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UNSTABLE ORBITS AND MILNOR ATTRACTORS

IN THE DISCONTINUOUS FLAT TOP TENT MAP

Viktor Avrutin1, Ben Futter2, Laura Gardini3 and Michael Schanz4

Abstract. In this work we consider the discontinuous flat top tent map which represents an example

for discontinuous piecewise-smooth maps, whereby the system function is constant on some interval.

Such maps show several characteristics caused by this constant value which are still insufficiently

investigated. In this work we demonstrate that in the discontinuous flat top tent map every unstable

periodic orbit may become a Milnor attractor. Moreover, it turns out that there exists a strong

connection between stable and unstable orbits and that the appearance of a single unstable orbit may

cause an infinite number of stable orbits to appear. Based on this connection we provide a more precise

explanation of the recently discovered self-similar bifurcation scenario occurring in the discontinuous

flat top tent map denoted as the nested period incrementing scenario.
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Résumé. Dans ce travail nous considérons l’application discontinue de tente à haut plat qui représente

un exemple d’application régulière par morceaux discontinue, où la fonction du système est constante

sur un intervalle. De telles applications montrent plusieurs aspects causés par cette valeur constante

qui ne sont toujours pas suffisamment compris. Dans ce travail nous démontrons que pour l’applicatiion

discontinue de tente à haut plat toutes les orbites périodiques instables peuvent devenir un attracteur

de Milnor. De plus, il apparâıt qu’il y a un forte connexion entre les orbites stables et instables et que

l’apparition d’une seule orbite instable peut provoquer l’apparition d’un nombre infini d’orbites stables.

Sur la base de cette connexion nous proposons une explication précisée du scénario de bifurcation

auto-similaire découvert récemment pour l’applicatiion discontinue de tente à haut plat, le scénario

d’incrément de période nichée.

Mots clefs : applications régulières par morceaux ; application discontinue de tente à haut plat ;

applications avec une partie horizontale ; incrément de période nichée ; attracteur de Milnor ; U -suite.

Introduction

When dealing with a bifurcation scenario, it is natural to ask which periodic orbits are involved. The first
and not very precise answer may be given by the periods of the orbits. So, for example, the period-doubling
scenario starting with some orbit with the period p0 will be usually described as a sequence of orbits with the
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periods pn = p0 · 2
n with n ≥ 0. For the period doubling scenario this kind of description is usually sufficient,

but in general it is not, since a scenario may also include several orbits with the same period. In such cases
a more precise description of the bifurcation scenario is needed, which can be provided for example by the
symbolic sequences of the periodic orbits forming the scenario. In this case the question arises, whether all
symbolic sequences in a particular bifurcation scenario – or at least some of them – can be written explicitly,
in a closed form. By contrast to the periods, the answer is – typically not (already for the period doubling we
can provide only a rule how to create the sequences up to a given period, see §2.1 for details). Similarly, for the
self-similar period adding structure where between the existing regions of two orbits with some periods p and p′

the existing region of the orbit with the period p+p′ is located, we can provide a complete symbolic description
by the Farey-tree-like symbolic sequences adding scheme. Up to now, the period incrementing scenario (for
which the periods of the involved orbits form the arithmetic series pn = p0+n∆p with some constant increment
∆p) seems to be the only bifurcation scenario where all the sequences can be written explicitly1.

The theory of piecewise-smooth dynamical systems represents nowadays a well established and rapidly grow-
ing domain, accepted by the scientific community both from the theoretical and the practical point of view.
However, there exists a class of piecewise-smooth maps which was barely investigated until now, namely the
maps defined on many partitions, whereby on one of the partitions the system function is constant. In the fol-
lowing we denote such systems as piecewise-smooth systems with a horizontal part. Several practical applications
of such models are known, as for example a simple limiter control of unimodal maps [5, 14, 15, 18, 19], which is
applicable for chaos control or the control of cardiac arrhythmia [7,8], as well as some electronic converters [11].
However, the theoretical basis regarding the bifurcation scenarios in such maps still has to be established.

In previous publications [2, 4] we explained the mechanism leading to a new bifurcation scenario, which we
denoted as the nested period incrementing scenario. In fact, this scenario was recently observed experimentally
(see [10]) but neither investigated nor explained in the cited work. For the investigation of this scenario we
introduced in [2] a 1D map, which we denoted as the discontinuous flat top tent map and which represents a
discontinuous variant of the well-known flat top tent map initially introduced in [12]. For the discontinuous flat
top tent map we described the bifurcation structure in a 2D parameter space (α, β) (for details regarding the
meaning of the parameters see §1.1 below), and then we faced the following problem. For small values of α one
can easily specify all the orbits forming the bifurcation scenario which can be observed for varying β. In fact,
this bifurcation scenario is given by two period incrementing cascades, and hence the symbolic description of
every orbit is known. For large values of α we proved that for any n a stable periodic orbit exists corresponding
to every symbolic sequence of length n. However, the question arises whether it is possible to specify the
orbits existing for values of α between these two limiting cases, that means for the values of α for which the
bifurcation scenario for varying β is more complicated than two incrementing cascades, but for which still not
every sequence is possible.

Basically, this question can be answered positively. In [2] we presented an algorithmic approach which allows
to decide whether a stable periodic orbit corresponding to a given symbolic sequence exists for a given value
of α. Therefore, we can generate the set of all symbolic sequences corresponding to stable periodic orbits up to
a given period existing at any fixed value of α. The approach is based on a complete binary tree of sequences,
whereby at each step of the generation of this tree some analytic conditions must be verified in order to decide
whether the next node of the tree exists or not. The obvious disadvantage of this approach is that the sequences
are not grouped in families but every single sequence must be created in a separate step. This disadvantage
is not crucial, since in the case of the Farey-tree-like symbolic sequences adding scheme, as well as in the case
of the symbolic sequences corresponding to orbits forming a period-doubling cascade the situation is similar.
However, there is a further and slightly more serious disadvantage of this approach. From the bifurcation
diagrams of the scenario at a given value of α (see §1.1), it becomes immediately clear that the stable periodic

1for example, when dealing with piecewise-smooth maps defined on two partitions, this scenario is frequently formed by families
of so-called maximal periodic orbits, and the corresponding symbolic description is given in this case by families of symbolic
sequences {LRn | n > 0} and {RLn | n > 0}, whereby the letters L and R refer to the points located on different sides of the
boundary between the partitions (switching manifold).
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orbits forming this scenario are organized in some families. Clearly, the approach mentioned above can not
provide any information about these families.

A more detailed investigation of the discontinuous flat top tent map demonstrates that this system shows
an unexpected connection between stable and unstable periodic orbits. As we will see below, the existence of

an unstable periodic orbit at a given value of α implies the existence of some infinite families of stable periodic

orbits at this value of α. This connection is based on some properties, which are specific not only for the
discontinuous flat top tent map but in general for piecewise-smooth maps with a horizontal part. Therefore,
the aim of this paper is to report these properties and to explain the connection between stable and unstable
periodic orbits in the discontinuous flat top tent map, keeping in mind that other piecewise-smooth maps with
a horizontal part may show the same or at least similar phenomena.

The paper is organized as follows. First, in §1 we present a brief overview summarizing the results already
presented in the previous publications regarding the bifurcation structure formed by stable orbits. Then, in §2
we report the results regarding the connection between stable and unstable periodic orbits mentioned above.
In §2.1 we describe an infinite sequence of unstable periodic orbits (similar to orbits forming a period doubling
cascade in the logistic map and corresponding to the same symbolic sequences), converging to some parameter
value α∞. Then, in §§2.2 and 2.3 we consider the first orbit in this sequence, namely an unstable fixed point,
and explain, which stable periodic orbits appear at the same parameter value as this fixed point. Additionally,
in §2.4 we describe some properties of the stable and unstable sets of this fixed point. Next, in §2.5 we consider
the unstable period-2 orbit and the general situation up to the parameter value α∞. As a final result, we
obtain an explicit symbolic description of all stable periodic orbits existing at any parameter value α < α∞.
Furthermore, in §2.6 we demonstrate that the other unstable fixed point of the discontinuous flat top tent map
(not considered before) shows some properties similar to all other unstable orbits already described and explain
the differences. In §3 we discuss the situation for α > α∞ and explain why it seems to be not possible to derive
and explicit symbolic description of all stable periodic orbits existing in this case. Finally, in §4 we summarize
the obtained results and emphasize which of them are specific for the discontinuous flat top tent map and which
of them have a more general meaning for other systems with a horizontal part.

1. Overall Bifurcation Structure Formed by Stable Orbits

1.1. Definition of the map

The map we are investigating in this work is defined by

xn+1 = f(xn), f(x) =





fL(x) = 2αx if x ≤ 1−γ
2

fC(x) = β if 1−γ
2 < x < 1+γ

2

fR(x) = 2α(1− x) if x ≥ 1+γ
2

(1)

as shown in Fig. 1 and is denoted in the following as the discontinuous flat top tent map. The parameters α, β
and γ refer to the tent tip height, the height and the width of the constant interval, respectively. As one can
see, the discontinuous flat top tent map represents an extension of the usual tent map

xn+1 = f(xn), f(x) =

{
fL(x) = 2αx if x ≤ 1

2

fR(x) = 2α(1− x) if x > 1
2

(2)

with an additional partition
]
1−γ
2 , 1+γ

2

[
where the function f has a constant value. Note that a similar extension

was already considered in [20]. However, in this work the value of the function on this partition was set to a
value outside the interval [0, 1], so that every orbit reaching this partition becomes divergent. By contrast to
this, we consider the values on this partition (given by the parameter β) which do not lead to divergence.

In the following, the dynamical properties of this map are investigated in the 2D parameter plane (α, β)
for α ∈ (1/2,∞), β ∈ [0, 1] and arbitrary but fixed γ ∈ (0, 1). All analytical and topological arguments are
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Figure 1. System function of the discontinuous flat top tent map given by Eq. (1).

independent of the particular choice of γ, i.e., the system is structurally stable with respect to this parameter
in the given range. For numerical results we choose γ = 0.1 for consistency.

Fig. 2 shows four bifurcation and period diagrams for fixed α and varying β:

a) For α = 0.6, we can see an interval where two symmetric period-1 incrementing cascades exist, which
accumulate at the boundaries of β ∈ [0, 1].

b) For α=0.75, the scenario as in a) is interrupted between any two adjacent periods, by a pair of period-2
incrementing cascades accumulating at the same point in the middle.

c) For α=0.85, the scenario as in b) is interrupted between any two adjacent periods, by a pair of period-4
incrementing cascades.

d) For α= 0.9, the scenario is already much further developed and the diagram already demonstrates the
overall complexity of the bifurcation structure.

Due to this series of cumulative period incrementing cascades, the complete scenario is referred to as “nested
period incrementing”.

The bifurcation structure in the plane (α, β), as shown in Fig. 3, displays for increasing values of α the
successive appearance of additional periodic regions in the form of border collision induced codimension-2
bifurcations denoted as “explosions” or “big bang bifurcations”. These occur at distinct values of α between
each two adjacent regions. This process accumulates at the value α⋆ = 1/(1−γ), above which all possible orbits,
that exist in the discontinuous flat top tent map, are observable in a particular order for varying β ∈ [0, 1].
We refer to this as the full 1D bifurcation scenario, which is described in Sec. 1.2. For lower values of α, only
subsets of the full scenario can be observed, as we will show in Sec. 1.4.

We study the system’s dynamical properties using a symbolic notation based on the letters L, C and R,
corresponding to the three disjoint partitions

IL =
[
0 , 1−γ

2

]
, IC =

(
1−γ
2 ,

1+γ
2

)
, IR =

[
1+γ
2 , 1

]
(3)
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of the unit interval, as shown in Fig. 1. More precisely, to each n-periodic orbit O = (x0, x1, . . . , xn−1) we define
the corresponding symbolic sequence σ = σ0σ1 . . . σn−1, such that

σi =





L if xi ∈ IL

C if xi ∈ IC

R if xi ∈ IR

(4)

and denote the corresponding periodic orbit as Oσ. In the following, the bifurcation scenarios consisting of the
stable periodic orbits will be explained and investigated by means of these symbolic sequences.

1.2. Behavior for α = α⋆

To get a first intuitive understanding of the behavior of the discontinuous flat top tent map, let us state how
the function branches fL, fC and fR determine the form of periodic orbits. In the considered parameter plane,
the dynamics is governed by the following three mechanisms:

M1: a channel in the left partition, originating from the unstable fixed point OL = 0. Each orbit entering the
left partition remains in the channel formed by the system function and the principal bisector for a number
of iteration steps until it leaves the channel.

M2: a swirl in the right partition, originating from the unstable fixed point OR = 2α
2α+1 (if the fixed point

exists). Each orbit entering the right partition “rotates” around this point for a number of iteration steps
until it leaves the swirl.

M3: a ‘hard reset’ from the center partition. Each orbit entering this partition in step n is immediately reset
to the value xn+1 = β.

It is worth noticing that M3 implies that each periodic orbit visiting the center partition is super-stable,
which offers certain numerical advantages. In particular, from any initial value located in this partition, for
example x0 = 1

2 , the system is guaranteed to reach the asymptotic dynamics exactly, within not more than
one transient iteration step. It also follows that any periodic orbit can possess no more than one point in the
center partition IC and, correspondingly, the symbolic sequence cannot contain more than one occurrence of the
symbol C.

Furthermore, as the slopes of the function branches fL and fR are both of magnitude greater than 1 in the
considered parameter domain, any periodic orbit without a point in IC must be unstable. Accordingly, the
following statements are equivalent for α > 1

2 :

“The symbolic sequence σ contains
the symbol C exactly once.”

⇔
“The periodic orbit Oσ corresponding

to the sequence σ is stable.”

This means that we can uniquely describe each stable n-periodic orbit using a symbolic sequence σ with the
leading symbol σ0 = C and σi ∈ {L,R}, i = 1 . . . n − 1. With this definition, C becomes obsolete as a symbol
for the description of stable periodic orbits. Hence, as long as we are dealing with stable periodic orbit, the
leading C can be dropped, since the remaining word consisting solely of symbols L and R is, in this case, the
only information-carrying part of the symbolic sequence.

However, since in the present work we are dealing both with stable and with unstable periodic orbits we will
keep the leading letter C and shall write all symbolic sequences corresponding to stable periodic orbits in the
form C̺ = C̺1̺2 . . . ̺n−1, ̺i ∈ {L,R}. Note that the subsequence ̺ (without the leading symbol C) is used by
Metropolis, Stein and Stein in the famous work [12] to describe super-stable periodic orbits, going by the name
“pattern”. Clearly, by contrast to the symbolic sequences usually used for description of periodic orbits, such
“patterns” are not shift-invariant.

Now let us interpret the mechanisms M1–3 introduced earlier with respect to the symbolic sequences of the
orbits that they generate. The channel (M1) permits an arbitrary number of steps in the left partition, which
corresponds to a subsequence LL . . .L. As the fixed point at the origin is unstable, the orbit is bound to leave
the channel at some point. Note that fL is surjective for α = α⋆, so the orbit may thereafter land on any
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Figure 2. Representative examples for period diagrams (left) and the corresponding bifurca-
tion diagrams (right) for γ = 0.1 and different values of α: a) pure period incrementing for
α = 0.6, b) pairs of opposed period incrementing cascades with an increment value of two in
between for α = 0.75, c) even further nesting for α = 0.85. In d) for α = 0.9, a far more
complex scenario has evolved. (The location of these scenarios in the parameter plane (α, β) is
marked in Fig. 3).
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Figure 3. 2D bifurcation structure of the discontinuous flat top tent map (1) in the (α, β)-
plane, for γ = 0.1 and α ∈

]
1
2 ,∞

[
, via the transform S(α) = arctan(2α). At α1 the unstable

fixed point OR emerges (see below) and, at α2, the unstable period-2 orbit OLR. At α⋆ the
escape region emerges. In the gray parameter regions, the typical orbits diverge. The labels
(a,b,c,d) indicate the locations of the bifurcation scenarios shown in Fig. 2.
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Figure 4. The same 2D bifurcation diagram as in Fig. 3 without scaling of the parameter α.
For a selection of periodic orbits Oσ, the periodicity regions Pσ are explicitly labeled.
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point of either the C-partition — in which case the orbit closes — or of the R-partition. Here the swirl (M2)
generates a subsequence RR . . .R, followed by either M1 or M3. The reset mechanism (M3) closes the orbit
and determines the value x1 = β, and by that also the first symbol of ̺. Recall that we chose σ0 = C, i.e.,
x0 ∈ IC.

It turns out that, in the discontinuous flat top tent map, the interplay of swirl and channel can generate
periodic orbits with arbitrary sequences of the letters L and R. To be precise, for α = α⋆ and varying β ∈ [0, 1],
the system produces all 2n−1 distinct sequences ̺ ∈ {L,R}n−1 corresponding to different stable n-periodic
orbits Oσ with σ = C̺.

a)
x1 x2 · · · xn−1 x0

f̺
1

f̺
2

f̺
n−2

f̺
n−1

fC

b)
x̄ x1 x2 · · · xn−1 x0

=

f−1

¯̺ (x1)

f̺
1

f̺
2

f̺
n−2

f̺
n−1

fC

f ¯̺

Oa = (x0, x1, x2, . . . , xn−2, xn−1) Ob = (x̃0, x̃1, x̃2, x̃3, . . . , x̃n−1, x̃n )

x0 ∈ IC = (x0, x̄ , x1, x2, . . . , xn−2, xn−1)

σa = C̺1̺2 . . . ̺n−1 σb = C ¯̺̺1̺2 . . . ̺n−1

Figure 5. Two periodic orbits of the discontinuous flat top tent map with a preimage rela-
tionship in parameter space: the left orbit Oa exist for some value βa, the right orbit Ob is
observed when β is set to a preimage βb = f−1

¯̺

(
βa

)
of the original parameter value, with

¯̺ ∈ {L,R}.

This fact is readily explained. Fig. 5a shows an arbitrary stable n-periodic orbit Oa = (x0, . . . , xn−1) of the
discontinuous flat top tent map, assumed to exist for α = α⋆ and appropriate β = βa. Let us also assume that,
in keeping with the convention introduced above, the first point x0 lies in the flat interval IC. Of course, this
implies that the location of the orbit’s second point depends solely on the parameter β, that is x1 = fC(x0) = βa.
Now, we exploit the fact that this value can be varied independently of other parameters.

With a suitable choice of β, namely βb = f−1
¯̺

(
βa

)
with either ¯̺ = L or ¯̺ = R, a new stable periodic orbit

Ob = (x̃0, x̃1, . . . ) can be found, as shown in Fig. 5b. The basic assumption x̃0 = x0 ∈ IC yields x̃1 = βb ∈ I ¯̺
and consequently x̃2 = f ¯̺

(
βb

)
= βa. This point, however, coincides with the second point x1 of Oa. Here the

orbit evolves according to one of the branches fL/fR, which are of course independent of β, so the remainders
of both orbits behave identically, i.e.,

x̃k = xk−1 for k = 2, . . . , n and f(x̃n) = f(xn−1) = x0 = x̃0 (5)

The result is that the (n + 1)-periodic orbit Ob can be obtained from Oa simply by inserting one point x̄ =
f−1
¯̺

(
x1) after the point x0 ∈ IC. Accordingly, the symbolic sequences of both orbits are also identical up to one

additional symbol ¯̺, as seen in Fig. 5.
This means that, for every2 existing stable orbit with period n and the corresponding symbolic sequence

σ = C̺, two orbits with period n + 1 can be found, corresponding to the sequences σ′ = CL̺ and σ′′ = CR̺.
Applying this procedure recursively, beginning with the case of the stable fixed point OC located in the middle
partition, proves the existence of all possible orbits as stated above. For the symbolic sequence of the fixed
point we write σ = C̺ = C and denote ̺ = ε as the empty word for reasons of consistency.

As a consequence, it is now easy to identify the existence region of any stable periodic orbit at α = α⋆, given
its symbolic sequence. We know that the fixed point OC exists for β ∈ IC, so by reasoning as above the existence
condition for an arbitrary orbit OC̺ results in

β ∈ UC̺ with UC̺ = f−1
̺ = f−1

̺1
◦ f−1

̺2
◦ · · · ◦ f−1

̺n−1

(
IC

)
. (6)

2At least this is true for α ≥ α⋆, where every point x ∈ [0, 1] has two preimages f−1
L

(x) and f−1
R

(x). With smaller values of α,
these preimages do not necessarily exist for all these points.
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We can also make a more compact statement about the locations of these stable periodic orbits in the
parameter space. For this reason we number all sequences of the same period according to the order of the
corresponding orbits along the β-axis. Let us denote the sequence corresponding to the i-th orbit of period n
as σn

i . So for n = 1 there is one sequence σ1
1 = C, for n = 2 there are two sequences σ2

1 = CL and σ2
2 = CR,

and so forth. In general, of all 2n−1 sequences corresponding to the orbits of period n, the sequence whose
corresponding orbit appears at the smallest value of β is referred to as σn

1 , and the one appearing at the largest
value is σn

2n−1 . Note also that the location of the preimages satisfies

∣∣∣∣
1

2
− f−1

L
(x)

∣∣∣∣ =
∣∣∣∣
1

2
− f−1

R
(x)

∣∣∣∣ =
1

2

(
1−

x

α⋆

)
, (7)

i.e. the distance of the preimages to the point 1
2 decreases linearly in x. This means that the smallest x

has the “outermost”, and the largest x the “innermost” preimages. As already shown, the parameter change
β 7→ f−1

¯̺

(
β
)
, ¯̺ ∈ {L,R} is equivalent to the sequence change C̺ 7→ C ¯̺̺. The location on the β-axis of the

two period-(n+ 1) orbits corresponding to these two sequences CL̺ and CR̺ can be explained easily based on
Eq. (7). For example, as the sequence σn

1 = C̺n1 has the smallest β-value among all sequences corresponding
to period-n orbits, so the sequence CL̺n1 has the smallest β-value among all 2n sequences corresponding to
period-(n+1) orbits, that means CL̺n1 = σn+1

1 . Similarly, the sequence CR̺n1 has the largest β-value among
all sequences corresponding to period-(n + 1) orbits, that means CR̺n1 = σn+1

2n . In general, all 2n sequences
corresponding to period-(n + 1) orbits can be generated from the 2n−1 sequences corresponding to period-n
orbits recursively according to the following rules.

σn
i = C̺ni

ր
ց

CL̺ni = σn+1
i

CR̺ni = σn+1
2n+1−i

i = 1, . . . , 2n−1 (8)

Again, the indexes i = 1, . . . , 2n of the sequences σn+1
i define the order of the corresponding orbits along the

β-axis. In the following this order will be denoted as the β-ordering of the sequences.
Note that the rules given by Eq. (8) generate the β-ordering of the sequences corresponding to orbits with

a certain period, but without making a direct statement about their relative ordering to the sequences of other
periods. However, what we need in order to explain the bifurcation structure occurring at α = α⋆ is the
β-ordering of all sequences, regardless of their period.

However, we can easily retrace the partitioning of the β-axis into periodicity regions with certain symbolic
sequences. The locations of these regions are given by Eq. (6), as already stated. By applying this equation one
symbol at a time, all regions can be calculated in a recursive manner: in the first step, it is only known that
the interval [0, 1] is subdivided (in β-ordering) into the three partitions IL, IC and IR. We now denote these
partitions as PCL, UC and PCR, respectively. UC = IC is of course the existence region of the stable fixed point
with the sequence σ = C, whereas the partitions PCL = IL and PCR = IR are the regions where all periodic
orbits have a common prefix CL/CR, respectively. For instance, any stable periodic orbit existing for β ∈ PCL

has the point x1 ∈ IL and therefore must have a symbolic sequence beginning with CL, possibly followed by
further symbols.

Now, for α = α⋆ the function f−1
L

maps the interval [0, 1] linearly onto the partition PCL, which is therefore
further subdivided into the following three partitions (one periodicity region and two common-prefix regions):

PCL2 = f−1
L

(IL), UCL = f−1
L

(IC), PCLR = f−1
L

(IR) (9)

For the right partition PCR, the situation is the same, but as fR has a negative slope, the subdivision occurs in
the opposite order:

PCR2 = f−1
R

(IR), UCR = f−1
R

(IC), PCRL = f−1
R

(IL). (10)
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In summary, this procedure so far yields the following β-ordering of periodicity and common-prefix regions:

PCL2 UCL PCLR︸ ︷︷ ︸
PCL

UC PCR2 UCR PCRL︸ ︷︷ ︸
PCR︸ ︷︷ ︸

PC = [0,1]

(11)

Carried out ad infinitum, this procedure is equivalent to arranging all sequences in a binary tree structure,
where each level contains the sequences of the corresponding period. The relationship in this tree is such that
the children of a particular node are the sequences of the next higher period, which are located the nearest
along β in parameter space. The tree of symbolic sequences up to period n = 6 is shown in Fig. 6. This tree is
generated by recursive application of the following rules:

S1 Start by defining the root node with the sequence σ = C.
S2 To each node where σ contains an even3 number of Rs (we say, σ has an even R-parity), add a left child

node with the sequence σL, and a right child with the sequence σR.
S3 To each node where σ contains an odd number of Rs (we say, σ has an odd R-parity), add a left child

with the sequence σR, and a right child with the sequence σL.

We denote these rules as the Suffix Rules. Note that these rules add a letter at the end of a sequence, whereas
the rules given by Eq. (8) require insertion of a letter right after the symbol C. It is also worth emphasizing
that the Suffix Rules differ from Eq. (8), in that the tree reproduces the β-ordering of sequences corresponding
to orbits up to a certain period. It is clear that by recursive appending of both L and R, all sequences must be
produced. Note further that these rules were already mentioned in [1], in the context of the logistic map, where
the location of symbolic sequences along the interval of initial values is investigated, leading to a subdivision of
the parameter space similar to the common-prefix partitioning given by Eq. (11). Although not surprisingly,
this fact points out an intimate relationship between the discontinuous flat top tent map and the logistic map.

It is now an easy task to identify the region of parameter space where stable periodic orbits of the form
σ = C̺ occur. This region is of course given by the union of all preimages of the middle partition IC :

S =

∞⋃

n=0

f−n
(
IC
)
, (12)

which is everywhere dense in [0, 1], i.e., the closure of S is S = [0, 1]. This means that the discontinuous flat
top tent map for α = α⋆ possesses a stable periodic orbit for any parameter value β ∈ [0, 1] except on a set of
Lebesgue measure zero. Although we constructed the set S in parameter space (β ∈ S), we can also regard this
set in state space as the set of all points that eventually get mapped to IC. In order to avoid confusion, we shall

in the following refer to the set S in parameter space, β ∈ S, whereas the notation S̃ is used for the same set

in state space, x ∈ S̃.

We can immediately see that S̃ belongs to the stable set of any orbit which has a point in IC. This implies
that the stable periodic orbit OC̺ which exists for a certain parameter value is the unique attractor of the
discontinuous flat top tent map attracting almost all initial values x0 ∈ [0, 1]. Note that this statement holds

only for 1
2 < α ≤ α⋆. For α > α⋆ the set S̃ is no longer dense in [0, 1] and the orbits for the initial values

x0 ∈ [0, 1] \ Cl(S̃) diverge, whereby Cl(S̃) denotes the closure of S̃.
Interestingly, the construction of S implies4 that its complement M = [0, 1]\S is a Cantor set5. Equivalently

to the sets S and S̃, we shall distinguish in the following between sets M in parameter space and M̃ = [0, 1]\S̃ in
state space. In parameter space, the set M consists of the accumulation points of the nested period incrementing
scenario. As the periods of the stable periodic orbits close to any point in M tend to infinity, the nature of

3including zero
4Not only for α = α⋆ but for any α > α∞ (see §2.1).
5For example, in the special case γ = 1/3 it is the well-known middle third Cantor set.
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CLLL

CLLLL

CLLLLL
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CLLLRR

CLLLRL

CLLR

CLLRR

CLLRRL

CLLRRR

CLLRL

CLLRLR

CLLRLL

CLR

CLRR

CLRRL

CLRRLL

CLRRLR

CLRRR

CLRRRR

CLRRRL

CLRL

CLRLR

CLRLRL

CLRLRR

CLRLL

CLRLLR

CLRLLL
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CRR

CRRL

CRRLL

CRRLLL

CRRLLR

CRRLR

CRRLRR

CRRLRL

CRRR

CRRRR

CRRRRL

CRRRRR

CRRRL

CRRRLR

CRRRLL

CRL

CRLR

CRLRL

CRLRLL

CRLRLR

CRLRR

CRLRRR

CRLRRL

CRLL

CRLLR

CRLLRL

CRLLRR

CRLLL

CRLLLR

CRLLLL

β

Figure 6. The full binary tree of symbolic sequences corresponding to stable periodic orbits
up to period 6. The β-ordering is indicated by the arrow. The orbits corresponding to the
outermost sequences exist for α < α1 (see Figs. 2a and 4).
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the dynamical behavior in the limit β ∈ M is of some interest. This is briefly investigated in the following

subsection. In the state space the set M̃ contains unstable periodic orbits, their stable sets, as well as aperiodic
orbits.

1.3. Milnor Attractors

So far we considered only stable periodic orbits. We already know of two particular unstable periodic orbits,
namely the fixed points OL = 0 and OR = 2α/(2α + 1). It can be shown that, for α = α⋆, the discontinuous
flat top tent map actually possesses a countable infinity of unstable periodic orbits, as well as an uncountable
infinity of unstable aperiodic orbits, which can be uniquely identified by corresponding (respectively terminating
and non-terminating) symbolic sequences.

From the preceding section we know which orbits exist for any β ∈ S. Now we can also state what happens
if β lies within the Cantor set M . For this, we consider the behavior of the tent map (2) for α = α⋆. Note that
α⋆ = 1/(1 − γ) > 1, so whereas (1) and (2) are identical on the partitions IL and IR, the tent map possesses

an escape interval at IC. That means that all orbits started at x0 ∈ S̃, i.e., on the escape interval or one of its

preimages, diverge under the dynamics of the tent map. For all other orbits with x0 ∈ M̃ , the behavior of the
tent map and the discontinuous flat top tent map is identical. It is known that the non-diverging orbits of the
tent map for α > 1 can have all possible symbolic sequences consisting of L and R.

It is worth noting that the behavior in the generic case β ∈ S is quite different from the behavior in the

special case β ∈ M . For β ∈ S, an orbit started at a typical initial value x0 ∈ S̃ converges to the unique stable
periodic orbit Oσ which necessarily contains a point xσ

0 ∈ IC and – with the exception of the fixed point OC –
also the point xσ

1 = β (in other words, the point x = β is periodic in this case). All unstable periodic orbits

located in the set M̃ coexist with this unique stable periodic orbit. Also, the stable set W s of each unstable

orbit is a subset of M̃ . So in this case the stable set of each unstable orbit is of zero measure.

For β ∈ M , an orbit started at a typical initial value x0 ∈ S̃ will be mapped to some point x ∈ M̃ and
eventually to one of the orbits contained in this set, which is either an unstable periodic or an aperiodic orbit.
Although these two cases are similar, it is worth to distinguish between them.

If the point x = β ∈ M̃ is pre-periodic and will be mapped (directly or after some iteration steps) to a point
of an unstable periodic orbit, this unstable orbit attracts a set of points of positive Lebesgue measure. Indeed,

the set of initial values converging to this particular unstable orbit includes S̃ and is therefore dense in [0, 1].
Invariant sets of this kind, commonly known as Milnor attractors (sometimes denoted also as weak attractors),
are examined e.g. in [13].

Generally, these invariant sets have both the stable and the unstable set of positive Lebesgue measure. By
contrast to regular attractors (given by stable periodic orbits), the Milnor attractors are not robust, since the
domains of these attractors in the (α, β) parameter plane are given by sets of curves and not by regions (see
§§2.2 and 2.5 for details).

In the case that x = β ∈ M̃ is mapped to a point of an aperiodic orbit (that means, the point x = β is
neither periodic nor pre-periodic), the situation is similar. The main difference in this case is that this aperiodic
orbit does not represent a closed set and therefore can be denoted as some kind of attracting set (because

every typical initial condition x0 ∈ S̃ converges to this orbit) but not as an attractor. However, its closure (the
ω-limit set of its points) represents a Milnor attractor. Another difference regards the bifurcation structures in
the (α, β) parameter plane: As we will see below, in the parameter space the Milnor attractors are located at
the accumulation points of the period incrementing cascades, whereas the attracting set mentioned above are
not.

1.4. Behavior for α < α⋆

Above we summarized the behavior of the discontinuous flat top tent map at α = α⋆. In the case α > α⋆

the situation is similar: each attractor existing at α = α⋆ exists also for any α > α⋆, and the only additional
phenomenon possible in this case is divergent dynamics. Regarding the situation for α < α⋆ it is immediately
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clear from Figs. 2 and 3 that the number of periodic orbits which can be observed by varying β decreases with
decreasing α. This can be explained as follows. The stable periodic orbit Oσ corresponding to the symbolic
sequence σ = σ0σ1 . . . σn−1 with σ0 = C (or more precisely, its first point xσ

0 ) can be found using the fixed point
equation

fσ(x
σ
0 ) := f̺n−1

◦ f̺n−2
◦ · · · ◦ f̺2

◦ f̺1

(
fC(x

σ
0 )︸ ︷︷ ︸

β

)
= xσ

0 (13)

Here we use again (as in §1.2) the notation σ = C̺ with ̺i = σi, i = 1, . . . , n − 1. Clearly, for a given
combination of the parameters α and β the orbit Oσ exists only if all points calculated in this way are located
in the corresponding partitions, that means xσ

0 in IC, x
σ
1 = fC(x

σ
0 ) = β in the partition corresponding to the

letter σ1, and so on. Therefore, to verify whether all these conditions are fulfilled for a given combination of α
and β we can calculate the rank-(n− 1) preimage of the middle partition, given by the interval UC̺ defined by
Eq. (6). As stated in §1.2, the orbit Oσ exists only if the point xσ

1 = β belongs to the interval UC̺. Moreover,
note that for all i = 1, . . . , n − 1 the letters ̺i are in {L,R}, and hence f−1

̺ (IC) depends on the parameter α

but not β. Therefore, assuming that the interval f−1
̺ (IC) is not empty, one can set the parameter β to a value

in this interval, and this guarantees that the orbit Oσ exists. In other words, the condition

β ∈ f−1
̺ (IC) (14)

represents the existence condition of the stable periodic orbit Oσ and the boundaries of this interval correspond
to the border collision bifurcations causing this orbit to disappear.

As one can see, the question whether the stable periodic orbit Oσ exists at a given value of α reduces to
the question whether the interval f−1

̺ (IC) is non-empty. As at α = α⋆ the functions fL and fR map their
corresponding partitions onto the complete interval [0, 1]:

fL : IL 7→ [0, 1], fR : IR 7→ [0, 1] (15)

each point x ∈ [0, 1] has at α = α⋆ both the left and the right preimage, given by

f−1
L

(x) =
x

2α
and f−1

R
(x) = 1−

x

2α
, (16)

respectively. Due to this, at α = α⋆ the interval f−1
̺ (IC) is non-empty for any sequence ̺, and hence the stable

periodic orbit Oσ exists in a non-empty range of the parameter β. By contrast, for α < α⋆ the functions fL
and fR map their corresponding partitions not on the complete interval [0, 1] but only on

[
0, α(1− γ)

]
:

fL : IL 7→
[
0, α(1− γ)

]
, fR : IR 7→

[
0, α(1− γ)

]
(17)

Therefore, in this case Eq. (16) is valid only for x ∈ [0, α(1− γ)], whereas the points in the remaining interval
(α(1− γ), 1] do not have any preimages by fL and fR:

f−1
L

(x) =

{ x

2α
if x ∈

[
0, α(1− γ)

]

undefined otherwise
and f−1

R
(x) =

{
1−

x

2α
if x ∈

[
0, α(1− γ)

]

undefined otherwise
(18)

This leads to the fact that for a given α < α⋆ and a given σ = C̺, the interval f−1
̺ (IC) may be empty, so that

the stable periodic orbit Oσ does not exist at this value of α.

Let us illustrate the described situation for some value 1
2 < α < α1 with

α1 =
1

2

1 + γ

1− γ
. (19)
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As one can clearly see in Fig. 3 the discontinuous flat top tent map has in this case the most structure of the
parameter space, organized by two period incrementing cascades (see Fig. 2a).

Clearly (as for any α) for β in the middle partition IC =
(
1−γ
2 , 1+γ

2

)
we have the existence region of the fixed

point OC . For the middle partition we can calculate the left and the right preimages, which are given by

f−1
L

(IC) =

(
1− γ

4α
,
1− γ

2

]
and f−1

R
(IC) =

[
1 + γ

2
, 1−

1− γ

4α

)
, (20)

respectively. Note that the condition 1/2 < α < α1 implies that the preimages exist not for all points on the
middle partition but only for x ∈ [(1−γ)/2, α(1+γ)] ⊂ IC. Then, for β ∈ UCL = f−1

L
(IC) and β ∈ UCR = f−1

R
(IC)

we obtain the existence regions for the period-2 orbitsOCL andOCR, respectively. As a next step we can calculate
the preimages of the left interval f−1

L
(IC), obtaining the intervals f−2

L
(IC) and f−1

R
◦ f−1

L
(IC).

f−2
L

(IC) =

(
1− γ

8α2
,
1− γ

4α

]
and f−1

R
◦ f−1

L
(IC) =

[
1−

1− γ

4α
, 1−

1− γ

8α2

)
(21)

Hence, for β ∈ UCL2 = f−2
R

(IC) and β ∈ UCRL = f−1
R

◦ f−1
L

(IC), respectively, the stable period-3 orbits OCL2

and OCRL exist. By contrast, the right interval f−1
R

(IC) is for 1/2 < α < α1 completely located in (α(1− γ), 1]
and consequently does not have any preimages. Continuing this procedure we will see that in each step (for

each n > 1) the left interval f
−(n−1)
L

(IC) has two preimages

f−n
L

(IC) =

(
1− γ

2n+1αn
,

1− γ

2nαn−1

]
and f−1

R
◦ f

−(n−1)
L (IC) =

[
1−

1− γ

2nαn−1
, 1−

1− γ

2n+1αn

)
(22)

whereas the right interval f−1
R

◦ f
−(n−2)
L

(IC) does not have any preimages. This proves that in the considered
parameter range 1/2 < α < α1 the period-(n+ 1) orbits OCLn and OCRLn−1 exist for all n. Moreover, Eq. (22)

implies that for each n the intervals UCLn = f−n
L

(IC) and UCLn+1 = f
−(n+1)
L (IC) are adjacent, as well as the

intervals UCRLn−1 = f−1
R

◦ f
−(n−1)
L (IC) and UCRLn = f−1

R
◦ f−n

L
(IC) and the union

IC ∪

(
∞⋃

n=1

f−n
L

(IC)

)
∪

(
∞⋃

n=1

f−1
R

◦ f
−(n−1)
L (IC)

)
(23)

covers the complete interval β ∈ (0, 1). This proves that no other stable periodic orbits are possible in the con-
sidered range for α. Hence, as a final result we can state that the overall set of symbolic sequences corresponding
to periodic orbits existing for 1/2 < α < α1 is given by

L0 =
{
CRkLn | k ∈ {0, 1}, n ≥ 0

}
(24)

as illustrated in Fig. 4.

2. Bifurcation Structure for α ≤ α∞

2.1. Period doubling cascade of unstable orbits

Recall that at α = α⋆ we observed not only stable periodic orbits corresponding to all possible symbolic
sequences but also an infinite set of Milnor attractors (see §1.2) existing for β ∈ M . Therefore, it is natural to
ask at which values α < α⋆ these Milnor attractors emerge. To clarify this question one has to recall that these
attractors are given by unstable orbits of the discontinuous flat top tent map. Since these orbits contain only
points located on the partitions IL and IR, they are identical with the corresponding orbits of the usual tent
map (2). Therefore, let us recall some well-known facts regarding the tent map and interpret them with respect
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to the explanation of the occurrence of unstable orbits (and hence the Milnor attractors) of the discontinuous
flat top tent map.

Recall that for α < 1/2 the tent map has a globally attracting fixed point at the origin. At α = 1/2 it becomes
unstable via a degenerate transcritical bifurcation [16], and an infinite number of unstable orbits emerge, namely
the fixed point Oσ1 with

σ1 := R

as well as the periodic orbits Oσk with periods 2k, k = 1, 2, 3, . . . , and symbolic sequences

σ2 := LR,

σ3 := RRLR,

σ4 := LRLRRRLR,

σ5 := RRLRRRLRLRLRRRLR,

σ6 := LRLRRRLRLRLRRRLRRRLRRRLRLRLRRRLR,

. . .

(25)

Note that the same family of symbolic sequences describes also the orbits of the logistic map xn+1 = αxn(1−xn),
forming the first period doubling cascade6. A rule how to create these sequences is described already in [12].
Alternatively, it is also possible to create these sequences starting with σ1 := R and applying recursively the
replacement

σi

L 7→ RR
R 7→ LR

−−−−−−−−−→ σi+1 (26)

In this way, each next symbolic sequence in the family is created by replacement of each letter L (or R,
respectively) by the syllable RR (LR) in the previous one, so that the overall length of the sequence is doubled
in each step. The advantage of this technique is not only that it reflects the self-similarity of the underlying
mechanism, but also that it allows an analytical calculation of the points of the corresponding orbits, as described
in [3].

Recall that in the tent map immediately after the bifurcation occurring at α = 1/2 all the orbits Oσi ,
i = 1, . . . ,∞ are located close to the point x = 1

2 . Therefore, for the discontinuous flat top tent map all of them

are virtual7 and do not (yet) exist as long as α is (still) close to 1/2. However, with increasing α the orbits grow
and move away from x = 1/2 becoming, one after another, real (non-virtual). As an example, Fig. 7 shows
the first three unstable orbits from the sequence mentioned above: the fixed point Oσ1 , the period-2 orbit Oσ2

and the period-4 orbit Oσ3 . As one can see, the orbits emerge at α = 1/2 at the boundary x = 1/2 and leave
the middle interval ((1− γ)/2, (1 + γ)/2) at the parameter values α1, α2, α3, respectively. At these parameter
values they become also real orbits of the discontinuous flat top tent map. Therefore, the discontinuous flat top
tent map shows some remarkable similarity not only with the tent map but also with the logistic map:
◦ Similar to both the logistic and the tent map, the discontinuous flat top tent map shows a sequence of orbits
corresponding to the sequences σi, i = 1, . . . ,∞.

6When dealing with the logistic map, the application of symbolic dynamics for the description of an orbit requires some more
comments. One possible way used by many researchers is to define the partitions associated with the letters L and R on the left

and on the right of the maximum point x = 1/2. In this case the problem arises that the symbolic description of an orbit changes
at the parameter value for which the orbit contains the point x = 1/2. A possible solution of this problem is to define the symbolic

sequence associated with an orbit after this crossing of the partition boundary, or generally for α ≥ 4. The sequences given in
Eq. (25) are defined in this way.

7Recall that when dealing with piecewise-smooth systems it is common to denote an orbit as virtual if it contains points located
in a “wrong” partition, that means a partition where the corresponding function is not applicable.
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Figure 7. Bifurcation diagram of the usual tent map (2) and the unstable orbits Oσ1 (fixed
point), Oσ2 (period 2), Oσ3 (period 4). As long as some points of an orbit are located in the
interval [(1− γ)/2, (1 + γ)/2], the orbit is virtual for the discontinuous flat top tent map. The
parameter values αi, i = 1, 2, 3 are shown, where the orbits Oσi appear in the discontinuous
flat top tent map.

◦ Similar to the logistic map (and by contrast to the tent map) these orbits emerge via a sequence of bifurcations
and not via one bifurcation. As in the case of a period doubling cascade, for each i, the orbit corresponding to
the sequence σi emerges at the parameter value αi < αi+1, and the sequence of these bifurcations converges
to a value α∞. However, by contrast to the logistic map, the cascade is formed not by flip bifurcations but
by border collision bifurcations.

◦ Similar to the tent map (and by contrast to the logistic map) these orbits are everywhere unstable.
Note also that since the orbits Oσi , i = 1, . . . ,∞ are located on the partitions IL and IR only (as any other

unstable periodic orbit of the discontinuous flat top tent map), their existence regions Pσi do not depend on β:

Pσi = {(α, β) | α > αi} (27)

2.2. Fixed point Oσ1 as a Milnor attractor

Let us consider first the situation close to α = α1 (see Eq. (19)), where the fixed point Oσ1 reaches the
partition IR and becomes real. Then, by setting the value β to this unstable fixed point or to one of its
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preimages one guarantees that a typical initial value x0 ∈ S̃ after reaching the middle partition IC is mapped
either directly or after some number of steps to xσ1 , and hence for these values of β the unstable fixed point
Oσ1 represents a Milnor attractor8. An example for this situation is shown in Fig. 8. As one can see in this
figure, a trajectory started at an arbitrary chosen initial value x0 6= xσ1 reaches after some number of iterations
the middle partition IC. After that the particular choice of the initial value does not play any role and the
remaining part of the trajectory is determined by the value of β only. In the presented example this value is
set to one of the rank-5 preimages of the unstable fixed point Oσ1 and hence for any initial value the trajectory
will be mapped onto this fixed point in five steps after the point located in the middle partition, that means
xk ∈ IC implies xk+5 = xσ1 .

For a given value of α, the corresponding set of β values is denoted in the following as

Bσ1(α) :=
{
β
∣∣ ∃k ≥ 0 : fk(β) = xσ1

}
(28)

For a fixed α, the set Bσ1 is a set of points, and in the (α, β) parameter plane it forms a set of curves, as shown
in Fig. 9. As one can see, these curves represent the limiting values of the nested period incrementing cascades
(for example, of all nested cascades in the scenario shown in Fig. 2b). In order to explain that, we need to
extend our notation. Let us introduce first the set of the values of β which are mapped to Oσ1 in exact k steps:

Bk
σ1(α) :=

{
β
∣∣ fk(β) = xσ1 , and 6 ∃j < k : f j(β) = xσ1

}
(29)

Obviously, the set Bσ1(α) introduced before is simply given by Bσ1(α) =
⋃∞

k=0 B
k
σ1(α). It is clear that for any

value of α > α1 the set B0
σ1(α) contains only one point β = xσ1 . Similarly, B1

σ1(α) contains also only one point

β = f−1
L

(xσ1) = 1/2 − xσ1 (the only rank-1 preimage of xσ1). By contrast, already the set B2
σ1 contains more

values, namely the two rank-2 preimages of Oσ1 , given by β = f−1
L

◦ f−1
L

(xσ1) and β = f−1
R

◦ f−1
L

(xσ1). For

the next set, B3
σ1(α), we can state that close to α1 it contains only two values β = f−1

L
◦ f−1

L
◦ f−1

L
(xσ1) and

β = f−1
R

◦ f−1
L

◦ f−1
L

(xσ1) but for increasing values of α further preimages appear and enlarge the number of
elements in this set. In order to distinguish between these preimages (and to have a unique notation for each
curve in the (α, β)-plane), let us specify the path ̺ = ̺0̺1 . . . ̺k−1 of minimal length k leading from the middle
partition to Oσ1 :

B̺

σ1(α) := {β | f̺k−1
◦ f̺k−2

◦ · · · ◦ f̺0
(β) = xσ1 and 6 ∃j < k : f̺j−1

◦ f̺j−2
◦ · · · ◦ f̺0

(β) = xσ1 ,

̺i ∈ {L,R}, i = 0..k − 1}
(30)

In the examples above we have B0
σ1(α) = Bε

σ1(α) = xσ1 , B1
σ1(α) = BL

σ1(α), B2
σ1(α) = BLL

σ1 (α) ∪ BRL

σ1 (α), and
so on. Moreover (see also Fig. 9), close to α1 we can easily demonstrate that for any k > 1 the fixed point Oσ1

has exactly two rank-k preimages:

Bk
σ1(α) = BL

k

σ1 (α) ∪BRL
k−1

σ1 (α). (31)

Indeed, the fixed point Oσ1 has an infinite sequence of preimages on the left side, accumulating to the unstable
fixed point OL. Each of these preimages has additionally one preimage on the right side, which however, do
not have any further preimages, as shown in §1.4.

All other paths from the middle partition to the unstable fixed point emerge at homoclinic bifurcations which
occur for larger values of α (see §2.4 for details). In Fig. 9 the curves corresponding to paths of length k ≤ 7
are marked. As one can see, the number of these curves increases for α → α⋆. Moreover, at the value α = α⋆

we can state that every symbolic sequence which ends with L represents a possible path ̺ = ̺0̺1 . . . ̺k−1 from
the middle partition to the unstable fixed point:

Bk
σ1(α⋆) =

{
B̺

σ1(α
⋆) | ̺i ∈ {L,R}, i = 0..k − 2, ̺k−1 = L

}
(32)

8Note that in the following we use the notation O
σ1 for the fixed point and the notation x

σ1 for its value. This may look
unnecessary and misleading, since clearly O

σ1 = {x
σ1}. The notation is used for unification of the expressions for any periods,

since for the period-2 orbit we have O
σ2 = {x0

σ2 , x
1
σ2}, for the period-4 orbit we have O

σ3 = {x0
σ3 , . . . , x

3
σ3}, and so on.
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Figure 8. a) A trajectory at a = 0.7, β = BRL
4

σ1 (α) ≈ 0.89152 converges to the unstable fixed
point Oσ1 which represents in this case a Milnor attractor. In b) this point in the parameter
plane (α, β) is marked with a cross.

with k > 1. The fact that the last symbol in the sequence ̺ must be an L is easily explained, since it correspond
to the rank-1 preimage of the fixed point, and the only rank-1 preimage of the fixed point is located in the
left partition. All other symbols may be both L and R, since for α = α⋆ the discontinuous flat top tent map
is surjective onto [0, 1], and therefore any preimage of the fixed point OR has both a preimage in IL and a
preimage in IR.

Now we can begin establishing the connection between stable and unstable orbits of the discontinuous flat
top tent map existing at a particular value α < α∞. As we have shown in the previous section, all orbits
corresponding to the sequences from the set L0 (as defined in §1.4) persist for α ≥ α1, but additionally an
infinite number of nested cascades emerges and the set of symbolic sequences corresponding to the orbits
forming these cascades is given by

L1 = {̺Rn | ̺ ∈ L0, n > 0} . (33)

More precisely, the situation around the value α1 can be described as follows. For α < α1 there exist only orbits
corresponding to sequences ̺ ∈ L0. After the unstable fixed point Oσ1 appears at α1, each region corresponding
to an orbit with a symbolic sequence ̺ ∈ L0 becomes augmented to one side by two cascades formed by the
orbits with the symbolic sequence

{
̺(σ1)2n | n > 0

}
and

{
̺(σ1)2n−1 | n > 0

}
. (34)

For n going to infinity each of these cascades converge to the parameter value B̺

σ1 . The mechanism causing
these cascades to emerge is explained below, in §2.3.

Schematically this structure is shown in Fig. 10. For α < α̃ the existence regions P̺ and P̺′ of the stable
orbits O̺ and O̺′ (shown in different shades of gray) are adjacent in parameter space. At α = α̃ the unstable
orbit Oσ̃ emerges (in the case σ̃ = σ1 we have of course α̃ = α1, but the situation is structurally the same
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Figure 9. Black curves show the sets Bk
σ1 with k ≤ 7 of parameter values where the unstable

fixed point Oσ1 represents a Milnor attractor. Labeled are the curves from the sets Bk
σ1 with

k ≤ 5. The value ᾱ1 refers to a homoclinic bifurcation after which a non-critical homoclinic
orbit to the unstable fixed point emerges (see §2.4).
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Figure 10. Schematic representation of the bifurcation structure close to the value α̃ where
the unstable periodic orbit Oσ̃ emerges. For details see text.

for any other σ̃ as well) and the regions P̺ and P̺′ become separated by two period incrementing cascades
converging to the curve in the parameter space where the unstable orbit Oσ̃ represents a Milnor attractor.

Note also that we can compare now the nested period incrementing scenario with the well-known period
adding scenario, where the periods of stable orbits are organized in the way that between the existence regions
of orbits with the periods p1 and p2 there exists a region with the period p1 + p2, and the rotation numbers of
all periodic orbits form the well-known Farey-tree. In fact, comparing the bifurcation structures in both cases
(especially in 2D parameter spaces), one can see that they are amazingly similar. Both scenarios are self-similar
and have an infinite number of accumulation points. However, there exists a significant difference between both
scenarios (apart the trivial one, namely that the rules how the periodicity regions are located with respect to
each other are different). Indeed, in the period-adding scenario the behavior at the accumulation points is
known to be quasi-periodic. This seems to be quite natural, as a sequence of increasing periods converges to
the “infinite period” in this case. In the case of the discontinuous flat top tent map the situation is different. At
the accumulation point the behavior is given not by a quasi-periodic trajectory but by a Milnor attractor which
can be given by any unstable periodic orbit. In the case we considered above (close to α1) this Milnor attractor
is given by a fixed point so that the cascades of increasing periods converge to a value where the period of the
attractor is one.

2.3. Connection between stable and unstable orbits

Let us now reconsider the situation before and after the bifurcation line α = α1 in the (α, β) parameter plane
from a more general perspective. As we have seen, there are three facts which we have to connect to each other:
(1) Before the bifurcation line there exists a set of stable periodic orbits. In the case we considered so far, the

symbolic sequences of these orbits are ̺ ∈ L0.
(2) At the bifurcation line an unstable orbit with the symbolic sequence σ emerges. In the case we considered

so far, this unstable orbit is the fixed point Oσ1 .
(3) After the bifurcation line a set of stable periodic orbits exists, whereby the symbolic sequences of the orbits

emerging at the bifurcation point can be written as L1 = {̺σn, n ≥ 1}.
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Figure 11. Stable periodic orbits close before and close after the bifurcation point α = α1.
The insets show the situations in a small interval (of the size 1.5 · 10−3) close to the right
boundary of the middle partition. In (a), at α = 0.61 < α1 β = 0.7547, there is the stable
orbit O̺ with ̺ = CRL3, whereas the unstable fixed point Oσ1 is still virtual. In (b), at
α = 0.6119 > α1, β = 0.753277, the unstable fixed point Oσ1 exists, and the stable orbit is
O̺(σ1)6 ≡ OCRL3R6 .

In other words, the symbolic sequences of the stable orbits emerging at the bifurcation point can be created by

taking all symbolic sequences of the stable orbits existing before the bifurcation and appending to each of them

a suffix defined by the symbolic sequence of the unstable orbit emerging at the bifurcation point, repeated an

arbitrary number of times. In the following we will demonstrate that the described situation occurs not only
at the point α1 but at any bifurcation value where an unstable orbit appears. Moreover, the same situation
happens not only when a “new” unstable orbit appears, but also when an already existing unstable orbit
undergoes a homoclinic bifurcation. At these bifurcations (see for an example the point α = ᾱ1 in Fig. 9) new
preimages of an already existing unstable orbit appear, and also new incrementing cascades converging to the
Milnor attractor given by the “old” unstable orbit. In the present work we are not demonstrating the complete
proof in all details, but restrict ourselves to the basic idea of the proof only.

Consider some stable periodic orbit O̺ at a fixed value α := α−1 = α1−ε, slightly before the bifurcation. The
interval [β ̺

min, β
̺
max] of the values of β for which this orbit exists is bounded by two border collision bifurcations.

For simplicity, let us further exclude from consideration the only stable orbit OCR which does not contain any
point in the left partition. The final results for this orbit will be the same, but the reasoning is slightly different.
Under this assumption, we can state that the last symbol in ̺ is L.

Consider now the situation when an unstable orbit Oσ of the discontinuous flat top tent map emerges. As
already mentioned, all these orbits consist of points located on the left and on the right partitions only, and
hence are identical with the orbits of the usual tent map with the additional condition that all points of the
orbit have already left the interval [(1 − γ)/2, (1 + γ)/2]. For the tent map we know that any unstable orbit
(in fact: any periodic orbit except the unstable fixed point OL) emerges with all points located close to the
boundary x = 1/2. Then, for increasing α, the points move away from x = 1/2 and leave – one after another
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Figure 12. In a) the bifurcation structure in the (α, β) parameter plane is shown close
to the bifurcation line α = α1 where the unstable fixed point Oσ1 emerges (cmp. schematic
representation in Fig. 10). The points marked with A and B correspond to Figs.11a and 11b,
respectively. In (b) and (c) the bifurcation and the period diagram, respectively, are shown,
for the 1D bifurcation scenario occurring at α = 0.6125, along the vertical dashed line marked
in a). The inset in the bifurcation diagram (b) shows the marked rectangle enlarged.

– the interval [(1− γ)/2, (1 + γ)/2] (see Fig. 7 for the first three orbits in the sequence {Oσi | i = 1, 2, 3, . . .}).
As soon as the last point of the orbit Oσ has left this interval, the orbit becomes real (non-virtual) for the
discontinuous flat top tent map. Therefore we can state that at the bifurcation point where an unstable orbit
of the discontinuous flat top tent map emerges, it has a point either at (1− γ)/2 or at (1 + γ)/2 (for the orbits
in the sequence {Oσi | i = 1, 2, 3, . . .} one can easily see that the orbits with odd i emerge with a point located
at the right boundary (1 + γ)/2, and the orbits with even i emerge with a point located at the left boundary
(1− γ)/2).

Fig. 11a illustrates the situation for α = α−1 . As one can see in the inset showing the situation close to the
right boundary of the middle partition, the unstable fixed point Oσ1 is still not emerged, and the attractor
is given by the stable orbit O̺ with ̺ = CRL3. Let us denote the point of this orbit located in the middle
partition by x̺

0 and then let us define the iterated function

f̺(x) := f̺n
◦ f̺n−1

◦ · · · ◦ f̺1

(
fC(x)︸ ︷︷ ︸

β

)
(35)
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Clearly, for α < α1 the function f̺ maps the point x̺
0 onto itself. However, after the bifurcation the situation

changes. Therefore, let us consider the situation for a value α = α+1 := α1 + ε slightly above the bifurcation
point α1. As shown in Fig. 11b, the fixed point Oσ1 exists already, and there exists also a small interval between
this fixed point and the partition boundary 1+γ

2 .
Let us now consider again the effect of the function f̺ on a point located in the middle partition close to

its boundary. Clearly, the fact that an unstable fixed point Oσ1 has appeared does not influence directly the
existence of the stable orbit O̺: Changing α from α−1 to α+1 we observe that the interval [β ̺

min, β
̺
max] is only

slightly shifted. Hence, for α+1 we can slightly change β so that the situation remains unchanged: the function
f̺ still maps the point x̺

0 onto itself. However, when changing β further, across the boundary of the interval
[β̺

min, β
̺
max], the situation changes: The point x̺

0 will be mapped by f̺ on the opposite side of the partition
boundary (1 + γ)/2, that means on some point in the interval between (1 + γ)/2 and the unstable fixed point
Oσ1 mentioned above. Moreover, varying β we can put the point f̺(x

̺
0) arbitrarily close to this fixed point or

directly onto it. Clearly, in the last case we have f̺(x
̺
0) = xσ1 and the fixed point becomes a Milnor attractor.

By contrast, in the first case the orbit will perform some number of rotations around the fixed point Oσ1 . As
the fixed point is unstable, the orbit will rotate to the outside and will necessarily reach the middle partition
where the orbit becomes periodic. Furthermore, the orbit is locally confined to the neighborhood of Oσ1 , as
f2
R

(
(1 + γ)/2

)
> (1− γ)/2 at α = α+

1 , which means that the orbit cannot go from the swirl directly to the left

partition9. The symbolic sequence corresponding to this stable periodic orbit is ̺(σ1)
n with an even number n,

since each rotation around Oσ1 means two iteration steps. It is easy to see that starting the rotations arbitrarily
close to Oσ1 an arbitrary number of rotations can be achieved, so that all the orbits with the point f̺(x

̺
0) located

in the interval between (1 + γ)/2 and the unstable fixed point Oσ1 form the period incrementing cascade with
the increment value two (corresponding to a complete additional rotation). Moreover, when the orbit is injected
into the swirl on the other side of Oσ1 , the effect will be the same, except that the symbolic sequences of the
resulting periodic orbits are ̺(σ1)

n with any odd number n, i.e., performing an extra half rotation.
Note that for any n the bifurcation curves bounding the existing regions of the orbits O̺(σ1)n forming both

cascades with even and with odd n converge to a point at the line α = α1 (see for an example Fig.12a). This
can be easily seen because for α approaching α1 from the right side the interval between the partition boundary
(1+γ)/2 and the unstable fixed point Oσ1 shrinks to zero10. Therefore, at the line α = α1 there exist an infinite
number (one for every ̺) of codimension-2 points (big bang bifurcation points) where an infinite number of
border collision bifurcation curves are issuing from.

The described situation is illustrated in Fig.12. As one can see in Fig.12a, for α < α1 there exist only
the orbits OCRL2 and OCRL3 in the considered region of the parameter space. At α = α1 the complexity of
the bifurcation structure increases and two period incrementing cascades appear, both converging to the value

β = BCRL
2

σ1 . As one can see in the bifurcation diagram shown in Fig.12b, the cascade located more close to the
region PCRL2 is formed by the orbits corresponding to the symbolic sequences CRL2R2n, and the other cascade
by the orbits corresponding to the symbolic sequences CRL2R2n+1.

It is worth to note that the same reasoning can be applied not only for the fixed point Oσ1 but for any other
unstable periodic orbit. Of course, if an unstable orbit emerges with a point on the left boundary (1− γ)/2, as
for example the period-2 orbit Oσ2 , we have to consider the situation close to that boundary. In this case, also
the location of the even/odd cascades with respect to B̺

σ is switched. This is also the case (independently of
σ) each time ̺ has odd R-parity.

Nevertheless, we can state as a final result that the appearance of any unstable periodic orbit Oσ at some
value α = α̃ implies also the appearance of an infinite number of stable periodic orbits O̺σn for any n and for
any ̺ for which the stable orbit O̺ exists for α < α̃. For each fixed ̺ these orbits are organized in two period
incrementing cascades (one with odd and one with even n), converging to the same value of β. At this value

9This will be possible for α > ᾱ1, that means if there exists a non-critical homoclinic orbit to the fixed point O
σ1 , as explained

in §2.4.
10For the cascade formed by the orbits O̺(σ1)n with an odd n this interval is relevant too, as it contains the point fR(f̺(x

̺

0)).
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the trajectories of the discontinuous flat top tent map converge to the Milnor attractor given by the unstable
orbit Oσ.

2.4. Stable and unstable sets of the fixed point Oσ1

It is worth to note also the following peculiarity of the discontinuous flat top tent map. As one can easily
see, the unstable set of the unstable fixed point Oσ1 contains at least the interval

I =

[
f2
R

(
1 + γ

2

)
, fR

(
1 + γ

2

)]
(36)

independently on the value of β. Additionally, note that the interval I intersects the middle partition IC, and
therefore the unstable set of Oσ1 depends on the value β on this interval. Clearly, any orbit started close to
the unstable fixed point Oσ1 will reach the middle partition, and then if β ∈ I it will remain inside I. Hence,
for β ∈ I, the unstable set Wu(Oσ1) is identical with I, as shown in Fig. 13a. Otherwise11, it contains also the
forward orbit of IC, which is of course a set of points:

Wu(Oσ1) =





I if β ∈ I

I ∪
∞⋃

n=0
fn(β) if β 6∈ I

(37)

An example for this situation is shown in Fig. 13b. At the parameter values used in this figure, the attractor
of the discontinuous flat top tent map is given by the orbit OCRL3 , which becomes therefore included into the
the unstable set Wu(Oσ1).

The situation with the stable set W s(Oσ1) of the unstable fixed point Oσ1 is also dependent on β, but in
a different manner. If Oσ1 does not represent a Milnor attractor, that means β 6∈ Bσ1 , then W s(Oσ1) is only
a set of points, which are mapped onto Oσ1 after some number of iteration steps (as it is usual for stable sets
of unstable orbits). By contrast to this, for β ∈ Bσ1 it is not difficult to see that the stable set W s(Oσ1) is
no longer a set of points but a mixed set containing points and intervals. Indeed, calculating the preimages of
Oσ1 (in other words, staring with Oσ1 and going backward) one reaches after some number of steps the middle
partition IC and after that all the preimages of IC must be considered. Therefore, if β ∈ B̺

σ1 then the stable
set W s(Oσ1) can be written as

W s(Oσ1) =

(
m⋃

i=0

f i(β)

)

︸ ︷︷ ︸
(P )

∪

(
∞⋃

i=0

f−i(IC)

)

︸ ︷︷ ︸
(I)

with m = |̺|. (38)

Hereby the set (P ) is a set of points, whereas the set (I) consist of intervals (preimages of the middle partition
IC). Moreover, note that in general the remaining set [0, 1] \W s(Oσ1) can contain other unstable orbits of the
discontinuous flat top tent map and their preimages, but since close to α1 no other unstable orbits are possible,
we conclude that in this case we have simply W s(Oσ1) = (0, 1). Hence, for β ∈ Bσ1 we have a non-empty
intersection

Wu(Oσ1) ∩W s(Oσ1) = Wu(Oσ1) ∩ (0, 1) = Wu(Oσ1) 6= ∅ (39)

and therefore there exists a homoclinic orbit to the the unstable fixed point Oσ1 .
At this point it is worth to note the one more property of the discontinuous flat top tent map. Recall that the

presence of a homoclinic orbit to an unstable fixed point (or an unstable cycle) is typically associated with the

11Of course, Eq. (37) can also be written simply as Wu(O
σ1 ) = I ∪

⋃
∞

n=0 f
n(β), since in the case β ∈ I the forward orbit of IC

is a subset of I. Nevertheless, we prefer to distinguish between the cases β ∈ I and β 6∈ I, because in the first case the unstable set
of an unstable fixed point is given simply by an interval (as it is usually the case), whereas in the second case it represents a mixed
set containing an interval and a set of points. This last situation represents a peculiarity of maps with a horizontal part.
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Figure 13. Unstable set Wu(Oσ1) of the unstable fixed point Oσ1 for a = 0.85 (shown black
on the horizontal axis). In a) β = 0.67 ∈ I, therefore Wu(Oσ1) is given by the interval I only.
In (b) β = 0.95 6∈ I, therefore Wu(Oσ1) contains additionally four singular points outside of
the interval I.

presence of an infinite number of further unstable orbits and chaos (either a chaotic attractor or at least a chaotic
repeller). However, as shown in [6], this is true only if the homoclinic orbit is non-critical (structural stable).
It is also shown in the cited work, that in the case of a critical (structural unstable) homoclinic orbit both
situations are possible: chaos may exist or not exist. As one can see, the homoclinic orbits of the discontinuous
flat top tent map containing a point in the middle partition (see Fig. 14b for an example) are critical, since any
perturbation of β leads the homoclinic orbit to disappear. In this case, neither a chaotic attractor nor a chaotic
repeller is possible, as the unstable fixed point Oσ1 is a Milnor attractor and its basin covers the complete
interval ]0, 1[.

For increasing values of α also homoclinic orbits to the unstable fixed point Oσ1 appear, containing points
on the left and on the right partitions only (and consequently representing homoclinic orbits also for the tent
map). For the first time this happens at the parameter value ᾱ defined by the condition

fL

(
fR

(
fR

(
1 + γ

2

)))
= xσ1 . (40)

Fig. 14a shows a homoclinic orbit to the unstable fixed point Oσ1 close to this value. At the parameter value
α = ᾱ the homoclinic orbit is critical (indeed, for decreasing α the orbit disappears), but associated with the
presence of a chaotic repeller, as we will see in §2.5. For α > ᾱ this homoclinic orbits is non-critical and therefore
the chaotic repeller exists for any α > ᾱ and for any β (since the value of β plays no role for the orbits which
do not contain any points on the middle partition).

2.5. Period-2 orbit Oσ2 as a Milnor attractor and the further cascade up to α∞

The situation described above close to α1 persists until the unstable period-2 orbit Oσ2 = {x0
σ2 , x1

σ2} appears
(becomes non-virtual). This occurs at the parameter value α2 which is defined by the condition fR(fL((1 −



152 ESAIM: PROCEEDINGS

Figure 14. Homoclinic orbits to the unstable fixed point Oσ1 . In (a), the homoclinic orbit is
located on the partitions IL and IR only, the orbit is non-critical, and therefore the situation is
as usual (the unstable fixed point Oσ1 represents a snap-back repeller, and the presence of the
homoclinic orbit is associated with chaos). In (b) the homoclinic orbit is critical (as it contains
a point located on the middle partition IC), and therefore the situation is different (the unstable
fixed point Oσ1 represents a Milnor attractor, and the presence of the homoclinic orbit is not
associated with chaos). Parameters: a = 0.9 (a), a = 0.7 (b), β ≈ 0.89152.

γ)/2)) = (1− γ)/2 and given by

α2 =
1 +

√
2γ − γ2

2(1− γ)
. (41)

At this point the complexity of the bifurcation structure increases again. The set L2 of the symbolic sequences
of the orbits emerging at the point α2 can be written as

L2 =
{
̺(σ2)n | ̺ ∈ L1, n ≥ 0

}
. (42)

An example for the situation close to α = α2 is shown in Fig. 15. In the presented region, for α < α2 only
the orbits OCRL4R and OCRL4R3 exist and their existence regions are adjoining. For α > α2, that means
when the unstable period-2 orbit Oσ2 exists, between these existence regions two period incrementing cascade
appear, formed by the families of orbits OCRL4R3(LR)2n and OCRL4R3(LR)2n+1 . Similar cascades appear at
α = α2 between each pair of periodicity regions which are adjoining for α < α2, so that the situation remains
qualitatively the same as shown schematically in Fig 10, with σ = σ2 and α̃ = α2. At the parameter values
where the period incrementing cascades converge to, the unstable orbit Oσ2 becomes a Milnor attractor in
the same way as it was described above for the unstable fixed point Oσ1 . The parameter values where Oσ2

represents a Milnor attractor are defined by the condition that the value of β is set to one of the points of this
orbit or to some of their preimages:

Bσ2(α) :=
{
β
∣∣ ∃k ≥ 0 : fk(β) ∈

{
x0
σ2 , x1

σ2

}}
(43)
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Figure 15. A small region in the (α, β) parameter plane is shown close to the bifurcation line
α = α2 where the unstable period-2 orbit Oσ2 emerges. The quadrilateral region (parallelo-
gram) marked with dashed lines is shown enlarged.

Note that the set Bσ2(α) contains all accumulation points of the nested period incrementing cascades which
are shown in Fig. 2c except for those which were already present in Fig. 2b. Indeed, as one can see in Fig. 3,
the parameter value α = 0.85 used in Fig. 2c is above the value α2 but still below the value α3 where the next
unstable orbit with period 4 appears.

Similarly to the previous case we can also define the sets of parameters for which the path from the middle
partition to the Milnor attractor given by the unstable orbit Oσ2 is of length k

Bk
σ2(α) := Bk,0

σ2 (α) ∪Bk,1
σ2 (α) with

Bk,n

σ2 (α) :=
{
β
∣∣ fk(β) = xn

σ2 , and 6 ∃j < k : f j(β) = xn
σ2 , n = 0, 1

}
.

(44)

As an example, in Fig. 16 the sets Bk
σ2 for k ≤ 7 are shown. As one can see, some of the curves belonging to

these sets emerge at the value α = α2, whereas the other values emerge for larger values of α.
There exist also some minor differences to the previous case, but they are not significant. One difference is

that the unstable orbit Oσ2 is not the only unstable object existing for α > α2, and hence its stable set W s(Oσ2)
is not the complete interval ]0, 1[ but the set ]0, 1[\W s(Oσ1). However, for a given value of α the same value of
β can not belong to both Bσ1(α) and Bσ2(α), or in other words β ∈ Bσ2(α) implies β 6∈ Bσ1(α). Therefore, for
β ∈ Bσ2(α) the set W s(Oσ1) consists of points and hence the stable set W s(Oσ2) covers the interval ]0, 1[ up
to a set of the zero Lebesgue measure. As a consequence, for β ∈ Bσ2(α) and α close to α2 there exist critical
homoclinic orbits to the period-2 orbit Oσ2 , similarly to the previous case not associated with chaos.

For increasing α, the unstable orbits Oσk with periods 2k with k = 0, 1, 2, 3 . . . appear one after the other at
the parameter values α1 < α2 < α3 < α4 < . . . At the ith bifurcation in this sequence a family of orbits

Li =
{
̺(σi)n | ̺ ∈ Li−1, n ≥ 0

}
(45)

emerges, so that the overall set of orbits existing after the bifurcation is given by
⋃i

k=0 Lk. For each ̺ ∈ Li−1

the incrementing cascade formed by orbits with the symbolic sequences ̺(σi)n converges to the parameter value
where the orbit with the symbolic sequence σi represents a Milnor attractor.

The sequence of bifurcation points αi, with i = 1, 2, 3 . . . accumulates at the so-called Feigenbaum point α∞.
An approximation for this value can be found numerically by calculating values αi up to some number k which
do not need to be large. In fact, we found out that already for k = 7 the difference α7−α6 is less than 10−15, so
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Figure 16. Black curves shows the sets Bk
σ2 with k ≤ 7 of the parameter values where the

unstable period-2 Oσ2 represents a Milnor attractor.
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that we can consider the value α7 ≈ 0.85733979614229 as a good approximation for α∞. Similar to the logistic
map, for α > α∞ there exists a chaotic repeller, so that at the bifurcation points ᾱi+1 < ᾱi < · · · < ᾱ1 the
corresponding orbits Oσi+1 , Oσi , . . . , Oσ1 are critical homoclinic and associated with chaos.

Combining Eqs. (24), (33), (42), (45), we can state as a final result that the set of all stable periodic orbits
existing for αm < α ≤ αm+1 correspond to the following set of symbolic sequences:

{
CRkLn0(σ1)n1(σ2)n2 . . . (σm)nm | k ∈ {0, 1}, ni ≥ 0, i = 0, . . . ,m

}
. (46)

Hence, for m → ∞ we obtain the set of all stable periodic orbits which emerge for α < α∞. Of course, all these
orbits persist for α ≥ α∞.

2.6. Fixed point OL as a Milnor attractor

It is remarkable that in Eq. (46) the first letter R requires a special treatment. Indeed, this letter can appear
zero or one times (in other words, it can appear once or not appear at all) whereas all other subsequences
(L, σ1, . . . , σm) can appear an arbitrary number of times. To explain that, let us turn back to the situation
for 1/2 < α < α1 discussed before. It turns out that the two cascades existing in these parameter range can
easily be explained in the same manner as we explained the situation in the complete cascade occurring for
α1 < α < α∞. Recall that the unstable fixed point OR ≡ Oσ1

we discussed in detail before is not the only fixed
point of the discontinuous flat top tent map. By contrast, there exists also the fixed point OL which is stable
for α < 1/2 and unstable for α > 1/2. Then, by using a suitable value of β, this unstable fixed point may be
made to a Milnor attractor. The only difference to the other fixed point regards the number of preimages. It
is easy to see that for any 1/2 < α < α⋆ the fixed point OL has only one rank-1 preimage different from itself
and no preimages of any higher ranks:

B0
L(α) = Bε

L(α) = {0}, B1
L(α) = BR

L (α) = {1}, ∀k > 1 : Bk
L(α) = ∅. (47)

Therefore, for any 1/2 < α < α⋆ the fixed point OL represents a Milnor attractor for β = 0 and β = 1.
Moreover, the set L0 of symbolic sequences of the stable orbits which emerge at α = 1/2 (see Eq. (24)) can
be written again as {C̺(σ)n | n ≥ 0} where σ = L is the symbolic sequence of the Milnor attractor OL and
̺ ∈ {ε,R} for α < α⋆ are the symbolic sequences of the two possible orbits leading from IC onto this Milnor
attractor.

At α = α⋆, the discontinuous flat top tent map becomes surjective onto [0, 1], which gives rise to an infinitude
of preimages of the point x = 1 corresponding to the aforementioned rank-1 preimage of the Milnor attractor OL.
Since every preimage of x = 1 has both L- and R-preimages, for all k every symbolic sequence ̺ = ̺0̺1 . . . ̺k1
which ends with R represents a possible path from the middle partition to the unstable fixed point OL and the
corresponding set of values of β at which OL becomes a Milnor attractor is given by

Bk
L(α

⋆) =
{
B̺

σ1(α
⋆) | ̺i ∈ {L,R}, i = 0..k − 2, ̺k−1 = R

}
. (48)

3. Bifurcation Structure for α > α∞

After the Feigenbaum point α = α∞ the situation becomes more rich. To explain that, let us consider again
the logistic map. For this map it is known that the stable periodic orbits are organized according the so-called
universal sequence (U-sequence for short) introduced by Metropolis, Stein and Stein in [12]. Independently, this
structure was also described by Gumowski an Mira in [9] where it was called the box-within-a-box structure.
Note that the U-sequence can not be written in a closed form but results from an algorithm which allows to
determine the symbolic sequences (“patterns”) for all super-stable periodic orbits up to a given period existing
between the existence regions of two given super-stable periodic orbits (which will be assumed to be a priori
known). It is also known for the tent map that the unstable periodic orbits in this system appear in the same
order except that the period doubling cascades in this case are compressed to one point (see for an example
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the first doubling cascade mentioned in §2.1). However, in the case of the discontinuous flat top tent map the
cascades are expanded again (see the explanation in §2.1). Therefore, the order of the appearance of unstable
periodic orbits in the discontinuous flat top tent map is the same as the order of the appearance of stable
periodic orbits in the logistic map. Recall also, that any unstable periodic orbit, once appeared at some value
α̂, persists then for any larger value α > α̂. Hence, the crucial difference between the situations before and after
α∞ is that for any α < α∞ there exists only a finite number of unstable periodic orbits, whereas for α ≥ α∞

this number is infinite. Moreover, for α > α∞ the symbolic sequences of these orbits can not be written in a
closed form. By contrast, the only way to specify them explicitly is to fix some value for the maximal period
and to generate all the sequences up to this period using the rules given by the U-sequence. Therefore, it seems
to be not possible to specify all stable orbits existing at some particular value α = α̂ > α∞. Instead, for a given
value α∞ < α̂ < α⋆ one can in principle proceed as follows.
(1) Fix some maximal period p̄. It is worth to note that this period will be not the maximal period of the

stable periodic orbits of the discontinuous flat top tent map we will determine, but an auxiliary value we
need for the calculations.

(2) Using the known rules describing the U-sequence determine all unstable periodic orbits of the tent map
with the periods not higher than p̄ existing for α < α̂.

(3) Starting with the set of stable periodic orbits defined by Eq. (46) for m → ∞ which exists at the value
α = α∞ one can proceed for α increasing from α∞ to α̂ and extend the set of stable periodic orbits at each
point where an unstable periodic orbit emerges in the same way as given by Eq. (45).

As one can see, this procedure is too complicated for a practical application, although theoretically correct.
Therefore, the algorithmic approach for determining the symbolic description of the stable periodic orbits
existing at a given value of α̂ represents the only feasible solution for α∞ < α̂ < α⋆ known so far.

A detailed investigation of the domain α∞ < α < α⋆ is beyond the scope of this work. In this parameter
interval not only new unstable periodic orbits emerge, organized according to the U-sequence, and causing new
period incrementing cascades formed by stable periodic orbits to occur, but also the unstable periodic orbits
already existing for smaller values of α undergo infinite cascades of homoclinic bifurcations. For each unstable
periodic orbit, these bifurcations occur at the parameter value where the points of this orbit get new preimages
and therefore new homoclinic orbits emerge. After the homoclinic bifurcations these homoclinic orbits are non-
critical, which implies the existence of a chaotic repeller (as chaotic attractors can not exist in the discontinuous
flat top tent map). The presence of new preimages implies also new paths from the middle partition to the
already existing unstable orbits, so that the set of the curves in the parameter space where this orbit represents
a Milnor attractor will be extended. This can clearly be seen for the unstable fixed point Oσ1 and the unstable
period-2 orbit Oσ2 in Figs.16 and 9, respectively. However, it is evident that the basic organizing principles
of the domain α > α∞ can be described combining the well-known properties of the usual tent map with the
properties of the discontinuous flat top tent map described for α < α∞.

4. Conclusions

In the presented work we investigated the discontinuous flat top tent map and demonstrated that this system
has several properties which are quite unusual and were not observed before when dealing with other dynamical
systems. Of course, the map we investigated may look quite particular and hence the question arises whether
some of our results may be useful in a more general context. In fact, the discontinuous flat top tent map belongs
to two classes of piecewise-smooth maps which were barely investigated until now, namely to the class of maps

with a constant value on some interval of their definition (denoted as maps with a horizontal part throughout
this work) and to the class of discontinuous maps defined on more than two partitions. Therefore it is evident
that some of the phenomena we reported for the discontinuous flat top tent map can have a general meaning
for these classes of maps.

We reported the following peculiarities of the discontinuous flat top tent map:
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• Both the stable and the unstable sets of unstable orbits may represent “mixed” sets containing points and
intervals. This is by contrast to the maps without a constant interval, where the stable sets of unstable orbits
represent sets of points and the unstable sets represent sets of intervals only.

• The unstable orbit of the discontinuous flat top tent map may become a Milnor attractor.
As these properties are due to the constant value in an interval of the map definition, it is evident that they
are general for maps which such a constant value. Of course, in other maps, where the value in the constant
interval can not be varied independently of other parameters, they are not necessarily fulfilled for all unstable
orbits.

Furthermore, we demonstrated the following property of the discontinuous flat top tent map:
• There exists a strong connection between the existence of stable and unstable orbits. Such kind of connection
is basically not unusual, as for instance in smooth systems a stable and an unstable orbit may appear together
via a saddle-node bifurcation. However, in the discontinuous flat top tent map the situation is more rich, and
the appearance of a single unstable orbit lead an infinite number of stable periodic orbits to appear. Moreover,
these stable orbits are organized in an infinite number of period incrementing cascades, originating from an
infinite number of codimension-2 bifurcation points (codimension-2 big bang bifurcation points). These
cascades converge to the parameter values where the only attractor of the discontinuous flat top tent map is
given by the unstable orbit mentioned above, which represents therefore a Milnor attractor.

It is still an open question for which class of maps a similar result can be obtained. It can be expected, that
not every map with a constant value on some interval will demonstrate that, since the signs of the slopes on
the left and the right partitions may be significant here. However, a convergence of the bifurcation cascades to
a value where a Milnor attractor exists may be a quite general phenomenon for maps with a constant value on
some interval.

Regarding discontinuous maps defined on more than two partitions, the following should be mentioned.
When dealing with piecewise-smooth maps defined on two partitions and assuming the system function to
be monotonous at each of the partitions, it is known that the bifurcation structures are different depending
on the fact whether the system function on the left and on the right partitions is increasing or decreasing.
Correspondingly, for maps defined on two partitions (that means, with one discontinuity) there are three possible
cases (the system function is increasing on both partitions, increasing on one partition and decreasing on the
other one, and decreasing on both partitions)

In the case of maps defined on three partitions, there are much more possible cases, and the only one of
them, for which some preliminary results are already known, is the case that the system function is increasing
on all three partitions [17]. By contrast, for the cases that the shape of the system function is according to
the configuration increasing – increasing – decreasing and increasing – decreasing – decreasing, no results are
available so far. However, the results we reported in this work for the discontinuous flat top tent map represent
in some sense a switching case (increasing – constant – decreasing) between these two configurations. Therefore
one can conclude that at least the basic organization principles of the robust orbits must be present also in the
two configurations mentioned above.
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