v

Schwerpunktthema

it 4/2004

Modellbasierter Ansatz zur

Anwendungsintegration

A Model-based Approach for Enterprise Application Integration

200

Clemens Dorda, Universitat Stuttgart,

Hans-Peter Steiert, Jurgen Sellentin, DaimlerChrysler AG

Zusammenfassung Moderne Produkte zur Anwendungsin-
tegration in Unternehmen (EAI) bieten Werkzeuge, um Inte-
grationsszenarien zu modellieren. Allerdings lassen sich damit
heterogene IT-Umgebungen bisher immer nur ausschnittsweise
darstellen, da die Modelle unterschiedlicher EAI-Produkte nicht
ausgetauscht oder integriert werden kdnnen. Unser Ziel ist
es, die Bildung solcher ,Integrationsinseln’ zu vermeiden. Dazu
prasentieren wir einen Ansatz, der durch technologie- und
herstellerunabhangige Modellierung eine integrierte Sicht er-
laubt. Unser Vorgehensmodell schldgt vor, diese integrierte
Sicht werkzeuggestiitzt auf der Basis von Repositories zu ver-
feinern, um die Realisierung mit konkreten Produkten und
das Deployment auf konkreten Plattformen zu automatisie-

ren. »»» Summary Modemn products for Enterprise
Application Integration (EAI) provide tools for modelling in-
tegration scenarios. Because it is not possible to exchange
or integrate the models of different EAl-products with these
tools, the real heterogeneous IT-environments can only be
described partially. Our goal is to avoid the creation of so-
called ‘integration islands’. For that purpose we present an
approach which allows an integrated view by technology-
independent and multivendor-capable modelling. Our pro-
cess model proposes a toolset- and repository-hased refine-
ment of the integrated view to automate the implementa-
tion with real products and the deployment on real plat-
forms.

KEYWORDS D.1.2 [Automatic Programming], D.2.2 [Design Tools and Techniques], D.2.12 [Interoperability],
D.2.13 [Reusable Software], H.2.5 [Heterogeneous Databases], 1.6.5 [Model Development]

1 Einleitung
Integrationsprojekte haben in Un-
ternehmen eine fast so lange His-
torie wie die Verwendung von
Informationssystemen an sich. Die
Vorteile und positiven Ziele von
Systemintegration, beispielsweise
schnellere und automatisierte Ab-
wicklung von Geschiftsprozessen,
sind bereits vielfach genannt wor-
den [1;2]. Oft werden die Gefahren
fiir die IT Infrastruktur allerdings
vernachlissigt. So gefihrden Inte-
grationsprojekte die Agilitit der IT
Infrastruktur.

Unter Agilitdt versteht man die
Fahigkeit, sich an Verdnderungen an-

zupassen. Diese Fihigkeit wird je-
doch durch jedes neue Integrations-
projekt reduziert, da dabei immer
groflere verteilte Systeme mit im-
mer stirkeren Abhingigkeiten zwi-
schen bisher autonomen Applikatio-
nen entstehen. Beispielsweise fithrt
der Zugrift eines Online-Shops auf
den aktuellen Lagerbestand dazu,
dass die Lagerverwaltung nur noch
dann angepasst werden kann, wenn
die Schnittstellen zum Online-Shop
stabil bleiben. Sehr schwierig wird
es, wenn Abhingigkeiten nicht oder
schlecht dokumentiert werden. Ins-
besondere da das Wissen tiber die in-
tegrierten Applikationen meist nicht

it — Information Technology 46 (2004) 4 [Oldenbourg Verlag

in einem Team vorliegt, sondern iiber
viele Personen und Organisationen
im Unternehmen verteilt ist.

Im schlimmsten Fall fiithrt dies
dazu, dass zentrale Anwendungen
nicht mehr weiterentwickelt werden
kénnen, weil die Gefahr zu grof3 ge-
worden ist, andere kritische Systeme
unbewusst negativ zu beeinflussen.
Es wird deshalb mit zunehmen-
der Integration immer schwieriger,
aufwindiger und teurer, die System-
landschaft an die sich dndernden
Bediirfnisse anzupassen. Die Agilitdt
geht verloren.

In diesem Artikel werden wir
uns damit beschiftigen, wie sich

die Agilitat tiber die ganze Lebens-
dauer erhalten lisst. Unser Fokus
liegt dabei nicht auf den Produkten
zur Systemintegration, da diese von
den IT-Herstellern entwickelt und
auch fortwihrend weiterentwickelt
werden. Wir wollen vielmehr einen
Ansatz vorstellen, bei dem durch ein
Vorgehensmodell fiir Integrations-
projekte und eine geeignete Werk-
zeugunterstiitzung fir Entwicklung
und Dokumentation insbesondere
die Dokumentation gegentiber dem
heutigen Stand verbessert wird.

Dieser Artikel ist wie folgt ge-
gliedert. Im nichsten Abschnitt wer-
den wir die Problemstellung ge-
nauer herausarbeiten und anschlie-
Rend vier Szenarien entwickeln, die
wir mit unserem Ansatz adressie-
ren. Darauf folgend beschreiben wir
eine Auswahl bestehender Ansitze
von Herstellern und Losungsanbie-
tern. Anschlieffend stellen wir dann
unseren Ansatz, das RADES-Vorge-
hensmodell (Reference Architecture
for the Documentation and Support
of EAI-Solutions) vor und diskutie-
ren, wie dieser die vier Szenarien aus
Abschnitt 3 adressiert. Wir schlieSen
mit einer Zusammenfassung und ei-
nem Ausblick.

2 Problemstellung
Integrationsprojekte leiden meist
unter drei inhdrenten Problemen.
Diese drei Aspekte wollen wir nach-
folgend genauer betrachten und in
einem Anforderungskatalog zusam-
menstellen.

2.1 Inkonsistente Dokumentation
Zunichst betrachten wir das Aus-
einanderlaufen von Realitit und
Dokumentation. Diese Situation
diirfte hinreichend bekannt sein
und tritt sowohl zu Beginn eines In-
tegrationsprojekts als auch wahrend
der Durchfithrung einer nachtrag-
lichen Anderung und auch bei der
Migration auf eine neue Integrati-
onstechnologie auf.

Ein Blick auf die verfiigbare Do-
kumentation in einer dieser Situa-
tionen zeigt, dass fiir viele der integ-
rierten Applikationen keine solche
mehr vorhanden ist. Findet sich je-

doch Dokumentation, dann stimmt
diese sehr oft nicht mehr mit
der real implementierten Integra-
tionslosung oder den integrierten
Systemen iiberein. Hinzu kommt,
dass die existierende Dokumenta-
tion informell und ungenau ist,
wodurch vielfiltige Interpretatio-
nen moglich sind. Neben der Do-
kumentation miissen deshalb die
realen Systeme als Informations-
quelle genutzt werden, was ein auf-
windiges Reengineering notwendig
macht.

2.2 Heterogenitat aller Artefakte
Die genannten Probleme bei der
Dokumentation werden zusitzlich
durch zwei Effekte verschirft:

Erstens ist die Systemlandschaft
iiber die Zeit hinweg stindigem
Wandel unterzogen und wird da-
durch bald extrem heterogen. Wir
haben es daher mit verschiedenen
Integrationsprodukten und Reali-
sierungstechnologien zu tun. Jedes
Produkt bringt dabei seine eigenen
Werkzeuge und Metadaten mit. Dies
macht es schwierig, ein konsistentes
Bild der realen Integrationslosung
zu gewinnen.

Zweitens wurden die Projekte
oft mit wechselnden Projektpart-
nern bearbeitet. Diese verwen-
den verschiedene Vorgehensmo-
delle, Dokumentationsmethodiken
und unterschiedliche Notationen.
Die Heterogenitit bezieht sich also
nicht nur auf die IT Systeme, son-
dern auf alle entstandenen Artefakte
des Integrationsprojekts.

2.3 Verteilung der IT und der

Organisation
Der dritte Aspekt ist die inhédrent
verteilte Natur von Integrationslo-
sungen.

Aufgrund der Verteilung miis-
sen Anderungen an vielen Stel-
len konsistent durchgefiihrt werden.
Dies ist sehr fehleranfillig. Die Aus-
wirkungen einer Anderung auf an-
dere Applikationen lisst sich zudem
nur schwer nachvollziehen, was die
Fehlersuche erschwert.

Die Verteilung hat auch einen
organisatorischen Aspekt, da unter-

schiedliche Personen und Bereiche
fir die Applikationen verantwort-
lich sind. Daher ist ein miihseli-
ges Zusammensuchen der benotig-
ten Informationen notwendig.

2.4 Anforderungen an einen
Lésungsansatz

Ublicherweise wird bisher versucht,

die dargestellten Probleme technisch

und organisatorisch klein zu hal-
ten:

Die technische Losung besteht
darin, dass die verwendeten Inte-
grationsprodukte die Applikationen
nur lose miteinander koppeln. Eine
geeignete Architektur vorausgesetzt,
lassen sich so Anderungen in ei-
nem System hinter den Schnittstel-
len fiir andere integrierte Systeme
weitgehend transparent durchfiih-
ren.

Die organisatorische Losung be-
steht in einem guten Projektmana-
gement und stringenten Dokumen-
tationsrichtlinien. Beide reduzieren
die Wirkung der Probleme und sind
in jedem Fall wichtig und notwen-
dig. Wir sehen sie als Vorausset-
zung fur unseren Ansatz. Zusitzlich
muss ein Losungsansatz aber fol-
gende Ziele erreichen:

e Es muss eine zentrale Doku-
mentation geben.

e Die Dokumentation muss eine
aktuelle und homogene Sicht
auf eine Integrationslosung er-
moglichen.

e Ein Vorgehensmodell mit geeig-
neter ~ Werkzeugunterstiitzung
muss die Konsistenz von Do-
kumentation und realer Losung
gewihrleisten.

e Der Losungsansatz muss sich
nahtlos in Entwicklungsprozesse
integrieren.

Diese Ziele prdzisieren wir im
nichsten Abschnitt anhand von vier
Szenarien.

3 Szenarien bei der
Entwicklung von
Integrationslésungen

Wir werden spiter unseren An-

satz zur modellbasierten Entwick-

lung von Integrationslésungen vor-

201

202

v

Schwerpunktthema

stellen, der die oben genannten
Punkte adressiert. Nach unserer An-
sicht muss ein solcher Ansatz die
folgenden vier Szenarien in Integra-
tionsprojekten unterstiitzen.

3.1 Zentrale, einheitliche und au-

tomatisierte Dokumentation
Der grundlegende Gedanke dieses
Szenarios ist, die Dokumentation
dort zu erzeugen, wo sie anfillt:
In den Entwicklungs-, Administrati-
ons- und Dokumentationswerkzeu-
gen. Oft konnen Administratoren
und Entwickler hier Kommentare
hinterlegen. Um eine redundante
Speicherung in Dokumenten und
Werkzeugen zu vermeiden, ist es
notwendig, diese aktiv zu nutzen
und automatisch aus den Werkzeu-
gen zu extrahieren.

Als weitere Informationsquellen
stehen die Metadaten und Kon-
figurationsdateien der Werkzeuge
und Integrationsprodukte zur Ver-
fiigung. Diese stellen die laufende
Realisierung dar und miissen eben-
falls automatisch ausgelesen werden.

Zusitzlich fillt natiirlich die tib-
liche Dokumentation durch Men-
schen an. Hier ist eine Standardisie-
rung mit Vorlagen notwendig, um
zu ermoglichen, dass diese Informa-
tionen ebenfalls maschinell weiter-
verarbeitet werden konnen.

In einem definierten Prozess
miissen diese Informationsquellen
automatisiert und mit Unterstiit-
zung eines Autorensystems ein-
gesammelt, homogenisiert, zusam-
mengefiihrt und zentral bereitge-
stellt werden.

Wenn die Dokumentation, wie
gefordert, nicht alleine einem
menschlichen Autor iiberlassen
wird, sondern soweit als moglich
automatisch aus den genannten In-
formationsquellen extrahiert wird,
dann ldsst sich die Dokumentation
einfacher mit der Realitit konsistent
halten.

Es bietet sich an, die vollstindige
Dokumentation in einem zentra-
len Repository abzulegen und online
zugreifbar zu machen. Die Verwen-
dung eines zentralen Repository in
Verbindung mit Standards fiir die

Dokumentation hilft auch, diese auf
Konsistenz untereinander, auf Voll-
stindigkeit, sowie auf FEinhaltung
von Vorgaben und Richtlinien zu
priifen. Auf diese Weise wird die
Homogenitit gesichert.

3.2 Neuentwicklung einer

Integrationslosung
Oben haben wir beschrieben, wie
die Dokumentation einer existie-
renden Losung automatisch aus
den verfugbaren Informationsquel-
len erzeugbar sein sollte. In der
Entwicklung wird tblicherweise zu-
nichst der umgekehrte Weg be-
schritten. Ausgehend von einem
Grobentwurf wird schrittweise ver-
feinert und letztlich die lauffihige
Losung implementiert.

Unserer Ansicht nach muss es
moglich sein, alle Zwischenergeb-
nisse auf diesem Weg ebenfalls in
einem zentralen Repository abzule-
gen.

Des Weiteren muss es moglich
sein, das Ergebnis eines Verfeine-
rungsschritts auf dessen Konsistenz
mit den Vorgaben des Ergebnis-
ses des vorangegangenen Schritts zu
priifen.

Hierzu sind einige Vorausset-
zungen notwendig: Ein Vorgehens-
modell muss klar festlegen, was die
Ergebnisse der einzelnen Schritte
sein sollen. Ebenso muss die Form
der Ergebnisse festgelegt werden.
Diese miissen in einer einheitlichen
und maschinenverarbeitbaren Nota-
tion erstellt werden.

Ferner muss das Repository
Sichten auf die verschiedenen Ver-
feinerungsstufen der Integrationsls-
sung unterstiitzen, sowie die Na-
vigation von Elementen einer ho-
heren Stufe hin zu deren Verfei-
nerung und zuriick ermoglichen.
Die Verfeinerungsbeziehungen zwi-
schen den Stufen miissen dazu
wohl definiert und formal fassbar
sein.

Die Verfeinerung muss soweit
moglich sein, dass sich zuletzt aus
dem Inhalt des Repository die Kon-
figurationsdateien erzeugen und die
Metadaten-Repositories der Integra-
tionsprodukte fullen lassen.

Sie werden dazu aus dem allge-
meinen Format des Repositories in
das proprietire Format der Integra-
tionswerkzeuge iibersetzt.

3.3 Anderung und Wartung einer

Integrationslésung
Was fiir die Erstellung eines Sys-
tems gilt, gilt natiirlich auch fiir
Anderungen tiber die Lebenszeit ei-
ner Integrationslésung. Dabei sind
zwei verschiedene Varianten zu un-
terstiitzen, die den beiden bereits
beschriebenen Fillen dhneln.

Im ersten Fall wird eine An-
derung im Repository dokumen-
tiert und dann dem Vorgehensmo-
dell folgend iiber die verschiede-
nen Stufen bis hin zur Generierung
von Programmcode und Konfigura-
tionsdateien propagiert.

Im zweiten Fall wird eine An-
derung direkt in einem der Integra-
tionsprodukte gemacht, beispiels-
weise um schnell einen Fehler zu be-
heben. Diese Anderung muss dann
zuriick ins Repository propagiert
und dort auf Konsistenz mit den
hoheren Ebenen tiberpriift werden.
Falls die Konsistenz nicht erfiillt ist,
miissen wohl definierte Schritte an-
gestoflen werden, um die Anderung
so lange nach oben zu propagieren,
bis die Dokumentation wieder kon-
sistent ist.

3.4 Migration einer Integrations-
lésung

Letztlich unterliegen auch Integrati-
onsprodukte der stindigen Weiter-
entwicklung, sodass die Migration
von einer Version auf die nichste
oder von einem Produkt auf ein an-
deres unterstiitzt werden muss.

Aufgrund der geschilderten Pro-
bleme stellen sich Migrationen oft
als schwierig dar, insbesondere beim
Wechsel der Produkte. Meist bedeu-
tet das eine vollstindige Reimple-
mentierung.

Bei Ablage aller Informationen
in einem zentralen Dokumentati-
onsrepository kann dieses nicht nur
als Informationsquelle genutzt wer-
den, sondern sein Inhalt kann auch
als ,Austauschformat zwischen den
Produkten dienen. Die passenden

Generatoren und Importfilter wer-
den fiir die oben skizzierten Szena-
rien sowieso bendtigt und kénnen
hier direkt in der Frithphase des Mi-
grationsprojekts Nutzen bringend
eingesetzt werden.

4 Bestehende Ansatze zur
Anwendungsintegration
Bei einer niheren Betrachtung von
aktuell auf dem Markt befind-
lichen EAI-Produkten stellt man
fest, dass einige Hersteller inzwi-
schen Mechanismen in ihre mit-
gelieferten Entwicklungswerkzeuge
integriert haben, welche den tradi-
tionell eher technisch orientierten
Bottom-Up Ansatz der Systeminte-
gration verwerfen und eine Top-
Down Entwicklung eines System-
verbundes erlauben bzw. erzwin-
gen. Dadurch konnen bereits ei-
nige der in Abschnitt2 genannten
Probleme gelost werden [5]. Die
folgende Betrachtung zweier exem-
plarisch ausgewidhlter Produkte soll
aber zeigen, dass dennoch einige
Punkte offen bleiben, die unserer
Meinung nach nur iber einen an-
deren Ansatz gelost werden kon-

nen.

4.1 SAP Exchange Infrastructure

(SAP XI)

Als erstes exemplarisches Beispiel
sollen hier die Entwicklungsmetho-
dik der SAP Exchange Infrastructure
(XI) [14], die Teil der SAP Net-
Weaver-Plattform ist, und die dafur
bereitgestellten Werkzeuge kurz vor-
gestellt werden. Hier werden wih-
rend der Entwicklung einer Integra-
tionslosung beteiligte Systeme auf
unterschiedlichen Abstraktionsebe-
nen modelliert, teils grafisch, teils
textbasiert. Am Ende des Entwick-
lungsprozesses wird die Konfigura-
tion fiir die Integrationslaufzeitum-
gebung aus diesen Daten generiert.
Nach der Ubertragung der Konfigu-
ration auf die Laufzeitumgebung ist
diese dann ohne weitere Anpassun-
gen sofort einsatzfahig.

Die Abstraktionsebenen von XI
spiegeln sich in drei verschiede-
nen Phasen wider, die wiederum
jeweils auch mit drei verschiedenen

Exchange of Integration
Informationen

| Integratlon Buﬂder

Execution of business processes
across company boundaries

3™ Party and

., essaging Systems
Runtime
SAP Systems

Integration Integration

Integration Server

Reposntory Dlrectory

Integration
Engine

Business
Process
Engine

/ "@.s0AP
Plain HTTP

(System Landscape DlrectorD

f -

Information at: Information at

| Runtime Workbench|

Partner Eco System
(additonal 3rd Party

Design Time Configuration
Time

Bild 1 Architektur von SAP XI [1].

Datentopfen in Form von Reposito-
ries und Directories verkniipft sind
(Bild 1):

1. Designphase

2. Konfigurationsphase

3. Laufzeitphase.

Zunichst werden in der Design-
phase Informationen iber die be-
teiligten Systeme (Angaben wie bei-
spielsweise Anwendungsname, Her-
steller) und die zu implementieren-
den Prozesse hinsichtlich Schnitt-
stellen, Nachrichtenformaten, Map-
ping- und Routing-Regeln ange-
legt und im so genannten Integra-
tion Repository als Komponenten
oder Bausteine gespeichert. Optio-
nal konnen hier auch Geschiftspro-
zesse grafisch modelliert werden,
allerdings dient dies in der der-
zeit angebotenen Version 2.0 nur
der Dokumentation und wird somit
nicht fiir die spitere Entwicklung
benétigt.

Zur Nutzung der Komponen-
ten und Bausteine fiir die Konfi-
gurationsphase miissen diese aus
dem Integration Repository in
das Integration Directory iibertra-
gen werden. Dort werden dann
die Schnittstellen der Anwendun-
gen mit den in der Designphase
angelegten Nachrichtentypen und
Mapping- sowie Routing-Regeln
verkniipft. Nach dem erfolgreichen
Deployment geht die Entwicklung
somit in die letzte Phase, die Lauf-
zeitphase, iiber.

Adapters and Industry
Standards)

4.2 IBM WebSphere Business
Integration

IBM ist einer der Marktfiihrer un-

ter den Anbietern von Integrations-

produkten und bietet neben dem

Produkt ,,IBM WebSphere Business

Integration noch weitere Integra-

tionsprodukte an, nidmlich Web-

Sphere MQ Integrator Broker, Web-

Sphere Business Integration Mes-

sage Broker, und WebSphere Ap-

plication Server. Den in der Ein-
leitung genannten Anforderungen
an Integrationsprodukte kommt das

Produkt ,IBM WebSphere Busi-

ness Integration® (nachfolgend IBM

WBI genannt) am nichsten, weswe-

gen wir dessen Konzepte nachfol-

gend kurz vorstellen wollen [15].
Als Vorgehensweise fiir die An-

wendungs- und Systemintegration

schldgt IBM zunichst die Beantwor-
tung der folgenden Fragen vor:

e Welche Probleme miissen im
Geschiftsmodell des Kunden
speziell gelost werden?

e Welche Geschiftsprozesse miis-
sen automatisiert oder integriert
werden, um die Probleme im
Geschiftsmodell zu adressieren?

e Wie sieht die technische Umge-
bung, in welche die Geschiifts-
prozesse integriert werden miis-
sen hinsichtlich Anwendungen,
Datenbanken und APIs aus?

Diese Sichtweise entspricht un-
serer in Abschnitt1 geforderten
Top-Down Vorgehensweise. Aller-

Monitoring

Additional Marktpl iitze Integration
Integration Monitor
Services

203

204

v

Schwerpunktthema

dings muss man an dieser Stelle
kritisieren, dass sich diese Methodik
leider nicht in der tatsichlichen Rei-
henfolge der Werkzeugverwendung
widerspiegelt, die schliefSlich fiir ein
Integrationsprojekt mit IBM WBI
notwendig ist. IBM sieht hier nim-
lich eine Bottom-Up Vorgehens-
weise vor, bei der zuerst die techni-
sche Konnektivitdt hergestellt wird
und erst am Ende des Entwicklungs-
prozesses die Geschiftsprozesse in
Form von so genannten Kollabo-
rationen entwickelt werden. Kolla-
boration sind dabei konkret Soft-
waremodule, welche Geschiftspro-
zesse beschreiben und spiter auf der
Laufzeitumgebung ausgefihrt wer-
den. Durch dieses Konzept bietet
hier IBM immerhin die Moglichkeit,
losgelost von technischen Details die
dahinter liegende Prozesslogik einer
Integrationslosung und somit un-
terschiedliche Sichten darzustellen.

Hinsichtlich der Wiederverwen-
dung von Komponenten zeigt IBM
WBI einige gute Ansitze. Alle be-
notigten Entwicklungsdaten werden
in einem zentralen Repository ge-
speichert. Uber Plug-Ins kann auch
eine Versionierung der Entwick-
lungsdaten realisiert werden. Zusitz-
lich unterstiitzt teilweise die Struktur
der Metadaten Wiederverwendung.
Die oben genannten Kollaboratio-
nen beispielsweise gliedern sich in
Kollaborationsschablonen und Kol-
laborationsobjekte auf. Kollabora-
tionsschablonen stellen eine wie-
derverwendbare Geschiftprozessbe-
schreibung dar und sind als nicht-
ausfithrbare Komponente im zentra-
len Repository des Produkts abgelegt.
Sie werden mit Hilfe eines mitgelie-
ferten Werkzeugs grafisch in UML-
dhnlicher Notation modelliert [8].
Einmal entwickelt konnen aus ihnen
von jedem nachfolgenden Integra-
tionsprojekt Kollaborationsobjekte
erzeugt werden, welche erst nach der
Konfiguration durch Anbindung an
Adapter oder andere Kollaborations-
objekte ausfithrbar werden.

4.3 Grenzen bestehender Ansatze
Von der konzeptionellen Seite zeigt
der zuerst beschriebene SAP-Ansatz

schon einige sehr gute Losungen,
die viele der in der Einleitung be-
schriebenen Probleme ldsen kon-
nen. Unsere dort formulierte For-
derung nach einer homogenisierten
Sicht auf die Integrationslosung ist
hier sehr gut umgesetzt worden,
da durch das definierte Vorgehens-
modell eine einheitliche und klar
abgegrenzte Sicht in jeder Entwick-
lungsphase gegeben ist. Ohne auf
Freiheiten innerhalb der verschiede-
nen Phasen verzichten zu miissen,
wird der Entwickler dadurch bis
zum Ziel gefithrt. Infolge dessen
ist auch, verbunden mit einer in-
tegrierten Versionsverwaltung, die
Konsistenz der Losungen in den
verschiedenen Phasen hier besser
gewihrleistet und macht diese ver-
gleichbar. Die Dokumentationsun-
terstiitzung ist dafiir aber relativ
schwach ausgeprigt. Zwar sind viele
Informationen, die bei der Ent-
wicklung anfallen, eine gute Aus-
gangsbasis fiir die Dokumentation,
allerdings ist nur an sehr wenigen
Stellen das Hinzufiigen von weiterer
Dokumentation vorgesehen.

Auch das anschlieend vorge-
stellte IBM-Produkt zeigt einige gute
Ansitze hinsichtlich unserer in der
Einleitung aufgestellten Forderun-
gen. Durch die fehlende scharfe
Trennung zwischen logischen und
technischen Daten, sowie die feh-
lende Festlegung auf ein einheitli-
ches Vorgehensmodell, gestaltet sich
hier die Bildung homogenisierter
Sichten auf die Integrationslosung
wesentlich schwieriger. Dafiir un-
terstiitzt die UML-dhnliche, gra-
fische Notation der Geschiftspro-
zesse deren Verwendbarkeit fiir die
Dokumentation, und die Auftei-
lung in Kollaborationsschablonen
und -objekte erleichtert die Wie-
derverwendung. Auch bei diesem
Produkt koénnen aus den bei der
Entwicklung angefallenen Daten
viele Informationen fir Dokumen-
tationszwecke gewonnen werden.
Zusitzliches Hinzufiigen von Do-
kumentation ist aber auch hier
nur an wenigen Stellen vorgese-
hen, beispielsweise bei der Im-
plementierung der Kollaborationen

in Form von Quellcodekommenta-
ren.

Betrachtet man allerdings die
Evolution von IT-Infrastrukturen
innerhalb von Unternehmen iiber
mehrere Jahre hinweg, so wer-
den gleichzeitig aber auch schnell
die Grenzen beider Ansitze deut-
lich. Speziell in groflen Unterneh-
men lassen sich schon alleine auf-
grund unterschiedlicher Anforde-
rungen selten einheitlich die glei-
chen Produkte iiber alle Unter-
nehmensbereiche durchsetzen und
dann iiber Jahre hinweg erhal-
ten. Eine gewisse Heterogenitdt der
Systemlandschaft lasst sich einfach
nicht vermeiden. Fiir die Entwick-
lung, Dokumentation und Wartung
von Integrationslgsungen heifit das
letztlich, dass sich die anfangs for-
mulierten Probleme, beispielsweise
die unterschiedlichen Datenformate
von Metadaten, mit bestehender
Technologie nicht vollstindig losen
lassen [3].

5 Das RADES-

Vorgehensmodell
Aufgrund dieser Erfahrungen moch-
ten wir nun einen neuen, allgemei-
neren Ansatz vorgeschlagen, der die
Existenz heterogener Systemland-
schaften und Intergrationsarchitek-
turen berticksichtigt.

Die nachfolgend beschriebenen
Konzepte sind im Rahmen des
RADES-Projekts (Reference Archi-
tecture for the Documentation and
Support of EAI-Solutions) entstan-
den, das seit 2002 an der Universitit
Stuttgart zusammen mit Daimler-
Chrysler Research & Technology
lduft. Ziel des Projektes ist die Kon-
zeption einer Referenzarchitektur,
die Methoden und Werkzeuge zur
Verfiigung stellt, um Integrationss-
zenarien einheitlich zu realisieren,
dokumentieren und warten. Dabei
sollen so weit wie moglich Standards
eingesetzt werden.

Die Vision hinter dem Ansatz
ist dabei die bereits in Abschnitt 1
formulierte Einrichtung eines zen-
tralen Repositories, das alle In-
formationen wber diejenigen An-
wendungen und Systeme beinhal-

tet, welche durch Integrationslosun-

gen miteinander verbunden sind.

Es wird hauptsichlich wihrend der

Entwicklung einer Integrationslo-

sung infolge eines Integrations-

projektes mit neuen Informatio-
nen gespeist. Dazu schlagen wir
einen definierten Entwicklungspro-
zess vor (Bild 2), der einerseits be-
stimmte Ergebnisse nach jeder Ent-
wicklungsphase fordert und somit
die Entwickler des Systemverbun-
des an eine definierte Vorgehens-
weise iiber den gesamten Entwick-
lungsprozess hinweg bindet, an-
dererseits aber die Vorgehensweise
innerhalb der einzelnen Phasen
moglichst frei lasst und deswegen
hier auch gewisse Freiheiten er-

laubt [11].

Fiir die technische Umsetzung
miissen einige Rahmenbedingungen
erfillt sein:

e die Ergebnisse der jeweiligen
Phasen miissen in einem Daten-
format darstellbar sein, das sich
gut strukturiert ablegen ldsst
und die Formulierung von Ab-
hingigkeitsbeziehungen zu an-
deren Datensitzen erlaubt,

e die FErgebnisse miissen sich
gut zu Dokumentationszwecken
verwenden lassen, idealerweise
kann das Datenformat auch
so dargestellt werden, dass es

leicht grafisch aufbereitet wer-
den kann.

Unserer Meinung nach ist dazu
eine modellbasierte Entwicklung
und Darstellung am besten geeignet,
wie sie in den vergangenen Jahren
auch immer mehr von renommier-
ten Forschern postuliert wird [16].
Fir die Realisierung unseres Vor-
gehensmodells setzen wir deswegen
auf eine Modellierungsnotation,
die sowohl die grafische als auch
textbasierte Notation der Modelle
ermoglicht. Mit UML (8] hat die
OMG eine Modellierungssprache
entwickelt, welche diese Anforde-
rungen soweit erfillt und die sich
inzwischen in vielen Anwendungs-
gebieten als Modellierungsnotation
etabliert hat [9;10].

Unsere Vision beschreiben wir
im ndchsten Abschnitt durch die
Formulierung eines Vorgehensmo-
dells fiir die Anwendungs- und Sys-
temintegration. Anschlieend gehen
wir auf den UML-basierten Model-
lierungsansatz ein.

5.1 RADES-Entwicklungsphasen

Angelehnt an den MDA-Prozess
(Model Driven Architecture) der
OMG [6] wurden fiir das RADES-
Vorgehensmodell drei Entwick-
lungsphasen definiert, bei denen

plattformunabhangiges

Geschéaftsprozess entwerfen ‘

§ Modell (PIM) G Workflows ableiten ‘ —_—
g . Architek-
=3 ' Architekturplattform? | wrprofile |
o It
c plattformspezifisches .
(}33 Modell (PSM) i}Detallllerung der Workflowmodelle } —_
% - Produkt? P;?Sﬁ“.i"
w

Plattformmodell (PM) Detaillierung des Produktmodells } —

. Laufzeitparameter? | e |

Konfigurationsphase
und Laufzeit

{Konfiguration des generierten Codes}

4

Deployment

{ Laufzeit]

Bild 2 Dreiphasiger Entwicklungsprozess.

analog zu MDA als Ergebnis der
ersten beiden Phasen ein plattfor-
munabhingiges Modell (PIM) und
ein plattformspezifisches Modell
(PSM) entwickelt wird (Bild 2) [7].

Beim RADES-Vorgehensmodell
wird allerdings der MDA-Ansatz um
eine Ebene erweitert. Als Ergeb-
nis der dritten Entwicklungsphase
liegt hier kein generierter Code
vor, sondern eine weitere Detaillie-
rung des PSM, zugeschnitten auf
das Zielprodukt — das so genannte
Plattformmodell (PM). Das Platt-
formmodell soll die Realisierung des
Integrationsszenarios auf der Ziel-
plattform exakt beschreiben. Erst
nach dem Abschluss der Entwick-
lungsphasen wird in der Konfigu-
rationsphase aus dem Plattform-
modell Code fiir die Zielplattform
generiert und anschlieffend konfi-
guriert, um ihn durch Deployment
auf die Laufzeitumgebung tibertra-
gen zu konnen.

Als weiterer Unterschied zu
MDA ist das RADES-Vorgehensmo-
dell auf die Domine der Anwen-
dungsintegration spezialisiert. Fiir
diese Domine wird ein Regelwerk
definiert, wie Modelle der einzelnen
Phasen aufgebaut sind und wel-
che Bedingungen erfiillt sein miis-
sen, damit ein Modell am Ende
einer Phase als syntaktisch voll-
stindig definiert angesehen werden
kann. Verbunden mit den Notati-
onsvorgaben, die in Abschnitt5.2
vorgestellt werden, wird dies im
Sinne von [17] als doménenspezifi-
sche Modellierungssprache bezeich-
net.

Die Modelle aller Phasen wer-
den in dem bereits erwahnten zen-
tralen Repository nach jeder Ent-
wicklungsphase abgelegt. Nachfol-
gend beschreiben wir, welche Infor-
mationen die Modelle der jeweili-
gen Entwicklungsphasen analog zu
Bild 2 nach deren Abschluss bein-
halten und wie sie in den darauf
folgenden Phasen weiterverwendet
werden, bis dann schliefflich in der
Konfigurationsphase produktspezi-
fischer Code generiert wird und zur
Laufzeitumgebung iibertragen wer-
den kann.

205

206

v

Schwerpunktthema

5.1.1 Geschiiftsprozess entwerfen
und daraus Workflows ableiten
Grundvoraussetzung fiir die Durch-
fithrung eines Integrationsprojek-
tes ist die Formulierung eines Ge-
schiftsprozesses, der den Integra-
tionsbedarf aus Anwendersicht ab-
strakt darstellt. In der Praxis zeigt
sich leider, dass dieser Geschiftspro-
zess den an einem Integrations-
projekt beteiligten Personen oftmals
nicht klar ist. Aus unserer Sicht ist
es aber notwendige Voraussetzung
dafiir, dass der neu zu schaffende
Systemverbund spiter auch genau
die Funktionalitit bietet, die Ziel des
Integrationsprojektes sind.

Aus der Sicht eines System-
verbundentwicklers muss sich die-
ser Geschiftsprozess in Form ei-
nes oder mehrerer Workflows auf
Anwendungen und Ressourcen ab-
bilden lassen. Oft sind fiir einen
Teil der Systeme bereits Schnittstel-
len geschaffen worden, welche die
Systeme untereinander verbinden,
andere Systeme sind womoglich
noch vollig isoliert. Hiufig mochte
man auch trotz bereits vorhande-
ner Schnittstellen diese durch eine
neue Integrationstechnologie ablo-
sen, weil die existierende Losung
veraltet oder problematisch ist.

Workflows konnen somit auch
als Entscheidungsgrundlage fiir die
Integrationsstrategie herangezogen
werden. In manchen Fillen kann
es schlieflich sinnvoller sein, beste-
hende Systemverbiinde mit Mitteln
der vorhandenen Technologie zu er-
weitern, anstatt sie durch eine kom-
plette Neuentwicklung abzulgsen.

Das RADES-Vorgehensmodell
sieht deswegen innerhalb der ersten
Entwicklungsphase die Formulie-
rung von plattformunabhingigen
Workflows vor. Plattformunabhéin-
gig heif’t, dass in dieser ersten Phase
nur Anwendungen, Systeme und
Ressourcen, sowie deren logische
Abhiangigkeiten untereinander be-
trachtet werden, deren Funktiona-
litdt und Daten fiir die Ausfithrung
des Workflows aus fachlicher Sicht
benotigt werden. Folglich spielen
hier EAI-Architekturen und Platt-
formen, Middleware-Systeme oder

prézise Beschreibungen von Schnitt-
stellen und Daten noch keine Rolle.
Das Ergebnis dieser Phase ist somit
eine prizise Ubersicht iiber die zu
integrierenden Systeme und deren
Beziehungen zueinander in Form
von mehreren UML-Diagrammen,
die zusammengefasst das plattfor-
munabhingige Modell (PIM) bil-
den.

5.1.2 Detaillierung der Workflows
aus Architektursicht Insbesondere
zur Unterstiitzung von Wartungs-
aufgaben im spiteren Betrieb, wie
beispielsweise die Migration auf ein
EAI-Produkt eines anderen Her-
stellers mit der gleichen Architek-
tur, ist es nun notwendig, in ei-
nem nichsten Entwicklungsschritt
das PIM zu einer plattformabhin-
gigen Formulierung zu detaillieren,
dem plattformspezifischen Modell
(PSM). Unter einer plattformab-
hingigen Formulierung verstehen
wir dabei eine Formulierung unter
Berticksichtigung der angestrebten
Integrationsarchitektur, ohne da-
bei auf spezifische Merkmale eines
bestimmten Integrationsproduktes
einzugehen. Ein Beispiel dafiir ist
die von vielen EAI-Produkten un-
terstiitzte ,Hub-and-Spoke® Archi-
tektur, bei der ein zentraler Broker
die Transformation und Zustellung
von Nachrichten an die iiber An-
wendungs- und Ressourceadapter
angebundenen Anwendungen und
Ressourcen iibernimmt. Der Uber-
gang von PIM zu PSM soll dabei
durch automatische Modelltransfor-
mation unterstiitzt werden, welche
durch vordefinierte Architekturpro-
file moglich wird Abschnitt5.1.6.
Diese Profile beinhalten Informa-
tionen iiber diejenige Integrations-
architektur, welche die im PIM
formulierten Beziehungen zwischen
den Systemen technisch realisieren
soll. Das so erstellte Grundgeriist
des PSM muss nun vom Entwickler
zu einem vollstindigen PSM erwei-
tert werden.

5.1.3 Detaillierung des Produkt-
modells Erst in der dritten Ent-
wicklungsphase miissen auch pro-

duktspezifische Figenschaften be-
ricksichtigt werden, wie beispiels-
weise Namenskonventionen von
Warteschlangen (Queues). Dazu soll
das in der zweiten Phase erstellte
PSM wiederum mit Hilfe eines fiir
das einzusetzende Integrationspro-
dukt entwickelten Produktprofils
zu einem Plattformmodell-Geriist
transformiert und anschlieBend
vom Entwickler zum vollstindigen
Plattformmodell (PM) vervollstin-
digt werden.

Das Plattformmodell soll so de-
tailliert ausgestaltet sein, dass sich
daraus der notwendige Code fiir
die Zielplattform ableiten lasst. Hier
miissen deswegen viele produkt-
spezifische Merkmale, wie beispiels-
weise Strukturen von Transforma-
tionsregeln, in das Modell einge-
bracht werden.

5.1.4 Konfiguration und Laufzeit
Nach dem Abschluss aller Entwick-
lungsphasen kann aus dem im Re-
pository abgelegten Plattformmo-
dell Code generiert und fiir das
Deployment auf die Laufzeitum-
gebung konfiguriert werden. Dazu
sind wiederum Informationen iiber
das Laufzeitsystem notwendig, bei-
spielsweise miissen die zuvor in
UML grafisch notierten Nachrich-
tenformate in eine fiir die Zielplatt-
form verstindliche Form gebracht
werden. Auch auf dieser Ebene sol-
len Anderungen an den generier-
ten Ergebnissen prinzipiell moglich
sein. Ziel muss es natiirlich dennoch
sein, die Modelle der dritten Ent-
wicklungsebene derart prizise aus-
zugestalten, dass moglichst gar keine
Anderungen an dem daraus gene-
rierten Code notwendig sind.

5.1.5 Deployment Das Deploy-
ment ist im Sinne des vorgestellten
Entwicklungsprozesses nicht mehr
Teil der Entwicklung, sondern Teil
des Betriebs. Es hiangt sehr stark
von den Werkzeugen und Beson-
derheiten der EAI-Plattform ab, mit
der das Integrationsprojekt realisiert
wird. Beim Deployment kann es
natiirlich passieren, dass sich Feh-
ler bemerkbar machen, die einen

Riicksprung in den Entwicklungs-
prozess erforderlich machen. Bei-
spielsweise kann sich schlimmsten-
falls erst hier eine Nachrichtenfor-
matdefinition als fehlerhaft erwei-
sen, weswegen man dann das Platt-
formmodell der dritten Entwick-
lungsphase oder moglicherweise so-
gar das plattformspezifische Mo-
dell (Architekturmodell) der zwei-
ten Entwicklungsphase tiberarbeiten
muss. Dabei besteht die Gefahr, oder
in manchen Fillen vielleicht sogar
die Notwendigkeit, dass die not-
wendigen Uberarbeitungen nicht an
den Modellen der jeweiligen Ent-
wicklungsphase vorgenommen wer-
den, sondern direkt an den fir
das Deployment generierten Daten.
Hier ist deswegen ein Mechanismus
zur Anderungspropagation analog
zu Abschnitt 3.2 notwendig.

5.1.6 Unterstiitzung der Pha-
seniiberginge durch Modelltrans-
formation und Codegenerierung
Wie bereits angesprochen werden
in der ersten Phase, der plattfor-
munabhingigen Entwicklung, zu-
nichst die logischen Aspekte des
zu erstellenden Systemverbundes
beantwortet, im wesentlichen wer
kommuniziert wann mit wem.

Vor dem Ubergang in die
nichste Phase, in der das platt-
formspezifische Modell erstellt wird,
muss zundchst die Zielarchitektur
ausgewdhlt werden. Sehr viele Her-
steller von EAI-Produkten setzen bei
ihren Produkten auf eine Sternar-
chitektur mit einem zentralen Bro-
ker. Dieser bindet alle zu integrie-
renden Anwendungen tiber spezielle
Anwendungsadapter an sich und
steuert iiber eine regelbasierte Nach-
richtenzustellung oder einen Pu-
blikations- und Subskriptionsme-
chanismus (eng.: Publish/Subscribe)
den Nachrichtenverkehr zwischen
den angebundenen Systemen. Hiu-
fig werden auch Busarchitekturen
implementiert. Hier wird in der
Regel der Publikations- und Sub-
skriptionsmechanismus bevorzugt
eingesetzt, eine regelbasierte Nach-
richtenzustellung kann damit aber
auch realisiert werden.

Aufgrund der gemeinsamen
moglichen Kommunikationsmuster
konnen diese Systeme trotz ih-
rer architektonischen Unterschiede
auf dieser Ebene zunichst gemein-
sam behandelt werden. Sie lassen
sich deswegen so mit den zwei Ar-
chitekturschablonen ,,Stern- oder
Busarchitektur mit regelbasierter
Nachrichtenzustellung® und ,,Stern-
oder Busarchitektur mit Publikati-
ons- und Subskriptionsmechanis-
mus® beschreiben, woraus sich ein
Grundgeriist eines plattformspezi-
fischen Modells fiir diese Archi-
tekturen aus dem plattformunab-
hingigen Modell generieren lasst.
Auch andere EAI-Architekturen las-
sen sich so abbilden. Beispielsweise
kann die Architektur eines Integrati-
onsproduktes, das die Web Services-
Technologie implementiert, von den
oben genannten typischen EAI-Ar-
chitekturen abweichen und dennoch
alle wichtigen Konzepte von EAI
realisieren.

Nach der manuellen Verfeine-
rung dieses Grundgertists zu einem
vollstindig definierten PSM kann
der Ubergang zu einem Plattform-
modell vollzogen werden. Erst hier
kommen auch technische Spezialiti-
ten der jeweiligen Implementierun-
gen zum Tragen. Vor dem Uber-
gang zum Plattformmodell muss
deswegen die Entscheidung fiir ein
konkretes Produkt zur Realisierung
des Integrationsszenarios gefallen
sein. Um das plattformspezifische
Modell zu einem Grundgeriist ei-
nes Plattformmodells transformie-
ren zu konnen, sind deswegen auch
hier Transformationsprofile in Form
von Produktprofilen notwendig, die
Informationen tiber die speziellen
Ausprigungen des Produkts bein-
halten.

Nachdem das generierte Grund-
geriist des Plattformmodells zu
einem vollstindig definierten Platt-
formmodell manuell verfeinert
wurde, steht als letzter Schritt des
Entwicklungsprozesses die Gene-
rierung von Konfigurationsdaten,
Code, oder anderen vergleichbaren
Information iber die Zielplatt-
form an. Deswegen werden hier

neben dem Plattformmodell weiter-
gehende technische Informationen
iiber die Zielplattform zur Gene-
rierung benétigt, beispielsweise wie
Nachrichtenformate technisch re-
présentiert werden, oder in welcher
Art und Weise Transformationsre-
geln technisch ausgedriickt werden.

Durch die starken Abhingig-
keiten, die insbesondere zwischen
zwei benachbarten Phasen existie-
ren, bieten sich Mechanismen an,
die einen zumindest semi-automa-
tischen Ubergang zwischen benach-
barten Phasen ermdglichen. Die
hier vorgestellte profilunterstiitzte
Modelltransformation soll dies fiir
RADES ermdglichen. Offensichtlich
ist, dass die jeweiligen Modellin-
terpreter, welche die Transforma-
tion eines Modells zu einem Mo-
dell der nichsten Phase durchfiih-
ren, dazu sehr viel Wissen iiber
die Beschaffenheit von Modellen
der Ausgangs- und Zielphase be-
notigen missen. Das semantische
Wissen tiiber die Modelle gelangt
folglich erst durch die Modellin-
terpreter in unser Vorgehensmodell.
Obwohl diese Modellinterpreter fiir
RADES bisher noch nicht existieren,
zeigen Ansdtze wie MIC [17], dass
dieser Ansatz grundsitzlich reali-
sierbar ist.

5.2 Modellierung bei RADES

Fir die Darstellung der Informa-
tionen in den jeweiligen Ebenen
sieht die OMG fir MDA eine Mo-
dellierung mit UML (Unified Mo-
deling Language) vor. Speziell fiir
EAI hat die OMG inzwischen auch
eine UML-Profilspezifikation entwi-
ckelt [12]. Auf der Notation die-
ses Profils basiert auch die Mo-
dellierung bei RADES, die wir in
diesem Abschnitt beispielhaft vor-
stellen wollen. Aufbauend auf dem
letzten veroffentlichten Dokument
der OMG zu ,,UML Profile for
EAI“ werden bei RADES zwei gin-
gige Modellierungsansitze unter-
stiitzt, nidmlich Kollaborationen und
Aktivititen.

1. Kollaborationen: mit ihnen mo-
delliert man die Art und Weise

207

der Zusammenarbeit zwischen
den zu integrierenden Syste-
men, beispielsweise in Form
von Abhingigkeiten zwischen
den Systemen. Auflerdem wer-
den die Nachrichtenfliisse defi-
niert. Als Diagrammtypen kom-
men Klassen- und Kollaborati-
onsdiagramme zum Einsatz,

2. Aktivititen: sie formulieren das
Modell des Geschiftsprozesses
beziiglich der zu implementie-
renden Integrationspunkte auf
verschiedenen Abstraktionsebe-
nen durch die Modellierung von
Kontroll- und Nachrichtenfliis-
sen. Als Diagrammtypen kom-
men hier Aktivitits- und Se-
quenzdiagramme zum FEinsatz.

Die UML-Elemente der jewei-
ligen Diagrammtypen werden um
Stereotypen erginzt, um deren Rolle
im Diagramm klar kennzeichnen zu
konnen. Dadurch wird der Einsatz
von Modellinterpretern zum Uber-
gang in die nachfolgenden Phasen
moglich, analog zu Abschnitt 5.1.6.

Zur Modellierung werden in
der ,,UML Profile for EAI“-Spezifi-
kation Stereotypen fiir Anschliisse
(Terminal), Operatoren (Operator)
und Operatoren-Verbiinde (Com-
pound Operator), Ressourcen (Re-
source) und Nachrichtenformate
(Message Format) definiert (Bild 3).

Schwerpunktthema

Einige dieser Stereotypen besitzen
auch Unterstereotypen. Der Ste-
reotyp Resource beispielsweise be-
sitzt die Unterstereotypen Database,
Queue und Subscription Table, um
Datenbanken, Warteschlangen von
Messaging-Middleware, sowie Sub-
skriptionstabellen zu beschreiben.
Modelle fiir Subskriptionstabellen
werden fiir EAI-Systeme benotigt,
die Publikations- und Subskripti-
onsmechanismen zur Nachrichten-
verteilung anbieten.

Diese Stereotypen helfen nun,
die verschiedenen Komponenten ei-
nes Integrationsszenarios zu kenn-
zeichnen. Legacy-Systeme beispiels-
weise werden bei einem noninvasi-
ven Integrationsansatz' als Operato-
ren betrachtet, deren innerer Aufbau
fiir die Einbindung in die Integ-
rationslandschaft nicht relevant ist.
Sie erhalten deswegen den Stereo-
typ PrimitiveOperator. In der ers-
ten Entwicklungsphase wird die Art
und Weise, wie die Systeme un-
tereinander technisch angebunden
sind, nicht formuliert. Hier werden
nur Assoziationen zwischen Opera-
toren, Operatoren-Verbiinden und

!Integration iiber bereits bestehende
Schnittstellen des Anwendungssystems. Im
Gegensatz dazu wird bei einem invasiven
Integrationsansatz das Anwendungssystem
so verdndert, dass optimierte Schnittstellen
zum Anwendungssystem fiir die Integration
zur Verfiigung stehen.

Operator (hier ein PrimitiveOperator, der genau

dann verwendet wird, wenn ein Operator

entweder keine innere Struktur hat oder wenn

/—_I dessen innere Struktur ohne Belang ist, T
Term‘mal beispielsweise Systemanwendungen) +outZName
«lnput» «PrimitiveOperator» «Output»
Ylinput +abel1 X1 +abel2 Y2output
handle(in content : Y1) handle(in content : Y2)
~
~
«MessageContent» «MessageContent» =

Y1 Y2 B

Some description of what the operator does.

Nachrichtenformat I

Bild 3 Terminals, Operator und Nachrichtenformate.

208

Ressourcen in Klassendiagrammen
modelliert, sowie die zeitliche Ab-
folge von Interaktionen zwischen
diesen Komponenten in Aktivitdts-
oder Sequenzdiagrammen.

Erst in der zweiten Entwick-
lungsphase werden Eingangs- und
Ausgangsschnittstellen (als Termi-
nal-Stereotyp), Nachrichten- und
Datentypen, sowie die Art und
Weise des Informationsaustauschs
modelliert, beispielsweise ob die-
ser iiber Nachrichten oder Pro-
zeduraufrufe stattfindet. Bei einer
plattformspezifischen Modellierung
einer ,hub-and-spoke“ EAI-Archi-
tektur zum Beispiel werden Ein-
und Ausgangsschnittstellen oft tiber
Adapter mit dem Integrationsserver
verbunden, wofiir die Stereotypen
SourceAdapter bzw. TargetAdapter
vorgesehen sind.

In der letzten Entwicklungs-
phase werden dann produktspezi-
fische Merkmale modelliert, bei-
spielsweise produktspezifische Fel-
der in Nachrichtenképfen. Je nach
Produkt kann es hier notwendig
sein, eigene Stereotypen zu definie-
ren, es stehen aber mindestens alle
Konstrukte der PSM-Ebene zur Ver-
fiigung.

5.3 Unterstiitzung der Szenarien
In Abschnitt3 haben wir Szena-
rien formuliert, in denen unserer
Meinung nach die zentralen Aufga-
ben wihrend des Lebenszyklus ei-
ner Integrationslandschaft bearbei-
tet werden miissen. Wir wollen diese
Szenarien an dieser Stelle noch ein-
mal aufgreifen und darlegen, warum
sich RADES unserer Meinung nach
besonders zur Unterstiitzung dieser
Szenarien eignet.

Szenario 3.1, in dem wir eine
zentrale, einheitliche und automati-
sierte Dokumentation fordern, wird
durch RADES durch zwei Konzepte
unterstiitzt. Erstens sieht RADES
iiber ein Repository eine zentrale
Datenhaltung der Modelle und der
darin implizit und explizit enthal-
tenen Dokumentation vor. Zwei-
tens sorgt die einheitliche Nota-
tion der Modelle in allen mit
RADES durchgefiihrten Projekten

dafiir, dass diese besser als bishe-
rige Ansitze fir die Dokumentation
werkzeuggestiitzt aufbereitet werden
konnen. Szenario3.2 wird durch
das RADES-Vorgehensmodell un-
terstiitzt, das einen ,roten Faden®
durch den Entwicklungsprozess bil-
det und durch die unterschiedli-
chen Abstraktionsebenen verschie-
dene Sichten auf die Integrationsls-
sung bietet. Durch die drei Abstrak-
tionsebenen bietet RADES somit
auch Aufsetzpunkte fiir die Szena-
rien 3.3 und 3.4, je nachdem, ob sich
Anderungen an den Workflows, an
der Architektur, oder am Produkt-
modell widerspiegeln sollen.

5.4 Verwandte Arbeiten

Es gibt Forschungsprojekte, die in
verschiedener Hinsicht einen #hn-
lichen Ansatz wie das RADES-Pro-
jekt verfolgen. Beztiglich der Ent-
wicklungskonzepte sind hier beson-
ders die Projekte rund um Model-
Integrated Computing hervorzuhe-
ben [17; 18]. Bei MIC werden in ei-
ner dominenspezifischen Modellie-
rungssprache alle relevanten Infor-
mationen tiber ein zu entwickelndes
System modelliert und mit Hilfe von
Modellinterpretern in andere Mo-
delle transformiert oder zu Code
generiert. Da MIC aber generell fiir
beliebige Dominen verwendbar sein
soll, legt es im Gegensatz zu RADES
zum einen kein Vorgehensmodell
fest, und gibt zum anderen auch
keine dominenspezifische Modellie-
rungssprache vor, beispielsweise fiir
die Anwendungsintegration.

Das Projekt ,,Integration Engin-
eering“ [19] bearbeitet eine dem
RADES-Projekt dhnliche Aufgaben-
stellung. Ziel dieses Projektes ist
die Entwicklung einer Methodik
zur Abbildung kooperativer Ge-
schiftsprozesse auf eine internetba-
sierte IT-Struktur. Da es sich noch
um ein recht junges Projekt handelt,
sind bisher leider allerdings nur we-
nige Informationen verfiigbar.

6 Zusammenfassung

Ein immer wieder unterschitzter
Faktor bei der Systemintegration ist
die notwendige Agilitit und Flexibi-

litidt, da immer wieder neue IT-Kon-
zepte und Technologien entstehen
und auch eingesetzt werden. Wei-
terhin gibt es immer neuen Bedarf
fir die Integration von Systemen —
sei es zur Optimierung interner Ab-
laufe, die Auswirkung einer Fusion
oder die zeitlich begrenzte Koopera-
tion mehrerer Partner.

Bestehende kommerzielle Pro-
dukte erzielen meistens auf Basis der
ihnen zugrunde liegenden Techno-
logien und Konzepte eine geeignete
Integration entsprechend dem ak-
tuellen (Projekt-)Bedarf. Uber die
Zeit entstehen so aber eine Reihe
isolierter Integrationsinseln, die sich
nur selten miteinander integrieren
lassen. Langfristig betrachtet wird
deren Integration mit anderen Sys-
temen oder anderen Integrationsin-
seln aber notig werden.

Die OMG hat andererseits mit
ihren Arbeiten zur Model Driven
Architecture (MDA) ein wichtigen
Schritt zur Einfithrung homoge-
nisierter Beschreibungsmodelle be-
gonnen. Die Anwendung dieser
Konzepte erfordert jedoch eine wei-
tere Konkretisierung entsprechend
der aktuellen Domine. Weiterhin
fehlt es natiirlich noch an einer an-
gemessenen Tool-Unterstiitzung.

Mit unserem Ansatz versuchen
wir das Beste beider Welten zu
verbinden. Dabei fokussieren wir
uns auf die Domine der Anwen-
dungsintegration (EAI). Die Basis
bilden MDA und UML. In Ab-
schnitt 5 haben wir notwendige Er-
weiterungen des Vorgehensmodells
sowie die Auswahl der fiir die
Modellierung benétigten Stereoty-
pen beschrieben. Unsere Erweite-
rungen sollen insbesondere sicher-
stellen, dass eine Abbildung auf
konkrete Technologien und Pro-
dukte moglich ist. Beim Uber-
gang zum Betrieb riicken dann
die kommerziellen Tools in den
Vordergrund, ohne dass wir un-
ser durchgingiges Modell durchbre-
chen.

Obwohl im Detail sowohl man-
che konzeptionellen als auch tech-
nische Fragen noch offen sind, sind
wir sicher, dass unser Ansatz eine

wesentliche Verbesserung der bisher
gingigen Praxis bei der Systemin-
tegration darstellt, die bisher zu
sehr technologiegetrieben durchge-
fithrt wird und sich unserer Mei-
nung nach zu wenig mit den fach-
lichen Anforderungen beschiftigt.

Literatur

[1] H. Hiuschen: EAI — Enterprise
Application Integration, URL:
http:/www.ifi.unizh.ch/ikm/
Vorlesungen/ebusiness/ws03/material/
FolienEAI_Fpdf

[Zugriff am 30.01.2004].

S. Méckel: EAI-Uberblick und
Basistechnologien des EAI, URL:
http://ais.informatik.uni-leip-
zig.de/download/ 2002s_s_ieb/
SilvioMoeckel _EALpdf

[Zugriff am 30.01.2004].

D. Roedner: The Next Wave of
Integration Platforms. — In: eai Journal,
September 2002, S. 12-15.
[4] D. Draxler, C. Ungerbick: Enterprise

S

W

Application Integration. Seminararbeit,
Universitat Wien 2002, S. 37.
W. van den Heuvel, W. Hasselbring,

o

M. Papazoglou: Top-Down Enterprise
Application Integration with Reference
Models. — Third International
Workshop on Engineering Federated
Information Systems, Dublin, Ireland,
Juni 2000.

Object Management Group (OMG):
Model Driven Architecture (MDA),
URL: http:/www.omg.org/mda
[Zugriff am 26.01.2004].

[7] W. Emmerich: Distributed Component

=

Technologies and their Software
Engineering Implications. — In:
Proceedings of the 24th International
Conference on Software Engineering,
Mai 2002, S. 537-546.

Object Management Group (OMG):
Unified Modeling Language (UML),
URL: http:/www.omg.org/uml
[Zugriff am 26.01.2004].

J. Miller: What UML should be. —

In: COMMUNICATIONS OF THE
ACM, November 2002/Vol. 45, No. 11,
S. 67-69.

B. Selic, G. Ramackers, C. Kobryn:
Evolution, not Revolution. — In:
COMMUNICATIONS OF THE
ACM, November 2002/Vol. 45, No.
11, S. 70-72.

£

[9

[10

209

210

(11]

[12]

(13]

[14]

[15]

[16]

(17]

Schwerpunktthema

G. Fairbanks: Why Can’t They Create
Architecture Models Like ,Developer
X“? An Experience Report. — In:
Proceedings of the 25th International
Conference on Software Engineering,
Mai 2003, S. 548-552.

Object Management Group (OMG):
UML Profile for Enterprise Ap-
plication Integration (EAI), URL:
http:/www.omg.org/technology/
documents/modeling_spec_catalog.htm
#UML_for_EAI

[Zugriff am 26.01.2004].

J.H. Hausmann, S. Kent: Visualizing
Model Mappings in UML. In:
Proceedings of the 2003 ACM
symposium on Software visualization,
Juni 2003, S. 169-178.

SAP AG: SAP Exchange Infrastructure,
URL: http:/help.sap.com/content/docu/
netweaver/cont_netw_xi.htm

[Zugriff am 26.01.2004].

IBM: WebSphere InterChange Server
and WebSphere Business Integration
Toolset documentation, URL:
ftp:/ftp.software.ibm.com/software/
websphere/integration/ wicserver/
library/doc/wics422/wics422core.zip
[Zugriff am 30.01.2004].

P. Bernstein et al.: A Vision for
Management of Complex Models,
URL: ftp:/ftp.research.microsoft.com/
pub/tr/tr-2000-53.pdf

[Zugriff am 05.04.2004].

J. Sztipanovits, G. Karsai: Model-
Integrated Computing, URL:

http:/csdl.computer.org/dl/mags/co/
1997/04/r4110.pdf
[Zugriff am 05.04.2004].

[18] A. Ledeczi et al.: The Generic
Modeling Environment, URL:
http:/www.isis.vanderbilt.edu/
Projects/gme/GME20000verview.pdf
[Zugriff am 05.04.2004].

[19] Fraunhofer IAO: Projekthomepage
»Integration Engineering",

URL: http:/www.sw-manage-

ment.iao.fraunhofer.de/projekte/
sm_05.html#IE
[Zugriff am 05.04.2004].

1 Clemens Dorda hat an der Universitit
Stuttgart Informatik studiert und sein Stu-
dium 2002 mit dem Diplom abgeschlossen.
Er ist seitdem wissenschaftlicher Mitarbeiter
von Prof. Dr.-Ing. habil. Bernhard Mitschang

am Institut fiir Parallele und Verteilte Sys-
teme (IPVS) der Universitit Stuttgart.
Adresse: Universitit Stuttgart, Institut fiir
Parallele und Verteilte Systeme (IPVS)
Abteilung Anwendersoftware, Univer-
sitétsstr. 38, 70569 Stuttgart, E-Mail:
Clemens.Dorda@informatik.uni-stuttgart.de

2 Dr. Hans-Peter Steiert hat Informa-

tik an der Universitit Kaiserslautern studiert
und 2001 in der Arbeitsgruppe von Prof.
Hirder an der Universitit Kaiserslautern
promoviert. Seit 2001 ist er als wissenschaft-
licher Mitarbeiter bei DaimlerChrysler im
Forschungsbereich IT for Engineering titig.
Adresse: DaimlerChrysler AG, Research and
Technology, RIC/ED, Postfach 2360, 89013
Um, E-Mail:

Hans-Peter.Steiert@DaimlerChrysler.com

3 Dr. Jiirgen Sellentin hat Informatik
an der Universitit Kaiserslautern studiert

und 1999 in der Arbeitsgruppe von Prof.
Mitschang an der Universitit Stuttgart pro-
moviert. Seit 1996 ist er Mitarbeiter von
DaimlerChrysler, wo er bis 2003 das Team
Integrationsarchitekturen innerhalb des For-
schungsbereiches IT for Engineering geleitet
hat. Seit Sommer 2003 ist er verantwortlich
fiir das Test & Integration Lab im Bereich
Technology Integration ¢ Platform Deve-
lopment des zentralen DaimlerChrysler IT
Managements.

Adresse: DaimlerChrysler AG, Technology
Integration (ITI/TP), HPC Z354, 70546
Stuttgart, E-Mail:

juergen.sellentin@daimlerchrysler.com

