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Abstract: Stream synchronization is widely regarded as a fundamental problem in
the field of multimedia systems. Solutions to this problem can be divided into adap-
tive and rigid mechanisms. While rigid mechanisms are based on worst-case
assumptions, adaptive ones monitor the underlying network and are able to adapt
themselves to changing network conditions.
In this paper, we will present an adaptive stream synchronization protocol. This pro-
tocol supports any kind of distribution of the sources and sinks of the streams to be
synchronized. It is based on a buffer level control mechanism, allowing immediate
corrections when the danger of a buffer overflow or underflow is recognized. More-
over, the proposed protocol is flexible enough to support a wide variety of synchro-
nization policies, which can be dynamically changed while synchronization is in
progress. Finally, the message overhead of this protocol is low because control mes-
sages are only exchanged when network conditions change.

Keywords: distributed systems, communication networks, multimedia, stream syn-
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1 INTRODUCTION

The evolution of broadband networks and multimedia technologies have significantly contri-

buted to the emergence of new multimedia applications, integrating various media types, such

as text, graphics, audio and video. These data typically possess timeliness requirements with

respect to their presentation. Media synchronization mechanisms are needed to assure the cor-

rect temporal alignment of such time-critical activities.

Media synchronization can be divided into event-based synchronization and stream (or conti-

nuous) synchronization. While event-based synchronization refers to synchronization activities

performed in response to events such as user interaction, stream synchronization is an on-going

commitment to a repetitive pattern of event-based synchronization relationships, such as a ‘lip

sync’ relationship between the individual data units in an audio and video stream (Campell

et al., 1992). The stream synchronization can be further subdivided into intra-stream synchro-

nization and inter-stream synchronization. While the former refers to preserving temporal rela-
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helbig@pfa.philips.de



1 INTRODUCTION 2

tionships of data within a stream, the latter deals with the temporal dependencies across streams.

Intra-stream synchronization is concerned with a single stream. A source of a stream produces

data units and transmits them over a transmission path to one or more sinks. The transmission

path inevitably introduces some variation in the delay of each delivered data unit, which tradi-

tionally has been called jitter. Intra-stream synchronization requires the jitter to be removed

before playing out the data units, which is done by buffering the incoming data. A data unit is

rendered at a designated play-out point, and is buffered if it arrives before this point. Data arri-

ving after the associated play-out point is useless in reconstructing the corresponding real-time

signal.

Multimedia applications have been classified into adaptive and rigid applications (Clark

etal., 1992). The latter class of applications use ana priori transfer delay bound advertised by

the underlying network to set the play-out point. The play-out point is kept fixed regardless of

the actual delay experienced. In contrast, for adaptive applications the sink measures the trans-

fer delay experienced by arriving data units and then adaptively moves the play-out point to the

minimum delay that still produces a sufficiently low loss rate.

Rigid applications are typically based on a so-called guaranteed (or deterministic) service

(Ferrari,1990a, Ferrari,1990b), whose service commitment is based on a worst-case analysis.

Adaptive applications will generally have an earlier play-out point than rigid applications and

hence will have a shorter end-to-end delay. This is because the application’s estimate of thepost

facto bound on actual delay will likely be less than thea priori bound pre-computed by the

underlying network (Clark etal., 1992). On the other hand, the loss rate of adaptive applications

is likely to be higher as they depend on the assumption that the transfer delay in the near future

will be “similar” to the one in the recent past. Any violation of this assumption in the direction

of increased delays may cause data units missing the play-out point. Though the application will

then immediately adapt the play-out point accordingly, it may momentarily experience data

loss. Note that the notion of “similar” leaves room for tuning adaptive protocols. The more

“similar” delays may differ, the more data has to be buffered and the bigger is the end-to-end

delay.

There is a need for both classes of applications. Applications that cannot tolerate any service

interruption, such as a remote surveillance system or tele-medicine, will be typically rigid. On

the other hand, if the application performance is sensitive to the end-to-end delay and a briefly

degraded quality is tolerable then the application should be adaptive. For example, end-to-end

delay is crucial in most CSCW applications because there is often real-time interaction between

the participants of a session. For many of those applications, a short end-to-end delay is more
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important than a perfect data delivery. They often can tolerate the loss of a certain fraction of

data units with only a minimum distortion of the real-time signal.

Inter-stream synchronization determines the play-out points for a group of data streams, based

on the temporal relationships existing between the group members. To ensure that a stream

group is played out synchronously, temporally related data units are to be associated with the

same play-out point. Adaptive inter-stream synchronization protocols monitor the actual trans-

fer delay of each of the group’s streams and are able to synchronously adapt the play-out point

for every group member to reflect changes in network conditions. In this paper, we will present

an adaptive protocol for inter-stream and intra-stream synchronization. This protocol, called

Adaptive Synchronization Protocol (ASP), has the following major characteristics:

• Distributed sources and sinks

ASP supports any kind of distribution of the group of streams to be synchronized. The

streams of a group may originate from sources residing on different nodes and may be

played out at sinks located at various nodes. The individual streams may be point-to-point

or point-to-multipoint.

• Immediate reactions on changing network conditions

ASP monitors the actual transfer delay indirectly by means of a buffer control mechanism

and adapts the play-out point only when a stream becomes critical. A stream is defined to

becritical if it runs the risk of a buffer underflow or overflow. A nice property of our algo-

rithm is that each stream may immediately adapt its play-out point when it becomes critical.

Allowing streams to react immediately in critical situations may decrease the loss rate sig-

nificantly.

• Low message overhead

ASP only exchanges control messages when adaptions are to be performed due to changing

network conditions or quality of service requirements. Consequently, there is basically no

message overhead if network conditions and QoS requirements are rather stable over time.

The significant reduction of the message overhead for synchronizing streams is achieved

by making the transition from a periodic exchange of the streams’ state information to

reacting on changing conditions only.

• Flexibility

ASP is a flexible mechanism that can form the base for various synchronization policies,

such as a “minimum delay” and “minimum loss” policy. It allows an application to dyna-

mically adjust the quality of service perceived by an end-user. In particular, an application

can individually adjust protocol parameters to achieve the desired trade-off between end-
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to-end delay and data loss rate and can modify these parameters even while synchronization

is in progress.

The remainder of the paper is structured as follows. After introducing the basic principles of

ASP in Section 2, the actual synchronization mechanism is described in Section 3. The proposed

mechanism can be adapted to various application needs and forms the basis for different syn-

chronization policies. This is discussed in Section 4. The stability aspects and buffer require-

ments are treated in Section 5. A discussion of simulation results and performance measure-

ments is given in Section 6. The paper concludes with a discussion of related work and a

summary.

2 BASIC PRINCIPLES AND CONCEPTS

The existence of synchronized clocks not only simplifies media synchronization significantly

but also allows for more efficient solutions. Some of the protocols based on synchronized clocks

use global time only for the timing of control operations, such as starting, stopping or adjusting

a group of streams at the same point in global time (e.g., see (Campell etal., 1992)). Others

additionally use global time as the temporal basis for scheduling the play-out of data units (e.g.,

see (Escobar etal., 1994)). In this section, we will introduce the basic principles of the latter

class of synchronization protocols. Before, however, we have to introduce some terminology.

The set of streams, which are to be played out in a synchronized fashion is calledsynchroniza-

tion group (or sync group for short). For each sync group there exist a single synchronization

controller and severalagents(see Figure 1). The controller is a software entity that maintains

state information and performs control operations concerning the entire sync group. In particu-

lar, it controls the start-up procedure, and enforces the synchronization policy chosen by the

user. The controller communicates with the agents, which are software entities controlling indi-

vidual streams. For each stream there exist a sink agent and a source agent, which commonly

realize the functionality for starting and stopping the stream as well as modifying the stream’s

play-out rate. Sink agents may communicate with each other in order to adapt play-out points.

Figure 1 : System Model
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We are considering continuous data streams, which may originate from live or stored media

sources. For the sake of simplicity, we will assume relative timestamping, i.e., the timestamp of

a stream’s first data unit is zero, and all succeeding data units are timestamped relative to time

zero.

The basic principle of stream synchronization adopted by ASP and other protocols exploiting

synchronized clocks is fairly simple. All source agents in the sync group start sending data units

at the same time, sayt0. A data unitu is sent at timet0 + TS(u), where TS(u) denotes the time-

stamp associated withu. Each sink in the sync group starts the presentation of its stream at time

t0+ ∆. Each data unitu is played-out at timet0 + ∆ + TS(u), which isu’s play-out point. Clearly,

∆ must be big enough to allow at least the first data unit of each stream to arrive at its sink by

time t0 + ∆. Roughly speaking, ∆ determines the end-to-end delay of a sync group:∆ = max(di:

i in sync group), wheredi denotes the delay of stream i. Since different streams may have dif-

ferent transfer delays, buffering is required at the sink sites. Data units arriving beforet0 + ∆ are

buffered, which means that different transfer delays are equalized by means of buffering. This

principle is typically used for the synchronization of live streams, but may also be applied to the

retrieval of stored data.

In the case of non-adaptive protocols,∆ is determined during protocol initialization and then it

is fixed afterwards. Note, this approach implies that worst-case assumptions are made about

stream delays, which results in a worst-case end-to-end delay for the sync group, independent

of the actual delays. If∆ is fixed, the synchronization mechanism is trivial. All that has to be

done is to start the transfer and the presentation of the streams in the way described above. Once

started, the streams remain in sync because play-out times are derived from global time, i.e. no

control messages have to be transferred after initialization. The message overhead caused by the

underlying clock synchronization mechanism is amortized among all applications making use

of synchronized clocks.

With adaptive protocols,∆ is based on the actual stream delays rather than worst-case assump-

tions. Stream delays are monitored and∆ is adapted in response to delay changes. Moreover,

the quality of service (QoS) can be changed dynamically. By increasing∆, the probability of

data loss due to late arrival of data units is decreased, whereas the end-to-end delay is increased.

Conversely, decreasing∆ increases the loss probability and decreases the end-to-end delay.

Adaptive protocols are a bit more complex than non-adaptive ones. In addition to deriving a

common∆ for the streams to be synchronized, adaptive protocols need to have functions for

controlling the adaption process, which may be distributed over several sink sites. Those func-

tions monitor stream delays, react on changing QoS demands, and trigger adaptions as needed.

Of course, adaptions have to be performed in a coordinated fashion to preserve synchronization.
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In particular, all streams in a sync group have to agree on a new∆ value and switch to it without

losing synchronization.

In ASP, adaptions are coordinated by adynamic master/slave algorithm. Each sink agent

monitors the transfer delay by controlling the stream’s play-out buffer. During normal opera-

tion, there is one stream responsible for adapting∆, the so-calledmaster stream. The master’s

decision of when and how to adapt is entirely based on its local monitoring. Whenever the mas-

ter’s sink agent decides to change∆, it propagates its decision to the sink agents of all the other

streams in the sync group, the so-calledslave streams. The algorithm is dynamic in the sense

that whenever a slave stream becomes critical, it may immediately become a master and per-

form the appropriate adaptions. Obviously, with this algorithm it may happen that there exist

multiple masters at the same time. Our protocol is able to handle those situations without losing

synchronization and ensures that after a certain recovery period the sync group ends up with a

single master stream.

Our model of stream transmission and buffering is depicted in Figure 2. The data units of a

stream are produced by a source with anominal rate R1 and are transmitted to one or more sinks

over a unidirectional transmission path. We will use a transmission path as an end-to-end

abstraction describing the flow of data between end-points of applications. In this sense, a trans-

mission path may be a communication channel (e.g., a transport connection) directly linking a

source with a set of sinks, or it may represent a sequence of processing elements, such as codecs,

mixers or filters, connected with each other by communication channels. Before the data units

are played out, they are stored in aplay-out buffer at the sink’s site. From this buffer, data units

are released with arelease rate R2.

With ASP, ∆ is modified by increasing or decreasing release rateR2 for a certain amount of time.

During normal operationR2 equalsR1. In order to increase∆, ASP decreasesR2 for a period of

time, causing an increase in buffer delay. Conversely, increasingR2 results in a decrease of∆.

Sinks must be able to adapt to changing release rates. Either a sink can adapt its consumption

Figure 2 : Data Stream and Delay Model
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rate accordingly, or adaptions are achieved by means of skipping or duplicating data units

(Anderson and Homsy, 1991). Also media-specific methods are conceivable, such as adjusting

silent periods in voice data streams.

On its way from generation to play-out, a data unit is delayed at several stages. It takes a data

unit atransfer delay dT until it arrives in the buffer at the sink’s site. This includes all the times

for generation, communication, processing, as well as the transfer into the buffer. In the buffer,

a data unit is delayed by abuffering delay dB before it is delivered to the sink device. In the sink,

a data unit experiences aplay-out delay dS before it is actually presented. The time from the

generation to the presentation is theend-to-end delay.

Themedia time M(t)specifies the stream’s temporal state of play-out. It is derived from time-

stamp TS of the data unit that is next to be released from the play-out buffer: M(t) = TS -dS.

However, the granularity of media time were too coarse would it simply be based on time-

stamps. Therefore, media time is interpolated between timestamps of data units to achieve the

required granularity.

We will assume that control messages are communicated reliably. The required level of reliabi-

lity is typically provided by virtual circuits or reliable datagrams. Further, it is assumed that the

system clocks of the nodes participating in a sync group are approximately synchronized to

within ε of each other, i.e. no clock value differs from any other by more thanε. Well-estab-

lished protocols, such as the Network Time Protocol (Mills,1990), achieve clock synchroniza-

tion with ε in the lower milliseconds range.

3 THE ADAPTIVE SYNCHRONIZATION PROTOCOL

This section presents the Adaptive Synchronization Protocol (ASP), which can be separated

into four rather independent subprotocols. After a brief overview, we will describe each of these

protocols in detail. It is important to mention, that this section concentrates on mechanisms,

while possible policies exploiting these mechanisms will be discussed in the next section.

3.1  Overview of the Protocols

ASP consists of the following four subprotocols: the start-up protocol, buffer control protocol,

master/slave synchronization protocol, and master switching protocol. Thestart-up protocol

initiates the data transmission at the sources and the play-out process at the sinks. Start-up is

coordinated by the controller, which derives start-up times from estimated transmission times,

selects an initial master stream depending on the chosen synchronization policy and sends con-
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trol messages containing the start-up times to the agents.

Thebuffer control protocol is a purely local mechanism, performed by the master stream’s sink

agent to keep the play-out buffer delay in a given target area. The determination of the target

area depends on the applied synchronization policy and thus is not subject to this mechanism

itself. Whenever the buffer delay moves out of the given target area, the buffer control protocol

regulates the master’s release rate accordingly. It is this protocol that adjusts the play-out point

of the master stream when network conditions or QoS requirements change.

Themaster/slave synchronization protocol is initiated whenever the master stream’s release rate

is adjusted by the above protocol. To ensures inter-stream synchronization, the sink agent of the

master stream propagates an appropriate specification of this adjustment to the sink agents of

all slave streams. Upon receipt of this information, an agent adjusts the release rate of its slave

stream accordingly. It is this protocol that makes sure that play-out points are adjusted consis-

tently across all streams in the sync group.

Themaster switching protocolallows to switch the master role from one stream to another at

any point in time. The protocol involves the sink agents and the controller, which is responsible

for granting the master role. Switching the master role becomes necessary when some slave

stream enters the critical state. A critical slave becomes a so-called tentative master, whose

release rate can be adjusted immediately. The protocol takes care of the fact that there may be

a master and several tentative masters at the same point in time and makes sure that the sync

group eventually ends up with a single master.

3.2  Start-up Protocol

Our start-up procedure is very similar to that described in (Escobar etal., 1994). The controller

initializes the synchronous start-up of a sync group’s data streams by sendingStart messages to

each sink and source agent. EachStart message contains besides other information a start-up

time. All source agents receive the same start-up time, at which they are supposed to start trans-

mitting data units. Similarly, all sink agents receive the same start-up time, which tells them

when to start the play-out process.

Starting agents simultaneously requires theStart messages to arrive early enough. The start-up

time t0 of sources is derived from the current timetnow, the transfer delaydm experienced by

Start messages, and processing delaysdproc at the controller site:t0 = tnow + dm + dproc. Start-

up of sinks is deferred by an additional time∆ to allow the stream data to arrive at the sinks’

locations and to preload buffers. This extra delay is computed from the streams’ transfer delays
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and delays caused by buffer preloading:∆ = max((di + LWMi): i in sync group),wheredi and

LWMi denotes streami’s transfer delay and buffer delay, respectively. LWMi mainly depends on

i’s jitter (for detail see next section). We assume some infrastructure component that provides

access to the (estimated) jitter and delay parameters.

A Start message sent to a source agent contains the start timet0 and the nominal stream rateRN.

A source agent receiving such a message starts transmission at timet0 with rateR1 = RN. Start

received by a sink agent includes start timet0 + ∆, RN and a flag indicating the receiver’s initial

role (i.e., master or slave). Furthermore, it includes some initial parameters concerning the play-

out buffer (see below). A sink agent starts the play-out process at the specified time with rate

R2=RN.

Each agent starts stream transmission or play-out at the received start-up time. Therefore, the

start-up asynchrony is bounded by the inaccuracy of clock synchronization providedStart mes-

sages arrive in time. However, even if someStart messages are too late, ASP is able to imme-

diately resynchronize the ‘late’ streams.

3.3  Buffer Control Protocol

Before describing the protocol, we will take a closer look at the play-out buffer. The parameter

dB(t) denotes thesmoothed buffer delay at timet. The buffer delay at a given point in time is

determined by the amount of buffered data and the rate of the stream. In order to filter out short-

term fluctuations caused by jitter, some smoothing function is to be applied. ASP does not

require a distinct smoothing function. Some examples are the geometric weighting smoothing

function (Postel,1981): dB(ti) = α⋅dB(ti-1) + (1-α)⋅ActBufferDelay(t), or the Finite Impulse

Response Filter as used in (Köhler and Müller, 1994).

In ASP, all buffer related values are measured in time units rather than bytes: A buffer of size

n sec can hold up ton sec of the corresponding data stream. The advantage of using a temporal

dimension is that the ASP mechanism becomes totally independent of the media streams to be

synchronized and their encodings. Mapping the temporal size of a buffer to its size in bytes is

straight-forward for CBR streams. For VBR streams this mapping is more complicated for a

number of reasons. Note that this type of mapping is needed wherever buffer space and band-

width is to be allocated for streams. Thus, it should be provided by resource management pro-

tocols. ASP is kept independent from this mapping leading to a clear separation of stream con-

trol and resource management.

For each play-out buffer a low water mark (LWM) andhigh water mark (HWM) is defined.
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When dB(t) falls underLWM or exceedsHWM, there is the risk of underflow or overflow,

respectively. Therefore, we will call the buffer areas belowLWM and aboveHWM thecritical

buffer regions. As will be seen below, ASP takes immediate corrective measures whendB(t)

moves into either one of the critical buffer regions. Note that the quality of intra-stream syn-

chronization is primarily determined byLWM andHWM values. The buffer parameters are set

by the ASP client according to application and network characteristics (see Section 4).

The buffer control protocol is executed locally at the sink site of the master stream. Its only pur-

pose is the keepdB(t) of the master stream in a so-calledtarget area, which is defined by an

upper target boundary (UTB) and a lower target boundary (LTB). While the high and low

watermarks describe the intervention marks that cause a slave stream’s reactions to avoid the

overflow and underflow of its buffer, the target area causes the master stream to follow changes

in transfer delays. Hence, the role of the stream determines the marks used for reactions. Clearly,

the target area must not overlap with a critical buffer region. The location and width of the target

area is primarily determined by the chosen synchronization policy (see Section 4). For example,

to minimize the overall delay the target should be close toLWM.

The buffer delaydB(t) may float freely between the lower and upper target boundary without

triggering any rate adaptions. Changing transmission delays (or a modification of the target area

Figure 3 : Buffer Regions and Intervention Marks of the Play-out Buffer

Figure 4 : Buffer Delay Adaption
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requested by the controller) may causedB(t) to move out of the target area. When this happens,

the master enters a so-calledadaption phase, whose purpose is to movedB(t) back into the target

area.

At the beginning of the adaption phase, the release rate is modified accordingly. The adapted

release rate isR2
A = RN ⋅(1 + Rcorr), whereRcorr = (dB(t) - (LTB + (UTB - LTB)/2)) / Lis the

relative correction rate. LengthL of the adaption phase determines how aggressive the algo-

rithm reacts: the smallerL, the more aggressive is the algorithm. At the end of the adaption

phase, it is checked whetherdB(t) has moved back into the target area. If this is the case, then

R2 is set back toRN, otherwise another adaption phase is started.

In order to keep the slave streams in sync, each adaption of the master stream has to be propa-

gated to the slave streams. This is achieved by the protocol described next.

3.4  Master/Slave Synchronization Protocol

The master/slave synchronization protocol ensures that the slave streams are played out in sync

with their master stream. This protocol is initialized whenever the master (or a tentative master

as will be seen in the next section) modifies its release rate. Protocol processing only involves

sink agents, each of which acts either as master or slave.

Whenever the master enters an adaption phase, it performs the following operations. First, it

computes the so-called target media time for this adaption phase, which is defined to be the

media time the master stream will reach at the end of this phase. Assume that the adaption phase

starts at real-timets and is of lengthL. Then the target media time isM(ts+L) = M(t s) + L ⋅ R2
A.

Subsequently, the master propagates anAdapt message to each slave in the sync group. An

Adapt message includes the following information: (TS, te, M(te)), wherete = ts+ L is the time

the adaption phase ends,M(te) specifies the media time at the end of the adaption phase, andTS

is a structured timestamp for ordering competingAdapt messages.

When a slave receives anAdapt message, it immediately enters the adaption phase by modify-

ing its release rate according to the received target media time (see Figure 5). The modified

release rateR2
A = RN ⋅ (M(te) - M (ta)) / (te - ta), whereta denotes the time at which the slave

receivedAdapt. At time te (i.e., at the end of the adaption phase),R2 is set back toRN.

Obviously, this protocol ensures that at the end of each adaption phase all streams in the sync

group reach the same target media time at the same point in real-time. Between two adaption

phases, streams stay in sync as their nominal release rates are derived from global time.
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As with all synchronization schemes based on the notion of global time, skew among sinks is

introduced by the inaccuracy of synchronized clocks, which is assumed to be bounded byε. In

our protocol, an additional source of skew is the adaption of release rates at different points in

time. The worst case skewSmax during the adaption phase of the master depends on transfer

time dm of the Adapt message and the master’s relative correction rateRcorr: Skewmax =

dm⋅|Rcorr| + ε, where the termdm⋅|Rcorr| denotes the skew caused by the delay of theAdapt mes-

sages. Our simulation results in Section 6 will show that the value of this term typically is in the

range of 10 to 15 ms in wide area networks. If no adaption is in progress, the skew is bounded

by ε. Clearly, the skew does neither depend on the size nor the position of the target area,LWM

or HWM.

With a slight modification of our protocol, we can achieve a skew bound ofε even during the

adaption phase. We only have to make sure that the master and its slaves enter the adaption

phase at the same point in global time. Assume that the master’s buffer delay moves out of the

target area at timet. Instead of entering immediately the adaption phase, it only sends outAdapt

messages to all of its slaves, while the start of the actual adaption phase is deferred by some time

δ. An Adapt message contains the following parameters (TS, ts, te, M(te)), where the additional

parameterts = t + δ denotes the starting time of the adaption phase. All other parameters have

the same semantics as above.

A slave receiving anAdapt message checks whether it received this message later thants. If this

is the case, the slave immediately enters the adaption phase. Otherwise, it waits for entering this

phase until timets is reached. Obviously, if δ is set to the maximum delay of control messages,

the master and all of its slaves start the adaption at the same point in global time. Now the poten-

tial inaccuracy of the synchronized clocks is the only source of skew, i.e.,Skewmax = ε. Defer-

ring the adaption phase results in a decrease of skew, which means that the quality of inter-

stream synchronization is increased. On the other hand, the deferred reaction increases the risk

of buffer overflow or underflow, which may affect the quality of intra-stream synchronization.

Figure 5 : Master/Slave Synchronization
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Consequently, theδ parameter, whose value may range from zero to the maximum delay of con-

trol messages, can be used to put emphasis on either inter-stream or intra-stream synchroniza-

tion quality. We assume, however, that for a majority of applicationsδ may be set to zero, even

in wide area networks.

3.5  Master Switching Protocol

In our protocol, we distinguish between two types of master switching. The first type of switch-

ing, calledpolicy-initiated, is performed whenever (a change in) the synchronization policy

requires a new assignment of the master role. In this case, the controller, which enforces the

policy, performs the switching just by sending aGrantMaster message to the new master and a

QuitMaster message to the old master. GrantMaster specifies the target buffer area of the new

master, which is determined by the controller depending on the chosen policy. With this simple

protocol it may happen that for a short period of time there exist two masters, which both pro-

pagateAdapt messages. Our protocol prevents inconsistencies by performingAdapt requests in

timestamp order (see below).

The second type of switching isrecovery-initiated. A sink slave initiates recovery when its

stream becomes critical. A stream is called critical if its current buffer delay is in a critical

region and (locally) no rate adaption improving the situation is in progress. A very attractive

property of our protocol is that a slave can immediately react when its stream becomes critical.

Recovery goes as follows: First, the slave makes a transition to a so-calledtentative master (or

t-master for short) and informs the controller about this by sending anIamT-Master message.

Then - without waiting for any response - it enters an adaption phase, in which it adapts release

rateR2 in a way that its buffer delay can be expected to move out of the critical region. In order

to keep the other streams in sync, it propagates anAdapt request to all other sink agents, includ-

ing the master. At the end of the adaption phase, a t-master falls back in the slave role. Should

the stream still be critical by this time, then the recovery procedure is initiated once again.

Obviously, our protocol allows multiple instances to propagateAdapt concurrently, which may

cause inconsistencies leading to the loss of synchronization if no care is taken. As already

pointed out above, policy-initiated switching may cause the new master to sendAdapt messages

while the old master is still in place. Moreover, at the same point in time, there may exist any

number of t-masters propagatingAdapt requests concurrently. It should be clear that stream syn-

chronization can be ensured only ifAdapt messages are performed in the same order at each

agent. This requirement can be fulfilled by including a timestamp inAdapt requests and per-

forming these requests in timestamp order at the agent sites. The latter means that an agent

accepts anAdapt request only if it is younger than all other requests received before. Older



3 THE ADAPTIVE SYNCHRONIZATION PROTOCOL 14

requests are just discarded.

However, performing requests in some timestamp order is not sufficient. Assume, for example,

that the master and some t-master propagateAdapt requests at approximately the same time, and

the former requests an increase of the release rate, while the latter requests a decrease. For some

synchronization policies, this might be a very common situation (see for example the minimum

delay policy described in the next section). If the timestamps were solely based on system time

and the master would perform the propagation slightly after the t-master, then the t-master’s

request would be wiped out, although it is the reaction on a critical situation and hence is more

important. The stability of the algorithm can only be guaranteed if recovery actions are per-

formed with the highest priority.2 Consequently, the timestamping scheme defining the execu-

tion order ofAdapt requests must take into account the ‘importance’ of requests.

The precedence ofAdapt requests sent at approximately the same time is given by the following

list in increasing order: (1) requests of old masters, (2) requests of the new master (3) requests

of t-masters. We apply a structured timestamping scheme to reflect this precedence of requests.

In this scheme, a timestamp has the following structure:<ER.EM.T>, whereER denotes areco-

very epoch, EM designates amaster epoch, andT is thereal-time when the message tagged with

this timestamp was sent. A new recovery epoch is entered when a slave performs recovery,

while a new master epoch is entered whenever a new master is selected. So, a recovery epoch

may have seen several master epochs. As will be seen below, entering a new recovery epoch

requires a new master to be selected.

Each control message contains a structured timestamp, which is generated before the message

is sent on the basis of two local epoch counters and the local (synchronized) clock. The control-

ler and the agents keep track of the current recovery and master epoch by locally maintaining

two epoch counters. Whenever they accept a message whose timestamp contains an epoch value

greater than the one recorded locally, the corresponding counter is set to the received epoch

value. Moreover, a agent increments its local recovery epoch counter when it performs recovery,

i.e. theIamT-Master message sent to the controller already reflects the new recovery period. The

controller increments its master epoch counter when it selects a new master, i.e. theGrantMas-

ter message already indicates the new master epoch.

Adapt requests are accepted only in strict timestamp order. Should an agent receive two requests

with the same timestamps, total ordering is achieved by ordering these two request according to

2 We assume that at no point in time there exist two t-masters that try to adapt the release rate in a contradicting
fashion, i.e., one tries to increase the rate, while the other tries to decrease it. This is achieved by enabling mas-
ter switching only for one type of critical situation, underflow or overflow. Which type is enabled depends on
the chosen sync policy (see Section 4).
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the requestors’ unique identifiers included in the messages. As a slave performing recovery

enters a new recovery epoch, allAdapt request generated by some master in the previous reco-

very epoch are wiped out. Similarly, selecting a new master enters a new master epoch, and by

this wipes out allAdapt request from former masters. When a master receives anAdapt request

indicating a younger master or recovery epoch, it can learn from this message that there exists

a new master or a t-master performing recovery, respectively. In both cases, it immediately gives

up the master role and becomes a slave.

As already mentioned above, a critical slave sends anIamT-Master message when it becomes a

t-master. When the controller receives such a message indicating a new recovery epoch, it must

select a new master. Which stream becomes the new master, primarily depends on the synchro-

nization policy chosen. For example, the originator of theIamT-Master message establishing a

new recovery epoch may be granted the master role. All other messages of this type belonging

to the same recovery epoch are discarded upon arrival (see Figure 6).

In summary, in an adaption phase a t-master or master may receive anAdapt or GrantMaster

message. They are only accepted if they are younger than all other control messages of the same

type received before. If anAdapt request is accepted, a new adaption phase is started based on

the target media time included in the accepted request. As mentioned above, a master accepting

an Adapt message immediately becomes a slave. IfGrantMaster is accepted, the recipient

becomes master and acts accordingly. A t-master that has not receivedGrantMaster by the end

of the adaption phase goes back in the slave role. Of course, if it is still critical by this time, it

initiates recovery again.

In the previous section, we discussed skew in the adaption phase without considering master

Figure 6 : Recovery-Initiated Master Switching
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switching. The possibility of switching the master role can increase the skew as it may happen

that the master and a t-master independently from each other decide to adapt in opposite direc-

tions. The worst case skew among sinks can be observed if such a decision is made at approxi-

mately the same time. The maximum skew can be shown to be

Skewmax = max (0, dm - δ) ⋅ (|Rcorr, master| +  |Rcorr, t-master|) + ε,

wheredm denotes the transmission delay ofAdapt messages andδ is the time the adaption phase

is deferred. Ifδ is set to the maximum delay of control messages the skew is bounded byε. The

skew bound is increased bydm ⋅ (|Rcorr, master| +  |Rcorr, t-master|) if δ is zero. This term will be in

the range of 20 to 30 ms in wide area networks and correspondingly lower in local area net-

works. Remember that ifδ equals zero, streams may immediately perform adaptions the time

they become critical.

4 SYNCHRONIZATION POLICIES

ASP has many parameters for tuning the protocol to the characteristics of the underlying system

as well as to the quality of service requested by the given application. A discussion of all these

parameters would go far beyond the scope of this paper. Therefore, we will focus on the most

important parameters, in particular those influencing the synchronization policy: the low and

high water mark, the width of the target area and its placement in the play-out buffer, as well as

the rules for granting the master role.

The intra-stream synchronization quality in terms of data loss due to underflow or overflow is

primarily influenced by theLWM andHWM values. As pointed out in Section 2, the play-out

time of a data unitu is to+∆+TS(u), where∆ is adapted as needed in adaption phases. For a data

unit released on time, the sum of its transfer delay and buffer delay must be equal to∆. Assume

for example that the transfer delay ofu is dT = ∆ - LWM, i.e.,u’s buffer delay is at the border of

the lower critical region. Obviously, if the transfer delays of the data units followingu do not

differ from dT by more thanLWM, there is no buffer underflow. Remember that∆ is imme-

diately adapted when the buffer delay enters a critical region. Our experiments with ASP have

shown that a reasonable value for the width of a critical region isj/2, wherej denotes the jitter

of the corresponding data stream.

IncreasingLWM generally increases the intra-stream synchronization quality as the data loss

probability is decreased. At the same time, however, this modification may increase the end-to-

end delay of the sync group, which might be critical for certain applications. ASP allows the

client to modifyLWM andHWM values even while the presentation is in progress. For example,
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it is conceivable that a user interactively adjusts the stream quality during play-out. Alterna-

tively, an internal mechanism similar to the one described in (Käppner etal., 1994) may monitor

the data loss rate and adjust the water marks as needed.

The width of the target area determines the aggressiveness of the buffer control algorithm. The

minimum width of the target area isω = c ⋅ j, wherec depends on the smoothing function used

to determinedB(t). In our experimentsc turned out to be about 0.3. The larger the width of the

target area, the less adaptions of the release rate are required. On the other hand, with a large

target area there is only limited control over the actual buffer delay. If, for example, the actual

buffer delay has to be kept as close as possible toLWM to minimize the end-to-end delay, a small

target area is preferable.

The location of the target area together with the way how the master role is granted are the major

policy parameters of ASP. This will be illustrated by the following two policies, the minimum

delay policy and the minimum loss policy.

The goal of theminimum delay policy is to achieve the minimum end-to-end delay for a given

intra-stream synchronization quality. To reach this goal the stream with the currently maximum

transfer delay is granted the master role, and this stream’s buffer delay is kept as close as pos-

sible toLWM. This means that the target area for the master is located as follows:LTB = LWM

andUTB = LWM + ω, whereω is the jitter of the smoothed buffer delaydB(t).

Due to changing network conditions, it may happen that the transfer delay of a slave stream sur-

passes the one of the master. This will cause the slave’s buffer delay to fall below itsLWM trig-

gering recovery. When the controller receives anIamT-Master message, it assigns the master

role to the received message’s originator by sending aGrantMaster request. If it receives mul-

tiple IamT-Master messages originated in the same recovery epoch, only the first one is

accepted, all the other ones are ignored. This strategy ensures that the stream with the maximum

transfer delay always becomes master. The end-to-end delay of the sync group at timet amounts

to the maximum transfer delay att plus(UTB + LTB)/2, which is the minimum end-to-end delay

that can be achieved att.

With the minimum delay policy a slave running out of buffer may cause master switching to be

performed continuously. To ensure stability in those situations, master switching is disabled for

overflow critical streams. Various policies for a slave to recover from overflow critical situations

are possible (for details see Section 5).

The possibility of adjustingLWM dynamically makes this policy very powerful. By increasing

LWM the data loss rate is decreased, while the end-to-end delay is increased. The loss rate is
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increased and the end-to-end delay is decreased ifLWM is decreased. Consequently, by dyna-

mically adjustingLWM, the user may (interactively) determine the appropriate trade-off

between end-to-end delay and intra-stream synchronization quality.

While the minimum delay policy minimizes the buffer delay, theminimum loss policymaxi-

mizes the buffer delay to minimize the probability of buffer underflow for the available buffer

space. This policy is appropriate for those applications, for which a perfect transmission (i.e.,

low loss rate) is more important than a low end-to-end delay.

With this policy, the stream with the at present minimum transfer delay is granted the master

role. The master’s buffer delay is kept as close as possible toHWM, which means that the target

area for the master is located as follows:UTB = HWM andLTB = HWM - ω, whereω denotes

the jitter ofdB(t). Note that each slave stream has a lower buffer delay than the master stream

as the latter is the one with the minimum transfer delay.

When changing network conditions cause a slave to experience a smaller transfer delay than the

current master, this slave’s buffer delay will exceedHWM triggering recovery. The controller

receiving anIamT-Master message reacts in exactly the same way as with the previous policy.

It sends aGrantMaster message to the originator of theIamT-Master message arriving first in

a recovery period, all following messages belonging to the same recovery period are ignored.

Obviously, this policy ensures that always the stream with the minimum transfer delay is the

master. Maximizing the buffer delay of the master means keeping the buffers as full as possible

and thereby minimizing the loss probability due to underflow.

With the minimum loss policy a “starving” slave stream may cause master switching to be per-

formed continuously. To ensure stability in those situations, master switching is disabled for

underflow critical streams if this policy is applied. Stability aspects and recovery for critical

streams are discussed in detail in the next section.

5 STABILITY AND BUFFER REQUIREMENTS

ASP uses buffering to equalize the different transfer delays of the streams in a sync group.

Therefore, the size of the play-out buffer of an individual stream depends on the delay charac-

teristics of the stream group.

The streams in a sync group may have different buffer requirements. We will determine the size

of the streams’ play-out buffer in terms of time units to keep the results independent from the

encodings of the various media. Letdi,max anddi,min be the maximum and minimum transfer

delay of streami, respectively, and δi,k = dk,max - di,min. The target of master streamk is
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LWMk + ωk/2, whereωk is the width ofk’s target area. Streami’s high water mark can be deter-

mined as follows:HWMi = max ( LWMk + ωk/2 +  δi,k: k ∈ G-{i}) , whereG denotes the corre-

sponding sync group. Consequently, the size of the play-out buffer of streami is Bi = HWMi +

LWMi assuming the same width for both critical regions.

The buffer size is determined based on assumptions concerning the maximum and minimum

transfer delay. If the underlying network provides (reasonable) delay guarantees and buffer is

allocated according to the results above, it may never happen that two streams of a sync group

are critical in a contradicting way, i.e., one experiences a buffer underflow, while the other suf-

fers from overflow at the same point of time. If, however, the underlying network does not pro-

vide a deterministic service, the assumed minimum and maximum delays have to be determined

on a statistical basis. In this case, it might happen that a sync group’s streams experience under-

flow and overflow at the same time. We will call this an underflow&overflow situation.

It is important to notice that an underflow&overflow situation does not jeopardize the stability

of ASP. Since the minimal delay and minimal loss policy both enable master switching either

for underflow recovery or for overflow recovery, an underflow&overflow situation may never

cause master switching to be performed continuously. For example, consider the minimum

delay policy. Remember, this policy minimizes the buffer delays of all streams in a sync group

by minimizing the buffer delay of the stream with the currently longest transfer delay. For this

policy master switching is only enabled for buffer underflow. While a stream experiencing an

underflow will always initiate master switching and decrease the stream’s play-out rate accord-

ingly, the recovery processing for overflow depends on the policy implemented by the stream’s

sink agent. Following policies are conceivable:

Dynamic buffer allocation: In order to avoid overflow, the buffer is dynamically extended when

a stream’s buffer delay exceedsHWM. The dynamically allocated buffer can be released as the

buffer delay decreases due to changing network conditions. If dynamic buffer allocation is

impossible there are two remaining policies, skipping and stream removal.

Skipping: The sink agent may skip data units, either already residing in the buffer or just arriv-

ing. Of course, if data units differ in importance (e.g., I-, B- and P-frames of MPEG videos), the

agent will try to skip the less important ones first. Obviously, this policy causes data loss and

hence decreases the quality of the individual stream, while the quality of inter-stream synchro-

nization is not affected.

Stream removal: When a stream becomes (overflow) critical, the stream’s sink agent may

remove the stream temporarily from the sync group. This removal is a local operation that does

not require any communication with other protocol instances. After removal the agent can
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adjust the play-out rate independent from the other streams in the sync group. However, it still

receives theAdapt requests from the master and thus is able to keep track of the sync group’s

media time. Stream removal will cause the stream’s (local) media time to differ from the sync

group’s media time. In other words, this policy decreases the quality of inter-stream synchroni-

zation, while the quality of the individual streams is not affected. The skew can be minimized

by keeping the buffer delay of the removed stream close toHWM. A removed stream may rejoin

the sync group when its local media time equals the sync group’s media time.

Obviously, skipping and stream removal can be combined. For example, an agent may perform

skipping until the loss rate reaches a certain threshold and then switch to stream removal.

In our discussion above, we have confined ourself to the minimum delay policy as the stability

arguments for the minimum loss policy are almost symmetrical.

6 SIMULATION RESULTS AND PERFORMANCE MEASUREMENTS

In order to investigate ASP’s behavior in different environments, the proposed protocol has

been simulated extensively. Moreover, it has been implemented and its performance has been

experimentally measured (for details see (Helbig,1996)). In this section, we will discuss the

major results of this work, focussing on ASP’s ability to adapt to changing conditions, its mes-

sage overhead and skew.

Our simulations use delay data measured in the Internet as well as synthetically generated

delays. The Internet data are used to investigate ASP’s behavior in fairly unpredictable environ-
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ments, while the synthetic data allow for more systematic investigations.

In our first simulation, the transfer delays are based on measurements in the Internet. This

simulation illustrates how ASP reacts on a client-initiated reduction of the end-to-end delay

(Figure 7a-d). The target area in the play-out buffer is defined by LTB = 100 ms and UTB =

200ms. This setting leads to a constant release rate and an end-to-end delay of about 260 ms.

There is no data loss due to late arrivals. During the simulation, the target area is moved to

LTB = 35 ms and UTB = 135 ms to reduce the end-to-end delay by about 90 ms. This reduction

causes an increase in late arrivals by approximately 2.5%. This client-initiated adaption is

achieved within a single adaption phase.

The following simulations use synthetic transfer delays generated according to a normal distri-

bution.3 The transfer delay distributions of streams S1, S2 and S3 have a mean transfer delay/

standard deviation of 200 ms/20 ms, 180 ms/10 ms, 200 ms/10 ms, respectively. We have cho-

sen similar transfer delays as this is the interesting case with regard to the frequency of master

switching.

The simulation results depicted in Figure 8a show the dependency of the end-to-end delay and

the data loss due to late arrivals. ParameterLWM is set to 10, 20, 50, 100, and 200 ms, respec-

tively. If LWM is increased, this increases the end-to-end delay and reduces the number of late

data units, e.g. for stream S3 from 10% to 0%. Our simulations show that increasingLWM

beyond 50 ms does not improve the quality of the considered streams anymore.

During adaption phases, the skew is determined by the size of rate corrections and the transfer

delay ofAdapt messages. Figure 8b illustrates the impact of the length of the adaption phase on

the minimum, average and maximum rate correctionRcorr. The results show that a reasonable

length of the adaption phase is from 1 to 5 sec, leading to a maximum rate correction of about

2% and an average rate correction below 1%. The maximum rate correction for a length of 5 sec

is about 0.35%.

3 Normal distribution for packet delays in packet switched networks is suggested in (Alvarez-Cuevas etal., 1993,
Shivakumar etal., 1995).
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The resulting skew during adaption phases is clearly below the values tolerated in the scenarios

described in the experiments of Steinmetz and Engler. (Steinmetz and Engler, 1993): With the

available clock synchronization protocols, such as NTP (Mills,1990), we can assume clocks to

be synchronized within the lower milliseconds range. By using radio controlled clocks, this

situation will improve even further. The skew added by ASP for rate corrections of up to 2% is

typically below 1 ms in a LAN and below 20 ms in a WAN, assuming transfer delays of up to

1 sec.

Finally, we will investigate how ASP adapts to changing transfer delays. We will consider two

types of changes, a jump and a ramp shaped change. For the jump, the height is varied in steps

of 10 ms from -50 ms to +50 ms, while for the ramp, the transfer delay is continuously increased

within a certain time interval. The length of the time interval is varied from 1 sec to 50 sec, and

ramp heights of 10, 20 and 50 ms are considered. In all simulations, the width of the target area

is 20 ms and the adaption phase is 5 sec in length.

Figure 9a shows the results of the jump simulation. Jumps up to half the width of the target area

either cause no or a single rate adaption, depending on the buffer delay at the time of the jump.

Consequently, 0.5 rate adaptions are required in average. Jump heights of 20 ms (width of the

target area) and 50 ms require 2 and 3 adaption phases, respectively. The reason why multiple

adaption phases are needed is the smoothing function applied on buffer delays, which causes

the first rate adaption to be smaller than actually needed.

In Figure 9b, the simulation results for the ramp shaped delay changes are illustrated. Indepen-

dent of the length of the interval, changes of half the target area width lead to a single or no rate

adaption, and a change of the same size as the target area requires 2 adaption phases. Only larger

changes over longer time intervals require more rate adaptions since they cause a sequence of

small adaptions. For the 50 ms ramp, the worst case is 8 adaptions in 50 sec.

To verify the simulation results, ASP has been implemented and evaluated in theCINEMA project

(Configurable Integrated Multimedia Architecture (Rothermel etal., 1994)).CINEMA provides a

Figure 9a: Reaction on Jump in Delay Figure 9b: Reaction on Ramp in Delay
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platform for developing and controlling multimedia applications in distributed environments.

In particular, it offers abstractions and mechanisms to build distributed multimedia applications

by configuration of basic processing and communication elements. Synchronization constraints

between streams may be specified by means of so-called clock hierarchies (Rothermel and

Helbig,1996). While clock hierarchies are programming abstractions, ASP is the mechanism

that actually performs stream synchronization.CINEMA runs on IBM RS/6000 workstations

under AIX as well as Sun SPARCstations under Solaris.

So far, measurements have been performed for two network technologies, a 10 Mbps Ethernet

and a 155 Mbps ATM network. With these measurements we could confirm the essential results

of our simulations (for details see (Helbig,1996)): In the Ethernet-based experiments,Adapt

messages are generated every 10 to 20 sec for rather tight target areas. By increasing the target

area it can be achieved thatAdapt messages are sent only every couple of minutes. The maxi-

mum rate correctionRcorr is below 2%, average rate corrections are between 0.4% and 1.2%.

Consequently, the skew added by ASP is far below the skew limits given in (Steinmetz and

Engler, 1993) for scenarios such as lip-synchronization or video/text-overlays. As expected,

experiments performed in the ATM environment show even better results. Measurements in

WAN environments are subject to future work.

7 RELATED WORK AND CONCLUSIONS

Existing approaches to stream synchronization can be classified in various ways. One classifi-

cation criterion is whether or not synchronization is distributed. In the case of distributed

approaches, the sinks of the sync group may reside on different nodes, while local approaches

require all sinks to reside on the same node.

The class of local approaches comprises a number multimedia toolkits (e.g. ACME (Anderson

and Homsy, 1991), Multimedia Presentation Manager (IBM,1992), QuickTime (Apple,1991),

or Tactus (Dannenberg etal., 1992)) as well as various synchronization algorithms proposed in

the literature (e.g., (Ravindran and Bansal,1993), (Käppner etal., 1994), (Shivakumar

etal., 1995)). Distributed approaches include algorithms proposed in (Ramanathan and

Rangan,1992), (Agarwal and Son,1994), the Flow Synchronization Protocol (Escobar

etal., 1994), the Lancaster Orchestration Service (Campell etal., 1992) as well as ASP.

Both local as well as distributed approaches may be rigid or adaptive. For example, the Concord

algorithm (Shivakumar etal., 1995) and the DMOS protocol (Käppner etal., 1994) fall into the

class of local adaptive approaches. The Concord algorithm allows to trade off packet loss rates,

end-to-end delay and skew. The algorithm computes the packet delay distribution on-the-fly and
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delivers it to the client which decides on adaptions. In other words, the algorithm itself does not

provide for automatic adaptions. In DMOS, a quality of service parameter “rate of late data

units” is monitored, allowing applications to trade off end-to-end delay versus loss rate. Auto-

matic adaptions are performed as required. In both schemes, inter-stream synchronization is

based on computing a reference end-to-end delay for all streams by a dedicated (centralized)

entity. Transferring this approach to distributed settings would lead to a significant message

overhead for collecting state information and propagating control messages.

Distributed adaptive approaches may be based on local time or global time, where the latter is

achieved by clock synchronization. No global time is required for the algorithms proposed in

(Ramanathan and Rangan,1992) and (Agarwal and Son,1994). Stored data streams are trans-

ferred from a centralized server to distributed sinks. The sinks are required to periodically send

feedback messages to the server, which uses these messages to estimate the temporal state of

the individual streams. In (Ramanathan and Rangan,1992), the accuracy of these estimations

depends on the jitter of feed-back messages. (Agarwal and Son,1994) eliminates this depen-

dency by estimating the differences between system clocks by means of probe messages. With

this modification, accuracy depends on the jitter of probe messages. The feed-back messages

cause an overhead ofn messages per period forn streams. After a stream becomes critical, it

takes at least one message round-trip time before an adaption takes effect at the sink.

Both the Flow Synchronization Protocol (Escobar etal., 1994) and the Lancaster Orchestration

Service (Campell etal., 1992) are distributed adaptive approaches assuming synchronized

clocks. In the Flow Synchronization Protocol, each sink periodically sends its delay estimate to

all other sinks in the sync group. Having received all delay estimates, each sink locally performs

the same function on its own and the received estimates to determine the end-to-end delay for

the next period. The message complexity isn⋅(n-1) messages (orn messages if multicast is

available) per period, however, various optimization are proposed to reduce this message over-

head. When a stream becomes critical, its sink cannot perform (global) adaptions before the next

period begins.

With Lancaster Orchestration Service, a centralized controller periodically receives the tempo-

ral state of each sink in the sync group. Based on the collected information, the controller

periodically decides whether adaptions are needed and sends the corresponding adapt requests.

The message overhead per period is at leastn messages and2⋅n in the worst case. Moreover,

reactions on critical situations are deferred by at least one message round-trip time.

ASP belongs to the same class as the Flow Synchronization Protocol and the Lancaster Orches-

tration Service. The major difference is that ASP does not know the concept of a period. Instead
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of sending control messages periodically, in ASP adapt requests are sent solely on demand when

rate adaptions actually become necessary due to changing network conditions or QoS require-

ments. The propagation of adapt requests requires(n-1) messages (or1 message if multicast is

available). A nice feature of ASP is that a sink may react immediately on critical situations. The

price of this feature is an increase in skew, which, however, can be ignored for most applications

as has been shown in the previous section. For applications that are extremely skew sensitive,

ASP provides the possibility to defer adaptions artificially in order to avoid this skew.

ASP is a very general and flexible synchronization mechanism that can be tailored to various

network characteristics as well as to a wide range of multimedia applications. ASP has been

simulated and implemented in theCINEMA system. Both the simulations and the performance

measurements confirmed the properties postulated for ASP.
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