Institut fiir Formale Methoden der Informatik
Universitat Stuttgart
UniversitatsstraBe 38

D-70569 Stuttgart

Studienarbeit Nr. 2298

Logik erster Stufe ohne
Quantorenalternierung iiber
endlichen Wortern

Martin P. Seybold

Studiengang: Informatik

Priifer: Prof. Dr. V. Diekert
Betreuer: Dr. M. Kufleitner
begonnen am: 26.07.2010
beendet am: 25.01.2011

CR-Klassifikation: F4.1, F4.3

Inhaltsverzeichnis

1 Einleitung
LI Motivation] o
1.2 Grundlegende Definitionen|. 000

[2 Algebraische Werkzeuge fiir formale Sprachen|

3K Boweisided

[4__Knasts Theorem|

[> Weitere entscheidbare Logikfragmente|
E.l Das Fragment BX.;[<,+1,min|,

5.2 Das Fragment BYq[<,+1,max||
5.3 Das Fragment BXq[<,+1]|o Lo

[0 Die Beziehung zwischen den Klassen 5; und LJ|

|/ Zusammenfassung|

13
17
23

31
31
32
34

35
39

1 Einleitung

Reguldre Sprachen sind in vielerlei Hinsicht wichtig fiir theoretische aber auch prak-
tische Probleme der Informatik. Ein Beispiel fiir regulire Sprachen ist das Suchen
nach Vorkommen von bestimmten Mustern in grofleren Texten. Die Zusammenhénge
regulére Sprachen zu endlichen Automaten sowie zu endlichen Halbgruppen, bzw. Mo-
noide sind klassische Resultate der theoretischen Informatik. [I3][6] Worter kann man
auch als lineare Anordnung von Buchstaben interpretieren. Dadurch erscheint es sinn-
voll Muster durch Prédikatenlogische Formeln, beziiglich Position und Beschriftung, zu
definieren. Durch Einschrankung auf bestimmte Prédikate, Variablenzahl oder Quanto-
renalternierungen ergeben sich auf natiirliche Weise Hierarchien dieser Logikfragmente.
Ziel dieser Studienarbeit ist es die Zusammenhénge zwischen reguldren Sprachen und
Pridikatenlogik erster Stufe ohne Quantorenalternierungen zu untersuchen.

Die Ergebnisse dieser Arbeit entstanden in Zusammenarbeit mit Jonathan Kausch,
Manfred Kufleitner und Alexander Lauser.

1.1 Motivation

Trotz des endlichen Charakters der Beschreibung regulérer Sprachen ist ihre Klasse
dennoch nicht trivial. Eine echte Unterklasse sind die sternfreien Sprachen. Diese sind
durch regulidre Ausdriicke ohne % Operator gegeben, jedoch sind Konkatenationen,
von sternfreien Sprachen und Komplementen, erlaubt. Die Punkt-Tiefe einer stern-
freien Sprache gibt an, wieviele Konkatenationen benotigt werden, um die Sprache zu
definieren. 1971 zeigten McNaughton und Papert, dass sternfreie Sprachen genau der
Klasse durch Pridikatenlogik erster Stufe definierbaren Sprachen entsprechen.[10]

Von Schiitzenberger wurde erstmals gezeigt, dass die sternfreien Sprachen genau die
sind, deren syntaktisches Monoid aperiodisch ist. [I4] Diese algebraische Eigenschaft
liefert fiir endliche Monoide sofort Entscheidbarkeit. Bald darauf wurde die sogenann-
te Dot-Depth-Hierarchie B,, der sternfreien Sprachen von Brzozowski und Cohen ein-
gefithrt.[2] Diese hat sich als echte und unendliche Hierarchie herausgestellt.[9] Es
konnte auerdem gezeigt werden, dass die Anzahl benétigter Quantorenalternierungen
einer FO Formel das Level in der Dot-Depth-Hierarchie bestimmt.[20] Effektiv das
Level einer gegebenen reguliren Sprache in dieser Hierarchie zu bestimmen, ist eine
aktuelle Herausforderung der Automatentheorie. Bis heute sind nur Entscheidungsver-
fahren fiir die Stufen n = 1/2,1,3/2 bekannt. Das Ergebnis von Knast fiir die Stufe
n = 1 [§][19] wird als schwieriges Resultat betrachtet. Jedoch ist der grundsitzliche
Ansatz, Entscheidbarkeit iiber algebraische Eigenschaften zu erhalten, sehr vielver-
sprechend.

1 Einleitung

Noch vor dem ersten Entscheidbarkeitsresultat wurde die Straubing-Thérien
Hierarchie L, als alternative Beschreibung der Komplexitit sternfreier Sprachen
eingefiihrt.[T6] Es konnte gezeigt werden, dass die Level beider Hierarchien iiber ein
Kranzprodukt miteinander zusammenhéngen. [11][I7] Simon konnte bereits 1975 eine
algebraische Charakterisierung fiir Sprachen geben, die aus L; sind.[15] Klima hat
2009 einen elementaren kombinatorischen Beweis fiir Simons Theorem vorgestellt [7].
Ziel dieser Studienarbeit ist es, auch fiir Knasts Theorem einen elementaren kombi-
natorischen Beweis anzugeben. Dazu sollen zuerst die notwendigen Grundtechniken
(Kapitel 2) und Klimas Beweis (Kapitel 3) in einer leichter zu verallgemeinernden
Notation dargestellt werden. Anschliefend soll Knasts Theorem mit diesen Techniken
bewiesen werden (Kapitel 4). AuBerdem soll versucht werden, ob sich dies leicht auf
weitere Klassen iibertragen lisst (Kapitel 5,6). Diese verallgemeinerte Beweismethode
liefert sogar neue Entscheidbarkeitsergebnisse fiir weitere Logikfragmente.

1.2 Grundlegende Definitionen

In diesem Abschnitt werden verschiedene Moglichkeiten beschrieben, um formale Spra-
chen tiber endlichen Wortern zu beschreiben. In der ganzen Arbeit wird mit I' das end-
liche Alphabet bezeichnet. Wir betrachten auch oft gewisse Ausschnitte von Wortern
U =aj...a, € I'* mit der Notation u|[i7j] =a;...a; fir 1 <i < j < n. Weiter sollen
|u| :== n die Lange des Wortes u, first,,(u),last,,(u) die ersten bzw. letzten m Zei-
chen von w und alph,,(u) = {v €T | |v] < m,u = pvg mit p,q € T* } die Fakotren
der Lange maximal m von u sein.

Definition 1.1 (Sternfrei): Die sternfreien Sprachen sind Induktiv definiert.) und
{a} mit a € T sind sternfrei. Sind L;, Ly C I'* sternfreie Sprachen, dann sind auch
Ly ULy, Ly Ly, Ly:=T*\ Ly sternfreie Sprachen.

Es lassen sich nun die Straubing-Thérien und die Dot-Depth Hierarchie jeweils in-
duktiv definieren.[5] Mit B bezeichnen wir endliche boolsche Kombinationen.

Definition 1.2 (Straubing-Thérien Hierarchie L,,): Sei n € N, dann sind:
Lo:={T"al' | a €T }U{0}

Loii2 = |J Koar.. Kp_1axK; Ki€Ln,a; €T
endlich
L 1 =
i Ke€Lyi1/2

Definition 1.3 (Dot-Dept Hierarchie B,): Sei n € N, dann sind:
By :=={ul"v [u,v €T |Jw|>1}U{{w} | weTl™}

Buiip = |J Koar...Kp_1a,Ky K; € Bp,a; €T
endlich
Bpiii= B K
nt KeB,y1)2

1.2 Grundlegende Definitionen

Bemerkung 1.4: Eine Sprache aus £; hat die Form B(I'*a; ...a,I'*,a; € T). Diese
Form wird auch piecewise-testable genannt. Weiter hat eine Sprache aus B; die Form
B(wol™*...T*w,,w; € T'T).

Logik erster Stufe

Wenn man sich Woérter als endliche Sequenz von Buchstaben aus dem Alphabet vor-
stellt, kann man mit priadikatenlogischen Formeln erster Stufe Bedingungen an die
Beschriftung einer Position 2 stellen: A\(x) = a;, a; € T'. Fiir eine breitere Ubersicht
geben wir [3] an. Wir definieren nun die Syntax einer solchen Formel:

Definition 1.5 (FO): Eine Formel ¢ € FO ist induktiv definiert. Die atomaren For-
meln A(z) = a und T sind in F'O, wobei z eine Variable, a € T" ein Buchstabe und
T die konstante Formel, welche stets wahr ist, sind. Wenn ¢, € FO dann sind auch
folgende zusammengesetzte Formeln in F'O:

—p, pAY, Jrp € FO

Dadurch sind auch in die konstant falsche Formel 1 = =T, die Oder-Verkniipfung
eV = (= A) und All-Quantifizierungen Vz ¢ = =3z —p erlaubt. Die Semantik
dieser Konstrukte ist wie iiblich definiert. Das Priidikat A\(z) = a; ist auf u genau dann
wahr, wenn ul, = a.

Erlauben wir zu dem stets enthaltenen A(z) Pridikat zusitzlich weitere atomare
Priadikate < (z,y), + 1(z,y), max(z), min(y), geben wir dies als Signatur des Lo-
gikfragments, wie beispielsweise FO[<, +1. min], an.

Definition 1.6: Die Priadikate <, + 1, min, max haben die folgende Syntax und
Semantik auf einem Wort u € T'*

ulE < (z,y) = 1<z <y <y
ulE +1(z,y) & x+l=y
u = min(z) & 1=z <|u
u = max(z) = 1<z=|ul

Im Zusammenhang mit +1 ist es moglich die min bzw. max-Pradikate dhnlich dem A
Pradikat zu verwenden. Daher verwenden wir auch die folgenden Makros:

min(a; ... a,) = 3x1,...,2, min(x;) A /\ +1(zim1, i) A /\ Mzi) = a;
i=2 i

=1
n n

max(ay ...ay) := 3x1,..., 2, max(z,) A /\ +1(xi—1, @) A /\ Mzi) = a;
i=2 i=1

Nun sind wir in der Lage die von einer Formel definierte Sprache zu definieren.

1 Einleitung

Definition 1.7: Die von einer Formel ¢ eines Logikfragments definierte Sprache L()
ist
Lip)={uel” |uEFp}.

Jede Préadikatenlogische Formel besitzt eine dquivalente Formel in Préanexnormal-

form (PNF) [12]. Jede Formel hat also eine dquivalente Formel, bei der alle Quantoren
vor den aussagenlogischen Verkniipfungen der Pridikate vorkommen. Durch die Anzahl
der Quantoren bzw. die Alternierungszahl kénnen wir das folgende Logikfragmente de-
finieren.
Definition 1.8 (Logikfragmente): Mit X, C FO bezeichnen wir die Klasse an For-
meln, welche eine dquivalente Formel in PNF mit maximal n Quantorenalternierungen,
beginnend mit einem Existenzquantor besitzen. Der boolsche Abschluss BY,, solch ei-
ner Klasse enthélt entsprechend alle endlichen boolschen Kombinationen von Formeln
aus Xj,.

Im Folgenden werden wir auch den Ausdruck L € BY,, fiir eine Sprache L C T'*
verwenden, falls L = L(yp) fiir eine Formel ¢ € BY,,.

Lemma 1.1 (X;-Normalform): Eine Formel ¢ € 31[<,+1] ldsst sich als ¢ =\ ¢,
darstellen, wobei die Klauseln ¢, die Gestalt

On =3x1,.. ., T, /\ M) = an; A /\ +1(xj,,z4,) A /\ < (Tky, Tky)
ieln (j17j2)eJn (k17k2)eKn

haben.

Beweis: Die Darstellung als disjunktive Normalform (DNF) ist immer moglich. Es
verbleibt also zu zeigen, dass keine Negationen notwendig sind. Sei die Formel dazu
bereits in DNF. Enthiilt ein solches ¢, einen Block A(z) # a1 A ... A X(x) # ag, so

kann dieser in
Maz)=T\{a1,... a5} = \V Mz)=a
acel\{a1,...,ar}
transformiert werden, da I" endlich ist. =(+1(x, y)) kann auf <(y, z)V(+1(z, 2)A <(z,v))
und —(< (z,y)) kann auf z = y V <(y, x) zuriickgefithrt werden. O

Algebraische Grundlagen

Klassische Resultate der theoretischen Informatik sind, dass regulére Sprachen genau
die Sprachen sind, welche von deterministischen endlichen Automaten erkannt wer-
den. Der Minimalautomat besitzt einen engen Zusammenhang zu Halbgruppen und
Monoiden. [13] [18].

Definition 1.9 (Erkennbarkeit durch Halbgruppen): Eine Sprache L C I'" wird von
einer Halbgruppe S erkannt, falls ein surjektiver Homomorphismus h : 't — S exi-
stiert mit L = h~!(h(L)). Entsprechendes gilt fiir die Erkennbarkeit durch ein Monoid
M fiir einen Homomorphismus der Form A : ' — M.

1.2 Grundlegende Definitionen

Der syntaktische Homomorphismus einer Sprache L lésst sich stets angeben, und ist
durch die syntaktische Kongruenz induziert.

Definition 1.10 (Syntaktische K(?_ngruenz): Die syntaktische Kongruenz ~j einer
Sprache L C I'" ist durch folgende Aquivalenzrelation auf Wortern u, v € I'" gegeben:

u~pv & [Vp,g e :pug € L & pug € L.

Dies ist in der Tat eine Kongruenz. Die Aquivalenzklassen von ~j auf I't ergeben
die Elemente der syntaktischen Halbgruppe Synt(L) := 't/ ~, und ihre Operation
ist durch die Konkatenation gegeben. Analoges gilt fiir das syntaktische Monoid fiir
Sprachen L C I'*.

Die folgenden Relationen lassen sich auf generische Art definieren und werden fiir
die spétere Betrachtung von Wortern wichtig sein, da wir durch sie generische Fakto-
risierungen erhalten kénnen.

Definition 1.11 (Green’sche Relationen): Sei S eine Halbgruppe. S! bezeich-
ne das Monoid, welches durch hinzufiigen eines neutralen Elements entsteht
(1-s=s-1=sVsebl).

SRt = sSt =15t s <p t:=sStcCtSt
sLt = Sls = St s<gt:e Slsc St
sJt = SlsSt = §1tst s<gt:e StsSt c §1ts!t

Bemerkung 1.12: Die Anzahl der R bzw. L-Klassen ist durch die Gréfle der Halb-
gruppe beschriankt, denn jede Klasse enthélt mindestens ein Element und die Klassen
sind eine Partition der Halbgruppe.

Definition 1.13: Ein Monoid M heiit 7, R, L-trivial, falls die entsprechenden Aqui-
valenzklassen trivial sind. Fiir alle z,y € M gilt also jeweils:

zJy=x=y bzw.
TRy=2x=y bzw.
zLy=z=y

Definition 1.14 (Erzeugtes Idempotentes): Sei S eine endliche Halbgruppe und s € S
ein beliebiges Element. Mit s™ =: ¢ bezeichnen wir das davon erzeugte Idempotente,
sprich es gilt t? = t. Es existiert nach dem folgenden Lemma.

Lemma 1.2 (Existenz von Idempotenten): Sei S eine endliche Halbgruppe und s € S.
Es existiert ein Element s™ € S mit (s™)? = s™ wobei 7 := |S|! stets geniigt.

Beweis: Wir betrachten Potenzen von mindestens n =: |S| des Elements s. Durch
Schubfachschluss miissen zwei Préfixe den gleichen Wert in S annehmen s’ - sP = s*

1 Einleitung

mit i < p. Falls ¢ = 1 haben wir bereits s™ := sP gefunden. Anderenfalls betrachten
wir das Element s(*?) und priifen ob es idempotent ist.

82(117):Sw.sw:Sl...(sl.sp)...sp:sw
——

p-mal i-mal

Wir betrachten noch s™ = (s%)""/i = s, O

Endliche Halbgruppen S besitzen also Idempotente und wir bezeichnen mit E(S) C
S die Elemente, welche idempotent sind. Im Folgenden wollen wir algebraische Iden-
titaten fiir Klassen von Monoiden definieren. Um die Notation zu erleichtern, schreiben
wir M € [I], falls fiir alle Elemente a, b, ... aus M die Identitét I gilt.

Lemma 1.3 (R, £, und J-Identitéten): Sei M ein Monoid, dann gilt:

M ist R-trivial & M € [(ab)™ = (ab)™a] bzw.
M ist L-trivial & M € [(ed)™ = d(ced)™] bzw.
M ist J-trivial & M € [(ab)"a(cd)™ = (ab)"d(cd)™]

Beweis: Wir geben den Beweis fiir die J-Identitét an.

“=” Seien a, b, c,d € M bliebig. Wir betrachten das Idempotente (ab)™ = (ab)™ (ab)™.
Fiir einen Prifix der rechten Seite gilt (ab)"™a R (ab)™ und wegen der R-Trivialitét
sogar Gleichheit. Das Duale Argument fiir einen Suffix von (¢d)™ (¢d)™ mit £-Trivialitét
liefert d(cd)™ = (cd)™. Somit gilt fiir das Produkt dieser Idempotenten:

(ab)™ (ed)™ = (ab)™a(ed)™ = (ab)™d(ed)™.

“<” Mit ¢ = d = 1 gilt die R-Identitdt und mit @ = b = 1 die L-Identitédt. Sei nun
aJb, dann existieren Elemente my, ms, ms, my € M mit a = m1bms und b = mgamy.

a = (mims)"mypbma(mgams)™ Einsetzen
= mg(mimsz)"mibmeo(mamso) " my L und R Identitit
= mgamy Abpumpen
=b

O

Um diese Charakterisierungen auf ein allgemeineres Niveau zu heben, benttigen wir
die folgende groflere Klasse von Monoide.

Definition 1.15 (DA): Mit DA bezeichnen wir die folgende Klasse von Monoide

DA : = { M Monoid | Va,y € M : (zy)"z(xy)"™ = (zy)" }
= [(zy)"a(zy)"™ = (zy)"]

1.2 Grundlegende Definitionen

Durch geschickte Wahl von Elementen lésst sich die folgende Teilmengenbeziehung
sofort zeigen.

Lemma 1.4: Es gilt J-trivial C DA
Beweis: Sei M J-trivial. Wir wihlen fiir die J-Identitdt folgende Elemente

z,y, (zy)™ € M und setzen a := z,b := y und d = ¢ := (2y)™. Betrachten wir nun die
J-Identitat:

(zy)"z((zy)" (zy)")" = (2y)™ (zy)" ((zy)" (zy)™))"
(zy)"x(zy)" = (2y)"
= M <€ DA.

O

Diese Zusammenhénge lassen sich auch auf Halbgruppen iibertragen, indem man
die beschriebenen Eigenschaften nur fiir durch Idempotente eingeschlossene, sogenannt
lokalisierte, Unterstrukturen fordert. Wir definieren also den L Operator auf Klassen
von Monoide.

Definition 1.16 (Lokalisierung): Sei V eine Klasse von Monoide, dann bezeichnet
LV = { S Halbgruppe | Ve € E(S) :eSeeV }

die Klasse von Halbgruppen, welche durch sog. Lokalisierungen an Idempotenten aus
V hervorgeht.

Es ist auch offensichtlich, dass stets V C LV gilt. Auflerdem iibertragen sich sofort
die Lemmata [T.3] und [T.-4] auf die lokalisierten Klassen. Im Folgenden werden wir auch
die Notation L € LV fiir eine Sprache L C I'" verwenden, falls ihre syntaktische
Halbgruppe Synt(L) € LV liegt.

Lemma 1.5 (Stabilisierende Idempotente): Sei S eine endliche Halbgruppe. Betrach-
ten wir ein Produkt mit n := |S|+ 1 Faktoren, dann existiert ein sogenanntes stabili-
sierendes Idempotentes e € E(S) so, dass

Sl...sn:81...Sk.e.sk+1...sn

—31"'Sk'€'5k+1"'3l'6'51+1"'5n'

Beweis: Betrachten wir die Préfixe dieses Produktes, dann existiert nach dem Schub-
fachprinzip Positionen 1 < k <1 < n so, dass

S1+++8S =818

Und wir haben bereits ein solches Idempotentes gefunden e := (sg - - ;)™ O

Obiges Lemma wird uns in Kapitel 4 ein wertvolles Werkzeug sein, um ein Idempo-
tentes in Faktoren gewisser Linge sicherzustellen. Aulerdem definieren wir noch die

1 Einleitung

folgende Bj-Identitdt. In Kapitel 4 wird sich in der Tat herausstellen, dass genau die
syntaktischen Halbgruppen von Sprachen des Level 1 der Dot-Depth Hierarchie diese
Identitét erfiillen. 8]

Definition 1.17 (B;-Identitét): Als By-Identitét bezeichnen wir die Gleichung:
(eafb)"eaf(cedf)™ = (eafb)" edf (cedf)™

Und eine Halbgruppe S ist in [B:], falls sie fiir beliebige a,b,¢,d € S und e, f € E(S)
erfiillt ist.

Bemerkung 1.18: Betrachten wir noch einmal die Identitét fiir die Klasse LJ
LJ = [(eaeb)eae(cede)™ = (eaeb)™ede(cede)™]

Stellen wir fest, dass diese nur ein Spezialfall von Bj fiir die Wahl von f = e ist. Daher
gilt: [B1] € L.

LJ wiederum erfiillt durch Wahl von a = b = e die LL-Identitéit: e(cede)™ =
ede(cede)™), bzw. durch Wahl von ¢ = d = e die LR-Identitét: (eaeb)™e = (eaeb)™eae).

DA LDA
S | LL
LT | B LT
L i
R LR

)

Abbildung 1.1: Inklusionseigenschaften der betrachteten algebraischen Klassen.

Ranker und Rankersprachen

Ranker sind ein natiirliches und intuitives Mittel um formale Sprachen zu beschreiben.
AuBlerdem ermoglichen sie es leicht, verschiedene kombinatorische Bedingungen zu
formulieren.

10

1.2 Grundlegende Definitionen

Definition 1.19 (Ranker): Ein Ranker ist ein Wort der Lénge k iiber dem Alphabet
R von neXt und Yesterday Anweisungen R C {X,,Y, | a €T }. k wird auch als
Rankertiefe bezeichnet. Die Semantik eines Rankers r € R* auf einem Wort u € I'* ist
induktiv definiert. Hat r die atomare Gestalt r = X, bzw. r =Y, dann gilt:

Xo(u) = Xo(u,0) =min{yeN | uly=aundy >0}
Yo(u) =Y, (u,|u| +1) =max{y e N | uly, =aund y < |u|+1}

Hierbei ist min () = max @ = undef. Der leere Ranker soll auflerdem stets definiert sein,
beispielsweise e(u) = 0. Hat r die zusammengesetzte Form r = X,r’ bzw. r = Y1/,
dann gilt:

Xor'(u) = ' (u, Xo(u))

Yor'(u) =1’ (u, Yy (u)).

Die Anweisungen eines Rankers werden also von links nach rechts abgearbeitet.

Beispiel 1.1 Ranker
Sei u = bab € T'*.

Xo(u) = Xo(u,0) =2
X, Yy(u) = X,V (u,0) = 1
Yo (u) =Yy (u,4) =2
aber: X, X,(u) = undef.

Definition 1.20 (Wortranker): Ein Wortranker ist ein Wort der Lénge k iiber dem
Alphabet R von neXt und Yesterday Anweisungen R C { X,,,Y,, | w eIt }. k wird
auch als Rankertiefe und die Linge des ldngsten Wortes in einer Anweisung von r als
Rankergrofie bezeichnet. Die Semantik eines Wortrankers r auf einem Wort v € I'* ist
induktiv definiert. Hat r die atomare Gestalt r = X, bzw. r = Y,,, dann gilt:

Xo(u) = Xop(u,0) =min{y €N | uyy ysjw—1y =wund y >0}

Y (u) = Y (u, Jul + 1) =max {y € N | u|jy_jwj+1,y =wund y < [u| +1}
Hierbei ist min) = max) = undef. Hat r die zusammengesetzte Form r = X,,r’ bzw.
r =Y,r’, dann gilt:

Xpr' (1) = ' (u, Xop(u))

Yor'(u) = 7' (u, Yy (u)).
Die Anweisungen eines Wortrankers werden also von links nach rechts abgearbeitet.
Insbesondere ist es fiir einen Wortranker X,, durch abarbeiten von Suffixen moglich

exakt beliebige Positionen 1 < i < |w| =: n innerhalb dieses Faktors zu definieren.
Hierfiir verwenden wir zur Notation das folgende Makro:

X5, = XX, X

2:in] " Wiin)

11

1 Einleitung

Beispiel 1.2 Wortranker
Sei u = bab € T'*.

Xap(u) = Xap(u,0) =2
XapYpa(u) = XapYpa(u,0) = 2
Yop(u) = Yop(u,4) =3
X2 (u) = XapXp(u) = 3
()
(u)

Definition 1.21 (Rankersprache): Die von einem Ranker bzw. Wortranker r definier-
te Sprache L(r) ist die Menge von Wortern aus I'*, auf denen r definiert ist.

L(r)={uweTl" | r(u) ist definiert }.

Diese Definition lasst sich auf natiirliche Art auf endliche boolsche Kombinationen
von Rankern, durch Kombination ihrer Sprachen, erweitern.

12

2 Algebraische Werkzeuge fiir formale
Sprachen

Dieses Kapitel legt wichtige Grundlagen fiir die kombinatorischen Beweise der Kapi-
tel 3, 4 und 5.

Lemma 2.1 (Abstiegslemma DA): Seiu,v,a € M € DA. Falls uRuv und v € MaM,
dann ist auch uRuva.

Beweis: Siche [3] Lemma 2. O

Lemma 2.2 (Abstiegslemma LDA): Sei S € LDA eine Halbgruppe mit e* = e, ue =
u, uae = ua und uRua, dann gilt wRuaa.

Beweis: Nach Definition gilt fiir Prifixe immer uaa <g u. AuBerdem existiert mit
u = ue € uS = uaS in solchen Halbgruppen stets ein a so, dass u = uaa.

Es geniigt also u <g uaa zu zeigen. Sei also a so gewdhlt, dann gilt:

U = ue e stabilisiert u

= (uaa)e uRua

= ueaeae e stabilisiert ua und wu

= u(eaeae)™ aufpumpen

= u(eaeae)™ eae(eaecae)™ DA-Gleichung der Lokalisierung

= uaeae(eaeae)™ abpumpen

= uaa - e(eaeae)”
—

Damit gilt uS = uaazS C uaaS und die gewiinschte Relation ist erfiillt. O

Die Existenzaussage des Lemmas lésst sich graphisch schén darstellen:

e e
a -a
7 > 7 >
u a ua uaaq
_/ /,/
J-aa

Dies lisst sich auch auf Faktoren grofler Lange erweitern.

13

2 Algebraische Werkzeuge fiir formale Sprachen

Lemma 2.3 (Faktor-Abstiegslemma fiir LDA): Sei u,z € I'V,a € I',m € N mit
|z| > m > |S|, wobei h : Tt — S € LDA der erkennende Homomorphismus ist. Sei
aufserdem lasty, (za) € alphy(x). Dann gilt:

uRur = uRuxa.

Beweis: Sei w := last,,(va),z = swt,|w| = m > |M|. Dann existiert eine Fak-
torisierung von w = wjwza mit |wi| maximal, die von einem Idempotenten e € I'"
stabilisiert wird, d.h. h(w;) = h(w:)e (vgl. Lemma[L.F)). Da z und za nur gleiche Fak-
toren haben, muss der Faktor w mindestens zweimal in xa vorkommen. Wir betrachten
nun das erste und letzte Vorkommen von w in za.

Angenommen der Anfang vom letzen ws liegt vor dem Ende des ersten wo, insbe-
sondere liegt also das letzte wy ganz innerhalb des ersten ws.

ra = |
| S I w1 | w2 |
f

3 ldngeres wq

Wie das Diagram zeigt, lisst sich dann ein grofleres w; mit den gewiinschten Eigen-
schaften wihlen, was im Widerspruch zur Maximalitidt von |w;| steht.
Seien also die beiden ws-Faktoren iiberlappungsfrei, d.h.

z = s(wrwqa)t = s(wiwsa)t'wsy

ra =

{
w t
2 |
T] &

e
| w1 r
S w a t

Mit folgenden Festlegungen lédsst sich das Abstiegslemma anwenden.
u' = h(uswy) a’ := h(wyat")

Zur besseren Lesbarkeit werden ab sofort Worter mit ihrem Bild unter h identifiziert.
Da w; Suffix von ¢’ ist, wird auch a’ von e stabilisiert. Mit

v = usw;
<R u
<R ux (nach Voraussetzung uRux)
= (uswy)(waat) ws,
<r (uswi)wyat’
=u'd

<gu

14

ist die letzte Voraussetzung u/Ru'a’ fiir das Abstiegslemma erfiillt. Aulerdem zeigt

die Rechnung wRu’. Somit gilt
uR v Rua Rudd
und wegen
h(uzat') = h(u(swiweat wy)at")

= h((uswy)(waat’) (waat'))

=u'da

folgt uzraRu.

15

3 Klimas Beweisidee

Dieses Kapitel beschéftigt sich nun mit L;, dem Level 1 der Straubing-Thérien Hier-
archie. Wie wir bereits in Bemerkung [T.4] gesehen haben, werden diese Sprachen auch
picewise-testable genannt. Es ist ein wohlbekanntes Ergebnis, dass die syntaktischen
Monoide von Sprachen dieser Klasse, genau die J-trivialen Monoide sind.[I5] 2009
wurde fiir dieses Ergebnis ein einfacher kombinatorischer Beweis gegeben, welchen wir
hier in verallgemeinerter Notation und unter Verwendung unserer algebraischen Werk-
zeuge des vorherigen Kapitels wiedergeben mdochten.

Definition 3.1: Als R-Faktorisierung (bzw. £-Faktorisierung) von einem Wort v € I'*
bezeichnen wir die Menge R(u) (bzw. L(u)) an Indexpositionen 1 < 4 < |u| von Zeichen
a; in u, die eine Faktorisierung u = ugaiuiasus . .. Ug—1a,Us SO vermittelt, dass:

h(ug...a;) R h(ug...ajuj) >r h(upajuja;q1), wobei 1 R h(ug)
bzw.
h(ajt1...up) <g h(uja;...ux) £ h(aj... ug), wobei h(ug) £ 1

-

Bemerkung 3.2 (Anwendung des Abstiegslamma): Diese Form von Faktorisierung
ist fiir ein Wort bei gegebener Sprache L eindeutig. Erfiillt Synt(L) die J-Identitiit,
insbesondere Synt(L) € DA, dann sind nach dem Abstiegslemma die Buchstaben
a; der Abstiegsstellen nicht in den davor liegenden Faktoren w;_; enthalten. Dadurch
sind die Abstiegsstellen durch Ranker definierbar. Beispielsweise befindet sich die Ab-
stiegsstelle a; auf u an Position X,, ... X, (u). Duales gilt fiir die £-Faktorisierung
mit Y-Rankern.

Der Beweis des nun folgenden Satzes bildet die Grundlage fiir unseren neuen kom-
binatorischen Beweis von Knasts Theorem (4.1)).

Satz 3.1 (Level 1 der Straubing-Thérien Hierarchie): Sei L C T'™* eine regulire Spra-
che. Die folgenden Charakterisierungen sind dquivalent:

1. L ist endliche boolsche Kombination von Ranker-Sprachen,

d.h. L= (r)= TGIE[Y]L(T)

B L
reR[X]
2. L ist in BX,[<] definierbar
3. L=B(Ia;I'*...a,I*a; €T)

4. Synt(L) ist J-trivial

17

3 Klimas Beweisidee

Hier wird nun eine mehr algebraische Formulierung dieses Beweises gegeben, wobei
die Ranker Charakterisierung vermutlich neu ist. Der Ubersicht wegen ist der Beweis
in vier Lemmata aufgeteilt.

Beweis:

1 = 2: Lemma 3.2

2 = 3: ¥;-Normalform (Lemma

3 = 4: Lemma [3.4]

4 = 1: Kombinatorischer Beweis (Lemma O

Lemma 3.2: Sei r ein Ranker mit ausschliefSlich neXt-Anweisungen, dann existiert
eine Formel ¢, € ¥1[<] mit L(r) = L(p,).

Beweis: Ohne Einschriankung haben die Ranker nur neXt-Anweisungen
r = Xg, ... X,,. Hierfur ldsst sich einfach eine Formel ¢, € ¥1[<] angeben.

Op =321, .. :1cn/\)\acz =a; N /\ (Ti—1,;)

Falls r(w) definiert, sind insbesondere alle Prifixe von r auf w definiert. Diese Posi-
tionen erfiillen das Geforderte: w |= ¢,. Falls w = ¢, gibt es Positionen mit korrekter
Beschriftung, welche linear angeordnet sind. Wihle von den méglichen erfiillenden Be-
legungen der x; induktiv die am weitesten links liegende Positionen. Diese sind genau
die Positionen, an welchen die Priifixe von r definiert sind. Also ist r(w) de finiert. O

Lemma 3.3: FEine Sprache L(¢) C T mit ¢ € BXq[<] hat Level 1 der Straubing-
Thérien Hierarchie, sprich die Form B(T'*a:T*...a,I'* a; € T).

Beweis: Da beide Charakterisierungen endliche boolsche Kombinationen erlauben,
geniigt es fiir eine Formel 9 € ¥;[<] eine boolsche Kombination von Sprachen der
gewiinschten From anzugeben. Nach Lemma kénnen wir ¢ = \/_ ¢, annehmen,
wobei die Klauseln ¢,, nur positive Pradikate verwenden.

On =3r1,..., T, : /\)\) =ap, A /\ < (xj,,2j,)
i€l, (j1.92)EJIn

Wir geben nun die gewiinschte Sprachcharakterisierung K, fiir so eine Klausel an.
Die Relation < definiert auf der Menge der Variablen X einen gerichteten Graph
G = (X, <). Falls unterschiedliche Beschriftungen A fiir die gleiche Variable gefordert
sind oder dieser Graph einen Kreis enthilt, setzen wir K, := () = I'* und haben
damit die gewiinschte Sprache angegeben. Anderenfalls gibt es eine endliche Anzahl
gerichtete Pfade ; maximaler Lange. Diese Pfade sind wieder eine lineare Anordnung
unserer Variablen. Mit a;,, € I" bezeichnen wir das Label von der Variable i" auf dem
Pfad ;. 2;,, sei die letzte Variable auf diesem Pfad. Wir setzen die Sprache K, folglich
auf:
Kn = n (I‘*all ...almI‘*).
Pfade v,

18

Lemma 3.4: Das syntaktische Monoid von Sprachen der Form
L=B(I*a;I™*...a,I"* a; € T) ist J-trivial.

Die Idee des folgenden Beweises entstammt einem Ehrenfeucht-Fraisse Spiel. Je-
doch ist er in der folgenden Notation auch ohne Grundlagen dieser Beweismethode
nachvollziehbar.

Beweis: Sei h der syntaktische Homomorphismus, der L erkennt. Es gilt nun zu
zeigen, dass fiir beliebige Elemente o', 0, ¢’,d" € Synt(L) die J-Identitit gilt (L.3)).
(alb/)‘n’al(c/d/)ﬂ' — (a/b/)ﬂd/(c/d/)ﬂ' (31)

Wir wahlen nun jeweils beliebige Urbilder dieser Elemente a, b, c,d € T'* die im Fol-
genden aber fest gehalten werden.

Da die Urbilder der beiden Idempotenten beliebig grofl gew#hlt werden kénnen, werden
wir uns dies zu Nutze machen. Uns geniigt bereits ein n, welches grofler ist, als die
grofite Anzahl der a; welche in einem Teilausdruck von L vorkommen. Wir betrachten
nun die folgenden zusammengesetzten Worter u, v € I'*,

u:= (ab)"a(ed)"™ v = (ab)™d(ed)"™

Im Folgenden sind nun p,q € I'* beliebig. Wir zeigen nun, dass puq € K genau dann,
wenn auch pvg € K, wobei K ein Teilausdruck der boolschen Kombinationen von L
ist. Um das zu gewahrleisten, geben wir eine Taktik an, mit der fiir beliebige, von K
forderbaren, Subwortern a; . .. a, diese auch in pvq enthalten sind.

1. Wahle exakt die gleichen Positionen fiir p oder ¢ auf pvgq.

2. Falls das letzte a unbelegt ist, wéihle exakt die gleichen Positionen auf v und wir
sind fertig.

3. Falls das letzte a belegt ist, konnen davor maximal noch n—1 Positionen in (ab)™
belegt sein.

a) Im schlimmsten Fall sind nur a’s belegt. Selbst dann lassen sich auf v einfach
die n a-Positionen hintereinander belegen.

b) Falls auch mindestens ein b belegt wurde, ist sogar ein ganzer ab bzw. ba
Faktor unbelegt, wodurch auf v geniigend a-Positionen zur Verfiigung ste-
hen, wovon wir jeweils die kleinsten Positionen wéhlen.

Wiéhle gegebenenfalls restliche Positionen in (¢d)™ auf v identlisch.

19

3 Klimas Beweisidee

Wendet man zusétzlich die duale Strategie fiir pvg an, erhélt man:

puqg € K & pvge K
puqg € L < pvge L
= Uu~Lv
= h((ab)"a(ed)™) = h((ab)"d(cd)™).

Und die J-Gleichung gilt fiir beliebige Elemente o', b, ¢', d’ € Synt(L). O

Das folgende kombinatorische Lemma ist zentrale Grundlage dieser Arbeit.

Lemma 3.5: Sei L C IT'™* und Synt(L) J-trivial, dann ist L endliche boolsche Kom-
bination von Rankern, die ausschlief$lich neXt-Anweisungen beniitzen.

Beweis: Betrachte folgende Relation auf Wortern u, v € T'*
ur~pv e Vr=Xg, oo Xo a0 €T r(u) def. gdw. r(v) def.

Dies ist offensichtlich eine Aquivalenzrelation. Sei h : T* — Synt(L) =: M der er-
kennende Homomorphismus, wobei M die J-Gleichung erfiille. Wir werden zeigen,
dass diese Relation eine Verfeinerung der syntaktischen Kongruenz ist ~;,C~p. Da
L = |J,[u]~, eine Vereinigung solcher Klassen ist, folgt die Definierbarkeit durch
Ranker.

Sei also u ~, v. Betrachte die Indexmengen blau := R(u) mit den Abstiegsstellen der
R-Faktorisierung von u = upai g . . . ug—1a5ug und rot := L(v) mit den Abstiegsstellen
der L-Faktorisierung von v = v;b; . .. v1b1vg. Durch das Abstiegslemma, (Lemma ist
sichergestellt, dass a;11 ¢ alph(u;) und b;11 ¢ alph(v;). AuBerdem wird so Folgendes
sichergestellt:

h(u) R h(ulpian) R h(Aja1 AT ... arAj) mit A; = alph(u;)
h(’U) L h(v‘rot) L h(Bl*bl .o BTbIBS) mit Bz = alph(vz)

Da 2Ry = xzJy (entsprechend fiir £) und M J-trivial ist, gilt sogar Gleichheit.

h(u) = h(ulpran) = h(Aja1 AT ... apAL) mit A; = alph(u;)
h(v) = h(v]rot) = h(B{b; ... Bib1By) mit B; = alph(v;)
Da u ~y v, lassen sich die blauen Positionen auf v iibertragen, wobei das am wei-

testen links liegende Vorkommen gewéhlt wird. Die duale Konstruktion liefert die
iibertragene rote Indexmenge auf u.

blaw :={ Xq, ... Xo,(v) | 1<i<k}
rot :={Y,, ...V (u) | 1<i<Il}

Essentiell sind nun die reduzierten Worter @ := u|blauum und v := U|Mwot7 die nach
Konstruktion bereits alph(@) = alph(v) erfiillen und jeweils in ihren blauen und in

20

ihren roten Indizes die richtige Anordnung besitzen. Aufierdem sind |@| und |5| durch
2|M| — 2 begrenzt.

Uberraschenderweise gilt sogar % = ©. Hierfiir betrachtet man, &hnlich dem Boubble-
sort Algorithmus, alle Paare an Zeichenpositionen a;, b;, um auf die lineare Anordnung
auf beiden Wortern zu schlieflen.

Fall <:
Xaoy - X, (@) <Y, ...YLJ.(@)
& Xay oo Xa, Xy, oo X,y (u) = def.
<:>Xu1 - Xai,ij R Xb1 (U) = def
SXg, o Xg, <Yy, ...ij(z’))
Fall <:

Xo, . X (W) < Vi, ... Yy, ()
<:>Xa1 - Xai_lXai:bj ij—1 - Xb1 (u) = d@f
<:>Xa1 . Xai,lXai:bj ij71 B Xb1 (1}) = def

Xy o Xay < Yiy .. Y5 (D)

Da alle relativen Positionen von Zeichen a; und b; in % und v gleich sind, haben beide
Worter die gleiche lineare Anordnung 4 = v. Es gilt:

h(u) = h(a) = h(v) = h(v)

= U~Lv
= L= U[U]NL = U[U]Nk
ueL u€eL
Um dies sicherzustellen haben wir nur maximal k := 2|M| — 2 neXt-Anweisungen
benétigt. O

21

4 Knasts Theorem

In diesem Kapitel wollen wir einen kombinatorischen Beweis fiir Knasts Theorem ge-
ben. Entscheident wird Lemma[£.5]sein, das den Zusammenhang von der algebraischen
Charakterisierung zu Wortrankern herstellt. Wie in Bemerkung [T.18] beschrieben, sind
Halbgruppen, welche die B;-Identitét erfiillen, in L7 und damit insbesondere in LIDA.
Wir werden wiederum die generischen R und L-Faktorisierungen betrachten. Wer-
den um die Abstiegsstellen nun Intervalle ausreichender Linge betrachtet, existieren
nach Lemma [I.5 stabilisierende Idempotente. Damit sind die Voraussetzungen fiir das
Faktor-Abstiegslemma fiir LDA (Lemma erfiillt und wir konnen mit Wortrankern
dieser Faktoren wiederum kombinatorisch argumentieren.

Satz 4.1 (Dot-Depth-1): Die folgenden Charakterisierungen sind dquivalent:

1. L= B (L(r)nmin,T*maz,)= B (L(r) Nmin.T*max,)
rER[X] TER[Yy]

2. L ist in BY[<,+1, min, max| definierbar
3. L =B(wol*w ... T*wy, w; € I')
4. Synt(L) € [B1]

Beweis: Der Ubersicht wegen ist der Beweis in 4 Lammata aufgeteilt.
1 = 2: Lemma [£2]

2 = 3: ¥;-Normalform (Lemma

3 = 4: Lemma [4.4]

4 = 1: Kombinatorischer Beweis (Lemma O
Lemma 4.2: Sei L = IEF](L(r) N min,I*mazx,), dann existiert eine Formel ¢ €
reR[X,,

BX,[<, +1, min, max] so, dass L = L(yp).
Beweis: Da in beiden Charakterisierungen endliche boolsche Kombinatio-

nen erlaubt sind, geniigt es wiederum fiir einen Wortranker eine Formel in
©r € BXq[y, +1, min, max] anzugeben.

23

4 Knasts Theorem
Betrachte ein L = L(r = Xy, ... Xy,) N min,T*mazx,. Wir setzen

@r 1= E'l'i’j /\)\((El’]) = (wz)] A\

,J

N\ L@ 1, i2) A AL -1 T y) A

/\ < (xi1,%i41,1) Amin(min,) A max(maz,).
1<i<k

Dies modeliert exakt die Definition von Wortrankern und es gilt u € L < u € L(p,).
O

Lemma 4.3: Sei L = L(p) CT'" mit ¢ € BX[<,+1, min, max| dann ist L innerhalb
von Level 1 der Dot-Depth-Hierarchie; hat also die Form L = B(wol™wy ... T*wy) mit
w; € r+.

Beweis: Da in beiden Charakterisierungen endliche boolsche Kombinationen erlaubt
sind, geniigt es fiir eine Formel ¢ € ¥;[<, +1, min, max] eine Kombination von Spra-
chen der gewiinschten Form anzugeben. Durch Lemma kénnen wir v = \/, ¢n
annehmen, wobei die Klauseln ¢, nur positive Priadikate besitzen. Wir konstruie-
ren zuerst dquivalente Formeln ¢,. Seien dazu x1,...,xk, sowie y1,...,¥y; existenzi-
ell gebundene Variablen, wobei +1(z;,x;41) fir 1 < ¢ < k — 1 und +1(y;, y;+1) fiir
1 <i<1l-1in ¢, enthalten sind, wobei k,! maximal. Ist aulerdem das Pradikat
< (z4,y;) Teil der Formel ¢,, fiir ein j < ¢ mit 1 # j und k # 4, also

Pn =< (xiayj) A <)0/n

so ersetzen wir diese Klausel durch die folgenden Klauseln

(@;'ylzfi—jﬁ-l) \ (Saln|yl:m7‘,—j+2) V...V (quyl:ﬂ%) \ (< (ka,’yl) A QD;L)

Hierbei bezeichnen |, =, jeweils nur textuelle Ersetzungen der Variable = durch Varia-
ble y;. Diesen Prozess setzen wir fort, bis er auch auf den neuen Klauseln nicht mehr
angewendet werden kann und erhalten die Formel ¢,, nach endlich vielen solchen Er-
setzungen. Am Ende enthélt also ¢, keine Klauseln mit Sitationen z; < y; mit 1 # j
und k # i.

Hiervon kénnen wir analog zu Lemma [3.3| nun Sprachen der Form wol™w; ... w,
fiir jeden Pfad im Graphen ablesen, wobei wg und wy, die Beschriftungen von min und
max-Pradikaten sind, die sich eventuell an Pfadbeginn und Pfadende befinden. Der
Schnitt tiber diese Sprachen stimmt mit der von einer Klausel akzeptierten Sprache
iiberein. O

Lemma 4.4: Die syntaktische Halbgruppe Synt(L) von Sprachen der Form L =
B(wol*wy . .. T*wg,w; € T erfillt die By -Identitdt.

24

Beweis: Sei h : I't — Synt(L) =: S der syntaktische Homomorphismus, der L
erkennt. Betrachte die BB;-Identitét (1.17)), die fiir alle Elemente a',V’,¢/,d’ € S und
Idempotente €', f' € E(S) gelten muss.

(e/a/f/b/)rrela/ I(C/e/dlf/)ﬂ' — (ela/f/bl)weldlf/(Cleld/fl)ﬂ'

Wir wihlen nun jeweils beliebige Urbilder a, b, ¢, d, e, f € I't dieser Elemente, die im
Folgenden aber fest gehalten werden. Sie existieren, da der syntaktische Homomor-
phismus surjektiv ist.

a' = h(a), ¥ =h(b), ¢ =h(c), d = h(d), ¢ =hle), f =h(f)

Da die Urbilder der Idempotenten (¢ = €’ - €’) beliebig grofi gewiihlt werden kénnen,
werden wir uns dies wieder zu Nutze machen. Uns geniigt ein m, welches grofler ist
als das Maximum von maximaler Liange eines Wortes w; und Anzahl von Subfaktoren
in einem Teilausdruck von L. Wir betrachten als Grundlage nun die folgenden Worter
mit u,v € [T, p,q € T'*.

p (emafmb)memafm(cemdfm)m q p (emafmb)ﬂLe'lndf'"L(ce'lndf'HL)m q

=:u =v

Wir zeigen nun, dass puq € K genau dann, wenn auch pvqg € K, wobei K ein beliebiger
Teilausdruck aus der boolschen Kombination fiir L ist. Um dies zu gewihrleisten, geben
wir eine Taktik an, mit der beliebige, von K forderbare, Subfaktoren wy...w; auch
auf pvq gefunden werden kénnen.

1. Wahle wg und wy, identisch. Falls p und g kiirzer sind, geniigt sicherlich ™ bzw.
f™ um einen gemeinsamen Prifix und Suffix zu gewérleisten.

2. Wihle exakt die gleichen Positionen fiir Faktoren die auf p oder ¢ liegen.

3. Falls das komplette letzte a unbedeckt ist, wéhle die gleichen Positionen auf v
und wir sind fertig.

4. Sei das letzte a bedeckt. Mit Faktoren der Linge maximal m lésst sich nicht der
ganze Faktor e™af™ mit einem w; geschlossen {iberdecken. Daher geniigt es be-
reits sicherzustellen, dass diese in geniigender Anzahl und in richtiger Reihenfolge
vorkommen.

a) Falls kein f™be™-Faktor mit einem w; belegt ist, kénnten nicht mehr als
m — 1 e™af"-Faktoren belegt sein. Diese kommen auch in v in der richtigen
Anordnung vor. Diese wihlen wir.

b) Falls mindestens ein f™be™-Faktor mit einem w; iiberdeckt ist, kénnen
sogar nicht mehr als n — 2 e™af™-Faktoren iiberdeckt sein. Auch diese
Situation erfiillt bereits der Anfangsteil von v. Wir wéhlen einfach hierin
von links nach rechts die jeweils kleinst méglichen Positionen.

Wiéhle die restlichen Positionen in (ce™df™) auf v identisch.

25

4 Knasts Theorem

Wendet man zusétzlich die duale Strategie fiir pvg an, erhélt man:

puq € K < pvg e K
puqg € L& pvge L
= U~ v
= h(u) = h(v).

Wodurch die Bi-Identitiit fiir beliebige Elemente o', ¥',¢/,d" € S und ¢, f' € E(S)
gilt. O

Lemma 4.5: Sei L regulir und die syntaktische Halbgruppe Synt(L) erfille die Bi-
Identitdt, dann ist L = RIE%%X](L(r) N min,T*max,)
re w

Beweis: Betrachte folgende Relation auf Wortern u, v € I'T

U~y e first(u) = first;(v) A
last;(u) = last;(v) A
Vr =Xy, ... Xw, :7(u) def. & rw) def. mit 1< |w;| <!

Dies ist eine Aquivalenzrelation. Sei h : T+ — Synt(L) =: S der erkennende Homo-
morphismus, wobei die Halbgruppe S die B1-Gleichung erfiille. Wir werden analog zum
Beweis von Satz zeigen, dass diese Relation eine Verfeinerung der syntaktischen
Kongruenz ist ~(; ,)C~r.

Sei also u ~(;) v, wobei [und n, die nur von |S| abhéingen werden, noch festzulegen
sind. Betrachte wiederum die R-Faktorisierung von u und die £-Faktorisierung von v.
Bilde nun um jede Position aus ¢ € R(u) Intervalle I; = [i — |S],7 + |S|] der Linge
I” := 2|S|+1, um sicherzustellen dass stabilisierende Idempotente (Lemma[L.5)) fiir den
Prifix ulp ;) und den Suffix ulj; |, im Intervall I; existieren. Wir definieren aulerdem
Intervalle I, := [1 : min{|ul|, |S| + 1}] fiir Wortanfang und I, := [max 1, [u] — |S], |u]]
fiir Wortende. Diese Intervalle auf u kénnen sich iiberlappen. Vereinigt man nun alle
iiberlappenden Intervalle sukzessiv, erhélt man sogenannte R-Faktoren, deren Lénge
im schlimmsten Fall durch |R(u)| x 2|S| + 2|S| + 1 < 2|S|?> + 1 =: I’ beschriinkt sind.
Dadurch wurde die Menge blau von nicht iiberlappenden R-Faktoren auf u gebildet.
Die duale Konstruktion mit der £-Faktorisierung auf v liefert die ebenfalls disjunkte
Intervallmenge rot. Dadurch ergeben sich die folgenden Faktorisierungen fiir v in R-
Faktoren z; := u|s, J € blau und v in L-Faktoren y; := v|;,J € rot, wobei a,w € It
gemeinsamer Anfang- und Endteil sind und eventuell durch Zusammenfiigen bereits
in x1, g bzw. Yk, y1 enthalten sind.

U= Uy T UL~ eer Ty~ Uk W wi,wp € 0% 17 <ay| <V (4.1)

V=0 UL Yk .. VLYL Vg - W v,y €T 1 < |yi| <1 (4.2)

Nach Konstruktion existiert innerhalb eines Wortes u; kein R-Abstieg und innerhalb
eines v; kein L-Abstieg. Wie bereits zu Beginn dieses Kapitels erwéihnt, gilt durch

26

das Faktor-Abstiegslemma (Lemma , dass diese Stellen der Faktorisierung durch
Wortranker definiert sind.
Da u ~(;) v, lassen sich die blauen Faktoren z; auch auf v iibertragen.
blav:={[j—|zi| + L,j] | =X, ... Xo,(0),1 <i<k}
rob:={[j,j+ 1yl =1 | j =Yy, ... Yy, (u), 1 <i <k}

Analog zum Beweis von Lemma [3.5] betrachten wir alle paarweisen relativen Lagen von
blauen Faktoren z; und roten Faktoren y;, um auf ihre lineare Anordnung zu schlieflen.
Es gibt vier mogliche Fille fiir die relative Lage von zwei Faktoren.

1. Keine Uberlappung:
Xoy o X0 () <Yy, Y (u)
X, .XLf'i‘X;j .. Xy, (u) definiert
X, .XLf'i‘X;j ... Xy, (v) definiert
Xy, . X () <Y, . Y)Y ()

2. Uberlappung der Form z;y = By; mit v, € I'*,|5] > 1: Bezeichne 2 < t <
|z;| die Position des ersten Zeichens von y; in z;. Nach Konstruktion liegen die
Faktoren y; ...y moglichst weit rechts, wodurch ¢ maximal gew&hlt ist.

Xoy o XL (u) =Yy, . Y)Y ()
=X, .. XX, L Xy, (u) defindert
SXy, . XX, L Xy, (v) definiert
=X, . XL (0) <Y, Y l()
Angenommen unerwiinschterweise gilt auf v sogar <, dann kénnte ein y; Faktor

auch an der Position ¢ 4+ 1 beginnen, wobei diese auch auflerhalb von z; liegen
konnte.

Xoy . XL <Y, Y Ul(0)
=X, ... XL Xy, ... X, (v) definiert
=X, ... XL X, ... Xy, (u) definiert
=Widerspruch zur Maximalitiit von ¢ bzw. zur Uberlappung auf u sonst.

Die beiden Faktoren haben also auch auf v die gleiche Uberlappung, wodurch
wiederum beide Richtungen gelten.

3. Uberlappungen der Form Y;Y = Bx; =: wy; mit vy, B € I'*: Die Lénge von w;; ist
durch 2 x I’ — 1 beschrinkt. Hier ist es moglich, dass vorherige x Faktoren ganz

27

4 Knasts Theorem

oder teilweise in 8 enthalten sind und entsprechend y Faktoren in . Sei also x;/
der letzten Faktor, der nicht mehr ganz in § enthalten ist(¢ <) und y; der
ersten Faktor, der nicht mehr ganz in + enthalten ist(j < j). Nach Konstruktion
ist die Position der Faktoren xi...x; minimal und die von y;...y; maximal
gewihlt.

Xy oo X, Xy, (u) =Yy, ,,.YJ;JJ'I(U)
=Xay oo Xoy Xui; Xy, - Xy, (u) definiert
X
X

SXpy - Xy, Xy, Xy, Xy, (v) definiert

Xy,
=Xo, - Xay Xu, (V) <Yy, Y5 (0) A (4.3)
Xoy o X (0) <Y, Y, Y, (0) (4.4)

Angenommen (4.3) oder (4.4) erfiillen sogar <. Dann ldsst sich dies in &hnlicher
weise auf einen Widerspruch fiihren, dass y; maximal auf v lag bzw. z; minimal
auf u lag. Dadurch gilt Gleichheit der Uberlappung auf v und in gleicher Weise
die Implikationen riickwérts.

4. Einschluss: Diese Situationen lassen sich analog zu Fall 3 16sen, wobei jeweils der
umschlieende Faktor als w;; gewahlt wird.

Die Abstiegsfaktoren sind also in u und v in gleicher Weise angeordnet. Um dies zu
gewihrleisten bendtigten wir fiir ~(; ,,) nur

n=2|S2+2|S| -1 >[R(u)| + |L(v)| +1'
1:=4|8)+1 >2x1' -1

Nun sind wir in der Lage griine Intervalle auf u zu definieren, die durch Erweiterung
der blauen Intervalle mit roten Uberlappungen entstanden sind. Dies bedeutet, dass
innerhalb der Zwischenstellen noch immer keine R-Abstiege existieren. Analog ist griin
auf v durch Erweiterung roter Intervalle mit blauen Uberlappungen entstanden. Somit
existieren noch immer keine L£-Abstiege innerhalb der Zwischenstellen. Durch obige
Fallunterscheidung ist klar, dass diese Intervalle in v und v gleiche Beschriftungen z;
haben.

griin == U I |TeblauUrot p aufu
I iiberlappend

grin = U I | I€blauUrot p aufv
I iiberlappend

Entscheidend sind die folgenden Faktorisierungen der Worter u, v, die sich nun an-
nehmen lassen.

U= Quyziu ... 2ZEULW ul,z € U517 < 2] <1

o / ! / ! *
V= QU] - .. ZRULW v; €

28

Wir betrachten nun induktiv von links nach rechts die Faktoren, welche die Zwi-
schenstellen] bzw. v, umschlieen, fiir 0 < ¢ < k. Da diese mit ausreichnder Lénge
konstruiert sind, existiert nach Lemma fiir den linken Faktor, der insbesondere
a sein kann, das Idempotente e welches wir einfiigen kénnen. Analoges gilt fiir den
rechten Faktor.

Zi ul Zit1
a
[1 1 [1 1
U= T 1T 1 T TT T
€ I
v= f ff H H I 1
d
zi v} Zi+1

Da die u] keine R-Abstiege und die v} keine £-Abstiege enthalten, lisst sich damit
folgende Klassenzugehorigkeit fiir Prifix p bis zum Idempotenten e und Suffix ¢ ab
dem Idempotenten f ablesen.

pe R peaf edfq L fq

Also existieren Elemente @ und d so, dass

pe = pleafa)Te fa = f(dedf)"q.
Betrachtet man nun zusétzlich die Bi-Identitét, dann gilt:
p(eafa)™eaf(dedf)"q = pleafa)edf (dedf)"q B, (L1
"q

e
peafq = p(eafa)”edf (dedf)
peafq = pedfq rechts abpumpen

links abpumpen

Dieses Argument lisst sich induktiv entlang den Faktoren z; (beispielsweise von links
nach rechts) anwenden. Dadurch ist h(v) = h(u) und somit u ~p, v. O

29

4 Knasts Theorem

Algorithmus zur Entscheidbarkeit

Da sich algebraische Eigenschaften leicht iiberpriifen lassen, legt dies folgenden Al-
gorithmus zur Entscheidung der Definierbarkeit in BX;[<,+1, min, max] nahe. Die
Implementierung ist in der Sprache GAP fiir eine bestimmte regulédre Sprache, die wir
in Kapitel 6 néher untersuchen werden, gegeben. [4]

LoadPackage (” automata”);

L := RationalExpression (7 (011%xU022%)*011%3(22x3U11%3)*");
Automat := RatExpToAut(L);

S := TransitionSemigroup (Automat);

Display (Automat);

ELEM := Elements(S);
I := Idempotents(S);

for e in I do
for a in ELEM do
for b in ELEM do
for f in I do

Banfang := exaxfxb;

while Banfang <> (Banfang”2) do
Banfang := Banfang * (exaxfxb);
od;

for ¢ in ELEM do
for d in ELEM do

Bende := cxexdxf;
while Bende <> (Bende"2) do
Bende := Bende #(cxexdxf);
od;
Left := Banfang * exaxf % Bende;
Right := Banfang * exdxf xBende;
if Left <> Right then
Print(” \n”);

Print (" GEGENBEISPIEL: \n”) ;

Print(”e:”); Print(e); Print(”’\n”);
Print (" f:”7); Print(f); Print(”\n”);
Print ("a:”); Print(a); Print(”?\n”);
Print ("b:”); Print(b); Print(”\n”);
Print ("c:”); Print(c); Print(”\n”);

Print (”d:”); Print(d); Print(”\n”);
Print (” Banfang:”); Print (Banfang); Print ("\n”);
Print (" Bende:”); Print (Bende); Print ("\n”);
Print (” Links:”); Print (Left); Print (”\n”);
Print (” Rechts:”); Print (Right); Print (”\n”);
Print(? \n”);
fi;
od;
od;
od;
od;
od;
od;

30

5 Weitere entscheidbare
Logikfragmente

Im vorherigen Kapitel haben wir gezeigt, dass Sprachen L € BX;[<, +1, min, max]
genau denen entsprechen, deren syntaktische Halbgruppe Synt(L) die Bi-Identitit
erfiillen. Da die syntaktische Halbgruppe regulérer Sprachen endlich ist, war es moglich
durch einfaches Nachrechnen dieser Identitéit fiir alle Elemente der Halbgruppe die
Definierbarkeit im Logikfragment zu entscheiden. Die Verwendung der min und max
Pridikate waren in den Beweisen von Kapitel 4 jedoch nicht von elementarer Be-
deutung. Dadurch haben wir die Moglichkeit auf dhnliche Weise entscheidbare Cha-
rakterisierungen fiir die Fragmente BX; [<, +1], BX;[<, +1, min] und B¥;[<, 4+1, max]
anzugeben, wobei das Fehlen eines der Pradikate sich durch die Hinzunahme einer wei-
teren, einfach entscheidbaren Bedingung an die syntaktische Halbgruppe duflert. Diese
entscheidbaren Charakterisierungen sind neue Ergebnisse. Die folgenden Beweise sind
alle sehr dhnlich zu den vier Lemmata aus Kapitel 4, wobei wir auf die Vollstéandigkeit
hier verzichten und nur die Stellen beschreiben, die abgewandelt werden miissen.

5.1 Das Fragment BY[<, +1, min]
Satz 5.1: Die folgenden Charakterisierungen sind dquivalent:

1. L= B L Nmin,I*)= B L N min, '™
reR[Xw]((r) Nmin,IT'*) reR[Yw]((r) Nmin,IT'*)

2. L ist in BY[<,+1, min| definierbar
3. L =B(wel™*wy ... w,[* w; € TT)

4. Synt(L) € [B1] und L =, [ulr

Beweis:

“1 = 2”: Beweis analog zu Lemma [4.2

“2 = 3”: Beweis analog zu Lemma [£.3]

“3 = 47: Die Bj-Identitét ldsst sich analog zu Lemma zeigen.

Wir zeigen L = J,cp[ulr. Seien u',v" € Synt(L) mit wRv’. Dann existieren
2’y € Synt(L) mit v = v'2’, v = u'y’. Fiir diese Elemente lassen sich wiederum
nichtleere Urbilder des syntaktischen Homomorphismus u, v, z,y € I'" wihlen. Sei K
ein Teilausdruck von L der Form K = wol™ ... wi['*. Falls u € K, ist auch v € K, da
v = uy. Die zweite Faktorisierung liefert: v € K = u € K.

31

5 Weitere entscheidbare Logikfragmente

“4 = 17: Wir konstruieren in exakt der gleichen Weise wie in Lemma [£.5] die Intervalle
grin auf Wort v und grimn auf v wobei u ~(;) v mit

U~y U e first(u) = first(v) A
Vr =Xy, - Xu, s r(u)def. < r(v)def. mit 1 < w,; <.

Indem wir nur einen Wortranker mehr erlauben, kénnen wir zusétzlich sicherstellen,
dass die letzten [Zeichen von v auch hinter denen der z; auf v vorkommen. Falls vy das
leere Wort ist, gilt dies bereits. Anderenfalls d&ndert ein vorausgehender Wortranker
Yiast,(vy) Weder die Definierbarkeit der £-Abstiegsfaktoren auf v noch ein folgender
Xiast, (vy,) die Positionen der R-Abstiegsfaktoren auf u. Wir erhalten dadurch folgende
Faktorisierung der beiden Worter v und v:

U =gz - . . Zpuglast; (V) ugr1 mit o, u;, vy, 2 € I

vV =QUgz101 - .. 2KV |zi| > 2|Synt(L)]

Durch Konstruktion ist wiederum innerhalb der u; kein R-Abstieg und innerhalb der
v; kein L-Abstieg vorhanden. Dadurch lidsst sich in gleicher Weise, von links nach
rechts, die Bj-Identitdt anwenden. Mangels fehlendem gemeinsamen Ende erhalten
wir diesmal:

h(v) = h(augzy ... last;(vi)) R h(u).

Da unsere Sprache gegebenerweise eine Vereinigung solcher R-Klassen ist, folgt schlief3-

lich:
L= LJ[U}R:: LJ[ULV@nV

u€eL ueL
O

Bemerkung 5.1: In der Tat ist Eigenschaft 4 des obigen Satzes entscheidbar. Zum
Algorithmus aus Kapitel] miissen lediglich zwei Schleifen der folgenden Form hin-
zugefiigt werden. P := h(L) C Synt(L) bezeichnet die Menge der akzeptierenden
Elemente.

foreach a in P do
foreach b in S do
if (axS=bxS) and not(b in P) then
return FALSE;
fi
od
od

5.2 Das Fragment BY;[<, +1, max]

Satz 5.2: Die folgenden Charakterisierungen sind dquivalent:

32

5.2 Das Fragment BXq[<, +1, max]

1. L= B L(r)ynI*)= B LirynI*
reR[Xw]((r) mazx,) rER[Yw]((r) max,)

2. L ist in BXq[<,+1, max] definierbar
3. L=B(T*wq...I"w,w; € TT)

4. Synt(L) € [B1] und L =, [ulc

Beweis:

“1 = 27: Beweis analog zu Lemma[4.2]

“2 = 3”: Beweis analog zu Lemma |4.3

“3 = 4”: Die B;j-Identitét ldsst sich analog zu Lemma zeigen.

Wir zeigen L = |J,cp[u]c. Seien ', € Synt(L) mit uLv. Dann existieren 2’,y" €
Synt(L) mit 2'v’ = ', y'v' = u'. Fiir diese Elemente lassen sich wiederum nichtleere
Urbilder des syntaktischen Homomorphismus u, v, z,y € I'" wihlen. Sei K ein Teil-
ausdruck von L der Form K = T"wq...T"wy. Fallsu € K, ist auch v € K, da v = zu.
Die zweite Faktorisierung liefert: v € K = u € K.

“4 = 1”7: Wir konstruieren in exakt der gleichen Weise wie in Lemma die Intervalle
griin auf Wort u und grin auf v wobei u ~(;) v mit

U~y U elast(u) = last(v) A
Vr =Xy, - Xu, :r(u)def. < r(v)def. mit 1 < w,; <.
Indem wir nur einen Wortranker mehr erlauben, kénnen wir zusétzlich sicherstellen,
dass die ersten [Zeichen von u auch vor denen der z; auf v vorkommen. Falls ug das
leere Wort ist, gilt dies bereits. Anderenfalls &ndert weder der nachfolgende Wortranker
Yirsti(uo) die Definierberkeit der L£-Abstiegsfaktoren auf v noch ein vorausgehender

X tirst, (uo) die Positionen der R-Abstiegsfaktoren auf u. Wir erhalten dadurch folgende
Faktorisierung der beiden Worter u und v:

U= Ug21U] - . . ZLURW mit w,u;,v;, 2 € I'F

v =v_y first;(up)voz1v1 . .. 2xVEW |zi] > 2|Synt(L)|

Durch Konstruktion ist wiederum innerhalb der u; kein R-Abstieg und innerhalb der
v; kein L-Abstieg vorhanden. Dadurch ldsst sich, diesmal von rechts nach links, die
B;-Identitdt anwenden und wir erhalten mangels fehlendem gemeinsamen Anfangs:

h(u) = h(first;(uo)voz1 -..w) L h(v).

Da unsere Sprache gegebenerweise eine Vereinigung solcher £-Klassen ist, folgt schlief3-

lich:
L= U [u]ﬁ = U [U]N(z,n)'

u€L u€eL

33

5 Weitere entscheidbare Logikfragmente

5.3 Das Fragment BY;[<, +1]

Satz 5.3: Die folgenden Charakterisierungen sind dquivalent:

1.L= B L(r)= B L(r)
reER[X] reR[Yy]

2. L ist in BYXq[<,+1] definierbar
3. L=B(T*wq... wgI*, w; € TT)
4. Synt(L) € [B1] und L =, [uls

Beweis:

“1 = 27: Beweis analog zu Lemma[4.2]

“2 = 3”: Beweis analog zu Lemma[4.3]

“3 = 47: Die Bj-Identitét lasst sich analog zu Lemma [4.4] zeigen.

Wir zeigen L = J,cp[uls. Seien v/,v" € Synt(L) mit wJv. Dann existieren
w'yx' y' 2 € Synt(L) mit v = w'v's!, v = y'u'z. Fiir diese Elemente lassen sich
wiederum nichtleere Urbilder des syntaktischen Homomorphismus u,v,w,z,y,z € I't
wéhlen. Sei K ein Teilausdruck von L der Form K = Iwq...w,['*. Falls u € K, ist
auch v € K, da v = yuz. Die zweite Faktorisierung liefert: v € K = u € K.

“4 = 1”: Wir konstruieren in exakt der gleichen Weise wie in Lemma [£.5] die Intervalle
griin auf Wort u und griin auf v wobei u ~(;) v mit

U~y VST =Xy, o Xy, r(uw)def. < r(v)def. mit 1 <w; <.

Indem wir nur zwei Wortranker mehr erlauben, kénnen wir, analog zu den Beweisen
der beiden vorherigen Sétze, die folgende Faktorisierung sicherstellen:

U= U 21U7 - . - 2k Urlast; (Vg)uk41 mit u;, v, z; € I'*
—
=u
v = v_q first;(uo)ve 2101 . . . 2k Vg |z;| > 2|Synt(L)]
—_——

I
IS

Durch sukzessive Anwendung der Bp-Identitét erhalten wir:
h(v) L h(v) = h(a) R h(u).
Betrachten wir noch die [J-Klasse von h(u)

S(h(u)S) = Sh(a)S = (Sh(ﬁ))S = Sh(v)S
Da unsere Sprache gegebenerweise eine Vereinigung solcher J-Klassen ist, folgt schlief3-

lich:
L= U [ul7 = U [ty

u€L uel

34

6 Die Beziehung zwischen den Klassen
By und L7

Von Knast wurde eine Sprache L C I't gegeben, deren syntaktische Halbgruppe
Synt(L) in LJ liegt, aber nicht die B;-Identitét erfiillt.[8] Diest zeigt, dass es sich um
eine echte Teilmenge handelt. Dieses Beispiel wollen wir im Folgenden néher untersu-
chen, um allgemeinere Eigenschaften zur Unterscheidung der Klassen zu gewinnen.
Betrachte die folgende Sprache L C T't iiber dem Alphabet I' = {0, 1,2, 3}.
L:= (017]02)*01"3(173|2"3)*

Die Sprache L wird von folgendem Automat akzeptiert:

start —>‘—>

Abbildung 6.1: Deterministischer endlicher Automat fiir die Sprache L ¢ B;, wobei
der Fehlerzustand 7 nicht eingezeichnet ist.

Um L ¢ B; zu zeigen, geniigt es Elemente aus Synt(L), sprich Transformationen
auf dem Automaten, anzugeben, welche die Bi-Identitédt nicht erfiillen. Wir geben

35

6 Die Beziehung zwischen den Klassen By und LJ

Vertreter und die zugehorigen Transformationen auf dem Automaten an:

e=[1]=[2,2,7,7,6,6,7,7]
f=[2=4,7,3,4,3,7,7,7]
a=1[02] =[7,7,3,7,7,3,7,3]
b=[20] =[7,7,5,7,5,7,7,7]
c=[23] =[1,7,7,1,7,7,7,7]
d=[13] =[1,1,7,7,1,1,7,7]

Durch zweimaliges Ausfithren der Transformationen e bzw. f kann man sich iiberzeu-
gen, dass diese Elemente idempotent (z.B. e? = e) sind. Wir betrachten nun Anfangs-
und Endteil der beiden Seiten der Bi-Identitét.

(eafb)™ = ([1][02][2][20))" = [10]" = [10]
(cedf)™ = ([23][1)[13][2])" = [232]" = [232]

Nun kénnen wir Worter angeben, die laut der B;i-Identitit dquivalent sein miissten,
jedoch nicht gleichzeitig in L liegen.

u:=10-1-02-2-232und v:=10-1-13-2-232
Ou3 ¢ L aber 0v3 € L
= L ¢ [Bi]

Fiir diese Sprache lédsst sich die folgende dquivalente Beschreibung angeben. Da
Synt(L) nicht die Bi-Identitét erfiillt, ldsst sie sich nicht ganz in dennen von Dot-
Depth-1 erlaubten Konstrukten darstellen.

L :=(017]027)*01"3(1" 3|2 3)*
=I*00I'* N T*33C* N T*12T* N T*21T* N Uberginge

I'+30*0r* N nach letzter 3 keine 0
or* N Ir*3 n Anfang und Endteile
r-o1(r\ {o})* nicht in B erlaubt

Verbotene Muster fiir L7 und B;

Obwohl eine exakte Unterscheidung, durch die Angabe einer Logikmodalitét, der bei-
den Klassen nicht moglich war, lassen sich einfach Bedingungen an die endlichen Au-
tomaten solcher Sprachen definieren.[I] Von den Identitéten fiir LJ und B; lassen sich
leicht Muster ablesen, die nicht in den Automaten von Sprachen in diesen Klassen ent-
halten sein driifen. Das folgende Muster Mp, darf nicht in Automaten von Sprachen,
deren syntaktische Halbgruppe die Bi-Identitét erfiillt, liegen.

36

b d
/ ¢ !
c c
e e
c d c d
f !

Abbildung 6.2: Verbotenes Muster Mp, fiir Sprachen, deren syntaktische Halbgrup-
pe die Bi-Identitdt erfiillt. Automaten solcher Sprachen diirfen dieses
Muster nicht enthalten, falls p # ¢.

Diese Eigenschaft lisst sich durch das folgende Lemma zeigen.

Lemma 6.1: Sei L C T' regulir. Synt(L) € [B1] = Mg, ist nicht im Automat von
L enthalten.

Beweis: “=" Sei S := Synt(L) und erfiille die B;-Identitidt. Angenommen der Au-
tomat von L enthédlt das Muster Mp, mit p # ¢. Dann ist

p=r-(e"afb)"e"af" (ce™df™)"
=r-(e"af"b)"e"df " (ce™df ™)™
=q

Dies ist ein Widerspruch zu p # ¢, wodurch der Automat das Muster Mp, nicht
enthélt. O

Ein dhnliches verbotenes Muster My 7 fiir die Klasse LJ lésst sich auf d&hnliche Weise
angeben und beweisen.

37

6 Die Beziehung zwischen den Klassen By und LJ

e
b
d
a
e e
c c
e e
c d c d
e e

Abbildung 6.3: Verbotenes Muster M, 7 fiir Sprachen, deren syntaktische Halbgruppe
in LJ ist. Automaten solcher Sprachen diirfen dieses Muster nicht
enthalten, falls p # q.

38

7 Zusammenfassung

Das Abstiegslemma fiir DA und LDA aus Kapitel 2 hat sich, in Verbindung mit Ran-
kern und Wortranker, als sehr wichtiges Hilfsmittel erwiesen. Dadurch war es nicht
nur moglich auf die Positionen eines Wortes, welche fiir dessen Akzeptanz entschei-
dend sind, generisch zuzugreifen, sondern auch diese kombinatorisch zu vergleichen.
Wie wir gesehen haben, lassen sich Aquivalenz von Rankersprachen und Logikfrag-
menten oft leicht nachweisen.

In Kapitel 3 haben wir gesehen, dass sich damit die Identitdt der J-trivialen Mo-
noide als Ersetzungsregel zwischen diesen Positionen auffassen liasst. Einen Beweis fiir
die bekannte Aquivalenz zwischen BY;[<] und J-trivialen Monoiden konnten wir so
einfach angeben. Auch fiir Knasts Theorem haben wir, unter Verwendung des Fakto-
rabstiegslemma und Faktorrankern, einen neuen, kombinatorischen Beweis in Kapitel 4
angeben konnen.

In Kapitel 5 ist es uns sogar gelungen durch diese Beweismethode fiir die Logik-
fragmente mit Nachfolgerpridikat +1, jedoch ohne min bzw. max Pridikate, ein neues
Entscheidungsverfahren anzugeben. Eine Ubersicht, iiber alle in dieser Arbeit bewie-
senen, entscheidbaren Logikfragmenten, ist in nachfolgender Tabelle gegeben.

Logikfragment Sprachen Entscheidbarkeit
B [<] B(T*a:T* ... a ™) J-trivial

B, [<,+1] B(T*wiT* .. w,T*) By A L=J,[uls
BX1[<, 41, min] B(w ™. .. wiI™*) By A L=J,lulr
BY:[<, +1, max] B(I*w I .. wp ™) By A L=,[ulc
BY [<,+1, min, max] B(wiMwsy...T*wy) B

In Kapitel 6 wurde der Zusammenhang zur Klasse L7 von Halbgruppen untersucht.
Leider ist es uns nicht gelungen eine Logikcharakterisierung hierfiir anzugeben.

Alle in obiger Tabelle dargestellen Logikfragmente sind entscheidbar, fiir einen gege-
benem reguliren Ausdruck. Eine Beispielimplementierung in der Programmiersprache
GAP wurde in Kapitel 4 gegeben.

39

Literaturverzeichnis

[1]

Joélle Cohen, Dominique Perrin, and Jean eric Pin. On the expressive power of
temporal logic. J. Comput. System Sci, 46:271-294, 1993.

R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of
Computer System Sciences, 5(1):1-16, 1971.

V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-
order logic over finite words. International Journal of Foundations of Computer

Science, 19(3):513-548, 2008.

The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.4.12,
2008.

Christian Glaler and Heinz Schmitz. Concatenation hierarchies and forbidden
patterns. Technical report, 2000.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to auto-
mata theory, languages, and computation, 2nd edition. SIGACT News, 32(1):60—
65, 2001.

Ondrej Klima. Piecewise testable languages via combinatorics on words. In Be-
richtsband der Konferenz Words 2009, 2009.

R. Knast. A semigroup characterization of dot-depth one languages. R.A.L.R.O.
Informatique théorique, 17(4):321-330, 1983.

R. Knast and J. A. Brzozowski. The dot-depth hierarchy of star-free languages is
infinite. Journal of Computer System Sciences, 16(1):37-55, 1978.

Robert McNaughton and Seymour Papert. Counter-free automata. M.I.T. rese-
arch monograph, 65:163, 1971.

J-E Pin and P. Weil. The wreath product principle for ordered semigroups.
Commun. Algebra, 30(12):5677-5713, 2002.

Uwe Schoning. Logik fiir Informatiker, 3. Auflage, volume 56 of Reihe Informatik.
Bibliographisches Institut, 1992.

Uwe Schoning. Theoretische Informatik - kurzgefasst, volume 3. Spektrum Aka-
demischer Verlag, 1997.

M.P. Schiitzenberger. On finite monoids having only trivial subgroups. Informa-
tion and Control, 8(2):190-194, 1965.

41

Literaturverzeichnis

[15] Imre Simon. Piecewise testable events. In H. Brakhage, editor, Automata Theo-
ry and Formal Languages 2nd GI Conference Kaiserslautern, May 20-23, 1975,
volume 33 of Lecture Notes in Computer Science, pages 214-222. Springer Berlin
/ Heidelberg, 1975.

[16] H. Straubing. A generalization of the schiitzenberger product of finite monoids.
Theoretical Computer Science, 13(2):137-150, 1981.

[17] H. Straubing. Finite semigroup varieties of the form V «D. Journal of Pure and
Applied Algebra, 36(1):53-94, 1985.

[18] Pascal Tesson and Denis Thérien. Logic meets algebra: the case of regular lan-
guages. CoRR, abs/cs/0701154, 2007.

[19] D. Thérien. Categories et langages de dot-depth un. ITA, 22(4):437-445, 1988.

[20] W. Thomas. Classifying regular events in symbolic logic. Journal of Computer
and System Sciences, 25(3):360-376, 1982.

42

Erklérung

Hiermit versichere ich, diese Arbeit selbsténdig
verfasst und nur die angegebenen Quellen benutzt
zu haben.

(Martin P. Seybold)

	Einleitung
	Motivation
	Grundlegende Definitionen

	Algebraische Werkzeuge für formale Sprachen
	Klimas Beweisidee
	Knasts Theorem
	Weitere entscheidbare Logikfragmente
	Das Fragment BSigma1[<,+1,min]
	Das Fragment BSigma1[<,+1,max]
	Das Fragment BSigma1[<,+1

	Die Beziehung zwischen den Klassen B1 und LJ
	Zusammenfassung

