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Abstract

Location-based applications such as Facebook Places, Foursquare, or Loopt typically use location services to manage

mobile object positions. However, exposing precise user positions raises user privacy concerns, especially if location

service providers are not fully trusted. To enable the secure management of private user positions in non-trusted

systems, we present two novel position sharing approaches based on the concept of multi-secret sharing. We improve

existing geometric position sharing approaches [1, 2] by considering continuous position updates and by increasing the

robustness against various attacks. Furthermore, we present the first position sharing approach for symbolic location

models.
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1. Introduction

Driven by the rapid spread of mobile devices integrating positioning sensors, so-called location-based applications

(LBAs) attract millions of users today. Typical examples of those applications include point of interest finders (e.g.,

Qype), friend finders (e.g., Loopt), or pay as you drive insurances (e.g., PAYD). Another prominent class of LBAs is

geosocial networking, such as Facebook Places, Foursquare, or Gowalla, allowing users for “checking in” at different

locations to share their current position with friends.

LBAs typically make use of so-called location services, which manage mobile object positions and allow for

position sharing between the users of one or more applications. Mobile objects inform the corresponding location

service about their current position, while clients of this service can query location information, e.g., by means of

position, range, or nearest neighbor queries. An efficient and effective location service is a prerequisite for most of

today’s LBAs, which might be either an “LBA internal” or a public location service as already offered today in the

Internet, such as Google Latitude, Yahoo Fire Eagle, or Trace4You.

While sharing of location information is a highly desirable feature from an application’s point of view, it gives

rise to severe privacy concerns. Therefore, location services typically provide access control mechanisms allowing

users whose location information is managed by the service to define who can access their location information in

which granularity. Most of these mechanisms assume that the location service is fully trusted, and hence will ensure

that location information is only exposed to legitimate users. Unfortunately, many cases in the past have shown that

private user information has been “lost” or leaked by service providers that were supposed to be trustworthy [3]. As a

consequence, assuming a location service to be fully trusted is at least questionable.

Therefore, several approaches for the protection of position information in the absence of trusted parties have been

proposed. The simplest approach is to encrypt position information before sending it from the mobile object to the

location service. However, this approach prevents server-side processing of position information, which is needed

for most queries, such as range or nearest neighbor queries. Another rather simple but limited approach is called
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position obfuscation. Here, the position information is deliberately degraded before it is sent to the location service.

Therefore, an attacker (including a compromised location service) will only see the degraded position rather than

the precise user position. The obvious limitation of this approach is that the trustworthiness of the location service

determines the precision of the location data provided to the application, i.e., it may reduce both the spectrum of

possible applications and the quality of applications substantially. To overcome this problem, we proposed a concept

that combines obfuscation with position sharing [1, 2]. The basic idea of this concept is to let the mobile object

split its precise position into a set of position shares of strictly limited precision. These shares are distributed to

multiple location services offered by different providers. Therefore, as in the pure obfuscation approach described

above, a compromised location service can only reveal information of limited precision. However, the precision of

position information can be incrementally increased by combining shares. In fact, the obfuscation can be undone

by combining all shares, i.e., the original precision as captured by the position system can be restored. By allowing

mobile objects to control the set of shares accessible by a particular client, different precision levels can be provided

to different clients, ranging from the lowest level up to the original precision. Another advantage of this scheme is

that it provides graceful degradation of privacy in the presence of compromised location services: The precision of

the revealed position information only increases with the number of compromised location services.

While the position sharing method sketched above applies geometric transformations for obfuscation, the scheme

presented in this paper is based on the concept of multi-secret sharing [4]. Using multi-secret sharing for position

sharing improves our previous scheme in several ways: First, it can be applied not only to geometric positions (longi-

tude, latitude values) but also to symbolic locations, such as cities, buildings, or restaurants, which are important for a

wide range of applications. Second, by using multi-secret sharing, which is based on modular arithmetic rather than

probabilistic geometric transformations, we improve the robustness of the scheme significantly. Our previous scheme

is subject to probabilistic attacks, where an attacker tries to compute the probability distribution function of positions

to increase the precision. In contrast, our deterministic obfuscation approach used in this paper makes such attacks im-

possible. Third, the novel scheme not only considers isolated position check-ins, but also subsequent position updates

of the same mobile object, which might unintentionally increase precision if performed in an uncontrolled manner.

Finally, we take map knowledge into account to provide counter-measures against attackers using map matching to

increase precision.

The rest of this paper is structured as follows. Next, we present related work in Section 2. In Section 3, we

introduce our system model. The two variants of our scheme for geometric and symbolic locations are described in

Sections 4 and 5. In Section 6, we present an extension for geometric locations taking map knowledge into account.

Then, we analyze the robustness against various attacks in Section 7. In Section 8, we present an evaluation using

real world traces to show the applicability of our approaches. A performance evaluation is presented in Section 9, and

finally, we conclude with a summary and outlook on future work.

2. Related Work

The most prominent location privacy concept is k-anonymity [5], which protects user identities by guaranteeing

that the user is indistinguishable from at least k−1 other users. However, k-anonymity approaches and extensions such

as l-diversity [6] or t-closeness [7] usually require a trusted third party anonymizer. In contrast, we aim for approaches

protecting privacy without a trusted third party.

Spatial obfuscation protects user positions by decreasing their precision [8, 9, 10]. As already pointed out, these

approaches can be implemented without a trusted third party. However, the precision offered to clients is limited by

the precision of positions stored at the location service. In contrast, we allow for different precision levels for clients.

Dummy approaches send the true user position together with several false positions to the location service [11].

However, dummy identification can reduce their effectiveness. Thus, more advanced approaches like [12] make

dummy identification more difficult using databases of movement trajectories. However, this leads to the problem of

collecting trajectories without raising privacy concerns, and of operating such a database without a trusted third party

so it cannot be manipulated.

Our previous position sharing approach [1] and its extension to maps [2] can be used without a trusted third party.

These approaches split up a precise user position into several position shares of limited precision that are distributed to

different location services. Clients can reconstruct the position in different granularities by combining several shares
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from different services. As already pointed out, our new approach uses a different technique (multi-secret sharing)

to improve our previous approaches w.r.t. supported location models (geometric & symbolic), robustness, and by

considering position updates.

An approach based on (single) secret sharing was presented in [13]. It divides the user position into several shares

so that only a predefined number of shares can reconstruct the user position. This approach provides user privacy,

however, it reveals the precise user position to each client. In contrast, our approaches ensure graceful degradation of
privacy instead of implementing an “all-or-nothing” approach. Therefore, clients can be assigned different precision

levels without revealing the precise user position.

3. System Model and Requirements

The system model consists of three different components as presented in Fig. 1.

The mobile object (MO) uses an integrated positioning system, such as GPS, to determine the precise current

MO’s position π. We assume that the MO is not compromised and no malicious software component can access π.
The only component allowed to directly access the integrated positioning system is our share generation component

(see below). All other components on the MO query the MO’s position as shown below. In order to ensure that

no other component than the share generator can directly access the integrated positioning system, trusted computing

approaches can be used, based for instance on trusted module hardware as presented in [14]. For a detailed description

of these approaches, we refer to [14]. The MO executes a local software component for share generation that splits up

π into a master share mπ, denoted as m-share, and set S π = {rπ,1, . . . , rπ,n} of n refinement shares, denoted as r-shares,

by calculating

generate(π, lmax, n) = (mπ, S π).

Parameter lmax defines the number of different precision levels, i.e., positions of different well-defined precisions that

can be offered to clients. We use the notation p(π, l) to denote a position on precision level l derived from the precise

position π. p(π, 0) represents the least precise position on level 0, and p(π, lmax) the position of highest precision on

level lmax. The concrete definition of precision is dependent on the type of location model (geometric or symbolic),

and is introduced later for each model.

The m-share mπ consists of position p(π, 0) and additional information required to reconstruct positions of higher

precision levels greater 0. mπ is public, i.e., everyone knows the least precise position p(π, 0). r-shares contain further

secret information to refine p(π, 0) to more precise positions of higher levels (see below). After share generation, the

r-shares are distributed to different location servers such that each server receives one r-share.

Location servers (LSs) store and manage r-shares. Each LS implements an access control mechanism for r-

shares. The access rights are defined by the MO and provided to the clients of the LS, for instance, as credentials to

access a certain number of r-shares, where the number of accessible shares defines the intended precision offered to a

client.
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Clients receive permissions to access a well-defined set S ′
π ⊆ S π of r-shares from the MO and perform the share

combination on the public m-share and these r-shares:

combine(mπ, S ′
π) = p(π, l)

Combining the m-share mπ and the set S ′
π of r-shares yields position p(π, l) of precision level l. Local clients running

on the mobile device directly access set S ′
π ⊆ S π of r-shares provided by the share generation component to reconstruct

p(π, l). The concepts for share combination are identical to the case where shares are queried from remote LSs.

Therefore, we focus the following descriptions on the more general case, where clients access different r-shares from

a set of remote LSs.

The goal is now to design secure share generation and combination algorithms such that an attacker—either

(malicious) client or LS—knowing a set S ′
π of shares refining p(π, l) of precision level l cannot derive a position of

higher precision than p(π, l). Formally, the condition

precision(p(π, l)) ≥ precision(πattack)

must hold, where precision(πattack) defines the precision of position πattack calculated by the attacker. This is the

essential requirement for our approach. Otherwise, the MO could not control the precision offered to LSs and clients

by granting access to a certain number of shares.

Note that the basic assumption of position sharing is that the unauthorized access of shares cannot be prevented

perfectly. Thus, a malicious client or LS could get a position of the precision defined by the accessible shares with a

certain probability. However, using secure shares, we can limit this risk by limiting the precision that can be derived

from a certain number of (compromised) shares.

4. PShare-GLM: Geometric Position Sharing

We start the description of our position sharing approaches with PShare-GLM, the approach for geometric location

models. First, we introduce our geometric location model, which is used to define positions on different precision lev-

els, and give an overview on how to apply multi-secret sharing to position sharing. Then, we describe the algorithmic

details of share generation and combination.

4.1. Geometric Location Model

In PShare-GLM, the precise MO position π and obfuscated positions p(π, l) are defined as geometric locations

based on a Cartesian coordinate system. We use a common map projection, e.g., Universal Transverse Mercator

(UTM) projection, to map ellipsoidal coordinates (longitude, latitude) to Cartesian coordinates. The UTM projection

divides the Earth into sixty zones, each representing a six degree band of longitude. For an MO traveling from

one zone to another, the zone is changed as soon as the area of the new check-in location is completely covered

by the new zone. Position π is a point coordinate. A position p(π, l) of precision level l is defined as square area

p(π, l) = ((xl, yl), blmax−l), where (xl, yl) defines the coordinates of the south-west corner of the square, and blmax−l the

side length. Hence, the precision corresponds to the side length of the square. Parameter b defines the granularity of

the precision levels, where an increase of the precision level by 1 increases the precision by a factor of b and partitions

the area of p(π, l) into b2 squares. For b = 2 the result is a quadtree as depicted in Fig. 2, where each position of level

l is refined into 4 positions of level l + 1.

To encode a position on level l, we specify the x and y coordinates of p(π, l) as n digits with base b:

π.x =
n−1∑

k=0

αkbk = (αn−1 · · ·α1α0)b

π.y =
n−1∑

k=0

βkbk = (βn−1 · · · β1β0)b
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Figure 2: Geometric area of p(π, l) for b = 2 and lmax = 3

Position π is degraded to p(π, l) by setting the lmax − l least significant digits to 0, meaning the actual digit values

are unknown. For instance, for b = 2 and lmax = 3, p(π, 0) can be written as follows, where underlined digits are

unknown:

p(π, 0).x = 00010101011101110011000

p(π, 0).y = 11100100110001000101000

4.2. Overview of Multi-Secret Sharing Algorithm
PShare-GLM utilizes multi-secret sharing algorithms for share generation and combination. Therefore, we first

give a brief introduction to multi-secret sharing, before we describe the basic relation between multi-secret and posi-

tion sharing.

Multi-secret sharing is an extension of secret sharing. A widely known secret sharing scheme is Shamir’s (t, n)-

threshold scheme [15]. The general idea of this scheme is to split up a secret, say K, into a set of n shares that can

be distributed to different participants. The so-called dealer, which initiates secret sharing, defines a threshold value

t, which defines the required number of shares to reconstruct K, and distributes the shares to the participants, where

each participant owns one share. Any t out of the n participants putting their shares together can reconstruct secret K.

If less than t shares are available, K cannot be reconstructed.

The general idea of multi-secret sharing is that a dealer splits up m secrets K1, . . . ,Km into a set of n shares so that

each secret Ki can be reconstructed by any set of at least ti ≤ n shares. The number ti of required shares to reconstruct

each secret Ki is again defined by the dealer. For less than ti shares, no information about Ki is exposed.

We apply the idea of multi-secret sharing as follows to our position sharing approach PShare-GLM. We use the

positions p(π, 1), . . . , p(π, lmax) as secrets K1, . . . ,Klmax of the multi-secret sharing scheme. The MO corresponds to

the “dealer”, which creates n r-shares using function generate(π, lmax, n) as presented in the next subsection in detail.

We assign each precision level l the threshold value tl = l, i.e., l shares are required to reveal p(π, l). However, our

approach provides the flexibility to use any number tl for level l, where greater values increase robustness at the price

of a greater overhead as discussed later.

The r-shares are then distributed among n LSs by the MO. The role of “participants” is split up between LSs

and clients. Whereas participants of the original multi-secret sharing scheme manage and combine shares, LSs only

manage at most one share per position, and clients combine multiple shares queried from different LSs. This role split

allows for providing different precision levels to different clients, and limits the precision known by a single LS.

The m-share contains, similar to traditional multi-secret sharing, public data necessary for share combination

(see next subsection). However, in contrast to multi-secret sharing, the m-share additionally contains coarse-grained

position information serving as origin for the refinements.

4.3. Share Generation
The following description of share generation is based on the multi-secret sharing approach of Chan et al. [4].

However, also other multi-secret sharing approaches could be applied.
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Figure 3: PShare-GLM process overview

Figure 3 visualizes the whole process of share generation and combination. Algorithm 1 defines the process of

share generation, which is entirely performed by the MO. After sensing π, the MO first calculates p(π, 0) (position of

minimal precision) by simply setting the least lmax significant digits to zero as described in Section 4.1 using function

floorDigits(π, lmax, b). p(π, 0) is part of the public m-share, which is denoted as mπ.
Then, the MO calculates the r-shares for each precision level greater zero. As already mentioned in the previous

subsection, the basic idea is to create one secret of the multi-secret scheme for each position p(π, l) with l > 0. To this

end, we first have to translate each position p(π, l) into secret Kl using function getSecret(π, lmax, b, l). Since Kl is a

single integer number, x and y values are to be encoded as a single number. This is done by interleaving the digits of

x and y values. In more detail, function getSecret(π, lmax, b, l) calculates each secret Kl as difference of the interleaved

digit values of p(π, lmax) and p(π, 0) with the 2 ∗ (lmax − l) least significant digits set to 0.

After the translation of p(π, l) to secret Kl, Chan’s multi-secret sharing scheme is applied to the calculated secrets

K1, . . . ,Klmax . To protect a secret, a secret polynomial fl(X) of degree tl − 1 is calculated by the MO for each secret Kl:

fl(X) = a′0 + a′1X + · · · + a′tl−1Xtl−1

The constant term a′0 corresponds to the protected secret Kl. The polynomial and therefore the secret can be recon-

structed by polynomial interpolation using modular arithmetic if tl distinct points of it are known. Therefore, each

r-share contains information to determine a single distinct point (x, y) of the secret polynomial as shown below.

According to the multi-secret scheme, the secret polynomials f1(X), . . . , flmax (X) of all secrets are packed together

using the Chinese Remainder Theorem into one single secret polynomial f (X):

f (X) = a0 + a1X + · · · + atlmax−1Xtlmax−1

f (X) is defined, such that fl(X) ≡ f (X) mod pl. That is, we can calculate fl(X) by calculating f (X) modulo pl for

a prime pl defining the field Zpl [X] of fl(X). fl(X) is a uniquely defined polynomial of degree equal to or less than

tl − 1 over Zpl [X] with a j ≡ 0 mod pk for all coefficients a j with j ≥ tl and k = 1, 2, . . . , l − 1. The set of primes

P = {p1, . . . , plmax }, which is required together with the r-shares to reconstruct the secrets, is part of the m-share.

It remains the question, which information is contained in an r-share in detail. As pointed out above, each r-

share should contain information about a single distinct point (x, y) of a certain polynomial fl(X). Using multi-secret
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Algorithm 1 PShare-GLM: Share generation (MO)

Function: generate(π, lmax, n)

1: p(π, 0) ← f loorDigits(π, lmax, b)

2: for l = 1 to lmax do
3: Kl ← getSecret(π, lmax, b, l)
4: end for
5: P, f (X) ← calculatePolynomial(K)

6: X ← n distinct integer

7: for all xi ∈ X do
8: y′i ← f (xi)

9: sri
π ← (xi, y′i)

10: end for
11: mπ ← P, p(π, 0)

12: return mπ, {sr1
π, . . . , srn

π}

Algorithm 2 PShare-GLM: Client r-share calculation (LS)

Function: calculateClientShare(l)
1: crLS

π,l .x ← srLS
π .x

2: crLS
π,l .y ← srLS

π .y
′ mod mπ.pl

3: return crLS
π,l

sharing, we actually have to distinguish between the information of the r-shares generated by the MO, which is sent to

and stored by the LSs (called server r-share srLS
π ), and the information sent from the LSs to the clients (called client

r-share crLS
π,l ). Each server r-share contains a distinct point (x, y′) of the secret polynomial f (X). Each client r-share

contains a distinct point (x, y) of fl(X), which is required for share combination. crLS
π,l is calculated by the LS from

srLS
π as y = y′ mod pl upon a request of the client for crLS

π,l (cf. Alg. 2). Note that different client r-shares of different

levels can be calculated from one server r-share using the specific prime of level l. In the next subsection, we describe

the details of share combination.

4.4. Share Combination

In order to calculate p(π, l), a client retrieves the publicly available m-share mπ and tl client r-shares crLS 1

π,l , . . . , cr
LS tl
π,l

from tl different LSs. As described in the previous subsection, mπ contains the set of prime numbers (P) and the least

precise position p(π, 0) of the MO; each client r-share crLS i
π,l defines a distinct point (xi, yi) in fl(X).

Share combination (Alg. 3) uses the Lagrange interpolation over the field Zpl [X] (line 1). It reconstructs polyno-

mial fl(X) by interpolating the tl distinct points of the client r-shares, which uniquely define fl(X). Secret Kl is the

constant term of fl(X) and is calculated as fl(0) ≡ Kl mod pl. Position p(π, l) is calculated by adding the reconstructed

secret Kl to the interleaved representation of p(π, 0) and splitting up the sum into the x and y values of p(π, l) (line 3).

Each polynomial fl(X) ∈ Zpl [X] has a degree of at most tl − 1 and fulfills the condition fl(xi) = yi. Because at

least tl distinct points are required to interpolate a polynomial of degree tl − 1, it is guaranteed that p(π, l) cannot be

reconstructed with less than tl client r-shares.

4.5. Multiple Position Updates

Up to now, we only considered share generation for single position updates. However, in the worst case a com-

promised LS or client could reveal a complete history of positions for a certain precision level (either precision level

1 for an LS with access to a single server r-share, or a certain level l in case of a client that was granted access to the

client r-shares of level l). From the literature, it is well known that the knowledge of multiple obfuscated positions

might enable attackers to further refine the precision beyond the intended precision [9]. To avoid this, we now present

an extension of our basic algorithm.

7



Algorithm 3 PShare-GLM: Share combination (client)

Function: combine(mπ, {crLS 1

π,l , . . . , cr
LS tl
π,l }, l)

1: fl(X) ← Lagrange({crLS 1

π,l , . . . , cr
LS tl
π,l },mπ.pl)

2: Kl ← fl(0)

3: p(π, l) ← split(interleave(mπ.p(π, 0)) + Kl)

4: return p(π, l)

We assume that the MO has a known maximum velocity vmax, which is also known by an attacker.

Moreover, we consider the fact that in the worst case an attacker knows the complete history U =

{(p(π f irst, l), t f irst), . . . , (p(πlast, l), tlast)} of position updates for a certain precision level l. Here, t f irst denotes the time

of the first update, and tlast the time of the last update up to the present time. Level l depends on the available shares

accessible by the attacker. Then, we have to guarantee that for all t ∈ [t f irst, tlast] the attacker cannot derive a position

of higher precision than the precision of p(πt, l).
Before describing our counter measure, we have to consider the so-called maximum velocity attack [9] in more

detail. For this attack, the attacker considers two succeeding positions (p(πi, l), ti) and (p(πi+1, l), ti+1) with the obfus-

cated areas A = p(πi, l) and B = p(πi+1, l) at times tA = ti and tB = ti+1. In [9], it has been shown that a sequence

of position updates resist a maximum velocity attack, if each pair of succeeding updates resists a maximum velocity

attack. Therefore, it is sufficient to only consider two directly succeeding positions. With this information, the at-

tacker tries to remove areas from B that are not reachable from A in time δt = |tB − tA| for an MO traveling with speed

vmax. Furthermore, the attacker tries to remove areas from A without reachable point in B considering δt and vmax. By

removing unreachable parts of A or B, the obfuscation area is decreased and the precision of the attacker is increased.

To prevent such attacks, we first only consider position updates for level 0. Later we will show that protecting

the position updates of level 0 against maximum velocity attacks also protects the position updates for every level

0 ≤ l ≤ lmax. Let dpp(p(πi, 0), p(πi+1, 0)) be the point pairwise distance of two succeeding MO positions p(πi, 0)

and p(πi+1, 0). The point pairwise distance of two rectangular areas is defined as the maximum Euclidean distance

between any point in the first area to any point in the second area. Furthermore, let δt = |ti+1 − ti| be the time between

the two updates. Then the MO only sends an update for p(πi+1, 0) at time ti+1, if the following condition is fulfilled:

δt ≥ dpp(p(πi, 0), p(πi+1, 0))

vmax
. (1)

If this condition is fulfilled, every point in p(πi+1, 0) is reachable from p(πi, 0) in time δt. Otherwise, p(πi+1, 0) has to

be delayed until this condition is fulfilled.

For precision levels greater than zero, the point pairwise distance is always smaller than or equal to the point

pairwise distance of level 0. Thus, if Equ. 1 is fulfilled for level 0, it is also fulfilled for levels greater than 0.

The maximum delay time Δt between two updates depends on the values of b and lmax and is defined as:

Δt =
2 ∗ (

√
2 ∗ blmax )

vmax
. (2)

Intuitively, Δt describes the maximum time that is required to travel a distance of two times the diagonal of the area

of p(π, 0) with vmax. Therefore, the MO can trade-off the maximum delay time against the minimal revealed precision

(p(π, 0)) by adjusting the size of p(π, 0).

We analyzed the check-in behavior of users from different location-based applications in our real world evaluation

presented in Section 8 and show that only few check-ins have to be delayed. For applications requiring higher update

rates than used for sporadic check-ins, the maximum precision decrease Δs introduced by the maximum delay time

Δt is defined by the distance of two times the diagonal of the area of p(π, 0):

Δs = 2 ∗ √2 ∗ blmax . (3)
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5. PShare-SLM: Symbolic Position Sharing

Next, we present PShare-SLM, the symbolic counterpart to the position sharing algorithm PShare-GLM. The

general idea of PShare-SLM is similar to PShare-GLM: We apply the multi-secret sharing scheme [4] to share the

MO’s position in different precision levels with different clients. Since the symbolic location definition differs from

the geometric definition, we start with an explanation of our symbolic location model, before we present the specific

share generation and combination algorithms.

5.1. Symbolic Location Model

Our symbolic location model consists of a location hierarchy based on the spatial contains relationship. Each

location is represented as a vertex v in the hierarchy, and has a level l defining the length of the path from the root to v
(cf. Fig. 4). The root location is on level 0, and we assume that all leaf vertices have the same level lmax. Each location

has a unique location name in the context of its parent location, for instance, “Florida” for the location representing the

State of Florida as child of the location representing the country USA. The concatenation of names on the path from

the root to a location defines a unique label for each location, such as usa/florida/miami/miami_i_airport for

the location representing the Miami International Airport. Each location label can be mapped to a unique identifier

represented as integer, which serves as input to the secret sharing scheme as presented below.

Using a hierarchical model makes it easy to define positions of different precisions. Each hierarchy level defines

a precision level, where level lmax defines the highest precision where the MO is located. Again, p(π, l) denotes a

position of precision level l similar to the geometric model. However, p(π, l) is now represented as symbolic location

identifier rather than geometric coordinates. The sequence of ancestor vertices of a position p(π, l) is denoted as

ancestors(p(π, l)) = (p(π, 0), . . . , p(π, l)).

5.2. Share Generation and Share Combination

We now apply the idea of multi-secret sharing to our symbolic position sharing approach PShare-SLM. The share

generation executed by the MO is shown in Alg. 4.

First, the MO calculates ancestors(p(π, lmax)) to determine (p(π, 0), p(π, 1), . . . , p(π, lmax)) (line 1). The identifier

of p(π, 0) defines the root of the hierarchy and is stored in the m-share. The identifiers of p(π, 1) to p(π, lmax) are

used as the secrets K1, . . . ,Klmax for the multi-secret sharing scheme. The remaining part of the algorithm is similar to

the share generation of PShare-GLM. That is, we apply the multi-secret sharing algorithm by calculating the server

r-shares, and distribute them to the LSs.

Similarly, the share combination algorithm as depicted in Alg. 5 uses again the Lagrange interpolation over the

field Zpl [X] to reconstruct the secret polynomial fl(X) for a given level l. The constant term of fl(X) is the identifier

of p(π, l), which can be mapped to the label of p(π, l).
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Algorithm 4 PShare-SLM: Share generation (MO)

Function: generate(π, lmax, n)

1: p(π, 0), . . . , p(π, lmax) ← ancestors(p(π, lmax))

2: K ← p(π, 1).id, . . . , p(π, lmax).id
3: P, f (X) ← calculatePolynomial(K)

4: X ← n distinct integer

5: for all xi ∈ X do
6: y′i ← f (xi)

7: sri
π ← (xi, y′i)

8: end for
9: mπ ← P, p(π, 0).id

10: return mπ, {sr1
π, . . . , srn

π}

Algorithm 5 PShare-SLM: Share combination (client)

Function: combine(mπ, {crLS 1

π,l , . . . , cr
LS tl
π,l }, l)

1: fl(X) ← Lagrange({crLS 1

π,l , . . . , cr
LS tl
π,l },mπ.pl)

2: p(π, l).id ← fl(0)

3: return p(π, l)

5.3. Multiple Position Updates

Next, we analyze PShare-SLM with regard to multiple symbolic position updates. As pointed out above, an

attacker knowing the complete position history U = {(p(π f irst, l), t f irst), . . . , (p(πlast, l), tlast)} of a certain level l could

try to use a maximum velocity attack to increase precision. Note that although the location hierarchy itself does not

define the distance information necessary for such attacks, an attacker can determine this information by matching

symbolic locations to available topographic maps.

The basic idea to counter such attacks is similar to the geometric case: A new update p(πi+1, l) is only permitted

if any position within p(πi+1, 0) is reachable from any position within p(πi, 0) considering δt = |ti+1 − ti| and the MO’s

maximum velocity vmax. Although theoretically this would be an effective counter measure, it impacts the minimal

update time between two succeeding updates as specified in Equ. 1. In contrast to the geometric case, where the

precision of p(πi, 0) can be specified by the MO, level 0 is now defined by the root location of the given symbolic

location model. Therefore, it is worthwhile to have a closer look at the influence on the minimal update time.

Assume a model where the root location covers a whole country like Germany. In this case, the maximum distance

between two positions within the hierarchy would be about 1 000 km. For a MO walking with vmax = 6 km/h this

results in a maximum delay of 6.94 days, whereas a maximum velocity of vmax = 200 km/h of a car decreases the

minimum time between two updates to 5 hours. For an inner city scenario with a maximum distance of 10 km and an

MO walking with at most vmax = 6 km/h, the minimum delay between two updates would be 1.66 hours.

These examples show that there are scenarios where the minimum update time would be hours rather than days.

This would be sufficient for many “check-in” applications, as our evaluations based on real-world traces show in

Section 8. For applications with shorter update intervals, the geometric approach would be better suited.

6. PShare-GLMmap: Geometric Position Sharing Using Map Knowledge

Until now, we assumed a free-space mobility model for PShare-GLM where MOs can be located at each position

within p(π, l). However, MOs positions are in many scenarios restricted to streets, places, buildings, etc. Therefore,

an attacker could use map knowledge to decrease the effective area size of the obfuscation area p(π, l) as shown in

Fig. 5. The effective area of a MO’s position p(π, l) is defined as the area within p(π, l) where the MO can actually be

located.

To overcome this problem, we present PShare-GLMmap taking map knowledge into account. The general idea of

our extension to PShare-GLM is to adapt MO positions in a first step to map knowledge such that each position p(π, l′i)

10



area(p(π,0))=
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Figure 5: Map knowledge example reducing the effective area size (b = 2, lmax = 9)
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Figure 6: Quadtree and effective area example (b = 2, lmax = 9)

covers at least an area with an effective area size of a MO-defined value Ai. In a second step, we use the calculated

positions for the share generation and apply the multi-secret sharing scheme as presented for PShare-GLM.

For the first step, the MO specifies its privacy requirements by defining different area values Ai ∈ A0, . . . , Am each

representing the required minimum effective area size of precision level l′i . The goal is now to find for each value

Ai the smallest position p(π, l′i) such that the effective area size of p(π, l′i) is equal to or greater than Ai. To calculate

the effective area size of position p(π, l) we use function esize(p(π, l)). By using this notion, our goal is to find the

minimum level l′i such that esize(p(π, l′i)) ≥ Ai for each Ai ∈ A0, . . . , Am. For the sake of simplicity we consider from

now on parameter b = 2 defining the granularity of the area of the MO’s position. Nevertheless, our approach can also

be applied to other parameter values of b.

We analyze map information in a preprocessing step to adapt positions to map knowledge. Thus, we calculate for

each position whether or not it is a possible MO position, for instance, located on a street or in a building. To allow

for an efficient search of p(π, l′i) for each Ai, we store all possible MO positions in a quadtree aggregating the effective

area sizes for each level in a bottom-up approach (cf. Fig. 6). The quadtree has a depth of lmax and its root is defined

by position p(π, 0).

To calculate for a given position π and a required effective area size Ai the minimum level l′i fulfilling

esize(p(π, l′i)) ≥ Ai without raising privacy concerns, we traverse the corresponding quadtree of π top down by eval-

uating the effective area size of position p(π, l) for each level l and the four child nodes of p(π, l) on level l + 1. If

the described nodes of the quadtree cover an effective area of size equal to or greater than Ai, the quadtree is further

traversed on the next level l + 1. Otherwise, level l′i = l is found.

To explain why it is required to consider esize(p(π, l)) for level l and also for the four child nodes of p(π, l) on level

l + 1 within each step when traversing the quadtree, consider the following example as depicted in Fig. 7:

Assume position p(π, l) of an arbitrary level l covers the areas p(π1, l + 1), p(π2, l + 1), and p(π3, l + 1), all having

an effective area size of 120. Area p(π4, l+ 1) covered by p(π, l) has an effective area size of 80. For a given threshold

Ai = 100 the dark red area in Fig. 7a of level l would be calculated as obfuscation area for each position π ∈ p(π, l)
if the child nodes of p(π, l) are considered as previously described. Without taking the child nodes of p(π, l) into

account, an attacker could increase his precision for an update in an area with an effective area size smaller than

Ai based on the returned obfuscation area and the knowledge of the share generation algorithm. For instance, each
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Figure 7: Example showing impact of considering child nodes (Ai=100, b=2)

position π ∈ p(π1, l + 1) would lead to an obfuscation area of level l + 1 marked in light yellow in Fig. 7b, whereas

π ∈ p(π4, l + 1) would lead to an obfuscation area of level l marked dark red. Thus, an attacker could increase his

precision based on the returned obfuscation area by excluding p(π1, l+1) from a calculated obfuscation area of p(π, l)
for Ai = 100.

In the second step we calculate the secrets K1, . . . ,Km that are used as input for the multi-secret scheme based on

the calculated positions p(π, l′i) for each Ai ∈ A0, . . . , Am. The number m of generated secrets is defined by the m + 1

MO-defined area threshold values. Each secret Ki is calculated as the interleaved digits refining position p(π, l′0) of A0

to position p(π, l′i) of Ai for 1 ≤ i ≤ m.

The share generation of PShare-GLMmap extends the share generation algorithm presented in Alg.1 for PShare-
GLM. We apply the area adaptation to calculate the secrets by changing line 1 to 4 of Alg. 1 and therefore the way how

the secrets are generated. Furthermore, we change the position provided within the m-share from p(π, 0) to p(π, l′0).

Details of the share generation of PShare-GLMmap are presented in Alg. 6. First, we calculate for each MO-defined

threshold value Ai ∈ A0, . . . , Am the obfuscation area p(π, l′i) by using function getMinLevelConsideringChilds(π,Ai, q)

traversing quadtree q top-down by checking the previously described requirements for the child nodes and

esize(p(π, l)) ≥ Ai for each position p(π, l). Then, the obfuscation areas are used to generate the secrets Ki by in-

terleaving the refining digits of position p(π, l′0) of A0 to position p(π, l′i) of Ai. The calculated secrets are then used as

input for the multi-secret sharing scheme as presented in Alg. 1 for PShare-GLM. Finally, position p(π, l′0) is stored

within the m-share fulfilling esize(p(π, l′0)) ≥ A0.

The share combination of PShare-GLMmap is basically calculated as presented in Alg. 3 for PShare-GLM. The

only difference is that position p(π, l) in line 3 is now defined as p(π, l′i) and calculated by splitting up Ki into the x
and y part refining p(π, l′0) of the m-share to p(π, l′i) by substituting the corresponding digits of p(π, l′0).

7. Security Analysis

In this section, we present the security analysis for PShare-GLM and PShare-SLM. We start with a description of

the attacker model and an overview of the analyzed attacks, which are then discussed in detail.

7.1. Attacker Model

As attackers we consider malicious LSs and malicious clients. Each attacker has access to the public m-shares.

Each malicious LS additionally knows one server r-share for each position. Each malicious client with access to a

position of precision level l additionally knows l client r-shares (cf. Section 4). We both consider single attackers

(a single malicious LS or client), as well as colluding attackers (multiple malicious LSs or clients). We structure the

following analysis according to different attacks. First, we consider single attackers who analyze a single (current)

position, or even the complete history of positions. Second, we analyze the effect of colluding attackers who put

their compromised shares together. Since PShare-GLM and PShare-SLM are based on the same multi-secret sharing

scheme, we do not distinguish between them unless the difference is relevant.
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Algorithm 6 PShare-GLMmap: Map-based Share Generation (MO)

Function: generate(π, lmax, n, {A0, . . . Am})
1: q ← getQuadtree(π, lmax)

2: for i = 0 to m do
3: p(π, l′i) ← getMinLevelConsideringChilds(π, Ai, q)

4: end for
5: for i = 1 to m do
6: Ki ← interleave(refinement(p(π, l′0), p(π, l′i)))
7: end for
8: P, f (X) ← calculatePolynomial(K)

9: X ← n distinct integer

10: for all xi ∈ X do
11: y′i ← f (xi)

12: sri
π ← (xi, y′i)

13: end for
14: mπ ← P, p(π, l′0)

15: return mπ, {sr1
π, . . . , srn

π}

7.2. Single Attacker

First, we consider a malicious client having access to l client r-shares of a single position that can be used to

reconstruct p(π, l). Thus, the client knows secret Kl refining p(π, 0) to p(π, l) from these shares. As shown by Chan

et al. [4], their multi-secret sharing scheme ensures that different secrets are independently protected by different

polynomials. Thus, the information from Kl cannot be used to reconstruct other secrets and positions of levels greater

l.
A single malicious LS has access to the m-share and one server r-share, i.e., it knows one distinct point of the

secret polynomial f (X). Therefore, the malicious LS can calculate for each precision level l with 0 < l ≤ lmax exactly

one point of the polynomial fl(X). Thus, the malicious LS can reconstruct the MO’s position p(π, 1) of level 1, while

the positions of all levels greater 1, which require at least 2 r-shares, cannot be reconstructed.

Our proposed extension against map matching attacks (cf. Section 6) ensures that an attacker cannot reduce the

effective area size of a known position p(π, l′i) below a MO-defined value Ai by using additional map knowledge.

Next, we consider further attackers knowing for a certain level l the complete position history U =

{(p(π f irst, l), t f irst), . . . , (p(πlast, l), tlast)}. Our algorithms create position shares of different positions independently

from each other. Therefore, shares generated for (p(πi, l), ti) cannot be combined with shares for (p(πi+1, l), ti+1).

However, the reconstructed positions p(π f irst, l), . . . , p(πlast, l) could be used for a maximum velocity attack (cf. Sec-

tion 4.5). Since we use delayed updates as counter measure, these attacks are also futile.

7.3. Colluding Attackers

Assume, for instance, three malicious clients cA, cB, and cC . Assume that cA and cB own l client r-shares of the

same precision level l so that both can calculate p(π, l). cC owns l+ 1 client r-shares of the next precision level l+ 1 to

reconstruct p(π, l + 1). Then, the collusion of cA and cB does not reveal anything new to cA and cB, as they were both

already allowed to reconstruct p(π, l) by calculating polynomial fl(X) using their l client r-shares each representing

a distinct point of fl(X). Because polynomial fl(X) is uniquely defined by l distinct points, even using more than l
client r-shares of the same precision level leads to the same polynomial fl(X) and therefore p(π, l). Furthermore, the

client r-shares of precision level l reconstructing fl(X) reveal nothing about the polynomial fl+1(X) and therefore about

p(π, l + 1). This is based on the fact that the polynomials of different precision levels are generated independently

from each other in the multi-secret sharing scheme [4]. Thus, even the collusion of cA and cC with client r-shares of

different precision levels does not reveal any new information. cC can reconstruct p(π, l + 1) even without collusion

and the additional client r-shares of cA carry no information about fl+2(X) of the next precision level l + 2.

Second, we consider multiple malicious LSs. Let m be the number of colluding LSs. These LSs can use their

stored server r-shares to calculate m different client r-shares for each level l. Since we defined the threshold values as
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Category Pedestrian Ground vehicle Plane

Distance (d) and
average speed (v)

d ≤ 10 km and

v ≤ 6 km
h

(d ≤ 10 km and 6 km
h
< v ≤ 200 km

h
) or

(10 km < d ≤ 10 000 km and v ≤ 200 km
h

)

d > 10 000 km or

v > 200 km
h

vmax 6 km
h

200 km
h

1 000 km
h

#updates 15 895 691 6 079 316 412 915

Table 1: Position update classification

tl = l, l client r-shares are required to get a position p(π, l) of precision level l. Therefore, m colluding LSs can reveal

positions up to level l = m. This shows the desired graceful degradation of privacy property of our approach. The

revealed precision increases with the number of compromised LSs. We could even increase the robustness by setting

the threshold values tl to values greater than l. Then more LSs are required to calculate a position of a certain level,

which increases the overhead on the one hand, but also increases the robustness of our approach on the other hand.

Therefore, our scheme allows for trading off overhead against robustness.

The collusion of malicious LSs and malicious clients is a special case of the collusion of malicious LSs. In this

case, either the client with the highest precision level or the number of colluding LSs defines the revealed precision

level.

8. Real World Trace Evaluation

As defined in Equ. 1, the minimum time between two updates is restricted by the MO’s maximum speed and size

of the level 0 position to guarantee protection against maximum velocity attacks. To analyze the practical impact of

this restriction, we analyzed real datasets of position check-ins from existing location-based applications to see how

they comply with this restriction. If many updates were violating the restriction, this would be an indication that our

approach is not applicable to these applications since the user could not perform many desired updates.

The analyzed dataset, which was collected by [16] between September 2010 and January 2011, contains 22 387 922

user position check-ins of 224 803 users from different location-based applications all over the world. Since this

dataset only contains geometric coordinates, we focus this evaluation on PShare-GLM. For our purpose, we processed

the dataset as follows. We classified each position update based on the traveled distance and the average speed between

two succeeding updates as shown in Table 1.

This table also shows the assumed maximum speed for PShare-GLM and the resulting number of updates per

category. For each category, we calculated the percentage of updates that can be performed without violating the

restriction. Figure 8 depicts the results for the categories and different sizes of level 0 positions ranging from 1 m (20)

square side length to 32 768 m (215). As we can see, in the worst case for an obfuscation area side length of 32 768 m,

55.19% of the pedestrian updates are possible. For a side length of 1 024 m, which provides sufficient privacy for

pedestrians in an innercity scenario for example, 88.09% of the updates are possible. For ground vehicles, 83.59%

of the updates are possible using even the coarsest obfuscation of 32 768 m. Figure 9 depicts the results of all traces

together from all categories. As it can be seen, for a level 0 size of 1 024 m, 90.08% of all updates can be published.

Thus, we can state that the minimum update time restriction only affects a small number of updates.

9. Runtime Performance Evaluation

Besides security, the efficiency of share generation is important for the practical application of our approaches.

Share generation is performed on the MO’s mobile device, which typically has low performance in terms of computa-

tional speed. Also on such resource-poor devices, share generation must be possible in short time. An efficient share

generation also leads to small overhead in terms of energy, which is desirable for battery-operated mobile devices.

We measured the overall time for share generation of PShare-GLM, PShare-GLMmap, and PShare-SLM on a state

of the art mobile device (HTC Desire HD). For PShare-SLM, we used a hierarchy with a maximum level of lmax = 3

and measured the time to generate one m-share and three up to fifteen r-shares. The shares are all generated for the

same number of lmax = 3 secrets such that three r-shares are required to reconstruct the precise position of the MO on
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Figure 8: Successful updates for obfuscation areas of precision 2i[m]
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Figure 9: Successful updates for obfuscation areas of precision 2i[m]

level three. For PShare-GLM, we measured the time to create one m-share and a varying number of n = lmax r-shares.

By increasing n, we also increased the number of used secrets. To evaluate PShare-GLMmap we used road network

and building data provided by OpenStreetMap [17] for the inner city of Stuttgart. We defined the obfuscation area of

p(π, 0) by setting lmax = 13, such that p(π, 0) covers an area of 67.1 km2 and has an effective area size of 10.5 km2.

We increased the number of generated r-shares from one to fifteen by increasing the number of used area thresholds.

We varied each area threshold between 10 km2 and 10 m2. The results are shown in Fig. 10. The depicted results of

PShare-GLM are measured for b = 2 only since other b values led to almost identical results. The plotted values are

the average over several runs per share number using Google’s micro-benchmarking tool Caliper.

As it can be seen, the runtime of PShare-SLM stays nearly the same for the different number of generated r-shares.

This is based on the fact that the number of used secrets is defined by the maximum level three of the hierarchy. For

PShare-GLM and PShare-GLMmap the number of secrets was increased by increasing the number of generated shares.

Nevertheless, the runtime of all three approaches stays well below 1 s even for larger share numbers. Therefore, we

can state that the share generation algorithm is efficient and suitable even for resource-poor devices.

Next, we show the performance evaluation for the share combination, which is done by clients (location-based

applications) typically running in an infrastructure without energy restrictions and high computational power. We

measured for PShare-GLM, PShare-GLMmap, and PShare-SLM the time to combine the m-share with up to 15 r-

shares on a state of the art personal computer (Intel Core 2 Duo, 2.53 GHz, 3 GB RAM). The results are shown in

Fig. 11. As it can be seen, the time for share combination of all three approaches is nearly the same and stays below

1.1 milliseconds even for a larger number of combined shares.

10. Summary

In this paper, we presented a novel position sharing approach to manage private position information in non-trusted

systems of third-party location services and clients. The basic idea is to split up the precise user position into position

shares of limited precision, which are distributed to multiple location servers of different providers. Therefore, a single
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Figure 11: Share combination

compromised provider does only reveal a position of strictly limited precision. Clients are granted access to multiple

shares from different servers, which can be combined to a position of higher precision to satisfy the individual quality

requirements of different clients.

Our approach makes use of the concept of multi-secret sharing to calculate position shares. We have shown

how to generate shares for geometric as well as symbolic positions, which demonstrates the versatility of the ap-

proach. Moreover, we included defense mechanisms against maximum velocity attacks, which are a serious threat

to obfuscation-based mechanisms. Furthermore, we presented a map-based extension to our geometric position shar-

ing approach that resists advanced attackers using map knowledge to increase precision. Finally, we showed the

robustness, applicability, and runtime performance of the approach.

In future work, we will consider further semantic knowledge, for instance, periodic behavior of users, knowledge

about points of interest, etc. that could be used by an attacker to increase precision.
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