
Experiences with Node Virtualization for

Scalable Network Emulation

Steffen Maier ∗, Daniel Herrscher, Kurt Rothermel

University of Stuttgart, Institute of Parallel and Distributed Systems (IPVS)
Universitätsstr. 38, D-70569 Stuttgart, Germany

Phone: +49(711)7816–226, Fax: –424

Abstract

During the development of network protocols and distributed applications, their
performance has to be analyzed in appropriate environments. Network emulation
testbeds provide a synthetic, configurable network environment for comparative per-
formance measurements of real implementations. Realistic scenarios have to con-
sider hundreds of communicating nodes. Common network emulation approaches
limit the number of nodes in a scenario to the number of computers in an emula-
tion testbed. To overcome this limitation, we introduce a virtual node concept for
network emulation. The key problem for node virtualization is a transparent, yet
efficient separation of node resources. In this paper, we provide a brief survey of
candidate node virtualization approaches to facilitate scalable network emulation.
Based on the gathered insights, we propose a lightweight virtualization solution to
achieve maximum scalability and discuss the main points regarding its implementa-
tion. We present extensive evaluations that show the scalability and transparency of
our approach in both a traditional wired infrastructure-based, and in two wireless ad
hoc network emulation scenarios. The measurements indicate that our solution can
push the upper limit of emulation scenario sizes by a factor of 10 to 28. Given our
emulation testbed consisting of 64 computers, this translates to possible scenario
sizes of up to 1792 nodes. In addition to the evaluation of our virtualization ap-
proach, we discuss key concepts for controlling comprehensive emulation scenarios
to support scalability of our system as a whole.

Key words: software performance evaluation, network emulation, mobile ad hoc
network, scalability, virtual routing

∗ Corresponding author.
Email addresses: maier@ipvs.uni-stuttgart.de (Steffen Maier),

herrscher@ipvs.uni-stuttgart.de (Daniel Herrscher),
rothermel@ipvs.uni-stuttgart.de (Kurt Rothermel).

Preprint submitted to Computer Communications Journal 23 February 2007

Published in Computer Communications, Volume 30, Issue 5, pages
943-956, March 2007
© Elsevier B.V. 2006.
http://dx.doi.org/10.1016/j.comcom.2006.08.018

1 Introduction

During the design and implementation of distributed applications and net-
work protocols, it is essential to analyze the impact of various network en-
vironments on their performance. While mathematical analysis and simula-
tions are commonly used in early design stages, measurements are used to
confirm the theoretical results as soon as implementations become available.
Such measurements usually compare the performance of one implementation
in different network environments or of different implementations in the same
network environment.

Comparative performance measurements in real environments are considered
problematic for two reasons. First, especially in scenarios with mobile nodes
and wireless networking, it is hard to obtain multiple comparable measure-
ment runs. Secondly, resource requirements prohibit measurements in larger
scenarios. Therefore, there is strong demand for synthetic network environ-
ments that can be parametrized in order to reproduce an original or fictitious
network.

The process of introducing network properties that differ from the actual prop-
erties of the hardware in use is called network emulation. A network emulation
tool is software capable of altering network traffic in a specified way. A facil-
ity consisting of a combination of flexible networking hardware and suitable
emulation tools is called network emulation testbed. Network protocols and
distributed applications subjected to performance measurements in a network
emulation testbed are called software under test.

Comparative performance measurements for mobile computing scenarios, e.g.
the evaluation of an ad hoc routing protocol, typically require large scenar-
ios with hundreds of nodes. The analysis of new applications for traditional
infrastructure-based networks, e.g. a large-scale location service, may also re-
quire a high number of nodes, since both the end systems and the intermediate
systems of the underlying infrastructure have to be considered.

Common network emulation systems assume that one communicating node in
an emulation scenario corresponds to one physical computer in an emulation
testbed. This severely limits the scalability, since testbeds with the required
number of hundreds of computers are typically not available.

However, a number of applications aiming at resource-poor devices, e.g. in mo-
bile computing scenarios, only need a fraction of the resources that a testbed
node can provide. Therefore, we propose to run several instances of the soft-
ware under test on a single testbed node (“physical node,” pnode) [1]. Each
instance of the software under test has to be provided a separate execution
environment (“virtual node,” vnode). In this paper, we give a brief survey of

2

candidate approaches for node virtualization. Based on these approaches, we
present a transparent, yet lightweight and thus very scalable solution to node
virtualization for network emulation testbeds. In addition to node virtualiza-
tion in the system core, we also discuss key concepts that support scalability
of our system as a whole. Our implementation supports scalable emulation not
only of networks consisting of point to point links but also of shared media
based networks such as mobile ad hoc networks and even arbitrary combina-
tions for the emulation of hybrid networks.

The remainder of this paper is structured as follows. The Network Emulation
Testbed, which we use as a basis for our scalable network emulation approach,
is introduced in Section 2. In Section 3, we provide a brief survey of candidate
node virtualization approaches. We choose one of the candidate approaches
for our implementation, which we discuss in Section 4. In Section 5, we pro-
vide extensive measurements showing the scalability of our approach for two
important kinds of scenarios: emulation of infrastructure-based networks and
MANETs (mobile ad hoc networks). For the latter, we also present a com-
prehensive real life example for performance analysis of an ad hoc routing
protocol. Furthermore, we discuss the achievable degree of transparency for
the software under test. In Section 6, we address key concepts to fully support
scalability of our system as a whole. We discuss related work in Section 7.
Finally, we conclude the paper in Section 8.

2 Overview of the Network Emulation Testbed

The Network Emulation Testbed (NET) [2] at the University of Stuttgart
provides the basis for our scalable network emulation approach. It consists of
64 PC-nodes connected by a monolithic, programmable gigabit switch, and
a separate administration network for setup and control (see Fig. 1). Using
IEEE 802.1Q VLAN (virtual LAN) technology, the gigabit switch is able to
create an arbitrary connection topology between the nodes. Each point-to-
point link or shared media network segment in an emulation scenario, e.g. a
WLAN (wireless LAN) channel, is mapped to a uniquely tagged VLAN.

On a testbed node, several tagged VLANs represent several virtual network in-
terfaces, each of which is assigned a separate instance of our custom emulation
tool. Each tool introduces the desired artificial network properties. It enables
the configuration of arbitrary bandwidth limitations, delays, and frame error
loss ratios. Additionally, to enable the realistic emulation of shared media net-
works, the effects of a MAC (media access control) layer can be reproduced. At
the present time, this tool is capable of emulating IEEE 802.3 (Ethernet) [3].
We are currently completing an extension of the tool to allow the emulation
of the ad hoc mode of IEEE 802.11 WLAN.

3

Our network emulation tool provides the service level abstraction of an un-
reliable datagram service to the software under test (see Fig. 2). This is the
lowest possible emulation abstraction feasible to be implemented in software.
The tool is implemented as a virtual network device driver, and therefore
completely transparent to implementations on the network layer. As a result,
the protocol stack including the network layer and all higher layers can be
considered as software under test.

Node PC

Node PC

Node PC

Router

Scenario Control PC

...

V
LA

N
2

V
LA

N
1

1000−T

1000−T

1000−T

1000−T

. . .

1000−T
100−T

100−T

100−T
C

on
tr

ol
N

et
w

or
k

N
et

w
or

k
E

m
ul

at
io

n

Connection
Intranet

Fig. 1. The Network Emulation Testbed.

transport

application

driver

NIC

emulation

network

switch

abstraction
emulation

operating
system

L5

L3

L4

L2

L1
testbed
hardware

node
physical

under test
software

specific
emulation

key:

Fig. 2. Software under test and network
emulation tools on a physical node in
NET.

In order to control the distributed network emulation tools during an experi-
ment, we pursue a hybrid architecture including a central scenario controller.
The controller dynamically updates the parameters of the emulation tools.
For MANET emulation, this includes changing connection quality and thus
frame error rates between communicating nodes. The connection quality is
automatically derived from the simulated node mobility and the application
of different possible radio propagation models [4,5].

Without node virtualization, each node in an emulation scenario is mapped
to a physical node of NET, which limits the scenario size to 64.

3 Approaches to Node Virtualization

In general, node virtualization provides a way to schedule formerly exclusive
hardware resources to a number of consumers. With respect to network em-
ulation, our consumers are execution environments for software under test,
which is to be subjected to emulated network properties. We derive the fol-
lowing requirements from node virtualization and network emulation:

(1) Our paramount goal is scalability. This requires minimal virtualization
overhead in order to preserve resources for the software under test.

(2) If two (or more) vnodes inside the same pnode communicate, their em-
ulation tools should internally make use of efficient intra-pnode commu-
nication without affecting realistic emulation of network properties as
perceived at the emulation abstraction by the software under test. This

4

requirement supports our paramount goal 1 by minimizing overhead due
to the virtualization process.

(3) An execution environment introduced by node virtualization should be as
transparent as possible for the software under test. This is important to
support performance measurement of unmodified real implementations.

In the following, we present candidate node virtualization approaches and
discuss their suitability regarding scalable network emulation. They all have
in common that they allow multiple instances of software under test to be
executed on top of the emulation abstraction interface shown in Fig. 2. For the
discussion, we assume that the network stack is part of the kernel space, as is
prevalent in commodity operating systems. Finally, we evaluate each approach
for its suitability based on our requirements. The presented approaches can
be classified into two main categories: virtual machines and virtual network
stacks.

3.1 Virtual Machine

A straightforward way to introduce node virtualization is using a virtual ma-
chine (VM) approach. Instead of running an operating system (OS) directly on
the bare hardware, a shim of software is inserted in between. This software –
the virtual machine monitor (VMM) – schedules access of multiple guest oper-
ating systems to exclusive hardware resources managed by the VMM (Fig. 3).

application

transport

network

application

transport

network

context
switches

software switch

driver

NIC

switch

guest O
S

. . .

. . .

. . .

. . .

. . .

. . .

(+
 host O

S
)

V
M

M

emulation

driver

emulation

driver

virtual NIC virtual NIC

Fig. 3. Virtual machine approach.

In order to support emulated network parameters, we need to insert our em-
ulation tool on top of network interface drivers inside each guest operating
system. For communication with other vnodes on the same and other pnodes,
a software switch forwards frames correspondingly.

5

3.1.1 Classical Virtual Machine

Classical virtual machines such as VMware Workstation [6] have in common
that they support unmodified operating systems, and thus network stacks,
in each guest instance. Therefore, they provide transparency with respect to
software under test. However, context switches between guest OS and VMM
happen whenever privileged commands are trapped. Since network commu-
nication causes such context switches, classical VMs imply considerable vir-
tualization overhead limiting scalability. This is especially an issue for VMs,
that do not virtualize a certain kind of system hardware, but e.g. the sys-
tem call interface of the host OS, such as User-Mode Linux (UML) [7]. Even
with a modified host OS such VMs only show comparable performance to e.g.
VMware [8].

3.1.2 Lightweight Virtual Machine

Lightweight virtual machines such as VMware ESX [9], Denali [10] or Xen
[11] directly access the host hardware without a host OS in order to reduce
virtualization overhead. However, they may require custom or ported guest
operating systems and are thus only partly transparent.

3.2 Virtual Network Stack

The virtual machine approach described in the previous subsection actually
virtualizes more than is needed for network emulation. It would be sufficient
to provide virtual execution environments for just the software under test,
i.e. for exactly those layers above the emulation abstraction interface (Fig. 2).
This can be accomplished with virtual network stacks (Fig. 4). In order to
extend the virtualization of network and transport layer also to the application
layer, sets of processes get associated with a certain network stack instance.
Consequently, a vnode consists of the following sets: a set of processes on
application layer, a set of sockets on transport layer, and a routing table on
network layer.

In contrast to virtual machines, there is no more need for separate virtual
network devices and their drivers. The emulation tool itself can appear as
several instances of a virtual network device. In tight cooperation, a software
switch forwards frames appropriately in order to allow communication between
any vnodes. The virtualization overhead for virtual network stacks is as low
as possible. Compared to virtual machine approaches, there are no redundant
context switches and copy operations.

6

applicationapplication

network network

transporttransport

emulation . . .

virtual driver
virtual NIC virtual NIC

virtual driver
emulation

. . .

. . .

software switch

driver

NIC

switch

stack. . .

. . .

. . .

netw
ork

virtual

system
operating

Fig. 4. Virtual network stack approach.

3.2.1 Duplicated Network Stack

Duplicated network stacks such as vimage [12] allow the flexible execution of
different network stack implementations on the same pnode. However, they
need extensive modifications to become fully virtualized and are thus hardly
transparent.

3.2.2 Virtual Routing

Virtual routing [13] requires only the essential variables, that have to be allo-
cated separately for each stack instance, to be touched. Thus, virtual routing is
more transparent than duplicated network stacks. Though multiple instances
are supported, only one specific implementation of a stack can be executed
on a single pnode at a time. Yet, using different implementations on different
pnodes remedies this partial flexibility.

3.3 Summary and Selected Approach

Tab. 1 shows a summary of the discussion in the previous subsections. We rate
each approach on a scale of three levels with plus denoting fulfillment, a circle
denoting partial fulfillment, and minus denoting restrictions with respect to
our requirements.

For deriving the most suitable approach, we evaluate the fulfillment of our re-
quirements in order of descending priority. While virtual machine approaches
can be fully transparent and flexible, they do not fully comply with our
paramount goal scalability. Virtual network stack approaches fulfill the re-
quirement of low virtualization overhead and efficient intra-pnode communi-
cation. Of the two alternatives, virtual routing is more transparent. We thus
consider virtual routing best suited for scalable network emulation.

7

Table 1
Comparison of candidate virtualization approaches.

virtualization approach scalability efficiency transparency

3.1.1 classical virtual machine − − +

3.1.2 lightweight virtual machine ◦ ◦ ◦
3.2.1 duplicated network stack + + −
3.2.2 virtual routing + + ◦

4 Implementation

Virtual routing as discussed in the previous section fits our requirements best.
Hence, we choose virtual routing along with a custom software switch that
enables communication between any vnodes in an emulation scenario. Linux
2.4 serves as operating system for the implementation. The source code of our
implementation is publicly available at our NET-project web page: http://net.
informatik.uni-stuttgart.de. In the following, we describe the two main blocks
of our approach traversing the layers from bottom to top.

4.1 Software Communication Switch

In the context of our network emulation testbed, each software switch intro-
duces a “stacked” sub-switch using the emulation network connection as an
uplink to the emulation switch (cp. to Fig. 1). A software switch resembles
the functionality of a hardware Ethernet switch. It mediates both between
vnodes located on the same pnode as well as between vnodes located on dif-
ferent pnodes. This provides transparent switching between any vnodes in a
scenario.

netsh0

vnode1

netsh1 netsh2 netsh3 netsh4

vnode2 vnode3 vnode4 vnode5

vnmux0

switch

NIC

vlan2

netsh0

vnmux0

netsh1 netsh2

vnmux1

netsh3 netsh4 netsh5

vlan3vlan2

vnmux3vnmux2

NIC

switch

vnode1 vnode2 vnode3

Fig. 5. Pnode configuration examples (arbitrary combinations are possible): link
based (left), shared media based, e.g. MANET, (right).

In contrast to the software bridge already existing in Linux, we need one up-
link to a real device and multiple local ends. Therefore we designed a custom
Linux kernel module providing instances of a virtual switch network device
“vnmux” (virtual node multiplexer) (Fig. 5). In order to get an uplink, this
device can be internally bound to the driver of a real network device (NIC).

8

The latter could also be a tagged VLAN device which is in turn bound to a
real network device. The bound device is put into promiscuous mode to be
able to receive frames destined for local vnode devices. The emulation hard-
ware switch takes care of filtering. It delivers only locally targeted frames after
its learning phase, so that the software switch only has to process frames it
really is responsible for. Processing frames is done without extra copying of
payload data. This is essential to fulfill our requirement 2 for efficient intra-
pnode communication. Switching decisions work with constant destination
lookup time resulting in a complexity of O(1). Our implementation supports
transparent communication between any local and remote vnodes as well as
unvirtualized pnodes. Additionally, link and shared media based pnode con-
figurations (Fig. 5) can be mixed arbitrarily even on the same pnode. At the
upper interface of the switch, virtual network devices provided by emulation
tool instances (“netshX”) register themselves to generate local switch “ports.”

4.2 Virtual Routing

Virtual routing instances are located on top of our emulation tool’s virtual
network devices. Those virtual routing instances and applications on top of
them represent possible software under test. We base our implementation on
kernel patches for “Virtual Routing and Forwarding” (VRF) [14] version 0.100
by James R. Leu. VRF provides multiple instances of forwarding information
bases (routing tables) as well as mechanisms to associate network devices, IPv4
UDP/TCP sockets, and processes with instances. User space tools exist for
instance maintenance and for associating devices and processes with instances.
Despite all these features, virtual routing is still not sufficiently transparent
for application processes and common routing daemon implementations.

Therefore, we extend system interfaces that operate on routing tables – some
IOCTLs and the protocol route-netlink – to work on the specific routing table
of the VRF instance the calling process is associated with. Additionally, we
extend the ip queue feature of the protocol netlink-firewall to allow queueing
of IPv4 packets to one process within each VRF instance. Thereby we gain full
transparency for unmodified network applications including routing daemons.

To implement all of the above mentioned functionality, only limited modifica-
tions to a standard Linux 2.4.24 source tree are necessary. The modifications
comprise 1409 lines of code, which consist of 416 additions, 980 changes, and
13 deletions.

9

5 Evaluation

In the following we provide an extensive evaluation of the building blocks
as well as of the complete system. All measurements are performed on pn-
odes in our testbed equipped with an Intel Pentium 4 2.4 GHz processor and
a Gigabit Ethernet adapter in a 32 bit, 33 MHz PCI bus. Passing through
the different network stack layers from bottom to top, we start our evalua-
tion with the software communication switch at the data link layer and show
the accuracy of our network emulation tool in variably virtualized scenarios.
Network and transport layer are treated twice since we consider two types
of network requiring different routing algorithms: first a wired infrastructure
based network, secondly a wireless ad-hoc network. For the wireless variant,
we present one static scenario to draw comparisons with the wired network
and one self-contained MANET scenario. The evaluation aims at showing the
scalability of the system by comparing the non-virtualized cases to variably
virtualized cases of the same scenarios. The experiments in Section 5.3 and
5.4 are conducted on Ethernet adapters without driver support for interrupt
mitigation and are thus different from those presented in [1]. Concerning the
software under test, we would like to point out that it is by no means limited
to protocols on the network layer. After all, our load generators are processes
on application layer communicating through sockets with the transport layer.
Of course, more complex applications such as peer to peer systems can also
be analyzed in our emulation environment without modification.

5.1 Software Communication Switch

Our software communication switch is a core component in our scalable em-
ulation environment, since it has to switch frames quickly and at the lowest
overhead possible. In order to show that it fulfills the expectations, we measure
both the duration of switching decisions and the resulting throughput.

The scenario for measuring the duration of switching decisions consists of two
pnodes connected by a point to point link. One of the pnodes hosts one switch
instance with a varying number of vnode devices attached its local ports. For
each measured value, the other pnode generates load by injecting 105 frames of
sizes uniformly distributed between 64 and 1500 Bytes and randomly targeted
at one of the software switch ports.

Fig. 6 shows the efficiency of unicast switching decisions. The average mea-
sured duration is about 98 ns, independent of the number of vnode devices
per switch. The profiled machine code comprises 24 instructions, which take
at least about 50 CPU clock cycles on the superscalar out-of-order core of our

10

pnode CPU, if all data is available in the first level cache [15]. At the CPU
frequency of 2.4 GHz, 50 clock cycles take about 20 ns. This marks a lower
bound for the execution time. Taking cache misses into account, our measured
average duration constitutes a reasonable value. A few spikes in the maxima
up to 1388 ns are due to cache effects and appear rarely so that the average
is close to the minimum of 88 ns. We conclude from these measurements that
our implementation of the switching decision is highly efficient.

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

m
in

/a
vg

/m
ax

 d
ur

at
io

n
in

 n
an

os
ec

on
ds

number of virtual node network devices

duration of unicast switching decision (zoomed)

duration of unicast switching decision

Fig. 6. Duration of unicast switching decision versus number of vnode devices.

The scenario for measuring switch throughput consists of one pnode with one
switch instance having one uplink and a varying number of vnode devices at-
tached. We vary frame sizes between 64 and 1500 Bytes. For each measured
value we locally inject 106 frames of the same size. Fig. 7 shows constant
throughput for unicast frames which only depends on the frame size. Small
frames imply more overhead and thus less throughput. For comparison we
measured a memory bandwidth of 1020 MByte/s with STREAM [16]. Obvi-
ously, frame handling overhead is the limiting factor in switch throughput.
Nevertheless, a throughput of about 3 GBit/s can serve as an upper limit
for aggregate link bandwidth inside one pnode and is 3 times larger than the
external uplink over the Gigabit Ethernet network interface.

For broadcast frames their administration structure sk buff (not the payload)
has to be cloned on delivery for each local recipient. This is necessary since
the receive path assumes exclusive administrative frame data structures. We
also evaluate switch throughput for broadcast frames. The throughput for the
starting value of 2 vnode network devices is slightly lower than for the unicast
case because an additional frame clone has to be transmitted on the uplink
(Fig. 8). With an increasing number of vnode devices per pnode, throughput
decreases due to the overhead of cloning. Yet, aggregate switch throughput
stays significantly above the memory bandwidth. However, in order to avoid
any decrease, we plan to investigate possible improvements by sharing admin-
istration structures of broadcast frames between vnodes on the same pnode.

11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60

th
ro

ug
hp

ut
 in

 G
ig

ab
it/

s

number of virtual node network devices

software switch unicast frame throughput

1500 Byte frames
1024 Byte frames
512 Byte frames
256 Byte frames
128 Byte frames

64 Byte frames

Fig. 7. Unicast frame throughput versus
number of vnode devices.

 0.01

 0.1

 1

 10

 10 20 30 40 50 60

th
ro

ug
hp

ut
 in

 G
ig

ab
it/

s

number of virtual node network devices

software switch broadcast frame throughput

1500 Byte frames
1024 Byte frames
512 Byte frames
256 Byte frames
128 Byte frames
64 Byte frames

Fig. 8. Broadcast frame throughput ver-
sus number of vnode devices.

5.2 Network Emulation Tool

Our network emulation tool is able to accurately enforce specified network
properties consisting of bandwidth limitation, delay, and frame loss ratio [2].
In this section, we show that our tool remains accurate in the virtualized case
up to a machine dependent limit for the number of vnodes per pnode.

The scenario for measuring the accuracy of emulated network properties con-
sists of a varying number of vnodes on a single pnode. n vnodes are intercon-
nected in a chain of n− 1 full duplex links having either limited bandwidth or
specific delay in each direction (similar to Fig. 12). To measure loss ratio only
one direction of each link is configured to lose frames. Each measured value is
the result of one emulation run.

In order to measure the accuracy of bandwidth limitation, we use multiple
instances of the tool netio to put load on each link by measuring maximum
TCP throughput concurrently. Fig. 9 shows the results consisting of the mea-
sured average link bandwidth with minimum and maximum over all links, i.e.
TCP flows. Depending on the number of vnodes, the specified bandwidth is
accurately enforced by our network emulation tool. Up to an emulated band-
width of 5 MBit/s, at least 64 vnodes can be hosted on a single pnode without
loss of accuracy. 8 to 16 vnodes can be safely interconnected at 54 MBit/s and
at least 4 vnodes can be hosted on a pnode in a Fast-Ethernet scenario with
100 MBit/s.

We measure ICMP round trip times (RTT) for 103 packets on each link con-
currently to investigate the accuracy of delay emulation. Since the full duplex
links are symmetric, the actual delay results from half the measured RTT.
Fig. 10 shows mean, minimum and maximum RTT over all links. The results
indicate that delay is emulated accurately independent of the number of vn-
odes per pnode. Thus, the emulation of delay scales perfectly with the degree
of virtualization. The measured deviations from the average delay values stay

12

within bounds of 5 ms and are due to the granularity of the timer used to
introduce the delay [2].

 1
 2

 5

 11

 54
 100

 0.064 1 2 5 11 54 100 500
m

ea
su

re
d

ba
nd

w
id

th
 (

M
B

it/
s)

specified bandwidth (MBit/s)

bandwidth

key
2 vnodes
4 vnodes
8 vnodes

16 vnodes
32 vnodes
64 vnodes

Fig. 9. Enforced versus specified bandwidth for different numbers of vnodes.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

m
ea

su
re

d
de

la
y

(m
ill

is
ec

on
ds

)

specified delay (miliseconds)

delay

key
2 vnodes
4 vnodes
8 vnodes

16 vnodes
32 vnodes
64 vnodes

Fig. 10. Enforced versus specified delay
for different numbers of vnodes.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

m
ea

su
re

d
fr

am
e

lo
ss

 r
at

io
 (

%
)

specified frame loss ratio (%)

frame loss ratio

key
2 vnodes
4 vnodes
8 vnodes

16 vnodes
32 vnodes
64 vnodes

Fig. 11. Enforced versus specified loss ra-
tio for different numbers of vnodes.

Fig. 11 depicts results showing the fidelity of emulated frame loss ratio. We
put load on each link concurrently using adaptive ping with 103 packets. On
average, frame loss emulation scales well with the number of vnodes per pnode.
Minima and maxima – especially at a loss ratio of 80 or 90 % – are outliers
and the deviation is below or equal to 2.7 for all measured values.

We conclude from our measurements that our network emulation tool is able
to accurately enforce specified network properties over a wide range of virtu-
alization degree.

5.3 Wired Infrastructure Based Network Emulation

Having treated the data link layer and the accuracy of our network emulation
tool in the previous subsections, we now continue our evaluation of the net-
work and transport layer in a wired infrastructure based network emulation
scenario. The system model is described first. Afterwards, we present measure-
ment results for the network and the transport layer. Additionally, we report

13

on the system utilization caused by executing multiple vnodes on the same
pnode.

The network topology of the scenario consists of a linear chain with a varying
number of router nodes using static routing. Point to point links connect-
ing the routers are full duplex and have an emulated limited bandwidth of
100 MBit/s in each direction. For the same scenario, we conduct the exper-
iments twice differing only in the mapping of the scenario to the testbed
hardware. First, we map each router to one real pnode to obtain reference
values. Secondly, we place all routers inside vnodes on a single pnode except
for the last router, which resides on a separate pnode without any virtualiza-
tion (Fig. 12). Thereby we show that communication over the software switch
works transparently, and mixing of arbitrarily configured pnodes is possible.
Note that the layers of the real network stack implementation are always tra-
versed on communication and forwarding even if the network traffic does not
leave the left pnode except for the last hop.

router
1

router routerrouter
2 n n+1

...

pnode 2pnode 1

Fig. 12. Wired infrastructure emulation scenario, virtualized case.

On network layer, we measure ICMP RTT delays through the router chain.
Each measured value consists of one experiment with 103 packets sent at a
rate of 50 Hz. Fig. 13 shows linear increase of the mean ICMP RTT delay with
an increasing number of hops in the routing chain. The left y-axis corresponds
to the results of this infrastructure based scenario. The figure also contains
measurement results for the wireless ad-hoc scenario discussed in the next
section. For the variant with pnodes only, we had 51 of 64 nodes available
at the time of the experiment. For the virtualized variant of the scenario,
the slope is more flat than with pnodes only. This is because the software
switch has lower communication delay than the hardware emulation switch.
The emulation tool could compensate for that, if a particular scenario requires
inter-node delays to be exactly the same. Delays occur within time bounds
depicted in Fig. 14. Maxima occur only for the first packet until its destination
is in the route cache. Thus, mean values from Fig. 13 and minima fall close
together. Outliers in the maxima, such as with 40 vnodes, are neither an effect
of network emulation nor of virtualization. It is normal behavior of the route
cache implementation and happens indeterministically if the fastest code path
cannot be executed. It also happens in the unvirtualized scenario variant even
though not visible in the presented result set.

On transport layer, we measure TCP throughput over the router chain using
the tool iperf with a TCP window size (socket send or receive buffer) of
512 KBytes and a maximum segment size (MSS) of 1448 Bytes (Fig. 15). The

14

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60
 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

m
ea

n
IC

M
P

 d
el

ay
 in

 w
ire

d
ne

tw
or

k
(m

ill
is

ec
on

ds
)

m
ea

n
IC

M
P

 d
el

ay
 in

 w
ire

le
ss

 n
et

w
or

k
(m

ill
is

ec
on

ds
)

number of hops or vnodes respectively

mean ICMP delay

pnodes in wired network
vnodes in wired network

pnodes in wireless network
vnodes in wireless network

Fig. 13. Round trip time mean delay ver-
sus number of vnodes.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 10 20 30 40 50 60
 0

 500

 1000

 1500

 2000

 2500

 3000

m
in

/m
ax

 IC
M

P
 d

el
ay

 in
 w

ire
d

ne
tw

or
k

(m
ill

is
ec

on
ds

)

m
in

/m
ax

 IC
M

P
 d

el
ay

 in
 w

ire
le

ss
 n

et
w

or
k

(m
ill

is
ec

on
ds

)

number of hops or vnodes respectively

min/max ICMP delay

pnodes in wired network
vnodes in wired network

pnodes in wireless network
vnodes in wireless network

Fig. 14. Round trip time minima and
maxima delay versus number of vnodes.

load generator is located on router 1 and the sink on router n + 1 (Fig. 12).
It measures the throughput of one connection. In a subsequent measurement
the location of generator and sink are swapped and another connection is
measured. For the virtualized scenario, we observe different behavior in each
direction. On the reverse direction (rx) from router n + 1 on pnode 2 to
router 1 in a vnode on pnode 1, throughput starts dropping at 51 vnodes
due to resource contention. On the forward direction (tx), throughput drops
earlier at 12 vnodes. Both the sending TCP protocol with its timers in the
leftmost vnode and all the other vnodes compete for the same resources of
their shared pnode. TCP receive processing is no more the heavier side with
modern CPUs [17]. Given the same resources, the TCP sender supports only
lower throughput than the receiver could process.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60av
g.

 T
C

P
 th

ro
ug

hp
ut

 in
 w

ire
d

ne
tw

or
k

(M
B

it/
s)

number of hops or vnodes respectively

TCP throughput

pnodes (tx)
pnodes (rx)

vnodes (tx)
vnodes (rx)

Fig. 15. Throughput versus number of
vnodes.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0 10 20 30 40 50 60

ra
tio

number of hops or vnodes respectively

remaining idle performance

vnodes in wired network (ping)
vnodes in wired network (netio)

vnodes in wireless network (ping)
vnodes in wireless network (netio)

Fig. 16. Remaining system compute per-
formance versus number of vnodes.

Measurements for throughput already showed deviation from the reality, if
too many vnodes are hosted on the same pnode. In order to gain insight into
system utilization, we measured the remaining idle performance on the pnode
hosting vnodes while executing the two previously mentioned experiments. For
this purpose, a custom tool consumes all available idle time quite aggressively
while the load generating process of the previous two experiments is active.
The tool reports on its compute progress which corresponds to the remain-

15

ing idle compute time. The results of all measurement runs are normalized to
the result for one vnode per pnode resembling the unvirtualized case. Fig. 16
shows only one plot per throughput measurement, since the TCP load gener-
ator measures both directions (rx and tx in Fig. 15) back-to-back. In general,
the remaining idle performance decreases with an increasing number of vn-
odes per pnode. This is an indicator for possible resource contention due to
virtualization.

Hosting too many vnodes per pnode leads to severe resource contention which
can lead to measurement artifacts. Since we are interested in realistic results,
the number of hosted vnodes is limited. For the above measurements, the
earliest undesirable deviation from the unvirtualized case happens for TCP
throughput at a number of 12 vnodes (Fig. 15). Given the scenario above and
our testbed hardware with 64 pnodes, we thus can support scenario sizes of
up to 704 nodes.

5.4 Wireless Ad hoc Network Emulation

Wireless ad hoc networks typically consist of a large number of communicating
devices, which are often resource-poor. By using node virtualization, wireless
ad hoc scenarios can be emulated with a meaningful number of devices on an
affordable smaller number of computers in an emulation testbed. Hence, we
evaluate the scalability of our approach for the emulation of such scenarios.
As before, we describe the system model, followed by evaluation results for
the network and transport layer as well as for system utilization.

Fig. 17 shows the emulation scenario. For comparison with the infrastructure
scenario, we configured the virtual node positions and the emulated wireless
network transmission range – depicted by dotted circles – such that the con-
nectivity of the nodes resembles a chain. This is accomplished by a frame loss
ratio for ingress traffic of zero for frames from reachable neighbors, and one
for all others, as described in [4]. The wireless links between nodes are full du-
plex and have a limited bandwidth of 11 MBit/s. Here, we do not emulate the
effects of a MAC layer, i.e. there are no frame collisions. Incorporating a MAC
layer emulation as mentioned in Section 2 requires more resources and could
reduce scalability. In this scenario, we use an implementation of the ad hoc
on-demand distance vector routing protocol called AODV-UU [18] in version
0.8 as software under test. On each node an instance of the routing daemon
is executed transparently with virtually no modifications necessary. Similar to
the infrastructure scenario, we measure this scenario once with only pnodes
and once with all vnodes on a single pnode, except for the last node, which
resides on a separate pnode. The workload is the same as for the infrastructure
scenario.

16

n+1
...node

1 2 n
node

pnode 1 pnode 2

nodenode

Fig. 17. Wireless ad hoc network emulation scenario, virtualized case.

On network layer, we measure ICMP RTT delays between node 1 and node
n + 1 in the scenario (Fig. 17). The right y-axis in Fig. 13 corresponds to
the measurement results for mean delay times. Starting with one hop we ob-
serve expanding ring search in combination with binary exponential backoff for
outgoing route requests as described in [19], which is implemented by AODV-
UU. Beyond the default time to live threshold, route requests work without
expanding ring search leading to ICMP delays with linear increase starting at
ten hops. For the virtualized variant, the slope is slightly larger for maxima
and thus also mean RTTs due to increased latency on route establishment
if multiple routing daemons compete for the resources of the same pnode.
The right y-axis in Fig. 14 corresponds to minima and maxima in ICMP de-
lay times. Maxima resemble multiples of the mean values due to route cache
misses on route establishment. Minima show very flat linear increase being
observed for established routes with route cache hits.

Measurement results for the transport layer are depicted in Fig. 18. TCP
throughput starts deviating from the reference values in the unvirtualized sce-
nario variant at about 29 hops. As a result of the lower limited bandwidth
compared to the infrastructure scenario in the previous subsection, more vir-
tual nodes can be executed on a pnode without interference.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 10 20 30 40 50 60av
g.

 T
C

P
 th

ro
ug

hp
ut

 in
 w

ire
le

ss
 n

et
w

or
k

(M
B

it/
s)

number of hops or vnodes respectively

TCP throughput

pnodes (tx)
pnodes (rx)

vnodes (tx)
vnodes (rx)

Fig. 18. Throughput versus number of vnodes.

Remaining idle performance for the virtualized wireless scenario is shown in
Fig. 16. In addition to the forwarding operation on network layer as per the
previous infrastructure based scenario, one ad hoc routing daemon is executed
on application layer on each vnode. This results in higher system utilization,
the more vnodes are hosted on a pnode. The consequence is remaining idle
performance of about 10 % at a maximum of 28 vnodes.

17

The earliest undesirable deviation from the realistic reference values happens
for TCP throughput at 29 vnodes per pnode (Fig. 18). Given the above sce-
nario and our testbed hardware with 64 pnodes, we thus can support scenario
sizes of up to 1792 nodes for similar wireless scenarios.

5.5 Comprehensive MANET Emulation

As a complement to the previous evaluations primarily investigating scalabil-
ity, we show the utility of our system by means of an example for a scenario
that is universally useful for developers to analyze the performance of a real
protocol implementation. We follow [20] for the scenario model and evaluate
AODV-UU 0.8 according to the metrics: packet delivery ratio and routing
overhead. Each emulation run comprises 50 mobile nodes inside an area of
1500 × 300 m2 and lasts 900 s. Each of 20 nodes starts uniformly distributed
between 0 and 180 s generating constant bit rate load with 64 Byte packets at
4 Hz via UDP to one randomly chosen peer. Measurement results are averaged
over two runs with different mobility trace. We compare the same implementa-
tion in two different network environments. First, for reference measurements
the nodes move according to the random waypoint mobility model with a
fixed transmission range of 250 m like in [20]. The second scenario aims to be
more realistic and the nodes move along streets and choose destinations on
them. The necessary geometric data corresponds to a part of the Stuttgart
city center, for which we also precomputed realistic wave propagation taking
static obstacles into account [5]. A central instance (see Section 6) controls
the dynamic aspects of the scenario such as node mobility and resulting con-
nectivity. We do not consider effects of the MAC layer (cp. to Section 5.4).
To also evaluate the scalability of our emulation approach in such a real life
scenario, we vary the total number of pnodes used to host the 50 vnodes.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900

pa
ck

et
 d

el
iv

er
y

ra
tio

pause times [s]

packet delivery ratio vs. pause times

(ref) 1 vnode/pnode, max speed 20 m/s
 1 vnode/pnode, max speed 20 m/s

50 vnodes/pnode, max speed 20 m/s
(ref) 1 vnode/pnode, max speed 1 m/s

 1 vnode/pnode, max speed 1 m/s
50 vnodes/pnode, max speed 1 m/s

Fig. 19. Packet delivery ratio versus
pause times.

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 0 100 200 300 400 500 600 700 800 900

ro
ut

in
g

ov
er

he
ad

 [p
ac

ke
ts

]

pause times [s]

routing overhead vs. pause times

 1 vnode/pnode, max speed 20 m/s
50 vnodes/pnode, max speed 20 m/s

(ref) 1 vnode/pnode, max speed 20 m/s
 1 vnode/pnode, max speed 1 m/s

50 vnodes/pnode, max speed 1 m/s
(ref) 1 vnode/pnode, max speed 1 m/s

Fig. 20. Routing overhead versus pause
times.

We observe reference values for the packet delivery ratio in Fig. 19 compa-
rable to [20]. Using realistic wave propagation, the ratio is significantly lower

18

because there is less connectivity due to obstacles. The reference values for
routing overhead in Fig. 20 are different, since the AODV implementation in
[20] does not use Hello messages for neighbor detection. We believe that this
pays off for low speeds but causes more overhead at high speeds. Using re-
alistic wave propagation, the overhead is a multiple of the reference because
obstacles reduce connectivity. Low traffic load in the scenarios and sufficiently
comparable results for different amounts of virtualization lead us to the con-
clusion that such a real life scenario can be emulated on just a single pnode.
We expect realistic emulation of larger scenarios using a number of pnodes.

6 Scaling Emulation Scenario Control

In the previous section, we have primarily evaluated the scalability of node vir-
tualization as system core for scalable network emulation. We now discuss key
concepts for controlling comprehensive emulation scenarios to fully support
scalability of our system as a whole.

In our system, each communicating node specified in a network emulation
scenario model is represented by a vnode in the testbed. In order to build, ex-
ecute, and control a complete scenario consisting of a potentially large number
of vnodes, we provide a central scenario controller (see Section 2). The sce-
nario controller uses communication on the administration network for two
types of controlling purposes. First, it executes commands remotely on the
pnodes for scenario setup. Secondly, dynamic parameter updates are sent to
the distributed emulation tools. The controller does not process any network
traffic but only controls the tools, that actually process the traffic in a dis-
tributed fashion. Since direct control of all vnodes in the scenario does not
scale, we use a hierarchical approach. For this, we introduce two proxies on
each pnode. The controller only communicates with those proxies. One proxy
takes care of remote command execution. The other proxy demultiplexes up-
date messages for emulation tool instances on a pnode. Additionally, we use
a reliable transport protocol (TCP in this case) for update messages, since
unreliable datagram messages would be dropped for scenario sizes of 1000 or
more vnodes due to missing flow control.

For MANET scenarios, the controller can provide a graphical user interface
(GUI), that visualizes geographic node positions. The user may select a node
to continuously display its current radio propagation map as a potential sender
[5] along with its neighbors as depicted in Fig. 21. This helps the user to get
a valuable impression of the causality between node movement and dynamic
change of network topology at a glance. The update frequency of the GUI is
entirely decoupled from the frequency of update messages sent to the emula-
tion tools. In order to ensure that the control task can keep up with real time,

19

we assign it a higher priority.

Fig. 21. Visualization of a MANET emulation experiment (2225 × 1065 m2).

7 Related Work

In this section, we review existing scalable network emulation approaches. All
approaches have in common that they place components of the software under
test to certain, different positions within an emulated network scenario. We
classify the architectures to build the emulated network in centralized and
distributed.

7.1 Centralized Network Emulation

Centralized approaches emulate a whole scenario within a single instance of a
network emulation tool. The traffic that can be handled by the central instance
constitutes the upper limit for the scalability of these approaches.

Ns-e [21] is an emulation extension of the well-known network simulator ns-2
[22]. The scalability of ns-e depends on the amount of traffic in the scenario.
For a typical MANET experiment, a scenario size of about 50 nodes is possible
[23]. To some extent, this can be alleviated by extending the discrete event
simulation into a parallel engine [24].

ModelNet [25] is a parallel network emulator. It is primarily designed to em-
ulate a given network topology of point-to-point links. The topology is parti-
tioned among a cluster of emulation computers. Each cluster node processes
network packets through internal arbitrarily connected links and routing in-
stances. Computers running the software under test have to be externally
connected to the central emulation cluster. Several instances of the software
under test can run on each such edge node, which makes the approach scalable.
However, the interface to the emulated network is based on socket calls, which
restricts the software under test to the application layer. Existing implemen-
tations of network protocols cannot be analyzed but have to be specifically

20

re-implemented for the cluster nodes. This is also true with MobiNet [26],
which is an extension to emulate MANET scenarios. The presented 802.11
MAC emulation in MobiNet is completely centralized and only works on a
single core node. For a MANET scenario the authors report scalability up to
200 emulated nodes with a re-implemented MANET routing protocol.

vBET [27] is an approach designed for emulating a network scenario on a
single computer. It makes use of User Mode Linux (UML) [7] in order to
provide virtual machines as execution environment for multiple virtual nodes
on one computer. In combination with additional network emulation tools, it
is possible to connect software under test to an emulated scenario. Connecting
multiple of such vBET computers could allow larger scenarios. However, the
use of UML’s virtual machine concept introduces considerable overhead and
thus limits the number of virtual nodes per computer. The authors report a
maximum throughput for their software switch between vnodes of 128 MBit/s,
which is more than an order of magnitude below our approach. vBET is more
suitable for qualitative analysis than comparative performance analysis.

7.2 Distributed Network Emulation

Distributed approaches connect several instances of a network emulator to-
gether to form a comprehensive scenario.

Empower [28] allows the emulation of multiple routing instances on one com-
puter, making up a link-based or wireless network topology. Each connection
to the emulated network is mapped to a physical link of an existing hardware
network interface. The authors equip each testbed node with several network
cards to increase scalability. The number of network interfaces per pnode limits
the number to a few vnodes per pnode.

Entrapid [29] virtualizes the network stack in user space and thus provides mul-
tiple execution environments for software under test on a single computer. In
combination with network emulation tools connecting such virtualized stacks,
the emulation of network scenarios is possible. However, the software under
test has to be adapted in order to interact with the user space network stacks.
The packet processing in user space also introduces considerable timing inac-
curacies, compared to real network stacks. Thus, such approaches are more
suitable for testing than performance evaluation.

Vimage [12] virtualizes the network stack in the kernel. While common oper-
ating systems support one single instance of a network stack, vimage supports
multiple independent instances. To accomplish this, the stack is modified to
have all formerly global instance variables independently available for each
stack instance. Processes are associated with a certain network stack instance.

21

Thus, the virtualization is transparent for software under test on the applica-
tion layer. In combination with the network emulation tool dummynet [30], it
is possible to emulate link-based scenarios in a scalable way. However, modify-
ing all instance variables and access to them incorporates substantial changes
to the network stack and thus the software under test. In [12] the authors
report TCP throughput of 420 MBytes/s over 15 routing hops on a single
machine with a slightly faster processor than used in our evaluation. Though
scaling significantly better than a VMware based virtualization approach, the
throughput was measured in a best case without any introduction of emu-
lated network properties such as bandwidth limitation or delay and is thus
hardly comparable to our results. Emulated network properties are however
essential for network emulation and imply emulation overhead due to timer
management reducing the accumulated throughput that can be realistically
emulated.

The emulation testbed Netbed [31] supports scalable network emulation by
introducing virtual nodes [32] on the basis of BSD jails [33] and multiple
routing tables. Netbed supports the emulation of scenarios with wired links.
While it is possible to link real wireless nodes to an emulated scenario [34],
there is no support for the reproducible emulation of wireless networks.

8 Summary and Conclusion

Network emulation testbeds provide a synthetic, configurable network environ-
ment for comparative performance measurements of distributed applications
and protocols. Common approaches limit the scenario size to the number of
computers in the testbed, whereas meaningful emulation scenarios often re-
quire hundreds of communicating nodes. Testbeds of such sizes are hardly
available.

In this paper, we propose to execute multiple instances of the software un-
der test on a single testbed computer. Therefore, we introduced virtual nodes
providing the software under test with a virtual execution environment with
respect to the network stack. From a set of candidate node virtualization ap-
proaches, we chose the most lightweight approach fulfilling our paramount goal
for scalability. In addition to our emulation software tools, we implemented an
efficient software communication switch, extensions to “Virtual Routing and
Forwarding” for Linux by James R. Leu, and a hierarchical scenario control
mechanism. We showed the utility of the implemented network emulation sys-
tem with a comprehensive scenario and provided an extensive evaluation of
the system. For a wired infrastructure-based and a wireless ad hoc network
emulation scenario, our measurement results show that node virtualization
can increase the possible scenario size by a factor of 10 or 28, respectively.

22

Given our testbed hardware with 64 physical emulation nodes, this translates
to scenario sizes of up to 1792 nodes.

Clearly, for scenario sizes of several hundred nodes, it is no longer possible for
an experimenter to manually map the nodes from an emulation scenario to the
available testbed computers. Thus, our next step is an automated mapping
based on constraints that evolve from the requirements of a scenario descrip-
tion and offerings of the testbed hardware. While we investigated the possible
degree of virtualization by comparing measurements to the non-virtualized
variant of a scenario, this procedure is not always desired or even possible.
Therefore, we are introducing quality criteria for realistic network emulation
which can be monitored in a lightweight fashion in situ while executing an
experiment. In case of undesired resource contention due to virtualization,
the experimenter will be informed and may decide to modify the mapping of
vnodes to pnodes in order to prevent contention in another emulation run.

Acknowledgements

This work is partially funded by the Deutsche Forschungsgemeinschaft (Ger-
man Research Foundation) under grant DFG-GZ RO 1086/9-1. We thank
Marcus Handte and the anonymous reviewers for their valuable comments on
the paper.

References

[1] S. Maier, D. Herrscher, K. Rothermel, On Node Virtualization for Scalable
Network Emulation, in: Proceedings of the 2005 International Symposium
on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS 2005), Philadelphia, PA, USA, 2005, pp. 917–928.

[2] D. Herrscher, K. Rothermel, A Dynamic Network Scenario Emulation
Tool, in: Proceedings of the 11th International Conference on Computer
Communications and Networks (ICCCN 2002), Miami, FL, 2002, pp. 262–267.

[3] D. Herrscher, S. Maier, K. Rothermel, Distributed Emulation of Shared Media
Networks, in: Proceedings of the 2003 International Symposium on Performance
Evaluation of Computer and Telecommunication Systems (SPECTS 2003),
Montréal, Quebec, Canada, 2003, pp. 226–233.

[4] D. Herrscher, S. Maier, J. Tian, K. Rothermel, A Novel Approach to
Evaluating Implementations of Location-Based Software, in: Proceedings of the
2004 International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS 2004), San Jose, CA, 2004, pp. 484–490.

23

[5] I. Stepanov, D. Herrscher, K. Rothermel, On the Impact of Radio Propagation
Models on MANET Simulation Results, in: Proceedings of the Seventh IFIP
International Conference on Mobile and Wireless Communication Networks
(MWCN 2005), Marrakech, Morocco, 2005.

[6] J. Sugerman, G. Venkitachalam, B.-H. Lim, Virtualizing I/O Devices on
VMware Workstation’s Hosted Virtual Machine Monitor, in: Proceedings of
the 2001 USENIX Annual Technical Conference, Boston, MA, 2001, pp. 1–14.

[7] J. Dike, A user-mode port of the Linux kernel, in: Proceedings of the 4th Annual
Linux Showcase & Conference, Atlanta, GA, USA, 2000.

[8] S. T. King, G. W. Dunlap, P. M. Chen, Operating System Support for Virtual
Machines, in: Proceedings of the 2003 USENIX Annual Technical Conference,
San Antonio, TX, USA, 2003, pp. 71–84.

[9] C. A. Waldspurger, Memory Resource Management in VMware ESX Server,
in: Proceedings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI ’02), Boston, MA, USA, 2002, pp. 181–194.

[10] A. Whitaker, M. Shaw, S. D. Gribble, Scale and Performance in the Denali
Isolation Kernel, in: Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI ’02), Boston, MA, USA, 2002.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, A. Warfield, Xen and the Art of Virtualization, in: Proceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP’03), Bolton
Landing, NY, USA, 2003, pp. 164–177.

[12] M. Zec, M. Mikuc, Operating System Support for Integrated Network
Emulation in IMUNES, in: Proceedings of the 1st Workshop on Operating
System and Architectural Support for the on demand IT InfraStructure
(2004 OASIS), Boston, MA, USA, 2004, pp. 3–12.

[13] K. Kourai, T. Hirotsu, K. Sato, O. Akashi, K. Fukuda, T. Sugawara, S. Chiba,
Secure and Manageable Virtual Private Networks for End-users, in: Proceedings
of the 28th Annual IEEE International Conference on Local Computer Networks
(LCN’03), Bonn/Königswinter, Germany, 2003, pp. 385–394.

[14] J. R. Leu, Linux virtual routing and forwarding, http://linux-vrf.sourceforge.net
(2004).

[15] Intel, USA, IA-32 Intel Architecture Optimization Reference Manual, order
number: 248966-011 (2004).

[16] J. D. McCalpin, Memory Bandwidth and Machine Balance in Current High
Performance Computers, IEEE Technical Committee on Computer Architecture
(TCCA) Newsletter (1995) 19–25.

[17] A. P. Foong, T. R. Huff, H. H. Hum, J. P. Patwardhan, G. J. Regnier, TCP
Performance Re-Visited, in: Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS-2003), Austin, TX,
USA, 2003, pp. 70–79.

24

[18] H. Lundgren, E. Nordström, C. Tschudin, Coping with Communication Gray
Zones in IEEE 802.11b based Ad hoc Networks, in: Proceedings of the 5th
ACM International Workshop on Wireless Mobile Multimedia (WoWMoM’02),
Atlanta, GA, USA, 2002, pp. 49–55.

[19] C. E. Perkins, E. M. Royer, Ad-hoc On-Demand Distance Vector Routing, in:
Proceedings of the Second IEEE Workshop on Mobile Computer Systems and
Applications (WMCSA’99), New Orleans, LA, USA, 1999, pp. 90–100.

[20] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, J. Jetcheva, A Performance
Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols, in:
Proceedings of the 4th Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom ’98), Dallas, TX, USA, 1998, pp. 85–97.

[21] K. Fall, Network Emulation in the Vint/NS Simulator, in: Proceedings of the
Fourth IEEE Symposium on Computers and Communications (ISCC’99), Red
Sea, Egypt, 1999, pp. 244–250.

[22] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang,
S. McCanne, K. Varadhan, Y. Xu, H. Yu, Advances in Network Simulation,
IEEE Computer 33 (5) (2000) 59–67.

[23] Q. Ke, D. A. Maltz, D. B. Johnson, Emulation of Multi-Hop Wireless Ad Hoc
Networks, in: Proceedings of the Seventh International Workshop on Mobile
Multimedia Communications (MoMuC 2000), IEEE Communications Society,
Tokyo, Japan, 2000.

[24] G. F. Riley, R. M. Fujimoto, M. H. Ammar, A Generic Framework
for Parallelization of Network Simulations, in: Proceedings of the 7th
International Symposium on Modelling, Analysis and Simulation of Computer
and Telecommunications Systems (MASCOTS’99), College Park, MD, USA,
1999, pp. 128–135.

[25] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, D. Becker,
Scalability and Accuracy in a Large-Scale Network Emulator, in: Proceedings of
5th Symposium on Operating Systems Design and Implementation (OSDI ’02),
Boston, MA, USA, 2002.

[26] P. Mahadevan, A. Rodriguez, D. Becker, A. Vahdat, MobiNet: A Scalable
Emulation Infrastructure for Ad Hoc and Wireless Networks, Technical Report
CS2004-0792, Department of Computer Science, University of California, San
Diego (Jun. 14 2004).

[27] X. Jiang, D. Xu, vBET: a VM-Based Emulation Testbed, in: Proceedings of
the ACM SIGCOMM 2003 Workshops, Karlsruhe, Germany, 2003, pp. 95–104.

[28] P. Zheng, L. M. Ni, EMPOWER: A Network Emulator for Wireless and Wired
Networks, in: Proceedings of the Conference on Computer Communications
(INFOCOM 2003), Vol. 3, San Francisco, CA, USA, 2003, pp. 1933–1942.

[29] X. W. Huang, R. Sharma, S. Keshav, The ENTRAPID Protocol Development
Environment, in: Proceedings of the Conference on Computer Communications
(INFOCOM ’99), Vol. 3, New York, NY, USA, 1999, pp. 1107–1115.

25

[30] L. Rizzo, Dummynet: a simple approach to the evaluation of network protocols,
ACM Computer Communication Review 27 (1) (1997) 31–41.

[31] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, A. Joglekar, An Integrated Experimental Environment for
Distributed Systems and Networks, in: Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (OSDI ’02), Boston, MA, USA,
2002, pp. 255–270.

[32] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, J. Lepreau, Feedback-directed Virtualization Techniques for Scalable
Network Experimentation, Flux Group Technical Note FTN-2004-02, School of
Computing, University of Utah (May 2004).

[33] P.-H. Kamp, R. N. M. Watson, Jails: Confining the omnipotent root, in:
Proceedings of the 2nd International System Administration and Networking
Conference (SANE 2000), Maastricht, The Netherlands, 2000.

[34] B. White, J. Lepreau, S. Guruprasad, Lowering the Barrier to Wireless and
Mobile Experimentation, in: Proceedings of the First Workshop on Hot Topics
in Networks (Hotnets-I), Princeton, NJ, USA, 2002.

Steffen Maier is a scientific staff member in the Distributed Sys-
tems research group at the University of Stuttgart, Germany.
His research interests include scalability of network emulation.
Maier holds a Dipl.-Inf. (MS) degree in computer science from
the University of Stuttgart.

Daniel Herrscher is a scientific staff member in the Distributed
Systems research group at the University of Stuttgart. His re-
search interests include realistic network emulation of mobile
communication. Herrscher holds a Dipl.-Inf. (MS) degree in
computer science from the University of Stuttgart.

Kurt Rothermel is a professor in the Distributed Systems re-
search group at the University of Stuttgart. His research in-
terests include performance evaluation of distributed systems,
context aware and adaptive systems, and sensor networks.
Rothermel received a PhD in computer science from the Uni-
versity of Stuttgart. He is a member of the ACM and the GI.

26

