
5th International Workshop on
Network and Operating System Support for Digital Audio and Video
April 18-21, 1995
Durham, New Hampshire, USA

An Adaptive Stream Synchronization Protocol

Kurt Rothermel, Tobias Helbig

University of Stuttgart
Institute of Parallel and Distributed High-Performance Systems (IPVR)

Breitwiesenstraße 20-22, D-70565 Stuttgart, Germany
{rothermel,helbig}@informatik.uni-stuttgart.de

Abstract. Protocols for synchronizing data streams should be highly adaptive
with regard to both changing network conditions as well as to individual user
needs. The Adaptive Synchronization Protocol we are going to describe in this
paper supports any type of distribution of the stream group to be synchronized. It
incorporates buffer level control mechanisms allowing an immediate reaction on
overflow or underflow situations. Moreover, the proposed mechanism is flexible
enough to support a variety of synchronization policies and allows to switch
them dynamically during presentation. Since control messages are only
exchanged when the network conditions actually change, the message overhead
of the protocol is very low.

1 Introduction
In multimedia systems, synchronization plays an important role at several levels of
abstraction. At the data stream level, synchronization relationships are defined among
temporally related streams, such as a lip-sync relationship between an audio and a video
stream. To ensure the synchronous play-out of temporally related streams, appropriate
stream synchronization protocols are required.

Solutions to the problem of data stream synchronization seem to be quite obvious,
especially if clocks are synchronized. Nevertheless, designing an efficient synchroniza-
tion protocol that is highly adaptive with regard to both changing network conditions
and changing user needs is a challenging task. If the network cannot guarantee bounds
on delay and jitter, or a low end-to-end delay is of importance, the protocol should ope-
rate on the basis of the current network conditions rather than some worst case assump-
tions, and should be able to automatically adapt itself to changing conditions. Moreover,
the protocol should be flexible enough to support various synchronization policies, such
as ‘minimal end-to-end delay’ or ‘best quality’. This kind of flexibility is important as
different applications may have totally different needs in terms of quality of service. In
a teleconferencing system, for example, a low end-to-end delay is of paramount impor-
tance, while a degraded video quality may be tolerated. In contrast, in a surveillance
application, one might accept a higher delay rather than a poor video quality.

Protocols for synchronizing data streams can be classified into those assuming the
existence of synchronized clocks and those making no such assumption. The Adaptive
Synchronization Protocol (ASP), we are going to propose in this paper, belongs to the
first class and has the following characteristics:
• ASP supports any distribution of streams to be synchronized, i.e. sources and sinks

may reside on different nodes. Streams may be point-to-point or point-to-multipoint.
• ASP incorporates local buffer control mechanisms. They enable immediate reactions

on changing network conditions. A stream’s play-out rate is adapted when the stream
becomes critical, i.e. when it runs the risk of a buffer underflow or overflow. If several
streams become critical at the same time, each stream immediately may initiate adap-
tions independently from others to improve the intrastream synchronization quality.

• ASP performs rate adaptions only if they are actually required, i.e. only when a
stream becomes critical. Due to this fact, the overhead for exchanging control mes-
sages is almost zero if the streams’ average network delay and jitter are rather stable.

• ASP supports the notion of a master stream, which controls the advance of the other
streams, called slaves. The roles can be changed dynamically during the presentation.

• ASP is a powerful and flexible mechanism that forms the base for various synchroni-
zation policies. A policy is determined by setting a set of parameters and assigning
the master role appropriately. For a chosen policy ASP can be tuned to achieve the
desired trade-off between end-to-end delay and intrastream synchronization quality.
This tuning and even the applied policy can be changed during the presentation.
The remainder of this paper is structured as follows. After a discussion of related

work in the next section, the basic assumptions and concepts of ASP are introduced in
Sec. 3. Then, Sec. 4 presents ASP by describing its protocol elements for start-up, buffer
control, master/slave synchronization and master switching. We show in Sec. 5 how
synchronization policies can be efficiently realized on top of the proposed synchroniza-
tion mechanism, and provide some simulation results illustrating the performance of
ASP in Sec. 6. Finally, we conclude with a brief summary.

2 Related Work
The approaches to stream synchronization proposed in literature differ in the stream
configurations supported. Some of the proposals require all sinks of the synchronization
group to reside on the same node (e.g., Multimedia Presentation Manager [5], ACME
system [2]). Others assume the existence of a centralized server, which stores and
distributes data streams. The scheme proposed by Rangan et al. [10], [11] plays back
stored data streams from a server. Sinks are required to periodically send feedback mes-
sages to the server, which uses these messages to estimated the temporal state of the
individual streams. Since clocks are not assumed to be synchronized, the quality of
these estimations depends on the jitter of feed-back messages, which is assumed to be
bounded. A similar approach has been described in [1], which requires no bounded jitter
but estimates the difference between clocks by means of probe messages.

Both the Flow Synchronization Protocol [4] and the Lancaster Orchestration Service
[3] assume synchronized clocks and support configurations with distributed sinks and
sources. However, neither of the two protocols allows a sink to react immediately when
its stream becomes critical. Moreover, the former protocol does not support the notion
of a master stream, which excludes a number of synchronization policies. Finally, both
schemes do not provide buffer level control concepts at their service interfaces, which
makes the specification of policies more complicated than for ASP.

Some buffer level control schemes have been proposed also. The scheme described
in [7] aims at intrastream synchronization only. In [6], stream quality is defined in terms
of the rate of data loss due to buffer underflow. A local mechanism is proposed that
allows either to minimize the stream’s end-to-end delay or to optimize its quality.

3 Basic Concepts and Assumptions
The set of streams, which are to be played out in a synchronized fashion is calledsyn-
chronization group (or sync group for short). ASP distinguishes between two kinds of
streams, the so-calledmaster andslave streams. Each sync group comprises a single
master stream and one or more slave streams. While the rate of the master stream can
be individually controlled, the ones of the slave streams are adapted according to the
progress of the master stream. The master and slave role can be switched dynamically.

For each sync group there exists a single synchronization server and severalclients,
two for each stream. The server is a software entity that maintains state information and
performs control operations concerning the entire sync group. In particular, it controls
the start-up procedure and the switching of the master role. Moreover, it is this entity
that enforces the synchronization policy chosen by the user. The server communicates
with the clients, which are software entities controlling individual streams. Each stream
has a pair of clients, a sink client and a source client, which are able to start, stop, slow-
down or speed-up the stream. Depending on the type of stream it is controlling, a sink
client either acts as amaster or slave. To achieve interstream synchronization, the mas-
ter communicates with its slaves according to a synchronization protocol.

ASP supports arbitrarily distributed configurations: A sync group’s sources may
reside on different sites, and the same holds for the sinks. The location of the server may
be chosen freely, e.g., it may be located on the node that hosts the most sink clients.

We will assume that control messages are communicated reliably and that the system
clocks of the nodes participating in a sync group are approximately synchronized to
within ε of each other, i.e. no clock value differs from any other by more thanε. Well-
established protocols, such as NTP [8], achieve clock synchronization withε in the
lower milliseconds range.

The basic principle of interstream synchronization adopted by ASP and various other
protocols based on the notion of global time (e.g., [4]) is very simple: Each data unit of
a stream is associated with a timestamp, which defines its media time. To achieve syn-
chronous presentations of streams, the streams’ media time must be mapped to global
time, such that data units with the same timestamp will be played out at the same (glo-
bal) time. Similarly, the sources exploit the existence of synchronized clocks: data units
with the same timestamp are sent at the same (global) time. Different transmission
delays that may exist between different streams are equalized by buffering data units
appropriately at the sink sites.

Our model of stream transmission and buffering is depicted in Fig. 1. The data units
of a stream are produced by a source with anominal rate R1 and are transmitted to one
or more sinks via an unidirectional transmission channel. The transmission channel
introduces a certain delay and jitter, resulting in amodified arrival rate R1’ . At the sink’s
site, data units are buffered in a play-out buffer, from which they are released with a
release rate R2. The release rate, which determines how fast the stream’s presentation
advances, is directly controlled by ASP to manipulate the fill state of the play-out buffer
and to ensure synchrony.

On its way from generation to play-out, a data unit is delayed at several stages. It takes
a data unit atransmission delay dT until it arrives in the buffer at the sink’s site. This
includes all the times for generation, packetization, network transmission and transfer
into the buffer. In the buffer, a data unit is delayed by abuffer delay dB before it is deli-
vered to the sink device. In the sink, a data unit may experience aplay-out delaydS
before it is actually presented.

Fig. 1. Data Stream and Delay Model

R1’R1 M(t)

Play-out Buffer
Transmission

Channel

dT
dB

R2

Source Sink

dS

The media time M(t) specifies the stream’s temporal state of play-out. It is derived
from the timestampTS of the data unit which is the next to be read out from the play-
out buffer and the actualplay-out delay dS of the sink:M(t) = TS - dS. However, the
granularity of media time were too coarse would it simply be based on timestamps. Due
to this fact, media time is interpolated between timestamps of data units to achieve a
finer granularity

4 The Adaptive Synchronization Protocol
ASP can be separated into four rather independent subprotocols. After a brief overview,
the start-up protocol, buffer control protocol, master/slave synchronization protocol,
and master switching protocol are described in detail. It is important to point out, that
this section concentrates on mechanisms, while possible policies exploiting these
mechanisms will be discussed in the next section.

4.1 Overview
The start-up protocol initiates the processing of the sinks and sources in a given sync
group. In particular, it ensures that the sources synchronously start the transmission and
the sinks synchronously start the presentation. Start-up is coordinated by the server,
which derives start-up times from estimated transmission times, selects an initial master
stream depending on the chosen synchronization policy and sends control messages
containing the start-up times to clients.

Thebuffer control protocol is a purely local mechanism, which keeps the fill state of
the master stream’s play-out buffer in a given target area. The determination of the tar-
get area depends on the applied synchronization policy and thus is not subject to this
mechanism. Whenever the fill state moves out of the given target area, the buffer control
protocol regulates the progress of the master stream by manipulating release rateR2
accordingly.

The master/slave synchronization protocol ensures interstream synchronization by
adjusting the progress of slave streams to the advance of the master stream. Processing
of this protocol only involves a sync group’s sink clients, one of them acting as master
and the other ones acting as slaves. Whenever the master changes release rateR2, it
computes for some future point in time, sayt, the master’s media timeM(t), taking into
account the modified value ofR2. Then,M(t) andt are propagated in a control message
to all slaves. When a slave receives such a control message, it locally adjustsR2 in a
way that its stream will reachM(t) at timet. Obviously, this protocol ensures that all
streams are in sync again at timet, within the margins of the accuracy provided by clock
synchronization. Notice that this protocol does not involve the server and is only ini-
tiated when the buffer situation or - in other words - the network conditions have
changed.

The master switching protocol allows to switch the master role from one stream to
another at any point in time. The protocol involves the server and the sink clients,
whereas the server is the only instance that may grant the master role. Switching the
master role may become necessary when the user changes its synchronization policy or
some slave stream enters a critical state, i.e. runs the risk of having a buffer underflow
or overflow. A nice property of this protocol is that a critical slave can react immediately
by becoming a so-called tentative master, which is allowed to adjustR2 accordingly.
The protocol takes care of the fact that there may be a master and several tentative mas-
ters at the same point in time and makes sure that the sync group eventually ends up
with a single master.

4.2 Start-up Protocol
Our start-up procedure is very similar to that described in [4]. The server initializes the
synchronous start-up of a sync group’s data streams by sendingStart messages to each
sink and source client. EachStart message contains besides other information a start-up
time. All source clients receive the same start-up time, at which they are supposed to
start transmitting data units. Similarly, all sink clients receives the same start-up time,
which tells them when to start the play-out process.

Starting clients simultaneously requires theStart messages to arrive early enough.
The start-up timet0 of sources is derived from the current timetnow, the message trans-
mission delaydm experienced byStart messages, and processing delaysdproc at the
server site:t0 = tnow + dm + dproc. Start-up of sinks is delayed by an additional time to
allow the data units to arrive at the sinks’ locations and to preload buffers. This delay,
called expected delaydexp, is computed from average delaysdave,i of the sync group’s
streams and the buffer delaydpre,i caused by preloading: dexp = max (dave,i + dpre,i),
wheredpre,i primarily depends on streami’s jitter characteristic. We assume some infra-
structure component that provides access to the needed jitter and delay parameters.

A Start message sent to a source client (at least) contains start timet0 and the nominal
rateR1. Start received by a sink encompasses the start timet0 + dexp, the release rateR2
= R1 and a flag assigning the initial role (i.e. master or slave). Furthermore, it includes
some initial parameters concerning the play-out buffer: the low water mark, high water
mark and - in case of the master stream - the initial target area (see below).

Each client starts stream transmission or play-out at the received start-up time. There-
fore, the start-up asynchrony is bounded by the inaccuracy of clock synchronization
providedStart messages arrive in time. However, even if someStart messages are too
late, ASP is able to immediately resynchronize the ‘late’ streams.

4.3 Buffer Control Protocol
Before describing the protocol, we will take a closer look at the play-out buffer. The
parameterdB(t) denotes the smoothed buffer delay at current timet. The buffer delay at
a given point in time is determined by the amount of buffered data. In order to filter out
short-term fluctuations caused by jitter, some smoothing function is to be applied. ASP
does not require a distinct smoothing function. Some examples are the geometric
weighting smoothing function [9]: dB(ti) = α dB(ti-1)+ (1-α) ActBufferDelay(t), or the
Finite Impulse Response Filter as used in [7].

For each play-out buffer a low water mark (LWM) andhigh water mark (HWM) is
defined. WhendB(t) falls underLWM or exceedsHWM, there is the risk of underflow
or overflow, respectively. Therefore, we will call the buffer areas belowLWM and above
HWM thecritical buffer regions. As will be seen below, ASP takes immediate correc-
tive measures whendB(t) moves into either one of the critical buffer regions. Note that
the quality of intrastream synchronization is primarily determined by theLWM and
HWM values (for details see Sec. 5).

The buffer control protocol is executed locally at the sink site of the master stream.
Its only purpose is to keepdB(t) of the master stream in a so-calledtarget area, which
is defined by anupper target boundary (UTB) and alower target boundary (LTB).
Clearly, the target area must not overlap with a critical buffer region. The location and
width of the target area is primarily determined by the chosen synchronization policy.
For example, to minimize the overall delay the target should be close toLWM.

The buffer delaydB(t) may float freely between the lower and upper target boundary
without triggering any rate adaptions. Changing transmission delays (or a modification

of the target area requested by the server) may causedB(t) to move out of the target area.
When this happens, the master enters a so-calledadaption phase, whose purpose is to
movedB(t) back into the target area.

At the beginning of the adaption phase, release rateR2 is modified accordingly. The
adapted release rate isR2 + Rcorr, whereRcorr = (dB(t) - (LTB + (UTB-LTB)/2)) / L.
LengthL of the adaption phase determines how aggressively the algorithm reacts. At
the end of the adaption phase, it is checked whether or notdB(t) is within the target area.
If it is in the target area,R2 is set back to its previous value, the nominal rateR1. Other-
wise, the master immediately enters a new adaption phase.

In order to keep the slave streams in sync, each adaption of the master stream has to
be propagated to the slave streams. This is achieved by the protocol described next.

4.4 Master/Slave Synchronization Protocol
The master/slave synchronization protocol ensures that the slave streams are played out
in sync with the master stream. This protocol is initialized whenever the master (or a
tentative master as will be seen in the next section) modifies its release rate. Protocol
processing involves all sink clients, each of which acts either as master or slave.

Whenever it enters an adaption phase, the master performs the following operations.
First, it computes the so-called target media time for this adaption phase, which is
defined to be the media time the master stream will reach at the end of this phase.
Assume that the adaption phase starts at real-timets and is of lengthL. Then the target
media time isM(ts+L) = M(ts) + L⋅(R2 + Rcorr). Subsequently, the master propagates
anAdapt message to each slave in the sync group. This message includes the following
information: end timete=ts+L of the adaption phase, target media timeM(te) at the end
of the adaption phase, and a structured timestamp for ordering competingAdapt mes-
sages (see next section).

When a slave receives anAdapt message, it immediately enters the adaption phase by
modifying its release rateR2 according to the received target media time (see Fig. 3).
The modified release rate isR2 = (M(te)-M (ta)) / (te - ta), whereta denotes the time at
which the slave receivedAdapt. At time te (i.e. at the end of the adaption phase),R2 is
set back to its previous value, the nominal stream rate. Obviously, this protocol ensures
that at the end of each adaption phase all streams in the sync group reach the same target
media time at the same point in real-time. Between two adaption phases, streams stay
in sync as their nominal release rates are derived from global time.

As with all synchronization schemes based on the notion of global time, skew among
sinks is introduced by the inaccuracy of synchronized clocks, which is assumed to be
bounded byε. In our protocol, an additional source of skew is the adaption of release
rates at different points in time. The worst case skewSmax during the adaption phase of

Fig. 2. Buffer Delay Adaption

Buffer
Delay
dB(t)

Time t
ts

Target Area

ts+L

UTB

LTB

Adaption Phase

HWM

LWM

the master depends on transfer timedm of theAdapt message and master stream’s cor-
rection rateRcorr: Smax = dm⋅|Rcorr| + ε. Between adaption phases, the skew is bounded
by ε.

4.5 Master Switching Protocol
We distinguish between two types of master switching. The first type of switching,
calledpolicy-initiated, is performed whenever (a change in) the synchronization policy
requires a new assignment of the master role. In this case, the server, which enforces the
policy, performs the switching just by sending aGrantMaster message to the new mas-
ter and aQuitMaster message to the old master. GrantMaster specifies the target buffer
area of the new master, which is determined by the server depending on the chosen
policy. With this simple protocol it may happen that for a short period of time there exist
two masters, which both propagateAdapt messages. Our protocol prevents inconsisten-
cies by performingAdapt requests in timestamp order (see below).

The second type of switching isrecovery-initiated. The slave initiates recovery when
its stream becomes critical. A stream is called critical if its current buffer delay is in a
critical region and (locally) no rate adaption improving the situation is in progress. An
appealing property of our protocol is that a slave can immediately initiate recovery
when its stream becomes critical: First, the slave makes a transition to a so-called ten-
tative master (or t-master for short) and informs the server by sending anIamT-Master
message. Then - without waiting on any response - it enters the adaption phase to move
its buffer delay out of the critical region by adaptingR2 accordingly. In order to keep
the other streams in sync, it propagates anAdapt request to all other sink clients, inclu-
ding the master. At the end of the adaption phase, a t-master falls back in the slave role.
Should the stream still be critical by this time, then the recovery procedure is initiated
once more.

Obviously, our protocol allows multiple instances to propagateAdapt concurrently,
which may cause inconsistencies leading to the loss of synchronization if no care is
taken. As already pointed out above, policy-initiated switching may cause the new mas-
ter to sendAdapt messages while the old master is still in place. Moreover, at the same
point in time, there may exist any number of t-masters propagatingAdapt requests con-
currently. It should be clear that stream synchronization can be ensured only ifAdapt
messages are performed in the same order at each client. This requirement can be ful-
filled by including a timestamp inAdapt requests and performing these requests in
timestamp order at the client sites. The latter means that a client accepts anAdapt
request only if it is younger than all other requests received before. Older requests are
just discarded.

Fig. 3. Master/Slave Synchronization

ta

M(te)

M(ta)

Message Transfer Time dm Time t

ts te

Media Time
M(t)

Master Stream

Maximum Skew
before Reaction

Adaption Phase

Slave Stream

However, performing requests in some timestamp order is not sufficient. Assume, for
example, that the master and some t-master propagateAdapt requests at approximately
the same time, and the former requests an increase of the release rate, while the latter
requests a decrease. For some synchronization policies, this might be a very common
situation (see for example the minimum delay policy described in the next section). If
the timestamps were solely based on system time and the master would perform the
propagation slightly after the t-master, then the t-master’s request would be wiped out,
although it is the reaction on a critical situation and hence is more important. The sta-
bility of the algorithm can only be guaranteed if recovery actions are performed with
the highest priority.1 Consequently, the timestamping scheme defining the execution
order ofAdapt requests must take into account the ‘importance’ of requests.

The precedence ofAdapt requests sent at approximately the same time is given by the
following list in increasing order: (1) requests of old masters (2) requests of the new
master (3) requests of t-masters. We apply a structured timestamping scheme to reflect
this precedence of requests. In this scheme, a timestamp has the following structure:
<ER.EM.T>, whereER denotes arecovery epoch, EM designates amaster epoch, andT
is the real-time when the message tagged with this timestamp was sent. A new recovery
epoch is entered when a slave performs recovery, while a new master epoch is entered
whenever a new master is selected. As will be seen below, entering a new recovery
epoch requires a new master to be selected.

Each control message contains a structured timestamp, which is generated before the
message is sent on the basis of two local epoch counters and the local (synchronized)
clock. The server and the clients keep track of the current recovery and master epoch by
locally maintaining two epoch counters. Whenever they accept a message whose time-
stamp contains an epoch value greater than the one recorded locally, the corresponding
counter is set to the received epoch value. Moreover, a client increments its local reco-
very epoch counter when it performs recovery, i.e. theIamT-Master message sent to the
server already reflects the new recovery period. The server increments its master epoch
counter when it selects a new master, i.e. theGrantMaster message already indicates
the new master epoch.

Adapt requests are accepted only in strict timestamp order. Should a client receive two
requests with the same timestamps, total ordering is achieved by ordering these two
request according to the requestors’ unique identifiers included in the messages. As a
slave performing recovery enters a new recovery epoch, allAdapt request generated by
some master in the previous recovery epoch are wiped out. Similarly, selecting a new
master enters a new master epoch, and by this wipes out allAdapt request from former
masters. When a master receives anAdapt request indicating a younger master or reco-
very epoch, it can learn from this message that there exists a new master or a t-master
performing recovery, respectively. In both cases, it immediately gives up the master role
and becomes a slave.

As already mentioned above, a critical slave sends anIamT-Master message when it
becomes a t-master. When the server receives such a message indicating a new recovery
epoch, it must select a new master. Which stream becomes the new master, primarily
depends on the synchronization policy chosen. For example, the originator of theIamT-
Master message establishing a new recovery epoch may be granted the master role. All
other messages of this type belonging to the same recovery epoch are just discarded

1.We assume that at no point in time there exist two t-masters that try to adapt the release rate in
contradicting directions, i.e. one tries to increase the rate while the other tries to decrease it.
This is achieved by dimensioning the play-out buffer appropriately.

upon arrival (see Fig. 4).

The worst case skewSmax among sinks can be observed when master and a t-master
decide to adapt their release rates in opposite directions at approximately the same time.
Smax can be shown to bedm ⋅ (|Rcorr, master| + |Rcorr, t-master|) + ε, wheredm denotes the
transmission delay ofAdapt messages.

5 Synchronization Policies
ASP has many parameters for tuning the protocol to the characteristics of the underlying
system as well as to the quality of service expected by the given application. A discus-
sion of all these parameters would go far beyond the scope of this paper. Therefore, we
will focus on the most important parameters, in particular those influencing the syn-
chronization policy: the low and high water mark, the width of the target area and its
placement in the play-out buffer, as well as the rules for granting the master role.

The intrastream synchronization quality in terms of data loss due to underflow or
overflow is primarily influenced by theLWM andHWM values. A good rule of thumb
for the width of the critical regions defined by these two parameters isj/2 for each,
where j denotes the jitter of the corresponding data stream. IncreasingLWM also
increases the quality as the probability of underflow is reduced. On the other hand, this
modification may also increase the overall delay, which might be critical for the given
application. ASP allows to modifyLWM andHWM values while the presentation is in
progress. For example, it is conceivable that a user interactively adjusts the stream qua-
lity during play-out. Alternatively, an internal mechanism similar to the one described
in [6] may monitor the data loss rate and adjusts the water marks as needed.

The width of the target buffer area determines the aggressiveness of the buffer control
algorithm. The minimum width of this area depends on the smoothing function applied
to determinedB(t). The larger the width of the target area, the less adaptions of the
release rate are required. Rather constant release rates require almost no communication
overhead for adapting slaves. On the other hand, with a large target area there is only
limited control over the actual buffer delay. If, for example, the actual buffer delay has
to be kept as close as possible to theLWM to minimize the overall delay, a small target
area is the better choice.

The location of the target area in the buffer together with the way how the master role
is granted are the major policy parameters of ASP. This will be illustrated by the mini-
mum delay policy.

The goal of theminimum delay policy is to achieve the minimum overall delay for a

Fig. 4. Recovery-initiated Master Switching

GrantMaster

Server Client 2 Client 3

discard
message

grant
master

Client 1

critical

criticalIamT-Master

IamT-Master

Adapt

Adapt Adapt

Adapt

SLAVE

T-MASTER

MASTER

given intrastream synchronization quality. To reach this goal the stream with the cur-
rently longest transmission delay is granted the master role, and this stream’s buffer
delay is kept as close as possible toLWM. The target area for the master is located as
follows: LTB = LWM andUTB = LWM + ∆, where∆ is the jitter ofdB(t) after smooth-
ing.

Due to changing network conditions it may happen that the transmission delay of a
slave stream surpasses the one of the master. This will cause the slave’s buffer delay to
fall below itsLWM triggering recovery. When the server receives anIamT-Master mes-
sage it grants the master role the originator of this message. If it receives multipleIamT-
Master messages originated in the same recovery epoch only the first one is accepted,
all the other ones are discarded. In the long run, this strategy ensures that the stream
with the longest transmission delay eventually becomes master. The overall delay at
time t amounts to the longest transmission delay att plusLWM+∆, which obviously is
the minimal overall delay that can be achieved att.

The possibility of dynamically tuningLWM makes this policy very powerful. By
increasing theLWM value the quality but also the overall delay is increased. Con-
versely, the quality and delay is decreased ifLWM is decreased. Consequently, by tun-
ing LWM the user may (interactively) determine the appropriate trade-off between delay
and intrastream synchronization quality.

Not only individual parameters but the entire policy can be changed during presenta-
tion. When changing the policy, the server may require knowledge about the state of the
play-out buffers (e.g., current buffer delay, LWM, HWM). For that purpose, the ASP
provides services for requesting buffer state information from clients.

In our opinion, the minimum delay policy described above is the most important one
in practice. However, other policies such as “best quality” are conceivable as well.

6 Simulation Results
The section presents some simulation results showing the behavior of ASP’s buffer con-
trol protocol and discusses results regarding the skew among streams.

The simulation of the buffer control protocol is based on delay data measured on the
Internet. Incoming data units have an average transmission delay between 50 and 200
ms with some peeks up to 500 ms (Fig. 5). The data units are buffered in the play-out
buffer of the master stream. Its target area is first set to LTB=100 ms and UTB=200 ms
(Fig. 6). The buffer delay is smoothed by the geometric weighting smoothing function
with α set to 0.9. The buffering leads to a constant release rateR2 (Fig. 7), which equals
the nominal rateR1. There is no data loss due to late arrival (Fig. 8).

Fig. 5. Transmission and End-to-End Delay

Transit and End-to-End Delay

Time [ms]

De
la

y
[m

s]

0

50

100

150

200

250

300

350

400

450

500

26
0

10
26

0

20
23

9

30
16

3

40
16

3

50
16

3

60
16

3

70
16

3

End-to-End
Delay

Transmission
Delay

As mentioned before, ASP supports the adaption of target levels even when a presen-
tation is in progress. By moving the target area to LTB=35 ms and UTB=135 ms, the
overall delay of the played out data units can be reduced by approx. 80 ms (Fig. 6).
However, the quality of the stream is degraded as the loss rate of data units discarded
due to late arrivals increases (approx. 2.5% lost data units). The adaption is performed
in a single adaption phase causing only one Adapt message for each slave stream.

Our simulations have shown that rate correction Rcorr is less than 3%. If we assume
the delay for control messages to be less than 500 ms, the skew is bounded by 15 ms +
ε during an adaption phase (see Sec. 4.4). While the master switching protocol is in
progress, the skew bound increases to 30 ms + ε (see Sec. 4.5). Note that during the nor-
mal operation (i.e. no master switching and no adaption phase) the skew is bounded by
ε, the maximum inaccuracy of clocks.

Fig. 6. Buffer Level of Master Stream

Fig. 7. Release Rate of Master Stream

Fig. 8. Losses Due to Late Arrival (Data Units / 1000)

Buffer Delay

Time [ms]

Bu
f. D

el
ay

 [
m

s]

0

20

40

60

80

100

120

140

160

180

200
26

0

10
26

0

20
23

9

30
16

3

40
16

3

50
16

3

60
16

3

70
16

3

Upper Target Boundary

Lower Target
Boundary

Buffer
Delay

Release Rate R2

Time [ms]

R2
 [D

U/
se

c]

9.9

9.95

10

10.05

10.1

10.15

10.2

26
0

10
26

0

20
23

9

30
16

3

40
16

3

50
16

3

60
16

3

70
16

3

Loss Rate (per thousand)

Time [ms]

Lo
st

DU
/1

00
0

0

5

10

15

20

25

30

35

26
0

10
26

0

20
23

9

30
16

3

40
16

3

50
16

3

60
16

3

70
16

3

7 Summary
ASP achieves interstream synchronization in distributed environments. It adapts to

changing network conditions and allows to tune the quality of data streams to applica-
tion requirements by supporting a wide range of synchronization policies. Stream qual-
ity is improved by reacting on critical situations immediately. Furthermore, by limiting
reactions to critical situations, a considerably low message overhead is achieved. The
simulation results show good performance even if the underlying communication sys-
tem does not guarantee quality of service.

The design of ASP was conducted in the context of theCINEMA project [12], [13].
CINEMA is a system platform for developing distributed multimedia applications. We
are currently integrating ASP into theCINEMA system. Future work will be to verify our
simulation results in the context of various applications.

References
[1] N. Agarwal and S. Son. Synchronization of Distributed Multimedia Data in an

Application-Specific Manner.Proc. ACM Multimedia ‘94,pp. 141–148, 10
1994.

[2] D. Anderson and G. Homsy. Synchronization Policies and Mechanisms in a
Continuous Media I/O Server.Report 91/617, UC Berkeley,2 1991.

[3] A. Campell, G. Coulson, F. Garcia, and D. Hutchison. A Continuous Media
Transport and Orchestration Service.Proc. SIGCOMM ‘92, pp. 99–110, 8 1992.

[4] J. Escobar, C. Partridge, and D. Deutsch. Flow Synchronization Protocol.IEEE
Transactions on Networking, 1994.

[5] IBM Corp. Multimedia Presentation Manager Programming Reference and
Programming Guide 1.0, IBM Form: S41G-2919-00, S41G-2920-00, 3 1992.

[6] T. Käppner, F. Henkel, M. Müller, and A. Schröer. Synchronisation in einer
verteilten Entwicklungs- und Laufzeitumgebung für multimediale
Anwendungen.Innovationen bei Rechen- und Kommunikationssystemen, pp.
157–164, 1994.

[7] D. Köhler and H. Müller. Multimedia Playout Synchronization Using Buffer
Level Control. Intl. Workshop on Advanced Teleservices and High-Speed
Communication Architectures, Heidelberg, Germany, 9 1994.

[8] D. Mills. On the Accuracy and Stability of Clocks Synchronized by the Network
Time Protocol in the Internet System.Computer Communications Review, pp.
65–75, 1990.

[9] Postel. Transmission Control Protocol, DARPA Internet Program, Protocol
Specification.RFC 793, 9 1981.

[10] S. Ramanathan and V. Rangan. Continuous Media Synchronization in
Distributed Multimedia Systems. NOSSDAV ‘92, 11 1992.

[11] V. Rangan, S. Ramanathan, and T. Käppner. Performance of Inter-media
Synchronization in Distributed and Heterogeneous Multimedia Systems.
Computer Networks and ISDN Systems, 1993.

[12] K. Rothermel, I. Barth, and T. Helbig. CINEMA - An Architecture for
Distributed Multimedia Applications. In Architecture and Protocols for High-
Speed Networks, p. 253–271. Kluwer Academic Publishers, 1994.

[13] K. Rothermel and T. Helbig. Clock Hierarchies: An Abstraction for Grouping
and Controlling Media Streams. To appear in IEEE Journal on Selected Areas
in Communications - Synchronization Issues in Multimedia Communications,
1996.

