An Adaptive Protocol for Synchronizing
Media Streams

Kurt Rothermel, ©bias Helbid
University of Stuttgart,
Institute of Parallel and Distributed High-Performance Systems (IPVR)
BreitwiesenstralRe 20-22, D-70565 Stuttgart, Germany
{rothermel,helbig}@informatik.uni-stuttgart.de

Abstract: Stream synchronization is widely regarded as a fundamental problem in
the field of multimedia systems. Solutions to this problem can be divided into adap-
tive and rigid mechanisms. While rigid mechanisms are based on worst-case
assumptions, adaptive ones monitor the underlying network and are able to adapt
themselves to changing network conditions.

In this paperwe will present an adaptive stream synchronization protocol. This pro-
tocol supports any kind of distribution of the sources and sinks of the streams to be
synchronized. It is based on ataeufievel control mechanism, allowing immediate
corrections when the danger of afeubverflow or underflow is recognized. More-
over, the proposed protocol is flexible enough to support a wide variety of synchro-
nization policies, which can be dynamically changed while synchronization is in
progress. Finalljthe message overhead of this protocol is low because control mes-
sages are only exchanged when network conditions change.

Keywor ds:. distributed systems, communication networks, multimedia, stream syn-
chronization, quality of service

1 INTRODUCTION

The evolution of broadband networks and multimedia technologies have significantly contri-
buted to the emgence of new multimedia applications, integrating various media types, such

as text, graphics, audio and video. These data typically possess timeliness requirements with
respect to their presentation. Media synchronization mechanisms are needed to assure the cor-
rect temporal alignment of such time-critical activities.

Media synchronization can be divided into event-based synchronization and stream (or conti-
nuous) synchronization. While event-based synchronization refers to synchronization activities
performed in response to events such as user interaction, stream synchronization is an on-going
commitment to a repetitive pattern of event-based synchronization relationships, such as a ‘lip
sync’ relationship between the individual data units in an audio and video stream (Campell
etal., 1992). The stream synchronization can be further subdivided into intra-stream synchro-
nization and intestream synchronization. While the former refers to preserving temporal rela-

1 Contact address: Philips Research Laboratoriessaausst?2, D-52066 Aachen, Germany
helbig@pfa.philips.de

1 INTRODUCTION 2

tionships of data within a stream, the latter deals with the temporal dependencies across streams.

Intra-stream synchronization is concerned with a single stream. A source of a stream produces
data units and transmits them over a transmission path to one or more sinks. The transmission
path inevitably introduces some variation in the delay of each delivered data unit, which tradi-
tionally has been called jitteintra-stream synchronization requires the jitter to be removed
before playing out the data units, which is done byebung the incoming data. A data unit is
rendered at a designated play-out point, and ifetad if it arrives before this point. Data arri-

ving after the associated play-out point is useless in reconstructing the corresponding real-time
signal.

Multimedia applications have been classified into adaptive and rigid applications (Clark
etal.,1992). The latter class of applications usagniori transfer delay bound advertised by

the underlying network to set the play-out point. The play-out point is kept fixed regardless of
the actual delay experienced. In contrast, for adaptive applications the sink measures the trans-
fer delay experienced by arriving data units and then adaptively moves the play-out point to the
minimum delay that still produces a ciently low loss rate.

Rigid applications are typically based on a so-called guaranteed (or deterministic) service
(Ferrari,1990a, Ferraril990b), whose service commitment is based on a worst-case analysis.
Adaptive applications will generally have an earlier play-out point than rigid applications and
hence will have a shorter end-to-end deldys is because the applicatise'stimate of thpost

facto bound on actual delay will likely be less than &priori bound pre-computed by the
underlying network (Clark &tl., 1992). On the other hand, the loss rate of adaptive applications

is likely to be higher as they depend on the assumption that the transfer delay in the near future
will be “similar” to the one in the recent past. Any violation of this assumption in the direction
of increased delays may cause data units missing the play-out point. Though the application will
then immediately adapt the play-out point accordinglynay momentarily experience data
loss. Note that the notion of “similar” leaves room for tuning adaptive protocols. The more
“similar” delays may difer, the more data has to be tawéd and the bigger is the end-to-end
delay

There is a need for both classes of applications. Applications that cannot tolerate any service
interruption, such as a remote surveillance system or tele-medicine, will be typically rigid. On

the other hand, if the application performance is sensitive to the end-to-end delay and a briefly
degraded quality is tolerable then the application should be adaptive. For example, end-to-end
delay is crucial in most CSCW applications because there is often real-time interaction between
the participants of a session. For many of those applications, a short end-to-end delay is more

1 INTRODUCTION 3

important than a perfect data delivefey often can tolerate the loss of a certain fraction of
data units with only a minimum distortion of the real-time signal.

Inter-stream synchronization determines the play-out points for a group of data streams, based
on the temporal relationships existing between the group memloeesistire that a stream
group is played out synchronoustgmporally related data units are to be associated with the
same play-out point. Adaptive intetream synchronization protocols monitor the actual trans-

fer delay of each of the grogpstreams and are able to synchronously adapt the play-out point
for every group member to reflect changes in network conditions. In this pegperll present

an adaptive protocol for inter-stream and intra-stream synchronization. This protocol, called
Adaptive Synchronization Protocol (ASP), has the following major characteristics:

* Distributed sources and sinks
ASP supports any kind of distribution of the group of streams to be synchronized. The
streams of a group may originate from sources residing ¢erefit nodes and may be
played out at sinks located at various nodes. The individual streams may be point-to-point
or point-to-multipoint.

* Immediate reactions on changing network conditions
ASP monitors the actual transfer delay indirectly by means offaradntrol mechanism
and adapts the play-out point only when a stream becomes critical. A stream is defined to
becritical if it runs the risk of a bd@ér underflow or overflowA nice property of our algo-
rithm is that each stream may immediately adapt its play-out point when it becomes critical.
Allowing streams to react immediately in critical situations may decrease the loss rate sig-
nificantly.

* Low message overhead
ASP only exchanges control messages when adaptions are to be performed due to changing
network conditions or quality of service requirements. Consequémthe is basically no
message overhead if network conditions and QoS requirements are rather stable over time.
The significant reduction of the message overhead for synchronizing streams is achieved
by making the transition from a periodic exchange of the streams’ state information to
reacting on changing conditions only

* Flexibility
ASP is a flexible mechanism that can form the base for various synchronization policies,
such as a “minimum delay” and “minimum loss” polittyallows an application to dyna-
mically adjust the quality of service perceived by an end-us@articulay an application
can individually adjust protocol parameters to achieve the desired tfdoetwéen end-

2 BASC PRINCIPLESAND CONCEPTS 4

to-end delay and data loss rate and can modify these parameters even while synchronization
IS in progress.

The remainder of the paper is structured as follows. After introducing the basic principles of
ASP in Section 2, the actual synchronization mechanism is described in Section 3. The proposed
mechanism can be adapted to various application needs and forms the baderémt giyn-
chronization policies. This is discussed in Section 4. The stability aspects &ardrégdire-

ments are treated in Section 5. A discussion of simulation results and performance measure-
ments is given in Section 6. The paper concludes with a discussion of related work and a
summary

2 BASIC PRINCIPLESAND CONCEPTS

The existence of synchronized clocks not only simplifies media synchronization significantly
but also allows for more ffient solutions. Some of the protocols based on synchronized clocks
use global time only for the timing of control operations, such as starting, stopping or adjusting
a group of streams at the same point in global time (e.g., see (Canglell@92)). Others
additionally use global time as the temporal basis for scheduling the play-out of data units (e.g.,
see (Escobar ai.,1994)). In this section, we will introduce the basic principles of the latter
class of synchronization protocols. Before, howewerhave to introduce some terminology

Master _
Source P Sink
Agent g .y Agent
Start:ty "I Controller \ o v Start:ty + A
Agent le--"" "7 --» Agent
Source p Sink
Slave

Figure 1 : System Model

The set of streams, which are to be played out in a synchronized fashion isyceleohi za-

tion group (or sync group for short). For each sync group there exist a single synchronization
controller and severahgents (see Figure 1). The controller is a software entity that maintains
state information and performs control operations concerning the entire sync group. In particu-
lar, it controls the start-up procedure, and enforces the synchronization policy chosen by the
user The controller communicates with the agents, which are software entities controlling indi-
vidual streams. For each stream there exist a sink agent and a source agent, which commonly
realize the functionality for starting and stopping the stream as well as modifying the stream’
play-out rate. Sink agents may communicate with each other in order to adapt play-out points.

2 BASC PRINCIPLESAND CONCEPTS 5

We are considering continuous data streams, which may originate from live or stored media
sources. For the sake of simpli¢iye will assume relative timestamping, i.e., the timestamp of

a streans first data unit is zero, and all succeeding data units are timestamped relative to time
zero.

The basic principle of stream synchronization adopted by ASP and other protocols exploiting
synchronized clocks is fairly simple. All source agents in the sync group start sending data units
at the same time, s&y. A data unit is sent at timé¢, + TS{), where TS({) denotes the time-
stamp associated with Each sink in the sync group starts the presentation of its stream at time
to+ A. Each data unit is played-out at timg+ A+ TS(u), which isu’s play-out point. Clearly

A must be big enough to allow at least the first data unit of each stream to arrive at its sink by
timety + A. Roughly speaking\ determines the end-to-end delay of a sync grdup:max(d;:

I in sync group), wherd; denotes the delay of streanBince diferent streams may have dif-
ferent transfer delays, efing is required at the sink sites. Data units arriving before) are
buffered, which means that tBfent transfer delays are equalized by means ¢étud. This
principle is typically used for the synchronization of live streams, but may also be applied to the
retrieval of stored data.

In the case of non-adaptive protocdiss determined during protocol initialization and then it

is fixed afterwards. Note, this approach implies that worst-case assumptions are made about
stream delays, which results in a worst-case end-to-end delay for the sync group, independent
of the actual delays. K is fixed, the synchronization mechanism is trivial. All that has to be
done is to start the transfer and the presentation of the streams in the way described above. Once
started, the streams remain in sync because play-out times are derived from global time, i.e. no
control messages have to be transferred after initialization. The message overhead caused by the
underlying clock synchronization mechanism is amortized among all applications making use
of synchronized clocks.

With adaptive protocold) is based on the actual stream delays rather than worst-case assump-
tions. Stream delays are monitored @ni$ adapted in response to delay changes. Morgover

the quality of service (QoS) can be changed dynamiddjlyincreasing), the probability of

data loss due to late arrival of data units is decreased, whereas the end-to-end delay is increased.
Conversely decreasind\ increases the loss probability and decreases the end-to-end delay
Adaptive protocols are a bit more complex than non-adaptive ones. In addition to deriving a
commonA for the streams to be synchronized, adaptive protocols need to have functions for
controlling the adaption process, which may be distributed over several sink sites. Those func-
tions monitor stream delays, react on changing QoS demands, and trigger adaptions as needed.
Of course, adaptions have to be performed in a coordinated fashion to preserve synchronization.

2 BASC PRINCIPLESAND CONCEPTS 6

In particular all streams in a sync group have to agree on a\neue and switch to it without
losing synchronization.

In ASP adaptions are coordinated bydgnamic master/slave algorithm. Each sink agent
monitors the transfer delay by controlling the streapiay-out bufer. During normal opera-

tion, there is one stream responsible for adapiirthe so-callednaster stream. The mastés

decision of when and how to adapt is entirely based on its local monitoring. Whenever the mas-
ter's sink agent decides to chaget propagates its decision to the sink agents of all the other
streams in the sync group, the so-calliede streams. The algorithm is dynamic in the sense

that whenever a slave stream becomes critical, it may immediately become a master and per-
form the appropriate adaptions. Obviousiyth this algorithm it may happen that there exist
multiple masters at the same time. Our protocol is able to handle those situations without losing
synchronization and ensures that after a certain recovery period the sync group ends up with a
single master stream.

R CLL
1 Ry
sowrces—) > sink
Transmission
Path Play-out Bufer
> ™
dr dg ds

Figure 2 : Data Sream and Delay Model

Our model of stream transmission andfeung is depicted in Figure 2. The data units of a
stream are produced by a source witiominal rate R; and are transmitted to one or more sinks

over a unidirectional transmission pathe Will use a transmission path as an end-to-end
abstraction describing the flow of data between end-points of applications. In this sense, a trans-
mission path may be a communication channel (e.g., a transport connection) directly linking a
source with a set of sinks, or it may represent a sequence of processing elements, such as codecs,
mixers or filters, connected with each other by communication channels. Before the data units
are played out, they are stored iplay-out buffer at the sinks site. From this biér, data units

are released with @ ease rate Ry.

With ASRE A is modified by increasing or decreasing releaseRigfer a certain amount of time.

During normal operatioR, equalsR;. In order to increas&, ASP decreasds, for a period of

time, causing an increase in farfdelay ConverselyincreasingR, results in a decrease &f

Sinks must be able to adapt to changing release rates. Either a sink can adapt its consumption

3 THE ADAPTIVE SYNCHRONIZATION PROTOCOL 7

rate accordinglyor adaptions are achieved by means of skipping or duplicating data units
(Anderson and Homs¥991). Also media-specific methods are conceivable, such as adjusting
silent periods in voice data streams.

On its way from generation to play-out, a data unit is delayed at several stages. It takes a data
unit atransfer delay dr until it arrives in the bdiér at the sinls site. This includes all the times

for generation, communication, processing, as well as the transfer into fine Inuhe bufer,

a data unit is delayed bybaffering delay dg before it is delivered to the sink device. In the sink,

a data unit experiencespbay-out delay dg before it is actually presented. The time from the
generation to the presentation is #wel-to-end delay.

The media time M(t) specifies the streasitemporal state of play-out. It is derived from time-
stamp TS of the data unit that is next to be released from the play-tert M(f) = TS -dg
However the granularity of media time were too coarse would it simply be based on time-
stamps. Therefore, media time is interpolated between timestamps of data units to achieve the
required granularity

We will assume that control messages are communicated relidlielyequired level of reliabi-

lity is typically provided by virtual circuits or reliable datagrams. Furtihés assumed that the
system clocks of the nodes participating in a sync group are approximately synchronized to
within € of each otheri.e. no clock value dérs from any other by more thanWell-estab-

lished protocols, such as the Network& Protocol (Mills,1990), achieve clock synchroniza-

tion with € in the lower milliseconds range.

3 THE ADAPTIVE SYNCHRONIZATION PROTOCOL

This section presents the Adaptive Synchronization Protocol (ASP), which can be separated
into four rather independent subprotocols. After a brief overwewill describe each of these
protocols in detail. It is important to mention, that this section concentrates on mechanisms,
while possible policies exploiting these mechanisms will be discussed in the next section.

3.1 Overview of the Protocols

ASP consists of the following four subprotocols: the start-up protocdérbzdntrol protocol,
master/slave synchronization protocol, and master switching protocoktarheip protocol

initiates the data transmission at the sources and the play-out process at the sinks. Start-up is
coordinated by the controllewhich derives start-up times from estimated transmission times,
selects an initial master stream depending on the chosen synchronization policy and sends con-

3 THE ADAPTIVE SYNCHRONIZATION PROTOCOL 8

trol messages containing the start-up times to the agents.

Thebuffer control protocol is a purely local mechanism, performed by the master ssesank’

agent to keep the play-out lberf delay in a given tget area. The determination of thegttr

area depends on the applied synchronization policy and thus is not subject to this mechanism
itself. Whenever the bidr delay moves out of the givendat area, the btdr control protocol
regulates the masterrelease rate accordinglyis this protocol that adjusts the play-out point

of the master stream when network conditions or QoS requirements change.

Themaster/slave synchronization protocol is initiated whenever the master stremnelease rate

Is adjusted by the above protocab. dnsures intestream synchronization, the sink agent of the
master stream propagates an appropriate specification of this adjustment to the sink agents of
all slave streams. Upon receipt of this information, an agent adjusts the release rate of its slave
stream accordinglytt is this protocol that makes sure that play-out points are adjusted consis-
tently across all streams in the sync group.

The master switching protocol allows to switch the master role from one stream to another at

any point in time. The protocol involves the sink agents and the contwdtlieh is responsible

for granting the master role. Switching the master role becomes necessary when some slave
stream enters the critical state. A critical slave becomes a so-called tentative wiasser

release rate can be adjusted immediafig protocol takes care of the fact that there may be

a master and several tentative masters at the same point in time and makes sure that the sync
group eventually ends up with a single master

3.2 Start-up Protocol

Our start-up procedure is very similar to that described in (Escoaby¥194). The controller
initializes the synchronous start-up of a sync gredata streams by sendiigrt messages to

each sink and source agent. E&&drt message contains besides other information a start-up
time. All source agents receive the same start-up time, at which they are supposed to start trans-
mitting data units. Similarlyall sink agents receive the same start-up time, which tells them
when to start the play-out process.

Starting agents simultaneously requires3taet messages to arrive early enough. The start-up
time ty of sources is derived from the current titpg,, the transfer delag,, experienced by
Sart messages, and processing detlys at the controller sitety = tqy + Ay + dpre. Start-

up of sinks is deferred by an additional tithé¢o allow the stream data to arrive at the sinks’
locations and to preload Hafs. This extra delay is computed from the streams’ transfer delays

3 THE ADAPTIVE SYNCHRONIZATION PROTOCOL 9

and delays caused by Ieif preloadingA = max ((d; + LWM;): i in sync group)whered; and
LWM; denotes streams transfer delay and def delay respectivelyLWM; mainly depends on

I’s jitter (for detail see next section)eVdssume some infrastructure component that provides
access to the (estimated) jitter and delay parameters.

A Start message sent to a source agent contains the statg amethe nominal stream rdig.
A source agent receiving such a message starts transmission fgtvittherateR; = Ry. Start
received by a sink agent includes start tigre A, Ry and a flag indicating the receil®initial
role (i.e., master or slave). Furthermore, it includes some initial parameters concerning the play-
out bufer (see below). A sink agent starts the play-out process at the specified time with rate

RZZRN'

Each agent starts stream transmission or play-out at the received start-up time. Therefore, the
start-up asynchrony is bounded by the inaccuracy of clock synchronization pr&ededes-

sages arrive in time. Howeveaven if some&tart messages are too late, ASP is able to imme-
diately resynchronize the ‘late’ streams.

3.3 Buffer Control Protocol

Before describing the protocol, we will take a closer look at the play-olgrblihe parameter

dg(t) denotes themoothed buffer delay at timet. The bufer delay at a given point in time is
determined by the amount of lierfed data and the rate of the stream. In order to filter out short-
term fluctuations caused by jittesome smoothing function is to be applied. ASP does not
require a distinct smoothing function. Some examples are the geometric weighting smoothing
function (Postel1981):dg(t)) = aldg(ti.q) + (1-a)ActBufferDelay(t), or the Finite Impulse
Response Filter as used in (Kéhler and M{ill€©4).

In ASP all buffer related values are measured in time units rather than bytesteh dusize

nsec can hold up tosec of the corresponding data stream. The advantage of using a temporal
dimension is that the ASP mechanism becomes totally independent of the media streams to be
synchronized and their encodings. Mapping the temporal size ofaa tuits size in bytes is
straight-forward for CBR streams. For VBR streams this mapping is more complicated for a
number of reasons. Note that this type of mapping is needed wherefegrspaice and band-

width is to be allocated for streams. Thus, it should be provided by resource management pro-
tocols. ASP is kept independent from this mapping leading to a clear separation of stream con-
trol and resource management.

For each play-out btdr alow water mark (LWM) andhigh water mark (HWM) is defined.

3 THE ADAPTIVE SYNCHRONIZATION PROTOCOL 10

When dg(t) falls underLWM or exceedd$dWM, there is the risk of underflow or overflow
respectively Therefore, we will call the btdr areas belowkWM and abovéd\WM thecritical
buffer regions. As will be seen belowASP takes immediate corrective measures valpgh)
moves into either one of the critical Beifregions. Note that the quality of intra-stream syn-
chronization is primarily determined lhyVM andHWM values. The bdér parameters are set
by the ASP client according to application and network characteristics (see Section 4).

W/ W Critical Buffer

< High Water Mark(HWM) Regions

Buffer Area
(Slave Stream)
- Upper Taget BoundarfUTB)
Target Area
- Lower Target BoundaryLTB) (Master Stream)

7777777777 % Low Water Mark(LWM)

)
Figure 3 : Buffer Regions and Intervention Marks of the Play-out Buffer

The bufer control protocol is executed locally at the sink site of the master stream. Its only pur-
pose is the keegdg(t) of the master stream in a so-caltadhet area, which is defined by an

upper target boundary (UTB) and alower target boundary (LTB). While the high and low
watermarks describe the intervention marks that cause a slave streantions to avoid the
overflow and underflow of its bigf, the taget area causes the master stream to follow changes

in transfer delays. Hence, the role of the stream determines the marks used for reactions. Clearly
the taget area must not overlap with a criticalfieafegion. The location and width of theget

area is primarily determined by the chosen synchronization policy (see Section 4). For example,
to minimize the overall delay the ggat should be close toVM.

Buffer Delaydg(t) dg(t

uTB :
. W ¢ Tamet Area
|
|

LTB '
| - o -
Adaption Phase

ts té+ L Time

Figure 4 : Buffer Delay Adaption

The bufer delaydg(t) may float freely between the lower and uppegetiboundary without
triggering any rate adaptions. Changing transmission delays (or a modification aj¢hartaa

3 THE ADAPTIVE SYNCHRONIZATION PROTOCOL n

requested by the controller) may cadgé) to move out of the tget area. When this happens,
the master enters a so-calsldiption phase, whose purpose is to moug(t) back into the tayet
area.

At the beginning of the adaption phase, the release rate is modified accorbirgggdapted
release rate iR, = Ry [{lL + Ryy), WhereRo, = (dg(t) - (LTB + (UTB - LTB)/2)) / L is the
relative correction rate. Length of the adaption phase determines how aggressive the algo-
rithm reacts: the smalldr, the more aggressive is the algorithm. At the end of the adaption
phase, it is checked wheth#i(t) has moved back into the g@t area. If this is the case, then
R, is set back td&Ry, otherwise another adaption phase is started.

In order to keep the slave streams in sync, each adaption of the master stream has to be propa-
gated to the slave streams. This is achieved by the protocol described next.

3.4 Master/Slave Synchronization Protocol

The master/slave synchronization protocol ensures that the slave streams are played out in sync
with their master stream. This protocol is initialized whenever the master (or a tentative master
as will be seen in the next section) modifies its release rate. Protocol processing only involves
sink agents, each of which acts either as master or slave.

Whenever the master enters an adaption phase, it performs the following operations. First, it
computes the so-called ¢ggt media time for this adaption phase, which is defined to be the
media time the master stream will reach at the end of this phase. Assume that the adaption phase
starts at real-timg and is of lengt.. Then the taget media time idM(tgtL) = M(tg) + L ERZA.
Subsequentlythe master propagates Adapt message to each slave in the sync group. An
Adapt message includes the following informationS(te, M(tg)), wheret, = t+ L is the time

the adaption phase endi4(t,) specifies the media time at the end of the adaption phas€Sand

Is a structured timestamp for ordering compefidgpt messages.

When a slave receives adapt message, it immediately enters the adaption phase by modify-
ing its release rate according to the receivegetamedia time (see Figure 5). The modified
release ratEtZA: Ry CM(te) - M (t)) / (te - t5), wheret, denotes the time at which the slave
receivedAdapt. At timet, (i.e., at the end of the adaption pha&g)is set back téry.

Obviously this protocol ensures that at the end of each adaption phase all streams in the sync
group reach the same gat media time at the same point in real-time. Between two adaption
phases, streams stay in sync as their nominal release rates are derived from global time.

3 THE ADAPTIVE SYNCHRONIZATION PROTOCOL 12

As with all synchronization schemes based on the notion of global time, skew among sinks is
introduced by the inaccuracy of synchronized clocks, which is assumed to be boueded by

our protocol, an additional source of skew is the adaption of release ratésrahtoints in

time. The worst case ske$,, during the adaption phase of the master depends on transfer
time d,, of the Adapt message and the masserelative correction rat®.q.;: SKkeWax =
dIReorr| + €, Where the ternd IR (| denotes the skew caused by the delay oAtapt mes-

sages. Our simulation results in Section 6 will show that the value of this term typically is in the
range of 10 to 15 ms in wide area networks. If no adaption is in progress, the skew is bounded
by €. Clearly, the skew does neither depend on the size nor the position ofgéeaaral WM

or HWM.

M(t)

Master ____

|

| |

| |

Slave ... : :
| |

| |

ls ta te

Figure 5 : Master/Save Synchronization

With a slight modification of our protocol, we can achieve a skew boua@\we#n during the
adaption phase. 8/only have to make sure that the master and its slaves enter the adaption
phase at the same point in global time. Assume that the rsdstder delay moves out of the

target area at time Instead of entering immediately the adaption phase, it only senddapmit
messages to all of its slaves, while the start of the actual adaption phase is deferred by some time
0. An Adapt message contains the following parametégs g, t., M(t)), where the additional
parametets =t + 6 denotes the starting time of the adaption phase. All other parameters have
the same semantics as above.

A slave receiving aAdapt message checks whether it received this message latey. tihéms

is the case, the slave immediately enters the adaption phase. Otherwise, it waits for entering this

phase until timéy is reached. Obviouslyf d is set to the maximum delay of control messages,

the master and all of its slaves start the adaption at the same point in global time. Now the poten-

tial inaccuracy of the synchronized clocks is the only source of, sleeyfkew, o = €. Defer-

ring the adaption phase results in a decrease of, skieleh means that the quality of inter

stream synchronization is increased. On the other hand, the deferred reaction increases the risk
of buffer overflow or underflomwvhich may akect the quality of intra-stream synchronization.

3 THE ADAPTIVE SYNCHRONIZATION PROTOCOL 13

Consequentlthed parametemwhose value may range from zero to the maximum delay of con-
trol messages, can be used to put emphasis on eithestig@m or intra-stream synchroniza-
tion quality We assume, howevedhat for a majority of applicatiorfsmay be set to zero, even

in wide area networks.

3.5 Master Switching Protocol

In our protocol, we distinguish between two types of master switching. The first type of switch-
ing, calledpolicy-initiated, is performed whenever (a change in) the synchronization policy
requires a new assignment of the master role. In this case, the cgonivbitdr enforces the
padlicy, performs the switching just by sendin@GeantMaster message to the new master and a
QuitMaster message to the old mast@rantMaster specifies the tget bufer area of the new
masteywhich is determined by the controller depending on the chosen.pMitythis simple
protocol it may happen that for a short period of time there exist two masters, which both pro-
pagateAdapt messages. Our protocol prevents inconsistencies by perfofaapyrequests in
timestamp order (see below).

The second type of switching iscovery-initiated. A sink slave initiates recovery when its
stream becomes critical. A stream is called critical if its currerfebdglay is in a critical

region and (locally) no rate adaption improving the situation is in progress. A very attractive
property of our protocol is that a slave can immediately react when its stream becomes critical.
Recovery goes as follows: First, the slave makes a transition to a soteathtide master (or

t-master for short) and informs the controller about this by sendintpadi-Master message.

Then - without waiting for any response - it enters an adaption phase, in which it adapts release
rateR, in a way that its bdér delay can be expected to move out of the critical region. In order
to keep the other streams in sync, it propagatéslapt request to all other sink agents, includ-

ing the masterAt the end of the adaption phase, a t-master falls back in the slave role. Should
the stream still be critical by this time, then the recovery procedure is initiated once again.

Obviously our protocol allows multiple instances to propadedapt concurrentlywhich may

cause inconsistencies leading to the loss of synchronization if no care is taken. As already
pointed out above, policy-initiated switching may cause the new master taAdsgtdnessages

while the old master is still in place. Moreoyat the same point in time, there may exist any
number of t-masters propagatiddapt requests concurrentlif should be clear that stream syn-
chronization can be ensured onlyAdiapt messages are performed in the same order at each
agent. This requirement can be fulfilled by including a timestarfalapt requests and per-
forming these requests in timestamp order at the agent sites. The latter means that an agent
accepts arddapt request only if it is younger than all other requests received before. Older

3 THE ADAPTIVE SYNCHRONIZATION PROTOCOL 14

requests are just discarded.

However performing requests in some timestamp order is notsuft. Assume, for example,

that the master and some t-master propalydpt requests at approximately the same time, and

the former requests an increase of the release rate, while the latter requests a decrease. For some
synchronization policies, this might be a very common situation (see for example the minimum
delay policy described in the next section). If the timestamps were solely based on system time
and the master would perform the propagation slightly after the t-méstarthe t-mastés

request would be wiped out, although it is the reaction on a critical situation and hence is more
important. The stability of the algorithm can only be guaranteed if recovery actions are per-
formed with the highest priorifyy Consequentiythe timestamping scheme defining the execu-

tion order ofAdapt requests must take into account the ‘importance’ of requests.

The precedence éfdapt requests sent at approximately the same time is given by the following

list in increasing order: (1) requests of old masters, (2) requests of the new master (3) requests
of t-masters. W apply a structured timestamping scheme to reflect this precedence of requests.
In this scheme, a timestamp has the following structugg.E),.T>, whereEg denotes aeco-

very epoch, E, designates mmaster epoch, andT is thereal-time when the message tagged with

this timestamp was sent. A new recovery epoch is entered when a slave performs,recovery
while a new master epoch is entered whenever a new master is selected. So, a recovery epoch
may have seen several master epochs. As will be seen, legltesing a new recovery epoch
requires a new master to be selected.

Each control message contains a structured timestamp, which is generated before the message
Is sent on the basis of two local epoch counters and the local (synchronized) clock. The control-
ler and the agents keep track of the current recovery and master epoch by locally maintaining
two epoch counters. Whenever they accept a message whose timestamp contains an epoch value
greater than the one recorded logathe corresponding counter is set to the received epoch
value. Moreovera agent increments its local recovery epoch counter when it performs recovery

l.e. thelamT-Master message sent to the controller already reflects the new recovery period. The
controller increments its master epoch counter when it selects a new, masteeGrantMas-

ter message already indicates the new master epoch.

Adapt requests are accepted only in strict timestamp d&theuld an agent receive two requests
with the same timestamps, total ordering is achieved by ordering these two request according to

2 We assume that at no point in time there exist two t-masters that try to adapt the release rate in a contradicting
fashion, i.e., one tries to increase the rate, while the other tries to decrease it. This is achieved by enabling mas-
ter switching only for one type of critical situation, underflow or overfiMliich type is enabled depends on
the chosen sync policy (see Section 4).

3 THE ADAPTIVE SYNCHRONIZATION PROTOCOL 15

the requestors’ unique identifiers included in the messages. As a slave performing recovery
enters a new recovery epoch,Adlapt request generated by some master in the previous reco-
very epoch are wiped out. Similarelecting a new master enters a new master epoch, and by
this wipes out alAdapt request from former masters. When a master receividapb request
indicating a younger master or recovery epoch, it can learn from this message that there exists
a new master or a t-master performing recquegpectivelylin both cases, it immediately gives

up the master role and becomes a slave.

Controller Agent 1 Agent 2 Agent 3

critical —— Slave

N m— {-Master
critical

1 Adjust

|
discard” lamT-Master Adju Adjust
message
| GrantMastery
! \

N

Figure 6 : Recovery-Initiated Master Switching

T
|
I
[}
|
I
[}
| ww Master
I

[}

grant |
master’

As already mentioned above, a critical slave sendlarafrMaster message when it becomes a
t-masterWhen the controller receives such a message indicating a new recovery epoch, it must
select a new mastaihich stream becomes the new magigmarily depends on the synchro-
nization policy chosen. For example, the originator ofl #ngél-Master message establishing a

new recovery epoch may be granted the master role. All other messages of this type belonging
to the same recovery epoch are discarded upon arrival (see Figure 6).

In summaryin an adaption phase a t-master or master may recedaphor GrantMaster

message. They are only accepted if they are younger than all other control messages of the same
type received before. If aldapt request is accepted, a new adaption phase is started based on
the taget media time included in the accepted request. As mentioned above, a master accepting
an Adapt message immediately becomes a slavérHntMaster is accepted, the recipient
becomes master and acts accordinglirmaster that has not receivedantMaster by the end

of the adaption phase goes back in the slave role. Of course, if it is still critical by this time, it
initiates recovery again.

In the previous section, we discussed skew in the adaption phase without considering master

4 SYNCHRONIZATION POLICIES 16

switching. The possibility of switching the master role can increase the skew as it may happen
that the master and a t-master independently from each other decide to adapt in opposite direc-
tions. The worst case skew among sinks can be observed if such a decision is made at approxi-
mately the same time. The maximum skew can be shown to be

KeWax = Max (Q dy - 8) HIRcorr, master| + IReorr, t-master]) * €

whered,,, denotes the transmission delayAdépt messages ardds the time the adaption phase

is deferred. ID is set to the maximum delay of control messages the skew is bounglethiey

skew bound is increased by, [{|Rcorr masterl + IReorr, t-master]) if O is zero. This term will be in

the range of 20 to 30 ms in wide area networks and correspondingly lower in local area net-
works. Remember that & equals zero, streams may immediately perform adaptions the time
they become critical.

4 SYNCHRONIZATION POLICIES

ASP has many parameters for tuning the protocol to the characteristics of the underlying system
as well as to the quality of service requested by the given application. A discussion of all these
parameters would go far beyond the scope of this p&perefore, we will focus on the most
Important parameters, in particular those influencing the synchronization policy: the low and
high water mark, the width of the ¢t area and its placement in the play-outdsuds well as

the rules for granting the master role.

The intra-stream synchronization quality in terms of data loss due to underflow or overflow is
primarily influenced by thewWM andHWM values. As pointed out in Section 2, the play-out
time of a data uni ist,+A+TS(u), whereA is adapted as needed in adaption phases. For a data
unit released on time, the sum of its transfer delay arfdrialeglay must be equal fo Assume

for example that the transfer delayuak dr = A - LWM, i.e.,u’s bufer delay is at the border of

the lower critical region. Obviousl¥f the transfer delays of the data units followindo not

differ from dy by more tharLWM, there is no bdér underflow Remember thah is imme-
diately adapted when the Iberf delay enters a critical region. Our experiments with ASP have
shown that a reasonable value for the width of a critical regi@?, iwherg denotes the jitter

of the corresponding data stream.

IncreasingLWM generally increases the intra-stream synchronization quality as the data loss
probability is decreased. At the same time, howehes modification may increase the end-to-
end delay of the sync group, which might be critical for certain applications. ASP allows the
client to modifyLWM andHWM values even while the presentation is in progress. For example,

4 SYNCHRONIZATION POLICIES 17

it is conceivable that a user interactively adjusts the stream quality during play-out. Alterna-
tively, an internal mechanism similar to the one described in (Kappakr¥94) may monitor
the data loss rate and adjust the water marks as needed.

The width of the taget area determines the aggressiveness of tifer lmohtrol algorithm. The
minimum width of the taget area iso = ¢ [, wherec depends on the smoothing function used

to determinealg(t). In our experiments turned out to be about 0.3. Thegar the width of the

target area, the less adaptions of the release rate are required. On the other hand,geith a lar
target area there is only limited control over the actudibwfelay If, for example, the actual
buffer delay has to be kept as close as possith/Md to minimize the end-to-end dejaysmall

target area is preferable.

The location of the tget area together with the way how the master role is granted are the major
policy parameters of ASHhis will be illustrated by the following two policies, the minimum
delay policy and the minimum loss policy

The goal of theninimum delay policy is to achieve the minimum end-to-end delay for a given
intra-stream synchronization qualifio reach this goal the stream with the currently maximum
transfer delay is granted the master role, and this stsdaufér delay is kept as close as pos-
sible toLWM. This means that the tmt area for the master is located as folldAiI3 = LWM
andUTB = LWM + w, wherew is the jitter of the smoothed lef delaydg(t).

Due to changing network conditions, it may happen that the transfer delay of a slave stream sur-
passes the one of the masiiéhis will cause the slavebufer delay to fall below it WM trig-

gering recoveryWhen the controller receives samT-Master message, it assigns the master

role to the received messageriginator by sending @rantMaster request. If it receives mul-

tiple lamT-Master messages originated in the same recovery epoch, only the first one is
accepted, all the other ones are ignored. This strategy ensures that the stream with the maximum
transfer delay always becomes masitee end-to-end delay of the sync group at tiam@ounts

to the maximum transfer delaytaglus(UTB + LTB)/2, which is the minimum end-to-end delay

that can be achieved tat

With the minimum delay policy a slave running out offeufmay cause master switching to be
performed continuouslylo ensure stability in those situations, master switching is disabled for
overflow critical streams.afious policies for a slave to recover from overflow critical situations
are possible (for details see Section 5).

The possibility of adjustingWM dynamically makes this policy very powerful. By increasing
LWM the data loss rate is decreased, while the end-to-end delay is increased. The loss rate is

5 STABILITY AND BUFFER REQUIREMENTS 18

increased and the end-to-end delay is decreas®tNf is decreased. Consequently dyna-
mically adjustingLWM, the user may (interactively) determine the appropriate trdde-of
between end-to-end delay and intra-stream synchronization quality

While the minimum delay policy minimizes the farfdelay the minimum loss policy maxi-

mizes the bdér delay to minimize the probability of daf underflow for the available Hef

space. This policy is appropriate for those applications, for which a perfect transmission (i.e.,
low loss rate) is more important than a low end-to-end delay

With this policy the stream with the at present minimum transfer delay is granted the master
role. The masteés bufer delay is kept as close as possiblelW@M, which means that the tgat

area for the master is located as folloW3B = HWM andLTB = HWM - w, wherew denotes

the jitter ofdg(t). Note that each slave stream has a lowefebdelay than the master stream

as the latter is the one with the minimum transfer delay

When changing network conditions cause a slave to experience a smaller transfer delay than the
current mastetthis slaves bufer delay will exceedHWM triggering recoveryThe controller
receiving anamT-Master message reacts in exactly the same way as with the previous policy

It sends &rantMaster message to the originator of thenT-Master message arriving first in

a recovery period, all following messages belonging to the same recovery period are ignored.
Obviously this policy ensures that always the stream with the minimum transfer delay is the
master Maximizing the buker delay of the master means keeping thédosifas full as possible

and thereby minimizing the loss probability due to underflow

With the minimum loss policy a “starving” slave stream may cause master switching to be per-
formed continuouslyTo ensure stability in those situations, master switching is disabled for
underflow critical streams if this policy is applied. Stability aspects and recovery for critical
streams are discussed in detail in the next section.

5 STABILITY AND BUFFER REQUIREMENTS

ASP uses biéring to equalize the ddrent transfer delays of the streams in a sync group.
Therefore, the size of the play-out faufof an individual stream depends on the delay charac-
teristics of the stream group.

The streams in a sync group may haveedent bufer requirements. Wwill determine the size

of the streams’ play-out bigir in terms of time units to keep the results independent from the
encodings of the various media. IR}, andd; i, be the maximum and minimum transfer
delay of stream, respectivelyandd; y = dy yax - di min- The taget of master streark is

5 STABILITY AND BUFFER REQUIREMENTS 19

LWM, + w /2, wherewy is the width ok’s taget area. Streaifs high water mark can be deter-
mined as followsHWM; = max (LWM, + w/2 + §; . kO G-{i}) , whereG denotes the corre-
sponding sync group. Consequenthe size of the play-out Hef of stream is B; = HWM; +
LWM; assuming the same width for both critical regions.

The bufer size is determined based on assumptions concerning the maximum and minimum
transfer delaylf the underlying network provides (reasonable) delay guarantees dadibuf
allocated according to the results above, it may never happen that two streams of a sync group
are critical in a contradicting waye., one experiences a frfunderflowwhile the other suf-

fers from overflow at the same point of time. If, howetlee underlying network does not pro-

vide a deterministic service, the assumed minimum and maximum delays have to be determined
on a statistical basis. In this case, it might happen that a syncgstigams experience under-

flow and overflow at the same timeeWill call this an underflow&overflow situation.

It is important to notice that an underflow&overflow situation does not jeopardize the stability
of ASP Since the minimal delay and minimal loss policy both enable master switching either
for underflow recovery or for overflow recovean underflow&overflow situation may never
cause master switching to be performed continuod&y example, consider the minimum
delay policy Rememberthis policy minimizes the bfdr delays of all streams in a sync group

by minimizing the butr delay of the stream with the currently longest transfer detaythis

policy master switching is only enabled for femfunderflow While a stream experiencing an
underflow will always initiate master switching and decrease the st ¢@day-out rate accord-
ingly, the recovery processing for overflow depends on the policy implemented by thesstream’
sink agent. Following policies are conceivable:

Dynamic buffer allocation: In order to avoid overflowthe bufer is dynamically extended when
a streans bufer delay exceeddWM. The dynamically allocated Hef can be released as the
buffer delay decreases due to changing network conditions. If dynanier lllbcation is
impossible there are two remaining policies, skipping and stream removal.

ipping: The sink agent may skip data units, either already residing in tfee bufust arriv-

ing. Of course, if data units ¢ in importance (e.g., I-, B- and P-frames of MPEG videos), the
agent will try to skip the less important ones first. Obviquslg policy causes data loss and
hence decreases the quality of the individual stream, while the quality e$tir@m synchro-
nization is not décted.

Sream removal: When a stream becomes (overflow) critical, the streaimk agent may
remove the stream temporarily from the sync group. This removal is a local operation that does
not require any communication with other protocol instances. After removal the agent can

6 SIMULATION RESULTSAND PERFORMANCE MEASUREMENTS 20

adjust the play-out rate independent from the other streams in the sync group. Hiweer
receives theéddapt requests from the master and thus is able to keep track of the synsgroup’
media time. Stream removal will cause the stregiiocal) media time to dér from the sync
group’s media time. In other words, this policy decreases the quality ostnéarm synchroni-
zation, while the quality of the individual streams is nécéd. The skew can be minimized

by keeping the bigr delay of the removed stream clos&lWwM. A removed stream may rejoin

the sync group when its local media time equals the sync grmgdia time.

Obviously skipping and stream removal can be combined. For example, an agent may perform
skipping until the loss rate reaches a certain threshold and then switch to stream removal.

In our discussion above, we have confined ourself to the minimum delay policy as the stability
arguments for the minimum loss policy are almost symmetrical.

6 SIMULATION RESULTSAND PERFORMANCE MEASUREMENTS

In order to investigate AS®’behavior in ditrent environments, the proposed protocol has
been simulated extensivelMoreover it has been implemented and its performance has been
experimentally measured (for details see (Helb886)). In this section, we will discuss the
major results of this work, focussing on ASRbility to adapt to changing conditions, its mes-
sage overhead and skew

450 180 /\\ A " 4
a0 o W/ " ,,/*/V/N UTB
5 % 'E 140 - ‘“-‘N" ‘\
300 g
g™ S w g e /
S h W J MMM bbb, ® o Etlihalli Buffer Delay
100 40
gl “nﬁ w\' LA Py wMJWWJ‘W o
0 0
& g g E g 3 3 E : g 8 5 g E E z
. . Ti (ms)
Figure 7a: Tansmission and End-to-End Delay Figure 7b: Bufler Délay of Master Stream
102 - 35
1015 — 30 “ J\\\
—_ 25 o \\\
3 101 g Y . ‘ S —
2 1005 =3
a a S
g 0 K * [\J h j
=10
9.95 5 — [
9.9 0
: g 8 5 g 3 E z g g g E g E E S
Time (ms) Time (ms)
Figure 7c: Release Rate of Master Stream Figure 7d: Late Data Units / 1000

Our simulations use delay data measured in the Internet as well as synthetically generated
delays. The Internet data are used to investigatesA&iavior in fairly unpredictable environ-

6 SIMULATION RESULTSAND PERFORMANCE MEASUREMENTS 21

ments, while the synthetic data allow for more systematic investigations.

In our first simulation, the transfer delays are based on measurements in the Internet. This
simulation illustrates how ASP reacts on a client-initiated reduction of the end-to-end delay
(Figure 7a-d). The tget area in the play-out baf is defined by TB = 100 ms and UTB =
200ms. This setting leads to a constant release rate and an end-to-end delay of about 260 ms.
There is no data loss due to late arrivals. During the simulation, tiet trea is moved to

LTB =35 ms and UTB = 135 ms to reduce the end-to-end delay by about 90 ms. This reduction
causes an increase in late arrivals by approximately 2.5%. This client-initiated adaption is
achieved within a single adaption phase.

The following simulations use synthetic transfer delays generated according to a normal distri-
bution3 The transfer delay distributions of streams S1, S2 and S3 have a mean transfer delay/
standard deviation of 200 ms/20 ms, 180 ms/10 ms, 200 ms/10 ms, respedevieve cho-

sen similar transfer delays as this is the interesting case with regard to the frequency of master
switching.

The simulation results depicted in Figure 8a show the dependency of the end-to-end delay and
the data loss due to late arrivals. Parametévl is set to 10, 20, 50, 100, and 200 ms, respec-
tively. If LWM is increased, this increases the end-to-end delay and reduces the number of late
data units, e.g. for stream S3 from 10% to 0%. Our simulations show that incriedésihg
beyond 50 ms does not improve the quality of the considered streams anymore.

08 0.07 ; max.

025 st .
' 07 . 0.06
06 2 005
057 < av
. 28 3004
Delay 04 > 2
& 2003
$3 -
e Soo
02 £ .
P 01 oot { MIN:

iy L+ iy 0 0~
10 20 50 100 200 0 05 1 15 2 25 3 35 4 45 5

LWM [msec] Length of Adaption Phase [s]

Figure 8a: Delay versus Late Data Units Figure 8b:R. versus Length of Adaption Phase

o
N

Late Data [rel]
o 2
= &
°
b
e

M

o
o ¢
a

=

During adaption phases, the skew is determined by the size of rate corrections and the transfer
delay ofAdapt messages. Figure 8b illustrates the impact of the length of the adaption phase on
the minimum, average and maximum rate corredidgp,. The results show that a reasonable
length of the adaption phase is from 1 to 5 sec, leading to a maximum rate correction of about
2% and an average rate correction below 1%. The maximum rate correction for a length of 5 sec
is about 0.35%.

3 Normal distribution for packet delays in packet switched networks is suggested in (Alvarez-CakyhS33,
Shivakumar eal., 1995).

6 SIMULATION RESULTSAND PERFORMANCE MEASUREMENTS 22

The resulting skew during adaption phases is clearly below the values tolerated in the scenarios
described in the experiments of Steinmetz and En@&inmetz and Englet993): Wth the
available clock synchronization protocols, such as NTP (Mi90), we can assume clocks to

be synchronized within the lower milliseconds range. By using radio controlled clocks, this
situation will improve even furthemhe skew added by ASP for rate corrections of up to 2% is
typically below 1 ms in a LAN and below 20 ms in &M/ assuming transfer delays of up to

1 sec.

Finally, we will investigate how ASP adapts to changing transfer delagsvilconsider two

types of changes, a jump and a ramp shaped change. For the jump, the height is varied in steps
of 10 ms from -50 ms to +50 ms, while for the ramp, the transfer delay is continuously increased
within a certain time interval. The length of the time interval is varied from 1 sec to 50 sec, and
ramp heights of 10, 20 and 50 ms are considered. In all simulations, the width cj¢hartaa

Is 20 ms and the adaption phase is 5 sec in length.

0ms

Adaptions
O =~ p ow oA o > w ®

50 20 -10 0 10 20 50 1 2 5 10 20 50
Jump Height [ms] Ramp's Duration [sec]

Figure 9a: Reaction on Jump in Delay Figure 9b: Reaction on Ramp in Delay

Figure 9a shows the results of the jump simulation. Jumps up to half the width ofjétataa

either cause no or a single rate adaption, depending on fee deifry at the time of the jump.
Consequently0.5 rate adaptions are required in average. Jump heights of 20 ms (width of the
target area) and 50 ms require 2 and 3 adaption phases, respettieetgason why multiple
adaption phases are needed is the smoothing function appliedfendaidys, which causes

the first rate adaption to be smaller than actually needed.

In Figure 9b, the simulation results for the ramp shaped delay changes are illustrated. Indepen-
dent of the length of the interval, changes of half thgetaarea width lead to a single or no rate
adaption, and a change of the same size as tjet taea requires 2 adaption phases. Origefar
changes over longer time intervals require more rate adaptions since they cause a sequence of
small adaptions. For the 50 ms ramp, the worst case is 8 adaptions in 50 sec.

To verify the simulation results, ASP has been implemented and evaluateQinethxgroject
(Configurable Integrated Multimedia Architecture (Rothermell €1.994)).Cinema provides a

7 RELATED WORK AND CONCLUSONS 23

platform for developing and controlling multimedia applications in distributed environments

In particular it offers abstractions and mechanisms to build distributed multimedia applications
by configuration of basic processing and communication elements. Synchronization constraints
between streams may be specified by means of so-called clock hieraRdtiesrihel and
Helbig, 1999. While clock hierarchies are programming abstractions, ASP is the mechanism
that actually performs stream synchronizati@mema runs on IBM RS/6000 workstations
under AlX as well as Sun 8RCstations under Solaris.

So far measurements have been performed for two network technologies, a 10 Mbps Ethernet
and a 155 MbpsPM network. Wth these measurements we could confirm the essential results
of our simulations (for details see (Helbi96)): In the Ethernet-based experimeAtapt
messages are generated every 10 to 20 sec for rather tgttaseas. By increasing theger

area it can be achieved thsdapt messages are sent only every couple of minutes. The maxi-
mum rate correctioR,, is below 2%, average rate corrections are between 0.4% and 1.2%.
Consequentlythe skew added by ASP is far below the skew limits given in (Steinmetz and
Engler 1993) for scenarios such as lip-synchronization or video/text-overlays. As expected,
experiments performed in théT™ environment show even better results. Measurements in
WAN environments are subject to future work.

7 RELATED WORK AND CONCLUSIONS

Existing approaches to stream synchronization can be classified in various ways. One classifi-
cation criterion is whether or not synchronization is distributed. In the case of distributed
approaches, the sinks of the sync group may reside fenetif nodes, while local approaches
require all sinks to reside on the same node.

The class of local approaches comprises a number multimedia toolkits (e.g. ACME (Anderson
and Homsy1991), Multimedia Presentation Manager (IBM92), QuickTme (Apple,1991),

or Tactus (Dannenbgretal., 1992)) as well as various synchronization algorithms proposed in
the literature (e.g., (Ravindran and Bang8B3), (Kappner el.,1994), (Shivakumar
etal.,1995)). Distributed approaches include algorithms proposed in (Ramanathan and
Rangan]1992), (Agarwal and Son994), the Flow Synchronization Protocol (Escobar
etal.,1994), the Lancaster Orchestration Service (Campall,di992) as well as ASP

Both local as well as distributed approaches may be rigid or adaptive. For example, the Concord
algorithm (Shivakumar etl., 1995) and the DMOS protocol (Kappneaét 1994) fall into the

class of local adaptive approaches. The Concord algorithm allows to tr@delsdt loss rates,
end-to-end delay and skeWwhe algorithm computes the packet delay distribution on-the-fly and

7 RELATED WORK AND CONCLUSONS 24

delivers it to the client which decides on adaptions. In other words, the algorithm itself does not
provide for automatic adaptions. In DMOS, a quality of service parameter “rate of late data
units” is monitored, allowing applications to tradé efid-to-end delay versus loss rate. Auto-
matic adaptions are performed as required. In both schemesstietem synchronization is

based on computing a reference end-to-end delay for all streams by a dedicated (centralized)
entity. Transferring this approach to distributed settings would lead to a significant message
overhead for collecting state information and propagating control messages.

Distributed adaptive approaches may be based on local time or global time, where the latter is
achieved by clock synchronization. No global time is required for the algorithms proposed in
(Ramanathan and Rangd®92) and (Agarwal and Soh994). Stored data streams are trans-
ferred from a centralized server to distributed sinks. The sinks are required to periodically send
feedback messages to the serwdrich uses these messages to estimate the temporal state of
the individual streams. In (Ramanathan and Rant28®), the accuracy of these estimations
depends on the jitter of feed-back messages. (Agarwal and 81, eliminates this depen-
dency by estimating the ffrences between system clocks by means of probe messaifes. W
this modification, accuracy depends on the jitter of probe messages. The feed-back messages
cause an overhead nfmessages per period foistreams. After a stream becomes critical, it
takes at least one message round-trip time before an adaption fakeatehe sink.

Both the Flow Synchronization Protocol (Escobaaletl994) and the Lancaster Orchestration
Service (Campell al.,1992) are distributed adaptive approaches assuming synchronized
clocks. In the Flow Synchronization Protocol, each sink periodically sends its delay estimate to
all other sinks in the sync group. Having received all delay estimates, each sink locally performs
the same function on its own and the received estimates to determine the end-to-end delay for
the next period. The message complexityl{®-1) messages (an messages if multicast is
available) per period, howevefarious optimization are proposed to reduce this message over-
head. When a stream becomes critical, its sink cannot perform (global) adaptions before the next
period begins.

With Lancaster Orchestration Service, a centralized controller periodically receives the tempo-
ral state of each sink in the sync group. Based on the collected information, the controller
periodically decides whether adaptions are needed and sends the corresponding adapt requests.
The message overhead per period is at leastssages ari2in in the worst case. Moreover
reactions on critical situations are deferred by at least one message round-trip time.

ASP belongs to the same class as the Flow Synchronization Protocol and the Lancaster Orches-
tration Service. The major drence is that ASP does not know the concept of a period. Instead

8 REFERENCES 25

of sending control messages periodicallyASP adapt requests are sent solely on demand when
rate adaptions actually become necessary due to changing network conditions or QoS require-
ments. The propagation of adapt requests req(nréymessages (dr message if multicast is
available). A nice feature of ASP is that a sink may react immediately on critical situations. The
price of this feature is an increase in skewich, howevercan be ignored for most applications

as has been shown in the previous section. For applications that are extremely skew sensitive,
ASP provides the possibility to defer adaptions artificially in order to avoid this skew

ASP is a very general and flexible synchronization mechanism that can be tailored to various
network characteristics as well as to a wide range of multimedia applications. ASP has been
simulated and implemented in tnema system. Both the simulations and the performance
measurements confirmed the properties postulated for ASP

8 REFERENCES

Agarwal, N. and Son, S. (1994). Synchronization of distributed multimedia data in an applica-
tion-specific manne2nd ACM International Conference on Multimedia, San Francisco,
USA pages 141-148.

Alvarez-Cuevas, F., Bertram, M., Oller, F., and Selg®.J1993). Voice synchronization in
packet switching network$EEE Network pages 20-25.

Anderson, DP. and Homsy, G. (1991). Synchronization policies and mechanisms in a contin-
uous media i/o serveReport No. UCB/CSD 91/617, Computer Science Division (EECS),
University of California, Berkeley, CA

Apple (1991) QuickTime Developer’'s Guidépple Computer Inc., Cupertino, CA, USA.

Campell, A., Coulson, G., Garcia, F., and Hutchison, D. (1992). A continuous media transport
and orchestration servicBIGCOMM’92 Communications Architectures and Protacols
pages 99-110.

Clark, D.D., Shenker, S., and Zhang, L. (1992). Supporting real-time applications in an inte-
grated services packet network: Architecture and mechaSKBCOMM’92 Communi-
cations Architectures and Protocplsages 14—26.

Dannenberg, RB., Neuendorffer, T., Newcomer, M., and Rubine, D. (1992). Tactus:
Toolkit-level support for synchronized interactive multime@al International Work-
shop on Network and Operating System Support for Digital Audio and,\bidges 264—
275.

Escobar, J., Partridge, C., and Deutsch, D. (1994). Flow synchronization pri&tolrans-
actions on Networking

Ferrari, D. (1990a). Client requirements for real-time communication seriReggiest for
Comments RFC 1193

Ferrari, D. (1990b). Design and applications of a delay jitter control scheme for packet-switch-
ing internetworks2nd International Workshop on System Support for Digital Audio and

8 REFERENCES 26

Video, Heidelberg, Germany.

Helbig, T. (1996). Communication and synchronization of multimedia data streams in distri-
buted systems (in German). PhD theldisiversity of Suttgart, Faculty of Computer Sci-
ence.

IBM (1992). Multimedia Presentation Manager Programming Reference and Programming
Guide 1.0, IBM Form: $41G-2919-00 and $41G-2920-00. IBM Corporation.

Kappner, T., Henkel, F., Muller, M., and Schréer, A. (1994). Synchronisation in einer verteilten
Entwicklungs- und Laufzeitumgebung fir multimediale Anwendunigeiovationen bei
Rechen- und Kommunikationssystemen, pages 157-164.

Kohler, D. and Miiller, H. (1994). Multimedia playout synchronization using buffer level con-
trol. 2nd International Workshop on Advanced Teleservices and High-Speed Communi-
cation Architectures, Heidelberg, Germany.

Mills, D. L. (1990). On the accuracy and stability of clocks synchronized by the network time
protocol in the internet systei@omputer Communications Review, pages 65—75.

Postel (1981). Transmission control protocol, darpa internet program, protocol specification.
RFC 793.

Ramanathan, S. and RanganyVP(1992). Continuous media synchronization in distributed
multimedia system&rd International Workshop on Network and Operating System Sup-
port for Digital Audio and Video, pages 289-296.

Ravindran, K. and Bansal, V. (1993). Delay compensation protocols for synchronization of
multimedia data streamKHzEE Transactions on Knowledge and Data Engineering, Vol.
5, No. 4, pages 574-589.

Rothermel, K., Barth, I., and Helbig, T. (199€)nema - an architecture for distributed multi-
media applicationsArchitecture and Protocols for High-Speed Networks, pages 253—
271, Kluwer Academic Publishers.

Rothermel, K. and Helbig, T. (1996). Clock hierarchies: An abstraction for grouping and con-
trolling media streams$EEE Journal on Selected Areasin Communications - Synchroni-
zation Issues in Multimedia Communications.

Shivakumar, N., Sreenan, C., Narendran, B., and Agarwal, P. (1995). The concord algorithm
for synchronization of networked multimedia strealB&E International Conference on
Multimedia Computing and Systems, Washington, USA, pages 31-40.

Steinmetz, R. and Engler, C. (1993). Human perception of media synchroniZatiom cal
Report 43.9310, IBM ENC, Heidelberg, Germany.

