
it 2/2005

Schwerpunktthema ���

TinyCubus: An Adaptive
Cross-Layer Framework
for Sensor Networks
TinyCubus: Ein Adaptives Cross-Layer Framework für Sensornetze

Pedro José Marrón, Daniel Minder, Andreas Lachenmann, Kurt Rothermel, Universität Stuttgart

Summary With the proliferation of sensor networks and
sensor network applications, the overall complexity of such
systems is continuously increasing. Sensor networks are now
heterogeneous in terms of their hardware characteristics and
application requirements even within a single network. In add-
ition, the requirements of currently supported applications are
expected to change over time. All of this makes develop-
ing, deploying, and optimizing sensor network applications
an extremely difficult task. In this paper, we present the
architecture of TinyCubus, a flexible and adaptive cross-
layer framework for TinyOS-based sensor networks that aims
at providing the necessary infrastructure to cope with the
complexity of such systems. TinyCubus consists of a cross-
layer framework that enables optimizations through cross-
layer interactions, a configuration engine that distributes com-
ponents efficiently by considering the roles of the sensor
nodes and provides support to install components dynami-
cally, and a data management framework that selects and
adapts both system and data management components. Fi-
nally, relevant research challenges associated with the devel-
opment of each framework are identified and discussed in the
paper. ��� Zusammenfassung Mit der zunehmenden

Verbreitung von Sensornetzen und Sensornetzanwendungen
wächst die Komplexität solcher Systeme ständig an. Sensor-
netze sind nun in Bezug auf ihre Hardware-Eigenschaften und
Anwendungsanforderungen häufig sogar in einem einzelnen
Netz heterogen. Außerdem wird erwartet, dass die Anforde-
rungen der Anwendungen sich mit der Zeit ändern. Dies alles
erschwert es, Sensornetzanwendungen zu entwickeln, einzu-
setzen und zu optimieren. In diesem Artikel stellen wir die
Architektur von TinyCubus vor, einem flexiblen und adap-
tiven Cross-Layer Framework für TinyOS-basierte Sensornetze,
dessen Ziel es ist, die notwendige Infrastruktur bereitzustel-
len, um die Komplexität solcher Systeme zu unterstützen.
TinyCubus besteht aus einem Cross-Layer-Framework, das
Optimierungen durch Cross-Layer-Interaktionen ermöglicht, ei-
ner Configuration-Engine, die Komponenten effizient durch
die Beachtung der Rollen der Sensorknoten verteilt und die
dynamische Installation von Komponenten erlaubt, und ei-
nem Data-Management-Framework, das sowohl System- als
auch Datenverwaltungskomponenten dynamisch auswählt und
adaptiert. Schließlich werden in diesem Beitrag relevante For-
schungsprobleme, die die Entwicklung der einzelnen Teile be-
treffen, bestimmt und diskutiert.

KEYWORDS C.2.1 [Network Architecture and Design – Wireless communication], C.2.3 [Network Operations – Network
management], D.4.7 [Organization and Design – Distributed systems], sensor networks, system architecture,
adaptation, cross-layer

1 Introduction
In the last few years wireless sen-
sor networks have been proposed
as a way to unobtrusively gather
real-world data. A sensor network

consists of small networked de-
vices (also called nodes) that are
equipped with sensors. Each node is
able to process data in the network
and transmit it using multi-hop

communication. Furthermore, most
nodes are resource-constrained so
that energy consumption plays an
important role. Additionally, de-
pending on the field of application,

it – Information Technology 47 (2005) 2  Oldenbourg Verlag 87



Schwerpunktthema

nodes do not have to be stationary
and may even move at high speeds.

In order to acquire data, sen-
sor networks use various kinds of
hardware. Although many research
groups use Berkeley Motes together
with TinyOS [6], there is no stan-
dard platform for sensor nodes yet.
Even different models of motes run-
ning TinyOS differ greatly and new
hardware is continuously being de-
veloped. Likewise, applications are
rapidly evolving and are, therefore,
highly heterogeneous. New applica-
tions continue to appear and al-
though there are similarities, each
of them has its own specific re-
quirements. For example, there are
well-known applications whose goal
is to monitor ecological phenomena
using sensor networks [16], whereas
others are developed for military
operations, medical care or rescue
operations.

Finally, the sensor network itself
might also be heterogeneous: In cur-
rent applications, a network often
contains devices with different func-
tionality. For example, some nodes
are equipped with special kinds of
sensors, whereas others may have
more processing power for complex
calculations or act as gateways to
infrastructure-based networks. Fur-
thermore, the specific requirements
for the network depend heavily on
the application. If these require-
ments change or another applica-
tion is executed, the network itself
has to adapt, and this is no easy
task. All of this makes developing,
optimizing, and deploying sensor
network applications a complex and
error-prone task. Therefore, in order
to simplify adaptive application de-
velopment, system software in the
form of a flexible, adaptive frame-
work that supports a large number
of hardware platforms and applica-
tions is clearly needed.

In this paper we present the
architecture of TinyCubus [10; 11],
which aims at providing the ne-
cessary infrastructure to support
the complexity of such systems.
TinyCubus consists of a cross-
layer framework, a configuration

engine, and a data management
framework. The cross-layer frame-
work supports data sharing and
other forms of interaction between
components in order to achieve
cross-layer optimizations. The con-
figuration engine allows code to
be distributed reliably and effi-
ciently by taking into account the
topology of sensors and their as-
signed functionality. The data man-
agement framework supports the
dynamic selection and adaptation
of system and data management
components.

The remainder of this paper is
structured as follows. The next sec-
tion describes the requirements of
two specific sensor network appli-
cations. Section 3 presents the over-
all architecture of our framework
and gives more detailed informa-
tion about its three parts and the
research challenges associated with
their development and use. Further-
more, in this section we describe
and evaluate the scheme used by the
configuration engine to distribute
code updates in the network. Finally,
Section 4 gives an overview of re-
lated work and Section 5 concludes
this paper and describes future di-
rections.

2 Application Requirements
At the University of Stuttgart we
are working on two sensor net-
work projects that act as canonical
examples for the study of static
and mobile sensor node applica-
tions: Sustainable Bridges [15] and
Cartalk 2000 [12].

The goal of the Sustainable
Bridges project is to provide cost-

Table 1 Differences in requirements for two sensor network applications.

effective monitoring of bridges
using static sensor nodes in order
to detect structural defects. A wide
range of sensor data such as tem-
perature, humidity, vibration, as
well as noice detection and lo-
calization mechanisms are needed
to achieve this goal. In order to
determine the position of cracks,
noise emitted by the bridge is sam-
pled and, by using triangulation
methods, the position of the pos-
sible defect is determined.

In contrast, the goal of the
Cartalk 2000 project is to develop
a cooperative driver assistance sys-
tem that provides an ad-hoc warn-
ing system for traffic jams, acci-
dents, and lane or highway merging.
In addition, information such as
average speed, road conditions, and
position can be requested through
a standard query interface. Since
sensors are integrated into cars, they
move relative to each other and,
therefore, algorithms that are able to
cope with mobile sensors are needed
to accurately process data.

2.1 Application Comparison
Obviously, the Sustainable Bridges
and Cartalk applications have some
similarities. Both are mostly data-
centric or data-driven. They are
also state-based, that is, their needs
might change depending on the
current state of the application. Sus-
tainable Bridges, for example, has
a monitoring state in which it is
most important to detect the oc-
curence of an event and to notify
other nodes as fast as possible. Hav-
ing recorded data with a high sam-
pling rate, the nodes switch to the

88



TinyCubus: AnAdaptive Cross-Layer Framework for SensorNetworks���

analyzing state in which they reliably
exchange and analyze the recorded
data. Moreover, both applications
must be fault-tolerant with respect
to failures and changes in environ-
mental conditions, since they are
expected to operate unattended for
long periods of time. Since both
applications perform sensitive mon-
itoring tasks, they need to be reliable
and the availability of sensors has to
be guaranteed. Finally, since some
of the application requirements may
change over time, the software run-
ning on the sensor nodes should be
able to adapt or reconfigure itself so
that the right functionality can be
chosen at the appropriate time.

However, these applications
also have considerable differences.
Table 1 provides an overview of
the different requirements found in
both applications. In terms of the
data model, the Sustainable Bridges
application has a more specific goal,
and, therefore, it can use a specific
data model, whereas Cartalk needs
a generic data model to support
generic user interaction. Regarding
the query model, in the Sustain-
able Bridges application the user
only needs to be notified when cer-
tain events (material rupture, for
example) occur. Therefore, events
are pushed to the user, and the ap-
plication mostly needs to support
a publish/subscribe-mechanism. On
the other hand, users in Cartalk
need to be able to specify their own
queries. Therefore, Cartalk mostly
requires a pull-based (query-based)
mechanism. In this application only
the data and not the node id is
important, whereas in Sustainable
Bridges the exact source node of
the data has to be known, and
so there is no need for distribu-
tion transparency in this applica-
tion. Moreover, energy constraints
are only important for Sustainable
Bridges and mobile nodes only exist
within Cartalk. Sustainable Bridges,
on the other hand, has very strict
time synchronization requirements
to ensure good event localization
quality, but for Cartalk less accu-
rate synchronization is sufficient.

Finally, regarding topological con-
straints, Sustainable Bridges assumes
that sensor nodes are placed manu-
ally at critical points of the bridge
and so, the exact topology of the
network is well-known. In Cartalk
topological information is limited to
the use of road and city maps.

2.2 Requirements for a Generic
Framework

Despite all these differences, our ex-
emplary applications obviously have
some commonalities. Therefore, it
is possible to simplify the develop-
ment of both applications – and of
others that share some properties
with them – by creating a generic
framework for sensor network ap-
plications.

Such a framework has to pro-
vide the common functionality re-
quired by a broad class of applica-
tions. It has to support the data-
centric model of sensor network ap-
plications and their need for recon-
figuration and flexibility. However,
sensor networks are heterogeneous
and new applications and hard-
ware platforms continuously evolve.
Thus, a generic framework has to

Figure 1 TinyCubus
architecture.

be extensible and flexible to man-
age new application requirements.
It should provide mechanisms for
the parametrization of generic com-
ponents so that they can meet the
requirements of specific applica-
tions. If this is not sufficient, new
application-specific components have
to be installed on the sensor nodes.
The code of these new components
has to be distributed efficiently into
the network to avoid wasting en-
ergy.

Finally, applications react differ-
ently to changes in their environ-
ment, e. g., changes in the mobility
of nodes. They also have differ-
ent optimization parameters, e. g.,
energy or latency. Such a frame-
work must then be able to adapt to
these conditions and support opti-
mizations, especially because of the
resource limitations found in sensor
networks.

The use of a generic framework
or of several more specific frame-
works for different classes of ap-
plications are two possible equiva-
lent solutions that implement these
requirements. In this paper, how-
ever, we present the architecture

89



Schwerpunktthema

of a generic framework, since its
internal structure is the same inde-
pendently of whether or not it is
intended for all classes or just a cer-
tain number of applications.

3 TinyCubus Architecture
The overall architecture of Tiny

Cubusmirrors the requirements im-
posed by the applications and the
underlying hardware. It has been
developed with the goal of creating
a generic reconfigurable framework
for sensor networks. As shown in
Fig. 1, TinyCubus is implemented
on top of TinyOS [6] using the nesC
programming language [3], which
allows for the definition of compo-
nents that contain functionality and
algorithms. We use TinyOS primar-
ily as a hardware abstraction layer.
For TinyOS, TinyCubus is the only
application running in the system.
All other applications register their
requirements and components with
TinyCubus and are executed by the
framework.

TinyCubus itself consists of
three parts: the Tiny Cross-Layer
Framework, the Tiny Configura-
tion Engine, and the Tiny Data
Management Framework, which are
described in the following sections.

3.1 Tiny Cross-Layer Framework
The goal of the Tiny Cross-Layer
Framework is to provide a generic
interface to support parameteriza-
tion of components using cross-
layer interactions. Strict layering
(i. e., each layer only interacts with
its immediately neighboring layers)
is not practical for wireless sen-
sor networks [5] because it might
not be possible to apply certain de-
sirable optimizations. For example,
if some of the application com-
ponents as well as the link layer
component need information about
the network neighborhood, this in-
formation can be gathered by one of
the components in the system and
provided to all others. The second
form of cross-layer interactions has
to do with the execution of custom,
application-specific code via call-
backs to higher-level components.

For example, an application-specific
data analysis function such as a fast
Fourier transform (FFT) can be in-
voked whenever new sensor data is
available.

The Tiny Cross-Layer Framework
provides support for both parame-
ter definition and custom code exe-
cution. Our framework uses a spe-
cification language that allows for
the description of the data types and
information required and provided
by each component. This cross-layer
data is stored in the state reposi-
tory. To deal with custom code, the
cross-layer framework makes use of
TinyCubus′ ability to execute dy-
namically loaded code.

3.1.1 State Repository If layers or
components interact with each
other, there is the danger of loos-
ing desirable architectural proper-
ties such as modularity. Therefore,
in our architecture the cross-layer
framework acts as a mediator be-
tween components. Cross-layer data
is not directly accessed from other
components but stored in the state
repository. Thus, if a component is
replaced (e. g., to adapt to chang-
ing requirements), no component
that uses the old component’s cross-
layer data is affected by the change,
given that the new component also
provides the same or compatible
data. In fact, the new compon-
ent can build on the configuration
of the old one to make the tran-
sition smoother. We expect that
most components available in the
framework will be developed with
cross-layer optimizations in mind.
Thus, they can (and should) provide
cross-layer data even if they do not
use it themselves.

Nevertheless, components must
know what cross-layer data is avail-
able in the state repository. To
supply this knowledge we use a spe-
cification language that allows us to
specify what cross-layer data a com-
ponent needs and provides. From
this specification the system gener-
ates an interface that can be used to
access the data with type safety. In
contrast to other TinyOS interfaces,

this interface is not wired to a spe-
cific implementation but rather to
the data itself. So the developer of
a component does not have to know
which component actually provides
the cross-layer data. Whenever the
data management framework selects
a different component, the wiring
of the interface is adjusted to the
new component. In addition, with
this specification components that
make cross-layer data available can
also determine if other ones use it
and if they have to gather data at all.

Currently, we have implemented
a very basic version of the state
repository that supports data shar-
ing between components although
it does not include the specifi-
cation language and support for
adaptation yet. We use this simpli-
fied cross-layer framework to refine
the requirements for our final im-
plementation and to get a better
understanding of cross-layer inter-
actions in general.

3.1.2. Custom Code One commonly
used approach for cross-layer opti-
mizations is to merge conceptually
separate functionality into one layer
or component. For instance, the
routing and application layers are
sometimes implemented as a single
component. However, these kinds
of optimizations hinder the modu-
larity of applications. In addition,
they would prevent the data man-
agement framework from exchang-
ing just the routing component,
for example. Therefore, the interac-
tion of components has to be re-
duced to interactions through their
interfaces.

In a layered architecture, if
layers not directly adjacent interact,
all layers in between have to extend
their interface to relay this inter-
action. However, narrow interfaces
have the advantage that they are very
simple: they only provide methods
that are actually needed for a func-
tional requirement. Therefore, our
approach does not extend the inter-
face of all components between two
interacting ones. Instead, we pro-
vide support for the execution of

90



TinyCubus: AnAdaptive Cross-Layer Framework for SensorNetworks���

application-specific code in lower-
layer components via callbacks.

TinyOS already provides some
support for callbacks with its sep-
aration of interfaces from imple-
menting components. However, the
TinyOS concept for callbacks is
not sophisticated enough for our
purposes, since the wiring of com-
ponents is static. As explained in
Section 3.2, with TinyCubus com-
ponents can be exchanged at run-
time. Therefore, both the usage of
a component and callbacks have
to be directed to the new com-
ponent if a component is replaced.
Therefore, in our system interfaces
are not wired to specific compo-
nents. Instead, they are wired to
a component type such as “Routing
component”.

With TinyOS it is possible to
wire several components to a sin-
gle interface. This is also true for
our usage of callbacks for the exe-
cution of custom code. However, in
many cases it might not be desirable
to wire more than one compon-
ent to a callback. For example, if
the called-back component modifies
a network packet, it expects its mod-
ifications not to interfere with other
components responding to the same
callback. One possible solution to
this problem is to limit the number
of components wired to a callback
interface if there might be conflicts
otherwise. If several callbacks do not
interfere, they could also be called
serially.

3.1.3. Research Challenges There
are numerous research challenges
associated with the design and
implementation of the cross-layer
framework. First of all, it is still an
open question how a broad variety
of cross-layer optimizations can be
supported without loosing modu-
larity and other beneficial properties
of the software architecture. Fur-
thermore, the effects on the whole
system have to be studied when
some components are optimized.
We address this problem of hav-
ing components with different op-
timization goals by selecting only

those with compatible optimiza-
tion parameters in the data man-
agement framework. Nevertheless,
with cross-layer approaches small
changes of parameter values in one
component can cascade to a series
of changes affecting a large num-
ber of components. These effects
have to be investigated in more
detail.

Regarding the state reposi-
tory, one challenge is the evalua-
tion of an appropriate data access
paradigm (e. g., publish/subscribe
or query/response). This issue prob-
ably depends on the data being
accessed – or even the component
using the data. Furthermore, strate-
gies for the storage of state have
to be investigated. Especially, these
strategies have to consider the re-
source limitations characteristic for
sensor networks.

Furthermore, we have to analyze
what types of parameters stored in
the state repository exist and how
they affect the components. For ex-
ample, there are simple parameters
that just modify some properties
of an algorithm that can be eas-
ily computed using the parameter
(e. g., the signal strength of a net-
working component). In addition,
there are other parameters that af-
fect the structure of an algorithm.
They change the execution paths
that are selected if there are condi-
tional statements that only depend
on cross-layer data. If there are those
parameters, the algorithm could be
split into several distinct compo-
nents that only work with some
parameter values. Most of the time
only one of those smaller compo-
nents would be needed for an ap-
plication. A research challenge here
is how this division of a component
can be supported by the framework,
e. g., using code analysis techniques
at compile time.

The main challenge concerning
the support of callbacks is to create
an efficient mechanism for callbacks
to and from dynamically selected
components. Since callbacks are ex-
pected to be used during time-
critical operations, the overhead of

directing the callback to the right
component has to be small. This is-
sue is aggravated by the fact that
components can be exchanged at
run-time which requires an addi-
tional indirection step.

3.2 Tiny Configuration Engine
In some cases parametrization, as
provided by the Tiny Cross-Layer
Framework, is not enough. Installing
new components, or swapping cer-
tain functions is necessary, for ex-
ample, when new functionality such
as a new processing or aggrega-
tion function for the sensed data
is required by the application. The
Tiny Configuration Engine addresses
this problem by distributing and
installing code in the network. Its
goal is to support the configura-
tion of both system and application
components using cross-layer in-
formation about the functionality
assigned to the nodes.

The configuration engine con-
sists of the topology manager and
a code distribution facility. The
topology manager enables self-
configuration of the network by
assigning a role to each node that
depends on its functionality. Our
code distribution facility installs
components dynamically on the
nodes. It uses the role information
to distribute them efficiently in the
network.

3.2.1. Topology Manager The top-
ology manager is responsible for
the self-configuration of the net-
work and the assignment of specific
roles to each node. A role defines
the function of a node based on
properties such as hardware capa-
bilities, network neighborhood, lo-
cation etc. Examples for roles are
SOURCE, AGGREGATOR, and SINK for
aggregation, CLUSTERHEAD, GATE-
WAY, and SLAVE for clustering ap-
plications as well as VIBRATION to
describe the sensing capabilities of
a node.

For role assignment the top-
ology manager uses a generic spe-
cification language and a decentral-
ized role assignment algorithm [14].

91



Schwerpunktthema

In the specification language a role
is defined by a rule. If a rule
is satisfied, the algorithm assigns
the role to the node. For example,
the following rule assigns the role
CLUSTERHEAD if there is no other
node with this role in the 1-hop
neighborhood:
CLUSTERHEAD : : {

count(1-hop) {

role == CLUSTERHEAD

} == 0

}

Copies of the role specification
have to be present on all nodes
because the role assignment algo-
rithm is executed on each of them.
Whenever possible, it only uses local
knowledge. However, if informa-
tion about the network neighbors
is required (e. g., the number of
nodes in the neighborhood with
a given role), the node has to
retrieve this information from its
neighbors while avoiding conflicting
role assignments (see [14] for de-
tails).

3.2.2. Code Distribution Most exist-
ing approaches that distribute code
in sensor networks do it by re-
placing the complete code image.
However, most of the time only
a single component needs to be up-
dated or replaced. In these cases
replacing the complete code image
requires the unnecessary transmis-
sion of many packets, thus wasting
energy. Our configuration engine
only transmits the components that
have changed and integrates them
with the existing code. Of course,
when installing a new compon-
ent, the configuration engine has to
make sure that all dependencies are
fulfilled.

Since energy is a very limited
resource on sensor nodes, the con-
figuration engine tries to reduce the
number of packets for code up-
dates even more. Our code distribu-
tion algorithm leverages application
knowledge about the specific role
assigned to each node and sends
code updates only to those nodes
that belong to a given role and need
this code update.

Moreover, the configuration en-
gine takes care of ensuring the
reliability of code transmissions by
implementing two services, the reli-
able transmission of individual code
fragments and the atomicity of code
updates within a node. This is cru-
cial for the proper update of system
components such as routing proto-
cols that other higher level compo-
nents depend on.

In Section 3.2.4 we describe our
role-based code distribution algo-
rithm in more detail and present
some results of its evaluation.

3.2.3. Research Challenges There
are several research challenges as-
sociated with the configuration en-
gine. One of them is the definition
of the specification language for role
assignment and reconfiguration that
is integrated in the nesC program-
ming language. Furthermore, roles
have to be assigned efficiently be-
cause of the resource constraints of
sensor networks.

Another research challenge deals
with efficient distribution strate-
gies for code updates. Our ap-
proach using information about the
role assignment certainly is a vi-
able solution. However, it is only
suited for sensor networks with
certain properties. For instance, it
assumes that nodes are station-
ary. In addition, there is a need
for synchronized reconfiguration al-
gorithms. These algorithms ensure
that all nodes switch simultaneously
to a new transmission protocol, for
example.

Furthermore, it is still an un-
solved problem how components
can be installed dynamically on the
sensor nodes. When only some parts
of the code are replaced, function
calls have to be redirected. There
are several possibilities to solve
this problem. For example, function
calls could be dynamically mapped
to the address of the currently
used implementation. Alternatively,
all calls of this function could be
rewritten in program memory.

In hybrid network architectures
that consist of both sensor nodes

and more powerful infrastructure-
based nodes, a code repository can
be created on the infrastructure-
based nodes. Whenever a sensor
node needs a new component, it
can be retrieved from this reposi-
tory. However, it is still unclear how
the code repository can be man-
aged efficiently. For example, it is
an open question how the code
available in the repository should
be included in the adaptation de-
cisions of the data management
framework. One possible solution is
that the data management frame-
work preferably selects components
that already have been installed
on the nodes in order to reduce
the network traffic for code up-
dates.

3.2.4. Details of Role-Based Code
Distribution In previous work [10;
11] we describe and evaluate an al-
gorithm that efficiently distributes
code updates by sending them only
to those nodes that need it. This al-
gorithm leverages cross-layer data in
the form of information about the
role assigned to a node to determine
which nodes actually need the code
update.

With this algorithm gateway
nodes broadcast data to their kr-hop
neighborhood, where r is a role and
kr is a parameter that specifies the
number of hops the algorithm can
tolerate over nodes with a differ-
ent role from r. Then nodes forward
such a message to their own kr-
hop neighborhood only if they are
assigned role r, thus flooding the
nodes with role r while using only
those nodes with other roles that
are necessary to reach them. It is
possible to parametrize the algo-
rithm by selecting kr for each role,
adapting to the topology of the net-
work.

In order to reduce the num-
ber of collisions in dense networks
each node waits for a random
time t ∈ [0, ..., tmax] before retrans-
mitting a message. The choice of
tmax is related to the delay observed
in the evaluation. In addition, to
deliver code updates reliably our

92



TinyCubus: AnAdaptive Cross-Layer Framework for SensorNetworks���

algorithm uses implicit acknowledg-
ments, i. e., it treats the forwarding
of the message by a neighbor as
an acknowledgment. If after a cer-
tain amount of time a neighboring
node has not forwarded the mes-
sage, the node waiting for the ac-
knowledgment retransmits it. Both
of these components can be re-
placed with any other scheme for
collision avoidance and reliability,
respectively.

We have implemented this role-
based code distribution algorithm
for motes running TinyOS. In our
experiments, we compare our ap-
proach with a flooding algorithm
that has been augmented with the
same mechanisms as our algorithm
to provide reliability and collision
avoidance. The results presented
here have been obtained using
TOSSIM, the TinyOS simulator pro-
vided by UC Berkeley [8].

For our experiments we ana-
lyzed a scenario from the Sustain-
able Bridges application: Nodes are
placed in an evenly spaced 12 ×4
grid with a rectangle of vibration
sensors enclosing some temperature
nodes. The sensor nodes are as-
signed either the VIBRATION or the
TEMPERATURE role. By having each
VIBRATION sensor forward a mes-
sage to its 1-hop neighborhood, all
VIBRATION nodes can be reached.
There is a single gateway located in
one of the corners. The distance be-
tween the nodes is 10 meters and the
radio model is set to a lossless disc
model with a communication range
of 15 meters. We simulated the algo-
rithms with a maximum transmis-
sion delay tmax of both 150 ms and
600 ms.

Fig. 2 depicts the number of
messages sent on average by each
node. The graph shows the num-
ber of messages sent by both
flooding and our role-based code
distribution algorithm. Role assign-
ments on the x-axis vary from
the original configuration described
above to all nodes being as-
signed the VIBRATION role. The
values shown are the average of
100 runs.

With the flooding algorithm the
average number of messages sent
is about 5 message per node for
tmax = 150 ms and a little more than
2 for tmax = 600 ms. These values
are greater than one and depend on
tmax because the algorithm retrans-
mits messages until all VIBRATION
nodes are reached. As the graph
shows, the number of messages sent
with flooding is independent of the
role assignment because this proto-
col does not consider the roles of
nodes when distributing data.

The performance of our role-
based algorithm is much better than
flooding, particularly when the ratio

Figure 2 Average number of sent messages per node.

Figure 3 Average delay for message delivery.

of vibration to temperature sensors
is low because only vibration nodes
forward the messages. When this
ratio is increased, the algorithm be-
haves more and more like flooding.

Fig. 3 shows the time needed
until all vibration nodes are reached.
The average delays needed by our
role-based algorithm are at most 1.5
times worse than those of flood-
ing since flooding uses more nodes
to forward the data in parallel.
Because of the topology of our net-
work a single node with a long
delay can slow down the complete
algorithm. Nevertheless, by setting
tmax = 150 ms it is possible to keep

93



Schwerpunktthema

the number of sent messages low
while achieving delays just slightly
above those of flooding.

3.3 Tiny Data Management
Framework

The goal of the Tiny Data Man-
agement Framework is to provide
a set of standard data manage-
ment and system components and
to choose the best set of compo-
nents based on three dimensions,
namely system parameters, applica-
tion requirements, and optimization
parameters.

The cube of Fig. 1, called
’Cubus‘, represents the conceptual
management structure of the Tiny
Data Management Framework. It
is motivated by the experience in
developing sensor network applica-
tions. When looking for a suitable
algorithm, at first, a developer has to
pay attention to the characteristics
which are exhibited by the environ-
ment of a sensor node, e. g., density
or mobility of the network. These
influencing factors are called system
parameters. Secondly, application
requirements, such as reliability re-
quirements, additionally restrict the
set of possible algorithms. Finally,
the algorithm is selected that ful-
fills best some optimization criteria,
e. g., minimal energy consumption.

Each dimension itself consists
of several parameters as can be
seen from the previous ’system
parameters‘ example. Since param-
eters are mostly independent, every
combination (i. e., their power set)
has to be considered in each dimen-
sion. The number of parameters
plays, therefore, a crucial role for the
expressiveness as well as the scala-
bility properties of our adaptation
algorithm.

For a sensor network appli-
cation, different types of algo-
rithms are needed. We subdivide
them into system algorithms, which
are responsible for basic opera-
tions such as broadcast or time
sychronization, and data manage-
ment algorithms, which deal mainly
with data handling such as replica-
tion/caching, prefetching/hoarding,

or aggregation. For each type,
several algorithms with different
properties exist. Using our Cubus
model, each algorithm is classi-
fied according to the three dimen-
sions specified above. For example,
a tree based routing algorithm is
energy-efficient, but cannot be used
in highly mobile scenarios with
high reliability requirements. The
Cubus, then, allows for a reference
frame definition where different al-
gorithms can be easily compared.

Each algorithm is implemented
as a component suitable for TinyOS
and TinyCubus. The type of the
component is the same as the
algorithm’s type (i. e., broadcast,
time synchronization, or aggrega-
tion, for example). Each component
is tagged with the classification, i. e.,
the combination of parameters and
requirements in the Cubus, of the
algorithm it is implementing. Even-
tually, for each combination a com-
ponent will be available for each
type of data management and sys-
tem components. Of course, a com-
ponent can be appropriate for more
than one parameter combination.
If the reason for this is a different
parametrization of the component,
it can be split into smaller compo-
nents as explained in Section 3.1.3.

The Tiny Data Management
Framework selects the best suited
set of components based on cur-
rent system parameters, application
requirements, and optimization pa-
rameters. In this set, components
for each type of needed function-
ality are included. For different
requirements in one or more di-
mensions different components of
each type may be more appropri-
ate and will, therefore, be selected so
that the system as a whole adapts to
changing requirements. Of course,
only the necessary components are
loaded in each sensor and, if other
functionality is needed, it can be
downloaded from other sensors or
gateway nodes connected to larger
code repositories.

3.3.1. Research challenges As indi-
cated before, the parameters and re-

quirements in the three dimensions
of the Cubus (system parameters,
application requirements, and op-
timization parameters) have to be
carefully selected. If too few param-
eters are chosen, it is possible that
more than one component of a sin-
gle type qualifies for the same set
of parameters. Thus, they cannot
be distinguished in the framework
anymore and additional selection
strategies have to be applied. Too
many parameters reduce the chance
to find a suitable algorithm for
every combination of parameters.
There would be large holes in the
Cubus, thus reducing the quality of
adaptation.

Regarding the system parame-
ters, we analyze which of them can
be measured by a sensor node.
In the simplest case these obser-
vations are purely local, such as
the number of neighbors and their
mobility. By adding more system
capabilities, e. g., a positioning sys-
tem or a monitoring component,
additional possibilities arise, such as
using information about the spatial
extension of the network or the total
number of nodes in the network.
However, these parameters are in-
corporated into the framework only
if they help distinguish available
components. By examining sensor
network applications as outlined in
Section 2, we determine the appli-
cation requirements. In the broadest
sense, they can be subsumed under
the term ’quality of service‘. Ex-
amples are data consistency level,
accuracy, reliability, and real-time
constraints. Finally, the optimiza-
tion parameters describe how an
algorithm distinguishes itself from
other algorithms under the same
system and application parameters.
These can be latency, communica-
tion, and energy. For example, the
Sustainable Bridges application re-
quires a time synchronization com-
ponent for a static scenario that
provides high accuracy, but also
needs to be optimized with respect
to energy use, since sensor nodes are
expected to have lifetimes of several
years.

94



TinyCubus: AnAdaptive Cross-Layer Framework for SensorNetworks���

The selection of the component
types to be included in the Cubus is
an open question, too. It is done on
the basis of the typically data-driven
nature of sensor network applica-
tions. The component types have
to be essential for sensor networks,
i. e., they will be used in many sce-
narios which justifies the inital clas-
sification effort. However, it is much
easier to add a new component type
retroactively than to add or change
a dimension of the cubus. Moreover,
a single component should pro-
vide atomic functionality. Complex
functions like aggregation have to be
splitted into atomic functions such
as the build-up of an aggregation
tree, the aggregation control, and
the actual aggregation functions.

The biggest effort has to be
spent on the classification of the al-
gorithms. We pursue two different
approaches: simulation and analy-
sis. Classification by simulation has
the advantage that it can be done
almost automatically. But due to
the number of parameters a com-
plete simulation is not possible –
and probably not needed. Strate-
gies have to be developed to reduce
the number of needed simulations.
In contrast, classification by analy-
sis has to be done manually. Analysis
reveals general characteristics of an
algorithm, but might be too com-
plex for big algorithms. Moreover,
the mostly qualitative results of the
analysis are not as easily compa-
rable as the quantitative results of
the simulation. For both methods,
procedures have to be developed to
classify algorithms that depend on
other algorithms and change their
performance accordingly.

Adaptation has to be performed
throughout the lifetime of the sys-
tem and is a crucial part of the
optimization process. Therefore, we
are currently investigating different
strategies that determine when it is
necessary – and beneficial – to select
a different component. These strate-
gies ensure that the total overhead
for adaptation is small compared
to the benefits of using the newly
selected algorithm. In some cases,

adaptation can be done locally,
while in other cases (neighboring)
nodes have to negotiate which intro-
duces additional framework over-
head. The synchronized reconfig-
uration of the adapting nodes is
ensured by the Tiny Configuration
Engine.

4 Related Work
SensorWare [1] and Impala [9] are
frameworks that aim at providing
functionality to distribute new ap-
plications in sensor networks, just
like our configuration engine. For
this purpose, they create abstrac-
tions between the operating sys-
tem and the application, although
both differ slightly from each other.
SensorWare uses a scripting lan-
guage that is not really well-suited
for resource-limited platforms such
as our TinyOS motes and does
not support adaptation and cross-
layer interaction, as proposed in our
framework.

In Impala, new code is only
transmitted on demand if there is
a new version available on a neigh-
boring node. Furthermore, if certain
parameters change and an adap-
tation rule is satisfied, the system
can switch to another protocol.
However, this adaptation mechan-
ism only supports simple adaptation
rules. Although it uses cross-layer
data, Impala does not have a generic,
structured mechanism to share it
and so, is not easily extensible.

Deluge [7] is a widely-used dis-
semination protocol that reliably
propagates complete code images
within a TinyOS-based sensor net-
work. It reduces the number of
messages sent by adapting to the
density of the network. However,
Deluge always installs the same code
image on all nodes in the network
and does not take into account that
in real-world applications not all of
them have to use the same code.

Reijers and Langendoen [13] de-
scribe a scheme to install code on
sensor nodes. Their goal is to min-
imize the size of the code update
by transmitting only the differences
to the previous version. However,

they only consider installing new
versions of a complete application
rather than replacing the compo-
nents that constitute it. Therefore,
they cannot take some components
and install them in another applica-
tion, for example.

The MobileMan project [2] is
a system that aims at creating
a cross-layer framework similar to
ours. However, MobileMan is not
targeted towards sensor networks
and assumes environments typical
of mobile ad-hoc networks, which
are, in the general case, not so
limited in terms of resources. In
addition, MobileMan focuses on
data sharing between layers of the
network protocol stack and, there-
fore, does not include the config-
uration and adaptation capabilities
found in our framework.

Finally, EmStar [4] is a soft-
ware environment for Linux-based
sensor nodes that, like MobileMan,
assumes the presence of higher-end
nodes as part of the sensor network.
Similar to our data management
framework, EmStar contains some
standard components for routing,
time synchronization, etc. but is
not able to provide the adaptation
mechanisms available in our frame-
work.

5 Conclusion and Future
Work

In this paper, we have described the
architecture and research challenges
for the development of TinyCubus,
an adaptive cross-layer framework
for sensor networks. Its specific re-
quirements have been derived from
the increasing complexity of the
hardware capabilities of sensor net-
works, the variety and breadth
found in typical applications, and
the heterogeneity of the network it-
self. Therefore, we have designed
our system to have the Tiny Cross-
Layer Framework, that provides
a generic interface and a repository
for the exchange and management
of cross-layer information, the Tiny
Configuration Engine, whose pur-
pose is to manage the upload of
code onto the appropriate sensor

95



Schwerpunktthema

nodes, and the Tiny Data Man-
agement Framework, that provides
the required adaptation capabili-
ties.

Furthermore, we have described
our role-based code distribution al-
gorithm that uses cross-layer data
such as role assignments in order
to reduce the number of messages
needed to distribute code to cer-
tain nodes. Our evaluation shows
that the performance of this algo-
rithm is several times better than
a flooding approach when the top-
ology and the distribution of roles is
well-known.

The implementation of Tiny-
Cubus is still under way and, al-
though the prototypes for the cross-
layer framework and configuration
engine are already partially func-
tional, there is still work to do. We
are in the process of integrating our
framework with an additional appli-
cation that provides the capabilities
found in a smart environment and
that will fully make use of the func-
tionality provided by TinyCubus.

Finally, we plan on extending
our role-based code distribution al-
gorithm to support highly mobile
sensor nodes, such as the ones found
in the Cartalk 2000 project.

References
[1] A. Boulis, C.-C. Han, and

M. B. Srivastava. Design and

implementation of a framework for

efficient and programmable sensor

networks. In Proc. of the 1st Int’l Conf.

on Mobile Systems, Applications, and

Services (MobiSys 2003), 2003.

[2] M. Conti, G. Maselli, G. Turi,

and S. Giodano. Cross-layering in

mobile ad hoc network design. IEEE

Computer, 37(2):48–51, 2004.

[3] D. Gay, P. Levis, R. von Behren,

M. Welsh, E. Brewer, and D. Culler.

The nesC language: A holistic approach

to networked embedded systems. In

Proc. of the ACM SIGPLAN 2003 Conf.

on Programming Language Design and

Implementation, pp. 1–11, 2003.

[4] L. Girod, J. Elson, A. Cerpa,

T. Stathopoulos, N. Ramanathan,

and D. Estrin. EmStar: A software

environment for developing and

deploying wireless sensor networks.

In Proc. of USENIX 2004, pp. 283–296,

2004.

[5] A. J. Goldsmith and S. B. Wicker.

Design challenges for energy-

constrained ad hoc wireless networks.

IEEE Wireless Communications,

9(4):8–27, 2002.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar,

D. Culler, and K. Pister. System

architecture directions for networked

sensors. In Proc. of the 9th Int’l

Conf. on Architectural Support for

Programming Languages and Operating

Systems, pp. 93–104, 2000.

[7] J. W. Hui and D. Culler. The dynamic

behavior of a data dissemination

protocol for network programming

at scale. In Proc. of the 2nd Int’l Conf.

on Embedded Networked Sensor Systems,

pp. 81–94, 2004.

[8] P. Levis, N. Lee, M. Welsh, and

D. Culler. TOSSIM: Accurate and

scalable simulation of entire TinyOS

applications. In Proc. of the 1st Int’l

Conf. on Embedded Networked Sensor

Systems, pp. 126–137, 2003.

[9] T. Liu and M. Martonosi. Impala:

A middleware system for managing

autonomic, parallel sensor systems.

In Proc. of the 9th ACM SIGPLAN

Symp. on Principles and Practice of

Parallel Programming, pp. 107–118,

2003.

[10] P. J. Marrón, A. Lachenmann,

D. Minder, J. Hähner, K. Rothermel,

and C. Becker. Adaptation and cross-

layer issues in sensor networks. In

Proc. of the Int’l Conf. on Intelligent

Sensors, Sensor Networks & Information

Processing, 2004.

[11] P. J. Marrón, A. Lachenmann,

D. Minder, J. Hähner, R. Sauter,

and K. Rothermel. TinyCubus:

A flexible and adaptive framework

for sensor networks. In Proc.

of the 2nd European Workshop

on Wireless Sensor Networks,

2005.

[12] D. Reichardt, M. Miglietta, L. Moretti,

P. Morsink, and W. Schulz. CarTALK

2000: Safe and comfortable

driving based upon inter-vehicle-

communication. In Proc. of the

Intelligent Vehicle Symp., Vol. 2,

pp. 545–550, 2002.

[13] N. Reijers and K. Langendoen. Efficient

code distribution in wireless sensor

networks. In Proc. of the 2nd ACM Int’l

Conf. on Wireless Sensor Networks and

Applications, pp. 60–67, 2003.

[14] K. Römer, C. Frank, P. J. Marrón, and

C. Becker. Generic role assignment for

wireless sensor networks. In Proc. of the

11th ACM SIGOPS European Workshop,

pp. 7–12, 2004.

[15] Sustainable bridges web site.

http://www.sustainable-

bridges.net.

[16] R. Szewczyk, E. Osterweil, J. Polastre,

M. Hamilton, A. Mainwaring, and

D. Estrin. Habitat monitoring with

sensor networks. Comm. of the ACM,

47(6):34–40, 2004.

1 2

3 4

1 Dr. Pedro José Marrón received his

bachelor’s and master’s degree in computer

engineering from the University of Michigan

at Ann Arbor in 1996 and 1998, respectively.

During his stay in Michigan, he worked

as a teaching and research assistant in the

areas of databases, compiler construction,

and distributed systems. At the end of 1999,

he moved to the University of Freiburg in

Germany to work on his Ph.D., which he

received with honors in 2001. Since 2003, he

works at the University of Stuttgart as a senior

researcher, where he leads the mobile data

management and sensor networks group.

His current research interests are distributed

systems, mobile data management, location

aware computing, and sensor networks. He is

a member of the ACM and GI.

Address: Institut für Parallele und Verteilte

Systeme, Universitätsstr. 38, 70569 Stuttgart,

Germany, Tel.: +49-711-7816-223,

Fax: +49-711-7816-424,

E-Mail: pedro.marron@informatik.uni-

stuttgart.de

96



TinyCubus: AnAdaptive Cross-Layer Framework for SensorNetworks���

2 Dipl.-Inf. Daniel Minder received his

diploma in software engineering from the

University of Stuttgart in 2003. Since then, he

is working as a research assistant in the Dis-

tributed Systems group. His Ph.D. research

topic deals with efficient data management

in sensor networks.

Address: Institut für Parallele und Verteilte

Systeme, Universitätsstr. 38, 70569 Stuttgart,

Germany, Tel.: +49-711-7816-224,

Fax: +49-711-7816-424,

E-Mail: daniel.minder@informatik.uni-

stuttgart.de

3 Dipl.-Inf. Andreas Lachenmann received

a master’s degree in computer science from

the Georgia Institute of Technology, Atlanta,

in 2003 and a diploma in software engineer-

ing from the University of Stuttgart in 2004.

Since then he is a researcher and Ph.D. stu-

dent at the University of Stuttgart, where he

is working on cross-layer architectures for

sensor networks.

Address: Institut für Parallele und Verteilte

Systeme, Universitätsstr. 38, 70569 Stuttgart,

Germany, Tel.: +49-711-7816-280,

Fax: +49-711-7816-424,

E-Mail: andreas.lachenmann@infor-

matik.uni-stuttgart.de

4 Prof. Dr. Kurt Rothermel received his

doctoral degree in Computer Science from

the University of Stuttgart in 1985. From

1986 to 1987 he spent a sabbatical at the

IBM Almaden Research Center working on

distributed database management systems. In

1988 he joined IBM’s European Networking

Center, where he was responsible for several

projects in the area of distributed application

systems. He left IBM in 1990 to become

a Professor of Computer Science back at

the University of Stuttgart, where he now

leads the Distributed Systems Research

Group. Currently, he has published over 110

scientific papers at international conferences

and journals. His current research interests are

communication architectures and protocols,

management of distributed systems, location

aware and mobile computing, trust and

security. He is a member of the IEEE

Computer Society, ACM and GI.

Address: Institut für Parallele und Verteilte

Systeme, Universitätsstr. 38, 70569 Stuttgart,

Germany, Tel.: +49-711-7816-434,

Fax: +49-711-7816-424,

E-Mail: kurt.rothermel@informatik.uni-

stuttgart.de

97


