
Institut für Parallele und Verteilte Systeme

Universität Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Studienarbeit Nr. 2320

PCIe Treiber für ein
Linux-System

Alexander Henning

Studiengang: Elektrotechnik und Informationstechnik

Prüfer: Prof. Dr. Sven Simon

Prof. Dr. P. Levi

Betreuer: Dipl.-Ing. Jürgen Hillebrand

begonnen am: 05. Oktober 2010

beendet am: 06. April 2011

CR-Klassifikation: B.4.1, B.4.3, D.4.0, D.4.9

PCIe Treiber für ein Linux-System

Author: Alexander Henning
Supervisor: Dipl.-Ing. Jürgen Hillebrand

Abteilung Parallele Systeme
Institut für Parallele und Verteilte Systeme

Universität Stuttgart

Inhaltsverzeichnis

1 Einführung 1

2 Aufbau von Linux 5
2.1 Geschichte . 5
2.2 Kernel . 7

2.2.1 Mikrokernel . 8
2.2.2 Hybridkernel . 9
2.2.3 Monolithischer Kernel . 10

2.3 Linux-Kernel . 11
2.3.1 Interface für die System-Aufrufe 12
2.3.2 Prozessverwaltung . 12
2.3.3 Speicherverwaltung . 15
2.3.4 I/O-Subsystem . 16
2.3.5 Geräte-Treiber . 17

3 PCIe - Schnittstelle 21
3.1 Einführung . 21
3.2 PCIe . 23
3.3 PCIe Transaktionen . 25

3.3.1 Memory Transactions . 25
3.3.2 I/O Transactions . 25
3.3.3 Configuration Transactions . 26
3.3.4 Message Transactions . 26

3.4 PCIe Übertragungsschichten . 26
3.4.1 PCIe Transaktionsschicht . 28
3.4.2 PCIe Data Link Schicht . 29
3.4.3 PCIe Bitübertragungsschicht . 32

4 Treiber und Anwendung 37
4.1 Registerbeschreibung . 38
4.2 Treiber . 39

4.2.1 Funktion probe . 42
4.2.2 Funktion remove . 46
4.2.3 Funktion open . 46
4.2.4 Funktion release . 47
4.2.5 Funktion mmap . 47
4.2.6 Funktion read . 48

i

PCIe Treiber für ein Linux-System IPVS/PaS

4.2.7 Funktion write . 49
4.2.8 Funktion ioctl . 49
4.2.9 Funktion ML_do_full_duplex_dma 53

4.3 Anwendung, grafische Benutzeroberfläche 53
4.3.1 Aufbau des Programms . 54
4.3.2 Bestimmung des Datendurchsatzes 57

5 Zusammenfassung und Ausblick 59
5.1 Zusammenfassung . 59
5.2 Ausblick . 59

Literaturverzeichnis 61

Abbildungsverzeichnis 62

Tabellenverzeichnis 64

Akronyme 67

Alexander Henning ii

Kurzfassung

Am Institut für Parallele und Verteilte Systeme - Abteilung Parallele Systeme wird
in mehreren Projekten ein Prototyp zur parallelen Berechnung elektrischer Feldgrößen
mit Hilfe der Finite-Differenzen-Methode im Zeitbereich erstellt. Die zur Berechnung
benötigten Algorithmen werden dazu in anderen Teilprojekten für die FPGA-Entwick-
lungsplattform in VHDL entwickelt. Um die zur Berechnung erforderliche große Menge
an Daten und Ergebnisse möglichst schnell und effizient zwischen der FPGA-Entwick-
lungsplattform und dem PC austauschen zu können, soll dazu die PCIe-Schnittstelle
verwendet werden.

Im Rahmen dieser Arbeit wurde ein Linux Treiber für eine Virtex 5 FPGA-Entwick-
lungspattform mit PCIe-Schnittstelle und eine Anwendung implementiert. Der Treiber
soll die Steuerung, die Konfiguration und den Datenaustausch zwischen der FPGA-
Entwicklungsplattform und dem PC über die PCIe-Schnittstelle ermöglichen. Da das
System eine schnelle Übertragung großer Datenmengen zwischen PC und FPGA-Ent-
wicklungsplattform erfordert, soll weiterhin der Datenaustausch mittels Speicherdirekt-
zugriff (DMA) realisiert werden. Die zu implementierende Anwendung soll zudem die
Datenübertragung und Verifikation des Treibers und der Vermessung der erzielten Über-
tragungsbandbreiten ermöglichen.

iii

1 Einführung

In dieser Studienarbeit soll ein Linux Treiber für die FPGA-Entwicklungsplattform
ML506 der Firma Xilinx mit einem Virtex-5 FPGA zwecks Datenaustausch über die
PCIe (Peripheral Component Interconnect Express)-Schnittstelle [7] mit dem PC (Per-
sonal Computer) entwickelt werden. Das gegebene System, für das der Treiber entwickelt
werden soll, zeigt die Abbildung 1.1. Aus der Abbildung kann entnommen werden, dass

Endpoint Block

CPU

Root Complex Host System Memory

Register File

FDTD

Berechnung

DMA Controller

DDR2 SDRAM

User Application

FPGA

PCIe Schnittstelle

PC

FPGA-Entwicklungsplattform

Abbildung 1.1: Blockdiagramm des Systems

1

PCIe Treiber für ein Linux-System IPVS/PaS

die FPGA-Entwicklungsplattform mit dem PC über die PCIe-Schnittstelle verbunden
ist. Der Datenaustausch erfolgt dabei unmittelbar zwischen dem Root Complex des PCs
und dem Endpointblock [8] des FPGAs über einen x1 Link. Am Endpointblock sind zwei
weitere logische Blöcke angeschlossen, der Register-File-Block und der DMA Controller
Block, die gemäß der Anwendungsbeschreibung XAPP859 [9] implementiert sind. Der
Register-File-Block dient der Einstellung des DMA (Speicherdirektzugriff, engl. Direct
Memory Access) Controllers, der die Datenübertragung mittels Speicherdirektzugriffs
[4, S. 440ff.] zwischen dem DDR2 Speicher und dem Host System Memory durchführt.
Der in der Abbildung vorhandene FDTD [1] -Berechnungsblock wird im Rahmen eines
anderen Projektes implementiert, weshalb in dieser Arbeit nicht näher auf diesen Block
eingegangen wird. Die Durchführung der parallelen Berechnungen durch den FDTD-
Berechnungsblock setzt einen breitbandigen Übertragungsweg zwischen dem PC und
FPGA-Entwicklungsplattform voraus, da dabei große Mengen von Modell- und Ergeb-
nisdaten ausgetauscht werden müssen.

Die große Menge an Daten erfordert eine besonders effektive Methode der Datenüber-
tragung, weshalb in dieser Arbeit die Methode eines Speicherdirektzugriffs verwendet
wird. Der Vorteil der Verwendung des Speicherdirektzugriffes liegt in der bestmöglichen
Ausnutzung der Übertragungsbandbreite der PCIe-Schnittstelle, da die Daten nicht von
der CPU (Central Processing Unit) übertragen werden müssen.

Der in dieser Studienarbeit implementierte Treiber soll weiterhin die

• Allokation und Initialisierung von Speicherbereichen im Kernel,

• Einstellung der Datenübertragung,

• Einbindung des Treibers in den Kernel des Betriebssystems zur Laufzeit,

• Kontrolle der Datenübertragung ermöglichen und

• eine definierte Schnittstelle für die Benutzeranwendungen auf dem PC bieten.

Zusätzlich zu den bereits aufgelisteten Anforderungen soll der Treiber den Anwendun-
gen alle Funktionalitäten der Hardware zur Verfügung stellen und dabei sparsam mit
den Systemressourcen umgehen.

Die erstellte Benutzeranwendung für den PC soll dem Benutzer die Steuerung und
die Kontrolle der Datenübertragung ermöglichen. Dabei greift sie auf alle Funktionen
des Treibers und damit auch auf alle bereits implementierten Funktionen der Hardware
zurück, wodurch die Funktionalität der Hardware und des Treibers demonstriert werden
kann. Eine weitere Anforderung an die Anwendung ist, dass sie die Übertragungsband-
breite zur Überprüfung der Effizienz des Treibers messen kann.

Die fünf Kapitel umfassende Arbeit gibt eine ausführliche Beschreibung über die er-
folgte Implementierung des Treibers an. Im nachfolgenden Kapitel 2 werden zunächst
wichtige Details des Linux Betriebssystems erläutert, die zur Implementierung des Trei-
bers beachtet werden müssen. Zusätzlich erfolgt auch ein kurzer geschichtlicher Exkurs
in das Linux Betriebssystem. Das Kapitel 3 beschreibt die PCIe-Schnittstelle. Im Kapi-
tel 4 wird der entwickelte Treiber beschrieben und die Benutzeranwendung vorgestellt.

Alexander Henning 2

PCIe Treiber für ein Linux-System IPVS/PaS

Abschließend werden im Kapitel 5 die Ergebnisse von Durchsatzmessungen vorgestellt,
sowie eine Zusammenfassung und ein Ausblick gegeben.

Alexander Henning 3

2 Aufbau von Linux

2.1 Geschichte

Mit dem Begriff Linux sind meistens Mehrbenutzer-Betriebssysteme gemeint, die auf
dem Linux-Kernel basieren. Dieser Begriff bezeichnet aber nur die Kernkomponente
des Betriebssystems, den sog. „Kernel“. Zu dem Linux-Betriebssystem gehören neben
dem Kernel selbst noch die System- und Anwendersoftware. Diese zusätzliche Softwa-
re, vereint mit dem Kernel und der entsprechenden Installationsroutine, wird zu einer
sogenannten Distribution zusammengefasst. Zumindest bei einigen kommerziellen Dis-
tributionen gehören die Handbücher und andere Dokumentation zum Lieferumfang. Zu
den bekanntesten Distributionen zählen unter anderen Debian, mit seinen Abkömmlin-
gen Knoppix und Ubuntu, Red Hat, Fedora, OpenSUSE, Mandriva und Gentoo.

Linux ist ein Unix-ähnliches Betriebssystem. Im Gegensatz zu den proprietären Unix-
Systemen ist der vollständige Quellcode verfügbar und darf frei verändert und kopiert
werden. Die Unix-Entwicklung startete 1965 und wurde von MIT, BELL und General
Electric vorangetrieben. Das neue Betriebssystem war für ein Einsatz an damaligem
Grossrechner MULTICS vorgesehen. Die ursprünglichen Unix-Programme wurden alle
in Assembler geschrieben. Im Laufe der Zeit spalteten sich mehrere Gruppen ab und
verfolgten eigene Ziele, meistens bedingt durch den Wechsel auf andere Zielplattformen.
Die Programmierung in Assembler war sehr aufwendig und somit wurden eigens für die
Entwicklung des Betriebssystems neue Programmiersprachen entwickelt. Die erste neue
Programmiersprache war „B“, die stark durch die BCPL (Basic Combined Programing
Language) beeinflusst wurde. Der Plattformwechsel im Jahre 1971 erforderte eine neue,
diesmal eine byteorientierte Programmiersprache. Dennis Ritchie entwickelt die „C“-
Programmiersprache. Diese Sprache zeichnet sich durch die Systemnähe aus und sie
wird auch noch heute verwendet.

Das Jahr 1973 markiert die Geburt eines Multiuser-Multitasking-Betriebssystems, das
vollständig in C geschrieben wurde. Im weiteren Verlauf wurde Unix weiterentwickelt
und wegen der großen Anzahl von unterschiedlichen Entwicklerfirmen auf unterschied-
liche Plattformen portiert. Durch die Vergabe von Quellcode-Lizenzen an Universitäten
konnte zudem das Unix-Derivat BSD (Berkeley Software Distribution) entwickelt wer-
den. BSD zeichnet sich durch die Implementierung und Integration des TCP/IP Stacks
und der Berkeley Socket API (Application Programming Interface) aus. Dadurch wurden
Standards geschaffen und umgesetzt, die bis heute ihre Gültigkeit besitzen und ange-
wendet werden.

Die Entstehungsgeschichte des Linux Betriebssystemkerns ist eng mit dem Namen Li-
nus Torvalds verbunden. Im Frühjahr 1991 begann er mit der Entwicklung seines eigenen

5

PCIe Treiber für ein Linux-System IPVS/PaS

Betriebssystems. Er veröffentlichte seine erste Entwicklerversion am 17.09.1991 und lud
interessierte Entwickler zur Mitarbeit ein. Zuerst wollte Linus Torvalds die kommerzi-
elle Benutzung verbieten, aber erst die Lizenzierung des Linux-Kernels unter der GNU
(GNU’s Not Unix) GPL (General Public License) ermöglichte weite Verbreitung, auch
im kommerziellen Bereich.

Die GNU General Public License wurde 1982 von Richard Stallman erarbeitet. Eben-
falls in diesem Jahr gründete er ein GNU-Projekt mit dem Ziel ein komplett freies
Betriebssystem zu entwickeln. Dadurch wollte er der Weitergabe der Software in bi-
närer Form entgegenwirken. Sein Projekt ergab eine große Fülle an Programmen, die
für ein komplettes Betriebssystem notwendig sind. Die Entwicklung des dazugehörigen
Betriebssystemkerns, des Kernel war aber noch nicht ausreichend voran geschritten. Das
Betriebssystem basiert heute auf dem Linux-Kernel. Die Linux-Systeme wiederum be-
nutzen für die wichtigsten Systemkomponenten und die Userspace-Software die GNU
lizenzierte Programme.

Mit der 1998 erschienenen Kernel-Version 2.2 unterstützte das Betriebssystem mehrere
Prozessoren. Mit den neuen Versionen 2.4 und 2.6 wurden immer mehr neue Features
eingebaut.

• Unterstützung großer Arbeitsspeicher (bis zu 64 GByte)

• Unterstützung für Plug-and-Play-Geräte

• SATA-Unterstützung

• Bluetooth-Unterstützung

• Zahlreiche neue Dateisysteme (ReiserFS, Ext4, JFS)

• bessere Scheduler

Nachteilig ist, dass mit den größeren Versionsprüngen die Schnittstellen des Kernels sich
zum Teil erheblich verändern. Viele Treiber müssen daraufhin angepasst werden und
manchmal ist es sogar einfacher sie stattdessen neu zu entwickeln.

Auch noch heute leitet und überwacht Linus Torvalds die Entwicklung des Kernels.
Die gemachten Veränderungen, meistens Verbesserungen, am Kernel werden an die ver-
antwortlichen Kernel-Entwickler weitergereicht. Die hochqualitativen Anpassungen und
von solchen nur die, die Linus Torvalds zusagen, werden dann von ihm in den offiziellen
Kernel übernommen.

Für jeden Einsatzbereich gibt es entsprechende Linux-Varianten. Die Palette reicht
von Desktop PC über die Mobiltelefone und Router bis hin zu den Supercomputern.
Die Verbreitung in den einzelnen Einsatzbereichen ist jedoch unterschiedlich. Die Linux-
Systeme im Servereisatz sind weit verbreitet, in Heimanwender-Bereich spielen sie nur
eine geringe Rolle. Der gute Ruf, kostenfreie Verfügbarkeit und immer einfachere Hand-
habe tragen dazu bei, dass dieser Heimanwender-Bereich stetig wächst.

Auf dem freien Betriebssystem setzen weitere Großprojekte an, wie z.B. KDE, Gnome
und X-Server von X.Org-Projekt. Diese Projekte haben erheblich dazu beigetragen, dass
dieses Betriebssystem für die Benutzer einfacher und zugänglicher wurde.

Alexander Henning 6

PCIe Treiber für ein Linux-System IPVS/PaS

2.2 Kernel

Der Kernel oder Systemkern ist ein zentraler Bestandteil des Betriebssystems und ist
die unterste Softwareschicht. Der Kernel bildet die hardwareabstrahierende Schicht zwi-
schen der Hardware und übrigen Softwarekomponenten. Da die Hardwarebasis sehr un-
terschiedlich sein kann, muss der Kernel alle Variationen abdecken. Da dies nicht möglich
bzw. sinnvoll ist, muss der Kernel über Mechanismen verfügen, die eine Einbindung ex-
terner Module erlaubt. Der Systemkern bietet definierte Schnittstellen sowohl für die
Treiber als auch für die Software des Benutzers, die unabhängig von der Rechnerarchi-
tektur ist. Die grundlegenden Aufgaben des Kernels sind:

• Kontrolle über die vorhandenen Ressourcen wie CPU, Speicher, Geräte.

• Zuteilung der Ressourcen an die Anwenderprogrammen, z.B. die Rechenzeit.

• Bereitstellung einer Softwareschnittstelle für die Anwenderprogramme.

• Hierarchische Strukturierung der Ressourcen, z.B. Dateisysteme, Netzwerkproto-
kolle.

• Arbitrierung von Zugriffskonflikten und Bereitstellung von Warteschlangen bei
knappen Ressourcen.

• Überwachung von Zugriffsrechten auf Dateien und Geräte bei Mehrbenutzersyste-
men.

• Speicher- und Prozessverwaltung.

• Virtualisierung: Verbergen der Komplexität der Maschine vor dem Anwender.

Der Kernel selber ist in Schichten aufgebaut. Das Schichtenmodell sieht vor, dass es
eine unterste Schicht gibt, hier z.B. die Hardwareabstraktionsschicht. Die höher liegenden
Schichten bauen auf den Funktionalitäten der jeweils unter ihnen liegenden Schichten
auf. Die Unterteilung in Schichten erfolgt z.B. nach den Funktionalitäten oder Aufgaben.

Nach dem Umfang der im Kernel enthaltenen Schichten unterscheidet man zwischen
drei verschiedenen Kerneltypen:

1. Monolithischer Kernel, alle Funktionen sind in dem Systemkern implementiert.

2. Mikrokernel, nur die grundlegenden Funktionen sind im Systemkern integriert. Die
restlichen Funktionen werden in getrennten Prozessen ausgeführt.

3. Hybridkernel, ist eine Mischung von monolithischem Kernel und dem Mikrokernel.

Alexander Henning 7

PCIe Treiber für ein Linux-System IPVS/PaS

Basic IPC, Virtual Memory, Scheduling

UNIX-

Server

Kernel-

Modus

Betriebs-

system

Benutzer-

Modus

Anwender

Geräte-

Treiber

Datei-

system

Anwendungs-

IPC

Hardware

Anwendungen

Abbildung 2.1: Mikrokernel Betriebssysteme

2.2.1 Mikrokernel

Bei einem Betriebssystem mit einem Mikrokernel werden nur die grundlegendsten Funk-
tionen im Kernel implementiert. Alle anderen Teile des Betriebssystems laufen als ge-
trennte Prozesse im Benutzer-Modus und sie stehen somit den Benutzerprogrammen
zur Verfügung, oder sie werden als Programmbibliothek in die Benutzerprogramme mit
eingebunden. Die Eigenschaft des Mikrokernels, die Teile des Betriebssystem auslagern
zu können, begünstigt die Entwicklung von verteilten Betriebssystemen. Ein Nachteil
der auf dem Mikrokernel basierten Betriebssystemen ist, dass ein Kontextwechsel öfter
als bei anderen Betriebssystemen erfolgt, da die Teile des Betriebssystems als eigenstän-
dige Prozesse laufen. Die verschiedenen Teile des Betriebssystems können zur Laufzeit,
z.B. wegen eines Absturzes, neu gestartet oder gänzlich ausgetauscht werden. Der Ab-
sturz einer einzelnen Komponente bedeutet nicht zwangsläufig den Absturz des ganzen
Systems. Neben der schwer zu optimierenden Koordination der Kernel-Prozesse ist die
Minimierung der mehrfachen Kopiervorgänge bei den Kontextwechseln eine der großen
Herausforderungen beim Mikrokernel-Design.

Die Abbildung 2.1 stellt die Struktur der auf dem Mikrokernel basierten Betriebssys-
temen dar. Solche Systeme besitzen eine große Verbreitung in den Anwendungsbereichen
mit hohen Anforderungen an die Robustheit, Sicherheit und Zuverlässigkeit, wie z.B. bei
Militär, Luft- und Raumfahrt oder Automatisierungs- und Medizintechnik. Die promi-
nentesten Vertreter der Mikrokernelsysteme sind: GNU/Hurd, L4Linux, Minix, QNX,
Singularity.

Alexander Henning 8

PCIe Treiber für ein Linux-System IPVS/PaS

UNIX-

Server

Geräte-

Treiber

Anwendungs-

IPC

Basic IPC, Virtual Memory, Scheduling

Hardware

Anwendungen

Dateisystem

Anwender

Betriebs-

system

Benutzer-

Modus

Kernel-

Modus

Abbildung 2.2: Hybridkernel Betriebssysteme

2.2.2 Hybridkernel

Ein Hybridkernel ist eine Mischung aus den Eigenschaften von Mikrokernel und einem
monolithischen Kernel. Dabei werden einige zusätzliche Teile des monolithischen Ker-
nels in den Kern mit aufgenommen, und dadurch ist es kein Mikrokernel mehr, jedoch
auch noch kein vollwertiger monolithischer Kernel. Durch die Aufnahme der ausgewähl-
ten Funktionen in den Kernel, wie z.B. Grafiktreiber, erzielt man eine Steigerung der
Leistungsfähigkeit bei der Darstellung von graphischen Elementen.

Jedes Betriebssystem, dass auf dem Hybridkernel aufgebaut ist, kann unterschiedliche
Teilfunktionen im Kernel implementiert haben.

Die Aufnahme zusätzlicher Betriebssystemfunktionen in den Kernel bildet einen Vor-
teil gegenüber dem Mikrokernel, weil dadurch die Anzahl der Kontextwechsel reduziert
wird und somit die Interprozesskommunikation vereinfacht wird. Diese Maßnahmen stei-
gern die Geschwindigkeit des Kernels. Dieser Vorteil des Hybridkernels gegenüber dem
Mikrokernel bringt gleichzeitig auch einen Nachteil mit sich. Dieser Nachteil äußert sich
durch die Steigerung der Fehleranfälligkeit des gesamten Systems. Diese Fehleranfällig-
keit ist geringer als bei einem monolithischen Kernel. Der Hybridkernel vereint nicht nur
die Vorteile der beiden anderen Kernelarten, sondern auch deren Nachteile.

Die Abbildung 2.2 stellt eine mögliche Struktur des Hybridkernels dar. Die typischen
Vertreter der Betriebssysteme mit dem Hybridkernel sind: alle auf Windows NT basierten
Systeme sowie BeOS, MacOS X.

Alexander Henning 9

PCIe Treiber für ein Linux-System IPVS/PaS

VFS, System-Aufrufe

IPC, Dateisystem

Scheduler, Virtual Memory

Geräte-Treiber, Dispatcher, ...

Benutzer-

Modus

Kernel-

Modus

Anwender

Betriebs-

system

Anwendungen

Hardware

Abbildung 2.3: Betriebssysteme mit dem monolithischen Kernel

2.2.3 Monolithischer Kernel

Der monolithische Kernel ist die Kernelart, mit der die Entwicklung von Betriebssyste-
men began. Gegenüber anderen bereits erwähnten Kernelarten, besitzt der monolithische
Kernel ein einfacheres Design. In einem monolithischen Kernel sind alle Funktionen und
die Treiber für die Hardwarekomponenten direkt eingebaut. Monolithische Kernel stellen
mit sich einen einzelnen Prozess dar, der in einem Adressraum abläuft. Der Kernel ist
somit ein statisches Programm. Die ganzen Funktionen und die Kernel-Dienste laufen al-
le in einem großen Kernel-Adressbereich. Die Interprozesskommunikation innerhalb des
Kernels lässt sich wegen des gemeinsamen Adressraums leicht implementieren, wobei die
Funktionen im Kernel direkt aufgerufen werden können. Die erforderlichen Treiber für
die Hardware müssen in dem Kernel enthalten sein. Im Vergleich zu den anderen Ker-
nelarten erzielt man hierdurch einen Geschwindigkeitsvorteil, wenn die Treiber nicht als
eigenständige Programme laufen.

Dadurch, dass alle Kernel-Dienste und die Treiber für die Hardware in einem Adress-
bereich laufen, sind monolithische Kernel fehleranfälliger. Es besteht eine große Gefahr,
dass z.B. ein abgestürzter Kernel-Dienst das gesamte System abstürzen lässt.

Der Abbildung 2.3 kann man die Struktur des Betriebssystems entnehmen, das auf ei-
nem monolithischen Kernel aufbaut. Einige der Betriebssysteme, die auf monolithischen
Kernel aufbauen, sind: MS-DOS (Microsoft Disk Operating System), Unix, BSD, OS/2.

Alexander Henning 10

PCIe Treiber für ein Linux-System IPVS/PaS

VFS, System-Aufrufe

Speicher-
management

Prozess-
management,

Scheduler

Geräte-Treiber, Dispatcher

I/O-Subsystem

Benutzer-

Modus

Kernel-

Modus

Anwender

Betriebs-

system

Anwendungen

Hardware

Abbildung 2.4: Linux Betriebssystem

2.3 Linux-Kernel

Der Linux-Kernel ist selbst ein monolithischer Betriebssystemkern. Er wird in einem
Adressbereich im Kernel-Modus ausgeführt. Die Linux-Entwickler waren sich der mit
dem monolithischen Kernel verbundenen Nachteilen bewusst und haben mehrere gu-
te Ansätze des Mikrokernels umgesetzt. Der Linux-Kernel ist modular aufgebaut, un-
terstützt die Kernel-Threads, unterstützt präemptives Multitasking, selbst für Kernel
Tasks, und bietet ein Interface mit dessen Hilfe man dynamisch zusätzliche Kernel-
Module laden und entladen kann.

Die Abbildung 2.4 stellt die wesentlichen Komponenten des Betriebssystems Linux
dar.

• Interface für die System-Aufrufe

• Prozessverwaltung

• Speicherverwaltung

• I/O-Subsystem

• Geräte-Treiber

Diese Komponenten werden nachfolgend näher vorgestellt.

Alexander Henning 11

PCIe Treiber für ein Linux-System IPVS/PaS

2.3.1 Interface für die System-Aufrufe

Alle Anwendungen, die im Benutzer-Modus ausgeführt werden und die vom Betriebs-
system zur Verfügung gestellten Dienste in Anspruch nehmen, müssen das Interface
für die System-Aufrufe benutzen. Diese Schnittstelle wird über die Software-Interrupts
realisiert. So kann die Anwendung auf die Dateien zugreifen oder z.B. die Rechte des
Benutzers prüfen. Die Anwendungen, die Software-Interrupts auslösen, müssen über die
übergebenen Parameter die zur Ausführung notwendige Information bereitstellen. Nach
der Auslösung eines Interrupts führt dann der Kernel die entsprechende Interrupt-Ser-
vice-Routine durch und gibt der Anwendung einen Rückgabewert zurück.

Die meisten Anwendungen werden von den Entwicklern mit Hilfe von Hochsprachen
programmiert. In den Anwendungen werden z.B. die Funktionen aus den Bibliotheken
benutzt. In solchen Funktionen werden dann die eigentlichen Systemcalls aufgerufen. Es
ist aber auch möglich, dass die Entwickler die System-Aufrufe direkt aus der Anwendung
einsetzen können.

Beim Ausführen einer Anwendung muss neben dem eigentlichen Code der Anwendung
noch der Code der verwendeten Bibliotheken und der Kernelcode ausgeführt werden. Der
Kernelcode wird z.B. ausgeführt, wenn die eingesetzte Bibliothek System-Aufrufe tätigt.
Dabei lösen die System-Aufrufe Software-Interrupts aus, die vom Kernel abgearbeitet
werden müssen.

Im Linuxkernel (2.6) sind rund 300 System-Aufrufe realisiert, die man alle in der Datei
<asm/unistd.h> der Kernel-Sources nachschlagen kann.

Listing 2.1: Ausschnitt aus linux/arch/x86/include/asm/unistd_32.h

#define __NR_restart_syscall 0
#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3
#define __NR_write 4
#define __NR_open 5
#define __NR_close 6

Der System-Aufruf mit der Nummer 1 beendet einen Rechenprozess. Mit dem System-
Aufruf fork, dem Aufruf mit der Nummer 2, erzeugt man einen neuen Rechenprozess.
System-Aufruf mit der Nummer 3 wird z.B. aufgerufen, wenn die Daten aus den Dateien
oder von den Geräten gelesen werden sollen.

2.3.2 Prozessverwaltung

Ein weiterer Teil des Kernels ist die Prozessverwaltung. Die Prozessverwaltung trägt
unter anderem dazu bei, dass mehrere Rechenrozesse quasi parallel auf einem Einprozes-
sorsystem abgearbeitet werden können. Bei Systemen mit mehreren Prozessoren werden
die auszuführenden Prozesse auf diese verteilt. Für den Kernel sind die Applikationen
einfache Rechenprozesse. Jeder Rechenprozess besteht aus dem Codesegment und dem
Datensegment. Beim Anlegen eines neuen Prozesses belegt das Betriebssystem mindes-

Alexander Henning 12

PCIe Treiber für ein Linux-System IPVS/PaS

tens drei Speicherblöcke: für ausführbaren Code, für Daten und zuletzt für den Stack. Die
Prozessverwaltung ist in der Lage den mehrfachen Verbrauch an Speicher zu vermeiden,
wenn es z.B. mehrere Prozesse gibt, die den gleichen Code-Block verwenden.

Linux ist ein Multitasking-Betriebssystem. Seit der Kernel-Version 2.6 beherrscht Li-
nux nicht nur präemptives Multitasking sondern auch präemptibles Multitasking. Beim
präemptiven Multitasking stellt das Betriebssystem jedem lauffähigen Prozess nur einen
Zeitschlitz zur Abarbeitung bereit. Nach Ablauf der zugewiesenen Zeit unterbricht der
Kern den laufenden Prozess und startet den nächsten lauffähigen Rechenprozess. Weil
die Zeitabschnitte sehr kurz sind, entsteht der Eindruck, dass die Programme parallel ab-
laufen. Die Wahl des nächsten rechenbereiten Prozesses erfolgt durch einen Scheduling-
Algorithmus. Der Kernel verwaltet dazu zwei Listen:

• Liste der lauffähigen Prozesse: In dieser Liste stehen alle ablauffähigen Prozesse,
die bei freien Prozessoren sofort abgearbeitet werden können. Dabei besteht kein
Bedarf an weiteren Ressourcen. Wenn vor dem Ablauf der zugewiesenen Laufzeit
der Prozess noch nicht fertig mit den Berechnungen ist, dann wird er wieder in
die Liste der lauffähigen Prozesse eingetragen. Der Scheduler wählt den nächsten
Prozess aus dieser Liste.

• Liste der „schlafenden“ Prozesse: In diese Liste werden alle Prozesse eingetragen,
die z.B. auf die Daten aus dem Speicher warten, oder auf die langsame Peripherie
angewiesen sind, und damit nicht lauffähig sind. Wenn die von dem Prozess ange-
forderte Ressource irgendwann zur Verfügung steht, dann wird der entsprechende
Rechenprozess aus der Liste der „schlafenden“ Prozesse in die Liste der lauffähigen
Prozesse verschoben. Der verschobene Prozess wird aber unter Umständen nicht
sofort ausgeführt, sondern erst dann, wenn der Scheduler ihn aussucht.

Der Scheduler und die Speicherverwaltung sind die kritischsten Teile des Kernels.
Deren Entwurf und die Implementierung beeinflussen die Entwicklung anderer Teile des
Betriebssystems und damit die gesamte Leistungsfähigkeit des Systems.

Der Scheduler berechnet die Prioritäten aller Prozesse auf einmal. Die Berechnung der
Prioritäten und damit die neue Positionierung der Prozesse wird erst dann ausgeführt,
wenn alle Prozesse auf der Liste der lauffähigen Prozessen ihr Pensum an Rechenzeit
verbraucht haben. Im Vergleich dazu haben frühere Versionen von Linux und ältere
Unix-Versionen die Neupositionierung der Prozesse nach jeder abgelaufenen Zeitscheibe
berechnet. Der Scheduler führt die Statistik über die Rechenzeit und kann den Prozessen
mit der großen Laufzeit gegenüber den Prozessen mit sehr geringen Laufzeit die Priori-
täten anpassen. Scheduler von Linux und Unix bevorzugen bei der Auswahl des nächsten
abzuarbeitenden Prozesses interaktive1 vor rechenintensiven Prozessen. Es wird versucht,
dass die Reaktionszeit der Anwendungen auf die Benutzereingaben im Bereich zwischen
50 und 150 ms liegt. Der Scheduler ist in der Datei <kernel/sched.c> implementiert.

Die Prozesse in Linux-Kernel werden durch die sogenannten Prozess-Kontrollblöcke
PCB (Process Control Block) repräsentiert. Der Prozess-Kontrollblock ist mit Hilfe der

1Prozesse, die sich in der Interaktion mit dem Benutzer befinden, wie z.B. Prozesse für die Tastatur-
und die Mauseingaben.

Alexander Henning 13

PCIe Treiber für ein Linux-System IPVS/PaS

Task-Struktur struct task_struct in der Datei <linux/sched.h> definiert. Die Kon-
trollblöcke beinhalten eine Reihe von Informationen, die der Scheduler speichern muss,
wenn die Prozesse unterbrochen werden. Dabei wird der Prozesszustand, die Prozessiden-
tifikationsnummer, der Inhalt aller Register der CPU zum Zeitpunkt der Unterbrechung
im PCB gesichert. Der Scheduler speichert hier zusätzlich die Prozesspriorität und die
verbrauchte Rechenzeit.

In Linux existiert eine Prozesshierarchie, d.h. es gibt einen aller ersten Prozess und
alle weiteren Prozesse sind die Kinder von den jeweiligen Elternprozessen. Die Wurzel
aller Prozesse in dem Hierarchiebaum ist der beim Systemstart erzeugte init-Prozess.
Das ist der einzige Prozess, der keinen Elternprozess besitzt. Weil die Prozesse über die
Eltern-Kind Beziehung miteinander verknüpft sind, ist es unter anderem möglich, dass
das Beenden der Prozesse auf die möglichen Fehler hin überprüft werden kann.

Die Prozesse in Linux können sich in acht Zuständen befinden.

• aktiv: Der Prozess ist in diesem Zustand nur dann, wenn er gerade abgearbeitet
wird.

• lauffähig: Die Prozesse sind in diesem Zustand, wenn sie nur auf die Ressource
CPU warten, d.h. Prozess ist bereit und wartet auf die Prozessorzuteilung.

• ruhend/terminiert: Die Prozesse befinden sich in diesem Zustand, entweder bevor
sie gestartet und damit lauffähig werden oder nachdem sie beendet wurden.

• zombie: Nach dem Beenden eines Rechenprozesses geht dieser nicht sofort in den
Zustand ruhend/terminiert, sondern er kommt in den Zustand zombi und bleibt
in diesem, solange der Elternprozess, der den beendeten Prozess erzeugt hat, den
beim Betriebssystem gespeicherten Exitcode nicht abholt. Der Exitcode wird in
dem entsprechenden PCB gespeichert. Erst nach dem der Elternprozess den Exit-
code abgeholt hat, geht der beendete Prozess in den Zustand ruhend/terminiert

über.

• unterbrechbar wartend: Die Rechenprozesse können ihren Verlauf über die Signa-
le gegenseitig beeinflussen. Der wartende Prozess kann z.B. von einem anderen
Prozess über den System-Aufruf in den Zustand lauffähig versetzt werden.

• nicht unterbrechbar wartend: Prozesse, die sich in diesem Zustand befinden, war-
ten auf eine Ressource, die noch nicht frei ist. Im Unterschied zu dem Zustand
unterbrechbar wartend kann die notwendige Ressource nicht von einem weite-
ren Prozess zur Verfügung gestellt werden.

• TASK_STOPPED: Dieser Zustand wird für das Debugging und Systemcal-Tracing
benötigt.

• TASK_TRACED: Dieser Zustand wird für das Debugging und Systemcal-Tracing
benötigt.

Alexander Henning 14

PCIe Treiber für ein Linux-System IPVS/PaS

2.3.3 Speicherverwaltung

Die Speicherverwaltung ist eine weitere Komponente des Betriebssystems Linux. Das
Betriebssystem weist jeder Anwendung ihren eigenen Adressraum zu. Dafür muss das
Betriebssystem den Speicher virtualisieren. Somit ist es den Anwendungen nicht möglich
bzw. nicht erlaubt direkt auf die physikalischen Adressen des Hauptspeichers zuzugrei-
fen. Die Speicherverwaltung übernimmt die Übersetzung der virtuellen Adressen in die
physikalischen Adressen. Diese Umrechnung funktioniert nur für die Task, die sich im
Zustand aktiv befindet.

Die Speicherverwaltung wird durch das sogenannte Paging erleichtert. Dabei wird
der Arbeitsspeicher in gleich große Seiten unterteilt. Bei der Übersetzung der virtuellen
Adresse in die physikalische muss nicht jede Adresse einzeln übersetzt werden, sondern
es muss lediglich festgestellt werden zu welcher Seite die Adresse gehört und zu welcher
physikalischen Seite die virtuelle Seite verknüpft ist. Diese Seiten sind z.B. bei den x86
Systemen 4 kB groß. Eine Seite definiert also einen Adressbereich, der 4 kB Speicher
adressiert. Die Zuordnung der Seiten zu den physikalischen Seiten erfolgt meistens so,
dass keine Fragmentierung stattfindet. Eine interne Fragmentierung des Speichers ist
aber nach wie vor möglich, wenn die Seite selbst z.B. nicht vollständig mit Daten gefüllt
wird.

Die Aufteilung des Arbeitsspeichers auf die Seiten und der Verzicht auf die Behand-
lung einzelner Adressen erleichtert das sogenannte Swapping. Bei diesem Verfahren kann
der Kernel bestimmte Seiten aus dem Arbeitsspeicher auf die Festplatte auslagern. Die
Auslagerung der bestimmten Seiten erfolgt z.B. dann, wenn der freie Platz des Speichers
erschöpft ist. Die Auslagerungs-Algorithmen müssen sich auf der Ebene der Seiten be-
wegen und sie müssen sich nicht um die einzelnen Adressen kümmern. Das Swapping
war besonders wichtig, als der Speicher eine knappe Ressource darstellte.

Der Kernel verwaltet den virtuellen Speicher, d.h. jeder Prozess besitzt einen eigenen
Speicherbereich und kann bei Bedarf benötigten Speicher anfordern. Die Zuordnung
der virtuellen Seiten zu den physikalischen erfolgt durch die sogenannte Pagetable. Die
Pagetable enthält neben der Zuordnung der Seiten noch weiter Informationen, z.B. wann
der letzte Zugriff stattfand, ob die Seite ausgelagert ist oder ob sie verändert wurde.

Die beschriebene Speicherverwaltung mit Swapping und Paging ist auf die hardware-
seitige Unterstützung angewiesen. Die Adressübersetzung erfolgt mit Hilfe der Memory
Management Unit. Wenn der Prozess auf eine Speicheradresse zugreift, die keine Abbil-
dung auf die entsprechende physikalische Adresse in der Pagetable besitzt, so löst die
MMU einen Page Fault Interrupt aus und die Prozessausführung wird angehalten. Die
Interrupt Service Routine des Betriebssystems lädt die betroffene Seite, falls sie vorher
ausgelagert wurde, von der Festplatte in RAM und aktualisiert die Seitentabelle. Da-
nach wird der Page Fault verursachende Befehl des Prozesses wiederholt und diesmal
kann die MMU die geforderte Adresse auflösen. In den Fällen, in denen die Interrupt Be-
handlungsroutine merkt, dass die angeforderte virtuelle Adresse keiner entsprechenden
physikalischen Seite zugeordnet werden kann, wird der Prozess mit einem Speicherzu-
griffsfehler beendet.

Die Adressräume aller Prozesse sehen gleich aus. Bei den Systemen mit der 32-Bit-

Alexander Henning 15

PCIe Treiber für ein Linux-System IPVS/PaS

Architektur steht jedem Prozess einen 4 GB großen Adressraum zur Verfügung. In die-
sem Adressraum muss der Code und die Daten des Prozesses Platz befinden. Zusätzlich
wird ein besonderer Bereich für das Betriebssystem reserviert. Zu jedem Prozess gehört
ein sogenannter Stack. Der Stack wird bei den Funktionsaufrufen gebraucht um z.B. die
Übergabeparameter an die Funktionen zu speichern. Die Threads, die in einem Prozess
laufen, müssen jeweils ihre eigenen Stacks haben, die sich ebenfalls alle im Adressraum
des Prozesses befinden müssen. Linux beansprucht das oberste Gigabyte Platz im Adress-
raum jedes Prozesses für sich. Der Grund für die Einrichtung eines speziellen Bereichs für
das Betriebssystem im Adressraum eines Prozesses ist die Interrupt-Behandlung. Wenn
der Interrupt auftritt, so geht der Kernel in den Ausführungsmodus Ring 0 und beginnt
sofort mit der Abarbeitung der Interrupt Service Routine. Damit dies geschieht, muss
sich die Startadresse der Routine bei jedem Prozess an der gleichen Stelle befinden.

Der Bereich für das Betriebssystem ist geschützt und ist aus dem Usermode weder
lesbar noch schreibbar. Obwohl es in jedem virtuellen Adressraum den Kernelbereich
gibt, verweisen alle diese virtuellen Seiten auf dieselben physikalischen Seiten.

2.3.4 I/O-Subsystem

Das I/O-Subsystem, auch I/O-Management genannt, ist eine weitere Komponente des
Betriebssystems. Der gesamte Datenaustausch zwischen den Programmen und den Gerä-
ten wird über dieses Subsystem durchgeführt. Dieses System sollte einerseits einheitliche
Schnittstellen zur Einbindung der Hardware an das Betriebssystem bieten und anderer-
seits eine weitere einheitliche Programmierschnittstelle für die Anwendungen zum Zugriff
auf die Peripherie zur Verfügung stellen.

In Linux (und Unix) unterscheidet man traditionell zwischen zwei Arten von Geräten.
Die zeichenorientierten Geräte, auch „Character-Devices“ genannt, und die blockorien-
tierten Geräte, die sogenannten „Block-Devices“, die ihre jeweiligen Schnittstellen zur
systemkonformen Anbindung an das System erfordern. Die zeichenorientierten Geräte
verarbeiten oder liefern ihre Daten zeichenweise. Den gesamten Datenaustausch kann
man sich als eine Art Datenstrom vorstellen. Dabei kommen die Zeichen der Reihe nach
einzeln hintereinander und ein Springen innerhalb dieses Streams ist normalerweise nicht
möglich. Dadurch, dass der wahlfreie Zugriff auf die Daten nicht möglich ist, kann man
die Reihenfolge der verfügbaren Daten nicht beeinflussen. Die typischen zeichenorien-
tierten Geräte sind z.B. die Maus und die Tastatur.

Die blockorientierten Geräte sind in der Lage, im Vergleich zu den zeichenorientierten
Geräten, ihre Daten blockweise zu verarbeiten, zu empfangen oder zu senden. Die Daten-
übertragung z.B. zwischen dem System und dem Gerät kann in einem kontinuierlichen
Strom erfolgen. Die Reihenfolge der Daten kann jedoch zumindest blockweise beliebig
sein. Die typischen blockorientierten Geräte sind z.B. Disketten-, CDROM-Laufwerke
oder Festplatten.

Mittlerweile gibt es sehr viel mehr verschiedene Geräte, die sich nicht mehr eindeutig
zu den zeichenorientierten bzw. zu den blockorientierten Geräten zuordnen lassen. Mo-
derne Multimedia-Peripherie trug dazu bei, dass weitere Schnittstellen zu dem Kernel
hinzugefügt wurden. Neben den Subsystemen, die speziell für die Integration von z.B.

Alexander Henning 16

PCIe Treiber für ein Linux-System IPVS/PaS

Soundkarten, Grafikkarten oder Netzwerkkarten implementiert wurden, gibt es Subsys-
teme, die nicht für die bestimmten Gerätetypen implementiert sind, sondern für die
Art der Anbindung dieser Geräte. Es gibt z.B. ein PCI (Peripheral Component Inter-
connect) -Subsystem, USB (Universal Serial Bus) -Subsystem, SCSI (Small Computer
System Interface) -Subsystem usw.

Die oben beschriebenen Schnittstellen dienen innerhalb des I/O-Managements der sys-
temkonformen Integration der Hardware. Die Aufgabe der einheitlichen Programmier-
schnittstelle der I/O-Verwaltung ist die Abbildung jeglicher Hardware auf die speziellen
Dateien. Das Betriebssystem erzeugt die Gerätedateien, die die vorhandene Hardware re-
präsentieren. Die Anwendungen können über die normalen Dateizugriffsoperationen auf
die Hardwarekomponenten zugreifen. Die tatsächlichen Zugriffe, sowohl auf die norma-
len Dateien als auch auf die Gerätedateien, sind innerhalb der I/O-Verwaltung realisiert.
Mit der Einführung weiterer Geräteklassen wurde die Programmierschnittstelle um die
eigenen Zugriffsfunktionen für die Multimediageräte erweitert.

2.3.5 Geräte-Treiber

Gerätetreiber sind die Software-Komponenten, die den Anwendungen die Funktionali-
täten aller Geräte zur Verfügung stellen. Die Funktionalitäten der Geräte werden von
den Treibern über die definierten Schnittstellen für die Anwendungen nutzbar gemacht.
Fast alle Geräte, mit der Ausnahme von Prozessor, Speicher und wenigen anderen Kom-
ponenten, bedürfen Einstellungs- und Steuerungssoftware, die Treiber. Der Kernel muss
die Treiber für die vorhandenen Hardwarekomponenten, die verwendet werden sollen, in
sich eingebettet haben.

Dabei gibt es eine Fülle an unterschiedlichsten Geräten, die über die Treiber in das
System integriert werden, wie z.B. die systemnahen Tastaturen, Bildschirme, Netzwerk-
karten und im Allgemeinen die Drucker, Bandlaufwerke, Scanner, Erweiterungskarten.

Wie bereits im Kapitel 2.3.4 dargestellt wurde, können die zahlreichen Hardwarekom-
ponenten über die speziellen Bussysteme mit dem Betriebssystem verbunden werden.
Deswegen gibt es die unterschiedlichen Schnittstellen für die Treiber zu den entsprechen-
den Treiber-Subsystemen, die von dem Betriebssystem zur Verfügung gestellt werden.
Nach der Art der Anbindung oder nach den anderen Eigenschaften unterscheidet man
unter Anderen zwischen den folgenden Subsystemen.

• Character-Devices

• Block-Devices

• Netzwerk

• USB

• SCSI

• FireWire

• Bluetooth

Alexander Henning 17

PCIe Treiber für ein Linux-System IPVS/PaS

• PCI/PCIe

• Cardbus und PCMCIA

Die breite Palette an den möglichen Hardwarekomponenten, die möglichst leicht und
gleichzeitig auf die universelle Art und Weise in das System integriert werden sol-
len, brachte die Erweiterung der Standard-API (Standard-Programmierschnittstelle) mit
sich. Die zusätzlichen Applikationsschnittstellen sind:

• Standard-API (mit open, close, read, write und ioctl)

• Multimedia-Schnittstellen (z.B. Video4Linux, die oft von Webcams verwendet wird)

• Kommunikationsschnittstellen

• Card-Services

Der Linux-Kernel ist ein monolithischer Kernel. Das bedeutet, dass alle notwendigen
Treiber als Teil des Kernels vorhanden sein müssen. Bei den monolithischen Kerneln muss
der gesamte Kernel neu generiert werden, wenn ein neuer Treiber hinzugefügt werden
soll. Die Linux-Entwickler haben eine Möglichkeit geschaffen die Treiber als Module zum
laufenden Kernel hinzu zu laden. Im Vergleich zu den fest eingebauten Treibern können
die als Modul ausgeführten Treiber ohne der neuen Generierung des Kernels und ohne
den Neustart des Systems zum Kernel hinzugefügt und wieder entfernt werden. Diese
Fähigkeiten erleichtern das Entwickeln und das Testen der neuen Treiber erheblich. Ein
weiterer Vorteil der Modularisierung der Treiber ist die erhöhte Robustheit des ganzen
Systems. Zum Beispiel der Absturz eines als Modul geladenen Treibers wird meist nicht
zum Absturz des gesamten Systems führen und ein entsprechendes Fehlverhalten kann
durch das erneute Laden des Treibers behoben werden.

Die Treiber als Module erleichtern den Benutzern die Verwendung von gewünschten
Geräten, weil sie den Treiber einfach laden können. Durch die Modul-Treiber entfällt
die Notwendigkeit den gesamten Kernel erneut zu erstellen. Die Benutzer müssen keine
Kenntnisse darüber besitzen wie sie einen Kernel neu generieren sollen. In der Realität
spielt dieser Vorteil aber keine große Rolle. Es gibt zwei Effekte, die diesem Vorteil
entgegenwirken.

1. Aus der Sicht des Benutzers ist es meistens eine Herausforderung den passen-
den Treiber zuerst zu finden. Viele Hardwarehersteller konzentrieren sich bei der
Vermarktung ihrer Peripherie in erster Linie an die Betriebssysteme, die weite
Verbreitung erfahren haben. Dadurch werden die Treiber in der Regel nicht von
dem Hersteller zur Verfügung gestellt, sondern sie werden von den Programmierern
auf Grund von zugänglicher Dokumentation erstellt. In solchen Fällen heißt das,
dass die Treiber für Linux meistens nicht den vollen Funktionsumfang des Geräts
abdecken und zweitens relativ spät, wenn überhaupt, nach dem Erscheinen des
Geräts verfügbar sind. Mittlerweile gibt es immer mehr Hersteller, die Linux als
Betriebssystem mit den Treibern unterstützen.

Alexander Henning 18

PCIe Treiber für ein Linux-System IPVS/PaS

2. Die Linux-Entwicklung schreitet stetig voran. Das heißt aber auch, dass die spezi-
fischen Funktionen, die die Treiber benutzen, und die Treiber-Schnittstellen selbst,
sich innerhalb des Betriebssystems verändern. Dadurch kommt es oft vor, dass ein
Kernelmodul, das für eine bestimmte Kernel-Version erstellt wurde, nicht mehr
kompatibel zu der vom Benutzer verwendeten Kernel-Version ist. Für die Vermei-
dung der Instabilität beim Betrieb muss die Kernel-Version genau zu dem Modul-
treiber passen.

Die Open Source Treiber sind mit ihrem Quellcode verfügbar. Damit kann jeder den
Treiber für die verwendete Kernel-Version selbst erstellen und damit Inkompatibilität
vermeiden. Manche PC Komponentenhersteller, wie z.B. die Grafikchiphersteller Nvidia
oder AMD, bieten ihre Treiber nicht als Open Source Treiber an, um ihr Know-How
nicht preiszugeben.

Den logischen Aufbau von Treibern kann man in drei Schichten unterteilen: High-
Level-Schicht, Kern-Schicht und die Low-Level-Schicht. Die High-Level-Schicht kümmert
sich, wie z.B. bei den USB Geräten, um die Auswertung und um das Zusammensetzen
von Kommandopaketen, da die Kommunikation zwischen dem Gerät und dem Treiber
mit Hilfe von Paketen erfolgt. Die Kern-Schicht ist z.B. für die Verwaltung der ange-
schlossenen Geräte oder für die spezifische Hardwareerkennung zuständig. Dies ist not-
wendig, wenn z.B. mehrere Geräte im System vorhanden sind. Die Low-Level-Treiber
führen die tatsächlichen Interaktionen mit der Hardware durch, wie z.B. das Auslesen
und Beschreiben von Registern.

Jeder Linux-Treiber muss einen bestimmten Satz an Funktionen implementiert haben.

1. Funktionen, die die Integration des Treibers in den Kernel ermöglichen.

2. Funktionen, deren Ausführung von den Anwendungen ausgelöst werden.

3. Funktionen, die vom Kernel aufgerufen werden.

Die Integration des Treibers in den Kernel erfolgt mit Hilfe der folgenden Funktionen:
init_module, cleanup_module, probe, remove. Beim Laden des Treibers oder bei dessen
Aktivierung, falls dieser nicht als Modul sondern als fester Bestandteil des Kernels ist,
müssen vom Treiber benötigte Ressourcen reserviert werden oder es muss die Hardware-
erkennung durchgeführt werden. Entsprechende Funktionen werden z.B. beim Entladen
des Treibers oder beim Herunterfahren des Systems benötigt, die die belegten Ressourcen
wieder freigeben oder die Hardwarekomponenten in einen definierten Zustand bringen.

Die Anwendungen greifen auf die von Treibern bereitgestellten Funktionalität über
die Funktionen wie open, close, read, write zu. Wenn der Kernel einen Systemaufruf
von einer Anwendung bekommt, die die Dienste des Treibers fordert, dann wird die dem
Systemaufruf entsprechende Funktion des Treibers aufgerufen.

Die Funktionen, die vom Kernel aufgerufen werden, sind z.B. die Interruptbehand-
lungsroutinen. Diese Funktionen werden bei der Treiberinitialisierung beim Kernel ange-
meldet. Dazu gehören unter Anderen die möglichen Kernel Threads oder die Tasklets. Die
Interruptsbehandlungsroutine muss den Fall berücksichtigen, dass der evtl. notwendige

Alexander Henning 19

PCIe Treiber für ein Linux-System IPVS/PaS

Datentransfer zwischen dem Treiber und der Anwendung während dieser Ausführungs-
phase nicht möglich ist, da der Treiber nicht in der Lage ist auf die Speicherbereiche
der Anwendung zuzugreifen. In solchen Fällen setzt der Treiber intern ein Statusbit,
dass ein Interrupt ausgelöst wurde. Als erstes, nachdem die Anwendung wieder aktiv
wird, muss sie dieses Bit beim Treiber abfragen und somit einen eventuell notwendigen
Datentransfer einleiten.

Alexander Henning 20

3 PCIe - Schnittstelle

In diesem Kapitel wird die PCIe-Architektur vorgestellt und den anderen Ein-/Ausgabebussen
gegenübergestellt. Es werden die Vorteile und die Schlüsselqualifikationen der PCIe-
Verbindungen dargestellt. Darüberhinaus werden detailliert die charakteristischen Merk-
male des PCIe-Busses beschrieben. Es wird die Schichtarchitektur der über den PCIe-
Bus angeschlossenen Teilnehmer mit der jeweils kurzen Funktionsbeschreibung einzelner
Schichten vorgestellt.

3.1 Einführung

PCIe stellt mit sich ein Bussystem der dritten Generation dar. Ein Bussystem dient der
Datenübertragung zwischen mehreren Teilnehmern über einen gemeinsamen Übertra-
gungsweg. PCIe wird sowohl zum Anbinden von Peripherie als auch zur Kommunikation
zwischen Endgerärten benutzt. Die Vertreter der ersten Generation sind: ISA (Industry
Standard Architecture), VESA (Video Electronics Standards Association) Local Bus und
Micro Channel. Die Vertreter der zweiten Generation sind: PCI und AGP (Accelerated
Graphics Port).

Der ISA-Bus wurde als ein Teil des IBM-PC Projektes im Jahre 1981 entwickelt.
Ursprünglich handelte es sich dabei um eine einfache Herausführung des 8 Bit breiten
Systembusses. Die Erweiterung des Busses auf 16 Bit erfolgte mit der Einführung des
neuen Intel 80286 Prozessors. Der Takt des Busses war synchron mit dem der CPU.
Der Bus war für die Taktfrequenz von 6 bzw. 8 MHz ausgelegt. Mit der fortschreitenden
Entwicklung der Prozessoren und stetig steigenden Taktfrequenzen wurden Chipsätze
entwickelt, mit deren Hilfe man den ISA-Bus mit der CPU verbinden konnte. Die Ent-
wicklung des PCI-Busses verdrängte den ISA-Bus nahezu vollständig. ISA-Busse werden
auch noch heute in Industrie-PCs oder in eingebetteten Systemen eingesetzt. Die theo-
retische Bandbreite des ISA-Busses mit einem Bustakt von 8.3 MHz und der Busbreite
von 16 Bit beträgt 15.9 MBytes pro Sekunde, da aber die Addressierung jedes Zugriffs
einen Takt dauerte fiel die theoretische Bandbreite auf die ca 8 MBytes pro Sekunde.
Die tatsächlich erzielte maximale Bandbreite lag zwischen 1 und 2 MBytes pro Sekunde.

VESA Local Bus wurde als Ergänzung zu dem ISA-Bus eingeführt. Die schnellen Gra-
fikkarten erforderten einen höheren Datendurchsatz als dies der ISA-Bus ermöglichte.
Der Bus bestand hauptsächlich aus den herausgeführten Signalen des i486 Prozessors,
dadurch war die Portierung auf andere als x86 Systeme nahezu aussichtslos. Der Slot
für die Erweiterungskarten musste 112 Pins aufnehmen. Es konnten maximal 3 Karten
gleichzeitig eingesteckt werden. Die enge Anbindung an den speziellen Prozessortyp erfor-
derte hohen Schaltungsaufwand für die Anpassung an die nächste Prozessorgeneration.
Die große Länge der Schnittstelle in Verbindung mit der erhöhten Anzahl von Pins, in

21

PCIe Treiber für ein Linux-System IPVS/PaS

Vergleich zur ISA-Schnittstelle, führte nicht selten beim Installieren oder Entfernen der
Karten zum Bruch der Hauptplatinen. Der VESA Local Bus ist Rückwärtskompatibel
zu dem ISA-Bus. Die maximale theoretische Bandbreite betrug 130 MBytes pro Sekun-
de wobei die im Einsatz erzielte Bandbreite durchschnittlich 32 MBytes pro Sekunde
betrug.

Die Entwicklung des PCI-Busses wurde durch die Firma Intel im Jahre 1990 angesto-
ßen. Intel wollte den VESA Local Bus als Nachfolger des ISA-Busses nicht unterstützen
und eine neue, prozessorunabhängige Bus-Architektur etablieren. Der PCI-Bus wurde
als eine Plattform angesehen, die die Ausnutzung aller Rechenkapazitäten der kommen-
den Pentium-Prozessoren erlaubte. Intel versuchte die PC-Industrie für den PCI-Bus zu
gewinnen und gründete 1992 die sogenannte Peripheral Component Interconnect Speci-
al Interest Group (PCI-SIG). Die Ziele dieser Organisation sind die Verwaltung, Wei-
terentwicklung und die Verbreitung des PCI-Standards. Mittlerweile zählen über 800
Mitglieder zu der Gruppe. Im Laufe der Zeit wurden mehrere Versionen des Standards
beschlossen und umgesetzt. Der Bus zeichnet sich durch die Möglichkeit der Hierarchi-
sierung aus. Der Bus wird je nach Version mit 33 MHz bzw. 66 MHz betrieben. Die
Bandbreite beträgt für PCI 1.0 (1991) bis PCI 3.0 (2004) 133 MBytes pro Sekunde -
532 MBytes pro Sekunde. Die sogenannte Host-Bridge dient als Schnittstelle zwischen
den CPU mit Arbeitsspeicher und dem Bus. Die masterfähigen Peripheriegeräte können
über die Hostbridge als Target direkt in den Arbeitsspeicher schreiben und aus ihm lesen.
Auf dem PCI-Bus kommuniziert immer ein Master mit einem Target. Die angeschlosse-
nen Komponenten teilen sich die zur Verfügung stehende Bandbreite untereinander auf.
Mit einer steigenden Anzahl an Busteilnehmern sinkt die Bandbreite entsprechend. Die
gängigste Bus-Konfiguration in einem PC ist: eine Busfrequenz von 33 MHz und eine
Busbreite von 32 Bit. Die dabei erzielbare maximale Bandbreite ist etwa 90 MBytes pro
Sekunde. Der PCI-Bus hat sehr große Verbreitung in vielen Bereichen erfahren. Seit 2005
wird aber der PCI-Bus durch seinen Nachfolger den PCIe-Bus allmählich verdrängt.

Der PCI-Bus erfüllte die Anforderungen für Grafik-, Netzwerk- und andere Schnitt-
stellenkarten über eine längere Zeit. Allerdings reichte nach einiger Zeit die verfügbare
Bandbreite für die damals aufkommenden Grafikkarten mit 3D-Beschleunigung nicht
mehr aus. Aus diesem Grund wurde das AGP Bus-System eingeführt. Der AGP-Bus
stellte eine Punkt-zu-Punkt-Verbindung zur Anbindung der Grafikkarte an die North-
bridge dar. Die Vorteile gegenüber dem PCIe-Bus haben sich z.B. dadurch ergeben, dass
immer nur ein Teilnehmer an Datentransfers beteiligt war, oder dadurch, dass es kein
„richtiger“ Bus war und man deswegen die Taktfrequenz höher wählen konnte. Die ers-
te Version des AGP Systems wurde von Intel im Jahre 1997 veröffentlicht. Im Laufe
der Zeit wurde der Standard erweitert und die mögliche maximale Bandbreite erhöht.
Die AGP-Schnittstelle der Version 1.0 (1x) erlaubte den Datendurchsatz von 266 MBy-
tes pro Sekunde. Die letzte Version der Schnittstelle erlaubt die Bandbreite von 2133
MBytes pro Sekunde. Es gab wenige Ausnahmen von Hauptplatinen, die über mehr
als eine AGP-Schnittstelle verfügten. Die zusätzliche Schnittstelle konnte dann für ei-
nige RAID-Kontroller benutzt werden um den Datendurchsatz nicht mit den anderen
Komponenten am PCI-Bus teilen zu müssen. Eine weitere Steigerung der Datentransfer-
leistung von AGP ist ohne grundlegende Veränderungen an der Architektur nicht mehr

Alexander Henning 22

PCIe Treiber für ein Linux-System IPVS/PaS

möglich. Die parallele Datenübertragung bei hohem Takt und die damit verbundenen,
strengen Timing-Anforderungen machten das Platinendesign sehr Aufwendig. Die An-
bindung der Grafikkarten an den Arbeitsspeicher des PCs ist nicht mehr so wichtig wie
früher, weil die Grafikkarten im Zuge der gefallenen Preise für Speicherchips über ge-
nügend dedizierten Speichers verfügen. Der Hauptnachfolger für den AGP-Bus ist der
PCIe-Bus.

Die Entwicklung der Prozessoren ist seit der Einführung des PCI-Busses schneller vor-
angegangen als die des Busses selber. Der PCI-Bus sollte seinerzeit verschiedene, bereits
vorhandene Busse ersetzen und eine gemeinsame Plattform für unterschiedliche Auf-
gaben darstellen. Diese Funktion konnte er nicht lange aufrecht halten. Mit den neuen
Möglichkeiten der neuen Prozessoren und immer größere, zur Verfügung stehende Menge
an Speicher öffneten ganz neue Tätigkeitsfelder. Dabei entstanden neue Anwendungen,
die weit größere Bandbreiten forderten als der PCI-Bus anbot. Es entstanden wieder
zahlreiche Bus-Systeme, die nur für bestimmte Anwendungsfälle spezialisiert waren, wie
z.B. AGP, ATA100 usw. Die Gemeinsamkeit aller erwähnten Busse war die parallele
Datenübertragung. Dem immer weiter steigenden Bandbreitenbedarf entgegnete man
mit der Erhöhung der Busfrequenz. Die hohe Anzahl an benötigten Pins verbrauchte
viel Platz auf den Platinen. Steigende Frequenzen in Verbindung mit den vielen Lei-
tungen brachten elektrische Problemen mit sich und somit stellt sich nun der Bus als
Flaschenhals bei der Kommunikation zwischen der Peripherie und der CPU dar. Unter
der Berücksichtigung solcher Aspekte hat die PCI-SIG den PCIe-Standard entworfen,
der sowohl PCI als auch AGP ersetzen soll und eine größere Datenübertragungsrate als
AGP bieten soll.

3.2 PCIe

PCIe ist eine separate, serielle Punkt-zu-Punkt Verbindung mit differentieller Signalüber-
tragung. Dadurch sind viele Vorgehensweisen, wie sie bei dem PCI-Bus üblich waren,
nicht mehr anwendbar. Im Vergleich zu dem PCI-Bus müssen die Kommunikations-
partner nicht mehr um den Zugriff auf den Bus konkurrieren. Jeder Teilnehmer treibt
exklusiv den eigenen Satz an Sendeleitungen und ist gleichzeitig der Empfänger über
die Empfangsleitungen. Bei den Punkt-zu-Punkt Verbindungen gibt es immer nur zwei
Kommunikationsteilnehmer, die entsprechende Leitungen treiben können.

Die Verbindung zwischen den zwei PCIe Geräten bezeichnet man als Link. Ein Link
kann aus mehreren Lanes bestehen. Eine Lane wiederum besteht aus zwei Paaren der
differentiellen Leitungen. Jedes Paar ist für die Kommunikation in eine Richtung ver-
antwortlich. Außer der erwähnten Leitungen gibt es keine weiteren, wie z.B. für die
Adressen, Daten oder für Kontrollsignale, wie beim PCI-Bus. Die bewusste Beschrän-
kung an die wenigen Signale erleichtert die Skalierung der Verbindung für die steigenden
Anforderungen in Zukunft und engt die Möglichkeiten der Implementierung der neuen
Einsatzmodellen nicht ein. Die starke Veränderung des physischen Aufbaus gegenüber
dem PCI erfordert eine gänzlich neue Infrastruktur der Systemkomponenten. Die Ent-
wickler von der PCI-SIG haben Wert darauf gelegt, dass die Softwareschnittstelle für

Alexander Henning 23

PCIe Treiber für ein Linux-System IPVS/PaS

den PCIe-Bus voll kompatibel zu dem PCI-Bus bleibt. Dadurch müssen weder Betriebs-
systeme, Treiber noch Anwendungsprogramme angepasst werden.

Die erste Version des PCIe Erweiterungsstandards arbeitet mit einer Datenrate je Lane
von maximal 250 MByte/s pro Richtung beziehungsweise 500 MB/s in beide Richtungen
zusammen. Für die Anwendungen mit hohen Anforderungen an Bandbreite kann man
die Lanes koppeln und damit diese Anforderungen erfüllen. Die Tabelle 3.1 zeigt die
theoretisch erreichbaren Bandbreiten in Abhängigkeit von der Anzahl der gekoppelten
Lanes und der Version des Standards. Inzwischen existiert die Version 2.0 der PCIe-

Tabelle 3.1: Datenrate PCI-Express

PCIe 1.0 PCIe 2.0 PCIe 3.0
x1 250 MB/s 500 MB/s 1000 MB/s
x2 500 MB/s 1000 MB/s 2000 MB/s
x4 1000 MB/s 2000 MB/s 4000 MB/s
x8 2000 MB/s 4000 MB/s 8000 MB/s

x16 4000 MB/s 8000 MB/s 16000 MB/s
x32 8000 MB/s 16000 MB/s 32000 MB/s

Spezifikation mit einer Datenrate von 500 MByte/s pro Lane. Die neueste Spezifikation
in der Version 3.0, die bis 2011 festgelegt werden soll, soll eine Datenrate von 1000
MByte/s pro Lane ermöglichen.

Die PCIe-Spezifikation beschreibt einige Typen von PCIe Elementen: root complex,
PCIe-PCI bridge, endpoint und switch.

• Root complex: Diese Komponente ist das Bindeglied zwischen dem Ein-/Ausgabesystem
und der CPU mit dem Hauptspeicher. Der root complex verwaltet und konfiguriert
die über den Bus angeschlossene Peripherie. Weiterhin übersetzt er die Zugriffe in
beide Richtungen.

• PCIe-PCI bridge: Eine PCIe-PCI bridge ermöglicht die Koexistenz von älteren
Bussystemen wie PCI/PCI-X neben PCIe.

• Endpoint: Ist ein konkretes Gerät, das die PCIe-Transaktionen empfangen oder
selbst auslösen kann. Der Endpoint kann selbst z.B. eine Bridge zum USB sein.
Man unterscheidet zwei Typen von Endpoints: legacy und native. Der Unterschied
beruht auf der Fähigkeit bestimmte Transaktionen verarbeiten zu können.

• Switch: Switche spannen die PCIe-Hierarchie auf. Mehrere endpoint-Geräte wer-
den mit dem Switch verbunden. Der Switch ermöglicht die Verbindung entweder
zwischen zwei Kommunikationspartnern oder zwischen dem endpoint und dem root
complex.

Alexander Henning 24

PCIe Treiber für ein Linux-System IPVS/PaS

3.3 PCIe Transaktionen

Die Transaktionen bilden die Basis der Informationsübertragung zwischen den PCIe-
Geräten, wobei der Informationstransport paketbasiert ist. Die Transaktionen sind als
eine Serie von Übertragungen eines oder mehrerer Pakete definiert, die für die kom-
plette Informationsübertragung zwischen den Kommunikationspartnern notwendig sind.
Eine Transaktion besteht aus zwei Abschnitten: einer Anfrage oder Aufforderung und
Fertigstellung oder Erfüllung dieser Anfrage. Die Einheit, welche die Anfrage macht,
sendet das entsprechende Paket zu der Einheit, welche diese Anfrage bearbeiten soll.
Dieses Paket kann dabei über mehrere Switche hinweg zu dem Ziel geleitet werden.
Die Reaktion auf das Aufforderungspaket kann aus keinem, einem oder auch mehreren
Fertigstellungspaketen bestehen.

Die PCIe-Architektur beschreibt vier verschiedene Typen von Transaktionen:

1. Memory Transactions

2. I/O Transactions

3. Configuration Transactions

4. Message Transactions

3.3.1 Memory Transactions

Bei den sogenannten Speicher-Transaktionen werden über die Speichereinblendung ver-
fügbare Daten von oder zu den PCIe-Geräten transportiert. In den meisten Fällen erfolgt
der Datentransfer zwischen dem PCIe-Gerät und dem Arbeitsspeicher des Rechners. Man
unterscheidet zwischen unterschiedlichen Arten der Speicher-Transaktionen, einige von
ihnen sind: Memory Read Request, Memory Read Completion und Memory Write Re-
quest. Die Adressierung erlaubt die Verwendung von kurzen, d.h. 32 Bit langen Adressen
als auch von langen, d.h. 64 Bit langen Adressen.

Beim lesenden Speicherzugriff eines PCIe-Geräts sendet dieses ein Memory Read Re-
quest mit der Angabe der Adresse und der gewünschten Datenmenge aus. Der Root
complex führt den eigentlichen Speicherzugriff auf den Arbeitsspeicher aus und liefert
die angeforderten Daten an das PCIe-Gerät mit den, evtl. mehreren, Memory Read
Completions.

Wenn ein PCIe-Gerät in den Arbeitsspeicher schreibt, dann werden die Memory Write
Requests abgeschickt. Auf die Bestätigung des erfolgreichen Schreibvorgangs kann dabei
zu Gunsten der besseren Leistungsfähigkeit verzichtet werden.

3.3.2 I/O Transactions

Das sind Transaktionen, die den Speicherbereich der Ein-/Ausgabe betreffen. Dieser
Speicherbereich wird aus Kompatibilitätsgründen zu den bereits vorhandenen Geräten
unterstützt. Einige interessante Transaktionen sind: I/O Read Request, I/O Read Com-
pletion, I/O Write Request und I/O Write Completion. I/O Transactions verwenden
immer nur 32 Bit breite Adressen.

Alexander Henning 25

PCIe Treiber für ein Linux-System IPVS/PaS

3.3.3 Configuration Transactions

Die Configuration Transactions greifen auf den Konfigurationsspeicherbereich der PCIe-
Geräte. Sie dienen der Konfiguration und der Einstellung aller am Bus hängenden Gerä-
te. Der Konfigurationsspeicherbereich erstreckt sich nur über die Konfigurationsregister,
die jedes PCI oder PCIe-Gerät hat. Im Unterschied zu dem PCI-Standard können die
PCIe-Geräte einen wesentlich größeren Satz an Registern vorweisen. Die Configuration
Transactions sind: Configuration Read Request, Configuration Read Completion, Con-
figuration Write Request und Configuration Write Completion.

Die Konfigurations-Transaktionen gehen normalerweise nicht von den Endgeräten aus.
Diese werden ausschließlich vom root complex aus getriggert.

3.3.4 Message Transactions

Eine weitere Transaktionsart, die es so bei PCI nicht gab, sind die Message Transactions.
Unter den Message Transactions sind viele verschiedene Pakete zusammengefasst, die für
die Kommunikation zwischen den Endgeräten eingesetzt werden. Mit diesen Transaktio-
nen werden z.B. Interrupts oder Fehler signalisiert oder sie werden für die Energiever-
waltung gebraucht.

3.4 PCIe Übertragungsschichten

Die PCIe-Spezifikation definiert eine Architektur der Übertragung, die aus drei Schichten
besteht. Jedoch müssen sich die Geräteentwickler nicht an diese Architektur halten,
solange die vom Standard geforderte Funktionalität geboten wird. Die Abbildung 3.1
stellt die definierten Schichten dar.

Jede Transaktion durchläuft diese drei Schichten. Die erste Schicht lässt sich zum Tran-
saction Layer zusammenfassen. Die Hauptaufgabe dieser Schicht ist die Bildung eines
Transaktionspaketes aus den Daten, die von Kern des Gerätes kommen. Die ankommen-
den Pakete werden ausgewertet und die enthaltenen Daten an den Kern weitergeleitet.
Diese Schicht entspricht der Zusammenfassung von Transport und Network Schichten
des OSI-Modells.

Die zweite Schicht ist der Data Link Layer. Die Hauptaufgabe dieser Schicht ist Sicher-
stellung des korrekten Senden und Empfangen aller Transaktionen. Die Funktionalität
des Data Link Layer stimmt mit der des OSI-Modells überein.

Die dritte und letzte Schicht ist der Physical Layer. Diese Schicht führt tatsächlich das
Senden und Empfangen der Transaktionspakete durch. Die Funktionalität der Physical
Layer stimmt mit der des OSI-Modells überein.

Dabei lässt sich jede dieser Schichten in zwei Blöcke aufteilen: ein Block, der für das
Senden verantwortlich ist, und einer, der für das Empfangen verantwortlich ist. Beim
Senden wird der Paketinhalt aus den funktionsbezogenen Daten des Gerätekerns in der
Transaktionsschicht gebildet. Dieses Paket wird in einem Puffer aufbewahrt und an den
darunter liegenden Data Link Layer weitergegeben. Der Data Link Layer hängt an das
Paket eigene zusätzliche Informationen zur Fehlererkennung auf der Empfangsseite an.

Alexander Henning 26

PCIe Treiber für ein Linux-System IPVS/PaS

Device Core

Transaction Layer

Data Link Layer

Physical Layer

TX RX

PCIe Device A PCIe Device B

Link

Device Core

Transaction Layer

Data Link Layer

Physical Layer

TX RX

Abbildung 3.1: Übertragungsschichten der PCIe-Geräte

Alexander Henning 27

PCIe Treiber für ein Linux-System IPVS/PaS

Dieses Paket wird schließlich an den Physical Layer weitergegeben. Das Paket wird dabei
neu kodiert und mit zusätzlichem Header und Trailer über den Link analog, differentiell
an den unmittelbaren Nachbarn übertragen.

Auf der Empfangsseite läuft das Paket in der umgekehrten Reihenfolge die drei Schich-
ten durch. Der Empfänger dekodiert das empfangene Paket im Physical Layer und über-
gibt den Inhalt an die nächsthöhere Schicht. Der Data Link Layer überprüft das Paket
auf Fehler, und falls es keine Fehler gab, wird das Paket an die Transaktionsschicht wei-
tergereicht. Die Transaktionsschicht wandelt die Paketdaten in eine Form um, die der
Gerätekern mit der entsprechenden Funktion verarbeiten kann.

3.4.1 PCIe Transaktionsschicht

Diese Schicht bildet das Rückgrat der Datenübertragung innerhalb des PCIe-Systems.
Die Hauptaufgabe dieser Schicht ist das Generieren von entsprechenden Transaktionen,
darunter die Requests und die Completions.

Die Transaktionsschicht empfängt auf der Sendeseite die Daten von dem Kern des Ge-
räts, welche in PCIe-Transaktionen umgesetzt werden. Diese Daten können z.B. die An-
forderung des Gerätes von bestimmten Daten sein oder aber die Antwort des Gerätes auf
die vorangegangene Anfrage. Auf der Empfangsseite bekommt die Transaktionsschicht
die PCIe-Transaktionen von der Data Link Schicht. Dabei geht die Transaktionsschicht
davon aus, dass die ankommenden Pakete alle fehlerfrei und in der richtigen Reihenfolge
sind. Die Sicherstellung der Fehlerfreiheit und der richtigen Reihenfolge ist die Aufgabe
der Data Link Schicht.

Die Transaktionsschicht verwendet zur Kommunikation mit den anderen PCIe-Geräten
die eigenen Pakete: TLP (Transaction Layer Packet). Die Vielfalt der verschiedenen
Transaktionstypen und der zu erfüllenden Aufgaben lässt sich über die Daten im Header
des Transaktionspaketes einstellen. Dabei werden die Pakete in der Transaktionsschicht
eines „Sendegerätes“ erzeugt und in der Transaktionsschicht des Empfängers ausgewertet
und verarbeitet. Neben der bereits erwähnten Funktionalität ist die Transaktionsschicht
auch für die Flusskontrolle der TLP und für einige Funktionen der Energieverwaltung
zuständig ist.

Ein Paket der Transaktionsschicht besteht aus dem Header, den optionalen Daten
und einem optionalen Trailer. Die Abbildung 3.2 stellt die Struktur eines Pakets der
Transaktionsschicht dar. Ein TLP hat immer einen Header, dessen Länge nicht konstant
ist, aber immer ein vielfaches von vier Bytes beträgt. Die Länge des Header hängt von
dem Typ der Transaktion ab. Vom Typ der Transaktion hängt auch das Vorhandensein
von Nutzdaten ab. Die Menge an Nutzdaten muss ebenfalls ein Vielfaches von vier Bytes
betragen. Wenn die Menge der zu übertragenden Daten nicht genau in einem Vielfachen
von vier Bytes aufgeht, dann werden die fehlenden Bytes aufgefüllt. Das Auffüllen kann
entweder bereits in den ersten vier Bytes oder aber in den letzten vier Bytes erfolgen.
In dem Header des TLP werden die speziellen Bits gesetzt, die die Identifikation von
„nutzlosen“ Bytes ermöglichen. Der Trailer des Paketes ist wie die Daten auch optional
und wird nur selten benutzt. Der Trailer ist für die ECRC (end-to-end CRC)-Prüfsumme
gedacht. Der Data Link Layer deckt mögliche Fehler ab, die bei der Übertragung über den

Alexander Henning 28

PCIe Treiber für ein Linux-System IPVS/PaS

Link entstehen können. Die ECRC-Prüfsumme ermöglicht auch die Fehler zu erkennen,
die während der Bearbeitung des Paketes auf der Ebene der Transaktionsschicht in den
dazwischen liegenden Geräten, wie z.B. Switches, entstehen können.

Transaction Layer Packet

Daten

(optional)

Trailer

 (optional)
Header

Abbildung 3.2: Struktur eines TLP-Paketes

Ein Aufforderungspaket kann mehrere Antwortpakete nach sich ziehen. Es ist aber
nicht möglich mehrere anstehende Aufforderungen mit nur einem Antwortpaket zu er-
füllen

3.4.2 PCIe Data Link Schicht

Die Hauptaufgabe dieser Schicht ist die Sicherstellung der korrekten Übertragung auf
dem Link, d.h. Fehlererkennung und Fehlerkorrektur. Der Data Link Layer sorgt dafür,
dass die Pakete fehlerfrei und in der richtigen Reihenfolge über die einzelnen Links
transportiert werden.

Der Data Link Layer setzt die Bildung der PCIe-Transaktion fort, indem sie das von
der Transaktionsschicht kommende Paket um eigene Informationen erweitert und das
neu entstandene Paket an die Bitübertragungsschicht weiterleitet. Die Data Link Schicht
fügt jedem zu sendenden TLP als Header eine sogenannte Sequenznummer hinzu. Als
Trailer wird eine spezielle Prüfsumme hinzugefügt: LCRC (Link CRC). Die Abbildung
3.3 zeigt ein TLP, das um die zusätzlichen Informationen für die Fehlererkennung von
dem Data Link Layer erweitert wurde.

Sowohl die Ein- als auch die Ausgangsseite des Data Link Layer haben jeweils ihre
eigenen Aufgaben. Beim Eintreffen eines Paketes übernimmt die Data Link Schicht die-
ses von der Bitübertragungschicht. Es wird die Korrektheit des empfangenen Paketes
anhand der Sequenznummer und der LCRC überprüft und dann, wenn sowohl die Se-
quenznummer als auch die LCRC zeigen, dass es keine Fehler gab, wird dieses Paket,
bereinigt von der Sequenznummer und der LCRC, an die Empfangsseite der Transak-
tionsschicht weitergereicht. In diesem Fall, wenn das Paket als fehlerhaft erkannt wird,

Transaction Layer Packet
Sequenz-

nummer
LCRC

TLP nach der Data Link Schicht

Abbildung 3.3: Erweiterung des TLPs um die zusätzlichen Informationen in der Data
Link Schicht

Alexander Henning 29

PCIe Treiber für ein Linux-System IPVS/PaS

wird es erst gar nicht an die Transaktionsschicht weitergeleitet. Die Data Link Schicht
versucht mit der entsprechenden Protokollinstanz auf der Gegenseite den Fehler zu be-
seitigen. Die Fehlerbeseitigung erfolgt meistens durch die Aufforderung das fehlerhafte
Paket noch einmal zu senden. Der Data Link Layer lässt also nur die korrekt empfan-
genen Pakete an die Transaktionsschicht durch. Die Transaktionsschicht geht dadurch
immer davon aus, dass alle Pakete, die sie empfängt, auch korrekt sind.

Wenn ein Sender einen TLP an einen Empfänger über den Link sendet, dann erwartet
er eine Quittierungsantwort. Es kann ein NACK (von engl. negative acknowledgement =
negative Bestätigung) DLLP (Data Link Layer Packet), im Falle eines falschen LCRC,
ein ACK (von engl. acknowledgment = Bestätigung) DLLP, wenn es keine Fehler gab,
oder er bekommt gar keine Bestätigung, wenn das gesendete Paket z.B. beim Empfänger
gar nicht ankommt. Die Quittierungsantworten folgen nicht unbedingt nach jedem emp-
fangenen Paket. Zwei Kommunikationspartner auf einem Link tauschen die sogenannten
„credits“ unter sich aus. Diese „credits“ erlauben dem Sender eine bestimmte Anzahl an
Paketen abzusenden ohne eine Quittierungsnachricht abzuwarten. Der Empfänger kann
mit einer Quittierungsantwort einen fehlerfreien Empfang eines bestimmten Paketes be-
stätigen. Und wenn es noch mehrere unbestätigte Pakete vor diesem Paket gegeben hat,
dann gelten damit auch diese als bestätigt.

Auf der Sendeseite wird einem zu sendenden TLP eine Sequenznummer und LCRC
hinzugefügt. Das gesendete Paket wird in einem Puffer der Data Link Schicht zwischen-
gespeichert. Wenn der Empfänger das Paket auf der Linkebene fehlerfrei empfangen hat,
dann bestätigt er es mit einem ACK DLLP, das die Sequenznummer des empfangenen
Paketes enthält. Der Sender entfernt daraufhin das gespeicherte Paket aus dem Puffer.
Falls andererseits der Empfänger einen LCRC-Fehler im Paket entdeckt, dann sendet er
ein NACK DLLP mit der Sequenznummer. In diesem Fall veranlasst der Sender einen
erneuten Versand des betroffenen Paketes. Die Data Link Schicht des Senders kann den
Fehler zum Protokollieren an den Rootkomplex melden. Falls es für einen bestimmten
TLP aus dem Puffer dreimal ein NACK DLLP kam, d.h. es wurde viermal erfolglos
versucht das Paket zu übertragen, dann veranlasst die Data Link Schicht die Reinitiali-
sierung des Links und meldet einen korrigierbaren Fehler an den Rootkomplex.

Auf der Empfangsseite überprüft die Data Link Schicht die LCRC der eintreffenden
Pakete. Diese Seite veranlasst dann, je nach Ergebnis der Prüfung, das Versenden der
ACK DLLP oder NACK DLLP. Die Empfangsseite erhält auch die Quittierungsantwor-
ten von der Sendeseite des Kommunikationspartners. Daraufhin wird innerhalb dieser
Schicht auf der Sendeseite entweder das entsprechende TLP aus dem Puffer entfernt oder
noch einmal versendet. Auf dieser Seite wird auch auf die Einhaltung der Reihenfolge ge-
achtet. Dabei wird die Sequenznummer der eintreffenden Pakete überprüft. Durch diesen
Mechanismus können fehlende oder sich wiederholende Pakete sicher erkannt werden.

Die Sequenznummer ist eine 12 Bit breite Zahl, die, zusammen mit den zusätzlichen
ungenutzten 4 Bits zu einem 2 Byte großen Header zusammengefasst werden. Das LCRC-
Feld ist 32 Bit breit und wird an das TLP angehängt. LCRC wird über alle Bits des
zu sendenden Paketes berechnet, auch über die sogenannten „reserved“ und über die
angehängte Sequenznummer.

Die Data Link Schicht unterscheidet nicht um welchen Typ von TLP es sich handelt,

Alexander Henning 30

PCIe Treiber für ein Linux-System IPVS/PaS

wenn eine Sequenznummer dem Paket zugewiesen wird. Die Sequenznummern hängen
auch nicht davon ab, wer die Anfrage startet und wer sie erfüllt. Die Instanz der Data
Link Schicht des Senders ist die einzige Bestimmungsgröße bezüglich der Sequenznum-
mer. Diese Nummer hat ihre Gültigkeit nur innerhalb eines Links, d.h. wenn ein Switch
das Paket von einem Link auf das andere weiterleitet, dann hat das Paket eine unter-
schiedliche aber jeweils für den Link gültige Sequenznummer. Die nötigen Informationen
zum Routing der Pakete innerhalb des PCIe-Netzwerks steckt im Header des TLP.

Die Data Link Schicht verwendet noch einen eigenen Pakettyp: DLLP. Diese Pakete
dienen linkspezifischen Funktionen, wie z.B. Benachrichtigungen über die aufgetretenen
Fehler und für die Energieverwaltung. Diese Pakete entstehen in der Data Link Schicht
und werden immer in dieser verarbeitet. Sie werden auch anders als Pakete der Transak-
tionsschicht beim Senden behandelt. Die DLLP werden immer nur zwischen den direkten
Nachbarn auf dem Link versendet im Unterschied zu den TLPs, die auch über mehrere
Kommuniaktionsgeräte hinweg transportiert werden können. Neben den bereits beiden
erwähnten Typen von DLLPs wie NACK und ACK gibt es noch zwei weitere:

• Flow control DLLP: Diese Pakete dienen der Datenflusssteuerung. Es gibt ins-
gesamt drei Typen davon: zwei werden bei der ersten Initialisierung des Links
verwendet und der dritte Typ wird im Betrieb gebraucht, um den direkten Kom-
munikationspartnern die noch zur Verfügung stehende Kapazität an freien Plätzen
für die reinkommenden Pakete anzuzeigen. Die Erzeugung und den „Verbrauch“
von diesen Paketen übernimmt die Data Link Schicht, die Kontrolle über das Sen-
den und über die Daten in diesen Paketen hat allein die Transaktionsschicht.

• Power management DLLP: Diese Pakete dienen der Steuerung und der Kontrolle
vom Energiestatus des Links. Dabei entscheidet nicht die Data Link Schicht wann
und ob sie die power management DLLP versendet, sondern es tut die Logik, die für
Energieverwaltung zuständig ist, die dann das Versenden auslöst. Werden die power
management DLLP empfangen, dann werden die Daten an die Energieverwaltung
abgegeben.

Alle DLLPs haben eine konstante Länge von 6 Bytes: 4 Bytes für die Daten und 2
Bytes für die CRC (Cyclic Redundancy Check) Summe. Das CRC-Feld wird hierbei
anders berechnet als das Feld für LCRC und ECRC. Die Verarbeitung dieser Pakete
seitens der Data Link Schicht unterscheidet sich von den „normalen“ TLP-Paketen.
Die Bitübertragungsschicht leitet die DLLP an die Data Link Schicht weiter und diese
Schicht teilt auch mit ob es Fehler bei der Übertragung gab oder nicht. Erst wenn es keine
Fehler gab, überprüft die Data Link Schicht das Paket mit Hilfe der CRC-Prüfsumme auf
die Korrektheit. Falls die Bitübertragungsschicht einen Fehler meldet, wird das Paket
von der Data Link Schicht verworfen. Das wiederholte Senden von DLLPs ist nicht
vorgesehen und sie werden deswegen auch nicht in den Puffern zwischengespeichert.
Die Flow Control DLLPs haben einen Einfluss auf die Transaktionsschicht, die Power
Management DLLPs üben Einfluss auf die Energieverwaltung aus und die NACK und
ACK DLLPs werden innerhalb der Data Link Schicht benutzt.

Alexander Henning 31

PCIe Treiber für ein Linux-System IPVS/PaS

3.4.3 PCIe Bitübertragungsschicht

Die Bitübertragungsschicht ist die unterste Schicht. Eine ihrer Aufgaben ist es, die elek-
trische Verbindung zwischen zwei direkt miteinander verbundenen Geräten herzustellen.
Diese Schicht übernimmt die Pakete von der Data Link Schicht, um sie über „Link“,
eine logische Verbindung wegzuschicken und sie leitet die über den „Link“ empfangenen
Pakete an die höhere Schicht weiter.

Man kann die Bitübertragungsschicht in zwei weitere Schichten unterteilen: in eine
logische und eine elektrische Schicht. Die Aufgaben des logischen Teils ist die Bearbei-
tung der zu sendenden und zu empfangenen Paketen. Der sogenannte elektrische Teil
stellt eine elektrische Schnittstelle dar, die eine Verbindung zwischen zwei Geräten her-
stellt. Diese Schnittstelle beinhaltet unter anderem auch die differentiellen Treiber und
Empfänger für jede Lane.

Auf der Sendeseite der logischen Schicht werden die Bytes des Pakets zuerst mittels ei-
nes Scramblers pseudozufällig umkodiert, diese Bytes werden in einem 8b/10b Verfahren
kodiert und anschließend um die speziellen Paketmarker erweitert. Die Empfangsseite
führt die gleichen Operationen in der umgekehrten Reihenfolge durch. Im Folgenden
werden die einzelnen Operationen näher erläutert.

8b/10b - Kodierung

Eine weitere Aufgabe, die die Bitübertragungsschicht zu erfüllen hat, ist die 8b/10b -
Kodierung der Daten. Der Hauptzweck dieser Kodierung ist es, das Taktsignal in den
Datenstrom einzubinden. Bei dieser Kodierung werden 8 Bit Daten mit einem 10 Bit
langen Symbol kodiert. Neben der erwähnten Taktrückgewinnung erlaubt die Kodierung
den Gleichspannungsausgleich.

Bei den parallelen Bussen, wie bei PCI stellte sich heraus, dass bei steigenden Fre-
quenzen, mit denen das System betrieben wird, die Anforderungen an die Signalführung
auf der Platine, und genauer an die Länge der Signalleitungen, immer strenger wer-
den. Das wird besonders ersichtlich, wenn man mehrere zusammengehörende Signale
betrachtet, die von einem Takt abhängen. Wenn die Quelle zur steigenden Taktflanke
die Signalleitungen mit den unterschiedlichen Längen treibt und die Senke die Signale
zum selben Takt einliest, dann hat die Senke ein sehr schmales Zeitfenster, unter der
Berücksichtigung der Setup und Hold-Zeiten, bei dem die Signalleitungen die korrekten
Werte aufweisen. Bei den größeren Unterschieden in der Länge der Leitungen und sehr
hohem Takt der Verarbeitung können sogar die falschen Werte von der Senke eingelesen
werden.

Durch das Einbetten des Taktes in den Datenstrom ist es nicht mehr notwendig, dass
die einzelnen Lanes innerhalb eines Links die gleichen Längen haben müssen. Um aus
dem Empfangsignal den Sendetakt zurückgewinnen zu können, muss das Empfangssi-
gnal hinreichend viele Signalflanken aufweisen. Das bedeutet, dass lange Folgen von ’1’
oder ’0’ ohne Flanken in der Übertragung zu vermeiden sind. Die 8b/10b - Kodierung
schreibt vor, dass die maximale Länge gleicher Bits auf fünf beschränkt ist. Da nicht
alle 1024 Werte gebraucht werden, können die Daten entsprechend dieser Vorgabe zu

Alexander Henning 32

PCIe Treiber für ein Linux-System IPVS/PaS

den neuen Symbolen kodiert werden. Ein weiterer Vorteil, dass die Anforderungen für
die Längengleichheit nicht mehr so hoch sind, ist der verringerte Flächenbedarf für die
Leiterbahnen auf der Platine, da diese nicht mehr im Zickzack verlegt werden müssen,
um die Laufzeitunterschiede auszugleichen.

Eine weitere Funktionalität, die 8b/10b - Kodierung anbietet, ist die Möglichkeit einige
Bitübertragungsfehler zu erkennen. Die zu übertragenden Daten werden so kodiert, dass
die Anzahl der Einsen sich maximal um zwei von der Anzahl der Nullen in einem Symbol
unterscheidet. Dies gilt auch für die Anzahl der Nullen gegenüber der Anzahl der Einsen.
Der Empfänger kann anhand der Differenz der Einsen und Nullen entscheiden, ob das
Symbol überhaupt gültig ist. Diese Methode ist allerdings nicht zuverlässig, da manche
Fehler die Symbole so verändern, dass sie als gültig erkannt werden. Eine Fehlerkorrektur
ist damit nicht möglich.

Ein weiterer Effekt, der durch die gleichmäßige Verteilung von Einsen und Nullen
in den Symbolen entsteht, ist der Gleichspannungsausgleich. Dabei wird versucht den
Pegel der durchschnittlichen Gleichspannung einer einzelnen Datenleitung in der Mitte
zwischen den jeweiligen logischen Pegeln zu halten. Somit wird die Wahrscheinlichkeit
der Intersymbolinterferenz verringert, in dem die Datenleitung sich nicht schnell genug
von einem Zustand in den anderen umladen lässt.

Wie bereits am Anfang des Kapitels kurz erwähnt wurde, benutzt die Bitübertra-
gungsschicht zwölf spezielle, 10-Bit lange Symbole, um z.B. den Anfang und das Ende
eines Paketes zu kennzeichnen. Dabei werden je nach dem Ursprung des Paketes eigene,
dafür vorgesehene „Marker“ benutzt.

Paketübertragung

Die Abbildung 3.4 zeigt beispielhaft, wie die einzelnen Bytes eines Paketes, auf dem Link
verteilt und gesendet werden. Hierbei handelt es sich um einen x4 Link.

Auf der Empfangsseite verfügt jede Lane über einen eigenen Empfangspuffer. Dieser
Puffer wird benötigt um aus den seriell ankommenden Bytes wieder ein komplettes Pa-
ket zusammenzustellen. Obwohl die Bytes vom Sender auf allen Lanes alle zum gleichen
Zeitpunkt gesendet werden, kommen diese beim Empfänger nicht mehr synchron an.
Laut PCIe-Spezifikation darf die Laufzeitdifferenz von Lane zu Lane bis zu 20 Nanose-
kunden betragen. Die Empfangspuffer dienen dazu, die Laufzeitdifferenz, die z.B. wegen
der unterschiedlichen Längen der Lanes entsteht, zu kompensieren. Die tatsächliche Zeit,
die kompensiert werden muss, wird während der Initialisierungsphase des Links von bei-
den Kommunikationspartnern ermittelt. Die Initialisierung erfolgt jedes mal, wenn das
System eingeschaltet wird oder wenn ein neuer Kommunikationspartner auf der anderen
Seite des Links erkannt wird. Während der Initialisierungsphase wird die Linkbreite und
Datenrate festgelegt, zudem es werden die ersten „Credits“ für die Datenflusssteuerung
ausgetauscht.

Der Sender koppelt den gewünschten Pegel auf die Sendeleitungen über die Konden-
satoren ein. Der Gleichspannunganteil des Senders bleibt dem Empfänger verborgen.
Dadurch können sowohl der Empfänger als auch der Sender ihre eigenen Gleichspan-
nungspegel besitzen, die sie zum Betrieb brauchen.

Alexander Henning 33

PCIe Treiber für ein Linux-System IPVS/PaS

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 0 Byte 1 Byte 2 Byte 3

Byte 4 Byte 5 Byte 6 Byte 7

Line 0 Line 1 Line 2 Line 3

P=>S

8b/10b 8b/10b

P=>S

8b/10b

P=>S

8b/10b

P=>S

Abbildung 3.4: Aufteilung eines Pakets auf dem x4 Link.

Deemphase (Deakzentuierung)

Die PCIe-Spezifikation beschreibt ein spezielles Verfahren, das angewendet wird, um der
Intersymbolinterferenz entgegenzuwirken.

Mit der steigenden Frequenz und der sinkenden Zeit für ein einzelnes Bit spielen ka-
pazitiven Effekte eine Rolle. Die 8b/10b - Kodierung beschränkt die maximale Anzahl
an Bits mit der gleichen Wertigkeit auf fünf. Bei der Übertragung von fünf gleichen Bits
lädt sich das gesamte System, bestehend unter anderem aus den differentiellen Leitun-
gen, auf einen bestimmten Wert auf. Wenn z.B. nach fünf logischen ’1’ eine logische ’0’
folgt und dann wieder weitere logischen Einser gesendet werden, dann kann es passieren,
dass die ergebende Ladung nicht schnell genug abtransportiert werden kann, so dass die
logische ’0’ vom Empfänger nicht registriert werden kann. Das ist der Effekt der Inter-
symbolinterferenz: die vorhergehenden ’1’ wirken noch beim Empfang von der folgenden
’0’ nach.

Um diesen Effekt nach Möglichkeit zu eliminieren, werden die nachfolgenden Bits
der gleichen Polarität mit der kleineren Amplitude auf den Lanes getrieben. Im Falle
von PCIe bedeutet dies die Abschwächung der Leistung von den nachfolgenden Bits

Alexander Henning 34

PCIe Treiber für ein Linux-System IPVS/PaS

von der selben Polarität um 3,5 dB. Man kann hier auch von einer Präemphase reden,
wenn man sich vorstellt, dass es immer jeweils das erste Bit einer Folge aus Bits mit
der gleichen Polarität, im Vergleich zu den übrigen, verstärkt wird. Das erste Bit hat
damit genug „Stärke“ die eingestellte Ladung in genügend kurzer Zeit abzuführen; der
Empfänger ist in der Lage den Pegelwechsel zu erkennen. Die minimale Spannung des
ersten Bits beträgt 800 mV und die minimale Spannung von nachfolgenden Bits der
gleichen Polarität beträgt 505 mV.

Der Übertragungskanal hat Tiefpaßeigenschaften, d.h. die höheren Frequenzen werden
stärker gedämpft als die niedrigeren. Das Signal vom Sender wird vom Übertragungs-
kanal frequenzselektiv verzerrt beim Empfänger ankommen. Ein Pegelwechsel auf den
Leitungen stellt eine hochfrequente Änderung dar.

Um das Signal beim Empfänger möglichst „glatt“ zu haben, das heißt ohne Aus-
wirkungen von frequenzselektiven Eigenschaften des Übertragungskanals, müssen die
Signale vom Sender vorverzerrt werden. Unter der Berücksichtigung von Tiefpaßeigen-
schaften des Kanals müssen somit entweder die hochfrequenten Anteile verstärkt oder
die niederfrequenten Anteile abgeschwächt werden.

Alexander Henning 35

4 Treiber und Anwendung

In diesem Kapitel wird die im Rahmen dieser Arbeit entstandene Anwendung und der
entwickelte Treiber vorgestellt. Dabei wird besonders auf die Auswahl der Werkzeuge
und der eingesetzten Frameworks eingegangen.

Als Grundlage für die Entwicklung des Treibers und der PC-Anwendung, dient das
Referenzdesign der Firma Xilinx, das für das Virtex-5 FPGA (Field Programmable Gate
Array) ML555 PCIe-Entwicklungsboard bereitgestellt wird. Dieses Design umfasst den
HDL-Code für den FPGA-Baustein, einen Treiber und eine Anwendung für das Windows
XP Betriebssystem. Die Anwendung und der Treiber sind nur in binärer Form dem
Referenzdesign beigefügt.

Das Referenzdesign ist eine Implementierung der von der Karte initialisierten Daten-
übertragung mittels direkten Speicherzugriffs (DMA) zwischen dem Host-PC und der
Karte über die PCIe- Schnittstelle. Dabei werden die Daten zwischen dem Arbeitsspei-
cher des PCs und dem DDR2 Speicher auf dem Entwicklungsboard ausgetauscht. Die
Aufgabe des Treibers und der Anwendung sind die Allozierung und Initialisierung der
Pufferspeicher auf dem PC und Einstellung der Speicherdirektübertragungen.

Die bei dieser Arbeit verwendete Entwicklungsplattform ist die „XtremeDSP Deve-
lopment Platform — Virtex-5 FPGA ML506 Edition“ von der Firma Xilinx. Das Refe-
renzdesign lässt sich auch auf dieser Karte implementieren. Im Vergleich zu der ML555,
die über eine x8 PCIe-Schnittstelle verfügt, verfügt die ML506 Karte über eine x1 PCIe-
Schnitstelle. Die Karte zeichnet sich u.a. durch folgenden Eigenschaften:

• XC5VSX50TFFG1136 Virtex-5 FPGA Baustein

• DDR2 SODIMM (256 MB)

• JTAG Programming Interface

• PCI Express Edge Connector (x1 Endpoint)

• GTP: PCIe

Die Entwicklung des Treibers und der Anwendung erfolgte unter dem Linux-Betriebssystem
„Fedora Core 10“ mit dem Linuxkernel
2.6.27.24-170.2.68.fc10.i686.PAE. Die GUI-Anwendung wurde mit Hilfe der Entwicklun-
sumgebung KDevelop und des QT-Frameworks entwickelt.

37

PCIe Treiber für ein Linux-System IPVS/PaS

4.1 Registerbeschreibung

Die Steuerung der Speicherdirektzugriffe und die Abfrage deren Zustände erfolgt über
einen Satz von Registern. Diese Register werden mit Hilfe eines BAR0 1 Registers in
den PCI Adressraum des PCs eingeblendet. Diese Register dienen als eine Schnittstelle
zwischen dem Referenzdesign und der CPU. Die CPU kann auf die Register mit Hilfe der
lesenden und schreibenden Speicher-Transaktionen über den Bus zugreifen. Über diese
Schnittstelle wird auch die Anforderungen zum lesenden und schreibenden Speicherdi-
rektzugriff entgegengenommen.

Alle Speicherdirektzugriffe werden über die DMA-Register definiert. Die CPU leitet
die Datenübertragung über die Initialisierung der Steuerregister ein. Das Beenden der
Übertragung wird über die Statusregister angezeigt. Alle Register sind 32 Bit breit.

1. DMAWAS, x00 : DMA Write: Quelladresse. Die Startadresse eines Bereiches im
RAM auf der Karte, aus dem die Daten in den PC Speicher transferiert werden.

2. DMAWAD_L, x04 : DMA Write: Zieladresse. Beinhaltet die unteren 32 Bit der
Adresse des Pufferspeichers im PC, in den geschrieben wird. Dieses Register wird
sowohl bei Systemen mit 32 Bit breiten Adressen als auch bei Systemen mit 64 Bit
breiten Adressen verwendet.

3. DMAWAD_U, x08 : DMA Write: Zieladresse. Beinhaltet die oberen 32 Bit der
Adresse des Pufferspeichers in einem System mit 64 Bit breiten Adressen, in den
die Daten geschrieben werden. Wird nur bei Systemen mit 64 Bit breiten Adressen
verwendet.

4. DMARAS_L, x0C : DMA Read: Quelladresse. Beinhaltet die unteren 32 Bit der
Adresse des Pufferspeichers im PC, von dem die Daten gelesen werden. Es wird
sowohl bei Systemen mit 32 Bit breiten Adressen als auch bei Systemen mit 64 Bit
breiten Adressen verwendet.

5. DMARAS_U, x10 : DMA Read: Quelladresse. Beinhaltet die oberen 32 Bit der
Adresse des Pufferspeichers im PC, von dem die Daten gelesen werden. Dieses
Register wird nur bei Systemen mit 64 Bit breiten Adressen verwendet.

6. DMARAD, x14 : DMA Read: Zieladresse. Die Startadresse eines Bereichs im RAM
auf der Karte, in den die Daten aus dem PC Speicher transferiert werden.

7. DMAWXS, x18 : DMA Write: Übertragungsgröße. Dient zur Festlegung der Anzahl
der Bytes, die beim DMA Write übertragen werden sollen. Die Daten werden aus
dem RAM-Speicher der Karte in den RAM-Speicher des PCs übertragen.

8. DMARXS, x1C : DMA Read: Übertragungsgröße. Dient zur Festlegung der Anzahl
der Bytes, die beim DMA Read übertragen werden sollen. Die Daten werden aus
dem RAM-Speicher des PCs in den RAM-Speicher der Karte übertragen.

1Dieses Register ist ein fester Bestandteil jedes PCI/PCIe Gerätes. Das BAR0 Register erhält die
Adresse vom Betriebssystem, unter der das Gerät erreichbar wird.

Alexander Henning 38

PCIe Treiber für ein Linux-System IPVS/PaS

9. Reserved, x20 : Reserviert.

10. Reserved, x24 : Reserviert.

11. DMACST, x28 : DMA Steuerungs- und Statusregister. Die Bedeutung der darin
vorhandenen Bits wird in der Tabelle 4.1 erläutert.

12. Reserved, x2C : Reserviert.

13. DMAWRP, x30 : DMA Write: Übertragungszähler. Dieser 32 Bit breite Nurlese-
Zähler kann zur Bestimmung des Datendurchsatzes der DMA Write Transaktionen
verwendet werden. Dieser Zähler lässt sich nicht zurücksetzen, deswegen muss er
vor dem Starten und direkt nach dem Beenden der Transaktion zur Bestimmung
des Durchsatzes ausgelesen werden. Der Zähler läuft an, wenn das „Start Write
DMA“ Bit gesetzt wird und stoppt, wenn das „End of Frame“ Bit in letzten Paket
erkannt wird.

14. DMARDP x34 : DMA Read: Übertragungszähler. Dieser 32 Bit breite Nurlese-
Zähler kann zur Bestimmung des Datendurchsatzes der DMA Read Transaktionen
verwendet werden. Dieser Zähler lässt sich nicht zurücksetzen, deswegen muss er
vor dem Starten und gleich nach dem Beenden der Transaktion zur Bestimmung
von Durchsatz ausgelesen werden. Der Zähler läuft an, wenn das „Start Read
DMA“ Bit gesetzt wird und stoppt, wenn das „End of Frame“ Bit im letzten Read
Compleation Paket erkannt wird.

4.2 Treiber

Wie bereits im Kapitel 2.3 erwähnt wurde, kann der Kernel um weitere Funktionalitä-
ten zur Laufzeit erweitert werden. Diese Erweiterung kann z.B. durch das Kernelmodul
erfolgen. Mit Hilfe dieser Technik können auch Treiber zum Kernel hinzugefügt wer-
den. Die Kernelmodule bestehen aus dem Objektcode, der noch nicht zum lauffähigem
Programm gelinkt wurde. Die Module können mit dem Programm insmod zum Kernel
dynamisch hinzugelinkt und mit dem Programm rmmod wieder entfernt werden.

Das verwendete Referenzdesign lässt sich zu der Klasse der sogenannten Character-
Devices zuordnen. Der Treiber für diese Klasse der Geräte muss mindestens die folgenden
System-Aufrufe (2.3.1) implementieren: open, close, read, und write. Der System-
Aufruf mmap wird dazu benutzt, einen bestimmten Speicherbereich, entweder für die
Anwendung oder für den Treiber, einzublenden. In diesem Bereich ist es möglich, trotz
der Zugehörigkeit des Gerätes zu der Character-Device Klasse, wahlfrei auf die Daten
zuzugreifen. Framegrabber dienen hier als Beispiel für solche Geräte.

Der Quellcode für den Treiber besteht aus den zwei Quellcode-Dateien: ML506_Modul.c

und Ioctrl.h, in denen alle benötigten Funktionen implementiert sind.
Die notwendigsten Teile eines „lauffähigen“ Moduls sind zwei Funktionen, die jeweils

beim Laden und beim entladen des Moduls vom Kernel aufgerufen werden, in diesem
Falle sind es die Funktionen:

Alexander Henning 39

PCIe Treiber für ein Linux-System IPVS/PaS

Tabelle 4.1: Bits des Steuerungs- und Statusregisters

Name Bitposition Beschreibung
Write DMA Start 0 Startet den schreibenden Spei-

cherdirektzugriff. Mit dem Schrei-
ben einer ’1’ an diese Stelle wird
der gewünschte schreibende DMA-
Zugriff gestartet. Dieses Bit setzt
sich automatisch zurück.

Write DMA Done 1 Dieses Bit ist gesetzt, wenn der
schreibende DMA-Zugriff beendet
wird. Um dieses Bit zu ’0’ zu set-
zen, muss an diese Stelle eine ’1’ ge-
schrieben werden.

Read DMA Start 2 Startet den lesenden Speicherdirekt-
zugriff. Mit dem Schreiben einer ’1’
an diese Stelle wird der gewünschte
lesende DMA-Zugriff gestartet. Die-
ses Bit setzt sich automatisch zu-
rück.

Read DMA Done 3 Dieses Bit wird gesetzt, wenn der
lesende DMA-Zugriff beendet wird.
Um dieses Bit zu ’0’ zu setzen, muss
an diese Stelle eine ’1’ geschrieben
werden.

DDR RAM Ready 4 Dieses Bit wird zu ’1’ gesetzt, wenn
die Schnittstelle zum DDR2 Spei-
cher erfolgreich initialisiert wurde.

Reserved 32..5 Nurlese-Bits, ohne Verwendung.

• ML506_init

• ML506_exit

Die Makros module_init and module_exit legen die Rollen der übergebenen Funktio-
nen fest:

1 module_init (ML506_init) ;
2 module_exit (ML506_exit) ;

Eine weitere Besonderheit von Linux ist das MODULE_LICENSE(„Dual BSD/GPL“) Ma-
kro. Es teilt dem Kernel mit, dass es sich um eine freie Software handelt und dass der
Quellcode gemäß der Lizenzbedingungen zur Verfügung steht. Beim Fehlen dieser Zeile
erzeugt der Kernel mehrere Warnmeldungen beim Laden eines solchen Moduls.

Alexander Henning 40

PCIe Treiber für ein Linux-System IPVS/PaS

Die Initialisierungsfunktion ML506_init wird nur einmalig beim Laden des Moduls
ausgeführt. Diese Funktion beendet sich sofort, wenn die Initialisierungsaufgaben durch-
geführt wurden. Die Funktion „registriert“ den Treiber beim Kernel, und teilt ihm mit,
für welches Gerät dieses Modul ein Treiber ist und welche Aufgaben es als Treiber erledi-
gen kann. Die Deinitialisierungsfunktion muss alle Aktionen der Initialisierungsfunktion
rückgängig machen, damit der Kernel weiß, dass die bereitgestellten Funktionalitäten
nicht mehr zur Verfügung stehen.

Bei dem Referenzdesign handelt es sich um eine PCIe-Karte. Wie bereits im Kapitel 3.2
erwähnt wurde, ist die Softwareschnittstelle zur Anbindung von PCI und PCIe Geräten
voll kompatibel. Für die System- und Treiberentwicklung bedeutet das, dass die bereits
für PCI-Bus vorhandenen Funktionen des Kernels benutzt werden können.

Bei der Initialisierung wird die Kernelfunktion pci_register_driver aufgerufen. Als
Übergabeparameter erwartet diese Funktion eine spezielle Treiber-Struktur und liefert
ein ganzzahliges Ergebnis zurück. Diese struct pci_driver Struktur ist ein zentrales
Element aller PCI/PCIe Treiber. Damit die Registrierung des Treibers beim Kernel
fehlerfrei abläuft muss diese Struktur korrekt erzeugt werden. Das Listing 4.2 zeigt den
Aufbau einer solchen Struktur auf.

1 /∗∗

2 ∗ Dient der kor rek t en Reg i s t r i e rung des Tre iber s
3 ∗beim Kernel .
4 ∗/
5 stat ic struct pc i_dr iver ML506_driver = {
6 . name = " ML506_driver " ,
7 . id_table = ML506_ids ,
8 . probe = ML506_probe ,
9 . remove = __devexit_p (ML506_remove) ,

10 } ;

Diese Struktur beschreibt den Treiber für das PCI-Subsystem. Sie beinhaltet den Trei-
bernamen, der nach dem Laden des Moduls im System unter /sys/bus/pci/drivers/
erscheint. Der Name muss natürlich eindeutig innerhalb des Kernels sein. Daneben ent-
hält die Struktur die Zeiger auf die sogenannten Callback-Funktionen, die vom PCI-
Subsystem des Kernels aufgerufen werden, und einen Zeiger auf eine weitere Struktur:
struct pci_device_id *id_table; Diese Struktur bildet eine Liste der von diesem
Treiber unterstützten Geräte. Die Liste beinhaltet die Vendor_IDs und die Device_IDs.
Diese Nummern werden von der PCI-SIG den Geräteherstellern vergeben und bei den
PCI Karten im Konfigurationsspeicher einprogrammiert. Das Listing 4.2 zeigt diese
Struktur. Sie bildet eine Liste mit den Einträgen für die vom Treiber unterstützten
Geräte nach.

1 /∗ H e r s t e l l e r − und Geraetekennung ∗/
2 #define XILINX_VENDOR_ID 0 x10ee
3 #define XILINX_DEVICE_ID 0x0007
4

5 stat ic const struct pci_device_id ML506_ids [] = {

Alexander Henning 41

PCIe Treiber für ein Linux-System IPVS/PaS

6 { PCI_DEVICE(XILINX_VENDOR_ID, XILINX_DEVICE_ID) } ,
7 { 0 } ,
8 } ;

Das PCI-Subsystem erwartet, dass der PCI-Treiber folgende Funktionen zur Verfü-
gung stellt:

• probe : Diese Funktion wird vom PCI-Kern aufgerufen, wenn der Kernel ein Gerät
erkennt, dem noch kein Treiber zugeordnet ist und das in der Liste der unterstütz-
ten Geräte vorkommt. Der Treiber muss dann entscheiden, ob er die Kontrolle
für dieses Gerät übernimmt oder nicht. Die Mitteilung dieser Entscheidung er-
folgt durch den Rückgabewert. Der Rückgabewert ist NULL, wenn die Kontrolle
übernommen wird, ansonsten eine negative Zahl.

• remove : Diese Funktion wird entweder aufgerufen wenn das Gerät vom System
entfernt wird, oder wenn der Treiber für dieses Gerät entladen wird.

• suspend : Diese Funktion ist optional und ist nicht zwingend notwendig für den
Betrieb des Geräts. Sie wird aufgerufen, wenn die Variable state der internen Ker-
nelstruktur pci_dev den Wert suspend annimmt. Die Kernelstruktur pci_dev re-
präsentiert ein PCI-Gerät innerhalb des Kernels.

• resume : Diese Funktion ist ebenfalls nicht zwingend notwendig für den Betrieb
des Geräts. Sie wird immer aufgerufen, wenn die interne Kernelstruktur pci_dev

den suspend-Zustand verlässt.

Die zwei letzten Funktionen werden gebraucht, wenn die Karte bestimmte Aktionen
durchführen muss, bevor sie z.B. vom Energie-Management des System abgeschaltet
bzw. wieder eingeschaltet wird.

Bei dem Treiber für das Referenzdesign wurden nur die notwendigen Funktionen
ML506_probe und die ML506_remove implementiert. Wie beim Laden des Treibermo-
duls die Funktion pci_register_driver aufgerufen wird, so wird beim Entladen des
Moduls die Funktion pci_unregister_driver aufgerufen. Dabei werden die Zuweisun-
gen der PCI-Geräte zu dem Treiber aufgehoben. Bevor die Struktur struct pci_driver

des Treibers beim Kernel abgemeldet wird und damit die belegten Ressourcen wieder
frei werden, wird noch die remove - Funktion (ML506_remove) aufgerufen, um ein von
diesem Treiber kontrolliertes Gerät z.B. in einen sicheren Zustand zu bringen.

4.2.1 Funktion probe

Alle Treiber, die für PCI/PCIe-Geräte beim Kernel angemeldet werden, liefern auch die
Liste der von diesen Treibern unterstützten Geräte. Der Kernel vergleicht die Hersteller-
und die Gerätenummern der erkannten PCI-Geräte mit den Nummern, welche die regis-
trierten Treiber mitteilen. Wenn es eine Übereinstimmung gibt, dann versucht der Kernel
das erkannte PCI-Gerät an den entsprechenden Treiber zu übergeben. Diese Übergabe
erfolgt mit Hilfe der bereits erwähnten probe-Funktion (ML506_probe). Der Kernel ruft

Alexander Henning 42

PCIe Treiber für ein Linux-System IPVS/PaS

diese Funktion des entsprechenden Treibers auf und übergibt die Adresse auf die interne
Struktur, die das erkannte PCI-Gerät repräsentiert. Diese Struktur fasst natürlich alle
Informationen zusammen, die allen PCI/PCIe-Geräten gemeinsam sind und weiterhin
auch noch solche, die zur Verwaltung der Geräte intern im Kernel notwendig sind.

Das Referenzdesign verfügt über die gerätespezifischen Register und weiteren geräte-
spezifischen Eigenschaften, die im Treiber eine Rolle spielen. Dafür wurde eine weitere
Struktur eingeführt, die das eigentliche Gerät abbildet und alle notwendigen Variablen
für den Treiber bereithält und zusammenfasst. Diese Struktur ist die struct ML506_dev

und sie beinhaltet folgende Felder:

• Variablen für die virtuelle und physikalische Adresse des Registers BAR0.

• Variablen für physikalische und virtuelle Adressen des DMA-Puffers.

• Variablen für die Werte aus den Registern.

• Zeiger auf die kernel-interne Struktur struct pci_dev *pci_dev.

• Eine Struktur, die ein Character-Device beschreibt:
struct cdev ML506_cdev.

Als erster Schritt in der probe-Funktion wird der notwendige Speicher für die struct

ML506_dev Struktur angefordert. Beim Erfolg wird der Speicherbereich mit Nullen be-
schrieben und die Ausführung geht zum nächsten Schritt über. Die Übernahme des Gerä-
tes durch den Treiber erfordert schrittweises Vorgehen. Beim Fehlschlagen eines Schrittes
müssen alle bis dahin belegten Ressourcen wieder freigegeben werden. Die Freigabe der
belegten Ressourcen erfolgt dann in der umgekehrten Reihenfolge. Erst nach der Freiga-
be der belegten Ressourcen wird die probe-Funktion mit einem negativen Rückgabewert
beendet.

Nach dem die Struktur den Speicher im Kernelspeicherbereich zugewiesen bekommen
hat, werden die ersten Variablen mit Werten belegt. Es wird der Name gesetzt und
der übergebene Zeiger auf die pci_dev Struktur gespeichert. So kann der Treiber dann
immer auf die kernel-interne Darstellung des Gerätes zugreifen. Die pci_dev Struktur
bietet zusätzlich eine Möglichkeit über sich selbst auf die „privaten“ Daten des Treibers
zuzugreifen. Die „privaten“ Daten des Treibers bestehen in diesem Fall aus der angelegten
Struktur ML506_dev. Die Adresse der angelegten Struktur wird in die dafür vorgesehene
Variable der pci_dev Struktur kopiert. Das heißt, wenn der Kernel eine Treiberfunktion
aufruft und dabei nur den Zeiger auf die pci_dev Struktur übergibt, so hat man dennoch
die Möglichkeit auf die spezifische, angelegte, gerätebeschreibende Struktur zuzugreifen.

Der nächste Schritt sieht eine Reservierung von 1 Megabyte großen, zusammenhän-
genden Speicherbereich für den Puffer im Kernelbereich vor. Dafür wird die Funktion
pci_alloc_consistent benutzt. Im fehlerfreien Fall liefert sie zwei Ergebnisse: die vir-
tuelle und die physikalische Startadresse des reservierten Bereiches. Diese werden in der
ML506_dev-Struktur gespeichert. Die Funktion, welche die entsprechenden Ressourcen
freigibt ist die pci_free_consistent

Alexander Henning 43

PCIe Treiber für ein Linux-System IPVS/PaS

Als Nächstes wird die Kernelfunktion pci_enable_device(struct

pci_dev *dev) aufgerufen. Damit weiß der Kernel welches Gerät aktiviert werden soll
und wenn das Gerät vorhanden ist, werden die Interrupts zu den Leitungen und die Ein-
und Ausgabebereiche zugewiesen. Erst nach dem Ausführen dieser Funktion ist der Trei-
ber in der Lage auf die Ressourcen des Gerätes zuzugreifen. Der Kernel stellt mehrere
Funktionen für den Zugriff auf die verschiedenen Speicherbereiche der PCI/PCIe-Geräte
zur Verfügung. Die CPU hat selbst keine Möglichkeit auf die Hardware zuzugreifen,
sie muss den Umweg über den Chipsatz nehmen, d.h. sie schreibt in und liest aus den
bestimmten Registern des PCIe-Kontrollers. Diese Zugriffe sind Herstellerabhängig und
werden durch die Treiber für diese Chipsätze abgedeckt. Die Abstraktion durch den
Kernel stellt eine einheitliche Schnittstelle für die Zugriffe z.B. auf den Konfigurati-
onsspeicher der Karten dar. Um das Gerät wieder zu deaktivieren wird die Funktion
pci_disable_device gebraucht.

Bevor die von dem Gerät bereitgestellten Speicherbereiche benutzt werden dürfen,
müssen diese noch als belegt markiert werden, damit es keine mehrfachen Zugriffe gibt.
Die Reservierung erfolgt mit Hilfe der Funktion pci_request_regions. Dabei wird die
Struktur des Gerätes pci_dev und der Treibername übergeben. Wenn die durch das
Gerät angeforderten Ressourcen noch nicht als belegt markiert waren, dann werden
diese als belegt markiert. Erst nach dem diese Funktion erfolgreich ausgeführt wurde,
darf man auf die Ressourcen zugreifen. Die Funktion pci_release_regions markiert
die belegten Ressourcen wieder als frei.

Im nächsten Schritt werden die Adressen für das BAR0 Register ermittelt und in der
ML506_dev Struktur gespeichert. Dabei wurde der notwendige Quellcode in eine eigene
Funktion ausgegliedert. Diese Funktion ist die static int __devinit map_bars. In die-
ser Funktion werden die Start- und die Endadresse des Speicherbereichs ermittelt. Dabei
wird es noch überprüft, ob sich die Adressen tatsächlich von einander unterscheiden und
somit einen Speicherbereich aufspannen. Daneben erfolgt noch die Überprüfung, ob es
sich bei dieser Ein- / Ausgaberessource um einen Speicher handelt. Mit diesen Tests und
der Kenntnis über den Aufbau der Hardware kann im Treiber sichergestellt werden, dass
es sich um ein unterstütztes und korrekt funktionierendes Gerät handelt. Die virtuelle
Adresse im Speicherbereich des Kernels erhält man mit Hilfe der Funktion ioremap. In
Linux gibt es zum Teil mehrere Funktionen, die den gleichen Zweck erfüllen, wie auch
in diesem Fall. Die Alternative zu ioremap ist z.B. pci_iomap. Die entsprechende Funk-
tion, die den eingeblendeten Speicherbereich wieder freigibt, ist die pci_iounmap. Diese
Funktion wird aus der static void free_bars heraus aufgerufen.

Alle bis jetzt verwendeten Funktionen werden vom PCI-Subsystem des Kernels zur
Verfügung gestellt. Im weiteren Verlauf folgen noch die Funktionen, die das Gerät als
ein Character-Device beim Kernel initialisieren und anmelden.

Als Erstes bei der Einrichtung eines Character-Devices erfolgt die Reservierung einer
sogenannten major-Nummer. Die Zugriffe auf die Peripherie erfolgen meistens über die
Gerätedateien, die sich im Verzeichnis /dev befinden. Eine Gerätedatei ist die Schnitt-
stelle für den Benutzer und für die Anwendungen um mit der Hardware zu kommuni-
zieren. Die Zugriffe erfolgen dann über die Dateioperationen, wie open, close, read,
write und weitere. Beim Auslösen einer Operation über eine Gerätedatei muss der

Alexander Henning 44

PCIe Treiber für ein Linux-System IPVS/PaS

Kernel wissen an welchen Treiber er die Operation weiterleiten muss. Dafür ist die
major-Nummer vorgesehen. Die Reservierung der major-Nummer erfolgt mit der int

register_chrdev_region Funktion. Als einen der Parameter muss dabei die gewünsch-
te zu reservierende Nummer übergeben werden. Es gibt eine Liste mit den bereits ver-
gebenen Nummern, die für viele Linuxsysteme gilt. Der Nachteil dieser Vorgehensweise
ist, dass die Nummer von einem anderen Treiber bereits belegt sein könnte. Als Lö-
sung für das Problem dient die dynamische Zuweisung der major-Nummer mit Hilfe
der int alloc_chrdev_region Funktion. Diese Funktion ist in der Lage gleich mehrere
Nummern zu reservieren. Sie erwartet einen Zeiger auf die Variable, welche dann die
Nummer beinhaltet, den Namen des Gerätes, unter dem es in /proc/devices erscheint
und die Anzahl der gewünschten Nummern. Neben einer major hat jedes Gerät auch
eine minor-Nummer. Diese Nummer wird nicht vom Kernel sondern nur von Treibern
selbst verwaltet und benutzt. Die minor-Nummer kann z.B. für die Verwaltung mehre-
rer Geräte desselben Typs durch einen einzigen Treiber eingesetzt werden. Die Funktion
unregister_chrdev_region gibt die reservierte major-Nummer wieder frei.

Nach dem die major-Nummer im System reserviert ist, müssen noch die entsprechen-
den Treiberfunktionen mit dieser Nummer verknüpft werden. Die Verknüpfung erfolgt
mit Hilfe einer weiteren Struktur die struct file_operations. Diese Struktur ist in <li-
nux/fs.h> definiert und stellt eine Sammlung von Zeigern auf die zu implementierenden
Funktionen dar. Nicht alle definierten Funktionen müssen auch tatsächlich implemen-
tiert werden, damit das Gerät korrekt funktioniert. Nur die vom Gerät unterstützten
Funktionen müssen implementiert werden. Die Zeiger auf Funktionen, die nicht unbe-
digt notwendig sind und somit ggf. nicht vom Treiber bereitgestellt werden, müssen mit
NULL belegt sein. Alle anderen Funktionen müssen im Treiber implementiert werden.
Der Quellcode-Ausschnitt 4.2.1 zeigt die file_operations Struktur.

1 stat ic const struct f i l e _ o p e r a t i o n s ML506_fops = {
2 . owner = THIS_MODULE,
3 . open = ML_open ,
4 . r e l e a s e = ML_release ,
5 .mmap = ML_mmap,
6 . i o c t l = ML_ioctl ,
7 . read = ML_read ,
8 . wr i t e = ML_write ,
9 } ;

Wie man dem Quellcode entnehmen kann, entsprechen die Funktionen den System-
aufrufen, die wiederum von der Anwendung getriggert werden. Das Feld .owner stellt
eine Ausnahme dar und ist keine Funktion. Dieses Feld ist notwendig um das Entladen
des Treibers zu verhindern, wenn eine der Operationen der Gerätedatei aktiv ist. Der
Funktion ML_ioctl kommt eine besondere Bedeutung zu, denn mit Hilfe dieser Methode
können gerätespezifischen Funktionen realisiert werden, die nicht über die vorhandenen
Systemaufrufe abgedeckt werden können.

Nach dem die Gerätedatei geöffnet wurde, kann die Anwendung auf die aufgeliste-
ten Funktionen zugreifen. Alle Character-Devices werden im Kernel intern mit Hilfe

Alexander Henning 45

PCIe Treiber für ein Linux-System IPVS/PaS

der Struktur vom Typ struct cdev repräsentiert. Bevor der Kernel die Funktionsauf-
rufe an den Treiber weiterleiten kann, muss diese cdev Struktur initialisiert und dem
Kernel bekannt gemacht werden. Die Initialisierung dieser Struktur erfolgt mit void

cdev_init(struct cdev *cdev, struct file_operations *fops). Bei der Initialisie-
rung der Character-Device beschreibenden Struktur wird die bereits erwähnte Struktur
file_operations übergeben. Dadurch wird dem Kernel mitgeteilt welche Operationen
dieses Character-Device ausführen kann.

Das angelegte, zeichenorientierte Gerät muss dem Kernel durch Hinzufügen bekannt
gemacht werden. Dies erfolgt mit dem Aufruf der Funktion cdev_add. Der Aufruf dieser
Funktion ist die letzte Aktion in der probe-Funktion. Beim erfolgreichen Ausführen
erscheint das Gerät im System und kann sofort angesprochen werden, weshalb es wichtig
ist, dass dieses Gerät zu diesem Zeitpunkt funktionsbereit ist.

4.2.2 Funktion remove

Bei der Registrierung des Treibers beim Kernel wurde neben dem Zeiger auf die probe-
Funktion auch ein Zeiger auf die remove-Funktion übergeben. Diese Funktion wird vom
PCI Subsystem des Kernels aufgerufen, wenn z.B. der Treiber entladen wird. Dabei
werden die verwendeten Ressourcen abgegeben:

1. Beenden der Einblendung des Registers BAR0 in den Kernelspeicherbereich.

2. Freigabe des 1 MB großen Pufferspeichers.

3. Rückgabe der major-Nummer.

4. Löschen der cdev-Struktur.

5. Freigabe der PCI Ein- / Ausgabebereiche und der Speicherbereiche.

6. Löschen der gerätespezifischen Struktur.

Nach dem die remove-Funktion abgearbeitet wurde, wird zuletzt die exit-Funktion
des Treibers vom Kernel aufgerufen. Die Hauptaufgabe dieser Funktion ist die Ab-
meldung der struct pci_driver Struktur vom Kernel. Die Abmeldung erfolgt mit
pci_unregister_driver, damit wird der Treiber vom System abgemeldet.

4.2.3 Funktion open

Die Funktion open wird aufgerufen, wenn die Anwendung eine Gerätedatei öffnet, welche
die vorhandene Hardware repräsentiert. In dieser Funktion soll überprüft werden, ob
das Gerät bereits von z.B. einer anderen Anwendung „geöffnet“ ist d.h. benutzt wird.
Dafür ist eine Variable in der gerätespezifischen Struktur vorgesehen: int inUse. Es wird
überprüft, ob der Wert dieser Variable = 1 ist. Diese Variable hat den Wert 1, wenn das
Gerät bereits „geöffnet“ wurde. Der Treiber ’öffnet“ das Gerät indem er eine 1 dieser
Variable zuweist.

Alexander Henning 46

PCIe Treiber für ein Linux-System IPVS/PaS

Beim Aufruf der Funktion werden vom Kernel als Parameter nur zwei Zeiger auf die
Strukturen übergeben: struct inode *inode, struct file *file. Es muss also einen
Mechanismus geben um auf die gerätespezifische Struktur des Treibers innerhalb dieser
Methode zugreifen zu können.

Die Struktur file repräsentiert einen sogenannten file descriptor, ein Objekt, das eine
geöffnete Datei repräsentiert. Die Struktur inode selbst hingegen beschreibt die Datei
und beinhaltet sehr viele Informationen über diese. In einem System kann es mehrere
Deskriptoren einer Datei geben, jedoch gibt es immer nur eine Struktur inod von dieser
Datei.

Die Struktur inode hat zwei Felder, die für die Treiberentwiklung interessant sind:
dev_t i_rdev und struct cdev *i_cdev. Falls der inode-Knoten eine Gerätedatei re-
präsentiert, dann beinhaltet das erste Feld die Gerätenummer und das zweite den Zeiger
auf die entsprechende cdev-Struktur, wenn es sich dabei um ein Character-Device han-
delt. Zur Erinnerung: die cdev-Struktur wurde vorher in der probe-Funktion vorher
angelegt und dem Kernel hinzugefügt. Über die inode können wir auf die Struktur cdev

zugreifen, und mit Hilfe der Kernelfunktion container_of können wir die gewünschte
gerätespezifische Struktur erhalten.

Die über diesen Umweg gewonnene Struktur ml506_dev kann auf die treiberinternen
Variablen zugegriffen werden. Vorteilhaft ist, dass die file-Struktur ein Feld namens
private_data besitzt. In diesem Feld wird die Referenz auf die gewonnene gerätespe-
zifische Struktur abgelegt. Bei jedem weiteren Aufruf einer der Dateioperationen auf
der offenen Gerätedatei kann man so leicht auf die gerätespezifische Struktur in den
Treiberfunktionen zugreifen.

4.2.4 Funktion release

Diese Funktion wird vom Kernel aufgerufen, wenn die vorher geöffnete Gerätedatei von
der Anwendung geschlossen wird. Die Übergabeparameter sind mit denen der open-
Funktion identisch. Den Zugriff auf die gerätespezifische Struktur erhält man über das
Feld private_data der file-Struktur. In dieser Funktion werden die internen Register
der Karte mit den Standartwerten beschrieben, zurückgesetzt und die inUse-Variable in
der gerätespezifischen Struktur wieder zu 0 gesetzt: eine erneute Öffnung des Geräts /
der Gerätedatei wird wieder möglich.

4.2.5 Funktion mmap

Die Funktion mmap dient der Einblendung der Speicher- oder der Ein- und Ausgaberes-
sourcen der Hardware in den Adressraum des aufrufenden Prozesses. Das Referenzdesign
reserviert 128 Bytes an Speicherressourcen über das Register BAR0. In diesen 128 By-
tes befindet sich der Registersatz der Karte, wobei der Registersatz sich nur über 56
Bytes erstreckt. Mit der mmap-Funktion kann die Anwendung die Register in dem ihr
zugewiesenen Adressraum auslesen und damit die lesenden Hardwarezugriffe durchfüh-
ren. Die mmap-Funktion kann die Einblendung nur Seitenweise durchführen, die typische
Größe einer Seite ist dabei 4096 Bytes. Zudem kann man nicht davon ausgehen, dass die

Alexander Henning 47

PCIe Treiber für ein Linux-System IPVS/PaS

gewünschten 56 Bytes des Registersatzes ganz am Anfang des eingeblendeten Adressbe-
reiches liegen. Daher besitzt die gerätespezifische Struktur noch eine Variable, die den
Offset beinhaltet, ab dem die Register innerhalb der Seite liegen. Bevor die Anwendung
auf die Register zugreifen kann, muss sie noch den Offset beim Treiber abfragen. Beim
Einblenden erlaubt der Treiber nur den lesenden Zugriff auf die Register, damit wird
verhindert, dass die Anwendung über das direkte Beschreiben der Register, das heißt
am Treiber vorbei, den DMA-Vorgang starten kann.

Die mmap-Funktion ermöglicht also direkte Zugriffe auf die Hardware direkt aus der
Anwendung heraus. Sie erlaubt einen bequemeren Zugriff, diese Zugriffe aber bleiben
vom Treiber unbemerkt. Das Beschreiben einzelner Register wird nur über die ioctl-
Aufrufe erledigt.

4.2.6 Funktion read

Die Funktion read im Treiber wird aufgerufen, wenn die Anwendung den read-Systemaufruf
über die Gerätedatei auslöst. Auch wenn die Anwendung die Daten liest, so werden die-
se eigentlich von der Karte aus dem eigenen DDR2 RAM Speicher in den PC RAM
geschrieben. In dieser Funktion erfolgt also ein schreibender Speicherdirektzugriff.

Beim Aufruf der Funktion read wird als Erstes überprüft, ob die Werte für die Offsets
und für die Anzahl der Wiederholungen und die Größe der Übertragung korrekt gesetzt
sind. Falls irgendein Wert noch nicht gesetzt wurde aber die read-Funktion aufgeru-
fen wird, so wird ein Standardwert angenommen. Als Nächstes überprüft der Treiber
das Bit „0“ des Steuerungs- und Statusregisters, und wenn das Bit eine logische ’0’ dar-
stellt, dann darf der Write-DMA Vorgang gestartet werden. Bevor die Datenübertragung
erfolgt, müssen noch die entsprechenden Register auf der Einsteckkarte mit den über-
gebenen Werten aus der gerätespezifischen Struktur beschrieben werden. Die Übergabe
der Werte erfolgt mit Hilfe der ioctl-Funktion und sie werden in der gerätespezifischen
Struktur abgelegt. Das Schreiben in die Register erfolgt mit Hilfe der Kernelfunktion
iowrite32. Folgende Quellcodezeile zeigt beispielsweise, wie der Register für die Größe
der zu übertragenden Daten beschrieben werden kann:

iowrite32(ml506_dev->w_TransferSize, ml506_dev->bar0 +

+ DMA_W_TRANSFER_SIZE).

Mit dem ersten Parameter wird der Wert für die Datenmenge in Bytes übergeben
und mit dem zweiten Parameter die Zieladresse, wohin der erste Parameter geschrieben
werden soll. Im Feld bar0 der gerätespezifischen Struktur ml506_dev befindet sich die
virtuelle Kerneladresse des Registers BAR0. Das DMA_W_TRANSFER_SIZE ist der Offset
in Bezug auf die BAR0 Adresse zu dem DMAWXS Register.

Bevor der DMA-Vorgang gestartet wird, wird noch der Wert des Schreibzählers aus-
gelesen. Erst jetzt startet der Treiber in einer for-Schleife durch das Schreiben einer ’1’
in Bit „0“ des DMACST Registers die geforderten Datenübertragungen.

Nach diesem Vorgang wird die Ausführung des Treibers für eine bestimmte Zeit an-
gehalten um nach Ablauf dieser Zeit das Statusbit abzufragen, dass das Ende der Über-

Alexander Henning 48

PCIe Treiber für ein Linux-System IPVS/PaS

tragung anzeigt. Der Treiber bleibt in dieser Abfrage bis das Bit gesetzt wird. Damit
der Treiber im Falle einer Fehlfunktion der Hardware nicht für immer an dieser Stelle
wartet, läuft ein Zähler, der mitzählt, wie oft der Treiber bereits das Bit ausgelesen hat.
Dieser Zähler beschränkt das Pollen auf 100 mal.

Nach dem Beenden der for-Schleife liest der Treiber den neuen Wert aus dem Register
DMAWRP und bestimmt die Differenz. Das Ergebnis wird in der gerätespezifischen
Struktur abgelegt, um bei der Berechnung des Datendurchsatzes verwendet zu werden.

Der letzte Schritt in dieser Funktion ist das Kopieren der Daten, mit Berücksichigung
aller Offsets, aus dem Kernelpufferspeicher in den Pufferspeicher des aufrufenden Pro-
zesses. Dies erfolgt mit Hilfe der Funktion copy_to_user. Diese Funktion kann ein Block
Daten aus dem Kernelspace in den Userspace kopieren.

4.2.7 Funktion write

Die Funktion write im Treiber wird aufgerufen, wenn die Anwendung den Systemauf-
ruf write über die Gerätedatei auslöst. Auch wenn die Anwendung die Daten schreibt,
so werden diese tatsächlich von der Karte, aus dem PC Arbeitsspeicher in den eigenen
DDR2 RAM Speicher eingelesen. In dieser Funktion erfolgt also ein lesender Speicherdi-
rektzugriff.

Die Vorgehensweise des Treibers in dieser Funktion ist ganz ähnlich, wie die in der
Funktion read. Der Unterschied besteht darin, dass der Treiber zuerst die Daten aus dem
Userspace, von der Anwendung, in den Kernelspace kopiert und erst danach den lesenden
DMA-Vorgang startet. Das Kopieren erledigt eine weitere Kernelfunktion: copy_from_user.

Auch in dieser Funktion muss der Treiber die übergebenen Offsets, Adressen, Daten-
größe und Anzahl der Übertragungen berücksichtigen. Bei der Vorbereitung des Vorgangs
werden die entsprechenden Register beschrieben und ausgewertet.

4.2.8 Funktion ioctl

Die Funktion ioctl spielt eine wichtige Rolle bei der Gerätesteuerung. Mit Hilfe dieser
Funktion können beliebige Aufträge an den Treiber und die Hardware gestellt, wenn die
Standardaufrufe wie „lesen“ und „schreiben“ nicht ausreichen.

Die Funktion ioctl wird aufgerufen, wenn der ioctl-Systemaufruf von der Anwen-
dung erzeugt wird. Der Aufruf in der Anwendung hat folgendes Format: int ioctl(int

fd, unsigned long cmd, ...). Dabei bedeuten die Punkte als Parameter in den Klam-
mern, dass es einen optionalen Parameter geben kann. Dabei kann dieser zusätzlicher
Parameter eine Ganzzahl oder ein Zeiger auf eine beliebige Struktur sein. Das Vorhan-
densein und der Typ dieses Parameters hängt dann von dem verwendeten Befehl, dem
zweiten Parameter, ab.

Die ioctl-Funktion ist eigentlich eine große switch-case-Anweisung, wobei jeder Be-
fehl in einem eigenen Zweig abgearbeitet wird. Den einzelnen Befehlen sind eindeutige
Nummern zugewiesen, die Zuweisung erfolgte in der <Ioctrl.h>-Datei. Damit die An-
wendung die gleichen Befehle benutzen kann, muss diese Datei ebenfalls während der
Entwicklung verwendet werden.

Alexander Henning 49

PCIe Treiber für ein Linux-System IPVS/PaS

Der Quellcode-Ausschnitt 4.2.8 zeigt die Definitionen von zusätzlichen Befehlen und
die Zuweisung der korrespondierenden Nummern.

1 #define ML506_IOC_MAGIC 0b11000101
2

3 #define ML_ioctl_Set_Read_Transfer_Size _IOW(
ML506_IOC_MAGIC, 1 , int)

4 #define ML_ioctl_Set_Read_NumberOfTransfers _IOW(
ML506_IOC_MAGIC, 2 , int)

5 #define ML_ioctl_Set_Write_Transfer_Size _IOW(
ML506_IOC_MAGIC, 3 , int)

6 #define ML_ioctl_Set_Write_NumberOfTransfers _IOW(
ML506_IOC_MAGIC, 4 , int)

7 #define ML_ioctl_Get_Bar0_Offset _IOR(
ML506_IOC_MAGIC, 5 , int)

8 #define ML_ioctl_Get_MaximumReadRequestSize _IOR(
ML506_IOC_MAGIC, 6 , int)

9 #define ML_ioctl_Get_MaximumPayloadSize _IOR(
ML506_IOC_MAGIC, 7 , int)

10 #define ML_ioctl_Get_ReadCompletionBoundary _IOR(
ML506_IOC_MAGIC, 8 , int)

11 #define ML_ioctl_Get_LinkWidth _IOR(
ML506_IOC_MAGIC, 9 , int)

12 #define ML_ioctl_Set_Write_ML506_Offset _IOW(
ML506_IOC_MAGIC, 10 , int)

13 #define ML_ioctl_Set_Write_HostPC_Offset _IOW(
ML506_IOC_MAGIC, 11 , int)

14 #define ML_ioctl_Set_Read_ML506_Offset _IOW(
ML506_IOC_MAGIC, 12 , int)

15 #define ML_ioctl_Set_Read_HostPC_Offset _IOW(
ML506_IOC_MAGIC, 13 , int)

16 #define ML_ioctl_Start_Full_Duplex_DMA _IOW(
ML506_IOC_MAGIC, 14 , unsigned long)

17 #define ML_ioctl_Get_Write_Performance _IOR(
ML506_IOC_MAGIC, 15 , int)

18 #define ML_ioctl_Get_Read_Performance _IOR(
ML506_IOC_MAGIC, 16 , int)

Wie man dem Quellcode entnehmen kann, wurden 16 zusätzliche Aufrufe definiert.
Dabei gibt es eine Besonderheit bei der Vergabe der Nummern. Die Nummern dürfen
nur einmal innerhalb des Systems vorkommen. Wenn dies gewährleistet ist, dann können
die Fehler vermieden werden, die sich ergeben, wenn eine Anwendung an einer falschen
Gerätedatei einen ioctl-Aufruf absetzt und es nicht merkt. Deswegen haben sich die Ker-
nelentwickler auf ein bestimmtes Format geeinigt, bei dem es mehrere Bitfelder gibt, die
z.B. anzeigen, ob es weitere Übergabeparameter gibt, und wenn ja, wie groß diese sind;
in welche Richtung die Daten transferiert werden (vom Kernel zum User oder umge-
kehrt) usw. Es gibt eine spezielle 8 Bit große Zahl, die innerhalb des Treibers einmalig
vorkommen darf. Mit Hilfe dieser Zahl und der Macros wie _IO(kein Datenaustausch),
_IOW (Die Daten gehen von Userspace in den Kernelspace), _IOR und _IOWR werden die
zusätzlichen Befehle für die ioctl-Aufrufe definiert. Damit der Treiber als auch die An-
wendung diese Macros erkennen, muss die Headerdatei <asm/ioctl.h> während deren

Alexander Henning 50

PCIe Treiber für ein Linux-System IPVS/PaS

Entwicklung eingebunden werden.
Mit der ioctl-Funktion lassen sich gerätespezifischen Funktionen und Aufrufe imple-

mentieren, die nicht von den vorhandenen Standardaufrufen abgedeckt werden.
In der ioctl-Funktion erfolgen die ersten Tests, die überprüfen, ob die aufgerufenen

Befehle an den richtigen Treiber gerichtet sind. Es wird überprüft, ob die spezielle,
sogenannte „magische“ Zahl des Befehls korrekt ist und ob die im Befehl angekündigte
Datenflussrichtung mit der vom Treiber übereinstimmt. Wenn die Überprüfung ohne
Fehler abläuft, wird der eigentliche Befehl ausgeführt.

Im Folgenden werden die zusätzlichen gerätespezifischen Befehle an den Treiber näher
erläutert, die über den ioctl-Systemaufruf abgesetzt werden.

ML_ioctl_Get_Read_Performance

Liefert die Anzahl der durchgeführten DMA-Read Transaktionen vom letzten DMA-
Read Vorgang (Anwendung hat „geschrieben“) zurück. Dieser Befehl wird zur Bestim-
mung des Datendurchsatzes genutzt.

ML_ioctl_Get_Write_Performance

Liefert die Anzahl der durchgeführten DMA-Write Transaktionen vom letzten DMA-
Write Vorgang (Anwendung hat „gelesen“) zurück. Dieser Befehl wird zur Bestimmung
des Durchsatzes benötigt.

ML_ioctl_Start_Full_Duplex_DMA

Startet die Funktion ML_do_full_duplex_dma. Diese Funktion leitet gleichzeitiges Lesen
und Schreiben ein. Sie ist notwendig, da das Lesen und Schreiben gleichzeitig ablaufen
soll und es keinen expliziten Systemaufruf wie read oder write gibt.

ML_ioctl_Set_Write_ML506_Offset

Die Anwendung setzt den Offset, von welcher Stelle die Daten aus dem DDR2 RAM der
Karte in den eigenen Speicher übertragen werden sollen.

ML_ioctl_Set_Write_HostPC_Offset

Die PC-Anwendung setzt den Offset, an welche Stelle die Daten aus dem DDR2 RAM
der Karte in den eigenen Speicher übertragen werden sollen.

ML_ioctl_Set_Read_ML506_Offset

Die Anwendung setzt den Offset, von welcher Stelle die Daten aus dem eigenen Speicher
in den DDR2 RAM der Karte übertragen werden sollen.

Alexander Henning 51

PCIe Treiber für ein Linux-System IPVS/PaS

ML_ioctl_Set_Read_HostPC_Offset

Die Anwendung setzt den Offset, an welche Stelle die Daten aus dem eigenen Speicher
in den DDR2 RAM der Karte übertragen werden sollen.

ML_ioctl_Set_Read_Transfer_Size

Die Anwendung setzt die Größe der Daten in Bytes, die sie „schreibt“.

ML_ioctl_Set_Read_NumberOfTransfers

Die Anwendung setzt die Anzahl der Wiederholungen, wie oft sie „schreibt“.

ML_ioctl_Set_Write_Transfer_Size

Die Anwendung setzt die Größe der Daten in Bytes, die sie „liest“.

ML_ioctl_Set_Write_NumberOfTransfers

Die Anwendung setzt die Anzahl der Wiederholungen, wie oft sie „liest“.

ML_ioctl_Get_Bar0_Offset

Mit diesem Aufruf kann die Anwendung feststellen, ab welcher Stelle sich das Register
BAR0 in dem eingeblendeten Bereich befindet. Das Einblenden des Registers BAR0
erfolgt in der Funktion mmap.

ML_ioctl_Get_MaximumReadRequestSize

Mit dieser Funktion kann die MaximumReadRequestSize-Eigenschaft der PCIe-Schnittstelle
abgefragt werden. Der Wert dieser Eigenschaft wird während der Initialisierungsphase
zwischen dem Hostsystem und der Karte ausgehandelt. Die GUI stellt diese Information
in einem Infobereich dar.

ML_ioctl_Get_MaximumPayloadSize

Mit dieser Funktion kann die MaximumPayloadSize-Eigenschaft der PCIe-Schnittstelle
abgefragt werden. Die GUI stellt diese Information in einem Infobereich dar.

ML_ioctl_Get_ReadCompletionBoundary

Mit dieser Funktion kann die ReadCompletionBoundary-Eigenschaft der PCIe-Schnittstelle
abgefragt werden. Die GUI stellt diese Information in einem Infobereich dar.

ML_ioctl_Get_LinkWidth

Mit dieser Funktion kann die LinkWidth-Eigenschaft der PCIe-Schnittstelle abgefragt
werden. Die GUI stellt diese Information in einem Infobereich dar.

Alexander Henning 52

PCIe Treiber für ein Linux-System IPVS/PaS

4.2.9 Funktion ML_do_full_duplex_dma

Diese Funktion wird aus der ioctl-Funktion aufgerufen, wenn die Anwendung den voll-
duplexen Zugriff durchführen möchte. Im Unterschied zu den Read- und Write-DMA,
die mit einem Zwischenpuffer im Kernel auskommen, braucht diese Funktion zwei da-
von, wenn der Datenaustausch fehlerfrei erfolgen soll. Da der DMA-Write Vorgang we-
sentlich schneller als der DMA-Read Vorgang abläuft, wird die Karte mit nur einem
Pufferspeicher die gleichen Daten auslesen, welche im Laufe des DMA-Vorgangs bereits
reingeschrieben wurden.

Der vollduplexe Datentransfer wird nur dann gestartet, wenn beide Bits: für DMA-
Read und DMA-Write, im DMA Steuerungs- und Statusregister dies erlauben. Als Vor-
bereitung für den Datenaustausch werden alle übergebenen Parameter in die entspre-
chenden Register geschrieben, und die Übertragungszähler für Schreib- und Lesevorgänge
ausgelesen. Im nächsten Schritt wird die eingestellte Anzahl an Wiederholungen mitein-
ander verglichen. Wenn die Anzahl der Wiederholungen sowohl beim Lesen als auch beim
Schreiben gleich ist, dann werden die beiden Startbits simultan gesetzt. Falls die Anzahl
der Wiederholungen nicht gleich ist, erfolgt der Speicherdirektzugriff in beide Richtungen
solange die maximale Anzahl entweder beim Lesen oder beim Schreiben nicht erreicht
wurde. Mit dem Erreichen der maximalen Anzahl an Wiederholungen erfolgt der Spei-
cherdirektzugriff nur noch in eine der beiden Richtungen. Die Vollduplex-Phase besitzt
eine eigene Wartezeit beim Pollen der Fertigstellungs-Bits.

Nach dem Ende des Datentransfers kopiert der Treiber die Daten aus dem Zwischen-
puffer im Kernel in den Puffer der Anwendung. Die Übertragungszähler werden noch
einmal ausgelesen, deren Differenz gebildet und diese in der gerätespezifischen Struktur
abgelegt.

4.3 Anwendung, grafische Benutzeroberfläche

Neben der Entwicklung des Treibers ist im Rahmen dieser Studienarbeit auch eine PC-
Anwendung erstellt worden. Die PC-Anwendung greift auf die Funktionen des Treibers
zu und gibt dem Benutzer über die grafische Oberfläche die Möglichkeit, die Datenüber-
tragung bequem zu konfigurieren und zu steuern.

Die graphische Benutzeroberfläche wurde mit Hilfe von QT-Framework erstellt. QT-
Framework ist eine Sammlung von C++-Klassen, die speziell für die plattformunab-
hängige Programmierung von Anwendungen entwickelt wurde. Diese Bibliothek wurde
ursprünglich ausschließlich für die Entwicklung von grafischen Oberflächen konzipiert.
Sie wurde in der Programmiersprache C++ geschrieben, nutzt strikt das Prinzip der
Klassenvererbung und ist vollständig objektorientiert. Seit der Version 4.0 (Stand 2005)
enthält Qt mehr als 500 Klassen mit insgesamt mehr als 9000 Funktionen. Bei Ent-
wicklung von einer Qt-Anwendung muss nicht die gesamte Qt-Bibliothek eingebunden
werden, sondern es können nach Bedarf mit Hilfe von Teilbibliotheken nur die benötig-
ten Funktionen eingebunden werden. Qt-Framework wird für jede unterstützte Plattform
in zwei Versionen angeboten: kommerziell und Open Source. Freie Verfügbarkeit, gute
Dokumentation, hohe Portabilität und das Vorhandensein der integrierten Entwicklungs-

Alexander Henning 53

PCIe Treiber für ein Linux-System IPVS/PaS

Abbildung 4.1: Grafische Benutzeroberfläche

umgebung waren ausschlaggebend für die Wahl dieser Bibliothek zur Implementierung
der PC-Anwendung.

Die Benutzeroberfläche bietet direkten Zugriff auf alle Funktionen des Programms.
Die Abbildung 4.1 zeigt das Hauptfenster der entwickelten PC-Anwendung.

4.3.1 Aufbau des Programms

Der Startpunkt eines C++ Programms, die Main-Funktion, befindet sich in der Da-
tei main.c. Neben der Initialisierung und dem Starten der QT-Anwendung wird in der
Main-Funktion versucht, die "/dev/ML506dev" Gerätedatei zu öffnen. Das Öffnen der
Gerätedatei ist die erste Aktion, die den entwickelten Treiber betrifft. Den Erfolg der
durchgeführten Aktion kann man am Wert des zurückgegebenen Dateideskriptors fest-

Alexander Henning 54

PCIe Treiber für ein Linux-System IPVS/PaS

stellen. Bei einem negativen Wert kann es z.B. bedeuten, dass die Gerätedatei nicht
vorhanden ist oder dass die Datei bereits von einer anderen Anwendung geöffnet wurde
und der Treiber ein weiteres Öffnen abgelehnt hat.

Die PC-Anwendung reserviert den Speicher für den Puffer und falls das Öffnen der
Gerätedatei erfolgreich war, wird versucht das Register BAR0 in den Benutzeradressbe-
reich einzublenden. Wie bereits bei der Treiberbeschreibung erwähnt wurde, erfolgt die
Einblendung immer Seitenweise. Da der Registerbereich kleiner als eine Seite ist, muss
die genaue Lage dessen innerhalb der Seite noch bestimmt werden. Die Startadresse wird
noch durch ein Offset, welches vom Treiber später abgefragt wird, genau bestimmt.

Die bereits gewonnenen Parameter, wie die Adresse des Pufferspeichers, die Adresse
der eingeblendeten Speicherseite, die das Register BAR0 beinhaltet, und der Dateide-
skriptor werden an den Objekt der Qt-Anwendung durch die Funktion init übergeben.

Funktion init

Diese Funktion wird aus der main-Funktion aufgerufen. Anhand von Übergabeparame-
tern werden die entsprechneden Aktionen ausgelöst. Es werden die ioctl-Zugriffe über
den Dateideskrpitor beim Betriebssystem getriggert, die dann an den Treiber weiterge-
geben werden. Damit die Anwendung die gleichen ioctl-Aufrufe durchführen kann, die
der Treiber auch anbietet, wird die Ioctl.h Datei eingebunden. In dieser Funktion wird
der BAR0-Offset abgefragt und intern gespeichert, außerdem werden die PCIe - Link
Parameter abgefragt und in der GUI in dem Infobereich dargestellt.

Bei den möglichen Fehlern, die in der init-Funktion erkannt werden, werden alle
Steuerungselemente der Benutzeroberfäche ausgegraut/deaktiviert und die Fehlermel-
dungen mit Lösungsvorschlägen im rechten Teilbereich des Fensters ausgegeben.

Nach dem fehlerfreien Abarbeiten dieser Funktion ist die Anwendung bereit für die
Benutzereingaben. Wie man der Abbildung 4.1 entnehmen kann, ist das Hauptfenster
der Anwendung in mehrere Bereiche aufgeteilt. Im Folgenden werden diese Bereiche
näher beschrieben.

Run Demo

Run Demo: Der Klick auf die Schaltfläche „Run Demo“ löst eine Reihe von Speicherdi-
rektzugriffen aus. Dabei wird für jede unterstützte Übertragungsgröße fünf mal hinter-
einander ein lesender mit einem schreibenden Zugriff durchgeführt. Die Zugriffe erfolgen
von der kleinsten Übertragungsgröße (128 KB) bis hin zu der größten (1 MB). Nach
jeder Datenübertragung erfolgt eine Zusammenfassung der erzielten durchschnittlichen
Bandbreite, die in dem rechten Teilbereich des Hauptfensters ausgegeben wird.

Run Read DMA

Betätigung dieser Schaltfläche löst den lesenden Speicherdirektzugriff aus. Dabei wer-
den die eingestellten Werte aller Parameter, die für lesenden Speicherzugriff zuständig
sind, berücksichtigt. Die Benutzeroberfläche beinhaltet einen separaten Bereich, in dem
die Parameter für Read DMA eingestellt werden können. Am Ende der Übertragung(en)

Alexander Henning 55

PCIe Treiber für ein Linux-System IPVS/PaS

wird der Datendurchsatz in dem rechten Teilbereich des Hauptfensters, dem Log-Fenster
ausgegeben.

Run Write DMA

Mit Hilfe dieser Schaltfläche wird der schreibende Speicherdirektzugriff ausgelöst. Dabei
werden die eingestellten Werte aller Parameter berücksichtigt, die für schreibenden Spei-
cherzugriff zuständig sind. Die Benutzeroberfläche beinhaltet einen separaten Bereich,
in dem die Parameter für Write DMA eingestellt werden können. Am Ende der Übertra-
gung(en) wird der erzielte Datendurchsatz in dem rechten Log-Fenster ausgegeben.

FULL-Duplex DMA

FULL-Duplex DMA: Betätigung dieser Schaltfläche ermöglicht das gleichzeitige Starten
von schreibenden und lesenden Speicherdirektzugriffen. Dabei werden die eingestellten
Werte aller Parameter für die Speicherzugriffe beider Arten berücksichtigt. Die Parame-
terwerte für die Anzahl der Datenübertragungen können sich für lesende und schreiben-
de Zugriffe unterscheiden. Die schreibende und lesende Speicherdirektzugriffe erfolgen
solange gleichzeitig, bis der kleinere der beiden Werten erreicht wird. Die noch übrig
bleibende Anzahl an Datenübertragungen, dann entweder nur lesen oder nur schreiben,
erfolgt in einem halbduplexen Modus. Der im Schnitt erreichte Datendurchsatz aller
Übertragungen wird in dem Log-Fenster zur Information ausgegeben.

Read/Write DMA Setup

Sowohl Read DMA Setup als auch Write DMA Setup sind die separaten Bereiche inner-
halb der Benutzeroberfläche, in denen die Parameter für die lesenden und für die schrei-
benden Speichedirektzugriffe eingestellt werden können. Dabei kann der Benutzer die
Menge an Daten auswählen (in Bytes), die übertragen werden soll. Neben der Daten-
menge kann der Benutzer auch die Anzahl der Wiederholungen festlegen, wie oft die Da-
tenübertragung stattfinden soll. Die eingestellten Werte dieser Parameter werden beim
Auslösen der entsprechenden Datenübertragungen berücksichtigt.

Host Memory Buffer

In diesem Bereich der GUI kann man den von der PC-Anwendung angelegten Zwi-
schenspeicher mit der Größe von 1 MB entweder mit ’0’ oder mit einem aufsteigenden
Bitmuster ausfüllen. Mit der Schaltfläche „Print 1K DWORDS“ kann man 1024 Doppel-
worte, d.h. 1024 32 Bit Werte aus dem Zwischenpuffer ab der angegeben Offsetadresse
ausgeben lassen. Die Eingabe für den Offset wird als hexadezimale Zahl interpretiert.

Compare Buffer

Mit dieser Schaltfläche lässt sich der Inhalt des von der Anwendung angelegten Zwischen-
speichers daraufhin überprüfen, ob es dem gerade ausgewählten Füllmuster entspricht

Alexander Henning 56

PCIe Treiber für ein Linux-System IPVS/PaS

oder nicht. Ergebnisse der Überprüfung werden im Infobereich ausgegeben. Bei der ersten
Nichtübereinstimmung wird neben der Adresse auch der erwartete und der tatsächliche
Wert mitausgegeben.

Display RegFile

Mit dem Klick auf diese Schaltfläche kann man den Inhalt aller Steuer- und Informati-
onsregister der verwendeten PCIe Karte anzeigen lassen.

Reset to Defaults

Das Betätigen dieser Schaltfläche stellt die Voreinstellungen wieder her:

• Datengröße für die lesenden und schreibenden Speicherzugriffe: 128 Bytes.

• Anzahl der Wiederholungen von lesenden und schreibenden Datenübertragungen:
1.

• Adressoffset wird wieder zu 0x00000 gesetzt.

4.3.2 Bestimmung des Datendurchsatzes

Die PC-Anwendung errechnet den erzielten Durchsatz unter der Zuhilfenahme von bei-
den „Performanceregistern“: DMAWRP und DMARDP. Die Berechnung erfolgt entspre-
chend der Formel:

B =
(TransferSize + Overhead) ∗ NumberOfTransfers ∗ 8 ∗ 1000

Latency + Performance ∗ CycleDuration

Wobei gilt:

• B: erzielter Durchsatz in Mbit/s.

• TransferSize: die eingestellte Datenmenge in Bytes, die übertragen werden soll.

• Overhead: header overhead bei den Transaction Layer Paketen: sind laut Daten-
blatt XAPP859 (Seite 48) 16 Bytes.

• NumberOfTransfers: die vom Benutzer eingestellte Anzahl an Wiederholungen, wie
oft die Daten übertragen werden sollen.

• Latency: Latenzzeit ist die Zeit, die vergeht, bis das erste Paket nach dem Start
der Übertragung gesendet wird. Dabei ist die Latenz je nach Übertragungsrichtung
unterschiedlich. Für den lesenden Speicherdirektzugriff beträgt diese 2000 ns und
für den schreibenden Speicherzugriff 400 ns. Diese Werte wurden dem Datenblatt
entnommen und wurden durch die Messungen bestätigt.

• Performance: Anzahl der durchgeführten Transaktionen. Dieser Wert wird aus den
Registern der PCIe Karte ausgelesen.

Alexander Henning 57

PCIe Treiber für ein Linux-System IPVS/PaS

Vers. 1 Vers. 2
DMA Read: 512 103 Mbit/s 102 Mbit/s
DMA Read: 1K 89 Mbit/s 87 Mbit/s
DMA Write: 2K 401 Mbit/s 401 Mbit/s
DMA Read: 2K 237 Mbit/s 239 Mbit/s

DMA FULL DUPLEX: 1K
Read 125 Mbit/s 125 Mbit/s
Write 342 Mbit/s 344 Mbit/s

Tabelle 4.2: Erzielte Bandbreite

• CycleDuration: dieser Parameter stellt die Dauer zwischen den einzelnen Transak-
tionen dar. Sie beträgt laut Datenblatt 32 ns und wurde ebenfalls durch Messungen
bestätigt.

Die Anzeige der erzielten Bandbreite ist für die Übertragungen mit kleineren Daten-
mengen nicht sehr genau. Die dargestellte Bandbreite entspricht eher dem Durchsatz
innerhalb des FPGAs. Die Durchsatzmessungen beziehen sich auf den Punkt zwischen
der FPGA Anwendung und dem PCIe-Kern. Es wurde keine Messungen auf dem PCIe
Bus durchgeführt. Die Komponenten an dieser Stelle verwenden FIFOs an ihren Schnitt-
stellen, deswegen können insbesondere kleine Datenmengen in FIFOs schneller reinge-
schrieben werden, als diese tatsächlich später über den Bus übertragen werden. Bei
Übertragungen mit größeren Datenmengen nähert sich die errechnete Bandbreite der
theoretisch möglichen an.

In der Tabelle 4.2 wurden durch die Versuche erzielten Bandbreiten zusammenge-
fasst. Es wurden beispielhaft für die unterschiedlichen Datenmengen jeweils 2 Versuchen
durchgeführt, bei denen lesende, schreibende und vollduplexe Speicherdirektzugriffe er-
folgten.

Alexander Henning 58

5 Zusammenfassung und Ausblick

5.1 Zusammenfassung

Im Rahmen dieser Studienarbeit wurde ein Linux-Treiber für die FPGA-Entwicklungs-
plattform implementiert. Die zur seiner Implementierung besonders wichtigen Informa-
tionen über das Linux Betriebssystem und die PCIe-Schnittstelle wurden zudem näher
erläutert. Neben dem entwickelten Treiber wurde zudem auch eine PC-Anwendung im-
plementiert, die zu Demonstrations-, Verifikations- und Vermessungszwecken dient.

Eine besondere Eigenschaft des Treibers ist, dass dieser zur Laufzeit des Betriebssys-
tems in den Kernel eingebunden werden kann. Hierdurch wird eine neue Übersetzung des
Kernels vermieden, wodurch die Benutzung der FPGA-Entwicklungsplattform deutlich
erleichtert wird. Die Möglichkeit des erneuten Ladens des Treibers ist besonders während
der Entwicklungsphase des Treibers oder der logischen Schaltung im FPGA vorteilhaft,
da auf einen Systemneustart verzichtet werden kann. Weil ein Neustart des Systems
zeitaufwendig ist, lässt sich durch das Entladen und erneute Laden des Treibermoduls
eine erhebliche Zeitersparnis erzielen.

Den Anwendungen stellt der Treiber weiterhin die gesamte Funktionalität der Hard-
ware bereit, wobei er sparsam mit den Systemressourcen umgeht. Mit Hilfe der PC-
Anwendung wurde demonstriert, dass die vom Treiber zur Verfügung gestellten Funktio-
nen fehlerfrei eingesetzt werden können. Während der Evaluierung wurde auch die Über-
tragungsbandbreite der PCIe-Schnittstelle im Zusammenhang mit dem Treiber ermittelt.
Die Ergebnisse zeigen, dass der Treiber den Datendurchsatz über die PCIe-Schnittstelle
nicht verringert, wodurch eine effiziente Implementierung des Treibers bestätigt wurde.

5.2 Ausblick

Der in dieser Arbeit entwickelte Treiber unterstützt optimal die FPGA-Entwicklungs-
plattform. Für den Fall, dass mehrere identische Endgeräte zur Berechnung im PC ein-
gesetzt werden sollen, muss der Treiber um die Unterstützung mehrerer Endgeräte er-
weitert werden. Diese Funktionalität wurde noch nicht berücksichtigt.

Zur Steigerung der Übertragungsbandbreite kann zudem die PCIe-Schnittstelle um
zusätzliche Lanes erweitert werden, wodurch sich die zur Verfügung stehende Datenra-
te vervielfachen lässt. Da die eingesetzte FPGA-Entwicklungsplattform allerdings eine
PCIe-Schnittstelle mit nur einem x1 Link besitzt, erfordert die Schnittstellenerweite-
rung einen Neubau der Hardware. Eine Erweiterung der Schnittstelle ist jedoch bereits
im Treiber vorgesehen.

59

Literaturverzeichnis

[1] Allen, Taflove ; C. Hagness, Susan: Computational Electrodynamics: The Finite-
Difference Time-Domain Method. Artech House Inc, 2005

[2] Bovet, Daniel P. ; Cesati, Marco: Understanding the Linux Kernel. O’Reilly Media,
2000

[3] Budruk, Ravi ; Anderson, Don ; Shanley, Tom: PCI Express System Architecture.
Boston : Addison-Wesley, 2008

[4] Corbet, Jonathan ; Rubini, Alessandro ; Kroah-Hartman, Greg: Linux device
drivers, 3 ed. Beijing ; Köln [u.a.] : O’Reilly, 2005

[5] Love, Robert: Linux-Kernel-Handbuch: Leitfaden zu Design und Implementierung
von Kernel 2.6. München : Addison-Wesley, 2005

[6] Quade, Jürgen ; Kunst, Eva-Katharina: Linux-Treiber entwickeln. Heidelberg :
dpunkt Verlag, 2006

[7] Wilen, Adam H. ; Schade, Justin P. ; Thornburg, Ron: Introduction to PCI
Express. Hillsboro : Intel Press, 2003

[8] XILINX (Hrsg.): Virtex-5 FPGA Integrated Endpoint Block for PCI Express Desi-
gns: DDR2 SDRAM DMA Initiator Demonstration Platform. 1. : XILINX, July 2008.
http://www.xilinx.com/support/documentation/application_notes/xapp859.pdf.
– XAPP859 (v1.1)

[9] XILINX (Hrsg.): Bus Master DMA Performance Demonstration Reference De-
sign for the Xilinx Endpoint PCI Express R© Solutions. 1. : XILINX, September 2010.
http://www.xilinx.com/support/documentation/application_notes/xapp1052.pdf.
– XAPP1052 (v1.0)

61

http://www.xilinx.com/support/documentation/application_notes/xapp859.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1052.pdf

Abbildungsverzeichnis

1.1 Blockdiagramm des Systems . 1

2.1 Mikrokernel Betriebssysteme . 8
2.2 Hybridkernel Betriebssysteme . 9
2.3 Betriebssysteme mit dem monolithischen Kernel 10
2.4 Linux Betriebssystem . 11

3.1 Übertragungsschichten der PCIe-Geräte 27
3.2 Struktur eines TLP-Paketes . 29
3.3 Erweiterung des TLPs um die zusätzlichen Informationen in der Data

Link Schicht . 29
3.4 Aufteilung eines Pakets auf dem x4 Link. 34

4.1 Grafische Benutzeroberfläche . 54

63

Tabellenverzeichnis

3.1 Datenrate PCI-Express . 24

4.1 Bits des Steuerungs- und Statusregisters 40
4.2 Erzielte Bandbreite . 58

65

Akronyme

ACK von engl. acknowledgment = Bestätigung 30, 31
AGP Accelerated Graphics Port . 21–23
API Application Programming Interface . 5
BCPL Basic Combined Programing Language . 5
BSD Berkeley Software Distribution . 5, 10
CPU Central Processing Unit . 2, 7, 14, 21–24
CRC Cyclic Redundancy Check . 31
DLLP Data Link Layer Packet . 30, 31
DMA Speicherdirektzugriff, engl. Direct Memory Access 2, 37
ECRC end-to-end CRC . 28, 29, 31
FPGA Field Programmable Gate Array . 37
GNU GNU’s Not Unix . 6, 8
GPL General Public License . 6
ISA Industry Standard Architecture . 21, 22
LCRC Link CRC . 29–31
MS-
DOS

Microsoft Disk Operating System . 10

NACK von engl. negative acknowledgement = negative Bestätigung 30, 31
PC Personal Computer . 1, 2, 6, 19
PCB Process Control Block . 13, 14
PCI Peripheral Component Interconnect 17, 18, 21–24, 26, 32, 41
PCIe Peripheral Component Interconnect Express 1, 2, 18, 21–26, 28, 29, 31, 33,

34, 37, 41
SCSI Small Computer System Interface . 17
TLP Transaction Layer Packet . 28–31
USB Universal Serial Bus . 17, 19
VESA Video Electronics Standards Association 21, 22

67

PCIe Treiber für ein Linux-System IPVS/PaS

Erklärung

Ich versichere, dass ich diese Arbeit selbständig verfasst und nur die angegebenen Hilfs-
mittel verwendet habe.

Declaration

I assure that this work was completed by myself independently, and that I only used the
stated resources.

18. Februar 2011, Stuttgart ———————

Alexander Henning 68

	Einführung
	Aufbau von Linux
	Geschichte
	Kernel
	Mikrokernel
	Hybridkernel
	Monolithischer Kernel

	Linux-Kernel
	Interface für die System-Aufrufe
	Prozessverwaltung
	Speicherverwaltung
	I/O-Subsystem
	Geräte-Treiber

	PCIe - Schnittstelle
	Einführung
	PCIe
	PCIe Transaktionen
	Memory Transactions
	I/O Transactions
	Configuration Transactions
	Message Transactions

	PCIe Übertragungsschichten
	PCIe Transaktionsschicht
	PCIe Data Link Schicht
	PCIe Bitübertragungsschicht

	Treiber und Anwendung
	Registerbeschreibung
	Treiber
	Funktion probe
	Funktion remove
	Funktion open
	Funktion release
	Funktion mmap
	Funktion read
	Funktion write
	Funktion ioctl
	Funktion ML_do_full_duplex_dma

	Anwendung, grafische Benutzeroberfläche
	Aufbau des Programms
	Bestimmung des Datendurchsatzes

	Zusammenfassung und Ausblick
	Zusammenfassung
	Ausblick

	Literaturverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Akronyme

