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Abstract. The ongoing proliferation of sensing technologies constitutes a huge po-
tential for context-aware computing. It allows selecting relevant information about
our physical environment from different sources and providers all over the globe. A
fundamental challenge is how to provide efficient access to these immense amounts
of distributed dynamic context information — particularly due to the mobility of
devices and other entities. To enable such access to current and past position in-
formation about moving objects, we propose a family of protocols (CDR, GRTS)
for efficiently tracking a moving object’s trajectory at some remote database in
real-time as well as a distributed indexing scheme (DTI) for optimized access to
trajectory data that is partitioned in space to multiple database servers. For dis-
covering context information that is relevant for the situation of an application, we
propose a powerful formalism for describing context models in a concise manner
and a tailored multidimensional data structure (SDC-Tree) for retrieving relevant
context models out of potentially millions of descriptions.

1 Introduction

Context-awareness refers to the idea that applications and systems adapt to their context of use
including location, noise, nearby devices and user habits amongst others. From the beginnings
in the 1990s, billions of sensors (cameras, satellites, smartphones, RFID readers, ...) have
been deployed all over the globe [4]. The immense amounts of data acquired by these sensors
allow creating comprehensive models of our physical environment, such as detailed roadmaps
with real-time traffic data and 3D building models.

The availability of such models constitutes a huge potential for context-aware applications
and systems. They are no longer bound to predefined sensors but can dynamically select
relevant context information from different providers. In future, millions of context models are
expected to be available from different providers [16].
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The sharing of context information poses many challenges [8]. In the last years, a number
of context management frameworks and systems have been proposed for mobile devices or
buildings with networked devices and sensors (e.g. [15, 3]). Large-scale or global scenarios,
however, require distributed approaches for context management and raise a number of new
questions. A fundamental challenge is how to provide efficient access to the immense amounts
of distributed, dynamic context information.

In the first instance, a scalable approach to discover the context models that are relevant
for the situation of an application is needed [8]. This comprises two subproblems:

1. Formally describing context models: To decide whether a context model is relevant for
the situation of an application, an adequate formalism for describing context models and
for matching these descriptions against compatible queries is needed.

2. Indexing of context model descriptions: To discover the relevant context models out of
potentially millions of descriptions, an appropriate index structure is required.

Information about the positions and movements of mobile objects — i.e. about their trajecto-
ries — is of particular importance for context-aware computing, since it may serve as index to
other context information. Therefore, moving objects databases (MODs) [6] are used in con-
text management systems to track and manage trajectory information about mobile objects.
The need to manage large numbers of trajectories in real-time raises two subproblems beyond
existing solutions:

3. Efficient real-time trajectory tracking: Many positioning systems (e.g. GPS) are based
on sensors that are attached to the moving objects and thus require transmitting the
position data over a wireless network to the MOD. To minimize storage consumption
and communication cost, efficient tracking protocols are needed that allow trading these
costs off against data accuracy.

4. Distributed indexing of space-partitioned trajectories: Managing a large number of tra-
jectories may require partitioning the data to multiple database servers. A promising
scheme is spatial partitioning as it supports scalable processing of queries about single
trajectories as well as of queries about all trajectory sections at a certain location. The
former class of queries, however, requires a distributed index structure over the partitions
of each trajectory.

Following the general layering of context management systems — from the sensors up to the
applications — we propose solutions for the third and fourth subproblems in the Sections 2
and 3, before we tackle the first two subproblems in Section 4. Finally, the paper is concluded
in Section 5 with a summary.

2 Efficient Real-Time Trajectory Tracking

Usually, a moving objects trajectory is represented as a polyline in time and space, where the
vertices are timestamped positions acquired by a positioning system [6]. Many of these systems
(including GPS) are based on sensors that are attached to the moving objects. Transmitting
and storing every sensed position, however, causes high communication costs and generally
consumes too much storage capacity. Therefore, a tracking protocol is needed that allows
trading these costs off against the accuracy of the trajectory information known to the MOD.

A simple approach to reduce the storage consumption is to transmit all sensed positions
to the MOD and to reduce the amounts of data at the server-side using line simplification



algorithms such as the Douglas-Peucker algorithm [5]. This approach, however, does not
tackle the problem of communication cost.

For tracking the current position of a moving object in real-time, various works (e.g., [19, 12])
proposed the use of dead-reckoning: With this technique, the update messages by the moving
object include a prediction function for the future movement of the object. The object does
not need to send another update as long as its locally sensed position does not impend to
deviate from the prediction by more than some accuracy bound e. The most simple but
nevertheless efficient variant is linear dead reckoning (LDR), using a linear prediction given
by a timestamped position and a velocity vector.

Dead reckoning reduces the amount of update messages significantly. Yet, it does not gen-
erate a connected polyline. Trajcevski et al. show in [17] that LDR with € = ¢/2 allows for
trajectory tracking with accuracy bound e, which is very conservative and leaves room for
significant improvement.

We propose Connection-Preserving Dead Reckoning (CDR) and Generic Remote Real-Time
Trajectory Simplification (GRTS), which compose a family of trajectory tracking protocols.
Both allow trading the communication cost and storage consumption off against a tolerated
deviation € and incorporate sensor inaccuracies and transmission delays.

2.1 Connection-Preserving Dead Reckoning

CDR is based on LDR but includes a second update condition: It causes an update not only
if the object impends to deviate from the prediction by more than e but also if the current
sensed position cannot be used as vertex for a simplified polyline. The latter case occurs if the
line segment between the position given in the last update message and the current position
(possibly) deviates by more than e from the actual movement in-between. In this case, CDR
transmits a new update message including the previously sensed position (which fulfilled both
update conditions) and a new velocity prediction. For evaluating the second update condition,
CDR keeps all sensed positions after the last update message in the sensing history S.

It can be shown, that many positions may be removed from S even before the next update
without affecting CDR’s second update condition. This optimization reduces the size of S by
49% on average, cf. [11].

Despite this optimization, the size of S is generally unbounded and thus the computing time
per sensing operation. For this reason, we propose the variant CDRy,, which limits the size
of S to a predefined parameter m. CDR,, maintains an additional floating-point variable dg
providing aggregated information about all sensed positions that could not be stored in S. The
second update condition is split into two subconditions for S and ds, correspondingly.

Extensive simulations with real GPS traces show that CDR,, with m = 500 reach the same
reduction rates as CDR, while limiting the computing time to 0.03 ms on a 3 GHz PC processor.

2.2 Generic Remote Real-Time Trajectory Simplification

GRTS separates the simplification of the past trajectory as far as possible from tracking of the
current position using LDR. Therefore, it can be realized with any line simplification algorithm.

GRTS likewise maintains a sensing history S. If the moving object impends to deviate from
the prediction by more than ¢, GRTS applies the simplification algorithm to S and adds the
vertices of the resulting simplified trajectory to the new update message. Figure 1 shows
the corresponding pseudo code. The vertices in the update message may replace vertices of a
previous update, i.e. the simplification computed by the moving object may replace an existing
section of the simplified trajectory stored by the MOD — unlike CDR, which always adds one
vertex per update message.
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GRTS implicitly divides the simplified trajectory into three parts as illustrated in Figure 2:
The stable part is stored by the MOD only. The variable part is known to the MOD and
the moving object. The predicted part is given by the prediction function of the last update
message. S comprises the sensed positions (denoted by small crosses) of the variable and
predicted part.

Two basic variants GRTS, and GRTS,, are differentiated: GRTSy limits the number of
vertices of the variable part to k, but not the size of S. Therefore, it is of theoretical interest
only.

In contrast, GRTS,, limits |[S| to a predefined parameter m. If |S| reaches m, the simpli-
fication algorithm is applied to S. The vertices of the simplification are stored for the next
update message and the sensed positions that are spanned by the first line segment of the
simplification are removed from S. Hence, GRTS,, generates a new vertex for the simplified
trajectory every m sensing operations. To alleviate this undesirable effect, we propose an
advanced variant GRTS,., using a compression technique on S. The fundamental idea of this
compression technique is to keep the results of a simplification caused by m in S, to be able to
revise and improve this simplification later on. As explained in [11], this technique also allows
to directly incorporate varying sensor inaccuracies.

2.3 Evaluation

We realized GRTSg, GRTS,,, and GRTS,,. with the optimal line simplification algorithm
by Imai and Iri [7] and a simple online heuristic which has been proposed in various works
(e.g., [13]). We abbreviate the former realizations by GRTSSpt, GRTSOP' and GRTSOP! and
the latter ones by GRTSY®, GRTSS®, and GRTSSC.

In simulations with more than 330 hours of real GPS traces, we compared the GRTS real-
izations to the CDR variants, to the existing trajectory tracking approach based on LDR with
¢ = ¢/2 (LDRH) as well as to the optimal line simplification algorithm (Ref®P") by Imai and
Iri and the Douglas-Peucker algorithm (Ref®).

Figure 3 shows the reduction rate —i.e. the number of sensed positions divided by the number
of vertices of the simplified trajectory — depending on €. The reduction rate of CDR,with
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Figure 3: Comparison of reduc-

tion rates. Figure 4: Skip list and DTL.

m = 500 (or CDR) is at least twice the reduction rate of LDRH. All GRTS realizations
(with m = 500) again outperform the CDR variants by at least factor 2.7. This confirms
the importance of separating tracking of the current position from simplification of the past
trajectory.

Moreover, the GRTS realizations reach the best possible reduction by at least 85% and
always outperform RefPF | which is a surprising result given the fact that RefPY is performed
offline on the entire GPS traces.

We further analyzed the communication costs and the computational costs, also by means
of a prototypical implementation for Android-based smartphones [11]. From these experiences
we draw the following conclusions for the selection of a tracking protocol:

1. G:RTSISDeC affords high reduction performance at comparatively low computational costs
and is easy to implement. Therefore, we suppose that it meets the requirements of most
use cases.

2. Gd:{rJfSl?lEt should be used if reduction has maximum priority and the moving objects have

sufficient computational power.

3. CDR,, should be selected if communication costs have maximum priority, since it mini-
mizes the amounts of transmitted data.

3 Distributed Indexing of Space-Partitioned Trajectories

Queries about trajectories, or about context information that is associated with trajectories,
can be classified into coordinate-based queries and trajectory-based queries [6]. Queries of the
former class refer to all trajectories satisfying a certain spatial relationship to a specific region
or point — such as a range query, returning all objects in a given region during a given time
interval. Queries of the latter class refer to the trajectory of a single moving object.

In case that the number of trajectories managed by a MOD exceeds the capacity of a single
database server, we can similarly distinguish two schemes for partitioning trajectory data to
multiple servers:

1. Object-based partitioning: Each trajectory is stored entirely on a single server.

2. Spatial partitioning: Each server is associated with a certain geographic service region
and stores all trajectory sections inside this region.



A critical issue with query processing in such a MOD is routing a given query to the servers
that store the queried data. Our analysis in [9] shows that spatial partitioning is superior
to object-based partitioning in terms of query routing: For a coordinate-based query, the set
of servers that store relevant data is given directly by the queried region and the mapping
from space to servers. An algorithm for efficient distributed processing of range queries has
been proposed in [18]. For a trajectory-based query the set of relevant servers is not given
directly — but it is limited to few neighboring servers due to the functional dependency between
space and time defined by the queried trajectory. Therefore, we propose a distributed index
for efficient routing of trajectory-based queries in space-partitioned MODs.

3.1 Distributed Trajectory Index

We distinguish three phases for processing a trajectory-based query: In the first phase, the
query is routed to an arbitrary server storing a section of the queried trajectory. One may
think of different solutions such as dedicated directory service, a distributed hash table or an
anycast-like discovery protocol. In the second phase, the query is routed along the trajectory
from server to server until the server is reached that stores the start (or end) of the queried
trajectory section. In the third phase the query is being processed and further routed along
the queried trajectory section if necessary.

If a server stores two (or more) sections of the queried trajectory, the second phase may be
shortened by skipping the section in-between. The idea of the Distributed Trajectory Index
(DTI) is to introduce explicit shortcuts to temporal distant sections stored by other servers.
Such a DTT pointer is simply a copy of the position data it refers to. The pointer can be used
to route a query directly to the server that stores this position as illustrated in Figure 4. Thus,
a DTI realizes a temporal routing overlay on top of the geographic routing network between
the servers.

The DTI scheme employs the idea of maintaining multiple pointers spanning different dis-
tances from skip lists [14] as illustrated at the bottom of Figure 4: It periodically creates a DTI
node with increasing sequence number at the current end of the trajectory and then creates
DTI pointers to previous DTI nodes (and vice-versa) in style of a perfect, bidirectional skip
list.

3.2 DTI with Summaries

DTT solely accelerates the second phase of query processing. For aggregate queries, our ex-
tended scheme DTI+S furthermore increases the routing performance in the third phase. It
augments each DTT pointer with a summary, referring to the trajectory section cut short by
that pointer. Summaries contain aggregated information about that section such as the length
or the minimum bounding rectangle. In the third phase, the DTI4S algorithm decides based
on the query type and the partial results whether one or more summaries can be used to speed
up the processing. If so, it selects the most beneficial summary and routes the query along
the corresponding DTI pointer.

3.3 Evaluation

We evaluated DTI and DTI+S by simulating a space-partitioned MOD consisting of 1000
servers over one year. The number of objects (and thus trajectories) is irrelevant since a DTI
is maintained independently for each trajectory. The servers together cover a rectangular area
of 4500 km x 2000 km (= Continental U.S.). After the simulation of eight months, 107 random
queries have been posed about different section of the trajectories.



The results show that DTI reduces the average time in the second phase by 69% compared
to routing without DTI. DTI4S may even reduce the overall time for processing aggregate
queries by more than 95%. See [9] for details.

4 Describing and Indexing of Context Models

Regarding the discovery of context models, a distributed global-scale context management
system can be considered as a heterogeneous information systems (HIS) consisting of a large
number of information sources. Most existing approach for source discovery in HIS utilize
the schema mappings between the sources or to some shared schema to exclude those sources
from processing a certain query or task that do not provide any information about the queried
relations or classes (e.g. [2, 1]). However, this approach does not scale to a global context
management system, where thousands of providers of context models may use the same classes
and relations to provide information about different clippings/locations — e.g., 3D models of
buildings all over the world — and applications are interested in one or few models only.

Therefore, a dedicated formalism that utilizes explicit descriptions of the sources’ contents
is required. Different approaches are imaginable, ranging from simple keyword lists to logic-
based formalisms using constraints. We observe that those two extremes also imply different
semantics for matching a source description against a discovery query: The former implies
positive semantics in view of the fact that a description matches a given query only if both share
one or more explicitly stated keywords. Logic-based formalisms, on the contrary, generally
imply negative semantics as they consider a description to match a query unless the converse
can be proven by the corresponding constraints.

In the following, we propose an extended logic-based description formalism for ontology-
based HIS — which applies to context management systems in particular — that allows to trade
off between positive and negative matching semantics.

4.1 Description Formalism

Every source (or context model) is described by one or more defined classes, i.e. by a class of
the shared ontology followed by constraints such as

D, = (BuildingPart : partOf € (Museum : name € { “British Museum”})) ,

to describe a building model of the British Museum. Such a source class should be ‘minimal’
in terms of the number of constraints, i.e. alternative constraints should be used for additional
source classes. For example, D does not require a second constraint on the location, as the
name { “British Museum” } unambiguously refers to the famous museum in London. Instead,
the location can be used for a second source class

D, = (BuildingPart : location € {44 Gt Russell St, London, UK}) .

This differentiation allows to discover the building model either by the name or the location.

A query @, in contrast, consists of exactly one defined class containing all constraints known
to the application or user.

To evaluate a query ) against a source description {D;, ..., D, } we define two predicates.
The query matching predicate ~~, forms a necessary condition for matching. It is D; ~, @Q iff
every constraint given in D; is overlapped by a constraints given in ). The query dismatching
predicate /, forms a sufficient condition for dismatching. It is D; /, Q iff D; and @ have
constraints on the same attribute or relation that do not overlap. By adding pseudo constraints
a€x* or r€x to (), the query issuer can trade the influence by ~, off against the influence by

Ja-



4.2 Source Description Class Tree

To realize a scalable discovery service for a distributed context management system or general
HIS, we further propose the Source Description Class Tree (SDC-Tree), which is tailored to
the above formalism.

Every node of the tree represents a extended defined class NV; named node class. Every node
class subsumes the node classes of the child nodes by the so-called index subsumption predicate
=, which implies ~,. The node classes thus compose a partial order, reflecting the tree. The
node class of the root is (C+, TRUE : ), where Ct denotes the top class of the ontology.

A defined class D; of a source description is passed down the tree to those leaf nodes whose
node classes match D; by the index matching predicate ~, implying ~~,. Thus D; is stored at
every leaf with node class IV;, where N; ~- D;. Similarly, a query () is passed down the tree,
but using ~+, instead of ~». If a node class N; does not match @, the corresponding subtree
is pruned.

Two defined classes may differ in three aspects: (1.) In terms of the ontology class, (2.) re-
garding the existence of constraints on a certain attribute or relation, and (3.) in the value
ranges of the constraints. The node classes allow to distinguish source classes by all three
aspects. Correspondingly, there exist three ways to split a leaf node and its node class into
two or more child nodes and node classes.

In [10], we propose the Generic Split Algorithm (GSAlg) to split a leaf node automatically
once the number of defined classes at a leaf node exceeds a certain threshold. In this case,
GSAlg rates all possible splits and chooses the best one for the present set of defined classes.
Details on the performance of the SDC-Tree using GSAlg are also documented in [10].

5 Summary

In future, context-awareness will be a key characteristic of most (mobile) applications and
services. Driven by the advances of sensing technologies, millions of context-models for different
aspects and clippings of the physical world can be expected.

Sharing these models by a wide variety of applications poses a number of challenges. The first
fundamental problem is how to provide efficient access to such immense amounts of distributed
dynamic context information [8]. For discovering context models that are relevant for the
situation of an application, we proposed a powerful formalism allowing describing context
models concisely by multiple defined classes as well as the Source Description Class Tree
(SDC-Tree) for indexing such descriptions. To provide efficient access to context information
about moving objects, we further proposed a family of protocols (CDR, GRTS) for efficient
real-time trajectory tracking and the Distributed Trajectory Index (DTI) to optimize query
processing in space-partitioned moving objects databases.
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