
Institut für Formale Methoden der Informatik
Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Studienarbeit Nr. 2298

Logik erster Stufe ohne
Quantorenalternierung über

endlichen Wörtern

Martin P. Seybold

Studiengang: Informatik

Prüfer: Prof. Dr. V. Diekert

Betreuer: Dr. M. Kufleitner

begonnen am: 26.07.2010

beendet am: 25.01.2011

CR-Klassifikation: F4.1, F4.3

Inhaltsverzeichnis

1 Einleitung 3
1.1 Motivation . 3
1.2 Grundlegende Definitionen . 4

2 Algebraische Werkzeuge für formale Sprachen 13

3 Klimas Beweisidee 17

4 Knasts Theorem 23

5 Weitere entscheidbare Logikfragmente 31
5.1 Das Fragment BΣ1[<,+1,min] . 31
5.2 Das Fragment BΣ1[<,+1,max] . 32
5.3 Das Fragment BΣ1[<,+1] . 34

6 Die Beziehung zwischen den Klassen B1 und LJ 35

7 Zusammenfassung 39

1

1 Einleitung

Reguläre Sprachen sind in vielerlei Hinsicht wichtig für theoretische aber auch prak-
tische Probleme der Informatik. Ein Beispiel für reguläre Sprachen ist das Suchen
nach Vorkommen von bestimmten Mustern in größeren Texten. Die Zusammenhänge
reguläre Sprachen zu endlichen Automaten sowie zu endlichen Halbgruppen, bzw. Mo-
noide sind klassische Resultate der theoretischen Informatik. [13][6] Wörter kann man
auch als lineare Anordnung von Buchstaben interpretieren. Dadurch erscheint es sinn-
voll Muster durch Prädikatenlogische Formeln, bezüglich Position und Beschriftung, zu
definieren. Durch Einschränkung auf bestimmte Prädikate, Variablenzahl oder Quanto-
renalternierungen ergeben sich auf natürliche Weise Hierarchien dieser Logikfragmente.
Ziel dieser Studienarbeit ist es die Zusammenhänge zwischen regulären Sprachen und
Prädikatenlogik erster Stufe ohne Quantorenalternierungen zu untersuchen.

Die Ergebnisse dieser Arbeit entstanden in Zusammenarbeit mit Jonathan Kausch,
Manfred Kufleitner und Alexander Lauser.

1.1 Motivation

Trotz des endlichen Charakters der Beschreibung regulärer Sprachen ist ihre Klasse
dennoch nicht trivial. Eine echte Unterklasse sind die sternfreien Sprachen. Diese sind
durch reguläre Ausdrücke ohne ∗ Operator gegeben, jedoch sind Konkatenationen,
von sternfreien Sprachen und Komplementen, erlaubt. Die Punkt-Tiefe einer stern-
freien Sprache gibt an, wieviele Konkatenationen benötigt werden, um die Sprache zu
definieren. 1971 zeigten McNaughton und Papert, dass sternfreie Sprachen genau der
Klasse durch Prädikatenlogik erster Stufe definierbaren Sprachen entsprechen.[10]

Von Schützenberger wurde erstmals gezeigt, dass die sternfreien Sprachen genau die
sind, deren syntaktisches Monoid aperiodisch ist. [14] Diese algebraische Eigenschaft
liefert für endliche Monoide sofort Entscheidbarkeit. Bald darauf wurde die sogenann-
te Dot-Depth-Hierarchie Bn der sternfreien Sprachen von Brzozowski und Cohen ein-
geführt.[2] Diese hat sich als echte und unendliche Hierarchie herausgestellt.[9] Es
konnte außerdem gezeigt werden, dass die Anzahl benötigter Quantorenalternierungen
einer FO Formel das Level in der Dot-Depth-Hierarchie bestimmt.[20] Effektiv das
Level einer gegebenen regulären Sprache in dieser Hierarchie zu bestimmen, ist eine
aktuelle Herausforderung der Automatentheorie. Bis heute sind nur Entscheidungsver-
fahren für die Stufen n = 1/2, 1, 3/2 bekannt. Das Ergebnis von Knast für die Stufe
n = 1 [8][19] wird als schwieriges Resultat betrachtet. Jedoch ist der grundsätzliche
Ansatz, Entscheidbarkeit über algebraische Eigenschaften zu erhalten, sehr vielver-
sprechend.

3

1 Einleitung

Noch vor dem ersten Entscheidbarkeitsresultat wurde die Straubing-Thérien
Hierarchie Ln als alternative Beschreibung der Komplexität sternfreier Sprachen
eingeführt.[16] Es konnte gezeigt werden, dass die Level beider Hierarchien über ein
Kranzprodukt miteinander zusammenhängen.[11][17] Simon konnte bereits 1975 eine
algebraische Charakterisierung für Sprachen geben, die aus L1 sind.[15] Kĺıma hat
2009 einen elementaren kombinatorischen Beweis für Simons Theorem vorgestellt [7].
Ziel dieser Studienarbeit ist es, auch für Knasts Theorem einen elementaren kombi-
natorischen Beweis anzugeben. Dazu sollen zuerst die notwendigen Grundtechniken
(Kapitel 2) und Kĺımas Beweis (Kapitel 3) in einer leichter zu verallgemeinernden
Notation dargestellt werden. Anschließend soll Knasts Theorem mit diesen Techniken
bewiesen werden (Kapitel 4). Außerdem soll versucht werden, ob sich dies leicht auf
weitere Klassen übertragen lässt (Kapitel 5,6). Diese verallgemeinerte Beweismethode
liefert sogar neue Entscheidbarkeitsergebnisse für weitere Logikfragmente.

1.2 Grundlegende Definitionen

In diesem Abschnitt werden verschiedene Möglichkeiten beschrieben, um formale Spra-
chen über endlichen Wörtern zu beschreiben. In der ganzen Arbeit wird mit Γ das end-
liche Alphabet bezeichnet. Wir betrachten auch oft gewisse Ausschnitte von Wörtern
u = a1 . . . an ∈ Γ∗ mit der Notation u|[i,j] = ai . . . aj für 1 ≤ i ≤ j ≤ n. Weiter sollen
|u| := n die Länge des Wortes u, firstm(u), lastm(u) die ersten bzw. letzten m Zei-
chen von u und alphm(u) = { v ∈ Γ+ | |v| ≤ m,u = pvq mit p, q ∈ Γ∗ } die Fakotren
der Länge maximal m von u sein.

Definition 1.1 (Sternfrei): Die sternfreien Sprachen sind Induktiv definiert. ∅ und
{a} mit a ∈ Γ sind sternfrei. Sind L1, L2 ⊆ Γ∗ sternfreie Sprachen, dann sind auch
L1 ∪ L2, L1 · L2, L1 := Γ∗ \ L1 sternfreie Sprachen.

Es lassen sich nun die Straubing-Thérien und die Dot-Depth Hierarchie jeweils in-
duktiv definieren.[5] Mit B bezeichnen wir endliche boolsche Kombinationen.

Definition 1.2 (Straubing-Thérien Hierarchie Ln): Sei n ∈ N, dann sind:

L0 := {Γ∗aΓ∗ | a ∈ Γ } ∪ {∅}

Ln+1/2 :=
⋃

endlich

K0a1 . . .Kk−1akKk Ki ∈ Ln, ai ∈ Γ

Ln+1 := B
K∈Ln+1/2

K

Definition 1.3 (Dot-Dept Hierarchie Bn): Sei n ∈ N, dann sind:

B0 := {uΓ∗v | u, v ∈ Γ∗, |uv| ≥ 1 } ∪
{
{w}

∣∣ w ∈ Γ+
}

Bn+1/2 :=
⋃

endlich

K0a1 . . .Kk−1akKk Ki ∈ Bn, ai ∈ Γ

Bn+1 := B
K∈Bn+1/2

K

4

1.2 Grundlegende Definitionen

Bemerkung 1.4: Eine Sprache aus L1 hat die Form B(Γ∗a1 . . . anΓ∗, ai ∈ Γ). Diese
Form wird auch piecewise-testable genannt. Weiter hat eine Sprache aus B1 die Form
B(w0Γ∗ . . .Γ∗wn, wi ∈ Γ+).

Logik erster Stufe

Wenn man sich Wörter als endliche Sequenz von Buchstaben aus dem Alphabet vor-
stellt, kann man mit prädikatenlogischen Formeln erster Stufe Bedingungen an die
Beschriftung einer Position x stellen: λ(x) = ai, ai ∈ Γ. Für eine breitere Übersicht
geben wir [3] an. Wir definieren nun die Syntax einer solchen Formel:

Definition 1.5 (FO): Eine Formel ϕ ∈ FO ist induktiv definiert. Die atomaren For-
meln λ(x) = a und > sind in FO, wobei x eine Variable, a ∈ Γ ein Buchstabe und
> die konstante Formel, welche stets wahr ist, sind. Wenn ϕ,ψ ∈ FO dann sind auch
folgende zusammengesetzte Formeln in FO:

¬ϕ, ϕ ∧ ψ, ∃xϕ ∈ FO

Dadurch sind auch in die konstant falsche Formel ⊥ = ¬>, die Oder-Verknüpfung
ϕ∨ψ = ¬(¬ϕ∧¬ψ) und All-Quantifizierungen ∀x ϕ = ¬∃x ¬ϕ erlaubt. Die Semantik
dieser Konstrukte ist wie üblich definiert. Das Prädikat λ(x) = ai ist auf u genau dann
wahr, wenn u|x = a.

Erlauben wir zu dem stets enthaltenen λ(x) Prädikat zusätzlich weitere atomare
Prädikate < (x, y), + 1(x, y), max(x), min(y), geben wir dies als Signatur des Lo-
gikfragments, wie beispielsweise FO[<,+1.min], an.

Definition 1.6: Die Prädikate <, + 1, min, max haben die folgende Syntax und
Semantik auf einem Wort u ∈ Γ∗

u |= < (x, y) :⇔ 1 ≤ x < y ≤ |u|
u |= + 1(x, y) :⇔ x+ 1 = y

u |= min(x) :⇔ 1 = x ≤ |u|
u |= max(x) :⇔ 1 ≤ x = |u|

Im Zusammenhang mit +1 ist es möglich die min bzw. max-Prädikate ähnlich dem λ
Prädikat zu verwenden. Daher verwenden wir auch die folgenden Makros:

min(a1 . . . an) := ∃x1, . . . , xn min(x1) ∧
n∧
i=2

+1(xi−1, xi) ∧
n∧
i=1

λ(xi) = ai

max(a1 . . . an) := ∃x1, . . . , xn max(xn) ∧
n∧
i=2

+1(xi−1, xi) ∧
n∧
i=1

λ(xi) = ai

Nun sind wir in der Lage die von einer Formel definierte Sprache zu definieren.

5

1 Einleitung

Definition 1.7: Die von einer Formel ϕ eines Logikfragments definierte Sprache L(ϕ)
ist

L(ϕ) := {u ∈ Γ∗ | u |= ϕ } .

Jede Prädikatenlogische Formel besitzt eine äquivalente Formel in Pränexnormal-
form (PNF) [12]. Jede Formel hat also eine äquivalente Formel, bei der alle Quantoren
vor den aussagenlogischen Verknüpfungen der Prädikate vorkommen. Durch die Anzahl
der Quantoren bzw. die Alternierungszahl können wir das folgende Logikfragmente de-
finieren.

Definition 1.8 (Logikfragmente): Mit Σn ⊆ FO bezeichnen wir die Klasse an For-
meln, welche eine äquivalente Formel in PNF mit maximal n Quantorenalternierungen,
beginnend mit einem Existenzquantor besitzen. Der boolsche Abschluss BΣn solch ei-
ner Klasse enthält entsprechend alle endlichen boolschen Kombinationen von Formeln
aus Σn.

Im Folgenden werden wir auch den Ausdruck L ∈ BΣn für eine Sprache L ⊆ Γ∗

verwenden, falls L = L(ϕ) für eine Formel ϕ ∈ BΣn.

Lemma 1.1 (Σ1-Normalform): Eine Formel ϕ ∈ Σ1[<,+1] lässt sich als ϕ =
∨
ϕn

darstellen, wobei die Klauseln ϕn die Gestalt

ϕn = ∃x1, . . . , xkn :
∧
i∈In

λ(xi) = ani
∧

∧
(j1,j2)∈Jn

+1(xj1 , xj2) ∧
∧

(k1,k2)∈Kn

< (xk1 , xk2)

haben.

Beweis: Die Darstellung als disjunktive Normalform (DNF) ist immer möglich. Es
verbleibt also zu zeigen, dass keine Negationen notwendig sind. Sei die Formel dazu
bereits in DNF. Enthält ein solches ϕn einen Block λ(x) 6= a1 ∧ . . . ∧ λ(x) 6= ak, so
kann dieser in

λ(x) = Γ \ {a1, . . . , ak} =
∨

a∈Γ\{a1,...,ak}

λ(x) = a

transformiert werden, da Γ endlich ist. ¬(+1(x, y)) kann auf<(y, x)∨(+1(x, z)∧ <(z, y))
und ¬(< (x, y)) kann auf x = y ∨ <(y, x) zurückgeführt werden.

Algebraische Grundlagen

Klassische Resultate der theoretischen Informatik sind, dass reguläre Sprachen genau
die Sprachen sind, welche von deterministischen endlichen Automaten erkannt wer-
den. Der Minimalautomat besitzt einen engen Zusammenhang zu Halbgruppen und
Monoiden. [13] [18].

Definition 1.9 (Erkennbarkeit durch Halbgruppen): Eine Sprache L ⊆ Γ+ wird von
einer Halbgruppe S erkannt, falls ein surjektiver Homomorphismus h : Γ+ → S exi-
stiert mit L = h−1(h(L)). Entsprechendes gilt für die Erkennbarkeit durch ein Monoid
M für einen Homomorphismus der Form h : Γ∗ →M .

6

1.2 Grundlegende Definitionen

Der syntaktische Homomorphismus einer Sprache L lässt sich stets angeben, und ist
durch die syntaktische Kongruenz induziert.

Definition 1.10 (Syntaktische Kongruenz): Die syntaktische Kongruenz ∼L einer
Sprache L ⊆ Γ+ ist durch folgende Äquivalenzrelation auf Wörtern u, v ∈ Γ+ gegeben:

u ∼L v :⇔ [∀p, q ∈ Γ∗ : puq ∈ L⇔ pvq ∈ L].

Dies ist in der Tat eine Kongruenz. Die Äquivalenzklassen von ∼L auf Γ+ ergeben
die Elemente der syntaktischen Halbgruppe Synt(L) := Γ+/ ∼L und ihre Operation
ist durch die Konkatenation gegeben. Analoges gilt für das syntaktische Monoid für
Sprachen L ⊆ Γ∗.

Die folgenden Relationen lassen sich auf generische Art definieren und werden für
die spätere Betrachtung von Wörtern wichtig sein, da wir durch sie generische Fakto-
risierungen erhalten können.

Definition 1.11 (Green’sche Relationen): Sei S eine Halbgruppe. S1 bezeich-
ne das Monoid, welches durch hinzufügen eines neutralen Elements entsteht
(1 · s = s · 1 = s ∀ s ∈ S).

sRt :⇔ sS1 = tS1 s <R t :⇔ sS1 ⊂ tS1

sLt :⇔ S1s = S1t s <L t :⇔ S1s ⊂ S1t

sJ t :⇔ S1sS1 = S1tS1 s <J t :⇔ S1sS1 ⊂ S1tS1

Bemerkung 1.12: Die Anzahl der R bzw. L-Klassen ist durch die Größe der Halb-
gruppe beschränkt, denn jede Klasse enthält mindestens ein Element und die Klassen
sind eine Partition der Halbgruppe.

Definition 1.13: Ein Monoid M heißt J , R, L-trivial, falls die entsprechenden Äqui-
valenzklassen trivial sind. Für alle x, y ∈M gilt also jeweils:

xJ y ⇒ x = y bzw.

xRy ⇒ x = y bzw.

xLy ⇒ x = y

Definition 1.14 (Erzeugtes Idempotentes): Sei S eine endliche Halbgruppe und s ∈ S
ein beliebiges Element. Mit sπ =: t bezeichnen wir das davon erzeugte Idempotente,
sprich es gilt t2 = t. Es existiert nach dem folgenden Lemma.

Lemma 1.2 (Existenz von Idempotenten): Sei S eine endliche Halbgruppe und s ∈ S.
Es existiert ein Element sπ ∈ S mit (sπ)2 = sπ wobei π := |S|! stets genügt.

Beweis: Wir betrachten Potenzen von mindestens n =: |S| des Elements s. Durch
Schubfachschluss müssen zwei Präfixe den gleichen Wert in S annehmen si · sp = si

7

1 Einleitung

mit i < p. Falls i = 1 haben wir bereits sπ := sp gefunden. Anderenfalls betrachten
wir das Element s(i·p) und prüfen ob es idempotent ist.

s2(ip) = sip · sip = si · · · (si︸ ︷︷ ︸
p-mal

· sp) · · · sp︸ ︷︷ ︸
i-mal

= sip

Wir betrachten noch sn! = (sip)n!/ip = sip.

Endliche Halbgruppen S besitzen also Idempotente und wir bezeichnen mit E(S) ⊆
S die Elemente, welche idempotent sind. Im Folgenden wollen wir algebraische Iden-
titäten für Klassen von Monoiden definieren. Um die Notation zu erleichtern, schreiben
wir M ∈ JIK, falls für alle Elemente a, b, . . . aus M die Identität I gilt.

Lemma 1.3 (R, L, und J -Identitäten): Sei M ein Monoid, dann gilt:

M ist R-trivial⇔M ∈ J(ab)π = (ab)πaK bzw.

M ist L-trivial⇔M ∈ J(cd)π = d(cd)πK bzw.

M ist J -trivial⇔M ∈ J(ab)πa(cd)π = (ab)πd(cd)πK

Beweis: Wir geben den Beweis für die J -Identität an.
“=⇒” Seien a, b, c, d ∈M bliebig. Wir betrachten das Idempotente (ab)π = (ab)π(ab)π.
Für einen Präfix der rechten Seite gilt (ab)πa R (ab)π und wegen der R-Trivialität
sogar Gleichheit. Das Duale Argument für einen Suffix von (cd)π(cd)π mit L-Trivialität
liefert d(cd)π = (cd)π. Somit gilt für das Produkt dieser Idempotenten:

(ab)π(cd)π = (ab)πa(cd)π = (ab)πd(cd)π.

“⇐” Mit c = d = 1 gilt die R-Identität und mit a = b = 1 die L-Identität. Sei nun
aJ b, dann existieren Elemente m1,m2,m3,m4 ∈M mit a = m1bm2 und b = m3am4.

a = (m1m3)πm1bm2(m4m2)π Einsetzen

= m3(m1m3)πm1bm2(m4m2)πm4 L und R Identität

= m3am4 Abpumpen

= b

Um diese Charakterisierungen auf ein allgemeineres Niveau zu heben, benötigen wir
die folgende größere Klasse von Monoide.

Definition 1.15 (DA): Mit DA bezeichnen wir die folgende Klasse von Monoide

DA : = {M Monoid | ∀x, y ∈M : (xy)πx(xy)π = (xy)π }
= J(xy)πx(xy)π = (xy)πK

8

1.2 Grundlegende Definitionen

Durch geschickte Wahl von Elementen lässt sich die folgende Teilmengenbeziehung
sofort zeigen.

Lemma 1.4: Es gilt J -trivial ⊆ DA

Beweis: Sei M J -trivial. Wir wählen für die J -Identität folgende Elemente
x, y, (xy)π ∈ M und setzen a := x, b := y und d = c := (xy)π. Betrachten wir nun die
J -Identität:

(xy)πx((xy)π(xy)π))π = (xy)π(xy)π((xy)π(xy)π))π

(xy)πx(xy)π = (xy)π

⇒M ∈ DA.

Diese Zusammenhänge lassen sich auch auf Halbgruppen übertragen, indem man
die beschriebenen Eigenschaften nur für durch Idempotente eingeschlossene, sogenannt
lokalisierte, Unterstrukturen fordert. Wir definieren also den L Operator auf Klassen
von Monoide.

Definition 1.16 (Lokalisierung): Sei V eine Klasse von Monoide, dann bezeichnet

LV = {S Halbgruppe | ∀e ∈ E(S) : eSe ∈ V }

die Klasse von Halbgruppen, welche durch sog. Lokalisierungen an Idempotenten aus
V hervorgeht.

Es ist auch offensichtlich, dass stets V ⊆ LV gilt. Außerdem übertragen sich sofort
die Lemmata 1.3 und 1.4 auf die lokalisierten Klassen. Im Folgenden werden wir auch
die Notation L ∈ LV für eine Sprache L ⊆ Γ+ verwenden, falls ihre syntaktische
Halbgruppe Synt(L) ∈ LV liegt.

Lemma 1.5 (Stabilisierende Idempotente): Sei S eine endliche Halbgruppe. Betrach-
ten wir ein Produkt mit n := |S|+ 1 Faktoren, dann existiert ein sogenanntes stabili-
sierendes Idempotentes e ∈ E(S) so, dass

s1 · · · sn = s1 · · · sk · e · sk+1 · · · sn
= s1 · · · sk · e · sk+1 · · · sl · e · sl+1 · · · sn.

Beweis: Betrachten wir die Präfixe dieses Produktes, dann existiert nach dem Schub-
fachprinzip Positionen 1 ≤ k < l ≤ n so, dass

s1 · · · sk = s1 · · · sl.

Und wir haben bereits ein solches Idempotentes gefunden e := (sk · · · sl)π.

Obiges Lemma wird uns in Kapitel 4 ein wertvolles Werkzeug sein, um ein Idempo-
tentes in Faktoren gewisser Länge sicherzustellen. Außerdem definieren wir noch die

9

1 Einleitung

folgende B1-Identität. In Kapitel 4 wird sich in der Tat herausstellen, dass genau die
syntaktischen Halbgruppen von Sprachen des Level 1 der Dot-Depth Hierarchie diese
Identität erfüllen.[8]

Definition 1.17 (B1-Identität): Als B1-Identität bezeichnen wir die Gleichung:

(eafb)πeaf(cedf)π = (eafb)πedf(cedf)π

Und eine Halbgruppe S ist in JB1K, falls sie für beliebige a, b, c, d ∈ S und e, f ∈ E(S)
erfüllt ist.

Bemerkung 1.18: Betrachten wir noch einmal die Identität für die Klasse LJ

LJ = J(eaeb)πeae(cede)π = (eaeb)πede(cede)πK

Stellen wir fest, dass diese nur ein Spezialfall von B1 für die Wahl von f = e ist. Daher
gilt: JB1K ⊆ LJ .
LJ wiederum erfüllt durch Wahl von a = b = e die LL-Identität: e(cede)π =

ede(cede)π), bzw. durch Wahl von c = d = e die LR-Identität: (eaeb)πe = (eaeb)πeae).

LDADA

LL

LR

LJJ

L

R

B1

Abbildung 1.1: Inklusionseigenschaften der betrachteten algebraischen Klassen.

Ranker und Rankersprachen

Ranker sind ein natürliches und intuitives Mittel um formale Sprachen zu beschreiben.
Außerdem ermöglichen sie es leicht, verschiedene kombinatorische Bedingungen zu
formulieren.

10

1.2 Grundlegende Definitionen

Definition 1.19 (Ranker): Ein Ranker ist ein Wort der Länge k über dem Alphabet
R von neXt und Yesterday Anweisungen R ⊆ {Xa, Ya | a ∈ Γ }. k wird auch als
Rankertiefe bezeichnet. Die Semantik eines Rankers r ∈ R∗ auf einem Wort u ∈ Γ∗ ist
induktiv definiert. Hat r die atomare Gestalt r = Xa bzw. r = Ya, dann gilt:

Xa(u) = Xa(u, 0) = min { y ∈ N | u|y = a und y > 0 }
Ya(u) = Ya(u, |u|+ 1) = max { y ∈ N | u|y = a und y < |u|+ 1 }

Hierbei ist min ∅ = max ∅ = undef . Der leere Ranker soll außerdem stets definiert sein,
beispielsweise ε(u) = 0. Hat r die zusammengesetzte Form r = Xar

′ bzw. r = Yar
′,

dann gilt:

Xar
′(u) = r′(u,Xa(u))

Yar
′(u) = r′(u, Ya(u)).

Die Anweisungen eines Rankers werden also von links nach rechts abgearbeitet.

Beispiel 1.1 Ranker
Sei u = bab ∈ Γ∗.

Xa(u) = Xa(u, 0) = 2

XaYb(u) = XaYb(u, 0) = 1

Ya(u) = Ya(u, 4) = 2

aber: XaXa(u) = undef.

Definition 1.20 (Wortranker): Ein Wortranker ist ein Wort der Länge k über dem
Alphabet R von neXt und Yesterday Anweisungen R ⊆ {Xw, Yw | w ∈ Γ+ }. k wird
auch als Rankertiefe und die Länge des längsten Wortes in einer Anweisung von r als
Rankergröße bezeichnet. Die Semantik eines Wortrankers r auf einem Wort u ∈ Γ∗ ist
induktiv definiert. Hat r die atomare Gestalt r = Xw bzw. r = Yw, dann gilt:

Xw(u) = Xw(u, 0) = min
{
y ∈ N

∣∣ u|[y,y+|w|−1] = w und y > 0
}

Yw(u) = Yw(u, |u|+ 1) = max
{
y ∈ N

∣∣ u|[y−|w|+1,y] = w und y < |u|+ 1
}

Hierbei ist min ∅ = max ∅ = undef . Hat r die zusammengesetzte Form r = Xwr
′ bzw.

r = Ywr
′, dann gilt:

Xwr
′(u) = r′(u,Xw(u))

Ywr
′(u) = r′(u, Yw(u)).

Die Anweisungen eines Wortrankers werden also von links nach rechts abgearbeitet.
Insbesondere ist es für einen Wortranker Xw durch abarbeiten von Suffixen möglich
exakt beliebige Positionen 1 ≤ i ≤ |w| =: n innerhalb dieses Faktors zu definieren.
Hierfür verwenden wir zur Notation das folgende Makro:

Xi
w := XwXw[2:n]

. . . Xw[i:n]

11

1 Einleitung

Beispiel 1.2 Wortranker
Sei u = bab ∈ Γ∗.

Xab(u) = Xab(u, 0) = 2

XabYba(u) = XabYba(u, 0) = 2

Yab(u) = Yab(u, 4) = 3

X2
ab(u) = XabXb(u) = 3

Y 2
ab(u) = YabYa(u) = 2

aber: XabXab(u) = undef.

Definition 1.21 (Rankersprache): Die von einem Ranker bzw. Wortranker r definier-
te Sprache L(r) ist die Menge von Wörtern aus Γ∗, auf denen r definiert ist.

L(r) = {u ∈ Γ∗ | r(u) ist definiert } .

Diese Definition lässt sich auf natürliche Art auf endliche boolsche Kombinationen
von Rankern, durch Kombination ihrer Sprachen, erweitern.

12

2 Algebraische Werkzeuge für formale
Sprachen

Dieses Kapitel legt wichtige Grundlagen für die kombinatorischen Beweise der Kapi-
tel 3, 4 und 5.

Lemma 2.1 (Abstiegslemma DA): Sei u, v, a ∈M ∈ DA. Falls uRuv und v ∈MaM ,
dann ist auch uRuva.

Beweis: Siehe [3] Lemma 2.

Lemma 2.2 (Abstiegslemma LDA): Sei S ∈ LDA eine Halbgruppe mit e2 = e, ue =
u, uae = ua und uRua, dann gilt uRuaa.

Beweis: Nach Definition gilt für Präfixe immer uaa ≤R u. Außerdem existiert mit
u = ue ∈ uS = uaS in solchen Halbgruppen stets ein ā so, dass u = uaā.

Es genügt also u ≤R uaa zu zeigen. Sei also ā so gewählt, dann gilt:

u = ue e stabilisiert u

= (uaā)e uRua
= ueaeāe e stabilisiert ua und u

= u(eaeāe)π aufpumpen

= u(eaeāe)πeae(eaeāe)π DA-Gleichung der Lokalisierung

= uaeae(eaeāe)π abpumpen

= uaa · e(eaeāe)π︸ ︷︷ ︸
=:z

Damit gilt uS = uaazS ⊆ uaaS und die gewünschte Relation ist erfüllt.

Die Existenzaussage des Lemmas lässt sich graphisch schön darstellen:

u ua uaa

·e
·a

·e
·a

·ā

∃ · aa

Dies lässt sich auch auf Faktoren großer Länge erweitern.

13

2 Algebraische Werkzeuge für formale Sprachen

Lemma 2.3 (Faktor-Abstiegslemma für LDA): Sei u, x ∈ Γ+, a ∈ Γ,m ∈ N mit
|x| ≥ m > |S|, wobei h : Γ+ → S ∈ LDA der erkennende Homomorphismus ist. Sei
außerdem lastm(xa) ∈ alphm(x). Dann gilt:

uRux⇒ uRuxa.

Beweis: Sei w := lastm(xa), x := swt, |w| = m > |M |. Dann existiert eine Fak-
torisierung von w = w1w2a mit |w1| maximal, die von einem Idempotenten e ∈ Γ+

stabilisiert wird, d.h. h(w1) = h(w1)e (vgl. Lemma 1.5). Da x und xa nur gleiche Fak-
toren haben, muss der Faktor w mindestens zweimal in xa vorkommen. Wir betrachten
nun das erste und letzte Vorkommen von w in xa.

Angenommen der Anfang vom letzen w2 liegt vor dem Ende des ersten w2, insbe-
sondere liegt also das letzte w1 ganz innerhalb des ersten w2.

xa = | | a

| | | | | as w1 w2

| | |
e

w1 w2

| |
∃ längeres w1

Wie das Diagram zeigt, lässt sich dann ein größeres w1 mit den gewünschten Eigen-
schaften wählen, was im Widerspruch zur Maximalität von |w1| steht.

Seien also die beiden w2-Faktoren überlappungsfrei, d.h.

x = s(w1w2a)t = s(w1w2a)t′w2

xa = | | a
t’

w1
e

w2
| |

| | | | | a
s w a t

| | |
w1 w2

Mit folgenden Festlegungen lässt sich das Abstiegslemma anwenden.

u′ := h(usw1) a′ := h(w2at
′)

Zur besseren Lesbarkeit werden ab sofort Wörter mit ihrem Bild unter h identifiziert.
Da w1 Suffix von t′ ist, wird auch a′ von e stabilisiert. Mit

u′ = usw1

≤R u

≤R ux (nach Voraussetzung uRux)

= (usw1)(w2at
′)w2

≤R (usw1)w2at
′

= u′a′

≤R u′

14

ist die letzte Voraussetzung u′Ru′a′ für das Abstiegslemma erfüllt. Außerdem zeigt
die Rechnung uRu′. Somit gilt

u R u′ R u′a′ R u′a′a′

und wegen

h(uxat′) = h(u(sw1w2at
′w2)at′)

= h((usw1)(w2at
′)(w2at

′))

= u′a′a′

folgt uxaRu.

15

3 Klimas Beweisidee

Dieses Kapitel beschäftigt sich nun mit L1, dem Level 1 der Straubing-Thérien Hier-
archie. Wie wir bereits in Bemerkung 1.4 gesehen haben, werden diese Sprachen auch
picewise-testable genannt. Es ist ein wohlbekanntes Ergebnis, dass die syntaktischen
Monoide von Sprachen dieser Klasse, genau die J -trivialen Monoide sind.[15] 2009
wurde für dieses Ergebnis ein einfacher kombinatorischer Beweis gegeben, welchen wir
hier in verallgemeinerter Notation und unter Verwendung unserer algebraischen Werk-
zeuge des vorherigen Kapitels wiedergeben möchten.

Definition 3.1: AlsR-Faktorisierung (bzw. L-Faktorisierung) von einem Wort u ∈ Γ∗

bezeichnen wir die Menge R(u) (bzw. L(u)) an Indexpositionen 1 ≤ i ≤ |u| von Zeichen
aj in u, die eine Faktorisierung u = u0a1u1a2u2 . . . uk−1akuk so vermittelt, dass:

h(u0 . . . aj) R h(u0 . . . ajuj)
R h(u0ajujaj+1), wobei 1 R h(u0)

bzw.

h(aj+1 . . . uk) �L h(ujaj . . . uk) L h(aj . . . uk), wobei h(uk) L 1

Bemerkung 3.2 (Anwendung des Abstiegslamma): Diese Form von Faktorisierung
ist für ein Wort bei gegebener Sprache L eindeutig. Erfüllt Synt(L) die J -Identität,
insbesondere Synt(L) ∈ DA, dann sind nach dem Abstiegslemma (2.1) die Buchstaben
ai der Abstiegsstellen nicht in den davor liegenden Faktoren ui−1 enthalten. Dadurch
sind die Abstiegsstellen durch Ranker definierbar. Beispielsweise befindet sich die Ab-
stiegsstelle ai auf u an Position Xa1 . . . Xai(u). Duales gilt für die L-Faktorisierung
mit Y -Rankern.

Der Beweis des nun folgenden Satzes bildet die Grundlage für unseren neuen kom-
binatorischen Beweis von Knasts Theorem (4.1).

Satz 3.1 (Level 1 der Straubing-Thérien Hierarchie): Sei L ⊆ Γ∗ eine reguläre Spra-
che. Die folgenden Charakterisierungen sind äquivalent:

1. L ist endliche boolsche Kombination von Ranker-Sprachen,
d.h. L = B

r∈R[X]
L(r) = B

r∈R[Y]
L(r)

2. L ist in BΣ1[<] definierbar

3. L = B(Γ∗a1Γ∗ . . . anΓ∗, ai ∈ Γ)

4. Synt(L) ist J -trivial

17

3 Klimas Beweisidee

Hier wird nun eine mehr algebraische Formulierung dieses Beweises gegeben, wobei
die Ranker Charakterisierung vermutlich neu ist. Der Übersicht wegen ist der Beweis
in vier Lemmata aufgeteilt.

Beweis:
1⇒ 2: Lemma 3.2
2⇒ 3: Σ1-Normalform (Lemma 3.3)
3⇒ 4: Lemma 3.4
4⇒ 1: Kombinatorischer Beweis (Lemma 3.5)

Lemma 3.2: Sei r ein Ranker mit ausschließlich neXt-Anweisungen, dann existiert
eine Formel ϕr ∈ Σ1[<] mit L(r) = L(ϕr).

Beweis: Ohne Einschränkung haben die Ranker nur neXt-Anweisungen
r = Xa1 . . . Xan . Hierfür lässt sich einfach eine Formel ϕr ∈ Σ1[<] angeben.

ϕr := ∃x1, . . . , xn

n∧
i=1

λ(xi) = ai ∧
n∧
i=2

< (xi−1, xi)

Falls r(w) definiert, sind insbesondere alle Präfixe von r auf w definiert. Diese Posi-
tionen erfüllen das Geforderte: w |= ϕr. Falls w |= ϕr, gibt es Positionen mit korrekter
Beschriftung, welche linear angeordnet sind. Wähle von den möglichen erfüllenden Be-
legungen der xi induktiv die am weitesten links liegende Positionen. Diese sind genau
die Positionen, an welchen die Präfixe von r definiert sind. Also ist r(w) definiert.

Lemma 3.3: Eine Sprache L(ϕ) ⊆ Γ∗ mit ϕ ∈ BΣ1[<] hat Level 1 der Straubing-
Thérien Hierarchie, sprich die Form B(Γ∗a1Γ∗ . . . anΓ∗, ai ∈ Γ).

Beweis: Da beide Charakterisierungen endliche boolsche Kombinationen erlauben,
genügt es für eine Formel ψ ∈ Σ1[<] eine boolsche Kombination von Sprachen der
gewünschten From anzugeben. Nach Lemma 1.1 können wir ψ =

∨
n ϕn annehmen,

wobei die Klauseln ϕn nur positive Prädikate verwenden.

ϕn = ∃x1, . . . , xkn :
∧
i∈In

λ(xi) = ani
∧

∧
(j1,j2)∈Jn

< (xj1 , xj2)

Wir geben nun die gewünschte Sprachcharakterisierung Kn für so eine Klausel an.
Die Relation < definiert auf der Menge der Variablen X einen gerichteten Graph
G = (X,<). Falls unterschiedliche Beschriftungen λ für die gleiche Variable gefordert
sind oder dieser Graph einen Kreis enthält, setzen wir Kn := ∅ = Γ∗ und haben
damit die gewünschte Sprache angegeben. Anderenfalls gibt es eine endliche Anzahl
gerichtete Pfade γl maximaler Länge. Diese Pfade sind wieder eine lineare Anordnung
unserer Variablen. Mit ali′ ∈ Γ bezeichnen wir das Label von der Variable i′ auf dem
Pfad γl. xlm sei die letzte Variable auf diesem Pfad. Wir setzen die Sprache Kn folglich
auf:

Kn :=
⋂

Pfade γl

(Γ∗al1 . . . almΓ∗).

18

Lemma 3.4: Das syntaktische Monoid von Sprachen der Form
L = B(Γ∗a1Γ∗ . . . anΓ∗, ai ∈ Γ) ist J -trivial.

Die Idee des folgenden Beweises entstammt einem Ehrenfeucht-Fräısse Spiel. Je-
doch ist er in der folgenden Notation auch ohne Grundlagen dieser Beweismethode
nachvollziehbar.

Beweis: Sei h der syntaktische Homomorphismus, der L erkennt. Es gilt nun zu
zeigen, dass für beliebige Elemente a′, b′, c′, d′ ∈ Synt(L) die J -Identität gilt (1.3).

(a′b′)πa′(c′d′)π = (a′b′)πd′(c′d′)π (3.1)

Wir wählen nun jeweils beliebige Urbilder dieser Elemente a, b, c, d ∈ Γ∗ die im Fol-
genden aber fest gehalten werden.

a′ = h(a) , b′ = h(b) , c′ = h(c) , d′ = h(d)

Da die Urbilder der beiden Idempotenten beliebig groß gewählt werden können, werden
wir uns dies zu Nutze machen. Uns genügt bereits ein n, welches größer ist, als die
größte Anzahl der ai welche in einem Teilausdruck von L vorkommen. Wir betrachten
nun die folgenden zusammengesetzten Wörter u, v ∈ Γ∗,

u := (ab)na(cd)n v := (ab)nd(cd)n

Im Folgenden sind nun p, q ∈ Γ∗ beliebig. Wir zeigen nun, dass puq ∈ K genau dann,
wenn auch pvq ∈ K, wobei K ein Teilausdruck der boolschen Kombinationen von L
ist. Um das zu gewährleisten, geben wir eine Taktik an, mit der für beliebige, von K
forderbaren, Subwörtern a1 . . . an diese auch in pvq enthalten sind.

1. Wähle exakt die gleichen Positionen für p oder q auf pvq.

2. Falls das letzte a unbelegt ist, wähle exakt die gleichen Positionen auf v und wir
sind fertig.

3. Falls das letzte a belegt ist, können davor maximal noch n−1 Positionen in (ab)n

belegt sein.

a) Im schlimmsten Fall sind nur a’s belegt. Selbst dann lassen sich auf v einfach
die n a-Positionen hintereinander belegen.

b) Falls auch mindestens ein b belegt wurde, ist sogar ein ganzer ab bzw. ba
Faktor unbelegt, wodurch auf v genügend a-Positionen zur Verfügung ste-
hen, wovon wir jeweils die kleinsten Positionen wählen.

Wähle gegebenenfalls restliche Positionen in (cd)n auf v identlisch.

19

3 Klimas Beweisidee

Wendet man zusätzlich die duale Strategie für pvq an, erhält man:

puq ∈ K ⇔ pvq ∈ K
puq ∈ L⇔ pvq ∈ L
⇒ u ∼L v

⇒ h((ab)na(cd)n) = h((ab)nd(cd)n).

Und die J -Gleichung gilt für beliebige Elemente a′, b′, c′, d′ ∈ Synt(L).

Das folgende kombinatorische Lemma ist zentrale Grundlage dieser Arbeit.

Lemma 3.5: Sei L ⊆ Γ∗ und Synt(L) J -trivial, dann ist L endliche boolsche Kom-
bination von Rankern, die ausschließlich neXt-Anweisungen benützen.

Beweis: Betrachte folgende Relation auf Wörtern u, v ∈ Γ∗

u ∼k v :⇔ ∀r = Xa1 . . . Xak , ai ∈ Γ : r(u) def. gdw. r(v) def.

Dies ist offensichtlich eine Äquivalenzrelation. Sei h : Γ∗ → Synt(L) =: M der er-
kennende Homomorphismus, wobei M die J -Gleichung erfülle. Wir werden zeigen,
dass diese Relation eine Verfeinerung der syntaktischen Kongruenz ist ∼k⊆∼L. Da
L =

⋃
u[u]∼L

eine Vereinigung solcher Klassen ist, folgt die Definierbarkeit durch
Ranker.

Sei also u ∼k v. Betrachte die Indexmengen blau := R(u) mit den Abstiegsstellen der
R-Faktorisierung von u = u0a1u1 . . . uk−1akuk und rot := L(v) mit den Abstiegsstellen
der L-Faktorisierung von v = vlbl . . . v1b1v0. Durch das Abstiegslemma (Lemma 2.1) ist
sichergestellt, dass ai+1 /∈ alph(ui) und bi+1 /∈ alph(vi). Außerdem wird so Folgendes
sichergestellt:

h(u) R h(u|blau) R h(A∗0a1A
∗
1 . . . akA

∗
k) mit Ai = alph(ui)

h(v) L h(v|rot) L h(B∗l bl . . . B
∗
1b1B

∗
0) mit Bi = alph(vi).

Da xRy ⇒ xJ y (entsprechend für L) und M J -trivial ist, gilt sogar Gleichheit.

h(u) = h(u|blau) = h(A∗0a1A
∗
1 . . . akA

∗
k) mit Ai = alph(ui)

h(v) = h(v|rot) = h(B∗l bl . . . B
∗
1b1B

∗
0) mit Bi = alph(vi)

Da u ∼k v, lassen sich die blauen Positionen auf v übertragen, wobei das am wei-
testen links liegende Vorkommen gewählt wird. Die duale Konstruktion liefert die
übertragene rote Indexmenge auf u.

blau := {Xa1 . . . Xai(v) | 1 ≤ i ≤ k }
rot := {Yb1 . . . Ybi(u) | 1 ≤ i ≤ l }

Essentiell sind nun die reduzierten Wörter ū := u
∣∣
blau∪rot und v̄ := v

∣∣
blau∪rot, die nach

Konstruktion bereits alph(ū) = alph(v̄) erfüllen und jeweils in ihren blauen und in

20

ihren roten Indizes die richtige Anordnung besitzen. Außerdem sind |ū| und |v̄| durch
2|M | − 2 begrenzt.

Überraschenderweise gilt sogar ū = v̄. Hierfür betrachtet man, ähnlich dem Boubble-
sort Algorithmus, alle Paare an Zeichenpositionen ai, bj , um auf die lineare Anordnung
auf beiden Wörtern zu schließen.

Fall <:

Xa1 . . . Xai(ū) < Yb1 . . . Ybj (ū)

⇔Xa1 . . . XaiXbj . . . Xb1(u) = def.

⇔Xa1 . . . XaiXbj . . . Xb1(v) = def.

⇔Xa1 . . . Xai < Yb1 . . . Ybj (v̄)

Fall ≤:

Xa1 . . . Xai(ū) ≤ Yb1 . . . Ybj (ū)

⇔Xa1 . . . Xai−1
Xai=bjXbj−1

. . . Xb1(u) = def.

⇔Xa1 . . . Xai−1
Xai=bjXbj−1

. . . Xb1(v) = def.

⇔Xa1 . . . Xai ≤ Yb1 . . . Ybj (v̄)

Da alle relativen Positionen von Zeichen ai und bj in ū und v̄ gleich sind, haben beide
Wörter die gleiche lineare Anordnung ū = v̄. Es gilt:

h(u) = h(ū) = h(v̄) = h(v)

⇒ u ∼L v

⇒ L =
⋃
u∈L

[u]∼L
=
⋃
u∈L

[u]∼k
.

Um dies sicherzustellen haben wir nur maximal k := 2|M | − 2 neXt-Anweisungen
benötigt.

21

4 Knasts Theorem

In diesem Kapitel wollen wir einen kombinatorischen Beweis für Knasts Theorem ge-
ben. Entscheident wird Lemma 4.5 sein, das den Zusammenhang von der algebraischen
Charakterisierung zu Wortrankern herstellt. Wie in Bemerkung 1.18 beschrieben, sind
Halbgruppen, welche die B1-Identität erfüllen, in LJ und damit insbesondere in LDA.
Wir werden wiederum die generischen R und L-Faktorisierungen betrachten. Wer-
den um die Abstiegsstellen nun Intervalle ausreichender Länge betrachtet, existieren
nach Lemma 1.5 stabilisierende Idempotente. Damit sind die Voraussetzungen für das
Faktor-Abstiegslemma für LDA (Lemma 2.3) erfüllt und wir können mit Wortrankern
dieser Faktoren wiederum kombinatorisch argumentieren.

Satz 4.1 (Dot-Depth-1): Die folgenden Charakterisierungen sind äquivalent:

1. L = B
r∈R[Xw]

(L(r) ∩minrΓ∗maxr) = B
r∈R[Yw]

(L(r) ∩minrΓ∗maxr)

2. L ist in BΣ1[<,+1,min,max] definierbar

3. L = B(w0Γ∗w1 . . .Γ
∗wk, wi ∈ Γ+)

4. Synt(L) ∈ JB1K

Beweis: Der Übersicht wegen ist der Beweis in 4 Lammata aufgeteilt.
1⇒ 2: Lemma 4.2
2⇒ 3: Σ1-Normalform (Lemma 4.3)
3⇒ 4: Lemma 4.4
4⇒ 1: Kombinatorischer Beweis (Lemma 4.5)

Lemma 4.2: Sei L = B
r∈R[Xw]

(L(r) ∩minrΓ∗maxr), dann existiert eine Formel ϕ ∈

BΣ1[<,+1,min,max] so, dass L = L(ϕ).

Beweis: Da in beiden Charakterisierungen endliche boolsche Kombinatio-
nen erlaubt sind, genügt es wiederum für einen Wortranker eine Formel in
ϕr ∈ BΣ1[y,+1,min,max] anzugeben.

23

4 Knasts Theorem

Betrachte ein L = L(r = Xw1
...Xwk

) ∩minrΓ∗maxr. Wir setzen

ϕr := ∃xi,j
∧
i,j

λ(xi,j) = (wi)j ∧∧
i

+1(xi,1, xi,2) ∧ . . . ∧+1(xi,|wi|−1, xi,|wi|) ∧∧
1≤i<k

< (xi,1, xi+1,1) ∧min(minr) ∧max(maxr).

Dies modeliert exakt die Definition von Wortrankern und es gilt u ∈ L ⇔ u ∈ L(ϕr).

Lemma 4.3: Sei L = L(ϕ) ⊆ Γ+ mit ϕ ∈ BΣ1[<,+1,min,max] dann ist L innerhalb
von Level 1 der Dot-Depth-Hierarchie; hat also die Form L = B(w0Γ∗w1 . . .Γ

∗wk) mit
wi ∈ Γ+.

Beweis: Da in beiden Charakterisierungen endliche boolsche Kombinationen erlaubt
sind, genügt es für eine Formel ψ ∈ Σ1[<,+1,min,max] eine Kombination von Spra-
chen der gewünschten Form anzugeben. Durch Lemma 1.1 können wir ψ =

∨
n ϕn

annehmen, wobei die Klauseln ϕn nur positive Prädikate besitzen. Wir konstruie-
ren zuerst äquivalente Formeln ϕ̃n. Seien dazu x1, . . . , xk, sowie y1, . . . , yl existenzi-
ell gebundene Variablen, wobei +1(xi, xi+1) für 1 ≤ i ≤ k − 1 und +1(yi, yi+1) für
1 ≤ i ≤ l − 1 in ϕn enthalten sind, wobei k, l maximal. Ist außerdem das Prädikat
< (xi, yj) Teil der Formel ϕn für ein j < i mit 1 6= j und k 6= i, also

ϕn =< (xi, yj) ∧ ϕ′n

so ersetzen wir diese Klausel durch die folgenden Klauseln

(ϕ′n|y1=xi−j+1
) ∨ (ϕ′n|y1=xi−j+2

) ∨ . . . ∨ (ϕ′n|y1=xk
) ∨ (< (xk, y1) ∧ ϕ′n)

Hierbei bezeichnen |y1=x jeweils nur textuelle Ersetzungen der Variable x durch Varia-
ble y1. Diesen Prozess setzen wir fort, bis er auch auf den neuen Klauseln nicht mehr
angewendet werden kann und erhalten die Formel ϕ̃n nach endlich vielen solchen Er-
setzungen. Am Ende enthält also ϕ̃n keine Klauseln mit Sitationen xi < yj mit 1 6= j
und k 6= i.

Hiervon können wir analog zu Lemma 3.3 nun Sprachen der Form w0Γ∗w1 . . . wm
für jeden Pfad im Graphen ablesen, wobei w0 und wk die Beschriftungen von min und
max-Prädikaten sind, die sich eventuell an Pfadbeginn und Pfadende befinden. Der
Schnitt über diese Sprachen stimmt mit der von einer Klausel akzeptierten Sprache
überein.

Lemma 4.4: Die syntaktische Halbgruppe Synt(L) von Sprachen der Form L =
B(w0Γ∗w1 . . .Γ

∗wk, wi ∈ Γ+) erfüllt die B1-Identität.

24

Beweis: Sei h : Γ+ → Synt(L) =: S der syntaktische Homomorphismus, der L
erkennt. Betrachte die B1-Identität (1.17), die für alle Elemente a′, b′, c′, d′ ∈ S und
Idempotente e′, f ′ ∈ E(S) gelten muss.

(e′a′f ′b′)πe′a′f ′(c′e′d′f ′)π = (e′a′f ′b′)πe′d′f ′(c′e′d′f ′)π

Wir wählen nun jeweils beliebige Urbilder a, b, c, d, e, f ∈ Γ+ dieser Elemente, die im
Folgenden aber fest gehalten werden. Sie existieren, da der syntaktische Homomor-
phismus surjektiv ist.

a′ = h(a), b′ = h(b), c′ = h(c), d′ = h(d), e′ = h(e), f ′ = h(f)

Da die Urbilder der Idempotenten (e′ = e′ · e′) beliebig groß gewählt werden können,
werden wir uns dies wieder zu Nutze machen. Uns genügt ein m, welches größer ist
als das Maximum von maximaler Länge eines Wortes wi und Anzahl von Subfaktoren
in einem Teilausdruck von L. Wir betrachten als Grundlage nun die folgenden Wörter
mit u, v ∈ Γ+, p, q ∈ Γ∗.

p (emafmb)memafm(cemdfm)m︸ ︷︷ ︸
=:u

q p (emafmb)memdfm(cemdfm)m︸ ︷︷ ︸
=:v

q

Wir zeigen nun, dass puq ∈ K genau dann, wenn auch pvq ∈ K, wobei K ein beliebiger
Teilausdruck aus der boolschen Kombination für L ist. Um dies zu gewährleisten, geben
wir eine Taktik an, mit der beliebige, von K forderbare, Subfaktoren w0 . . . wk auch
auf pvq gefunden werden können.

1. Wähle w0 und wk identisch. Falls p und q kürzer sind, genügt sicherlich em bzw.
fm um einen gemeinsamen Präfix und Suffix zu gewärleisten.

2. Wähle exakt die gleichen Positionen für Faktoren die auf p oder q liegen.

3. Falls das komplette letzte a unbedeckt ist, wähle die gleichen Positionen auf v
und wir sind fertig.

4. Sei das letzte a bedeckt. Mit Faktoren der Länge maximal m lässt sich nicht der
ganze Faktor emafm mit einem wi geschlossen überdecken. Daher genügt es be-
reits sicherzustellen, dass diese in genügender Anzahl und in richtiger Reihenfolge
vorkommen.

a) Falls kein fmbem-Faktor mit einem wi belegt ist, könnten nicht mehr als
m− 1 emafm-Faktoren belegt sein. Diese kommen auch in v in der richtigen
Anordnung vor. Diese wählen wir.

b) Falls mindestens ein fmbem-Faktor mit einem wi überdeckt ist, können
sogar nicht mehr als n − 2 emafm-Faktoren überdeckt sein. Auch diese
Situation erfüllt bereits der Anfangsteil von v. Wir wählen einfach hierin
von links nach rechts die jeweils kleinst möglichen Positionen.

Wähle die restlichen Positionen in (cemdfm) auf v identisch.

25

4 Knasts Theorem

Wendet man zusätzlich die duale Strategie für pvq an, erhält man:

puq ∈ K ⇔ pvq ∈ K
puq ∈ L⇔ pvq ∈ L

⇒ u ∼L v
⇒ h(u) = h(v).

Wodurch die B1-Identität für beliebige Elemente a′, b′, c′, d′ ∈ S und e′, f ′ ∈ E(S)
gilt.

Lemma 4.5: Sei L regulär und die syntaktische Halbgruppe Synt(L) erfülle die B1-
Identität, dann ist L = B

r∈R[Xw]
(L(r) ∩minrΓ∗maxr)

Beweis: Betrachte folgende Relation auf Wörtern u, v ∈ Γ+

u ∼(l,n) v :⇔firstl(u) = firstl(v) ∧
lastl(u) = lastl(v) ∧
∀r = Xw1

. . . Xwn
: r(u) def.⇔ r(v) def. mit 1 ≤ |wi| ≤ l

Dies ist eine Äquivalenzrelation. Sei h : Γ+ → Synt(L) =: S der erkennende Homo-
morphismus, wobei die Halbgruppe S die B1-Gleichung erfülle. Wir werden analog zum
Beweis von Satz 3.1 zeigen, dass diese Relation eine Verfeinerung der syntaktischen
Kongruenz ist ∼(l,n)⊆∼L.

Sei also u ∼(l,n) v, wobei l und n, die nur von |S| abhängen werden, noch festzulegen
sind. Betrachte wiederum die R-Faktorisierung von u und die L-Faktorisierung von v.
Bilde nun um jede Position aus i ∈ R(u) Intervalle Ii = [i − |S|, i + |S|] der Länge
l′′ := 2|S|+1, um sicherzustellen dass stabilisierende Idempotente (Lemma 1.5) für den
Präfix u|[1,i] und den Suffix u|[i,|u|] im Intervall Ii existieren. Wir definieren außerdem
Intervalle Iα := [1 : min{|u|, |S| + 1}] für Wortanfang und Iω := [max 1, |u| − |S|, |u|]
für Wortende. Diese Intervalle auf u können sich überlappen. Vereinigt man nun alle
überlappenden Intervalle sukzessiv, erhält man sogenannte R-Faktoren, deren Länge
im schlimmsten Fall durch |R(u)| × 2|S|+ 2|S|+ 1 ≤ 2|S|2 + 1 =: l′ beschränkt sind.
Dadurch wurde die Menge blau von nicht überlappenden R-Faktoren auf u gebildet.
Die duale Konstruktion mit der L-Faktorisierung auf v liefert die ebenfalls disjunkte
Intervallmenge rot. Dadurch ergeben sich die folgenden Faktorisierungen für u in R-
Faktoren xj := u|J , J ∈ blau und v in L-Faktoren yj := v|J , J ∈ rot, wobei α, ω ∈ Γl

gemeinsamer Anfang- und Endteil sind und eventuell durch Zusammenfügen bereits
in x1, xk bzw. yk, y1 enthalten sind.

u = α · u0 · x1 · u1 · . . . · xk · uk · ω ui, xi ∈ Γ∗, l′′ ≤ |xi| ≤ l′ (4.1)

v = α · vk · yk · . . . · v1y1 · v0 · ω vi, yi ∈ Γ∗, l′′ ≤ |yi| ≤ l′ (4.2)

Nach Konstruktion existiert innerhalb eines Wortes ui kein R-Abstieg und innerhalb
eines vi kein L-Abstieg. Wie bereits zu Beginn dieses Kapitels erwähnt, gilt durch

26

das Faktor-Abstiegslemma (Lemma 2.3), dass diese Stellen der Faktorisierung durch
Wortranker definiert sind.

Da u ∼(l,n) v, lassen sich die blauen Faktoren xi auch auf v übertragen.

blau := { [j − |xi|+ 1, j] | j = Xx1
. . . Xxi

(v), 1 ≤ i ≤ k }
rot := { [j, j + |yi| − 1] | j = Yy1 . . . Yyi(u), 1 ≤ i ≤ k }

Analog zum Beweis von Lemma 3.5 betrachten wir alle paarweisen relativen Lagen von
blauen Faktoren xi und roten Faktoren yi, um auf ihre lineare Anordnung zu schließen.
Es gibt vier mögliche Fälle für die relative Lage von zwei Faktoren.

1. Keine Überlappung:

Xx1 . . . X
|xi|
xi

(u) < Yy1 . . . Y
|yj |
yj (u)

⇔Xx1
. . . X |xi|

xi
X1
yj . . . Xy1(u) definiert

⇔Xx1
. . . X |xi|

xi
X1
yj . . . Xy1(v) definiert

⇔Xx1
. . . X |xi|

xi
(v) < Yy1 . . . Y

|yj |
yj (v)

2. Überlappung der Form xiγ = βyj mit γ, β ∈ Γ∗, |β| ≥ 1: Bezeichne 2 ≤ t ≤
|xi| die Position des ersten Zeichens von yj in xi. Nach Konstruktion liegen die
Faktoren yj . . . y1 möglichst weit rechts, wodurch t maximal gewählt ist.

Xx1 . . . X
t
xi

(u) = Yy1 . . . Y
|yj |
yj (u)

⇒Xx1
. . . Xt−1

xi
Xyj . . . Xy1(u) definiert

⇔Xx1
. . . Xt−1

xi
Xyj . . . Xy1(v) definiert

⇒Xx1
. . . Xt

xi
(v) ≤ Yy1 . . . Y |yj |yj (v)

Angenommen unerwünschterweise gilt auf v sogar <, dann könnte ein yj Faktor
auch an der Position t + 1 beginnen, wobei diese auch außerhalb von xi liegen
könnte.

Xx1
. . . Xt

xi
< Yy1 . . . Y

|yj |
yj (v)

⇒Xx1
. . . Xt

xi
Xyj . . . Xy1(v) definiert

⇒Xx1 . . . X
t
xi
Xyj . . . Xy1(u) definiert

⇒Widerspruch zur Maximalität von t bzw. zur Überlappung auf u sonst.

Die beiden Faktoren haben also auch auf v die gleiche Überlappung, wodurch
wiederum beide Richtungen gelten.

3. Überlappungen der Form yjγ = βxi =: wij mit γ, β ∈ Γ∗: Die Länge von wij ist
durch 2× l′ − 1 beschränkt. Hier ist es möglich, dass vorherige x Faktoren ganz

27

4 Knasts Theorem

oder teilweise in β enthalten sind und entsprechend y Faktoren in γ. Sei also xi′

der letzten Faktor, der nicht mehr ganz in β enthalten ist(i′ < i) und yj′ der
ersten Faktor, der nicht mehr ganz in γ enthalten ist(j < j′). Nach Konstruktion
ist die Position der Faktoren x1 . . . xi minimal und die von yj . . . y1 maximal
gewählt.

Xx1
. . . Xxi′Xwij

(u) = Yy1 . . . Y
|yj |
yj (u)

⇒Xx1
. . . Xxi′Xwij

Xyj′ . . . Xy1(u) definiert

⇔Xx1
. . . Xxi′Xwij

Xyj′ . . . Xy1(v) definiert

⇒Xx1
. . . Xxi′Xwij

(v) ≤ Yy1 . . . Y |yj |yj (v) ∧ (4.3)

Xx1
. . . X |xi|

xi
(v) ≤ Yy1 . . . Yyj′Ywij

(v) (4.4)

Angenommen (4.3) oder (4.4) erfüllen sogar <. Dann lässt sich dies in ähnlicher
weise auf einen Widerspruch führen, dass yj maximal auf u lag bzw. xi minimal
auf u lag. Dadurch gilt Gleichheit der Überlappung auf v und in gleicher Weise
die Implikationen rückwärts.

4. Einschluss: Diese Situationen lassen sich analog zu Fall 3 lösen, wobei jeweils der
umschließende Faktor als wij gewählt wird.

Die Abstiegsfaktoren sind also in u und v in gleicher Weise angeordnet. Um dies zu
gewährleisten benötigten wir für ∼(l,n) nur

n := 2|S|2 + 2|S| − 1 ≥|R(u)|+ |L(v)|+ l′

l := 4|S|2 + 1 ≥2× l′ − 1

Nun sind wir in der Lage grüne Intervalle auf u zu definieren, die durch Erweiterung
der blauen Intervalle mit roten Überlappungen entstanden sind. Dies bedeutet, dass
innerhalb der Zwischenstellen noch immer keineR-Abstiege existieren. Analog ist grün
auf v durch Erweiterung roter Intervalle mit blauen Überlappungen entstanden. Somit
existieren noch immer keine L-Abstiege innerhalb der Zwischenstellen. Durch obige
Fallunterscheidung ist klar, dass diese Intervalle in u und v gleiche Beschriftungen zi
haben.

grün :=

 ⋃
I überlappend

I

∣∣∣∣∣∣ I ∈ blau ∪ rot
 auf u

grün :=

 ⋃
I überlappend

I

∣∣∣∣∣∣ I ∈ blau ∪ rot
 auf v

Entscheidend sind die folgenden Faktorisierungen der Wörter u, v, die sich nun an-
nehmen lassen.

u = αu′0z1u
′
1 . . . zku

′
kω u′i, zi ∈ Γ∗, l′′ ≤ |zi| ≤ l

v = αv′0z1v
′
1 . . . zkv

′
kω v′i ∈ Γ∗

28

Wir betrachten nun induktiv von links nach rechts die Faktoren, welche die Zwi-
schenstellen u′i bzw. v′i umschließen, für 0 ≤ i ≤ k. Da diese mit ausreichnder Länge
konstruiert sind, existiert nach Lemma 1.5 für den linken Faktor, der insbesondere
α sein kann, das Idempotente e welches wir einfügen können. Analoges gilt für den
rechten Faktor.

zi u′
i

zi+1

a
u = [|| |] [| ||]

e f
v = [|| |] [| ||]

d

zi v′i zi+1

Da die u′i keine R-Abstiege und die v′i keine L-Abstiege enthalten, lässt sich damit
folgende Klassenzugehörigkeit für Präfix p bis zum Idempotenten e und Suffix q ab
dem Idempotenten f ablesen.

pe R peaf edfq L fq

Also existieren Elemente ā und d̄ so, dass

pe = p(eafā)πe fq = f(d̄edf)πq.

Betrachtet man nun zusätzlich die B1-Identität, dann gilt:

p(eafā)πeaf(d̄edf)πq = p(eafā)πedf(d̄edf)πq B1(1.17)

peafq = p(eafā)πedf(d̄edf)πq links abpumpen

peafq = pedfq rechts abpumpen

Dieses Argument lässt sich induktiv entlang den Faktoren zi (beispielsweise von links
nach rechts) anwenden. Dadurch ist h(v) = h(u) und somit u ∼L v.

29

4 Knasts Theorem

Algorithmus zur Entscheidbarkeit

Da sich algebraische Eigenschaften leicht überprüfen lassen, legt dies folgenden Al-
gorithmus zur Entscheidung der Definierbarkeit in BΣ1[<,+1,min,max] nahe. Die
Implementierung ist in der Sprache GAP für eine bestimmte reguläre Sprache, die wir
in Kapitel 6 näher untersuchen werden, gegeben. [4]

LoadPackage (” automata ”) ;

L := Rat iona lExpres s ion (”(011∗U022∗)∗011∗3(22∗3U11 ∗3)∗”) ;
Automat := RatExpToAut(L) ;
S := Trans it ionSemigroup (Automat) ;
Display (Automat) ;

ELEM := Elements (S) ;
I := Idempotents (S) ;

f o r e in I do
f o r a in ELEM do
f o r b in ELEM do
f o r f in I do

Banfang := e∗a∗ f ∗b ;
whi l e Banfang <> (Banfang ˆ2) do
Banfang := Banfang ∗ (e∗a∗ f ∗b) ;

od ;
f o r c in ELEM do
f o r d in ELEM do
Bende := c∗e∗d∗ f ;
whi l e Bende <> (Bende ˆ2) do

Bende := Bende ∗(c∗e∗d∗ f) ;
od ;
Le f t := Banfang ∗ e∗a∗ f ∗ Bende ;
Right := Banfang ∗ e∗d∗ f ∗Bende ;
i f Le f t <> Right then

Pr int(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n ”) ;
Pr int (”GEGENBEISPIEL:\n ”) ;
Pr int (” e : ”) ; Pr int (e) ; Pr int (”\n ”) ;
Pr int (” f : ”) ; Pr int (f) ; Pr int (”\n ”) ;
Pr int (” a : ”) ; Pr int (a) ; Pr int (”\n ”) ;
Pr int (”b : ”) ; Pr int (b) ; Pr int (”\n ”) ;
Pr int (” c : ”) ; Pr int (c) ; Pr int (”\n ”) ;
Pr int (”d : ”) ; Pr int (d) ; Pr int (”\n ”) ;
Pr int (” Banfang : ”) ; Pr int (Banfang) ; Pr int (”\n ”) ;
Pr int (”Bende : ”) ; Pr int (Bende) ; Pr int (”\n ”) ;
Pr int (” Links : ”) ; Pr int (Le f t) ; Pr int (”\n ”) ;
Pr int (” Rechts : ”) ; Pr int (Right) ; Pr int (”\n ”) ;
Pr int(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n ”) ;

f i ;
od ;

od ;
od ;

od ;
od ;

od ;

30

5 Weitere entscheidbare
Logikfragmente

Im vorherigen Kapitel haben wir gezeigt, dass Sprachen L ∈ BΣ1[<,+1,min,max]
genau denen entsprechen, deren syntaktische Halbgruppe Synt(L) die B1-Identität
erfüllen. Da die syntaktische Halbgruppe regulärer Sprachen endlich ist, war es möglich
durch einfaches Nachrechnen dieser Identität für alle Elemente der Halbgruppe die
Definierbarkeit im Logikfragment zu entscheiden. Die Verwendung der min und max
Prädikate waren in den Beweisen von Kapitel 4 jedoch nicht von elementarer Be-
deutung. Dadurch haben wir die Möglichkeit auf ähnliche Weise entscheidbare Cha-
rakterisierungen für die Fragmente BΣ1[<,+1], BΣ1[<,+1,min] und BΣ1[<,+1,max]
anzugeben, wobei das Fehlen eines der Prädikate sich durch die Hinzunahme einer wei-
teren, einfach entscheidbaren Bedingung an die syntaktische Halbgruppe äußert. Diese
entscheidbaren Charakterisierungen sind neue Ergebnisse. Die folgenden Beweise sind
alle sehr ähnlich zu den vier Lemmata aus Kapitel 4, wobei wir auf die Vollständigkeit
hier verzichten und nur die Stellen beschreiben, die abgewandelt werden müssen.

5.1 Das Fragment BΣ1[<,+1,min]

Satz 5.1: Die folgenden Charakterisierungen sind äquivalent:

1. L = B
r∈R[Xw]

(L(r) ∩minrΓ∗) = B
r∈R[Yw]

(L(r) ∩minrΓ∗)

2. L ist in BΣ1[<,+1,min] definierbar

3. L = B(w0Γ∗w1 . . . wkΓ∗, wi ∈ Γ+)

4. Synt(L) ∈ JB1K und L =
⋃
u∈L[u]R

Beweis:
“1⇒ 2”: Beweis analog zu Lemma 4.2.
“2⇒ 3”: Beweis analog zu Lemma 4.3.
“3⇒ 4”: Die B1-Identität lässt sich analog zu Lemma 4.4 zeigen.
Wir zeigen L =

⋃
u∈L[u]R. Seien u′, v′ ∈ Synt(L) mit u′Rv′. Dann existieren

x′, y′ ∈ Synt(L) mit u′ = v′x′, v′ = u′y′. Für diese Elemente lassen sich wiederum
nichtleere Urbilder des syntaktischen Homomorphismus u, v, x, y ∈ Γ+ wählen. Sei K
ein Teilausdruck von L der Form K = w0Γ∗ . . . wkΓ∗. Falls u ∈ K, ist auch v ∈ K, da
v = uy. Die zweite Faktorisierung liefert: v ∈ K ⇒ u ∈ K.

31

5 Weitere entscheidbare Logikfragmente

“4⇒ 1”: Wir konstruieren in exakt der gleichen Weise wie in Lemma 4.5 die Intervalle
grün auf Wort u und grün auf v wobei u ∼(l,n) v mit

u ∼(l,n) v :⇔firstl(u) = firstl(v) ∧
∀r = Xw1

. . . Xwn
: r(u)def.⇔ r(v)def. mit 1 ≤ wi ≤ l.

Indem wir nur einen Wortranker mehr erlauben, können wir zusätzlich sicherstellen,
dass die letzten l Zeichen von v auch hinter denen der zk auf u vorkommen. Falls vk das
leere Wort ist, gilt dies bereits. Anderenfalls ändert ein vorausgehender Wortranker
Ylastl(vk) weder die Definierbarkeit der L-Abstiegsfaktoren auf v noch ein folgender
Xlastl(vk) die Positionen der R-Abstiegsfaktoren auf u. Wir erhalten dadurch folgende
Faktorisierung der beiden Wörter u und v:

u =αu0z1u1 . . . zkuklastl(vk)uk+1 mit α, ui, vi, zi ∈ Γ∗

v =αv0z1v1 . . . zkvk |zi| > 2|Synt(L)|

Durch Konstruktion ist wiederum innerhalb der ui kein R-Abstieg und innerhalb der
vi kein L-Abstieg vorhanden. Dadurch lässt sich in gleicher Weise, von links nach
rechts, die B1-Identität anwenden. Mangels fehlendem gemeinsamen Ende erhalten
wir diesmal:

h(v) = h(αu0z1 . . . lastl(vk)) R h(u).

Da unsere Sprache gegebenerweise eine Vereinigung solcherR-Klassen ist, folgt schließ-
lich:

L =
⋃
u∈L

[u]R =
⋃
u∈L

[u]∼(l,n)
.

Bemerkung 5.1: In der Tat ist Eigenschaft 4 des obigen Satzes entscheidbar. Zum
Algorithmus aus Kapitel 4 müssen lediglich zwei Schleifen der folgenden Form hin-
zugefügt werden. P := h(L) ⊆ Synt(L) bezeichnet die Menge der akzeptierenden
Elemente.

f o r each a in P do
fo r each b in S do

i f (a∗S=b∗S) and not (b in P) then
return FALSE;

f i
od

od

5.2 Das Fragment BΣ1[<,+1,max]

Satz 5.2: Die folgenden Charakterisierungen sind äquivalent:

32

5.2 Das Fragment BΣ1[<,+1,max]

1. L = B
r∈R[Xw]

(L(r) ∩ Γ∗maxr) = B
r∈R[Yw]

(L(r) ∩ Γ∗maxr)

2. L ist in BΣ1[<,+1,max] definierbar

3. L = B(Γ∗w0 . . .Γ
∗wk, wi ∈ Γ+)

4. Synt(L) ∈ JB1K und L =
⋃
u∈L[u]L

Beweis:
“1⇒ 2”: Beweis analog zu Lemma 4.2.
“2⇒ 3”: Beweis analog zu Lemma 4.3.
“3⇒ 4”: Die B1-Identität lässt sich analog zu Lemma 4.4 zeigen.
Wir zeigen L =

⋃
u∈L[u]L. Seien u′, v′ ∈ Synt(L) mit uLv. Dann existieren x′, y′ ∈

Synt(L) mit x′u′ = v′, y′v′ = u′. Für diese Elemente lassen sich wiederum nichtleere
Urbilder des syntaktischen Homomorphismus u, v, x, y ∈ Γ+ wählen. Sei K ein Teil-
ausdruck von L der Form K = Γ∗w0 . . .Γ

∗wk. Falls u ∈ K, ist auch v ∈ K, da v = xu.
Die zweite Faktorisierung liefert: v ∈ K ⇒ u ∈ K.
“4⇒ 1”: Wir konstruieren in exakt der gleichen Weise wie in Lemma 4.5 die Intervalle
grün auf Wort u und grün auf v wobei u ∼(l,n) v mit

u ∼(l,n) v :⇔lastl(u) = lastl(v) ∧
∀r = Xw1 . . . Xwn : r(u)def.⇔ r(v)def. mit 1 ≤ wi ≤ l.

Indem wir nur einen Wortranker mehr erlauben, können wir zusätzlich sicherstellen,
dass die ersten l Zeichen von u auch vor denen der z1 auf v vorkommen. Falls u0 das
leere Wort ist, gilt dies bereits. Anderenfalls ändert weder der nachfolgende Wortranker
Yfirstl(u0) die Definierberkeit der L-Abstiegsfaktoren auf v noch ein vorausgehender
Xfirstl(u0) die Positionen der R-Abstiegsfaktoren auf u. Wir erhalten dadurch folgende
Faktorisierung der beiden Wörter u und v:

u = u0z1u1 . . . zkukω mit ω, ui, vi, zi ∈ Γ∗

v = v−1firstl(u0)v0z1v1 . . . zkvkω |zi| > 2|Synt(L)|

Durch Konstruktion ist wiederum innerhalb der ui kein R-Abstieg und innerhalb der
vi kein L-Abstieg vorhanden. Dadurch lässt sich, diesmal von rechts nach links, die
B1-Identität anwenden und wir erhalten mangels fehlendem gemeinsamen Anfangs:

h(u) = h(firstl(u0)v0z1 . . . ω) L h(v).

Da unsere Sprache gegebenerweise eine Vereinigung solcher L-Klassen ist, folgt schließ-
lich:

L =
⋃
u∈L

[u]L =
⋃
u∈L

[u]∼(l,n)
.

33

5 Weitere entscheidbare Logikfragmente

5.3 Das Fragment BΣ1[<,+1]

Satz 5.3: Die folgenden Charakterisierungen sind äquivalent:

1. L = B
r∈R[Xw]

L(r) = B
r∈R[Yw]

L(r)

2. L ist in BΣ1[<,+1] definierbar

3. L = B(Γ∗w0 . . . wkΓ∗, wi ∈ Γ+)

4. Synt(L) ∈ JB1K und L =
⋃
u∈L[u]J

Beweis:
“1⇒ 2”: Beweis analog zu Lemma 4.2.
“2⇒ 3”: Beweis analog zu Lemma 4.3.
“3⇒ 4”: Die B1-Identität lässt sich analog zu Lemma 4.4 zeigen.
Wir zeigen L =

⋃
u∈L[u]J . Seien u′, v′ ∈ Synt(L) mit uJ v. Dann existieren

w′, x′, y′, z′ ∈ Synt(L) mit u′ = w′v′x′, v′ = y′u′z′. Für diese Elemente lassen sich
wiederum nichtleere Urbilder des syntaktischen Homomorphismus u, v, w, x, y, z ∈ Γ+

wählen. Sei K ein Teilausdruck von L der Form K = Γ∗w0 . . . wkΓ∗. Falls u ∈ K, ist
auch v ∈ K, da v = yuz. Die zweite Faktorisierung liefert: v ∈ K ⇒ u ∈ K.
“4⇒ 1”: Wir konstruieren in exakt der gleichen Weise wie in Lemma 4.5 die Intervalle
grün auf Wort u und grün auf v wobei u ∼(l,n) v mit

u ∼(l,n) v :⇔ ∀r = Xw1
. . . Xwn

: r(u)def.⇔ r(v)def. mit 1 ≤ wi ≤ l.

Indem wir nur zwei Wortranker mehr erlauben, können wir, analog zu den Beweisen
der beiden vorherigen Sätze, die folgende Faktorisierung sicherstellen:

u = u0 z1u1 . . . zk︸ ︷︷ ︸
=:ū

uklastl(vk)uk+1 mit ui, vi, zi ∈ Γ∗

v = v−1firstl(u0)v0 z1v1 . . . zk︸ ︷︷ ︸
=:v̄

vk |zi| > 2|Synt(L)|

Durch sukzessive Anwendung der B1-Identität erhalten wir:

h(v) L h(v̄) = h(ū) R h(u).

Betrachten wir noch die J -Klasse von h(u)

S
(
h(u)S

)
= Sh(ū)S =

(
Sh(v̄)

)
S = Sh(v)S

Da unsere Sprache gegebenerweise eine Vereinigung solcher J -Klassen ist, folgt schließ-
lich:

L =
⋃
u∈L

[u]J =
⋃
u∈L

[u]∼(l,n)
.

34

6 Die Beziehung zwischen den Klassen
B1 und LJ

Von Knast wurde eine Sprache L ⊆ Γ+ gegeben, deren syntaktische Halbgruppe
Synt(L) in LJ liegt, aber nicht die B1-Identität erfüllt.[8] Diest zeigt, dass es sich um
eine echte Teilmenge handelt. Dieses Beispiel wollen wir im Folgenden näher untersu-
chen, um allgemeinere Eigenschaften zur Unterscheidung der Klassen zu gewinnen.

Betrachte die folgende Sprache L ⊆ Γ+ über dem Alphabet Γ = {0, 1, 2, 3}.

L := (01+|02+)∗01+3(1+3|2+3)∗

Die Sprache L wird von folgendem Automat akzeptiert:

8start 5

3

6

1

2

4

1

2

1

3

0

2 2

3

1

2

0

1

3

0

Abbildung 6.1: Deterministischer endlicher Automat für die Sprache L /∈ B1, wobei
der Fehlerzustand 7 nicht eingezeichnet ist.

Um L /∈ B1 zu zeigen, genügt es Elemente aus Synt(L), sprich Transformationen
auf dem Automaten, anzugeben, welche die B1-Identität nicht erfüllen. Wir geben

35

6 Die Beziehung zwischen den Klassen B1 und LJ

Vertreter und die zugehörigen Transformationen auf dem Automaten an:

e = [1] =[2, 2, 7, 7, 6, 6, 7, 7]

f = [2] =[4, 7, 3, 4, 3, 7, 7, 7]

a = [02] =[7, 7, 3, 7, 7, 3, 7, 3]

b = [20] =[7, 7, 5, 7, 5, 7, 7, 7]

c = [23] =[1, 7, 7, 1, 7, 7, 7, 7]

d = [13] =[1, 1, 7, 7, 1, 1, 7, 7]

Durch zweimaliges Ausführen der Transformationen e bzw. f kann man sich überzeu-
gen, dass diese Elemente idempotent (z.B. e2 = e) sind. Wir betrachten nun Anfangs-
und Endteil der beiden Seiten der B1-Identität.

(eafb)π = ([1][02][2][20])π = [10]π = [10]

(cedf)π = ([23][1][13][2])π = [232]π = [232]

Nun können wir Wörter angeben, die laut der B1-Identität äquivalent sein müssten,
jedoch nicht gleichzeitig in L liegen.

u := 10 · 1 · 02 · 2 · 232 und v := 10 · 1 · 13 · 2 · 232

0u3 /∈ L aber 0v3 ∈ L
⇒ L /∈ JB1K

Für diese Sprache lässt sich die folgende äquivalente Beschreibung angeben. Da
Synt(L) nicht die B1-Identität erfüllt, lässt sie sich nicht ganz in dennen von Dot-
Depth-1 erlaubten Konstrukten darstellen.

L :=(01+|02+)∗01+3(1+3|2+3)∗

=Γ∗00Γ∗ ∩ Γ∗33Γ∗ ∩ Γ∗12Γ∗ ∩ Γ∗21Γ∗ ∩ Übergänge

Γ∗3Γ∗0Γ∗ ∩ nach letzter 3 keine 0

0Γ∗ ∩ Γ∗3 ∩ Anfang und Endteile

Γ∗01(Γ \ {0})∗ nicht in B1 erlaubt

Verbotene Muster für LJ und B1

Obwohl eine exakte Unterscheidung, durch die Angabe einer Logikmodalität, der bei-
den Klassen nicht möglich war, lassen sich einfach Bedingungen an die endlichen Au-
tomaten solcher Sprachen definieren.[1] Von den Identitäten für LJ und B1 lassen sich
leicht Muster ablesen, die nicht in den Automaten von Sprachen in diesen Klassen ent-
halten sein drüfen. Das folgende Muster MB1

darf nicht in Automaten von Sprachen,
deren syntaktische Halbgruppe die B1-Identität erfüllt, liegen.

36

r

p q

e

a

d

f

b

c

e

d

f

c

f

c

e

d

f

c

Abbildung 6.2: Verbotenes Muster MB1
für Sprachen, deren syntaktische Halbgrup-

pe die B1-Identität erfüllt. Automaten solcher Sprachen dürfen dieses
Muster nicht enthalten, falls p 6= q.

Diese Eigenschaft lässt sich durch das folgende Lemma zeigen.

Lemma 6.1: Sei L ⊆ Γ∗ regulär. Synt(L) ∈ JB1K ⇒ MB1
ist nicht im Automat von

L enthalten.

Beweis: “⇒” Sei S := Synt(L) und erfülle die B1-Identität. Angenommen der Au-
tomat von L enthält das Muster MB1

mit p 6= q. Dann ist

p =r · (eπafπb)πeπafπ(ceπdfπ)π

=r · (eπafπb)πeπdfπ(ceπdfπ)π

=q

Dies ist ein Widerspruch zu p 6= q, wodurch der Automat das Muster MB1
nicht

enthält.

Ein ähnliches verbotenes Muster MLJ für die Klasse LJ lässt sich auf ähnliche Weise
angeben und beweisen.

37

6 Die Beziehung zwischen den Klassen B1 und LJ

r

p q

e

a

d

e

b

c

e

d

e

c

e

c

e

d

e

c

Abbildung 6.3: Verbotenes Muster MLJ für Sprachen, deren syntaktische Halbgruppe
in LJ ist. Automaten solcher Sprachen dürfen dieses Muster nicht
enthalten, falls p 6= q.

38

7 Zusammenfassung

Das Abstiegslemma für DA und LDA aus Kapitel 2 hat sich, in Verbindung mit Ran-
kern und Wortranker, als sehr wichtiges Hilfsmittel erwiesen. Dadurch war es nicht
nur möglich auf die Positionen eines Wortes, welche für dessen Akzeptanz entschei-
dend sind, generisch zuzugreifen, sondern auch diese kombinatorisch zu vergleichen.
Wie wir gesehen haben, lassen sich Äquivalenz von Rankersprachen und Logikfrag-
menten oft leicht nachweisen.

In Kapitel 3 haben wir gesehen, dass sich damit die Identität der J -trivialen Mo-
noide als Ersetzungsregel zwischen diesen Positionen auffassen lässt. Einen Beweis für
die bekannte Äquivalenz zwischen BΣ1[<] und J -trivialen Monoiden konnten wir so
einfach angeben. Auch für Knasts Theorem haben wir, unter Verwendung des Fakto-
rabstiegslemma und Faktorrankern, einen neuen, kombinatorischen Beweis in Kapitel 4
angeben können.

In Kapitel 5 ist es uns sogar gelungen durch diese Beweismethode für die Logik-
fragmente mit Nachfolgerprädikat +1, jedoch ohne min bzw. max Prädikate, ein neues
Entscheidungsverfahren anzugeben. Eine Übersicht, über alle in dieser Arbeit bewie-
senen, entscheidbaren Logikfragmenten, ist in nachfolgender Tabelle gegeben.

Logikfragment Sprachen Entscheidbarkeit Satz
BΣ1[<] B(Γ∗a1Γ∗ . . . akΓ∗) J -trivial 3.1
BΣ1[<,+1] B(Γ∗w1Γ∗ . . . wkΓ∗) B1 ∧ L =

⋃
u[u]J 5.3

BΣ1[<,+1,min] B(w1Γ∗ . . . wkΓ∗) B1 ∧ L =
⋃
u[u]R 5.1

BΣ1[<,+1,max] B(Γ∗w1Γ∗ . . . wkΓ∗) B1 ∧ L =
⋃
u[u]L 5.2

BΣ1[<,+1,min,max] B(w1Γ∗w2 . . .Γ
∗wk) B1 4.1

In Kapitel 6 wurde der Zusammenhang zur Klasse LJ von Halbgruppen untersucht.
Leider ist es uns nicht gelungen eine Logikcharakterisierung hierfür anzugeben.

Alle in obiger Tabelle dargestellen Logikfragmente sind entscheidbar, für einen gege-
benem regulären Ausdruck. Eine Beispielimplementierung in der Programmiersprache
GAP wurde in Kapitel 4 gegeben.

39

Literaturverzeichnis

[1] Joëlle Cohen, Dominique Perrin, and Jean eric Pin. On the expressive power of
temporal logic. J. Comput. System Sci, 46:271–294, 1993.

[2] R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of
Computer System Sciences, 5(1):1–16, 1971.

[3] V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-
order logic over finite words. International Journal of Foundations of Computer
Science, 19(3):513–548, 2008.

[4] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.12,
2008.

[5] Christian Glaßer and Heinz Schmitz. Concatenation hierarchies and forbidden
patterns. Technical report, 2000.

[6] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to auto-
mata theory, languages, and computation, 2nd edition. SIGACT News, 32(1):60–
65, 2001.

[7] Ondřej Kĺıma. Piecewise testable languages via combinatorics on words. In Be-
richtsband der Konferenz Words 2009, 2009.

[8] R. Knast. A semigroup characterization of dot-depth one languages. R.A.I.R.O.
Informatique théorique, 17(4):321–330, 1983.

[9] R. Knast and J. A. Brzozowski. The dot-depth hierarchy of star-free languages is
infinite. Journal of Computer System Sciences, 16(1):37–55, 1978.

[10] Robert McNaughton and Seymour Papert. Counter-free automata. M.I.T. rese-
arch monograph, 65:163, 1971.

[11] J.-É Pin and P. Weil. The wreath product principle for ordered semigroups.
Commun. Algebra, 30(12):5677–5713, 2002.

[12] Uwe Schöning. Logik für Informatiker, 3. Auflage, volume 56 of Reihe Informatik.
Bibliographisches Institut, 1992.

[13] Uwe Schöning. Theoretische Informatik - kurzgefasst, volume 3. Spektrum Aka-
demischer Verlag, 1997.

[14] M.P. Schützenberger. On finite monoids having only trivial subgroups. Informa-
tion and Control, 8(2):190–194, 1965.

41

Literaturverzeichnis

[15] Imre Simon. Piecewise testable events. In H. Brakhage, editor, Automata Theo-
ry and Formal Languages 2nd GI Conference Kaiserslautern, May 20–23, 1975,
volume 33 of Lecture Notes in Computer Science, pages 214–222. Springer Berlin
/ Heidelberg, 1975.

[16] H. Straubing. A generalization of the schützenberger product of finite monoids.
Theoretical Computer Science, 13(2):137–150, 1981.

[17] H. Straubing. Finite semigroup varieties of the form V ∗ D. Journal of Pure and
Applied Algebra, 36(1):53–94, 1985.

[18] Pascal Tesson and Denis Thérien. Logic meets algebra: the case of regular lan-
guages. CoRR, abs/cs/0701154, 2007.

[19] D. Thérien. Categories et langages de dot-depth un. ITA, 22(4):437–445, 1988.

[20] W. Thomas. Classifying regular events in symbolic logic. Journal of Computer
and System Sciences, 25(3):360–376, 1982.

42

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen benutzt
zu haben.

(Martin P. Seybold)

	Einleitung
	Motivation
	Grundlegende Definitionen

	Algebraische Werkzeuge für formale Sprachen
	Klimas Beweisidee
	Knasts Theorem
	Weitere entscheidbare Logikfragmente
	Das Fragment BSigma1[<,+1,min]
	Das Fragment BSigma1[<,+1,max]
	Das Fragment BSigma1[<,+1

	Die Beziehung zwischen den Klassen B1 und LJ
	Zusammenfassung

