This is the author’s version of the work. The final publication is available at www.springerlink.com.
It was published in The VLDB Journal, Volume 20, Number 5 (2011), 641-642.
http://link.springer.com/article/10.1007/s00778-011-0237-7

Efficient Real-Time Trajectory Tracking

Ralph Lange - Frank Diirr - Kurt Rothermel

Abstract Moving objects databases (MOD) manage
trajectory information of vehicles, animals, and other
mobile objects. A crucial problem is how to efficiently
track an object’s trajectory in real-time, in particular if
the trajectory data is sensed at the mobile object and
thus has to be communicated over a wireless network.

We propose a family of tracking protocols that al-
low trading the communication cost and the amount of
trajectory data stored at a MOD off against the spa-
tial accuracy. With each of these protocols, the MOD
manages a simplified trajectory that does not deviate
by more than a certain accuracy bound from the actual
movement. Moreover, the different protocols enable sev-
eral trade-offs between computational costs, communi-
cation cost and the reduction of the trajectory data:
Connection-Preserving Dead Reckoning (CDR) mini-
mizes the communication cost using dead reckoning,
a technique originally designed for tracking an object’s
current position. Generic Remote Trajectory Simplifi-
cation (GRTS) further separates between tracking of
the current position and simplification of the past tra-
jectory and can be realized with different line simplifi-
cation algorithms. For both protocols, we discuss how
to bound the space consumption and computing time
at the moving object and thereby present an effective

Parts of this article appeared as “Online Trajectory Data Re-
duction using Connection-preserving Dead Reckoning” in the
Proceedings of the 5th International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and Ser-
vices (MobiQuitous ’08) [12] and as “Remote Real-Time Tra-
jectory Simplification” in the Proceedings of the 7th IEEE
International Conference on Pervasive Computing and Com-
munications (PerCom ’09) [15].

Ralph Lange - Frank Diirr - Kurt Rothermel
Universitat Stuttgart

Institute of Parallel and Distributed Systems (IPVS)
Universitatsstrale 38, 70569 Stuttgart, Germany
E-mail: <firstname.lastname>Qipvs.uni-stuttgart.de

compression technique to optimize the reduction per-
formance of real-time line simplification in general.

Our evaluations with hundreds of real GPS traces
show that a realization of GRTS with a simple simpli-
fication heuristic reaches 85 to 90% of the best possible
reduction rate, given by retrospective offline simplifica-
tion. A realization with the optimal line simplification
algorithm by Imai and Iri even reaches more than 97%
of the best possible reduction rate.

1 Introduction

Moving objects databases (MODs) have been proposed
for managing trajectories of mobile objects like vehi-
cles, containers, aircrafts, and animals. They store and
index the objects’ geographic positions over time and
process spatiotemporal queries such as retrieving all ob-
jects that were located inside a certain region during a
certain time interval. MODs are of crucial importance
for location-based services, context-aware computing,
and many other application domains.

Generally, an object’s trajectory is represented by
a polyline in time and space where the vertices are the
timestamped positions acquired by a suitable position-
ing system [16,20,8]. Many of these systems (includ-
ing GPS) are based on sensors that are attached to
the moving objects. Tracking the trajectories of such
objects therefore requires communicating the position
data to the MOD over a wireless network.

Transmitting and storing every sensed position of
an object’s trajectory, however, causes high communi-
cation costs and generally consumes too much storage
capacity. The former particularly applies if the MOD
has to be informed in real-time about the object’s move-
ment, as required for many applications. For example,
an ordinary GPS receiver may generate more than 30

Ralph Lange et al.

million position data records per year, and there may
be thousands of objects to be tracked.

Therefore, tracking protocols are needed that allow
trading these costs off against the accuracy of the tra-
jectory information known to the MOD. With such a
protocol, the MOD manages only a simplified trajec-
tory that is given by a subset of the sensed positions
and that does not deviate by more than a certain ac-
curacy bound e from the actual movement. We refer to
the problem of minimizing the amount of data that is
communicated and stored as efficient real-time trajec-
tory tracking. A formal problem statement is given at
the end of Section 2.

Short problem analysis: Trajectory tracking is related
to line simplification, on the one hand, and protocols
for tracking an object’s current position, on the other
hand. For clarity, we refer to the latter as (real-time)
position tracking in the following.

Line simplification refers to a multitude of algorith-
mic problems on approximating a given polyline by a
simplified one with fewer vertices. In the terminology of
line simplification, trajectory tracking is a min-# prob-
lem in R'*? (d = 2 or 3) in the case of Hausdorff dis-
tance under the (time-)uniform distance metric [3,2]. A
straightforward approach for trajectory tracking based
on line simplification is to transmit the sensed position
data from the objects to the MOD and to perform the
simplification entirely on the MOD - for instance us-
ing the Douglas-Peucker algorithm [6], as explained in
[4]. However, such a solution has an obvious drawback
as also those positions are transferred over the wireless
network that are dropped later by simplification, which
may cause a substantial waste of bandwidth.

Position tracking protocols, in contrast, aim at min-
imizing the communication cost for informing the MOD
about the current position of an object, but do not
necessarily generate a simplified trajectory of the past
movement. The latter particularly applies to the most
efficient protocols based on dead reckoning. With this
technique, a tracked object initially transmits a func-
tion predicting its future movement to the MOD. This
prediction function is updated only if the object’s lo-
cally sensed position impends to deviate from the pre-
dicted one by more than some accuracy bound e. Con-
sequently, only those sensing operations that require an
adjustment of the prediction cause an update message
to be sent. The most simple but nevertheless efficient
variant is linear dead reckoning (LDR) [31,17,30]. It
uses a linear prediction given by a timestamped posi-
tion and a velocity vector. Dead reckoning does not gen-
erate a simplified trajectory, as it describes the object’s

LDR Linear Dead Reckoning

LDRH Linear Dead Reckoning with half e

CDR Connection-Preserving Dead Reckoning
CDRm ... with limited sensing history (m positions)

GRTS Generic Remote Trajectory Simplification
GRTSk ... with limited variable part (k vertices)
GRTSm ... with limited sensing history (m positions)

GRTSmc ... with additional compression technique

GRTSSE’t ...realized with optimal simplification algo.
GRTSSee .. .realized with segment heuristic

Table 1 List of tracking protocols.

movement by a sequence of disconnected line segments
— one for each prediction.

However, as shown by Trajcevski et al. in [27], a
simplified trajectory deviating from the actual move-
ment by up to 2¢ can be computed on the basis of the
linear predictions of LDR. For trajectory tracking with
accuracy bound €, Trajcevski et al. therefore propose
to use LDR with € := €¢/2. We refer to this approach
as LDRH (linear dead reckoning with half €) in the fol-
lowing. As explained in detail in Section 3, the use of
€/2 is very conservative and leaves room for significant
improvement.

Contribution: This problem analysis shows that tra-
jectory tracking involves several trade-offs between ac-
curacy, computational costs, and the two goals of re-
ducing both the communication cost and the amount
of simplified trajectory data to a minimum. Moreover,
to guarantee real-time behavior, tracking algorithms
with bounded computing time per sensing operation
are needed.

In this paper, we propose a family of trajectory
tracking protocols that allows adjusting between these
goals and costs and an accuracy bound e. The family is
derived from two basic protocols named Connection-
Preserving Dead Reckoning (CDR) and Generic Re-
mote Trajectory Simplification (GRTS), cf. Table 1.

CDR extends LDR by a second condition for send-
ing an update to the MOD such that the origins of the
linear predictions give a simplified trajectory that ap-
proximates the actual movement by €. Hence, it uses
dead reckoning for tracking the current position as well
as for simplifying the past trajectory. While this leads
to very small message sizes and thus communication
cost, the efficiency of simplification depends on dead
reckoning, which has been designed for position track-
ing rather than trajectory simplification.

GRTS in contrast clearly separates tracking the cur-
rent position from simplifying the past trajectory. It
also applies dead reckoning for tracking the current po-
sition — to optimize the number of messages sent over
the wireless network — but can be combined with any

Efficient Real-Time Trajectory Tracking

line simplification algorithm suited for trajectories (e.g.,
[6,11,18]) to reduce the trajectory data. This separa-
tion increases the message sizes but affords significantly
greater reductions of the amounts of data to be stored
by the MOD.

The possibility to realize GRTS with different line
simplification algorithms further enables to trade com-
putational cost off against reduction efficiency. For ex-
ample, an optimal line simplification algorithm provides
the best reduction but causes the highest computational
cost, whereas solutions based on heuristics lower the
computational overhead at the cost of smaller reduc-
tions. We investigate two realizations of GRTS with
different line simplification algorithms, namely the op-
timal line simplification algorithm introduced in [11]
and a simple but efficient simplification heuristic [18].
For the latter, we further propose an optimization re-
ducing the average space consumption of the algorithm
by 63%.

For both CDR and GRTS, we propose space- and
time-bounded variants (CDR,, and GRTS,,) to limit
the computing time at the moving objects, as moti-
vated above. In case of GRTS, the input for the line
simplification algorithm — referred to as semsing his-
tory — is limited to m sensed positions. To optimize line
simplification under this constraint, we present a novel
compression technique for the sensing history, leading
to GRTSc. This technique can be generally used to
optimize real-time online simplification of polylines.

We further discuss how to take sensing inaccura-
cies and possible movements between two sensing oper-
ations into account. As physical constraint for the lat-
ter, we consider not only the maximum speed, but also
the maximum acceleration.

Our evaluations with hundreds of real GPS traces
show that GRTS outperforms LDRH by a factor
five in terms of reduction efficiency. With the above-
mentioned simplification heuristic, the reduction effi-
ciency of GRTS is less than 15% below the best possible
reduction computed offline — even when restricting the
space consumption of the algorithm to less than 12kB
using the GRT'S,, variant. The computing time of this
realization GRTSISDec and parametrization is bounded
to less than 1.9ms on a 600 MHz smartphone and to
0.07ms on a 3 GHz Intel Xeon processor.

GRTS,, realized with the optimal line simplifica-
tion algorithm may even reach 97% of the best possible
reduction rate, at one hundred times higher cost.

Organization of the paper: In Section 2, we describe our
assumptions and introduce our notation. Furthermore,
a formal definition of the efficient real-time trajectory
tracking problem is given. In Section 3, we analyze the

use of dead reckoning for trajectory tracking, before
we propose the CDR protocol with its variants in Sec-
tion 4. Then, we present the GRTS protocol with its
three variants and the mentioned realizations in Sec-
tion 5. Besides, we discuss how time-dependent sensing
deviations can be included into GRTS. In Section 6, we
explain how to determine the possible movement be-
tween two sensing operations by a given maximum ac-
celeration and compare the resulting offsets for ¢ with
the offsets obtained by a given maximum speed. In Sec-
tion 7, we show and analyze results from extensive simu-
lations with real GPS traces, before we discuss related
work in Section 8. Finally, the paper is concluded in
Section 9 with a summary.

2 Assumptions and Notation

We consider a collection of mobile objects with embed-
ded positioning sensors (e.g., GPS receivers) whose tra-
jectories are managed by a remote MOD. The objects
and the MOD are connected by a wireless network. The
overall number of trajectories stored by the MOD is of
no relevance here.

An object’s movement over time describes a contin-
uous function a : R — R? from time to plane (d = 2)
or space (d = 3), called the object’s actual trajectory.
Let tc denote the current time, then a(t) is defined up
to tc and a(t¢) is the object’s current actual position.

The positioning sensor periodically senses the ob-
ject’s current position with period Tg, referred to as
sensing period. It results in a sequence of semsed po-
sitions (s1,82,...,Sr), where s; denotes the first and
sr the most recent sensed position. Each s; is a data
record consisting of the sensing time ¢ and the sensed
position p, denoted by s;.t and s;.p, respectively.

Two consecutive positions s; and s;41 define a spa-
tiotemporal line segment 5; 5,41 as

(8i+1.t — t) S;.p + (t — Si.t) Si+1-P
5i+1-t — Si.t

Si Sit+1 it

on the domain [s;.t, s;41.].

Based on these line segments, the sequence of all
sensed positions defines a continuous, piecewise linear
function s(t) named sensed trajectory as

S:t > 5;811(t) where s;.t <t < s;11.¢

on the domain [s1.t, sg.t]. Geometrically, s(¢) is a time-
monotonous polyline in R'*% given by the sequence of
vertices (81, 82,...,5R).

Note that the domain [s;.t, sg.t] does not continu-
ously increase over time but periodically by Tg, with

Ralph Lange et al.

each sensing operation. For current time tc, we thus
have tc — Ts < sg.t < tc.

The sensed trajectory s(t) generally deviates from
a(t) due to inaccuracies of the positioning sensor and
the time-discrete sensing. The former are generally de-
scribed by stochastic means such as probability density
functions or percentiles, which allow deriving a maxi-
mum sensor inaccuracy o that holds with high prob-
ability. Inaccuracies beyond o (typically indicated by
erratic positions) are considered as errors. They have
to be treated separately, e.g., by informing the MOD
that there will be no valid trajectory information un-
til further notice. Regarding the time discretization by
position sensing, the movement between two sensing
operations is subject to physical constraints like the
maximum speed or acceleration.

Therefore, we assume that the deviation between
s(t) and a(t) is bounded by a certain mazimum sens-
ing deviation 0, i.e., Vt' € [s1.t, sgr.t] we have |s(t) —
a(t')| < 4. For example, given a maximum speed vUpax,
we can conclude that

la(t') — s(t)| < o + vmax% _.5,
as the object cannot move more than vy - Ts/2 and
then return to its origin during a sensing period Tgs.

The use of speed-based movement constraints to es-
timate the deviation between s(¢) and a(t) is discussed
in detail in [22]. In Section 6, we show how to incor-
porate acceleration-based constraints, which typically
afford smaller values of §.

The sensor inaccuracy may depend on dynamic
technical conditions such as the satellite constellation
of GPS, described by the dilution of precision (DOP).
Therefore, o may be time-dependent, and thus §. For
simplicity, we assume o and § to be fixed at first. In Sec-
tion 5.3, we discuss how to account for time-dependent
values of o and §, given with each sensed position.

Note that the physical movement constraints also al-
low estimating a(t’) for ¢ > sgr.t. For example, given a
maximum speed vpax, the actual position a(t’) is known
to be inside a circle with radius o + vmax(t’ — sr.t)
around sg.p. This property is utilized by dead reckon-
ing, as explained in Section 3.

In this regard, we also assume that the time for
processing and transmitting an update message to the
MOD is bounded by a certain maximum time span Ty
called update time. Exceptional transmission delays and
connection breaks are considered as errors and have to
be detected by subsidiary mechanisms such as heart-
beat messages. These practical implementation issues
are addressed in Section 7.5

We further assume that clocks of the MOD and the
moving object are synchronized to within few microsec-

a(t) Actual trajectory — a function from time to R?

S Sensed position — with position data s;.p at time s;.t

sr Most recent sensed position

s(t) Sensed trajectory — given by (s1,s2,...,SR)

u(t) Simplified trajectory — given by (u1,us,...)

u; Vertex of u(t) — with position data u;.p for time wu;.t

€ Accuracy bound — maximum tolerated deviation

between u(t) and a(t)

tc Current point in time

Ts Sensing period — time between a s;—1 and s;

o Max. sensor inaccuracy — between s;.p and a(s;.t)

) Max. sensing deviation — between s(t) and a(t)

Umax Maximum speed of the moving object

Tu Update time — upper bound for processing and
transmitting an update message

7(t) Prediction function — cf. Section 3

7o Prediction origin — a sensed position

7y Prediction velocity — a vector for linear prediction

amax Maximum acceleration — cf. Section 6

Table 2 List of symbols.

onds or tens of microseconds. Note that GPS provides
very accurate timing signals. Given that the timestamps
of the sensed positions are accurate, the clock discrep-
ancy between the MOD and the moving object is not
relevant for queries about the past movement but only
for queries about the current position — and can there-
fore be included into Ty.

The MOD describes the object’s trajectory by a con-
tinuous, piecewise linear function u : t — R? called
simplified trajectory. Geometrically, u(t) is a time-
monotonous polyline in Rt given by a sequence of
vertices (uq,us,...), like s(t). Each vertex u; is a data
record with attributes ¢ and p, just as a sensed position.

Table 2 gives a summary of the symbols introduced
in this section. With this notation, the algorithm prob-
lem of tracking a moving object’s trajectory efficiently
in real-time can be formally stated as follows:

Problem statement [Efficient real-time trajectory track-
ing]: The goals are to minimize the number of vertices
of the simplified trajectory u(t) and the amount of data
transmitted over the wireless network under the follow-
ing two constraints, where tc denotes the current time:

1. Simplification constraint: For a given accuracy
bound € known by the moving object and the
MOD, it is
Vit € [s1.t tc] : Ju(t’) —a(t')| <e.

2. Real-time constraint: At tc, position u(t) is avail-
able at the MOD for every t € [s1.t,tc].

The goals of minimizing the number of vertices of u(t)
and the amount of communicated data appear to imply
one another. Obviously, the greater €, the less vertices

Efficient Real-Time Trajectory Tracking

are needed for u(¢) and the less data has to be trans-
mitted. However, the two goals might also contradict to
a certain degree: To generate a u(t) with a very small
number of vertices, it has to be revised over time — i.e.,
an update may need to replace multiple vertices from
previous updates. This causes larger message sizes and
thus communication cost. The quantitative impact of
this property and respective conclusions are discussed
in Section 7.

3 Analysis of Linear Dead Reckoning

Before we present our approaches CDR and GRTS, we
analyze the use of linear dead reckoning (LDR) for tra-
jectory tracking — also because CDR and GRTS make
use of LDR.

As explained above, LDR is an efficient mechanism
for tracking the current position of a moving object
with low communication costs [31,17,30]. With LDR,
the moving object and the MOD share a linear predic-
tion function 7 (t) for determining the object’s current
position. 7 (t) is defined by a previously sensed position
o called prediction origin and a velocity vector wy as

wit— mo.p+ (t—ﬂ'o.ﬁ)ﬁv

for t > mo.t. For a given accuracy bound ¢, LDR guar-
antees that 7 (¢) known by the MOD approximates the
objects’ current actual position by e. Formally, at cur-
rent time tc, it guarantees that |w(tc) — a(tc)| < e

After having sensed a new position at time sg.t,
it has to be decided whether 7 (¢) is going to meet
this guarantee during the following sensing period
[sr.t, sr.t + Ts] as well as during the time span until a
subsequent update would have been processed. If not,
the object has to send a new prediction (7o, wy) right
now. For this decision, the maximum sensor inaccuracy
o has to be incorporated as well.

Therefore, we say that the moving object has to send
a new prediction if |7 (tc) — a(tc)| impends to reach e.
For example, assuming a maximum velocity vpyax, it has
to send an update if

[sp.p — w(sr-t +Ts + Tu)| + 0 + Umax(Ts + Tu) > €,

as sg.p may deviate by up to ¢ from the actual position
at sr.t, and the object may move by up to vmax(Ts+7v)
until an update after the subsequent sensing operation
would have been processed.!

1 Note that many works do not clearly state whether they
account for the sensing period and update time, or not. Some
works even ignore the sensor inaccuracy o since it can be
initially offset against €, as long as it does not vary over time.

7 (t)

Fig. 1 Example of a violation of ¢ for trajectory tracking by
LDR.

Because of the discontinuities between the different
predictions, LDR is a position tracking protocol rather
than a trajectory tracking protocol. More precisely, it
represents the object’s movement by a sequence of dis-
connected spatiotemporal line segments instead of a
continuous polyline. Figure 1 illustrates such disconti-
nuities. The solid arrows denote the linear predictions —
and thus the line segments — whereas the small crosses
indicate the sensed positions.

However, the distance between the end point of such
a line segment and the start point of the subsequent one
is bounded by e.

In [27], Trajcevski et al. utilize this property for tra-
jectory tracking. They analyze the spatiotemporal poly-
line given by the origins of the linear predictions and
prove that it approximates the actual movement by 2e.
Figure 1 illustrates this polyline by a dashed line. Based
on this finding, they conclude that LDR allows for tra-
jectory tracking with accuracy bound e as follows:

1. The moving object reports its current position using
LDR with the accuracy bound ¢ := €/2.

2. The MOD not only stores the current prediction,
but also the origins of all previous predictions as
vertices of the simplified trajectory u(t).

This approach, which we will refer to as LDRH in the
following, is very conservative in terms of the reduction
efficiency. Consider again the polyline u(t) given by the
prediction origins of LDR with accuracy bound e. It
may deviate by more than e from the actual trajectory
a(t), as just explained. We argue that such violations
are rare and will seldom reach 2e:

1. The actual position a(t') at time ¢ can only de-
viate by more than € from the corresponding line
segment u; w41 if a(t’) and u;4q are located at op-
posite sides of the predicted movement vector. This
does not hold for typical movement patterns like
turning off or stopping.

2. The deviation |a(t') — @ @ 51| can be close to 2e
if ¢/ ~ wjyq.t and |a(t’) — uj41.p| is also about 2e.
Thus, for such large deviations, the object has to
move in a very fast and irregular fashion.

To support this argumentation, we analyzed the actual
number of such violations by simulating LDR with a

Ralph Lange et al.

p - u(s;t) £3[m]

= 0 Y2 1 1%
Time s;.t [h]

Is;

Fig. 2 Potential violations of € for trajectory tracking by
LDR during the first 1% hours of a 4-hour bicycle tour.

GPS trace of a 4-hour bicycle tour from the Open-
StreetMap [21] project. For the simulation, we used
0 = 7.8m, Umax = 10m/s, Ts = 1s, Ty = 0.2s, and
€ =50m.

With these assumptions and parameters, LDR gen-
erates 396 position updates, where the last one indicates
the end of the tour. Hence, the resulting simplified tra-
jectory u(t) consists of 395 line segments given by 396
vertices. Figure 2 illustrates the deviations between the
sensed positions s; and u(t) depending on time, for the
first 1% hours of the tour. The black curve of dots de-
notes the sensed positions. The corresponding gray bars
depict the maximum sensing deviation § = 12.8 m.

Each time the gray bars intersect the thick hori-
zontal line, the deviation between a(t) and u(t) may
violate the accuracy bound e. Formally, this applies to
all s; where |s;.p —u(s;.t)|+ 8 > e. Thus, the difference
€ — 0 represents the largest tolerable deviation between
a sensed position s; and u(¢). Obviously, the violations
are not distributed uniformly over time but appear at
few line segments of u(t) only. In detail, during the four
hours, they appear at 15 of the 395 line segments. Fur-
thermore, the deviations are well below 2e.

We conclude that using LDR with ¢ := ¢/2
(i.e., LDRH) is generally too strict. It generates need-
less position updates and hence simplified trajectories
with unnecessary large numbers of vertices.

Next, we present an approach for trajectory tracking
that extends LDR to prevent such violations, before
we present the GRTS protocol, which clearly separates
tracking of the current position from simplification of
the past trajectory.

4 Connection-Preserving Dead Reckoning

In this section, we propose Connection-Preserving Dead
Reckoning (CDR), which extends LDR such that the
prediction origins make up the vertices of a simplified
trajectory u(t) that approximates a(t) by the accuracy
bound of LDR. First, we present the basic CDR algo-
rithm executed at the moving object, before we discuss
an optimization of this algorithm. Then, we present

1: sr <« sense position > Most recent sensed position.
2: ™o < SR > Prediction origin.
3: wy «0 > Predicted velocity.
4: send update message (7o, 7yv) to MOD
5: S+ {} > Sensing history since last update.
6: Sr’ < SR > Second last sensed position.
7: while report movement do
8 SR < sense position
9 if LDR causes update

or 3s; €S:|s; — 7o Sr(si.t)] > € — & then
10: TO < SR/

11: 7y < compute new predicted velocity ...
12: send update message (7o, 7wy) to MOD
13: S+ {} > Clear the sensing history.

14: end if

15: S« S U {sr}
16: SR’ ¢ SR

17: end while

18: send final update message (sr) to MOD

> Add sgr to sensing history.

Fig. 3 Basic version of CDR algorithm.

a space- and time-bounded variant of this algorithm
named CDRy,.

4.1 Basic Version of CDR

As explained in Section 3, the prediction origins of LDR
with accuracy bound e make up a simplified trajec-
tory u(t) that approximates a(t) by e for most of the
time. However, some line segments of u(t) may violate
€. CDR is based on the observation that the moving
object has all information for detecting such violations
in real-time:

1. Tt knows the current prediction given by the predic-
tion origin mo and the velocity vector 7y .

2. It knows the most recent sensed position sg.

3. Thus, it also knows the resulting line segment 7o sg
of u(t), in case sg is used as origin of the next pre-
diction.

4. Tt can store the sensing history since the last update
message, i.e., the positions that have been sensed
after mo.t, and check whether one of these positions
deviates from 7o sg by more than € — §. If so, the
line segment To sg may deviate by more than e from
a(t). In the following we refer to the sensing history
as S:= {s; : s;.t > mo.t}.

The basic idea of CDR is that the moving object not
only sends a new position update if caused by LDR, but
also if one of the sensed positions since the last update
message deviates from 7o sg by more than ¢ — 4.
Figure 3 shows the pseudocode of the algorithm ex-
ecuted by moving object. A crucial difference to LDR
is that CDR maintains a dynamic array that stores
the sensing history (line 5). Another, subtle difference

Efficient Real-Time Trajectory Tracking

to LDR is that CDR does not use the most recent
sensed position sy as origin of a new prediction, but
the one before sg, denoted by sgs (line 10). The use
of sg/ has negligible or no influence on LDR since
the predicted velocity 7wy generally is determined by
means of the last sensed positions and particularly
(sr.p—sr/-p)/(sr.t—sr.t). Yet, it is essential for u(t),
as explained below.

Initially the moving object transmits its current po-
sition and the zero vector as velocity prediction to the
MOD. Then, it executes the while loop (lines 7 to 17)
as long as it wants to report its movement to the MOD.

During each iteration, it first senses its current po-
sition (line 8) and then checks whether LDR causes an
update or whether the segment condition, given as

Vs, €S:ls; —ToSr(sit) <e—9,

is violated (line 9). The segment condition simply states
that none of the sensed positions s; since the last up-
date should deviate from 7o sg by more than ¢ — §, as
discussed above. If there exists an s; deviating by more
than e— 0, a new update message with prediction origin
To = S/ is sent to the MOD such that the correspond-
ing line segment of the simplified trajectory u(t) fulfills
the segment condition.

After sending an update message, S is cleared to
remove the sensed positions before mo.t (line 13).

If the moving object wants to stop reporting its
movement, it sends a final update message with the
most recent sensed position — but without a new pre-
diction — and terminates the algorithm (line 18).

The simplified trajectory u(t) managed by the MOD
consists of two parts: the spatiotemporal polyline given
by the vertices (u1,...,uy), as described in Section 2,
and the prediction function 7 (¢) of LDR. On receiving
an update message (7o, 7wy), the MOD simply updates
7(t) with the new origin 7o and the new velocity vector
7y and appends mo to the sequence of vertices as (n +
1)th vertex.

Given a query for the moving object’s position at
time ¢/, the MOD answers as follows:

— t' < 7o.t : The MOD calculates u(t’) as described in
Section 2 and returns the result to the query issuer.
— t' > mo.t : It calculates the predicted position at
time ¢ using w(¥') = 7o.p + (t' — 7o.t)7wy and re-
turns the result to the query issuer.
If the MOD receives the final update message (sgr) it
removes 7(t) and completes u(t) by appending sg as
final vertex to (ui,...,up). In practical implementa-
tions, the MOD should also terminate the simplified
trajectory during long-lasting network outages or after
failures at the mobile object, which can be detected by
a timeout mechanism (cf. Section 7.5).

7
Si X

2 it

I:.p — TG SR (s1.0)| |si.p — m(si.t)|
(1)
S;—3 - ‘ﬁ;ﬂ%ﬁ |5R~p_7T(SR't)|

=70 ~~‘~‘~
Tt
SR = Si+2

Fig. 4 Geometric illustration of triangle inequality for opti-
mization of S.

4.2 Optimization of Sensing History

CDR differs from LDR regarding the space require-
ments at the moving object. While LDR only stores
the current prediction and the most recent sensed posi-
tion, the basic version of CDR stores the whole sensing
history S since the last update. Theoretically, the size
of § is unbounded.

However, this problem can be alleviated. For every
sensed position s; € S there exists a certain point in
time from which onwards, it cannot violate the segment
condition without sr causing LDR to send an update.
After this time, s; can be removed from S, even before
the next update. This significantly reduces the space
consumption of CDR as well as the computing time
per position fix. For example, in case of the bicycle tour
mentioned in Section 3 and € = 50 m, the maximum size
of S is reduced from 405 to 214 positions. The maximum
computing time per position fix on a 3 GHz Intel Xeon
processor (cf. Section 7) is reduced from 0.10 to 0.06 ms.

To determine this point in time for a given s; € S,
we analyze the state of the basic version of CDR (cf.
Figure 3) right after having sensed a new position sg
(line 8) that does not cause an update by LDR.

We consider the line segment 7o sg, which is going
to be the next line segment @, @, ;1 of u(¢) if an update
is sent in the subsequent iteration of the while loop.

Since the prediction function = (t) and 7o sg are
linear functions in ¢ with identical origin 7o, we
conclude that regarding time s;.t they deviate by
% [sr.p — w(sr-t)|-

As illustrated in Figure 4, the following triangle in-
equality can be derived:

|s;.p — 7o SR(s:.t)| <|sip— 7(s;.t)| +
s;.t —mo.t (1)
_— P— .t
sp.t— mot [P = 7 (sr.t)]
Under the above assumption that sg does not cause
an update, we conclude that |sg.p — 7(sgr.t)| < € and
finally estimate |s;.p — 7o Sr(s;.t)| by
s;.t —mo.t

[si-p ~TOSR(si-0)| < |si-p = (si-t) | + S e

Ralph Lange et al.

: while report movement do
SR ¢ sense position
while [S| > 0 and sgr.t > k(peek(S)) do
pop(S) > Remove root of heap.
end while

end while
send final update message (sg) to MOD

Fig. 5 Optimization of S in the CDR algorithm.

Clearly, this estimate decreases over time, i.e., with in-
creasing values of sgr.t. We now derive the point in time
from which onwards it falls below € — §, as required to
fulfill the segment condition definitely:

€—0> |sip—m(s;t)| + %e
S;.t — 7To.t

& sp.t > e+ mo.t (2)

€—0—|s;.p— m(s;.t)]

=:r(s;)

Thus, s; cannot violate the segment condition once time
sr.t fulfills the inequation (2).

So far, we assumed that sg does not cause an up-
date by LDR. In the general case, it follows that once
sgr.t fulfills (2), s; cannot violate the segment condi-
tion without sg causing an update by LDR. Therefore,
CDR can remove s; from S at this point in time without
affecting its future decisions on a new update.

For this purpose, CDR organizes S as a min-heap
according to the right-hand side of (2), i.e., k(s;). After
position sensing, it first removes the root of S one by
one, as long as this sensed position fulfills (2). Figure 5
shows the corresponding additional pseudocode to the
basic version of CDR.

4.3 Space- and Time-bounded CDR

With the optimization presented above, CDR tries to
reduce the sensing history S after each position fix. The
space consumption is nevertheless unbounded, which
can be critical for resource-constrained mobile devices.

In the following, we present the CDR,, algorithm
whose space consumption is bounded by a predefined
parameter m. CDR,, guarantees that |S| < m at every
point in time. This also limits the computing time per
position fix.

CDR,, is based on the following idea: Besides a heap
of fixed size m for storing S, it maintains a floating-
point variable dg providing aggregated information on
all sensed positions that could not be stored in S due to

the space constraint. More precisely, ds defines a time-
dependent bound for |sg.p — w(sgr.t)|. Each time |S|
is going to exceed m, the CDR,, algorithm removes a
sensed position from S and updates dg accordingly.

If |sg.p — 7(sr.t)| is below the bound defined by dg,
none of the sensed positions that could not be stored in
S violates the segment condition for sg.

For this purpose, the segment condition is split into
two subconditions: The first subcondition is evaluated
on the sensed positions currently stored in S, just as
with CDR. The second subcondition is evaluated on ds.

We now give the mathematical basis for ds and de-
rive the inequation for the second subcondition. First,
we reconsider the triangle inequality (1), given in Sec-
tion 4.2. With it, we conclude that

s;.t —mo.t

[s;p — 7(s;.t)] + |sr.-p — m(srt)| <€—6

SR.t — 7To.t

implies |s;.p — 7o Sr(S:-t)| < € —§. The former inequa-
tion can be rewritten as

€—08—|s;.p— m(s;.t)]

|sr.p — m(sr.t)| < (sr-t—7o-t) .

S;.t — Wo.t

—ip(s0)

Thus, |sg.p — 7(sr-t)| < @(s;) - (sr.t — wo.t) implies
that s; does not violate the segment condition. This
result is used for the CDRy, algorithm as follows:

1. The minimum ¢(s;) of all sensed positions s; that
had to be removed from S due to the space con-
straint is stored in the variable ds.

2. Inequation |sg.p — 7w(sr.t)| < ds - (sgr.t — mo.t) is
used as second subcondition of the segment con-
dition. Thus, an update is sent if |sgr.p — 7(sg.t)]
exceeds dg - (Sgr.t — mo.1).

Therefore, as long as the second subcondition is ful-
filled, each removed position s; fulfills the segment con-
dition. Thus, as long as both subconditions are ful-
filled, every sensed position since the last position up-
date fulfills the segment condition. After an update, S
is cleared — just as with CDR — and ds is reset to co.

A crucial question is which sensed position to re-
move from S once S| is going to exceed m. Clearly, for
small values of dg, the most recent sensed position sg
violates the second subcondition more likely. Therefore,
CDR,, always removes the s; € S with maximum ¢(s;).
For this purpose, it stores S as a max-heap according
to ¢(s;). This order is identical to the min-heap order
of CDR by k(s;), as explained below.

Since ds aggregates all previously sensed position
with ¢(sj) > ds, the most recent sensed position sg
need not be added to S if p(sg) > ds. Hence, the in-
variant Vs; € S : ¢(s;) < ds holds for S. For this rea-
son, CDR,, can directly assign ¢(pop(S)) to ds when

Efficient Real-Time Trajectory Tracking

s] > Same initialization like CDR.
1 dg < oo > Indicates empty aggregation.
while report movement do
SR ¢ sense position
while [S| > 0 and ¢(peek(S)) - (sr.t — m0.t) > € do
pop(S) > Remove root of heap.
end while
if LDR causes update
or ds; €S:|s; —To Sr(sit)]| >e—0
or [sg.p — w(sr.t)| > ds - (sr.t — m0.t) then
9: TO 4— SR’

QWD

10: 7y < compute new predicted velocity ...
11: send update message (7o, v) to MOD
12: S+ {} > Clear the sensing history.

13: ds + o0 > Reset the bound.
14: end if

15: if |S| =m and ¢(sr) < ds then

16: ds + p(pop(S)) > Aggregate the root.
17: end if

18: if ¢(sr) < ds then

19: insert sgr into S

20: end if

21: SR’ ¢ SR
22: end while
23: send final update message (sg) to MOD

Fig. 6 CDR,, algorithm.

removing the root of S. It does not need to determine
the minimum of ¢(pop(S)) and dgs explicitly.

By reconsidering inequation (2), it can be seen that
k(si) = mo.t + €/p(s;). Therefore, the max-heap order
by ¢(s;) is identical to the min-heap order of CDR by
k(8;). Moreover, CDR’s condition sg.t > k(peek(S)) for
removing a s; from S can be rewritten as ¢(peek(S)) -
(sp.t —mo.t) > €.

From an algorithmic perspective, CDRy, is an ex-
tension of CDR. Figure 6 gives its pseudocode. The
additional statements compared to CDR are:

— Lines 2 and 13: Initialize or reset dg, respectively.

— Lines 15 to 17: Remove the sensed position with
maximum ¢(s;) from S and aggregate it in dg if
IS| = m and sgr has to be added to S.

— Lines 18 to 20: Insert the most recent sensed posi-
tion si into the heap S if p(sr) < ds.

5 Generic Remote Trajectory Simplification

LDRH and CDR use dead reckoning for two different
problems, namely the tracking of the current position
and the simplification of the past trajectory. While this
leads to simple solutions, the efficiency of simplification
depends on the quality of dead reckoning, which has
been designed for position tracking only.

On the other hand, there exists a variety of efficient
line simplification algorithms that could be used for this

purpose. Therefore, it is a good idea to separate position
tracking from simplification issues as far as possible to
gain flexibility.

In this section, we propose the Generic Remote Tra-
jectory Simplification (GRTS) protocol, which clearly
separates tracking of the current position from simplifi-
cation of the past trajectory and can be combined with
any line simplification algorithm suited for trajectories.

First, we present the basic protocol and algorithm.
Then, we discuss how to bound the space consumption
and computing time for line simplification in GRTS and
how to consider dynamic sensing deviations J, resulting
for instance from variable sensor inaccuracies. Finally,
we present two realizations of GRTS, with the optimal
line simplification algorithm by Imai and Iri [11] as well
as with an efficient simplification heuristic [18] referred
to as segment heuristic.

5.1 Basic Protocol and Algorithm

Although it is a good idea to separate position tracking
from simplification issues as far as possible, the sim-
plification process must be synchronized with position
tracking to make sure that the simplified data arrives
in time at the MOD. The GRTS protocol follows a syn-
chronization pattern, which we call per-update simplifi-
cation.

With this pattern, simplification is performed when-
ever the position tracking mechanism decides to send
an update message. For this purpose, the moving ob-
ject stores a partial history of sensed positions, which
serves as input for the simplification process. Based on
this input, the simplification algorithm generates a se-
quence of vertices for updating the simplified trajectory
u(t), which is included in the update message. In many
cases, the generated sequence replaces one or few ver-
tices of u(t) only — without increasing their number.
Therefore, GRTS has better reduction efficiency than
LDRH and CDR, which always generate one additional
vertex per update.

Depending on the line simplification algorithm used
with GRTS, the simplification process may be prepared
with each sensed position, to reduce the computing time
for line simplification when the position tracking mech-
anism decides to send an update message. If GRTS
is realized with an online algorithm, the simplification
even can be performed with each sensing operation —
resulting in per-sense simplification — as explained in
Section 5.5.

In the following, we consider LDR for position track-
ing in GRTS as LDR is the most efficient, general ap-
plicable position tracking protocol [31,17,30]. However,

10

Ralph Lange et al.

Sensing history S

PR

_-rTu2
-

-
-

up = 81 = Un_—k

U3 T e - - T T X T
Uy

-~

Stable part

Fig. 7 Three parts of u(t) and corresponding S for GRTS.

GRTS can be realized with any position tracking pro-
tocol based on a piecewise linear prediction function
().

GRTS divides the simplified trajectory u(t) into

three parts, as depicted in Figure 7:

1. Stable part: This part generally comprises a large
number of vertices, stored by the MOD only — ex-
cept for the last vertex denoted by u,_j, which is
also known to the moving object, as explained be-
low.

2. Variable part: It generally comprises few vertices
only, counted by k, which are known to the MOD
and the moving object. The last vertex u,, also com-
poses the prediction origin for the next part.

3. Predicted part: This part is given by the prediction
function 7 (t), i.e., the origin u,, and the vector 7y,
and is known to the MOD and the moving object.

Hence, n gives the number of vertices of u(t), excluding
the current predicted position 7 (tc).

The moving object not only stores the vertices of
the variable part and the predicted velocity but also the
sensing history S for those two parts. Note that S fur-
ther includes the last sensed position of the stable part —
i.e., the vertex wu,_ — as required for simplifying s(¢)
for t > up,_.t. Formally, S is the sequence of chrono-
logically ordered sensed positions with first(S) = w,—g
and last(S) = sg.

Only the moving object distinguishes between sta-
ble and variable part; the MOD does not need to be
aware of this differentiation. Once the moving object
decides that a vertex u; belongs to the stable part, this
vertex will not be changed by future updates. Hence,
the stable part grows in an append-only fashion. The
variable part, in contrast, may be changed by future
updates. An update message therefore consists of three
elements:

1. The number of vertices to remove from u(t), starting
backwards at u,,.

2. The new vertices U := (u;,...,u,) to append to
u(t). In sum, this may increase but (rarely) also
decrease the overall number of vertices.

3. The new velocity vector @y, which replaces the pre-
vious prediction.

Variable part (k = 2)

Predicted part

1: sr < sense position > Most recent sensed position.
2: U+ (sr) > New vertices for u(t).
3: wy «0 > Predicted velocity.
4: send update message (0, U, 7wy) to MOD

5: S+ (sr) > Sensing history.
6: V() > Vertices of variable part of u(t).
7: U<+ ()

8: while report movement do

9: SR < sense position

10: S« S| (sr) > Append sgr to sensing history.
11: if LDR causes update then

12: U < line simplification with bound € — § on S

13: U« U\ (first(UV)) > Belongs to stable part.
14: 7y < compute new predicted velocity ...

15: send update message (|[V\ U|,U\ V,7wy) to MOD
16: VU

17: U+ ()

18: if V and S should be reduced then

19: V’ < some prefix of V for stable part ...

20: S« (s €S|s.t >last(V').t)

21: V+V\V > Set new variable part of u(t).
22: end if

23: end if

24: end while

25: U <« line simplification with bound € — § on S

26: U« U\ (first(U))

27: send final update message (|[V\ U[,U\ V) to MOD

Fig. 8 Basic GRTS algorithm.

Figure 8 shows the pseudocode of the basic GRTS al-
gorithm executed by the mobile object. Initially, the
moving object transmits its most recent sensed position
sr = 81 as first vertex u; to the MOD (line 4). Thus, u;
also serves as prediction origin until the next update.
Then, the object executes the while loop (lines 8 to 24)
as long as it wants to report its trajectory to the MOD.

During each iteration, the object first senses its cur-
rent position (line 9) and appends it to the sensing his-
tory (line 10). Then, it checks whether it has to send
an update message to the MOD (line 11).

If so, the object computes a simplified trajectory
part for the movement of the variable and predicted
part using S. Since the part of s(t) given by S does not
deviate by more than ¢ from a(t), it executes the line
simplification algorithm with simplification bound € — §
and stores the resulting vertices of the simplified tra-
jectory in U (line 12). Hence, the simplified trajectory

Efficient Real-Time Trajectory Tracking

part given by U approximates a(t) on (first(S).t, sg.t]
according to e. Note that first(U) can be safely removed
from U, as it always corresponds to first(S) and thus
the last vertex wu,_j of the stable part. Then, the ob-
ject computes a new velocity vector for LDR (line 14)
and creates a corresponding update message.

To minimize the size of the update message, only
those vertices of U that actually change the variable
part are included. For this purpose, the algorithm main-
tains the vertices of the variable part in an array V
(lines 6 and 16). To create the update message, the
number of vertices that have to be removed from the
end of the variable part (expressed by |V \ U|) and the
new vertices that have to be added to it (expressed by
U\ V) are computed. This information is sent together
with the new predicted velocity to the MOD (line 15).
Then, the object stores the vertices U as new vertices
V of the variable part (line 16) and clears U (line 17).

Finally, the object may decide to reduce the size
of the variable part by removing some prefix of V and
S, respectively (lines 18 to 22). A possible policy is to
limit the size of V to some given parameter k. We re-
fer to this variant as GRTSy in the following. However,
GRTSk does not limit the size of the sensing history S,
which has important impact on the space consumption
and computing time per position fix. Therefore, we pro-
pose the variants GRTS,, and GRTS,,. in Section 5.2,
limiting [S| to a given parameter m.

Once the moving object wants to stop reporting
its movement, it computes a last simplification of S
(line 25) and sends a corresponding final update mes-
sage to the MOD (line 27).

An update message ([V\U|,U\V,wy), received by
the MOD is processed as follows: The MOD removes
the |[V'\ U] last vertices from u(t), appends the vertices
U\ V to u(t) and finally replaces the current predicted
velocity with the new vector 7y .

As indicated above, many updates just replace the
last vertex w, (i.e., the prediction origin) and provide
a new 7y. If the construction of the update messages
is slightly modified such that every update message re-
places or repeats the last vertex of the previous update,
then u,, and 7y need not to be recovered after a crash
of the MOD, and can thus be stored in main memory
rather than on disk. This approach saves a number of
write operations.?

2 One may think of more elaborate approaches, e.g., to store
several of the last vertices of u(t) in main memory only. In
return, the update messages must be logged to stable stor-
age, where simultaneous messages of different objects may be
written in one operation. To cope with the update load of a
large number of moving objects, however, it is inevitable to
partition the MOD to multiple servers (e.g., [13]).

11

1 [.]

2: while report movement do

3: SR ¢ sense position

4: S+ S| (sr) > Append sg to sensing history.
5: if |S| = m then

6: U’ «+ line simplification with bound ¢ — § on S

7 U« U\ (first(U"))

8: U « U|| (first(U"))

9: S+ (s € S|s.t > last(U).t)

10: end if

11: if LDR causes update then

12: U’ + line simplification with bound ¢ — § on S
13: U« U\ (first(U"))

14: U« U|u

15: 7y < compute new predicted velocity ...

16: send update message (|[V\ U|,U\ V,7wyv) to MOD
17: VU

18: U+ ()

19: end if
20: end while
21: |

22: send final update message (|JV\ U[,U\ V) to MOD

Fig. 9 GRTS,, algorithm.

To determine the object’s position at time ¢’, the
MOD has to distinguish two cases, similar to CDR:

1. t' < up.t : The MOD calculates u(t’) by linear in-
terpolation between the vertices u; and w;y; with
uj.t < t < ujy1.t as described in Section 2.

2. t' > un.t : The MOD calculates u(t’) by means of
the prediction 7 (t) given by 7o = u,, and 7y

5.2 Space- and Time-bounded Simplification

The basic GRTS algorithm does not define a policy
when to reduce the variable part and to what extent.
A possible approach is to limit [V| to some parameter
k (e.g., k =1 or 2), as explained in Section 5.1. This
variant GRTSy, however, does not limit the size of the
sensing history S, which has important impact on the
space consumption and computing time per position
fix, depending on the line simplification algorithm used
with GRTS.

Therefore, we propose two space- and time-bounded
variants named GRTS,, and GRTS,,. in the following,
limiting [S| to a given m (e.g., m = 100 or 500). Since
the latter variant builds on the former, we first explain
GRTS,, and then GRTS,,..

GRTS,,: Figure 9 shows the pseudocode of the GRTS,;,
algorithm executed by the moving object. The most
important difference to the basic algorithm is that U is
created incrementally, each time |S| reaches m. Thus,
S is not only simplified if LDR causes an update, but
also if [S| = m.

12

Ralph Lange et al.

For this purpose, |S| is checked after each sensing
operation (line 5). If it reaches m, a simplification U’ for
S is computed (line 6), the first vertex is removed as in
the basic algorithm (line 7), and the subsequent vertex
of U’ is added to U (line 8). Thereafter, the sensing
history is cleared up to this vertex (line 9). The clearing
determines that this vertex is considered to belong to
the stable part — although U is not sent to the MOD
until LDR causes an update.

If LDR causes an update, a simplification U’ for the
current sensing history is computed and appended to
U (line 12 to 14). Then, U is sent to the MOD as in
the basic algorithm (line 16). Next, U’ is stored as new
variable part in V (line 17), consistent with S. Finally,
U is cleared for the next update (line 18).

GRTS,, limits the input for line simplification to m
sensed positions and thus bounds the space consump-
tion and the computing time per position fix, depending
on the line simplification algorithm being used. For ex-
ample, with the simplification algorithm by Imai and
Iri [11] and m = 500, it bounds the computing time to
7ms on a 3 GHz processor — compared to computing
times of up to 870 ms with GRTSy (cf. Section 7.4).

On the downside, GRTS,,, generates an additional
vertex for u(t) at least every m sensing operations —
even if the object stands still for a long period of time
> m - Tg. This drawback, however, can be alleviated
effectively by a compression technique for the sensing
history, resulting in the variant GRTSy,..

GRTS,,.: The fundamental idea of this technique is the
following: Once a simplification has been computed for
S because |S| = m, the first simplified line segment is
not immediately considered for the stable part of u(t) —
by adding the corresponding sensed position s; as ver-
tex to U — but may be revised during subsequent sim-
plifications.

For this purpose, the sensed positions between
first(S) and s, are removed from S, but s is kept in
S and extended by an attribute § that gives the maxi-
mum deviation between the removed positions and the
line segment first(S) s, i.e.,

8p-0 max first(S) sp(si-t) — si-p| -

’ first(S).t<s;.t<sp.t

Then, s, may be removed from S during a subsequent
simplification if another line segment first(S) sy, that
approximates s, by € — (0 + $5.0) can be found. The
reason is that the property

|first(S) spis(Sp-t) — sp-p| < € — (6 + 5p.9)

guarantees by triangle inequality Vs; with first(S).t <
8;.t < sp.t that

|first(S) sppu(sit) — s <e—96 .

1 [.]
2: ¢ + > Counts the compressed positions in S.
3: while report movement do
4: SR < sense position
5: S+« S| (sr) > Append sg to sensing history.
6: if |S|— ¢ =m —c then
7 U’ + line simplification with bound e — § on S
8: search first 54 5p in U’ where s; is not compressed
9: $p.0 < 0
10: for all s; € S with s4.t < s;.t < sp.t do
11: if s; is compressed then
12: 8p.0 < max (8p.0, |Sq Sp(si.t) — si.p| + $i.0)
13: c=c -1 > Because s; is removed from S.
14: else > Non-compressed position.
15: $p.0 < max (8p.9, |Sq Sp(si.t) — s;.p|)
16: end if
17: S+ S\ (s4) > Reduce S.
18: end for
19: cd=c+1 > Because sp is compressed now.
20: if ¢/ > cthen > Move compressed position to U.
21: S+ S\ (first(S))
22: U« U|| (first(S))
23: d=c -1
24: end if
25: end if
26: if LDR causes update then
27: [...]
28: end if
29: end while
30: [...]

Fig. 10 Compression technique in the GRT S algorithm.

Therefore, we refer to such a sensed position s, as com-
pressed position in the following.

For example, assume m = 500 and consider a mov-
ing object that stands still for a long period of time,
with sensing history S = (s201, . - ., S¢99). When adding
s700 t0 S, it is |S| = m. Since the object is not moving,
S can be approximated by the line segment

5201 5700 = first(S) last(S) .

Therefore, GRTS,;,. reduces the sensing history to S :=
(8201, 3700) and extends S700 by 6 with

max ‘8201 S700(Si.t) — Slp‘ s

S7 0=
00 201<3<700

which is about zero in case of standstill. After another
488 position fixes, |S| reaches m again. Assuming that
the object also stood still during [s700.t, S1188-t], the
sensing history S = (8201, $700, $701, - - - , S1188) can be
approximated by S301 S1185 = first(S) last(S) since

|5201 51188(8700.t)—8700.p| ~0< E—(6+S700.6) ~e—0 .

Hence, the compressed position s7qg is removed from S
and not added to U. The sensing history is reduced to

Efficient Real-Time Trajectory Tracking

13

S := (S201, S1188), Where s1188 is a compressed position.
For computing s1185.0 not only

00 maX, o |5201 51188(5i-) — 5i.P]

has to be taken into account, but also
|5201 51188 (8700-t) — 5700-P| + 5700.0 -

Figure 10 shows the additional pseudocode for GRTS,¢
compared to the GRTS,, algorithm. The variable ¢’
counts the compressed positions in S (line 2). The com-
pressed positions are always at the beginning of S, right
after the last vertex of the stable part, either known to
the MOD or stored in U for the next update. Note that
first(S) can be considered as non-compressed position,
even if it was compressed during previous iterations, as
the movement before first(S).t is no more relevant for
simplification.

It is very unlikely that two or more compressed po-
sitions can be spanned by a line segment during future
simplifications. To prevent that S gets filled with com-
pressed positions, causing frequent but ineffective sim-
plifications, their number should be kept small. There-
fore, GRTS,,,c moves the first compressed position to U
once ¢ exceeds a certain number ¢ (e.g., ¢ =1 or 2).

If the number of non-compressed sensed positions
in S exceeds m — ¢ (line 6), GRTS;,. computes a sim-
plification for S, taking the J-values of the compressed
positions into account (line 7). Then, it searches for the
first simplified line segment 5,75, (i.e., consecutive ver-
tices sq and s in U) where s; is not compressed (line 8).
Note that ¢ = 0 implies s, = first(S), as in the above
example.

GRTS,,c compresses s, by computing s,.0 and re-
moves the s; spanned by 5,8, from S (lines 9 to 18).
During this computation, ¢’ is decreased if 5, 5, spans
another compressed position, i.e., if s, is not the last
compressed position in S.

Since s, is compressed now, ¢ is increased by
one (line 19) and thus may exceed c. If so, the first
compressed position (i.e., the second element of S) is
added to U and first(S) is removed from S — such that
first(S) = last(U) as in the GRTS,, algorithm (lines 21
to 23).

For realizations with the optimal simplification al-
gorithm by Imai and Iri [11], our evaluation results in
Section 7.2 show that the proposed compression tech-
nique significantly improves the reduction performance
compared to GRTS,;,. Note that the compression tech-
nique can be generally used to optimize real-time online
simplification of polylines.

5.3 Time-dependent Maximum Sensing Deviation

The GRTS,,. algorithm introduced the J-attribute to
represent the deviation along a simplified line segment
54 Sp at the end vertex sp. This idea can be generalized
to represent time-dependent maximum sensing devia-
tions (), in particular to incorporate varying sensor
inaccuracies o(t).

For this purpose, every sensed position s; is ex-
tended with an attribute § that gives the maximum de-
viation between a(t) and 5;-7 5;(t), depending on phys-
ical movement constraints and inaccuracies of the posi-
tioning sensor.

When compressing a sensed position s, to represent
a line segment 5, 5, in GRTSy,c, J is set to

$p.0 1= max

Sq.t<8;.t<sp.t [Sasp(si-t) = sipl +5i.0
independent whether s; is compressed or not. Thus,
there is no difference between compressed and non-
compressed positions, except that the former are
counted by ¢’.

As there exists no global constant é anymore, the
line simplification algorithm is called with € only, but
has to account for the individual d-values of the s;.

Next, we discuss how to realize GRTS with two dif-
ferent line simplification algorithms and how to include
the individual §-values in these algorithms.

5.4 GRTS with Optimal Line Simplification Algorithm

Here, we describe how to combine GRTS with the op-
timal simplification algorithm introduced in [11]. Al-
though this algorithm has originally been designed for
offline usage, we apply it online following the per-
update simplification pattern. Thus, whenever LDR de-
cides to send a new update or the sensing history gets
too large (in case of GRTS,, and GRTS,,.), the algo-
rithm is initiated with input S.

In detail, the algorithm first considers the sensed
positions in S as vertices of an unweighted, directed
graph and adds an edge for each pair of sensed positions
(Si, Si+a), where the line segment 5;5;7, approximates
every sensed position s; € S with ¢ < j < i+ x by ¢,
taking the global § or the individual s;.0 into account.
This particularly applies to every pair (s;, $;+1)-

Second, it computes a shortest path between the
first vertex first(S) and the last vertex last(S) = sg.
The vertices U’ of the shortest path compose a simpli-
fied trajectory that approximates a(t) within the time
interval [first(S).t, sg.t] by e.

Due to the incremental simplification, induced by
the choice of the variable part, the corresponding real-
izations GRTSOP', GRTSOP!, and GRTSOP! generally

C

14

Ralph Lange et al.

r:x
X L
’U,n—2;2=='.:::_____-_ x x,—-—" g~ X Un
R R T - L X = sn
X X-%- - -x
Un—1 Un—1
(A) B)

Fig. 11 Two possible simplifications (A) and (B) with min-
imal number of vertices U’ = (up—2,Un—1,Un)-

do not achieve the best possible reduction as it would
be achieved with the optimal line simplification algo-
rithm being applied offline to the overall sequence of
sensed positions.

Certainly, the optimal reduction could be achieved
by setting k or m to oo, i.e., by removing the stable part
of u(t). However, this causes unacceptable computing
times and requires very large amounts of space, which
can be already seen from the evaluation of GRTSy with
k =1 and 3 (cf. Section 7.4). Moreover, it may cause
very large update messages.

The underlying reason for the suboptimal reduction
is that there may exist several simplifications with min-
imum number of vertices U’ for a given S. Figure 11
illustrates an example of two possible simplifications
U = (up—2,Un—1,uy,), implying two possible sequences
of vertices to be sent to the MOD. Generally, choosing
the simplification with maximum u,,_1.t — here (B) — is
a good heuristic, as it minimizes the number of sensed
positions spanned by the last line segment W, @y,
which is likely to be revised by future simplifications.
Nevertheless, there may also be cases where choosing
another simplification would yield a better overall re-
duction efficiency.

Note that the construction of the graph can be per-
formed incrementally, after each sensing operation, de-
spite the per-update simplification pattern. Such an im-
plementation reduces the computing time after those
sensing operations that cause a simplification.

5.5 GRTS with Segment Heuristic

The segment heuristic is a simple online line simplifi-
cation algorithm, which has been proposed in various
works including [18]3, [2], and [10].

For simplifying a sequence of sensed positions
(s1,82,...) by bound €, the segment heuristic works as
follows: First, it sets sy as vertex u; of the simplified
trajectory. Then, it iteratively probes the line segments

S1 52,51 83, . - - until it finds the first segment s7 5, that

3 The authors of [18] refer to the segment heuristic as
Opening-Window algorithm (OPW) and distinguish two vari-
ants with different distance metrics. The one with the better
reduction efficiency, which corresponds to the segment heuris-
tic as explained here, is called BOPW-TR.

would violate €, i.e., where

Js; € (S1,..+,82) : [S15z(8;.t) — s;.p| >e—0

or, with individual s;.d,

ds; € (S1,..+,8z) ¢ [S15z(85.t) — 8;.p| + 5.0 > € .

In this case, the segment heuristic chooses the previ-
ous sensed position s;_1 as vertex of the simplification.
Next, it repeats the above procedure starting at s,_1,
and so on.

Since this online algorithm processes the sensed po-
sitions iteratively, it allows for per-sense simplification
by executing the segment heuristic for the most recent
sensed position sy after each sensing operation. The
advantage of per-sense simplification is that the sim-
plification is performed as early as possible, resulting
in a smaller sensing history S on average. Moreover,
the computing time for line simplification is distributed
over all iterations of GRTS.

This property of the segment heuristic, however, is
also the reason why it does not exploit variable parts
consisting of more than one line segment. When realiz-
ing GRTSy with the segment heuristic the parameter k
should be fixed to 1 therefore.

Figure 12 shows the corresponding pseudocode of
GRT Siec. For each sensed position sg, the algorithm
checks whether the line segment first(S)sg approxi-
mates the sensed positions in-between by simplification
bound e and §(¢) or not (line 4). If not, it appends the
last sensed position — the one before sg — to U (line 5)
and reduces S accordingly (line 6). When LDR causes
a new update, the most recent sensed position is sim-
ply appended to U (line 10) and a corresponding update
message is sent to the MOD (line 12). Finally, GRTSJ*
sets V to (last(U)), consistent with S, and clears U for
the next update.

To limit the size of S to some parameter m, the
simplification condition (line 4) can be extended by

or [Sj=m-—1

resulting in GRTSE?C. Adding the compression tech-
nique described in Section 5.2 finally results in
GRTSS. Analogous to the parameter k of GRTSY®,
the parameter ¢ of GRTSS® should be fixed to 1, as
the segment heuristic never exploits more than one
compressed position for simplification.

Optimization of S: The average size of S can be further
reduced by a novel optimization of the segment heuris-
tic, independent of whether |S| is bounded to some m or
not. This optimization particularly supersedes the com-
pression technique of GRTSy,, i.e., GRTSE?C achieves

Efficient Real-Time Trajectory Tracking

15

10]

2: while report movement do

3: SR ¢ sense position

4: if 3s; € S |first(S) sr(si.t) — s;.p| + s:.0 > € then
5: U « U|| (last(S))

6: S + (last(S))

7: end if

8 S+ S| (sr) > Append sg to sensing history.
9: if LDR causes update then
10: U « U|| (last(S)) > Append sg as uy,.
11: 7y < compute new predicted velocity ...
12: send update message (|[V\ U|,U\ V,7yv) to MOD
13: V + (last(U)) > |V| > 1 would not be exploited.
14: U<+ ()
15: end if
16: end while
17: [...]

Fig. 12 GRTSEeC algorithm with per-sense simplification
and fixed k = 1.

S; .t /

first(S).t

Arfirst(S)

X

Fig. 13 Geometric illustration for optimization of the seg-
ment heuristic.

the same reduction as GRTSS with this optimization
(cf. Section 7.2).

The basic idea of the optimization is the following:
Each sensed position s; € S poses a constraint on the
next line segment first(S) u,, that is going to approxi-
mate S. If the constraint given by another sensed posi-
tion s;1, completely encloses the one given by s;, then
s; can be removed from S without affecting the simpli-
fication. In our evaluations (cf. Section 7), this reduces
the space consumption of the segment heuristic by two-
thirds on average.

The constraint defined by a s; € S is that the dis-
tance |first(S) uy, (s;.t) — s;.p| + $;.0 must not exceed e.
This constraint is checked for every potential line seg-
ment first(S) sg (line 4 in Figure 12). Geometrically,
for each s;, the line segment has to pass the circle with
center s;.p and radius € — s;.9 at time s;.t as illustrated
in Figure 13. Since the line segment’s first vertex is
known, the circles of two sensed positions s; and s;4,
can be normalized regarding time and compared with
each other: The circle of s;;, poses the same constraint
like the circle with center first(S) s;4.(s;.t) and radius

(6 — Si42.0) 1”77% at time s;.t. Now, if this cir-

cle is contained by the circle of s;, as pictured in Fig-
ure 13, then s; can be removed from S. Thus, for each
sensed position sg, the realizations GRTSEQC, GRTSISneC,
and GRTSS can remove every s; from S whose cir-
cle contains the normalized circle of sg at s;.t, except
s; = first(S). In Figure 12 this removal should be in-
cluded between the lines 7 and 8.

6 Acceleration-based Movement Constraints

The movement between two sensing operations is
bounded by physical constraints such as the maximum
speed or acceleration, as explained in Section 2. The
corresponding values are factored into § for trajectory
simplification and into the update condition of LDR.
The smaller §, the higher is the possible reduction since
d is to be subtracted from e.

In the previous sections, we exemplarily consid-
ered a given maximum speed v,y for simplicity and
readability. Yet, for fast objects such as cars or air-
liners, vy results in very large values of § and thus
causes low reductions. The reason is that vyax only
provides a coarse estimate of the actual movement con-
straints of such objects. Consider, for example, a car
with vpax = 50m/s and Tg = 1s. According to the
resulting speed-based movement constraint, the car is
assumed to be able to travel 25 m and then return to
the starting point within one second. This is obviously
unrealistic, as it requires the car to accelerate (and de-
celerate) with at least 200 m/s%.

Next, we therefore explain how to take an object’s
maximum acceleration ay.x into account. First, we dis-
cuss how to compute the maximum sensing deviation §
accordingly. Then, we consider the update condition of
LDR.

Given an object with maximum speed vpyax and
two sensed positions s;_; and s;, we concluded in Sec-
tion 2 that the object cannot deviate by more than
Umax - 1s/2 from the line segment 5-15:.% For apmax
we analogously conclude that the object cannot devi-
ate by more than %amax (%)2 from §;_71 §; using linear
kinematics. Together with the sensor inaccuracy o, it
follows 6 := o + éamaxTSQ.

4 In fact, the maximum possible deviation from 5;_18;
depends on the object’s current speed — and thus the dis-
tance between s;_1.p and s;.p — since the current speed lim-
its the speed for other velocity components to deviate from
5;-15;(t). Therefore, § may depend on time, even if o is
fixed. This is discussed in detail in [22]. Yet, for significant
improvements regarding J, the object’s speed has to be close
to Umax. Therefore, we neglect this optimization here and
focus on amax-

16 Ralph Lange et al.
Human Car Airliner Human Car Airliner
Umax 12.0 50.0 270.0m/s Umax 12.0 50.0 270.0m/s
Amax 5.0 10.0 20.0m/s? Amax 5.0 10.0 20.0m/s?
speed-based § 13.8 32.8 142.8 m speed-based offset 22.2 67.8 331.8m
acceleration-based § 8.4 9.1 10.3m acceleration-based offset 16.3 22.9 36.1m

Table 3 Values of § for typical speed- and acceleration-based
movement constraints.

Table 3 shows the corresponding values of § for three
typical scenarios of viax and amax, assuming o = 7.8 m
and Tg = 1s. The scenarios support the argumenta-
tion that the ratio between the speed-based value of &
and acceleration-based value increases with the typical
speed of the objects.

Incorporating apa.x into the update condition of
LDR is more complex. For v, we showed in Section 3
that the object has to send an update if

[sp-p — w(sr-.t + Ts + Tu)| + 0 + Vmax(Ts + Tu) > €,

as sg.p the object may move by up to vmax(Ts + Tu)
until an update sent after the subsequent sensing oper-
ation would have been processed.

For acceleration-based movement constraints, how-
ever, the current velocity has to be taken into account,
to be able to estimate the possible deviation between
the object’s movement and = (t) at sg.t+7Ts+7Ty. Thus,
we require an approximation for the most recent veloc-
ity VR at sr.t. An obvious solution is to use the average
velocity between sg.t and the second last sensed posi-
tion sg/, i.e.,

._ SR-P—=SrR’-P _ SR-P — Sr/.P

\% = =
R'R SR.t — SR/ .t Ts

The velocity vy is subject to two approximation er-
rors: First, the object may accelerate (or decelerate)
during [sg/.t, sg.t] — also sidewards — causing an error
of up t0 Gmax - Ts/2. Second, v is subject to sensor
inaccuracies, causing an error of up to 20 /7s.

We can distinguish between systematic, time-cor-
related inaccuracies osys and random, noise-like inac-
curacies oppise- For example with GPS, the former are
caused by inaccurate ephemeris data and atmospheric
effects amongst others, while the latter are caused by
the receiver hardware and make only about 10% of
the overall sensor inaccuracy o [25,19,32]. Since vy
is computed by two consecutive position fixes, it can
be considered to be subject to opeise only. In sum,
vrrr may deviate from the actual velocity vr by up
to amax% + %

Taking the inaccuracy of sg.p and the possible
movement and acceleration during Ts+7¢ into account,

Table 4 Offsets to e for LDR for typical speed- and
acceleration-based movement constraints.

LDR has to cause an update if

SR-P — Sr’-P

T (Ts +Ty) — w(sp.t +Ts + Tu)
S

SR.P +

1
+o0+ Qamax(TS + TU)2

T 20n0is
+ ClmaxfS + Tnoise (TS + TU) > €.
2 Ts

The different inaccuracies and the possible movement
and acceleration during Ts + Ty can be considered as
offset to € similar to §. Table 4 shows the correspond-
ing values for three typical scenarios of viax and amax,
assuming ¢ = 7.8m, opneise = 0.10, and Tg = 1s. Note
that the offsets are significantly greater than the corre-
sponding § values in Table 3, as the latter refer to the
movement between two given positions s;_; and s;.

This property is another reason (in addition to the
separation of simplification from position tracking) for
the significant difference between the number of up-
dates caused by LDR and the number of vertices gener-
ated by GRTS or offline simplification — in particular for
small values of €. For instance, for ¢ = 25 m, LDR causes
more than 1000 updates per hour, while GRTS,S]fC with
m = 500 generates only about 65 vertices. A possible
countermeasure is to relax the real-time constraint of
trajectory tracking by introducing some temporal tol-
erance, which has to be subtracted from Ts + Ty in the
above formulas. Note that such a temporal tolerance
can only be introduced if position tracking is clearly
separated from simplification as with GRTS.

If vmax and amax are both given, the two kinds
of movement constraints can be considered simultane-
ously, simply by choosing the smaller § value and offset
for the update condition of LDR.

Furthermore it would be possible to distinguish dif-
ferent directions of acceleration, such as real speed-up
in forward direction, deceleration by braking, and side-
wards or angular acceleration by steering.

7 Evaluation
For significant results on the performance of CDR and

GRTS, we simulated the different variants and realiza-
tions with hundreds of real GPS traces and compared

Efficient Real-Time Trajectory Tracking

them to LDRH as well as to offline simplification. For
practical experiences, we also conducted experiments
with a prototypical implementation of GRTS.

In this section, we first describe the simulation setup
and then give the results on reduction efficiency, com-
munication, and computational costs. Thereafter, we
report on our experiences with the prototypical im-
plementation. Based on these results, we finally draw
conclusions for the selection of a concrete tracking ap-
proach for a given application scenario.

7.1 Setup

We implemented a simulation software for CDR,
CDR,,, GRTSOP', GRTSOM, GRTSOP', GRTSY,

mc ?

GRTSSee, GRTS®, and the existing trajectory track-
ing approach LDRH [27] as well as the optimal line
simplification algorithm (Ref®P") by Imai and Iri [11]
and the Douglas-Peucker algorithm (Ref®") [6] in the
C programming language. We selected RefPP as a
reference for comparing our results to the best possi-
ble reduction, while Ref®" is a commonly used offline
heuristic.

For simulating these algorithms with realistic data,
we downloaded several thousand GPS traces (i.e., tra-
jectories sensed by customary GPS receivers) from
the OpenStreetMap project [21]. In several processing
steps, we filtered those traces that provide an individual
position fix for each second — and thus have not under-
gone any previous data reduction — and that could be
classified clearly according to their means of transporta-
tion into foot, bicycle, and motor vehicle. For classifying
a trajectory, we not only relied upon its speed charac-
teristics but also on representative tags specified on the
OpenStreetMap website.

Then, we simulated the execution of the trajectory
tracking approaches by sequentially feeding the algo-
rithms with the recorded positions given in the GPS
traces. For each variant and realization, we measured
the number of vertices of the resulting simplified tra-
jectories, the numbers of update messages, and the
amounts of transmitted data, depending on e varied
from 25 to 100 m. Furthermore, we measured the space
consumption and computing time per position fix.

We used a sensing period of T = 1s and a sen-
sor inaccuracy of ¢ = 7.8m with oppise = 0.10 in
accordance with the GPS traces and the inaccuracies
reported in [28,32]. We further assumed an update
time of Ty = 0.2s. If not stated otherwise, we con-
sidered the acceleration-based movement constraint by
Amax = 10m/s?, which gives § = 9.1m and an offset of
22.9m in the update condition of LDR.

17
250
RefOP! ——
Opt
200 } GRTSmg (m=500)‘é7
GRTSYR | o i
[0} S
8 150 | GRS n-s00) —E— b
S R efDP —o—
] CDRy, (m=s500)
3 100
o
50—
P .
25 30 40 50 60 80 100

Accuracy bound € [m] (log)

Fig. 14 Reduction rates of major real-time trajectory track-
ing and offline simplification approaches.

In addition, we applied the offline algorithms RefOPt
and RefPF with bound e—§ to each GPS trace and mea-
sured the number of vertices of the resulting simplified
trajectories.

All experiments were performed on 3 GHz Intel
Xeon Linux servers using 2 GB RAM.

The different speeds of the means of transportation
do not yield any significant differences when comparing
the different approaches with each other, but only when
considering the absolute values for reduction efficiency
and communication. Therefore, we give the average re-
sults of the 3x100 largest GPS traces of the three means
of transportation and refer to the individual means of
transportation and speeds where necessary. Each of the
300 trajectories comprises 1400 to 16500 GPS positions,
i.e., spans about 20 min to 5 h.

7.2 Reduction Efficiency

The reduction efficiency of trajectory simplification
is measured by the reduction rate defined as the
number of sensed positions divided by the num-
ber of vertices of the simplified trajectory u(t), i.e.,
[(s1y.e oy s/ (uay .oy un)l|-

Figure 14 shows the reduction rates of the major
tracking approaches and the two reference offline al-
gorithms Ref%P and RefPY. As discussed below, the
reduction rate of CDR,, with m = 500 is equal to the
reduction rate of CDR. Similarly, the reduction rate of
GRTS with m = 500 is equal to the reduction rate
of GRTS®* and GRTS{®, where the latter can be con-
sidered as GRTSS®® with m = oco. For GRTS . we used
¢ = 1 if not stated otherwise. Below, we show that ¢ > 1
does not give any improvement.

The reduction rate of CDR (or CDR,, with m =
500) is at least twice the reduction rate of LDRH, con-
sistent with the analysis in Section 3. For ¢ < 45m,
LDRH does not perform any reduction since its inter-

18 Ralph Lange et al.
250
RefOP! —— L GRTSOR o) —v— GRTSQ s00) ——
200 _GRTSETlf:U A o GRTSE@‘(MOOO&:Z) —a— GF{ngf’k:U ——
° GRTSchZ(m:wom —=— g b GRTSBEI(mﬂoom —A— GRTSmgt(mﬂOO) —©—
T 5 | GRTSq (m-500) 8- s GRTS! m-500) o
s Basic GRTS ;"(m-500) —®— S 91
§ GRTsswe(cmﬂoo) g
k] 100 _g
o ©
508 DG:J
1

25 30 40 50 60 80 100
Accuracy bound € [m] (log)

Fig. 15 Reduction rates of GRTSPe, GRTSSe, and
GRTSSee.

nal accuracy bound € := €¢/2 becomes smaller than the
offset given by the sensor inaccuracy and the movement
constraint in the update condition of LDR. Thus, LDR
causes an update after each sensing 0peration.5

All GRTS realizations given in Figure 14 outperform
the CDR variants by at least factor 2.7 and LDRH by
about factor 5.5. This confirms the importance of sepa-
rating tracking of the current position from simplifica-
tion of the past trajectory.

The reduction rates of the GRTS realizations are
always less than 15% below the best possible reduc-
tion by the optimal algorithm RefOP'. Moreover, the
GRTS realizations always outperform RefPP. In detail,
the reduction rate of GRTSS® is 15 to 19% greater than
the reduction rate of RefP”, whereas GRTSOP' even
achieves up to 32%. This is a surprising result given
the fact that RefPF is performed offline on the entire
GPS traces.

The reduction rate of GRTS* is always 1 to 4%
below the reduction rate of GRTSI? P with k = 1. The
reason is that the variable part of u(t) comprises only
one vertex in all realizations with the segment heuris-
tic — independent of m or k.

Figure 15 details the reduction performance of these
realizations, where Basic GRTSISHec refers to the realiza-
tion without the optimization of the segment heuristic
proposed in Section 5.5. It shows that GRT Srsrfc with
m = 500 suffices to achieve the best reduction rate
that is possible with the segment heuristic. Neither the
use of GRTS,,., nor a parameterization of m > 500
gives better results. Note again that GRTSP® can be
considered as GRTS®* with m = oo.

5 As mentioned in Section 3, many works do not clearly
state whether they account for the sensing period, the up-
date time, and the sensor inaccuracy in the update condition
of LDR, or not. In the latter case, the factor between the re-
duction rates of CDR (or CDRy, with m = 500) and LDRH
may decrease to about 1.5.

Accuracy bound € [m] (log)

Fig. 16 Reduction by GRTSCP', GRTSSP", GRTSAE" rela-
tive to RefOPpt,

The figure further reveals the importance of opti-
mization of the segment heuristic in the case where the
sensing history S is bounded by some m. For example,
for m = 500, it increases the reduction performance by
up to 10%. This optimization is also the reason why the
compression technique by GRTS,,. has no effect on the
reduction rate of GRTSS compared to GRTS,

Analogously, Figure 16 shows the reduction perfor-
mance of the GRTS realizations with the optimal sim-
plification algorithm by Imai and Iri [11]. For readabil-
ity, it shows the relative reduction rate compared to
the simplification algorithm being applied offline to the
entire GPS traces, i.e., RefOPt,

Clearly, the relative reduction rate is always < 1.
The rate would be equal to one for GRTSS P' with k =
oo since there would be not stable part of u(t). Yet, the
simulation results show that & = 3 almost suffices, as
the average reduction rate is only 0.2% smaller than the
best possible reduction rate. For k = 1, the difference
is already about 10%.

However, as explained below, the computational
costs of GRTSI? P® are too high for practical use due to
the unbounded size of S. Hence, GRTSOP* or GRTSOP!
have to be used, where the GRTS,,. realization effec-
tively outperforms the GRTS,, realization.

Interestingly, GRTSSP® with m = 1000 and ¢ = 1
may also achieve more than 99% of the best possible re-
duction rate. Enabling more than one compressed posi-
tion by choosing ¢ > 1 does not give any improvement,
consistent to the discussion in Section 5.2. Even with
a small value of m = 500, the relative reduction rate
of GRTSP! is less than 3% below the best possible
rate — at least for € < 50m.

For larger values of €, the relative reduction rates
of GRTSOP' and GRTSOP! decrease noticeably. The
reason is that the average number of sensed positions
spanned by a line segment of the simplified trajectory
u(t) increases with €, whereas |S| is bounded by m. For
large e this problem may be alleviated by increasing

Efficient Real-Time Trajectory Tracking

75

CDR ——
CDRy (m=s00) ——
50 | CORm (m=100) —*—

CDRpy m=10) —¥—

Reduction rate

25

1

25 30 40 50 60 80 100
Accuracy bound € [m] (log)
Fig. 17 Reduction rates of CDR and CDRy, for different m.

250 T T T T T T T
RefOP! ——
200 | GRTS 500 —2—
e GRTSiefmsoo) =
g 150 | CDRyy (mes00) —<—
5 LDRH —
3 100
o
50 |
1 va 1 1 L 1 1 1
0 5 10 15 20 25 30 35 40

Average speed [m/s]

Fig. 18 Reduction rates depending on average speed for ¢ =
50 m.

Ty, despite the resultant increase of §. This is also the
reason why we do not give any results for € > 100 m.

For the sake of completeness, Figure 17 gives the
reduction rates of CDR and CDR,, for different values
of m. As mentioned above, the reduction performance
of CDR is equal to the performance of CDR,, with m =
500. However, even with only m = 10, CDR,, achieves
a remarkable performance compared to CDR.

All the relative reduction rates similarly apply to the
individual means of transportation (foot, bicycle, motor
vehicle). For example, for € = 50 m, the reduction rate
of GRTSOP! with m = 500 always is at least 95% of the
best possible rate.

The absolute reduction rates, however, depend on
the means of transportation due to the different ratio
between the typical speed and e. For instance, for e =
50 m, the reduction rate of GRTSOP (m = 500) is 208.1
for pedestrians, 89.0 for bicycles, and 49.5 for motor
vehicles.

Figure 18 renders these differences more precisely
by showing the reduction rate depending on the speed.
For this purpose, we grouped the GPS traces by their
average speed and then computed the average reduction
rate for each group and approach and parameterization
for e = 50 m.

19
250 o L
GRTSgE(m:SOO) With @, —2—
200 | GRTSme (m=500) With Viay —A—
CDR, (m=500) with ap,,, ——
150 1 CDR,, (m=500) with v —6—

Reduction rate

25 30 40 50 60 80 100
Accuracy bound € [m] (log)

Fig. 19 Reduction rates of CDRy, and GRTS%@t for vmax =

20m/s and amax = 10 m/s2. (Only for GPS traces recorded

by foot or bicycle.)

The reduction rates are comparatively high for slow
objects, as to be expected. In addition, the rates largely
decrease with increasing speed. Exceptions for an av-
erage speed of more than 15m/s result from the fact
that the average speed correlates with the kind of
road (streets, rural roads, highways), implying differ-
ent movement characteristics.

Figure 19 shows the reduction rates of CDR,, and
GRTSOP' for the acceleration-based movement con-
straint given by amax = 10m/s? and the speed-based
movement constraint by vmax = 20m/s. The figure only
gives the results from GPS traces recorded by foot or
bicycle, as vmax = 20m/s does not apply to cars. With
GRTS, the use of anmax increases the reduction rate by
7 to 76% compared to vyax, depending on €. The larger
€, the smaller is the increase, as the difference between
the corresponding § values vanishes in comparison to e.

Similar applies to the CDR variant. With vy =
20m/s, CDR does not perform any simplification for
€ < 30m since the simplification is based on LDR and
the offset in the update condition exceeds €, causing an
update after each sensing operation.

7.3 Communication Costs

Figure 20 shows the number of update messages gener-
ated by LDRH, CDR,, (m = 500), and GRTS per hour
depending on e. It allows verifying that the number of
update messages by GRTS is independent on the vari-
ant and parameterization of k or m, as it only depends
on LDR.

The figure also shows that the number of updates
caused by the additional segment condition of CDR
and the limitation of |S| is negligible (less than 1%)
compared to the number of updates caused by LDR,
consistent with the analysis of LDR in Section 3.

For ¢ < 45m, LDRH sends an update after
each sensing operation since the internal accuracy

20

Ralph Lange et al.

4000
LDRH —x—

T CDRp meson) —o—
= 3000 mm=500
5 GRTSy (m-s00) —H—
s GRTSR, — ——

2000 Opt
o GRTSpe (ms00) —2—
S
@
&
()
=

Accuracy bound € [m] (log)

Fig. 20 Update messages sent by major tracking approaches.

4000
y GRTS with v —&—
= GRTS with a —A—
= 3000 max
5
o
<
g 2000
w
[0}
(o)}
©
o0
$ 10004
S
0 X - A A—4A A A
25 30 40 50 60 80 100

Accuracy bound € [m] (log)

Fig. 21 Update messages sent by GRTS for vmax = 20m/s
and amax = 10m/s2. (Only for GPS traces recorded by foot
or bicycle.)

60
) LDRH —x—
50K Opt
Iy GRTSpe (ms00) —2—
Opt
40 f GRTS{fr)y —9—

GRTSSme:SOO) =
CDRyy (m=s00) ——

Data per hour [kB/h]
w
o

25 30 40 50 60 80 100
Accuracy bound € [m] (log)

Fig. 22 Amounts of data transmitted by major tracking ap-
proaches.

bound € := ¢/2 is smaller than the offset in the up-
date condition given by amax-

This offset is also the reason why GRTS sends more
than 1000 updates per hour for ¢ = 25 m. This number
could by reduced by relaxing the real-time constraint of
trajectory tracking, as discussed at the end of Section 6.

This problem is intensified with the speed-based
movement constraint given by vmax = 20m/s, as de-
picted in Figure 21, in line with the analytical compar-
ison of speed-based and accuracy-based constraints in
Section 6.

The update messages of LDRH and CDR contain
only a prediction, where the origin gives a vertex of
u(t). GRTS, in contrast, additionally inserts the num-
ber of vertices to remove from the variable part of u(t)
and the vertices to add. Obviously, this causes GRTS
to transmit a higher amount of data than CDR, as il-
lustrated in Figure 22. However, the additional amount
of transmitted data is small compared to the higher
reduction rates of the GRTS variants of more than a
factor two. For example, GRTSE?C transmits only 5 to
23% more data than CDR. Assuming a header size of
28 byte (UDP/IP) per message, the difference is only 2
to 13%.

The differences between the GRTS realizations are
caused by the different sizes of the variable part of u(t).
In case of GRTSSpt (k =1) and GRTS®®°, the variable
part comprises only one vertex, whereas it may com-
prise multiple vertices with GRTSSP'. Therefore, the
update messages of GRTSSlEt are slightly larger and
replace more vertices on average than the update mes-
sages of the other two realizations.

The difference between GRTSOP' (K = 1) and
GRTSS® of about 7% is caused by the fact that
GRTSSpt replaces the one vertex of the variable part
more frequently than GRTSSmeC, to achieve a better re-
duction rate. This shows that the two goals of the tra-
jectory tracking problem — to minimize the communi-
cation cost and to minimize the number of vertices of
the simplified trajectory — contradict for high reduction
rates, as indicated at the end of Section 2.

7.4 Computational Costs

We now analyze the maximum space consumptions
and computing times of LDRH, CDR, CDR,,, and the
GRTS realizations. The space consumption is measured
in kilobytes by summing up the space consumption of
the different variables and arrays, particularly includ-
ing the sensing history S. The maximum computing
time for processing a new sensed position is measured in
milliseconds using the processor’s time stamp counter.
To filter out interrupts of the process under test, we
simulated the trajectory tracking algorithms without
other user processes and repeated each measurement
ten times.

Figure 23 shows the maximum space consumption
of the tracking algorithms for all GPS traces and € val-
ues. The space consumption of LDRH is negligible since
it does not store a sensing history. In our simulations,
the space consumption of CDR is well below 100kB,
although the size of sensing history of CDR is theo-
retically unbounded. Note that space consumption of
CDR without the optimization of the sensing history

Efficient Real-Time Trajectory Tracking

21

4000 \§
3000 \

o
=,
c
Qo
5
£ 2000
g 1490
o
[0
& 1000
joX
w
0.07 77.5 11.8 11.8
LDRH CDR CDR, GRTSS*® GRTSY GRTS™
(m=500) (m=500) (m=500) (k=1)
Algorithm

Fig. 23 Space consumption of major tracking algorithms.

30
0
E K
N
5
- 20
®
[0}
£
j=))
£ 10y 7.0
=]
o
5
o 0.001 0.13 0.027 0.07
0 S Opt Opt
LDRH CDR CDR,, GRTS;® GRTS;?' GRTS/P
(m=500) (m=500) (m=500) (k=1)
Algorithm

Fig. 24 Maximum computing times of major tracking algo-
rithms.

proposed in Section 4.2 is 151.1 kB. Thus, the optimiza-
tion saves 49%. On average, it even saves 56%.

More important, the space consumption of CDR,,
with m = 500 is only 11.8kB, despite the fact that
there is no noticeable difference between the reduction
performance of CDR and CDR,, with this parameteri-
zation.

GRTS3 with m = 500 also consumes only 11.8 kB,
as the segment heuristic resembles the segment condi-
tion of CDR and does not require any extensive data
structures in addition to S.

GRTSOP' with m = 500, in contrast, consumes
1.49 MB as it constructs a graph with up to m-(m—1)/2
edges over S. Yet, the space consumption is bounded to
this value, which can be seen from the fact that in our
simulations GRTSI? P with k = 1 consumes up to 55
times more space — although the reduction performance
of GRTSOP with m = 500 is higher.

The huge space consumption by GRTSkOpt is re-
flected in the maximum computing time per position
fix, given in Figure 24. It shows that the computational
costs of GRTSI?pt are too high for practical use. On the
3 GHz processor, the computing time reaches almost
the sensing period Tgs.

The maximum computing time of GRTSSP', in con-
trast, is only 7ms and thus a fraction of the typical
sensing period of Tg = 1s.

Nevertheless, the computational costs of GRTSSEt
are huge compared to GRT Srsfc, namely about a fac-
tor 100. Therefore, GRTSOP' should be preferred to
GRTSSmec only if the moving object has sufficient com-
putational resources and reduction efficiency is of high-

est priority.

7.5 Prototypical Implementation of GRTS

In order to gather practical experiences with GRTS, we
implemented a fully functional MOD system for track-
ing GPS-enabled smartphones and mobile computers.

The system consists of two components named mo-
bile component and MOD server. The mobile compo-
nent is executed by the smartphone or mobile com-
puter. It reads the sensed position data from the cor-
responding GPS receiver and executes the GRTS* al-
gorithm with m = 500 on it. A separate thread trans-
mits the update messages via UDP to the MOD server.
We implemented two variants of the mobile component:
First, a Java application for mobile computers. Sec-
ond, an app for Android smartphones. Figure 25 gives
a screenshot of the Android app. It shows the sensed
and the simplified trajectory plotted on the map of the
OpenStreetMap project [21]. The large circle depicts
the accuracy bound e. The small circle illustrates the
maximum sensing deviation §.

The MOD server receives the update messages and
stores the vertices of the trajectories persistently in a
PostgreSQL database. The predictions (i.e., the pre-
dicted velocities 7wy and the prediction origins u,,) are
stored in a main memory table to reduce the number of
write operations, as proposed at the end of Section 5.1.
Therefore, only a subset of the update messages re-
quires accessing the hard disk. Due to our focus on the
tracking protocol, we did not implement any specialized
spatiotemporal index structures within the database.

Google Earth is used as sample application to vi-
sualize all trajectories stored by the MOD. For this
purpose, it is launched with a small file in the Key-
hole Markup Language (KML). This file contains the
host name of the MOD server and instructs Google
Earth to query the MOD server once per second for a
KML representation of all trajectories. A lightweight
HTTP server attached to the MOD server receives
those requests, queries the database and predictions ta-
ble, translates the result into KML and sends the re-
sponse to the Google Earth client.

Our implementation slightly extends the GRTS pro-
tocol by a timeout mechanism to terminate the sim-

22

Ralph Lange et al.

Lon: 9.268505°
Lat: 48.781350°
Time: 15:25:07.7

M Follow

Sensed; 3827
Simplified: 90

Reduction: 425 { contfibutors, CC-BY-5A

Fig. 25 Screenshot of prototypical app for Android.

plified trajectory during long-lasting network outages
or after failures of the mobile component. Furthermore,
the MOD server acknowledges every update message, so
that the mobile component can detect message losses.
Moreover, for clock synchronization, the update mes-
sages and acknowledgements contain measuring data
about the network round-trip time.

Details on the architecture and implementation of
the MOD system can be found in [14].

We conducted several experiments driving a car
equipped with an OQO subnotebook and a Wintec
WBT-300 GPS receiver. During our experiments, we
used € = 25 m. Besides four network outages lasting sev-
eral minutes, the system successfully allowed for track-
ing the car and its trajectory for more than nine hours
from several PCs. During this experiment, we measured
a reduction rate of 70. Per hour, only 60 kB of data were
transmitted to the MOD server. These experimental re-
sults coincide with the results of our simulations.

Furthermore, we measured the computing time of
GRTSS (m = 500) on a Sony Ericsson Xperia X8
smartphone with a 600 MHz Qualcomm MSM7227 pro-
cessor, running the Android 2.1 operating system. For
this purpose, we recorded the GPS trace of a three hour
bicycle tour in the raw NMEA format and replayed the
Android app with it. More precisely, we executed the
app four times with the trace, to be able to filter out in-
terrupts of the process under test.> Our measurements
yield a maximum computing time of 1.86 ms per po-
sition fix. Thus, the computing time on the 600 MHz
smartphone is about 27 times greater than the comput-
ing time on the 3 GHz Intel Xeon Linux servers. Never-
theless, considering typical delays in wireless networks,
it constitutes only a fraction of the update time Ty.

6 This procedure allows to measure the CPU time in a
higher resolution than provided by the getElapsedCpuTime-
method of the android.os.Process class.

LDRH

£ mostly
suffices

Basic CDR |- 2Ptim-S CDR [SI=m

If communication costs
have maximum priorit

CDR,,
Separation of
tracking and ’l—" \ _ _
implificati 1 GRTSG- (Of theoreti q
simplification - k (k eoretical
P — >=interest only

VI<k ,{ RISy

Simple approach,
good reduction

BasicGRTSy-2PIM- S [grrss= |
ORTS,

T GRS
‘< 8 ‘ Optimized S
Compression supersedes
approach compression)

pasicorrss- 225 [GRS |
GR{‘/\; Best reduction, high
’{ GRTSY! ‘ computational costs
Fig. 26 Overview of proposed real-time trajectory tracking
approaches.

Sec

m on smart-

Therefore, the computing time of GRTS
phones is more than acceptable.

7.6 Conclusions for Selection of a Tracking Approach

With CDR, CDR,,, and the various GRTS realizations,
we proposed and evaluated several approaches for real-
time trajectory tracking. We also explained and showed
that the communication cost and the number of vertices
of the simplified trajectory cannot be completely min-
imized both together, but contradict to some (small)
degree. Figure 26 depicts all these approaches and their
relations.

As stated above, GRTSSIpt is completely outper-
formed by GRTSOP!, whereas with GRTS the com-
pression technique of GRTSy,. is superseded by the op-
timization of S proposed in Section 5.5. Therefore, those
approaches are dimmed in Figure 26.

Moreover, in consideration of the extensive com-
putational costs of GRTSI? Pt we advise to use track-
ing approaches with bounded space consumptions and
computing times. For this reason, we deem CDR,y,
GRTSS¢, and GRTSOE! to be particularly suited for
practical use, depending on the actual requirements and
resources in a given application scenario:

1. GRTSE?C: This approach affords high reduction per-
formance at comparatively low computational costs.
Besides, it is simple to implement compared to re-
alizations of GRTS with the optimal line simplifica-
tion algorithm by Imai and Iri [11]. Therefore, we
suppose that GRTSIS;’C meets the requirements of
most use cases.

2. GRTSOP!: If reduction has maximum priority and
the moving objects have sufficient computational

Efficient Real-Time Trajectory Tracking

23

power, this approach should be used, as it affords to
reach almost best possible reduction rates, depend-
ing on m. The average reduction rates of GRTSS,
in contrast, are 10 to 15% below the best possible
ones.

3. CDR,,: In case that communication costs have max-
imum priority, CDRy, should be used since it mini-
mizes the amounts of transmitted data. Note, how-
ever, again that CDR,, reaches only about one third
of the reduction of GRTS;*® and GRTSSP", even for
large e.

The processing cost at the MOD may be another de-
cision criterion: An update message by CDR,, always
adds a new vertex to u(t), whereas many update mes-
sages by GRTS only replace the last vertex u,, and the
predicted velocity 7y and may be processed without
any write operation (cf. Section 5.1). In return, some
update messages require to remove or replace several
vertices of u(t). Due to these different characteristics,
it is impossible to give a general assessment concerning
the MOD-sided processing costs. Therefore, for a con-
crete decision, the actual implementation of the MOD
has to be taken into account.

8 Related Work

In this section, we first give a brief overview to line sim-
plification algorithms in general, before we discuss ex-
isting approaches for offline and online trajectory sim-
plification and real-time trajectory tracking in particu-
lar. We omit dead reckoning protocols for tracking the
current position of moving objects since these have been
analyzed comprehensively in Section 3.

Line simplification in general: Line simplification refers
to a multitude of algorithmic problems on approximat-
ing a given polyline by a simplified one with fewer ver-
tices. The two basic problem classes are:

1. min-#: Minimizing the number of vertices of the
simplified polyline under a given accuracy bound.

2. min-e: Minimizing the deviation between the two
polylines under a given number of vertices for the
simplified one.

The min-# problems can be further classified by the
dimensionality of the underlying space (e.g., R? or R?),
the distance metric to measure the distance between
two points (e.g., Manhattan distance (L;), Euclidean
distance (Ls), or uniform metric), and the error mea-
sure to determine the distance between two polylines
from the pairwise distances of their points [2]. For the
latter, most works implicitly consider the Hausdorff dis-
tance, defined as the largest distance from an arbitrary

point of the one polyline to the closest point of the other
polyline. However, there also exists works considering
the Fréchet distance (e.g., [2,1]).

According to these criteria, efficient real-time trajec-
tory tracking can be considered as min-# problem in
the case of Hausdorff distance under the (time-)uniform
distance metric in R!*? with d = 2 or 3.

As further explained above, the Douglas-Peucker al-
gorithm [6], the optimal algorithm by Imai and Iri [11],
and the segment heuristic [18,2,10] are three promi-
nent approaches for min-# simplification. Several works
including [9] and [7] propose variants of the Douglas-
Peucker algorithm with improved worst-case running
times of O(nlogn) and O(nlog” n) (k = 2 or 3) instead
of O(n?).

Similar applies to the optimal algorithm: A naive
implementation has running time O(n?) [11]. Imai and
Iri already describe realizations with running times
of O(n%logn) or even O(nlogn) [11]. Agarwal and
Varadarajan propose an algorithm with running time
O(n*/3+7), for any 7 > 0 [3]. Others are given in [5]
and [29]. However, these improvements are limited to
R? and specific distance metrics and error measures.

Offline trajectory simplification: Cao et al. [4] discuss
the use of the Douglas-Peucker heuristic for offline tra-
jectory simplification. They consider four different dis-
tance metrics, including the time-uniform distance met-
ric, and compare the Douglas-Peucker heuristic against
the optimal algorithm regarding reduction performance
and computing time. Their results on the reduction per-
formance are in line with our results. For the distance
metric Fy, which disregards the temporal component
of the trajectories but only considers the Euclidean dis-
tance, they use the optimal simplification algorithm by
Chan and Chin [5] with running time O(n?), tailored to
R2. Nevertheless, they measure more than a factor 1000
between the computing times of the optimal algorithm
and the Douglas-Peucker heuristic. Note that the disre-
gard of the temporal component by the distance metric
E is problematic for many applications since the point
of the simplified line segment u; w; 11 that is closest to a
given sensed position s; with u;.t < s;.2 < u;41.t gener-
ally differs from the interpolated position w; ;1 (s;.t).

Gudmundsson et al. [7] likewise propose the use of
the Douglas-Peucker heuristic for offline trajectory sim-
plification and argue against the optimal algorithm be-
cause of its running time.

With GRTS,, and GRTS,,. the choice of the line
simplification algorithm may not be critical concern-
ing computing time, as the division of the trajectory
into stable, variable, and predicted part strictly limits
the amount of simplification work per position — com-

24

Ralph Lange et al.

pared to considering an entire trajectory. Therefore,
the online algorithm GRTSS}C’t achieves reduction rates
close to the best possible offline rates (and significantly
greater than the reduction rates of the Douglas-Peucker

heuristic) at acceptable computing times.

Online trajectory simplification: Meratnia and de By
[18] propose the segment heuristic for online and of-
fline trajectory simplification but with a different er-
ror measure based on the average deviation between
corresponding points of the original and the simplified
trajectory. In detail, they refer to the segment heuris-
tic as Opening-Window algorithm (OPW) and distin-
guish two variants. The one with the better reduction
efficiency, which corresponds to the segment heuristic
as explained here, is called BOPW-TR. Due the dif-
ferent error measure, the maximum deviation between
the original trajectory and the simplified one is not
bounded and depends on the simplification algorithm.

This also applies to threshold-guided sampling, a
heuristic for online trajectory simplification proposed
n [24]. It adds the most recent sensed position sg as
vertex to the simplified trajectory only if the speed or
direction of the latest velocity compared to the velocity
between the previous sensed positions and the average
velocity between the last two vertices of the simplified
trajectory exceeds a certain threshold. Therefore, the
deviation between the original trajectory and the sim-
plified one is not bounded.

In [23], the same authors propose the AmTree, a
data structure for managing an incoming stream of
sensed positions with constant storage consumption.
The AmTree “forgets” more and more positions over
time so that fewer positions are known for the far past
than for the recent past. Again, the deviation between
the original trajectory and the resulting simplified one
is not bounded by some predefined accuracy.

In [10], a software component for online preprocess-
ing position data of mobile objects is presented. The
component aims at reducing the position data to be
stored by a database according to a given accuracy
bound. The authors propose five different reduction al-
gorithms, where in fact only one — the segment heuris-
tic — performs line simplification, i.e., yields a connected
simplified trajectory.

None of the above works considers real-time trajec-
tory tracking for remote moving objects.

Real-time trajectory tracking approaches: In [26],
Tiesyté and Jensen present an approach for real-time
trajectory tracking based on LDR. They propose an
algorithm for computing a connected trajectory on the

basis of linear predictions, which approximates the ac-
tual trajectory according to the same accuracy bound
used with LDR. However, their findings only apply to
pre-known routes like bus lines, i.e., movement in R!.

In [27], Trajcevski et al. prove that the simplified
trajectory given by the origins of the linear predictions
of LDR with accuracy bound e approximates the actual
trajectory by 2e [27]. Based on this finding they con-
clude that LDRH, i.e., LDR with €' := €/2, allows for
trajectory tracking with accuracy bound e. As discussed
in detail in Section 3, this approach is very conservative
and therefore is outperformed by GRTS by a factor five
in terms of reduction efficiency.

9 Summary

In this paper, we presented the Connection-Preserving
Dead Reckoning (CDR) and Generic Remote Trajec-
tory Simplification (GRTS) protocols for tracking the
trajectories of moving objects with embedded position-
ing sensors at a remote MOD efficiently.

For this purpose, the objects sense their positions
periodically but report only a subset of the positions
to the MOD so that the resulting simplified trajectory
approximates the actual movement according to a pre-
defined accuracy bound. To inform the MOD about the
current position, CDR and GRTS use dead reckoning.

CDR is solely based on dead reckoning whereas
GRTS separates the tracking of the current position
from the simplification of the past trajectory. Therefore,
GRTS outperforms CDR by more than a factor two in
terms of reduction performance, while CDR, minimizes
the amount of communicated data.

For both CDR and GRTS, we proposed optimized
algorithms with bounded space consumption and com-
puting time. In addition, we investigated different re-
alizations of GRTS with two important line simplifi-
cation algorithms and evaluated the resulting trade-off
between computational costs and reduction efficiency.

The realization GRTSE?C with a simple line simpli-
fication heuristic affords substantial reduction perfor-
mance at low computational costs. In detail, it reaches
85 to 90% of the best possible (offline) reduction rate
at computing times of less than 1.9 ms on a 600 MHz
smartphone and of 0.07 ms on a 3 GHz Intel Xeon pro-
cessor. The realization GRTSI?IPC’t with the optimal line
simplification algorithm by Imai and Iri [11], in con-
trast, may reach more than 97% of the best possible
reduction at one hundred times higher cost.

Efficient Real-Time Trajectory Tracking 25
Acknowledgements 15. R. Lange, T. Farrell, F. Diirr, and K. Rothermel. Re-
mote Real-Time Trajectory Simplification. In Proc. of

The work described in this paper was partially sup-
ported by the German Research Foundation (DFG)
within the Collaborative Research Center (SFB) 627.

References

1.

10.

11.

12.

13.

14.

M. A. Abam, M. de Berg, P. Hachenberger, and A. Zarei.
Streaming Algorithms for Line Simplification. In Proc. of
23rd Symp. on Computational Geometry (SCG), pages
175-183, Gyeongju, South Korea, 2007.

P. K. Agarwal, S. Har-Peled, N. H. Mustafa, and
Y. Wang. Near-Linear Time Approximation Algorithms
for Curve Simplification. Algorithmica, 42(3-4):203-219,
2005.

P. K. Agarwal and K. R. Varadarajan. Efficient Algo-
rithms for Approximating Polygonal Chains. Discrete
and Computational Geometry, 23(2):273—-291, 2000.

H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporal
data reduction with deterministic error bounds. VLDB
Journal, 15(3):211-228, 2006.

W. S. Chan and F. Chin. Approximation of Polygonal
Curves with Minimum Number of Line Segments. In
Proc. of 3rd Int’l Symp. on Algorithms and Computation
(ISAAC), pages 378387, Nagoya, Japan, 1992.

D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to represent a
digitized line or its caricature. Canadian Cartographer,
10(2):112-122, 1973.

J. Gudmundsson, J. Katajainen, D. Merrick, C. Ong, and
T. Wolle. Compressing spatio-temporal trajectories. In
Proc. of 18th Int’l Symp. on Algorithms and Computa-
tion (ISAAC), pages 763-775, Sendai, Japan, 2007.

R. H. Giiting and M. Schneider. Moving Objects
Databases. Morgan Kaufmann, San Francisco, CA, 2005.
J. Hershberger and J. Snoeyink. An O(n log n) Implemen-
tation of the Douglas-Peucker Algorithm for Line Sim-
plification. In Proc. of 10th Symp. on Computational
Geometry, pages 383-384, Stony Brook, NY, 1994.

N. Hoénle, M. Gromann, D. Nicklas, and B. Mitschang.
Preprocessing Position Data of Mobile Objects. In Proc.
of 9th Int’l Conf. on Mobile Data Management (MDM),
pages 41-48, Beijing, China, 2008.

H. Imai and M. Iri. Computational Morphology, chap-
ter Polygonal Approximations of a Curve — Formulations
and Algorithms, pages 71-86. North-Holland Publishing
Company, 1988.

R. Lange, F. Diirr, and K. Rothermel. Online Trajectory
Data Reduction using Connection-preserving Dead Reck-
oning. In Proc. of 5th Int’l Conf. on Mobile and Ubiqui-
tous Systems (MobiQuitous), Dublin, Ireland, 2008.

R. Lange, F. Diirr, and K. Rothermel. Scalable Pro-
cessing of Trajectory-Based Queries in Space-Partitioned
Moving Objects Databases. In Proc. of 16th ACM
SIGSPATIAL Int’l Conf. on Advances in Geographic In-
formation Systems (ACM GIS), pages 270-279, Irvine,
CA, 2008.

R. Lange, F. Diirr, and K. Rothermel. Efficient Track-
ing of Moving Objects using Generic Remote Trajec-
tory Simplification (Demo Paper). In Proc. of 8th IEEE
Int’l Conf. on Pervasive Computing and Communica-
tions Workshops (PerCom Workshops), Mannheim, Ger-
many, 2010.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

7th IEEE Int’l Conf. on Pervasive Computing and Com-
munications (PerCom), pages 184-193, Galveston, TX,
2009.

J. A. C. Lema, L. Forlizzi, R. H. Giiting, E. Nardelli, and
M. Schneider. Algorithms for Moving Objects Databases.
The Computer Journal, 46(6):680-712, 2003.

A. Leonhardi and K. Rothermel. A Comparison of Proto-
cols for Updating Location Information. Cluster Comput-
ing: The Journal of Networks, Software Tools and Ap-
plications, 4(4):355-367, 2001.

N. Meratnia and R. A. de By. Spatiotemporal Compres-
sion Techniques for Moving Point Objects. In Proc. of 9th
Int’l Conf. on Eztending Database Technology (EDBT),
pages 765-782, Heraklion, Crete, 2004.

P. Misra and P. Enge. Global Positioning System: Sig-
nals, Measurements and Performance. Ganga-Jumuna
Press, 2001.

M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-
Temporal Access Methods. IEEE Data Engineering Bul-
letin, 26(2):40-49, 2003.

OpenStreetMap. http://www.openstreetmap.org/.

D. Pfoser and C. S. Jensen. Capturing the Uncertainty
of Moving-Object Representations. In Proc. of 6th Int’l
Symp. on Advances in Spatial Databases (SSD), pages
111-131, Hong Kong, China, 1999.

M. Potamias, K. Patroumpas, and T. Sellis. Amnesic On-
line Synopses for Moving Objects. In Proc. of 15th ACM
Int’l Conf. on Information and Knowledge Management
(CIKM), pages 784785, Arlington, VA, 2006.

M. Potamias, K. Patroumpas, and T. Sellis. Sampling
Trajectory Streams with Spatiotemporal Criteria. In
Proc. of 18th Int’l Conf. on Scientific and Statistical
Database Management (SSDBM), pages 275-284, Vi-
enna, Austria, 2006.

J. Rankin. GPS and Differential GPS: An Error Model
for Sensor Simulation. In Position Location and Naviga-
tion Symp., pages 260—266, 1994.

D. Tiesyté and C. S. Jensen. Recovery of Vehicle Tra-
jectories from Tracking Data for Analysis Purposes. In
Proc. of 6th European Congress and Exhibition on In-
telligent Transport Systems and Services, Aalborg, Den-
mark, 2007.

G. Trajcevski, H. Cao, P. Scheuermann, O. Wolfson, and
D. Vaccaro. Online Data Reduction and the Quality of
History in Moving Objects Databases. In Proc. of 5th
ACM Int’l Workshop on Data Engineering for Wireless
and Mobile Access (MobiDE), Chicago, IL, 2006.

U.S. Dept. of Defense. Global Positioning System Stan-
dard Positioning Service Performance Standard, 2001.
K. R. Varadarajan. Approximating Monotone Polygonal
Curves Using the Uniform Metric. In Proc. of 12th Symp.
on Computational Geometry, pages 311-318, Philadel-
phia, PA; 1996.

A. Civilis, C. S. Jensen, and S. Pakalnis. Techniques for
Efficient Road-Network-Based Tracking of Moving Ob-
jects. IEEE Trans. on Knowledge and Data Engineering
(TKDE), 17(5):698-712, 2005.

O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha.
Updating and Querying Databases that Track Mobile
Units. Distr. and Parallel Databases, 7(3):257-287, 1999.
Jean-Marie Zogg (u-blox AG). Essentials of Satellite Nav-
igation (Compendium). http://www.u-blox.com/, 2009.

