das Fragment FO?[<, +1] auf endlichen Wértern

Beweis. 1. Nach Definition existiert eine Halbgruppe U und die Homomorphismen ¢: U — T,
Y: U — S so, dass ¢ injektiv und v surjektiv ist. Sei z € 9p~!(e) und f’ := 2. Kurze Rechnung
zeigt, dass ¥(f') = e. Sei f := ¢(f'). f ist somit ein Idempotent, da f’ idempotent ist. Die
Abbildung ¢|pp: fUS" — fTf (bzw. Y|pyp: f'UF — eSe) ist injektiv (bzw. surjektiv).
Damit gilt eSe < fT'f.

2. Siche [Eil1976]. 0
Proposition 4.3. Fir zwei Varietiten V,W ist V« LW C L(V « W).
Beweis. Sei X € V x LW. Damit gilt X < Y ! Z fiir bestimmte Y € V,Z € LW. Fiir jedes

e € B(X) gilt
eXe< X <Y 17,

was eXe < Y ! Z impliziert. Mit Lemma 4.2 folgt, dass ein f € E(Z) existiert so, dass
eXe <Y U(fZf).
Da fZf € W, gilt eXe € V x W nach Defnition. Daraus folgt X € L(V « W). O

Dies kann man direkt anwenden fur die Varietat DA x D.

Korollar 4.4. DA x D C LDA

Beweis. Nach Lemma 2.13 gilt D C LI. Damit gilt auch DA «D C DA % LI. Nach Proposition
4.3 gilt dann DA * LI C L(DA «I) = LDA. O

Der Beweis benutzt keine Eigenschaften von DA. Damit gilt allgemeiner auch V+D C LV. Wir
untersuchen im weiteren die Varietdt LDA auf niitzliche Eigenschaften. In Kapitel 2.3 haben
wir bereits gesehen, dass LDA aperiodisch ist. Folgendes Resultat lasst sich also insbesondere
auf LDA anwenden.

Lemma 4.5. Sei M aperiodisch, x,y € M, x <p y und y <g x. Dann ist z = y.

Beweis. Es gibt b,c € M mit 2 = yb und y = cx. BEs ist = cxb = *2b* = <“Hab” = cx =
Y. O
Lemma 4.6. Sei M € LDA und e,u,a € M. Falls e® = e, ue = u, uae = ua und v R ua gilt,
dann ist u R uaa

Beweis. Da u R ua, existiert ein b € M, sodass uab = u. Es ist

u = u(eaebe)”

=u
= u(eaebe)“eae(eaebe)” € uaa - M.

Folglich gilt u R uaa. O
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Dieses Lemma zeigt eine Bedingung dafiir, dass kein R -Abstieg auftritt. Wir benutzen dies,
um das folgende Lemma zu beweisen. Es zeigt, dass Faktoren einer bestimmten Lénge keinen
R -Abstieg verursachen, falls diese schon einmal auftraten.

Lemma 4.7. Seien u,z € ', M € LDA, a € ' mit || > m > |M|. Sei pu: ' — M ein
Homomorphismus. Falls pu(u) R p(uzx) und alph,,(x) = alph,,(za), dann ist p(u) R p(uza).

Beweis. Sei w := suffix,,(za). Da alph,,(x) = alph,,,(za), gibt es s,t € I'* so, dass x = swt. Da
|w| > | M| ist, existieren nach Lemma 2.2 wy, wy € I'*, sodass w = wiwsa und p(wi)e = p(w)
fiir ein Idempotent e € M. Sei |w;| maximal mit dieser Eigenschaft. Es ist

T = swlwgat'wg

fiir ein ¢ € T und w; ist ein Suffix von wywyat’. Wir setzen a’ = p(wqat’) und v = p(uswy).
Damit ist

ve=vy und vde=1u'd
Mit Lemma 4.6 folgt, dass uv'a’a’ R u'. Also gilt p(uzat’) R v/ R p(u) und es folgt, dass
p(u) R p(uza). O

Proposition 4.8. Sei L C I't erkennbar mit einem M € LDA. Dann ist L definierbar in
ITL[F., Ly].

Beweis. Sei p: Tt — M € LDA ein Homomorphismus, der L erkennt. Wir fixieren m > |M|.
Fiir Worter u, v € I'* definieren wir eine Aquivalenzrelation v =,, v, falls v und v dieselben
Formeln in ITL[F,, L] erfiilllen mit Operatortiefe von héchstens n und mit |w| < m fiir alle
Woérter w, die in einer Modalitit vorkommen. Sei w =,, v. Mit Induktion nach |alph,, (u)| zeigen
wir, dass n > |M]| - |alph,, (u)| die Gleichheit p(u) = p(v) impliziert.

Sei |alph,,(u)] = 0, d.h. |u| < m. Aus u =, v und n > 1 folgt direkt u = v. Sei nun also
|alph,, (u)| > 0 und u = wjay ... upapuy | mit u; € I und a; € T' die R-Faktorisierung von w,
d.h. 1R p(u)) und

pluhar ... uwj) >r p(ujar ... uja;) R p(ular .. wjaug,,) firalle 1 <i<k.

Fir 1 < < k sel wja; = wjw; mit |w;| = m, falls |u}a;| > m und sonst u; = 1 und w; = ula;.
Es gilt

plurwy .. .ouf) >r p(uiwy .. ww;) R p(ujwy .. .uiwiugﬂ) fiir alle 1 <4 <k.

Nach Lemma 4.7 gilt dann w; ¢ alph,, (u}) fir alle 1 < ¢ < k. Da es maximal |M| verschiedene
R-Klassen gibt, gilt k& < |M|. Ferner gilt u = T Fy, (T Fuy(... TFy, T)...) und u =, v
mit n > k, also folgt, dass v eine Faktorisierung v = vjw; ... vgwgvEy1 mit v; € T'* und
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4 Das Fragment FO?[<, +1] auf endlichen Wértern

w; & alphm(viwia;l) besitzt. u =, v impliziert u; =,—; v; fiir 1 < ¢ < k. Da aber alph,,(u;) C
alph,, (u}) C alph,, (u), gilt n—i > |M]||alph,, (u;)|. Nach Induktion gilt also u(u;) = p(v;) und

w(v) <g p(viw ... vpwg) = pugwy ... ugwg) R p(u).

Symmetrisch folgt pu(u) <, p(v), indem man mit einer £-Faktorisierung von v beginnt. Daraus
folgt p(u) = p(v) nach Lemma 4.5 und Lemma 2.12.

Sei n > |M||T|™ und p € M. Nach obigem ist u~!(p) eine endliche Vereinigung von =,-
Klassen. Bis auf Aquivalenz gibt es nur endlich viele ITL[F,,, L,]-Formeln mit Operatortiefe
von hochstens Tiefe n und |w| < m so, dass jede =,-Klasse durch eine Formel in ITL[F,,, L]
ausgedriickt werden kann, indem man angibt, welche dieser Formeln gelten. Also kann =1 (p)
in ITL[Fy, Ly] beschrieben werden. Da u die Sprache L erkennt, gilt L = [J,cp p~t(p) mit
P = (L) und es folgt, dass L in ITL[F,, L] definierbar ist. O

Um die Intervallgrenzen der Intervall-Logik in TL[X,, Y] zu beschreiben, benutzen wir das
néchste Lemma. Dieses liefert Formeln, mit denen wir garantieren kénnen, im richtigen Intervall
Zu sein.

Proposition 4.9. Sei r ein Ranker. Dann gibt es Formeln ¥, o, € TL[Xy, Y| so, dass fir
alle a €', z € N

a,zk=9, & z<r(a),
a,zkEo © z>r(a).

Insbesondere ist r(a) genau dann definiert, wenn es eine Position x gibt mit o, x |= 9. Dies
ist genau dann der Fall, wenn es eine Position x gibt mit o, x |= oy.

Beweis. Wir fiihren eine Induktion nach der Lange von r. Fiir r = X, setzen wir
Y, = Xw[2;|w|]ﬁYw T und o= X Yo T

und fir r =Yy,
or = Yaifw-1" X T und 9y = =Y~ X, T.

Sei r = s X, fiir einen Ranker s und setze
U = Xw[2;|w|]_‘Yw_‘195 und o = =Xy Yy s
und fiir 7 = s X, setzen wir symmetrisch

0y = Vw[1;|w|_1]ﬁ7(wﬁgs und ¥, = ﬁvwﬁy(wﬁgs.

Mit dieser Vorbereitung kann nun die folgende Proposition bewiesen werden.
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Proposition 4.10. Sei L C I'*® definierbar in 1TL[F,,L,]. Dann ist L definierbar in
TL[Xu, Yo

Beweis. Wir definieren fiir jede Formel ¢ € ITL[F,, L] und fiir Ranker ¢ und r eine Formel
©(g:r) € TL[Xy, Y] mit der Eigenschaft, dass fiir alle a € I'™° so, dass g(a) und r(a) definiert
sind mit g(a) < (), gilt @ = ¢y genau dann wenn

a, (q(a);r(a)) E .

Also definiert (g;r) ein Intervall, dass parametrisiert wird vom Wort «. Auferdem erlauben
wir, dass ¢ und r leer sind (bezeichnet mit ¢). Fiir ¢ = € setzen wir ¢(a) = 0 und um eine
bequeme Schreibweise zu erhalten, setzen wir r(«) = |« fiir r = . Folglich erfiillt die Formel
P(eie) € TL[Xy, Yy] die Bedingung L(¢(;e)) = L(¢p).

Wir definieren ¢4, mit strukturieller Induktion auf . Atomare Modalitdten und boolsche
Verkniipfungen werden wie folgt definiert:

Tgn=T
(%) (gir) = ~P(gir)
(0 AP)(gir) = Plgir) N Yigir)
(V) (gr) = L) V Yasr)

Fiir die temporalen Modalitdten benutzen wir die Formeln 9, und g, aus Proposition 4.9 und
setzen:

(()0 Fw w)(q;r) = P(g;q Xw) A w(q;u A qy(w_‘gr

)V")
(90 Lw w)(q;r) = So(q#?w) A 1/}(7"Yw;r) A TYw_"ﬂq'
O
Zu jeder Sprache, die in TL[Xy, Y] definierbar ist, lasst sich effektiv die Rankersprache
berechnen. Wir zeigen dies im néchsten Lemma.
Lemma 4.11. Sei L C T'*° definierbar in TL[Xy, Y], dann ist L eine Rankersprache.

Beweis. Sei ¢ eine TL[Xy,, Yy,]-Formel so, dass L(¢) = L. Wir formen ¢ syntaktisch dquivalent
um, sodass alle Modalitaten X, Y,, nach innen gezogen werden. Dies wird induktiv gemacht

mittels Xw(wl \ ¢2) = Xy 1 V Xy P2, Xw(wl A ¢2) = Xy 1 A Xy g und Xy 0 = Xy T A
=Xy . Analog gilt dies fiir Y,,. Damit ist L eine boolsche Kombination von Rankern. O

Ein dhnliches Resultat wie bereits in Proposition 4.9 fiir TL[X,,, Y] formuliert, ldsst sich auch
fir TL[X, F,Y, P] formulieren.
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4 Das Fragment FO?[<, +1] auf endlichen Wértern

Proposition 4.12. Seir ein Ranker, dann gibt es Formeln 9., o, € TL[X,F,Y,P] so, dass fiir
alle « €I'°, z € N

a,z=9, & z<r(a),
a,zkEo < z>r(a).

Insbesondere ist r(a)) genau dann definiert, wenn es eine Position x gibt mit «,x |= 9,. Dies
ist genau dann der Fall, wenn es eine Position x gibt mit a, x |= oy.

Beweis. Sei w € I'". Nach Induktion iiber die Linge von w, definieren wir Formeln @ und @
in TLIX,F,Y,P] als w(1) A X (w[2; |wl]]), und w(|w]) AY (w[l;|w| — 1]). Folglich ist die Formel
w wahr fiir v an der Position  genau dann, wenn w = afz;z + |w|), und w ist wahr genau
dann, wenn w = a(z — |w|;x]. Wir fithren eine Induktion nach der Lénge von r. Fiir r = X,,
setzen wir

Y, =2YP(@w) wund o, =P(w).

Symmetrisch fiir r =Y, setzen wir

Y, = F(w) und o, = - XF(w).
Sei r = s X, oder r = sY,, fiir einen Ranker s. Nach Induktion existieren Formuln ¢; and o,.
Definiere
U, =YP(w) VYP(@w AYs) und o =P@AYps) fiir r = s Xy,
Uy = F(w A Xs) und o, = " XF(@) V XF(W A ps)  fiir r = sYy,.

O

Aus dieser Proposition kann man direkt folgern, dass jede von einem Ranker erzeugte Sprache
durch eine Formel ¢ € TL[X,Y,F, P| definierbar ist.

Lemma 4.13. Seir ein Ranker. Dann gibt es eine Formel ¢ € TLIX,F,Y,P] so, dass L(r) =
L(p).

Beweis. Nach Proposition 4.12 gilt v = r genau dann, wenn v = Fd, € TL[X,F,Y,P] und
folglich L(r) = L(F9,). O

Wir zeigen in den nédchsten beiden Lemmata, dass sich eine TL[X, F,Y, P]-Formel effektiv in
eine dquivalente FO?[<, +1]-Formel umwandeln ldsst.

Lemma 4.14. Fir alle ¢ € TLIX,F,Y,P] gibt es ein ¢4(z) € FO?[<,+1] so, dass

w6 & w ().
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Beweis. Wir fithren den Beweis per Induktion nach dem Aufbau von ¢. Es reicht die Félle
NS {X&, Fo,Y o, Pq}} fiir ein ¢ € TL[X,F,Y, P] zu untersuchen, da alle anderen Fille sich
direkt nach FO?[<, +1] iibertragen lassen. Es ist

X

Uy g(x) =Ty (y =z+1A %;(y)>

Uy ale) =3y (r=y+1 0 050))

Vs <:c):3y(y T A 5())
pa(@) =3y (v <

x A ds(y) )

Dabei werden in ¢ q;(y) die Variablen getauscht, die freie Variable ist dort y und x die gebundene
Variable. n

Lemma 4.15. Sei ¢ € TL[X,F,Y,P]|. Dann gibt es eine Formel 1) € FO?[<,+1] so, dass
L(¢) = L(¥).

Beweis. Es reicht wieder, sich auf die Falle ¢ € {X b, Fd,Y ¢, P gz;} zu beschranken. Es gilt

w):x&@wiszVy<(x#y+1)Aw,xF<5>
w)=Ye5<:>w)=3:v\7y((w#y—1)“"’x':‘;)
w|:F&(:>w):Pq3<:>w):Elx<w,x|:<5>

Die Formel w,z = d~> ist nach Lemma 4.14 in FO?[<, 41] definierbar, was die Behauptung
zeigt. O

In der néchsten Proposition wird die Verbindung von FO?[<, 4+1] zu DA % D beschriecben. Wir
benutzen fiir den Beweis die in Abschnitt 3.5 eingefiihrten Ehrenfeucht-Fraissé-Spiele.

Proposition 4.16. Sei L CT* definierbar in FO?[<, +1]. Dann ist L erkennbar in DA % D.

Beweis. Seien u,v € T* und n € N. Wir definieren die Aquivalenzrelation u =, v (bzw.
u =1 v), falls u und v dieselben FO?[<]-Formeln (bzw. FO?[<, +1]-Formeln) auf Wértern
iiber dem Alphabet Yg,,1 (bzw. T') der Tiefe n erfiillen. Wir schreiben [u],, (bzw. [u];}!) fiir
die zu u gehérige Aquivalenzklasse. Wir zeigen nun, dass

Prnr(lp2nr1(w)]n) C [ul i

=+l

gilt. Sei also pan+1(u) =p pont1(v). Zu zeigen ist nun, dass u =1 v gilt. Die Beweisstrategie

wird tiber Ehrenfeucht-Fraissé-Spiele gehen. Da pa,11(u) =, p2n+1( ) gilt, hat Duplicator auf
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4 Das Fragment FO?[<, +1] auf endlichen Wértern

diesen beiden Worten eine Gewinnstrategie. Wir werden diese Gewinnstrategie auf pa,11(u)
und pap+1(v) nun nutzen, um eine Gewinnstrategie fiir Duplicator fiir die Worte u und v zu
konstruieren. Nehmen wir an, Spoiler setzt ein Pebble an die Stelle ¢ auf Wort u. Das Teilwort
u[max (1,7 — n);min(|u|,7 + n)] findet sich in po,11(u) als Fenster wieder. Falls ¢ < n oder
i+mn > |u| gilt, so wurde dieses Fenster mit > oder < aufgefiillt. Spoiler setzt im FO?*[<]-Spiel
auf den Fensterwortern an dieser Stelle seinen Pebble. Duplicator setzt anhand der vorhandenen
Gewinnstrategie einen Pebble in pg,1(v). Duplicator kann somit den Pebble auf Position j in
v so0 setzen, dass das Teilwort v[max(1, 7 —n); min(|ul, j +n)] = ulmax(1,7 —n); min(|ul, i+ n)]
im Fenster des Pebbles in pa,4+1(v) vorkommt. Die Umgebungen der beiden Pebbles sind
jetzt also gleich. Macht Spoiler im néchsten Schritt einen Successor-Schritt, so kann dieser
auch von Duplicator kopiert werden, da die Umgebungen dieselben sind. Falls Spoiler keinen
Successor-Schritt macht, so kann Duplicator wie bereits beschrieben die Strategie auf den
Fensterwortern nutzen, um eine geeignete Stelle fiir den Pebble zu finden. Also hat Duplicator
eine Gewinnstrategie auf v und v. Damit gilt

pamt ([p2ns1 (W)]n) € [ul}!
und somit
Wi =pomn | U (P20t | - (4.1)
velulft

Die Vereinigung ist endlich, da ="' endlichen Index hat. Dies liegt daran, dass es nur endlich

viele semantisch nicht-aquivalente Formeln der Tiefe n gibt. Insbesondere ist

U [pmss @)

ve[u]ﬁl

definierbar in FO?[<] durch Angabe, welche dieser Formeln wahr sind und welche nicht. Da
durch FO?[<] definierbare Sprachen genau den Sprachen in DA entsprechen, vgl. [DGK2008],
ist Uve[u]# [p2n+1(v)]n € DA. Nach Satz 2.23 und Gleichung (4.1) ist damit [u]'! € DA x D.
Damit ist auch
L= U[uml € DA« D,
uel
was zU zeigen war. O

Lemma 4.17. Fir alle ¢ € TL[Xy,, Y] gibt es ein ¢g(x) € Xa[<,+1] so, dass

Beweis. Wir fiihren eine Induktion nach dem Aufbau der Formel. Da A und V in ¥o[<, +1]
ausdriickbar sind, beschranken wir uns ohne Einschriankungen auf Formeln, die nur —, Xy, Y,
und T benutzen. T und =T sind offensichtlich in ¥s[<, +1] definierbar. Sei w = a; ... aj. Setze

k

k
wxw(z)(x) = dxq ... doyg (acl >x N\ /\(ml =T;—1 + 1) VAN /\ )\(xz) =a; N\ @/J&(l‘ﬂ)

=2 =1
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und

k

k
wa(z;(:U) = dxq ... doy, (.Cli‘k <z A /\(-Ti—l =x; + 1) VAN /\ A(I’z) =a; N\ @/)(z;(xk)> .

i=2 i=1
Sei Zy, € {Xw, Yy }. Fiir die Negation gilt

~Zp =2y TV Zy 0.

Damit muss man induktiv nur noch —=Z,, T darstellen. Wir setzen

k k
Yox, T = Vy1...Vyg <<y1 >z A /\(yl =yi—1+ 1)) = \/ AMy;) # ai>

i=2 i=1
k k

Yoy, T = VY. Vg ((yk <z A /\(%’—1 =y +1 > = \//\ Yi) ;éa,,>
=2 =1

O
Lemma 4.18. Sei ¢ € TL[Xy, Yy|. Dann gibt es eine Formel ¢ € Yo[<,+1] mit L(¢) NI =
L(¢) NT*,

Beweis. Es reicht wie bereits in Lemma 4.17 sich auf Formeln zu beschranken die nur —, X,,, Y,
und T benutzen. Sei ¢ = Z,, ¢ mit Z,, € {Xy, Yy} und wie zuvor w = ay ... ag. Wir setzen

k k
Y i=dxy ... dxp (/\(:Ui—l =x; + 1) VAN /\ )\(l’z) =a; N\ ’lﬁ(z;(xl) A

=2 i=1

k k
Yy .. Vg ((/\(%—1 =xz; +1) A /\)\(ﬂcz‘) _ai> = x1 < y1>>

i=2 =1

fir Z,, = Xy und

k k
W i=dxy .. (/\ T, = Ti—1+ 1) VAN /\ )\(:L'l) =a; N\ wq;(l‘k) VAN

= =1

k k
Vyr .. <</\ Ti1 =T+ )/\/\)\(xi)zai>=>$12@/1>>

fiir Z,y = Yy, mit ¢5(z) aus Lemma 4.17.
Fiir die Negation nutzen wir wieder die Aquivalenz

~Zwd =2y TV Zy—o.
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4 Das Fragment FO?[<, +1] auf endlichen Wértern

!

Ul u U2

u— X _x ® | x, e | e | x | I |

Fexeyelexeyeexeye exeyeereyeexeye exeyeexeye ' exeye!

~ -~ L el el
~ ~ ~ ‘v'v; ‘v'v;

o= X ¥ e | x, e | | e | % | ok |

Pexeyelexeyeexeye exeyeexeye exeye! exe Texeye'exeyelexeye'exeyel exeyeexeye!

Abbildung 4.1: Ilustration zu Proposition 4.21
Dabei gilt

- Xw T = Yw T
und dieses lasst sich darstellen durch die Formel
k k
Vyi ... Vy ((/\(yz =yi-1+ 1)) = \/ AMw) # az’)
i=2 i=1
Die Formel Z,, —¢ lisst sich wie oben beschrieben in Xs[<, +1] ausdriicken. O

Bemerkung 4.19. Die Aquivalenz - X, T = =Y, T gilt nur auf endlichen Wértern. Deswegen
muss mit I'* geschnitten werden. Eine Darstellung von =Y, T kann es somit nach [KKL2011]
und Kapitel 5 nicht geben, da Ag[<,+1] G TL[Xy, Y] iiber unendlichen Wortern gilt.

Korollar 4.20. Sei ¢ € TL[Xy, Yw]. Dann gibt es eine Formel ¢ € Aq[<,+1] mit L(¢)NT* =
L() N T*.

Beweis. Zu ¢ lasst sich nach Lemma 4.18 eine Formel ¢ € ¥9[<, 41| mit L(¢) NI = L(¢») NI
finden. Wir finden ebenfalls zu —¢ ein ¢ € ¥o[<, +1] mit L(—¢) NI = L(¢») N T*. Damit gilt
L(¢)NT* = L(—) N T und ) € Ila[<, +1]. Dies zeigt die Behauptung,. O

Proposition 4.21. Sei L C T in Ag[<,+1] definierbar. Dann ist L € LDA.

Beweis. Sei ¢ € 3a[<,+1] mit L(¢) = L. Sei n groker oder gleich der Anzahl der Variablen

von ¢. Seien z,y € I'* und z € I't beliebig. Wir setzen e := z"*! und
n?+1
u = (exeye)
2 2
v = (exeye)” Tlexe(exeye)” T = viexevy.

Wir zeigen nun fir alle p,q € I'*, dass puq = ¢ = pvg = ¢. Dazu sei ohne Einschrénkung
¢ = Jzy... JxxVy1 .. Yye(xr, ..., 2k, Y1, .-, Y1), Wobel ¢ eine aussagenlogische Formel ist.
Nach Wahl von n gilt k + 1 < n. Da puq = ¢, gibt es eine Belegung fiir den Existenzblock
in pugq, sodass puq unter dieser Belegung die Formel Vy; ... Vyp(x1,..., 2k, y1,...,y;) erfillt.
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Wir konstruieren damit eine Belegung der Variablen x1, ..., x; fiir das Wort pvq. Belegungen
in den Faktoren p und ¢ lassen sich direkt nach pvq an dieselbe Stelle iibertragen. Auf Grund
der Wahl von u gibt es einen Faktor ' = (exeye)™ in u, in dem keine Belegung der Variablen
des Existenzblocks liegen. Wir setzen u = uju'us. Wir iibertragen alle Belegungen von u; auf
den Anfang von v;. Die Belegungen die rechts von diesem Faktor liegen, iibertragen wir auf
das Ende von vs.

Angenommen, es gibt jetzt eine Belegung des Blocks der Allquantoren auf pvq, sodass ¢ nicht
erfiillt ist. Belegungen aus v, bzw. vo, die aus dem Teil von u; bzw. us kommen, iibertragen
wir direkt auf diese Teile zuriick. Belegungen aus v1, die nicht in dem Teil vorhanden sind, der
durch u; abgedeckt wird, werden auf die linke Seite von u’ geschrieben. Dabei verdandert sich
die Erfiillbarkeit beziiglich Formeln aus Y¥o[<, +1] nicht, da lediglich die relative Position und
Nachbarschaft getestet werden kann. Analog werden Belegungen aus vs, die nicht durch us
abgedeckt werden, rechts von u’ belegt. Bei dieser Prozedur werden nicht alle Faktoren der Form
exeye in u’ belegt, da [ < n ist. Es bleibt der Faktor exeexe in v. Wir iibertragen Belegungen
aus diesem Faktor in einen Faktor exeye aus v/, der in der Mitte liegt und noch nicht belegt
wurde. Dies verandert die Erfiillbarkeit der Formel ¢ nicht, da die Nachbarschaftsbeziehungen
und die relative Ordnung beibehalten wurde. Mit dieser konstruierten Belegung von y1,. ..,y
in pugq gilt aber nicht pug |= ¢. Also ist die Annahme falsch und damit pvg = ¢. Dies zeigt
puq € L = pvqg € L.

Sei ¢ € Tp[<, +1] mit L(¢p) = L. Es gilt
pug = = pug =1

—(puq = ¢) = ~(pvg = ¥)
puq = ) = puq | .

Da —1) € ¥a[<, +1] ist, gilt dies nach Obigem. Damit gilt also pvq € L = puq € L und somit
[u], = [v]r. Also ist Synt(L) € LDA. O

Tt e

Setzen wir nun diese Resultate zusammen, so kénnen wir das Hauptresultat beweisen.
Beweis von Satz 4.1. Wir zeigen zunidchst den Ringschluss 1 =2 =3=4=5=6=7= 1.
Die Aquivalenz zu 8 zeigen wir durch die Implikationen 4 = 8 und 8 = 2.

,1 = 2. Korollar 4.4.

»2 = 3“c Proposition 4.8.

,»,3 = 4. Proposition 4.10.

4 = 5 Lemma 4.11.

D = 6: Lemma 4.13.

,6 = 7 Lemma 4.15.
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4 Das Fragment FO?[<, +1] auf endlichen Wértern

7 = 1 Proposition 4.16.
4 = 8 Korollar 4.20.

,»,8 = 2. Proposition 4.21.
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5 Das Fragment FO*/<, +1] auf unendlichen
Wortern

In diesem Kapitel werden die Resultate aus Kapitel 4 auf unendliche Worter tibertragen.

Um sowohl endliche Wérter als auch unendliche Woérter untersuchen zu kénnen, ist es niitzlich,
dass das leere Wort in der Sprache sein kann. Wir definieren deswegen eine leicht andere
Erkennbarkeit in LDA. Wir sagen, eine Sprache L C I'* wird stark bzw. schwach erkannt
von h : I — M in LDA, falls (ezeye)” = (exeye)exe(exeye)” gilt fir alle Idempotente
e € h(I't) und h die Sprache L im iiblichen Sinne stark bzw. schwach erkennt. Somit wird
die Halbgruppenvarietiat LDA so definiert, dass auch mit Monoiden, die nicht in DA sind,
Sprachen in LDA erkannt werden kénnen.

Satz 5.1. Sei L C I'*°. Dann sind dquivalent:
1. L wird stark erkannt in LDA.
2. L wird schwach erkannt in LDA und ist abgeschlossen in der strikten Faktor-Topologie.
3. L ist definierbar in ITL[F,, Ly).

L ist definierbar in TL[Xqy, Y]

L ist eine Rankersprache.

L ist definierbar in TL[X,F,Y,P].

XS v

L ist definierbar in FO?[<, +1].

Die folgenden beiden Lemmata sind aus [KKL2011].

Lemma 5.2. Sei M endlicher Monoid und h : I’ — M surjektiver Homomorphismus. Es sind
dquivalent:

1. M € LDA

2. eP.e = e fiir alle Idempotente e in M.

Beweis. Siehe [KKL2011]. O
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5 Das Fragment FO?[<, +1] auf unendlichen Wortern

Lemma 5.3. Sei L C ' stark erkennbar durch h : I'" — M in LDA, dann ist L offen und
abgeschlossen in der strikten k-Faktor-Topologie fiir jedes k > 2| M]|.

Beweis. DaT'*°\ L auch von h erkannt wird, reicht es zu zeigen, dass L offen ist. Sei v € [s][e]* C
L, fiir ein linked pair (s, e) und sei A = imy(a) # 0. Wir schreiben oo = spejes ... mit h(sg) = s
h(e;) = e und ejes... € A, Wir konnen annehmen, dass |e;| > k und alphy(e;) = A fiir
jedes i > 1. Sei r; das Prifix von e; der Linge k — 1. Es gilt a € sgrq o, A% N A,

)

Wir zeigen sgrq o) A%k N A™k C L, was die Behauptung beweist. Sei 5 € sgrq o A%k N Ak
und schreibe 8 = sorirafifa... so, dass f = h(f1) = h(f2) = ... und (h(rir2), f) ein linked
pair ist mit alph (f;) = A fiir alle i > 1. Sei r = h(ryr2). Wir faktorisieren r17of1 = xox1 ... Tm
so, dass |z;| < |M| und fiir alle z; gibt es ein Idempotent g;+1 € A(T'") mit h(z;)gir1 = h(z;).
Nach Konstruktion von k£ und r; sehen wir, dass zg ein Préfix von r; ist. Folglich gilt

e <r h(r1) <r h(xo) = h(x0)g1.

Nach Wahl von A und e; sehen wir fiir 0 < ¢« < m, dass das Wort x;_1x; ein Faktor von e ist.
Folglich gilt fiir alle 1 < i <m

e <g h(zi12;) = hMwi—1)gih(xi)giv1 <7 gih(2i)giv1-

Da z,,_1x,, ein Faktor von eq ist, existiert tg € I'* so, dass x,,_1Zmto ein Suffix von ey ist. Mit
t = h(to) gilt dann

e <r h(xm_12m)t = h(zm—1)gmh(zm)t <g gmh(zm,)t.
Nach Lemma 5.2 gilt dann
e = eh(xo)g1h(z1) ... gmh(zm)te = eh(rirafi)te = er fte.

Ahnlich, indem man alphy,(f;) = A benutzt, zeigt man, dass p,q € M existieren mit f = fpeqf.
Da M aperiodisch ist, gibt es ein n € N mit a” = a"*! fiir alle « € M. Es folgt

e = erfpeqfte = (er fp)"e(qfte)" = (erfp)"*e(qfte)" = erfpe
und analog

f = frerfteqf = (fper)" f(teqf)" = (fper)" ™ f(teq f)" = fperf.

w

Es gilt s = se = serfpe = srfpe und damit [s][e]* = [srfpe]lerfpe]* C L. Mit der star-
ken Erkennbarkeit und da [srfpe]lerfpe]” N [srf][fperf]* # 0 folgt, dass g € [sr][f]¥ =
[sTf][fperf]® C L. Dies zeigt, dass jedes unendliche Wort in L eine offene Umgebung in L
besitzt. Jedes endliche Wort hat die triviale Umgebung {w}. Also ist L offen. O

Die folgende Proposition ist eine Abwandlung eines Resultates aus [KKL2011].
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Proposition 5.4. Sei L C I'*® schwach erkennbar via h : I'" — M in LDA und abgeschlossen
in der strikten k-Faktor-Topologie fiir ein k > 2|M|. Dann ist L definierbar in ITL[F,,, Ly].

Beweis. Sei o € L und A = img(«). Wir kénnen annehmen, dass A = {wy,...,ws} # 0, da
L NT* nach Proposition 4.8 definierbar in ITL[F,,, L,] ist. Wir schreiben o = w - w - 5 mit
w & ap(suffixg_1(w) - f) und w ist der letzte Faktor in «, der nur endlich oft vorkommt. Falls
alle Faktoren unendlich oft vorkommen, setzen wir a = 5. Wir nehmen ohne Einschrankungen
im folgenden an, dass es Faktoren gibt, die nur endlich oft vorkommen. Sei r die Ramseyzahl
fiir monochromatische Dreiecke, wenn man |M| Farben benutzt. Wir betrachten die folgende
Faktorisierung fiir 3:
B = u1v1ug . . . UpsUpsy

wobel Vi1 = W(; mod s)+1 und v; & alphy (u; - prefix;_; (v;)). Wir definieren U; als die Menge
der Worter in [h(u;)] N ((A\ {vi})* UT<F), sodass kein Wort in U; - prefix;_, (v;) das Wort v,
als Faktor besitzt. Wir definieren

P(a) = [h(u)] - w - (A% N U1 . .. Upsys o) AF) N ATk,
Nach Konstruktion gilt a € P(«). Wir zeigen nun P(a) C L.

Nach Wahl von r gibt es ein a € M und ein Idempotent e € E(M) so, dass jedes Wort in o/ €
P(a) eine Faktorisierung o/ = v’ - w - 2’} e}, 8" mit h(u') = h(u), h(z') = a, h(e}) = h(eh) = e,
alphy(e}) = alphy(e}) = alphy,(2'€}e,5") = A besitzt. Fiir a benutzen wir die Faktorisierung
a=u-w-zejea’. Sei nun o/ = v’ -w-a'e| e, B ein beliebiges Wort in P(«). Wir wollen zeigen,

dass o/ € L = L.

Sei 2’ ein endliches Prifix von ’. Sei z das Suffix von €}z’ der Lange k. Nach Konstruktion ist z
ein Faktor von ey, d. h. es gibt y1,y2 € T'* mit e = y12ys. BEs gilt 2’e}eh2’ - yaeaf” € A%k N AWk,
Wir behaupten, dass u'-w-z'e|ehz’ - yaea8” € L ist. Um dies zu zeigen, reicht es h(ehz'yzes) = e
zu zeigen. Wir faktorisieren z'ys = xq... 2, mit 0 < |z;| < |M]|, sodass fir jedes i > 0 ein
Idempotent f; € h(I'") existiert mit h(x;—1) = h(x;—1) f;. Nach Konstruktion und da k > 2| M|
gilt, haben wir e <g h(zo)f1, € < fmh(zm), e <7 fih(z;)fi+1 (vgl. Beweis von Lemma 5.3).
Mit Lemma 5.2 folgern wir h(esz'yaeq) = e.

Noch zu zeigen ist also, dass P(«) in ITL[F,, L, definierbar ist. Wie im Beweis zu Proposition
4.8 zeigt man, dass Formeln 1, ; existieren, sodass L(v)) = [h(u)] und L(t);) = [h(u;)]. Wir
geben Formeln ¢; an, sodass L(p;) = U; gilt. Zunéchst definieren wir

o= \/ (ﬁ\/ (TFaT)) Fu <ﬂ\/ (TFm),

uel<k acl’ acl’

(e Cyonn)))

um I'<* zu erkennen und
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5 Das Fragment FO?[<, +1] auf unendlichen Wortern

um I'* zu erkennen. Wir setzen dann

pi=Uvi N[OV /\ —\(TFuT) /\qf;
u€lF\(A\{v;})

Damit lasst sich nun die Formel

Ll | @1Fu (o (rsFo, TV o)A N\ (TR A A (TFRT)=~(TL,T)

uelk\ A uelk\ A

definieren. Diese definiert gerade die Sprache P(«), was zu zeigen war.

Beweis von Satz 5.1. Wir zeigen den Ringschluss 1 == 2=3=4=5=6=7= 1.
,1 = 2 Lemma 5.3.

2 = 3“ Proposition 5.4.

.3 = 4“: Proposition 4.10.

4 = 5 Lemma 4.11.

D = 6 Lemma 4.13.

,06 = 7 Lemma 4.15.

7 = 1% Siehe [KKL2011].
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6 Zusammenfassung

Es wurde die Klasse der Sprachen, die von FO?[<, +1] definiert werden kann, untersucht. Dazu
wurde ein zu [LPS2010] verschiedenes Intervall-Logikfragment ITL[F,,, L,] eingefiihrt. Die zu
FO?[<] dquivalenten Fragmente TL[XF,Y P] und TL[X,, Y,] wurden erweitert zu TL[X,F,Y, P]
und TL[Xy, Yy]. Ranker auf Buchstaben wurden zu Rankern auf Wortern erweitert. Die
Aquivalenz zu As[<,+1] auf endlichen Wortern wurde bewiesen. Es wurden auferdem die
algebraischen Charakterisierungen mit den Varietdten LDA und DA x D bewiesen. Dies zeigt
die Lokalitdt von DA durch einen kombinatorischen Beweis. Durch die Charakterisierung
durch Halbgruppen in LDA ergibt sich ein Entscheidungsverfahren fiir die Definierbarkeit einer
reguldren Sprache durch eines der Logikfragmente.

Die Ergebnisse wurden auf unendliche Worter iibertragen. Dabei lassen sich alle Charakteri-
sierungen bis auf Ag[<, +1] iibertragen. In [KKL2011| wird bewiesen, dass dies nicht moglich
ist.

39






Literaturverzeichnis

[Alm1996]

[DGK2008]

[DKL2010]

[Ehr1961]

[Eil1976]

[Fral950]

|Gre1951]

[KKL2011]

[LPS2010]

[MP1971]

[Pin19836]
[Sch1965]

Almeida, Jorge: A syntacitcal proof of locality of DA. Internat. J. Algebra Comput.
6, 165-177 (1996)

Diekert, Volker; Gastin, Paul; Kufleitner, Manfred: A Survey on Small Fragments
of First-Order Logic over Finite Words. International Journal of Foundations of
Computer Science 19.3, 513-548 (June 2008), Special issue DLT 2007

Dartois, Luc; Kufleitner, Manfred; Lauser, Alexander, Rankers over Infinite Words,
Technical report Nr. 2010/01, Formale Methoden der Informatik, Universitat
Stuttgart, Germany, May 2010

Ehrenfeucht, Andrzej: An application of games to the completeness problem for
formalized theories. Fundamenta Mathematicae 49, 129-141 (1961)

Eilenberg, Samuel: Automata, Languages, and Machines. Academic Press, Inc.,
Orlando, FL, USA, 1976

Fraissé, Roland: Sur une nouvelle classification des systémes de relations. Comptes
Rendus 230, 1022-1024 (1950)

Green, James A.: On the structure of semigroups. Annals of Mathematics (second
series) 54.1, 163-172 (July 1951)

Kallas, Jakub; Kufleitner, Manfred; Lauser, Alexander, First-order Fragments
with Successor over Infinite Words, STACS, 2011, to appear

Lodaya, Kamal; Pandya, Paritosh K.; Shah, Simoni S., Around Dot Depth Two,
Developments in Language Theory, 2010, pp. 303-315

McNaughton, Robert; Papert, Seymour: Counter-free automata. The M.I.'T. Press,
Cambridge, Mass.-London, 1971, With an appendix by William Henneman, M.I.T.
Research Monograph, No. 65

Pin, Jean-Eric: Varieties of formal languages. North Oxford Academic, 1986

Schiitzenberger, Marcel-Paul: On finite monoids having only trivial subgroups.
Information and Control 8, 190-194 (1965)

41



Literaturverzeichnis

[TT2002]  Tesson, Pascal; Thérien, Denis, Diamonds are Forever: the Variety DA, Semigroups,
Algorithms, Automata and Languages (G.M.S. Gomes, P.V. Silva; Pin, J.-E., eds.),
2002, pp. 475-500

42



Erklarung

Hiermit versichere ich, diese Arbeit selbstdndig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Tobias Walter)



