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Abstract

Location-based applications such as Facebook Places, Foursquare, or Loopt typically use location services to manage
mobile object positions. However, exposing precise user positions raises user privacy concerns, especially if location
service providers are not fully trusted. To enable the secure management of private user positions in non-trusted
systems, we present two novel position sharing approaches based on the concept of multi-secret sharing. We improve
existing geometric position sharing approaches [1, 2] by considering continuous position updates and by increasing the
robustness against various attacks. Furthermore, we present the first position sharing approach for symbolic location
models.
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1. Introduction

Driven by the rapid spread of mobile devices integrating positioning sensors, so-called location-based applications
(LBAs) attract millions of users today. Typical examples of those applications include point of interest finders (e.g.,
Qype), friend finders (e.g., Loopt), or pay as you drive insurances (e.g., PAYD). Another prominent class of LBAs is
geosocial networking, such as Facebook Places, Foursquare, or Gowalla, allowing users for “checking in” at different
locations to share their current position with friends.

LBAs typically make use of so-called location services, which manage mobile object positions and allow for
position sharing between the users of one or more applications. Mobile objects inform the corresponding location
service about their current position, while clients of this service can query location information, e.g., by means of
position, range, or nearest neighbor queries. An efficient and effective location service is a prerequisite for most of
today’s LBAs, which might be either an “LBA internal” or a public location service as already offered today in the
Internet, such as Google Latitude, Yahoo Fire Eagle, or Trace4 You.

While sharing of location information is a highly desirable feature from an application’s point of view, it gives
rise to severe privacy concerns. Therefore, location services typically provide access control mechanisms allowing
users whose location information is managed by the service to define who can access their location information in
which granularity. Most of these mechanisms assume that the location service is fully trusted, and hence will ensure
that location information is only exposed to legitimate users. Unfortunately, many cases in the past have shown that
private user information has been “lost” or leaked by service providers that were supposed to be trustworthy [3]. As a
consequence, assuming a location service to be fully trusted is at least questionable.

Therefore, several approaches for the protection of position information in the absence of trusted parties have been
proposed. The simplest approach is to encrypt position information before sending it from the mobile object to the
location service. However, this approach prevents server-side processing of position information, which is needed
for most queries, such as range or nearest neighbor queries. Another rather simple but limited approach is called
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position obfuscation. Here, the position information is deliberately degraded before it is sent to the location service.
Therefore, an attacker (including a compromised location service) will only see the degraded position rather than
the precise user position. The obvious limitation of this approach is that the trustworthiness of the location service
determines the precision of the location data provided to the application, i.e., it may reduce both the spectrum of
possible applications and the quality of applications substantially. To overcome this problem, we proposed a concept
that combines obfuscation with position sharing [1, 2]. The basic idea of this concept is to let the mobile object
split its precise position into a set of position shares of strictly limited precision. These shares are distributed to
multiple location services offered by different providers. Therefore, as in the pure obfuscation approach described
above, a compromised location service can only reveal information of limited precision. However, the precision of
position information can be incrementally increased by combining shares. In fact, the obfuscation can be undone
by combining all shares, i.e., the original precision as captured by the position system can be restored. By allowing
mobile objects to control the set of shares accessible by a particular client, different precision levels can be provided
to different clients, ranging from the lowest level up to the original precision. Another advantage of this scheme is
that it provides graceful degradation of privacy in the presence of compromised location services: The precision of
the revealed position information only increases with the number of compromised location services.

While the position sharing method sketched above applies geometric transformations for obfuscation, the scheme
presented in this paper is based on the concept of multi-secret sharing [4]. Using multi-secret sharing for position
sharing improves our previous scheme in several ways: First, it can be applied not only to geometric positions (longi-
tude, latitude values) but also to symbolic locations, such as cities, buildings, or restaurants, which are important for a
wide range of applications. Second, by using multi-secret sharing, which is based on modular arithmetic rather than
probabilistic geometric transformations, we improve the robustness of the scheme significantly. Our previous scheme
is subject to probabilistic attacks, where an attacker tries to compute the probability distribution function of positions
to increase the precision. In contrast, our deterministic obfuscation approach used in this paper makes such attacks im-
possible. Third, the novel scheme not only considers isolated position check-ins, but also subsequent position updates
of the same mobile object, which might unintentionally increase precision if performed in an uncontrolled manner.
Finally, we take map knowledge into account to provide counter-measures against attackers using map matching to
increase precision.

The rest of this paper is structured as follows. Next, we present related work in Section 2. In Section 3, we
introduce our system model. The two variants of our scheme for geometric and symbolic locations are described in
Sections 4 and 5. In Section 6, we present an extension for geometric locations taking map knowledge into account.
Then, we analyze the robustness against various attacks in Section 7. In Section 8, we present an evaluation using
real world traces to show the applicability of our approaches. A performance evaluation is presented in Section 9, and
finally, we conclude with a summary and outlook on future work.

2. Related Work

The most prominent location privacy concept is k-anonymity [5], which protects user identities by guaranteeing
that the user is indistinguishable from at least k— 1 other users. However, k-anonymity approaches and extensions such
as [-diversity [6] or t-closeness [ 7] usually require a trusted third party anonymizer. In contrast, we aim for approaches
protecting privacy without a trusted third party.

Spatial obfuscation protects user positions by decreasing their precision [8, 9, 10]. As already pointed out, these
approaches can be implemented without a trusted third party. However, the precision offered to clients is limited by
the precision of positions stored at the location service. In contrast, we allow for different precision levels for clients.

Dummy approaches send the true user position together with several false positions to the location service [11].
However, dummy identification can reduce their effectiveness. Thus, more advanced approaches like [12] make
dummy identification more difficult using databases of movement trajectories. However, this leads to the problem of
collecting trajectories without raising privacy concerns, and of operating such a database without a trusted third party
so it cannot be manipulated.

Our previous position sharing approach [1] and its extension to maps [2] can be used without a trusted third party.
These approaches split up a precise user position into several position shares of limited precision that are distributed to
different location services. Clients can reconstruct the position in different granularities by combining several shares
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Figure 1: System components

from different services. As already pointed out, our new approach uses a different technique (multi-secret sharing)
to improve our previous approaches w.r.t. supported location models (geometric & symbolic), robustness, and by
considering position updates.

An approach based on (single) secret sharing was presented in [13]. It divides the user position into several shares
so that only a predefined number of shares can reconstruct the user position. This approach provides user privacy,
however, it reveals the precise user position to each client. In contrast, our approaches ensure graceful degradation of
privacy instead of implementing an “all-or-nothing” approach. Therefore, clients can be assigned different precision
levels without revealing the precise user position.

3. System Model and Requirements

The system model consists of three different components as presented in Fig. 1.

The mobile object (MO) uses an integrated positioning system, such as GPS, to determine the precise current
MO’s position 7. We assume that the MO is not compromised and no malicious software component can access 7.
The only component allowed to directly access the integrated positioning system is our share generation component
(see below). All other components on the MO query the MO’s position as shown below. In order to ensure that
no other component than the share generator can directly access the integrated positioning system, trusted computing
approaches can be used, based for instance on trusted module hardware as presented in [14]. For a detailed description
of these approaches, we refer to [14]. The MO executes a local software component for share generation that splits up
7 into a master share m,, denoted as m-share, and set S, = {rx1, ..., 7z} Of n refinement shares, denoted as r-shares,
by calculating

generate(rm, Ly, n) = (Mg, S 7).

Parameter /,,,, defines the number of different precision levels, i.e., positions of different well-defined precisions that
can be offered to clients. We use the notation p(r, [) to denote a position on precision level / derived from the precise
position 7. p(m, 0) represents the least precise position on level 0, and p(r, [,,4,) the position of highest precision on
level I,,,. The concrete definition of precision is dependent on the type of location model (geometric or symbolic),
and is introduced later for each model.

The m-share m, consists of position p(r, 0) and additional information required to reconstruct positions of higher
precision levels greater 0. m, is public, i.e., everyone knows the least precise position p(r, 0). r-shares contain further
secret information to refine p(r, 0) to more precise positions of higher levels (see below). After share generation, the
r-shares are distributed to different location servers such that each server receives one r-share.

Location servers (LSs) store and manage r-shares. Each LS implements an access control mechanism for r-
shares. The access rights are defined by the MO and provided to the clients of the LS, for instance, as credentials to
access a certain number of r-shares, where the number of accessible shares defines the intended precision offered to a
client.



Clients receive permissions to access a well-defined set S C S, of r-shares from the MO and perform the share
combination on the public m-share and these r-shares:

combine(myg,S7) = p(r, 1)

Combining the m-share m, and the set S of r-shares yields position p(rx, [) of precision level I. Local clients running
on the mobile device directly access set S C S, of r-shares provided by the share generation component to reconstruct
p(m,[). The concepts for share combination are identical to the case where shares are queried from remote LSs.
Therefore, we focus the following descriptions on the more general case, where clients access different r-shares from
a set of remote LSs.

The goal is now to design secure share generation and combination algorithms such that an attacker—either
(malicious) client or LS—knowing a set S/ of shares refining p(r,[) of precision level / cannot derive a position of
higher precision than p(r, [). Formally, the condition

precision(p(r, 1)) > precision(Tuack)

must hold, where precision(m ) defines the precision of position 7., calculated by the attacker. This is the
essential requirement for our approach. Otherwise, the MO could not control the precision offered to LSs and clients
by granting access to a certain number of shares.

Note that the basic assumption of position sharing is that the unauthorized access of shares cannot be prevented
perfectly. Thus, a malicious client or LS could get a position of the precision defined by the accessible shares with a
certain probability. However, using secure shares, we can limit this risk by limiting the precision that can be derived
from a certain number of (compromised) shares.

4. PShare-GLM: Geometric Position Sharing

We start the description of our position sharing approaches with PShare-GLM, the approach for geometric location
models. First, we introduce our geometric location model, which is used to define positions on different precision lev-
els, and give an overview on how to apply multi-secret sharing to position sharing. Then, we describe the algorithmic
details of share generation and combination.

4.1. Geometric Location Model

In PShare-GLM, the precise MO position 7 and obfuscated positions p(r,[) are defined as geometric locations
based on a Cartesian coordinate system. We use a common map projection, e.g., Universal Transverse Mercator
(UTM) projection, to map ellipsoidal coordinates (longitude, latitude) to Cartesian coordinates. The UTM projection
divides the Earth into sixty zones, each representing a six degree band of longitude. For an MO traveling from
one zone to another, the zone is changed as soon as the area of the new check-in location is completely covered
by the new zone. Position 7 is a point coordinate. A position p(r,[) of precision level / is defined as square area
p(m, 1) = ((x;,y,), b'="), where (x;,y;) defines the coordinates of the south-west corner of the square, and b~/ the
side length. Hence, the precision corresponds to the side length of the square. Parameter b defines the granularity of
the precision levels, where an increase of the precision level by 1 increases the precision by a factor of b and partitions
the area of p(r, ) into b* squares. For b = 2 the result is a quadtree as depicted in Fig. 2, where each position of level
lis refined into 4 positions of level [ + 1.

To encode a position on level /, we specify the x and y coordinates of p(r,[) as n digits with base b:

n—1
k
X = Z b = (a1 - a1ao)p
k=0

n—1
wy = B = Bacr BBl
k=0
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Figure 2: Geometric area of p(n,[) for b = 2 and lypqx = 3

Position 7 is degraded to p(m,[) by setting the /,,,, — [ least significant digits to 0, meaning the actual digit values
are unknown. For instance, for b = 2 and /,,,, = 3, p(m,0) can be written as follows, where underlined digits are
unknown:

p(r, 0).x = 00010101011101110011000
p(r,0).y = 11100100110001000101000

4.2. Overview of Multi-Secret Sharing Algorithm

PShare-GLM utilizes multi-secret sharing algorithms for share generation and combination. Therefore, we first
give a brief introduction to multi-secret sharing, before we describe the basic relation between multi-secret and posi-
tion sharing.

Multi-secret sharing is an extension of secret sharing. A widely known secret sharing scheme is Shamir’s (¢, n)-
threshold scheme [15]. The general idea of this scheme is to split up a secret, say K, into a set of n shares that can
be distributed to different participants. The so-called dealer, which initiates secret sharing, defines a threshold value
t, which defines the required number of shares to reconstruct K, and distributes the shares to the participants, where
each participant owns one share. Any ¢ out of the n participants putting their shares together can reconstruct secret K.
If less than ¢ shares are available, K cannot be reconstructed.

The general idea of multi-secret sharing is that a dealer splits up m secrets K, . .., K, into a set of n shares so that
each secret K; can be reconstructed by any set of at least #; < n shares. The number #; of required shares to reconstruct
each secret K; is again defined by the dealer. For less than #; shares, no information about K; is exposed.

We apply the idea of multi-secret sharing as follows to our position sharing approach PShare-GLM. We use the
positions p(m, 1), ..., p(m, Ly.y) as secrets Ky, ..., K; of the multi-secret sharing scheme. The MO corresponds to
the “dealer”, which creates n r-shares using function generate(n, l,,4,, ) as presented in the next subsection in detail.
We assign each precision level / the threshold value #; = [, i.e., [ shares are required to reveal p(rx,[). However, our
approach provides the flexibility to use any number ¢, for level /, where greater values increase robustness at the price
of a greater overhead as discussed later.

The r-shares are then distributed among n LSs by the MO. The role of “participants” is split up between LSs
and clients. Whereas participants of the original multi-secret sharing scheme manage and combine shares, LSs only
manage at most one share per position, and clients combine multiple shares queried from different LSs. This role split
allows for providing different precision levels to different clients, and limits the precision known by a single LS.

The m-share contains, similar to traditional multi-secret sharing, public data necessary for share combination
(see next subsection). However, in contrast to multi-secret sharing, the m-share additionally contains coarse-grained
position information serving as origin for the refinements.

4.3. Share Generation

The following description of share generation is based on the multi-secret sharing approach of Chan et al. [4].
However, also other multi-secret sharing approaches could be applied.

5
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Figure 3: PShare-GLM process overview

Figure 3 visualizes the whole process of share generation and combination. Algorithm 1 defines the process of
share generation, which is entirely performed by the MO. After sensing xr, the MO first calculates p(rr, 0) (position of
minimal precision) by simply setting the least /,,,, significant digits to zero as described in Section 4.1 using function
floorDigits(rm, L.y, b). p(m,0) is part of the public m-share, which is denoted as m;,.

Then, the MO calculates the r-shares for each precision level greater zero. As already mentioned in the previous
subsection, the basic idea is to create one secret of the multi-secret scheme for each position p(r, ) with [ > 0. To this
end, we first have to translate each position p(r, /) into secret K; using function getSecret(n, Iy, b, [). Since K is a
single integer number, x and y values are to be encoded as a single number. This is done by interleaving the digits of
x and y values. In more detail, function getSecret(r, l,,.., b, [) calculates each secret K; as difference of the interleaved
digit values of p(m, [,,,4) and p(mr, 0) with the 2 * (/,,,, — [) least significant digits set to 0.

After the translation of p(m, [) to secret K;, Chan’s multi-secret sharing scheme is applied to the calculated secrets
Ki,...,K; . To protect a secret, a secret polynomial f;(X) of degree 7, — 1 is calculated by the MO for each secret K;:

max *
-1
fX)=ay+a\ X+ + a;,_lX”

The constant term a; corresponds to the protected secret K;. The polynomial and therefore the secret can be recon-
structed by polynomial interpolation using modular arithmetic if #; distinct points of it are known. Therefore, each
r-share contains information to determine a single distinct point (x, y) of the secret polynomial as shown below.

According to the multi-secret scheme, the secret polynomials fi(X), ..., f;,..(X) of all secrets are packed together
using the Chinese Remainder Theorem into one single secret polynomial f(X):

f(X) =ay+a X+---+ a,,mbt_lX”'"ﬂfl

f(X) is defined, such that f}(X) = f(X) mod p;. That is, we can calculate f;(X) by calculating f(X) modulo p; for
a prime p; defining the field Z,,[X] of f;(X). fi(X) is a uniquely defined polynomial of degree equal to or less than
ty — 1 over Zp,,[X] with a; = Omod p; for all coefficients a; with j > f; and k = 1,2,...,1 - 1. The set of primes
P={pi,...,p,,. ), which is required together with the r-shares to reconstruct the secrets, is part of the m-share.

It remains the question, which information is contained in an r-share in detail. As pointed out above, each r-
share should contain information about a single distinct point (x, y) of a certain polynomial f;(X). Using multi-secret

6



Algorithm 1 PShare-GLM: Share generation (MO)
Function: generate(n, L5, 1)
1: p(n,0) « floorDigits(m, Lyax, b)
for/=1tol,,, do
K; « getSecret(n, Lyay, b, )
end for
P, f(X) « calculate Polynomial(K)
X « n distinct integer
for all x; € X do
yi < f(xi)
st — (i, Y)
end for
. my — P, p(r,0)

. return my, {srl, ..., s/}

R A A A

—_ = =

Algorithm 2 PShare-GLM: Client r-share calculation (LS)

Function: calculateClientShare(l)

1: C}"LS.X — srLS.x
ml n

. LS LS
20 cryy.y < sty .y mod my.p;

3: return crtS

sharing, we actually have to distinguish between the information of the r-shares generated by the MO, which is sent to
and stored by the LSs (called server r-share sr:S), and the information sent from the LSs to the clients (called client
r-share crg ). Each server r-share contains a distinct point (x,y’) of the secret polynomial f(X). Each client r-share

contains a distinct point (x,y) of f;(X), which is required for share combination. crﬁ
srkS as'y =y mod p; upon a request of the client for crf{f (cf. Alg. 2). Note that different client r-shares of different
levels can be calculated from one server r-share using the specific prime of level /. In the next subsection, we describe

the details of share combination.

is calculated by the LS from

4.4. Share Combination

In order to calculate p(r, ), a client retrieves the publicly available m-share m, and #; client r-shares Crop's s Cryy
from 7, different LSs. As described in the previous subsection, m, contains the set of prime numbers (P) and the least
precise position p(r, 0) of the MO; each client r-share crﬁ" defines a distinct point (x;, y;) in f;(X).

Share combination (Alg. 3) uses the Lagrange interpélation over the field Z,,[X] (line 1). It reconstructs polyno-
mial f;(X) by interpolating the #; distinct points of the client r-shares, which uniquely define f;(X). Secret K is the
constant term of f;(X) and is calculated as f;(0) = K; mod p;. Position p(r, [) is calculated by adding the reconstructed
secret K; to the interleaved representation of p(rmr, 0) and splitting up the sum into the x and y values of p(x, ) (line 3).

Each polynomial f;(X) € Z,,[X] has a degree of at most #; — 1 and fulfills the condition f;(x;) = y;. Because at
least #; distinct points are required to interpolate a polynomial of degree #; — 1, it is guaranteed that p(xr, /) cannot be
reconstructed with less than #; client r-shares.

L. LS
St cr !

4.5. Multiple Position Updates

Up to now, we only considered share generation for single position updates. However, in the worst case a com-
promised LS or client could reveal a complete history of positions for a certain precision level (either precision level
1 for an LS with access to a single server r-share, or a certain level / in case of a client that was granted access to the
client r-shares of level /). From the literature, it is well known that the knowledge of multiple obfuscated positions
might enable attackers to further refine the precision beyond the intended precision [9]. To avoid this, we now present
an extension of our basic algorithm.



Algorithm 3 PShare-GLM: Share combination (client)

. . LS
Function: combine(m,, {cr}fj1 seees €T GN))
LS LS
: filX) « Lagrange({crﬂ’]‘, e, crn,l" Y, my.pr)

1
2: K; < f;(0)

3: p(m, 1) « split(interleave(m,.p(n,0)) + K;)
4: return p(m, 1)

We assume that the MO has a known maximum velocity Vv,.., which is also known by an attacker.
Moreover, we consider the fact that in the worst case an attacker knows the complete history U =
(P pirsts D trirst)s - - - (P(Tpases ), tiase)} of position updates for a certain precision level [. Here, #4;.; denotes the time
of the first update, and 7, the time of the last update up to the present time. Level / depends on the available shares
accessible by the attacker. Then, we have to guarantee that for all 7 € [#.s, tjas] the attacker cannot derive a position
of higher precision than the precision of p(r,, [).

Before describing our counter measure, we have to consider the so-called maximum velocity attack [9] in more
detail. For this attack, the attacker considers two succeeding positions (p(r;, [), t;) and (p(m;11, 1), ;1) With the obfus-
cated areas A = p(m;,[) and B = p(m;yy,[) at times t4 = t; and 15 = t;1. In [9], it has been shown that a sequence
of position updates resist a maximum velocity attack, if each pair of succeeding updates resists a maximum velocity
attack. Therefore, it is sufficient to only consider two directly succeeding positions. With this information, the at-
tacker tries to remove areas from B that are not reachable from A in time 67 = |5 — t4| for an MO traveling with speed
Vmax- Furthermore, the attacker tries to remove areas from A without reachable point in B considering 67 and v,,,,. By
removing unreachable parts of A or B, the obfuscation area is decreased and the precision of the attacker is increased.

To prevent such attacks, we first only consider position updates for level 0. Later we will show that protecting
the position updates of level 0 against maximum velocity attacks also protects the position updates for every level
0 <[ < lyax. Let dpp(p(m;, 0), p(mis1,0)) be the point pairwise distance of two succeeding MO positions p(r;, 0)
and p(m;;1,0). The point pairwise distance of two rectangular areas is defined as the maximum Euclidean distance
between any point in the first area to any point in the second area. Furthermore, let 67 = |t;.; — #;| be the time between
the two updates. Then the MO only sends an update for p(m;,1,0) at time #;,1, if the following condition is fulfilled:

bt > dpp(p(mi, 0), p(miv1,0))

(1)
Vmax
If this condition is fulfilled, every point in p(7m;1, 0) is reachable from p(x;, 0) in time 6z. Otherwise, p(r;.1, 0) has to
be delayed until this condition is fulfilled.
For precision levels greater than zero, the point pairwise distance is always smaller than or equal to the point
pairwise distance of level 0. Thus, if Equ. 1 is fulfilled for level 0, it is also fulfilled for levels greater than 0.
The maximum delay time At between two updates depends on the values of b and /,,,, and is defined as:

B 2 % ( \/z * blmax)

Vmax

At @)
Intuitively, At describes the maximum time that is required to travel a distance of two times the diagonal of the area
of p(m, 0) with v,,,,. Therefore, the MO can trade-off the maximum delay time against the minimal revealed precision
(p(m, 0)) by adjusting the size of p(x, 0).

We analyzed the check-in behavior of users from different location-based applications in our real world evaluation
presented in Section 8 and show that only few check-ins have to be delayed. For applications requiring higher update
rates than used for sporadic check-ins, the maximum precision decrease As introduced by the maximum delay time
At is defined by the distance of two times the diagonal of the area of p(x, 0):

As = 2% V2 x pher, 3)
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Figure 4: Simplified location hierarchy example

5. PShare-SLM: Symbolic Position Sharing

Next, we present PShare-SLM, the symbolic counterpart to the position sharing algorithm PShare-GLM. The
general idea of PShare-SLM is similar to PShare-GLM: We apply the multi-secret sharing scheme [4] to share the
MO’s position in different precision levels with different clients. Since the symbolic location definition differs from
the geometric definition, we start with an explanation of our symbolic location model, before we present the specific
share generation and combination algorithms.

5.1. Symbolic Location Model

Our symbolic location model consists of a location hierarchy based on the spatial contains relationship. Each
location is represented as a vertex v in the hierarchy, and has a level / defining the length of the path from the root to v
(cf. Fig. 4). The root location is on level 0, and we assume that all leaf vertices have the same level /,,,.. Each location
has a unique location name in the context of its parent location, for instance, “Florida” for the location representing the
State of Florida as child of the location representing the country USA. The concatenation of names on the path from
the root to a location defines a unique label for each location, such as usa/florida/miami/miami_i_airport for
the location representing the Miami International Airport. Each location label can be mapped to a unique identifier
represented as integer, which serves as input to the secret sharing scheme as presented below.

Using a hierarchical model makes it easy to define positions of different precisions. Each hierarchy level defines
a precision level, where level /,,,, defines the highest precision where the MO is located. Again, p(m,[) denotes a
position of precision level / similar to the geometric model. However, p(r, ) is now represented as symbolic location
identifier rather than geometric coordinates. The sequence of ancestor vertices of a position p(r, [) is denoted as

ancestors(p(m, 1)) = (p(m,0),..., p(x,1)).

5.2. Share Generation and Share Combination

We now apply the idea of multi-secret sharing to our symbolic position sharing approach PShare-SLM. The share
generation executed by the MO is shown in Alg. 4.

First, the MO calculates ancestors(p(n, Lqx)) to determine (p(xr, 0), p(r, 1), ..., p(n, Lyax)) (line 1). The identifier
of p(m,0) defines the root of the hierarchy and is stored in the m-share. The identifiers of p(r, 1) to p(x, l,.x) are
used as the secrets Kj, ..., K;,_for the multi-secret sharing scheme. The remaining part of the algorithm is similar to
the share generation of PShare-GLM. That is, we apply the multi-secret sharing algorithm by calculating the server
r-shares, and distribute them to the LSs.

Similarly, the share combination algorithm as depicted in Alg. 5 uses again the Lagrange interpolation over the
field Z,,[X] to reconstruct the secret polynomial f;(X) for a given level /. The constant term of f;(X) is the identifier
of p(rm,[), which can be mapped to the label of p(x, ).



Algorithm 4 PShare-SLM: Share generation (MO)
Function: generate(n, L5, 1)
1 p(m,0), ..., p(7, lnax) < ancestors(p(m, L))

2. K p(m,1).d, ..., p(r, Lygy).id

3: P, f(X) « calculatePolynomial(K)
4: X « n distinct integer

5. for all x; € X do

6y flx)

7o sty (X, )0)

8: end for

9: my; « P, p(r,0).id

10: return my, {srl, ..., sr?}

Algorithm 5 PShare-SLM: Share combination (client)

. . LS
Function: combine(m,, {crﬁ1 soeer ML
LS LS
1 fi(X) « Lagrange({crﬂ’l o, Crﬂ,l" Y, my.pr)

2: p(m,D).id < f;,(0)
3: return p(m,I)

5.3. Multiple Position Updates

Next, we analyze PShare-SLM with regard to multiple symbolic position updates. As pointed out above, an
attacker knowing the complete position history U = {(p(7 first, D), tfirst)s - - - » (P(Fiases D), tiase)} of a certain level [ could
try to use a maximum velocity attack to increase precision. Note that although the location hierarchy itself does not
define the distance information necessary for such attacks, an attacker can determine this information by matching
symbolic locations to available topographic maps.

The basic idea to counter such attacks is similar to the geometric case: A new update p(m;,1,/) is only permitted
if any position within p(r;;1, 0) is reachable from any position within p(z;, 0) considering 6f = |t;;; — t;] and the MO’s
maximum velocity v,,,,. Although theoretically this would be an effective counter measure, it impacts the minimal
update time between two succeeding updates as specified in Equ. 1. In contrast to the geometric case, where the
precision of p(m;,0) can be specified by the MO, level 0 is now defined by the root location of the given symbolic
location model. Therefore, it is worthwhile to have a closer look at the influence on the minimal update time.

Assume a model where the root location covers a whole country like Germany. In this case, the maximum distance
between two positions within the hierarchy would be about 1 000km. For a MO walking with v,,,, = 6km/h this
results in a maximum delay of 6.94 days, whereas a maximum velocity of v,,,, = 200 km/h of a car decreases the
minimum time between two updates to 5 hours. For an inner city scenario with a maximum distance of 10km and an
MO walking with at most v,,,,x = 6 km/h, the minimum delay between two updates would be 1.66 hours.

These examples show that there are scenarios where the minimum update time would be hours rather than days.
This would be sufficient for many “check-in” applications, as our evaluations based on real-world traces show in
Section 8. For applications with shorter update intervals, the geometric approach would be better suited.

6. PShare-GLM ,,p: Geometric Position Sharing Using Map Knowledge

Until now, we assumed a free-space mobility model for PShare-GLM where MOs can be located at each position
within p(mr, ). However, MOs positions are in many scenarios restricted to streets, places, buildings, etc. Therefore,
an attacker could use map knowledge to decrease the effective area size of the obfuscation area p(r,[) as shown in
Fig. 5. The effective area of a MQ’s position p(r, ) is defined as the area within p(s, /) where the MO can actually be
located.

To overcome this problem, we present PShare-GLM 4, taking map knowledge into account. The general idea of
our extension to PShare-GLM is to adapt MO positions in a first step to map knowledge such that each position p(r, [7)
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area(p(n,0))=
262 144m?

esize(p(n,0))=
82 946 m’

Figure 5: Map knowledge example reducing the effective area size (b = 2, [yqx = 9)
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Figure 6: Quadtree and effective area example (b = 2, [0 = 9)
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covers at least an area with an effective area size of a MO-defined value A;. In a second step, we use the calculated
positions for the share generation and apply the multi-secret sharing scheme as presented for PShare-GLM.

For the first step, the MO specifies its privacy requirements by defining different area values A; € Ao, ..., A,, each
representing the required minimum effective area size of precision level /;. The goal is now to find for each value
A; the smallest position p(r, [}) such that the effective area size of p(r,[}) is equal to or greater than A;. To calculate
the effective area size of position p(r,[) we use function esize(p(r,[)). By using this notion, our goal is to find the
minimum level /] such that esize(p(m, [)) > A; for each A; € Ao, ..., A,,. For the sake of simplicity we consider from
now on parameter b = 2 defining the granularity of the area of the MQO’s position. Nevertheless, our approach can also
be applied to other parameter values of b.

We analyze map information in a preprocessing step to adapt positions to map knowledge. Thus, we calculate for
each position whether or not it is a possible MO position, for instance, located on a street or in a building. To allow
for an efficient search of p(r, I) for each A;, we store all possible MO positions in a quadtree aggregating the effective
area sizes for each level in a bottom-up approach (cf. Fig. 6). The quadtree has a depth of /,,,, and its root is defined
by position p(r, 0).

To calculate for a given position 7 and a required effective area size A; the minimum level [/ fulfilling
esize(p(m,[7)) > A; without raising privacy concerns, we traverse the corresponding quadtree of 7 top down by eval-
uating the effective area size of position p(m,[) for each level [ and the four child nodes of p(x,[) on level [ + 1. If
the described nodes of the quadtree cover an effective area of size equal to or greater than A;, the quadtree is further
mwm%donmemmﬂamu+I.Omﬂwmabwﬂﬁ=lmﬁmmi

To explain why it is required to consider esize(p(r, [)) for level / and also for the four child nodes of p(r, [) on level
[ + 1 within each step when traversing the quadtree, consider the following example as depicted in Fig. 7:

Assume position p(r, ) of an arbitrary level [ covers the areas p(ny,l + 1), p(mp, 1+ 1), and p(m3,[ + 1), all having
an effective area size of 120. Area p(m4, [+ 1) covered by p(r, [) has an effective area size of 80. For a given threshold
A; = 100 the dark red area in Fig. 7a of level / would be calculated as obfuscation area for each position 7 € p(m,[)
if the child nodes of p(m,[) are considered as previously described. Without taking the child nodes of p(r,[) into
account, an attacker could increase his precision for an update in an area with an effective area size smaller than
A; based on the returned obfuscation area and the knowledge of the share generation algorithm. For instance, each
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Figure 7: Example showing impact of considering child nodes (A;=100, b=2)

position € p(my,/ + 1) would lead to an obfuscation area of level / + 1 marked in light yellow in Fig. 7b, whereas
€ p(my,l + 1) would lead to an obfuscation area of level / marked dark red. Thus, an attacker could increase his
precision based on the returned obfuscation area by excluding p(r;, [+ 1) from a calculated obfuscation area of p(r, [)
for A; = 100.

In the second step we calculate the secrets K, .. ., K, that are used as input for the multi-secret scheme based on
the calculated positions p(r, [7) for each A; € Ao, ..., A,. The number m of generated secrets is defined by the m + 1
MO-defined area threshold values. Each secret K; is calculated as the interleaved digits refining position p(r, [;)) of Ag
to position p(r,[}) of A; for 1 <i < m.

The share generation of PShare-GLM,,,, extends the share generation algorithm presented in Alg.1 for PShare-
GLM. We apply the area adaptation to calculate the secrets by changing line 1 to 4 of Alg. 1 and therefore the way how
the secrets are generated. Furthermore, we change the position provided within the m-share from p(r, 0) to p(r, [})).

Details of the share generation of PShare-GLM ,,,, are presented in Alg. 6. First, we calculate for each MO-defined
threshold value A; € Ay, ..., A,, the obfuscation area p(r, [!) by using function getMinLevelConsidering Childs(r,A;, q)
traversing quadtree g top-down by checking the previously described requirements for the child nodes and
esize(p(mr,1)) > A; for each position p(r,[). Then, the obfuscation areas are used to generate the secrets K; by in-
terleaving the refining digits of position p(r, [[)) of Ag to position p(r, [}) of A;. The calculated secrets are then used as
input for the multi-secret sharing scheme as presented in Alg. 1 for PShare-GLM. Finally, position p(r, [) is stored
within the m-share fulfilling esize(p(r, [))) > Ao.

The share combination of PShare-GLM ), is basically calculated as presented in Alg. 3 for PShare-GLM. The
only difference is that position p(r,/) in line 3 is now defined as p(r,/?) and calculated by splitting up K; into the x
and y part refining p(r, [j) of the m-share to p(r,[?) by substituting the corresponding digits of p(r, [;)).

7. Security Analysis

In this section, we present the security analysis for PShare-GLM and PShare-SLM. We start with a description of
the attacker model and an overview of the analyzed attacks, which are then discussed in detail.

7.1. Attacker Model

As attackers we consider malicious LSs and malicious clients. Each attacker has access to the public m-shares.
Each malicious LS additionally knows one server r-share for each position. Each malicious client with access to a
position of precision level / additionally knows [ client r-shares (cf. Section 4). We both consider single attackers
(a single malicious LS or client), as well as colluding attackers (multiple malicious LSs or clients). We structure the
following analysis according to different attacks. First, we consider single attackers who analyze a single (current)
position, or even the complete history of positions. Second, we analyze the effect of colluding attackers who put
their compromised shares together. Since PShare-GLM and PShare-SLM are based on the same multi-secret sharing
scheme, we do not distinguish between them unless the difference is relevant.
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Algorithm 6 PShare-GLM,,,,: Map-based Share Generation (MO)

Function: generate(n, L4, n,{Ao, ... An})
1: g « getQuadtree(m, L)
: fori = 0tomdo
p(n, ) « getMinLevelConsideringChilds(r, A;, q)
: end for
fori=1tomdo
K; « interleave(refinement(p(rn, 1), p(r, [})))
end for
. P, f(X) « calculate Polynomial(K)
: X « n distinct integer
: forall x; € X do
i f(x)
sty < (X1, )
: end for
: my — P, p(m, [[)

. return my, {srl, ..., s}

e e e
wn AW N = O

7.2. Single Attacker

First, we consider a malicious client having access to / client r-shares of a single position that can be used to
reconstruct p(m, [). Thus, the client knows secret K; refining p(r,0) to p(n, /) from these shares. As shown by Chan
et al. [4], their multi-secret sharing scheme ensures that different secrets are independently protected by different
polynomials. Thus, the information from K; cannot be used to reconstruct other secrets and positions of levels greater
L

A single malicious LS has access to the m-share and one server r-share, i.e., it knows one distinct point of the
secret polynomial f(X). Therefore, the malicious LS can calculate for each precision level / with 0 < [ < [,,,, exactly
one point of the polynomial f;(X). Thus, the malicious LS can reconstruct the MO’s position p(rx, 1) of level 1, while
the positions of all levels greater 1, which require at least 2 r-shares, cannot be reconstructed.

Our proposed extension against map matching attacks (cf. Section 6) ensures that an attacker cannot reduce the
effective area size of a known position p(r, I!) below a MO-defined value A; by using additional map knowledge.

Next, we consider further attackers knowing for a certain level / the complete position history U =
{(P( pirsts D trirs)s -+ - s (P(Miases D, tiase)}. Our algorithms create position shares of different positions independently
from each other. Therefore, shares generated for (p(m;,1),t;) cannot be combined with shares for (p(mjs1, 1), tis1)-
However, the reconstructed positions p(7firs, 0), . . ., p(7ias, ) could be used for a maximum velocity attack (cf. Sec-
tion 4.5). Since we use delayed updates as counter measure, these attacks are also futile.

7.3. Colluding Attackers

Assume, for instance, three malicious clients c4, ¢p, and c¢c. Assume that ¢4 and cp own [ client r-shares of the
same precision level [ so that both can calculate p(r, ). cc owns [+ 1 client r-shares of the next precision level [+ 1 to
reconstruct p(m, [ + 1). Then, the collusion of ¢4 and ¢z does not reveal anything new to c4 and cp, as they were both
already allowed to reconstruct p(m, /) by calculating polynomial f;(X) using their / client r-shares each representing
a distinct point of f;(X). Because polynomial f;(X) is uniquely defined by [ distinct points, even using more than /
client r-shares of the same precision level leads to the same polynomial f;(X) and therefore p(r,[). Furthermore, the
client r-shares of precision level [ reconstructing f;(X) reveal nothing about the polynomial f,1(X) and therefore about
p(m, [+ 1). This is based on the fact that the polynomials of different precision levels are generated independently
from each other in the multi-secret sharing scheme [4]. Thus, even the collusion of ¢4 and c¢ with client r-shares of
different precision levels does not reveal any new information. c¢ can reconstruct p(m, [ + 1) even without collusion
and the additional client r-shares of c4 carry no information about f;,,(X) of the next precision level [ + 2.

Second, we consider multiple malicious LSs. Let m be the number of colluding LSs. These LSs can use their
stored server r-shares to calculate m different client r-shares for each level . Since we defined the threshold values as
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Category Pedestrian Ground vehicle Plane

Distance (d) and d < 10km and (d < 10km and 6 % <v <200 kTm) or d > 10000 km or
average speed (v) [ v <6 (10km <d < 10000kmand v < 200%2) | v > 200 %

Vimax 6 5m 200 ko 1000 ko
#updates 15895691 6079316 412915

Table 1: Position update classification

t; = I, [ client r-shares are required to get a position p(rw, [) of precision level /. Therefore, m colluding LSs can reveal
positions up to level / = m. This shows the desired graceful degradation of privacy property of our approach. The
revealed precision increases with the number of compromised LSs. We could even increase the robustness by setting
the threshold values #; to values greater than /. Then more LSs are required to calculate a position of a certain level,
which increases the overhead on the one hand, but also increases the robustness of our approach on the other hand.
Therefore, our scheme allows for trading off overhead against robustness.

The collusion of malicious LSs and malicious clients is a special case of the collusion of malicious LSs. In this
case, either the client with the highest precision level or the number of colluding LSs defines the revealed precision
level.

8. Real World Trace Evaluation

As defined in Equ. 1, the minimum time between two updates is restricted by the MO’s maximum speed and size
of the level O position to guarantee protection against maximum velocity attacks. To analyze the practical impact of
this restriction, we analyzed real datasets of position check-ins from existing location-based applications to see how
they comply with this restriction. If many updates were violating the restriction, this would be an indication that our
approach is not applicable to these applications since the user could not perform many desired updates.

The analyzed dataset, which was collected by [16] between September 2010 and January 2011, contains 22 387 922
user position check-ins of 224 803 users from different location-based applications all over the world. Since this
dataset only contains geometric coordinates, we focus this evaluation on PShare-GLM. For our purpose, we processed
the dataset as follows. We classified each position update based on the traveled distance and the average speed between
two succeeding updates as shown in Table 1.

This table also shows the assumed maximum speed for PShare-GLM and the resulting number of updates per
category. For each category, we calculated the percentage of updates that can be performed without violating the
restriction. Figure 8 depicts the results for the categories and different sizes of level 0 positions ranging from 1 m (2°)
square side length to 32 768 m (2'3). As we can see, in the worst case for an obfuscation area side length of 32 768 m,
55.19% of the pedestrian updates are possible. For a side length of 1024 m, which provides sufficient privacy for
pedestrians in an innercity scenario for example, 88.09% of the updates are possible. For ground vehicles, 83.59%
of the updates are possible using even the coarsest obfuscation of 32 768 m. Figure 9 depicts the results of all traces
together from all categories. As it can be seen, for a level 0 size of 1024 m, 90.08% of all updates can be published.
Thus, we can state that the minimum update time restriction only affects a small number of updates.

9. Runtime Performance Evaluation

Besides security, the efficiency of share generation is important for the practical application of our approaches.
Share generation is performed on the MO’s mobile device, which typically has low performance in terms of computa-
tional speed. Also on such resource-poor devices, share generation must be possible in short time. An efficient share
generation also leads to small overhead in terms of energy, which is desirable for battery-operated mobile devices.

We measured the overall time for share generation of PShare-GLM, PShare-GLM ,,),, and PShare-SLM on a state
of the art mobile device (HTC Desire HD). For PShare-SLM, we used a hierarchy with a maximum level of /,,,, = 3
and measured the time to generate one m-share and three up to fifteen r-shares. The shares are all generated for the
same number of /,,,, = 3 secrets such that three r-shares are required to reconstruct the precise position of the MO on
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Figure 8: Successful updates for obfuscation areas of precision 2/[m]
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Figure 9: Successful updates for obfuscation areas of precision 2/[m]

level three. For PShare-GLM, we measured the time to create one m-share and a varying number of n = [,,,, r-shares.
By increasing n, we also increased the number of used secrets. To evaluate PShare-GLM ., we used road network
and building data provided by OpenStreetMap [17] for the inner city of Stuttgart. We defined the obfuscation area of
p(m, 0) by setting ... = 13, such that p(x, 0) covers an area of 67.1 km? and has an effective area size of 10.5 km?>.
We increased the number of generated r-shares from one to fifteen by increasing the number of used area thresholds.
We varied each area threshold between 10 km? and 10 m?. The results are shown in Fig. 10. The depicted results of
PShare-GLM are measured for b = 2 only since other b values led to almost identical results. The plotted values are
the average over several runs per share number using Google’s micro-benchmarking tool Caliper.

As it can be seen, the runtime of PShare-SLM stays nearly the same for the different number of generated r-shares.
This is based on the fact that the number of used secrets is defined by the maximum level three of the hierarchy. For
PShare-GLM and PShare-GLM ., the number of secrets was increased by increasing the number of generated shares.
Nevertheless, the runtime of all three approaches stays well below 1s even for larger share numbers. Therefore, we
can state that the share generation algorithm is efficient and suitable even for resource-poor devices.

Next, we show the performance evaluation for the share combination, which is done by clients (location-based
applications) typically running in an infrastructure without energy restrictions and high computational power. We
measured for PShare-GLM, PShare-GLM ,,,, and PShare-SLM the time to combine the m-share with up to 15 r-
shares on a state of the art personal computer (Intel Core 2 Duo, 2.53 GHz, 3 GB RAM). The results are shown in
Fig. 11. As it can be seen, the time for share combination of all three approaches is nearly the same and stays below
1.1 milliseconds even for a larger number of combined shares.

10. Summary

In this paper, we presented a novel position sharing approach to manage private position information in non-trusted
systems of third-party location services and clients. The basic idea is to split up the precise user position into position
shares of limited precision, which are distributed to multiple location servers of different providers. Therefore, a single
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Figure 11: Share combination

compromised provider does only reveal a position of strictly limited precision. Clients are granted access to multiple
shares from different servers, which can be combined to a position of higher precision to satisfy the individual quality
requirements of different clients.

Our approach makes use of the concept of multi-secret sharing to calculate position shares. We have shown
how to generate shares for geometric as well as symbolic positions, which demonstrates the versatility of the ap-
proach. Moreover, we included defense mechanisms against maximum velocity attacks, which are a serious threat
to obfuscation-based mechanisms. Furthermore, we presented a map-based extension to our geometric position shar-
ing approach that resists advanced attackers using map knowledge to increase precision. Finally, we showed the
robustness, applicability, and runtime performance of the approach.

In future work, we will consider further semantic knowledge, for instance, periodic behavior of users, knowledge
about points of interest, etc. that could be used by an attacker to increase precision.
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