Institut fiir Parallele und Verteilte Systeme
Universitat Stuttgart
UniversitatsstraBe 38

D-70569 Stuttgart

Studienarbeit Nr. 2320

PCle Treiber fiir ein
Linux-System

Alexander Henning

Studiengang: Elektrotechnik und Informationstechnik

Priifer: Prof. Dr. Sven Simon
Prof. Dr. P. Levi

Betreuer: Dipl.-Ing. Jirgen Hillebrand
begonnen am: 05. Oktober 2010
beendet am: 06. April 2011

CR-Klassifikation: B.4.1,B.4.3,D.4.0,D.4.9

PCle Treiber fiir ein Linux-System

Author: Alexander Henning
Supervisor: Dipl.-Ing. Jiirgen Hillebrand

Abteilung Parallele Systeme
Institut fiir Parallele und Verteilte Systeme
Universitit Stuttgart

Inhaltsverzeichnis

1 Einfiihrung

2 Aufbau von Linux

2.1 Geschichte
2.2 Kernel e
2.2.1 Mikrokernel
2.2.2 Hybridkernel o
2.2.3 Monolithischer Kernel
2.3 Linux-Kernel
2.3.1 Interface fiir die System-Aufrufe
2.3.2 Progessverwaltung L.
2.3.3 Speicherverwaltung Lo
2.3.4 T/O-Subsystem
2.3.5 Gerdte-Treiber
3 PCle - Schnittstelle
3.1 Einfihrung L
3.2 PCle e
3.3 PCle Transaktionen
3.3.1 Memory Transactions
3.3.2 I/O Transactions
3.3.3 Configuration Transactions
3.3.4 Message Transactions
3.4 PCIe Ubertragungsschichten
3.4.1 PCle Transaktionsschicht
3.4.2 PCle Data Link Schicht
3.4.3 PCle Bitiibertragungsschicht
4 Treiber und Anwendung
4.1 Registerbeschreibung oo
4.2 Treiber L e
4.2.1 Funktion probe Lo
4.2.2 Funktion remove
4.2.3 Funktionopen L
4.2.4 Funktion release
4.2.5 Funktionmmapo o
4.2.6 Funktionread

21
21
23
25
25
25
26
26
26
28
29
32

37
38
39
42
46
46
47
47
48

PClIe Treiber fiir ein Linux-System IPVS/PaS

4.2.7 Funktion write o 49

4.2.8 Funktion ioctl 49

4.2.9 Funktion ML_do_full_duplex_dma 53

4.3 Anwendung, grafische Benutzeroberfliche 53
4.3.1 Aufbau des Programms 54

4.3.2 Bestimmung des Datendurchsatzes 57

5 Zusammenfassung und Ausblick 59
5.1 Zusammenfassung 59
5.2 Ausblick 59
Literaturverzeichnis 61
Abbildungsverzeichnis 62
Tabellenverzeichnis 64
Akronyme 67
Alexander Henning ii

Kurzfassung

Am Institut fiir Parallele und Verteilte Systeme - Abteilung Parallele Systeme wird
in mehreren Projekten ein Prototyp zur parallelen Berechnung elektrischer Feldgrofien
mit Hilfe der Finite-Differenzen-Methode im Zeitbereich erstellt. Die zur Berechnung
benotigten Algorithmen werden dazu in anderen Teilprojekten fiir die FPGA-Entwick-
lungsplattform in VHDL entwickelt. Um die zur Berechnung erforderliche grole Menge
an Daten und Ergebnisse moglichst schnell und effizient zwischen der FPGA-Entwick-
lungsplattform und dem PC austauschen zu koénnen, soll dazu die PCle-Schnittstelle
verwendet werden.

Im Rahmen dieser Arbeit wurde ein Linux Treiber fiir eine Virtex 5 FPGA-Entwick-
lungspattform mit PCle-Schnittstelle und eine Anwendung implementiert. Der Treiber
soll die Steuerung, die Konfiguration und den Datenaustausch zwischen der FPGA-
Entwicklungsplattform und dem PC {iber die PCle-Schnittstelle erméglichen. Da das
System eine schnelle Ubertragung groBer Datenmengen zwischen PC und FPGA-Ent-
wicklungsplattform erfordert, soll weiterhin der Datenaustausch mittels Speicherdirekt-
zugriff (DMA) realisiert werden. Die zu implementierende Anwendung soll zudem die
Dateniibertragung und Verifikation des Treibers und der Vermessung der erzielten Uber-
tragungsbandbreiten ermoglichen.

iii

1 Einfiihrung

In dieser Studienarbeit soll ein Linux Treiber fiir die FPGA-Entwicklungsplattform
ML506 der Firma Xilinx mit einem Virtex-5 FPGA zwecks Datenaustausch iiber die
PCle (Peripheral Component Interconnect Express)-Schnittstelle [7] mit dem PC (Per-
sonal Computer) entwickelt werden. Das gegebene System, fiir das der Treiber entwickelt
werden soll, zeigt die Abbildung 1.1. Aus der Abbildung kann entnommen werden, dass

Root Complex < Host System Memory

: FPGA-Entwicklungsplattform

FPGA

Endpoint Block

Register File DMA Controller

DDR2 SDRAM

FDTD
Berechnung

User Application

Abbildung 1.1: Blockdiagramm des Systems

PCle Treiber fiir ein Linux-System IPVS/PaS

die FPGA-Entwicklungsplattform mit dem PC iiber die PCle-Schnittstelle verbunden
ist. Der Datenaustausch erfolgt dabei unmittelbar zwischen dem Root Complex des PCs
und dem Endpointblock [8] des FPGAs tiber einen x1 Link. Am Endpointblock sind zwei
weitere logische Blécke angeschlossen, der Register-File-Block und der DMA Controller
Block, die geméf der Anwendungsbeschreibung XAPP859 [9] implementiert sind. Der
Register-File-Block dient der Einstellung des DMA (Speicherdirektzugriff, engl. Direct
Memory Access) Controllers, der die Datentibertragung mittels Speicherdirektzugriffs
[4, S. 440ff.] zwischen dem DDR2 Speicher und dem Host System Memory durchfiihrt.
Der in der Abbildung vorhandene FDTD [1] -Berechnungsblock wird im Rahmen eines
anderen Projektes implementiert, weshalb in dieser Arbeit nicht ndher auf diesen Block
eingegangen wird. Die Durchfithrung der parallelen Berechnungen durch den FDTD-
Berechnungsblock setzt einen breitbandigen Ubertragungsweg zwischen dem PC und
FPGA-Entwicklungsplattform voraus, da dabei grole Mengen von Modell- und Ergeb-
nisdaten ausgetauscht werden miissen.

Die grofie Menge an Daten erfordert eine besonders effektive Methode der Datentiber-
tragung, weshalb in dieser Arbeit die Methode eines Speicherdirektzugriffs verwendet
wird. Der Vorteil der Verwendung des Speicherdirektzugriffes liegt in der bestmoglichen
Ausnutzung der Ubertragungsbandbreite der PCle-Schnittstelle, da die Daten nicht von
der CPU (Central Processing Unit) tibertragen werden miissen.

Der in dieser Studienarbeit implementierte Treiber soll weiterhin die

e Allokation und Initialisierung von Speicherbereichen im Kernel,

FEinstellung der Dateniibertragung,

e Einbindung des Treibers in den Kernel des Betriebssystems zur Laufzeit,

Kontrolle der Dateniibertragung erméglichen und
e cine definierte Schnittstelle fiir die Benutzeranwendungen auf dem PC bieten.

Zusatzlich zu den bereits aufgelisteten Anforderungen soll der Treiber den Anwendun-
gen alle Funktionalititen der Hardware zur Verfiigung stellen und dabei sparsam mit
den Systemressourcen umgehen.

Die erstellte Benutzeranwendung fiir den PC soll dem Benutzer die Steuerung und
die Kontrolle der Dateniibertragung ermoglichen. Dabei greift sie auf alle Funktionen
des Treibers und damit auch auf alle bereits implementierten Funktionen der Hardware
zuriick, wodurch die Funktionalitdt der Hardware und des Treibers demonstriert werden
kann. Eine weitere Anforderung an die Anwendung ist, dass sie die Ubertragungsband-
breite zur Uberpriifung der Effizienz des Treibers messen kann.

Die fiinf Kapitel umfassende Arbeit gibt eine ausfiihrliche Beschreibung tiber die er-
folgte Implementierung des Treibers an. Im nachfolgenden Kapitel 2 werden zunéchst
wichtige Details des Linux Betriebssystems erlautert, die zur Implementierung des Trei-
bers beachtet werden miissen. Zusétzlich erfolgt auch ein kurzer geschichtlicher Exkurs
in das Linux Betriebssystem. Das Kapitel 3 beschreibt die PCle-Schnittstelle. Im Kapi-
tel 4 wird der entwickelte Treiber beschrieben und die Benutzeranwendung vorgestellt.

Alexander Henning 2

PCle Treiber fiir ein Linux-System IPVS/PaS

Abschlielend werden im Kapitel 5 die Ergebnisse von Durchsatzmessungen vorgestellt,
sowie eine Zusammenfassung und ein Ausblick gegeben.

Alexander Henning 3

2 Aufbau von Linux

2.1 Geschichte

Mit dem Begriff Linux sind meistens Mehrbenutzer-Betriebssysteme gemeint, die auf
dem Linux-Kernel basieren. Dieser Begriff bezeichnet aber nur die Kernkomponente
des Betriebssystems, den sog. ,Kernel“. Zu dem Linux-Betriebssystem gehtren neben
dem Kernel selbst noch die System- und Anwendersoftware. Diese zusétzliche Softwa-
re, vereint mit dem Kernel und der entsprechenden Installationsroutine, wird zu einer
sogenannten Distribution zusammengefasst. Zumindest bei einigen kommerziellen Dis-
tributionen gehoren die Handbiicher und andere Dokumentation zum Lieferumfang. Zu
den bekanntesten Distributionen zéhlen unter anderen Debian, mit seinen Abkémmlin-
gen Knoppix und Ubuntu, Red Hat, Fedora, OpenSUSE, Mandriva und Gentoo.

Linux ist ein Unix-dhnliches Betriebssystem. Im Gegensatz zu den proprietiren Unix-
Systemen ist der vollstandige Quellcode verfiighar und darf frei verdndert und kopiert
werden. Die Unix-Entwicklung startete 1965 und wurde von MIT, BELL und General
Electric vorangetrieben. Das neue Betriebssystem war fiir ein Einsatz an damaligem
Grossrechner MULTICS vorgesehen. Die urspringlichen Unix-Programme wurden alle
in Assembler geschrieben. Im Laufe der Zeit spalteten sich mehrere Gruppen ab und
verfolgten eigene Ziele, meistens bedingt durch den Wechsel auf andere Zielplattformen.
Die Programmierung in Assembler war sehr aufwendig und somit wurden eigens fiir die
Entwicklung des Betriebssystems neue Programmiersprachen entwickelt. Die erste neue
Programmiersprache war ,B“, die stark durch die BCPL (Basic Combined Programing
Language) beeinflusst wurde. Der Plattformwechsel im Jahre 1971 erforderte eine neue,
diesmal eine byteorientierte Programmiersprache. Dennis Ritchie entwickelt die ,,C“-
Programmiersprache. Diese Sprache zeichnet sich durch die Systemndhe aus und sie
wird auch noch heute verwendet.

Das Jahr 1973 markiert die Geburt eines Multiuser-Multitasking-Betriebssystems, das
vollsténdig in C geschrieben wurde. Im weiteren Verlauf wurde Unix weiterentwickelt
und wegen der grofien Anzahl von unterschiedlichen Entwicklerfirmen auf unterschied-
liche Plattformen portiert. Durch die Vergabe von Quellcode-Lizenzen an Universitdten
konnte zudem das Unix-Derivat BSD (Berkeley Software Distribution) entwickelt wer-
den. BSD zeichnet sich durch die Implementierung und Integration des TCP/IP Stacks
und der Berkeley Socket API (Application Programming Interface) aus. Dadurch wurden
Standards geschaffen und umgesetzt, die bis heute ihre Giiltigkeit besitzen und ange-
wendet werden.

Die Entstehungsgeschichte des Linux Betriebssystemkerns ist eng mit dem Namen Li-
nus Torvalds verbunden. Im Frithjahr 1991 begann er mit der Entwicklung seines eigenen

PCle Treiber fiir ein Linux-System IPVS/PaS

Betriebssystems. Er veroffentlichte seine erste Entwicklerversion am 17.09.1991 und lud
interessierte Entwickler zur Mitarbeit ein. Zuerst wollte Linus Torvalds die kommerzi-
elle Benutzung verbieten, aber erst die Lizenzierung des Linux-Kernels unter der GNU
(GNU’s Not Unix) GPL (General Public License) ermdglichte weite Verbreitung, auch
im kommerziellen Bereich.

Die GNU General Public License wurde 1982 von Richard Stallman erarbeitet. Eben-
falls in diesem Jahr griindete er ein GNU-Projekt mit dem Ziel ein komplett freies
Betriebssystem zu entwickeln. Dadurch wollte er der Weitergabe der Software in bi-
nédrer Form entgegenwirken. Sein Projekt ergab eine grofle Fiille an Programmen, die
flir ein komplettes Betriebssystem notwendig sind. Die Entwicklung des dazugehdrigen
Betriebssystemkerns, des Kernel war aber noch nicht ausreichend voran geschritten. Das
Betriebssystem basiert heute auf dem Linux-Kernel. Die Linux-Systeme wiederum be-
nutzen fiir die wichtigsten Systemkomponenten und die Userspace-Software die GNU
lizenzierte Programme.

Mit der 1998 erschienenen Kernel-Version 2.2 unterstiitzte das Betriebssystem mehrere
Prozessoren. Mit den neuen Versionen 2.4 und 2.6 wurden immer mehr neue Features
eingebaut.

e Unterstiitzung grofer Arbeitsspeicher (bis zu 64 GByte)

Unterstiitzung fir Plug-and-Play-Geréte

e SATA-Unterstiitzung

Bluetooth-Unterstiitzung

Zahlreiche neue Dateisysteme (ReiserF'S, Ext4, JES)
e bessere Scheduler

Nachteilig ist, dass mit den grofleren Versionspriingen die Schnittstellen des Kernels sich
zum Teil erheblich verdndern. Viele Treiber miissen daraufthin angepasst werden und
manchmal ist es sogar einfacher sie stattdessen neu zu entwickeln.

Auch noch heute leitet und iiberwacht Linus Torvalds die Entwicklung des Kernels.
Die gemachten Veranderungen, meistens Verbesserungen, am Kernel werden an die ver-
antwortlichen Kernel-Entwickler weitergereicht. Die hochqualitativen Anpassungen und
von solchen nur die, die Linus Torvalds zusagen, werden dann von ihm in den offiziellen
Kernel iibernommen.

Fiir jeden Einsatzbereich gibt es entsprechende Linux-Varianten. Die Palette reicht
von Desktop PC iiber die Mobiltelefone und Router bis hin zu den Supercomputern.
Die Verbreitung in den einzelnen Einsatzbereichen ist jedoch unterschiedlich. Die Linux-
Systeme im Servereisatz sind weit verbreitet, in Heimanwender-Bereich spielen sie nur
eine geringe Rolle. Der gute Ruf, kostenfreie Verfiigbarkeit und immer einfachere Hand-
habe tragen dazu bei, dass dieser Heimanwender-Bereich stetig wachst.

Auf dem freien Betriebssystem setzen weitere Grofiprojekte an, wie z.B. KDE, Gnome
und X-Server von X.Org-Projekt. Diese Projekte haben erheblich dazu beigetragen, dass
dieses Betriebssystem fiir die Benutzer einfacher und zugénglicher wurde.

Alexander Henning 6

PCle Treiber fiir ein Linux-System IPVS/PaS

2.2 Kernel

Der Kernel oder Systemkern ist ein zentraler Bestandteil des Betriebssystems und ist
die unterste Softwareschicht. Der Kernel bildet die hardwareabstrahierende Schicht zwi-
schen der Hardware und iibrigen Softwarekomponenten. Da die Hardwarebasis sehr un-
terschiedlich sein kann, muss der Kernel alle Variationen abdecken. Da dies nicht moglich
bzw. sinnvoll ist, muss der Kernel iiber Mechanismen verfiigen, die eine Einbindung ex-
terner Module erlaubt. Der Systemkern bietet definierte Schnittstellen sowohl fiir die
Treiber als auch fiir die Software des Benutzers, die unabhéngig von der Rechnerarchi-
tektur ist. Die grundlegenden Aufgaben des Kernels sind:

e Kontrolle tiber die vorhandenen Ressourcen wie CPU, Speicher, Geréte.
e Zuteilung der Ressourcen an die Anwenderprogrammen, z.B. die Rechenzeit.
e Bereitstellung einer Softwareschnittstelle fiir die Anwenderprogramme.

e Hierarchische Strukturierung der Ressourcen, z.B. Dateisysteme, Netzwerkproto-
kolle.

e Arbitrierung von Zugriffskonflikten und Bereitstellung von Warteschlangen bei
knappen Ressourcen.

e Uberwachung von Zugriffsrechten auf Dateien und Gerite bei Mehrbenutzersyste-
men.

e Speicher- und Prozessverwaltung.
e Virtualisierung: Verbergen der Komplexitit der Maschine vor dem Anwender.
Der Kernel selber ist in Schichten aufgebaut. Das Schichtenmodell sieht vor, dass es
eine unterste Schicht gibt, hier z.B. die Hardwareabstraktionsschicht. Die hoher liegenden

Schichten bauen auf den Funktionalitdten der jeweils unter ihnen liegenden Schichten
auf. Die Unterteilung in Schichten erfolgt z.B. nach den Funktionalitdten oder Aufgaben.

Nach dem Umfang der im Kernel enthaltenen Schichten unterscheidet man zwischen
drei verschiedenen Kerneltypen:

1. Monolithischer Kernel, alle Funktionen sind in dem Systemkern implementiert.

2. Mikrokernel, nur die grundlegenden Funktionen sind im Systemkern integriert. Die
restlichen Funktionen werden in getrennten Prozessen ausgefiihrt.

3. Hybridkernel, ist eine Mischung von monolithischem Kernel und dem Mikrokernel.

Alexander Henning 7

PClIe Treiber fiir ein Linux-System IPVS/PaS

Anwender Anwendungen
Y
Benutzer-
Modus
Anwendungs- UNIX- || Gerate- | Datei-
Betriebs- IPC Server || Treiber || system
system
A
. - . Kernel-
Basic IPC, Virtual Memory, Scheduling Modus
Hardware

Abbildung 2.1: Mikrokernel Betriebssysteme

2.2.1 Mikrokernel

Bei einem Betriebssystem mit einem Mikrokernel werden nur die grundlegendsten Funk-
tionen im Kernel implementiert. Alle anderen Teile des Betriebssystems laufen als ge-
trennte Prozesse im Benutzer-Modus und sie stehen somit den Benutzerprogrammen
zur Verfiigung, oder sie werden als Programmbibliothek in die Benutzerprogramme mit
eingebunden. Die Eigenschaft des Mikrokernels, die Teile des Betriebssystem auslagern
zu konnen, begiinstigt die Entwicklung von verteilten Betriebssystemen. Ein Nachteil
der auf dem Mikrokernel basierten Betriebssystemen ist, dass ein Kontextwechsel 6fter
als bei anderen Betriebssystemen erfolgt, da die Teile des Betriebssystems als eigenstan-
dige Prozesse laufen. Die verschiedenen Teile des Betriebssystems kénnen zur Laufzeit,
z.B. wegen eines Absturzes, neu gestartet oder ganzlich ausgetauscht werden. Der Ab-
sturz einer einzelnen Komponente bedeutet nicht zwangsldufig den Absturz des ganzen
Systems. Neben der schwer zu optimierenden Koordination der Kernel-Prozesse ist die
Minimierung der mehrfachen Kopiervorgéinge bei den Kontextwechseln eine der grofien
Herausforderungen beim Mikrokernel-Design.

Die Abbildung 2.1 stellt die Struktur der auf dem Mikrokernel basierten Betriebssys-
temen dar. Solche Systeme besitzen eine grofie Verbreitung in den Anwendungsbereichen
mit hohen Anforderungen an die Robustheit, Sicherheit und Zuverléssigkeit, wie z.B. bei
Militér, Luft- und Raumfahrt oder Automatisierungs- und Medizintechnik. Die promi-
nentesten Vertreter der Mikrokernelsysteme sind: GNU/Hurd, L4Linux, Minix, QNX,
Singularity.

Alexander Henning 8

PClIe Treiber fiir ein Linux-System IPVS/PaS

Anwender Anwendungen
Y Benutzer-
Modus
; UNIX-
Dat t
ateisystem Server
A \ A
Betriebs-
system Anwendungs- Gerate-
IPC Treiber
Kernel-
Modus
Basic IPC, Virtual Memory, Scheduling

Hardware

Abbildung 2.2: Hybridkernel Betriebssysteme

2.2.2 Hybridkernel

Ein Hybridkernel ist eine Mischung aus den Eigenschaften von Mikrokernel und einem
monolithischen Kernel. Dabei werden einige zusétzliche Teile des monolithischen Ker-
nels in den Kern mit aufgenommen, und dadurch ist es kein Mikrokernel mehr, jedoch
auch noch kein vollwertiger monolithischer Kernel. Durch die Aufnahme der ausgewéahl-
ten Funktionen in den Kernel, wie z.B. Grafiktreiber, erzielt man eine Steigerung der
Leistungsfdhigkeit bei der Darstellung von graphischen Elementen.

Jedes Betriebssystem, dass auf dem Hybridkernel aufgebaut ist, kann unterschiedliche
Teilfunktionen im Kernel implementiert haben.

Die Aufnahme zusétzlicher Betriebssystemfunktionen in den Kernel bildet einen Vor-
teil gegentiber dem Mikrokernel, weil dadurch die Anzahl der Kontextwechsel reduziert
wird und somit die Interprozesskommunikation vereinfacht wird. Diese Mafinahmen stei-
gern die Geschwindigkeit des Kernels. Dieser Vorteil des Hybridkernels gegeniiber dem
Mikrokernel bringt gleichzeitig auch einen Nachteil mit sich. Dieser Nachteil duflert sich
durch die Steigerung der Fehleranfilligkeit des gesamten Systems. Diese Fehleranfillig-
keit ist geringer als bei einem monolithischen Kernel. Der Hybridkernel vereint nicht nur
die Vorteile der beiden anderen Kernelarten, sondern auch deren Nachteile.

Die Abbildung 2.2 stellt eine mogliche Struktur des Hybridkernels dar. Die typischen
Vertreter der Betriebssysteme mit dem Hybridkernel sind: alle auf Windows N'T basierten
Systeme sowie BeOS, MacOS X.

Alexander Henning 9

PClIe Treiber fiir ein Linux-System IPVS/PaS

Benutzer-
Anwender Anwendungen Modus
y
\
VFS, System-Aufrufe
IPC, Dateisystem
Betriebs- Kernel-
system Modus
Scheduler, Virtual Memory
Gerate-Treiber, Dispatcher, ...

Hardware

Abbildung 2.3: Betriebssysteme mit dem monolithischen Kernel

2.2.3 Monolithischer Kernel

Der monolithische Kernel ist die Kernelart, mit der die Entwicklung von Betriebssyste-
men began. Gegeniiber anderen bereits erwihnten Kernelarten, besitzt der monolithische
Kernel ein einfacheres Design. In einem monolithischen Kernel sind alle Funktionen und
die Treiber fiir die Hardwarekomponenten direkt eingebaut. Monolithische Kernel stellen
mit sich einen einzelnen Prozess dar, der in einem Adressraum ablauft. Der Kernel ist
somit ein statisches Programm. Die ganzen Funktionen und die Kernel-Dienste laufen al-
le in einem grofien Kernel-Adressbereich. Die Interprozesskommunikation innerhalb des
Kernels lésst sich wegen des gemeinsamen Adressraums leicht implementieren, wobei die
Funktionen im Kernel direkt aufgerufen werden koénnen. Die erforderlichen Treiber fir
die Hardware miissen in dem Kernel enthalten sein. Im Vergleich zu den anderen Ker-
nelarten erzielt man hierdurch einen Geschwindigkeitsvorteil, wenn die Treiber nicht als
eigenstédndige Programme laufen.

Dadurch, dass alle Kernel-Dienste und die Treiber fiir die Hardware in einem Adress-
bereich laufen, sind monolithische Kernel fehleranfélliger. Es besteht eine grofie Gefahr,
dass z.B. ein abgestiirzter Kernel-Dienst das gesamte System abstiirzen lasst.

Der Abbildung 2.3 kann man die Struktur des Betriebssystems entnehmen, das auf ei-
nem monolithischen Kernel aufbaut. Einige der Betriebssysteme, die auf monolithischen
Kernel aufbauen, sind: MS-DOS (Microsoft Disk Operating System), Unix, BSD, OS/2.

Alexander Henning 10

PCle Treiber fiir ein Linux-System

IPVS/PaS

Anwender Anwendungen
y
\
VFS, System-Aufrufe
; Prozess- ; _
Betriebs- management, mggglcgrﬁzant I/O-Subsystem
system Scheduler 9

Gerate-Treiber, Dispatcher

Hardware

Abbildung 2.4: Linux Betriebssystem

2.3 Linux-Kernel

Benutzer-
Modus

Kernel-
Modus

Der Linux-Kernel ist selbst ein monolithischer Betriebssystemkern. Er wird in einem
Adressbereich im Kernel-Modus ausgefiihrt. Die Linux-Entwickler waren sich der mit
dem monolithischen Kernel verbundenen Nachteilen bewusst und haben mehrere gu-
te Ansétze des Mikrokernels umgesetzt. Der Linux-Kernel ist modular aufgebaut, un-
terstiitzt die Kernel-Threads, unterstiitzt pridemptives Multitasking, selbst fiir Kernel
Tasks, und bietet ein Interface mit dessen Hilfe man dynamisch zusétzliche Kernel-

Module laden und entladen kann.

Die Abbildung 2.4 stellt die wesentlichen Komponenten des Betriebssystems Linux

dar.

Prozessverwaltung

Speicherverwaltung

I/O-Subsystem

o Gerate-Treiber

Interface fiir die System-Aufrufe

Diese Komponenten werden nachfolgend néher vorgestellt.

Alexander Henning

11

PCle Treiber fiir ein Linux-System IPVS/PaS

2.3.1 Interface fiir die System-Aufrufe

Alle Anwendungen, die im Benutzer-Modus ausgefiihrt werden und die vom Betriebs-
system zur Verfiigung gestellten Dienste in Anspruch nehmen, miissen das Interface
fiir die System-Aufrufe benutzen. Diese Schnittstelle wird iiber die Software-Interrupts
realisiert. So kann die Anwendung auf die Dateien zugreifen oder z.B. die Rechte des
Benutzers priifen. Die Anwendungen, die Software-Interrupts auslésen, miissen iiber die
iibergebenen Parameter die zur Ausfithrung notwendige Information bereitstellen. Nach
der Auslésung eines Interrupts fithrt dann der Kernel die entsprechende Interrupt-Ser-
vice-Routine durch und gibt der Anwendung einen Riickgabewert zuriick.

Die meisten Anwendungen werden von den Entwicklern mit Hilfe von Hochsprachen
programmiert. In den Anwendungen werden z.B. die Funktionen aus den Bibliotheken
benutzt. In solchen Funktionen werden dann die eigentlichen Systemcalls aufgerufen. Es
ist aber auch moglich, dass die Entwickler die System-Aufrufe direkt aus der Anwendung
einsetzen konnen.

Beim Ausfiihren einer Anwendung muss neben dem eigentlichen Code der Anwendung
noch der Code der verwendeten Bibliotheken und der Kernelcode ausgefiihrt werden. Der
Kernelcode wird z.B. ausgefiihrt, wenn die eingesetzte Bibliothek System-Aufrufe tétigt.
Dabei 16sen die System-Aufrufe Software-Interrupts aus, die vom Kernel abgearbeitet
werden miissen.

Im Linuxkernel (2.6) sind rund 300 System-Aufrufe realisiert, die man alle in der Datei
<asm/unistd.h> der Kernel-Sources nachschlagen kann.

Listing 2.1: Ausschnitt aus 1inux/arch/x86/include/asm/unistd_32.h
#define __ NR_ restart_syscall 0

#define NR_ exit 1
#define _ NR_fork 2
#define _ NR read 3
#define _ NR_ write 4
#define _ NR open 5
#define _ NR_ close 6

Der System-Aufruf mit der Nummer 1 beendet einen Rechenprozess. Mit dem System-
Aufruf fork, dem Aufruf mit der Nummer 2, erzeugt man einen neuen Rechenprozess.
System-Aufruf mit der Nummer 3 wird z.B. aufgerufen, wenn die Daten aus den Dateien
oder von den Geréten gelesen werden sollen.

2.3.2 Prozessverwaltung

Ein weiterer Teil des Kernels ist die Prozessverwaltung. Die Prozessverwaltung tragt
unter anderem dazu bei, dass mehrere Rechenrozesse quasi parallel auf einem Einprozes-
sorsystem abgearbeitet werden kénnen. Bei Systemen mit mehreren Prozessoren werden
die auszufithrenden Prozesse auf diese verteilt. Fiir den Kernel sind die Applikationen
einfache Rechenprozesse. Jeder Rechenprozess besteht aus dem Codesegment und dem
Datensegment. Beim Anlegen eines neuen Prozesses belegt das Betriebssystem mindes-

Alexander Henning 12

PCle Treiber fiir ein Linux-System IPVS/PaS

tens drei Speicherbldcke: fiir ausfithrbaren Code, fiir Daten und zuletzt fiir den Stack. Die
Prozessverwaltung ist in der Lage den mehrfachen Verbrauch an Speicher zu vermeiden,
wenn es z.B. mehrere Prozesse gibt, die den gleichen Code-Block verwenden.

Linux ist ein Multitasking-Betriebssystem. Seit der Kernel-Version 2.6 beherrscht Li-
nux nicht nur praemptives Multitasking sondern auch praemptibles Multitasking. Beim
praemptiven Multitasking stellt das Betriebssystem jedem lauffihigen Prozess nur einen
Zeitschlitz zur Abarbeitung bereit. Nach Ablauf der zugewiesenen Zeit unterbricht der
Kern den laufenden Prozess und startet den néchsten lauffihigen Rechenprozess. Weil
die Zeitabschnitte sehr kurz sind, entsteht der Eindruck, dass die Programme parallel ab-
laufen. Die Wahl des néchsten rechenbereiten Prozesses erfolgt durch einen Scheduling-
Algorithmus. Der Kernel verwaltet dazu zwei Listen:

e Liste der lauffihigen Prozesse: In dieser Liste stehen alle ablauffihigen Prozesse,
die bei freien Prozessoren sofort abgearbeitet werden kénnen. Dabei besteht kein
Bedarf an weiteren Ressourcen. Wenn vor dem Ablauf der zugewiesenen Laufzeit
der Prozess noch nicht fertig mit den Berechnungen ist, dann wird er wieder in
die Liste der lauffihigen Prozesse eingetragen. Der Scheduler wéhlt den néchsten
Prozess aus dieser Liste.

e Liste der ,schlafenden” Prozesse: In diese Liste werden alle Prozesse eingetragen,
die z.B. auf die Daten aus dem Speicher warten, oder auf die langsame Peripherie
angewiesen sind, und damit nicht lauffadhig sind. Wenn die von dem Prozess ange-
forderte Ressource irgendwann zur Verfiigung steht, dann wird der entsprechende
Rechenprozess aus der Liste der ,,schlafenden* Prozesse in die Liste der lauffahigen
Prozesse verschoben. Der verschobene Prozess wird aber unter Umsténden nicht
sofort ausgefiihrt, sondern erst dann, wenn der Scheduler ihn aussucht.

Der Scheduler und die Speicherverwaltung sind die kritischsten Teile des Kernels.
Deren Entwurf und die Implementierung beeinflussen die Entwicklung anderer Teile des
Betriebssystems und damit die gesamte Leistungsfahigkeit des Systems.

Der Scheduler berechnet die Prioritdten aller Prozesse auf einmal. Die Berechnung der
Prioritdten und damit die neue Positionierung der Prozesse wird erst dann ausgefiihrt,
wenn alle Prozesse auf der Liste der lauffihigen Prozessen ihr Pensum an Rechenzeit
verbraucht haben. Im Vergleich dazu haben frithere Versionen von Linux und <ere
Unix-Versionen die Neupositionierung der Prozesse nach jeder abgelaufenen Zeitscheibe
berechnet. Der Scheduler fiithrt die Statistik iiber die Rechenzeit und kann den Prozessen
mit der groflen Laufzeit gegeniiber den Prozessen mit sehr geringen Laufzeit die Priori-
tdten anpassen. Scheduler von Linux und Unix bevorzugen bei der Auswahl des nédchsten
abzuarbeitenden Prozesses interaktive! vor rechenintensiven Prozessen. Es wird versucht,
dass die Reaktionszeit der Anwendungen auf die Benutzereingaben im Bereich zwischen
50 und 150 ms liegt. Der Scheduler ist in der Datei <kernel/sched.c> implementiert.

Die Prozesse in Linux-Kernel werden durch die sogenannten Prozess-Kontrollblocke
PCB (Process Control Block) repréisentiert. Der Prozess-Kontrollblock ist mit Hilfe der

'Prozesse, die sich in der Interaktion mit dem Benutzer befinden, wie z.B. Prozesse fiir die Tastatur-
und die Mauseingaben.

Alexander Henning 13

PCle Treiber fiir ein Linux-System IPVS/PaS

Task-Struktur struct task_struct in der Datei <linux/sched.h> definiert. Die Kon-
trollblocke beinhalten eine Reihe von Informationen, die der Scheduler speichern muss,
wenn die Prozesse unterbrochen werden. Dabei wird der Prozesszustand, die Prozessiden-
tifikationsnummer, der Inhalt aller Register der CPU zum Zeitpunkt der Unterbrechung
im PCB gesichert. Der Scheduler speichert hier zusétzlich die Prozessprioritit und die
verbrauchte Rechenzeit.

In Linux existiert eine Prozesshierarchie, d.h. es gibt einen aller ersten Prozess und
alle weiteren Prozesse sind die Kinder von den jeweiligen Elternprozessen. Die Wurzel
aller Prozesse in dem Hierarchiebaum ist der beim Systemstart erzeugte init-Prozess.
Das ist der einzige Prozess, der keinen Elternprozess besitzt. Weil die Prozesse iiber die
Eltern-Kind Beziehung miteinander verkniipft sind, ist es unter anderem moglich, dass
das Beenden der Prozesse auf die moglichen Fehler hin iiberpriift werden kann.

Die Prozesse in Linux kénnen sich in acht Zustédnden befinden.

e aktiv: Der Prozess ist in diesem Zustand nur dann, wenn er gerade abgearbeitet
wird.

e lauffihig: Die Prozesse sind in diesem Zustand, wenn sie nur auf die Ressource
CPU warten, d.h. Prozess ist bereit und wartet auf die Prozessorzuteilung.

e ruhend/terminiert: Die Prozesse befinden sich in diesem Zustand, entweder bevor
sie gestartet und damit lauffahig werden oder nachdem sie beendet wurden.

e zombie: Nach dem Beenden eines Rechenprozesses geht dieser nicht sofort in den
Zustand ruhend/terminiert, sondern er kommt in den Zustand zombi und bleibt
in diesem, solange der Elternprozess, der den beendeten Prozess erzeugt hat, den
beim Betriebssystem gespeicherten Exitcode nicht abholt. Der Exitcode wird in
dem entsprechenden PCB gespeichert. Erst nach dem der Elternprozess den Exit-
code abgeholt hat, geht der beendete Prozess in den Zustand ruhend/terminiert
iiber.

e unterbrechbar wartend: Die Rechenprozesse konnen ihren Verlauf iiber die Signa-
le gegenseitig beeinflussen. Der wartende Prozess kann z.B. von einem anderen
Prozess iiber den System-Aufruf in den Zustand laufféhig versetzt werden.

e nicht unterbrechbar wartend: Prozesse, die sich in diesem Zustand befinden, war-
ten auf eine Ressource, die noch nicht frei ist. Im Unterschied zu dem Zustand
unterbrechbar wartend kann die notwendige Ressource nicht von einem weite-
ren Prozess zur Verfligung gestellt werden.

e TASK STOPPED: Dieser Zustand wird fiir das Debugging und Systemcal-Tracing
bendtigt.

e TASK TRACED: Dieser Zustand wird fiir das Debugging und Systemcal-Tracing
benotigt.

Alexander Henning 14

PCle Treiber fiir ein Linux-System IPVS/PaS

2.3.3 Speicherverwaltung

Die Speicherverwaltung ist eine weitere Komponente des Betriebssystems Linux. Das
Betriebssystem weist jeder Anwendung ihren eigenen Adressraum zu. Dafiir muss das
Betriebssystem den Speicher virtualisieren. Somit ist es den Anwendungen nicht moglich
bzw. nicht erlaubt direkt auf die physikalischen Adressen des Hauptspeichers zuzugrei-
fen. Die Speicherverwaltung iibernimmt die Ubersetzung der virtuellen Adressen in die
physikalischen Adressen. Diese Umrechnung funktioniert nur fiir die Task, die sich im
Zustand aktiv befindet.

Die Speicherverwaltung wird durch das sogenannte Paging erleichtert. Dabei wird
der Arbeitsspeicher in gleich grofie Seiten unterteilt. Bei der Ubersetzung der virtuellen
Adresse in die physikalische muss nicht jede Adresse einzeln iibersetzt werden, sondern
es muss lediglich festgestellt werden zu welcher Seite die Adresse gehort und zu welcher
physikalischen Seite die virtuelle Seite verkniipft ist. Diese Seiten sind z.B. bei den x86
Systemen 4 kB grof. Eine Seite definiert also einen Adressbereich, der 4 kB Speicher
adressiert. Die Zuordnung der Seiten zu den physikalischen Seiten erfolgt meistens so,
dass keine Fragmentierung stattfindet. Eine interne Fragmentierung des Speichers ist
aber nach wie vor moglich, wenn die Seite selbst z.B. nicht vollstdndig mit Daten gefiillt
wird.

Die Aufteilung des Arbeitsspeichers auf die Seiten und der Verzicht auf die Behand-
lung einzelner Adressen erleichtert das sogenannte Swapping. Bei diesem Verfahren kann
der Kernel bestimmte Seiten aus dem Arbeitsspeicher auf die Festplatte auslagern. Die
Auslagerung der bestimmten Seiten erfolgt z.B. dann, wenn der freie Platz des Speichers
erschopft ist. Die Auslagerungs-Algorithmen miissen sich auf der Ebene der Seiten be-
wegen und sie miissen sich nicht um die einzelnen Adressen kiimmern. Das Swapping
war besonders wichtig, als der Speicher eine knappe Ressource darstellte.

Der Kernel verwaltet den virtuellen Speicher, d.h. jeder Prozess besitzt einen eigenen
Speicherbereich und kann bei Bedarf benétigten Speicher anfordern. Die Zuordnung
der virtuellen Seiten zu den physikalischen erfolgt durch die sogenannte Pagetable. Die
Pagetable enthélt neben der Zuordnung der Seiten noch weiter Informationen, z.B. wann
der letzte Zugriff stattfand, ob die Seite ausgelagert ist oder ob sie verdndert wurde.

Die beschriebene Speicherverwaltung mit Swapping und Paging ist auf die hardware-
seitige Unterstiitzung angewiesen. Die Adressiibersetzung erfolgt mit Hilfe der Memory
Management Unit. Wenn der Prozess auf eine Speicheradresse zugreift, die keine Abbil-
dung auf die entsprechende physikalische Adresse in der Pagetable besitzt, so 16st die
MMU einen Page Fault Interrupt aus und die Prozessausfithrung wird angehalten. Die
Interrupt Service Routine des Betriebssystems lddt die betroffene Seite, falls sie vorher
ausgelagert wurde, von der Festplatte in RAM und aktualisiert die Seitentabelle. Da-
nach wird der Page Fault verursachende Befehl des Prozesses wiederholt und diesmal
kann die MMU die geforderte Adresse auflésen. In den Féllen, in denen die Interrupt Be-
handlungsroutine merkt, dass die angeforderte virtuelle Adresse keiner entsprechenden
physikalischen Seite zugeordnet werden kann, wird der Prozess mit einem Speicherzu-
griffsfehler beendet.

Die Adressrdume aller Prozesse sehen gleich aus. Bei den Systemen mit der 32-Bit-

Alexander Henning 15

PCle Treiber fiir ein Linux-System IPVS/PaS

Architektur steht jedem Prozess einen 4 GB grofien Adressraum zur Verfiigung. In die-
sem Adressraum muss der Code und die Daten des Prozesses Platz befinden. Zusétzlich
wird ein besonderer Bereich fiir das Betriebssystem reserviert. Zu jedem Prozess gehort
ein sogenannter Stack. Der Stack wird bei den Funktionsaufrufen gebraucht um z.B. die
Ubergabeparameter an die Funktionen zu speichern. Die Threads, die in einem Prozess
laufen, miissen jeweils ihre eigenen Stacks haben, die sich ebenfalls alle im Adressraum
des Prozesses befinden miissen. Linux beansprucht das oberste Gigabyte Platz im Adress-
raum jedes Prozesses fiir sich. Der Grund fiir die Einrichtung eines speziellen Bereichs fiir
das Betriebssystem im Adressraum eines Prozesses ist die Interrupt-Behandlung. Wenn
der Interrupt auftritt, so geht der Kernel in den Ausfiihrungsmodus Ring 0 und beginnt
sofort mit der Abarbeitung der Interrupt Service Routine. Damit dies geschieht, muss
sich die Startadresse der Routine bei jedem Prozess an der gleichen Stelle befinden.

Der Bereich fiir das Betriebssystem ist geschiitzt und ist aus dem Usermode weder
lesbar noch schreibbar. Obwohl es in jedem virtuellen Adressraum den Kernelbereich
gibt, verweisen alle diese virtuellen Seiten auf dieselben physikalischen Seiten.

2.3.4 1/0O-Subsystem

Das I/O-Subsystem, auch I/O-Management genannt, ist eine weitere Komponente des
Betriebssystems. Der gesamte Datenaustausch zwischen den Programmen und den Geré-
ten wird {iber dieses Subsystem durchgefiihrt. Dieses System sollte einerseits einheitliche
Schnittstellen zur Einbindung der Hardware an das Betriebssystem bieten und anderer-
seits eine weitere einheitliche Programmierschnittstelle fiir die Anwendungen zum Zugriff
auf die Peripherie zur Verfiigung stellen.

In Linux (und Unix) unterscheidet man traditionell zwischen zwei Arten von Geréten.
Die zeichenorientierten Gerate, auch ,,Character-Devices* genannt, und die blockorien-
tierten Geréte, die sogenannten ,Block-Devices®, die ihre jeweiligen Schnittstellen zur
systemkonformen Anbindung an das System erfordern. Die zeichenorientierten Geréte
verarbeiten oder liefern ihre Daten zeichenweise. Den gesamten Datenaustausch kann
man sich als eine Art Datenstrom vorstellen. Dabei kommen die Zeichen der Reihe nach
einzeln hintereinander und ein Springen innerhalb dieses Streams ist normalerweise nicht
moglich. Dadurch, dass der wahlfreie Zugriff auf die Daten nicht moglich ist, kann man
die Reihenfolge der verfiigharen Daten nicht beeinflussen. Die typischen zeichenorien-
tierten Geréte sind z.B. die Maus und die Tastatur.

Die blockorientierten Geréte sind in der Lage, im Vergleich zu den zeichenorientierten
Geréten, ihre Daten blockweise zu verarbeiten, zu empfangen oder zu senden. Die Daten-
iibertragung z.B. zwischen dem System und dem Gerét kann in einem kontinuierlichen
Strom erfolgen. Die Reihenfolge der Daten kann jedoch zumindest blockweise beliebig
sein. Die typischen blockorientierten Gerédte sind z.B. Disketten-, CDROM-Laufwerke
oder Festplatten.

Mittlerweile gibt es sehr viel mehr verschiedene Geréte, die sich nicht mehr eindeutig
zu den zeichenorientierten bzw. zu den blockorientierten Geréten zuordnen lassen. Mo-
derne Multimedia-Peripherie trug dazu bei, dass weitere Schnittstellen zu dem Kernel
hinzugefiigt wurden. Neben den Subsystemen, die speziell fiir die Integration von z.B.

Alexander Henning 16

PCle Treiber fiir ein Linux-System IPVS/PaS

Soundkarten, Grafikkarten oder Netzwerkkarten implementiert wurden, gibt es Subsys-
teme, die nicht fiir die bestimmten Gerdtetypen implementiert sind, sondern fiir die
Art der Anbindung dieser Gerite. Es gibt z.B. ein PCI (Peripheral Component Inter-
connect) -Subsystem, USB (Universal Serial Bus) -Subsystem, SCSI (Small Computer
System Interface) -Subsystem usw.

Die oben beschriebenen Schnittstellen dienen innerhalb des I/O-Managements der sys-
temkonformen Integration der Hardware. Die Aufgabe der einheitlichen Programmier-
schnittstelle der I/O-Verwaltung ist die Abbildung jeglicher Hardware auf die speziellen
Dateien. Das Betriebssystem erzeugt die Geratedateien, die die vorhandene Hardware re-
prasentieren. Die Anwendungen koénnen iiber die normalen Dateizugriffsoperationen auf
die Hardwarekomponenten zugreifen. Die tatsdchlichen Zugriffe, sowohl auf die norma-
len Dateien als auch auf die Gerétedateien, sind innerhalb der I/O-Verwaltung realisiert.
Mit der Einfithrung weiterer Geréateklassen wurde die Programmierschnittstelle um die
eigenen Zugriffsfunktionen fiir die Multimediageréte erweitert.

2.3.5 Gerate-Treiber

Gerétetreiber sind die Software-Komponenten, die den Anwendungen die Funktionali-
taten aller Geréte zur Verfiigung stellen. Die Funktionalitdten der Gerédte werden von
den Treibern iiber die definierten Schnittstellen fiir die Anwendungen nutzbar gemacht.
Fast alle Geréte, mit der Ausnahme von Prozessor, Speicher und wenigen anderen Kom-
ponenten, bediirfen Einstellungs- und Steuerungssoftware, die Treiber. Der Kernel muss
die Treiber fiir die vorhandenen Hardwarekomponenten, die verwendet werden sollen, in
sich eingebettet haben.

Dabei gibt es eine Fiille an unterschiedlichsten Geréten, die iiber die Treiber in das
System integriert werden, wie z.B. die systemnahen Tastaturen, Bildschirme, Netzwerk-
karten und im Allgemeinen die Drucker, Bandlaufwerke, Scanner, Erweiterungskarten.

Wie bereits im Kapitel 2.3.4 dargestellt wurde, konnen die zahlreichen Hardwarekom-
ponenten iiber die speziellen Bussysteme mit dem Betriebssystem verbunden werden.
Deswegen gibt es die unterschiedlichen Schnittstellen fir die Treiber zu den entsprechen-
den Treiber-Subsystemen, die von dem Betriebssystem zur Verfiigung gestellt werden.
Nach der Art der Anbindung oder nach den anderen Eigenschaften unterscheidet man
unter Anderen zwischen den folgenden Subsystemen.

e Character-Devices
e Block-Devices

e Netzwerk

e USB

e SCSI

e FireWire

e Bluetooth

Alexander Henning 17

PCle Treiber fiir ein Linux-System IPVS/PaS

e PCI/PCle
e Cardbus und PCMCIA

Die breite Palette an den moglichen Hardwarekomponenten, die moglichst leicht und
gleichzeitig auf die universelle Art und Weise in das System integriert werden sol-
len, brachte die Erweiterung der Standard-API (Standard-Programmierschnittstelle) mit
sich. Die zuséatzlichen Applikationsschnittstellen sind:

e Standard-API (mit open, close, read, write und ioctl)

e Multimedia-Schnittstellen (z.B. Video4Linux, die oft von Webcams verwendet wird)
e Kommunikationsschnittstellen

e Card-Services

Der Linux-Kernel ist ein monolithischer Kernel. Das bedeutet, dass alle notwendigen
Treiber als Teil des Kernels vorhanden sein miissen. Bei den monolithischen Kerneln muss
der gesamte Kernel neu generiert werden, wenn ein neuer Treiber hinzugefiigt werden
soll. Die Linux-Entwickler haben eine Moglichkeit geschaffen die Treiber als Module zum
laufenden Kernel hinzu zu laden. Im Vergleich zu den fest eingebauten Treibern kénnen
die als Modul ausgefithrten Treiber ohne der neuen Generierung des Kernels und ohne
den Neustart des Systems zum Kernel hinzugefiigt und wieder entfernt werden. Diese
Féhigkeiten erleichtern das Entwickeln und das Testen der neuen Treiber erheblich. Ein
weiterer Vorteil der Modularisierung der Treiber ist die erhdhte Robustheit des ganzen
Systems. Zum Beispiel der Absturz eines als Modul geladenen Treibers wird meist nicht
zum Absturz des gesamten Systems fiihren und ein entsprechendes Fehlverhalten kann
durch das erneute Laden des Treibers behoben werden.

Die Treiber als Module erleichtern den Benutzern die Verwendung von gewiinschten
Geraten, weil sie den Treiber einfach laden kénnen. Durch die Modul-Treiber entféllt
die Notwendigkeit den gesamten Kernel erneut zu erstellen. Die Benutzer miissen keine
Kenntnisse dariiber besitzen wie sie einen Kernel neu generieren sollen. In der Realitét
spielt dieser Vorteil aber keine grofie Rolle. Es gibt zwei Effekte, die diesem Vorteil
entgegenwirken.

1. Aus der Sicht des Benutzers ist es meistens eine Herausforderung den passen-
den Treiber zuerst zu finden. Viele Hardwarehersteller konzentrieren sich bei der
Vermarktung ihrer Peripherie in erster Linie an die Betriebssysteme, die weite
Verbreitung erfahren haben. Dadurch werden die Treiber in der Regel nicht von
dem Hersteller zur Verfiigung gestellt, sondern sie werden von den Programmierern
auf Grund von zugénglicher Dokumentation erstellt. In solchen Féllen heifit das,
dass die Treiber fiir Linux meistens nicht den vollen Funktionsumfang des Geréts
abdecken und zweitens relativ spéat, wenn iiberhaupt, nach dem Erscheinen des
Geriits verfligbar sind. Mittlerweile gibt es immer mehr Hersteller, die Linux als
Betriebssystem mit den Treibern unterstiitzen.

Alexander Henning 18

PCle Treiber fiir ein Linux-System IPVS/PaS

2. Die Linux-Entwicklung schreitet stetig voran. Das heifit aber auch, dass die spezi-
fischen Funktionen, die die Treiber benutzen, und die Treiber-Schnittstellen selbst,
sich innerhalb des Betriebssystems verdndern. Dadurch kommt es oft vor, dass ein
Kernelmodul, das fiir eine bestimmte Kernel-Version erstellt wurde, nicht mehr
kompatibel zu der vom Benutzer verwendeten Kernel-Version ist. Fiir die Vermei-
dung der Instabilitdt beim Betrieb muss die Kernel-Version genau zu dem Modul-
treiber passen.

Die Open Source Treiber sind mit ihrem Quellcode verfiighar. Damit kann jeder den
Treiber fiir die verwendete Kernel-Version selbst erstellen und damit Inkompatibilitéit
vermeiden. Manche PC Komponentenhersteller, wie z.B. die Grafikchiphersteller Nvidia
oder AMD, bieten ihre Treiber nicht als Open Source Treiber an, um ihr Know-How
nicht preiszugeben.

Den logischen Aufbau von Treibern kann man in drei Schichten unterteilen: High-
Level-Schicht, Kern-Schicht und die Low-Level-Schicht. Die High-Level-Schicht kiimmert
sich, wie z.B. bei den USB Geréten, um die Auswertung und um das Zusammensetzen
von Kommandopaketen, da die Kommunikation zwischen dem Gerédt und dem Treiber
mit Hilfe von Paketen erfolgt. Die Kern-Schicht ist z.B. fiir die Verwaltung der ange-
schlossenen Geréte oder fiir die spezifische Hardwareerkennung zusténdig. Dies ist not-
wendig, wenn z.B. mehrere Gerdte im System vorhanden sind. Die Low-Level-Treiber
fiihren die tatsdchlichen Interaktionen mit der Hardware durch, wie z.B. das Auslesen
und Beschreiben von Registern.

Jeder Linux-Treiber muss einen bestimmten Satz an Funktionen implementiert haben.

1. Funktionen, die die Integration des Treibers in den Kernel ermdoglichen.
2. Funktionen, deren Ausfiihrung von den Anwendungen ausgelost werden.
3. Funktionen, die vom Kernel aufgerufen werden.

Die Integration des Treibers in den Kernel erfolgt mit Hilfe der folgenden Funktionen:
init__module, cleanup__module, probe, remove. Beim Laden des Treibers oder bei dessen
Aktivierung, falls dieser nicht als Modul sondern als fester Bestandteil des Kernels ist,
miissen vom Treiber benotigte Ressourcen reserviert werden oder es muss die Hardware-
erkennung durchgefiithrt werden. Entsprechende Funktionen werden z.B. beim Entladen
des Treibers oder beim Herunterfahren des Systems benotigt, die die belegten Ressourcen
wieder freigeben oder die Hardwarekomponenten in einen definierten Zustand bringen.

Die Anwendungen greifen auf die von Treibern bereitgestellten Funktionalitat tiber
die Funktionen wie open, close, read, write zu. Wenn der Kernel einen Systemaufruf
von einer Anwendung bekommt, die die Dienste des Treibers fordert, dann wird die dem
Systemaufruf entsprechende Funktion des Treibers aufgerufen.

Die Funktionen, die vom Kernel aufgerufen werden, sind z.B. die Interruptbehand-
lungsroutinen. Diese Funktionen werden bei der Treiberinitialisierung beim Kernel ange-
meldet. Dazu gehoren unter Anderen die moglichen Kernel Threads oder die Tasklets. Die
Interruptsbehandlungsroutine muss den Fall beriicksichtigen, dass der evtl. notwendige

Alexander Henning 19

PCle Treiber fiir ein Linux-System IPVS/PaS

Datentransfer zwischen dem Treiber und der Anwendung wahrend dieser Ausfiithrungs-
phase nicht moglich ist, da der Treiber nicht in der Lage ist auf die Speicherbereiche
der Anwendung zuzugreifen. In solchen Fillen setzt der Treiber intern ein Statusbit,
dass ein Interrupt ausgelost wurde. Als erstes, nachdem die Anwendung wieder aktiv
wird, muss sie dieses Bit beim Treiber abfragen und somit einen eventuell notwendigen
Datentransfer einleiten.

Alexander Henning 20

3 PCle - Schnittstelle

In diesem Kapitel wird die PClIe-Architektur vorgestellt und den anderen Ein-/Ausgabebussen
gegeniibergestellt. Es werden die Vorteile und die Schliisselqualifikationen der PCle-
Verbindungen dargestellt. Dariiberhinaus werden detailliert die charakteristischen Merk-
male des PCle-Busses beschrieben. Es wird die Schichtarchitektur der {iber den PCle-

Bus angeschlossenen Teilnehmer mit der jeweils kurzen Funktionsbeschreibung einzelner
Schichten vorgestellt.

3.1 Einfiihrung

PCle stellt mit sich ein Bussystem der dritten Generation dar. Ein Bussystem dient der
Dateniibertragung zwischen mehreren Teilnehmern iiber einen gemeinsamen Ubertra-
gungsweg. PCle wird sowohl zum Anbinden von Peripherie als auch zur Kommunikation
zwischen Endgerirten benutzt. Die Vertreter der ersten Generation sind: ISA (Industry
Standard Architecture), VESA (Video Electronics Standards Association) Local Bus und
Micro Channel. Die Vertreter der zweiten Generation sind: PCI und AGP (Accelerated
Graphics Port).

Der ISA-Bus wurde als ein Teil des IBM-PC Projektes im Jahre 1981 entwickelt.
Urspriinglich handelte es sich dabei um eine einfache Herausfithrung des 8 Bit breiten
Systembusses. Die Erweiterung des Busses auf 16 Bit erfolgte mit der Einfithrung des
neuen Intel 80286 Prozessors. Der Takt des Busses war synchron mit dem der CPU.
Der Bus war fiir die Taktfrequenz von 6 bzw. 8 MHz ausgelegt. Mit der fortschreitenden
Entwicklung der Prozessoren und stetig steigenden Taktfrequenzen wurden Chipsétze
entwickelt, mit deren Hilfe man den ISA-Bus mit der CPU verbinden konnte. Die Ent-
wicklung des PCI-Busses verdriangte den ISA-Bus nahezu vollstdndig. ISA-Busse werden
auch noch heute in Industrie-PCs oder in eingebetteten Systemen eingesetzt. Die theo-
retische Bandbreite des ISA-Busses mit einem Bustakt von 8.3 MHz und der Busbreite
von 16 Bit betrigt 15.9 MBytes pro Sekunde, da aber die Addressierung jedes Zugriffs
einen Takt dauerte fiel die theoretische Bandbreite auf die ca 8 MBytes pro Sekunde.
Die tatsdchlich erzielte maximale Bandbreite lag zwischen 1 und 2 MBytes pro Sekunde.

VESA Local Bus wurde als Ergénzung zu dem ISA-Bus eingefiihrt. Die schnellen Gra-
fikkarten erforderten einen héheren Datendurchsatz als dies der ISA-Bus ermoglichte.
Der Bus bestand hauptséchlich aus den herausgefiihrten Signalen des 1486 Prozessors,
dadurch war die Portierung auf andere als x86 Systeme nahezu aussichtslos. Der Slot
fiir die Erweiterungskarten musste 112 Pins aufnehmen. Es konnten maximal 3 Karten
gleichzeitig eingesteckt werden. Die enge Anbindung an den speziellen Prozessortyp erfor-
derte hohen Schaltungsaufwand fiir die Anpassung an die nédchste Prozessorgeneration.
Die grofie Linge der Schnittstelle in Verbindung mit der erhéhten Anzahl von Pins, in

21

PCle Treiber fiir ein Linux-System IPVS/PaS

Vergleich zur ISA-Schnittstelle, fithrte nicht selten beim Installieren oder Entfernen der
Karten zum Bruch der Hauptplatinen. Der VESA Local Bus ist Riickwéartskompatibel
zu dem ISA-Bus. Die maximale theoretische Bandbreite betrug 130 MBytes pro Sekun-
de wobei die im Einsatz erzielte Bandbreite durchschnittlich 32 MBytes pro Sekunde
betrug.

Die Entwicklung des PCI-Busses wurde durch die Firma Intel im Jahre 1990 angesto-
Ben. Intel wollte den VESA Local Bus als Nachfolger des ISA-Busses nicht unterstiitzen
und eine neue, prozessorunabhéngige Bus-Architektur etablieren. Der PCI-Bus wurde
als eine Plattform angesehen, die die Ausnutzung aller Rechenkapazitaten der kommen-
den Pentium-Prozessoren erlaubte. Intel versuchte die PC-Industrie fiir den PCI-Bus zu
gewinnen und griindete 1992 die sogenannte Peripheral Component Interconnect Speci-
al Interest Group (PCI-SIG). Die Ziele dieser Organisation sind die Verwaltung, Wei-
terentwicklung und die Verbreitung des PCI-Standards. Mittlerweile zdhlen iiber 800
Mitglieder zu der Gruppe. Im Laufe der Zeit wurden mehrere Versionen des Standards
beschlossen und umgesetzt. Der Bus zeichnet sich durch die Moglichkeit der Hierarchi-
sierung aus. Der Bus wird je nach Version mit 33 MHz bzw. 66 MHz betrieben. Die
Bandbreite betragt fiir PCI 1.0 (1991) bis PCI 3.0 (2004) 133 MBytes pro Sekunde -
532 MBytes pro Sekunde. Die sogenannte Host-Bridge dient als Schnittstelle zwischen
den CPU mit Arbeitsspeicher und dem Bus. Die masterfahigen Peripheriegerite kénnen
iiber die Hostbridge als Target direkt in den Arbeitsspeicher schreiben und aus ihm lesen.
Auf dem PCI-Bus kommuniziert immer ein Master mit einem Target. Die angeschlosse-
nen Komponenten teilen sich die zur Verfiigung stehende Bandbreite untereinander auf.
Mit einer steigenden Anzahl an Busteilnehmern sinkt die Bandbreite entsprechend. Die
giangigste Bus-Konfiguration in einem PC ist: eine Busfrequenz von 33 MHz und eine
Busbreite von 32 Bit. Die dabei erzielbare maximale Bandbreite ist etwa 90 MBytes pro
Sekunde. Der PCI-Bus hat sehr grofle Verbreitung in vielen Bereichen erfahren. Seit 2005
wird aber der PCI-Bus durch seinen Nachfolger den PCle-Bus allméhlich verdringt.

Der PCI-Bus erfiillte die Anforderungen fiir Grafik-, Netzwerk- und andere Schnitt-
stellenkarten iiber eine lingere Zeit. Allerdings reichte nach einiger Zeit die verfiighare
Bandbreite fiir die damals aufkommenden Grafikkarten mit 3D-Beschleunigung nicht
mehr aus. Aus diesem Grund wurde das AGP Bus-System eingefiihrt. Der AGP-Bus
stellte eine Punkt-zu-Punkt-Verbindung zur Anbindung der Grafikkarte an die North-
bridge dar. Die Vorteile gegeniiber dem PCle-Bus haben sich z.B. dadurch ergeben, dass
immer nur ein Teilnehmer an Datentransfers beteiligt war, oder dadurch, dass es kein
yrichtiger Bus war und man deswegen die Taktfrequenz hoher wéhlen konnte. Die ers-
te Version des AGP Systems wurde von Intel im Jahre 1997 verdffentlicht. Im Laufe
der Zeit wurde der Standard erweitert und die mogliche maximale Bandbreite erhoht.
Die AGP-Schnittstelle der Version 1.0 (1x) erlaubte den Datendurchsatz von 266 MBy-
tes pro Sekunde. Die letzte Version der Schnittstelle erlaubt die Bandbreite von 2133
MBytes pro Sekunde. Es gab wenige Ausnahmen von Hauptplatinen, die iiber mehr
als eine AGP-Schnittstelle verfiigten. Die zusétzliche Schnittstelle konnte dann fiir ei-
nige RAID-Kontroller benutzt werden um den Datendurchsatz nicht mit den anderen
Komponenten am PCI-Bus teilen zu miissen. Eine weitere Steigerung der Datentransfer-
leistung von AGP ist ohne grundlegende Verdnderungen an der Architektur nicht mehr

Alexander Henning 22

PCle Treiber fiir ein Linux-System IPVS/PaS

moglich. Die parallele Dateniibertragung bei hohem Takt und die damit verbundenen,
strengen Timing-Anforderungen machten das Platinendesign sehr Aufwendig. Die An-
bindung der Grafikkarten an den Arbeitsspeicher des PCs ist nicht mehr so wichtig wie
frither, weil die Grafikkarten im Zuge der gefallenen Preise fiir Speicherchips iiber ge-
niigend dedizierten Speichers verfiigen. Der Hauptnachfolger fiir den AGP-Bus ist der
PCle-Bus.

Die Entwicklung der Prozessoren ist seit der Einfiihrung des PCI-Busses schneller vor-
angegangen als die des Busses selber. Der PCI-Bus sollte seinerzeit verschiedene, bereits
vorhandene Busse ersetzen und eine gemeinsame Plattform fiir unterschiedliche Auf-
gaben darstellen. Diese Funktion konnte er nicht lange aufrecht halten. Mit den neuen
Moglichkeiten der neuen Prozessoren und immer groflere, zur Verfiigung stehende Menge
an Speicher 6ffneten ganz neue Tétigkeitsfelder. Dabei entstanden neue Anwendungen,
die weit groflere Bandbreiten forderten als der PCI-Bus anbot. Es entstanden wieder
zahlreiche Bus-Systeme, die nur fir bestimmte Anwendungsfille spezialisiert waren, wie
z.B. AGP, ATA100 usw. Die Gemeinsamkeit aller erwéhnten Busse war die parallele
Datentibertragung. Dem immer weiter steigenden Bandbreitenbedarf entgegnete man
mit der Erhéhung der Busfrequenz. Die hohe Anzahl an bendtigten Pins verbrauchte
viel Platz auf den Platinen. Steigende Frequenzen in Verbindung mit den vielen Lei-
tungen brachten elektrische Problemen mit sich und somit stellt sich nun der Bus als
Flaschenhals bei der Kommunikation zwischen der Peripherie und der CPU dar. Unter
der Beriicksichtigung solcher Aspekte hat die PCI-SIG den PCle-Standard entworfen,
der sowohl PCI als auch AGP ersetzen soll und eine grofiere Dateniibertragungsrate als
AGP bieten soll.

3.2 PCle

PCle ist eine separate, serielle Punkt-zu-Punkt Verbindung mit differentieller Signaliiber-
tragung. Dadurch sind viele Vorgehensweisen, wie sie bei dem PCI-Bus iiblich waren,
nicht mehr anwendbar. Im Vergleich zu dem PCI-Bus miissen die Kommunikations-
partner nicht mehr um den Zugriff auf den Bus konkurrieren. Jeder Teilnehmer treibt
exklusiv den eigenen Satz an Sendeleitungen und ist gleichzeitig der Empfanger iiber
die Empfangsleitungen. Bei den Punkt-zu-Punkt Verbindungen gibt es immer nur zwei
Kommunikationsteilnehmer, die entsprechende Leitungen treiben kénnen.

Die Verbindung zwischen den zwei PCle Gerdten bezeichnet man als Link. Ein Link
kann aus mehreren Lanes bestehen. Eine Lane wiederum besteht aus zwei Paaren der
differentiellen Leitungen. Jedes Paar ist fiir die Kommunikation in eine Richtung ver-
antwortlich. Aufler der erwdhnten Leitungen gibt es keine weiteren, wie z.B. fiir die
Adressen, Daten oder fiir Kontrollsignale, wie beim PCI-Bus. Die bewusste Beschran-
kung an die wenigen Signale erleichtert die Skalierung der Verbindung fiir die steigenden
Anforderungen in Zukunft und engt die Moglichkeiten der Implementierung der neuen
Einsatzmodellen nicht ein. Die starke Verdnderung des physischen Aufbaus gegeniiber
dem PCI erfordert eine génzlich neue Infrastruktur der Systemkomponenten. Die Ent-
wickler von der PCI-SIG haben Wert darauf gelegt, dass die Softwareschnittstelle fiir

Alexander Henning 23

PCle Treiber fiir ein Linux-System

IPVS/PaS

den PCle-Bus voll kompatibel zu dem PCI-Bus bleibt. Dadurch miissen weder Betriebs-
systeme, Treiber noch Anwendungsprogramme angepasst werden.

Die erste Version des PCle Erweiterungsstandards arbeitet mit einer Datenrate je Lane
von maximal 250 MByte/s pro Richtung beziehungsweise 500 MB/s in beide Richtungen
zusammen. Fir die Anwendungen mit hohen Anforderungen an Bandbreite kann man
die Lanes koppeln und damit diese Anforderungen erfiillen. Die Tabelle 3.1 zeigt die
theoretisch erreichbaren Bandbreiten in Abhéngigkeit von der Anzahl der gekoppelten
Lanes und der Version des Standards. Inzwischen existiert die Version 2.0 der PCle-

Tabelle 3.1: Datenrate PCI-Express

PCle 1.0 PCle 2.0 PCle 3.0
x1 | 250 MB/s | 500 MB/s | 1000 MB/s
x2 | 500 MB/s | 1000 MB/s | 2000 MB/s
x4 | 1000 MB/s | 2000 MB/s | 4000 MB/s
x8 | 2000 MB/s | 4000 MB/s | 8000 MB/s

x16 | 4000 MB/s | 8000 MB/s | 16000 MB/s
x32 | 8000 MB/s | 16000 MB/s | 32000 MB/s

Spezifikation mit einer Datenrate von 500 MByte/s pro Lane. Die neueste Spezifikation
in der Version 3.0, die bis 2011 festgelegt werden soll, soll eine Datenrate von 1000
MByte/s pro Lane ermdglichen.

Die PCle-Sperzifikation beschreibt einige Typen von PCle Elementen: root complex,
PClIe-PCI bridge, endpoint und switch.

e Root complex: Diese Komponente ist das Bindeglied zwischen dem Ein-/Ausgabesystem
und der CPU mit dem Hauptspeicher. Der root complex verwaltet und konfiguriert
die {iber den Bus angeschlossene Peripherie. Weiterhin tibersetzt er die Zugriffe in
beide Richtungen.

e PCle-PCI bridge: Eine PCle-PCI bridge ermoglicht die Koexistenz von é<eren
Bussystemen wie PCI/PCI-X neben PCle.

e Endpoint: Ist ein konkretes Gerét, das die PCle-Transaktionen empfangen oder
selbst auslosen kann. Der Endpoint kann selbst z.B. eine Bridge zum USB sein.
Man unterscheidet zwei Typen von Endpoints: legacy und native. Der Unterschied
beruht auf der Fahigkeit bestimmte Transaktionen verarbeiten zu kénnen.

e Switch: Switche spannen die PCle-Hierarchie auf. Mehrere endpoint-Geréte wer-
den mit dem Switch verbunden. Der Switch ermdglicht die Verbindung entweder
zwischen zwei Kommunikationspartnern oder zwischen dem endpoint und dem root
complex.

Alexander Henning 24

PCle Treiber fiir ein Linux-System IPVS/PaS

3.3 PCle Transaktionen

Die Transaktionen bilden die Basis der Informationsiibertragung zwischen den PCle-
Geréaten, wobei der Informationstransport paketbasiert ist. Die Transaktionen sind als
eine Serie von Ubertragungen eines oder mehrerer Pakete definiert, die fiir die kom-
plette Informationsiibertragung zwischen den Kommunikationspartnern notwendig sind.
Eine Transaktion besteht aus zwei Abschnitten: einer Anfrage oder Aufforderung und
Fertigstellung oder Erfiillung dieser Anfrage. Die Einheit, welche die Anfrage macht,
sendet das entsprechende Paket zu der Einheit, welche diese Anfrage bearbeiten soll.
Dieses Paket kann dabei iiber mehrere Switche hinweg zu dem Ziel geleitet werden.
Die Reaktion auf das Aufforderungspaket kann aus keinem, einem oder auch mehreren
Fertigstellungspaketen bestehen.
Die PCle-Architektur beschreibt vier verschiedene Typen von Transaktionen:

1. Memory Transactions
2. I/O Transactions
3. Configuration Transactions

4. Message Transactions

3.3.1 Memory Transactions

Bei den sogenannten Speicher-Transaktionen werden iiber die Speichereinblendung ver-
flighbare Daten von oder zu den PCle-Geréten transportiert. In den meisten Féllen erfolgt
der Datentransfer zwischen dem PCle-Geréat und dem Arbeitsspeicher des Rechners. Man
unterscheidet zwischen unterschiedlichen Arten der Speicher-Transaktionen, einige von
ihnen sind: Memory Read Request, Memory Read Completion und Memory Write Re-
quest. Die Adressierung erlaubt die Verwendung von kurzen, d.h. 32 Bit langen Adressen
als auch von langen, d.h. 64 Bit langen Adressen.

Beim lesenden Speicherzugriff eines PCle-Geriéts sendet dieses ein Memory Read Re-
quest mit der Angabe der Adresse und der gewiinschten Datenmenge aus. Der Root
complex fiihrt den eigentlichen Speicherzugriff auf den Arbeitsspeicher aus und liefert
die angeforderten Daten an das PCle-Gerédt mit den, evtl. mehreren, Memory Read
Completions.

Wenn ein PCle-Gerét in den Arbeitsspeicher schreibt, dann werden die Memory Write
Requests abgeschickt. Auf die Bestéatigung des erfolgreichen Schreibvorgangs kann dabei
zu Gunsten der besseren Leistungsfihigkeit verzichtet werden.

3.3.2 1/0 Transactions

Das sind Transaktionen, die den Speicherbereich der Ein-/Ausgabe betreffen. Dieser
Speicherbereich wird aus Kompatibilitdtsgriinden zu den bereits vorhandenen Geréten
unterstiitzt. Einige interessante Transaktionen sind: I/O Read Request, I/O Read Com-
pletion, I/O Write Request und I/O Write Completion. 1/O Transactions verwenden
immer nur 32 Bit breite Adressen.

Alexander Henning 25

PCle Treiber fiir ein Linux-System IPVS/PaS

3.3.3 Configuration Transactions

Die Configuration Transactions greifen auf den Konfigurationsspeicherbereich der PCle-
Geréte. Sie dienen der Konfiguration und der Einstellung aller am Bus hdngenden Geré-
te. Der Konfigurationsspeicherbereich erstreckt sich nur iber die Konfigurationsregister,
die jedes PCI oder PCle-Gerét hat. Im Unterschied zu dem PCI-Standard koénnen die
PCle-Geréte einen wesentlich grofleren Satz an Registern vorweisen. Die Configuration
Transactions sind: Configuration Read Request, Configuration Read Completion, Con-
figuration Write Request und Configuration Write Completion.

Die Konfigurations-Transaktionen gehen normalerweise nicht von den Endgeréten aus.
Diese werden ausschliefSlich vom root complex aus getriggert.

3.3.4 Message Transactions

Eine weitere Transaktionsart, die es so bei PCI nicht gab, sind die Message Transactions.
Unter den Message Transactions sind viele verschiedene Pakete zusammengefasst, die fiir
die Kommunikation zwischen den Endgeraten eingesetzt werden. Mit diesen Transaktio-
nen werden z.B. Interrupts oder Fehler signalisiert oder sie werden fiir die Energiever-
waltung gebraucht.

3.4 PCle Ubertragungsschichten

Die PCle-Spezifikation definiert eine Architektur der Ubertragung, die aus drei Schichten
besteht. Jedoch miissen sich die Gerédteentwickler nicht an diese Architektur halten,
solange die vom Standard geforderte Funktionalitdt geboten wird. Die Abbildung 3.1
stellt die definierten Schichten dar.

Jede Transaktion durchlauft diese drei Schichten. Die erste Schicht lasst sich zum Tran-
saction Layer zusammenfassen. Die Hauptaufgabe dieser Schicht ist die Bildung eines
Transaktionspaketes aus den Daten, die von Kern des Gerdtes kommen. Die ankommen-
den Pakete werden ausgewertet und die enthaltenen Daten an den Kern weitergeleitet.
Diese Schicht entspricht der Zusammenfassung von Transport und Network Schichten
des OSI-Modells.

Die zweite Schicht ist der Data Link Layer. Die Hauptaufgabe dieser Schicht ist Sicher-
stellung des korrekten Senden und Empfangen aller Transaktionen. Die Funktionalitét
des Data Link Layer stimmt mit der des OSI-Modells iiberein.

Die dritte und letzte Schicht ist der Physical Layer. Diese Schicht fithrt tatsidchlich das
Senden und Empfangen der Transaktionspakete durch. Die Funktionalitdt der Physical
Layer stimmt mit der des OSI-Modells iiberein.

Dabei lasst sich jede dieser Schichten in zwei Blocke aufteilen: ein Block, der fiir das
Senden verantwortlich ist, und einer, der fiir das Empfangen verantwortlich ist. Beim
Senden wird der Paketinhalt aus den funktionsbezogenen Daten des Gerédtekerns in der
Transaktionsschicht gebildet. Dieses Paket wird in einem Puffer aufbewahrt und an den
darunter liegenden Data Link Layer weitergegeben. Der Data Link Layer hingt an das
Paket eigene zusétzliche Informationen zur Fehlererkennung auf der Empfangsseite an.

Alexander Henning 26

PCle Treiber fiir ein Linux-System IPVS/PaS

PCle Device A PCle Device B
[Device Core J [Device Core j
[Transaction Layer J _ — = = — - [Transaction Layer j
X RX X RX
(A . A
Data Link Layer _ — = = — - Data Link Layer
\. J \. J
(A . A
Physical Layer _ — = = — - Physical Layer
\. J \. J
Link
i
V)

Abbildung 3.1: Ubertragungsschichten der PCle-Geréite

Alexander Henning 27

PCle Treiber fiir ein Linux-System IPVS/PaS

Dieses Paket wird schliefllich an den Physical Layer weitergegeben. Das Paket wird dabei
neu kodiert und mit zusétzlichem Header und Trailer iiber den Link analog, differentiell
an den unmittelbaren Nachbarn iibertragen.

Auf der Empfangsseite lduft das Paket in der umgekehrten Reihenfolge die drei Schich-
ten durch. Der Empfanger dekodiert das empfangene Paket im Physical Layer und tiber-
gibt den Inhalt an die nichsthéhere Schicht. Der Data Link Layer {iberpriift das Paket
auf Fehler, und falls es keine Fehler gab, wird das Paket an die Transaktionsschicht wei-
tergereicht. Die Transaktionsschicht wandelt die Paketdaten in eine Form um, die der
Geratekern mit der entsprechenden Funktion verarbeiten kann.

3.4.1 PCle Transaktionsschicht

Diese Schicht bildet das Riickgrat der Dateniibertragung innerhalb des PCle-Systems.
Die Hauptaufgabe dieser Schicht ist das Generieren von entsprechenden Transaktionen,
darunter die Requests und die Completions.

Die Transaktionsschicht empfangt auf der Sendeseite die Daten von dem Kern des Ge-
réits, welche in PCle-Transaktionen umgesetzt werden. Diese Daten kénnen z.B. die An-
forderung des Gerétes von bestimmten Daten sein oder aber die Antwort des Gerétes auf
die vorangegangene Anfrage. Auf der Empfangsseite bekommt die Transaktionsschicht
die PCle-Transaktionen von der Data Link Schicht. Dabei geht die Transaktionsschicht
davon aus, dass die ankommenden Pakete alle fehlerfrei und in der richtigen Reihenfolge
sind. Die Sicherstellung der Fehlerfreiheit und der richtigen Reihenfolge ist die Aufgabe
der Data Link Schicht.

Die Transaktionsschicht verwendet zur Kommunikation mit den anderen PCle-Geréten
die eigenen Pakete: TLP (Transaction Layer Packet). Die Vielfalt der verschiedenen
Transaktionstypen und der zu erfiillenden Aufgaben lésst sich iiber die Daten im Header
des Transaktionspaketes einstellen. Dabei werden die Pakete in der Transaktionsschicht
eines ,,Sendegerétes” erzeugt und in der Transaktionsschicht des Empfangers ausgewertet
und verarbeitet. Neben der bereits erwahnten Funktionalitit ist die Transaktionsschicht
auch fiir die Flusskontrolle der TLP und fiir einige Funktionen der Energieverwaltung
zusténdig ist.

Ein Paket der Transaktionsschicht besteht aus dem Header, den optionalen Daten
und einem optionalen Trailer. Die Abbildung 3.2 stellt die Struktur eines Pakets der
Transaktionsschicht dar. Ein TLP hat immer einen Header, dessen Léange nicht konstant
ist, aber immer ein vielfaches von vier Bytes betrigt. Die Linge des Header héngt von
dem Typ der Transaktion ab. Vom Typ der Transaktion hdngt auch das Vorhandensein
von Nutzdaten ab. Die Menge an Nutzdaten muss ebenfalls ein Vielfaches von vier Bytes
betragen. Wenn die Menge der zu iibertragenden Daten nicht genau in einem Vielfachen
von vier Bytes aufgeht, dann werden die fehlenden Bytes aufgefiillt. Das Auffiillen kann
entweder bereits in den ersten vier Bytes oder aber in den letzten vier Bytes erfolgen.
In dem Header des TLP werden die speziellen Bits gesetzt, die die Identifikation von
,hutzlosen“ Bytes ermoglichen. Der Trailer des Paketes ist wie die Daten auch optional
und wird nur selten benutzt. Der Trailer ist fiir die ECRC (end-to-end CRC)-Priifsumme
gedacht. Der Data Link Layer deckt mogliche Fehler ab, die bei der Ubertragung iiber den

Alexander Henning 28

PCle Treiber fiir ein Linux-System IPVS/PaS

Link entstehen kénnen. Die ECRC-Priifsumme ermdglicht auch die Fehler zu erkennen,
die wahrend der Bearbeitung des Paketes auf der Ebene der Transaktionsschicht in den
dazwischen liegenden Geréten, wie z.B. Switches, entstehen kénnen.

Daten Trailer

Header (optional) (optional)

Transaction Layer Packet

Abbildung 3.2: Struktur eines TLP-Paketes

Ein Aufforderungspaket kann mehrere Antwortpakete nach sich ziehen. Es ist aber
nicht moglich mehrere anstehende Aufforderungen mit nur einem Antwortpaket zu er-
fallen

3.4.2 PCle Data Link Schicht

Die Hauptaufgabe dieser Schicht ist die Sicherstellung der korrekten Ubertragung auf
dem Link, d.h. Fehlererkennung und Fehlerkorrektur. Der Data Link Layer sorgt dafiir,
dass die Pakete fehlerfrei und in der richtigen Reihenfolge {iber die einzelnen Links
transportiert werden.

Der Data Link Layer setzt die Bildung der PCle-Transaktion fort, indem sie das von
der Transaktionsschicht kommende Paket um eigene Informationen erweitert und das
neu entstandene Paket an die Bitiibertragungsschicht weiterleitet. Die Data Link Schicht
fligt jedem zu sendenden TLP als Header eine sogenannte Sequenznummer hinzu. Als
Trailer wird eine spezielle Priifsumme hinzugefiigt: LCRC (Link CRC). Die Abbildung
3.3 zeigt ein TLP, das um die zusétzlichen Informationen fiir die Fehlererkennung von
dem Data Link Layer erweitert wurde.

Sowohl die Ein- als auch die Ausgangsseite des Data Link Layer haben jeweils ihre
eigenen Aufgaben. Beim Eintreffen eines Paketes iibernimmt die Data Link Schicht die-
ses von der Bitiibertragungschicht. Es wird die Korrektheit des empfangenen Paketes
anhand der Sequenznummer und der LCRC iiberpriift und dann, wenn sowohl die Se-
quenznummer als auch die LCRC zeigen, dass es keine Fehler gab, wird dieses Paket,
bereinigt von der Sequenznummer und der LCRC, an die Empfangsseite der Transak-
tionsschicht weitergereicht. In diesem Fall, wenn das Paket als fehlerhaft erkannt wird,

Sequenz-

Transaction Layer Packet LCRC
nummer

-< |

TLP nach der Data Link Schicht

Abbildung 3.3: Erweiterung des TLPs um die zusétzlichen Informationen in der Data
Link Schicht

Alexander Henning 29

PCle Treiber fiir ein Linux-System IPVS/PaS

wird es erst gar nicht an die Transaktionsschicht weitergeleitet. Die Data Link Schicht
versucht mit der entsprechenden Protokollinstanz auf der Gegenseite den Fehler zu be-
seitigen. Die Fehlerbeseitigung erfolgt meistens durch die Aufforderung das fehlerhafte
Paket noch einmal zu senden. Der Data Link Layer ldsst also nur die korrekt empfan-
genen Pakete an die Transaktionsschicht durch. Die Transaktionsschicht geht dadurch
immer davon aus, dass alle Pakete, die sie empfingt, auch korrekt sind.

Wenn ein Sender einen TLP an einen Empféanger tiber den Link sendet, dann erwartet
er eine Quittierungsantwort. Es kann ein NACK (von engl. negative acknowledgement =
negative Bestitigung) DLLP (Data Link Layer Packet), im Falle eines falschen LCRC,
ein ACK (von engl. acknowledgment = Bestétigung) DLLP, wenn es keine Fehler gab,
oder er bekommt gar keine Bestédtigung, wenn das gesendete Paket z.B. beim Empfanger
gar nicht ankommt. Die Quittierungsantworten folgen nicht unbedingt nach jedem emp-
fangenen Paket. Zwei Kommunikationspartner auf einem Link tauschen die sogenannten
wcredits® unter sich aus. Diese ,,credits” erlauben dem Sender eine bestimmte Anzahl an
Paketen abzusenden ohne eine Quittierungsnachricht abzuwarten. Der Empfinger kann
mit einer Quittierungsantwort einen fehlerfreien Empfang eines bestimmten Paketes be-
statigen. Und wenn es noch mehrere unbestéatigte Pakete vor diesem Paket gegeben hat,
dann gelten damit auch diese als bestatigt.

Auf der Sendeseite wird einem zu sendenden TLP eine Sequenznummer und LCRC
hinzugefiigt. Das gesendete Paket wird in einem Puffer der Data Link Schicht zwischen-
gespeichert. Wenn der Empfanger das Paket auf der Linkebene fehlerfrei empfangen hat,
dann bestétigt er es mit einem ACK DLLP, das die Sequenznummer des empfangenen
Paketes enthélt. Der Sender entfernt daraufhin das gespeicherte Paket aus dem Puffer.
Falls andererseits der Empfanger einen LCRC-Fehler im Paket entdeckt, dann sendet er
ein NACK DLLP mit der Sequenznummer. In diesem Fall veranlasst der Sender einen
erneuten Versand des betroffenen Paketes. Die Data Link Schicht des Senders kann den
Fehler zum Protokollieren an den Rootkomplex melden. Falls es fiir einen bestimmten
TLP aus dem Puffer dreimal ein NACK DLLP kam, d.h. es wurde viermal erfolglos
versucht das Paket zu {ibertragen, dann veranlasst die Data Link Schicht die Reinitiali-
sierung des Links und meldet einen korrigierbaren Fehler an den Rootkomplex.

Auf der Empfangsseite tiberpriift die Data Link Schicht die LCRC der eintreffenden
Pakete. Diese Seite veranlasst dann, je nach Ergebnis der Priifung, das Versenden der
ACK DLLP oder NACK DLLP. Die Empfangsseite erhélt auch die Quittierungsantwor-
ten von der Sendeseite des Kommunikationspartners. Daraufhin wird innerhalb dieser
Schicht auf der Sendeseite entweder das entsprechende TLP aus dem Puffer entfernt oder
noch einmal versendet. Auf dieser Seite wird auch auf die Einhaltung der Reihenfolge ge-
achtet. Dabei wird die Sequenznummer der eintreffenden Pakete iiberpriift. Durch diesen
Mechanismus kénnen fehlende oder sich wiederholende Pakete sicher erkannt werden.

Die Sequenznummer ist eine 12 Bit breite Zahl, die, zusammen mit den zusétzlichen
ungenutzten 4 Bits zu einem 2 Byte grolen Header zusammengefasst werden. Das LCRC-
Feld ist 32 Bit breit und wird an das TLP angehangt. LCRC wird iiber alle Bits des
zu sendenden Paketes berechnet, auch iiber die sogenannten ,reserved“ und iiber die
angehdngte Sequenznummer.

Die Data Link Schicht unterscheidet nicht um welchen Typ von TLP es sich handelt,

Alexander Henning 30

PCle Treiber fiir ein Linux-System IPVS/PaS

wenn eine Sequenznummer dem Paket zugewiesen wird. Die Sequenznummern héngen
auch nicht davon ab, wer die Anfrage startet und wer sie erfiillt. Die Instanz der Data
Link Schicht des Senders ist die einzige Bestimmungsgréfie beziiglich der Sequenznum-
mer. Diese Nummer hat ihre Giiltigkeit nur innerhalb eines Links, d.h. wenn ein Switch
das Paket von einem Link auf das andere weiterleitet, dann hat das Paket eine unter-
schiedliche aber jeweils fiir den Link giiltige Sequenznummer. Die nitigen Informationen
zum Routing der Pakete innerhalb des PCle-Netzwerks steckt im Header des TLP.

Die Data Link Schicht verwendet noch einen eigenen Pakettyp: DLLP. Diese Pakete
dienen linkspezifischen Funktionen, wie z.B. Benachrichtigungen tiber die aufgetretenen
Fehler und fiir die Energieverwaltung. Diese Pakete entstehen in der Data Link Schicht
und werden immer in dieser verarbeitet. Sie werden auch anders als Pakete der Transak-
tionsschicht beim Senden behandelt. Die DLLP werden immer nur zwischen den direkten
Nachbarn auf dem Link versendet im Unterschied zu den TLPs, die auch tiber mehrere
Kommuniaktionsgerate hinweg transportiert werden kénnen. Neben den bereits beiden
erwahnten Typen von DLLPs wie NACK und ACK gibt es noch zwei weitere:

e Flow control DLLP: Diese Pakete dienen der Datenflusssteuerung. Es gibt ins-
gesamt drei Typen davon: zwei werden bei der ersten Initialisierung des Links
verwendet und der dritte Typ wird im Betrieb gebraucht, um den direkten Kom-
munikationspartnern die noch zur Verfiigung stehende Kapazitét an freien Plédtzen
fiir die reinkommenden Pakete anzuzeigen. Die Erzeugung und den ,Verbrauch“
von diesen Paketen iibernimmt die Data Link Schicht, die Kontrolle iiber das Sen-
den und {iiber die Daten in diesen Paketen hat allein die Transaktionsschicht.

e Power management DLLP: Diese Pakete dienen der Steuerung und der Kontrolle
vom Energiestatus des Links. Dabei entscheidet nicht die Data Link Schicht wann
und ob sie die power management DLLP versendet, sondern es tut die Logik, die fiir
Energieverwaltung zustéandig ist, die dann das Versenden auslost. Werden die power
management DLLP empfangen, dann werden die Daten an die Energieverwaltung
abgegeben.

Alle DLLPs haben eine konstante Lange von 6 Bytes: 4 Bytes fiir die Daten und 2
Bytes fiir die CRC (Cyclic Redundancy Check) Summe. Das CRC-Feld wird hierbei
anders berechnet als das Feld fiir LCRC und ECRC. Die Verarbeitung dieser Pakete
seitens der Data Link Schicht unterscheidet sich von den ,normalen® TLP-Paketen.
Die Bitiibertragungsschicht leitet die DLLP an die Data Link Schicht weiter und diese
Schicht teilt auch mit ob es Fehler bei der Ubertragung gab oder nicht. Erst wenn es keine
Fehler gab, tiberprift die Data Link Schicht das Paket mit Hilfe der CRC-Priifsumme auf
die Korrektheit. Falls die Bitiibertragungsschicht einen Fehler meldet, wird das Paket
von der Data Link Schicht verworfen. Das wiederholte Senden von DLLPs ist nicht
vorgesehen und sie werden deswegen auch nicht in den Puffern zwischengespeichert.
Die Flow Control DLLPs haben einen Einfluss auf die Transaktionsschicht, die Power
Management DLLPs iiben Einfluss auf die Energieverwaltung aus und die NACK und
ACK DLLPs werden innerhalb der Data Link Schicht benutzt.

Alexander Henning 31

PCle Treiber fiir ein Linux-System IPVS/PaS

3.4.3 PCle Bitiibertragungsschicht

Die Bittibertragungsschicht ist die unterste Schicht. Eine ihrer Aufgaben ist es, die elek-
trische Verbindung zwischen zwei direkt miteinander verbundenen Geréten herzustellen.
Diese Schicht iibernimmt die Pakete von der Data Link Schicht, um sie iiber , Link*,
eine logische Verbindung wegzuschicken und sie leitet die iiber den ,,Link“ empfangenen
Pakete an die hohere Schicht weiter.

Man kann die Bitiibertragungsschicht in zwei weitere Schichten unterteilen: in eine
logische und eine elektrische Schicht. Die Aufgaben des logischen Teils ist die Bearbei-
tung der zu sendenden und zu empfangenen Paketen. Der sogenannte elektrische Teil
stellt eine elektrische Schnittstelle dar, die eine Verbindung zwischen zwei Gerdten her-
stellt. Diese Schnittstelle beinhaltet unter anderem auch die differentiellen Treiber und
Empfanger fiir jede Lane.

Auf der Sendeseite der logischen Schicht werden die Bytes des Pakets zuerst mittels ei-
nes Scramblers pseudozufillig umkodiert, diese Bytes werden in einem 8b/10b Verfahren
kodiert und anschlieBend um die speziellen Paketmarker erweitert. Die Empfangsseite
fiihrt die gleichen Operationen in der umgekehrten Reihenfolge durch. Im Folgenden
werden die einzelnen Operationen néher erlautert.

8b/10b - Kodierung

Eine weitere Aufgabe, die die Bitiibertragungsschicht zu erfiillen hat, ist die 8b/10b -
Kodierung der Daten. Der Hauptzweck dieser Kodierung ist es, das Taktsignal in den
Datenstrom einzubinden. Bei dieser Kodierung werden 8 Bit Daten mit einem 10 Bit
langen Symbol kodiert. Neben der erwéahnten Taktriickgewinnung erlaubt die Kodierung
den Gleichspannungsausgleich.

Bei den parallelen Bussen, wie bei PCI stellte sich heraus, dass bei steigenden Fre-
quenzen, mit denen das System betrieben wird, die Anforderungen an die Signalfithrung
auf der Platine, und genauer an die Lénge der Signalleitungen, immer strenger wer-
den. Das wird besonders ersichtlich, wenn man mehrere zusammengehérende Signale
betrachtet, die von einem Takt abhangen. Wenn die Quelle zur steigenden Taktflanke
die Signalleitungen mit den unterschiedlichen Langen treibt und die Senke die Signale
zum selben Takt einliest, dann hat die Senke ein sehr schmales Zeitfenster, unter der
Beriicksichtigung der Setup und Hold-Zeiten, bei dem die Signalleitungen die korrekten
Werte aufweisen. Bei den grofieren Unterschieden in der Lange der Leitungen und sehr
hohem Takt der Verarbeitung kénnen sogar die falschen Werte von der Senke eingelesen
werden.

Durch das Einbetten des Taktes in den Datenstrom ist es nicht mehr notwendig, dass
die einzelnen Lanes innerhalb eines Links die gleichen Langen haben miissen. Um aus
dem Empfangsignal den Sendetakt zuriickgewinnen zu koénnen, muss das Empfangssi-
gnal hinreichend viele Signalflanken aufweisen. Das bedeutet, dass lange Folgen von 1’
oder ’0’ ohne Flanken in der Ubertragung zu vermeiden sind. Die 8b/10b - Kodierung
schreibt vor, dass die maximale Lange gleicher Bits auf fiinf beschrankt ist. Da nicht
alle 1024 Werte gebraucht werden, kénnen die Daten entsprechend dieser Vorgabe zu

Alexander Henning 32

PCle Treiber fiir ein Linux-System IPVS/PaS

den neuen Symbolen kodiert werden. Ein weiterer Vorteil, dass die Anforderungen fiir
die Léngengleichheit nicht mehr so hoch sind, ist der verringerte Flachenbedarf fiir die
Leiterbahnen auf der Platine, da diese nicht mehr im Zickzack verlegt werden miissen,
um die Laufzeitunterschiede auszugleichen.

Eine weitere Funktionalitit, die 8b/10b - Kodierung anbietet, ist die Moglichkeit einige
Bitiibertragungsfehler zu erkennen. Die zu iibertragenden Daten werden so kodiert, dass
die Anzahl der Einsen sich maximal um zwei von der Anzahl der Nullen in einem Symbol
unterscheidet. Dies gilt auch fiir die Anzahl der Nullen gegeniiber der Anzahl der Einsen.
Der Empfanger kann anhand der Differenz der Einsen und Nullen entscheiden, ob das
Symbol iberhaupt giiltig ist. Diese Methode ist allerdings nicht zuverlassig, da manche
Fehler die Symbole so verdndern, dass sie als giiltig erkannt werden. Eine Fehlerkorrektur
ist damit nicht moglich.

Ein weiterer Effekt, der durch die gleichméflige Verteilung von Einsen und Nullen
in den Symbolen entsteht, ist der Gleichspannungsausgleich. Dabei wird versucht den
Pegel der durchschnittlichen Gleichspannung einer einzelnen Datenleitung in der Mitte
zwischen den jeweiligen logischen Pegeln zu halten. Somit wird die Wahrscheinlichkeit
der Intersymbolinterferenz verringert, in dem die Datenleitung sich nicht schnell genug
von einem Zustand in den anderen umladen lasst.

Wie bereits am Anfang des Kapitels kurz erwdhnt wurde, benutzt die Bitiibertra-
gungsschicht zwolf spezielle, 10-Bit lange Symbole, um z.B. den Anfang und das Ende
eines Paketes zu kennzeichnen. Dabei werden je nach dem Ursprung des Paketes eigene,
dafiir vorgesehene ,Marker“ benutzt.

Paketiibertragung

Die Abbildung 3.4 zeigt beispielhaft, wie die einzelnen Bytes eines Paketes, auf dem Link
verteilt und gesendet werden. Hierbei handelt es sich um einen x4 Link.

Auf der Empfangsseite verfiigt jede Lane iiber einen eigenen Empfangspuffer. Dieser
Puffer wird bendtigt um aus den seriell ankommenden Bytes wieder ein komplettes Pa-
ket zusammenzustellen. Obwohl die Bytes vom Sender auf allen Lanes alle zum gleichen
Zeitpunkt gesendet werden, kommen diese beim Empfanger nicht mehr synchron an.
Laut PCle-Spezifikation darf die Laufzeitdifferenz von Lane zu Lane bis zu 20 Nanose-
kunden betragen. Die Empfangspuffer dienen dazu, die Laufzeitdifferenz, die z.B. wegen
der unterschiedlichen Langen der Lanes entsteht, zu kompensieren. Die tatséchliche Zeit,
die kompensiert werden muss, wird wihrend der Initialisierungsphase des Links von bei-
den Kommunikationspartnern ermittelt. Die Initialisierung erfolgt jedes mal, wenn das
System eingeschaltet wird oder wenn ein neuer Kommunikationspartner auf der anderen
Seite des Links erkannt wird. Wahrend der Initialisierungsphase wird die Linkbreite und
Datenrate festgelegt, zudem es werden die ersten ,,Credits” fiir die Datenflusssteuerung
ausgetauscht.

Der Sender koppelt den gewiinschten Pegel auf die Sendeleitungen iiber die Konden-
satoren ein. Der Gleichspannunganteil des Senders bleibt dem Empfanger verborgen.
Dadurch kénnen sowohl der Empfinger als auch der Sender ihre eigenen Gleichspan-
nungspegel besitzen, die sie zum Betrieb brauchen.

Alexander Henning 33

PClIe Treiber fiir ein Linux-System IPVS/PaS

| Byted |
| Byte3d |
[Byte 2]
| Byte1 |
| Byte0o |

[Byte4a | [Byte5] (Byte6 | [Byte7 |
ByteO | (Byte1 | (Byte2 | | Byte3 |

Y Y Y Y

8b/10b 8b/10b 8b/10b 8b/10b
P=>S P=>S P=>S P=>S
Line O Line 1 Line 2 Line 3

Abbildung 3.4: Aufteilung eines Pakets auf dem x4 Link.

Deemphase (Deakzentuierung)

Die PCle-Spezifikation beschreibt ein spezielles Verfahren, das angewendet wird, um der
Intersymbolinterferenz entgegenzuwirken.

Mit der steigenden Frequenz und der sinkenden Zeit fiir ein einzelnes Bit spielen ka-
pazitiven Effekte eine Rolle. Die 8b/10b - Kodierung beschrankt die maximale Anzahl
an Bits mit der gleichen Wertigkeit auf fiinf. Bei der Ubertragung von fiinf gleichen Bits
ladt sich das gesamte System, bestehend unter anderem aus den differentiellen Leitun-
gen, auf einen bestimmten Wert auf. Wenn z.B. nach finf logischen 1’ eine logische 0’
folgt und dann wieder weitere logischen Einser gesendet werden, dann kann es passieren,
dass die ergebende Ladung nicht schnell genug abtransportiert werden kann, so dass die
logische '0’ vom Empfanger nicht registriert werden kann. Das ist der Effekt der Inter-
symbolinterferenz: die vorhergehenden 1’ wirken noch beim Empfang von der folgenden
'0” nach.

Um diesen Effekt nach Moglichkeit zu eliminieren, werden die nachfolgenden Bits
der gleichen Polaritdt mit der kleineren Amplitude auf den Lanes getrieben. Im Falle
von PCle bedeutet dies die Abschwéichung der Leistung von den nachfolgenden Bits

Alexander Henning 34

PCle Treiber fiir ein Linux-System IPVS/PaS

von der selben Polaritdt um 3,5 dB. Man kann hier auch von einer Praemphase reden,
wenn man sich vorstellt, dass es immer jeweils das erste Bit einer Folge aus Bits mit
der gleichen Polaritat, im Vergleich zu den iibrigen, verstiarkt wird. Das erste Bit hat
damit genug ,Starke“ die eingestellte Ladung in geniigend kurzer Zeit abzufiithren; der
Empfanger ist in der Lage den Pegelwechsel zu erkennen. Die minimale Spannung des
ersten Bits betragt 800 mV und die minimale Spannung von nachfolgenden Bits der
gleichen Polaritét betrégt 505 mV.

Der Ubertragungskanal hat TiefpaBeigenschaften, d.h. die hoheren Frequenzen werden
starker gedampft als die niedrigeren. Das Signal vom Sender wird vom Ubertragungs-
kanal frequenzselektiv verzerrt beim Empfanger ankommen. Ein Pegelwechsel auf den
Leitungen stellt eine hochfrequente Anderung dar.

Um das Signal beim Empfianger moglichst , glatt“ zu haben, das heiffit ohne Aus-
wirkungen von frequenzselektiven Eigenschaften des Ubertragungskanals, miissen die
Signale vom Sender vorverzerrt werden. Unter der Berticksichtigung von Tiefpafieigen-
schaften des Kanals miissen somit entweder die hochfrequenten Anteile verstarkt oder
die niederfrequenten Anteile abgeschwécht werden.

Alexander Henning 35

4 Treiber und Anwendung

In diesem Kapitel wird die im Rahmen dieser Arbeit entstandene Anwendung und der
entwickelte Treiber vorgestellt. Dabei wird besonders auf die Auswahl der Werkzeuge
und der eingesetzten Frameworks eingegangen.

Als Grundlage fiir die Entwicklung des Treibers und der PC-Anwendung, dient das
Referenzdesign der Firma Xilinx, das fir das Virtex-5 FPGA (Field Programmable Gate
Array) ML555 PCle-Entwicklungsboard bereitgestellt wird. Dieses Design umfasst den
HDL-Code fiir den FPGA-Baustein, einen Treiber und eine Anwendung fiir das Windows
XP Betriebssystem. Die Anwendung und der Treiber sind nur in bindrer Form dem
Referenzdesign beigefiigt.

Das Referenzdesign ist eine Implementierung der von der Karte initialisierten Daten-
iibertragung mittels direkten Speicherzugriffs (DMA) zwischen dem Host-PC und der
Karte tiber die PCle- Schnittstelle. Dabei werden die Daten zwischen dem Arbeitsspei-
cher des PCs und dem DDR2 Speicher auf dem Entwicklungsboard ausgetauscht. Die
Aufgabe des Treibers und der Anwendung sind die Allozierung und Initialisierung der
Pufferspeicher auf dem PC und Einstellung der Speicherdirektiibertragungen.

Die bei dieser Arbeit verwendete Entwicklungsplattform ist die ,XtremeDSP Deve-
lopment Platform — Virtex-5 FPGA ML506 Edition“ von der Firma Xilinx. Das Refe-
renzdesign lasst sich auch auf dieser Karte implementieren. Im Vergleich zu der ML555,
die tiber eine x8 PCle-Schnittstelle verfiigt, verfiigt die ML506 Karte {iber eine x1 PCle-
Schnitstelle. Die Karte zeichnet sich u.a. durch folgenden Eigenschaften:

e XCHVSX50TFFG1136 Virtex-5 FPGA Baustein
e DDR2 SODIMM (256 MB)

e JTAG Programming Interface

e PCI Express Edge Connector (x1 Endpoint)

e GTP: PCle

Die Entwicklung des Treibers und der Anwendung erfolgte unter dem Linux-Betriebssystem
,Fedora Core 10 mit dem Linuxkernel
2.6.27.24-170.2.68.1c10.i686.PAE. Die GUI-Anwendung wurde mit Hilfe der Entwicklun-
sumgebung KDevelop und des QT-Frameworks entwickelt.

37

PCle Treiber fiir ein Linux-System IPVS/PaS

4.1 Registerbeschreibung

Die Steuerung der Speicherdirektzugriffe und die Abfrage deren Zusténde erfolgt iiber
einen Satz von Registern. Diese Register werden mit Hilfe eines BARO ! Registers in
den PCI Adressraum des PCs eingeblendet. Diese Register dienen als eine Schnittstelle
zwischen dem Referenzdesign und der CPU. Die CPU kann auf die Register mit Hilfe der
lesenden und schreibenden Speicher-Transaktionen iiber den Bus zugreifen. Uber diese
Schnittstelle wird auch die Anforderungen zum lesenden und schreibenden Speicherdi-
rektzugriff entgegengenommen.

Alle Speicherdirektzugriffe werden {iber die DMA-Register definiert. Die CPU leitet
die Dateniibertragung {iber die Initialisierung der Steuerregister ein. Das Beenden der
Ubertragung wird iiber die Statusregister angezeigt. Alle Register sind 32 Bit breit.

1. DMAWAS, x00 : DMA Write: Quelladresse. Die Startadresse eines Bereiches im
RAM auf der Karte, aus dem die Daten in den PC Speicher transferiert werden.

2. DMAWAD_ L, x04 : DMA Write: Zieladresse. Beinhaltet die unteren 32 Bit der
Adresse des Pufferspeichers im PC, in den geschrieben wird. Dieses Register wird
sowohl bei Systemen mit 32 Bit breiten Adressen als auch bei Systemen mit 64 Bit
breiten Adressen verwendet.

3. DMAWAD_ U, x08 : DMA Write: Zieladresse. Beinhaltet die oberen 32 Bit der
Adresse des Pufferspeichers in einem System mit 64 Bit breiten Adressen, in den
die Daten geschrieben werden. Wird nur bei Systemen mit 64 Bit breiten Adressen
verwendet.

4. DMARAS_ L, x0C : DMA Read: Quelladresse. Beinhaltet die unteren 32 Bit der
Adresse des Pufferspeichers im PC, von dem die Daten gelesen werden. Es wird
sowohl bei Systemen mit 32 Bit breiten Adressen als auch bei Systemen mit 64 Bit
breiten Adressen verwendet.

5. DMARAS_U, x10 : DMA Read: Quelladresse. Beinhaltet die oberen 32 Bit der
Adresse des Pufferspeichers im PC, von dem die Daten gelesen werden. Dieses
Register wird nur bei Systemen mit 64 Bit breiten Adressen verwendet.

6. DMARAD, x14 : DMA Read: Zieladresse. Die Startadresse eines Bereichs im RAM
auf der Karte, in den die Daten aus dem PC Speicher transferiert werden.

7. DMAWXS, x18 : DMA Write: Ubertragungsgrofie. Dient zur Festlegung der Anzahl
der Bytes, die beim DMA Write {ibertragen werden sollen. Die Daten werden aus
dem RAM-Speicher der Karte in den RAM-Speicher des PCs iibertragen.

8. DMARXS, x1C : DMA Read: Ubertragungsgréfe. Dient zur Festlegung der Anzahl
der Bytes, die beim DMA Read iibertragen werden sollen. Die Daten werden aus
dem RAM-Speicher des PCs in den RAM-Speicher der Karte iibertragen.

"Dieses Register ist ein fester Bestandteil jedes PCI/PCIe Gerites. Das BARO Register erhilt die
Adresse vom Betriebssystem, unter der das Gerat erreichbar wird.

Alexander Henning 38

PCle Treiber fiir ein Linux-System IPVS/PaS

9. Reserved, x20 : Reserviert.
10. Reserved, x24 : Reserviert.

11. DMACST, x28 : DMA Steuerungs- und Statusregister. Die Bedeutung der darin
vorhandenen Bits wird in der Tabelle 4.1 erlautert.

12. Reserved, x2C : Reserviert.

13. DMAWRP, x30 : DMA Write: Ubertragungszihler. Dieser 32 Bit breite Nurlese-
Zahler kann zur Bestimmung des Datendurchsatzes der DMA Write Transaktionen
verwendet werden. Dieser Zahler ldsst sich nicht zuriicksetzen, deswegen muss er
vor dem Starten und direkt nach dem Beenden der Transaktion zur Bestimmung
des Durchsatzes ausgelesen werden. Der Zéhler 1auft an, wenn das ,,Start Write
DMA* Bit gesetzt wird und stoppt, wenn das ,,End of Frame® Bit in letzten Paket
erkannt wird.

14. DMARDP x34 : DMA Read: Ubertragungszihler. Dieser 32 Bit breite Nurlese-
Zéhler kann zur Bestimmung des Datendurchsatzes der DMA Read Transaktionen
verwendet werden. Dieser Zahler lasst sich nicht zuriicksetzen, deswegen muss er
vor dem Starten und gleich nach dem Beenden der Transaktion zur Bestimmung
von Durchsatz ausgelesen werden. Der Zahler lauft an, wenn das ,Start Read
DMA* Bit gesetzt wird und stoppt, wenn das ,,End of Frame® Bit im letzten Read
Compleation Paket erkannt wird.

4.2 Treiber

Wie bereits im Kapitel 2.3 erwidhnt wurde, kann der Kernel um weitere Funktionalita-
ten zur Laufzeit erweitert werden. Diese Erweiterung kann z.B. durch das Kernelmodul
erfolgen. Mit Hilfe dieser Technik kénnen auch Treiber zum Kernel hinzugefiigt wer-
den. Die Kernelmodule bestehen aus dem Objektcode, der noch nicht zum lauffahigem
Programm gelinkt wurde. Die Module kénnen mit dem Programm insmod zum Kernel
dynamisch hinzugelinkt und mit dem Programm rmmod wieder entfernt werden.

Das verwendete Referenzdesign lédsst sich zu der Klasse der sogenannten Character-
Devices zuordnen. Der Treiber fiir diese Klasse der Geréte muss mindestens die folgenden
System-Aufrufe (2.3.1) implementieren: open, close, read, und write. Der System-
Aufruf mmap wird dazu benutzt, einen bestimmten Speicherbereich, entweder fiir die
Anwendung oder fiir den Treiber, einzublenden. In diesem Bereich ist es moglich, trotz
der Zugehorigkeit des Gerétes zu der Character-Device Klasse, wahlfrei auf die Daten
zuzugreifen. Framegrabber dienen hier als Beispiel fiir solche Gerite.

Der Quellcode fiir den Treiber besteht aus den zwei Quellcode-Dateien: ML506_Modul . c
und Ioctrl.h, in denen alle benotigten Funktionen implementiert sind.

Die notwendigsten Teile eines ,lauffahigen Moduls sind zwei Funktionen, die jeweils
beim Laden und beim entladen des Moduls vom Kernel aufgerufen werden, in diesem
Falle sind es die Funktionen:

Alexander Henning 39

PCle Treiber fiir ein Linux-System IPVS/PaS

Tabelle 4.1: Bits des Steuerungs- und Statusregisters

Name Bitposition | Beschreibung

Write DMA Start 0 Startet den schreibenden Spei-
cherdirektzugriff. Mit dem Schrei-
ben einer ’1’ an diese Stelle wird
der gewiinschte schreibende DMA-
Zugriff gestartet. Dieses Bit setzt
sich automatisch zurtick.

Write DMA Done 1 Dieses Bit ist gesetzt, wenn der
schreibende DMA-Zugriff beendet
wird. Um dieses Bit zu ’0’ zu set-
zen, muss an diese Stelle eine "1’ ge-
schrieben werden.

Read DMA Start 2 Startet den lesenden Speicherdirekt-
zugriff. Mit dem Schreiben einer '1’
an diese Stelle wird der gewiinschte
lesende DMA-Zugriff gestartet. Die-
ses Bit setzt sich automatisch zu-
riick.

Read DMA Done 3 Dieses Bit wird gesetzt, wenn der
lesende DMA-Zugriff beendet wird.
Um dieses Bit zu ’0’ zu setzen, muss
an diese Stelle eine 1’ geschrieben
werden.

DDR RAM Ready 4 Dieses Bit wird zu ’1’ gesetzt, wenn
die Schnittstelle zum DDR2 Spei-
cher erfolgreich initialisiert wurde.
Reserved 32..5 Nurlese-Bits, ohne Verwendung.

e ML506_init
e ML506_exit

Die Makros module_init and module_exit legen die Rollen der {ibergebenen Funktio-
nen fest:

module__init (ML506_init);
module exit (ML506 exit);

Eine weitere Besonderheit von Linux ist das MODULE_LICENSE(,Dual BSD/GPL") Ma-
kro. Es teilt dem Kernel mit, dass es sich um eine freie Software handelt und dass der
Quellcode geméaf der Lizenzbedingungen zur Verfigung steht. Beim Fehlen dieser Zeile
erzeugt der Kernel mehrere Warnmeldungen beim Laden eines solchen Moduls.

Alexander Henning 40

PCle Treiber fiir ein Linux-System IPVS/PaS

Die Initialisierungsfunktion ML506_init wird nur einmalig beim Laden des Moduls
ausgefiihrt. Diese Funktion beendet sich sofort, wenn die Initialisierungsaufgaben durch-
gefiihrt wurden. Die Funktion ,registriert“ den Treiber beim Kernel, und teilt ihm mit,
fiir welches Gerét dieses Modul ein Treiber ist und welche Aufgaben es als Treiber erledi-
gen kann. Die Deinitialisierungsfunktion muss alle Aktionen der Initialisierungsfunktion
rickgéngig machen, damit der Kernel weif3, dass die bereitgestellten Funktionalitdten
nicht mehr zur Verfiigung stehen.

Bei dem Referenzdesign handelt es sich um eine PCle-Karte. Wie bereits im Kapitel 3.2
erwahnt wurde, ist die Softwareschnittstelle zur Anbindung von PCI und PCle Geréten
voll kompatibel. Fiir die System- und Treiberentwicklung bedeutet das, dass die bereits
fiir PCI-Bus vorhandenen Funktionen des Kernels benutzt werden kénnen.

Bei der Initialisierung wird die Kernelfunktion pci_register_driver aufgerufen. Als
Ubergabeparameter erwartet diese Funktion eine spezielle Treiber-Struktur und liefert
ein ganzzahliges Ergebnis zuriick. Diese struct pci_driver Struktur ist ein zentrales
Element aller PCI/PCle Treiber. Damit die Registrierung des Treibers beim Kernel
fehlerfrei ablduft muss diese Struktur korrekt erzeugt werden. Das Listing 4.2 zeigt den
Aufbau einer solchen Struktur auf.

/%%

x* Dient der korrekten Registrierung des Treibers
xbeim Kernel.

*/

static struct pci_driver ML506_driver = {

.name = "ML506_ driver",

.id table = ML506_ids,

.probe = ML506_ probe,

.remove = _ _devexit_p(ML506_remove) ,

¥

Diese Struktur beschreibt den Treiber fiir das PCI-Subsystem. Sie beinhaltet den Trei-
bernamen, der nach dem Laden des Moduls im System unter /sys/bus/pci/drivers/
erscheint. Der Name muss natiirlich eindeutig innerhalb des Kernels sein. Daneben ent-
hélt die Struktur die Zeiger auf die sogenannten Callback-Funktionen, die vom PCI-
Subsystem des Kernels aufgerufen werden, und einen Zeiger auf eine weitere Struktur:
struct pci_device_id *id_table; Diese Struktur bildet eine Liste der von diesem
Treiber unterstiitzten Geréate. Die Liste beinhaltet die Vendor IDs und die Device IDs.
Diese Nummern werden von der PCI-SIG den Geréteherstellern vergeben und bei den
PCI Karten im Konfigurationsspeicher einprogrammiert. Das Listing 4.2 zeigt diese
Struktur. Sie bildet eine Liste mit den Eintrdgen fiir die vom Treiber unterstiitzten
Geréte nach.

/x Hersteller— und Geraetekennung x/

#define XILINX VENDOR, ID 0x10ee
#define XILINX DEVICE_ID 0x0007
static const struct pci_device id ML506_ids[] = {

Alexander Henning 41

PCle Treiber fiir ein Linux-System IPVS/PaS

{ PCL_DEVICE(XILINX_VENDOR._ID, XILINX DEVICE ID) },
{0},
}s

Das PCI-Subsystem erwartet, dass der PCI-Treiber folgende Funktionen zur Verfii-
gung stellt:

e probe : Diese Funktion wird vom PCI-Kern aufgerufen, wenn der Kernel ein Gerét
erkennt, dem noch kein Treiber zugeordnet ist und das in der Liste der unterstiitz-
ten Gerdte vorkommt. Der Treiber muss dann entscheiden, ob er die Kontrolle
fiir dieses Gerat bernimmt oder nicht. Die Mitteilung dieser Entscheidung er-
folgt durch den Riickgabewert. Der Riickgabewert ist NULL, wenn die Kontrolle
iibernommen wird, ansonsten eine negative Zahl.

e remove : Diese Funktion wird entweder aufgerufen wenn das Gerdt vom System
entfernt wird, oder wenn der Treiber fiir dieses Geréit entladen wird.

e suspend : Diese Funktion ist optional und ist nicht zwingend notwendig fiir den
Betrieb des Gerats. Sie wird aufgerufen, wenn die Variable state der internen Ker-
nelstruktur pci_dev den Wert suspend annimmt. Die Kernelstruktur pci_dev re-
prasentiert ein PCI-Gerét innerhalb des Kernels.

e resume : Diese Funktion ist ebenfalls nicht zwingend notwendig fiir den Betrieb
des Geriits. Sie wird immer aufgerufen, wenn die interne Kernelstruktur pci_dev
den suspend-Zustand verlésst.

Die zwei letzten Funktionen werden gebraucht, wenn die Karte bestimmte Aktionen
durchfithren muss, bevor sie z.B. vom Energie-Management des System abgeschaltet
bzw. wieder eingeschaltet wird.

Bei dem Treiber fiir das Referenzdesign wurden nur die notwendigen Funktionen
ML506_probe und die ML506_remove implementiert. Wie beim Laden des Treibermo-
duls die Funktion pci_register_driver aufgerufen wird, so wird beim Entladen des
Moduls die Funktion pci_unregister_driver aufgerufen. Dabei werden die Zuweisun-
gen der PCI-Geréte zu dem Treiber aufgehoben. Bevor die Struktur struct pci_driver
des Treibers beim Kernel abgemeldet wird und damit die belegten Ressourcen wieder
frei werden, wird noch die remove - Funktion (ML506_remove) aufgerufen, um ein von
diesem Treiber kontrolliertes Gerét z.B. in einen sicheren Zustand zu bringen.

4.2.1 Funktion probe

Alle Treiber, die fiir PCI/PCle-Gerite beim Kernel angemeldet werden, liefern auch die
Liste der von diesen Treibern unterstiitzten Gerate. Der Kernel vergleicht die Hersteller-
und die Gerdtenummern der erkannten PCI-Gerdte mit den Nummern, welche die regis-
trierten Treiber mitteilen. Wenn es eine Ubereinstimmung gibt, dann versucht der Kernel
das erkannte PCI-Geriit an den entsprechenden Treiber zu iibergeben. Diese Ubergabe
erfolgt mit Hilfe der bereits erwéhnten probe-Funktion (ML506_probe). Der Kernel ruft

Alexander Henning 42

PCle Treiber fiir ein Linux-System IPVS/PaS

diese Funktion des entsprechenden Treibers auf und iibergibt die Adresse auf die interne
Struktur, die das erkannte PCI-Gerat reprasentiert. Diese Struktur fasst natiirlich alle
Informationen zusammen, die allen PCI/PCle-Geréten gemeinsam sind und weiterhin
auch noch solche, die zur Verwaltung der Geréte intern im Kernel notwendig sind.

Das Referenzdesign verfiigt iiber die gerétespezifischen Register und weiteren geréte-
spezifischen Eigenschaften, die im Treiber eine Rolle spielen. Dafiir wurde eine weitere
Struktur eingefiihrt, die das eigentliche Gerét abbildet und alle notwendigen Variablen
fiir den Treiber bereithélt und zusammenfasst. Diese Struktur ist die struct ML506_dev
und sie beinhaltet folgende Felder:

e Variablen fiir die virtuelle und physikalische Adresse des Registers BARO.

e Variablen fiir physikalische und virtuelle Adressen des DMA-Puffers.

Variablen fir die Werte aus den Registern.

Zeiger auf die kernel-interne Struktur struct pci_dev *pci_dev.

Eine Struktur, die ein Character-Device beschreibt:
struct cdev ML506_cdev.

Als erster Schritt in der probe-Funktion wird der notwendige Speicher fiir die struct
ML506_dev Struktur angefordert. Beim Erfolg wird der Speicherbereich mit Nullen be-
schrieben und die Ausfiihrung geht zum nichsten Schritt iiber. Die Ubernahme des Geré-
tes durch den Treiber erfordert schrittweises Vorgehen. Beim Fehlschlagen eines Schrittes
miissen alle bis dahin belegten Ressourcen wieder freigegeben werden. Die Freigabe der
belegten Ressourcen erfolgt dann in der umgekehrten Reihenfolge. Erst nach der Freiga-
be der belegten Ressourcen wird die probe-Funktion mit einem negativen Riickgabewert
beendet.

Nach dem die Struktur den Speicher im Kernelspeicherbereich zugewiesen bekommen
hat, werden die ersten Variablen mit Werten belegt. Es wird der Name gesetzt und
der iibergebene Zeiger auf die pci_dev Struktur gespeichert. So kann der Treiber dann
immer auf die kernel-interne Darstellung des Gerétes zugreifen. Die pci_dev Struktur
bietet zusétzlich eine Moglichkeit iiber sich selbst auf die ,,privaten“ Daten des Treibers
zuzugreifen. Die ,,privaten“ Daten des Treibers bestehen in diesem Fall aus der angelegten
Struktur ML506_dev. Die Adresse der angelegten Struktur wird in die dafiir vorgesehene
Variable der pci_dev Struktur kopiert. Das heif3t, wenn der Kernel eine Treiberfunktion
aufruft und dabei nur den Zeiger auf die pci_dev Struktur iibergibt, so hat man dennoch
die Moglichkeit auf die spezifische, angelegte, gerdtebeschreibende Struktur zuzugreifen.

Der néchste Schritt sieht eine Reservierung von 1 Megabyte groflen, zusammenhén-
genden Speicherbereich fiir den Puffer im Kernelbereich vor. Dafiir wird die Funktion
pci_alloc_consistent benutzt. Im fehlerfreien Fall liefert sie zwei Ergebnisse: die vir-
tuelle und die physikalische Startadresse des reservierten Bereiches. Diese werden in der
ML506_dev-Struktur gespeichert. Die Funktion, welche die entsprechenden Ressourcen
freigibt ist die pci_free_consistent

Alexander Henning 43

PCle Treiber fiir ein Linux-System IPVS/PaS

Als Néchstes wird die Kernelfunktion pci_enable_device(struct
pci_dev *dev) aufgerufen. Damit weifl der Kernel welches Gerédt aktiviert werden soll
und wenn das Gerét vorhanden ist, werden die Interrupts zu den Leitungen und die Ein-
und Ausgabebereiche zugewiesen. Erst nach dem Ausfiihren dieser Funktion ist der Trei-
ber in der Lage auf die Ressourcen des Gerétes zuzugreifen. Der Kernel stellt mehrere
Funktionen fiir den Zugriff auf die verschiedenen Speicherbereiche der PCI/PCle-Geréte
zur Verfiigung. Die CPU hat selbst keine Moglichkeit auf die Hardware zuzugreifen,
sie muss den Umweg iiber den Chipsatz nehmen, d.h. sie schreibt in und liest aus den
bestimmten Registern des PCle-Kontrollers. Diese Zugriffe sind Herstellerabhédngig und
werden durch die Treiber fiir diese Chipsétze abgedeckt. Die Abstraktion durch den
Kernel stellt eine einheitliche Schnittstelle fiir die Zugriffe z.B. auf den Konfigurati-
onsspeicher der Karten dar. Um das Gerat wieder zu deaktivieren wird die Funktion
pci_disable_device gebraucht.

Bevor die von dem Gerét bereitgestellten Speicherbereiche benutzt werden diirfen,
miissen diese noch als belegt markiert werden, damit es keine mehrfachen Zugriffe gibt.
Die Reservierung erfolgt mit Hilfe der Funktion pci_request_regions. Dabei wird die
Struktur des Gerdtes pci_dev und der Treibername iibergeben. Wenn die durch das
Gerét angeforderten Ressourcen noch nicht als belegt markiert waren, dann werden
diese als belegt markiert. Erst nach dem diese Funktion erfolgreich ausgefithrt wurde,
darf man auf die Ressourcen zugreifen. Die Funktion pci_release_regions markiert
die belegten Ressourcen wieder als frei.

Im néchsten Schritt werden die Adressen fiir das BARO Register ermittelt und in der
ML506_dev Struktur gespeichert. Dabei wurde der notwendige Quellcode in eine eigene
Funktion ausgegliedert. Diese Funktion ist die static int __devinit map_bars. In die-
ser Funktion werden die Start- und die Endadresse des Speicherbereichs ermittelt. Dabei
wird es noch tberpriift, ob sich die Adressen tatsachlich von einander unterscheiden und
somit einen Speicherbereich aufspannen. Daneben erfolgt noch die Uberpriifung, ob es
sich bei dieser Ein- / Ausgaberessource um einen Speicher handelt. Mit diesen Tests und
der Kenntnis iiber den Aufbau der Hardware kann im Treiber sichergestellt werden, dass
es sich um ein unterstiitztes und korrekt funktionierendes Gerdt handelt. Die virtuelle
Adresse im Speicherbereich des Kernels erhdlt man mit Hilfe der Funktion ioremap. In
Linux gibt es zum Teil mehrere Funktionen, die den gleichen Zweck erfiillen, wie auch
in diesem Fall. Die Alternative zu ioremap ist z.B. pci_iomap. Die entsprechende Funk-
tion, die den eingeblendeten Speicherbereich wieder freigibt, ist die pci_iounmap. Diese
Funktion wird aus der static void free_bars heraus aufgerufen.

Alle bis jetzt verwendeten Funktionen werden vom PCI-Subsystem des Kernels zur
Verfiigung gestellt. Im weiteren Verlauf folgen noch die Funktionen, die das Geréit als
ein Character-Device beim Kernel initialisieren und anmelden.

Als Erstes bei der Einrichtung eines Character-Devices erfolgt die Reservierung einer
sogenannten major-Nummer. Die Zugriffe auf die Peripherie erfolgen meistens iiber die
Geratedateien, die sich im Verzeichnis /dev befinden. Eine Gerétedatei ist die Schnitt-
stelle fiir den Benutzer und fiir die Anwendungen um mit der Hardware zu kommuni-
zieren. Die Zugriffe erfolgen dann iiber die Dateioperationen, wie open, close, read,
write und weitere. Beim Auslosen einer Operation iiber eine Geratedatei muss der

Alexander Henning 44

PCle Treiber fiir ein Linux-System IPVS/PaS

Kernel wissen an welchen Treiber er die Operation weiterleiten muss. Dafir ist die
major-Nummer vorgesehen. Die Reservierung der major-Nummer erfolgt mit der int
register_chrdev_region Funktion. Als einen der Parameter muss dabei die gewiinsch-
te zu reservierende Nummer tibergeben werden. Es gibt eine Liste mit den bereits ver-
gebenen Nummern, die fiir viele Linuxsysteme gilt. Der Nachteil dieser Vorgehensweise
ist, dass die Nummer von einem anderen Treiber bereits belegt sein konnte. Als Lo-
sung fiir das Problem dient die dynamische Zuweisung der major-Nummer mit Hilfe
der int alloc_chrdev_region Funktion. Diese Funktion ist in der Lage gleich mehrere
Nummern zu reservieren. Sie erwartet einen Zeiger auf die Variable, welche dann die
Nummer beinhaltet, den Namen des Gerétes, unter dem es in /proc/devices erscheint
und die Anzahl der gewiinschten Nummern. Neben einer major hat jedes Gerédt auch
eine minor-Nummer. Diese Nummer wird nicht vom Kernel sondern nur von Treibern
selbst verwaltet und benutzt. Die minor-Nummer kann z.B. fiir die Verwaltung mehre-
rer Geréte desselben Typs durch einen einzigen Treiber eingesetzt werden. Die Funktion
unregister_chrdev_region gibt die reservierte major-Nummer wieder frei.

Nach dem die major-Nummer im System reserviert ist, miissen noch die entsprechen-
den Treiberfunktionen mit dieser Nummer verkniipft werden. Die Verkniipfung erfolgt
mit Hilfe einer weiteren Struktur die struct file_operations. Diese Struktur ist in <li-
nux/fs.h> definiert und stellt eine Sammlung von Zeigern auf die zu implementierenden
Funktionen dar. Nicht alle definierten Funktionen miissen auch tatsédchlich implemen-
tiert werden, damit das Gerét korrekt funktioniert. Nur die vom Gerdt unterstiitzten
Funktionen missen implementiert werden. Die Zeiger auf Funktionen, die nicht unbe-
digt notwendig sind und somit ggf. nicht vom Treiber bereitgestellt werden, miissen mit
NULL belegt sein. Alle anderen Funktionen miissen im Treiber implementiert werden.
Der Quellcode-Ausschnitt 4.2.1 zeigt die file_operations Struktur.

static const struct file_ operations ML506_fops = {

.owner = THIS_ MODULE,
.open = ML_ open,
.release = ML release,
.mmap = ML_mmap,
.ioctl = ML ioctl,
.read = ML_ read,
.write = ML _write,

}s

Wie man dem Quellcode entnehmen kann, entsprechen die Funktionen den System-
aufrufen, die wiederum von der Anwendung getriggert werden. Das Feld .owner stellt
eine Ausnahme dar und ist keine Funktion. Dieses Feld ist notwendig um das Entladen
des Treibers zu verhindern, wenn eine der Operationen der Gerédtedatei aktiv ist. Der
Funktion ML_ioctl kommt eine besondere Bedeutung zu, denn mit Hilfe dieser Methode
konnen gerdtespezifischen Funktionen realisiert werden, die nicht iiber die vorhandenen
Systemaufrufe abgedeckt werden kénnen.

Nach dem die Gerétedatei gedffnet wurde, kann die Anwendung auf die aufgeliste-
ten Funktionen zugreifen. Alle Character-Devices werden im Kernel intern mit Hilfe

Alexander Henning 45

PCle Treiber fiir ein Linux-System IPVS/PaS

der Struktur vom Typ struct cdev repréisentiert. Bevor der Kernel die Funktionsauf-
rufe an den Treiber weiterleiten kann, muss diese cdev Struktur initialisiert und dem
Kernel bekannt gemacht werden. Die Initialisierung dieser Struktur erfolgt mit void
cdev_init(struct cdev *cdev, struct file_operations *fops). Bei der Initialisie-
rung der Character-Device beschreibenden Struktur wird die bereits erwéhnte Struktur
file_operations iibergeben. Dadurch wird dem Kernel mitgeteilt welche Operationen
dieses Character-Device ausfiihren kann.

Das angelegte, zeichenorientierte Gerdt muss dem Kernel durch Hinzufiigen bekannt
gemacht werden. Dies erfolgt mit dem Aufruf der Funktion cdev_add. Der Aufruf dieser
Funktion ist die letzte Aktion in der probe-Funktion. Beim erfolgreichen Ausfithren
erscheint das Gerédt im System und kann sofort angesprochen werden, weshalb es wichtig
ist, dass dieses Gerit zu diesem Zeitpunkt funktionsbereit ist.

4.2.2 Funktion remove

Bei der Registrierung des Treibers beim Kernel wurde neben dem Zeiger auf die probe-
Funktion auch ein Zeiger auf die remove-Funktion iibergeben. Diese Funktion wird vom
PCI Subsystem des Kernels aufgerufen, wenn z.B. der Treiber entladen wird. Dabei
werden die verwendeten Ressourcen abgegeben:

1. Beenden der Einblendung des Registers BARO in den Kernelspeicherbereich.
2. Freigabe des 1 MB groflen Pufferspeichers.

3. Riickgabe der major-Nummer.

4. Loschen der cdev-Struktur.

5. Freigabe der PCI Ein- / Ausgabebereiche und der Speicherbereiche.

6. Loschen der geritespezifischen Struktur.

Nach dem die remove-Funktion abgearbeitet wurde, wird zuletzt die exit-Funktion
des Treibers vom Kernel aufgerufen. Die Hauptaufgabe dieser Funktion ist die Ab-
meldung der struct pci_driver Struktur vom Kernel. Die Abmeldung erfolgt mit
pci_unregister_driver, damit wird der Treiber vom System abgemeldet.

4.2.3 Funktion open

Die Funktion open wird aufgerufen, wenn die Anwendung eine Geratedatei 6ffnet, welche
die vorhandene Hardware reprasentiert. In dieser Funktion soll iberpriift werden, ob
das Gerédt bereits von z.B. einer anderen Anwendung ,,ge6ffnet” ist d.h. benutzt wird.
Dafiir ist eine Variable in der gerdtespezifischen Struktur vorgesehen: int inUse. Es wird
iberpriift, ob der Wert dieser Variable = 1 ist. Diese Variable hat den Wert 1, wenn das
Gerét bereits ,,gedffnet” wurde. Der Treiber ’6ffnet* das Gerédt indem er eine 1 dieser
Variable zuweist.

Alexander Henning 46

PCle Treiber fiir ein Linux-System IPVS/PaS

Beim Aufruf der Funktion werden vom Kernel als Parameter nur zwei Zeiger auf die
Strukturen {ibergeben: struct inode *inode, struct file *file. Es muss also einen
Mechanismus geben um auf die gerdtespezifische Struktur des Treibers innerhalb dieser
Methode zugreifen zu koénnen.

Die Struktur file représentiert einen sogenannten file descriptor, ein Objekt, das eine
geoffnete Datei repréasentiert. Die Struktur inode selbst hingegen beschreibt die Datei
und beinhaltet sehr viele Informationen iiber diese. In einem System kann es mehrere
Deskriptoren einer Datei geben, jedoch gibt es immer nur eine Struktur inod von dieser
Datei.

Die Struktur inode hat zwei Felder, die fiir die Treiberentwiklung interessant sind:
dev_t i_rdev und struct cdev *i_cdev. Falls der inode-Knoten eine Geratedatei re-
prasentiert, dann beinhaltet das erste Feld die Gerdtenummer und das zweite den Zeiger
auf die entsprechende cdev-Struktur, wenn es sich dabei um ein Character-Device han-
delt. Zur Erinnerung: die cdev-Struktur wurde vorher in der probe-Funktion vorher
angelegt und dem Kernel hinzugefiigt. Uber die inode kénnen wir auf die Struktur cdev
zugreifen, und mit Hilfe der Kernelfunktion container_of kénnen wir die gewiinschte
geratespezifische Struktur erhalten.

Die {iber diesen Umweg gewonnene Struktur m1506_dev kann auf die treiberinternen
Variablen zugegriffen werden. Vorteilhaft ist, dass die file-Struktur ein Feld namens
private_data besitzt. In diesem Feld wird die Referenz auf die gewonnene gerétespe-
zifische Struktur abgelegt. Bei jedem weiteren Aufruf einer der Dateioperationen auf
der offenen Gerédtedatei kann man so leicht auf die gerédtespezifische Struktur in den
Treiberfunktionen zugreifen.

4.2.4 Funktion release

Diese Funktion wird vom Kernel aufgerufen, wenn die vorher geéffnete Gerétedatei von
der Anwendung geschlossen wird. Die Ubergabeparameter sind mit denen der open-
Funktion identisch. Den Zugriff auf die gerdtespezifische Struktur erhilt man iiber das
Feld private_data der file-Struktur. In dieser Funktion werden die internen Register
der Karte mit den Standartwerten beschrieben, zuriickgesetzt und die inUse-Variable in
der geritespezifischen Struktur wieder zu 0 gesetzt: eine erneute Offnung des Gerits /
der Gerétedatei wird wieder moglich.

4.2.5 Funktion mmap

Die Funktion mmap dient der Einblendung der Speicher- oder der Ein- und Ausgaberes-
sourcen der Hardware in den Adressraum des aufrufenden Prozesses. Das Referenzdesign
reserviert 128 Bytes an Speicherressourcen iiber das Register BARO. In diesen 128 By-
tes befindet sich der Registersatz der Karte, wobei der Registersatz sich nur iiber 56
Bytes erstreckt. Mit der mmap-Funktion kann die Anwendung die Register in dem ihr
zugewiesenen Adressraum auslesen und damit die lesenden Hardwarezugriffe durchfiih-
ren. Die mmap-Funktion kann die Einblendung nur Seitenweise durchfiithren, die typische
Grofle einer Seite ist dabei 4096 Bytes. Zudem kann man nicht davon ausgehen, dass die

Alexander Henning a7

PCle Treiber fiir ein Linux-System IPVS/PaS

gewiinschten 56 Bytes des Registersatzes ganz am Anfang des eingeblendeten Adressbe-
reiches liegen. Daher besitzt die gerdtespezifische Struktur noch eine Variable, die den
Offset beinhaltet, ab dem die Register innerhalb der Seite liegen. Bevor die Anwendung
auf die Register zugreifen kann, muss sie noch den Offset beim Treiber abfragen. Beim
Einblenden erlaubt der Treiber nur den lesenden Zugriff auf die Register, damit wird
verhindert, dass die Anwendung tiber das direkte Beschreiben der Register, das heifit
am Treiber vorbei, den DMA-Vorgang starten kann.

Die mmap-Funktion ermdglicht also direkte Zugriffe auf die Hardware direkt aus der
Anwendung heraus. Sie erlaubt einen bequemeren Zugriff, diese Zugriffe aber bleiben
vom Treiber unbemerkt. Das Beschreiben einzelner Register wird nur iiber die ioctl-
Aufrufe erledigt.

4.2.6 Funktion read

Die Funktion read im Treiber wird aufgerufen, wenn die Anwendung den read-Systemaufruf
iiber die Gerdtedatei auslost. Auch wenn die Anwendung die Daten liest, so werden die-
se eigentlich von der Karte aus dem eigenen DDR2 RAM Speicher in den PC RAM
geschrieben. In dieser Funktion erfolgt also ein schreibender Speicherdirektzugriff.

Beim Aufruf der Funktion read wird als Erstes tiberpriift, ob die Werte fiir die Offsets
und fiir die Anzahl der Wiederholungen und die Gréfie der Ubertragung korrekt gesetzt
sind. Falls irgendein Wert noch nicht gesetzt wurde aber die read-Funktion aufgeru-
fen wird, so wird ein Standardwert angenommen. Als Néchstes tiberpriift der Treiber
das Bit ,,0“ des Steuerungs- und Statusregisters, und wenn das Bit eine logische ’0’ dar-
stellt, dann darf der Write-DMA Vorgang gestartet werden. Bevor die Dateniibertragung
erfolgt, miissen noch die entsprechenden Register auf der Einsteckkarte mit den iiber-
gebenen Werten aus der geriitespezifischen Struktur beschrieben werden. Die Ubergabe
der Werte erfolgt mit Hilfe der ioctl-Funktion und sie werden in der geritespezifischen
Struktur abgelegt. Das Schreiben in die Register erfolgt mit Hilfe der Kernelfunktion
iowrite32. Folgende Quellcodezeile zeigt beispielsweise, wie der Register fiir die Grofie
der zu iibertragenden Daten beschrieben werden kann:

iowrite32(ml1506_dev->w_TransferSize, ml506_dev->bar0 +
+ DMA_W_TRANSFER_SIZE).

Mit dem ersten Parameter wird der Wert fiir die Datenmenge in Bytes iibergeben
und mit dem zweiten Parameter die Zieladresse, wohin der erste Parameter geschrieben
werden soll. Im Feld barO der gerétespezifischen Struktur m1506_dev befindet sich die
virtuelle Kerneladresse des Registers BARO. Das DMA_W_TRANSFER_SIZE ist der Offset
in Bezug auf die BARO Adresse zu dem DMAWXS Register.

Bevor der DMA-Vorgang gestartet wird, wird noch der Wert des Schreibzédhlers aus-
gelesen. Erst jetzt startet der Treiber in einer for-Schleife durch das Schreiben einer "1’
in Bit ,,0“ des DMACST Registers die geforderten Dateniibertragungen.

Nach diesem Vorgang wird die Ausfithrung des Treibers fiir eine bestimmte Zeit an-
gehalten um nach Ablauf dieser Zeit das Statusbit abzufragen, dass das Ende der Uber-

Alexander Henning 48

PCle Treiber fiir ein Linux-System IPVS/PaS

tragung anzeigt. Der Treiber bleibt in dieser Abfrage bis das Bit gesetzt wird. Damit
der Treiber im Falle einer Fehlfunktion der Hardware nicht fiir immer an dieser Stelle
wartet, lduft ein Zahler, der mitzihlt, wie oft der Treiber bereits das Bit ausgelesen hat.
Dieser Zahler beschrankt das Pollen auf 100 mal.

Nach dem Beenden der for-Schleife liest der Treiber den neuen Wert aus dem Register
DMAWRP und bestimmt die Differenz. Das Ergebnis wird in der gerétespezifischen
Struktur abgelegt, um bei der Berechnung des Datendurchsatzes verwendet zu werden.

Der letzte Schritt in dieser Funktion ist das Kopieren der Daten, mit Beriicksichigung
aller Offsets, aus dem Kernelpufferspeicher in den Pufferspeicher des aufrufenden Pro-
zesses. Dies erfolgt mit Hilfe der Funktion copy_to_user. Diese Funktion kann ein Block
Daten aus dem Kernelspace in den Userspace kopieren.

4.2.7 Funktion write

Die Funktion write im Treiber wird aufgerufen, wenn die Anwendung den Systemauf-
ruf write iiber die Gerétedatei auslost. Auch wenn die Anwendung die Daten schreibt,
so werden diese tatsdchlich von der Karte, aus dem PC Arbeitsspeicher in den eigenen
DDR2 RAM Speicher eingelesen. In dieser Funktion erfolgt also ein lesender Speicherdi-
rektzugriff.

Die Vorgehensweise des Treibers in dieser Funktion ist ganz dhnlich, wie die in der
Funktion read. Der Unterschied besteht darin, dass der Treiber zuerst die Daten aus dem
Userspace, von der Anwendung, in den Kernelspace kopiert und erst danach den lesenden
DMA-Vorgang startet. Das Kopieren erledigt eine weitere Kernelfunktion: copy_from_user.

Auch in dieser Funktion muss der Treiber die iibergebenen Offsets, Adressen, Daten-
grofe und Anzahl der Ubertragungen beriicksichtigen. Bei der Vorbereitung des Vorgangs
werden die entsprechenden Register beschrieben und ausgewertet.

4.2.8 Funktion ioctl

Die Funktion ioctl spielt eine wichtige Rolle bei der Gerétesteuerung. Mit Hilfe dieser
Funktion kénnen beliebige Auftrdge an den Treiber und die Hardware gestellt, wenn die
Standardaufrufe wie ,lesen* und ,schreiben“ nicht ausreichen.

Die Funktion ioctl wird aufgerufen, wenn der ioctl-Systemaufruf von der Anwen-
dung erzeugt wird. Der Aufruf in der Anwendung hat folgendes Format: int ioctl(int
fd, unsigned long cmd, ...).Dabeibedeuten die Punkte als Parameter in den Klam-
mern, dass es einen optionalen Parameter geben kann. Dabei kann dieser zusétzlicher
Parameter eine Ganzzahl oder ein Zeiger auf eine beliebige Struktur sein. Das Vorhan-
densein und der Typ dieses Parameters hingt dann von dem verwendeten Befehl, dem
zweiten Parameter, ab.

Die ioctl-Funktion ist eigentlich eine grofie switch-case-Anweisung, wobei jeder Be-
fehl in einem eigenen Zweig abgearbeitet wird. Den einzelnen Befehlen sind eindeutige
Nummern zugewiesen, die Zuweisung erfolgte in der <Ioctrl.h>-Datei. Damit die An-
wendung die gleichen Befehle benutzen kann, muss diese Datei ebenfalls wihrend der
Entwicklung verwendet werden.

Alexander Henning 49

10

11

12

13

14

15

16

17

18

PCle Treiber fiir ein Linux-System IPVS/PaS

Der Quellcode-Ausschnitt 4.2.8 zeigt die Definitionen von zusédtzlichen Befehlen und
die Zuweisung der korrespondierenden Nummern.

#define ML506_IOC MAGIC 0b11000101

#define ML_ioctl _Set_Read_ Transfer_ Size _IOW(
ML506_IOC_MAGIC, 1, int)

#define ML_ioctl Set Read NumberOfTransfers _IOW(
ML506_IOC_MAGIC, 2, int)

#define ML_ioctl Set_ Write_ Transfer_ Size _TOW(
ML506_I0C_MAGIC, 3, int)

#define ML_ioctl _Set_ Write_ NumberOfTransfers _IOW(
ML506_I0C_MAGIC, 4, int)

#define ML_ioctl Get_Bar0O_ Offset _IOR(
ML506_IOC_MAGIC, 5, int)

#define ML_ioctl Get_ MaximumReadRequestSize _IOR(
ML506_I0C_MAGIC, 6, int)

#define ML_ioctl _Get_MaximumPayloadSize _IOR(
ML506_I0C_MAGIC, 7, int)

#define ML_ioctl Get_ReadCompletionBoundary _IOR(
ML506_IOC_MAGIC, 8, int)

#define ML_ioctl Get_LinkWidth _IOR(
ML506_I0C_MAGIC, 9, int)

#define ML_ioctl Set_ Write_ ML506_ Offset _IOW(
ML506_IOC_MAGIC, 10, int)

#define ML__ioctl _Set_ Write_ HostPC_ Offset _IOW(
ML506_IOC_MAGIC, 11, int)

#define ML_ioctl_Set_Read_ ML506_ Offset _IOW(
ML506_IOC_MAGIC, 12, int)

#define ML_ioctl _Set_Read_HostPC_ Offset _IOW(
ML506_IOC_MAGIC, 13, int)

#define ML_ioctl_Start_ Full Duplex_ DMA _IOW(
ML506_IOC_MAGIC, 14, unsigned long)

#define ML_ioctl Get_Write_ Performance _IOR(
ML506_IOC_MAGIC, 15, int)

#define ML_ioctl _Get__Read_Performance _IOR(

ML506_1I0C_MAGIC, 16, int)

Wie man dem Quellcode entnehmen kann, wurden 16 zusétzliche Aufrufe definiert.
Dabei gibt es eine Besonderheit bei der Vergabe der Nummern. Die Nummern diirfen
nur einmal innerhalb des Systems vorkommen. Wenn dies gewéhrleistet ist, dann kénnen
die Fehler vermieden werden, die sich ergeben, wenn eine Anwendung an einer falschen
Geritedatei einen ioctl-Aufruf absetzt und es nicht merkt. Deswegen haben sich die Ker-
nelentwickler auf ein bestimmtes Format geeinigt, bei dem es mehrere Bitfelder gibt, die
z.B. anzeigen, ob es weitere Ubergabeparameter gibt, und wenn ja, wie grof8 diese sind;
in welche Richtung die Daten transferiert werden (vom Kernel zum User oder umge-
kehrt) usw. Es gibt eine spezielle 8 Bit grofle Zahl, die innerhalb des Treibers einmalig
vorkommen darf. Mit Hilfe dieser Zahl und der Macros wie _I0(kein Datenaustausch),
_I0ow (Die Daten gehen von Userspace in den Kernelspace), _I0R und _IOWR werden die
zusétzlichen Befehle fiir die ioctl-Aufrufe definiert. Damit der Treiber als auch die An-
wendung diese Macros erkennen, muss die Headerdatei <asm/ioctl.h> wéihrend deren

Alexander Henning 50

PCle Treiber fiir ein Linux-System IPVS/PaS

Entwicklung eingebunden werden.

Mit der ioctl-Funktion lassen sich gerétespezifischen Funktionen und Aufrufe imple-
mentieren, die nicht von den vorhandenen Standardaufrufen abgedeckt werden.

In der ioctl-Funktion erfolgen die ersten Tests, die iiberpriifen, ob die aufgerufenen
Befehle an den richtigen Treiber gerichtet sind. Es wird iiberpriift, ob die spezielle,
sogenannte ,,magische* Zahl des Befehls korrekt ist und ob die im Befehl angekiindigte
Datenflussrichtung mit der vom Treiber iibereinstimmt. Wenn die Uberpriifung ohne
Fehler ablauft, wird der eigentliche Befehl ausgefiihrt.

Im Folgenden werden die zusétzlichen gerdtespezifischen Befehle an den Treiber nédher
erldutert, die {iber den ioctl-Systemaufruf abgesetzt werden.

ML_ioctl_Get_Read_Performance

Liefert die Anzahl der durchgefithrten DMA-Read Transaktionen vom letzten DMA-
Read Vorgang (Anwendung hat , geschrieben®) zuriick. Dieser Befehl wird zur Bestim-
mung des Datendurchsatzes genutzt.

ML_ioctl_Get_Write_Performance

Liefert die Anzahl der durchgefithrten DMA-Write Transaktionen vom letzten DMA-
Write Vorgang (Anwendung hat ,, gelesen®) zuriick. Dieser Befehl wird zur Bestimmung
des Durchsatzes benétigt.

ML_ioctl_Start_Full_Duplex_DMA

Startet die Funktion ML_do_full_duplex_dma. Diese Funktion leitet gleichzeitiges Lesen
und Schreiben ein. Sie ist notwendig, da das Lesen und Schreiben gleichzeitig ablaufen
soll und es keinen expliziten Systemaufruf wie read oder write gibt.

ML_ioctl_Set_Write_ML506_Offset

Die Anwendung setzt den Offset, von welcher Stelle die Daten aus dem DDR2 RAM der
Karte in den eigenen Speicher iibertragen werden sollen.

ML_ioctl_Set_Write_HostPC_0ffset
Die PC-Anwendung setzt den Offset, an welche Stelle die Daten aus dem DDR2 RAM
der Karte in den eigenen Speicher iibertragen werden sollen.

ML_ioctl_Set_Read_ML506_0ffset

Die Anwendung setzt den Offset, von welcher Stelle die Daten aus dem eigenen Speicher
in den DDR2 RAM der Karte iibertragen werden sollen.

Alexander Henning 51

PCle Treiber fiir ein Linux-System IPVS/PaS

ML_ioctl_Set_Read_HostPC_0Offset

Die Anwendung setzt den Offset, an welche Stelle die Daten aus dem eigenen Speicher
in den DDR2 RAM der Karte tibertragen werden sollen.
ML_ioctl_Set_Read_Transfer_Size

Die Anwendung setzt die Grole der Daten in Bytes, die sie ,schreibt®

ML_ioctl_Set_Read_NumberOfTransfers

Die Anwendung setzt die Anzahl der Wiederholungen, wie oft sie ,,schreibt*.

ML_ioctl_Set_Write_Transfer_Size

Die Anwendung setzt die Grofie der Daten in Bytes, die sie ,liest®.

ML_ioctl_Set_Write_NumberOfTransfers

Die Anwendung setzt die Anzahl der Wiederholungen, wie oft sie ,liest*

ML_ioctl_Get_BarO_0Offset

Mit diesem Aufruf kann die Anwendung feststellen, ab welcher Stelle sich das Register
BARO in dem eingeblendeten Bereich befindet. Das Einblenden des Registers BARO
erfolgt in der Funktion mmap.

ML_ioctl_Get_MaximumReadRequestSize

Mit dieser Funktion kann die MaximumReadRequestSize-Eigenschaft der PCle-Schnittstelle
abgefragt werden. Der Wert dieser Eigenschaft wird wiahrend der Initialisierungsphase
zwischen dem Hostsystem und der Karte ausgehandelt. Die GUI stellt diese Information

in einem Infobereich dar.

ML_ioctl_Get_MaximumPayloadSize

Mit dieser Funktion kann die MaximumPayloadSize-Eigenschaft der PCle-Schnittstelle
abgefragt werden. Die GUI stellt diese Information in einem Infobereich dar.
ML_ioctl_Get_ReadCompletionBoundary

Mit dieser Funktion kann die ReadCompletionBoundary-Eigenschaft der PCle-Schnittstelle
abgefragt werden. Die GUI stellt diese Information in einem Infobereich dar.
ML_ioctl_Get LinkWidth

Mit dieser Funktion kann die LinkWidth-Eigenschaft der PCle-Schnittstelle abgefragt
werden. Die GUI stellt diese Information in einem Infobereich dar.

Alexander Henning 52

PCle Treiber fiir ein Linux-System IPVS/PaS

4.2.9 Funktion ML_do_full_duplex_dma

Diese Funktion wird aus der ioctl-Funktion aufgerufen, wenn die Anwendung den voll-
duplexen Zugriff durchfiithren moéchte. Im Unterschied zu den Read- und Write-DMA,
die mit einem Zwischenpuffer im Kernel auskommen, braucht diese Funktion zwei da-
von, wenn der Datenaustausch fehlerfrei erfolgen soll. Da der DMA-Write Vorgang we-
sentlich schneller als der DMA-Read Vorgang ablauft, wird die Karte mit nur einem
Pufferspeicher die gleichen Daten auslesen, welche im Laufe des DMA-Vorgangs bereits
reingeschrieben wurden.

Der vollduplexe Datentransfer wird nur dann gestartet, wenn beide Bits: fiir DMA-
Read und DMA-Write, im DMA Steuerungs- und Statusregister dies erlauben. Als Vor-
bereitung fiir den Datenaustausch werden alle {ibergebenen Parameter in die entspre-
chenden Register geschrieben, und die Ubertragungszéhler fiir Schreib- und Lesevorginge
ausgelesen. Im néchsten Schritt wird die eingestellte Anzahl an Wiederholungen mitein-
ander verglichen. Wenn die Anzahl der Wiederholungen sowohl beim Lesen als auch beim
Schreiben gleich ist, dann werden die beiden Startbits simultan gesetzt. Falls die Anzahl
der Wiederholungen nicht gleich ist, erfolgt der Speicherdirektzugriff in beide Richtungen
solange die maximale Anzahl entweder beim Lesen oder beim Schreiben nicht erreicht
wurde. Mit dem Erreichen der maximalen Anzahl an Wiederholungen erfolgt der Spei-
cherdirektzugriff nur noch in eine der beiden Richtungen. Die Vollduplex-Phase besitzt
eine eigene Wartezeit beim Pollen der Fertigstellungs-Bits.

Nach dem Ende des Datentransfers kopiert der Treiber die Daten aus dem Zwischen-
puffer im Kernel in den Puffer der Anwendung. Die Ubertragungszihler werden noch
einmal ausgelesen, deren Differenz gebildet und diese in der gerdtespezifischen Struktur
abgelegt.

4.3 Anwendung, grafische Benutzeroberflache

Neben der Entwicklung des Treibers ist im Rahmen dieser Studienarbeit auch eine PC-
Anwendung erstellt worden. Die PC-Anwendung greift auf die Funktionen des Treibers
zu und gibt dem Benutzer iiber die grafische Oberfliche die Méglichkeit, die Dateniiber-
tragung bequem zu konfigurieren und zu steuern.

Die graphische Benutzeroberfliche wurde mit Hilfe von QT-Framework erstellt. QT-
Framework ist eine Sammlung von C++-Klassen, die speziell fir die plattformunab-
héngige Programmierung von Anwendungen entwickelt wurde. Diese Bibliothek wurde
urspriinglich ausschliefllich fiir die Entwicklung von grafischen Oberflichen konzipiert.
Sie wurde in der Programmiersprache C++ geschrieben, nutzt strikt das Prinzip der
Klassenvererbung und ist vollstandig objektorientiert. Seit der Version 4.0 (Stand 2005)
enthélt Qt mehr als 500 Klassen mit insgesamt mehr als 9000 Funktionen. Bei Ent-
wicklung von einer Qt-Anwendung muss nicht die gesamte Qt-Bibliothek eingebunden
werden, sondern es kénnen nach Bedarf mit Hilfe von Teilbibliotheken nur die benotig-
ten Funktionen eingebunden werden. Qt-Framework wird fiir jede unterstiitzte Plattform
in zwei Versionen angeboten: kommerziell und Open Source. Freie Verfiigharkeit, gute
Dokumentation, hohe Portabilitdt und das Vorhandensein der integrierten Entwicklungs-

Alexander Henning 53

PCle Treiber fiir ein Linux-System

IPVS/PaS

Run Demo | | Run Read DMA | | Run Write DMA | [FULL-Duplex DMA

Read DMA Setup
Transfer Size (Bytes)

@ 128 | 256 Jie L
16K 32K G4K

Number of Transfers

® 1 25

Write DMA Setup

Transfer Size (Bytes)

@ 128 1 256 1 512
16K SZK G4K

Number of Transfers

1 125

Host Memory Buffer

Base Adress: |

Incrementing

11K | 2K 4K | BK
128K 256K 512K 1M
78 100
1K | 2K 4K | 8K
128K 256K 512K (1M
078 100
| Starting at —_————
e | Print 1% DWORDS |

PCIe Config Space

| Max Read Request Size = 512 Bytes.
Max Payload Size = 128 Bytes.

Link Witdh = 1 Lane(s).

Read Completion Boundary = 64 Bytes.

Fill Buffer | @ O's Sl Offset Adress: | |
—— HLLELT: {Max = OxFF000) |
Buffer Cffsets

Read DMA Write DMA

Host PC Source: ML506 DDR2 Source:

B SIIE z

MLEOS DDR2 Dest.: Host FC Dest.:

o FUE :]

Wert aus DeviceControl register).
Wert aus DeviceControl register).
Wert aus LinkControl register).
Wert aus LinkStatus register).

Exit

Wersuche "/dev/MLE0Sdev" zu ceffnen!

Hilinx ML50S [Memory Controller App) gefunden.

| DMA-Buffer angelegt (Host-FC).

BARO erfolgreich in Userspace gemappt. (Read Only)
Fertig.

| | Compare Buﬁer| l Display RegFile‘ ‘ Reset to Defaults‘ ‘

Clear

Abbildung 4.1: Grafische Benutzeroberflache

umgebung waren ausschlaggebend fiir die Wahl dieser Bibliothek zur Implementierung

der PC-Anwendung.

Die Benutzeroberfliche bietet direkten Zugriff auf alle Funktionen des Programms.
Die Abbildung 4.1 zeigt das Hauptfenster der entwickelten PC-Anwendung.

4.3.1 Aufbau des Programms

Der Startpunkt eines C++ Programms, die Main-Funktion, befindet sich in der Da-
tei main.c. Neben der Initialisierung und dem Starten der QT-Anwendung wird in der
Main-Funktion versucht, die "/dev/ML506dev" Geritedatei zu 6ffnen. Das Offnen der
Geritedatei ist die erste Aktion, die den entwickelten Treiber betrifft. Den Erfolg der
durchgefiihrten Aktion kann man am Wert des zuriickgegebenen Dateideskriptors fest-

Alexander Henning

54

PCle Treiber fiir ein Linux-System IPVS/PaS

stellen. Bei einem negativen Wert kann es z.B. bedeuten, dass die Gerédtedatei nicht
vorhanden ist oder dass die Datei bereits von einer anderen Anwendung gedffnet wurde
und der Treiber ein weiteres Offnen abgelehnt hat.

Die PC-Anwendung reserviert den Speicher fiir den Puffer und falls das Offnen der
Geridtedatei erfolgreich war, wird versucht das Register BARO in den Benutzeradresshe-
reich einzublenden. Wie bereits bei der Treiberbeschreibung erwiahnt wurde, erfolgt die
Einblendung immer Seitenweise. Da der Registerbereich kleiner als eine Seite ist, muss
die genaue Lage dessen innerhalb der Seite noch bestimmt werden. Die Startadresse wird
noch durch ein Offset, welches vom Treiber spéter abgefragt wird, genau bestimmt.

Die bereits gewonnenen Parameter, wie die Adresse des Pufferspeichers, die Adresse
der eingeblendeten Speicherseite, die das Register BARO beinhaltet, und der Dateide-
skriptor werden an den Objekt der Qt-Anwendung durch die Funktion init iibergeben.

Funktion init

Diese Funktion wird aus der main-Funktion aufgerufen. Anhand von Ubergabeparame-
tern werden die entsprechneden Aktionen ausgelost. Es werden die ioctl-Zugriffe tiber
den Dateideskrpitor beim Betriebssystem getriggert, die dann an den Treiber weiterge-
geben werden. Damit die Anwendung die gleichen ioctl-Aufrufe durchfithren kann, die
der Treiber auch anbietet, wird die Toctl.h Datei eingebunden. In dieser Funktion wird
der BARO-Offset abgefragt und intern gespeichert, aulerdem werden die PCle - Link
Parameter abgefragt und in der GUI in dem Infobereich dargestellt.

Bei den moglichen Fehlern, die in der init-Funktion erkannt werden, werden alle
Steuerungselemente der Benutzeroberfiche ausgegraut/deaktiviert und die Fehlermel-
dungen mit Losungsvorschldgen im rechten Teilbereich des Fensters ausgegeben.

Nach dem fehlerfreien Abarbeiten dieser Funktion ist die Anwendung bereit fiir die
Benutzereingaben. Wie man der Abbildung 4.1 entnehmen kann, ist das Hauptfenster
der Anwendung in mehrere Bereiche aufgeteilt. Im Folgenden werden diese Bereiche
néher beschrieben.

Run Demo

Run Demo: Der Klick auf die Schaltfliche ,Run Demo* 16st eine Reihe von Speicherdi-
rektzugriffen aus. Dabei wird fiir jede unterstiitzte UbertragungsgroBe fiinf mal hinter-
einander ein lesender mit einem schreibenden Zugriff durchgefiihrt. Die Zugriffe erfolgen
von der kleinsten Ubertragungsgrofie (128 KB) bis hin zu der grofiten (1 MB). Nach
jeder Dateniibertragung erfolgt eine Zusammenfassung der erzielten durchschnittlichen
Bandbreite, die in dem rechten Teilbereich des Hauptfensters ausgegeben wird.

Run Read DMA

Betatigung dieser Schaltfliche 16st den lesenden Speicherdirektzugriff aus. Dabei wer-
den die eingestellten Werte aller Parameter, die fiir lesenden Speicherzugriff zustdndig
sind, berticksichtigt. Die Benutzeroberfliche beinhaltet einen separaten Bereich, in dem
die Parameter fiir Read DMA eingestellt werden kénnen. Am Ende der Ubertragung(en)

Alexander Henning 55

PCle Treiber fiir ein Linux-System IPVS/PaS

wird der Datendurchsatz in dem rechten Teilbereich des Hauptfensters, dem Log-Fenster
ausgegeben.

Run Write DMA

Mit Hilfe dieser Schaltfliche wird der schreibende Speicherdirektzugriff ausgelost. Dabei
werden die eingestellten Werte aller Parameter berticksichtigt, die fiir schreibenden Spei-
cherzugriff zustindig sind. Die Benutzeroberfliche beinhaltet einen separaten Bereich,
in dem die Parameter fiir Write DMA eingestellt werden konnen. Am Ende der Ubertra-
gung(en) wird der erzielte Datendurchsatz in dem rechten Log-Fenster ausgegeben.

FULL-Duplex DMA

FULL-Duplex DMA: Betitigung dieser Schaltfliche ermdglicht das gleichzeitige Starten
von schreibenden und lesenden Speicherdirektzugriffen. Dabei werden die eingestellten
Werte aller Parameter fiir die Speicherzugriffe beider Arten beriicksichtigt. Die Parame-
terwerte fiir die Anzahl der Dateniibertragungen kénnen sich fiir lesende und schreiben-
de Zugriffe unterscheiden. Die schreibende und lesende Speicherdirektzugriffe erfolgen
solange gleichzeitig, bis der kleinere der beiden Werten erreicht wird. Die noch iibrig
bleibende Anzahl an Dateniibertragungen, dann entweder nur lesen oder nur schreiben,
erfolgt in einem halbduplexen Modus. Der im Schnitt erreichte Datendurchsatz aller
Ubertragungen wird in dem Log-Fenster zur Information ausgegeben.

Read/Write DMA Setup

Sowohl Read DMA Setup als auch Write DMA Setup sind die separaten Bereiche inner-
halb der Benutzeroberflache, in denen die Parameter fiur die lesenden und fir die schrei-
benden Speichedirektzugriffe eingestellt werden kénnen. Dabei kann der Benutzer die
Menge an Daten auswédhlen (in Bytes), die iibertragen werden soll. Neben der Daten-
menge kann der Benutzer auch die Anzahl der Wiederholungen festlegen, wie oft die Da-
teniibertragung stattfinden soll. Die eingestellten Werte dieser Parameter werden beim
Auslosen der entsprechenden Dateniibertragungen berticksichtigt.

Host Memory Buffer

In diesem Bereich der GUI kann man den von der PC-Anwendung angelegten Zwi-
schenspeicher mit der Grofle von 1 MB entweder mit '0’ oder mit einem aufsteigenden
Bitmuster ausfillen. Mit der Schaltfliche ,,Print 1K DWORDS* kann man 1024 Doppel-
worte, d.h. 1024 32 Bit Werte aus dem Zwischenpuffer ab der angegeben Offsetadresse
ausgeben lassen. Die Eingabe fiir den Offset wird als hexadezimale Zahl interpretiert.

Compare Buffer

Mit dieser Schaltfliche ldsst sich der Inhalt des von der Anwendung angelegten Zwischen-
speichers daraufhin iiberpriifen, ob es dem gerade ausgewéhlten Fiillmuster entspricht

Alexander Henning 56

PCle Treiber fiir ein Linux-System IPVS/PaS

oder nicht. Ergebnisse der Uberpriifung werden im Infobereich ausgegeben. Bei der ersten
Nichtiibereinstimmung wird neben der Adresse auch der erwartete und der tatsichliche
Wert mitausgegeben.

Display RegFile

Mit dem Klick auf diese Schaltfliche kann man den Inhalt aller Steuer- und Informati-
onsregister der verwendeten PCle Karte anzeigen lassen.

Reset to Defaults

Das Betétigen dieser Schaltfliche stellt die Voreinstellungen wieder her:
e Datengrofle fiir die lesenden und schreibenden Speicherzugriffe: 128 Bytes.

e Anzahl der Wiederholungen von lesenden und schreibenden Dateniibertragungen:
1.

e Adressoffset wird wieder zu 0x00000 gesetzt.

4.3.2 Bestimmung des Datendurchsatzes

Die PC-Anwendung errechnet den erzielten Durchsatz unter der Zuhilfenahme von bei-
den ,,Performanceregistern“: DMAWRP und DMARDP. Die Berechnung erfolgt entspre-

chend der Formel:

TransferSize + Overhead) * NumberO fTransfers x 8 x 1000
Latency + Per formance x Cycle Duration

o

Wobei gilt:
e B: erzielter Durchsatz in Mbit /s.
e TransferSize: die eingestellte Datenmenge in Bytes, die iibertragen werden soll.

e Overhead: header overhead bei den Transaction Layer Paketen: sind laut Daten-
blatt XAPP859 (Seite 48) 16 Bytes.

e NumberOfTransfers: die vom Benutzer eingestellte Anzahl an Wiederholungen, wie
oft die Daten tibertragen werden sollen.

e Latency: Latenzzeit ist die Zeit, die vergeht, bis das erste Paket nach dem Start
der Ubertragung gesendet wird. Dabei ist die Latenz je nach Ubertragungsrichtung
unterschiedlich. Fiir den lesenden Speicherdirektzugriff betréagt diese 2000 ns und
fiir den schreibenden Speicherzugriff 400 ns. Diese Werte wurden dem Datenblatt
entnommen und wurden durch die Messungen bestétigt.

e Performance: Anzahl der durchgefiithrten Transaktionen. Dieser Wert wird aus den
Registern der PCle Karte ausgelesen.

Alexander Henning 57

PCle Treiber fiir ein Linux-System

IPVS/PaS

Vers. 1 Vers. 2
DMA Read: 512 | 103 Mbit/s | 102 Mbit /s
DMA Read: 1K | 89 Mbit/s | 87 Mbit/s
DMA Write: 2K | 401 Mbit/s | 401 Mbit/s
DMA Read: 2K | 237 Mbit/s | 239 Mbit/s
DMA FULL DUPLEX: 1K
Read | 125 Mbit/s | 125 Mbit/s
Write | 342 Mbit/s | 344 Mbit/s

Tabelle 4.2: Erzielte Bandbreite

e CycleDuration: dieser Parameter stellt die Dauer zwischen den einzelnen Transak-
tionen dar. Sie betrigt laut Datenblatt 32 ns und wurde ebenfalls durch Messungen
bestétigt.

Die Anzeige der erzielten Bandbreite ist fiir die Ubertragungen mit kleineren Daten-
mengen nicht sehr genau. Die dargestellte Bandbreite entspricht eher dem Durchsatz
innerhalb des FPGAs. Die Durchsatzmessungen beziehen sich auf den Punkt zwischen
der FPGA Anwendung und dem PCle-Kern. Es wurde keine Messungen auf dem PCle
Bus durchgefiihrt. Die Komponenten an dieser Stelle verwenden FIFOs an ihren Schnitt-
stellen, deswegen konnen insbesondere kleine Datenmengen in FIFOs schneller reinge-
schrieben werden, als diese tatsdchlich spéter iiber den Bus iibertragen werden. Bei
Ubertragungen mit groferen Datenmengen nihert sich die errechnete Bandbreite der
theoretisch moglichen an.

In der Tabelle 4.2 wurden durch die Versuche erzielten Bandbreiten zusammenge-
fasst. Es wurden beispielhaft fiir die unterschiedlichen Datenmengen jeweils 2 Versuchen
durchgefiihrt, bei denen lesende, schreibende und vollduplexe Speicherdirektzugriffe er-
folgten.

Alexander Henning 58

5 Zusammenfassung und Ausblick

5.1 Zusammenfassung

Im Rahmen dieser Studienarbeit wurde ein Linux-Treiber fiir die FPGA-Entwicklungs-
plattform implementiert. Die zur seiner Implementierung besonders wichtigen Informa-
tionen iiber das Linux Betriebssystem und die PCle-Schnittstelle wurden zudem néher
erlautert. Neben dem entwickelten Treiber wurde zudem auch eine PC-Anwendung im-
plementiert, die zu Demonstrations-, Verifikations- und Vermessungszwecken dient.

Eine besondere Eigenschaft des Treibers ist, dass dieser zur Laufzeit des Betriebssys-
tems in den Kernel eingebunden werden kann. Hierdurch wird eine neue Ubersetzung des
Kernels vermieden, wodurch die Benutzung der FPGA-Entwicklungsplattform deutlich
erleichtert wird. Die Moglichkeit des erneuten Ladens des Treibers ist besonders wahrend
der Entwicklungsphase des Treibers oder der logischen Schaltung im FPGA vorteilhaft,
da auf einen Systemneustart verzichtet werden kann. Weil ein Neustart des Systems
zeitaufwendig ist, ldsst sich durch das Entladen und erneute Laden des Treibermoduls
eine erhebliche Zeitersparnis erzielen.

Den Anwendungen stellt der Treiber weiterhin die gesamte Funktionalitdt der Hard-
ware bereit, wobei er sparsam mit den Systemressourcen umgeht. Mit Hilfe der PC-
Anwendung wurde demonstriert, dass die vom Treiber zur Verfiigung gestellten Funktio-
nen fehlerfrei eingesetzt werden konnen. Wihrend der Evaluierung wurde auch die Uber-
tragungsbandbreite der PCle-Schnittstelle im Zusammenhang mit dem Treiber ermittelt.
Die Ergebnisse zeigen, dass der Treiber den Datendurchsatz iiber die PCle-Schnittstelle
nicht verringert, wodurch eine effiziente Implementierung des Treibers bestétigt wurde.

5.2 Ausblick

Der in dieser Arbeit entwickelte Treiber unterstiitzt optimal die FPGA-Entwicklungs-
plattform. Fiir den Fall, dass mehrere identische Endgerdte zur Berechnung im PC ein-
gesetzt werden sollen, muss der Treiber um die Unterstiitzung mehrerer Endgeréte er-
weitert werden. Diese Funktionalitdt wurde noch nicht berticksichtigt.

Zur Steigerung der Ubertragungsbandbreite kann zudem die PCle-Schnittstelle um
zusétzliche Lanes erweitert werden, wodurch sich die zur Verfiigung stehende Datenra-
te vervielfachen léasst. Da die eingesetzte FPGA-Entwicklungsplattform allerdings eine
PCle-Schnittstelle mit nur einem x1 Link besitzt, erfordert die Schnittstellenerweite-
rung einen Neubau der Hardware. Eine Erweiterung der Schnittstelle ist jedoch bereits
im Treiber vorgesehen.

99

Literaturverzeichnis

[1] ALLEN, Taflove ; C. HAGNESS, Susan: Computational Electrodynamics: The Finite-
Difference Time-Domain Method. Artech House Inc, 2005

[2] BOVET, Daniel P. ; CESATI, Marco: Understanding the Linux Kernel. O’Reilly Media,
2000

[3] BUDRUK, Ravi ; ANDERSON, Don ; SHANLEY, Tom: PCI Express System Architecture.
Boston : Addison-Wesley, 2008

[4] CORBET, Jonathan ; RUBINI, Alessandro ; KROAH-HARTMAN, Greg: Linuz device
drivers, 3 ed. Beijing ; Koln [u.a.] : O’Reilly, 2005

[5] LoVvE, Robert: Linuz-Kernel-Handbuch: Leitfaden zu Design und Implementierung
von Kernel 2.6. Miinchen : Addison-Wesley, 2005

[6] QUADE, Jiirgen ; Kunst, Eva-Katharina: Linux-Treiber entwickeln. Heidelberg :
dpunkt Verlag, 2006

[7] WILEN, Adam H. ; SCHADE, Justin P. ; THORNBURG, Ron: Introduction to PCI
Ezxpress. Hillsboro : Intel Press, 2003

[8] XILINX (Hrsg.): Virtex-5 FPGA Integrated Endpoint Block for PCI Express Desi-
gns: DDR2 SDRAM DMA Initiator Demonstration Platform. 1. : XILINX, July 2008.

http://www.xilinx.com/support/documentation/application_notes/xapp859.pdf.
~ XAPPS859 (v1.1)

[9] XILINX (Hrsg.): Bus Master DMA Performance Demonstration Reference De-
sign for the Xilinx Endpoint PCI Fxpress@® Solutions. 1. : XILINX, September 2010.

http://www.xilinx.com/support/documentation/application_notes/xappl052.pdf.
— XAPP1052 (v1.0)

61

http://www.xilinx.com/support/documentation/application_notes/xapp859.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1052.pdf

Abbildungsverzeichnis

1.1

2.1
2.2
2.3
2.4

3.1
3.2
3.3

3.4

4.1

Blockdiagramm des Systems Lo 1
Mikrokernel Betriebssysteme oo oL 8
Hybridkernel Betriebssysteme 0oL 9
Betriebssysteme mit dem monolithischen Kernel 10
Linux Betriebssystem 11
Ubertragungsschichten der PCle-Geréite 27
Struktur eines TLP-Paketes 29
Erweiterung des TLPs um die zusétzlichen Informationen in der Data

Link Schicht 29
Aufteilung eines Pakets auf dem x4 Link. 34
Grafische Benutzeroberfliche 54

63

Tabellenverzeichnis

3.1 Datenrate PCI-Express.

4.1 Bits des Steuerungs- und Statusregisters L.
4.2 Erzielte Bandbreite Lo oo oo

65

Akronyme

ACK
AGP
API
BCPL
BSD
CPU
CRC
DLLP
DMA
ECRC
FPGA
GNU
GPL
ISA
LCRC
MS-
DOS
NACK
PC
PCB
PCI
PCle

SCSI
TLP
USB
VESA

von engl. acknowledgment = Bestatigung 30, 31
Accelerated Graphics Port 21-23
Application Programming Interface)
Basic Combined Programing Language 5
Berkeley Software Distribution 5,10
Central Processing Unit 2,7, 14, 21-24
Cyclic Redundancy Check 31
Data Link Layer Packet 30, 31
Speicherdirektzugriff, engl. Direct Memory Access 2,37
end-to-end CRC 28, 29, 31
Field Programmable Gate Array 37
GNU’s Not Unix e s 6, 8
General Public License 6
Industry Standard Architecture 21, 22
Link CRC 29-31
Microsoft Disk Operating System 10
von engl. negative acknowledgement = negative Bestitigung 30, 31
Personal Computer 1, 2,6, 19
Process Control Block L. 13, 14
Peripheral Component Interconnect 17, 18, 21-24, 26, 32, 41

Peripheral Component Interconnect Express 1, 2, 18, 21-26, 28, 29, 31, 33,
34, 37, 41

Small Computer System Interface 17
Transaction Layer Packet 28-31
Universal Serial Bus 17, 19
Video Electronics Standards Association 21, 22

67

PCle Treiber fiir ein Linux-System IPVS/PaS

Erklarung

Ich versichere, dass ich diese Arbeit selbstandig verfasst und nur die angegebenen Hilfs-
mittel verwendet habe.

Declaration

I assure that this work was completed by myself independently, and that I only used the
stated resources.

18. Februar 2011, Stuttgart

Alexander Henning 68

	Einführung
	Aufbau von Linux
	Geschichte
	Kernel
	Mikrokernel
	Hybridkernel
	Monolithischer Kernel

	Linux-Kernel
	Interface für die System-Aufrufe
	Prozessverwaltung
	Speicherverwaltung
	I/O-Subsystem
	Geräte-Treiber

	PCIe - Schnittstelle
	Einführung
	PCIe
	PCIe Transaktionen
	Memory Transactions
	I/O Transactions
	Configuration Transactions
	Message Transactions

	PCIe Übertragungsschichten
	PCIe Transaktionsschicht
	PCIe Data Link Schicht
	PCIe Bitübertragungsschicht

	Treiber und Anwendung
	Registerbeschreibung
	Treiber
	Funktion probe
	Funktion remove
	Funktion open
	Funktion release
	Funktion mmap
	Funktion read
	Funktion write
	Funktion ioctl
	Funktion ML_do_full_duplex_dma

	Anwendung, grafische Benutzeroberfläche
	Aufbau des Programms
	Bestimmung des Datendurchsatzes

	Zusammenfassung und Ausblick
	Zusammenfassung
	Ausblick

	Literaturverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Akronyme

