5th I nternational Workshop on

Network and Operating System Support for Digital Audio and Video
April 18-21, 1995

Durham, New Hampshire, USA

An Adaptive Stream Synchronization Protocol

Kurt Rothermel, ©bias Helbig

University of Stuttgart
Institute of Parallel and Distributed High-Performance Systems (IPVR)
BreitwiesenstralRe 20-22, D-70565 Stuttgart, Germany
{rothermel,helbig}@informatik.uni-stuttgart.de

Abstract. Protocols for synchronizing data streams should be highly adaptive
with regard to both changing network conditions as well as to individual user
needs. The Adaptive Synchronization Protocol we are going to describe in this
paper supports any type of distribution of the stream group to be synchronized. It
incorporates bdiér level control mechanisms allowing an immediate reaction on
overflow or underflow situations. Moreoyéne proposed mechanism is flexible
enough to support a variety of synchronization policies and allows to switch
them dynamically during presentation. Since control messages are only
exchanged when the network conditions actually change, the message overhead
of the protocol is very low

1 Introduction
In multimedia systems, synchronization plays an important role at several levels of
abstraction. At the data stream level, synchronization relationships are defined among
temporally related streams, such as a lip-sync relationship between an audio and a video
stream. © ensure the synchronous play-out of temporally related streams, appropriate
stream synchronization protocols are required.
Solutions to the problem of data stream synchronization seem to be quite obvious,
especially if clocks are synchronized. Nevertheless, designingcargfsynchroniza-
tion protocol that is highly adaptive with regard to both changing network conditions
and changing user needs is a challenging task. If the network cannot guarantee bounds
on delay and jitteror a low end-to-end delay is of importance, the protocol should ope-
rate on the basis of the current network conditions rather than some worst case assump-
tions, and should be able to automatically adapt itself to changing conditions. Mpreover
the protocol should be flexible enough to support various synchronization policies, such
as ‘minimal end-to-end delay’ or ‘best quality’. This kind of flexibility is important as
different applications may have totallyfdifent needs in terms of quality of service. In
a teleconferencing system, for example, a low end-to-end delay is of paramount impor-
tance, while a degraded video quality may be tolerated. In contrast, in a surveillance
application, one might accept a higher delay rather than a poor video.quality
Protocols for synchronizing data streams can be classified into those assuming the
existence of synchronized clocks and those making no such assumption. The Adaptive
Synchronization Protocol (ASP), we are going to propose in this,daglengs to the
first class and has the following characteristics:
e ASP supports any distribution of streams to be synchronized, i.e. sources and sinks
may reside on diérent nodes. Streams may be point-to-point or point-to-multipoint.
« ASP incorporates local bief control mechanisms. They enable immediate reactions
on changing network conditions. A strearmlay-out rate is adapted when the stream
becomes critical, i.e. when it runs the risk of déufinderflow or overflowlf several
streams become critical at the same time, each stream immediately may initiate adap-
tions independently from others to improve the intrastream synchronization .quality

« ASP performs rate adaptions only if they are actually required, i.e. only when a
stream becomes critical. Due to this fact, the overhead for exchanging control mes-
sages is almost zero if the streams’ average network delay and jitter are rather stable.

« ASP supports the notion of a master stream, which controls the advance of the other
streams, called slaves. The roles can be changed dynamically during the presentation.

* ASP is a powerful and flexible mechanism that forms the base for various synchroni-
zation policies. A policy is determined by setting a set of parameters and assigning
the master role appropriatelyor a chosen policy ASP can be tuned to achieve the
desired trade-6between end-to-end delay and intrastream synchronization quality
This tuning and even the applied policy can be changed during the presentation.

The remainder of this paper is structured as follows. After a discussion of related
work in the next section, the basic assumptions and concepts of ASP are introduced in
Sec. 3. Then, Sec. 4 presents ASP by describing its protocol elements for staifeup, buf
control, master/slave synchronization and master switchimgshw in Sec. 5 how
synchronization policies can bdieiently realized on top of the proposed synchroniza-
tion mechanism, and provide some simulation results illustrating the performance of
ASP in Sec. 6. Finallywe conclude with a brief summary

2 Related Work

The approaches to stream synchronization proposed in literatteeidithe stream
configurations supported. Some of the proposals require all sinks of the synchronization
group to reside on the same node (e.g., Multimedia Presentation Manager [5], ACME
system [2]). Others assume the existence of a centralized,sehieh stores and
distributes data streams. The scheme proposed by Rangan et al.[[Lplay$ back
stored data streams from a ser&nks are required to periodically send feedback mes-
sages to the seryamhich uses these messages to estimated the temporal state of the
individual streams. Since clocks are not assumed to be synchronized, the quality of
these estimations depends on the jitter of feed-back messages, which is assumed to be
bounded. A similar approach has been described in [1], which requires no bounded jitter
but estimates the ddrence between clocks by means of probe messages.

Both the Flow Synchronization Protocol [4] and the Lancaster Orchestration Service
[3] assume synchronized clocks and support configurations with distributed sinks and
sources. Howeveneither of the two protocols allows a sink to react immediately when
its stream becomes critical. Moreoytre former protocol does not support the notion
of a master stream, which excludes a number of synchronization policies.,Fio#ily
schemes do not provide lfeif level control concepts at their service interfaces, which
makes the specification of policies more complicated than for ASP

Some bufer level control schemes have been proposed also. The scheme described
in [7] aims at intrastream synchronization omfy[6], stream quality is defined in terms
of the rate of data loss due to taufunderflow A local mechanism is proposed that
allows either to minimize the streasrénd-to-end delay or to optimize its quality

3 Basic Conceptsand Assumptions

The set of streams, which are to be played out in a synchronized fashion isyalled
chronization group (or sync group for short). ASP distinguishes between two kinds of
streams, the so-calledaster andslave streams. Each sync group comprises a single
master stream and one or more slave streams. While the rate of the master stream can
be individually controlled, the ones of the slave streams are adapted according to the
progress of the master stream. The master and slave role can be switched dynamically

For each sync group there exists a single synchronization server and ciéxmeisal
two for each stream. The server is a software entity that maintains state information and
performs control operations concerning the entire sync group. In partita@ntrols
the start-up procedure and the switching of the master role. Moydoigethis entity
that enforces the synchronization policy chosen by the Tikerserver communicates
with the clients, which are software entities controlling individual streams. Each stream
has a pair of clients, a sink client and a source client, which are able to start, stop, slow-
down or speed-up the stream. Depending on the type of stream it is controlling, a sink
client either acts asraasteror slave To achieve interstream synchronization, the mas-
ter communicates with its slaves according to a synchronization protocol.

ASP supports arbitrarily distributed configurations: A sync gswggurces may
reside on dierent sites, and the same holds for the sinks. The location of the server may
be chosen freelye.g., it may be located on the node that hosts the most sink clients.

We will assume that control messages are communicated reliably and that the system
clocks of the nodes participating in a sync group are approximately synchronized to
within € of each otheri.e. no clock value dérs from any other by more thanWell-
established protocols, such as NTP [8], achieve clock synchronizatior witthe
lower milliseconds range.

R, Ry (5 mo

Source—D> —— | Sink
Transmission R,

| Channel Play-out Bufer
™ g
| dr ds d

S
Fig. 1. Data Stream and Delay Model

The basic principle of interstream synchronization adopted by ASP and various other
protocols based on the notion of global time (e.g., [4]) is very simple: Each data unit of
a stream is associated with a timestamp, which defines its media ¢timehi€ve syn-
chronous presentations of streams, the streams’ media time must be mapped to global
time, such that data units with the same timestamp will be played out at the same (glo-
bal) time. Similarlythe sources exploit the existence of synchronized clocks: data units
with the same timestamp are sent at the same (global) tinferebif transmission
delays that may exist betweenfdient streams are equalized byfbrihg data units
appropriately at the sink sites.

Our model of stream transmission andférifg is depicted in Fig. 1. The data units
of a stream are produced by a source witlbrminal rate R and are transmitted to one
or more sinks via an unidirectional transmission channel. The transmission channel
introduces a certain delay and jittexsulting in anodified arrival rate i . At the sinks
site, data units are lfefed in a play-out bigr, from which they are released with a
release rate R The release rate, which determines how fast the ssgaesentation
advances, is directly controlled by ASP to manipulate the fill state of the play-tart buf
and to ensure synchrany

On its way from generation to play-out, a data unit is delayed at several stages. It takes
a data unit aransmission delay-duntil it arrives in the bdér at the sinls site. This
includes all the times for generation, packetization, network transmission and transfer
into the bufer. In the bufer, a data unit is delayed bybaffer delay g before it is deli-
vered to the sink device. In the sink, a data unit may experieplay/-@ut delaydg
before it is actually presented.

The media time M(t) specifies the streamtemporal state of play-out. It is derived
from the timestamfS of the data unit which is the next to be read out from the play-
out bufer and the actugllay-out delay dg of the sink:M(t) = TS - dg. However the
granularity of media time were too coarse would it simply be based on timestamps. Due
to this fact, media time is interpolated between timestamps of data units to achieve a
finer granularity

4 The Adaptive Synchronization Protocol

ASP can be separated into four rather independent subprotocols. After a brief qverview
the start-up protocol, bigr control protocol, master/slave synchronization protocol,
and master switching protocol are described in detail. It is important to point out, that
this section concentrates on mechanisms, while possible policies exploiting these
mechanisms will be discussed in the next section.

4.1 Overview

The start-up protocol initiates the processing of the sinks and sources in a given sync
group. In particularit ensures that the sources synchronously start the transmission and
the sinks synchronously start the presentation. Start-up is coordinated by the server
which derives start-up times from estimated transmission times, selects an initial master
stream depending on the chosen synchronization policy and sends control messages
containing the start-up times to clients.

Thebuffer control protocol is a purely local mechanism, which keeps the fill state of
the master streamplay-out bufer in a given taget area. The determination of the tar-
get area depends on the applied synchronization policy and thus is not subject to this
mechanism. Whenever the fill state moves out of the givgettarea, the bfgr control
protocol regulates the progress of the master stream by manipulating reled®e rate
accordingly

The master/slave synchronization protocol ensures interstream synchronization by
adjusting the progress of slave streams to the advance of the master stream. Processing
of this protocol only involves a sync grogsink clients, one of them acting as master
and the other ones acting as slaves. Whenever the master changes rel€gset rate
computes for some future point in time, $athe mastés media timeéM(t), taking into
account the modified value Bf. Then,M(t) andt are propagated in a control message
to all slaves. When a slave receives such a control message, it locally Bgljinsts
way that its stream will readk(t) at timet. Obviously this protocol ensures that all
streams are in sync again at titnaithin the magins of the accuracy provided by clock
synchronization. Notice that this protocol does not involve the server and is only ini-
tiated when the béér situation or - in other words - the network conditions have
changed.

The master switching protocol allows to switch the master role from one stream to
another at any point in time. The protocol involves the server and the sink clients,
whereas the server is the only instance that may grant the master role. Switching the
master role may become necessary when the user changes its synchronization policy or
some slave stream enters a critical state, i.e. runs the risk of havirfgrauipaterflow
or overflow A nice property of this protocol is that a critical slave can react immediately
by becoming a so-called tentative mastenich is allowed to adjud®, accordingly
The protocol takes care of the fact that there may be a master and several tentative mas-
ters at the same point in time and makes sure that the sync group eventually ends up
with a single master

4.2 Start-up Protocol

Our start-up procedure is very similar to that described in [4]. The server initializes the
synchronous start-up of a sync grauigata streams by sendifigrt messages to each

sink and source client. Ea8tart message contains besides other information a start-up
time. All source clients receive the same start-up time, at which they are supposed to
start transmitting data units. Similaril sink clients receives the same start-up time,
which tells them when to start the play-out process.

Starting clients simultaneously requires fiart messages to arrive early enough.
The start-up timé, of sources is derived from the current titgg, the message trans-
mission delayd,, experienced bygart messages, and processing deldys. at the
server sitety = thgy + dm + dyroe. Start-up of sinks is delayed by an additional time to
allow the data units to arrive at the sinks’ locations and to preloderbufhis delay
called expected delay,,, is computed from average delalg,; of the sync groug’
streams and the Hef delayd,,e; caused by preloadingl,, = max (dayej + dpre;),
whered,,¢; primarily depends on stredrs jitter characteristic. @assume some infra-
structure component that provides access to the needed jitter and delay parameters.

A Sart message sent to a source client (at least) contains statg eintethe nominal
rateR;. Sart received by a sink encompasses the starttjmelg,, the release rafe,
= Ry and a flag assigning the initial role (i.e. master or slave). Furthermore, it includes
some initial parameters concerning the play-outdsuthe low water mark, high water
mark and - in case of the master stream - the initigétaarea (see below).

Each client starts stream transmission or play-out at the received start-up time. There-
fore, the start-up asynchrony is bounded by the inaccuracy of clock synchronization
providedStart messages arrive in time. Howeveven if some&art messages are too
late, ASP is able to immediately resynchronize the ‘late’ streams.

4.3 Buffer Control Protocol
Before describing the protocol, we will take a closer look at the play-ofdrbiihe
parametedg(t) denotes themoothed buffer delay at current timé. The bufer delay at
a given point in time is determined by the amount ofdvatl data. In order to filter out
short-term fluctuations caused by jitteome smoothing function is to be applied. ASP
does not require a distinct smoothing function. Some examples are the geometric
weighting smoothing function [98g(t)) = o dg(tj.1)+ (1-a) ActBuffer Delay(t), or the
Finite Impulse Response Filter as used in [7].

For each play-out btdr alow water mark (LWM) andhigh water mark (HWM) is
defined. Whertg(t) falls underlWM or exceed$iWM, there is the risk of underflow
or overflow respectivelyTherefore, we will call the bidr areas belowWM and above
HWM thecritical buffer regions. As will be seen belowASP takes immediate correc-
tive measures whelg(t) moves into either one of the critical ferfregions. Note that
the quality of intrastream synchronization is primarily determined by VY& and
HWM values (for details see Sec. 5).

The bufer control protocol is executed locally at the sink site of the master stream.
Its only purpose is to keegjy(t) of the master stream in a so-caltahet area, which
is defined by arnupper target boundary (UTB) and alower target boundary (LTB).
Clearly, the taget area must not overlap with a criticalfleufregion. The location and
width of the taget area is primarily determined by the chosen synchronization policy
For example, to minimize the overall delay thgédishould be close taVM.

The bufer delaydg(t) may float freely between the lower and uppegeaboundary
without triggering any rate adaptions. Changing transmission delays (or a modification

of the taget area requested by the server) may cag(§eto move out of the tget area.
When this happens, the master enters a so-caldigation phase, whose purpose is to
movedg(t) back into the tayet area.

Buffer A __
Delay HWM /L\
4O urs i
| w # Target Area
LTB f !
LWM ™ T {——
- -
Adaption Phase Timet
tg te+L

Fig. 2. Buffer Delay Adaption

At the beginning of the adaption phase, releaseRaie modified accordinglyThe
adapted release rateRs + Ry, WhereR., = (dg(t) - (LTB + (UTB-LTB)/2)) / L.
LengthL of the adaption phase determines how aggressively the algorithm reacts. At
the end of the adaption phase, it is checked whether dgftpis within the taget area.
If it is in the taget areaR, is set back to its previous value, the nominal RateOther-
wise, the master immediately enters a new adaption phase.

In order to keep the slave streams in sync, each adaption of the master stream has to
be propagated to the slave streams. This is achieved by the protocol described next.

4.4 Master/Slave Synchronization Protocol

The master/slave synchronization protocol ensures that the slave streams are played out
in sync with the master stream. This protocol is initialized whenever the master (or a
tentative master as will be seen in the next section) modifies its release rate. Protocol
processing involves all sink clients, each of which acts either as master or slave.

Whenever it enters an adaption phase, the master performs the following operations.
First, it computes the so-called dat media time for this adaption phase, which is
defined to be the media time the master stream will reach at the end of this phase.
Assume that the adaption phase starts at realtfiare is of length.. Then the tayet
media time iM(ts+L) = M(ty + LIR, + Ryyy). Subsequent/ythe master propagates
anAdapt message to each slave in the sync group. This message includes the following
information: end timé.=ts+L of the adaption phase, gat media timé(ty) at the end
of the adaption phase, and a structured timestamp for ordering conmdadjsignes-
sages (see next section)

When a slave receives Adapt message, it imnmediately enters the adaption phase by
modifying its release rate, according to the received ¢g@t media time (see Fig. 3).

The modified release rateRs = (M(tg)-M (ty)) / (te - t5), wheret, denotes the time at

which the slave receivetdapt. At timet, (i.e. at the end of the adaption phasg)is

set back to its previous value, the nominal stream rate. Obvjithislyprotocol ensures

that at the end of each adaption phase all streams in the sync group reach thgsame tar
media time at the same point in real-time. Between two adaption phases, streams stay
in sync as their nominal release rates are derived from global time.

As with all synchronization schemes based on the notion of global time, skew among
sinks is introduced by the inaccuracy of synchronized clocks, which is assumed to be
bounded bye. In our protocol, an additional source of skew is the adaption of release
rates at diierent points in time. The worst case skgyy, during the adaption phase of

the master depends on transfer tiipgof the Adapt message and master stresucor-
rection rateRo: Snax = dmlIReor| + €. Between adaption phases, the skew is bounded
by €.

Message flansfer Tne dy, g >

Media Time |
M(t) ™77 775777 Maximum Skew
- ittt before Reaction
. M) A
|
: : : >
' ! - Timet
|
|

Adaption Phase < > Master Stream
ts te Slave Stream

Fig. 3. Master/Slave Synchronization

45 Master Switching Protocol
We distinguish between two types of master switching. The first type of switching,
calledpolicy-initiated, is performed whenever (a change in) the synchronization policy
requires a new assignment of the master role. In this case, the whirghrenforces the
policy, performs the switching just by sendinGantMaster message to the new mas-
ter and &uitMaster message to the old mast@rantMaster specifies the tget bufer
area of the new mastaewrhich is determined by the server depending on the chosen
padlicy. With this simple protocol it may happen that for a short period of time there exist
two masters, which both propagai#apt messages. Our protocol prevents inconsisten-
cies by performing\dapt requests in timestamp order (see below).

The second type of switchingriecovery-initiated. The slave initiates recovery when
its stream becomes critical. A stream is called critical if its currefiebdélay is in a
critical region and (locally) no rate adaption improving the situation is in progress. An
appealing property of our protocol is that a slave can immediately initiate recovery
when its stream becomes critical: First, the slave makes a transition to a so-called ten-
tative master (or t-master for short) and informs the server by sendiag&iVaster
message. Then - without waiting on any response - it enters the adaption phase to move
its buffer delay out of the critical region by adaptiRg accordingly In order to keep
the other streams in sync, it propagatesdapt request to all other sink clients, inclu-
ding the masteAt the end of the adaption phase, a t-master falls back in the slave role.
Should the stream still be critical by this time, then the recovery procedure is initiated
once more.

Obviously our protocol allows multiple instances to propagsdept concurrently
which may cause inconsistencies leading to the loss of synchronization if no care is
taken. As already pointed out above, policy-initiated switching may cause the new mas-
ter to sendhdapt messages while the old master is still in place. More@¥¢he same
point in time, there may exist any number of t-masters propagadaqy requests con-
currently It should be clear that stream synchronization can be ensured édbptf
messages are performed in the same order at each client. This requirement can be ful-
filled by including a timestamp iAdapt requests and performing these requests in
timestamp order at the client sites. The latter means that a client accejatapan
request only if it is younger than all other requests received before. Older requests are
just discarded.

However performing requests in some timestamp order is nfitiguit. Assume, for
example, that the master and some t-master propadaperequests at approximately
the same time, and the former requests an increase of the release rate, while the latter
requests a decrease. For some synchronization policies, this might be a very common
situation (see for example the minimum delay policy described in the next section). If
the timestamps were solely based on system time and the master would perform the
propagation slightly after the t-masttren the t-mastés request would be wiped out,
although it is the reaction on a critical situation and hence is more important. The sta-
bility of the algorithm can only be guaranteed if recovery actions are performed with
the highest priority Consequentlythe timestamping scheme defining the execution
order ofAdapt requests must take into account the ‘importance’ of requests.

The precedence @éfdapt requests sent at approximately the same time is given by the
following list in increasing order: (1) requests of old masters (2) requests of the new
master (3) requests of t-masterse Wpply a structured timestamping scheme to reflect
this precedence of requests. In this scheme, a timestamp has the following structure:
<Egr.E\.T>, whereEg denotes aecovery epoch, Ey, designates master epoch, andT
is thereal-time when the message tagged with this timestamp was sent. A new recovery
epoch is entered when a slave performs recovdrje a new master epoch is entered
whenever a new master is selected. As will be seen pelaering a new recovery
epoch requires a new master to be selected.

Each control message contains a structured timestamp, which is generated before the
message is sent on the basis of two local epoch counters and the local (synchronized)
clock. The server and the clients keep track of the current recovery and master epoch by
locally maintaining two epoch counters. Whenever they accept a message whose time-
stamp contains an epoch value greater than the one recorded tbeatigrresponding
counter is set to the received epoch value. Moreavelient increments its local reco-
very epoch counter when it performs recoyegy thelamT-Master message sent to the
server already reflects the new recovery period. The server increments its master epoch
counter when it selects a new master. theGrantMaster message already indicates
the new master epoch.

Adapt requests are accepted only in strict timestamp oBtheuld a client receive two
requests with the same timestamps, total ordering is achieved by ordering these two
request according to the requestors’ unique identifiers included in the messages. As a
slave performing recovery enters a new recovery epochdak request generated by
some master in the previous recovery epoch are wiped out. Sinsleldgting a new
master enters a new master epoch, and by this wipes ddlaptirequest from former
masters. When a master receive®\dapt request indicating a younger master or reco-
very epoch, it can learn from this message that there exists a new master or a t-master
performing recoveryespectivelyln both cases, it immediately gives up the master role
and becomes a slave.

As already mentioned above, a critical slave sendaraf-Master message when it
becomes a t-mastéVhen the server receives such a message indicating a new recovery
epoch, it must select a new masiatich stream becomes the new magtemarily
depends on the synchronization policy chosen. For example, the originatoranfithe
Master message establishing a new recovery epoch may be granted the master role. All
other messages of this type belonging to the same recovery epoch are just discarded

1.We assume that at no point in time there exist two t-masters that try to adapt the release rate in
contradicting directions, i.e. one tries to increase the rate while the other tries to decrease it.
This is achieved by dimensioning the play-ouff&uéppropriately

upon arrival (see Fig. 4).

Server | | Client 1 | | Client 2 | | Client 3

critica

critical SLAVE
Adapt T-MASTER

(NN N)

Adapt MASTER

master :

I
discard :
message

|

|

GrantMaster

\
Fig. 4. Recovery-initiated Master Switching

The worst case ske,,, among sinks can be observed when master and a t-master
decide to adapt their release rates in opposite directions at approximately the same time.

Smax can be shown to b, [{|Reorr, master| + 1Reorr, t-master|) + €, Whered,,, denotes the
transmission delay dfdapt messages.

5 Synchronization Policies

ASP has many parameters for tuning the protocol to the characteristics of the underlying
system as well as to the quality of service expected by the given application. A discus-
sion of all these parameters would go far beyond the scope of this Pagefore, we

will focus on the most important parameters, in particular those influencing the syn-
chronization policy: the low and high water mark, the width of thgetaarea and its
placement in the play-out lfef, as well as the rules for granting the master role.

The intrastream synchronization quality in terms of data loss due to underflow or
overflow is primarily influenced by tHaMV andHWM values. A good rule of thumb
for the width of the critical regions defined by these two parametét3 figr each,
wherej denotes the jitter of the corresponding data stream. Increbgiwy also
increases the quality as the probability of underflow is reduced. On the other hand, this
modification may also increase the overall delayich might be critical for the given
application. ASP allows to modiywwM andHWM values while the presentation is in
progress. For example, it is conceivable that a user interactively adjusts the stream qua-
lity during play-out. Alternativelyan internal mechanism similar to the one described
in [6] may monitor the data loss rate and adjusts the water marks as needed.

The width of the tayet bufer area determines the aggressiveness of tiertmaitrol
algorithm. The minimum width of this area depends on the smoothing function applied
to determinedg(t). The lager the width of the tget area, the less adaptions of the
release rate are required. Rather constant release rates require almost no communication
overhead for adapting slaves. On the other hand, witlge taget area there is only
limited control over the actual tfef delay If, for example, the actual fef delay has
to be kept as close as possible tolti@ to minimize the overall delag small taget
area is the better choice.

The location of the tget area in the bidr together with the way how the master role
is granted are the major policy parameters of A5 will be illustrated by the mini-
mum delay policy

The goal of theminimum delay policy is to achieve the minimum overall delay for a

given intrastream synchronization qualitp reach this goal the stream with the cur-
rently longest transmission delay is granted the master role, and this stiedar
delay is kept as close as possibléYdVl. The taget area for the master is located as
follows: LTB = LWM andUTB = LWM + A, whereA is the jitter ofdg(t) after smooth-
ing.

Due to changing network conditions it may happen that the transmission delay of a
slave stream surpasses the one of the mastisrwill cause the slavebufer delay to
fall below itsLWM triggering recovernyWhen the server receiveslamT-Master mes-
sage it grants the master role the originator of this message. If it receives nhartiple
Master messages originated in the same recovery epoch only the first one is accepted,
all the other ones are discarded. In the long run, this strategy ensures that the stream
with the longest transmission delay eventually becomes masieroverall delay at
timet amounts to the longest transmission delayplis LWM+A, which obviously is
the minimal overall delay that can be achieved at

The possibility of dynamically tuningWWM makes this policy very powerful. By
increasing theWM value the quality but also the overall delay is increased. Con-
versely the quality and delay is decreasetdWM is decreased. Consequenty tun-
ing LWM the user may (interactively) determine the appropriate trddetvieen delay
and intrastream synchronization quality

Not only individual parameters but the entire policy can be changed during presenta-
tion. When changing the policthe server may require knowledge about the state of the
play-out bufers (e.g., current bfdr delay LWM, HWM). For that purpose, the ASP
provides services for requesting faufstate information from clients.

In our opinion, the minimum delay policy described above is the most important one
in practice. Howeverother policies such as “best quality” are conceivable as well.

6 Simulation Results
The section presents some simulation results showing the behavior sftA®&’ con-
trol protocol and discusses results regarding the skew among streams.

500
450
400
350

E.ET ggg Av h Eng-tlo-Enc
2 150 i ‘ | ‘ ‘ ey
w !M M«W MM%AW\’ MVMNJM'\% J‘VWV{VWWMVW\M WM WVJV\W\M “UKV"’MWM il m‘A‘M‘Wl'rarlgsrlnissio
° elay

Fig. 5. Transmission and End-to-End Delay

The simulation of the btdr control protocol is based on delay data measured on the
Internet. Incoming data units have an average transmission delay between 50 and 200
ms with some peeks up to 500 ms (Fig. 5). The data units dexduliin the play-out
buffer of the master stream. Itsdat area is first set torB=100 ms and UTB=200 ms
(Fig. 6). The buer delay is smoothed by the geometric weighting smoothing function
with a set to 0.9. The bidring leads to a constant release RstéFig. 7), which equals
the nominal rat&;. There is no data loss due to late arrival (Fig. 8).

200

180 /\
160 ,,\v/ “\/ N»//\/T\\ Upper Target Boundary
AN W\

'g 140 !
— 120 + A, ™ 'y
g \om VAR et ;‘“; V
2 M. s uffer

2 7 Lower Target \ Pl ANV L\/\/ Delay

40

> | Boundary

260
10260
20239
30163
40163
50163
60163

70163

Time (ms)

Fig. 6. Buffer Level of Master Stream

As mentioned before, ASP supports the adaption of target levels even when a presen-
tation isin progress. By moving the target areato LTB=35 ms and UTB=135 ms, the
overall delay of the played out data units can be reduced by approx. 80 ms (Fig. 6).
However, the quality of the stream is degraded as the loss rate of data units discarded
dueto late arrivalsincreases (approx. 2.5% lost data units). The adaption is performed
in a single adaption phase causing only one Adapt message for each slave stream.

102
10.156
10.1

10.05

R2 (DU/sec)

10

9.95 +

9.9

2600
10260
20239
30163
40163
50163
60163

70163

Time (ms)

Fig. 7. Release Rate of Master Stream

Our simulations have shown that rate correction Ry, is less than 3%. If we assume
the delay for control messages to be less than 500 ms, the skew is bounded by 15 ms +
€ during an adaption phase (see Sec. 4.4). While the master switching protocol isin
progress, the skew bound increasesto 30 ms + € (see Sec. 4.5). Note that during the nor-
mal operation (i.e. no master switching and no adaption phase) the skew is bounded by
€, the maximum inaccuracy of clocks.

35 1

30 | {\\\ J \\\\\\
H\

20 T+
15
10 +

~

2
<

Lost DU/1000

2600

70163

3 3
8 3

10260
20239
30163

Time (ms)

Fig. 8. Losses Dueto Late Arrival (Data Units/ 1000)

7 Summary

ASP achieves interstream synchronization in distributed environments. It adapts to
changing network conditions and allows to tune the quality of data streams to applica-
tion requirements by supporting a wide range of synchronization policies. Stream qual-
ity is improved by reacting on critical situations immediatElyrthermore, by limiting
reactions to critical situations, a considerably low message overhead is achieved. The
simulation results show good performance even if the underlying communication sys-
tem does not guarantee quality of service.

The design of ASP was conducted in the context ofIRemA project [12], [13].
CINEMA is a system platform for developing distributed multimedia applications. We
are currentlyintegrating ASP into th€INEMA system. Future work will be to verify our
simulation results in the context of various applications.

References

[1] N. Agarwal and S. Son. Synchronization of Distributed Multimedia Data in an
Application-Specific MannerProc. ACM Multimedia ‘94 pp. 141-148, 10
1994.

[2] D. Anderson and G. Homsy. Synchronization Policies and Mechanisms in a
Continuous Media I/O ServeReport 91/617, UC Berkelex,1991.

[3] A. Campell, G. Coulson, F. Garcia, and D. Hutchison. A Continuous Media
Transport and Orchestration Servieeoc. SIGCOMM ‘92pp. 99-110, 8 1992.

[4] J. Escobar, C. Partridge, and D. Deutsch. Flow Synchronization ProEt€al.
Transactions on Networking994.

[5] IBM Corp. Multimedia Presentation Manager Programming Reference and
Programming Guide 1.0, IBM Form: S41G-2919-00, S41G-292@3-0992.

[6] T. Kappner, F. Henkel, M. Mdller, and A. Schréer. Synchronisation in einer
verteilten Entwicklungs- und Laufzeitumgebung flr multimediale
Anwendungenlnnovationen bei Rechen- und Kommunikationssystepyen
157-164, 1994.

[7] D. Kdhler and H. Muller. Multimedia Playout Synchronization Using Buffer
Level Control. Intl. Workshop on Advanced Teleservices and High-Speed
Communication Architectures, Heidelberg, Germah$994.

[8] D. Mills. On the Accuracy and Stability of Clocks Synchronized by the Network
Time Protocol in the Internet Syste@omputer Communications Revigup.
65-75, 1990.

[9] Postel. Transmission Control Protocol, DARPA Internet Program, Protocol
SpecificationRFC 7939 1981.

[10] S. Ramanathan and V. Rangan. Continuous Media Synchronization in
Distributed Multimedia System8lOSSDAYV ‘9211 1992.

[11] V. Rangan, S. Ramanathan, and T. K&ppner. Performance of Inter-media
Synchronization in Distributed and Heterogeneous Multimedia Systems.
Computer Networks and ISDN Systefr#93.

[12] K. Rothermel, I. Barth, and T. Helbig. CINEMA - An Architecture for
Distributed Multimedia Applications. IArchitecture and Protocols for High-
Speed Network®. 253-271. Kluwer Academic Publishers, 1994.

[13] K. Rothermel and T. Helbig. Clock Hierarchies: An Abstraction for Grouping
and Controlling Media Stream$o appear in IEEE Journal on Selected Areas
in Communications Synchronization Issues in Multimedia Communications
1996.

