
it 4/2004

Schwerpunktthema

Modellbasierter Ansatz zur
Anwendungsintegration

A Model-based Approach for Enterprise Application Integration

Clemens Dorda, Universität Stuttgart,
Hans-Peter Steiert, Jürgen Sellentin, DaimlerChrysler AG

Zusammenfassung Moderne Produkte zur Anwendungsin-
tegration in Unternehmen (EAI) bieten Werkzeuge, um Inte-
grationsszenarien zu modellieren. Allerdings lassen sich damit
heterogene IT-Umgebungen bisher immer nur ausschnittsweise
darstellen, da die Modelle unterschiedlicher EAI-Produkte nicht
ausgetauscht oder integriert werden können. Unser Ziel ist
es, die Bildung solcher ,Integrationsinseln‘ zu vermeiden. Dazu
präsentieren wir einen Ansatz, der durch technologie- und
herstellerunabhängige Modellierung eine integrierte Sicht er-
laubt. Unser Vorgehensmodell schlägt vor, diese integrierte
Sicht werkzeuggestützt auf der Basis von Repositories zu ver-
feinern, um die Realisierung mit konkreten Produkten und
das Deployment auf konkreten Plattformen zu automatisie-

ren. ��� Summary Modern products for Enterprise
Application Integration (EAI) provide tools for modelling in-
tegration scenarios. Because it is not possible to exchange
or integrate the models of different EAI-products with these
tools, the real heterogeneous IT-environments can only be
described partially. Our goal is to avoid the creation of so-
called ’integration islands‘. For that purpose we present an
approach which allows an integrated view by technology-
independent and multivendor-capable modelling. Our pro-
cess model proposes a toolset- and repository-based refine-
ment of the integrated view to automate the implementa-
tion with real products and the deployment on real plat-
forms.

KEYWORDS D.1.2 [Automatic Programming], D.2.2 [Design Tools and Techniques], D.2.12 [Interoperability],
D.2.13 [Reusable Software], H.2.5 [Heterogeneous Databases], I.6.5 [Model Development]

1 Einleitung
Integrationsprojekte haben in Un-
ternehmen eine fast so lange His-
torie wie die Verwendung von
Informationssystemen an sich. Die
Vorteile und positiven Ziele von
Systemintegration, beispielsweise
schnellere und automatisierte Ab-
wicklung von Geschäftsprozessen,
sind bereits vielfach genannt wor-
den [1; 2]. Oft werden die Gefahren
für die IT Infrastruktur allerdings
vernachlässigt. So gefährden Inte-
grationsprojekte die Agilität der IT
Infrastruktur.

Unter Agilität versteht man die
Fähigkeit, sich an Veränderungen an-

zupassen. Diese Fähigkeit wird je-
doch durch jedes neue Integrations-
projekt reduziert, da dabei immer
größere verteilte Systeme mit im-
mer stärkeren Abhängigkeiten zwi-
schen bisher autonomen Applikatio-
nen entstehen. Beispielsweise führt
der Zugriff eines Online-Shops auf
den aktuellen Lagerbestand dazu,
dass die Lagerverwaltung nur noch
dann angepasst werden kann, wenn
die Schnittstellen zum Online-Shop
stabil bleiben. Sehr schwierig wird
es, wenn Abhängigkeiten nicht oder
schlecht dokumentiert werden. Ins-
besondere da das Wissen über die in-
tegrierten Applikationen meist nicht

in einem Team vorliegt, sondern über
viele Personen und Organisationen
im Unternehmen verteilt ist.

Im schlimmsten Fall führt dies
dazu, dass zentrale Anwendungen
nicht mehr weiterentwickelt werden
können, weil die Gefahr zu groß ge-
worden ist, andere kritische Systeme
unbewusst negativ zu beeinflussen.
Es wird deshalb mit zunehmen-
der Integration immer schwieriger,
aufwändiger und teurer, die System-
landschaft an die sich ändernden
Bedürfnisse anzupassen. Die Agilität
geht verloren.

In diesem Artikel werden wir
uns damit beschäftigen, wie sich

200 it – Information Technology 46 (2004) 4  Oldenbourg Verlag



Modellbasierter Ansatz zur Anwendungsintegration ���

die Agilität über die ganze Lebens-
dauer erhalten lässt. Unser Fokus
liegt dabei nicht auf den Produkten
zur Systemintegration, da diese von
den IT-Herstellern entwickelt und
auch fortwährend weiterentwickelt
werden. Wir wollen vielmehr einen
Ansatz vorstellen, bei dem durch ein
Vorgehensmodell für Integrations-
projekte und eine geeignete Werk-
zeugunterstützung für Entwicklung
und Dokumentation insbesondere
die Dokumentation gegenüber dem
heutigen Stand verbessert wird.

Dieser Artikel ist wie folgt ge-
gliedert. Im nächsten Abschnitt wer-
den wir die Problemstellung ge-
nauer herausarbeiten und anschlie-
ßend vier Szenarien entwickeln, die
wir mit unserem Ansatz adressie-
ren. Darauf folgend beschreiben wir
eine Auswahl bestehender Ansätze
von Herstellern und Lösungsanbie-
tern. Anschließend stellen wir dann
unseren Ansatz, das RADES-Vorge-
hensmodell (Reference Architecture
for the Documentation and Support
of EAI-Solutions) vor und diskutie-
ren, wie dieser die vier Szenarien aus
Abschnitt 3 adressiert. Wir schließen
mit einer Zusammenfassung und ei-
nem Ausblick.

2 Problemstellung
Integrationsprojekte leiden meist
unter drei inhärenten Problemen.
Diese drei Aspekte wollen wir nach-
folgend genauer betrachten und in
einem Anforderungskatalog zusam-
menstellen.

2.1 Inkonsistente Dokumentation
Zunächst betrachten wir das Aus-
einanderlaufen von Realität und
Dokumentation. Diese Situation
dürfte hinreichend bekannt sein
und tritt sowohl zu Beginn eines In-
tegrationsprojekts als auch während
der Durchführung einer nachträg-
lichen Änderung und auch bei der
Migration auf eine neue Integrati-
onstechnologie auf.

Ein Blick auf die verfügbare Do-
kumentation in einer dieser Situa-
tionen zeigt, dass für viele der integ-
rierten Applikationen keine solche
mehr vorhanden ist. Findet sich je-

doch Dokumentation, dann stimmt
diese sehr oft nicht mehr mit
der real implementierten Integra-
tionslösung oder den integrierten
Systemen überein. Hinzu kommt,
dass die existierende Dokumenta-
tion informell und ungenau ist,
wodurch vielfältige Interpretatio-
nen möglich sind. Neben der Do-
kumentation müssen deshalb die
realen Systeme als Informations-
quelle genutzt werden, was ein auf-
wändiges Reengineering notwendig
macht.

2.2 Heterogenität aller Artefakte
Die genannten Probleme bei der
Dokumentation werden zusätzlich
durch zwei Effekte verschärft:

Erstens ist die Systemlandschaft
über die Zeit hinweg ständigem
Wandel unterzogen und wird da-
durch bald extrem heterogen. Wir
haben es daher mit verschiedenen
Integrationsprodukten und Reali-
sierungstechnologien zu tun. Jedes
Produkt bringt dabei seine eigenen
Werkzeuge und Metadaten mit. Dies
macht es schwierig, ein konsistentes
Bild der realen Integrationslösung
zu gewinnen.

Zweitens wurden die Projekte
oft mit wechselnden Projektpart-
nern bearbeitet. Diese verwen-
den verschiedene Vorgehensmo-
delle, Dokumentationsmethodiken
und unterschiedliche Notationen.
Die Heterogenität bezieht sich also
nicht nur auf die IT Systeme, son-
dern auf alle entstandenen Artefakte
des Integrationsprojekts.

2.3 Verteilung der IT und der
Organisation

Der dritte Aspekt ist die inhärent
verteilte Natur von Integrationslö-
sungen.

Aufgrund der Verteilung müs-
sen Änderungen an vielen Stel-
len konsistent durchgeführt werden.
Dies ist sehr fehleranfällig. Die Aus-
wirkungen einer Änderung auf an-
dere Applikationen lässt sich zudem
nur schwer nachvollziehen, was die
Fehlersuche erschwert.

Die Verteilung hat auch einen
organisatorischen Aspekt, da unter-

schiedliche Personen und Bereiche
für die Applikationen verantwort-
lich sind. Daher ist ein mühseli-
ges Zusammensuchen der benötig-
ten Informationen notwendig.

2.4 Anforderungen an einen
Lösungsansatz

Üblicherweise wird bisher versucht,
die dargestellten Probleme technisch
und organisatorisch klein zu hal-
ten:

Die technische Lösung besteht
darin, dass die verwendeten Inte-
grationsprodukte die Applikationen
nur lose miteinander koppeln. Eine
geeignete Architektur vorausgesetzt,
lassen sich so Änderungen in ei-
nem System hinter den Schnittstel-
len für andere integrierte Systeme
weitgehend transparent durchfüh-
ren.

Die organisatorische Lösung be-
steht in einem guten Projektmana-
gement und stringenten Dokumen-
tationsrichtlinien. Beide reduzieren
die Wirkung der Probleme und sind
in jedem Fall wichtig und notwen-
dig. Wir sehen sie als Vorausset-
zung für unseren Ansatz. Zusätzlich
muss ein Lösungsansatz aber fol-
gende Ziele erreichen:
• Es muss eine zentrale Doku-

mentation geben.
• Die Dokumentation muss eine

aktuelle und homogene Sicht
auf eine Integrationslösung er-
möglichen.

• Ein Vorgehensmodell mit geeig-
neter Werkzeugunterstützung
muss die Konsistenz von Do-
kumentation und realer Lösung
gewährleisten.

• Der Lösungsansatz muss sich
nahtlos in Entwicklungsprozesse
integrieren.

Diese Ziele präzisieren wir im
nächsten Abschnitt anhand von vier
Szenarien.

3 Szenarien bei der
Entwicklung von
Integrationslösungen

Wir werden später unseren An-
satz zur modellbasierten Entwick-
lung von Integrationslösungen vor-

201



Schwerpunktthema

stellen, der die oben genannten
Punkte adressiert. Nach unserer An-
sicht muss ein solcher Ansatz die
folgenden vier Szenarien in Integra-
tionsprojekten unterstützen.

3.1 Zentrale, einheitliche und au-
tomatisierte Dokumentation

Der grundlegende Gedanke dieses
Szenarios ist, die Dokumentation
dort zu erzeugen, wo sie anfällt:
In den Entwicklungs-, Administrati-
ons- und Dokumentationswerkzeu-
gen. Oft können Administratoren
und Entwickler hier Kommentare
hinterlegen. Um eine redundante
Speicherung in Dokumenten und
Werkzeugen zu vermeiden, ist es
notwendig, diese aktiv zu nutzen
und automatisch aus den Werkzeu-
gen zu extrahieren.

Als weitere Informationsquellen
stehen die Metadaten und Kon-
figurationsdateien der Werkzeuge
und Integrationsprodukte zur Ver-
fügung. Diese stellen die laufende
Realisierung dar und müssen eben-
falls automatisch ausgelesen werden.

Zusätzlich fällt natürlich die üb-
liche Dokumentation durch Men-
schen an. Hier ist eine Standardisie-
rung mit Vorlagen notwendig, um
zu ermöglichen, dass diese Informa-
tionen ebenfalls maschinell weiter-
verarbeitet werden können.

In einem definierten Prozess
müssen diese Informationsquellen
automatisiert und mit Unterstüt-
zung eines Autorensystems ein-
gesammelt, homogenisiert, zusam-
mengeführt und zentral bereitge-
stellt werden.

Wenn die Dokumentation, wie
gefordert, nicht alleine einem
menschlichen Autor überlassen
wird, sondern soweit als möglich
automatisch aus den genannten In-
formationsquellen extrahiert wird,
dann lässt sich die Dokumentation
einfacher mit der Realität konsistent
halten.

Es bietet sich an, die vollständige
Dokumentation in einem zentra-
len Repository abzulegen und online
zugreifbar zu machen. Die Verwen-
dung eines zentralen Repository in
Verbindung mit Standards für die

Dokumentation hilft auch, diese auf
Konsistenz untereinander, auf Voll-
ständigkeit, sowie auf Einhaltung
von Vorgaben und Richtlinien zu
prüfen. Auf diese Weise wird die
Homogenität gesichert.

3.2 Neuentwicklung einer
Integrationslösung

Oben haben wir beschrieben, wie
die Dokumentation einer existie-
renden Lösung automatisch aus
den verfügbaren Informationsquel-
len erzeugbar sein sollte. In der
Entwicklung wird üblicherweise zu-
nächst der umgekehrte Weg be-
schritten. Ausgehend von einem
Grobentwurf wird schrittweise ver-
feinert und letztlich die lauffähige
Lösung implementiert.

Unserer Ansicht nach muss es
möglich sein, alle Zwischenergeb-
nisse auf diesem Weg ebenfalls in
einem zentralen Repository abzule-
gen.

Des Weiteren muss es möglich
sein, das Ergebnis eines Verfeine-
rungsschritts auf dessen Konsistenz
mit den Vorgaben des Ergebnis-
ses des vorangegangenen Schritts zu
prüfen.

Hierzu sind einige Vorausset-
zungen notwendig: Ein Vorgehens-
modell muss klar festlegen, was die
Ergebnisse der einzelnen Schritte
sein sollen. Ebenso muss die Form
der Ergebnisse festgelegt werden.
Diese müssen in einer einheitlichen
und maschinenverarbeitbaren Nota-
tion erstellt werden.

Ferner muss das Repository
Sichten auf die verschiedenen Ver-
feinerungsstufen der Integrationslö-
sung unterstützen, sowie die Na-
vigation von Elementen einer hö-
heren Stufe hin zu deren Verfei-
nerung und zurück ermöglichen.
Die Verfeinerungsbeziehungen zwi-
schen den Stufen müssen dazu
wohl definiert und formal fassbar
sein.

Die Verfeinerung muss soweit
möglich sein, dass sich zuletzt aus
dem Inhalt des Repository die Kon-
figurationsdateien erzeugen und die
Metadaten-Repositories der Integra-
tionsprodukte füllen lassen.

Sie werden dazu aus dem allge-
meinen Format des Repositories in
das proprietäre Format der Integra-
tionswerkzeuge übersetzt.

3.3 Änderung und Wartung einer
Integrationslösung

Was für die Erstellung eines Sys-
tems gilt, gilt natürlich auch für
Änderungen über die Lebenszeit ei-
ner Integrationslösung. Dabei sind
zwei verschiedene Varianten zu un-
terstützen, die den beiden bereits
beschriebenen Fällen ähneln.

Im ersten Fall wird eine Än-
derung im Repository dokumen-
tiert und dann dem Vorgehensmo-
dell folgend über die verschiede-
nen Stufen bis hin zur Generierung
von Programmcode und Konfigura-
tionsdateien propagiert.

Im zweiten Fall wird eine Än-
derung direkt in einem der Integra-
tionsprodukte gemacht, beispiels-
weise um schnell einen Fehler zu be-
heben. Diese Änderung muss dann
zurück ins Repository propagiert
und dort auf Konsistenz mit den
höheren Ebenen überprüft werden.
Falls die Konsistenz nicht erfüllt ist,
müssen wohl definierte Schritte an-
gestoßen werden, um die Änderung
so lange nach oben zu propagieren,
bis die Dokumentation wieder kon-
sistent ist.

3.4 Migration einer Integrations-
lösung

Letztlich unterliegen auch Integrati-
onsprodukte der ständigen Weiter-
entwicklung, sodass die Migration
von einer Version auf die nächste
oder von einem Produkt auf ein an-
deres unterstützt werden muss.

Aufgrund der geschilderten Pro-
bleme stellen sich Migrationen oft
als schwierig dar, insbesondere beim
Wechsel der Produkte. Meist bedeu-
tet das eine vollständige Reimple-
mentierung.

Bei Ablage aller Informationen
in einem zentralen Dokumentati-
onsrepository kann dieses nicht nur
als Informationsquelle genutzt wer-
den, sondern sein Inhalt kann auch
als ,Austauschformat‘ zwischen den
Produkten dienen. Die passenden

202



Modellbasierter Ansatz zur Anwendungsintegration ���

Generatoren und Importfilter wer-
den für die oben skizzierten Szena-
rien sowieso benötigt und können
hier direkt in der Frühphase des Mi-
grationsprojekts Nutzen bringend
eingesetzt werden.

4 Bestehende Ansätze zur
Anwendungsintegration

Bei einer näheren Betrachtung von
aktuell auf dem Markt befind-
lichen EAI-Produkten stellt man
fest, dass einige Hersteller inzwi-
schen Mechanismen in ihre mit-
gelieferten Entwicklungswerkzeuge
integriert haben, welche den tradi-
tionell eher technisch orientierten
Bottom-Up Ansatz der Systeminte-
gration verwerfen und eine Top-
Down Entwicklung eines System-
verbundes erlauben bzw. erzwin-
gen. Dadurch können bereits ei-
nige der in Abschnitt 2 genannten
Probleme gelöst werden [5]. Die
folgende Betrachtung zweier exem-
plarisch ausgewählter Produkte soll
aber zeigen, dass dennoch einige
Punkte offen bleiben, die unserer
Meinung nach nur über einen an-
deren Ansatz gelöst werden kön-
nen.

4.1 SAP Exchange Infrastructure
(SAP XI)

Als erstes exemplarisches Beispiel
sollen hier die Entwicklungsmetho-
dik der SAP Exchange Infrastructure
(XI) [14], die Teil der SAP Net-
Weaver-Plattform ist, und die dafür
bereitgestellten Werkzeuge kurz vor-
gestellt werden. Hier werden wäh-
rend der Entwicklung einer Integra-
tionslösung beteiligte Systeme auf
unterschiedlichen Abstraktionsebe-
nen modelliert, teils grafisch, teils
textbasiert. Am Ende des Entwick-
lungsprozesses wird die Konfigura-
tion für die Integrationslaufzeitum-
gebung aus diesen Daten generiert.
Nach der Übertragung der Konfigu-
ration auf die Laufzeitumgebung ist
diese dann ohne weitere Anpassun-
gen sofort einsatzfähig.

Die Abstraktionsebenen von XI
spiegeln sich in drei verschiede-
nen Phasen wider, die wiederum
jeweils auch mit drei verschiedenen

Bild 1 Architektur von SAP XI [1].

Datentöpfen in Form von Reposito-
ries und Directories verknüpft sind
(Bild 1):
1. Designphase
2. Konfigurationsphase
3. Laufzeitphase.

Zunächst werden in der Design-
phase Informationen über die be-
teiligten Systeme (Angaben wie bei-
spielsweise Anwendungsname, Her-
steller) und die zu implementieren-
den Prozesse hinsichtlich Schnitt-
stellen, Nachrichtenformaten, Map-
ping- und Routing-Regeln ange-
legt und im so genannten Integra-
tion Repository als Komponenten
oder Bausteine gespeichert. Optio-
nal können hier auch Geschäftspro-
zesse grafisch modelliert werden,
allerdings dient dies in der der-
zeit angebotenen Version 2.0 nur
der Dokumentation und wird somit
nicht für die spätere Entwicklung
benötigt.

Zur Nutzung der Komponen-
ten und Bausteine für die Konfi-
gurationsphase müssen diese aus
dem Integration Repository in
das Integration Directory übertra-
gen werden. Dort werden dann
die Schnittstellen der Anwendun-
gen mit den in der Designphase
angelegten Nachrichtentypen und
Mapping- sowie Routing-Regeln
verknüpft. Nach dem erfolgreichen
Deployment geht die Entwicklung
somit in die letzte Phase, die Lauf-
zeitphase, über.

4.2 IBM WebSphere Business
Integration

IBM ist einer der Marktführer un-
ter den Anbietern von Integrations-
produkten und bietet neben dem
Produkt „IBM WebSphere Business
Integration“ noch weitere Integra-
tionsprodukte an, nämlich Web-
Sphere MQ Integrator Broker, Web-
Sphere Business Integration Mes-
sage Broker, und WebSphere Ap-
plication Server. Den in der Ein-
leitung genannten Anforderungen
an Integrationsprodukte kommt das
Produkt „IBM WebSphere Busi-
ness Integration“ (nachfolgend IBM
WBI genannt) am nächsten, weswe-
gen wir dessen Konzepte nachfol-
gend kurz vorstellen wollen [15].

Als Vorgehensweise für die An-
wendungs- und Systemintegration
schlägt IBM zunächst die Beantwor-
tung der folgenden Fragen vor:
• Welche Probleme müssen im

Geschäftsmodell des Kunden
speziell gelöst werden?

• Welche Geschäftsprozesse müs-
sen automatisiert oder integriert
werden, um die Probleme im
Geschäftsmodell zu adressieren?

• Wie sieht die technische Umge-
bung, in welche die Geschäfts-
prozesse integriert werden müs-
sen hinsichtlich Anwendungen,
Datenbanken und APIs aus?

Diese Sichtweise entspricht un-
serer in Abschnitt 1 geforderten
Top-Down Vorgehensweise. Aller-

203



Schwerpunktthema

dings muss man an dieser Stelle
kritisieren, dass sich diese Methodik
leider nicht in der tatsächlichen Rei-
henfolge der Werkzeugverwendung
widerspiegelt, die schließlich für ein
Integrationsprojekt mit IBM WBI
notwendig ist. IBM sieht hier näm-
lich eine Bottom-Up Vorgehens-
weise vor, bei der zuerst die techni-
sche Konnektivität hergestellt wird
und erst am Ende des Entwicklungs-
prozesses die Geschäftsprozesse in
Form von so genannten Kollabo-
rationen entwickelt werden. Kolla-
boration sind dabei konkret Soft-
waremodule, welche Geschäftspro-
zesse beschreiben und später auf der
Laufzeitumgebung ausgeführt wer-
den. Durch dieses Konzept bietet
hier IBM immerhin die Möglichkeit,
losgelöst von technischen Details die
dahinter liegende Prozesslogik einer
Integrationslösung und somit un-
terschiedliche Sichten darzustellen.

Hinsichtlich der Wiederverwen-
dung von Komponenten zeigt IBM
WBI einige gute Ansätze. Alle be-
nötigten Entwicklungsdaten werden
in einem zentralen Repository ge-
speichert. Über Plug-Ins kann auch
eine Versionierung der Entwick-
lungsdaten realisiert werden. Zusätz-
lich unterstützt teilweise die Struktur
der Metadaten Wiederverwendung.
Die oben genannten Kollaboratio-
nen beispielsweise gliedern sich in
Kollaborationsschablonen und Kol-
laborationsobjekte auf. Kollabora-
tionsschablonen stellen eine wie-
derverwendbare Geschäftprozessbe-
schreibung dar und sind als nicht-
ausführbare Komponente im zentra-
len Repository des Produkts abgelegt.
Sie werden mit Hilfe eines mitgelie-
ferten Werkzeugs grafisch in UML-
ähnlicher Notation modelliert [8].
Einmal entwickelt können aus ihnen
von jedem nachfolgenden Integra-
tionsprojekt Kollaborationsobjekte
erzeugt werden, welche erst nach der
Konfiguration durch Anbindung an
Adapter oder andere Kollaborations-
objekte ausführbar werden.

4.3 Grenzen bestehender Ansätze
Von der konzeptionellen Seite zeigt
der zuerst beschriebene SAP-Ansatz

schon einige sehr gute Lösungen,
die viele der in der Einleitung be-
schriebenen Probleme lösen kön-
nen. Unsere dort formulierte For-
derung nach einer homogenisierten
Sicht auf die Integrationslösung ist
hier sehr gut umgesetzt worden,
da durch das definierte Vorgehens-
modell eine einheitliche und klar
abgegrenzte Sicht in jeder Entwick-
lungsphase gegeben ist. Ohne auf
Freiheiten innerhalb der verschiede-
nen Phasen verzichten zu müssen,
wird der Entwickler dadurch bis
zum Ziel geführt. Infolge dessen
ist auch, verbunden mit einer in-
tegrierten Versionsverwaltung, die
Konsistenz der Lösungen in den
verschiedenen Phasen hier besser
gewährleistet und macht diese ver-
gleichbar. Die Dokumentationsun-
terstützung ist dafür aber relativ
schwach ausgeprägt. Zwar sind viele
Informationen, die bei der Ent-
wicklung anfallen, eine gute Aus-
gangsbasis für die Dokumentation,
allerdings ist nur an sehr wenigen
Stellen das Hinzufügen von weiterer
Dokumentation vorgesehen.

Auch das anschließend vorge-
stellte IBM-Produkt zeigt einige gute
Ansätze hinsichtlich unserer in der
Einleitung aufgestellten Forderun-
gen. Durch die fehlende scharfe
Trennung zwischen logischen und
technischen Daten, sowie die feh-
lende Festlegung auf ein einheitli-
ches Vorgehensmodell, gestaltet sich
hier die Bildung homogenisierter
Sichten auf die Integrationslösung
wesentlich schwieriger. Dafür un-
terstützt die UML-ähnliche, gra-
fische Notation der Geschäftspro-
zesse deren Verwendbarkeit für die
Dokumentation, und die Auftei-
lung in Kollaborationsschablonen
und -objekte erleichtert die Wie-
derverwendung. Auch bei diesem
Produkt können aus den bei der
Entwicklung angefallenen Daten
viele Informationen für Dokumen-
tationszwecke gewonnen werden.
Zusätzliches Hinzufügen von Do-
kumentation ist aber auch hier
nur an wenigen Stellen vorgese-
hen, beispielsweise bei der Im-
plementierung der Kollaborationen

in Form von Quellcodekommenta-
ren.

Betrachtet man allerdings die
Evolution von IT-Infrastrukturen
innerhalb von Unternehmen über
mehrere Jahre hinweg, so wer-
den gleichzeitig aber auch schnell
die Grenzen beider Ansätze deut-
lich. Speziell in großen Unterneh-
men lassen sich schon alleine auf-
grund unterschiedlicher Anforde-
rungen selten einheitlich die glei-
chen Produkte über alle Unter-
nehmensbereiche durchsetzen und
dann über Jahre hinweg erhal-
ten. Eine gewisse Heterogenität der
Systemlandschaft lässt sich einfach
nicht vermeiden. Für die Entwick-
lung, Dokumentation und Wartung
von Integrationslösungen heißt das
letztlich, dass sich die anfangs for-
mulierten Probleme, beispielsweise
die unterschiedlichen Datenformate
von Metadaten, mit bestehender
Technologie nicht vollständig lösen
lassen [3].

5 Das RADES-
Vorgehensmodell

Aufgrund dieser Erfahrungen möch-
ten wir nun einen neuen, allgemei-
neren Ansatz vorgeschlagen, der die
Existenz heterogener Systemland-
schaften und Intergrationsarchitek-
turen berücksichtigt.

Die nachfolgend beschriebenen
Konzepte sind im Rahmen des
RADES-Projekts (Reference Archi-
tecture for the Documentation and
Support of EAI-Solutions) entstan-
den, das seit 2002 an der Universität
Stuttgart zusammen mit Daimler-
Chrysler Research & Technology
läuft. Ziel des Projektes ist die Kon-
zeption einer Referenzarchitektur,
die Methoden und Werkzeuge zur
Verfügung stellt, um Integrationss-
zenarien einheitlich zu realisieren,
dokumentieren und warten. Dabei
sollen so weit wie möglich Standards
eingesetzt werden.

Die Vision hinter dem Ansatz
ist dabei die bereits in Abschnitt 1
formulierte Einrichtung eines zen-
tralen Repositories, das alle In-
formationen über diejenigen An-
wendungen und Systeme beinhal-

204



Modellbasierter Ansatz zur Anwendungsintegration ���

tet, welche durch Integrationslösun-
gen miteinander verbunden sind.
Es wird hauptsächlich während der
Entwicklung einer Integrationslö-
sung infolge eines Integrations-
projektes mit neuen Informatio-
nen gespeist. Dazu schlagen wir
einen definierten Entwicklungspro-
zess vor (Bild 2), der einerseits be-
stimmte Ergebnisse nach jeder Ent-
wicklungsphase fordert und somit
die Entwickler des Systemverbun-
des an eine definierte Vorgehens-
weise über den gesamten Entwick-
lungsprozess hinweg bindet, an-
dererseits aber die Vorgehensweise
innerhalb der einzelnen Phasen
möglichst frei lässt und deswegen
hier auch gewisse Freiheiten er-
laubt [11].

Für die technische Umsetzung
müssen einige Rahmenbedingungen
erfüllt sein:
• die Ergebnisse der jeweiligen

Phasen müssen in einem Daten-
format darstellbar sein, das sich
gut strukturiert ablegen lässt
und die Formulierung von Ab-
hängigkeitsbeziehungen zu an-
deren Datensätzen erlaubt,

• die Ergebnisse müssen sich
gut zu Dokumentationszwecken
verwenden lassen, idealerweise
kann das Datenformat auch
so dargestellt werden, dass es

Bild 2 Dreiphasiger Entwicklungsprozess.

leicht grafisch aufbereitet wer-
den kann.

Unserer Meinung nach ist dazu
eine modellbasierte Entwicklung
und Darstellung am besten geeignet,
wie sie in den vergangenen Jahren
auch immer mehr von renommier-
ten Forschern postuliert wird [16].
Für die Realisierung unseres Vor-
gehensmodells setzen wir deswegen
auf eine Modellierungsnotation,
die sowohl die grafische als auch
textbasierte Notation der Modelle
ermöglicht. Mit UML [8] hat die
OMG eine Modellierungssprache
entwickelt, welche diese Anforde-
rungen soweit erfüllt und die sich
inzwischen in vielen Anwendungs-
gebieten als Modellierungsnotation
etabliert hat [9; 10].

Unsere Vision beschreiben wir
im nächsten Abschnitt durch die
Formulierung eines Vorgehensmo-
dells für die Anwendungs- und Sys-
temintegration. Anschließend gehen
wir auf den UML-basierten Model-
lierungsansatz ein.

5.1 RADES-Entwicklungsphasen
Angelehnt an den MDA-Prozess
(Model Driven Architecture) der
OMG [6] wurden für das RADES-
Vorgehensmodell drei Entwick-
lungsphasen definiert, bei denen

analog zu MDA als Ergebnis der
ersten beiden Phasen ein plattfor-
munabhängiges Modell (PIM) und
ein plattformspezifisches Modell
(PSM) entwickelt wird (Bild 2) [7].

Beim RADES-Vorgehensmodell
wird allerdings der MDA-Ansatz um
eine Ebene erweitert. Als Ergeb-
nis der dritten Entwicklungsphase
liegt hier kein generierter Code
vor, sondern eine weitere Detaillie-
rung des PSM, zugeschnitten auf
das Zielprodukt – das so genannte
Plattformmodell (PM). Das Platt-
formmodell soll die Realisierung des
Integrationsszenarios auf der Ziel-
plattform exakt beschreiben. Erst
nach dem Abschluss der Entwick-
lungsphasen wird in der Konfigu-
rationsphase aus dem Plattform-
modell Code für die Zielplattform
generiert und anschließend konfi-
guriert, um ihn durch Deployment
auf die Laufzeitumgebung übertra-
gen zu können.

Als weiterer Unterschied zu
MDA ist das RADES-Vorgehensmo-
dell auf die Domäne der Anwen-
dungsintegration spezialisiert. Für
diese Domäne wird ein Regelwerk
definiert, wie Modelle der einzelnen
Phasen aufgebaut sind und wel-
che Bedingungen erfüllt sein müs-
sen, damit ein Modell am Ende
einer Phase als syntaktisch voll-
ständig definiert angesehen werden
kann. Verbunden mit den Notati-
onsvorgaben, die in Abschnitt 5.2
vorgestellt werden, wird dies im
Sinne von [17] als domänenspezifi-
sche Modellierungssprache bezeich-
net.

Die Modelle aller Phasen wer-
den in dem bereits erwähnten zen-
tralen Repository nach jeder Ent-
wicklungsphase abgelegt. Nachfol-
gend beschreiben wir, welche Infor-
mationen die Modelle der jeweili-
gen Entwicklungsphasen analog zu
Bild 2 nach deren Abschluss bein-
halten und wie sie in den darauf
folgenden Phasen weiterverwendet
werden, bis dann schließlich in der
Konfigurationsphase produktspezi-
fischer Code generiert wird und zur
Laufzeitumgebung übertragen wer-
den kann.

205



Schwerpunktthema

5.1.1 Geschäftsprozess entwerfen
und daraus Workflows ableiten
Grundvoraussetzung für die Durch-
führung eines Integrationsprojek-
tes ist die Formulierung eines Ge-
schäftsprozesses, der den Integra-
tionsbedarf aus Anwendersicht ab-
strakt darstellt. In der Praxis zeigt
sich leider, dass dieser Geschäftspro-
zess den an einem Integrations-
projekt beteiligten Personen oftmals
nicht klar ist. Aus unserer Sicht ist
es aber notwendige Voraussetzung
dafür, dass der neu zu schaffende
Systemverbund später auch genau
die Funktionalität bietet, die Ziel des
Integrationsprojektes sind.

Aus der Sicht eines System-
verbundentwicklers muss sich die-
ser Geschäftsprozess in Form ei-
nes oder mehrerer Workflows auf
Anwendungen und Ressourcen ab-
bilden lassen. Oft sind für einen
Teil der Systeme bereits Schnittstel-
len geschaffen worden, welche die
Systeme untereinander verbinden,
andere Systeme sind womöglich
noch völlig isoliert. Häufig möchte
man auch trotz bereits vorhande-
ner Schnittstellen diese durch eine
neue Integrationstechnologie ablö-
sen, weil die existierende Lösung
veraltet oder problematisch ist.

Workflows können somit auch
als Entscheidungsgrundlage für die
Integrationsstrategie herangezogen
werden. In manchen Fällen kann
es schließlich sinnvoller sein, beste-
hende Systemverbünde mit Mitteln
der vorhandenen Technologie zu er-
weitern, anstatt sie durch eine kom-
plette Neuentwicklung abzulösen.

Das RADES-Vorgehensmodell
sieht deswegen innerhalb der ersten
Entwicklungsphase die Formulie-
rung von plattformunabhängigen
Workflows vor. Plattformunabhän-
gig heißt, dass in dieser ersten Phase
nur Anwendungen, Systeme und
Ressourcen, sowie deren logische
Abhängigkeiten untereinander be-
trachtet werden, deren Funktiona-
lität und Daten für die Ausführung
des Workflows aus fachlicher Sicht
benötigt werden. Folglich spielen
hier EAI-Architekturen und Platt-
formen, Middleware-Systeme oder

präzise Beschreibungen von Schnitt-
stellen und Daten noch keine Rolle.
Das Ergebnis dieser Phase ist somit
eine präzise Übersicht über die zu
integrierenden Systeme und deren
Beziehungen zueinander in Form
von mehreren UML-Diagrammen,
die zusammengefasst das plattfor-
munabhängige Modell (PIM) bil-
den.

5.1.2 Detaillierung der Workflows
aus Architektursicht Insbesondere
zur Unterstützung von Wartungs-
aufgaben im späteren Betrieb, wie
beispielsweise die Migration auf ein
EAI-Produkt eines anderen Her-
stellers mit der gleichen Architek-
tur, ist es nun notwendig, in ei-
nem nächsten Entwicklungsschritt
das PIM zu einer plattformabhän-
gigen Formulierung zu detaillieren,
dem plattformspezifischen Modell
(PSM). Unter einer plattformab-
hängigen Formulierung verstehen
wir dabei eine Formulierung unter
Berücksichtigung der angestrebten
Integrationsarchitektur, ohne da-
bei auf spezifische Merkmale eines
bestimmten Integrationsproduktes
einzugehen. Ein Beispiel dafür ist
die von vielen EAI-Produkten un-
terstützte „Hub-and-Spoke“ Archi-
tektur, bei der ein zentraler Broker
die Transformation und Zustellung
von Nachrichten an die über An-
wendungs- und Ressourceadapter
angebundenen Anwendungen und
Ressourcen übernimmt. Der Über-
gang von PIM zu PSM soll dabei
durch automatische Modelltransfor-
mation unterstützt werden, welche
durch vordefinierte Architekturpro-
file möglich wird Abschnitt 5.1.6.
Diese Profile beinhalten Informa-
tionen über diejenige Integrations-
architektur, welche die im PIM
formulierten Beziehungen zwischen
den Systemen technisch realisieren
soll. Das so erstellte Grundgerüst
des PSM muss nun vom Entwickler
zu einem vollständigen PSM erwei-
tert werden.

5.1.3 Detaillierung des Produkt-
modells Erst in der dritten Ent-
wicklungsphase müssen auch pro-

duktspezifische Eigenschaften be-
rücksichtigt werden, wie beispiels-
weise Namenskonventionen von
Warteschlangen (Queues). Dazu soll
das in der zweiten Phase erstellte
PSM wiederum mit Hilfe eines für
das einzusetzende Integrationspro-
dukt entwickelten Produktprofils
zu einem Plattformmodell-Gerüst
transformiert und anschließend
vom Entwickler zum vollständigen
Plattformmodell (PM) vervollstän-
digt werden.

Das Plattformmodell soll so de-
tailliert ausgestaltet sein, dass sich
daraus der notwendige Code für
die Zielplattform ableiten lässt. Hier
müssen deswegen viele produkt-
spezifische Merkmale, wie beispiels-
weise Strukturen von Transforma-
tionsregeln, in das Modell einge-
bracht werden.

5.1.4 Konfiguration und Laufzeit
Nach dem Abschluss aller Entwick-
lungsphasen kann aus dem im Re-
pository abgelegten Plattformmo-
dell Code generiert und für das
Deployment auf die Laufzeitum-
gebung konfiguriert werden. Dazu
sind wiederum Informationen über
das Laufzeitsystem notwendig, bei-
spielsweise müssen die zuvor in
UML grafisch notierten Nachrich-
tenformate in eine für die Zielplatt-
form verständliche Form gebracht
werden. Auch auf dieser Ebene sol-
len Änderungen an den generier-
ten Ergebnissen prinzipiell möglich
sein. Ziel muss es natürlich dennoch
sein, die Modelle der dritten Ent-
wicklungsebene derart präzise aus-
zugestalten, dass möglichst gar keine
Änderungen an dem daraus gene-
rierten Code notwendig sind.

5.1.5 Deployment Das Deploy-
ment ist im Sinne des vorgestellten
Entwicklungsprozesses nicht mehr
Teil der Entwicklung, sondern Teil
des Betriebs. Es hängt sehr stark
von den Werkzeugen und Beson-
derheiten der EAI-Plattform ab, mit
der das Integrationsprojekt realisiert
wird. Beim Deployment kann es
natürlich passieren, dass sich Feh-
ler bemerkbar machen, die einen

206



Modellbasierter Ansatz zur Anwendungsintegration ���

Rücksprung in den Entwicklungs-
prozess erforderlich machen. Bei-
spielsweise kann sich schlimmsten-
falls erst hier eine Nachrichtenfor-
matdefinition als fehlerhaft erwei-
sen, weswegen man dann das Platt-
formmodell der dritten Entwick-
lungsphase oder möglicherweise so-
gar das plattformspezifische Mo-
dell (Architekturmodell) der zwei-
ten Entwicklungsphase überarbeiten
muss. Dabei besteht die Gefahr, oder
in manchen Fällen vielleicht sogar
die Notwendigkeit, dass die not-
wendigen Überarbeitungen nicht an
den Modellen der jeweiligen Ent-
wicklungsphase vorgenommen wer-
den, sondern direkt an den für
das Deployment generierten Daten.
Hier ist deswegen ein Mechanismus
zur Änderungspropagation analog
zu Abschnitt 3.2 notwendig.

5.1.6 Unterstützung der Pha-
senübergänge durch Modelltrans-
formation und Codegenerierung
Wie bereits angesprochen werden
in der ersten Phase, der plattfor-
munabhängigen Entwicklung, zu-
nächst die logischen Aspekte des
zu erstellenden Systemverbundes
beantwortet, im wesentlichen wer
kommuniziert wann mit wem.

Vor dem Übergang in die
nächste Phase, in der das platt-
formspezifische Modell erstellt wird,
muss zunächst die Zielarchitektur
ausgewählt werden. Sehr viele Her-
steller von EAI-Produkten setzen bei
ihren Produkten auf eine Sternar-
chitektur mit einem zentralen Bro-
ker. Dieser bindet alle zu integrie-
renden Anwendungen über spezielle
Anwendungsadapter an sich und
steuert über eine regelbasierte Nach-
richtenzustellung oder einen Pu-
blikations- und Subskriptionsme-
chanismus (eng.: Publish/Subscribe)
den Nachrichtenverkehr zwischen
den angebundenen Systemen. Häu-
fig werden auch Busarchitekturen
implementiert. Hier wird in der
Regel der Publikations- und Sub-
skriptionsmechanismus bevorzugt
eingesetzt, eine regelbasierte Nach-
richtenzustellung kann damit aber
auch realisiert werden.

Aufgrund der gemeinsamen
möglichen Kommunikationsmuster
können diese Systeme trotz ih-
rer architektonischen Unterschiede
auf dieser Ebene zunächst gemein-
sam behandelt werden. Sie lassen
sich deswegen so mit den zwei Ar-
chitekturschablonen „Stern- oder
Busarchitektur mit regelbasierter
Nachrichtenzustellung“ und „Stern-
oder Busarchitektur mit Publikati-
ons- und Subskriptionsmechanis-
mus“ beschreiben, woraus sich ein
Grundgerüst eines plattformspezi-
fischen Modells für diese Archi-
tekturen aus dem plattformunab-
hängigen Modell generieren lässt.
Auch andere EAI-Architekturen las-
sen sich so abbilden. Beispielsweise
kann die Architektur eines Integrati-
onsproduktes, das die Web Services-
Technologie implementiert, von den
oben genannten typischen EAI-Ar-
chitekturen abweichen und dennoch
alle wichtigen Konzepte von EAI
realisieren.

Nach der manuellen Verfeine-
rung dieses Grundgerüsts zu einem
vollständig definierten PSM kann
der Übergang zu einem Plattform-
modell vollzogen werden. Erst hier
kommen auch technische Spezialitä-
ten der jeweiligen Implementierun-
gen zum Tragen. Vor dem Über-
gang zum Plattformmodell muss
deswegen die Entscheidung für ein
konkretes Produkt zur Realisierung
des Integrationsszenarios gefallen
sein. Um das plattformspezifische
Modell zu einem Grundgerüst ei-
nes Plattformmodells transformie-
ren zu können, sind deswegen auch
hier Transformationsprofile in Form
von Produktprofilen notwendig, die
Informationen über die speziellen
Ausprägungen des Produkts bein-
halten.

Nachdem das generierte Grund-
gerüst des Plattformmodells zu
einem vollständig definierten Platt-
formmodell manuell verfeinert
wurde, steht als letzter Schritt des
Entwicklungsprozesses die Gene-
rierung von Konfigurationsdaten,
Code, oder anderen vergleichbaren
Information über die Zielplatt-
form an. Deswegen werden hier

neben dem Plattformmodell weiter-
gehende technische Informationen
über die Zielplattform zur Gene-
rierung benötigt, beispielsweise wie
Nachrichtenformate technisch re-
präsentiert werden, oder in welcher
Art und Weise Transformationsre-
geln technisch ausgedrückt werden.

Durch die starken Abhängig-
keiten, die insbesondere zwischen
zwei benachbarten Phasen existie-
ren, bieten sich Mechanismen an,
die einen zumindest semi-automa-
tischen Übergang zwischen benach-
barten Phasen ermöglichen. Die
hier vorgestellte profilunterstützte
Modelltransformation soll dies für
RADES ermöglichen. Offensichtlich
ist, dass die jeweiligen Modellin-
terpreter, welche die Transforma-
tion eines Modells zu einem Mo-
dell der nächsten Phase durchfüh-
ren, dazu sehr viel Wissen über
die Beschaffenheit von Modellen
der Ausgangs- und Zielphase be-
nötigen müssen. Das semantische
Wissen über die Modelle gelangt
folglich erst durch die Modellin-
terpreter in unser Vorgehensmodell.
Obwohl diese Modellinterpreter für
RADES bisher noch nicht existieren,
zeigen Ansätze wie MIC [17], dass
dieser Ansatz grundsätzlich reali-
sierbar ist.

5.2 Modellierung bei RADES
Für die Darstellung der Informa-
tionen in den jeweiligen Ebenen
sieht die OMG für MDA eine Mo-
dellierung mit UML (Unified Mo-
deling Language) vor. Speziell für
EAI hat die OMG inzwischen auch
eine UML-Profilspezifikation entwi-
ckelt [12]. Auf der Notation die-
ses Profils basiert auch die Mo-
dellierung bei RADES, die wir in
diesem Abschnitt beispielhaft vor-
stellen wollen. Aufbauend auf dem
letzten veröffentlichten Dokument
der OMG zu „UML Profile for
EAI“ werden bei RADES zwei gän-
gige Modellierungsansätze unter-
stützt, nämlich Kollaborationen und
Aktivitäten.

1. Kollaborationen: mit ihnen mo-
delliert man die Art und Weise

207



Schwerpunktthema

der Zusammenarbeit zwischen
den zu integrierenden Syste-
men, beispielsweise in Form
von Abhängigkeiten zwischen
den Systemen. Außerdem wer-
den die Nachrichtenflüsse defi-
niert. Als Diagrammtypen kom-
men Klassen- und Kollaborati-
onsdiagramme zum Einsatz,

2. Aktivitäten: sie formulieren das
Modell des Geschäftsprozesses
bezüglich der zu implementie-
renden Integrationspunkte auf
verschiedenen Abstraktionsebe-
nen durch die Modellierung von
Kontroll- und Nachrichtenflüs-
sen. Als Diagrammtypen kom-
men hier Aktivitäts- und Se-
quenzdiagramme zum Einsatz.

Die UML-Elemente der jewei-
ligen Diagrammtypen werden um
Stereotypen ergänzt, um deren Rolle
im Diagramm klar kennzeichnen zu
können. Dadurch wird der Einsatz
von Modellinterpretern zum Über-
gang in die nachfolgenden Phasen
möglich, analog zu Abschnitt 5.1.6.

Zur Modellierung werden in
der „UML Profile for EAI“-Spezifi-
kation Stereotypen für Anschlüsse
(Terminal), Operatoren (Operator)
und Operatoren-Verbünde (Com-
pound Operator), Ressourcen (Re-
source) und Nachrichtenformate
(Message Format) definiert (Bild 3).

Bild 3 Terminals, Operator und Nachrichtenformate.

Einige dieser Stereotypen besitzen
auch Unterstereotypen. Der Ste-
reotyp Resource beispielsweise be-
sitzt die Unterstereotypen Database,
Queue und Subscription Table, um
Datenbanken, Warteschlangen von
Messaging-Middleware, sowie Sub-
skriptionstabellen zu beschreiben.
Modelle für Subskriptionstabellen
werden für EAI-Systeme benötigt,
die Publikations- und Subskripti-
onsmechanismen zur Nachrichten-
verteilung anbieten.

Diese Stereotypen helfen nun,
die verschiedenen Komponenten ei-
nes Integrationsszenarios zu kenn-
zeichnen. Legacy-Systeme beispiels-
weise werden bei einem noninvasi-
ven Integrationsansatz1 als Operato-
ren betrachtet, deren innerer Aufbau
für die Einbindung in die Integ-
rationslandschaft nicht relevant ist.
Sie erhalten deswegen den Stereo-
typ PrimitiveOperator. In der ers-
ten Entwicklungsphase wird die Art
und Weise, wie die Systeme un-
tereinander technisch angebunden
sind, nicht formuliert. Hier werden
nur Assoziationen zwischen Opera-
toren, Operatoren-Verbünden und

1 Integration über bereits bestehende
Schnittstellen des Anwendungssystems. Im
Gegensatz dazu wird bei einem invasiven
Integrationsansatz das Anwendungssystem
so verändert, dass optimierte Schnittstellen
zum Anwendungssystem für die Integration
zur Verfügung stehen.

Ressourcen in Klassendiagrammen
modelliert, sowie die zeitliche Ab-
folge von Interaktionen zwischen
diesen Komponenten in Aktivitäts-
oder Sequenzdiagrammen.

Erst in der zweiten Entwick-
lungsphase werden Eingangs- und
Ausgangsschnittstellen (als Termi-
nal-Stereotyp), Nachrichten- und
Datentypen, sowie die Art und
Weise des Informationsaustauschs
modelliert, beispielsweise ob die-
ser über Nachrichten oder Pro-
zeduraufrufe stattfindet. Bei einer
plattformspezifischen Modellierung
einer „hub-and-spoke“ EAI-Archi-
tektur zum Beispiel werden Ein-
und Ausgangsschnittstellen oft über
Adapter mit dem Integrationsserver
verbunden, wofür die Stereotypen
SourceAdapter bzw. TargetAdapter
vorgesehen sind.

In der letzten Entwicklungs-
phase werden dann produktspezi-
fische Merkmale modelliert, bei-
spielsweise produktspezifische Fel-
der in Nachrichtenköpfen. Je nach
Produkt kann es hier notwendig
sein, eigene Stereotypen zu definie-
ren, es stehen aber mindestens alle
Konstrukte der PSM-Ebene zur Ver-
fügung.

5.3 Unterstützung der Szenarien
In Abschnitt 3 haben wir Szena-
rien formuliert, in denen unserer
Meinung nach die zentralen Aufga-
ben während des Lebenszyklus ei-
ner Integrationslandschaft bearbei-
tet werden müssen. Wir wollen diese
Szenarien an dieser Stelle noch ein-
mal aufgreifen und darlegen, warum
sich RADES unserer Meinung nach
besonders zur Unterstützung dieser
Szenarien eignet.

Szenario 3.1, in dem wir eine
zentrale, einheitliche und automati-
sierte Dokumentation fordern, wird
durch RADES durch zwei Konzepte
unterstützt. Erstens sieht RADES
über ein Repository eine zentrale
Datenhaltung der Modelle und der
darin implizit und explizit enthal-
tenen Dokumentation vor. Zwei-
tens sorgt die einheitliche Nota-
tion der Modelle in allen mit
RADES durchgeführten Projekten

208



Modellbasierter Ansatz zur Anwendungsintegration ���

dafür, dass diese besser als bishe-
rige Ansätze für die Dokumentation
werkzeuggestützt aufbereitet werden
können. Szenario 3.2 wird durch
das RADES-Vorgehensmodell un-
terstützt, das einen „roten Faden“
durch den Entwicklungsprozess bil-
det und durch die unterschiedli-
chen Abstraktionsebenen verschie-
dene Sichten auf die Integrationslö-
sung bietet. Durch die drei Abstrak-
tionsebenen bietet RADES somit
auch Aufsetzpunkte für die Szena-
rien 3.3 und 3.4, je nachdem, ob sich
Änderungen an den Workflows, an
der Architektur, oder am Produkt-
modell widerspiegeln sollen.

5.4 Verwandte Arbeiten
Es gibt Forschungsprojekte, die in
verschiedener Hinsicht einen ähn-
lichen Ansatz wie das RADES-Pro-
jekt verfolgen. Bezüglich der Ent-
wicklungskonzepte sind hier beson-
ders die Projekte rund um Model-
Integrated Computing hervorzuhe-
ben [17; 18]. Bei MIC werden in ei-
ner domänenspezifischen Modellie-
rungssprache alle relevanten Infor-
mationen über ein zu entwickelndes
System modelliert und mit Hilfe von
Modellinterpretern in andere Mo-
delle transformiert oder zu Code
generiert. Da MIC aber generell für
beliebige Domänen verwendbar sein
soll, legt es im Gegensatz zu RADES
zum einen kein Vorgehensmodell
fest, und gibt zum anderen auch
keine domänenspezifische Modellie-
rungssprache vor, beispielsweise für
die Anwendungsintegration.

Das Projekt „Integration Engin-
eering“ [19] bearbeitet eine dem
RADES-Projekt ähnliche Aufgaben-
stellung. Ziel dieses Projektes ist
die Entwicklung einer Methodik
zur Abbildung kooperativer Ge-
schäftsprozesse auf eine internetba-
sierte IT-Struktur. Da es sich noch
um ein recht junges Projekt handelt,
sind bisher leider allerdings nur we-
nige Informationen verfügbar.

6 Zusammenfassung
Ein immer wieder unterschätzter
Faktor bei der Systemintegration ist
die notwendige Agilität und Flexibi-

lität, da immer wieder neue IT-Kon-
zepte und Technologien entstehen
und auch eingesetzt werden. Wei-
terhin gibt es immer neuen Bedarf
für die Integration von Systemen –
sei es zur Optimierung interner Ab-
läufe, die Auswirkung einer Fusion
oder die zeitlich begrenzte Koopera-
tion mehrerer Partner.

Bestehende kommerzielle Pro-
dukte erzielen meistens auf Basis der
ihnen zugrunde liegenden Techno-
logien und Konzepte eine geeignete
Integration entsprechend dem ak-
tuellen (Projekt-)Bedarf. Über die
Zeit entstehen so aber eine Reihe
isolierter Integrationsinseln, die sich
nur selten miteinander integrieren
lassen. Langfristig betrachtet wird
deren Integration mit anderen Sys-
temen oder anderen Integrationsin-
seln aber nötig werden.

Die OMG hat andererseits mit
ihren Arbeiten zur Model Driven
Architecture (MDA) ein wichtigen
Schritt zur Einführung homoge-
nisierter Beschreibungsmodelle be-
gonnen. Die Anwendung dieser
Konzepte erfordert jedoch eine wei-
tere Konkretisierung entsprechend
der aktuellen Domäne. Weiterhin
fehlt es natürlich noch an einer an-
gemessenen Tool-Unterstützung.

Mit unserem Ansatz versuchen
wir das Beste beider Welten zu
verbinden. Dabei fokussieren wir
uns auf die Domäne der Anwen-
dungsintegration (EAI). Die Basis
bilden MDA und UML. In Ab-
schnitt 5 haben wir notwendige Er-
weiterungen des Vorgehensmodells
sowie die Auswahl der für die
Modellierung benötigten Stereoty-
pen beschrieben. Unsere Erweite-
rungen sollen insbesondere sicher-
stellen, dass eine Abbildung auf
konkrete Technologien und Pro-
dukte möglich ist. Beim Über-
gang zum Betrieb rücken dann
die kommerziellen Tools in den
Vordergrund, ohne dass wir un-
ser durchgängiges Modell durchbre-
chen.

Obwohl im Detail sowohl man-
che konzeptionellen als auch tech-
nische Fragen noch offen sind, sind
wir sicher, dass unser Ansatz eine

wesentliche Verbesserung der bisher
gängigen Praxis bei der Systemin-
tegration darstellt, die bisher zu
sehr technologiegetrieben durchge-
führt wird und sich unserer Mei-
nung nach zu wenig mit den fach-
lichen Anforderungen beschäftigt.

Literatur
[1] H. Häuschen: EAI – Enterprise

Application Integration, URL:

http://www.ifi.unizh.ch/ikm/

Vorlesungen/ebusiness/ws03/material/

FolienEAI_F.pdf

[Zugriff am 30.01.2004].

[2] S. Möckel: EAI-Überblick und

Basistechnologien des EAI, URL:

http://ais.informatik.uni-leip-

zig.de/download/ 2002s_s_ieb/

SilvioMoeckel_EAI.pdf

[Zugriff am 30.01.2004].

[3] D. Roedner: The Next Wave of

Integration Platforms. – In: eai Journal,

September 2002, S. 12–15.

[4] D. Draxler, C. Ungerböck: Enterprise

Application Integration. Seminararbeit,

Universität Wien 2002, S. 37.

[5] W. van den Heuvel, W. Hasselbring,

M. Papazoglou: Top-Down Enterprise

Application Integration with Reference

Models. – Third International

Workshop on Engineering Federated

Information Systems, Dublin, Ireland,

Juni 2000.

[6] Object Management Group (OMG):

Model Driven Architecture (MDA),

URL: http://www.omg.org/mda

[Zugriff am 26.01.2004].

[7] W. Emmerich: Distributed Component

Technologies and their Software

Engineering Implications. – In:

Proceedings of the 24th International

Conference on Software Engineering,

Mai 2002, S. 537–546.

[8] Object Management Group (OMG):

Unified Modeling Language (UML),

URL: http://www.omg.org/uml

[Zugriff am 26.01.2004].

[9] J. Miller: What UML should be. –

In: COMMUNICATIONS OF THE

ACM, November 2002/Vol. 45, No. 11,

S. 67–69.

[10] B. Selic, G. Ramackers, C. Kobryn:

Evolution, not Revolution. – In:

COMMUNICATIONS OF THE

ACM, November 2002/Vol. 45, No.

11, S. 70–72.

209



Schwerpunktthema

[11] G. Fairbanks: Why Can’t They Create

Architecture Models Like „Developer

X“? An Experience Report. – In:

Proceedings of the 25th International

Conference on Software Engineering,

Mai 2003, S. 548–552.

[12] Object Management Group (OMG):

UML Profile for Enterprise Ap-

plication Integration (EAI), URL:

http://www.omg.org/technology/

documents/modeling_spec_catalog.htm

#UML_for_EAI

[Zugriff am 26.01.2004].

[13] J.H. Hausmann, S. Kent: Visualizing

Model Mappings in UML. In:

Proceedings of the 2003 ACM

symposium on Software visualization,

Juni 2003, S. 169–178.

[14] SAP AG: SAP Exchange Infrastructure,

URL: http://help.sap.com/content/docu/

netweaver/cont_netw_xi.htm

[Zugriff am 26.01.2004].

[15] IBM: WebSphere InterChange Server

and WebSphere Business Integration

Toolset documentation, URL:

ftp://ftp.software.ibm.com/software/

websphere/integration/ wicserver/

library/doc/wics422/wics422core.zip

[Zugriff am 30.01.2004].

[16] P. Bernstein et al.: A Vision for

Management of Complex Models,

URL: ftp://ftp.research.microsoft.com/

pub/tr/tr-2000-53.pdf

[Zugriff am 05.04.2004].

[17] J. Sztipanovits, G. Karsai: Model-

Integrated Computing, URL:

http://csdl.computer.org/dl/mags/co/

1997/04/r4110.pdf

[Zugriff am 05.04.2004].

[18] A. Ledeczi et al.: The Generic

Modeling Environment, URL:

http://www.isis.vanderbilt.edu/

Projects/gme/GME2000Overview.pdf

[Zugriff am 05.04.2004].

[19] Fraunhofer IAO: Projekthomepage

„Integration Engineering“,

URL: http://www.sw-manage-

ment.iao.fraunhofer.de/projekte/

sm_05.html#IE

[Zugriff am 05.04.2004].

1 2

3

1 Clemens Dorda hat an der Universität

Stuttgart Informatik studiert und sein Stu-

dium 2002 mit dem Diplom abgeschlossen.

Er ist seitdem wissenschaftlicher Mitarbeiter

von Prof. Dr.-Ing. habil. Bernhard Mitschang

am Institut für Parallele und Verteilte Sys-

teme (IPVS) der Universität Stuttgart.

Adresse: Universität Stuttgart, Institut für

Parallele und Verteilte Systeme (IPVS)

Abteilung Anwendersoftware, Univer-

sitätsstr. 38, 70569 Stuttgart, E-Mail:

Clemens.Dorda@informatik.uni-stuttgart.de

2 Dr. Hans-Peter Steiert hat Informa-

tik an der Universität Kaiserslautern studiert

und 2001 in der Arbeitsgruppe von Prof.

Härder an der Universität Kaiserslautern

promoviert. Seit 2001 ist er als wissenschaft-

licher Mitarbeiter bei DaimlerChrysler im

Forschungsbereich IT for Engineering tätig.

Adresse: DaimlerChrysler AG, Research and

Technology, RIC/ED, Postfach 2360, 89013

Um, E-Mail:

Hans-Peter.Steiert@DaimlerChrysler.com

3 Dr. Jürgen Sellentin hat Informatik
an der Universität Kaiserslautern studiert

und 1999 in der Arbeitsgruppe von Prof.

Mitschang an der Universität Stuttgart pro-

moviert. Seit 1996 ist er Mitarbeiter von

DaimlerChrysler, wo er bis 2003 das Team

Integrationsarchitekturen innerhalb des For-

schungsbereiches IT for Engineering geleitet

hat. Seit Sommer 2003 ist er verantwortlich

für das Test & Integration Lab im Bereich

Technology Integration & Platform Deve-

lopment des zentralen DaimlerChrysler IT

Managements.

Adresse: DaimlerChrysler AG, Technology

Integration (ITI/TP), HPC Z354, 70546

Stuttgart, E-Mail:

juergen.sellentin@daimlerchrysler.com

210


