
Institut für Formale Methoden der Informatik
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Studienarbeit Nr. 2295

Deterministische Intervall-Logik
mit Faktor-Modalitäten

Tobias Walter

Studiengang: Informatik

Prüfer: Prof. Dr. Volker Diekert

Betreuer: Dr. Manfred Kufleitner

begonnen am: 12. Juli 2010

beendet am: 11. Januar 2011

CR-Klassifikation: F.4.1, F.4.3

Inhaltsverzeichnis

1 Einleitung 1
1.1 Motivation . 1
1.2 Aufbau der Arbeit . 2

2 Algebra und formale Sprachen 3
2.1 Algebraische Strukturen . 3
2.2 Greens Relationen . 4
2.3 Varietäten . 5
2.4 Formale Sprachen . 7
2.5 Unendliche Wörter . 9
2.6 Die Operation V ∗W . 10
2.7 Die Varietät V ∗D . 12

3 Logik 15
3.1 Ranker . 15
3.2 Temporal-Logik . 16
3.3 Intervall-Temporal-Logik . 18
3.4 Logik erster Stufe . 19
3.5 Ehrenfeucht-Fraïssé-Spiele . 20

4 Das Fragment FO2[<,+1] auf endlichen Wörtern 23

5 Das Fragment FO2[<,+1] auf unendlichen Wörtern 35

6 Zusammenfassung 39

iii

1 Einleitung

1.1 Motivation

Sprachen, die sich in Logik erster Stufe (FO[<]) definieren lassen, wurden von Schützerberger
in [Sch1965] und McNaughton und Papert in [MP1971] untersucht. Die Sprachen in FO[<]

lassen sich algebraisch durch die Varietät A der aperiodischen Monoide charakterisieren. Auf
Ebene der Logik entspricht dies auch Intervall-Temporal-Logik (ITL) bzw. Temporal-Logik
(TL). Dieses hat insbesondere Anwendungen im Bereich des Model-Checking.

Ausgehend von diesen Resultaten wurden Fragmente von FO[<] betrachtet. Diese liefern eine
bessere Komplexität für relevante Algorithmen. Eine natürliche Einschränkung ist es, Formeln
erster Stufe mit nur zwei Variablen zu betrachten. Dieses Fragment bezeichnen wir mit FO2[<].
FO2[<] hat zahlreiche Charakterisierungen. Die syntaktischen Monoide von Sprachen aus FO2[<

] liegen in der Varietät DA. Als Charakterisierungen von FO2[<] auf Ebene der Logik ergeben
sich unter anderem Ranker über Buchstaben, TL[Xa,Ya] und TL[XF,YP]. Eine Übersicht über
DA findet sich in [TT2002], eine generelle Übersicht über die Charakterisierungen von FO2[<]

findet sich in [DGK2008].

In dieser Arbeit wird FO2[<] um ein Prädikat +1 erweitert. Es wird sich zeigen, dass dies den
Varietäten DA ∗D und LDA entspricht. Das Wreath Product Principle von Straubing, das
in Satz 2.23 bewiesen wird, liefert Anhaltspunkte, dass man von Rankern über Buchstaben
zu Rankern über Wörtern übergehen muss. Genauso erahnt man, dass somit TL[Xw,Yw] ein
Logikfragment ist, das die Sprachen aus FO2[<,+1] beschreibt. In Kapitel 4 werden diese
Vermutungen bewiesen.

Es wird die sogenannte Lokalität von DA bewiesen. Dies wurde bereits von Almeida in
[Alm1996] bewiesen, dort wurde allerdings kein kombinatorischer sondern ein syntaktischer
Beweis vorgestellt.

In [LPS2010] wird die Äquivalenz von FO2[<,+1] zur dort definierten Automatenklasse po2dla
und zu einer Intervall-Logik LITL bewiesen. Die Intervall-Logik LITL unterscheidet sich zu
der deterministischen Intervall-Logik mit Faktor-Modalitäten aus dieser Arbeit insofern, dass
Intervalle um eine Position verkleinert werden können. Außerdem kann in LITL die Stelle, an
der das Intervall aufgeteilt wird, genauer spezifiziert werden.

1

1 Einleitung

1.2 Aufbau der Arbeit

In Kapitel 2 werden die notwendigen Grundlagen der Algebra und der Theorie der formalen
Sprachen gelegt. Es werden Varietäten eingeführt und der Zusammenhang zwischen formalen
Sprachen und Varietäten herausgearbeitet. In den Abschnitten 2.6 und 2.7 wird näher auf ein
Produkt von Varietäten eingegangen. Insbesondere wird das Wreath Product Principle von
Straubing in Abschnitt 2.7 bewiesen.

In Kapitel 3 werden die Grundlagen zu Beschreibungen von Sprachen durch Logiken beschrieben.
Es werden die für diese Arbeit notwendigen Logik-Fragmente definiert. Als grundlegende
Operatoren, auch für die Logik-Fragmente, werden dazu Ranker über Wörtern definiert. Als
Hilfsmittel für spätere Beweise werden Ehrenfeucht-Fraïssé-Spiele eingeführt.

In Kapitel 4 wird die Äquivalenz der in den Kapiteln 2 und 3 beschriebenen Konzepte untersucht
und bewiesen. Für die Bereitstellung der Propositionen 4.9, 4.10 und 4.12 danke ich Alexander
Lauser.

In Kapitel 5 werden die Resultate aus Kapitel 4 basierend auf [KKL2011] auf unendliche Wörter
übertragen.

2

2 Algebra und formale Sprachen

In diesem Kapitel werden die notwendigen Grundlagen der Algebra und der Theorie der
formalen Sprachen behandelt. In Abschnitt 2.1 behandeln wir Monoide und Halbgruppen.
Dann werden in Abschnitt 2.2 Greens Relationen eingeführt. Mit diesen lassen sich bestimmte
Eigenschaften von Monoiden oder Halbgruppen beschreiben. In Abschnitt 2.3 werden dann
Varietäten eingeführt. Dieses Konzept bildet eines der Beschreibungsmodelle der Sprachen, die
in dieser Arbeit untersucht werden. Der Zusammenhang von Varietäten und formalen Sprachen
wird in Abschnitt 2.4 erklärt. Dies wird in Abschnitt 2.5 auf unendliche Wörter erweitert. In
Abschnitt 2.6 wird dann das Produkt V ∗W für Varietäten V und W eingeführt, welches in
Abschnitt 2.7 genauer für die Varietät V ∗D untersucht wird.

2.1 Algebraische Strukturen

In diesem Abschnitt werden die grundlegenden Begriffe für das Studium von Monoiden und
Halbgruppen geliefert. Wir definieren zunächst Monoide und Halbgruppen.

Definition 2.1. Sei S eine Menge und · : S × S → S eine innere Verknüpfung. Wir nennen
(S, ·) eine Halbgruppe, falls · assoziativ ist, d. h. es gilt x · (y · z) = (x · y) · z für alle Elemente
x, y, z ∈ S. Existiert zusätzlich ein Element 1S ∈ S so, dass 1S · x = x · 1S = x für alle x ∈ S
gilt, so nennen wir (S, ·) ein Monoid.

Ist die Verknüpfung · klar so schreibt man statt (S, ·) auch S. Das Verknüpfungssymbol ·
wird auch oft weggelassen. Man schreibt also xy := x · y. Für das n-fache Produkt von x mit
sich selbst schreiben wir xn. Für eine Halbgruppe S definieren wir das zugehörige Monoid
S1 := S ∪ {1S}, indem wir formal eine 1 adjungieren. Ein Element e ∈ S heißt idempotent,
falls e2 = e. Für die Menge der Idempotenten von S schreiben wir E(S). Sei S nun endlich. Zu
jedem Element x ∈ S gibt es eine Potenz k, so dass xk idempotent ist. Man kann beispielsweise
k = |S|! wählen. Wir schreiben für dieses Idempotente dann auch xω.

Lemma 2.2. Sei S eine endliche Halbgruppe, n > |S| und s1, . . . , sn ∈ S. Dann wird eines der
Produkte s1 . . . si für 1 ≤ i ≤ n, von einem Idempotent e ∈ E(S) stabilisiert. D. h. es existiert
ein Index j ∈ N mit s1 . . . sj · e = s1 . . . sj.

Beweis. Da n > |S| ist, gibt es i, j ∈ N, j < i mit s1 . . . sj = s1 . . . si. Setze e := (sj+1 . . . si)
ω.

Es ist s1 . . . sje = s1 . . . sj .

3

2 Algebra und formale Sprachen

Für zwei Halbgruppen (S, ·) und (S′,�) wird das kartesische Produkt S×S′ zu einer Halbgruppe
durch die Verküpfung

(s1, s
′
1) ∗ (s2, s

′
2) = (s1 · s2, s

′
1 � s′2).

Wir nennen S × S′ das direkte Produkt von S mit S′. Sind S, S′ Monoide, so ist das direkte
Produkt S × S′ auch ein Monoid mit Einselement (1S , 1S′).

Wir nennen außerdem ein Element s ∈ S regulär, falls es ein s ∈ S gibt mit sss = s.

Definition 2.3. Sei µ : S → S′ eine Abbildung zwischen den Halbgruppen (S, ·) und (S′,�).
Wir nennen µ einen Halbgruppenhomomorphismus, falls µ(x · y) = µ(x) � µ(y) für alle
x, y ∈ S gilt. Sind S, S′ Monoide, so nennen wir µ einen Monoidhomomorphismus, falls µ ein
Halbgruppenhomomorphismus ist und zusätzlich µ(1S) = 1S′ gilt.

Homomorphismen sind ein wichtiges Mittel um algebraische Strukturen zu untersuchen. Mit
ihnen lassen sich auch die folgenden Begriffe definieren.

Definition 2.4. Seien S, T Monoide. Wir nennen T einen Untermonoid von S, falls es einen
injektiven Monoidhomomorphismus µ : T → S gibt. Wir schreiben dann T < S. T heißt
Quotient von S, falls es einen surjektiven Monoidhomomorphismus µ : S → T gibt. T heißt
Divisor von S, falls T der Quotient eines Untermonoids von S ist. Wir schreiben dann T ≺ S.

Analog lassen sich Unterhalbgruppen, Quotienten und Divisoren von Halbgruppen definieren.
Wie man schnell nachrechnen kann, ist ≺ transitiv. Außerdem folgt aus T < S bereits T ≺ S.
Die Definition von Untermonoiden (Unterhalbgruppen) entspricht der üblichen Definition als
abgeschlossene Teilmenge, die im Falle von Monoiden das neutrale Element enthalten muss, bis
auf Isomorphie.

2.2 Greens Relationen

In diesem Abschnitt führen wir Greens Relationen ein. Green untersuchte diese Relationen in
[Gre1951] erstmals.

Definition 2.5. Sei S eine Halbgruppe und s, t ∈ S. Wir definieren folgende Quasiordnungen:

s ≤R t ⇔ s = tu für ein u ∈ S1,

s ≤L t ⇔ s = ut für ein u ∈ S1,

s ≤J t ⇔ s = utv für u, v ∈ S1,

s ≤H t ⇔ s ≤R t und s ≤L t.

4

2.3 Varietäten

Die Interpretation von ≤R,≤L,≤J als Präfix, Suffix und Faktor ist äquivalent zu folgender
Beschreibung als Teilmengenbeziehungen von Idealen.

s ≤R t ⇔ sS1 ⊆ tS1

s ≤L t ⇔ S1s ⊆ S1t

s ≤J t ⇔ S1sS1 ⊆ S1tS1

Die von diesen Quasiordnungen erzeugten Äquivalenzrelationen R, L, J , H nennen wir Greens
Relationen. Die Äquivalenzklassen nennen wir dann R-, L-, J -, H-Klassen.

Lemma 2.6. Die Relationen ≤R und ≤L (bzw. R und L) kommutieren.

Beweis. Vergleiche [Pin1986].

Wir definieren eine weitere Äquivalenzrelation D als die kleinste Äquivalenzrelation, die sowohl
R als auch L enthält. Wir schreiben dafür D = R ∨ L. Ausgehend von Lemma 2.6 kann man
folgern, dass D = L ◦ R = R ◦ L ist. Ein detaillierter Beweis findet sich wieder in [Pin1986].

Wir nennen eine D-Klasse regulär, falls alle ihre Elemente regulär sind.

2.3 Varietäten

Definition 2.7. Eine Halbgruppenvarietät V ist eine Klasse von endlichen Halbgruppen,
sodass folgende Bedingungen erfüllt sind:

1. Ist S ∈ V und T ≺ S, so ist auch T ∈ V

2. {1} ∈ V

3. Für S, T ∈ V ist S × T ∈ V

Man beachte, dass mit Punkt 1 bereits folgt, dass Unterhalbgruppen und Quotienten von
Halbgruppen aus V wieder in V sind. Eine Monoidvarietät lässt sich analog definieren. Man
ersetze dazu jeweils in der Definition den Begriff der Halbgruppe durch den Begriff des
Monoids.

Zu einer Monoidvarietät V lässt sich eine Halbgruppenvarietät LV definieren, die Lokalisierung
von V. Es ist LV = {S | eSe ∈ V ∀e ∈ E(S)}.

Sei V = {x1, . . . , xn} eine Menge von Variablen und seien u, v ∈ V ∗. Sei M ein Monoid.
Wir sagen, M erfüllt die Gleichung u = v, falls für alle Homomorphismen µ : V ∗ → M gilt
µ(u) = µ(v). Dies entspricht auch der Intuition, man darf für alle Variablen ein Element aus
M einsetzen.

5

2 Algebra und formale Sprachen

Beispiel 2.8. Sei V = {x, y}. Die Gleichung xy = yx erfüllen genau die kommutativen
Monoide.

Zu einer Menge von Gleichungen u1 = v1, . . . , uk = vk definieren wir die Menge von Monoiden,
die diese Gleichungen erfüllen, als Ju1 = v1, . . . , uk = vkK. Diese Menge ist eine Varietät. Um in
Gleichungen auch die Potenz xω benutzen zu können, erweitern wir dieses Konzept. Wir sagen,
M erfüllt die Familie von Gleichungen (ui = vi)i∈N ultimativ, falls ein Index j ∈ N existiert,
sodass M die Gleichungen (ui = vi)i≥j erfüllt. Für die Klasse der Monoide, die (ui = vi)i∈N
ultimativ erfüllt, schreiben wir analog J(ui = vi)i∈NK. Auch diese bildet eine Varietät. Genauer
gilt sogar:

Lemma 2.9. Jede Varietät lässt sich von einer Familie von Gleichungen ultimativ definieren.

Der Beweis zu diesen Behauptungen findet sich beispielsweise in [Pin1986].

Beispiel 2.10. Die Varietät J(uv)ωu(uv)ω = (uv)ωK lässt sich beschreiben durch die ultimativ
definierte Varietät

q
((uv)i!u(uv)i! = (uv)i!)i∈N

y
.

Wir führen einige wichtige Varietäten ein.

Wir nennen ein Monoid M aperiodisch, falls xω = xω+1 für alle x ∈ M gilt. Wir setzen
A =

q
xω = xω+1

y
. A ist also die Varietät der aperiodischen Monoide.

Wir setzen DA = J(uv)ωu(uv)ω = (uv)ωK. Weitere Gleichungsbeschreibungen von DA sind
J(uv)ωv(uv)ω = (uv)ωK und J(uvw)ωv(uvw)ω = (uvw)ωK. Der Bezeichner DA kommt von einer
weiteren Charakterisierung dieser Varietät, jede reguläre D-Klasse ist ein aperiodisches Monoid.
Diese Varietät hat viele Charakterisierungen. Für weitere Informationen und Beweise der
Behauptungen vergleiche [TT2002] und [DGK2008]. Eine wichtige Eigenschaft von DA ist,
dass Elemente in DA aperiodisch sind.

Lemma 2.11. Es ist DA ⊆ A.

Beweis. Sei M ∈ DA und x ∈M . Wähle u = v = x. Dann gilt

xω = (uv)ω = (uv)ωu(uv)ω = xωxxω = xxω = xω+1.

Also ist M ∈ A.

Als stärkere Aussage können wir mit demselben Beweisprinzip auch folgendes Lemma bewei-
sen.

Lemma 2.12. Es ist LDA ⊆ A.

6

2.4 Formale Sprachen

Beweis. Sei x ∈ S ∈ LDA. Setze e := xω. eSe ist in DA. Also gilt nach Lemma 2.11

xω = (exe)ω = (exe)ω+1 = xω(exe) = xω+1.

Also ist S ∈ A.

Für k ∈ N definieren wir Dk = Jxy1 . . . yk = y1 . . . ykK. Intuitiv können sich Elemente aus Dk

also die letzten k Zeichen merken. Wir setzen nun

D =
⋃
k∈N

Dk.

Dies ist wieder eine Varietät, da Dk ⊆ Dk+1 ist. Man beachte, dass insbesondere keine
nicht-trivialen Monoide M in Dk liegen, denn x = x1M = x1kM = 1kM = 1M für alle x ∈M .

Wir setzen I = {1}. I ist also die triviale Varietät. Wie oben definiert ist dann LI die
Lokalisierung von I. Es gilt insbesondere folgendes Lemma.

Lemma 2.13. Es ist D ⊆ LI.

Beweis. SeiM ∈ D. Dann existiert ein k ∈ N, sodassM ∈ Dk ist. Sei e ∈ E(M) ein Idempotent
und s ∈M . Es ist ese = esek = ek = e. Also ist eMe = {e} ∈ I und damit M ∈ LI.

2.4 Formale Sprachen

Sei Γ eine endliche Menge. Wir nennen Γ dann ein Alphabet, Elemente von Γ nennen wir
Buchstaben. Eine Teilmenge L des freien Monoids Γ∗ heißt (formale) Sprache. Elemente von
Γ∗ nennen wir Wörter. Für ein Wort u = a1 . . . ak definieren wir das Teilwort u[i; j] = ai . . . aj
für 1 ≤ i ≤ j ≤ k. Für den Buchstaben an Stelle i schreiben wir u(i) = u[i; i]. Mit ε bezeichnen
wir das leere Wort. Ein Wort v heißt Präfix von u, falls ein Wort w existiert, mit u = vw. v
heißt Suffix von u, falls ein Wort w existiert, mit u = wv. v heißt Faktor, oder Teilwort, von u,
falls Wörter w1, w2 existieren mit u = w1vw2. Für ein Wort u ∈ Γ∗ bezeichnen wir mit alph(u)

das Alphabet des Wortes u, d. h. jene Buchstaben, die in u vorkommen. Mit

alphk(u) =
{
v ∈ Γk | u = wvw̃ mit w, w̃ ∈ Γ∗

}
bezeichnen wir die Faktoren der Länge k von u. Es ist also alph(u) = alph1(u). Wir konstruieren
nun zu jeder Sprache L ein Monoid. Zuerst definieren wir dazu eine Kongruenz.

Definition 2.14. Sei L eine Sprache. Wir definieren die syntaktische Kongruenz ≡L durch

u ≡L v ⇔ ∀p, q ∈ Γ∗ : puq ∈ L⇔ pvq ∈ L

7

2 Algebra und formale Sprachen

Wir rechnen schnell nach, dass ≡L eine Äquivalenzrelation ist. ≡L ist auch stabil, d. h. aus
u ≡L u′ und v ≡L v′ folgt uv ≡L u′v′, da

puvq ∈ L⇔ pu(vq) ∈ L⇔ pu′(vq) ∈ L⇔ (pu′)vq ∈ L⇔ pu′v′q ∈ L.

Da ≡L damit eine Kongruenz ist, ist Γ∗/ ≡L ein Monoid. Wir nennen dieses Monoid das
syntaktische Monoid von L und bezeichnen es mit Synt(L). Wir stellen nun den Zusammenhang
zwischen Sprachen und Monoiden her.

Definition 2.15. Eine Sprache L ⊆ Γ∗ wird von einem Monoid M erkannt, falls ein Monoid-
homomorphismus µ : Γ∗ →M existiert, sodass µ−1(µ(L)) = L ist.

Die Bedingung ist äquivalent dazu, dass u ∈ L ⇔ µ(u) ∈ µ(L). Die Teilmenge µ(L) ⊆ M

erkennt also die Sprache. Man sieht, dass L von M via µ erkannt wird, falls es ein P ⊆M gibt
mit µ−1(P) = L. Ist µ surjektiv, so gilt bereits P = µ(L).

Lemma 2.16. Synt(L) erkennt L via der Projektion π : Γ∗ → Synt(L), u 7→ [u]≡L.

Beweis. Sei π(u) ∈ π(L), dann gibt es ein v ∈ L, sodass π(u) = π(v). Also gilt [u]≡L = [v]≡L .
Da v ∈ L ist, impliziert dies nach Definition (mit p = q = ε), dass u ∈ L ist. Also erkennt
Synt(L) die Sprache L via der Projektion π.

Ohne Beweis wird noch folgende Charakterisierung des syntaktischen Monoids vorgestellt.

Lemma 2.17. Sei L ⊆ Γ∗ und ϕ : Γ∗ →M ein Monoidhomomorphismus, der L erkennt, dann
ist Synt(L) ≺M .

Das syntaktische Monoid ist also das kleinste Monoid, das L erkennt. Über das Transformati-
onsmonoid eines endlichen Automaten zeigt man dann auch, dass L regulär ist genau dann,
wenn L von einem endlichen Monoid erkannt wird.

Lemma 2.18. Seien S1, S2 Monoide und L1, L2 Sprachen, sodass Li von Si (i ∈ {1, 2})
erkannt wird. Dann wird L1 ∪ L2, L1 ∩ L2 von S1 × S2 und Γ∗ \ L1 von S1 erkannt.

Beweis. Seien µi : Γ∗ → Si Homomorphismen und Pi ⊆ Si mit µ−1
i (Pi) = Li für i ∈ {1, 2}.

Es ist Γ∗ \ L1 = µ−1
1 (S1 \ P1), also wird Γ∗ \ L1 von S1 erkannt. Setze P := P1 × P2 und

µ : Γ∗ → S1 × S2, u 7→ (µ1(u), µ2(u)). Es ist µ−1(P) = µ−1
1 (P1) ∩ µ−1

2 (P2) = L1 ∩ L2. Für
P̃ := (S1 × P2) ∪ (P1 × S2) gilt µ−1(P̃) = µ−1

1 (P1) ∪ µ−1
2 (P2) = L1 ∪ L2. Dies zeigt die

Behauptung.

8

2.5 Unendliche Wörter

Analog lässt sich auch die Erkennbarkeit von Sprachen mit Halbgruppen definieren, man muss
in der Definition nur Γ∗ durch Γ+ und Monoid durch Halbgruppe ersetzen. Obige Resultate
lassen sich dann auch auf Halbgruppen übertragen.

Für eine Sprache L und eine Varietät V sagen wir L ∈ V, falls Synt(L) ∈ V. Nach obigem ist
dies äquivalent dazu, dass ein Monoid M ∈ V existiert, das L erkennt. Die Sprachen, die mit
einer Varietät beschrieben werden, sind also insbesondere regulär. Mit Lemma 2.18 sieht man,
dass für Sprachen L1, L2 ∈ V auch Γ∗ \ L1, L1 ∩ L2, L1 ∪ L2 ∈ V sind.

Wir nennen eine Varietät V entscheidbar, falls bei gegebener reguläre Sprache L das Problem
entscheidbar ist, ob L ∈ V. Es gilt folgende Eigenschaft:

Lemma 2.19. Ist V eine Varietät von Monoiden und ist V entscheidbar, dann ist auch LV
entscheidbar.

Beweis. Klar.

2.5 Unendliche Wörter

Für ein endliches Alphabet Γ setzen wir

Γω = {a1a2 . . . | ai ∈ Γ}

als die Menge der unendlichen Wörter über Γ. Formal ist ein unendliches Wort eine Abbildung
von N nach Γ. Um endliche und unendliche Wörter gleichzeitig zu betrachten, setzen wir

Γ∞ = Γ∗ ∪ Γω.

Analog lassen sich für Teilmengen A ⊆ Γk für ein k ∈ N die Mengen A∞ und Aω definieren.
Wir sagen auch hier, dass eine Teilmenge L von Γ∞ eine Sprache (über unendlichen Wörtern)
heißt. Für α ∈ Γ∞ setzen wir

alphk(α) =
{
v ∈ Γk | α = wvβ mit w ∈ Γ∗, β ∈ Γ∞

}
.

Wir schreiben imk(α) für jene Faktoren in alphk(α), die unendlich oft in α vorkommen. Für
A ⊆ Γk definieren wir

Aimk = {α ∈ Γ∞ | imk(α) = A} .

Um Erkennbarkeit auf unendliche Wörter zu übertragen, benutzt man sogenannte linked pairs.
Ein Tupel (s, e) ∈ M × M für ein Monoid M heißt linked pair, falls se = s und e2 = e

gilt. Sei h : Γ∗ → M ein surjektiver Homomorphismus und L ⊆ Γ∞ eine Sprache. Falls der
Homomorphismus h klar ist, schreiben wir [s] für die Menge h−1(s) mit s ∈M . h erkennt L
schwach, falls

L =
⋃
{[s][e]ω | (s, e) ist linked pair und [s][e]ω ⊆ L} .

9

2 Algebra und formale Sprachen

h erkennt L stark, falls

L =
⋃
{[s][e]ω | (s, e) ist linked pair und [s][e]ω ∩ L 6= ∅} .

Sei e ∈M ein Idempotent. Die Menge Pe besteht aus allen Produkten der Form

x0f1 . . . xm−1fmxm

mit Idempotenten f1, . . . , fm ∈ h(Γ+) und Elementen x0, . . . , xm ∈ M , die die folgenden
Bedingungen erfüllen

e ≤R x0f1

e ≤J fixifi+1 für alle 1 ≤ i ≤ m− 1

e ≤L fmxm.

Wir übernehmen die Verknüpfung ◦k aus [KKL2011]. Für u ∈ Γ∗, k ≥ 1 und α ∈ Γ∞ sei

w ◦k α = vxβ falls es ein x ∈ Γk−1 gibt mit w = vx und α = xβ.

Außerdem setzen wir w ◦k ε = w und ε ◦k α = α. In allen anderen Fällen sei diese Verknüpfung
undefiniert. Wir erweitern diese Verknüpfung auch auf Mengen. Sei A ⊆ Γ∗. Wir setzen

A∗k = {w1 ◦k . . . ◦k wn | n ≥ 0, wi ∈ A}
Aωk = {w1 ◦k w2 ◦k . . . | wi ∈ A}
A∞k = A∗k ∪Aωk .

Mit diesen Bezeichnungen lässt sich jetzt die strikte k-Faktor-Topologie definieren. Eine Basis
von dieser Topologie ist gegeben durch die Mengen u ◦k A∞k ∩Aimk mit u ∈ Γ∗ und A ⊆ Γk.

2.6 Die Operation V ∗W

Zunächst führen wir in diesem Abschnitt das semidirekte Produkt und das Kranzprodukt ein.
Mit Hilfe dieser Produkte lässt sich das Produkt V ∗W für Varietäten V,W definieren.

Seien (S,�) und (T, ·) Halbgruppen. Wir nennen eine Abbildung (t, s) 7→ ts von T × S in S
eine Linksoperation, falls

(t1 · t2)s = t1(t2s)

t(s1 � s2) = ts1 � ts2

für alle s, s1, s2 ∈ S und t, t1, t2 ∈ T gilt. Wir sagen dann, dass T auf S von links operiert. Man
schreibt oft auch ts für die Operation von t auf s. Sei nun eine solche Linksoperation gegeben.

10

2.6 Die Operation V ∗W

Wir definieren das semidirekte Produkt S ∗ T von S mit T auf der Menge S × T zusammen
mit der Multiplikation

(s1, t1)(s2, t2) = (s1 � t1s2, t1 · t2).

Diese Verknüpfung ist assoziativ, da

((s1, t1)(s2, t2))(s3, t3) =(s1 � t1s2, t1 · t2)(s3, t3) = (s1 � t1s2 � t1·t2s3, t1 · t2 · t3)

=(s1 � t1(s2 � t2s3), t1 · t2 · t3) = (s1, t1)((s2 � t2s3, t2 · t3)

=(s1, t1)((s2, t2)(s3, t3))

Man rechnet leicht nach, dass S ∗ T eine Halbgruppe ergibt. Ist S ein Monoid, so sagen wir,
dass die Linksoperation unitär ist, falls t1S = 1S für alle t ∈ T gilt. In diesem Fall nennen wir
das semidirekte Produkt S ∗ T unitär in S.

Wir definieren nun ein spezielles semidirektes Produkt. Seien dazu wieder (S,�) und (T, ·)
Halbgruppen. Die Menge der Abbildungen ST 1 von T 1 nach S wird zu einem Monoid durch

(f � g)(t) := f(t)� g(t)

für f, g ∈ ST 1 und t ∈ T 1. Wir betrachten nun die Abbildung T × ST 1 → ST
1 , (t, f) 7→ tf ,

wobei
tf(t̃) := f(t̃ · t) für t̃ ∈ T 1

gesetzt wird. Diese Abbildung ist eine Linksoperation von T auf ST 1 . Falls S ein Monoid ist, so
ist diese Operation unitär. Das semidirekte Produkt ST 1 ∗ T nennen wir das Kranzprodukt von
S mit T . Wir schreiben dafür S oT . Es gilt folgender Zusammenhang zwischen dem semidirekten
Produkt und dem Kranzprodukt:

Lemma 2.20. Seien S und T Halbgruppen. Dann ist jedes semidirekte Produkt zwischen S
und T , das unitär in S ist, eine Unterhalbgruppe von S o T .

Beweis. Siehe [Pin1986].

Wir können mit diesen Begriffen nun eine Definition von V ∗W geben.

Definition 2.21. Sei V eine Monoidvarietät und W eine Halbgruppenvarietät. V ∗W sei die
Menge aller Divisoren von Halbgruppen der Form S o T für S ∈ V und T ∈W.

Eine technische Rechnung zeigt nun, dass V ∗W eine Varietät von Halbgruppen ist. Falls
S ∈ V ist, dann ist auch ST

1 ∈ V, da dies nur ein |T 1|-faches direktes Produkt von S ist.
Man kann nach Lemma 2.20 die Varietät V ∗W also auch als die Menge aller Divisoren von
semidirekten Produkten S ∗ T , die unitär in S sind, mit S ∈ V und T ∈W definieren. Dies ist
auch der Grund für die Schreibweise V ∗W.

11

2 Algebra und formale Sprachen

2.7 Die Varietät V ∗D

In diesem Abschnitt untersuchen wir die Varietät V ∗D genauer. Das zentrale Resultat dieses
Abschnittes ist es, eine Beschreibung der Sprachen in V ∗ D zu erhalten. Dies liefert eine
greifbare Beschreibung von V ∗D.

Zunächst definieren wir die Rhodes-Expansion. Diese weist jedem Wort ein Fensterwort zu. Sei
k ∈ N die Fenstergröße. Wir definieren uns dann ein neues Alphabet Σk = (Γ ∪ {/, .})k. Wir
definieren die Funktion ρ̃k : (Γ ∪ {/, .})∗ → Σ∗k durch

ρ̃k(u) =

u[1; k]ρ̃k(u[2; |u|]) falls |u| ≥ k
ε sonst.

Die Rhodes-Expansion ρk : Γ∗ → Σ∗k ist dann gegeben durch ρk(u) = ρ̃k
(
.ku/k

)
. Das Wort

ρk(u) besteht also aus Fenstern der Größe k die ein Teilwort von u zeigen. Diese Fenster passen
jeweils zusammen, d. h. man kann sich ρk(u) so vorstellen, dass über das Wort u das Fenster
der Größe k nach rechts geschoben wird.

Beispiel 2.22. Sei k = 2, Γ = {a, b}, u = abbba. Dann ist ρk(u) = ρ̃k(. . u / /) =

(..)(.a)(ab)(bb)(bb)(ba)(a/)(//).

Es gilt nun folgender Zusammenhang zwischen Sprachen aus V ∗D und V, welches als Wreath
Product Principle von Straubing bekannt ist.

Satz 2.23. Sei L ⊆ Γ∗. L ∈ V ∗D genau dann, wenn es eine Zahl k ∈ N und eine Sprache
K ⊆ Σ∗k gibt, mit K ∈ V und ρ−1

k (K) = L.

Beweis. „⇐“: Es gibt S ∈ V und ϕ : Σ∗k → S, sodass ϕ die Sprache K erkennt. Sei T 1 =

T = (Σ≤k, ·) mit der Verknüpfung t1 · t2 := suffixk(t1t2). Damit ist T ∈ Dk. Wir zeigen,
dass L = ρ−1

k (K) von S o T erkannt wird. Definiere sϕ : T → S, t 7→ ϕ
(
suffixk

(
.kt
))

und
ψ : Γ+ → S oT durch a 7→ (sϕ, a). Wir zeigen, ψ(u) ∈ ψ(L)⇒ u ∈ L, also ψ erkennt L. Sei also
ψ(a1 . . . an) ∈ ψ(L). Dann gibt es ein Wort b1 . . . bm ∈ L mit ψ(a1 . . . an) = ψ(b1 . . . bm). Es ist

ψ(a1 . . . an) = (sϕ · a1sϕ . . . a1...an−1sϕ, suffixk(a1 . . . an))

= (sϕ · b1sϕ . . . b1...bm−1sϕ, suffixk(b1 . . . bm))

= ψ(b1 . . . bm)

Es gilt somit insbesondere

(sϕ · a1sϕ . . . a1...an−1sϕ)(1T) =
n−1∏
i=0

ϕ
(

suffixk

(
.ka1 . . . ai

))
=

m−1∏
i=0

ϕ
(

suffixk

(
.kb1 . . . bi

))
= (sϕ · b1sϕ . . . b1...bm−1sϕ)(1T)

12

2.7 Die Varietät V ∗D

Falls n < k oder m < k ist, so gilt bereits a1 . . . an = b1 . . . bm. Wir können also annehmen,
dass n > k und m > k gilt. Damit gilt an−k+1 . . . an = bm−k+1 . . . bm. Insbesondere ist also
suffixk(.

ka1 . . . an/
i) = suffixk(.

kb1 . . . bm/
i) für i ∈ N. Zusammen ergibt sich also

ϕ(ρk(a1 . . . an)) =
n+k∏
i=0

ϕ
(

suffixk

(
.ka1 . . . ai

))
mit ai = / für i > n

=

n−1∏
i=0

ϕ
(

suffixk

(
.ka1 . . . ai

))
·
k∏
i=0

ϕ
(

suffixk

(
.ka1 . . . an/

i
))

=
m−1∏
i=0

ϕ
(

suffixk

(
.kb1 . . . bi

))
·
k∏
i=0

ϕ
(

suffixk

(
.kb1 . . . bm/

i
))

= ϕ(ρk(b1 . . . bm)) ∈ ϕ(K)

Da ϕ die Sprache K erkennt, ist damit ρk(a1 . . . an) ∈ K und damit a1 . . . an ∈ L, was zu
zeigen war.

„⇒“: Sei L ∈ V ∗Dk, dann existieren S ∈ V, T ∈ Dk, ψ : Γ+ → S ∗T mit ψ−1(ψ(L)) = L. Wir
setzen die Fenstergröße auf 2k und definieren uns einen Homomorphismus

ϕ : Σ∗2k → S × ST

.ka1 . . . ak 7→ (s1 · t1s2 · . . . · t1...tk−1sk, 1ST)

.ia1 . . . a2k−i 7→ (t1...t2k−i−1s2k−i, 1ST) für 0 ≤ i < k

b1 . . . bk−1a1 . . . ak/ 7→ (1S , χt1...tk)

.a1 . . . al/
2k−l−1 7→ (s1 · t1s2 · . . . · t1...tl−1sl, χt1...tl) für 1 ≤ l ≤ 2k − 1

wobei ai ∈ Γ und bi ∈ Γ ∪ {., /} gilt. Außerdem seien in jeder Zeile ψ(ai) = (si, ti). Für
die restlichen Buchstaben von Σ2k, auf denen ϕ noch nicht definiert wurde, setzen wir den
Funktionswert auf (1S , 1ST). Die Funktion χt für t ∈ T sei definiert durch

χt(t̃) =

1S falls t 6= t̃

c falls t = t̃,

wobei 1S 6= c ∈ S beliebig aber fest gewählt ist. ϕ ist also so definiert, dass für ψ(w) = (s, t)

gilt ϕ(ρ2k(w)) = (s, χt). Wir setzen P := {(s, χt) | (s, t) ∈ ψ(L)} und K := ϕ−1(P). Nach
Konstruktion ist also K ∈ V. Zu zeigen ist noch, dass ρ−1

2k (K) = L gilt. Sei also ρ2k(w) ∈ K.
Zu zeigen ist, dass w ∈ L ist. Nach Definition von K ist ϕ(ρ2k(w)) ∈ P . Daraus folgt nach
Konstruktion von ϕ, dass ψ(w) ∈ ψ(L) ist. Da ψ erkennend ist, ist somit w ∈ L.

Definition 2.24. Eine Varietät V heißt lokal, falls V ∗D = LV gilt.

Kann man also für eine entscheidbare Varietät V nachweisen, dass sie lokal ist, so kann man
folgendes Lemma benutzen.

13

2 Algebra und formale Sprachen

Lemma 2.25. Sei V entscheidbar und lokal, dann ist V ∗D entscheidbar.

Beweis. Folgt direkt aus Lemma 2.19 und der Definition von lokal.

14

3 Logik

In diesem Kapitel untersuchen wir bestimmte Logikfragmente. Jeder Formel aus einem die-
ser Fragmente können wir dann eine Sprache zuweisen. In Kapitel 4 werden wir dann den
Zusammenhang zwischen solchen Sprachen und denen, die wir mit Methoden aus Kapitel
2 definiert haben, beschreiben. In Abschnitt 3.1 führen wir Ranker über Wörtern und die
zugehörigen Rankersprachen ein. In Abschnitt 3.2 definieren wir dann zwei Fragmente der
temporalen Logik. Das Konzept der Intervall-Temporal-Logik wird in Abschnitt 3.3 eingeführt.
In Abschnitt 3.4 wenden wir uns dann der Logik erster Stufe zu. In Abschnitt 3.5 werden
Ehrenfeucht-Fraïssé-Spiele eingeführt, ein Hilfsmittel, um Äquivalenzen von Wörtern bezüglich
Formeln einer bestimmtem Tiefe zu beweisen.

3.1 Ranker

Ein Ranker über Wörtern ist ein Wort über dem Alphabet {Xw,Yw | w ∈ Γ∗}. Dabei inter-
pretieren wir Xw als die Anweisung, zum nächsten Vorkommen des Teilwortes w zu springen.
Genauso interpretieren wir Yw als die Anweisung, zum letzten Vorkommen des Teilwortes w zu
springen. Wir formalisieren dies wie folgt. Sei α ∈ Γ∞ ein Wort und i ∈ N eine Position im
Wort α. Dann ist

Xw(α, i) := min{j | j > i und w ist Präfix von α[j; |α|]}
Yw(α, i) := max{j | j < i und w ist Suffix von α[1; j]}

Dabei setzen wir den Wert auf undefiniert, falls das Minimum bzw. Maximum nicht existiert.
Sei ein Ranker r gegeben. Wir nennen r einen X-Ranker, falls es ein Wort w ∈ Γ∗ und einen
Ranker s gibt, mit r = Xw s. Analog heißt r ein Y-Ranker, falls es ein Wort w ∈ Γ∗ und einen
Ranker s gibt, mit r = Yw s. Damit lässt sich sich die obige Definition der Operatoren Xw,Yw
induktiv auf Ranker fortsetzen.

r(α, i) := s(α,Xw(α, i)) für r = Xw s

r(α, i) := s(α,Yw(α, i)) für r = Yw s

15

3 Logik

u w

v
Xw

Xv

Yu

| | | | | | | |

Abbildung 3.1: Illustration zu Rankern

Falls der Ranker s undefiniert ist, so soll auch r undefiniert sein. Abhängig davon, ob r ein
X-Ranker oder Y-Ranker ist, definieren wir nun die Position, die ein Ranker auf ein Wort α
zurückgibt.

r(α) =

r(α, 0) falls r ein X -Ranker ist

r(α,∞) falls r ein Y -Ranker ist

Abbildung 3.1 illustriert die Wirkungsweise eines Rankers. Wir sagen, dass r auf α definiert
ist, falls r(α) nicht undefiniert liefert. Die hier definierten Ranker entsprechen auf unendlichen
Wörtern den Eager-Rankern aus [DKL2010]. Es ist manchmal sinnvoll, auch an das Ende des
Wortes zu springen. Wir definieren deswegen die Abkürzungen

Xw := Xw Xw(2) . . .Xw(|w|)

Yw := Yw Yw(|w|−1) . . .Yw(1) .

Die von einem Ranker r erzeugte Sprache ist

L(r) = {α ∈ Γ∞ | r ist definiert auf α}.

Wir nennen eine Sprache L eine Rankersprache, falls L die boolsche Kombination von Sprachen
des Typs L(r) für Ranker r ist.

3.2 Temporal-Logik

Wir führen nun die Temporal-Logik ein. Syntaktisch ist eine Formel φ in TL gegeben durch

φ ::= > | a | ψ ∨ ψ̃ | ψ ∧ ψ̃ | ¬ψ | Xψ | Yψ | Fψ | Pψ | Xw ψ | Yw ψ

wobei a ∈ Γ und ψ, ψ̃ ∈ TL rekursiv definiert wurden. Wir interpretieren Formeln in TL über
Wörtern in Γ∞ und Positionen auf diesen Wörtern. Wir schreiben α, x |= φ, falls die Formel

16

3.2 Temporal-Logik

φ ∈ TL wahr ist auf α ∈ Γ∞ an Position x ∈ N ∪ {∞}. Ist dies nicht der Fall, so schreiben wir
α, x 6|= φ. Die Semantik wird induktiv definiert. α, x |= > sei immer wahr.

α, x |= a ⇔ α(x) = a

α, x |= ψ ∨ ψ̃ ⇔ α, x |= ψ oder α, x |= ψ̃

α, x |= ψ ∧ ψ̃ ⇔ α, x |= ψ und α, x |= ψ̃

α, x |= ¬ψ ⇔ α, x 6|= ψ

α, x |= Xψ ⇔ α, x+ 1 |= ψ

α, x |= Yψ ⇔ α, x− 1 |= ψ

α, x |= Fψ ⇔ ∃y : y ≥ x ∧ α, y |= ψ

α, x |= Pψ ⇔ ∃y : y ≤ x ∧ α, y |= ψ

α, x |= Xw ψ ⇔ α,Xw(x) |= ψ

α, x |= Yw ψ ⇔ α,Yw(x) |= ψ

Wir definieren nun, wann ein Wort α eine Formel φ erfüllt. Wir schreiben dafür α |= φ. Wir
setzen wieder α |= > auf wahr. Für jedes a ∈ Γ setzen wir α |= a auf falsch. Die boolschen
Operatoren ¬,∧,∨ werden wie oben definiert. Für die temporalen Modalitäten setzen wir

α |= Xψ ⇔ α, 1 |= ψ

α |= Yψ ⇔ α, |α| |= ψ

α |= Fψ ⇔ α, 0 |= Fψ

α |= Pψ ⇔ α,∞ |= Pψ

α |= Xw ψ ⇔ α, 0 |= Xw ψ

α |= Yw ψ ⇔ α,∞ |= Yw ψ

Jeder Formel φ ∈ TL lässt sich so in natürlicher Weise eine Sprache

L(φ) := {α ∈ Γ∞ | α |= φ}

zuweisen. Wir nennen eine Sprache L definierbar in TL, falls eine Formel φ ∈ TL existiert, mit
L = L(φ).

Wir führen die Fragmente TL[X,Y,F,P] und TL[Xw,Yw] ein. In beiden Fragmenten darf man
die atomaren Modalitäten und boolsche Operatoren benutzen. In TL[X,Y,F,P] darf man nur die
temporalen Modalitäten X,Y,F,P, wohingegen in TL[Xw,Yw] nur die temporalen Modalitäten
Xw,Yw gebraucht werden dürfen. Wie zuvor nennen wir eine Sprache L definierbar in einem
der Fragmente, falls es eine Formel φ in diesem Fragment gibt mit L = L(φ).

Beispiel 3.1. Seien a, b ∈ Γ. Wir definieren die Sprache

L = {uabα ∈ Γ∞ | u ∈ Γ∗, α ∈ Γ∞, ab 6∈ alph2(u) ∪ alph2(α)}.

17

3 Logik

Betrachte die folgende TL[Xw,Yw]-Formel und TL[X,Y,F,P]-Formel

φ = Xab ¬Xab>
φ̃ = F(a ∧ X(b ∧ ¬F(a ∧ X b))).

Es gilt L(φ) = L(φ̃) = L. Damit ist L sowohl in TL[Xw,Yw], als auch in TL[X,Y,F,P]

definierbar.

3.3 Intervall-Temporal-Logik

Eine Formel φ ∈ ITL[Fw, Lw] ist gegeben durch

φ ::= > | ψ ∨ ψ̃ | ψ ∧ ψ̃ | ¬ψ | ψ Fw ψ̃ | ψ Lw ψ̃

für Wörter w ∈ Γ∗ und Formeln ψ, ψ̃ ∈ ITL[Fw, Lw]. Die Semantik von ITL[Fw, Lw]-Formeln ist
über Intervallen und Wörtern definiert. Die Operatoren Fw und Lw erzeugen zwei Teilintervalle,
indem das erst- bzw. letztvorkommende Wort w herausgeschnitten wird. Der Schnittpunkt ist
das erste bzw. letzte Vorkommen von w im Intervall. Als Anschauung dient Abbildung 3.2.
Wir formalisieren diese Anschauung. α, (x, y) |= > ist immer wahr. Die boolschen Operatoren
¬,∧,∨ werden wie bereits im Abschnitt 3.2 definiert. Es gilt

α, (x, y) |= ψ Fw ψ̃ ⇔ Xw(α, x) existiert ∧ Xw(α, x) < y ∧
α, (x,Xw(α, x)) |= ψ ∧ α, (Xw(α, x), y) |= ψ̃,

α, (x, y) |= ψ Lw ψ̃ ⇔ Yw(α, y) existiert ∧ Yw(α, y) > x ∧
α, (x,Yw(α, y)) |= ψ ∧ α, (Yw(α, y), y) |= ψ̃.

Ein Wort α ist nun ein Modell für φ, falls α, (0,∞) |= φ. Wir schreiben dann α |= φ. Ausgehend
davon können wir die zu einer Formel φ zugehörige Sprache

L(φ) = {α ∈ Γ∞ | α |= φ}

definieren. Wir sagen, dass eine Sprache L in ITL[Fw, Lw] definierbar ist, falls eine Formel
φ ∈ ITL[Fw, Lw] existiert, mit L = L(φ).

Beispiel 3.2. Wir betrachten die Sprache L aus Beispiel 3.1. Für

φ = >Fab(¬(>Fab>)) ∈ ITL[Fw, Lw]

gilt L = L(φ). Also ist L definierbar in ITL[Fw, Lw].

18

3.4 Logik erster Stufe

|= ψ w |= φ

| | | |

Abbildung 3.2: Illustration zu ψ Fw φ

3.4 Logik erster Stufe

Wir definieren Prädikatenlogik erster Stufe FO über dem Modell der Wörter. Atomare Formeln
in FO sind >, das einstellige Prädikat λ(x) = a, für eine Variable x und einen Buchstaben a ∈ Γ,
und die zweistelligen Prädikate x < y und x ≤ y für Variablen x und y. Zusammengesetzte
Formeln φ sind dann

φ ::= ¬ψ | ψ ∨ ψ̃ | ψ ∧ ψ̃ | ∀xψ | ∃xψ

für beliebige Formeln ψ, ψ̃ ∈ FO und beliebige Variablenbezeichner x. Wir nennen ein Vor-
kommen einer Variablen x gebunden, falls das Vorkommen von x in einer Teilformel der Form
∃xψ oder ∀xψ auftritt. Ansonsten heißt das Vorkommen von x frei. Eine Formel ohne freie
Variablen nennen wir geschlossen oder einen Satz.

Für die Semantik der Formeln in FO stellen wir uns die Variablen als Positionen auf den
Wörtern α, also als Elemente der Menge {1, . . . , |α|} ∩N, vor. Die Ordnungsrelation ist dann in
natürlicher Weise definiert. Das Prädikat λ(x) = a überprüft, ob die Beschriftung des Wortes
an der Stelle x dem Buchstaben a entspricht. Die Semantik der zusammengesetzten Formeln
wird wie üblich definiert. Für einen Satz φ schreiben wir u |= φ falls φ auf dem Wort u mit
wahr ausgewertet wird.

Das Fragment FO2[<] enthält alle FO-Formeln, die maximal zwei Variablenbezeichner benutzen.
Üblicherweise bezeichnen wir diese mit x und y.

Wir definieren ein Prädikat x = y + 1, kurz als +1 bezeichnet. Die Semantik ist gegeben durch
die FO-Formel ∀z (x < z ∨ z < y), wobei z ein bisher nicht benutzter Variablenbezeichner sein
soll. Dieses Prädikat ist nicht in FO2[<] definierbar, da man dafür drei Variablen benötigt.
Deswegen ist das Fragment FO2[<,+1], in dem wir zusätzlich das Prädikat +1 erlauben, eine
echte Erweiterung von FO2[<].

Weitere Fragmente ergeben sich durch Restriktion der Quantorenalternierungen. Wir sagen, eine
Formel φ ∈ FO[<,+1] ist in Σ2[<,+1], falls φ eine äquivalente Formel in Pränex-Normalform
besitzt, die nur zwei Blöcke von Quantoren besitzt, beginnend mit einem Block von Exis-
tenzquantoren. Eine Formel φ ist in Π2[<,+1], falls ¬φ ∈ Σ2[<,+1]. Außerdem setzen wir
∆2[<,+1] = Σ2[<,+1] ∩Π2[<,+1].

Für einen Satz φ ∈ FO definieren wir die zugehörige Sprache

L(φ) = {α ∈ Γ∞ | α |= φ}.

19

3 Logik

Eine Sprache L heißt definierbar in FO, falls eine Formel φ ∈ FO existiert, mit L = L(φ).
Analog definiert man dies für FO2[<], FO2[<,+1], ∆2[<,+1], Σ2[<,+1] und Π2[<,+1].

Beispiel 3.3. Wir betrachten nochmals die Sprache L aus Beispiel 3.1. Für die Formel

φ = ∃x∃y(y = x+ 1 ∧ λ(x) = a ∧ λ(y) = b ∧
∀x((x > y ∧ λ(x) = a)⇒ ¬∃y(y = x+ 1 ∧ λ(y) = b)))

gilt L = L(φ) und φ ∈ FO2[<,+1]. L ist also auch in FO2[<,+1] definierbar.

3.5 Ehrenfeucht-Fraïssé-Spiele

Ehrenfeucht-Fraïssé-Spiele sind ein Hilfsmittel aus der Modelltheorie. Sie wurden erstmals von
Fraïssé in [Fra1950] beschrieben und dann von Ehrenfeucht als Spiel in [Ehr1961] formuliert.
Wir führen diese Spiele für die Logikfragmente FO2[<,+1] und FO2[<] ein.

Ein Ehrenfeucht-Fraïssé-Spiel wird von zwei Spielern gespielt, oft Spoiler und Duplicator
genannt. Ein Spiel wird auf zwei Strukturen gespielt, in unserem Fall sind dies zwei Wörter
u und v. Spoilers Ziel ist zu zeigen, dass u und v eine verschiedene Teilstruktur haben,
Duplicator versucht dies durch seine Spielzüge zu vertuschen. Ein FO2

n(u, v)-Spiel wird mit
zwei Spielsteinen auf den Wörtern u, v und n Spielzügen gespielt. Diese Spielsteine werden
auch Marken oder Pebbles genannt.

Im ersten Schritt sucht sich Spoiler ein Wort aus und legt eine Marke an eine bestimmte
Position des Wortes. Duplicator legt auf das andere Wort einen Spielstein. Im zweiten Schritt
wiederholt sich dieses Prozedere mit den anderen beiden Spielsteinen. In jedem nachfolgenden
Schritt sucht sich jetzt Spoiler ein Wort aus, nimmt einen der Spielsteine und versetzt ihn.
Duplicator macht dasselbe auf dem anderen Wort.

Dabei muss nach jedem Schritt gelten, dass die relative Ordnung der beiden Spielsteine auf den
Wörtern gleich ist. Ist also der erste Spielstein in Wort u vor dem zweiten Spielstein gesetzt,
so muss dies auch in Wort v gelten. Außerdem muss die Beschriftung an den Positionen der
Spielsteine gleich sein. Wird das Spiel über FO2[<,+1] gespielt, so sind die Spielsteine genau
dann benachbart in u, falls sie benachbart in v sind. Ist eine dieser Bedingungen während
einem der Schritte nicht erfüllt, so hat Spoiler das Spiel gewonnen, ansonsten hat Duplicator
das Spiel gewonnen.

Wir sagen, dass Duplicator eine Gewinnstrategie auf FO2
n(u, v)-Spielen hat, falls er für alle

Spielzüge von Spoiler entsprechende Züge ziehen kann, sodass er gewinnt.

Für zwei Wörter u, v sagen wir, dass u ≡n v bzw. u ≡+1
n v, falls u und v diesselben Formeln

in FO2[<] bzw. FO2[<,+1] der Tiefe n erfüllen. Es gilt nun folgender Satz, der Ehrenfeucht-
Fraïssé-Spiele für uns interessant macht.

20

3.5 Ehrenfeucht-Fraïssé-Spiele

Satz 3.4. Duplicator hat eine Gewinnstrategie auf allen FO2
n(u, v)-Spielen für FO2[<] (bzw.

FO2[<,+1]) genau dann, wenn u ≡n v (bzw. u ≡+1
n v)

Beweis. Siehe [Ehr1961].

21

4 Das Fragment FO2[<,+1] auf endlichen
Wörtern

In diesem Kapitel werden endliche Wörter untersucht. Dabei wurde versucht die Beweise
allgemein genug zu formulieren, sodass die meisten Beweise auch für das Kapitel 5 benutzt
werden können. Das Hauptresultat der Arbeit ist der folgende Satz. Er zeigt die Äquivalenz
zwischen den eingeführten Konzepten.

Satz 4.1. Sei L ⊆ Γ∗. Dann sind äquivalent:

1. L wird erkannt in DA ∗D.

2. L wird erkannt in LDA.

3. L ist definierbar in ITL[Fw, Lw].

4. L ist definierbar in TL[Xw,Yw].

5. L ist eine Rankersprache.

6. L ist definierbar in TL[X,F,Y,P].

7. L ist definierbar in FO2[<,+1].

8. L ist definierbar in ∆2[<,+1].

Die folgenden beiden Lemmata stehen auch in ähnlicher Form in [Eil1976].

Lemma 4.2. Es gilt:

1. Seien S, T Halbgruppen. Falls S ≺ T , dann gibt es für jedes Idempotent e ∈ E(S) ein
Idempotent f ∈ E(T) so, dass eSe ≺ fTf .

2. Sei (g, e) ein Idempotent des Kranzprodukts S o T . Dann gilt

(g, e)(S o T)(g, e) ≺ S o (eTe).

23

4 Das Fragment FO2[<,+1] auf endlichen Wörtern

Beweis. 1. Nach Definition existiert eine Halbgruppe U und die Homomorphismen φ : U → T ,
ψ : U → S so, dass φ injektiv und ψ surjektiv ist. Sei x ∈ ψ−1(e) und f ′ := xω. Kurze Rechnung
zeigt, dass ψ(f ′) = e. Sei f := φ(f ′). f ist somit ein Idempotent, da f ′ idempotent ist. Die
Abbildung φ|f ′Uf ′ : f ′Uf ′ → fTf (bzw. ψ|f ′Uf ′ : f ′Uf ′ → eSe) ist injektiv (bzw. surjektiv).
Damit gilt eSe ≺ fTf .

2. Siehe [Eil1976].

Proposition 4.3. Für zwei Varietäten V,W ist V ∗ LW ⊆ L(V ∗W).

Beweis. Sei X ∈ V ∗ LW. Damit gilt X ≺ Y o Z für bestimmte Y ∈ V, Z ∈ LW. Für jedes
e ∈ E(X) gilt

eXe < X ≺ Y o Z,

was eXe ≺ Y o Z impliziert. Mit Lemma 4.2 folgt, dass ein f ∈ E(Z) existiert so, dass

eXe ≺ Y o (fZf).

Da fZf ∈W, gilt eXe ∈ V ∗W nach Defnition. Daraus folgt X ∈ L(V ∗W).

Dies kann man direkt anwenden für die Varietät DA ∗D.

Korollar 4.4. DA ∗D ⊆ LDA

Beweis. Nach Lemma 2.13 gilt D ⊆ LI. Damit gilt auch DA∗D ⊆ DA∗LI. Nach Proposition
4.3 gilt dann DA ∗ LI ⊆ L(DA ∗ I) = LDA.

Der Beweis benutzt keine Eigenschaften von DA. Damit gilt allgemeiner auch V∗D ⊆ LV. Wir
untersuchen im weiteren die Varietät LDA auf nützliche Eigenschaften. In Kapitel 2.3 haben
wir bereits gesehen, dass LDA aperiodisch ist. Folgendes Resultat lässt sich also insbesondere
auf LDA anwenden.

Lemma 4.5. Sei M aperiodisch, x, y ∈M , x ≤R y und y ≤L x. Dann ist x = y.

Beweis. Es gibt b, c ∈ M mit x = yb und y = cx. Es ist x = cxb = cωxbω = cω+1xbω = cx =

y.

Lemma 4.6. Sei M ∈ LDA und e, u, a ∈M . Falls e2 = e, ue = u, uae = ua und u R ua gilt,
dann ist u R uaa

Beweis. Da u R ua, existiert ein b ∈M , sodass uab = u. Es ist

u = u(eaebe)ω

= u(eaebe)ωeae(eaebe)ω ∈ uaa ·M.

Folglich gilt u R uaa.

24

Dieses Lemma zeigt eine Bedingung dafür, dass kein R -Abstieg auftritt. Wir benutzen dies,
um das folgende Lemma zu beweisen. Es zeigt, dass Faktoren einer bestimmten Länge keinen
R -Abstieg verursachen, falls diese schon einmal auftraten.

Lemma 4.7. Seien u, x ∈ Γ∗, M ∈ LDA, a ∈ Γ mit |x| ≥ m > |M |. Sei µ : Γ∗ → M ein
Homomorphismus. Falls µ(u) R µ(ux) und alphm(x) = alphm(xa), dann ist µ(u) R µ(uxa).

Beweis. Sei w := suffixm(xa). Da alphm(x) = alphm(xa), gibt es s, t ∈ Γ∗ so, dass x = swt. Da
|w| > |M | ist, existieren nach Lemma 2.2 w1, w2 ∈ Γ∗, sodass w = w1w2a und µ(w1)e = µ(w1)

für ein Idempotent e ∈M . Sei |w1| maximal mit dieser Eigenschaft. Es ist

x = sw1w2at
′w2

für ein t′ ∈ Γ∗ und w1 ist ein Suffix von w1w2at
′. Wir setzen a′ = µ(w2at

′) und u′ = µ(usw1).
Damit ist

u′e = u′ und u′a′e = u′a′

Mit Lemma 4.6 folgt, dass u′a′a′ R u′. Also gilt µ(uxat′) R u′ R µ(u) und es folgt, dass
µ(u) R µ(uxa).

Proposition 4.8. Sei L ⊆ Γ+ erkennbar mit einem M ∈ LDA. Dann ist L definierbar in
ITL[Fw, Lw].

Beweis. Sei µ : Γ+ →M ∈ LDA ein Homomorphismus, der L erkennt. Wir fixieren m > |M |.
Für Wörter u, v ∈ Γ∗ definieren wir eine Äquivalenzrelation u ≡n v, falls u und v dieselben
Formeln in ITL[Fw, Lw] erfüllen mit Operatortiefe von höchstens n und mit |w| ≤ m für alle
Wörter w, die in einer Modalität vorkommen. Sei u ≡n v. Mit Induktion nach |alphm(u)| zeigen
wir, dass n > |M | · |alphm(u)| die Gleichheit µ(u) = µ(v) impliziert.

Sei |alphm(u)| = 0, d. h. |u| < m. Aus u ≡n v und n ≥ 1 folgt direkt u = v. Sei nun also
|alphm(u)| > 0 und u = u′1a1 . . . u

′
kaku

′
k+1 mit u′i ∈ Γ∗ und ai ∈ Γ die R-Faktorisierung von u,

d. h. 1 R µ(u′1) und

µ(u′1a1 . . . u
′
i) >R µ(u′1a1 . . . u

′
iai) R µ(u′1a1 . . . u

′
iaiu

′
i+1) für alle 1 ≤ i ≤ k.

Für 1 ≤ i ≤ k sei u′iai = uiwi mit |wi| = m, falls |u′iai| ≥ m und sonst ui = 1 und wi = u′iai.
Es gilt

µ(u1w1 . . . u
′
i) >R µ(u1w1 . . . uiwi) R µ(u1w1 . . . uiwiu

′
i+1) für alle 1 ≤ i ≤ k.

Nach Lemma 4.7 gilt dann wi 6∈ alphm(u′i) für alle 1 ≤ i ≤ k. Da es maximal |M | verschiedene
R-Klassen gibt, gilt k < |M |. Ferner gilt u |= >Fw1(>Fw2(. . .>Fwk

>) . . .) und u ≡n v

mit n > k, also folgt, dass v eine Faktorisierung v = v1w1 . . . vkwkvk+1 mit vi ∈ Γ∗ und

25

4 Das Fragment FO2[<,+1] auf endlichen Wörtern

wi 6∈ alphm(viwia
−1
i) besitzt. u ≡n v impliziert ui ≡n−i vi für 1 ≤ i ≤ k. Da aber alphm(ui) ⊆

alphm(u′i) (alphm(u), gilt n− i > |M | |alphm(ui)|. Nach Induktion gilt also µ(ui) = µ(vi) und

µ(v) ≤R µ(v1w1 . . . vkwk) = µ(u1w1 . . . ukwk) R µ(u).

Symmetrisch folgt µ(u) ≤L µ(v), indem man mit einer L-Faktorisierung von v beginnt. Daraus
folgt µ(u) = µ(v) nach Lemma 4.5 und Lemma 2.12.

Sei n > |M | |Γ|m und p ∈ M . Nach obigem ist µ−1(p) eine endliche Vereinigung von ≡n-
Klassen. Bis auf Äquivalenz gibt es nur endlich viele ITL[Fw, Lw]-Formeln mit Operatortiefe
von höchstens Tiefe n und |w| ≤ m so, dass jede ≡n-Klasse durch eine Formel in ITL[Fw, Lw]

ausgedrückt werden kann, indem man angibt, welche dieser Formeln gelten. Also kann µ−1(p)

in ITL[Fw, Lw] beschrieben werden. Da µ die Sprache L erkennt, gilt L =
⋃
p∈P µ

−1(p) mit
P = µ(L) und es folgt, dass L in ITL[Fw, Lw] definierbar ist.

Um die Intervallgrenzen der Intervall-Logik in TL[Xw,Yw] zu beschreiben, benutzen wir das
nächste Lemma. Dieses liefert Formeln, mit denen wir garantieren können, im richtigen Intervall
zu sein.

Proposition 4.9. Sei r ein Ranker. Dann gibt es Formeln ϑr, %r ∈ TL[Xw,Yw] so, dass für
alle α ∈ Γ∞, x ∈ N

α, x |= ϑr ⇔ x ≤ r(α),

α, x |= %r ⇔ x ≥ r(α).

Insbesondere ist r(α) genau dann definiert, wenn es eine Position x gibt mit α, x |= ϑr. Dies
ist genau dann der Fall, wenn es eine Position x gibt mit α, x |= %r.

Beweis. Wir führen eine Induktion nach der Länge von r. Für r = Xw setzen wir

ϑr = Xw[2;|w|]¬Yw> und %r = ¬Xw¬Yw>

und für r = Yw
%r = Yw[1;|w|−1]¬Xw> und ϑr = ¬Yw¬Xw>.

Sei r = sXw für einen Ranker s und setze

ϑr = Xw[2;|w|]¬Yw¬ϑs und %r = ¬Xw¬Yw¬ϑs

und für r = sXw setzen wir symmetrisch

%r = Yw[1;|w|−1]¬Xw¬%s und ϑr = ¬Yw¬Xw¬%s.

Mit dieser Vorbereitung kann nun die folgende Proposition bewiesen werden.

26

Proposition 4.10. Sei L ⊆ Γ∞ definierbar in ITL[Fw, Lw]. Dann ist L definierbar in
TL[Xw,Yw].

Beweis. Wir definieren für jede Formel ϕ ∈ ITL[Fw, Lw] und für Ranker q und r eine Formel
ϕ(q;r) ∈ TL[Xw,Yw] mit der Eigenschaft, dass für alle α ∈ Γ∞ so, dass q(α) und r(α) definiert
sind mit q(α) < r(α), gilt α |= ϕ(q;r) genau dann wenn

α,
(
q(α); r(α)

)
|= ϕ.

Also definiert (q; r) ein Intervall, dass parametrisiert wird vom Wort α. Außerdem erlauben
wir, dass q und r leer sind (bezeichnet mit ε). Für q = ε setzen wir q(α) = 0 und um eine
bequeme Schreibweise zu erhalten, setzen wir r(α) = |α| für r = ε. Folglich erfüllt die Formel
ϕ(ε;ε) ∈ TL[Xw,Yw] die Bedingung L(ϕ(ε;ε)) = L(ϕ).

Wir definieren ϕ(q;r) mit strukturieller Induktion auf ϕ. Atomare Modalitäten und boolsche
Verknüpfungen werden wie folgt definiert:

>(q;r) = >
(¬ϕ)(q;r) = ¬ϕ(q;r)

(ϕ ∧ ψ)(q;r) = ϕ(q;r) ∧ ψ(q;r)

(ϕ ∨ ψ)(q;r) = ϕ(q;r) ∨ ψ(q;r)

Für die temporalen Modalitäten benutzen wir die Formeln ϑr und %r aus Proposition 4.9 und
setzen:

(ϕFw ψ)(q;r) = ϕ(q;q Xw) ∧ ψ(qXw;r)
∧ qXw¬%r

(ϕ Lw ψ)(q;r) = ϕ
(q;rYw)

∧ ψ(rYw;r) ∧ rYw¬ϑq.

Zu jeder Sprache, die in TL[Xw,Yw] definierbar ist, lässt sich effektiv die Rankersprache
berechnen. Wir zeigen dies im nächsten Lemma.

Lemma 4.11. Sei L ⊆ Γ∞ definierbar in TL[Xw,Yw], dann ist L eine Rankersprache.

Beweis. Sei φ eine TL[Xw,Yw]-Formel so, dass L(φ) = L. Wir formen φ syntaktisch äquivalent
um, sodass alle Modalitäten Xw,Yw nach innen gezogen werden. Dies wird induktiv gemacht
mittels Xw(ψ1 ∨ ψ2) ≡ Xw ψ1 ∨ Xw ψ2, Xw(ψ1 ∧ ψ2) ≡ Xw ψ1 ∧ Xw ψ2 und Xw ¬ψ ≡ Xw> ∧
¬Xw ψ. Analog gilt dies für Yw. Damit ist L eine boolsche Kombination von Rankern.

Ein ähnliches Resultat wie bereits in Proposition 4.9 für TL[Xw,Yw] formuliert, lässt sich auch
für TL[X,F,Y,P] formulieren.

27

4 Das Fragment FO2[<,+1] auf endlichen Wörtern

Proposition 4.12. Sei r ein Ranker, dann gibt es Formeln ϑr, %r ∈ TL[X,F,Y,P] so, dass für
alle α ∈ Γ∞, x ∈ N

α, x |= ϑr ⇔ x ≤ r(α),

α, x |= %r ⇔ x ≥ r(α).

Insbesondere ist r(α) genau dann definiert, wenn es eine Position x gibt mit α, x |= ϑr. Dies
ist genau dann der Fall, wenn es eine Position x gibt mit α, x |= %r.

Beweis. Sei w ∈ Γ+. Nach Induktion über die Länge von w, definieren wir Formeln w und w
in TL[X,F,Y,P] als w(1) ∧ X (w[2; |w|]), und w(|w|) ∧ Y (w[1; |w| − 1]). Folglich ist die Formel
w wahr für v an der Position x genau dann, wenn w = α[x;x + |w|), und w ist wahr genau
dann, wenn w = α(x− |w| ;x]. Wir führen eine Induktion nach der Länge von r. Für r = Xw
setzen wir

ϑr = ¬YP(w) und %r = P(w).

Symmetrisch für r = Yw setzen wir

ϑr = F(w) und %r = ¬XF(w).

Sei r = sXw oder r = sYw für einen Ranker s. Nach Induktion existieren Formuln ϑs and %s.
Definiere

ϑr = ¬YP(w) ∨ YP(w ∧ ϑs) und %r = P(w ∧ Y %s) für r = sXw,

ϑr = F(w ∧ Xϑs) und %r = ¬XF(w) ∨ XF(w ∧ %s) für r = sYw.

Aus dieser Proposition kann man direkt folgern, dass jede von einem Ranker erzeugte Sprache
durch eine Formel ϕ ∈ TL[X,Y,F,P] definierbar ist.

Lemma 4.13. Sei r ein Ranker. Dann gibt es eine Formel ϕ ∈ TL[X,F,Y,P] so, dass L(r) =

L(ϕ).

Beweis. Nach Proposition 4.12 gilt v |= r genau dann, wenn v |= Fϑr ∈ TL[X,F,Y,P] und
folglich L(r) = L(Fϑr).

Wir zeigen in den nächsten beiden Lemmata, dass sich eine TL[X,F,Y,P]-Formel effektiv in
eine äquivalente FO2[<,+1]-Formel umwandeln lässt.

Lemma 4.14. Für alle φ ∈ TL[X,F,Y,P] gibt es ein ψφ(x) ∈ FO2[<,+1] so, dass

w, x |= φ⇔ w |= ψφ(x).

28

Beweis. Wir führen den Beweis per Induktion nach dem Aufbau von φ. Es reicht die Fälle
φ ∈

{
X φ̃,F φ̃,Y φ̃,P φ̃

}
für ein φ̃ ∈ TL[X,F,Y,P] zu untersuchen, da alle anderen Fälle sich

direkt nach FO2[<,+1] übertragen lassen. Es ist

ψX φ̃(x) = ∃y
(
y = x+ 1 ∧ ψφ̃(y)

)
ψY φ̃(x) = ∃y

(
x = y + 1 ∧ ψφ̃(y)

)
ψF φ̃(x) = ∃y

(
y ≥ x ∧ ψφ̃(y)

)
ψP φ̃(x) = ∃y

(
y ≤ x ∧ ψφ̃(y)

)

Dabei werden in ψφ̃(y) die Variablen getauscht, die freie Variable ist dort y und x die gebundene
Variable.

Lemma 4.15. Sei φ ∈ TL[X,F,Y,P]. Dann gibt es eine Formel ψ ∈ FO2[<,+1] so, dass
L(φ) = L(ψ).

Beweis. Es reicht wieder, sich auf die Fälle φ ∈
{
X φ̃,F φ̃,Y φ̃,P φ̃

}
zu beschränken. Es gilt

w |= X φ̃⇔ w |= ∃x∀y
(

(x 6= y + 1) ∧ w, x |= φ̃
)

w |= Y φ̃⇔ w |= ∃x∀y
(

(x 6= y − 1) ∧ w, x |= φ̃
)

w |= F φ̃⇔ w |= Pφ̃⇔ w |= ∃x
(
w, x |= φ̃

)
Die Formel w, x |= φ̃ ist nach Lemma 4.14 in FO2[<,+1] definierbar, was die Behauptung
zeigt.

In der nächsten Proposition wird die Verbindung von FO2[<,+1] zu DA ∗D beschrieben. Wir
benutzen für den Beweis die in Abschnitt 3.5 eingeführten Ehrenfeucht-Fraïssé-Spiele.

Proposition 4.16. Sei L ⊆ Γ∗ definierbar in FO2[<,+1]. Dann ist L erkennbar in DA ∗D.

Beweis. Seien u, v ∈ Γ∗ und n ∈ N. Wir definieren die Äquivalenzrelation u ≡n v (bzw.
u ≡+1

n v), falls u und v dieselben FO2[<]-Formeln (bzw. FO2[<,+1]-Formeln) auf Wörtern
über dem Alphabet Σ2n+1 (bzw. Γ) der Tiefe n erfüllen. Wir schreiben [u]n (bzw. [u]+1

n) für
die zu u gehörige Äquivalenzklasse. Wir zeigen nun, dass

ρ−1
2n+1([ρ2n+1(u)]n) ⊆ [u]+1

n

gilt. Sei also ρ2n+1(u) ≡n ρ2n+1(v). Zu zeigen ist nun, dass u ≡+1
n v gilt. Die Beweisstrategie

wird über Ehrenfeucht-Fraïssé-Spiele gehen. Da ρ2n+1(u) ≡n ρ2n+1(v) gilt, hat Duplicator auf

29

4 Das Fragment FO2[<,+1] auf endlichen Wörtern

diesen beiden Worten eine Gewinnstrategie. Wir werden diese Gewinnstrategie auf ρ2n+1(u)

und ρ2n+1(v) nun nutzen, um eine Gewinnstrategie für Duplicator für die Worte u und v zu
konstruieren. Nehmen wir an, Spoiler setzt ein Pebble an die Stelle i auf Wort u. Das Teilwort
u[max(1, i − n); min(|u|, i + n)] findet sich in ρ2n+1(u) als Fenster wieder. Falls i < n oder
i+ n > |u| gilt, so wurde dieses Fenster mit . oder / aufgefüllt. Spoiler setzt im FO2[<]-Spiel
auf den Fensterwörtern an dieser Stelle seinen Pebble. Duplicator setzt anhand der vorhandenen
Gewinnstrategie einen Pebble in ρ2n+1(v). Duplicator kann somit den Pebble auf Position j in
v so setzen, dass das Teilwort v[max(1, j−n); min(|u|, j+n)] = u[max(1, i−n); min(|u|, i+n)]

im Fenster des Pebbles in ρ2n+1(v) vorkommt. Die Umgebungen der beiden Pebbles sind
jetzt also gleich. Macht Spoiler im nächsten Schritt einen Successor-Schritt, so kann dieser
auch von Duplicator kopiert werden, da die Umgebungen dieselben sind. Falls Spoiler keinen
Successor-Schritt macht, so kann Duplicator wie bereits beschrieben die Strategie auf den
Fensterwörtern nutzen, um eine geeignete Stelle für den Pebble zu finden. Also hat Duplicator
eine Gewinnstrategie auf u und v. Damit gilt

ρ−1
2n+1([ρ2n+1(u)]n) ⊆ [u]+1

n

und somit

[u]+1
n = ρ−1

2n+1

 ⋃
v∈[u]+1

n

[ρ2n+1(v)]n

 . (4.1)

Die Vereinigung ist endlich, da ≡+1
n endlichen Index hat. Dies liegt daran, dass es nur endlich

viele semantisch nicht-äquivalente Formeln der Tiefe n gibt. Insbesondere ist⋃
v∈[u]+1

n

[ρ2n+1(v)]n

definierbar in FO2[<] durch Angabe, welche dieser Formeln wahr sind und welche nicht. Da
durch FO2[<] definierbare Sprachen genau den Sprachen in DA entsprechen, vgl. [DGK2008],
ist
⋃
v∈[u]+1

n
[ρ2n+1(v)]n ∈ DA. Nach Satz 2.23 und Gleichung (4.1) ist damit [u]+1

n ∈ DA ∗D.
Damit ist auch

L =
⋃
u∈L

[u]+1
n ∈ DA ∗D,

was zu zeigen war.

Lemma 4.17. Für alle φ ∈ TL[Xw,Yw] gibt es ein ψφ(x) ∈ Σ2[<,+1] so, dass

w, x |= φ⇔ w |= ψφ(x)

Beweis. Wir führen eine Induktion nach dem Aufbau der Formel. Da ∧ und ∨ in Σ2[<,+1]

ausdrückbar sind, beschränken wir uns ohne Einschränkungen auf Formeln, die nur ¬,Xw,Yw
und > benutzen. > und ¬> sind offensichtlich in Σ2[<,+1] definierbar. Sei w = a1 . . . ak. Setze

ψXw φ̃
(x) := ∃x1 . . . ∃xk

(
x1 > x ∧

k∧
i=2

(xi = xi−1 + 1) ∧
k∧
i=1

λ(xi) = ai ∧ ψφ̃(x1)

)

30

und

ψYw φ̃
(x) := ∃x1 . . . ∃xk

(
xk < x ∧

k∧
i=2

(xi−1 = xi + 1) ∧
k∧
i=1

λ(xi) = ai ∧ ψφ̃(xk)

)
.

Sei Zw ∈ {Xw,Yw}. Für die Negation gilt

¬Zw φ̃ ≡ ¬Zw> ∨ Zw ¬φ̃.

Damit muss man induktiv nur noch ¬Zw> darstellen. Wir setzen

ψ¬Xw > := ∀y1 . . . ∀yk

((
y1 > x ∧

k∧
i=2

(yi = yi−1 + 1)

)
⇒

k∨
i=1

λ(yi) 6= ai

)

ψ¬Yw > := ∀y1 . . . ∀yk

((
yk < x ∧

k∧
i=2

(yi−1 = yi + 1)

)
⇒

k∨
i=1

λ(yi) 6= ai

)

Lemma 4.18. Sei φ ∈ TL[Xw,Yw]. Dann gibt es eine Formel ψ ∈ Σ2[<,+1] mit L(φ) ∩ Γ∗ =

L(ψ) ∩ Γ∗.

Beweis. Es reicht wie bereits in Lemma 4.17 sich auf Formeln zu beschränken die nur ¬,Xw,Yw
und > benutzen. Sei φ = Zw φ̃ mit Zw ∈ {Xw,Yw} und wie zuvor w = a1 . . . ak. Wir setzen

ψ :=∃x1 . . . ∃xk

(
k∧
i=2

(xi−1 = xi + 1) ∧
k∧
i=1

λ(xi) = ai ∧ ψφ̃(x1) ∧

∀y1 . . . ∀yk

((
k∧
i=2

(xi−1 = xi + 1) ∧
k∧
i=1

λ(xi) = ai

)
⇒ x1 ≤ y1

))

für Zw = Xw und

ψ :=∃x1 . . . ∃xk

(
k∧
i=2

(xi = xi−1 + 1) ∧
k∧
i=1

λ(xi) = ai ∧ ψφ̃(xk) ∧

∀y1 . . . ∀yk

((
k∧
i=2

(xi−1 = xi + 1) ∧
k∧
i=1

λ(xi) = ai

)
⇒ x1 ≥ y1

))

für Zw = Yw mit ψφ̃(x) aus Lemma 4.17.

Für die Negation nutzen wir wieder die Äquivalenz

¬Zw φ̃ ≡ ¬Zw> ∨ Zw ¬φ̃.

31

4 Das Fragment FO2[<,+1] auf endlichen Wörtern

u1 u′ u2

* * * * *

* * * * *

• • •

• • •

u = | | | | | | | | | |
exeye exeye exeye exeye exeye exeye exeye exeye exeye

v = | | | | | | | | | | | | | |
exeye exeye exeye exeye exeye exeye exe exeye exeye exeye exeye exeye exeye

Abbildung 4.1: Illustration zu Proposition 4.21

Dabei gilt

¬Xw> ≡ ¬Yw>

und dieses lässt sich darstellen durch die Formel

∀y1 . . . ∀yk

((
k∧
i=2

(yi = yi−1 + 1)

)
⇒

k∨
i=1

λ(yi) 6= ai

)

Die Formel Zw ¬φ̃ lässt sich wie oben beschrieben in Σ2[<,+1] ausdrücken.

Bemerkung 4.19. Die Äquivalenz ¬Xw> ≡ ¬Yw> gilt nur auf endlichen Wörtern. Deswegen
muss mit Γ∗ geschnitten werden. Eine Darstellung von ¬Yw> kann es somit nach [KKL2011]
und Kapitel 5 nicht geben, da ∆2[<,+1] $ TL[Xw,Yw] über unendlichen Wörtern gilt.

Korollar 4.20. Sei φ ∈ TL[Xw,Yw]. Dann gibt es eine Formel ψ ∈ ∆2[<,+1] mit L(φ)∩Γ∗ =

L(ψ) ∩ Γ∗.

Beweis. Zu φ lässt sich nach Lemma 4.18 eine Formel ψ ∈ Σ2[<,+1] mit L(φ)∩Γ∗ = L(ψ)∩Γ∗

finden. Wir finden ebenfalls zu ¬φ ein ψ̃ ∈ Σ2[<,+1] mit L(¬φ) ∩ Γ∗ = L(ψ̃) ∩ Γ∗. Damit gilt
L(φ) ∩ Γ∗ = L(¬ψ̃) ∩ Γ∗ und ¬ψ̃ ∈ Π2[<,+1]. Dies zeigt die Behauptung.

Proposition 4.21. Sei L ⊆ Γ∗ in ∆2[<,+1] definierbar. Dann ist L ∈ LDA.

Beweis. Sei φ ∈ Σ2[<,+1] mit L(φ) = L. Sei n größer oder gleich der Anzahl der Variablen
von φ. Seien x, y ∈ Γ∗ und z ∈ Γ+ beliebig. Wir setzen e := zn+1 und

u = (exeye)n
2+1

v = (exeye)n
2+1exe(exeye)n

2+1 = v1exev2.

Wir zeigen nun für alle p, q ∈ Γ∗, dass puq |= φ ⇒ pvq |= φ. Dazu sei ohne Einschränkung
φ = ∃x1 . . . ∃xk∀y1 . . . ∀ylϕ(x1, . . . , xk, y1, . . . , yl), wobei ϕ eine aussagenlogische Formel ist.
Nach Wahl von n gilt k + l ≤ n. Da puq |= φ, gibt es eine Belegung für den Existenzblock
in puq, sodass puq unter dieser Belegung die Formel ∀y1 . . . ∀ylϕ(x1, . . . , xk, y1, . . . , yl) erfüllt.

32

Wir konstruieren damit eine Belegung der Variablen x1, . . . , xk für das Wort pvq. Belegungen
in den Faktoren p und q lassen sich direkt nach pvq an dieselbe Stelle übertragen. Auf Grund
der Wahl von u gibt es einen Faktor u′ = (exeye)n in u, in dem keine Belegung der Variablen
des Existenzblocks liegen. Wir setzen u = u1u

′u2. Wir übertragen alle Belegungen von u1 auf
den Anfang von v1. Die Belegungen die rechts von diesem Faktor liegen, übertragen wir auf
das Ende von v2.

Angenommen, es gibt jetzt eine Belegung des Blocks der Allquantoren auf pvq, sodass ϕ nicht
erfüllt ist. Belegungen aus v1 bzw. v2, die aus dem Teil von u1 bzw. u2 kommen, übertragen
wir direkt auf diese Teile zurück. Belegungen aus v1, die nicht in dem Teil vorhanden sind, der
durch u1 abgedeckt wird, werden auf die linke Seite von u′ geschrieben. Dabei verändert sich
die Erfüllbarkeit bezüglich Formeln aus Σ2[<,+1] nicht, da lediglich die relative Position und
Nachbarschaft getestet werden kann. Analog werden Belegungen aus v2, die nicht durch u2

abgedeckt werden, rechts von u′ belegt. Bei dieser Prozedur werden nicht alle Faktoren der Form
exeye in u′ belegt, da l ≤ n ist. Es bleibt der Faktor exeexe in v. Wir übertragen Belegungen
aus diesem Faktor in einen Faktor exeye aus u′, der in der Mitte liegt und noch nicht belegt
wurde. Dies verändert die Erfüllbarkeit der Formel ϕ nicht, da die Nachbarschaftsbeziehungen
und die relative Ordnung beibehalten wurde. Mit dieser konstruierten Belegung von y1, . . . , yl
in puq gilt aber nicht puq |= φ. Also ist die Annahme falsch und damit pvq |= φ. Dies zeigt
puq ∈ L⇒ pvq ∈ L.

Sei ψ ∈ Π2[<,+1] mit L(ψ) = L. Es gilt

pvq |= ψ ⇒ puq |= ψ ⇔
¬(puq |= ψ)⇒ ¬(pvq |= ψ) ⇔
puq |= ¬ψ ⇒ pvq |= ¬ψ.

Da ¬ψ ∈ Σ2[<,+1] ist, gilt dies nach Obigem. Damit gilt also pvq ∈ L⇒ puq ∈ L und somit
[u]L = [v]L. Also ist Synt(L) ∈ LDA.

Setzen wir nun diese Resultate zusammen, so können wir das Hauptresultat beweisen.

Beweis von Satz 4.1. Wir zeigen zunächst den Ringschluss 1⇒ 2⇒ 3⇒ 4⇒ 5⇒ 6⇒ 7⇒ 1.
Die Äquivalenz zu 8 zeigen wir durch die Implikationen 4⇒ 8 und 8⇒ 2.

„1⇒ 2“: Korollar 4.4.

„2⇒ 3“: Proposition 4.8.

„3⇒ 4“: Proposition 4.10.

„4⇒ 5“: Lemma 4.11.

„5⇒ 6“: Lemma 4.13.

„6⇒ 7“: Lemma 4.15.

33

4 Das Fragment FO2[<,+1] auf endlichen Wörtern

„7⇒ 1“: Proposition 4.16.

„4⇒ 8“: Korollar 4.20.

„8⇒ 2“: Proposition 4.21.

34

5 Das Fragment FO2[<,+1] auf unendlichen
Wörtern

In diesem Kapitel werden die Resultate aus Kapitel 4 auf unendliche Wörter übertragen.

Um sowohl endliche Wörter als auch unendliche Wörter untersuchen zu können, ist es nützlich,
dass das leere Wort in der Sprache sein kann. Wir definieren deswegen eine leicht andere
Erkennbarkeit in LDA. Wir sagen, eine Sprache L ⊆ Γ∞ wird stark bzw. schwach erkannt
von h : Γ∗ → M in LDA, falls (exeye)ω = (exeye)ωexe(exeye)ω gilt für alle Idempotente
e ∈ h(Γ+) und h die Sprache L im üblichen Sinne stark bzw. schwach erkennt. Somit wird
die Halbgruppenvarietät LDA so definiert, dass auch mit Monoiden, die nicht in DA sind,
Sprachen in LDA erkannt werden können.

Satz 5.1. Sei L ⊆ Γ∞. Dann sind äquivalent:

1. L wird stark erkannt in LDA.

2. L wird schwach erkannt in LDA und ist abgeschlossen in der strikten Faktor-Topologie.

3. L ist definierbar in ITL[Fw, Lw].

4. L ist definierbar in TL[Xw,Yw].

5. L ist eine Rankersprache.

6. L ist definierbar in TL[X,F,Y,P].

7. L ist definierbar in FO2[<,+1].

Die folgenden beiden Lemmata sind aus [KKL2011].

Lemma 5.2. Sei M endlicher Monoid und h : Γ∗ →M surjektiver Homomorphismus. Es sind
äquivalent:

1. M ∈ LDA

2. ePee = e für alle Idempotente e in M .

Beweis. Siehe [KKL2011].

35

5 Das Fragment FO2[<,+1] auf unendlichen Wörtern

Lemma 5.3. Sei L ⊆ Γ∞ stark erkennbar durch h : Γ∗ →M in LDA, dann ist L offen und
abgeschlossen in der strikten k-Faktor-Topologie für jedes k ≥ 2|M |.

Beweis. Da Γ∞\L auch von h erkannt wird, reicht es zu zeigen, dass L offen ist. Sei α ∈ [s][e]ω ⊆
L, für ein linked pair (s, e) und sei A = imk(α) 6= ∅. Wir schreiben α = s0e1e2 . . . mit h(s0) = s,
h(ei) = e und e1e2 . . . ∈ A∞k . Wir können annehmen, dass |ei| ≥ k und alphk(ei) = A für
jedes i ≥ 1. Sei r1 das Präfix von e1 der Länge k − 1. Es gilt α ∈ s0r1 ◦k A∞k ∩Aimk .

Wir zeigen s0r1 ◦k A∞k ∩Aimk ⊆ L, was die Behauptung beweist. Sei β ∈ s0r1 ◦k A∞k ∩Aimk

und schreibe β = s0r1r2f1f2 . . . so, dass f = h(f1) = h(f2) = . . . und (h(r1r2), f) ein linked
pair ist mit alphk(fi) = A für alle i ≥ 1. Sei r = h(r1r2). Wir faktorisieren r1r2f1 = x0x1 . . . xm
so, dass |xi| ≤ |M | und für alle xi gibt es ein Idempotent gi+1 ∈ h(Γ+) mit h(xi)gi+1 = h(xi).
Nach Konstruktion von k und r1 sehen wir, dass x0 ein Präfix von r1 ist. Folglich gilt

e ≤R h(r1) ≤R h(x0) = h(x0)g1.

Nach Wahl von A und e1 sehen wir für 0 < i ≤ m, dass das Wort xi−1xi ein Faktor von e1 ist.
Folglich gilt für alle 1 < i < m

e ≤J h(xi−1xi) = h(xi−1)gih(xi)gi+1 ≤J gih(xi)gi+1.

Da xm−1xm ein Faktor von e1 ist, existiert t0 ∈ Γ∗ so, dass xm−1xmt0 ein Suffix von e1 ist. Mit
t = h(t0) gilt dann

e ≤L h(xm−1xm)t = h(xm−1)gmh(xm)t ≤L gmh(xm)t.

Nach Lemma 5.2 gilt dann

e = eh(x0)g1h(x1) . . . gmh(xm)te = eh(r1r2f1)te = erfte.

Ähnlich, indem man alphk(fi) = A benutzt, zeigt man, dass p, q ∈M existieren mit f = fpeqf .
Da M aperiodisch ist, gibt es ein n ∈ N mit an = an+1 für alle a ∈M . Es folgt

e = erfpeqfte = (erfp)ne(qfte)n = (erfp)n+1e(qfte)n = erfpe

und analog

f = fperfteqf = (fper)nf(teqf)n = (fper)n+1f(teqf)n = fperf.

Es gilt s = se = serfpe = srfpe und damit [s][e]ω = [srfpe][erfpe]ω ⊆ L. Mit der star-
ken Erkennbarkeit und da [srfpe][erfpe]ω ∩ [srf][fperf]ω 6= ∅ folgt, dass β ∈ [sr][f]ω =

[srf][fperf]ω ⊆ L. Dies zeigt, dass jedes unendliche Wort in L eine offene Umgebung in L
besitzt. Jedes endliche Wort hat die triviale Umgebung {w}. Also ist L offen.

Die folgende Proposition ist eine Abwandlung eines Resultates aus [KKL2011].

36

Proposition 5.4. Sei L ⊆ Γ∞ schwach erkennbar via h : Γ∗ →M in LDA und abgeschlossen
in der strikten k-Faktor-Topologie für ein k ≥ 2|M |. Dann ist L definierbar in ITL[Fw, Lw].

Beweis. Sei α ∈ L und A = imk(α). Wir können annehmen, dass A = {w1, . . . , ws} 6= ∅, da
L ∩ Γ∗ nach Proposition 4.8 definierbar in ITL[Fw, Lw] ist. Wir schreiben α = u · w · β mit
w 6∈ αk(suffixk−1(w) · β) und w ist der letzte Faktor in α, der nur endlich oft vorkommt. Falls
alle Faktoren unendlich oft vorkommen, setzen wir α = β. Wir nehmen ohne Einschränkungen
im folgenden an, dass es Faktoren gibt, die nur endlich oft vorkommen. Sei r die Ramseyzahl
für monochromatische Dreiecke, wenn man |M | Farben benutzt. Wir betrachten die folgende
Faktorisierung für β:

β = u1v1u2 . . . ursvrsγ

wobei vi+1 = w(i mod s)+1 und vi 6∈ alphk(ui · prefixk−1(vi)). Wir definieren Ui als die Menge
der Wörter in [h(ui)]∩

(
(A \ {vi})∗k ∪ Γ<k

)
, sodass kein Wort in Ui · prefixk−1(vi) das Wort vi

als Faktor besitzt. Wir definieren

P (α) = [h(u)] · w · (A∞k ∩ U1v1 . . . Ursvrs ◦k A∞k) ∩Aimk .

Nach Konstruktion gilt α ∈ P (α). Wir zeigen nun P (α) ⊆ L.

Nach Wahl von r gibt es ein a ∈M und ein Idempotent e ∈ E(M) so, dass jedes Wort in α′ ∈
P (α) eine Faktorisierung α′ = u′ · w · x′e′1e′2β′ mit h(u′) = h(u), h(x′) = a, h(e′1) = h(e′2) = e,
alphk(e

′
1) = alphk(e

′
2) = alphk(x

′e′1e
′
2β
′) = A besitzt. Für α benutzen wir die Faktorisierung

α = u ·w ·xe1e2β
′′. Sei nun α′ = u′ ·w ·x′e′1e′2β′ ein beliebiges Wort in P (α). Wir wollen zeigen,

dass α′ ∈ L = L.

Sei z′ ein endliches Präfix von β′. Sei z das Suffix von e′2z′ der Länge k. Nach Konstruktion ist z
ein Faktor von e1, d. h. es gibt y1, y2 ∈ Γ∗ mit e1 = y1zy2. Es gilt x′e′1e′2z′ ·y2e2β

′′ ∈ A∞k∩Aimk .
Wir behaupten, dass u′ ·w ·x′e′1e′2z′ ·y2e2β

′′ ∈ L ist. Um dies zu zeigen, reicht es h(e′2z
′y2e2) = e

zu zeigen. Wir faktorisieren z′y2 = x0 . . . xm mit 0 < |xi| ≤ |M |, sodass für jedes i > 0 ein
Idempotent fi ∈ h(Γ+) existiert mit h(xi−1) = h(xi−1)fi. Nach Konstruktion und da k ≥ 2|M |
gilt, haben wir e ≤R h(x0)f1, e ≤L fmh(xm), e ≤J fih(xi)fi+1 (vgl. Beweis von Lemma 5.3).
Mit Lemma 5.2 folgern wir h(e′2z

′y2e2) = e.

Noch zu zeigen ist also, dass P (α) in ITL[Fw, Lw] definierbar ist. Wie im Beweis zu Proposition
4.8 zeigt man, dass Formeln ψ,ψi existieren, sodass L(ψ) = [h(u)] und L(ψi) = [h(ui)]. Wir
geben Formeln ϕi an, sodass L(ϕi) = Ui gilt. Zunächst definieren wir

φ =
∨

u∈Γ<k

(
¬
∨
a∈Γ

(>Fa>)

)
Fu

(
¬
∨
a∈Γ

(>Fa>)

)
,

um Γ<k zu erkennen und

φ̂ =

(∨
a∈Γ

(
> La

(
¬
∨
b∈Γ

(>Fa>)

)))
,

37

5 Das Fragment FO2[<,+1] auf unendlichen Wörtern

um Γ∗ zu erkennen. Wir setzen dann

ϕi = ψi ∧

φ ∨
 ∧
u∈Γk\(A\{vi})

¬ (>Fu>)

 ∧ φ̂.
Damit lässt sich nun die Formel

ψ Lw

ϕ1 Fv1 (. . . (ϕrs Fvrs >) . . .) ∧
∧

u∈Γk\A

¬ (>Fu>)

 ∧
 ∧
u∈Γk\A

(>Fu>)⇒ ¬ (> Lu>)


definieren. Diese definiert gerade die Sprache P (α), was zu zeigen war.

Beweis von Satz 5.1. Wir zeigen den Ringschluss 1⇒ 2⇒ 3⇒ 4⇒ 5⇒ 6⇒ 7⇒ 1.

„1⇒ 2“: Lemma 5.3.

„2⇒ 3“: Proposition 5.4.

„3⇒ 4“: Proposition 4.10.

„4⇒ 5“: Lemma 4.11.

„5⇒ 6“: Lemma 4.13.

„6⇒ 7“: Lemma 4.15.

„7⇒ 1“: Siehe [KKL2011].

38

6 Zusammenfassung

Es wurde die Klasse der Sprachen, die von FO2[<,+1] definiert werden kann, untersucht. Dazu
wurde ein zu [LPS2010] verschiedenes Intervall-Logikfragment ITL[Fw, Lw] eingeführt. Die zu
FO2[<] äquivalenten Fragmente TL[XF,YP] und TL[Xa,Ya] wurden erweitert zu TL[X,F,Y,P]

und TL[Xw,Yw]. Ranker auf Buchstaben wurden zu Rankern auf Wörtern erweitert. Die
Äquivalenz zu ∆2[<,+1] auf endlichen Wörtern wurde bewiesen. Es wurden außerdem die
algebraischen Charakterisierungen mit den Varietäten LDA und DA ∗D bewiesen. Dies zeigt
die Lokalität von DA durch einen kombinatorischen Beweis. Durch die Charakterisierung
durch Halbgruppen in LDA ergibt sich ein Entscheidungsverfahren für die Definierbarkeit einer
regulären Sprache durch eines der Logikfragmente.

Die Ergebnisse wurden auf unendliche Wörter übertragen. Dabei lassen sich alle Charakteri-
sierungen bis auf ∆2[<,+1] übertragen. In [KKL2011] wird bewiesen, dass dies nicht möglich
ist.

39

Literaturverzeichnis

[Alm1996] Almeida, Jorge: A syntacitcal proof of locality of DA. Internat. J. Algebra Comput.
6, 165–177 (1996)

[DGK2008] Diekert, Volker; Gastin, Paul; Kufleitner, Manfred: A Survey on Small Fragments
of First-Order Logic over Finite Words. International Journal of Foundations of
Computer Science 19.3, 513–548 (June 2008), Special issue DLT 2007

[DKL2010] Dartois, Luc; Kufleitner, Manfred; Lauser, Alexander, Rankers over Infinite Words,
Technical report Nr. 2010/01, Formale Methoden der Informatik, Universität
Stuttgart, Germany, May 2010

[Ehr1961] Ehrenfeucht, Andrzej: An application of games to the completeness problem for
formalized theories. Fundamenta Mathematicae 49, 129–141 (1961)

[Eil1976] Eilenberg, Samuel: Automata, Languages, and Machines. Academic Press, Inc.,
Orlando, FL, USA, 1976

[Fra1950] Fraïssé, Roland: Sur une nouvelle classification des systèmes de relations. Comptes
Rendus 230, 1022–1024 (1950)

[Gre1951] Green, James A.: On the structure of semigroups. Annals of Mathematics (second
series) 54.1, 163–172 (July 1951)

[KKL2011] Kallas, Jakub; Kufleitner, Manfred; Lauser, Alexander, First-order Fragments
with Successor over Infinite Words, STACS, 2011, to appear

[LPS2010] Lodaya, Kamal; Pandya, Paritosh K.; Shah, Simoni S., Around Dot Depth Two,
Developments in Language Theory, 2010, pp. 303–315

[MP1971] McNaughton, Robert; Papert, Seymour: Counter-free automata. The M.I.T. Press,
Cambridge, Mass.-London, 1971, With an appendix by William Henneman, M.I.T.
Research Monograph, No. 65

[Pin1986] Pin, Jean-Éric: Varieties of formal languages. North Oxford Academic, 1986

[Sch1965] Schützenberger, Marcel-Paul: On finite monoids having only trivial subgroups.
Information and Control 8, 190–194 (1965)

41

Literaturverzeichnis

[TT2002] Tesson, Pascal; Thérien, Denis, Diamonds are Forever: the Variety DA, Semigroups,
Algorithms, Automata and Languages (G.M.S. Gomes, P.V. Silva; Pin, J.-É., eds.),
2002, pp. 475–500

42

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Tobias Walter)

