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Abstract

Queries containing universal quantification are used in many applications, including business intelligence
applications and in particular data mining. We present a comprehensive survey of the structure and performance of
algorithms for universal quantification. We introduce a framework that results in a complete classification of input data
for universal quantification. Then we go on to identify the most efficient algorithm for each such class. One of the input
data classes has not been covered so far. For this class, we propose several new algorithms. Thus, for the first time, we
are able to identify the optimal algorithm to use for any given input dataset.

These two classifications of optimal algorithms and input data are important for query optimization. They allow a
query optimizer to make the best selection when optimizing at intermediate steps for the quantification problem.

In addition to the classification, we show the relationship between relational division and the set containment join
and we illustrate the usefulness of employing universal quantifications by presenting a novel approach for frequent

itemset discovery.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Universal quantification is an important opera-
tion in the first-order predicate calculus. This
calculus provides existential and universal quanti-
fiers, represented by 3 and V, respectively. A
universal quantifier that is applied to a variable x
of a formula f specifies that the formula is true for
all values of x. We say that x is universally
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quantified in the formula f, and we write Vx : f(x)
in calculus.

In relational databases, universal quantification
is implemented by the division operator (repre-
sented by =) of the relational algebra. The
division operator is important for databases
because it appears often in practice, particularly
in business intelligence applications, including
online analytic processing (OLAP) and data
mining. In this paper, we will focus on the division
operator exclusively.

Several algorithms have been proposed to
implement relational division efficiently. These
algorithms are presented in an isolated manner in
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the research literature—typically, no relationships
are shown between them. Furthermore, each of
these algorithms claims to be superior to others,
but in fact each algorithm has optimal perfor-
mance only for certain types of input data.

1.1. The division operator

To illustrate the division operator, we will use a
simple example throughout the paper, illustrated
in Fig. 1, representing data from a CS department
at a university [1]. A course row represents a course
that has been offered by the department and an
enrollment row indicates that a student has taken a
particular course. The following query can be
represented by the division operator:

Which students have taken all courses offered
by the department?

As indicated in the table result, only Bob has taken
all the courses. Bob is enrolled in another course
(Graphics) but this does not affect the result. Both
Alice and Chris are not enrolled in the Databases
course. Therefore, they are not included in the
result.

The division operator takes two tables for its
input, the divisor and the dividend, and generates

enrollment
| student_id | course_id |
Alice Compilers
Alice Theory course
Bob Compilers
Bob Databases Compilers
Bob Graphics Databases
Bob Theory Theory
Chris Compilers (b) Divisor
Chris Graphics
Chris Theory
(a) Dividend
result
Bob

(¢) Quotient

Fig. 1. enrollment = course = result, representing the query
“Which students have taken all courses?”

one table, the quotient. All the data elements in the
divisor must appear in the dividend, paired with
any element (such as Bob) that is to appear in the
quotient.

In the example of Fig. 1, the divisor and
quotient have only one attribute each, but in
general, they may have an arbitrary number of
attributes. In any case, the set of attributes of the
dividend is the disjoint union of the attributes of
the divisor and the quotient. To simplify our
exposition, we assume that the names of the
dividend attributes are the same as the correspond-
ing attribute names in the divisor and the quotient.

1.2. Outline of the paper

The remainder of this paper is organized as
follows. In Section 2, we present a classification of
input data for algorithms that evaluate division
within queries. Section 3 gives an overview of
known and new algorithms to solve the universal
quantification problem and classifies them accord-
ing to two general approaches for division. In
Section 4, we evaluate the algorithms according to
both applicability and effectiveness for different
kinds of input data, based on a performance
analysis. In Section 5, we discuss the relationship
between relational division and the set contain-
ment join. Section 6 illustrates a new approach to
exploit division and set containment join to
discover frequent itemsets. Section 7 gives an
overview of related work. Section 8 concludes the
paper and comments on future work.

2. Classification of data

This section presents an overview of the input
data for division. We identify all possible classes of
data based on whether it is grouped on certain
attributes. For some of these classes, we will
present efficient algorithms in Section 3 that
exploit the specific data properties of a class.

2.1. Input data characteristics

The goal of this paper is to identify optimal
algorithms for the division operator, for all
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possible inputs. Several papers compare new
algorithms to previous algorithms and claim
superiority for one or more algorithms, but they
do not address the issue of which algorithms are
optimal for which types of data [1-3]. In fact, the
performance of any algorithm depends on the
structure of its input data.

If we know about the structure of input data, we
could employ an algorithm that exploits this
structure, i.e., the algorithm does not have to
restructure the input before it can start generating
output data. Of course, there is no guarantee that
such an algorithm is always ‘“better” than an
algorithm that requires previous restructuring.
However, the division operator offers a variety
of alternative algorithms that can exploit such a
structure for the sake of good performance and
low memory consumption.

Suppose we are fortunate and the input data is
highly structured. For example, suppose the data
has the schema of Fig. 1 but is of much larger size,
and suppose:

® cnrollment is sorted by student_id and course_id
and resides on disk, and

® course is sorted by course_id and resides in
memory.

Then the example query can be executed with one
scan of the enrollment table. This is accomplished
by reading the enrollment table from disk. As each
student appears, the course_id values associated
with that student are merged with the course table.
If all courses match, the student_id is copied to the
result.

The single scan of the enrollment table is
obviously the most efficient possible algorithm in
this case. In the remainder of this paper, we
will describe similar types of structure for
input datasets, and the optimal algorithms that
are associated with them. The notion of
“optimality”” will be further discussed in the next
section.

Revisiting our example in Fig. 1, how could this
careful structuring of input data, such as sorting
by student_id and course_id, occur? It could happen
by chance, or for two other more commonly
encountered reasons:

1. The data might be stored in tables, which were
sorted in that order for other purposes, for
example, so that it is easy to list enrollments on
a roster in ID order, or to find course
information when a course ID number is given.

2. The data might have undergone some previous
processing, because the division operator query
is part of a more complex query. The previous
processing might have been a merge-join
operator, for example, which requires that its
inputs be sorted and produces sorted output
data.

2.2. Choice of algorithms

A query processor of a database system typically
provides several algorithms that all realize the
same operation. An optimizer has to choose one of
these algorithms to process the given data. If the
optimizer knows the structure of the input data for
an operator, it can pick an algorithm that exploits
the structure. Many criteria influence the decision
why one algorithm is preferred over others. Some
of these choice criteria are: the time to deliver the
first/last result row, the amount of memory for
internal, temporary data structures, the number of
scans over the input data, or the ability to be non-
blocking, i.e., to return some result rows before the
entire input data are consumed.

Which algorithm should we use to process the
division operation, given the dividend and divisor
tables shown in Fig. 1? Several algorithms are
applicable but they are not equally efficient. For
example, since the dividend and divisor are both
sorted on the attribute course_id in Fig. 1, we could
select a division algorithm that exploits this fact by
processing the input tuples in a way that is similar
to the merge-join algorithm, as we have sketched
in the previous section.

What algorithm should we select when the input
tables are not sorted on course_id for each group of
student_id? One option is to sort both input tables
first and then employ the algorithm similar to
merge-join. Of course, this incurs an additional
computational cost for sorting in addition to the
cost of the division algorithm itself. Another
option is to employ an algorithm that is insensi-
tive to the ordering of input tuples. One such
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well-known algorithm is hash-division and is
discussed in detail in Section 3.3.4.

We have seen that the decision, which algorithm
to select among a set of different division
algorithms, depends on the structure of the input
data. This situation is true for any class of
algorithms, including those that implement data-
base operators like join, aggregation, and sort
algorithms.

It is possible that division is only a portion of a
larger query that contains many additional query
parts. Hence, the input of a division operation is
not restricted to base tables, like in the example of
Fig. 1, but it can be derived tables which are the
result of another operation like a join, for
example. Furthermore, the output of the division
could be an intermediate result itself that is further
processed within the query. For example, the
quotient table result in Fig. 1 could be the input
of an aggregation that counts the number of
students. The meaning of the resulting aggregate is
the number of students who have taken all courses
of the department. Alternatively, the result in
Fig. 1 could be an input of a join with a table
student(student_id, name, address, ...) to retrieve a
student’s name, address, etc., instead of a mean-
ingless ID. Thus, the result table produced by the
selected division algorithm can have certain data
properties that influence the choice of additional
algorithms, here a join, that are used to process the
overall query.

2.3. Grouping

Relational database systems have the notion of
grouped rows in a table. Let us briefly look at an
example that shows why grouping is important for
query processing. Suppose we want to find for
each course the number of enrolled students in the
enrollment table of Fig. 1. One way to compute the
aggregates involves grouping: after the table has
been grouped on course_id, all rows of the table
with the same value of course_id appear next to
each other. The ordering of the group values is not
specified, i.e., any group of rows may follow any
other group. Group-based aggregation groups the
data first, and then it scans the resulting table once
and computes the aggregates during the scan.

Another way to process this query is nested-loop
aggregation. We pick any course ID as the first
group value and then search through the whole
table to find the rows that match this ID and
compute the sum. Then, we pick a second course
ID, search for matching rows, compute the second
aggregate, pick the third value, etc. If no suitable
search data structure (index) is available, this
processing may involve multiple scans over the
entire dataset.

The aggregation step of the group-based
approach is obviously more efficient than the
second approach because it can make an assump-
tion about some ordering of the rows. However,
the more efficient processing is paid with the
overhead of the preceding grouping.

When a table is to be grouped on a list
(ai, ...,a,) of more than one attribute, the result
is equal to grouping on a single attribute in an
iterative way: We first group on a;, then for each
subset of rows defined by a;, we group on a;, and
for each such subset determined by a,, we group
on a3, etc. Hence, if we want to compare two tables
that are grouped on the same set of attributes, we
have to be aware of the attribute list ordering,
because the resulting grouped table has a different
structure for each ordering. This fact is important
for division when we match some of the dividend’s
divisor attributes with all of the divisor’s attri-
butes.

Sorted data appears frequently in query proces-
sing. Note that sorting is a special grouping
operation. For example, grouping only requires
that students enrolled in the same course are
stored next to each other (in any order), whereas
sorting requires more effort, namely that they be in
a particular order (ascending or descending). The
overhead of sort-based grouping is reflected by the
time complexity O(nlogn) as opposed to the
nearly linear time complexity for hash-based
grouping. Though sort-based grouping algorithms
do more than necessary, both hash and sort-based
grouping perform well for large datasets [1,4].

2.4. Grouped input data for division

Relational division has two input tables, a
dividend and a divisor, and it returns a quotient



R. Rantzau et al. | Information Systems 28 (2003) 3-32 7

table. As a consequence of the definition of the
division operator, we can partition the attributes
of the dividend S into two sets, which we denote D
and Q, because they correspond to the attributes
of the divisor and the quotient, respectively. The
divisor’s attributes correspond to D, i.e., for each
attribute in the divisor there is a different attribute
in D of the same domain. As already mentioned,
for simplicity, we assume that the names of
attributes in the quotient R are the same as the
corresponding attribute names in the dividend S
and the divisor 7. Thus, we write a division
operation as R(Q) = S(QuD)=T(D). In Fig. 1,
0O = {student_id} and D = {course_id}.

Our classification of division algorithms is based
on whether certain attributes are grouped or even
sorted. Several reasons justify this decision.
Grouped input can reduce the amount of memory
needed by an algorithm to temporarily store rows
of a table because all rows of a group have a
constant group value. Furthermore, grouping
appears frequently in query processing. Many
database operators require grouped or sorted
input data (e.g., merge-join) or produce such
output data (e.g., index-scan): If there is an index
defined on a base table, a query processor can
retrieve the rows in sorted order, specified by the

index attribute list. Thus, in some situations
algorithms may exploit for the sake of efficiency
the fact that base tables or derived tables are
grouped if the system knows about this fact.

In Table 1, we show all possible classes of input
data based on whether or not interesting attribute
sets are grouped, i.e., grouped on one of Q, D, or
the divisor. As we will see later in this paper, some
classes have no suitable algorithm that can exploit
its specific combination of data properties. The
classes that have at least one algorithm exploiting
exactly its data properties are shown in bold font.
In class 0, for example, no table is grouped on an
interesting attribute set. Algorithms for this class
have to be insensitive to whether the data is
grouped or not. Another example scenario is class
10. Here, the dividend is first grouped on the
quotient attributes Q (denoted by Gy, the major
group) and for each group, it is grouped on the
divisor D (denoted by G5, the minor group). The
divisor is grouped in the same ordering (G;) as the
dividend.

Our classification is based on grouping only. As
we have seen, some algorithms may require that
the input is even sorted and not merely grouped.
We consider this a minor special case of our
classification, so we do not reflect this data

Table 1
A classification of dividend and divisor
Class Dividend Divisor Description of grouping
0 D

0 N N N

1 N N G

2 N G N

3 N Gy G Arbitrary ordering of groups in D and divisor

4 N G Gy Same ordering of groups in D and divisor

5 G N N

6 G N G

7 G, Gy N Q major, D minor

8 Gy Gy N D major, Q minor

9 G G G3 QO major, D minor; arbitrary ordering of groups in D and divisor
10 G Gy G QO major, D minor; same ordering of groups in D and divisor
11 Gy Gy G3 D major, Q minor; arbitrary ordering of groups in D and divisor
12 Gy Gy Gy D major, Q minor; same ordering of groups in D and divisor

Note: Attributes are either grouped (G) or not grouped (N). We use the same (a different) subscript of G when D and the divisor have
the same (a different) ordering of groups in classes 3, 4, 9-12. In addition, when the dividend is grouped on both Q and D in classes
7-12, then G; (G,) denotes the attributes that the table is grouped on first (second).
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property in Table 1, but the algorithms in Section
3 will refer to this distinction. We do not consider
any data property other than grouping in this
paper because our approach is complete and can
easily and effectively be exploited by a query
optimizer and query processor.

Fig. 2 illustrates four classes of input data for
division, based on the example data of Fig. 1.
These classes, which are shown in bold font in

enrollment course
[ student_id [ course_id | [ course_id |
Bob Theory Databases
Alice Compilers Theory
Chris Theory Compilers
Chris Graphics not grouped
Alice Theory
Bob Graphics
Chris Compilers
Bob Databases
Bob Compilers
not grouped not grouped
(a) Class 0
enrollment course
[ student_id course_id | [ course_id ]
Alice Theory Databases
Chris Theory Theory
Bob Theory Compilers
Bob Databases not grouped
Bob Graphics
Chris Graphics
Bob Compilers
Chris Compilers
Alice Compilers
not grouped grouped
(b) Class 2
enrollment course
| student_id | course_id | [ course_id |
Chris Graphics Databases
Chris Compilers Theory
Chris Theory Compilers
Alice Theory not grouped
Alice Compilers
Bob Theory
Bob Compilers
Bob Databases
Bob Graphics
grouped not grouped
(c)Class 5
enrollment course
[ student_id | course-id | [ course_id |
Chris Theory Databases
Chris Graphics Theory
Chris Compilers Compilers
Alice Theory grouped
Alice Compilers
Bob Databases
Bob Theory
Bob Graphics
Bob Compilers
grouped grouped
(d) Class 10

Fig. 2. Four important classes of input data, based on the
example of Fig. 1.

Table 1, are important for several algorithms that
we present in the following section. Note that for
class 10 both tables are grouped in the same order
on course_id. If the value “Graphics” is present in
a quotient group then it always appears after
“Theory” and before “Compilers.” Fig. 1 shows
another example instance of class 10, where the
quotient order as well as the divisor group order is
ascending. The benefit of knowing about such an
input data property will be clarified when we
discuss algorithms exploiting this specific property
in Sections 3.3.2 and 3.3.3.

If we know that an algorithm can process data of
a specific class, it is useful to know which other
classes are also covered by the algorithm. This
information can be represented, e.g., by a Boolean
matrix like the one on the left in Fig. 3. One axis
indicates a given class C| and the other axis shows
the other classes C, that are also covered by Cj.
Alternatively, we can use a directed acyclic graph
representing the input data classification, sketched
on the right of Fig. 3. If a cell of the matrix is
marked with “Y” (yes), or equivalently, if there
is a path in the graph from class C; to C,, then
an algorithm that can process data of class C;
can also process data of class C,. The graph
clearly shows that the classification is a partial order
of classes, not a strict hierarchy. The source node of
the graph is class 0, which requires no grouping of D,
0, or divisor. Any algorithm that can process data of
class 0 can process data of any other class. For
example, an algorithm processing data of class 6 is
able to process data of classes 9 and 10.

Class C,
9[8|7]6]5
Y|Y|Y]|Y
Y Y
Y

S
(¥}

~<
~<

<[<]=
<

<[=<]=<]

<[=<]=<]=
<[=]=<]<]+

<[=<[=<]=<]=

~
~<

Class C;
(R 11N S FoN| FUY) IFNY [90) O B P
~
~
~<
~<

=
~<

Fig. 3. A matrix and a directed acyclic graph representing the
input data classification described in Table 1. All algorithms to
be discussed in Section 3 assume data properties of either class
0, 2,5, or 10.
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For the subsequent discussion of division
algorithms, we define two terms to refer to certain
row subsets of the dividend. Let the dividend S be
grouped on Q (D) as the first or the only set of
group attributes, i.e., let the dividend belong to
class 5 (2) and all its descendants in Fig. 3.
Furthermore, let v be one specific value of such a
group. Then, the set of rows defined by go-,(S)
(6p=o(S)) 1is called the quotient group (divisor
group) of v. For example, in the enrollment table
of class 5 in Fig. 2(c), the quotient group of Alice
consists of the rows {(Alice, Theory), (Alice,
Compilers)}. Similarly, the divisor group of
Databases in class 2 in Fig. 2(b) consists of the
single row (Bob, Databases).

3. Overview of algorithms

In this section, we present algorithms for
relational division proposed in the database
literature together with several new variations of
the well-known hash-division algorithm. For the
sake of a concise presentation, we will frequently
use abbreviations for the algorithms that we
summarize in Table 2.

In Section 4, we will analyze and compare the
effectiveness of each algorithm with respect to the
data classification of Section 2.

3.1. Complexity of algorithms

During the evaluation of relevant literature, we
found that it is necessary to clarify that each

Table 2
Abbreviations for division algorithms

Division algorithm Abbrev.
Hash-division HD
Hash-division for divisor groups HDD
Hash-division for quotient groups HDQ
Merge-count division MCD
Merge-group division MGD
Merge-sort division MSD
Nested-loops division NLD
Nested-loops counting division NLCD
Transposed hash-division HDT
Transposed hash-division for divisor groups HDTD
Transposed hash-division for quotient groups HDTQ
Stream-join division SID

division algorithm (analogous to other classes of
algorithms, like joins, for example) has perfor-
mance advantages for certain data characteristics.
No algorithm is able to outperform the others for
every input data conceivable.

The following algorithms assume that the
division’s input consists of a dividend table
S(Q, D) and a divisor table 7T(D), where Q is a
set of quotient attributes and D is the set of divisor
attributes, as defined in Section 2.4.

During the presentation of the algorithms, we
analyze the worst and typical case complexities of
processing time and memory consumption in O-
notation, based on the size (number of rows) of the
dividend |S| and the size of the divisor |T|. We use
|Q|, the number of distinct values of quotient
attributes Q in the dividend, for some algorithms
to derive a complexity formula. Note that always
|0|<|S], and in the worst case |Q| = |S], i.e., each
single row of S is a potential (candidate) quotient.
To derive formulas for the typical time and
memory complexities, we use the assumption that
|S|>|T], i.e., there are many quotient candidates
and/or the number of rows of an typical quotient
candidate is much larger than the number of
divisor rows. We consider this situation as the
typical case because relational division is defined
to compute a set of result rows and in real-world
scenarios this set is of considerable size. A large
result size occurs only if the dividend contains
many more rows than the divisor.

In addition to time and memory complexity, it is
useful to analyze the I/O cost of each algorithm, as
it has been done in detail for some of the following
algorithms in [8]. However, since the focus of this
paper is to describe the fundamental structure of
input data and algorithms involved in relational
division, we restrict our analysis to memory and
processing complexities and we do not give I/O
formulas.

3.2. Query language representation and algorithm
classification

In this section, we show SQL expressions for
division and explain how they give rise to two
classes of algorithms based on the kind of data
structures employed.
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The commonly used approach to express uni-
versal quantification uses two “NOT EXISTS”
clauses, exploiting the mathematical equivalence
Vx3y : f(x,y) = -~3Ix—3y : f(x, ) as follows:

SELECT DISTINCT student_id
FROM enrollment AS el
WHERE NOT EXISTS (
SELECT =*
FROM course AS ¢
WHERE NOT EXISTS (
SELECT *
FROM enrollment AS e2
WHERE e2.student_id = el.student_id AND
e2.course_id = c.course_id))

This query asks for each student, where there is
no course that the student is not enrolled in.

The previous approach is not very intuitive to
formulate. Another way to express division queries
has been proposed in the past, using a special
syntax for universal quantification. The quantifier
“FOR ALL,” which is part of a so-called
quantified predicate [5], was planned to be included
in the SQL:1999 standard [6] but it was finally
excluded for reasons unknown to the authors. We
can phrase queries using the quantifier for division
queries in an intuitive way. For example, the
following SQL query employing a quantified
predicate is equivalent to the above query:

SELECT DISTINCT student_id
FROM enrollment AS el
WHERE FOR ALL (SELECT =*
FROM  course AS c)
(EXISTS (

SELECT *

FROM enrollment AS e2

WHERE e2.student_id = el.student_id AND

e2.course_id = c.course_id))

This query asks for each student, where for all
courses there is an enrollment of this student.

A query language syntax dedicated to universal
quantification allows us to map the query directly
to a query execution that uses a division algorithm.
It is non-trivial to map a query formulated in an
indirect way (e.g. by using nested negations as in
the first approach) to a query execution that uses a
division algorithm.

There is a third way mentioned in the literature
that uses aggregation. The example query of
Section 1.1 can be phrased in SQL using aggrega-
tion as follows:

SELECT student_id

FROM enrollment

GROUP BY student_id

HAVING COUNT(DISTINCT course_id) = (
SELECT COUNT(DISTINCT course_id)
FROM course)

Any query involving universal quantification
can be replaced by a query that makes use of
counting [1]. However, there is a problem with this
approach to express division because it is not
equivalent to the previous two approaches. It
returns the same result as the other queries only if
two conditions are met. First, each course_id (D)
value in enrollment (the dividend) is also contained
in the course table (the divisor). Defining a foreign
key enrollment.course_id that references course
and enforcing referential integrity can fulfill this
condition. Another way to guarantee referential
integrity is to preprocess the dividend by a semi-
join of dividend and divisor. The semi-join returns
all dividend rows whose D values are contained in
the divisor. Fig. 4 illustrates the semi-join for our
university example in Fig. 1.

The second condition of this approach requires
that the course_id (D) values and the divisor rows
are unique. Possible duplicates have to be removed
before the division. Hence, the SQL query above
contains the SQL keyword “DISTINCT” when
counting course_id values to avoid any duplicates.
Note that when the divisor is grouped on all of its
attributes, each group consists of a single row
because of the required absence of duplicate rows.
The same is true for the dividend if it is grouped on
both Q and D, as in the classes 7-12 in Table 1.

We have seen that the two approaches actually
realize two logical operators that give rise to two
classes of algorithms, aggregate and scalar. The
scalar class of algorithms relies on direct row
matches between the dividend’s divisor attributes
D and the divisor table. The second class,
aggregate algorithms, use counters to compare
the number of rows in a dividend’s quotient group
to the number of divisor rows. In [2], scalar and
aggregate algorithms are called direct and indirect
algorithms, respectively.

Aggregate algorithms are often described as
alternative ways to scalar algorithms (for the real
division operator) but they are prone to errors
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old_enrollment
student-id | courseid |

Chris Compilers

Chris Graphics course
Chris Theory course-id
Alice Compilers Databases
Alice Theory Compilers
Bob Compilers Theory
Bob Databases (b) Divisor
Bob Graphics

Bob Theory

(a) Original dividend

new-enrollment
student_id | course_id |

Chris Compilers
Chris Theory
Alice Compilers
Alice Theory
Bob Compilers
Bob Databases
Bob Theory

(¢) Resulting dividend

Fig. 4. Semi-join old_enrollment < course = new_enrollment, re-
presenting the preprocessing of the enrollment table for
aggregate division algorithms, based on the example in Fig. 1.

because one has to take care of duplicates, NULL
values, and referential integrity, as already men-
tioned before.

Some query languages for non-relational data
models also offer support to express quantifica-
tion. For example, there is “work in progress’ by
the W3C on the Working Draft of XQuery [7], a
query language for XML data. Universal quanti-
fication can be expressed in XQuery by an every
expression.

3.3. Scalar algorithms

This section presents division algorithms that
use data structures to directly match dividend rows
with divisor rows.

3.3.1. Nested-loops division

This algorithm is the most naive way to
implement division. However, like nested-loops
join, an operator using nested-loops division (NLD)
has no required data properties on the input tables
and thus can always be employed, i.c., NLD can
process input data of class 0 and thus any other
class of data, according to Fig. 3.

We use two set data structures, one to store
the set of divisor values of the divisor table,

called seen_divisors, and another to store the set of
quotient candidate values that we have found so
far in the dividend table, called seen_quotients.
We first scan the divisor table to fill seen_divisors.
After that, we scan the dividend in an outer loop.
For each dividend row, we check if its quotient
value (Q) is already contained in seen_quotients.
If not, we append it to the seen_quotients
data structure and scan the remainder of the
dividend iteratively in an inner loop to find all
rows that have the same quotient value as the
dividend row of the outer loop. For each such row
found, we check if its divisor value is in
seen_divisors. If yes, we mark the divisor value in
seen_divisors. After the inner scan is complete,
we add the current quotient value to the output if
all divisors in seen_divisors are marked. Before
we start processing the next dividend row of the
outer loop, we unmark all elements of
seen_divisors.

Note that NLD can be very inefficient. For each
row in the dividend table, we scan the dividend at
least partially to find all the rows that belong
to the current quotient candidate. All divisor
rows and quotient candidate rows are stored in
an in-memory data structure. NLD can be the
most efficient algorithm for small ungrouped
datasets.

This algorithm can make use of any set data
structure like hash tables or sorted lists to
represent seen_divisors and seen_quotients. Let us
assume that this algorithm uses hash tables or any
very efficient data structure with a (nearly)
constant access time. Then, the worst case time
complexity of this algorithm is O(|S]* +|T|) and
the typical time complexity is O(|S|?). The memory
complexity is O(|Q| + |T]). Since in the extreme
case |Q| = |S|, the worst case memory complexity
is O(|S| 4 |T|) and the typical memory complexity
is O(]S)).

The pseudo-code of the nested-loops division
algorithm is shown in the appendix. In that
code, the seen_divisors and seen_quotients data
structures are represented by the divisor hash
table dht and the quotient hash table ght,
respectively.

Fig. 5(g) illustrates the two hash tables used in
this algorithm: the divisor/quotient hash table
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respec-

tively. The value setting in the hash tables is
shown for the time when all dividend rows of Alice
and Bob (in this order) have been processed and

we have not yet started to process any rows of

Chris in the outer loop. We find that Bob is a
quotient because all bits in the divisor hash table

are equal to 1.

3.3.2. Merge-sort division

The merge-sort division (MSD) algorithm as-

sumes that

® the divisor T is sorted, and that

® the dividend S is grouped on Q, and for each
group, it is sorted on D in the same order

(ascending or descending) as 7.

enrollment course
quotient stuarent_id course'_id course'_id
Chris Compilers 7| Compilers
Chris Graphics /./'/ Databases
Chris Theory / Theory
Alice Compilers 7/
Alice Theory /"/ /
Bob Compilers 1/ /
Bob Databases [,/
Bob Graphics |/
Bob Theory '
divisor hash table quotient hash table
(a) Nested-Loops Division (NLD) (b) Merge-Sort Division (MSD)
enrollment course
stuatent_id course_id course_id divisor divisor quotient .
Chris Theory ... Databases attribute ~ number attribute itmap
Chris Graphics Theory
Chris Compilers Compilers -
- Compil
i Theory
Alice Compilers [
Bob Databases [
Bob Theory
Bob Graphics
Bob Compilers i i
divisor hash table quotient hash table
(¢) Merge-Group Division (MGD) (d) Hash-Division (HD)
divisor 5 quotient quotient divisor divisor
attribute bitmap attribute number attribute number
| [oi 1]i2]
Compilers | [1]1]i1]
Databases | [0f] 1]i0]
Theory | [1i[1]i1]
divisor hash table quotient hash table divisor hash table current quotient candidate

Fig. 5. Overview of the data structures and processing used in scalar algorithms. The value setting is based on the example from Fig. 1.

(e) Transposed Hash-Division (HDT)

(f) Hash-Division for Quotient Groups (HDQ)

divisor
attribute bit

divisor hash table

Bob

current quotient candidate

(g) Transposed Hash-Division for Divisor Groups

(HDTQ)

Except for MSD and MGD, broken lined boxes indicate that a quotient is found.
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This data characteristic is a special case of class 10,
where D and the divisor are sorted and not only
grouped.

The algorithm resembles merge-join for proces-
sing a single quotient group and is similar to
nested-loops join for processing all groups. Let us
briefly sketch the processing of rows within a
single group, assuming an ascending sort order.
We begin with the first row of dividend and
divisor. If the divisor value D of the current
dividend row and the divisor row match, we
proceed with the next row in both tables. If D is
greater than the current divisor row, we scan
forward to the next quotient group. If D is less
than the divisor row, we proceed with the next row
of the group and the current divisor row. If there
are no more rows to process in the quotient group
but at least one more row in the divisor, we skip
the quotient group. If there are no more rows to
process in the divisor, we have found a quotient
and add it to the output table.

Our MSD is similar to the approach called naive
division, presented in [1] and originating from [8].
In both approaches, we can implement the scan of
each input such that it ignores duplicates. In
contrast to merge-sort division, naive division
explicitly sorts the data before the merge step.
Even worse, naive division does not merely group
the dividend on Q but sorts it, which is more than
necessary. Note that we view sorting or grouping
as preprocessing activities that are separate from
the core division algorithm. We sketch the pseudo
code of MSD without duplicate removal logic in
the appendix.

The worst case time complexity of this algori-
thm is O(S| + |QIIT) = O(IS| + ISIIT]) = O(SIIT))
because the dividend is scanned exactly once and
from the divisor table, we fetch as many rows as
the number of quotient candidates times the
number of divisor rows. The typical case time
complexity is O(|S||T|). The worst and typical case
memory complexity is O(1), since only a constant
number of small data structures (two rows) have
to be kept in memory.

Fig. 5(b) illustrates the matches between rows of
dividend and divisor. Observe that the data is not
sorted but only grouped on student_id in an
arbitrary order.

3.3.3. Merge-group division

We can generalize MSD to an algorithm that we
call merge-group division (MGD). In contrast to
MSD, we assume that

® both inputs are only grouped and not necessa-
rily sorted on the divisor attributes, but that

® the order of groups in each quotient group and
the order of groups in the divisor are the same.

Note that each group within a quotient group and
within the divisor consists of a single row. This
ordering can occur (or can be achieved) if, e.g., the
same hash function is used for grouping the divisor
and each quotient group.

In the MSD algorithm, we can safely skip a
quotient candidate if the current value of Q is
greater (less) than that of the current divisor row,
assuming an ascending (a descending) sort order.
Since we do not require a sort order on these
attributes in MGD, we cannot skip a group on
unequal values, as we do in MSD. For example,
suppose that the divisor S has a single integer
attribute and consists of the following rows in the
given order: S =(3,1,5) and the D values of the
current quotient group G consists of the rows G =
(2,5,4,6). We can be sure that G is not a valid
quotient only after

® we have scanned the entire group G, where we
find that the first element of S (3) is not
contained in G, or

® we have scanned S up to last element (5) and we
have scanned G up to the second element (5) to
find that G does not contain the other elements
of S (3 and 1) before element 5 appears.

The MGD approach makes use of a look-ahead
of n divisor rows for some predefined value n>1.
As in the MSD approach, we compare the
current quotient group row with the current
divisor row. In case of inequality, we look ahead
up to the nth divisor row to see if there is any other
row matching the current group row. If we find
such a match, we can skip the current quotient
candidate. In our example, a look-ahead of 2
means that we check up to the second element (1)
of the divisor. The look-ahead of 2 does not help
for any value of G in our example. A look-ahead
of 3 means a check with up to the third divisor
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element (5). When we check the second row (5)
of the quotient group, we find a match with the
third divisor element (5). Here, we can skip the
group because a quotient would have to contain
the values 3 and 1 before the occurrence of 5 to
qualify due to the assumption that the group
orders are the same. In other words, the ordering
assumption guarantees that the values 3 and 1
cannot occur after the element 5. Since they have
neither occurred in G before element 5, we know
that this quotient candidate does not contain all
divisor elements, in particular not the elements 3
and 1.

The MSD algorithm is a special case of
MGD where the look-ahead is set to 1 because it
does not look further than the current row
for each quotient group row since sorting was
applied.

In summary, the MGD approach can make use
of as much look-ahead as the minimum of the
available memory and the current divisor size.
Note that the divisor fits into memory in all
reasonable cases. Fig. 5(c) sketches the matches
between dividend and divisor rows. Observe that
the order of (single-row) groups within each
quotient group in the dividend is the same as that
of the divisor.

The time complexity of this algorithm is O(|S| +
|OIIT]) because the dividend is scanned exactly
once and the divisor is scanned entirely for each
quotient and at least partially for every quotient
candidate. Thus, the worst case time complexity is
O(|S| + |S||T|) = O(|S||T|). The typical case time
complexity is also O(|S]|T]). The worst case
memory complexity is O(|T]) if we keep the entire
divisor as a look-ahead in memory. The typical
case memory complexity then becomes O(1) since
|T)«<S].

3.3.4. Classic hash-division

In this section, we present the classic hash-
division (HD) algorithm [1]. We call this algorithm
“classic” to distinguish it from our variations of
this approach in the following sections.

The two central data structures of HD are the
divisor and quotient hash tables, sketched in
Fig. 5(d). The divisor hash table stores divisor
rows. Each such row has an integer value, called

divisor number, stored together with it. The
quotient hash table stores quotient candidates
and has a bitmap stored together with each
candidate, with one bit for each divisor. The
pseudo code of hash-division is sketched in the
appendix.

In a first phase, hash-division builds the divisor
hash table while scanning the divisor. The hash
function takes the divisor attributes as an argu-
ment and assigns a hash bucket to each divisor
row. A divisor row is stored into the hash bucket
only if it is not already contained in the bucket,
thus eliminating duplicates in the divisor. When a
divisor row is stored, we assign a unique divisor
number to it by copying the value of a global
counter. This counter is incremented for each
stored divisor row and is initialized with zero. The
divisor number is used as an index for the bitmaps
of the quotient hash table.

The second phase of the algorithm constructs the
quotient hash table while scanning the dividend.
For each dividend row, we first check if its D value
is contained in the divisor hash table, using the
same hash function as before. If yes, we look up the
associated divisor number, otherwise we skip the
dividend row. In addition to the look-up, we check
if the quotient is already present in the quotient
hash table. If yes, we update the bitmap associated
with the matching quotient row by setting the bit to
1 whose position is equal to the divisor number we
looked up. Otherwise, we insert a new quotient row
into the quotient hash table together with a bitmap
where all bits are initialized with zeroes and the
appropriate bit is set to 1, as described before.
Since we insert only quotient candidates that are
not already contained in the hash table, we avoid
duplicate dividend rows.

The final phase of hash division scans the
quotient hash table’s buckets and adds all quotient
candidates to the output whose bitmaps contain
only ones. In Fig. 5(d), the contents of the hash
tables are shown for the time when all dividend
and divisor rows of Fig. 1 have been processed.
We see that since Bob’s bitmap contains no zeroes,
Bob is the only quotient, indicated by a broken
lined box.

Hash-division scans both dividend and divisor
exactly once. Because hash tables are employed
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that have a nearly constant access time, this
approach has a worst and typical case time
complexity of O(|S| + |T|) and O(]S]), respectively.
The memory complexity consists of O(|T'|) to store
the divisor hash table plus O(|Q||S|) for the
quotient hash table. The size of a bitmap is
proportional to |S|. Since the worst case scenario
implies that |Q| = |S|, the total worst and typical
case memory complexity is O(|S]|T)).

3.3.5. Transposed hash-division

This algorithm is a slight variation of classic
hash-division. The idea is to switch the roles of the
divisor and quotient hash tables. The transposed
hash-division (HDT) algorithm keeps a bitmap
together with each row in the divisor hash table
instead of the quotient hash table, as in HD.
Furthermore, HDT keeps an integer value with
each row in the quotient hash table instead of the
divisor hash table, as in the HD algorithm.

Same as the classic hash-division algorithm,
HDT first builds the divisor hash table. However,
we store a bitmap with each row of the divisor. A
value of 1 at a certain bit position of a bitmap
indicates which quotient candidate has the same
values of D as the given divisor row.

In a second phase, also same as HD, the HDT
algorithm scans the dividend table and builds a
quotient hash table. For each dividend row, the D
values are inserted into the divisor hash table as
follows. If there is a matching quotient row stored
in the quotient hash table, we look up its quotient
number. Otherwise, we insert a new quotient row
together with a new quotient number. Then, we
update the divisor row’s bitmap by setting the bit
at the position given by the quotient number to 1.

The final phase makes use of a new, separate
bitmap, whose size is the same as the bitmaps in
the divisor hash table. All bits of the bitmap are
initialized with zero. While scanning the divisor
hash table, we apply a bit-wise AND operation
between each bitmap contained and the new
bitmap. The resulting bit pattern of the new
bitmap is used to identify the quotients. The
quotient numbers (bit positions) with a value of 1
are then used to look up the quotients using a
quotient vector data structure that allows a fast
mapping of a quotient number to a quotient

candidate. The HDT pseudo-code is shown in the
appendix.

Figs. 5(d) and (e) contrast the different structure
of hash tables in HD and HDT. The hash table
contents is shown for the time when all enrollment
rows of Fig. 1 have been processed. While a
quotient in the HD algorithm can be added to
the output when the associated bitmap contains no
zeroes, the HDT algorithm requires a match of the
bit at the same position of all bitmaps in the
divisor table and it requires in addition a look-up
in the quotient hash table to find the associated
quotient row.

The time and memory complexities of HDT are
the same as those of classic hash-division.

3.3.6. Hash-division for quotient groups

Both, classic and transposed hash-division can
be improved if the dividend is grouped on either D
or Q. However, our optimizations based on divisor
groups lead to aggregate, not scalar algorithms.
Hence, this section on scalar algorithms presents
some optimizations for quotient groups. The
optimizations of hash-division for divisor groups
are presented in Section 3.4.3.

Let us first focus on classic hash-division. If the
dividend is grouped on Q, we do not need a
quotient hash table. It suffices to keep a single
bitmap to check if the current quotient candidate
is actually a quotient. When all dividend rows of a
quotient group have been processed and all bits of
the bitmap are equal to 1, the quotient row is
added to the output. Otherwise, we reset all bits to
zero, skip the current quotient row, and continue
processing the next quotient candidate. Because of
the group-by-group processing of the improved
algorithm, we call this approach hash-division for
quotient groups (HDQ).

The HDQ algorithm is non-blocking because we
return a quotient row to the output as soon as a
group of (typically few) dividend rows has been
processed. In contrast, the HD algorithm has a
final output phase: the quotient rows are added to
the result table after the entire dividend has been
processed because hash-division does not assume a
grouping on Q. For example, the “first” and the
“last” row of the dividend could belong to the
same quotient candidate, hence the HD algorithm
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has to keep the state of the candidate quotient row
as long as at least one bit of the candidate’s bitmap
is equal to zero. Note that it is possible to enhance
HD such that it is not a “fully” blocking
algorithm. If bitmaps are checked during the
processing of the input, HD could detect some
quotients that can be returned to the output before
the entire dividend has been scanned. Of course,
we would then have to make sure that no duplicate
quotients are created, either by preprocessing or
by referential integrity enforcements or by keeping
the quotient value in the hash table until the end of
the processing. In this paper, we do not elaborate
on this variation of HD.

3.3.7. Transposed hash-division for quotient groups
We have seen that the HDQ algorithm is a
variation of the HD algorithm: if the dividend is
grouped on Q, we can do without a quotient hash
table. Exactly the same idea can be applied to
HDT yielding an algorithm that we call transposed
hash-division for quotient groups (HDTQ).

For grouped quotient attributes, we can do
without the quotient hash table and we do not keep
long bitmaps in the divisor hash table but only a
single bit per divisor. Before any group is processed,
the bit of each divisor attribute is set to zero. For
each group, we process the rows like in the HDT
algorithm. After a group is processed, we add a
quotient to the output if the bit of every divisor row
is equal to 1. Then, we reset all bits to zero and
resume the dividend scan with the next group.

We do not show the pseudo code for the HDQ
and HDTQ algorithms for brevity. However, we
sketch their data structures in the Figs. 5(f) and (g)
for the time when the group of dividend rows
containing the quotient candidate Bob have been
processed.

3.4. Aggregate algorithms

This class of algorithms compares the number of
rows in each quotient candidate with the number
of divisor rows. In case of equality, a quotient
candidate becomes a quotient. All algorithms have
in common that in a first phase, the divisor table is
scanned once to count the number of divisor rows.
Each algorithm then uses different data structures

to keep track of the number of rows in a quotient
candidate. Some algorithms assume that the
dividend is grouped on Q or D.

3.4.1. Nested-loops counting division

Similar to scalar nested-loops division, nested-
loops counting division (NLCD) is the most naive
way in the class of aggregate algorithms. This
algorithm scans the dividend multiple times.
During each scan, NLCD counts the number of
rows belonging to the same quotient candidate.

We have to keep track of which quotient
candidates we have already checked, using a
quotient hash table as shown in Fig. 6(a). A global
counter is used to keep track of the number of
dividend rows belonging to the same quotient
candidate. We fully scan the dividend in an outer
loop: We pick the first dividend row, insert its Q
value into the quotient hash table, and set the
counter to 1. If the counter’s value is equal to the
divisor count, we add the quotient to the output
and continue with the next row of the outer loop.
Otherwise, we scan the dividend in an inner loop
for rows with the same Q value as the current
quotient candidate. For each such row, the
counter is checked and in case of equality, the
quotient is added to the output. When the end of
the dividend is reached in the inner loop, we
continue with the next row of the outer loop and
check the hash table if this new row is a new
quotient candidate.

The time and memory complexities are the same
as for nested-loops division.

3.4.2. Merge-count division

Assuming that the dividend is grouped on Q,
merge-count division (MCD) scans the dividend
exactly once. After a quotient candidate has been
processed and the number of rows is equal to those
of the divisor, the quotient is added to the output.
Note that the size of a quotient group cannot
exceed the number of divisor groups because we
have to guarantee referential integrity.

The aggregate algorithm merge-count division is
similar to the scalar algorithms MSD and MGD,
described in Sections 3.3.2 and 3.3.3. Instead of
comparing the eclements of quotient groups with
the divisor, MCD uses a representative (the row
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quotient
attribute

current quotient
counter

divisor counter quotient hash table

enrollment (dividend) course (divisor)
student_id | course_id course_id
Chris Compilers 2 e Compilers
Chris Theory Ty Databases
Alice Compilers ¢ 2 Theory
Alice Theory
Bob Compilers ey
Bob Databases | | ==
Bob The

oy quotient counter ~ divisor counter

(a) Nested-Loops Counting Division (NLCD)

(b) Merge-Count Division (MCD)

quotient quotient
attribute counter

divisor counter

quotient hash table

quotient  quotient

attribute  number

01 1[:2
2i3[i2

divisor counter vector

quotient hash table

(c) Hash-Division for Divisor Groups (HDD)

(d) Transposed Hash-Division for Divisor Groups

(HDTD)

divisor counter

quotient

quotient hash table

(e) Stream-Join Division (SJD)

Fig. 6. Overview of data structures used in aggregate algorithms. Broken lined boxes indicate that a quotient is found. Only Bob’s

group has as many dividend rows as the divisor.

count) of each quotient group to compare it with
the divisor’s aggregate. Fig. 6(b) illustrates the
single scan required to compare the size of the each
quotient group with the divisor size.

MCD has a worst case time complexity of
O(|S| + |T|) and an typical case time complexity of
O(|S)). Since no significant data structures have to
be kept in memory except for the current dividend
row and the counters, the worst case and typical
case memory complexity is O(1).

3.4.3. Hash-division for divisor groups

In Section 3.3.6, we have analyzed optimizations
of hash-division that require a dividend that is
grouped on Q. We now show some optimizations
of hash-division for a dividend that is grouped on

D. Unlike the hash-division-like algorithms based
on quotient groups, the following two algorithms
are blocking.

This algorithm does not need a divisor hash
table because after a divisor group of the dividend
has been consumed, the divisor value will never
reappear. We use a counter instead of a bitmap for
each row in the quotient hash table. We call this
adaptation of the HD algorithm hash-division for
divisor groups (HDD). The algorithm maintains a
counter to count the number of divisor groups
seen so far in the dividend. For each dividend row
of a divisor group, we increment the counter of the
quotient candidate. If the quotient candidate is not
yet contained in the quotient hash table, we insert
it together with a counter set to 1. When the entire
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dividend has been processed, we return those
quotient candidates in the quotient hash table
whose counter is equal to the global counter.

3.4.4. Transposed hash-division for divisor groups

The last algorithmic adaptation that we present
is called transposed hash-division for divisor groups
(HDTD), based on the HDT algorithm. We can
do without a divisor hash table, but we keep an
array of counters during the scan of the dividend.
The processing is basically the same as the
previous algorithm (HDD): We return only those
quotient candidates of the quotient hash table
whose counter is equal to the value of the global
counter. Because all divisor groups have to be
processed before we know all quotients, this
algorithm is also blocking.

We do not show the pseudo code for the HDD
and HDTD algorithms for brevity. However, we
sketch the data structures used in the Figs. 6(c)
and (d) for the time when the entire dividend has
been processed. Note that the dividend contains
only three divisor groups (no Graphics rows),
because we require that referential integrity
between enrollment and course is preserved, e.g.,
by applying a semi-join of the two tables before
division, as in Fig. 4. Bob is the only student who
is contained in all three divisor groups.

The complexities of HDD and HDTD are the
same. Their worst and typical case time complexity
is O(|S| + |T]) and O(]S]), respectively. The worst
and typical case memory complexity is O(|S]).

3.4.5. Stream-join division

The new algorithm stream-join division (SJD) [9]
is an improvement of hash-division for divisor
groups (HDD). As all other algorithms assuming a
dividend that is grouped on D as the only or the
major set of group attributes, SJD is a blocking
algorithm. SJD is hybrid because it counts the
number divisor rows, like all other aggregate
algorithms, and it maintains several bits to
memorize matches between dividend and divisor,
like all other scalar algorithms. However, in this
paper, we consider SJD an aggregate algorithm
due to its similarity to HDD.

The major differences between SJD and HDD
are:

® SJD stores a bit instead of a counter together
with each quotient candidate in the quotient
hash table.

® SJD is able to remove quotient candidates from
the quotient hash table before the end of the
processing.

The SJD algorithm works as follows. As in HDD,
we maintain a counter to count the number of
divisor groups seen so far in the dividend. First, we
insert all quotient candidates, i.e., Q values, of the
first group in the dividend together with a bit
initialized with zero into the quotient hash table.
We thereby eliminate possible duplicates in the
dividend. Then, we process each following group
as follows. For each dividend row of the current
group, we look up the quotient candidate in the
quotient hash-table. In case of a match, the
corresponding bit is set to 1. Otherwise, i.e., when
the Q value of a given dividend row is not present
in the quotient hash table, we skip this row. After a
group has been processed, we remove all quotient
candidates with a bit equal to zero. Then, we reset
the bit of each remaining quotient candidate to
zero. Finally, when all groups have been pro-
cessed, we compare the current group counter with
the number of rows in the divisor. In case of
equality, all quotient candidates in the quotient
hash table with a bit equal to 1 are added to the
output.

Fig. 6(e) illustrates the use of the quotient hash
table in SJD. We assume that the dividend is equal
to the enrollment table of class 2 in Fig. 2(b) with
the exception that the Graphics group {(Bob,
Graphics), (Chris, Graphics)} is missing, due to
referential integrity. We show the contents of the
hash table for the time when the entire enrollment
table has been processed. We see that Chris and
Alice are not contained in the hash table because
both have already been eliminated after the second
group (Databases). Only Bob’s bit is set to 1 and
he is a quotient row because the number of groups
(3, without Graphics) is equal to the number of
divisor rows.

The advantage of SJD lies in the fact that
the amount of memory can decrease but will
never increase after the quotient candidates
have been stored in the quotient hash table.
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However, the time and memory complexity
is the same as for HDD. Observe that the
maximum amount of memory required is propor-
tional to the number of rows of the first group in
the dividend. It may happen by chance that the
first group is the smallest of the entire dividend. In
this case, we obtain a very memory-efficient
processing.

This algorithm is called stream-join division
because it joins all divisor groups of the dividend
(called streams in [9]) with each other on the
attributes Q.

4. Evaluation of algorithms

In this section, we briefly compare the division
algorithms discussed in Section 3 with each other
and show which algorithm is optimal, with respect
to time and memory complexities, for each class of
input data discussed in Section 2.

Table 3 characterizes the algorithms presented
so far and shows the time and memory complex-

Table 3

ities involved. We assigned the algorithms to those
data classes that have the least restrictions with
respect to grouping. Remember that an algorithm
of class C can also process data of classes that are
reachable from C in the dependency graph in
Fig. 3. The overview of division algorithms in
Table 3 shows that, despite the detailed classi-
fication in Table 1 (comprising 13 classes and
enumerating all possible kinds of input data), there
are four major classes of input data that are
covered by dedicated division algorithms:

® class 0, which makes no assumption of grouping,

® class 2, which covers dividends that are grouped
only or first on D,

® class 5, which covers dividends that are grouped
only or first on Q, and finally

® class 10, which specializes class 5 (and class 0, of
course) by requiring that for each quotient
group, the rows of D and the divisor appear in
the same order. Hence, the dividend is grouped
on Q as major and D as minor.

Overview of division algorithms showing for each algorithm the class of required input data, its algorithm class, and its time and

memory complexities

Division Algorithm  Data Dividend S  Divisor T’ Complexity in O-notation
Algorithm class class
o D Time Memory

Worst Typical Worst Typical
NLCD Aggregate 0 N N N ISP + |7 IS? 1 1
NLD Scalar ISP + 7] Ni IS| + 171 S|
HD Scalar |S]+ T N |S||T| |S||T|
HDT Scalar NERV S| |SIIT| ISIIT|
HDD Aggregate 2 N G N NEV |S| |S| S|
HDTD Aggregate NERA |S| |S| N
SID Aggregate NEV |S| |S| S|
MCD Aggregate 5 G N N 151+ 15 ! !
HDQ Scalar NEVA |S| |T) 1
HDTQ Scalar NERV S| |T| 1

ISIIT] IS|IT 7] 1
MGD Scalar 10 G Gy Gy

- < ISIIT] ISIIT] 1 1

MSD Scalar S5 S,

Note: Input data are either not grouped (N), grouped (G), or sorted (S). Class 10 is first grouped on Q, indicated by G;. For each
quotient group, it is grouped (G) or sorted (S») on D in the same order as the divisor. The algorithm names corresponding to the

abbreviations in the first column are given in Table 2.
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Note that algorithms for class 2, namely HDD,
HDTD, and SJD, have not been identified in the
literature so far. They represent a new straightfor-
ward approach to deal with a dividend that is
grouped on D. Together with the other three major
classes, a query optimizer can exploit the informa-
tion on the input data properties to make an
optimal choice of a specific division operator.

Suppose we are given input data of a class that is
different from the four major classes. Which
algorithms are applicable to process our data?
According to the graph in Fig. 3, all algorithms
belonging to major classes, which are direct or
indirect parent nodes of the given class, can be
used. For example, any algorithm of major classes
0 and 5 can process data of the non-major classes
6, 7, and 9.

Several algorithms belong to each class of input
data in Table 3. In class 0, both HD and HDT
have a linear time complexity (more precisely,
nearly linear due to hash collisions). However, they
have a higher memory complexity than the other
algorithms of this class, NLCD and NLD.

We have designed three aggregate algorithms
for class 2. They all have the same linear time and
memory complexities.

Class 5 has two scalar and one aggregate
algorithm assigned to it, which all have the same
time complexity. The constant worst case memory
complexity of MCD is the lowest of the three.

The two scalar algorithms HDQ and HDTQ of
class 10, which consists of two subgroups (sorted
and grouped divisor values) have the same time
complexity. The worst case memory complexity of
MSD is lower than that of MGD because MSD
can exploit the sort order.

It is important to observe that one should not
directly compare complexities of scalar and
aggregate algorithms in Table 3 to determine the
most efficient algorithm overall. This is because
aggregate algorithms require duplicate-free input
tables, which can incur a very costly preprocessing
step. There is one exception of aggregate algo-
rithms: SJD ignores duplicate dividend rows
because of the hash table used to store quotient
candidates. It does not matter if a quotient occurs
more than once inside a divisor group because the
bit corresponding to a quotient candidate can be

set to 1 any number of times without changing its
value (1). However, SID does not ignore dupli-
cates in the divisor because it counts the number of
divisor rows.

In general, scalar division algorithms ignore
duplicates in the dividend and the divisor. Note
that the scan operations of MGD and MSD can be
implemented in such a way that they ignore
duplicates in both inputs [1]. However, to simplify
our presentation, the pseudo-code of MSD in the
appendix does not ignore duplicates.

Let us briefly illustrate some example issues that
we have to take into account when comparing
division algorithms. The first issue is time versus
memory complexity. In class 0, for example, four
algorithms have been identified. NLCD and NLD
have a quadratic time complexity compared to the
linear complexities of HD and HDT. Despite the
different processing performance of these algo-
rithms, a query optimizer may prefer to pick a
division operator based on the NLCD algorithm
to HD and HDT if the estimated amount of input
data is small and the optimizer wants to avoid the
overhead of building hash tables. We do not go
into the details of query optimization here because,
in general, the choice of picking a specific operator
from a set of logically equivalent operators (like
join and division) also depends on factors other
than time and memory complexity, as we have
mentioned in Section 2.2. Nevertheless, time and
memory consumption are the dominant factors in
reality.

The second issue is about the efficiency of a
query processor for certain operations. We pre-
sented two different approaches for hash-division:
the classic approach (HD), where bitmaps are
stored together with quotient candidates in the
quotient hash table, and a new approach (HDT)
where bitmaps are stored with each divisor row in
the divisor hash table (see Figs. 5(d) and (e) for
illustrations). These dual approaches may seem
interchangeable at first sight with respect to
efficiency. However, in some situations, a query
optimizer may prefer one to the other, depending
on how efficiently the system processes bitmaps.
Suppose the system can process a few extremely
long bitmaps more efficiently than many short
bitmaps. If there are many quotient candidates in
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the input data (which is typical) but there is a
relatively short divisor, then the bitmaps stored in
HD are relatively short but there are many of
them. In contrast, HDT would build very long
bitmaps (which may be the deciding factor) but
only a few of them would be stored in the divisor
hash table. Analogously, the optimizer may prefer
HD to HDT if the input consists of few but very
large quotient candidates. Similar situations apply
to the other pairs of transposed and non-trans-
posed algorithms, i.e., for the HDD/HDTD and
HDQ/HDTQ pairs.

5. The set containment problem

Universal quantification checks if all elements of
a given set fulfill a given condition. In many
applications, this condition is a set element
membership test, i.e., the quantification problem
becomes a set containment problem. For example,
the problem stated in Section 1.1 can be rephrased
as follows: ““Find the students whose associated set
of enrolled courses contains the given set of
courses offered by the department.”

5.1. Set storage representations

Division is an operator of the relational algebra,
which is based on the relational model. In the basic
relational model all relations are in first normal
form (INF), i.e., all attribute domains are atomic.
One possible extension of the relational model
provides relations with multivalued attributes,
where the attribute domain is a collection type
like bag or set, defined on top of a primitive
domain like float or string. A more rigorous
extension of the relational model is the nested
relational model [10,11], where attributes can be
relations themselves.

There are basically two orthogonal classifica-
tions for the storage representation of sets: nesting
and location [12]. The attribute values are stored
as multiple values: the nested representation stores
the values as a variable length attribute and the
unnested representation stores them as multiple
tuples.

In a classification based on the storage location,
one can distinguish between an internal represen-
tation where the set elements are stored together
with the accompanying attribute values and an
external representation, where the set elements are
stored in a separate auxiliary table connected by
foreign key references, as depicted in Fig.7,
according to [12]. In this figure, we show as
an example a single tuple of the relation
enrollment(student_id, courses), where student_id is
an atomic attribute and courses is a set-valued
attribute. Here, we represent the fact that the
student Chris is enrolled in the courses Compilers,
Graphics, and Theory. Only the unnested internal
representation conforms to the 1NF.

5.2. Set containment join and relational division

The set containment problem has been studied
in great detail in the past [12-17]. In particular,
several efficient set containment test algorithms
have been developed and storage data structures to
represent sets in relational, object-relational, and
object-oriented databases are discussed.

It is interesting to observe that the division
operator is closely related to set containment join,
which can be implemented efficiently [12,14]. Set
containment join (SCJ), denoted by p<i, is a join

[Chris [{Compilers, Graphics, Theory} |
(a) Nested internal

Chris | Compilers
Chris |Graphics
Chris | Theory
(b) Unnested
internal

Chris [ @ |

{Compilers, Graphics, Theory} |
(c) Nested external

[Chris [ o |
Compilers
Graphics
Theory

(d) Unnested external

Fig. 7. Storage representations of set-valued attributes.
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between the set-valued attributes » and c¢ of two
relations R(a, b) and S(c,d):

Se<.cpR = {t|teS x Rac<h}.

Fig. 8 illustrates an example computation of the
set containment join based on the scenario
introduced in Section 1.1. Only the table course
has been changed by adding an additional
attribute program that indicates which combina-
tion of CS courses are required for a certain
advanced program. We find that Bob has all
prerequisites to specialize in systems and applica-
tions while Chris is only allowed to specialize in
applications.

Suppose, the tables course and enrollment are
defined as before and that the layout of the set-
valued attribute courses is unnested internal for
both tables, as sketched in Fig. 9. We have not
found a definition of such a result table in a nested
internal representation in the literature. Since all
join attributes are preserved, it is unclear how the
rows belonging to a set on the one side are
combined with tuples of another set on the other
side. One possible definition for representing the
matches could be to pair each row from the left
side with each row of the right side, i.e., one could
compute the Cartesian product between the two
groups of tuples that fulfill the set containment.

Because of this problem, we devised an exten-
sion of the division operator, called set contain-

enrollment
[ student_id | courses ]
Alice C, T}
Bob C, D, G, T}
Chris C, G, T}
(a) R(a,b)
course
[_courses program
[{C, D, T} [ Systems
C, G} Applications
(b) S(c,d)

course Mcoursesc courses enrollment

[ student_id | courses [ courses [ program
Bob C,D, G, T} C, D, T} | Systems
Bob C,D, G, T} C, G} Applications
Chris C, G, T} C, G} Applications

(©) SM.cp R=T(a,b,c,d)

Fig. 8. An example computation of the set containment join
operator (><<) based on relations in non-first normal form
employing a set-valued attribute.

enrollment
[ student_id | course_id |

Alice Compilers course
Alice Theory course_id program
Bob Compilers Compilers | Systems
Bob Databases Databases | Systems
Bob Graphics Theory Systems
Bob Theory Compilers Applications
Chris Compilers Graphics Applications
Chris Graphics
Chris Theory (b) S(c,d)

(a) R(a, b)

enrollment + course_id2 course_id COUTSe

student_id | program

Bob Systems
Bob Applications
Chris Applications

(c) R+ch S = T(aa d)

Fig.9. An example computation of the set containment
division operator (= 5 ) based on relations in first normal form.

ment division (= 5) that returns the same rows as
the set containment join but that delivers only the
columns of the non-join attributes. Fig. 9 illus-
trates the behavior of set containment division
based on the same input data as in Fig. 8 but using
a INF data layout.

Formally, the set containment division can be
expressed with the help of (basic) relational
division as follows, again based on the two
relations R(a, b) and S(c, d):

T(a,d) =R~ p5.S
= U R=ml(04=c()) x (x).

xemny(S)

The idea of this expression is to merge the result
of several divisions. In each division, the entire
dividend R is divided by those tuples of the divisor
S, which belong to the same group. There are as
many divisions as the number of distinct values of
S.d. We append the value of the current group to
all result tuples of each division, specified by the
Cartesian product.

We have seen that set containment join and
relational division are very similar. We have
demonstrated the similarity by defining an opera-
tor that operates on INF data like division but
which can process many sets on both sides of the
input like set containment join. The characteristics
of the three operators discussed before are
summarized in Table 4.
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Table 4
Summary of operator characteristics

Division

Set containment division Set containment join

Operator and input relations R(a,b)+S(c)
Left input/dividend Many groups
Right input/divisor Single group
Result/quotient attributes T(a)
Data layout INF

R(a,b)+p=cR(c,d) S(e, d)y><ccpR(a, b)

Many groups Many sets
Many groups Many sets
T(a,d) T(a,b,c,d)
INF Non-1NF

5.3. Overview of set containment join algorithms

The set containment join algorithms that have
been proposed in the literature are based on
signatures [13] and partitioning [17]. Enhanced
approaches combining both techniques have been
developed, which significantly outperform all
known previous approaches [14-16]. All these
algorithms assume that the data is managed by
the database system in a non-INF way, i.e., the
data can be everything but unnested internal,
which is the layout assumed for the set contain-
ment division and basic division problems. How-
ever, in [16] the new approaches are compared to
SQL-based approaches based on counting the
number of elements in the join result of both sets
and comparing it to the set cardinality of the
candidate subset. Such a comparison is incomplete
because other SQL-based approaches using NOT
EXISTS (as for division) have not been taken into
consideration, as described in Section 3.2.

A recent study compared set containment joins
based on a nested internal and an unnested
internal set representation [18], also based on the
counting approach, only. In particular, in the
nested approach, a user-defined containment test
predicate is employed that takes two set-valued
attributes as parameters. According to current
database technology for evaluating user-defined
predicates, the commercial system in use is forced
to apply the test predicate on the result table of a
Cartesian product of both input tables. By
rewriting the query into one using an unnested
layout, a table function is employed that unnests
the set-valued attribute into a table. The optimizer
of the system used in their experiments decided to
first build an intermediate result table that
comprises the set ID and the element value as

attributes, sorted on the element values. Then, the
query execution plan suggests to merge-join the
two sorted input streams on the element value
attributes. After that, the sorted data is grouped
on the set IDs and set cardinalities. Finally, a filter
condition appends only those set ID pairs to the
result, where the cardinality of the contained set is
equal to the number of matches for this pair of
sets. The experiments of this study have shown
that the effort of unnesting the sets and preproces-
sing the data by sorting it on the attributes to be
matched can greatly improve the straightforward
nested-loops approach. Unfortunately, the results
have not been compared to more sophisticated
approaches as the ones proposed, for example, in
[14].

The research results on relational division
should be applied to set containment in future
work since the division problem can be considered
a sub-problem of set containment join under the
assumption that the sets are stored using an
unnested internal representation. The main differ-
ence between both operations is that division is
applied to a single set of dividend set elements,
whereas set containment join compares possibly
multiple sets from both sides of the join with each
other. To the best of our knowledge, the strong
commonality between relational division and set
containment join has not been identified and
investigated before.

6. New applications for universal quantification

In this section, we first argue why business
intelligence problems are likely to benefit from
being expressed using SQL. Then, we suggest a
novel approach to compute frequent itemsets—a
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popular data mining task—which employs uni-
versal quantifications in the SQL queries.

6.1. Database mining

In business intelligence applications, several
data mining and OLAP techniques are employed
to extract novel and useful information from huge
corporate data sets. Typically, the data sets are
managed by a data warehouse that is based on
relational database technology. Although the term
data mining and, even more so, knowledge
discovery in databases (KDD) suggest that the
algorithms explore databases, most commercial
tools merely process flat files. If they do access a
database system, then database tables are used as a
container to read and write data, similar to a file
system. The query optimization and processing
facilities of current database systems are hardly
ever exploited by current data mining tools. The
reasons for this certainly include:

® Portability: A data mining application that does
not rely on a query language can be deployed
more easily because no assumptions on the
language’s functionality have to be made.

® Performance: A highly tuned black-box algo-
rithm with in-memory data structures will
always be able to outperform any query
processor that employs a combination of
generic algorithms.

® Secrecy: A tool vendor does not want to reveal
application logic. By employing SQL-based
algorithms, the database administrator will be
able to see these queries.

Despite these arguments against SQL-based data
mining algorithms, exploiting the query language
power for expressing data mining (sub)problems
can solve several important problems:

® Data currency: The latest updates applied to the
data warchouse are reflected in the query result.
No (replicated) data copies have to be main-
tained.

® Scalability: If extremely large data sets are to be
mined then it is much easier to design a scalable
SQL-based algorithm than designing an algo-
rithm that has to manage data in external files.

The storage management is one of the key
strengths of a database system.

® Adaptability to data: A database optimizer tries
to find the best possible execution strategy
based on the current data characteristics for a
given query. Of course, in some situations this
will not help. Similar to choosing a different
proprietary algorithm for certain data charac-
teristics, it may be better to employ a different

query.

The latter three arguments motivated our research
on SQL-based algorithms for several data mining
methods. One of these methods is discussed in the
following section.

6.2. Frequent itemset discovery with SQL

In this section, we first briefly introduce the
frequent itemset discovery problem and explain
the relationship between frequent itemset discov-
ery and relational division and set containment
join. Then, we present a new approach for this
problem, which makes use of universal quantifica-
tions.

6.2.1. The frequent itemset discovery problem

The computation of frequent itemsets is a
computationally expensive preprocessing step for
association rule discovery, which finds rules in
large transactional data sets [19]. Frequent item-
sets are combinations of items that appear
frequently together in a given set of transactions.
Association rules characterize, for example, the
purchasing pattern of retail customers or the click
pattern of web site visitors. Such information can
be used to improve marketing campaigns, retailer
store layouts, or the design of a web site’s contents
and hyperlink structure.

Given a set of transactions, the frequent itemset
discovery problem is to find itemsets within the
transactions that appear at least as frequently as a
given threshold, called minimum support. For
example, a user can define that an itemset is
frequent if it appears in at least 2% of all
transactions.

Almost all frequent itemset discovery algorithms
consist of a sequence of steps that proceed in a
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bottom-up manner: the result of the kth step is the
set of frequent k-itemsets, denoted as Fy. The first
step computes the set of frequent items (1-item-
sets). Each following step consists of two phases:

1. The candidate generation phase computes a set
of potentially frequent k-itemsets from Fj_;.
The new set is called Cj, the set of candidate
k-itemsets. It is a superset of Fj.

2. The support counting phase filters out those
itemsets from Cj that appear more frequently in
the given set of transactions than the minimum
support and stores them in Fj.

The key problem of frequent itemset discovery
is: “How many transactions contain a certain
given itemset?” This question can be ans-
wered in relational algebra using the division
operator. Suppose that we have a relation
Transaction(tid, item) containing a set of transac-
tions and a relation [Ifemset(item) containing a
single itemset, each row containing one item. We
want to collect those tid values in a relation
Contains(tid), where for all tuples in Itemset there
is a corresponding tuple in Transaction that has a
matching item value together with that tid. In
relational algebra, this problem can be stated as

Transaction(tid, item) = Itemset(item)

= Contains(tid).

The example in Fig. 10 illustrates the division
operation. The Transaction table consists of three

Transaction
[ tid | item |
1001 | diapers
1001 | beer Itemset )
- Contains
188; Cﬁ?ps tid
chips chips

1002 | diapers beer 188:13
1003 | beer diapers :
1003 | avocados | () Divisor () Quotient
1003 | chips
1003 | diapers

(a) Dividend

Fig. 10. Relationship between the frequent itemset discovery
problem and relational division: Transaction- Itemset =
Contains.

transactions and two of them contain all items of
Itemset. We simply have to count the values in
Contains to decide if the itemset is frequent. For
example, if the minimum support is set to 60%
then the given itemset is considered a frequent
itemset because the support is %, which is greater
than 60%. Using division terminology, Transaction
plays the role of the dividend, Itemset represents
the divisor, and Contains is the quotient.
Unfortunately, frequent itemset discovery poses
the additional problem that we have to check many
(candidate) itemsets if they are frequent, i.e.,
unlike Fig. 10(b), we usually do not have a
constant divisor relation but we need many divisor
relations. However, we can employ efficient algo-
rithms for this problem. We could arrange the
itemsets in a table Itemset (itemset, item) and
apply the division operation to each itemset group,
separately. As shown in Section 5.2, this problem
can also be expressed by set containment division:

Itemset(itemset, item) = jrom = irem
Transaction(tid, item)

= Contains(itemset, tid)

Another approach is to use the standard set
containment join, which requires switching from
the INF data representation to a non-INF
representation that uses set-valued attributes. We
would have to preprocess the tables by transform-
ing the item values of each group, defined by the
itemset and tid values, respectively, into a set.
Instead of the above tables in INF, the non-1NF
tables would have a schema like: Itemset (itemset,
itemvalues) and Transaction (tid, itemvalues ), each
having a set-valued attribute itemvalues.

6.2.2. Support counting in SQL

In this paper, we focus on the support counting
phase of frequent itemset discovery. For typical
data sets, this phase is much more computationally
expensive than the candidate generation phase.

There are several approaches to express the
support counting phase in SQL. Most of them are
based on SQL-92. The SETM algorithm is the first
SQL-based approach described in the literature
[20]. Several researchers have suggested improve-
ments of SETM. It has been shown that SETM
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does not perform well on large data sets and new
approaches have been devised, like for example
Three-Way-Join, Subquery, and Two-Group-Bys
[21]. The algorithms presented in that paper
perform differently for different data character-
istics. Subquery is reported to be the best approach
overall compared to the other approaches based
on SQL-92. The reason is that it exploits common
prefixes between candidate k-itemsets when count-
ing the support.

More recently, an approach called Set-Oriented
Apriori has been proposed [22]. The authors argue
that too much redundant computations are
involved in each support counting phase. Their
performance results have shown that set-oriented
apriori performs better than subquery, especially
for high values of k.

We contrast our novel approach to previous
approaches based on SQL-92 where the data is
stored in INF, i.e., we do not investigate set-
valued attributes, for example. One of the
approaches based on SQL-92 is K-Way-Join [21],
illustrated in Fig. 11. The K-Way-Join approach,
which is based on SQL-92, uses k instances of the
transaction table and joins it k& times with itself and
with a single instance of Cj. Same as all other
known approaches based on SQL-92 that use a
INF representation of itemsets, K-Way-Join
assumes that the frequent and candidate k-itemsets
are stored in a single row: (itemset, itemy, ..., iteny,).
However, the given transactions are stored
as multiple rows using the schema (¢id, item). As
we will show in the following section, our
novel approach uses a data layout where itemsets
are stored as multiple rows, same as the transac-
tions.

SELECT c.itemset, COUNT(*) AS support
FROM Ck AS c, TAS t1, T AS t2, ..., T AS tk
WHERE c.iteml = tl.item AND

c.item2 = t2.item AND

c.itemk = tk.item AND
ti.tid = t2.tid AND
t1.tid = t3.tid AND

ti.tid = tk.tid
GROUP BY c.itemset
HAVING support >= @minimum_support

Fig. 11. Support counting phase according to the K-Way-Join
algorithm.

6.2.3. Support counting and universal quantification
Based on the idea of using division to specify the
itemset containment problem, we devised a com-
plete algorithm, called Quiver (QUantified Itemset
discovery using a VERtical table layout) [23], that
employs SQL queries containing universal quanti-
fications for both phases of the discovery task. The
reason for devising a new approach is twofold:

1. We want to formulate intuitive queries that
naturally express the universal quantification
problem: “Count the number of transactions
where for each transaction, «ll items of a given
itemset are contained in the transaction.”
Previous approaches for SQL-based frequent
itemset discovery are mostly “hardwired”
queries, i.e., the quantification is circumvented
by using many join conditions between indivi-
dual items of candidates and transactions (as
shown for the K-Way-Join approach in the
previous section).

2. We want to employ a flexible itemset represen-
tation that is similar to the way transactions are
stored in a database: Transaction (tid,item). In
all previous approaches that use a INF
representation, k-itemsets are stored as a single
row: (itemset,itemy, ..., itemy). Instead of this
“horizontal” layout, Quiver uses a ‘‘vertical”
layout, where a k-itemset is represented as k
rows in the three-column table (itemset, posi-
tion,item). One benefit of this vertical layout is
its ability to store even very large itemsets
because in commercial database systems the
maximum number of columns in a table is
significantly lower than the number of rows.

In the following, we describe only the support
counting phase of Quiver and we focus on the core
problem, universal quantification. The entire
approach, including the candidate generation
phase using universal quantification, is described
in detail in [23].

The query for support counting is first presented
with help of tuple relational calculus since the
calculus offers a universal quantifier to conveni-
ently express the quantification. After this, we
show how to derive an equivalent SQL query. As
explained in Section 3.2, SQL does not offer
a universal quantifier, therefore the query is
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expressed with the help of negated existential
quantifiers.

Since Quiver follows the classical iterative two-
phase approach, suppose that we have computed
the set of candidate k-itemsets Cy(itemset, position,
item) based on the set of frequent (k — 1)-itemsets
Fy(itemset, position, item) during the first phase of
the kth iteration, with k>2. The set of transac-
tions is given by table T'(tid, item).

We express the query Q in tuple relational
calculus to derive combinations of transactions
and candidates as
0 = {(c1 e C,t; € T)|Contains}.

The query can be applied to candidate itemsets
of any size. Therefore, the parameter k of the
particular candidate set Cj is omitted for
brevity. The Contains expression of this query is
defined as

Contains =Vc, e CAtheT
(cy.itemset = c|.itemset) —
(tr.tid = t,.tid A
ty.item = cy.item).

The expression has two free tuple variables c)
and ¢, where ¢| represents a candidate itemset and
t is a transaction that contains ¢;. The quantified
(bound) tuple variables ¢, and f, represent the
items belonging to ¢; and ¢, respectively. The
universal quantification lies in the condition that
for each item ¢, belonging to itemset ¢, there must
be an item #, belonging to transaction ¢#; that
matches with ¢,.

A combination (cy,t;) fulfilling the calculus
query Q indicates that the itemset c;.itemset is
contained in the transaction ¢;.tid. We can find the
support of each candidate by counting the number
of distinct values ¢,.tid that appear in a combina-
tion cy.itemset. We do not show the actual
counting because the basic calculus does not
include aggregate functions.

Since we are interested in an SQL representation
of the given calculus query, we translate it into
SQL in a straightforward manner by applying the
following transformations:

® Quantifiers: As already explained before, there
is no universal quantifier available in SQL.

Therefore, we translate Vxe R : f(x) = -IxeR:
f(x) into “NOT EXISTS (SELECT * FROM R AS x
WHERE NOT £ (x)).”

® [mplications: We replace an implication by a
disjunction, i.e., we transform f—g=-fvyg
into “NOT £ OR g.”

® Negations: We use De Morgan’s rules
“(fAg)=~fv—g and =(fvg) = ~f A—g for
pushing a negation into a conjunction or a
disjunction.

The resulting SQL query for support counting,
shown in Fig. 12, contains two nested “NOT
EXISTS” expressions analogous to the example
SQL query used to express the student’s enroll-
ment problem in Section 3.2. Note that the query
in Fig. 12 has to apply the aggregation on the set
of unique transaction IDs because duplicates can
occur as a result of the query processing.

To conclude this section, we point out that the
Quiver approach shows how an important data
mining task can be expressed in a natural way
using universal quantification. If a database
system were able to recognize the quantification
problem inside queries like the one in Fig. 12, it
could employ the most efficient algorithm that
realizes the division operator, set containment
division operator, or set containment join operator
(discussed in Section 5), taking into account the
current data characteristics, as explained in the
previous sections. This is especially important if
the data mining problem is a part of a larger, more
complex query, involving several additional pre-
dicates. For example, consider a supermarket

SELECT itemset, COUNT(DISTINCT tid) AS support
FROM (
SELECT cil.itemset, ti.tid
FROM Ck AS c1, T AS t1
WHERE NOT EXISTS (
SELECT *
FROM Ck AS c2
WHERE NOT EXISTS (
SELECT *
FROM T AS t2
WHERE NOT (cl.itemset = c2.itemset) OR
(t2.tid = t1.tid AND
t2.item = c2.item)))
) AS Contains
GROUP BY itemset
HAVING  support >= @minimum_support

Fig. 12. Support counting phase according to the Quiver
algorithm.
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scenario, where we restrict our analysis to transac-
tions of the years 1999-2001, and we are only
interested in items of the product category “soft
drinks.” Such additional predicates can signifi-
cantly influence the choice on the most efficient
algorithm for the quantification problem.

7. Related work

Quantifiers in queries can be expressed by
relational algebra. Due to the lack of efficient
division algorithms in the past, early work has
recommended avoiding the relational division
operator to express universal quantification in
queries [2]. Instead, universal quantification is
expressed with the help of the well-known anti-
semi-join operator, or complement-join, as it is
called in that paper.

Other early work suggests approaches other
than division to process (universal) quantification
[24,25]. Universal quantification is expressed by
new algebra operators and is optimized based on
query graphs in a non-relational data model [25].
Due to the lack of a performance analysis,
we cannot comment on the efficiency of this
approach.

The research literature provides only few
surveys of division algorithms [3,4,7]. Some of
the algorithms reviewed in this paper have been
compared both analytically and experimentally [1].
The conclusion is that hash-division outperforms
all other approaches. Complementing this work,
we have shown that an optimizer has to take the
input data characteristics and the set of given
algorithms into account to pick the best-division
algorithm. The classification of four division
algorithms in [1] is based on a two-by-two matrix.
One axis of the matrix distinguishes between
algorithms based on sorting or based on hashing.
The other axis separates ‘“‘direct” algorithms,
which allow processing the (larger) dividend table
only once, from ‘indirect” algorithms, which
require duplicate removal (by employing semi-
join) and aggregation. For example, the merge-
sort division algorithm of Section 3.3.2 falls into
the category ““direct algorithm based on sorting,”
while the hash-division for divisor groups algo-

rithm of Section 3.4.3 belongs to the combination
“indirect algorithm based on hashing.” Our
classification details these four approaches and
focuses on the fact that data properties should be
exploited as much as possible by employing ““slim”
algorithms that are separated from preprocessing
algorithms, like grouping and sorting.

Based on a classification of queries that contain
universal quantification, several query evaluation
techniques have been analyzed [3]. The input data
of this algorithm analysis is stored in an object-
oriented or object-relational database, where set-
valued attributes are available. Hence, the algo-
rithms they examine can presuppose that the input
data is grouped on certain attributes. For example,
the table enrollment in Fig. 1 could be represented
by a set-valued enrolled courses attribute of a
student class. The authors conclude that universal
quantification based on anti-semi-join is superior
to all other approaches, similar to the conclusion
of [2]. Note, however, that this paper has a broader
definition of queries involving universal quantifi-
cation than the classic definition that involves the
division operator. However, the anti-semi-join
approach requires a considerable overhead for
preprocessing the dividend. An equivalent defini-
tion of the division operator using anti-semi-join
(5<) as well as semi-join (><) and left outer join
(p<1pp), 180 S=T = ((Se<T)<1), T)< T.

In this paper, we focused on the universal (for-
all) quantifier. Generalized quantifiers have been
proposed to specify quantifiers like ““at least ten”
or “‘exactly as many’’ in SQL [26]. Such quantifiers
can be processed by algorithms that employ
multi-dimensional matrix data structures [27].
In that paper, however, the implementation
of an operator called all is presented that is
similar but different from relational division.
Unlike division, the result of the all operator
contains some attributes of the divisor. Hence, we
have to employ a projection on the quotient
attributes of the al/l operator’s result to achieve a
valid quotient.

Transformation rules for optimizing queries
containing multiple (existential and universal)
quantifications are presented in [28]. Our contri-
bution complements this work by offering strate-
gies to choose a single (division) operator, which
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may be one element of a larger query processing
problem.

8. Conclusion and future work

Based on a classification of input data pro-
perties, we were able to differentiate the
major currently known algorithms for relational
division. In addition, we could provide new
algorithms for previously not supported data
properties. Thus, for the first time, an optimizer
has a full range of algorithms, separated by their
input data properties and efficiency measures, to
choose from.

We are aware of the fact that database system
vendors are reluctant to implement several alter-
native algorithms for the same query operator,
in our case the division operation. One reason
is that the optimizer’s rule set has to be
extended, which can lead to a larger search space
for queries containing division. Another reason is
that the optimizer must be able to detect a division
in a query. This is a non-trivial task because a
division cannot be expressed in SQL:1999 [6]. No
keyword similar to “FOR ALL” [5] is available
and division has to be expressed indirectly, for
example by using nested “NOT EXISTS” clauses
or by using the “division by counting” approach
on the query language level. To the best of our
knowledge, there is no database system that has an
implementation of hash-division (or any of its
improvements), although this efficient algorithm
has been known for many years [4]. However,
we believe that as soon as a dedicated keyword
for universal quantification is supported by the
SQL standard and its benefit is recognized
and exploited by applications, many options and
strategies are available today for database
system vendors to implement an efficient division
operator.

The similarity between relational division and
the set containment join has been discussed for the
first time. This may lead to more research that
investigates the possibility of representing sets in
an unnested storage layout because efficient
algorithms for division can be exploited. We have
proposed a new operator, called set containment

division, that realizes set containment joins for
data in first normal form.

We have discussed an important application of
the division (and hence set containment) problem,
namely frequent itemset discovery. We plan to
investigate the potential of using universal quanti-
fication in queries in further data mining methods
of business intelligence applications.

Our future work includes the analysis of further
data properties that have an influence on the
optimization of division queries, like the current
data distribution or the availability of certain
indexes. Furthermore, we will study the potential
of parallelizing division algorithms, based on the
detailed studies in [1] on parallelizing hash-division
and aggregate algorithms. In addition, the com-
parison between division and set containment join
algorithms deserves more attention. In particular,
further investigations of both operators need to
take into account the cost of nesting and unnesting
between the INF and the non-1NF storage
representations of sets in order to provide fair
performance comparisons.
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Appendix. Pseudo-code of division algorithms

The following algorithms in Figs 13—17 assume
that the division’s input consists of a dividend
table S(quotient,divisor) and a divisor table
T (divisor). Furthermore, we use the variables s
and ¢ to refer to a single row within S and 7,
respectively. The data structures dht and ght
represent a divisor hash table and a quotient hash
table, respectively.
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sl = s2 = s;
while not t.isEmpty() do
insert t into dht;
while not si1.isEmpty() do
if sl.quotient not in ght then begin
while not s2.isEmpty() do
if sl.quotient == s2.quotient and s2.divisor in dht then
set bit of s2.divisor in dht;
if no bit in dht is equal to zero then
output row (sl.quotient);
reset all bits in dht to zero;
insert sl.quotient into ght;
end;

Fig. 13. Nested-loops division (class 0).

// build the divisor hash table
divisor_count = 0;
while not t.isEmpty() do begin
insert t into dht;
t.divisor_number = divisor_count;
divisor_count++;
end;
// build the quotient hash table
while not s.isEmpty() do
if a matching divisor row t in dht is found then begin
if no matching candidate quotient row q is found in ght then begin
q = new quotient candidate row created from quotient attributes of
dividend row s including a bitmap initialized with zeroes;
insert q into ght;
end;
set bit in g’s bitmap corresponding t.divisor_number;
end;
// find result in the quotient table
foreach bucket in the quotient table do
foreach row q in bucket do
if the associated bitmap of q contains no zero then
output row (q);

Fig. 14. Classic hash-division (class 0).

t_count = 0;
while not t.isEmpty() do begin
t_count++;

t.next();
end;
if not s.isEmpty() then begin
s.next();
current_quotient = s.quotient;
end;

while not s.isEmpty() do begin
s_count = 0;

while not s.isEmpty() and s.quotient == current_quotient do begin
s_count++;
s.next();

end;

if s_count == t_count then

output row (current_quotient);
if not s.isEmpty() then
current_quotient = s.quotient;
end;

Fig. 15. Merge-count division (class 5).
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is_first_row = true;
while not s.isEmpty() do begin
if is_first_row and not t.isEmpty() then begin
// this is the first time that we fetch a row from S
s.next();
t.next();
is_first_row = false;
end;
current_quotient = s.quotient;
while not s.isEmpty() and s.quotient == current_quotient and
not t.isEmpty() and s.divisor <= t.divisor do begin
while not s.isEmpty() and s.quotient == current_quotient and
s.divisor < t.divisor do
s.next();
while not s.isEmpty() and s.quotient == current_quotient and
not t.isEmpty() and s.divisor == t.divisor do begin
s.next();
t.next();
end;
end;
if t.isEmpty() then
/ all divisor values of the divisor table have been matched
output row (current_quotient);
t.initialize(); // reopen the sorted divisor table
if not t.isEmpty() then
t.next(); // fetch the first divisor row
while not s.isEmpty() and s.quotient == current_quotient do
s.next();
end;

Fig. 16. Merge-sort division (class 10). Without loss of generality, the pseudo code assumes an ascending sort order.

// build the divisor hash table
while not t.isEmpty() do
insert t into dht with a new bitmap initialized with zeroes;
// build the quotient hash table
quotient_count = 0;
while not s.isEmpty() do begin
if not s.quotient is in ght then begin
insert (s.quotient) into ght;
index = (s.quotient).quotient_number = quotient_count;
quotient_count++;
else
index = value of (s.quotient).quotient_number in ght;
end;
d = result of lookup of s.divisor in dht;
d.bitmap[index] = 1;
end;
// find result in the divisor hash table
if number of rows in dht > O then begin
bitmap = new bitmap initialized with ones;
foreach bucket in the dht do
foreach row d in bucket do
bitmap = bitmap & d.bitmap; // bit-wise AND operation
foreach index value in bitmap == 1 do begin
q = quotient row in ght associated with index;
output row (q);
end;
end;

Fig. 17. Transposed hash-division (class 0).
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