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Efficient Real-Time Trajectory Tracking

Ralph Lange · Frank Dürr · Kurt Rothermel

Abstract Moving objects databases (MOD) manage

trajectory information of vehicles, animals, and other

mobile objects. A crucial problem is how to efficiently

track an object’s trajectory in real-time, in particular if

the trajectory data is sensed at the mobile object and

thus has to be communicated over a wireless network.

We propose a family of tracking protocols that al-

low trading the communication cost and the amount of

trajectory data stored at a MOD off against the spa-

tial accuracy. With each of these protocols, the MOD

manages a simplified trajectory that does not deviate

by more than a certain accuracy bound from the actual

movement. Moreover, the different protocols enable sev-

eral trade-offs between computational costs, communi-

cation cost and the reduction of the trajectory data:

Connection-Preserving Dead Reckoning (CDR) mini-

mizes the communication cost using dead reckoning,

a technique originally designed for tracking an object’s

current position. Generic Remote Trajectory Simplifi-

cation (GRTS) further separates between tracking of

the current position and simplification of the past tra-

jectory and can be realized with different line simplifi-

cation algorithms. For both protocols, we discuss how

to bound the space consumption and computing time

at the moving object and thereby present an effective
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compression technique to optimize the reduction per-

formance of real-time line simplification in general.

Our evaluations with hundreds of real GPS traces

show that a realization of GRTS with a simple simpli-

fication heuristic reaches 85 to 90% of the best possible

reduction rate, given by retrospective offline simplifica-

tion. A realization with the optimal line simplification

algorithm by Imai and Iri even reaches more than 97%

of the best possible reduction rate.

1 Introduction

Moving objects databases (MODs) have been proposed

for managing trajectories of mobile objects like vehi-

cles, containers, aircrafts, and animals. They store and

index the objects’ geographic positions over time and

process spatiotemporal queries such as retrieving all ob-

jects that were located inside a certain region during a

certain time interval. MODs are of crucial importance

for location-based services, context-aware computing,

and many other application domains.

Generally, an object’s trajectory is represented by

a polyline in time and space where the vertices are the

timestamped positions acquired by a suitable position-

ing system [16,20,8]. Many of these systems (includ-

ing GPS) are based on sensors that are attached to

the moving objects. Tracking the trajectories of such

objects therefore requires communicating the position

data to the MOD over a wireless network.

Transmitting and storing every sensed position of

an object’s trajectory, however, causes high communi-

cation costs and generally consumes too much storage

capacity. The former particularly applies if the MOD

has to be informed in real-time about the object’s move-

ment, as required for many applications. For example,

an ordinary GPS receiver may generate more than 30
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million position data records per year, and there may

be thousands of objects to be tracked.

Therefore, tracking protocols are needed that allow

trading these costs off against the accuracy of the tra-

jectory information known to the MOD. With such a

protocol, the MOD manages only a simplified trajec-

tory that is given by a subset of the sensed positions

and that does not deviate by more than a certain ac-

curacy bound ε from the actual movement. We refer to

the problem of minimizing the amount of data that is

communicated and stored as efficient real-time trajec-

tory tracking. A formal problem statement is given at

the end of Section 2.

Short problem analysis: Trajectory tracking is related

to line simplification, on the one hand, and protocols

for tracking an object’s current position, on the other

hand. For clarity, we refer to the latter as (real-time)

position tracking in the following.

Line simplification refers to a multitude of algorith-

mic problems on approximating a given polyline by a

simplified one with fewer vertices. In the terminology of

line simplification, trajectory tracking is a min-# prob-

lem in R1+d (d = 2 or 3) in the case of Hausdorff dis-

tance under the (time-)uniform distance metric [3,2]. A

straightforward approach for trajectory tracking based

on line simplification is to transmit the sensed position

data from the objects to the MOD and to perform the

simplification entirely on the MOD – for instance us-

ing the Douglas-Peucker algorithm [6], as explained in

[4]. However, such a solution has an obvious drawback

as also those positions are transferred over the wireless
network that are dropped later by simplification, which

may cause a substantial waste of bandwidth.

Position tracking protocols, in contrast, aim at min-

imizing the communication cost for informing the MOD

about the current position of an object, but do not

necessarily generate a simplified trajectory of the past

movement. The latter particularly applies to the most

efficient protocols based on dead reckoning. With this

technique, a tracked object initially transmits a func-

tion predicting its future movement to the MOD. This

prediction function is updated only if the object’s lo-

cally sensed position impends to deviate from the pre-

dicted one by more than some accuracy bound ε. Con-

sequently, only those sensing operations that require an

adjustment of the prediction cause an update message

to be sent. The most simple but nevertheless efficient

variant is linear dead reckoning (LDR) [31,17,30]. It

uses a linear prediction given by a timestamped posi-

tion and a velocity vector. Dead reckoning does not gen-

erate a simplified trajectory, as it describes the object’s

LDR Linear Dead Reckoning
LDRH Linear Dead Reckoning with half ε
CDR Connection-Preserving Dead Reckoning
CDRm . . . with limited sensing history (m positions)

GRTS Generic Remote Trajectory Simplification
GRTSk . . . with limited variable part (k vertices)
GRTSm . . . with limited sensing history (m positions)
GRTSmc . . . with additional compression technique

GRTSOpt
mc . . . realized with optimal simplification algo.

GRTSSec
m . . . realized with segment heuristic

Table 1 List of tracking protocols.

movement by a sequence of disconnected line segments

– one for each prediction.

However, as shown by Trajcevski et al. in [27], a

simplified trajectory deviating from the actual move-

ment by up to 2ε can be computed on the basis of the

linear predictions of LDR. For trajectory tracking with

accuracy bound ε, Trajcevski et al. therefore propose

to use LDR with ε′ := ε/2. We refer to this approach

as LDRH (linear dead reckoning with half ε) in the fol-

lowing. As explained in detail in Section 3, the use of

ε/2 is very conservative and leaves room for significant

improvement.

Contribution: This problem analysis shows that tra-

jectory tracking involves several trade-offs between ac-

curacy, computational costs, and the two goals of re-

ducing both the communication cost and the amount

of simplified trajectory data to a minimum. Moreover,

to guarantee real-time behavior, tracking algorithms

with bounded computing time per sensing operation

are needed.

In this paper, we propose a family of trajectory

tracking protocols that allows adjusting between these

goals and costs and an accuracy bound ε. The family is

derived from two basic protocols named Connection-

Preserving Dead Reckoning (CDR) and Generic Re-

mote Trajectory Simplification (GRTS), cf. Table 1.

CDR extends LDR by a second condition for send-

ing an update to the MOD such that the origins of the

linear predictions give a simplified trajectory that ap-

proximates the actual movement by ε. Hence, it uses

dead reckoning for tracking the current position as well

as for simplifying the past trajectory. While this leads

to very small message sizes and thus communication

cost, the efficiency of simplification depends on dead

reckoning, which has been designed for position track-

ing rather than trajectory simplification.

GRTS in contrast clearly separates tracking the cur-

rent position from simplifying the past trajectory. It

also applies dead reckoning for tracking the current po-

sition – to optimize the number of messages sent over

the wireless network – but can be combined with any
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line simplification algorithm suited for trajectories (e.g.,

[6,11,18]) to reduce the trajectory data. This separa-

tion increases the message sizes but affords significantly

greater reductions of the amounts of data to be stored

by the MOD.

The possibility to realize GRTS with different line

simplification algorithms further enables to trade com-

putational cost off against reduction efficiency. For ex-

ample, an optimal line simplification algorithm provides

the best reduction but causes the highest computational

cost, whereas solutions based on heuristics lower the

computational overhead at the cost of smaller reduc-

tions. We investigate two realizations of GRTS with

different line simplification algorithms, namely the op-

timal line simplification algorithm introduced in [11]

and a simple but efficient simplification heuristic [18].

For the latter, we further propose an optimization re-

ducing the average space consumption of the algorithm

by 63%.

For both CDR and GRTS, we propose space- and

time-bounded variants (CDRm and GRTSm) to limit

the computing time at the moving objects, as moti-

vated above. In case of GRTS, the input for the line

simplification algorithm – referred to as sensing his-

tory – is limited to m sensed positions. To optimize line

simplification under this constraint, we present a novel

compression technique for the sensing history, leading

to GRTSmc. This technique can be generally used to

optimize real-time online simplification of polylines.

We further discuss how to take sensing inaccura-

cies and possible movements between two sensing oper-

ations into account. As physical constraint for the lat-

ter, we consider not only the maximum speed, but also

the maximum acceleration.

Our evaluations with hundreds of real GPS traces

show that GRTS outperforms LDRH by a factor

five in terms of reduction efficiency. With the above-

mentioned simplification heuristic, the reduction effi-

ciency of GRTS is less than 15% below the best possible

reduction computed offline – even when restricting the

space consumption of the algorithm to less than 12 kB

using the GRTSm variant. The computing time of this

realization GRTSSec
m and parametrization is bounded

to less than 1.9 ms on a 600 MHz smartphone and to

0.07 ms on a 3 GHz Intel Xeon processor.

GRTSmc realized with the optimal line simplifica-

tion algorithm may even reach 97% of the best possible

reduction rate, at one hundred times higher cost.

Organization of the paper: In Section 2, we describe our

assumptions and introduce our notation. Furthermore,

a formal definition of the efficient real-time trajectory

tracking problem is given. In Section 3, we analyze the

use of dead reckoning for trajectory tracking, before

we propose the CDR protocol with its variants in Sec-

tion 4. Then, we present the GRTS protocol with its

three variants and the mentioned realizations in Sec-

tion 5. Besides, we discuss how time-dependent sensing

deviations can be included into GRTS. In Section 6, we

explain how to determine the possible movement be-

tween two sensing operations by a given maximum ac-

celeration and compare the resulting offsets for ε with

the offsets obtained by a given maximum speed. In Sec-

tion 7, we show and analyze results from extensive simu-

lations with real GPS traces, before we discuss related

work in Section 8. Finally, the paper is concluded in

Section 9 with a summary.

2 Assumptions and Notation

We consider a collection of mobile objects with embed-

ded positioning sensors (e.g., GPS receivers) whose tra-

jectories are managed by a remote MOD. The objects

and the MOD are connected by a wireless network. The

overall number of trajectories stored by the MOD is of

no relevance here.

An object’s movement over time describes a contin-

uous function a : R 7→ Rd from time to plane (d = 2)

or space (d = 3), called the object’s actual trajectory.

Let tC denote the current time, then a(t) is defined up

to tC and a(tC) is the object’s current actual position.

The positioning sensor periodically senses the ob-

ject’s current position with period TS, referred to as

sensing period. It results in a sequence of sensed po-

sitions (s1, s2, . . . , sR), where s1 denotes the first and

sR the most recent sensed position. Each si is a data

record consisting of the sensing time t and the sensed

position p, denoted by si.t and si.p, respectively.

Two consecutive positions si and si+1 define a spa-

tiotemporal line segment si si+1 as

si si+1 : t 7→ (si+1.t− t) si.p + (t− si.t) si+1.p

si+1.t− si.t

on the domain [si.t, si+1.t].

Based on these line segments, the sequence of all

sensed positions defines a continuous, piecewise linear

function s(t) named sensed trajectory as

s : t 7→ si si+1(t) where si.t ≤ t ≤ si+1.t

on the domain [s1.t, sR.t]. Geometrically, s(t) is a time-

monotonous polyline in R1+d given by the sequence of

vertices (s1, s2, . . . , sR).

Note that the domain [s1.t, sR.t] does not continu-

ously increase over time but periodically by TS, with
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each sensing operation. For current time tC, we thus

have tC − TS < sR.t ≤ tC.

The sensed trajectory s(t) generally deviates from

a(t) due to inaccuracies of the positioning sensor and

the time-discrete sensing. The former are generally de-

scribed by stochastic means such as probability density

functions or percentiles, which allow deriving a maxi-

mum sensor inaccuracy σ that holds with high prob-

ability. Inaccuracies beyond σ (typically indicated by

erratic positions) are considered as errors. They have

to be treated separately, e.g., by informing the MOD

that there will be no valid trajectory information un-

til further notice. Regarding the time discretization by

position sensing, the movement between two sensing

operations is subject to physical constraints like the

maximum speed or acceleration.

Therefore, we assume that the deviation between

s(t) and a(t) is bounded by a certain maximum sens-

ing deviation δ, i.e., ∀ t′ ∈ [s1.t, sR.t] we have |s(t′) −
a(t′)| ≤ δ. For example, given a maximum speed vmax,

we can conclude that

|a(t′)− s(t′)| ≤ σ + vmax
TS

2
=: δ ,

as the object cannot move more than vmax · TS/2 and

then return to its origin during a sensing period TS.

The use of speed-based movement constraints to es-

timate the deviation between s(t) and a(t) is discussed

in detail in [22]. In Section 6, we show how to incor-

porate acceleration-based constraints, which typically

afford smaller values of δ.

The sensor inaccuracy may depend on dynamic

technical conditions such as the satellite constellation

of GPS, described by the dilution of precision (DOP).

Therefore, σ may be time-dependent, and thus δ. For

simplicity, we assume σ and δ to be fixed at first. In Sec-

tion 5.3, we discuss how to account for time-dependent

values of σ and δ, given with each sensed position.

Note that the physical movement constraints also al-

low estimating a(t′) for t′ > sR.t. For example, given a

maximum speed vmax, the actual position a(t′) is known

to be inside a circle with radius σ + vmax(t′ − sR.t)

around sR.p. This property is utilized by dead reckon-

ing, as explained in Section 3.

In this regard, we also assume that the time for

processing and transmitting an update message to the

MOD is bounded by a certain maximum time span TU

called update time. Exceptional transmission delays and

connection breaks are considered as errors and have to

be detected by subsidiary mechanisms such as heart-

beat messages. These practical implementation issues

are addressed in Section 7.5

We further assume that clocks of the MOD and the

moving object are synchronized to within few microsec-

a(t) Actual trajectory – a function from time to Rd
si Sensed position – with position data si.p at time si.t
sR Most recent sensed position
s(t) Sensed trajectory – given by (s1, s2, . . . , sR)
u(t) Simplified trajectory – given by (u1, u2, . . . )
ui Vertex of u(t) – with position data ui.p for time ui.t
ε Accuracy bound – maximum tolerated deviation

between u(t) and a(t)
tC Current point in time
TS Sensing period – time between a si−1 and si
σ Max. sensor inaccuracy – between si.p and a(si.t)
δ Max. sensing deviation – between s(t) and a(t)
vmax Maximum speed of the moving object
TU Update time – upper bound for processing and

transmitting an update message
π(t) Prediction function – cf. Section 3
πO Prediction origin – a sensed position
πV Prediction velocity – a vector for linear prediction
amax Maximum acceleration – cf. Section 6

Table 2 List of symbols.

onds or tens of microseconds. Note that GPS provides

very accurate timing signals. Given that the timestamps

of the sensed positions are accurate, the clock discrep-

ancy between the MOD and the moving object is not

relevant for queries about the past movement but only

for queries about the current position – and can there-

fore be included into TU.

The MOD describes the object’s trajectory by a con-

tinuous, piecewise linear function u : t 7→ Rd called

simplified trajectory. Geometrically, u(t) is a time-

monotonous polyline in R1+d given by a sequence of

vertices (u1, u2, . . .), like s(t). Each vertex ui is a data

record with attributes t and p, just as a sensed position.

Table 2 gives a summary of the symbols introduced

in this section. With this notation, the algorithm prob-

lem of tracking a moving object’s trajectory efficiently

in real-time can be formally stated as follows:

Problem statement [Efficient real-time trajectory track-

ing]: The goals are to minimize the number of vertices

of the simplified trajectory u(t) and the amount of data

transmitted over the wireless network under the follow-

ing two constraints, where tC denotes the current time:

1. Simplification constraint: For a given accuracy

bound ε known by the moving object and the

MOD, it is

∀ t′ ∈ [s1.t, tC] : |u(t′)− a(t′)| ≤ ε .

2. Real-time constraint: At tC, position u(t) is avail-

able at the MOD for every t ∈ [s1.t, tC].

The goals of minimizing the number of vertices of u(t)

and the amount of communicated data appear to imply

one another. Obviously, the greater ε, the less vertices
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are needed for u(t) and the less data has to be trans-

mitted. However, the two goals might also contradict to

a certain degree: To generate a u(t) with a very small

number of vertices, it has to be revised over time – i.e.,

an update may need to replace multiple vertices from

previous updates. This causes larger message sizes and

thus communication cost. The quantitative impact of

this property and respective conclusions are discussed

in Section 7.

3 Analysis of Linear Dead Reckoning

Before we present our approaches CDR and GRTS, we

analyze the use of linear dead reckoning (LDR) for tra-

jectory tracking – also because CDR and GRTS make

use of LDR.

As explained above, LDR is an efficient mechanism

for tracking the current position of a moving object

with low communication costs [31,17,30]. With LDR,

the moving object and the MOD share a linear predic-

tion function π(t) for determining the object’s current

position. π(t) is defined by a previously sensed position

πO called prediction origin and a velocity vector πV as

π : t 7→ πO.p + (t− πO.t)πV

for t ≥ πO.t. For a given accuracy bound ε, LDR guar-

antees that π(t) known by the MOD approximates the

objects’ current actual position by ε. Formally, at cur-

rent time tC, it guarantees that |π(tC)− a(tC)| ≤ ε.
After having sensed a new position at time sR.t,

it has to be decided whether π(t) is going to meet

this guarantee during the following sensing period

[sR.t, sR.t+ TS] as well as during the time span until a

subsequent update would have been processed. If not,

the object has to send a new prediction (πO,πV) right

now. For this decision, the maximum sensor inaccuracy

σ has to be incorporated as well.

Therefore, we say that the moving object has to send

a new prediction if |π(tC)− a(tC)| impends to reach ε.

For example, assuming a maximum velocity vmax, it has

to send an update if

|sR.p− π(sR.t+ TS + TU)|+ σ + vmax(TS + TU) > ε ,

as sR.p may deviate by up to σ from the actual position

at sR.t, and the object may move by up to vmax(TS+TU)

until an update after the subsequent sensing operation

would have been processed.1

1 Note that many works do not clearly state whether they
account for the sensing period and update time, or not. Some
works even ignore the sensor inaccuracy σ since it can be
initially offset against ε, as long as it does not vary over time.

uj = si−3

si

uj+1

= si+2

π(t)

< ε

< ε> ε

Fig. 1 Example of a violation of ε for trajectory tracking by
LDR.

Because of the discontinuities between the different

predictions, LDR is a position tracking protocol rather

than a trajectory tracking protocol. More precisely, it

represents the object’s movement by a sequence of dis-

connected spatiotemporal line segments instead of a

continuous polyline. Figure 1 illustrates such disconti-

nuities. The solid arrows denote the linear predictions –

and thus the line segments – whereas the small crosses

indicate the sensed positions.

However, the distance between the end point of such

a line segment and the start point of the subsequent one

is bounded by ε.

In [27], Trajcevski et al. utilize this property for tra-

jectory tracking. They analyze the spatiotemporal poly-

line given by the origins of the linear predictions and

prove that it approximates the actual movement by 2ε.

Figure 1 illustrates this polyline by a dashed line. Based

on this finding, they conclude that LDR allows for tra-

jectory tracking with accuracy bound ε as follows:

1. The moving object reports its current position using

LDR with the accuracy bound ε′ := ε/2.

2. The MOD not only stores the current prediction,

but also the origins of all previous predictions as

vertices of the simplified trajectory u(t).

This approach, which we will refer to as LDRH in the

following, is very conservative in terms of the reduction

efficiency. Consider again the polyline u(t) given by the

prediction origins of LDR with accuracy bound ε. It

may deviate by more than ε from the actual trajectory

a(t), as just explained. We argue that such violations

are rare and will seldom reach 2ε:

1. The actual position a(t′) at time t′ can only de-

viate by more than ε from the corresponding line

segment uj uj+1 if a(t′) and uj+1 are located at op-

posite sides of the predicted movement vector. This

does not hold for typical movement patterns like

turning off or stopping.

2. The deviation |a(t′) − uj uj+1| can be close to 2ε

if t′ ≈ uj+1.t and |a(t′) − uj+1.p| is also about 2ε.

Thus, for such large deviations, the object has to

move in a very fast and irregular fashion.

To support this argumentation, we analyzed the actual

number of such violations by simulating LDR with a
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Fig. 2 Potential violations of ε for trajectory tracking by
LDR during the first 11

2
hours of a 4-hour bicycle tour.

GPS trace of a 4-hour bicycle tour from the Open-

StreetMap [21] project. For the simulation, we used

σ = 7.8 m, vmax = 10 m/s, TS = 1 s, TU = 0.2 s, and

ε = 50 m.

With these assumptions and parameters, LDR gen-

erates 396 position updates, where the last one indicates

the end of the tour. Hence, the resulting simplified tra-

jectory u(t) consists of 395 line segments given by 396

vertices. Figure 2 illustrates the deviations between the

sensed positions si and u(t) depending on time, for the

first 1 1
2 hours of the tour. The black curve of dots de-

notes the sensed positions. The corresponding gray bars

depict the maximum sensing deviation δ = 12.8 m.

Each time the gray bars intersect the thick hori-

zontal line, the deviation between a(t) and u(t) may

violate the accuracy bound ε. Formally, this applies to

all si where |si.p−u(si.t)|+ δ > ε. Thus, the difference

ε− δ represents the largest tolerable deviation between

a sensed position si and u(t). Obviously, the violations

are not distributed uniformly over time but appear at

few line segments of u(t) only. In detail, during the four

hours, they appear at 15 of the 395 line segments. Fur-

thermore, the deviations are well below 2ε.

We conclude that using LDR with ε′ := ε/2

(i.e., LDRH) is generally too strict. It generates need-

less position updates and hence simplified trajectories

with unnecessary large numbers of vertices.

Next, we present an approach for trajectory tracking

that extends LDR to prevent such violations, before

we present the GRTS protocol, which clearly separates

tracking of the current position from simplification of

the past trajectory.

4 Connection-Preserving Dead Reckoning

In this section, we propose Connection-Preserving Dead

Reckoning (CDR), which extends LDR such that the

prediction origins make up the vertices of a simplified

trajectory u(t) that approximates a(t) by the accuracy

bound of LDR. First, we present the basic CDR algo-

rithm executed at the moving object, before we discuss

an optimization of this algorithm. Then, we present

1: sR ← sense position . Most recent sensed position.
2: πO ← sR . Prediction origin.
3: πV ← 0 . Predicted velocity.
4: send update message (πO,πV) to MOD
5: S← {} . Sensing history since last update.
6: sR′ ← sR . Second last sensed position.
7: while report movement do
8: sR ← sense position
9: if LDR causes update

or ∃ si ∈ S : |si − πO sR(si.t)| > ε− δ then
10: πO ← sR′
11: πV ← compute new predicted velocity . . .
12: send update message (πO,πV) to MOD
13: S← {} . Clear the sensing history.
14: end if
15: S← S ∪ {sR} . Add sR to sensing history.
16: sR′ ← sR
17: end while
18: send final update message (sR) to MOD

Fig. 3 Basic version of CDR algorithm.

a space- and time-bounded variant of this algorithm

named CDRm.

4.1 Basic Version of CDR

As explained in Section 3, the prediction origins of LDR

with accuracy bound ε make up a simplified trajec-

tory u(t) that approximates a(t) by ε for most of the

time. However, some line segments of u(t) may violate

ε. CDR is based on the observation that the moving

object has all information for detecting such violations

in real-time:

1. It knows the current prediction given by the predic-

tion origin πO and the velocity vector πV.

2. It knows the most recent sensed position sR.

3. Thus, it also knows the resulting line segment πO sR

of u(t), in case sR is used as origin of the next pre-

diction.

4. It can store the sensing history since the last update

message, i.e., the positions that have been sensed

after πO.t, and check whether one of these positions

deviates from πO sR by more than ε − δ. If so, the

line segment πO sR may deviate by more than ε from

a(t). In the following we refer to the sensing history

as S := {si : si.t > πO.t}.

The basic idea of CDR is that the moving object not

only sends a new position update if caused by LDR, but

also if one of the sensed positions since the last update

message deviates from πO sR by more than ε− δ.
Figure 3 shows the pseudocode of the algorithm ex-

ecuted by moving object. A crucial difference to LDR

is that CDR maintains a dynamic array that stores

the sensing history (line 5). Another, subtle difference



Efficient Real-Time Trajectory Tracking 7

to LDR is that CDR does not use the most recent

sensed position sR as origin of a new prediction, but

the one before sR, denoted by sR′ (line 10). The use

of sR′ has negligible or no influence on LDR since

the predicted velocity πV generally is determined by

means of the last sensed positions and particularly

(sR.p−sR′ .p)/(sR.t−sR′ .t). Yet, it is essential for u(t),

as explained below.

Initially the moving object transmits its current po-

sition and the zero vector as velocity prediction to the

MOD. Then, it executes the while loop (lines 7 to 17)

as long as it wants to report its movement to the MOD.

During each iteration, it first senses its current po-

sition (line 8) and then checks whether LDR causes an

update or whether the segment condition, given as

∀ si ∈ S : |si − πO sR(si.t)| ≤ ε− δ ,

is violated (line 9). The segment condition simply states

that none of the sensed positions si since the last up-

date should deviate from πO sR by more than ε− δ, as

discussed above. If there exists an si deviating by more

than ε−δ, a new update message with prediction origin

πO = sR′ is sent to the MOD such that the correspond-

ing line segment of the simplified trajectory u(t) fulfills

the segment condition.

After sending an update message, S is cleared to

remove the sensed positions before πO.t (line 13).

If the moving object wants to stop reporting its

movement, it sends a final update message with the

most recent sensed position – but without a new pre-

diction – and terminates the algorithm (line 18).

The simplified trajectory u(t) managed by the MOD

consists of two parts: the spatiotemporal polyline given

by the vertices (u1, . . . , un), as described in Section 2,

and the prediction function π(t) of LDR. On receiving

an update message (πO,πV), the MOD simply updates

π(t) with the new origin πO and the new velocity vector

πV and appends πO to the sequence of vertices as (n+

1)th vertex.

Given a query for the moving object’s position at

time t′, the MOD answers as follows:

– t′ ≤ πO.t : The MOD calculates u(t′) as described in

Section 2 and returns the result to the query issuer.

– t′ > πO.t : It calculates the predicted position at

time t′ using π(t′) = πO.p + (t′ − πO.t)πV and re-

turns the result to the query issuer.

If the MOD receives the final update message (sR) it

removes π(t) and completes u(t) by appending sR as

final vertex to (u1, . . . , un). In practical implementa-

tions, the MOD should also terminate the simplified

trajectory during long-lasting network outages or after

failures at the mobile object, which can be detected by

a timeout mechanism (cf. Section 7.5).

si−3

= πO

π(t)

si

sR = si+2

si.t−πO.t
sR.t−πO.t

|sR.p− π(sR.t)|

|si.p− π(si.t)||si.p− πO sR(si.t)|

Fig. 4 Geometric illustration of triangle inequality for opti-
mization of S.

4.2 Optimization of Sensing History

CDR differs from LDR regarding the space require-

ments at the moving object. While LDR only stores

the current prediction and the most recent sensed posi-

tion, the basic version of CDR stores the whole sensing

history S since the last update. Theoretically, the size

of S is unbounded.

However, this problem can be alleviated. For every

sensed position si ∈ S there exists a certain point in

time from which onwards, it cannot violate the segment

condition without sR causing LDR to send an update.

After this time, si can be removed from S, even before

the next update. This significantly reduces the space

consumption of CDR as well as the computing time

per position fix. For example, in case of the bicycle tour

mentioned in Section 3 and ε = 50 m, the maximum size

of S is reduced from 405 to 214 positions. The maximum

computing time per position fix on a 3 GHz Intel Xeon

processor (cf. Section 7) is reduced from 0.10 to 0.06 ms.

To determine this point in time for a given si ∈ S,

we analyze the state of the basic version of CDR (cf.

Figure 3) right after having sensed a new position sR

(line 8) that does not cause an update by LDR.

We consider the line segment πO sR, which is going

to be the next line segment un un+1 of u(t) if an update

is sent in the subsequent iteration of the while loop.

Since the prediction function π(t) and πO sR are

linear functions in t with identical origin πO, we

conclude that regarding time si.t they deviate by
si.t−πO.t
sR.t−πO.t

|sR.p− π(sR.t)|.
As illustrated in Figure 4, the following triangle in-

equality can be derived:

|si.p− πO sR(si.t)| ≤ |si.p− π(si.t)|+
si.t− πO.t

sR.t− πO.t
|sR.p− π(sR.t)|

(1)

Under the above assumption that sR does not cause

an update, we conclude that |sR.p − π(sR.t)| ≤ ε and

finally estimate |si.p− πO sR(si.t)| by

|si.p− πO sR(si.t)| ≤ |si.p− π(si.t)|+
si.t− πO.t

sR.t− πO.t
ε .
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1: [. . . ]
2: while report movement do
3: sR ← sense position
4: while |S| > 0 and sR.t ≥ κ(peek(S)) do
5: pop(S) . Remove root of heap.
6: end while
7: [. . . ]
8: end while
9: send final update message (sR) to MOD

Fig. 5 Optimization of S in the CDR algorithm.

Clearly, this estimate decreases over time, i.e., with in-

creasing values of sR.t. We now derive the point in time

from which onwards it falls below ε− δ, as required to

fulfill the segment condition definitely:

ε− δ ≥ |si.p− π(si.t)|+
si.t− πO.t

sR.t− πO.t
ε

⇔ sR.t ≥
si.t− πO.t

ε− δ − |si.p− π(si.t)|
ε+ πO.t︸ ︷︷ ︸

=:κ(si)

(2)

Thus, si cannot violate the segment condition once time

sR.t fulfills the inequation (2).

So far, we assumed that sR does not cause an up-

date by LDR. In the general case, it follows that once

sR.t fulfills (2), si cannot violate the segment condi-

tion without sR causing an update by LDR. Therefore,

CDR can remove si from S at this point in time without

affecting its future decisions on a new update.

For this purpose, CDR organizes S as a min-heap

according to the right-hand side of (2), i.e., κ(si). After

position sensing, it first removes the root of S one by

one, as long as this sensed position fulfills (2). Figure 5

shows the corresponding additional pseudocode to the

basic version of CDR.

4.3 Space- and Time-bounded CDR

With the optimization presented above, CDR tries to

reduce the sensing history S after each position fix. The

space consumption is nevertheless unbounded, which

can be critical for resource-constrained mobile devices.

In the following, we present the CDRm algorithm

whose space consumption is bounded by a predefined

parameter m. CDRm guarantees that |S| ≤ m at every

point in time. This also limits the computing time per

position fix.

CDRm is based on the following idea: Besides a heap

of fixed size m for storing S, it maintains a floating-

point variable dS providing aggregated information on

all sensed positions that could not be stored in S due to

the space constraint. More precisely, dS defines a time-

dependent bound for |sR.p− π(sR.t)|. Each time |S|
is going to exceed m, the CDRm algorithm removes a

sensed position from S and updates dS accordingly.

If |sR.p− π(sR.t)| is below the bound defined by dS,

none of the sensed positions that could not be stored in

S violates the segment condition for sR.

For this purpose, the segment condition is split into

two subconditions: The first subcondition is evaluated

on the sensed positions currently stored in S, just as

with CDR. The second subcondition is evaluated on dS.

We now give the mathematical basis for dS and de-

rive the inequation for the second subcondition. First,

we reconsider the triangle inequality (1), given in Sec-

tion 4.2. With it, we conclude that

|si.p− π(si.t)|+
si.t− πO.t

sR.t− πO.t
|sR.p− π(sR.t)| ≤ ε− δ

implies |si.p− πO sR(si.t)| ≤ ε− δ. The former inequa-

tion can be rewritten as

|sR.p− π(sR.t)| ≤
ε− δ − |si.p− π(si.t)|

si.t− πO.t︸ ︷︷ ︸
=:ϕ(si)

(sR.t−πO.t) .

Thus, |sR.p− π(sR.t)| ≤ ϕ(si) · (sR.t − πO.t) implies

that si does not violate the segment condition. This

result is used for the CDRm algorithm as follows:

1. The minimum ϕ(sj) of all sensed positions sj that

had to be removed from S due to the space con-

straint is stored in the variable dS.

2. Inequation |sR.p− π(sR.t)| ≤ dS · (sR.t − πO.t) is

used as second subcondition of the segment con-

dition. Thus, an update is sent if |sR.p− π(sR.t)|
exceeds dS · (sR.t− πO.t).

Therefore, as long as the second subcondition is ful-

filled, each removed position sj fulfills the segment con-

dition. Thus, as long as both subconditions are ful-

filled, every sensed position since the last position up-

date fulfills the segment condition. After an update, S
is cleared – just as with CDR – and dS is reset to ∞.

A crucial question is which sensed position to re-

move from S once |S| is going to exceed m. Clearly, for

small values of dS, the most recent sensed position sR

violates the second subcondition more likely. Therefore,

CDRm always removes the sj ∈ S with maximum ϕ(sj).

For this purpose, it stores S as a max-heap according

to ϕ(si). This order is identical to the min-heap order

of CDR by κ(si), as explained below.

Since dS aggregates all previously sensed position

with ϕ(sj) ≥ dS, the most recent sensed position sR

need not be added to S if ϕ(sR) ≥ dS. Hence, the in-

variant ∀si ∈ S : ϕ(si) ≤ dS holds for S. For this rea-

son, CDRm can directly assign ϕ(pop(S)) to dS when
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1: [. . . ] . Same initialization like CDR.
2: dS ←∞ . Indicates empty aggregation.
3: while report movement do
4: sR ← sense position
5: while |S| > 0 and ϕ(peek(S)) · (sR.t− πO.t) ≥ ε do
6: pop(S) . Remove root of heap.
7: end while
8: if LDR causes update

or ∃ si ∈ S : |si − πO sR(si.t)| > ε− δ
or |sR.p− π(sR.t)| > dS · (sR.t− πO.t) then

9: πO ← sR′
10: πV ← compute new predicted velocity . . .
11: send update message (πO,πV) to MOD
12: S← {} . Clear the sensing history.
13: dS ←∞ . Reset the bound.
14: end if
15: if |S| = m and ϕ(sR) < dS then
16: dS ← ϕ(pop(S)) . Aggregate the root.
17: end if
18: if ϕ(sR) < dS then
19: insert sR into S
20: end if
21: sR′ ← sR
22: end while
23: send final update message (sR) to MOD

Fig. 6 CDRm algorithm.

removing the root of S. It does not need to determine

the minimum of ϕ(pop(S)) and dS explicitly.

By reconsidering inequation (2), it can be seen that

κ(si) = πO.t + ε/ϕ(si). Therefore, the max-heap order

by ϕ(si) is identical to the min-heap order of CDR by

κ(si). Moreover, CDR’s condition sR.t ≥ κ(peek(S)) for

removing a si from S can be rewritten as ϕ(peek(S)) ·
(sR.t− πO.t) ≥ ε.

From an algorithmic perspective, CDRm is an ex-

tension of CDR. Figure 6 gives its pseudocode. The

additional statements compared to CDR are:

– Lines 2 and 13: Initialize or reset dS, respectively.

– Lines 15 to 17: Remove the sensed position with

maximum ϕ(si) from S and aggregate it in dS if

|S| = m and sR has to be added to S.

– Lines 18 to 20: Insert the most recent sensed posi-

tion sR into the heap S if ϕ(sR) < dS.

5 Generic Remote Trajectory Simplification

LDRH and CDR use dead reckoning for two different

problems, namely the tracking of the current position

and the simplification of the past trajectory. While this

leads to simple solutions, the efficiency of simplification

depends on the quality of dead reckoning, which has

been designed for position tracking only.

On the other hand, there exists a variety of efficient

line simplification algorithms that could be used for this

purpose. Therefore, it is a good idea to separate position

tracking from simplification issues as far as possible to

gain flexibility.

In this section, we propose the Generic Remote Tra-

jectory Simplification (GRTS) protocol, which clearly

separates tracking of the current position from simplifi-

cation of the past trajectory and can be combined with

any line simplification algorithm suited for trajectories.

First, we present the basic protocol and algorithm.

Then, we discuss how to bound the space consumption

and computing time for line simplification in GRTS and

how to consider dynamic sensing deviations δ, resulting

for instance from variable sensor inaccuracies. Finally,

we present two realizations of GRTS, with the optimal

line simplification algorithm by Imai and Iri [11] as well

as with an efficient simplification heuristic [18] referred

to as segment heuristic.

5.1 Basic Protocol and Algorithm

Although it is a good idea to separate position tracking

from simplification issues as far as possible, the sim-

plification process must be synchronized with position

tracking to make sure that the simplified data arrives

in time at the MOD. The GRTS protocol follows a syn-

chronization pattern, which we call per-update simplifi-

cation.

With this pattern, simplification is performed when-

ever the position tracking mechanism decides to send

an update message. For this purpose, the moving ob-

ject stores a partial history of sensed positions, which

serves as input for the simplification process. Based on

this input, the simplification algorithm generates a se-

quence of vertices for updating the simplified trajectory

u(t), which is included in the update message. In many

cases, the generated sequence replaces one or few ver-

tices of u(t) only – without increasing their number.

Therefore, GRTS has better reduction efficiency than

LDRH and CDR, which always generate one additional

vertex per update.

Depending on the line simplification algorithm used

with GRTS, the simplification process may be prepared

with each sensed position, to reduce the computing time

for line simplification when the position tracking mech-

anism decides to send an update message. If GRTS

is realized with an online algorithm, the simplification

even can be performed with each sensing operation –

resulting in per-sense simplification – as explained in

Section 5.5.

In the following, we consider LDR for position track-

ing in GRTS as LDR is the most efficient, general ap-

plicable position tracking protocol [31,17,30]. However,
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u1 = s1

u2
u3

u4

= un−k

u5

u6

= un = πO

πV

Stable part Variable part (k = 2) Predicted part

Sensing history S

Fig. 7 Three parts of u(t) and corresponding S for GRTS.

GRTS can be realized with any position tracking pro-

tocol based on a piecewise linear prediction function

π(t).

GRTS divides the simplified trajectory u(t) into

three parts, as depicted in Figure 7:

1. Stable part: This part generally comprises a large

number of vertices, stored by the MOD only – ex-

cept for the last vertex denoted by un−k, which is

also known to the moving object, as explained be-

low.

2. Variable part: It generally comprises few vertices

only, counted by k, which are known to the MOD

and the moving object. The last vertex un also com-

poses the prediction origin for the next part.

3. Predicted part: This part is given by the prediction

function π(t), i.e., the origin un and the vector πV,

and is known to the MOD and the moving object.

Hence, n gives the number of vertices of u(t), excluding

the current predicted position π(tC).

The moving object not only stores the vertices of

the variable part and the predicted velocity but also the

sensing history S for those two parts. Note that S fur-

ther includes the last sensed position of the stable part –
i.e., the vertex un−k – as required for simplifying s(t)

for t > un−k.t. Formally, S is the sequence of chrono-

logically ordered sensed positions with first(S) = un−k
and last(S) = sR.

Only the moving object distinguishes between sta-

ble and variable part; the MOD does not need to be

aware of this differentiation. Once the moving object

decides that a vertex ui belongs to the stable part, this

vertex will not be changed by future updates. Hence,

the stable part grows in an append-only fashion. The

variable part, in contrast, may be changed by future

updates. An update message therefore consists of three

elements:

1. The number of vertices to remove from u(t), starting

backwards at un.

2. The new vertices U := (uj , . . . , un) to append to

u(t). In sum, this may increase but (rarely) also

decrease the overall number of vertices.

3. The new velocity vector πV, which replaces the pre-

vious prediction.

1: sR ← sense position . Most recent sensed position.
2: U← (sR) . New vertices for u(t).
3: πV ← 0 . Predicted velocity.
4: send update message (0,U,πV) to MOD
5: S← (sR) . Sensing history.
6: V← () . Vertices of variable part of u(t).
7: U← ()
8: while report movement do
9: sR ← sense position

10: S← S ‖ (sR) . Append sR to sensing history.
11: if LDR causes update then
12: U← line simplification with bound ε− δ on S
13: U← U \ (first(U)) . Belongs to stable part.
14: πV ← compute new predicted velocity . . .
15: send update message (|V \ U|,U \ V,πV) to MOD
16: V← U
17: U← ()
18: if V and S should be reduced then
19: V′ ← some prefix of V for stable part . . .
20: S← (s ∈ S | s.t ≥ last(V′).t)
21: V← V \ V′ . Set new variable part of u(t).
22: end if
23: end if
24: end while
25: U← line simplification with bound ε− δ on S
26: U← U \ (first(U))
27: send final update message (|V \ U|,U \ V) to MOD

Fig. 8 Basic GRTS algorithm.

Figure 8 shows the pseudocode of the basic GRTS al-

gorithm executed by the mobile object. Initially, the

moving object transmits its most recent sensed position

sR = s1 as first vertex u1 to the MOD (line 4). Thus, u1

also serves as prediction origin until the next update.

Then, the object executes the while loop (lines 8 to 24)

as long as it wants to report its trajectory to the MOD.

During each iteration, the object first senses its cur-

rent position (line 9) and appends it to the sensing his-

tory (line 10). Then, it checks whether it has to send

an update message to the MOD (line 11).

If so, the object computes a simplified trajectory

part for the movement of the variable and predicted

part using S. Since the part of s(t) given by S does not

deviate by more than δ from a(t), it executes the line

simplification algorithm with simplification bound ε− δ
and stores the resulting vertices of the simplified tra-

jectory in U (line 12). Hence, the simplified trajectory
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part given by U approximates a(t) on (first(S).t, sR.t]

according to ε. Note that first(U) can be safely removed

from U, as it always corresponds to first(S) and thus

the last vertex un−k of the stable part. Then, the ob-

ject computes a new velocity vector for LDR (line 14)

and creates a corresponding update message.

To minimize the size of the update message, only

those vertices of U that actually change the variable

part are included. For this purpose, the algorithm main-

tains the vertices of the variable part in an array V
(lines 6 and 16). To create the update message, the

number of vertices that have to be removed from the

end of the variable part (expressed by |V \U|) and the

new vertices that have to be added to it (expressed by

U \V) are computed. This information is sent together

with the new predicted velocity to the MOD (line 15).

Then, the object stores the vertices U as new vertices

V of the variable part (line 16) and clears U (line 17).

Finally, the object may decide to reduce the size

of the variable part by removing some prefix of V and

S, respectively (lines 18 to 22). A possible policy is to

limit the size of V to some given parameter k. We re-

fer to this variant as GRTSk in the following. However,

GRTSk does not limit the size of the sensing history S,

which has important impact on the space consumption

and computing time per position fix. Therefore, we pro-

pose the variants GRTSm and GRTSmc in Section 5.2,

limiting |S| to a given parameter m.

Once the moving object wants to stop reporting

its movement, it computes a last simplification of S
(line 25) and sends a corresponding final update mes-

sage to the MOD (line 27).

An update message (|V \U|,U \V,πV), received by
the MOD is processed as follows: The MOD removes

the |V \U| last vertices from u(t), appends the vertices

U \V to u(t) and finally replaces the current predicted

velocity with the new vector πV.

As indicated above, many updates just replace the

last vertex un (i.e., the prediction origin) and provide

a new πV. If the construction of the update messages

is slightly modified such that every update message re-

places or repeats the last vertex of the previous update,

then un and πV need not to be recovered after a crash

of the MOD, and can thus be stored in main memory

rather than on disk. This approach saves a number of

write operations.2

2 One may think of more elaborate approaches, e.g., to store
several of the last vertices of u(t) in main memory only. In
return, the update messages must be logged to stable stor-
age, where simultaneous messages of different objects may be
written in one operation. To cope with the update load of a
large number of moving objects, however, it is inevitable to
partition the MOD to multiple servers (e.g., [13]).

1: [. . . ]
2: while report movement do
3: sR ← sense position
4: S← S ‖ (sR) . Append sR to sensing history.
5: if |S| = m then
6: U′ ← line simplification with bound ε− δ on S
7: U′ ← U′ \ (first(U′))
8: U← U ‖ (first(U′))
9: S← (s ∈ S | s.t ≥ last(U).t)

10: end if
11: if LDR causes update then
12: U′ ← line simplification with bound ε− δ on S
13: U′ ← U′ \ (first(U′))
14: U← U ‖U′
15: πV ← compute new predicted velocity . . .
16: send update message (|V \ U|,U \ V,πV) to MOD
17: V← U′
18: U← ()
19: end if
20: end while
21: [. . . ]
22: send final update message (|V \ U|,U \ V) to MOD

Fig. 9 GRTSm algorithm.

To determine the object’s position at time t′, the

MOD has to distinguish two cases, similar to CDR:

1. t′ ≤ un.t : The MOD calculates u(t′) by linear in-

terpolation between the vertices uj and uj+1 with

uj .t ≤ t′ ≤ uj+1.t as described in Section 2.

2. t′ > un.t : The MOD calculates u(t′) by means of

the prediction π(t) given by πO = un and πV.

5.2 Space- and Time-bounded Simplification

The basic GRTS algorithm does not define a policy

when to reduce the variable part and to what extent.

A possible approach is to limit |V| to some parameter

k (e.g., k = 1 or 2), as explained in Section 5.1. This

variant GRTSk, however, does not limit the size of the

sensing history S, which has important impact on the

space consumption and computing time per position

fix, depending on the line simplification algorithm used

with GRTS.

Therefore, we propose two space- and time-bounded

variants named GRTSm and GRTSmc in the following,

limiting |S| to a given m (e.g., m = 100 or 500). Since

the latter variant builds on the former, we first explain

GRTSm and then GRTSmc.

GRTSm: Figure 9 shows the pseudocode of the GRTSm

algorithm executed by the moving object. The most

important difference to the basic algorithm is that U is

created incrementally, each time |S| reaches m. Thus,

S is not only simplified if LDR causes an update, but

also if |S| = m.
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For this purpose, |S| is checked after each sensing

operation (line 5). If it reaches m, a simplification U′ for

S is computed (line 6), the first vertex is removed as in

the basic algorithm (line 7), and the subsequent vertex

of U′ is added to U (line 8). Thereafter, the sensing

history is cleared up to this vertex (line 9). The clearing

determines that this vertex is considered to belong to

the stable part – although U is not sent to the MOD

until LDR causes an update.

If LDR causes an update, a simplification U′ for the

current sensing history is computed and appended to

U (line 12 to 14). Then, U is sent to the MOD as in

the basic algorithm (line 16). Next, U′ is stored as new

variable part in V (line 17), consistent with S. Finally,

U is cleared for the next update (line 18).

GRTSm limits the input for line simplification to m

sensed positions and thus bounds the space consump-

tion and the computing time per position fix, depending

on the line simplification algorithm being used. For ex-

ample, with the simplification algorithm by Imai and

Iri [11] and m = 500, it bounds the computing time to

7 ms on a 3 GHz processor – compared to computing

times of up to 870 ms with GRTSk (cf. Section 7.4).

On the downside, GRTSm generates an additional

vertex for u(t) at least every m sensing operations –

even if the object stands still for a long period of time

� m · TS. This drawback, however, can be alleviated

effectively by a compression technique for the sensing

history, resulting in the variant GRTSmc.

GRTSmc: The fundamental idea of this technique is the

following: Once a simplification has been computed for

S because |S| = m, the first simplified line segment is

not immediately considered for the stable part of u(t) –

by adding the corresponding sensed position sb as ver-

tex to U – but may be revised during subsequent sim-

plifications.

For this purpose, the sensed positions between

first(S) and sb are removed from S, but sb is kept in

S and extended by an attribute δ that gives the maxi-

mum deviation between the removed positions and the

line segment first(S) sb, i.e.,

sb.δ := max
first(S).t<si.t<sb.t

|first(S) sb(si.t)− si.p| .

Then, sb may be removed from S during a subsequent

simplification if another line segment first(S) sb+x that

approximates sb by ε − (δ + sb.δ) can be found. The

reason is that the property

|first(S) sb+x(sb.t)− sb.p| < ε− (δ + sb.δ)

guarantees by triangle inequality ∀ si with first(S).t <

si.t < sb.t that

|first(S) sb+x(si.t)− si.p| < ε− δ .

1: [. . . ]
2: c′ ← 0 . Counts the compressed positions in S.
3: while report movement do
4: sR ← sense position
5: S← S ‖ (sR) . Append sR to sensing history.
6: if |S| − c′ = m− c then
7: U′ ← line simplification with bound ε− δ on S
8: search first sa sb in U′ where sb is not compressed
9: sb.δ ← 0

10: for all si ∈ S with sa.t < si.t < sb.t do
11: if si is compressed then
12: sb.δ ← max (sb.δ, |sa sb(si.t)− si.p|+ si.δ)
13: c′ = c′ − 1 . Because si is removed from S.
14: else . Non-compressed position.
15: sb.δ ← max (sb.δ, |sa sb(si.t)− si.p|)
16: end if
17: S← S \ (si) . Reduce S.
18: end for
19: c′ = c′ + 1 . Because sb is compressed now.
20: if c′ > c then . Move compressed position to U.
21: S← S \ (first(S))
22: U← U ‖ (first(S))
23: c′ = c′ − 1
24: end if
25: end if
26: if LDR causes update then
27: [. . . ]
28: end if
29: end while
30: [. . . ]

Fig. 10 Compression technique in the GRTSmc algorithm.

Therefore, we refer to such a sensed position sb as com-

pressed position in the following.

For example, assume m = 500 and consider a mov-

ing object that stands still for a long period of time,

with sensing history S = (s201, . . . , s699). When adding

s700 to S, it is |S| = m. Since the object is not moving,
S can be approximated by the line segment

s201 s700 = first(S) last(S) .

Therefore, GRTSmc reduces the sensing history to S :=

(s201, s700) and extends s700 by δ with

s700.δ := max
201<i<700

|s201 s700(si.t)− si.p| ,

which is about zero in case of standstill. After another

488 position fixes, |S| reaches m again. Assuming that

the object also stood still during [s700.t, s1188.t], the

sensing history S = (s201, s700, s701, . . . , s1188) can be

approximated by s201 s1188 = first(S) last(S) since

|s201 s1188(s700.t)−s700.p| ≈ 0 ≤ ε−(δ+s700.δ) ≈ ε−δ .

Hence, the compressed position s700 is removed from S
and not added to U. The sensing history is reduced to
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S := (s201, s1188), where s1188 is a compressed position.

For computing s1188.δ not only

max
700<i<1188

|s201 s1188(si.t)− si.p|

has to be taken into account, but also

|s201 s1188(s700.t)− s700.p|+ s700.δ .

Figure 10 shows the additional pseudocode for GRTSmc

compared to the GRTSm algorithm. The variable c′

counts the compressed positions in S (line 2). The com-

pressed positions are always at the beginning of S, right

after the last vertex of the stable part, either known to

the MOD or stored in U for the next update. Note that

first(S) can be considered as non-compressed position,

even if it was compressed during previous iterations, as

the movement before first(S).t is no more relevant for

simplification.

It is very unlikely that two or more compressed po-

sitions can be spanned by a line segment during future

simplifications. To prevent that S gets filled with com-

pressed positions, causing frequent but ineffective sim-

plifications, their number should be kept small. There-

fore, GRTSmc moves the first compressed position to U
once c′ exceeds a certain number c (e.g., c = 1 or 2).

If the number of non-compressed sensed positions

in S exceeds m − c (line 6), GRTSmc computes a sim-

plification for S, taking the δ-values of the compressed

positions into account (line 7). Then, it searches for the

first simplified line segment sa sb (i.e., consecutive ver-

tices sa and sb in U) where sb is not compressed (line 8).
Note that c′ = 0 implies sa = first(S), as in the above

example.

GRTSmc compresses sb by computing sb.δ and re-

moves the si spanned by sa sb from S (lines 9 to 18).

During this computation, c′ is decreased if sa sb spans

another compressed position, i.e., if sa is not the last

compressed position in S.

Since sb is compressed now, c′ is increased by

one (line 19) and thus may exceed c. If so, the first

compressed position (i.e., the second element of S) is

added to U and first(S) is removed from S – such that

first(S) = last(U) as in the GRTSm algorithm (lines 21

to 23).

For realizations with the optimal simplification al-

gorithm by Imai and Iri [11], our evaluation results in

Section 7.2 show that the proposed compression tech-

nique significantly improves the reduction performance

compared to GRTSm. Note that the compression tech-

nique can be generally used to optimize real-time online

simplification of polylines.

5.3 Time-dependent Maximum Sensing Deviation

The GRTSmc algorithm introduced the δ-attribute to

represent the deviation along a simplified line segment

sa sb at the end vertex sb. This idea can be generalized

to represent time-dependent maximum sensing devia-

tions δ(t), in particular to incorporate varying sensor

inaccuracies σ(t).

For this purpose, every sensed position si is ex-

tended with an attribute δ that gives the maximum de-

viation between a(t) and si−1 si(t), depending on phys-

ical movement constraints and inaccuracies of the posi-

tioning sensor.

When compressing a sensed position sb to represent

a line segment sa sb in GRTSmc, δ is set to

sb.δ := max
sa.t<si.t≤sb.t

|sa sb(si.t)− si.p|+ si.δ ,

independent whether si is compressed or not. Thus,

there is no difference between compressed and non-

compressed positions, except that the former are

counted by c′.

As there exists no global constant δ anymore, the

line simplification algorithm is called with ε only, but

has to account for the individual δ-values of the si.

Next, we discuss how to realize GRTS with two dif-

ferent line simplification algorithms and how to include

the individual δ-values in these algorithms.

5.4 GRTS with Optimal Line Simplification Algorithm

Here, we describe how to combine GRTS with the op-

timal simplification algorithm introduced in [11]. Al-

though this algorithm has originally been designed for
offline usage, we apply it online following the per-

update simplification pattern. Thus, whenever LDR de-

cides to send a new update or the sensing history gets

too large (in case of GRTSm and GRTSmc), the algo-

rithm is initiated with input S.

In detail, the algorithm first considers the sensed

positions in S as vertices of an unweighted, directed

graph and adds an edge for each pair of sensed positions

(si, si+x), where the line segment si si+x approximates

every sensed position sj ∈ S with i < j < i + x by ε,

taking the global δ or the individual si.δ into account.

This particularly applies to every pair (si, si+1).

Second, it computes a shortest path between the

first vertex first(S) and the last vertex last(S) = sR.

The vertices U′ of the shortest path compose a simpli-

fied trajectory that approximates a(t) within the time

interval [first(S).t, sR.t] by ε.

Due to the incremental simplification, induced by

the choice of the variable part, the corresponding real-

izations GRTSOpt
k , GRTSOpt

m , and GRTSOpt
mc generally
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un−2

un−1

(A)
un−1

(B)

un
= sR

Fig. 11 Two possible simplifications (A) and (B) with min-
imal number of vertices U′ = (un−2, un−1, un).

do not achieve the best possible reduction as it would

be achieved with the optimal line simplification algo-

rithm being applied offline to the overall sequence of

sensed positions.

Certainly, the optimal reduction could be achieved

by setting k or m to∞, i.e., by removing the stable part

of u(t). However, this causes unacceptable computing

times and requires very large amounts of space, which

can be already seen from the evaluation of GRTSk with

k = 1 and 3 (cf. Section 7.4). Moreover, it may cause

very large update messages.

The underlying reason for the suboptimal reduction

is that there may exist several simplifications with min-

imum number of vertices U′ for a given S. Figure 11

illustrates an example of two possible simplifications

U′ = (un−2, un−1, un), implying two possible sequences

of vertices to be sent to the MOD. Generally, choosing

the simplification with maximum un−1.t – here (B) – is

a good heuristic, as it minimizes the number of sensed

positions spanned by the last line segment un−1 un,

which is likely to be revised by future simplifications.

Nevertheless, there may also be cases where choosing

another simplification would yield a better overall re-

duction efficiency.

Note that the construction of the graph can be per-

formed incrementally, after each sensing operation, de-

spite the per-update simplification pattern. Such an im-

plementation reduces the computing time after those

sensing operations that cause a simplification.

5.5 GRTS with Segment Heuristic

The segment heuristic is a simple online line simplifi-

cation algorithm, which has been proposed in various

works including [18]3, [2], and [10].

For simplifying a sequence of sensed positions

(s1, s2, . . .) by bound ε, the segment heuristic works as

follows: First, it sets s1 as vertex u1 of the simplified

trajectory. Then, it iteratively probes the line segments

s1 s2, s1 s3, . . . until it finds the first segment s1 sx that

3 The authors of [18] refer to the segment heuristic as
Opening-Window algorithm (OPW) and distinguish two vari-
ants with different distance metrics. The one with the better
reduction efficiency, which corresponds to the segment heuris-
tic as explained here, is called BOPW-TR.

would violate ε, i.e., where

∃ si ∈ (s1, . . . , sx) : |s1 sx(si.t)− si.p| > ε− δ

or, with individual si.δ,

∃ si ∈ (s1, . . . , sx) : |s1 sx(si.t)− si.p|+ si.δ > ε .

In this case, the segment heuristic chooses the previ-

ous sensed position sx−1 as vertex of the simplification.

Next, it repeats the above procedure starting at sx−1,

and so on.

Since this online algorithm processes the sensed po-

sitions iteratively, it allows for per-sense simplification

by executing the segment heuristic for the most recent

sensed position sR after each sensing operation. The

advantage of per-sense simplification is that the sim-

plification is performed as early as possible, resulting

in a smaller sensing history S on average. Moreover,

the computing time for line simplification is distributed

over all iterations of GRTS.

This property of the segment heuristic, however, is

also the reason why it does not exploit variable parts

consisting of more than one line segment. When realiz-

ing GRTSk with the segment heuristic the parameter k

should be fixed to 1 therefore.

Figure 12 shows the corresponding pseudocode of

GRTSSec
k . For each sensed position sR, the algorithm

checks whether the line segment first(S) sR approxi-

mates the sensed positions in-between by simplification

bound ε and δ(t) or not (line 4). If not, it appends the

last sensed position – the one before sR – to U (line 5)

and reduces S accordingly (line 6). When LDR causes

a new update, the most recent sensed position is sim-

ply appended to U (line 10) and a corresponding update

message is sent to the MOD (line 12). Finally, GRTSSec
k

sets V to (last(U)), consistent with S, and clears U for

the next update.

To limit the size of S to some parameter m, the

simplification condition (line 4) can be extended by

or |S| = m− 1

resulting in GRTSSec
m . Adding the compression tech-

nique described in Section 5.2 finally results in

GRTSSec
mc . Analogous to the parameter k of GRTSSec

k ,

the parameter c of GRTSSec
mc should be fixed to 1, as

the segment heuristic never exploits more than one

compressed position for simplification.

Optimization of S: The average size of S can be further

reduced by a novel optimization of the segment heuris-

tic, independent of whether |S| is bounded to some m or

not. This optimization particularly supersedes the com-

pression technique of GRTSmc, i.e., GRTSSec
m achieves
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1: [. . . ]
2: while report movement do
3: sR ← sense position
4: if ∃ si ∈ S : |first(S) sR(si.t)− si.p|+ si.δ > ε then
5: U← U ‖ (last(S))
6: S← (last(S))
7: end if
8: S← S ‖ (sR) . Append sR to sensing history.
9: if LDR causes update then

10: U← U ‖ (last(S)) . Append sR as un.
11: πV ← compute new predicted velocity . . .
12: send update message (|V \ U|,U \ V,πV) to MOD
13: V← (last(U)) . |V| > 1 would not be exploited.
14: U← ()
15: end if
16: end while
17: [. . . ]

Fig. 12 GRTSSec
k algorithm with per-sense simplification

and fixed k = 1.

ε− si+x.δ

x

y

t

first(S)

si

si+x

first(S).t

si.t

si+x.t

Fig. 13 Geometric illustration for optimization of the seg-
ment heuristic.

the same reduction as GRTSSec
mc with this optimization

(cf. Section 7.2).

The basic idea of the optimization is the following:

Each sensed position si ∈ S poses a constraint on the

next line segment first(S)un that is going to approxi-

mate S. If the constraint given by another sensed posi-

tion si+x completely encloses the one given by si, then

si can be removed from S without affecting the simpli-

fication. In our evaluations (cf. Section 7), this reduces

the space consumption of the segment heuristic by two-

thirds on average.

The constraint defined by a si ∈ S is that the dis-

tance |first(S)un(si.t)− si.p|+ si.δ must not exceed ε.

This constraint is checked for every potential line seg-

ment first(S) sR (line 4 in Figure 12). Geometrically,

for each si, the line segment has to pass the circle with

center si.p and radius ε−si.δ at time si.t as illustrated

in Figure 13. Since the line segment’s first vertex is

known, the circles of two sensed positions si and si+x
can be normalized regarding time and compared with

each other: The circle of si+x poses the same constraint

like the circle with center first(S) si+x(si.t) and radius

(ε− si+x.δ) si.t−first(S).t
si+x.t−first(S).t at time si.t. Now, if this cir-

cle is contained by the circle of si, as pictured in Fig-

ure 13, then si can be removed from S. Thus, for each

sensed position sR, the realizations GRTSSec
k , GRTSSec

m ,

and GRTSSec
mc can remove every si from S whose cir-

cle contains the normalized circle of sR at si.t, except

si = first(S). In Figure 12 this removal should be in-

cluded between the lines 7 and 8.

6 Acceleration-based Movement Constraints

The movement between two sensing operations is

bounded by physical constraints such as the maximum

speed or acceleration, as explained in Section 2. The

corresponding values are factored into δ for trajectory

simplification and into the update condition of LDR.

The smaller δ, the higher is the possible reduction since

δ is to be subtracted from ε.

In the previous sections, we exemplarily consid-

ered a given maximum speed vmax for simplicity and

readability. Yet, for fast objects such as cars or air-

liners, vmax results in very large values of δ and thus

causes low reductions. The reason is that vmax only

provides a coarse estimate of the actual movement con-

straints of such objects. Consider, for example, a car

with vmax = 50 m/s and TS = 1 s. According to the

resulting speed-based movement constraint, the car is

assumed to be able to travel 25 m and then return to

the starting point within one second. This is obviously

unrealistic, as it requires the car to accelerate (and de-

celerate) with at least 200 m/s2.

Next, we therefore explain how to take an object’s

maximum acceleration amax into account. First, we dis-

cuss how to compute the maximum sensing deviation δ

accordingly. Then, we consider the update condition of

LDR.

Given an object with maximum speed vmax and

two sensed positions si−1 and si, we concluded in Sec-

tion 2 that the object cannot deviate by more than

vmax · TS/2 from the line segment si−1 si.
4 For amax

we analogously conclude that the object cannot devi-

ate by more than 1
2amax

(
TS

2

)2
from si−1 si using linear

kinematics. Together with the sensor inaccuracy σ, it

follows δ := σ + 1
8amaxT

2
S .

4 In fact, the maximum possible deviation from si−1 si
depends on the object’s current speed – and thus the dis-
tance between si−1.p and si.p – since the current speed lim-
its the speed for other velocity components to deviate from
si−1 si(t). Therefore, δ may depend on time, even if σ is
fixed. This is discussed in detail in [22]. Yet, for significant
improvements regarding δ, the object’s speed has to be close
to vmax. Therefore, we neglect this optimization here and
focus on amax.
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Human Car Airliner
vmax 12.0 50.0 270.0 m/s
amax 5.0 10.0 20.0 m/s2

speed-based δ 13.8 32.8 142.8 m
acceleration-based δ 8.4 9.1 10.3 m

Table 3 Values of δ for typical speed- and acceleration-based
movement constraints.

Table 3 shows the corresponding values of δ for three

typical scenarios of vmax and amax, assuming σ = 7.8 m

and TS = 1 s. The scenarios support the argumenta-

tion that the ratio between the speed-based value of δ

and acceleration-based value increases with the typical

speed of the objects.

Incorporating amax into the update condition of

LDR is more complex. For vmax we showed in Section 3

that the object has to send an update if

|sR.p− π(sR.t+ TS + TU)|+ σ + vmax(TS + TU) > ε ,

as sR.p the object may move by up to vmax(TS + TU)

until an update sent after the subsequent sensing oper-

ation would have been processed.

For acceleration-based movement constraints, how-

ever, the current velocity has to be taken into account,

to be able to estimate the possible deviation between

the object’s movement and π(t) at sR.t+TS+TU. Thus,

we require an approximation for the most recent veloc-

ity vR at sR.t. An obvious solution is to use the average

velocity between sR.t and the second last sensed posi-

tion sR′ , i.e.,

vR′ R :=
sR.p− sR′ .p

sR.t− sR′ .t
=
sR.p− sR′ .p

TS
.

The velocity vR′ R is subject to two approximation er-

rors: First, the object may accelerate (or decelerate)

during [sR′ .t, sR.t] – also sidewards – causing an error

of up to amax · TS/2. Second, vR′ R is subject to sensor

inaccuracies, causing an error of up to 2σ/TS.

We can distinguish between systematic, time-cor-

related inaccuracies σsys and random, noise-like inac-

curacies σnoise. For example with GPS, the former are

caused by inaccurate ephemeris data and atmospheric

effects amongst others, while the latter are caused by

the receiver hardware and make only about 10% of

the overall sensor inaccuracy σ [25,19,32]. Since vR′ R

is computed by two consecutive position fixes, it can

be considered to be subject to σnoise only. In sum,

vR′ R may deviate from the actual velocity vR by up

to amax
TS

2 + 2σnoise

TS
.

Taking the inaccuracy of sR.p and the possible

movement and acceleration during TS+TU into account,

Human Car Airliner
vmax 12.0 50.0 270.0 m/s
amax 5.0 10.0 20.0 m/s2

speed-based offset 22.2 67.8 331.8 m
acceleration-based offset 16.3 22.9 36.1 m

Table 4 Offsets to ε for LDR for typical speed- and
acceleration-based movement constraints.

LDR has to cause an update if∣∣∣∣sR.p +
sR.p− sR′ .p

TS
(TS + TU)− π(sR.t+ TS + TU)

∣∣∣∣
+ σ +

1

2
amax(TS + TU)2

+

(
amax

TS

2
+

2σnoise

TS

)
(TS + TU) > ε.

The different inaccuracies and the possible movement

and acceleration during TS + TU can be considered as

offset to ε similar to δ. Table 4 shows the correspond-

ing values for three typical scenarios of vmax and amax,

assuming σ = 7.8 m, σnoise = 0.1σ, and TS = 1 s. Note

that the offsets are significantly greater than the corre-

sponding δ values in Table 3, as the latter refer to the

movement between two given positions si−1 and si.

This property is another reason (in addition to the

separation of simplification from position tracking) for

the significant difference between the number of up-

dates caused by LDR and the number of vertices gener-

ated by GRTS or offline simplification – in particular for

small values of ε. For instance, for ε = 25 m, LDR causes

more than 1000 updates per hour, while GRTSSec
m with

m = 500 generates only about 65 vertices. A possible

countermeasure is to relax the real-time constraint of

trajectory tracking by introducing some temporal tol-

erance, which has to be subtracted from TS +TU in the

above formulas. Note that such a temporal tolerance

can only be introduced if position tracking is clearly

separated from simplification as with GRTS.

If vmax and amax are both given, the two kinds

of movement constraints can be considered simultane-

ously, simply by choosing the smaller δ value and offset

for the update condition of LDR.

Furthermore it would be possible to distinguish dif-

ferent directions of acceleration, such as real speed-up

in forward direction, deceleration by braking, and side-

wards or angular acceleration by steering.

7 Evaluation

For significant results on the performance of CDR and

GRTS, we simulated the different variants and realiza-

tions with hundreds of real GPS traces and compared
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them to LDRH as well as to offline simplification. For

practical experiences, we also conducted experiments

with a prototypical implementation of GRTS.

In this section, we first describe the simulation setup

and then give the results on reduction efficiency, com-

munication, and computational costs. Thereafter, we

report on our experiences with the prototypical im-

plementation. Based on these results, we finally draw

conclusions for the selection of a concrete tracking ap-

proach for a given application scenario.

7.1 Setup

We implemented a simulation software for CDR,

CDRm, GRTSOpt
k , GRTSOpt

m , GRTSOpt
mc , GRTSSec

k ,

GRTSSec
m , GRTSSec

mc , and the existing trajectory track-

ing approach LDRH [27] as well as the optimal line

simplification algorithm (RefOpt) by Imai and Iri [11]

and the Douglas-Peucker algorithm (RefDP) [6] in the

C programming language. We selected RefOpt as a

reference for comparing our results to the best possi-

ble reduction, while RefDP is a commonly used offline

heuristic.

For simulating these algorithms with realistic data,

we downloaded several thousand GPS traces (i.e., tra-

jectories sensed by customary GPS receivers) from

the OpenStreetMap project [21]. In several processing

steps, we filtered those traces that provide an individual

position fix for each second – and thus have not under-

gone any previous data reduction – and that could be

classified clearly according to their means of transporta-

tion into foot, bicycle, and motor vehicle. For classifying

a trajectory, we not only relied upon its speed charac-

teristics but also on representative tags specified on the

OpenStreetMap website.

Then, we simulated the execution of the trajectory

tracking approaches by sequentially feeding the algo-

rithms with the recorded positions given in the GPS

traces. For each variant and realization, we measured

the number of vertices of the resulting simplified tra-

jectories, the numbers of update messages, and the

amounts of transmitted data, depending on ε varied

from 25 to 100 m. Furthermore, we measured the space

consumption and computing time per position fix.

We used a sensing period of TS = 1 s and a sen-

sor inaccuracy of σ = 7.8 m with σnoise = 0.1σ in

accordance with the GPS traces and the inaccuracies

reported in [28,32]. We further assumed an update

time of TU = 0.2 s. If not stated otherwise, we con-

sidered the acceleration-based movement constraint by

amax = 10 m/s2, which gives δ = 9.1 m and an offset of

22.9 m in the update condition of LDR.
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Fig. 14 Reduction rates of major real-time trajectory track-
ing and offline simplification approaches.

In addition, we applied the offline algorithms RefOpt

and RefDP with bound ε−δ to each GPS trace and mea-

sured the number of vertices of the resulting simplified

trajectories.

All experiments were performed on 3 GHz Intel

Xeon Linux servers using 2 GB RAM.

The different speeds of the means of transportation

do not yield any significant differences when comparing

the different approaches with each other, but only when

considering the absolute values for reduction efficiency

and communication. Therefore, we give the average re-

sults of the 3×100 largest GPS traces of the three means

of transportation and refer to the individual means of

transportation and speeds where necessary. Each of the

300 trajectories comprises 1400 to 16500 GPS positions,

i.e., spans about 20 min to 5 h.

7.2 Reduction Efficiency

The reduction efficiency of trajectory simplification

is measured by the reduction rate defined as the

number of sensed positions divided by the num-

ber of vertices of the simplified trajectory u(t), i.e.,

|(s1, . . . , sl)|/|(u1, . . . , un)|.
Figure 14 shows the reduction rates of the major

tracking approaches and the two reference offline al-

gorithms RefOpt and RefDP. As discussed below, the

reduction rate of CDRm with m = 500 is equal to the

reduction rate of CDR. Similarly, the reduction rate of

GRTSSec
m with m = 500 is equal to the reduction rate

of GRTSSec
mc and GRTSSec

k , where the latter can be con-

sidered as GRTSSec
m with m =∞. For GRTSmc we used

c = 1 if not stated otherwise. Below, we show that c > 1

does not give any improvement.

The reduction rate of CDR (or CDRm with m =

500) is at least twice the reduction rate of LDRH, con-

sistent with the analysis in Section 3. For ε < 45 m,

LDRH does not perform any reduction since its inter-
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nal accuracy bound ε′ := ε/2 becomes smaller than the

offset given by the sensor inaccuracy and the movement

constraint in the update condition of LDR. Thus, LDR

causes an update after each sensing operation.5

All GRTS realizations given in Figure 14 outperform

the CDR variants by at least factor 2.7 and LDRH by

about factor 5.5. This confirms the importance of sepa-

rating tracking of the current position from simplifica-

tion of the past trajectory.

The reduction rates of the GRTS realizations are

always less than 15% below the best possible reduc-

tion by the optimal algorithm RefOpt. Moreover, the

GRTS realizations always outperform RefDP. In detail,

the reduction rate of GRTSSec
m is 15 to 19% greater than

the reduction rate of RefDP, whereas GRTSOpt
mc even

achieves up to 32%. This is a surprising result given

the fact that RefDP is performed offline on the entire

GPS traces.

The reduction rate of GRTSSec
m is always 1 to 4%

below the reduction rate of GRTSOpt
k with k = 1. The

reason is that the variable part of u(t) comprises only

one vertex in all realizations with the segment heuris-

tic – independent of m or k.

Figure 15 details the reduction performance of these

realizations, where Basic GRTSSec
m refers to the realiza-

tion without the optimization of the segment heuristic

proposed in Section 5.5. It shows that GRTSSec
m with

m = 500 suffices to achieve the best reduction rate

that is possible with the segment heuristic. Neither the

use of GRTSmc, nor a parameterization of m > 500

gives better results. Note again that GRTSSec
k can be

considered as GRTSSec
m with m =∞.

5 As mentioned in Section 3, many works do not clearly
state whether they account for the sensing period, the up-
date time, and the sensor inaccuracy in the update condition
of LDR, or not. In the latter case, the factor between the re-
duction rates of CDR (or CDRm with m = 500) and LDRH
may decrease to about 1.5.
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Fig. 16 Reduction by GRTSOpt
k , GRTSOpt

m , GRTSOpt
mc rela-

tive to RefOpt.

The figure further reveals the importance of opti-

mization of the segment heuristic in the case where the

sensing history S is bounded by some m. For example,

for m = 500, it increases the reduction performance by

up to 10%. This optimization is also the reason why the

compression technique by GRTSmc has no effect on the

reduction rate of GRTSSec
mc compared to GRTSSec

m .

Analogously, Figure 16 shows the reduction perfor-

mance of the GRTS realizations with the optimal sim-

plification algorithm by Imai and Iri [11]. For readabil-

ity, it shows the relative reduction rate compared to

the simplification algorithm being applied offline to the

entire GPS traces, i.e., RefOpt.

Clearly, the relative reduction rate is always ≤ 1.

The rate would be equal to one for GRTSOpt
k with k =

∞ since there would be not stable part of u(t). Yet, the

simulation results show that k = 3 almost suffices, as

the average reduction rate is only 0.2% smaller than the

best possible reduction rate. For k = 1, the difference

is already about 10%.

However, as explained below, the computational

costs of GRTSOpt
k are too high for practical use due to

the unbounded size of S. Hence, GRTSOpt
m or GRTSOpt

mc

have to be used, where the GRTSmc realization effec-

tively outperforms the GRTSm realization.

Interestingly, GRTSOpt
mc with m = 1000 and c = 1

may also achieve more than 99% of the best possible re-

duction rate. Enabling more than one compressed posi-

tion by choosing c > 1 does not give any improvement,

consistent to the discussion in Section 5.2. Even with

a small value of m = 500, the relative reduction rate

of GRTSOpt
mc is less than 3% below the best possible

rate – at least for ε < 50 m.

For larger values of ε, the relative reduction rates

of GRTSOpt
m and GRTSOpt

mc decrease noticeably. The

reason is that the average number of sensed positions

spanned by a line segment of the simplified trajectory

u(t) increases with ε, whereas |S| is bounded by m. For

large ε this problem may be alleviated by increasing
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TS, despite the resultant increase of δ. This is also the

reason why we do not give any results for ε > 100 m.

For the sake of completeness, Figure 17 gives the

reduction rates of CDR and CDRm for different values

of m. As mentioned above, the reduction performance

of CDR is equal to the performance of CDRm with m =

500. However, even with only m = 10, CDRm achieves

a remarkable performance compared to CDR.

All the relative reduction rates similarly apply to the

individual means of transportation (foot, bicycle, motor

vehicle). For example, for ε = 50 m, the reduction rate

of GRTSOpt
mc with m = 500 always is at least 95% of the

best possible rate.

The absolute reduction rates, however, depend on

the means of transportation due to the different ratio

between the typical speed and ε. For instance, for ε =

50 m, the reduction rate of GRTSOpt
mc (m = 500) is 208.1

for pedestrians, 89.0 for bicycles, and 49.5 for motor

vehicles.

Figure 18 renders these differences more precisely

by showing the reduction rate depending on the speed.

For this purpose, we grouped the GPS traces by their

average speed and then computed the average reduction

rate for each group and approach and parameterization

for ε = 50 m.
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Fig. 19 Reduction rates of CDRm and GRTSOpt
mc for vmax =

20 m/s and amax = 10 m/s2. (Only for GPS traces recorded
by foot or bicycle.)

The reduction rates are comparatively high for slow

objects, as to be expected. In addition, the rates largely

decrease with increasing speed. Exceptions for an av-

erage speed of more than 15 m/s result from the fact

that the average speed correlates with the kind of

road (streets, rural roads, highways), implying differ-

ent movement characteristics.

Figure 19 shows the reduction rates of CDRm and

GRTSOpt
mc for the acceleration-based movement con-

straint given by amax = 10 m/s2 and the speed-based

movement constraint by vmax = 20 m/s. The figure only

gives the results from GPS traces recorded by foot or

bicycle, as vmax = 20 m/s does not apply to cars. With

GRTS, the use of amax increases the reduction rate by

7 to 76% compared to vmax, depending on ε. The larger

ε, the smaller is the increase, as the difference between

the corresponding δ values vanishes in comparison to ε.

Similar applies to the CDR variant. With vmax =

20 m/s, CDR does not perform any simplification for

ε ≤ 30 m since the simplification is based on LDR and

the offset in the update condition exceeds ε, causing an

update after each sensing operation.

7.3 Communication Costs

Figure 20 shows the number of update messages gener-

ated by LDRH, CDRm (m = 500), and GRTS per hour

depending on ε. It allows verifying that the number of

update messages by GRTS is independent on the vari-

ant and parameterization of k or m, as it only depends

on LDR.

The figure also shows that the number of updates

caused by the additional segment condition of CDR

and the limitation of |S| is negligible (less than 1%)

compared to the number of updates caused by LDR,

consistent with the analysis of LDR in Section 3.

For ε ≤ 45 m, LDRH sends an update after

each sensing operation since the internal accuracy
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bound ε′ := ε/2 is smaller than the offset in the up-

date condition given by amax.

This offset is also the reason why GRTS sends more

than 1000 updates per hour for ε = 25 m. This number

could by reduced by relaxing the real-time constraint of

trajectory tracking, as discussed at the end of Section 6.

This problem is intensified with the speed-based

movement constraint given by vmax = 20 m/s, as de-

picted in Figure 21, in line with the analytical compar-

ison of speed-based and accuracy-based constraints in

Section 6.

The update messages of LDRH and CDR contain

only a prediction, where the origin gives a vertex of

u(t). GRTS, in contrast, additionally inserts the num-

ber of vertices to remove from the variable part of u(t)

and the vertices to add. Obviously, this causes GRTS

to transmit a higher amount of data than CDR, as il-

lustrated in Figure 22. However, the additional amount

of transmitted data is small compared to the higher

reduction rates of the GRTS variants of more than a

factor two. For example, GRTSSec
m transmits only 5 to

23% more data than CDR. Assuming a header size of

28 byte (UDP/IP) per message, the difference is only 2

to 13%.

The differences between the GRTS realizations are

caused by the different sizes of the variable part of u(t).

In case of GRTSOpt
k (k = 1) and GRTSSec

m , the variable

part comprises only one vertex, whereas it may com-

prise multiple vertices with GRTSOpt
mc . Therefore, the

update messages of GRTSOpt
mc are slightly larger and

replace more vertices on average than the update mes-

sages of the other two realizations.

The difference between GRTSOpt
k (k = 1) and

GRTSSec
m of about 7% is caused by the fact that

GRTSOpt
k replaces the one vertex of the variable part

more frequently than GRTSSec
m , to achieve a better re-

duction rate. This shows that the two goals of the tra-

jectory tracking problem – to minimize the communi-

cation cost and to minimize the number of vertices of

the simplified trajectory – contradict for high reduction

rates, as indicated at the end of Section 2.

7.4 Computational Costs

We now analyze the maximum space consumptions

and computing times of LDRH, CDR, CDRm, and the

GRTS realizations. The space consumption is measured

in kilobytes by summing up the space consumption of

the different variables and arrays, particularly includ-

ing the sensing history S. The maximum computing

time for processing a new sensed position is measured in

milliseconds using the processor’s time stamp counter.

To filter out interrupts of the process under test, we

simulated the trajectory tracking algorithms without

other user processes and repeated each measurement

ten times.

Figure 23 shows the maximum space consumption

of the tracking algorithms for all GPS traces and ε val-

ues. The space consumption of LDRH is negligible since

it does not store a sensing history. In our simulations,

the space consumption of CDR is well below 100 kB,

although the size of sensing history of CDR is theo-

retically unbounded. Note that space consumption of

CDR without the optimization of the sensing history
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proposed in Section 4.2 is 151.1 kB. Thus, the optimiza-

tion saves 49%. On average, it even saves 56%.

More important, the space consumption of CDRm

with m = 500 is only 11.8 kB, despite the fact that

there is no noticeable difference between the reduction

performance of CDR and CDRm with this parameteri-

zation.

GRTSSec
m with m = 500 also consumes only 11.8 kB,

as the segment heuristic resembles the segment condi-

tion of CDR and does not require any extensive data

structures in addition to S.

GRTSOpt
mc with m = 500, in contrast, consumes

1.49 MB as it constructs a graph with up to m·(m−1)/2

edges over S. Yet, the space consumption is bounded to

this value, which can be seen from the fact that in our

simulations GRTSOpt
k with k = 1 consumes up to 55

times more space – although the reduction performance

of GRTSOpt
mc with m = 500 is higher.

The huge space consumption by GRTSOpt
k is re-

flected in the maximum computing time per position

fix, given in Figure 24. It shows that the computational

costs of GRTSOpt
k are too high for practical use. On the

3 GHz processor, the computing time reaches almost

the sensing period TS.

The maximum computing time of GRTSOpt
mc , in con-

trast, is only 7 ms and thus a fraction of the typical

sensing period of TS = 1 s.

Nevertheless, the computational costs of GRTSOpt
mc

are huge compared to GRTSSec
m , namely about a fac-

tor 100. Therefore, GRTSOpt
mc should be preferred to

GRTSSec
m only if the moving object has sufficient com-

putational resources and reduction efficiency is of high-

est priority.

7.5 Prototypical Implementation of GRTS

In order to gather practical experiences with GRTS, we

implemented a fully functional MOD system for track-

ing GPS-enabled smartphones and mobile computers.

The system consists of two components named mo-

bile component and MOD server. The mobile compo-

nent is executed by the smartphone or mobile com-

puter. It reads the sensed position data from the cor-

responding GPS receiver and executes the GRTSSec
m al-

gorithm with m = 500 on it. A separate thread trans-

mits the update messages via UDP to the MOD server.

We implemented two variants of the mobile component:

First, a Java application for mobile computers. Sec-

ond, an app for Android smartphones. Figure 25 gives

a screenshot of the Android app. It shows the sensed

and the simplified trajectory plotted on the map of the

OpenStreetMap project [21]. The large circle depicts

the accuracy bound ε. The small circle illustrates the

maximum sensing deviation δ.

The MOD server receives the update messages and

stores the vertices of the trajectories persistently in a

PostgreSQL database. The predictions (i.e., the pre-

dicted velocities πV and the prediction origins un) are

stored in a main memory table to reduce the number of

write operations, as proposed at the end of Section 5.1.

Therefore, only a subset of the update messages re-

quires accessing the hard disk. Due to our focus on the

tracking protocol, we did not implement any specialized

spatiotemporal index structures within the database.

Google Earth is used as sample application to vi-

sualize all trajectories stored by the MOD. For this

purpose, it is launched with a small file in the Key-

hole Markup Language (KML). This file contains the

host name of the MOD server and instructs Google

Earth to query the MOD server once per second for a

KML representation of all trajectories. A lightweight

HTTP server attached to the MOD server receives

those requests, queries the database and predictions ta-

ble, translates the result into KML and sends the re-

sponse to the Google Earth client.

Our implementation slightly extends the GRTS pro-

tocol by a timeout mechanism to terminate the sim-
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Fig. 25 Screenshot of prototypical app for Android.

plified trajectory during long-lasting network outages

or after failures of the mobile component. Furthermore,

the MOD server acknowledges every update message, so

that the mobile component can detect message losses.

Moreover, for clock synchronization, the update mes-

sages and acknowledgements contain measuring data

about the network round-trip time.

Details on the architecture and implementation of

the MOD system can be found in [14].

We conducted several experiments driving a car

equipped with an OQO subnotebook and a Wintec

WBT-300 GPS receiver. During our experiments, we

used ε = 25 m. Besides four network outages lasting sev-

eral minutes, the system successfully allowed for track-

ing the car and its trajectory for more than nine hours

from several PCs. During this experiment, we measured

a reduction rate of 70. Per hour, only 60 kB of data were

transmitted to the MOD server. These experimental re-
sults coincide with the results of our simulations.

Furthermore, we measured the computing time of

GRTSSec
m (m = 500) on a Sony Ericsson Xperia X8

smartphone with a 600 MHz Qualcomm MSM7227 pro-

cessor, running the Android 2.1 operating system. For

this purpose, we recorded the GPS trace of a three hour

bicycle tour in the raw NMEA format and replayed the

Android app with it. More precisely, we executed the

app four times with the trace, to be able to filter out in-

terrupts of the process under test.6 Our measurements

yield a maximum computing time of 1.86 ms per po-

sition fix. Thus, the computing time on the 600 MHz

smartphone is about 27 times greater than the comput-

ing time on the 3 GHz Intel Xeon Linux servers. Never-

theless, considering typical delays in wireless networks,

it constitutes only a fraction of the update time TU.

6 This procedure allows to measure the CPU time in a
higher resolution than provided by the getElapsedCpuTime-
method of the android.os.Process class.
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Fig. 26 Overview of proposed real-time trajectory tracking
approaches.

Therefore, the computing time of GRTSSec
m on smart-

phones is more than acceptable.

7.6 Conclusions for Selection of a Tracking Approach

With CDR, CDRm, and the various GRTS realizations,

we proposed and evaluated several approaches for real-

time trajectory tracking. We also explained and showed

that the communication cost and the number of vertices

of the simplified trajectory cannot be completely min-

imized both together, but contradict to some (small)

degree. Figure 26 depicts all these approaches and their

relations.

As stated above, GRTSOpt
m is completely outper-

formed by GRTSOpt
mc , whereas with GRTSSec

mc the com-

pression technique of GRTSmc is superseded by the op-

timization of S proposed in Section 5.5. Therefore, those

approaches are dimmed in Figure 26.

Moreover, in consideration of the extensive com-

putational costs of GRTSOpt
k , we advise to use track-

ing approaches with bounded space consumptions and

computing times. For this reason, we deem CDRm,

GRTSSec
m , and GRTSOpt

mc to be particularly suited for

practical use, depending on the actual requirements and

resources in a given application scenario:

1. GRTSSec
m : This approach affords high reduction per-

formance at comparatively low computational costs.

Besides, it is simple to implement compared to re-

alizations of GRTS with the optimal line simplifica-

tion algorithm by Imai and Iri [11]. Therefore, we

suppose that GRTSSec
m meets the requirements of

most use cases.

2. GRTSOpt
mc : If reduction has maximum priority and

the moving objects have sufficient computational
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power, this approach should be used, as it affords to

reach almost best possible reduction rates, depend-

ing on m. The average reduction rates of GRTSSec
m ,

in contrast, are 10 to 15% below the best possible

ones.

3. CDRm: In case that communication costs have max-

imum priority, CDRm should be used since it mini-

mizes the amounts of transmitted data. Note, how-

ever, again that CDRm reaches only about one third

of the reduction of GRTSSec
m and GRTSOpt

mc , even for

large ε.

The processing cost at the MOD may be another de-

cision criterion: An update message by CDRm always

adds a new vertex to u(t), whereas many update mes-

sages by GRTS only replace the last vertex un and the

predicted velocity πV and may be processed without

any write operation (cf. Section 5.1). In return, some

update messages require to remove or replace several

vertices of u(t). Due to these different characteristics,

it is impossible to give a general assessment concerning

the MOD-sided processing costs. Therefore, for a con-

crete decision, the actual implementation of the MOD

has to be taken into account.

8 Related Work

In this section, we first give a brief overview to line sim-

plification algorithms in general, before we discuss ex-

isting approaches for offline and online trajectory sim-

plification and real-time trajectory tracking in particu-

lar. We omit dead reckoning protocols for tracking the

current position of moving objects since these have been

analyzed comprehensively in Section 3.

Line simplification in general: Line simplification refers

to a multitude of algorithmic problems on approximat-

ing a given polyline by a simplified one with fewer ver-

tices. The two basic problem classes are:

1. min-#: Minimizing the number of vertices of the

simplified polyline under a given accuracy bound.

2. min-ε: Minimizing the deviation between the two

polylines under a given number of vertices for the

simplified one.

The min-# problems can be further classified by the

dimensionality of the underlying space (e.g., R2 or R3),

the distance metric to measure the distance between

two points (e.g., Manhattan distance (L1), Euclidean

distance (L2), or uniform metric), and the error mea-

sure to determine the distance between two polylines

from the pairwise distances of their points [2]. For the

latter, most works implicitly consider the Hausdorff dis-

tance, defined as the largest distance from an arbitrary

point of the one polyline to the closest point of the other

polyline. However, there also exists works considering

the Fréchet distance (e.g., [2,1]).

According to these criteria, efficient real-time trajec-

tory tracking can be considered as min-# problem in

the case of Hausdorff distance under the (time-)uniform

distance metric in R1+d with d = 2 or 3.

As further explained above, the Douglas-Peucker al-

gorithm [6], the optimal algorithm by Imai and Iri [11],

and the segment heuristic [18,2,10] are three promi-

nent approaches for min-# simplification. Several works

including [9] and [7] propose variants of the Douglas-

Peucker algorithm with improved worst-case running

times of O(n log n) and O(n logk n) (k = 2 or 3) instead

of O(n2).

Similar applies to the optimal algorithm: A naive

implementation has running time O(n3) [11]. Imai and

Iri already describe realizations with running times

of O(n2 log n) or even O(n log n) [11]. Agarwal and

Varadarajan propose an algorithm with running time

O(n4/3+τ ), for any τ > 0 [3]. Others are given in [5]

and [29]. However, these improvements are limited to

R2 and specific distance metrics and error measures.

Offline trajectory simplification: Cao et al. [4] discuss

the use of the Douglas-Peucker heuristic for offline tra-

jectory simplification. They consider four different dis-

tance metrics, including the time-uniform distance met-

ric, and compare the Douglas-Peucker heuristic against

the optimal algorithm regarding reduction performance

and computing time. Their results on the reduction per-

formance are in line with our results. For the distance

metric E2, which disregards the temporal component

of the trajectories but only considers the Euclidean dis-

tance, they use the optimal simplification algorithm by

Chan and Chin [5] with running time O(n2), tailored to

R2. Nevertheless, they measure more than a factor 1000

between the computing times of the optimal algorithm

and the Douglas-Peucker heuristic. Note that the disre-

gard of the temporal component by the distance metric

E2 is problematic for many applications since the point

of the simplified line segment uj uj+1 that is closest to a

given sensed position si with uj .t ≤ si.t ≤ uj+1.t gener-

ally differs from the interpolated position uj uj+1(si.t).

Gudmundsson et al. [7] likewise propose the use of

the Douglas-Peucker heuristic for offline trajectory sim-

plification and argue against the optimal algorithm be-

cause of its running time.

With GRTSm and GRTSmc the choice of the line

simplification algorithm may not be critical concern-

ing computing time, as the division of the trajectory

into stable, variable, and predicted part strictly limits

the amount of simplification work per position – com-
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pared to considering an entire trajectory. Therefore,

the online algorithm GRTSOpt
mc achieves reduction rates

close to the best possible offline rates (and significantly

greater than the reduction rates of the Douglas-Peucker

heuristic) at acceptable computing times.

Online trajectory simplification: Meratnia and de By

[18] propose the segment heuristic for online and of-

fline trajectory simplification but with a different er-

ror measure based on the average deviation between

corresponding points of the original and the simplified

trajectory. In detail, they refer to the segment heuris-

tic as Opening-Window algorithm (OPW) and distin-

guish two variants. The one with the better reduction

efficiency, which corresponds to the segment heuristic

as explained here, is called BOPW-TR. Due the dif-

ferent error measure, the maximum deviation between

the original trajectory and the simplified one is not

bounded and depends on the simplification algorithm.

This also applies to threshold-guided sampling, a

heuristic for online trajectory simplification proposed

in [24]. It adds the most recent sensed position sR as

vertex to the simplified trajectory only if the speed or

direction of the latest velocity compared to the velocity

between the previous sensed positions and the average

velocity between the last two vertices of the simplified

trajectory exceeds a certain threshold. Therefore, the

deviation between the original trajectory and the sim-

plified one is not bounded.

In [23], the same authors propose the AmTree, a

data structure for managing an incoming stream of

sensed positions with constant storage consumption.

The AmTree “forgets” more and more positions over
time so that fewer positions are known for the far past

than for the recent past. Again, the deviation between

the original trajectory and the resulting simplified one

is not bounded by some predefined accuracy.

In [10], a software component for online preprocess-

ing position data of mobile objects is presented. The

component aims at reducing the position data to be

stored by a database according to a given accuracy

bound. The authors propose five different reduction al-

gorithms, where in fact only one – the segment heuris-

tic – performs line simplification, i.e., yields a connected

simplified trajectory.

None of the above works considers real-time trajec-

tory tracking for remote moving objects.

Real-time trajectory tracking approaches: In [26],

Tiešytė and Jensen present an approach for real-time

trajectory tracking based on LDR. They propose an

algorithm for computing a connected trajectory on the

basis of linear predictions, which approximates the ac-

tual trajectory according to the same accuracy bound

used with LDR. However, their findings only apply to

pre-known routes like bus lines, i.e., movement in R1.

In [27], Trajcevski et al. prove that the simplified

trajectory given by the origins of the linear predictions

of LDR with accuracy bound ε approximates the actual

trajectory by 2ε [27]. Based on this finding they con-

clude that LDRH, i.e., LDR with ε′ := ε/2, allows for

trajectory tracking with accuracy bound ε. As discussed

in detail in Section 3, this approach is very conservative

and therefore is outperformed by GRTS by a factor five

in terms of reduction efficiency.

9 Summary

In this paper, we presented the Connection-Preserving

Dead Reckoning (CDR) and Generic Remote Trajec-

tory Simplification (GRTS) protocols for tracking the

trajectories of moving objects with embedded position-

ing sensors at a remote MOD efficiently.

For this purpose, the objects sense their positions

periodically but report only a subset of the positions

to the MOD so that the resulting simplified trajectory

approximates the actual movement according to a pre-

defined accuracy bound. To inform the MOD about the

current position, CDR and GRTS use dead reckoning.

CDR is solely based on dead reckoning whereas

GRTS separates the tracking of the current position

from the simplification of the past trajectory. Therefore,
GRTS outperforms CDR by more than a factor two in

terms of reduction performance, while CDR minimizes

the amount of communicated data.

For both CDR and GRTS, we proposed optimized

algorithms with bounded space consumption and com-

puting time. In addition, we investigated different re-

alizations of GRTS with two important line simplifi-

cation algorithms and evaluated the resulting trade-off

between computational costs and reduction efficiency.

The realization GRTSSec
m with a simple line simpli-

fication heuristic affords substantial reduction perfor-

mance at low computational costs. In detail, it reaches

85 to 90% of the best possible (offline) reduction rate

at computing times of less than 1.9 ms on a 600 MHz

smartphone and of 0.07 ms on a 3 GHz Intel Xeon pro-

cessor. The realization GRTSOpt
mc with the optimal line

simplification algorithm by Imai and Iri [11], in con-

trast, may reach more than 97% of the best possible

reduction at one hundred times higher cost.



Efficient Real-Time Trajectory Tracking 25

Acknowledgements

The work described in this paper was partially sup-

ported by the German Research Foundation (DFG)

within the Collaborative Research Center (SFB) 627.

References

1. M. A. Abam, M. de Berg, P. Hachenberger, and A. Zarei.
Streaming Algorithms for Line Simplification. In Proc. of
23rd Symp. on Computational Geometry (SCG), pages
175–183, Gyeongju, South Korea, 2007.

2. P. K. Agarwal, S. Har-Peled, N. H. Mustafa, and
Y. Wang. Near-Linear Time Approximation Algorithms
for Curve Simplification. Algorithmica, 42(3–4):203–219,
2005.

3. P. K. Agarwal and K. R. Varadarajan. Efficient Algo-
rithms for Approximating Polygonal Chains. Discrete
and Computational Geometry, 23(2):273–291, 2000.

4. H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporal
data reduction with deterministic error bounds. VLDB
Journal, 15(3):211–228, 2006.

5. W. S. Chan and F. Chin. Approximation of Polygonal
Curves with Minimum Number of Line Segments. In
Proc. of 3rd Int’l Symp. on Algorithms and Computation
(ISAAC), pages 378–387, Nagoya, Japan, 1992.

6. D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to represent a
digitized line or its caricature. Canadian Cartographer,
10(2):112–122, 1973.

7. J. Gudmundsson, J. Katajainen, D. Merrick, C. Ong, and
T. Wolle. Compressing spatio-temporal trajectories. In
Proc. of 18th Int’l Symp. on Algorithms and Computa-
tion (ISAAC), pages 763–775, Sendai, Japan, 2007.

8. R. H. Güting and M. Schneider. Moving Objects
Databases. Morgan Kaufmann, San Francisco, CA, 2005.

9. J. Hershberger and J. Snoeyink. An O(n log n) Implemen-
tation of the Douglas-Peucker Algorithm for Line Sim-
plification. In Proc. of 10th Symp. on Computational
Geometry, pages 383–384, Stony Brook, NY, 1994.

10. N. Hönle, M. Großmann, D. Nicklas, and B. Mitschang.
Preprocessing Position Data of Mobile Objects. In Proc.
of 9th Int’l Conf. on Mobile Data Management (MDM),
pages 41–48, Beijing, China, 2008.

11. H. Imai and M. Iri. Computational Morphology, chap-
ter Polygonal Approximations of a Curve – Formulations
and Algorithms, pages 71–86. North-Holland Publishing
Company, 1988.
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13. R. Lange, F. Dürr, and K. Rothermel. Scalable Pro-
cessing of Trajectory-Based Queries in Space-Partitioned
Moving Objects Databases. In Proc. of 16th ACM
SIGSPATIAL Int’l Conf. on Advances in Geographic In-
formation Systems (ACM GIS), pages 270–279, Irvine,
CA, 2008.
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