
Information Systems 28 (2003) 3–32

Algorithms and applications for universal quantification in
relational databases

Ralf Rantzaua,*, Leonard D. Shapirob, Bernhard Mitschanga, Quan Wangc

aComputer Science Department, University of Stuttgart, Breitwiesenstr. 20-22, 70565 Stuttgart, Germany
bComputer Science Department, Portland State University, P.O. Box 751, Portland, OR 97201-0751, USA

cOracle Corporation, Portland, OR, USA

Abstract

Queries containing universal quantification are used in many applications, including business intelligence

applications and in particular data mining. We present a comprehensive survey of the structure and performance of

algorithms for universal quantification. We introduce a framework that results in a complete classification of input data

for universal quantification. Then we go on to identify the most efficient algorithm for each such class. One of the input

data classes has not been covered so far. For this class, we propose several new algorithms. Thus, for the first time, we

are able to identify the optimal algorithm to use for any given input dataset.

These two classifications of optimal algorithms and input data are important for query optimization. They allow a

query optimizer to make the best selection when optimizing at intermediate steps for the quantification problem.

In addition to the classification, we show the relationship between relational division and the set containment join

and we illustrate the usefulness of employing universal quantifications by presenting a novel approach for frequent

itemset discovery.

r 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Query operators; Grouping; Relational division; Set containment join; Frequent itemset discovery

1. Introduction

Universal quantification is an important opera-
tion in the first-order predicate calculus. This
calculus provides existential and universal quanti-
fiers, represented by (and 8; respectively. A
universal quantifier that is applied to a variable x

of a formula f specifies that the formula is true for
all values of x: We say that x is universally

quantified in the formula f ; and we write 8x : f ðxÞ
in calculus.
In relational databases, universal quantification

is implemented by the division operator (repre-
sented by C) of the relational algebra. The
division operator is important for databases
because it appears often in practice, particularly
in business intelligence applications, including
online analytic processing (OLAP) and data
mining. In this paper, we will focus on the division
operator exclusively.
Several algorithms have been proposed to

implement relational division efficiently. These
algorithms are presented in an isolated manner in

*Corresponding author. Tel.: +49-711-7816-433; fax: +49-

711-7816-424.

E-mail address: rantzau@informatik.uni-stuttgart.de

(R. Rantzau).

0306-4379/02/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

PII: S 0 3 0 6 - 4 3 7 9 (0 2) 0 0 0 4 7 - 9

the research literature—typically, no relationships
are shown between them. Furthermore, each of
these algorithms claims to be superior to others,
but in fact each algorithm has optimal perfor-
mance only for certain types of input data.

1.1. The division operator

To illustrate the division operator, we will use a
simple example throughout the paper, illustrated
in Fig. 1, representing data from a CS department
at a university [1]. A course row represents a course
that has been offered by the department and an
enrollment row indicates that a student has taken a
particular course. The following query can be
represented by the division operator:

Which students have taken all courses offered
by the department?

As indicated in the table result, only Bob has taken
all the courses. Bob is enrolled in another course
(Graphics) but this does not affect the result. Both
Alice and Chris are not enrolled in the Databases
course. Therefore, they are not included in the
result.
The division operator takes two tables for its

input, the divisor and the dividend, and generates

one table, the quotient. All the data elements in the
divisor must appear in the dividend, paired with
any element (such as Bob) that is to appear in the
quotient.
In the example of Fig. 1, the divisor and

quotient have only one attribute each, but in
general, they may have an arbitrary number of
attributes. In any case, the set of attributes of the
dividend is the disjoint union of the attributes of
the divisor and the quotient. To simplify our
exposition, we assume that the names of the
dividend attributes are the same as the correspond-
ing attribute names in the divisor and the quotient.

1.2. Outline of the paper

The remainder of this paper is organized as
follows. In Section 2, we present a classification of
input data for algorithms that evaluate division
within queries. Section 3 gives an overview of
known and new algorithms to solve the universal
quantification problem and classifies them accord-
ing to two general approaches for division. In
Section 4, we evaluate the algorithms according to
both applicability and effectiveness for different
kinds of input data, based on a performance
analysis. In Section 5, we discuss the relationship
between relational division and the set contain-
ment join. Section 6 illustrates a new approach to
exploit division and set containment join to
discover frequent itemsets. Section 7 gives an
overview of related work. Section 8 concludes the
paper and comments on future work.

2. Classification of data

This section presents an overview of the input
data for division. We identify all possible classes of
data based on whether it is grouped on certain
attributes. For some of these classes, we will
present efficient algorithms in Section 3 that
exploit the specific data properties of a class.

2.1. Input data characteristics

The goal of this paper is to identify optimal
algorithms for the division operator, for all

Fig. 1. enrollmentCcourse ¼ result; representing the query

‘‘Which students have taken all courses?’’

R. Rantzau et al. / Information Systems 28 (2003) 3–324

possible inputs. Several papers compare new
algorithms to previous algorithms and claim
superiority for one or more algorithms, but they
do not address the issue of which algorithms are
optimal for which types of data [1–3]. In fact, the
performance of any algorithm depends on the
structure of its input data.
If we know about the structure of input data, we

could employ an algorithm that exploits this
structure, i.e., the algorithm does not have to
restructure the input before it can start generating
output data. Of course, there is no guarantee that
such an algorithm is always ‘‘better’’ than an
algorithm that requires previous restructuring.
However, the division operator offers a variety
of alternative algorithms that can exploit such a
structure for the sake of good performance and
low memory consumption.
Suppose we are fortunate and the input data is

highly structured. For example, suppose the data
has the schema of Fig. 1 but is of much larger size,
and suppose:

* enrollment is sorted by student id and course id

and resides on disk, and
* course is sorted by course id and resides in

memory.

Then the example query can be executed with one
scan of the enrollment table. This is accomplished
by reading the enrollment table from disk. As each
student appears, the course id values associated
with that student are merged with the course table.
If all courses match, the student id is copied to the
result.
The single scan of the enrollment table is

obviously the most efficient possible algorithm in
this case. In the remainder of this paper, we
will describe similar types of structure for
input datasets, and the optimal algorithms that
are associated with them. The notion of
‘‘optimality’’ will be further discussed in the next
section.
Revisiting our example in Fig. 1, how could this

careful structuring of input data, such as sorting
by student id and course id, occur? It could happen
by chance, or for two other more commonly
encountered reasons:

1. The data might be stored in tables, which were
sorted in that order for other purposes, for
example, so that it is easy to list enrollments on
a roster in ID order, or to find course
information when a course ID number is given.

2. The data might have undergone some previous
processing, because the division operator query
is part of a more complex query. The previous
processing might have been a merge-join
operator, for example, which requires that its
inputs be sorted and produces sorted output
data.

2.2. Choice of algorithms

A query processor of a database system typically
provides several algorithms that all realize the
same operation. An optimizer has to choose one of
these algorithms to process the given data. If the
optimizer knows the structure of the input data for
an operator, it can pick an algorithm that exploits
the structure. Many criteria influence the decision
why one algorithm is preferred over others. Some
of these choice criteria are: the time to deliver the
first/last result row, the amount of memory for
internal, temporary data structures, the number of
scans over the input data, or the ability to be non-
blocking, i.e., to return some result rows before the
entire input data are consumed.
Which algorithm should we use to process the

division operation, given the dividend and divisor
tables shown in Fig. 1? Several algorithms are
applicable but they are not equally efficient. For
example, since the dividend and divisor are both
sorted on the attribute course id in Fig. 1, we could
select a division algorithm that exploits this fact by
processing the input tuples in a way that is similar
to the merge-join algorithm, as we have sketched
in the previous section.
What algorithm should we select when the input

tables are not sorted on course id for each group of
student id? One option is to sort both input tables
first and then employ the algorithm similar to
merge-join. Of course, this incurs an additional
computational cost for sorting in addition to the
cost of the division algorithm itself. Another
option is to employ an algorithm that is insensi-
tive to the ordering of input tuples. One such

R. Rantzau et al. / Information Systems 28 (2003) 3–32 5

well-known algorithm is hash-division and is
discussed in detail in Section 3.3.4.
We have seen that the decision, which algorithm

to select among a set of different division
algorithms, depends on the structure of the input
data. This situation is true for any class of
algorithms, including those that implement data-
base operators like join, aggregation, and sort
algorithms.
It is possible that division is only a portion of a

larger query that contains many additional query
parts. Hence, the input of a division operation is
not restricted to base tables, like in the example of
Fig. 1, but it can be derived tables which are the
result of another operation like a join, for
example. Furthermore, the output of the division
could be an intermediate result itself that is further
processed within the query. For example, the
quotient table result in Fig. 1 could be the input
of an aggregation that counts the number of
students. The meaning of the resulting aggregate is
the number of students who have taken all courses
of the department. Alternatively, the result in
Fig. 1 could be an input of a join with a table
studentðstudent id ; name; address;yÞ to retrieve a
student’s name, address, etc., instead of a mean-
ingless ID. Thus, the result table produced by the
selected division algorithm can have certain data
properties that influence the choice of additional
algorithms, here a join, that are used to process the
overall query.

2.3. Grouping

Relational database systems have the notion of
grouped rows in a table. Let us briefly look at an
example that shows why grouping is important for
query processing. Suppose we want to find for
each course the number of enrolled students in the
enrollment table of Fig. 1. One way to compute the
aggregates involves grouping: after the table has
been grouped on course id, all rows of the table
with the same value of course id appear next to
each other. The ordering of the group values is not
specified, i.e., any group of rows may follow any
other group. Group-based aggregation groups the
data first, and then it scans the resulting table once
and computes the aggregates during the scan.

Another way to process this query is nested-loop

aggregation. We pick any course ID as the first
group value and then search through the whole
table to find the rows that match this ID and
compute the sum. Then, we pick a second course
ID, search for matching rows, compute the second
aggregate, pick the third value, etc. If no suitable
search data structure (index) is available, this
processing may involve multiple scans over the
entire dataset.
The aggregation step of the group-based

approach is obviously more efficient than the
second approach because it can make an assump-
tion about some ordering of the rows. However,
the more efficient processing is paid with the
overhead of the preceding grouping.
When a table is to be grouped on a list

ða1;y; anÞ of more than one attribute, the result
is equal to grouping on a single attribute in an
iterative way: We first group on a1; then for each
subset of rows defined by a1; we group on a2; and
for each such subset determined by a2; we group
on a3; etc. Hence, if we want to compare two tables
that are grouped on the same set of attributes, we
have to be aware of the attribute list ordering,
because the resulting grouped table has a different
structure for each ordering. This fact is important
for division when we match some of the dividend’s
divisor attributes with all of the divisor’s attri-
butes.
Sorted data appears frequently in query proces-

sing. Note that sorting is a special grouping
operation. For example, grouping only requires
that students enrolled in the same course are
stored next to each other (in any order), whereas
sorting requires more effort, namely that they be in
a particular order (ascending or descending). The
overhead of sort-based grouping is reflected by the
time complexity Oðn log nÞ as opposed to the
nearly linear time complexity for hash-based
grouping. Though sort-based grouping algorithms
do more than necessary, both hash and sort-based
grouping perform well for large datasets [1,4].

2.4. Grouped input data for division

Relational division has two input tables, a
dividend and a divisor, and it returns a quotient

R. Rantzau et al. / Information Systems 28 (2003) 3–326

table. As a consequence of the definition of the
division operator, we can partition the attributes
of the dividend S into two sets, which we denote D

and Q; because they correspond to the attributes
of the divisor and the quotient, respectively. The
divisor’s attributes correspond to D; i.e., for each
attribute in the divisor there is a different attribute
in D of the same domain. As already mentioned,
for simplicity, we assume that the names of
attributes in the quotient R are the same as the
corresponding attribute names in the dividend S

and the divisor T : Thus, we write a division
operation as RðQÞ ¼ SðQ,DÞCTðDÞ: In Fig. 1,
Q ¼ fstudent idg and D ¼ fcourse idg:
Our classification of division algorithms is based

on whether certain attributes are grouped or even
sorted. Several reasons justify this decision.
Grouped input can reduce the amount of memory
needed by an algorithm to temporarily store rows
of a table because all rows of a group have a
constant group value. Furthermore, grouping
appears frequently in query processing. Many
database operators require grouped or sorted
input data (e.g., merge-join) or produce such
output data (e.g., index-scan): If there is an index
defined on a base table, a query processor can
retrieve the rows in sorted order, specified by the

index attribute list. Thus, in some situations
algorithms may exploit for the sake of efficiency
the fact that base tables or derived tables are
grouped if the system knows about this fact.
In Table 1, we show all possible classes of input

data based on whether or not interesting attribute
sets are grouped, i.e., grouped on one of Q; D; or
the divisor. As we will see later in this paper, some
classes have no suitable algorithm that can exploit
its specific combination of data properties. The
classes that have at least one algorithm exploiting
exactly its data properties are shown in bold font.
In class 0, for example, no table is grouped on an
interesting attribute set. Algorithms for this class
have to be insensitive to whether the data is
grouped or not. Another example scenario is class
10. Here, the dividend is first grouped on the
quotient attributes Q (denoted by G1; the major
group) and for each group, it is grouped on the
divisor D (denoted by G2; the minor group). The
divisor is grouped in the same ordering (G2) as the
dividend.
Our classification is based on grouping only. As

we have seen, some algorithms may require that
the input is even sorted and not merely grouped.
We consider this a minor special case of our
classification, so we do not reflect this data

Table 1

A classification of dividend and divisor

Class Dividend Divisor Description of grouping

Q D

0 N N N

1 N N G

2 N G N

3 N G1 G2 Arbitrary ordering of groups in D and divisor

4 N G1 G1 Same ordering of groups in D and divisor

5 G N N

6 G N G

7 G1 G2 N Q major, D minor

8 G2 G1 N D major, Q minor

9 G1 G2 G3 Q major, D minor; arbitrary ordering of groups in D and divisor

10 G1 G2 G2 Q major, D minor; same ordering of groups in D and divisor

11 G2 G1 G3 D major, Q minor; arbitrary ordering of groups in D and divisor

12 G2 G1 G1 D major, Q minor; same ordering of groups in D and divisor

Note: Attributes are either grouped (G) or not grouped (N). We use the same (a different) subscript of G when D and the divisor have

the same (a different) ordering of groups in classes 3, 4, 9–12. In addition, when the dividend is grouped on both Q and D in classes

7–12, then G1 (G2) denotes the attributes that the table is grouped on first (second).

R. Rantzau et al. / Information Systems 28 (2003) 3–32 7

property in Table 1, but the algorithms in Section
3 will refer to this distinction. We do not consider
any data property other than grouping in this
paper because our approach is complete and can
easily and effectively be exploited by a query
optimizer and query processor.
Fig. 2 illustrates four classes of input data for

division, based on the example data of Fig. 1.
These classes, which are shown in bold font in

Table 1, are important for several algorithms that
we present in the following section. Note that for
class 10 both tables are grouped in the same order
on course id. If the value ‘‘Graphics’’ is present in
a quotient group then it always appears after
‘‘Theory’’ and before ‘‘Compilers.’’ Fig. 1 shows
another example instance of class 10, where the
quotient order as well as the divisor group order is
ascending. The benefit of knowing about such an
input data property will be clarified when we
discuss algorithms exploiting this specific property
in Sections 3.3.2 and 3.3.3.
If we know that an algorithm can process data of

a specific class, it is useful to know which other
classes are also covered by the algorithm. This
information can be represented, e.g., by a Boolean
matrix like the one on the left in Fig. 3. One axis
indicates a given class C1 and the other axis shows
the other classes C2 that are also covered by C1:
Alternatively, we can use a directed acyclic graph
representing the input data classification, sketched
on the right of Fig. 3. If a cell of the matrix is
marked with ‘‘Y’’ (yes), or equivalently, if there
is a path in the graph from class C1 to C2; then
an algorithm that can process data of class C1

can also process data of class C2: The graph
clearly shows that the classification is a partial order
of classes, not a strict hierarchy. The source node of
the graph is class 0, which requires no grouping of D;
Q; or divisor. Any algorithm that can process data of
class 0 can process data of any other class. For
example, an algorithm processing data of class 6 is
able to process data of classes 9 and 10.

Fig. 2. Four important classes of input data, based on the

example of Fig. 1.

Fig. 3. A matrix and a directed acyclic graph representing the

input data classification described in Table 1. All algorithms to

be discussed in Section 3 assume data properties of either class

0, 2, 5, or 10.

R. Rantzau et al. / Information Systems 28 (2003) 3–328

For the subsequent discussion of division
algorithms, we define two terms to refer to certain
row subsets of the dividend. Let the dividend S be
grouped on Q (D) as the first or the only set of
group attributes, i.e., let the dividend belong to
class 5 (2) and all its descendants in Fig. 3.
Furthermore, let v be one specific value of such a
group. Then, the set of rows defined by sQ¼vðSÞ
(sD¼vðSÞ) is called the quotient group (divisor

group) of v: For example, in the enrollment table
of class 5 in Fig. 2(c), the quotient group of Alice
consists of the rows {(Alice, Theory), (Alice,
Compilers)}. Similarly, the divisor group of
Databases in class 2 in Fig. 2(b) consists of the
single row (Bob, Databases).

3. Overview of algorithms

In this section, we present algorithms for
relational division proposed in the database
literature together with several new variations of
the well-known hash-division algorithm. For the
sake of a concise presentation, we will frequently
use abbreviations for the algorithms that we
summarize in Table 2.
In Section 4, we will analyze and compare the

effectiveness of each algorithm with respect to the
data classification of Section 2.

3.1. Complexity of algorithms

During the evaluation of relevant literature, we
found that it is necessary to clarify that each

division algorithm (analogous to other classes of
algorithms, like joins, for example) has perfor-
mance advantages for certain data characteristics.
No algorithm is able to outperform the others for
every input data conceivable.
The following algorithms assume that the

division’s input consists of a dividend table
SðQ;DÞ and a divisor table TðDÞ; where Q is a
set of quotient attributes and D is the set of divisor
attributes, as defined in Section 2.4.
During the presentation of the algorithms, we

analyze the worst and typical case complexities of
processing time and memory consumption in O-
notation, based on the size (number of rows) of the
dividend jSj and the size of the divisor jT j: We use
jQj; the number of distinct values of quotient
attributes Q in the dividend, for some algorithms
to derive a complexity formula. Note that always
jQjpjSj; and in the worst case jQj ¼ jSj; i.e., each
single row of S is a potential (candidate) quotient.
To derive formulas for the typical time and
memory complexities, we use the assumption that
jSjcjT j; i.e., there are many quotient candidates
and/or the number of rows of an typical quotient
candidate is much larger than the number of
divisor rows. We consider this situation as the
typical case because relational division is defined
to compute a set of result rows and in real-world
scenarios this set is of considerable size. A large
result size occurs only if the dividend contains
many more rows than the divisor.
In addition to time and memory complexity, it is

useful to analyze the I/O cost of each algorithm, as
it has been done in detail for some of the following
algorithms in [8]. However, since the focus of this
paper is to describe the fundamental structure of
input data and algorithms involved in relational
division, we restrict our analysis to memory and
processing complexities and we do not give I/O
formulas.

3.2. Query language representation and algorithm

classification

In this section, we show SQL expressions for
division and explain how they give rise to two
classes of algorithms based on the kind of data
structures employed.

Table 2

Abbreviations for division algorithms

Division algorithm Abbrev.

Hash-division HD

Hash-division for divisor groups HDD

Hash-division for quotient groups HDQ

Merge-count division MCD

Merge-group division MGD

Merge-sort division MSD

Nested-loops division NLD

Nested-loops counting division NLCD

Transposed hash-division HDT

Transposed hash-division for divisor groups HDTD

Transposed hash-division for quotient groups HDTQ

Stream-join division SJD

R. Rantzau et al. / Information Systems 28 (2003) 3–32 9

The commonly used approach to express uni-
versal quantification uses two ‘‘NOT EXISTS’’
clauses, exploiting the mathematical equivalence
8x(y : f ðx; yÞ � :(x:(y : f ðx; yÞ as follows:

This query asks for each student, where there is
no course that the student is not enrolled in.
The previous approach is not very intuitive to

formulate. Another way to express division queries
has been proposed in the past, using a special
syntax for universal quantification. The quantifier
‘‘FOR ALL,’’ which is part of a so-called
quantified predicate [5], was planned to be included
in the SQL:1999 standard [6] but it was finally
excluded for reasons unknown to the authors. We
can phrase queries using the quantifier for division
queries in an intuitive way. For example, the
following SQL query employing a quantified
predicate is equivalent to the above query:

This query asks for each student, where for all
courses there is an enrollment of this student.
A query language syntax dedicated to universal

quantification allows us to map the query directly
to a query execution that uses a division algorithm.
It is non-trivial to map a query formulated in an
indirect way (e.g. by using nested negations as in
the first approach) to a query execution that uses a
division algorithm.
There is a third way mentioned in the literature

that uses aggregation. The example query of
Section 1.1 can be phrased in SQL using aggrega-
tion as follows:

Any query involving universal quantification
can be replaced by a query that makes use of
counting [1]. However, there is a problem with this
approach to express division because it is not
equivalent to the previous two approaches. It
returns the same result as the other queries only if
two conditions are met. First, each course id (D)
value in enrollment (the dividend) is also contained
in the course table (the divisor). Defining a foreign
key enrollment.course id that references course

and enforcing referential integrity can fulfill this
condition. Another way to guarantee referential
integrity is to preprocess the dividend by a semi-
join of dividend and divisor. The semi-join returns
all dividend rows whose D values are contained in
the divisor. Fig. 4 illustrates the semi-join for our
university example in Fig. 1.
The second condition of this approach requires

that the course id (D) values and the divisor rows
are unique. Possible duplicates have to be removed
before the division. Hence, the SQL query above
contains the SQL keyword ‘‘DISTINCT’’ when
counting course id values to avoid any duplicates.
Note that when the divisor is grouped on all of its
attributes, each group consists of a single row
because of the required absence of duplicate rows.
The same is true for the dividend if it is grouped on
both Q and D; as in the classes 7–12 in Table 1.
We have seen that the two approaches actually

realize two logical operators that give rise to two
classes of algorithms, aggregate and scalar. The
scalar class of algorithms relies on direct row
matches between the dividend’s divisor attributes
D and the divisor table. The second class,
aggregate algorithms, use counters to compare
the number of rows in a dividend’s quotient group
to the number of divisor rows. In [2], scalar and
aggregate algorithms are called direct and indirect

algorithms, respectively.
Aggregate algorithms are often described as

alternative ways to scalar algorithms (for the real
division operator) but they are prone to errors

R. Rantzau et al. / Information Systems 28 (2003) 3–3210

because one has to take care of duplicates, NULL
values, and referential integrity, as already men-
tioned before.
Some query languages for non-relational data

models also offer support to express quantifica-
tion. For example, there is ‘‘work in progress’’ by
the W3C on the Working Draft of XQuery [7], a
query language for XML data. Universal quanti-
fication can be expressed in XQuery by an every

expression.

3.3. Scalar algorithms

This section presents division algorithms that
use data structures to directly match dividend rows
with divisor rows.

3.3.1. Nested-loops division

This algorithm is the most na.ıve way to
implement division. However, like nested-loops
join, an operator using nested-loops division (NLD)
has no required data properties on the input tables
and thus can always be employed, i.e., NLD can
process input data of class 0 and thus any other
class of data, according to Fig. 3.
We use two set data structures, one to store

the set of divisor values of the divisor table,

called seen divisors, and another to store the set of
quotient candidate values that we have found so
far in the dividend table, called seen quotients.
We first scan the divisor table to fill seen divisors.
After that, we scan the dividend in an outer loop.
For each dividend row, we check if its quotient
value (Q) is already contained in seen quotients.
If not, we append it to the seen quotients

data structure and scan the remainder of the
dividend iteratively in an inner loop to find all
rows that have the same quotient value as the
dividend row of the outer loop. For each such row
found, we check if its divisor value is in
seen divisors. If yes, we mark the divisor value in
seen divisors. After the inner scan is complete,
we add the current quotient value to the output if
all divisors in seen divisors are marked. Before
we start processing the next dividend row of the
outer loop, we unmark all elements of
seen divisors.
Note that NLD can be very inefficient. For each

row in the dividend table, we scan the dividend at
least partially to find all the rows that belong
to the current quotient candidate. All divisor
rows and quotient candidate rows are stored in
an in-memory data structure. NLD can be the
most efficient algorithm for small ungrouped
datasets.
This algorithm can make use of any set data

structure like hash tables or sorted lists to
represent seen divisors and seen quotients. Let us
assume that this algorithm uses hash tables or any
very efficient data structure with a (nearly)
constant access time. Then, the worst case time
complexity of this algorithm is OðjSj2 þ jT jÞ and
the typical time complexity is OðjSj2Þ: The memory
complexity is OðjQj þ jT jÞ: Since in the extreme
case jQj ¼ jSj; the worst case memory complexity
is OðjSj þ jT jÞ and the typical memory complexity
is OðjSjÞ:
The pseudo-code of the nested-loops division

algorithm is shown in the appendix. In that
code, the seen divisors and seen quotients data
structures are represented by the divisor hash
table dht and the quotient hash table qht,
respectively.
Fig. 5(g) illustrates the two hash tables used in

this algorithm: the divisor/quotient hash table

Fig. 4. Semi-join old enrollmentrcourse ¼ new enrollment; re-
presenting the preprocessing of the enrollment table for

aggregate division algorithms, based on the example in Fig. 1.

R. Rantzau et al. / Information Systems 28 (2003) 3–32 11

represents seen divisors/seen quotients, respec-
tively. The value setting in the hash tables is
shown for the time when all dividend rows of Alice
and Bob (in this order) have been processed and
we have not yet started to process any rows of
Chris in the outer loop. We find that Bob is a
quotient because all bits in the divisor hash table
are equal to 1.

3.3.2. Merge-sort division

The merge-sort division (MSD) algorithm as-
sumes that

* the divisor T is sorted, and that
* the dividend S is grouped on Q; and for each

group, it is sorted on D in the same order
(ascending or descending) as T :

Fig. 5. Overview of the data structures and processing used in scalar algorithms. The value setting is based on the example from Fig. 1.

Except for MSD and MGD, broken lined boxes indicate that a quotient is found.

R. Rantzau et al. / Information Systems 28 (2003) 3–3212

This data characteristic is a special case of class 10,
where D and the divisor are sorted and not only
grouped.
The algorithm resembles merge-join for proces-

sing a single quotient group and is similar to
nested-loops join for processing all groups. Let us
briefly sketch the processing of rows within a
single group, assuming an ascending sort order.
We begin with the first row of dividend and
divisor. If the divisor value D of the current
dividend row and the divisor row match, we
proceed with the next row in both tables. If D is
greater than the current divisor row, we scan
forward to the next quotient group. If D is less
than the divisor row, we proceed with the next row
of the group and the current divisor row. If there
are no more rows to process in the quotient group
but at least one more row in the divisor, we skip
the quotient group. If there are no more rows to
process in the divisor, we have found a quotient
and add it to the output table.
Our MSD is similar to the approach called na.ıve

division, presented in [1] and originating from [8].
In both approaches, we can implement the scan of
each input such that it ignores duplicates. In
contrast to merge-sort division, na.ıve division
explicitly sorts the data before the merge step.
Even worse, na.ıve division does not merely group
the dividend on Q but sorts it, which is more than
necessary. Note that we view sorting or grouping
as preprocessing activities that are separate from
the core division algorithm. We sketch the pseudo
code of MSD without duplicate removal logic in
the appendix.
The worst case time complexity of this algori-

thm is OðjSj þ jQjjT jÞ ¼ OðjSj þ jSjjT jÞ ¼ OðjSjjT jÞ
because the dividend is scanned exactly once and
from the divisor table, we fetch as many rows as
the number of quotient candidates times the
number of divisor rows. The typical case time
complexity is OðjSjjT jÞ: The worst and typical case
memory complexity is Oð1Þ; since only a constant
number of small data structures (two rows) have
to be kept in memory.
Fig. 5(b) illustrates the matches between rows of

dividend and divisor. Observe that the data is not
sorted but only grouped on student id in an
arbitrary order.

3.3.3. Merge-group division

We can generalize MSD to an algorithm that we
call merge-group division (MGD). In contrast to
MSD, we assume that

* both inputs are only grouped and not necessa-
rily sorted on the divisor attributes, but that

* the order of groups in each quotient group and
the order of groups in the divisor are the same.

Note that each group within a quotient group and
within the divisor consists of a single row. This
ordering can occur (or can be achieved) if, e.g., the
same hash function is used for grouping the divisor
and each quotient group.
In the MSD algorithm, we can safely skip a

quotient candidate if the current value of Q is
greater (less) than that of the current divisor row,
assuming an ascending (a descending) sort order.
Since we do not require a sort order on these
attributes in MGD, we cannot skip a group on
unequal values, as we do in MSD. For example,
suppose that the divisor S has a single integer
attribute and consists of the following rows in the
given order: S ¼ ð3; 1; 5Þ and the D values of the
current quotient group G consists of the rows G ¼
ð2; 5; 4; 6Þ: We can be sure that G is not a valid
quotient only after

* we have scanned the entire group G; where we
find that the first element of S (3) is not
contained in G; or

* we have scanned S up to last element (5) and we
have scanned G up to the second element (5) to
find that G does not contain the other elements
of S (3 and 1) before element 5 appears.

The MGD approach makes use of a look-ahead
of n divisor rows for some predefined value nX1:
As in the MSD approach, we compare the
current quotient group row with the current
divisor row. In case of inequality, we look ahead
up to the nth divisor row to see if there is any other
row matching the current group row. If we find
such a match, we can skip the current quotient
candidate. In our example, a look-ahead of 2
means that we check up to the second element (1)
of the divisor. The look-ahead of 2 does not help
for any value of G in our example. A look-ahead
of 3 means a check with up to the third divisor

R. Rantzau et al. / Information Systems 28 (2003) 3–32 13

element (5). When we check the second row (5)
of the quotient group, we find a match with the
third divisor element (5). Here, we can skip the
group because a quotient would have to contain
the values 3 and 1 before the occurrence of 5 to
qualify due to the assumption that the group
orders are the same. In other words, the ordering
assumption guarantees that the values 3 and 1
cannot occur after the element 5. Since they have
neither occurred in G before element 5, we know
that this quotient candidate does not contain all
divisor elements, in particular not the elements 3
and 1.
The MSD algorithm is a special case of

MGD where the look-ahead is set to 1 because it
does not look further than the current row
for each quotient group row since sorting was
applied.
In summary, the MGD approach can make use

of as much look-ahead as the minimum of the
available memory and the current divisor size.
Note that the divisor fits into memory in all
reasonable cases. Fig. 5(c) sketches the matches
between dividend and divisor rows. Observe that
the order of (single-row) groups within each
quotient group in the dividend is the same as that
of the divisor.
The time complexity of this algorithm is OðjSj þ

jQjjT jÞ because the dividend is scanned exactly
once and the divisor is scanned entirely for each
quotient and at least partially for every quotient
candidate. Thus, the worst case time complexity is
OðjSj þ jSjjT jÞ ¼ OðjSjjT jÞ: The typical case time
complexity is also OðjSjjT jÞ: The worst case
memory complexity is OðjT jÞ if we keep the entire
divisor as a look-ahead in memory. The typical
case memory complexity then becomes Oð1Þ since
jT j{jSj:

3.3.4. Classic hash-division

In this section, we present the classic hash-

division (HD) algorithm [1]. We call this algorithm
‘‘classic’’ to distinguish it from our variations of
this approach in the following sections.
The two central data structures of HD are the

divisor and quotient hash tables, sketched in
Fig. 5(d). The divisor hash table stores divisor
rows. Each such row has an integer value, called

divisor number, stored together with it. The
quotient hash table stores quotient candidates
and has a bitmap stored together with each
candidate, with one bit for each divisor. The
pseudo code of hash-division is sketched in the
appendix.
In a first phase, hash-division builds the divisor

hash table while scanning the divisor. The hash
function takes the divisor attributes as an argu-
ment and assigns a hash bucket to each divisor
row. A divisor row is stored into the hash bucket
only if it is not already contained in the bucket,
thus eliminating duplicates in the divisor. When a
divisor row is stored, we assign a unique divisor
number to it by copying the value of a global
counter. This counter is incremented for each
stored divisor row and is initialized with zero. The
divisor number is used as an index for the bitmaps
of the quotient hash table.
The second phase of the algorithm constructs the

quotient hash table while scanning the dividend.
For each dividend row, we first check if its D value
is contained in the divisor hash table, using the
same hash function as before. If yes, we look up the
associated divisor number, otherwise we skip the
dividend row. In addition to the look-up, we check
if the quotient is already present in the quotient
hash table. If yes, we update the bitmap associated
with the matching quotient row by setting the bit to
1 whose position is equal to the divisor number we
looked up. Otherwise, we insert a new quotient row
into the quotient hash table together with a bitmap
where all bits are initialized with zeroes and the
appropriate bit is set to 1, as described before.
Since we insert only quotient candidates that are
not already contained in the hash table, we avoid
duplicate dividend rows.
The final phase of hash division scans the

quotient hash table’s buckets and adds all quotient
candidates to the output whose bitmaps contain
only ones. In Fig. 5(d), the contents of the hash
tables are shown for the time when all dividend
and divisor rows of Fig. 1 have been processed.
We see that since Bob’s bitmap contains no zeroes,
Bob is the only quotient, indicated by a broken
lined box.
Hash-division scans both dividend and divisor

exactly once. Because hash tables are employed

R. Rantzau et al. / Information Systems 28 (2003) 3–3214

that have a nearly constant access time, this
approach has a worst and typical case time
complexity of OðjSj þ jT jÞ and OðjSjÞ; respectively.
The memory complexity consists of OðjT jÞ to store
the divisor hash table plus OðjQjjSjÞ for the
quotient hash table. The size of a bitmap is
proportional to jSj: Since the worst case scenario
implies that jQj ¼ jSj; the total worst and typical
case memory complexity is OðjSjjT jÞ:

3.3.5. Transposed hash-division

This algorithm is a slight variation of classic
hash-division. The idea is to switch the roles of the
divisor and quotient hash tables. The transposed

hash-division (HDT) algorithm keeps a bitmap
together with each row in the divisor hash table
instead of the quotient hash table, as in HD.
Furthermore, HDT keeps an integer value with
each row in the quotient hash table instead of the
divisor hash table, as in the HD algorithm.
Same as the classic hash-division algorithm,

HDT first builds the divisor hash table. However,
we store a bitmap with each row of the divisor. A
value of 1 at a certain bit position of a bitmap
indicates which quotient candidate has the same
values of D as the given divisor row.
In a second phase, also same as HD, the HDT

algorithm scans the dividend table and builds a
quotient hash table. For each dividend row, the D

values are inserted into the divisor hash table as
follows. If there is a matching quotient row stored
in the quotient hash table, we look up its quotient
number. Otherwise, we insert a new quotient row
together with a new quotient number. Then, we
update the divisor row’s bitmap by setting the bit
at the position given by the quotient number to 1.
The final phase makes use of a new, separate

bitmap, whose size is the same as the bitmaps in
the divisor hash table. All bits of the bitmap are
initialized with zero. While scanning the divisor
hash table, we apply a bit-wise AND operation
between each bitmap contained and the new
bitmap. The resulting bit pattern of the new
bitmap is used to identify the quotients. The
quotient numbers (bit positions) with a value of 1
are then used to look up the quotients using a
quotient vector data structure that allows a fast
mapping of a quotient number to a quotient

candidate. The HDT pseudo-code is shown in the
appendix.
Figs. 5(d) and (e) contrast the different structure

of hash tables in HD and HDT. The hash table
contents is shown for the time when all enrollment

rows of Fig. 1 have been processed. While a
quotient in the HD algorithm can be added to
the output when the associated bitmap contains no
zeroes, the HDT algorithm requires a match of the
bit at the same position of all bitmaps in the
divisor table and it requires in addition a look-up
in the quotient hash table to find the associated
quotient row.
The time and memory complexities of HDT are

the same as those of classic hash-division.

3.3.6. Hash-division for quotient groups

Both, classic and transposed hash-division can
be improved if the dividend is grouped on either D

or Q:However, our optimizations based on divisor
groups lead to aggregate, not scalar algorithms.
Hence, this section on scalar algorithms presents
some optimizations for quotient groups. The
optimizations of hash-division for divisor groups
are presented in Section 3.4.3.
Let us first focus on classic hash-division. If the

dividend is grouped on Q; we do not need a
quotient hash table. It suffices to keep a single
bitmap to check if the current quotient candidate
is actually a quotient. When all dividend rows of a
quotient group have been processed and all bits of
the bitmap are equal to 1, the quotient row is
added to the output. Otherwise, we reset all bits to
zero, skip the current quotient row, and continue
processing the next quotient candidate. Because of
the group-by-group processing of the improved
algorithm, we call this approach hash-division for

quotient groups (HDQ).
The HDQ algorithm is non-blocking because we

return a quotient row to the output as soon as a
group of (typically few) dividend rows has been
processed. In contrast, the HD algorithm has a
final output phase: the quotient rows are added to
the result table after the entire dividend has been
processed because hash-division does not assume a
grouping on Q: For example, the ‘‘first’’ and the
‘‘last’’ row of the dividend could belong to the
same quotient candidate, hence the HD algorithm

R. Rantzau et al. / Information Systems 28 (2003) 3–32 15

has to keep the state of the candidate quotient row
as long as at least one bit of the candidate’s bitmap
is equal to zero. Note that it is possible to enhance
HD such that it is not a ‘‘fully’’ blocking
algorithm. If bitmaps are checked during the
processing of the input, HD could detect some
quotients that can be returned to the output before
the entire dividend has been scanned. Of course,
we would then have to make sure that no duplicate
quotients are created, either by preprocessing or
by referential integrity enforcements or by keeping
the quotient value in the hash table until the end of
the processing. In this paper, we do not elaborate
on this variation of HD.

3.3.7. Transposed hash-division for quotient groups

We have seen that the HDQ algorithm is a
variation of the HD algorithm: if the dividend is
grouped on Q; we can do without a quotient hash
table. Exactly the same idea can be applied to
HDT yielding an algorithm that we call transposed

hash-division for quotient groups (HDTQ).
For grouped quotient attributes, we can do

without the quotient hash table and we do not keep
long bitmaps in the divisor hash table but only a
single bit per divisor. Before any group is processed,
the bit of each divisor attribute is set to zero. For
each group, we process the rows like in the HDT
algorithm. After a group is processed, we add a
quotient to the output if the bit of every divisor row
is equal to 1. Then, we reset all bits to zero and
resume the dividend scan with the next group.
We do not show the pseudo code for the HDQ

and HDTQ algorithms for brevity. However, we
sketch their data structures in the Figs. 5(f) and (g)
for the time when the group of dividend rows
containing the quotient candidate Bob have been
processed.

3.4. Aggregate algorithms

This class of algorithms compares the number of
rows in each quotient candidate with the number
of divisor rows. In case of equality, a quotient
candidate becomes a quotient. All algorithms have
in common that in a first phase, the divisor table is
scanned once to count the number of divisor rows.
Each algorithm then uses different data structures

to keep track of the number of rows in a quotient
candidate. Some algorithms assume that the
dividend is grouped on Q or D:

3.4.1. Nested-loops counting division

Similar to scalar nested-loops division, nested-

loops counting division (NLCD) is the most na.ıve
way in the class of aggregate algorithms. This
algorithm scans the dividend multiple times.
During each scan, NLCD counts the number of
rows belonging to the same quotient candidate.
We have to keep track of which quotient

candidates we have already checked, using a
quotient hash table as shown in Fig. 6(a). A global
counter is used to keep track of the number of
dividend rows belonging to the same quotient
candidate. We fully scan the dividend in an outer
loop: We pick the first dividend row, insert its Q

value into the quotient hash table, and set the
counter to 1. If the counter’s value is equal to the
divisor count, we add the quotient to the output
and continue with the next row of the outer loop.
Otherwise, we scan the dividend in an inner loop
for rows with the same Q value as the current
quotient candidate. For each such row, the
counter is checked and in case of equality, the
quotient is added to the output. When the end of
the dividend is reached in the inner loop, we
continue with the next row of the outer loop and
check the hash table if this new row is a new
quotient candidate.
The time and memory complexities are the same

as for nested-loops division.

3.4.2. Merge-count division

Assuming that the dividend is grouped on Q;
merge-count division (MCD) scans the dividend
exactly once. After a quotient candidate has been
processed and the number of rows is equal to those
of the divisor, the quotient is added to the output.
Note that the size of a quotient group cannot
exceed the number of divisor groups because we
have to guarantee referential integrity.
The aggregate algorithm merge-count division is

similar to the scalar algorithms MSD and MGD,
described in Sections 3.3.2 and 3.3.3. Instead of
comparing the elements of quotient groups with
the divisor, MCD uses a representative (the row

R. Rantzau et al. / Information Systems 28 (2003) 3–3216

count) of each quotient group to compare it with
the divisor’s aggregate. Fig. 6(b) illustrates the
single scan required to compare the size of the each
quotient group with the divisor size.
MCD has a worst case time complexity of

OðjSj þ jT jÞ and an typical case time complexity of
OðjSjÞ: Since no significant data structures have to
be kept in memory except for the current dividend
row and the counters, the worst case and typical
case memory complexity is Oð1Þ:

3.4.3. Hash-division for divisor groups

In Section 3.3.6, we have analyzed optimizations
of hash-division that require a dividend that is
grouped on Q: We now show some optimizations
of hash-division for a dividend that is grouped on

D: Unlike the hash-division-like algorithms based
on quotient groups, the following two algorithms
are blocking.
This algorithm does not need a divisor hash

table because after a divisor group of the dividend
has been consumed, the divisor value will never
reappear. We use a counter instead of a bitmap for
each row in the quotient hash table. We call this
adaptation of the HD algorithm hash-division for

divisor groups (HDD). The algorithm maintains a
counter to count the number of divisor groups
seen so far in the dividend. For each dividend row
of a divisor group, we increment the counter of the
quotient candidate. If the quotient candidate is not
yet contained in the quotient hash table, we insert
it together with a counter set to 1. When the entire

Fig. 6. Overview of data structures used in aggregate algorithms. Broken lined boxes indicate that a quotient is found. Only Bob’s

group has as many dividend rows as the divisor.

R. Rantzau et al. / Information Systems 28 (2003) 3–32 17

dividend has been processed, we return those
quotient candidates in the quotient hash table
whose counter is equal to the global counter.

3.4.4. Transposed hash-division for divisor groups

The last algorithmic adaptation that we present
is called transposed hash-division for divisor groups

(HDTD), based on the HDT algorithm. We can
do without a divisor hash table, but we keep an
array of counters during the scan of the dividend.
The processing is basically the same as the
previous algorithm (HDD): We return only those
quotient candidates of the quotient hash table
whose counter is equal to the value of the global
counter. Because all divisor groups have to be
processed before we know all quotients, this
algorithm is also blocking.
We do not show the pseudo code for the HDD

and HDTD algorithms for brevity. However, we
sketch the data structures used in the Figs. 6(c)
and (d) for the time when the entire dividend has
been processed. Note that the dividend contains
only three divisor groups (no Graphics rows),
because we require that referential integrity
between enrollment and course is preserved, e.g.,
by applying a semi-join of the two tables before
division, as in Fig. 4. Bob is the only student who
is contained in all three divisor groups.
The complexities of HDD and HDTD are the

same. Their worst and typical case time complexity
is OðjSj þ jT jÞ and OðjSjÞ; respectively. The worst
and typical case memory complexity is OðjSjÞ:

3.4.5. Stream-join division

The new algorithm stream-join division (SJD) [9]
is an improvement of hash-division for divisor
groups (HDD). As all other algorithms assuming a
dividend that is grouped on D as the only or the
major set of group attributes, SJD is a blocking
algorithm. SJD is hybrid because it counts the
number divisor rows, like all other aggregate
algorithms, and it maintains several bits to
memorize matches between dividend and divisor,
like all other scalar algorithms. However, in this
paper, we consider SJD an aggregate algorithm
due to its similarity to HDD.
The major differences between SJD and HDD

are:

* SJD stores a bit instead of a counter together
with each quotient candidate in the quotient
hash table.

* SJD is able to remove quotient candidates from
the quotient hash table before the end of the
processing.

The SJD algorithm works as follows. As in HDD,
we maintain a counter to count the number of
divisor groups seen so far in the dividend. First, we
insert all quotient candidates, i.e., Q values, of the
first group in the dividend together with a bit
initialized with zero into the quotient hash table.
We thereby eliminate possible duplicates in the
dividend. Then, we process each following group
as follows. For each dividend row of the current
group, we look up the quotient candidate in the
quotient hash-table. In case of a match, the
corresponding bit is set to 1. Otherwise, i.e., when
the Q value of a given dividend row is not present
in the quotient hash table, we skip this row. After a
group has been processed, we remove all quotient
candidates with a bit equal to zero. Then, we reset
the bit of each remaining quotient candidate to
zero. Finally, when all groups have been pro-
cessed, we compare the current group counter with
the number of rows in the divisor. In case of
equality, all quotient candidates in the quotient
hash table with a bit equal to 1 are added to the
output.
Fig. 6(e) illustrates the use of the quotient hash

table in SJD. We assume that the dividend is equal
to the enrollment table of class 2 in Fig. 2(b) with
the exception that the Graphics group {(Bob,
Graphics), (Chris, Graphics)} is missing, due to
referential integrity. We show the contents of the
hash table for the time when the entire enrollment

table has been processed. We see that Chris and
Alice are not contained in the hash table because
both have already been eliminated after the second
group (Databases). Only Bob’s bit is set to 1 and
he is a quotient row because the number of groups
(3, without Graphics) is equal to the number of
divisor rows.
The advantage of SJD lies in the fact that

the amount of memory can decrease but will
never increase after the quotient candidates
have been stored in the quotient hash table.

R. Rantzau et al. / Information Systems 28 (2003) 3–3218

However, the time and memory complexity
is the same as for HDD. Observe that the
maximum amount of memory required is propor-
tional to the number of rows of the first group in
the dividend. It may happen by chance that the
first group is the smallest of the entire dividend. In
this case, we obtain a very memory-efficient
processing.
This algorithm is called stream-join division

because it joins all divisor groups of the dividend
(called streams in [9]) with each other on the
attributes Q:

4. Evaluation of algorithms

In this section, we briefly compare the division
algorithms discussed in Section 3 with each other
and show which algorithm is optimal, with respect
to time and memory complexities, for each class of
input data discussed in Section 2.
Table 3 characterizes the algorithms presented

so far and shows the time and memory complex-

ities involved. We assigned the algorithms to those
data classes that have the least restrictions with
respect to grouping. Remember that an algorithm
of class C can also process data of classes that are
reachable from C in the dependency graph in
Fig. 3. The overview of division algorithms in
Table 3 shows that, despite the detailed classi-
fication in Table 1 (comprising 13 classes and
enumerating all possible kinds of input data), there
are four major classes of input data that are
covered by dedicated division algorithms:

* class 0, which makes no assumption of grouping,
* class 2, which covers dividends that are grouped

only or first on D;
* class 5, which covers dividends that are grouped

only or first on Q; and finally
* class 10, which specializes class 5 (and class 0, of

course) by requiring that for each quotient
group, the rows of D and the divisor appear in
the same order. Hence, the dividend is grouped
on Q as major and D as minor.

Table 3

Overview of division algorithms showing for each algorithm the class of required input data, its algorithm class, and its time and

memory complexities

Division

Algorithm

Algorithm

class

Data

class

Dividend S Divisor T Complexity in O-notation

Q D Time Memory

Worst Typical Worst Typical

NLCD Aggregate 0 N N N jSj2 þ jT j jSj2 1 1

NLD Scalar jSj2 þ jT j jSj2 jSj þ jT j jSj
HD Scalar jSj þ jT j jSj jSjjT j jSjjT j
HDT Scalar jSj þ jT j jSj jSjjT j jSjjT j
HDD Aggregate 2 N G N jSj þ jT j jSj jSj jSj

HDTD Aggregate jSj þ jT j jSj jSj jSj
SJD Aggregate jSj þ jT j jSj jSj jSj

MCD Aggregate 5 G N N
jSj þ jT j jSj 1 1

HDQ Scalar jSj þ jT j jSj jT j 1

HDTQ Scalar jSj þ jT j jSj jT j 1

MGD Scalar 10 G1 G2 G2

jSjjT j jSjjT j jT j 1

MSD Scalar S2 S2

jSjjT j jSjjT j 1 1

Note: Input data are either not grouped (N), grouped (G), or sorted (S). Class 10 is first grouped on Q; indicated by G1: For each
quotient group, it is grouped (G2) or sorted (S2) on D in the same order as the divisor. The algorithm names corresponding to the

abbreviations in the first column are given in Table 2.

R. Rantzau et al. / Information Systems 28 (2003) 3–32 19

Note that algorithms for class 2, namely HDD,
HDTD, and SJD, have not been identified in the
literature so far. They represent a new straightfor-
ward approach to deal with a dividend that is
grouped on D: Together with the other three major
classes, a query optimizer can exploit the informa-
tion on the input data properties to make an
optimal choice of a specific division operator.
Suppose we are given input data of a class that is

different from the four major classes. Which
algorithms are applicable to process our data?
According to the graph in Fig. 3, all algorithms
belonging to major classes, which are direct or
indirect parent nodes of the given class, can be
used. For example, any algorithm of major classes
0 and 5 can process data of the non-major classes
6, 7, and 9.
Several algorithms belong to each class of input

data in Table 3. In class 0, both HD and HDT
have a linear time complexity (more precisely,
nearly linear due to hash collisions). However, they
have a higher memory complexity than the other
algorithms of this class, NLCD and NLD.
We have designed three aggregate algorithms

for class 2. They all have the same linear time and
memory complexities.
Class 5 has two scalar and one aggregate

algorithm assigned to it, which all have the same
time complexity. The constant worst case memory
complexity of MCD is the lowest of the three.
The two scalar algorithms HDQ and HDTQ of

class 10, which consists of two subgroups (sorted
and grouped divisor values) have the same time
complexity. The worst case memory complexity of
MSD is lower than that of MGD because MSD
can exploit the sort order.
It is important to observe that one should not

directly compare complexities of scalar and
aggregate algorithms in Table 3 to determine the
most efficient algorithm overall. This is because
aggregate algorithms require duplicate-free input
tables, which can incur a very costly preprocessing
step. There is one exception of aggregate algo-
rithms: SJD ignores duplicate dividend rows
because of the hash table used to store quotient
candidates. It does not matter if a quotient occurs
more than once inside a divisor group because the
bit corresponding to a quotient candidate can be

set to 1 any number of times without changing its
value (1). However, SJD does not ignore dupli-
cates in the divisor because it counts the number of
divisor rows.
In general, scalar division algorithms ignore

duplicates in the dividend and the divisor. Note
that the scan operations of MGD and MSD can be
implemented in such a way that they ignore
duplicates in both inputs [1]. However, to simplify
our presentation, the pseudo-code of MSD in the
appendix does not ignore duplicates.
Let us briefly illustrate some example issues that

we have to take into account when comparing
division algorithms. The first issue is time versus
memory complexity. In class 0, for example, four
algorithms have been identified. NLCD and NLD
have a quadratic time complexity compared to the
linear complexities of HD and HDT. Despite the
different processing performance of these algo-
rithms, a query optimizer may prefer to pick a
division operator based on the NLCD algorithm
to HD and HDT if the estimated amount of input
data is small and the optimizer wants to avoid the
overhead of building hash tables. We do not go
into the details of query optimization here because,
in general, the choice of picking a specific operator
from a set of logically equivalent operators (like
join and division) also depends on factors other
than time and memory complexity, as we have
mentioned in Section 2.2. Nevertheless, time and
memory consumption are the dominant factors in
reality.
The second issue is about the efficiency of a

query processor for certain operations. We pre-
sented two different approaches for hash-division:
the classic approach (HD), where bitmaps are
stored together with quotient candidates in the
quotient hash table, and a new approach (HDT)
where bitmaps are stored with each divisor row in
the divisor hash table (see Figs. 5(d) and (e) for
illustrations). These dual approaches may seem
interchangeable at first sight with respect to
efficiency. However, in some situations, a query
optimizer may prefer one to the other, depending
on how efficiently the system processes bitmaps.
Suppose the system can process a few extremely
long bitmaps more efficiently than many short
bitmaps. If there are many quotient candidates in

R. Rantzau et al. / Information Systems 28 (2003) 3–3220

the input data (which is typical) but there is a
relatively short divisor, then the bitmaps stored in
HD are relatively short but there are many of
them. In contrast, HDT would build very long
bitmaps (which may be the deciding factor) but
only a few of them would be stored in the divisor
hash table. Analogously, the optimizer may prefer
HD to HDT if the input consists of few but very
large quotient candidates. Similar situations apply
to the other pairs of transposed and non-trans-
posed algorithms, i.e., for the HDD/HDTD and
HDQ/HDTQ pairs.

5. The set containment problem

Universal quantification checks if all elements of
a given set fulfill a given condition. In many
applications, this condition is a set element
membership test, i.e., the quantification problem
becomes a set containment problem. For example,
the problem stated in Section 1.1 can be rephrased
as follows: ‘‘Find the students whose associated set
of enrolled courses contains the given set of
courses offered by the department.’’

5.1. Set storage representations

Division is an operator of the relational algebra,
which is based on the relational model. In the basic
relational model all relations are in first normal
form (1NF), i.e., all attribute domains are atomic.
One possible extension of the relational model
provides relations with multivalued attributes,
where the attribute domain is a collection type
like bag or set, defined on top of a primitive
domain like float or string. A more rigorous
extension of the relational model is the nested

relational model [10,11], where attributes can be
relations themselves.
There are basically two orthogonal classifica-

tions for the storage representation of sets: nesting
and location [12]. The attribute values are stored
as multiple values: the nested representation stores
the values as a variable length attribute and the
unnested representation stores them as multiple
tuples.

In a classification based on the storage location,
one can distinguish between an internal represen-
tation where the set elements are stored together
with the accompanying attribute values and an
external representation, where the set elements are
stored in a separate auxiliary table connected by
foreign key references, as depicted in Fig. 7,
according to [12]. In this figure, we show as
an example a single tuple of the relation
enrollmentðstudent id ; coursesÞ; where student id is
an atomic attribute and courses is a set-valued
attribute. Here, we represent the fact that the
student Chris is enrolled in the courses Compilers,
Graphics, and Theory. Only the unnested internal
representation conforms to the 1NF.

5.2. Set containment join and relational division

The set containment problem has been studied
in great detail in the past [12–17]. In particular,
several efficient set containment test algorithms
have been developed and storage data structures to
represent sets in relational, object-relational, and
object-oriented databases are discussed.
It is interesting to observe that the division

operator is closely related to set containment join,
which can be implemented efficiently [12,14]. Set

containment join (SCJ), denoted by tD; is a join

Fig. 7. Storage representations of set-valued attributes.

R. Rantzau et al. / Information Systems 28 (2003) 3–32 21

between the set-valued attributes b and c of two
relations Rða; bÞ and Sðc; dÞ:

StcDbR ¼ ftjtAS � R4cDbg:

Fig. 8 illustrates an example computation of the
set containment join based on the scenario
introduced in Section 1.1. Only the table course

has been changed by adding an additional
attribute program that indicates which combina-
tion of CS courses are required for a certain
advanced program. We find that Bob has all
prerequisites to specialize in systems and applica-
tions while Chris is only allowed to specialize in
applications.
Suppose, the tables course and enrollment are

defined as before and that the layout of the set-
valued attribute courses is unnested internal for
both tables, as sketched in Fig. 9. We have not
found a definition of such a result table in a nested
internal representation in the literature. Since all
join attributes are preserved, it is unclear how the
rows belonging to a set on the one side are
combined with tuples of another set on the other
side. One possible definition for representing the
matches could be to pair each row from the left
side with each row of the right side, i.e., one could
compute the Cartesian product between the two
groups of tuples that fulfill the set containment.
Because of this problem, we devised an exten-

sion of the division operator, called set contain-

ment division (C+) that returns the same rows as
the set containment join but that delivers only the
columns of the non-join attributes. Fig. 9 illus-
trates the behavior of set containment division
based on the same input data as in Fig. 8 but using
a 1NF data layout.
Formally, the set containment division can be

expressed with the help of (basic) relational
division as follows, again based on the two
relations Rða; bÞ and Sðc; dÞ:

Tða; dÞ ¼RCb+cS

¼
[

xApd ðSÞ

ððRCpcðsd¼xðSÞÞÞ � ðxÞÞ:

The idea of this expression is to merge the result
of several divisions. In each division, the entire
dividend R is divided by those tuples of the divisor
S; which belong to the same group. There are as
many divisions as the number of distinct values of
S:d: We append the value of the current group to
all result tuples of each division, specified by the
Cartesian product.
We have seen that set containment join and

relational division are very similar. We have
demonstrated the similarity by defining an opera-
tor that operates on 1NF data like division but
which can process many sets on both sides of the
input like set containment join. The characteristics
of the three operators discussed before are
summarized in Table 4.

Fig. 8. An example computation of the set containment join

operator (tD) based on relations in non-first normal form

employing a set-valued attribute.

Fig. 9. An example computation of the set containment

division operator (C+) based on relations in first normal form.

R. Rantzau et al. / Information Systems 28 (2003) 3–3222

5.3. Overview of set containment join algorithms

The set containment join algorithms that have
been proposed in the literature are based on
signatures [13] and partitioning [17]. Enhanced
approaches combining both techniques have been
developed, which significantly outperform all
known previous approaches [14–16]. All these
algorithms assume that the data is managed by
the database system in a non-1NF way, i.e., the
data can be everything but unnested internal,
which is the layout assumed for the set contain-
ment division and basic division problems. How-
ever, in [16] the new approaches are compared to
SQL-based approaches based on counting the
number of elements in the join result of both sets
and comparing it to the set cardinality of the
candidate subset. Such a comparison is incomplete
because other SQL-based approaches using NOT
EXISTS (as for division) have not been taken into
consideration, as described in Section 3.2.
A recent study compared set containment joins

based on a nested internal and an unnested
internal set representation [18], also based on the
counting approach, only. In particular, in the
nested approach, a user-defined containment test
predicate is employed that takes two set-valued
attributes as parameters. According to current
database technology for evaluating user-defined
predicates, the commercial system in use is forced
to apply the test predicate on the result table of a
Cartesian product of both input tables. By
rewriting the query into one using an unnested
layout, a table function is employed that unnests
the set-valued attribute into a table. The optimizer
of the system used in their experiments decided to
first build an intermediate result table that
comprises the set ID and the element value as

attributes, sorted on the element values. Then, the
query execution plan suggests to merge-join the
two sorted input streams on the element value
attributes. After that, the sorted data is grouped
on the set IDs and set cardinalities. Finally, a filter
condition appends only those set ID pairs to the
result, where the cardinality of the contained set is
equal to the number of matches for this pair of
sets. The experiments of this study have shown
that the effort of unnesting the sets and preproces-
sing the data by sorting it on the attributes to be
matched can greatly improve the straightforward
nested-loops approach. Unfortunately, the results
have not been compared to more sophisticated
approaches as the ones proposed, for example, in
[14].
The research results on relational division

should be applied to set containment in future
work since the division problem can be considered
a sub-problem of set containment join under the
assumption that the sets are stored using an
unnested internal representation. The main differ-
ence between both operations is that division is
applied to a single set of dividend set elements,
whereas set containment join compares possibly
multiple sets from both sides of the join with each
other. To the best of our knowledge, the strong
commonality between relational division and set
containment join has not been identified and
investigated before.

6. New applications for universal quantification

In this section, we first argue why business
intelligence problems are likely to benefit from
being expressed using SQL. Then, we suggest a
novel approach to compute frequent itemsets—a

Table 4

Summary of operator characteristics

Division Set containment division Set containment join

Operator and input relations Rða; bÞCSðcÞ Rða; bÞCb+cRðc; dÞ Sðc; dÞtcDbRða; bÞ
Left input/dividend Many groups Many groups Many sets

Right input/divisor Single group Many groups Many sets

Result/quotient attributes TðaÞ Tða; dÞ Tða; b; c; dÞ
Data layout 1NF 1NF Non-1NF

R. Rantzau et al. / Information Systems 28 (2003) 3–32 23

popular data mining task—which employs uni-
versal quantifications in the SQL queries.

6.1. Database mining

In business intelligence applications, several
data mining and OLAP techniques are employed
to extract novel and useful information from huge
corporate data sets. Typically, the data sets are
managed by a data warehouse that is based on
relational database technology. Although the term
data mining and, even more so, knowledge
discovery in databases (KDD) suggest that the
algorithms explore databases, most commercial
tools merely process flat files. If they do access a
database system, then database tables are used as a
container to read and write data, similar to a file
system. The query optimization and processing
facilities of current database systems are hardly
ever exploited by current data mining tools. The
reasons for this certainly include:

* Portability: A data mining application that does
not rely on a query language can be deployed
more easily because no assumptions on the
language’s functionality have to be made.

* Performance: A highly tuned black-box algo-
rithm with in-memory data structures will
always be able to outperform any query
processor that employs a combination of
generic algorithms.

* Secrecy: A tool vendor does not want to reveal
application logic. By employing SQL-based
algorithms, the database administrator will be
able to see these queries.

Despite these arguments against SQL-based data
mining algorithms, exploiting the query language
power for expressing data mining (sub)problems
can solve several important problems:

* Data currency: The latest updates applied to the
data warehouse are reflected in the query result.
No (replicated) data copies have to be main-
tained.

* Scalability: If extremely large data sets are to be
mined then it is much easier to design a scalable
SQL-based algorithm than designing an algo-
rithm that has to manage data in external files.

The storage management is one of the key
strengths of a database system.

* Adaptability to data: A database optimizer tries
to find the best possible execution strategy
based on the current data characteristics for a
given query. Of course, in some situations this
will not help. Similar to choosing a different
proprietary algorithm for certain data charac-
teristics, it may be better to employ a different
query.

The latter three arguments motivated our research
on SQL-based algorithms for several data mining
methods. One of these methods is discussed in the
following section.

6.2. Frequent itemset discovery with SQL

In this section, we first briefly introduce the
frequent itemset discovery problem and explain
the relationship between frequent itemset discov-
ery and relational division and set containment
join. Then, we present a new approach for this
problem, which makes use of universal quantifica-
tions.

6.2.1. The frequent itemset discovery problem

The computation of frequent itemsets is a
computationally expensive preprocessing step for
association rule discovery, which finds rules in
large transactional data sets [19]. Frequent item-
sets are combinations of items that appear
frequently together in a given set of transactions.
Association rules characterize, for example, the
purchasing pattern of retail customers or the click
pattern of web site visitors. Such information can
be used to improve marketing campaigns, retailer
store layouts, or the design of a web site’s contents
and hyperlink structure.
Given a set of transactions, the frequent itemset

discovery problem is to find itemsets within the
transactions that appear at least as frequently as a
given threshold, called minimum support. For
example, a user can define that an itemset is
frequent if it appears in at least 2% of all
transactions.
Almost all frequent itemset discovery algorithms

consist of a sequence of steps that proceed in a

R. Rantzau et al. / Information Systems 28 (2003) 3–3224

bottom-up manner: the result of the kth step is the
set of frequent k-itemsets, denoted as Fk: The first
step computes the set of frequent items (1-item-
sets). Each following step consists of two phases:

1. The candidate generation phase computes a set
of potentially frequent k-itemsets from Fk�1:
The new set is called Ck; the set of candidate
k-itemsets. It is a superset of Fk:

2. The support counting phase filters out those
itemsets from Ck that appear more frequently in
the given set of transactions than the minimum
support and stores them in Fk:

The key problem of frequent itemset discovery
is: ‘‘How many transactions contain a certain
given itemset?’’ This question can be ans-
wered in relational algebra using the division
operator. Suppose that we have a relation
Transactionðtid; itemÞ containing a set of transac-
tions and a relation ItemsetðitemÞ containing a
single itemset, each row containing one item. We
want to collect those tid values in a relation
ContainsðtidÞ; where for all tuples in Itemset there
is a corresponding tuple in Transaction that has a
matching item value together with that tid. In
relational algebra, this problem can be stated as

Transactionðtid; itemÞCItemsetðitemÞ

¼ ContainsðtidÞ:

The example in Fig. 10 illustrates the division
operation. The Transaction table consists of three

transactions and two of them contain all items of
Itemset. We simply have to count the values in
Contains to decide if the itemset is frequent. For
example, if the minimum support is set to 60%
then the given itemset is considered a frequent
itemset because the support is 2

3
; which is greater

than 60%:Using division terminology, Transaction

plays the role of the dividend, Itemset represents
the divisor, and Contains is the quotient.
Unfortunately, frequent itemset discovery poses

the additional problem that we have to check many

(candidate) itemsets if they are frequent, i.e.,
unlike Fig. 10(b), we usually do not have a
constant divisor relation but we need many divisor
relations. However, we can employ efficient algo-
rithms for this problem. We could arrange the
itemsets in a table Itemset (itemset, item) and
apply the division operation to each itemset group,
separately. As shown in Section 5.2, this problem
can also be expressed by set containment division:

Itemsetðitemset; itemÞCitem+item

Transactionðtid; itemÞ

¼ Containsðitemset; tidÞ

Another approach is to use the standard set
containment join, which requires switching from
the 1NF data representation to a non-1NF
representation that uses set-valued attributes. We
would have to preprocess the tables by transform-
ing the item values of each group, defined by the
itemset and tid values, respectively, into a set.
Instead of the above tables in 1NF, the non-1NF
tables would have a schema like: Itemset (itemset,

itemvalues) and Transaction (tid, itemvalues), each
having a set-valued attribute itemvalues.

6.2.2. Support counting in SQL

In this paper, we focus on the support counting
phase of frequent itemset discovery. For typical
data sets, this phase is much more computationally
expensive than the candidate generation phase.
There are several approaches to express the

support counting phase in SQL. Most of them are
based on SQL-92. The SETM algorithm is the first
SQL-based approach described in the literature
[20]. Several researchers have suggested improve-
ments of SETM. It has been shown that SETM

Fig. 10. Relationship between the frequent itemset discovery

problem and relational division: TransactionCItemset ¼
Contains:

R. Rantzau et al. / Information Systems 28 (2003) 3–32 25

does not perform well on large data sets and new
approaches have been devised, like for example
Three-Way-Join, Subquery, and Two-Group-Bys

[21]. The algorithms presented in that paper
perform differently for different data character-
istics. Subquery is reported to be the best approach
overall compared to the other approaches based
on SQL-92. The reason is that it exploits common
prefixes between candidate k-itemsets when count-
ing the support.
More recently, an approach called Set-Oriented

Apriori has been proposed [22]. The authors argue
that too much redundant computations are
involved in each support counting phase. Their
performance results have shown that set-oriented
apriori performs better than subquery, especially
for high values of k:
We contrast our novel approach to previous

approaches based on SQL-92 where the data is
stored in 1NF, i.e., we do not investigate set-
valued attributes, for example. One of the
approaches based on SQL-92 is K-Way-Join [21],
illustrated in Fig. 11. The K-Way-Join approach,
which is based on SQL-92, uses k instances of the
transaction table and joins it k times with itself and
with a single instance of Ck: Same as all other
known approaches based on SQL-92 that use a
1NF representation of itemsets, K-Way-Join
assumes that the frequent and candidate k-itemsets
are stored in a single row: ðitemset; item1;y; itemkÞ:
However, the given transactions are stored
as multiple rows using the schema ðtid; itemÞ: As
we will show in the following section, our
novel approach uses a data layout where itemsets
are stored as multiple rows, same as the transac-
tions.

6.2.3. Support counting and universal quantification

Based on the idea of using division to specify the
itemset containment problem, we devised a com-
plete algorithm, called Quiver (QUantified Itemset
discovery using a VERtical table layout) [23], that
employs SQL queries containing universal quanti-
fications for both phases of the discovery task. The
reason for devising a new approach is twofold:

1. We want to formulate intuitive queries that
naturally express the universal quantification
problem: ‘‘Count the number of transactions
where for each transaction, all items of a given
itemset are contained in the transaction.’’
Previous approaches for SQL-based frequent
itemset discovery are mostly ‘‘hardwired’’
queries, i.e., the quantification is circumvented
by using many join conditions between indivi-
dual items of candidates and transactions (as
shown for the K-Way-Join approach in the
previous section).

2. We want to employ a flexible itemset represen-
tation that is similar to the way transactions are
stored in a database: Transaction ðtid; itemÞ: In
all previous approaches that use a 1NF
representation, k-itemsets are stored as a single
row: ðitemset; item1;y; itemkÞ: Instead of this
‘‘horizontal’’ layout, Quiver uses a ‘‘vertical’’
layout, where a k-itemset is represented as k

rows in the three-column table (itemset, posi-

tion,item). One benefit of this vertical layout is
its ability to store even very large itemsets
because in commercial database systems the
maximum number of columns in a table is
significantly lower than the number of rows.

In the following, we describe only the support
counting phase of Quiver and we focus on the core
problem, universal quantification. The entire
approach, including the candidate generation
phase using universal quantification, is described
in detail in [23].
The query for support counting is first presented

with help of tuple relational calculus since the
calculus offers a universal quantifier to conveni-
ently express the quantification. After this, we
show how to derive an equivalent SQL query. As
explained in Section 3.2, SQL does not offer
a universal quantifier, therefore the query is

Fig. 11. Support counting phase according to the K-Way-Join

algorithm.

R. Rantzau et al. / Information Systems 28 (2003) 3–3226

expressed with the help of negated existential
quantifiers.
Since Quiver follows the classical iterative two-

phase approach, suppose that we have computed
the set of candidate k-itemsets Ckðitemset; position;
itemÞ based on the set of frequent ðk � 1Þ-itemsets
Fkðitemset; position; itemÞ during the first phase of
the kth iteration, with kX2: The set of transac-
tions is given by table Tðtid; itemÞ:
We express the query Q in tuple relational

calculus to derive combinations of transactions
and candidates as

Q ¼ fðc1AC; t1ATÞjContainsg:

The query can be applied to candidate itemsets
of any size. Therefore, the parameter k of the
particular candidate set Ck is omitted for
brevity. The Contains expression of this query is
defined as

Contains ¼8c2AC(t2AT

ðc2:itemset ¼ c1:itemsetÞ-

ðt2:tid ¼ t1:tid4
t2:item ¼ c2:itemÞ:

The expression has two free tuple variables c1
and t1; where c1 represents a candidate itemset and
t1 is a transaction that contains c1: The quantified
(bound) tuple variables c2 and t2 represent the
items belonging to c1 and t1; respectively. The
universal quantification lies in the condition that
for each item c2 belonging to itemset c1; there must
be an item t2 belonging to transaction t1 that
matches with c2:
A combination ðc1; t1Þ fulfilling the calculus

query Q indicates that the itemset c1:itemset is
contained in the transaction t1:tid: We can find the
support of each candidate by counting the number
of distinct values t1:tid that appear in a combina-
tion c1:itemset: We do not show the actual
counting because the basic calculus does not
include aggregate functions.
Since we are interested in an SQL representation

of the given calculus query, we translate it into
SQL in a straightforward manner by applying the
following transformations:

* Quantifiers: As already explained before, there
is no universal quantifier available in SQL.

Therefore, we translate 8xAR : f ðxÞ � :(xAR :
f ðxÞ into ‘‘NOT EXISTS (SELECT * FROM R AS x

WHERE NOT f(x)).’’
* Implications: We replace an implication by a

disjunction, i.e., we transform f-g � :f3g

into ‘‘NOT f OR g.’’
* Negations: We use De Morgan’s rules

:ð f4gÞ � :f3:g and :ð f3gÞ � :f4:g for
pushing a negation into a conjunction or a
disjunction.

The resulting SQL query for support counting,
shown in Fig. 12, contains two nested ‘‘NOT
EXISTS’’ expressions analogous to the example
SQL query used to express the student’s enroll-
ment problem in Section 3.2. Note that the query
in Fig. 12 has to apply the aggregation on the set
of unique transaction IDs because duplicates can
occur as a result of the query processing.
To conclude this section, we point out that the

Quiver approach shows how an important data
mining task can be expressed in a natural way
using universal quantification. If a database
system were able to recognize the quantification
problem inside queries like the one in Fig. 12, it
could employ the most efficient algorithm that
realizes the division operator, set containment
division operator, or set containment join operator
(discussed in Section 5), taking into account the
current data characteristics, as explained in the
previous sections. This is especially important if
the data mining problem is a part of a larger, more
complex query, involving several additional pre-
dicates. For example, consider a supermarket

Fig. 12. Support counting phase according to the Quiver

algorithm.

R. Rantzau et al. / Information Systems 28 (2003) 3–32 27

scenario, where we restrict our analysis to transac-
tions of the years 1999–2001, and we are only
interested in items of the product category ‘‘soft
drinks.’’ Such additional predicates can signifi-
cantly influence the choice on the most efficient
algorithm for the quantification problem.

7. Related work

Quantifiers in queries can be expressed by
relational algebra. Due to the lack of efficient
division algorithms in the past, early work has
recommended avoiding the relational division
operator to express universal quantification in
queries [2]. Instead, universal quantification is
expressed with the help of the well-known anti-

semi-join operator, or complement-join, as it is
called in that paper.
Other early work suggests approaches other

than division to process (universal) quantification
[24,25]. Universal quantification is expressed by
new algebra operators and is optimized based on
query graphs in a non-relational data model [25].
Due to the lack of a performance analysis,
we cannot comment on the efficiency of this
approach.
The research literature provides only few

surveys of division algorithms [3,4,7]. Some of
the algorithms reviewed in this paper have been
compared both analytically and experimentally [1].
The conclusion is that hash-division outperforms
all other approaches. Complementing this work,
we have shown that an optimizer has to take the
input data characteristics and the set of given
algorithms into account to pick the best-division
algorithm. The classification of four division
algorithms in [1] is based on a two-by-two matrix.
One axis of the matrix distinguishes between
algorithms based on sorting or based on hashing.
The other axis separates ‘‘direct’’ algorithms,
which allow processing the (larger) dividend table
only once, from ‘‘indirect’’ algorithms, which
require duplicate removal (by employing semi-
join) and aggregation. For example, the merge-
sort division algorithm of Section 3.3.2 falls into
the category ‘‘direct algorithm based on sorting,’’
while the hash-division for divisor groups algo-

rithm of Section 3.4.3 belongs to the combination
‘‘indirect algorithm based on hashing.’’ Our
classification details these four approaches and
focuses on the fact that data properties should be
exploited as much as possible by employing ‘‘slim’’
algorithms that are separated from preprocessing
algorithms, like grouping and sorting.
Based on a classification of queries that contain

universal quantification, several query evaluation
techniques have been analyzed [3]. The input data
of this algorithm analysis is stored in an object-
oriented or object-relational database, where set-
valued attributes are available. Hence, the algo-
rithms they examine can presuppose that the input
data is grouped on certain attributes. For example,
the table enrollment in Fig. 1 could be represented
by a set-valued enrolled courses attribute of a
student class. The authors conclude that universal
quantification based on anti-semi-join is superior
to all other approaches, similar to the conclusion
of [2]. Note, however, that this paper has a broader
definition of queries involving universal quantifi-
cation than the classic definition that involves the
division operator. However, the anti-semi-join
approach requires a considerable overhead for
preprocessing the dividend. An equivalent defini-
tion of the division operator using anti-semi-join
(%r) as well as semi-join (r) and left outer join
(tlo), is: SCT ¼ ððSrTÞtloTÞ %rT :
In this paper, we focused on the universal (for-

all) quantifier. Generalized quantifiers have been
proposed to specify quantifiers like ‘‘at least ten’’
or ‘‘exactly as many’’ in SQL [26]. Such quantifiers
can be processed by algorithms that employ
multi-dimensional matrix data structures [27].
In that paper, however, the implementation
of an operator called all is presented that is
similar but different from relational division.
Unlike division, the result of the all operator
contains some attributes of the divisor. Hence, we
have to employ a projection on the quotient
attributes of the all operator’s result to achieve a
valid quotient.
Transformation rules for optimizing queries

containing multiple (existential and universal)
quantifications are presented in [28]. Our contri-
bution complements this work by offering strate-
gies to choose a single (division) operator, which

R. Rantzau et al. / Information Systems 28 (2003) 3–3228

may be one element of a larger query processing
problem.

8. Conclusion and future work

Based on a classification of input data pro-
perties, we were able to differentiate the
major currently known algorithms for relational
division. In addition, we could provide new
algorithms for previously not supported data
properties. Thus, for the first time, an optimizer
has a full range of algorithms, separated by their
input data properties and efficiency measures, to
choose from.
We are aware of the fact that database system

vendors are reluctant to implement several alter-
native algorithms for the same query operator,
in our case the division operation. One reason
is that the optimizer’s rule set has to be
extended, which can lead to a larger search space
for queries containing division. Another reason is
that the optimizer must be able to detect a division
in a query. This is a non-trivial task because a
division cannot be expressed in SQL:1999 [6]. No
keyword similar to ‘‘FOR ALL’’ [5] is available
and division has to be expressed indirectly, for
example by using nested ‘‘NOT EXISTS’’ clauses
or by using the ‘‘division by counting’’ approach
on the query language level. To the best of our
knowledge, there is no database system that has an
implementation of hash-division (or any of its
improvements), although this efficient algorithm
has been known for many years [4]. However,
we believe that as soon as a dedicated keyword
for universal quantification is supported by the
SQL standard and its benefit is recognized
and exploited by applications, many options and
strategies are available today for database
system vendors to implement an efficient division
operator.
The similarity between relational division and

the set containment join has been discussed for the
first time. This may lead to more research that
investigates the possibility of representing sets in
an unnested storage layout because efficient
algorithms for division can be exploited. We have
proposed a new operator, called set containment

division, that realizes set containment joins for
data in first normal form.
We have discussed an important application of

the division (and hence set containment) problem,
namely frequent itemset discovery. We plan to
investigate the potential of using universal quanti-
fication in queries in further data mining methods
of business intelligence applications.
Our future work includes the analysis of further

data properties that have an influence on the
optimization of division queries, like the current
data distribution or the availability of certain
indexes. Furthermore, we will study the potential
of parallelizing division algorithms, based on the
detailed studies in [1] on parallelizing hash-division
and aggregate algorithms. In addition, the com-
parison between division and set containment join
algorithms deserves more attention. In particular,
further investigations of both operators need to
take into account the cost of nesting and unnesting
between the 1NF and the non-1NF storage
representations of sets in order to provide fair
performance comparisons.

Acknowledgements

We would like to thank Sergey Melnik
whose work on set containment joins led us
think about the relationship between set contain-
ment joins and the classic relational division
problem. Our work was facilitated by financial
support from a DAAD/NSF cooperation. We
acknowledge the helpful comments of the anon-
ymous reviewers.

Appendix. Pseudo-code of division algorithms

The following algorithms in Figs 13–17 assume
that the division’s input consists of a dividend
table Sðquotient; divisorÞ and a divisor table
TðdivisorÞ: Furthermore, we use the variables s

and t to refer to a single row within S and T ;
respectively. The data structures dht and qht

represent a divisor hash table and a quotient hash
table, respectively.

R. Rantzau et al. / Information Systems 28 (2003) 3–32 29

Fig. 13. Nested-loops division (class 0).

Fig. 14. Classic hash-division (class 0).

Fig. 15. Merge-count division (class 5).

R. Rantzau et al. / Information Systems 28 (2003) 3–3230

Fig. 16. Merge-sort division (class 10). Without loss of generality, the pseudo code assumes an ascending sort order.

Fig. 17. Transposed hash-division (class 0).

R. Rantzau et al. / Information Systems 28 (2003) 3–32 31

References

[1] G. Graefe, R. Cole, Fast algorithms for universal

quantification in large databases, TODS 20 (2) (1995)

187–236.

[2] F. Bry, Towards an efficient evaluation of general queries:

quantifier and disjunction processing revisited, in: Pro-

ceedings SIGMOD, Portland, OR, USA, May–June 1989,

pp. 193–204.

[3] J. Clau�en, A. Kemper, G. Moerkotte, K. Peithner,

Optimizing queries with universal quantification in ob-

ject-oriented and object-relational databases, in: Proceed-

ings VLDB, Athens, Greece, August 1997, pp. 286–295.

[4] G. Graefe, Query evaluation techniques for large data-

bases, ACM Comput. Surveys 25 (2) (1993) 73–170.

[5] P. Gulutzan, T. Pelzer, SQL-99 Complete, Really: An

Example-Based Reference Manual of the New Standard,

R&D Books, Lawrence, Kansas, USA, 1999.

[6] ANSI/ISO/IEC 9075-2, Information Technology, Data-

base Language, SQL—Part 2: Foundation (SQL/Founda-

tion), 1999.

[7] W3C, XQuery 1.0: An XML Query Language, Working

Draft 7, W3C, 2001.

[8] J. Smith, P. Chang, Optimizing the performance of a

relational algebra data base interface, CACM 18 (10)

(1975) 568–579.

[9] C. Nippl, R. Rantzau, B. Mitschang, StreamJoin: a generic

database approach to support the class of stream-oriented

applications, in: Proceedings IDEAS, Yokohama, Japan,

September 2000, pp. 83–91.

[10] G. Jaeschke, H.-J. Schek, Remarks on the algebra of non

first normal form relations, in: Proceedings PODS, Los

Angeles, California, USA, March 1982, pp. 124–138.

[11] A. Makinouchi, A consideration on normal form of not-

necessarily-normalized relation in the relational data

model, in: Proceedings VLDB, Tokyo, Japan, October

1977, pp. 447–453.

[12] K. Ramasamy, Efficient storage and query processing of

set-valued attributes, Ph.D. Thesis, University of Wiscon-

sin, Madison, WI, USA, 2002, 144pp.

[13] S. Helmer, G. Moerkotte, Evaluation of main memory join

algorithms for joins with set comparison join predicates,

in: Proceedings VLDB, Athens, Greece, August 1997, pp.

386–395.

[14] S. Melnik, H. Garcia-Molina, Adaptive algorithms for set

containment joins, Department of Computer Science,

Stanford University, CA, USA, Technical Report, No-

vember 2001.

[15] S. Melnik, H. Garcia-Molina, Divide-and-conquer

algorithm for computing set containment joins, in:

Proceedings EDBT, Prague, Czech Republic, March

2002, pp. 427–444.

[16] S. Melnik, H. Garcia-Molina, Divide-and-conquer algo-

rithm for computing set containment joins, Stanford

University, Extended Technical Report, CA, USA, 2002.

[17] K. Ramasamy, J. Patel, J. Naughton, R. Kaushik, Set

containment joins: the good, the bad and the ugly, in:

Proceedings VLDB, Cairo, Egypt, September 2000, pp.

351–362.

[18] S. Helmer, G. Moerkotte, Compiling away set contain-

ment and intersection joins, in: Technical Report 04/02,

University of Mannheim, Germany, April 2002.

[19] R. Agrawal, R. Srikant, Fast algorithms for mining

association rules, in: Proceedings VLDB, Santiago, Chile,

September 1994, pp. 487–499.

[20] M. Houtsma, A. Swami, Set-oriented data mining in

relational databases, DKE 17 (3) (1995) 245–262.

[21] S. Sarawagi, S. Thomas, R. Agrawal, Integrating associa-

tion rule mining with relational database systems: alter-

natives and implications, in: Proceedings SIGMOD,

Seattle, WA, USA, June 1998, pp. 343–354.

[22] S. Thomas, S. Chakravarthy, Performance evaluation and

optimization of join queries for association rule mining, in:

Proceedings DaWaK, Florence, Italy, August–September

1999, pp. 241–250.

[23] R. Rantzau, Frequent itemset discovery with SQL using

universal quantification, in: Proceedings Workshop on

Database Technology for Data Mining (DTDM), Prague,

Czech Republic, March 2002, pp. 51–66.

[24] U. Dayal, Queries with quantifiers: a horticultural

approach, in: Proceedings PODS, Atlanta, Georgia,

USA, March 1983, pp. 125–136.

[25] U. Dayal, Of nests and trees: a unified approach to

processing queries that contain nested subqueries, aggre-

gates, and quantifiers, in: Proceedings VLDB, Brighton,

England, September 1987, pp. 197–208.

[26] P. Hsu, D. Parker, Improving SQL with generalized

quantifiers, in: Proceedings ICDE, Taipei, Taiwan, March

1995, pp. 298–305.

[27] S. Rao, A. Badia, D.V. Gucht, Providing better support

for a class of decision support queries, in: Proceedings

SIGMOD, Montreal, Canada, June 1996, pp. 217–227.

[28] M. Jarke, J. Koch, Range nesting: a fast method to

evaluate quantified queries, in: Proceedings SIGMOD, San

Jose, CA, USA, May 1983, pp. 196–206.

R. Rantzau et al. / Information Systems 28 (2003) 3–3232

	Algorithms and applications for universal quantification in relational databases
	Introduction
	The division operator
	Outline of the paper

	Classification of data
	Input data characteristics
	Choice of algorithms
	Grouping
	Grouped input data for division

	Overview of algorithms
	Complexity of algorithms
	Query language representation and algorithm classification
	Scalar algorithms
	Nested-loops division
	Merge-sort division
	Merge-group division
	Classic hash-division
	Transposed hash-division
	Hash-division for quotient groups
	Transposed hash-division for quotient groups

	Aggregate algorithms
	Nested-loops counting division
	Merge-count division
	Hash-division for divisor groups
	Transposed hash-division for divisor groups
	Stream-join division

	Evaluation of algorithms
	The set containment problem
	Set storage representations
	Set containment join and relational division
	Overview of set containment join algorithms

	New applications for universal quantification
	Database mining
	Frequent itemset discovery with SQL
	The frequent itemset discovery problem
	Support counting in SQL
	Support counting and universal quantification

	Related work
	Conclusion and future work
	Acknowledgements
	Appendix
	Pseudo-code of division algorithms
	References

