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Orthogonal Meta-Modeling

Katharina Gorlach, Frank Leymann
Institute of Architecture of Application Systems University of Stuttgart, Germany

goerlach@iaas.uni-stuttgart.de, leymann@iaas.uni-stuttgart.de

Abstract: This article introduces meta-modeling hierarchies additional to the conventional meta-
modeling hierarchy in a model-driven architecture. Additional hierarchies are introduced orthogonal to
the conventional meta-modeling hierarchy for an appropriate correlation of information on combined
hierarchies. In particular, orthogonal meta-modeling enables the grouping of models on the same
conventional meta-modeling layer based on additional semantic dependencies. For the enhancement
of conventional meta-modeling this paper discusses the creation of orthogonal meta-modeling
hierarchies, the specification of semantic dependencies in meta-modeling hierarchies, semantic
instances as well as the inheritance of semantic dependencies in meta-modeling hierarchies in
general. Furthermore, the paper outlines the impact of orthogonal semantic meta-modeling on
automated model transformation.
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1. Introduction

Model-driven software development allows developers to focus on the functionality of a software
system without taking care about implementation details in the design phase. Furthermore, model-
driven software development enables code generation, i.e. models can be automatically transformed
to implementation artefacts. The introduction of meta-modeling allows to structure multiple models on
different layers and specify particular instance-of dependencies between models (Mukerji, J. & Miller,
J. 2001). Functionality-oriented models of software systems can be enhanced by adding semantic
information that is typically provided by ontologies. The combination of functionality-oriented models
and ontologies enables a semantic-driven reasoning on models and improves the ability for
automation while developing software systems.

The approach at hand aims for an explicit specification of some semantic information, i.e.
dependencies on meta-modeling layers in contrast to specify semantic information exclusively in
ontologies. That means, the approach at hand emphasizes dependencies between functionality-
oriented models in contrast to the enhancement of models by ontologies. In detail, semantic
dependencies between models on meta-modeling layers are introduced next to the conventional
instance-of dependency in meta-modeling layers. Enriching meta-modeling layers by semantic
information allows to improve the ability for automation, e.g. model transformation and code
generation can be improved by additionally considering semantic information. Furthermore,
capabilities for grouping models in layer-based architectures are improved and the expressiveness for
modeling layer-based architectures is enhanced by adding semantic dependencies to the meta-
modeling concept.

The approach at hand introduces semantic meta-modeling hierarchies orthogonal to the conventional
meta-modeling hierarchy and to each other. The orthogonal relation of the hierarchies ensures an
appropriate correlation of contained information. In particular, models on the same conventional
modeling layer can be grouped corresponding to particular semantic information. A semantic meta-
modeling hierarchy is determined by a fixed instance-of dependency covering especially semantic
information of related models. That means, semantic meta-modeling hierarchies are introduced similar
to the conventional meta-modeling hierarchy that is determined by the conventional instance-of
dependency. The conventional instance-of dependency represents the inheritance of syntax
information on horizontal meta-modeling layers, i.e. allows the creation of syntactic instances on an
underlying layer. In contrast, the approach at hand allows further instance-of dependencies
representing the inheritance of semantic aspects, i.e. create semantic instances.

The following section 2 introduces a semantic instance-of dependency enabling a semantic meta-
modeling orthogonal to the conventional meta-modeling. Afterwards, section 3 discusses orthogonal
meta-modeling in general by studying different kinds of semantic instance-of dependencies for meta-
modeling hierarchies, further semantic dependencies in the hierarchy as well as the inheritance of
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semantic dependencies. Section 4 outlines the ability to improve automated model transformation
based on orthogonal meta-modeling. Finally, Section 5 presents a summary and related work.

2. Semantic Meta-Modeling

The introduction of semantic layers to the conventional meta-modeling hierarchy allows to specify
semantic dependencies between models additionally to the conventional instance-of dependency. The
approach at hand introduces semantic layers orthogonal to conventional meta-modeling layers. That
means, models that are placed on the same conventional meta-modeling layer can be grouped based
on their semantic dependencies. Figure 1 shows the enhancement of conventional meta-modeling by
semantic dependencies in the field of service composition. In particular, Figure 1 shows two
conventional, i.e. horizontal meta-modeling layers Lo and L. that separate the object layer and the
model layer. Introduced vertical semantic layers So, S1, S2, and Ss on the horizontal layer L1 allow to
further separation of models on layer Li. For example, the model on layer So represents a semantic
meta-model for the models on Sa.

A semantic meta-model represents a knowledge base that can be specialized in semantic instances.
In general, a semantic instance holds the same or less information as the related meta-model. For
example, the semantic meta-model G on So in Figure 1 represents the knowledge base for the models
on S1-S3. A model on S: inherits semantic information from the meta-model G but specifies the
inherited information by a specific executable programming language, e.g. BPEL (OASIS 2007). That
means, the vertical meta-modeling layer S1 groups models representing views on the knowledge base
on Sp each using its own modeling paradigm. In particular, the models of Si: are different
implementations of the same phenomenon specified by the semantic meta-model on So. The semantic
instance on S can be semantic meta-models for models on layer S.. For example, a model on Sz can
create a view on its semantic meta-model by excluding information in order to focus on a specific
aspect. In the following the individual vertical meta-modeling layers are discussed in detail.

‘ ‘ Legend:
Sy | S; | S, S, Legend:
.4 Medel.condec 1 ; Semantic instance-of
1 e ! ; ] with loss but without
LT H . -4 View A . .
‘J/’ -1 View1l A adding semantic
L GrammarG |&4---==""""""] Madel.scufl |e’i information
1 W N ; .
7~ B | View2 |4 ViewB
i | Model.bpel 5 1 Conventional
‘ : instance-of
/\
o
0
&
02 del.bpel
© Model.bpe
I LO X e L(G)
[y
o
S Madel.scufl
>
<
(o]
(&)

Semantic layer axis S;

Figure 1: Orthogonal semantic meta-modeling

So: Semantic Knowledge Base

The starting layer Lo of a vertical meta-modeling hierarchy collects models that represent most
comprehensive semantic knowledge bases for models on other semantic layers. That means, a model
on layer Lo specifies the most general information about a phenomenon that can be semantically
specialized on other vertical layers. In general, all modeling languages can be used to specify
a semantic knowledge base. However, this section briefly introduces a meta-model that is especially
designed for the unification of specification languages for service compositions and therefore suitable
to model semantic knowledge bases concerning service compositions. In particular, the unified model
is intended to be the engine-internal representation of a service composition that is used for the
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execution of the particular service composition. Therefore, an engine is not required to support
multiple modeling languages and the support of multiple modeling languages in an execution
environment does not require the use of multiple engines, respectively. The unified model is based on
formal grammars, i.e. a service composition is intended to be executed based on a grammar-based
specification (Goérlach, K. et al. 2013). The same service composition modeled by using a highly
developed specification language like BPEL (OASIS 2007), BPMN (OMG 2011), Scufl (Oinn, T. et al.
2006), and ConDec (Pesic, M. 2008) is considered to be a view on the particular service composition
grammar (cf. Figure 1). Therefore, a service (composition) grammar is considered to hold the most
general information about the logic of a single service composition. A model of the same service
composition based on high specification language represent a semantic instance of the service
grammar as the semantic information of the service grammar is specialized corresponding to the
particular specification language. If the expressiveness of the particular specification language is not
sufficient some logic, i.e. semantic information is lost while specialization. For example, alternative
execution paths cannot be specified in models exclusively using data flow-based modeling constructs.
For enabling alternative paths in data flow-based models the meta-model needs to be extended by
particular control flow-based modeling constructs (cf. Oinn, T. et al. (2006)). In general, most
languages for service compositions provide mechanisms for extensibility that can be used to avoid the
loss of information while specialization (cf. Kopp, O. et al. (2011)). However, grammar-based models
of service compositions specify a general dependency between service invocations covering the
execution order without specializing the semantics of this dependency. The general dependency in
grammar-based models can be implemented, i.e. specialized for example by data flow and/or control
flow in semantic instances.

Figure 2 illustrates a grammar-based model of an imperative, i.e. control-flow.based service
composition by means of a BPMN-based service composition. In general, service calls and other
relevant information are represented by non-terminals and/or terminals in the grammar-based model.
For example, the activation of a service call is represented by a non-terminal B whereas the finishing
of a service call is represented by a terminal b. A production rule B—b represents the relationship
between the activation and the finishing of the service call. If the production rule is applied at runtime
the particular service call is executed between reading the left-hand-side of the production rule and
writing the right-hand-side of the production rule. For enabling service orientation in formal grammars
the non-terminals are extended by a type. The introduced non-terminal type is correlated with a web
service operation. That means, two non-terminals B and D of the same type represent two different
calls of the same web service operation. Conventional non-terminals without type represent helper
symbols ensuring the right order of activities. For example, the helper non-terminal H in Figure 2 is
used for the synchronization of parallel execution paths.

Figure 3 illustrates a grammar-based model of a declarative service composition by means of
a ConDec-based service composition. The constraints in the declarative service composition specify
dependencies between service calls, i.e. activities. Typically, multiple activities are allowed to be
executed at a specific point in time and a (human) user is expected to select a specific activity for
execution. After the execution of the selected activity a new set of activities that are allowed to be
executed next needs to be calculated based on all given constraints. The service composition in
Figure 3 specifies three service calls A, B, and C as well as two constraints covering the service calls
A and B. The constraint response(A,B) specifies that the call B must be executed in future when A is
executed at least once. Additionally, the constraint precedence(A,B) specifies that the call A needs to
be executed when B begins to execute. In between all other service calls C are allowed to be
executed. At the very beginning of the service composition in Figure 3 the service call B is not allowed
to be executed as the precedence constraint does not permit the execution of B when A was not
executed before. Therefore, the start symbol Si in the grammar-based model allows only the
activation of the service calls A and C. Additionally, the symbol ¢ is allowed to be activated indicating
the finishing of the service composition. The index for the start symbol needs to be introduced for
covering different sets of service calls that are allowed to be executed at the same point in time. The
index for service calls A, B, and C is introduced in order to cover different effects of service call
executions at different points in time. For example, the execution of the service call A at the very
beginning of the service composition requires the execution of a following service call B. In order to
ensure the following service call B the service composition switches to another index (cf. rule (4))
indicating the need for the execution of B by disallowing the finishing of the service composition. In the
following, further calls A are allowed but have no impact on the index. In contrast, a following
execution of the service call B satisfies the response constraint in the service composition and allows
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to switch to another index (cf. rule (10)). For more information about the grammar-based meta-model
for service compositions please see (Gorlach, K. et al. 2013) and (Gérlach. K. 2013).

(1) S— ABH
(2) A>a
(3) B—>b
(4) abH — abC
Gy CoT
6) Co>F
(7) T->D
(8) D—>dE

9 E—>e
iSeNice A ﬁService B ﬁService E (10)F > ¢

<nonTerminal> <name> H </name> </nonTerminal>

<nonTerminal> <name> A </name>
<type> Service A Operation Al </type>
<input> <reference>Y </reference> </input>
<output> <reference>Z </reference> </output>
</nonTerminal>
<nonTerminalType name="Service A Operation A1">
<wsa:EndpointReference> <wsa:Address>
http://localhost:9763/services/ServiceA
<wsa:Address> </wsa:EndpointReference>
...<operation> A1 </operation>

</nonTerminalType>

<nonTerminal> <name> C </name>
<type> XPathSolver </type>
<input> <reference>Z </reference>
<value> Z>0 </value> </input>
<relations>
<relation> <outputValue> True </outputValue>
<nonTerminalREF> T </nonTerminalREF>
</relation>
<relation> <outputValue> False </outputValue>
<nonTerminalREF> F </nonTerminalREF>
</relation>
</relations>

</nonTerminal>

Figure 2: An imperative, i.e. control-flow-based service composition and its grammar-based
representation
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(1-3) Si—> AL | Ci e
4 Aio>aS

Tesponse (6]) Ci->cS

(6-8) S2—>A2| B2 | C2
@ Aro>aS

(18) Cs—>cSs

(10) B2—bSs

(11) CaocS:

c (12-15) Ss—>As | Bs | C3 | ¢
(16) As—>asS:

(17) Bs—bSs

(18) Cs—>cSs

Figure 3: A declarative, i.e. constraint-based service composition and its grammar-based
representation

Si: Models with Different Underlying Paradigms

The intention of the semantic layer Sz in Figure 1 is to group models with different underlying modeling
paradigms. Assuming a grammar-based knowledge base on layer So covering a single service
composition the layer S: collects implementations of the particular service composition based on
highly developed specification languages for service compositions with different underlying paradigms.
For example, BPEL can be used to specify a control-flow-based model whereas ConDec can be used
to specify a constraint-based model of the same service composition. Both models inherit semantic
information from the same model as they specify the same service composition.

The semantic instance-of dependency separates the vertical layers Sp and Si. In general, a model on
layer S is called semantic instance of a semantic meta-model on layer So. A semantic instance
inherits information from its semantic meta-model. However, the semantic instance specializes the
inherited information by possibly excluding parts of information. That means, the semantic meta-model
holds general semantic information whereas the semantic instance is specialized by restricting the
general information. The inheritance of semantic information from meta-model to the instance is
different to the conventional inheritance where all information of the super model is inherited and
further information is added for specialization. In contrast, the inheritance of semantic information may
cover a sub-set of information, i.e. the semantic instance inherits the same or less semantic
information from the semantic meta-model but is not allowed to add new semantic information in
general. However, a semantic instance is allowed to hold additional syntactic information as the
syntactic aspect is not covered by the semantic inheritance. The character of the semantic inheritance
leads to the fact that different models on layer S: can have different sets of possible runs although
they are related to the same semantic meta-model on So. Furthermore, the set of possible runs of the
meta-model may vary from the particular sets of semantic instances. In summary, the semantic
dependencies on L1 have impact on the dependencies on Lo (cf. Section 3).

S2: Views in General

Next to the semantic inheritance from layer So to layer Si further layers for the specialization of
semantic information can exist. The layer Sz in Figure 1 groups views on a single model on layer Sy,
i.e. the layer Sz collects semantic instances of service composition implementations. A view allows to
focus on specific aspects of a service composition implementation while excluding irrelevant
information. Views on service compositions are very popular. Basically, views are defined by
operations whose application generates a view. The particular objective of a view determines required
operations and their application order. For example, Liu and Shen (2003) define views based on
abstraction operations that exclusively include the loss of semantic information. However, other
approaches exist where semantic information is lost as well as added (cf. Schumm, D. et al. (2010)).

Similar to different operations for creating views different semantic instance-of dependencies are
thinkable representing the inheritance of different information. Using different semantic instance-of
dependencies in the same vertical, i.e. semantic meta-modeling hierarchy enables an extensive
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enrichment of horizontal, i.e. conventional meta-modeling layers by semantic information. However,
the approach at hand proposes to use a single semantic instance-of dependency in one semantic
meta-modeling hierarchy. If multiple semantic inheritance dependencies need to be considered
multiple semantic hierarchies should be introduced orthogonal to the conventional meta-modeling
hierarchy and to each other. By adding an orthogonal meta-modeling hierarchy for each semantic
instance-of dependency the capabilities to group models are improved significantly.

Ss: ... Final Layers

Similar to conventional meta-modeling an infinite humber of layers for semantic meta-models and
semantic instances can be defined. However, there always exists a starting point. In semantic meta-
modeling with a semantic instance-of dependency covering abstraction the most general layer creates
the starting layer So. Although an infinite number of layers can exists in the corresponding hierarchy
a final layer can be determined as abstraction eventually finishes with the “empty” model.

In the field of service compositions scenarios of a service composition model are suitable to determine
a final layer. Figure 4 illustrates the nature of interpreting scenarios as semantic views on a process
model: The vertical semantic layer S: is “fold” to the horizontal conventional layer Lo. In particular, both
layers represent the same kind of information and both layers represent a starting/final layer of their
particular hierarchy.

So ! S; | S, Legend:
e >
_.-1 Medel.condec ; Semantic instance-of
Pt i . with loss but without
[P i .4 Szenario A . .
P e adding semantic
: v information
I-1 Grammar G E—i """"""" Madel.scufl Qk
yAN
JAN i\\ i Szenario B Conventional
' Model.bpel ' instance-of
/\ |
_ e e e
(%]
=
(0]
g Model.bpel
& Lo x € L(G)
©
5
b= Madel.scufl
c _—
(]
>
c
o
o

Semantic layer axis S,

Figure 4: Scenarios creating views on service compositions

3. Semantic Dependencies on Vertical and Horizontal Layers

The previous section introduced the semantic instance-of dependency with loss but without adding
semantic information. The backward relation of semantic instance-of dependencies collects semantic
information of semantic instances in a single semantic meta-model on a lower semantic layer. For
instance, Figure 5 shows a semantic instance-of dependency between the semantic meta-model
Madel.scufl on S1 and the semantic instances scenario A and scenario B on S2. The backward relation
reflects the combination of both scenarios A and B in the model Madel.scufl. That means, the
backward relation can be used for the generation of a semantic meta-model if the instance-of
dependency is assumed to be complete. The model generation based on the backward relation of a
complete instance-of dependency is for example used in Petri net synthesis where a Petri net model is
generated based on a given set of all possible transition sequences (cf. Badouel, E., Darondeau, P
(2011) or Reisig, W. (2010)).

Next to the semantic instance-of dependency with loss but without adding information other
dependencies can be used to create orthogonal meta-modeling layers. For example, a semantic
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instance-of dependency with loss and adding semantic information can be used similar to view
operations allowing to add information while abstraction (cf. Schumm, D. et al. (2010)). Figure 6 shows
an orthogonal meta-modeling hierarchy created by a semantic instance-of dependency with loss and
adding information. Obviously, the different instance-of dependency leads to another grouping. In
particular, the vertical layer Sz in Figure 6 groups models that lose and add semantic information
semantic information of models on layer Si1. For example, the semantic instance Madel2.scufl on Sz
may inherit some information from its semantic meta-model and add some logic, e.qg. for fault handling.
As different instance-of dependencies lead to different groupings and therefore to different vertical
hierarchies the approach at hand proposes to introduce different vertical meta-modeling hierarchies if
different instance-of dependencies are considered.

SO Sl i 52 Legend:

Semantic instance-of

Medel.condec

| ] with loss but without
o b Szenario A adding semantic
2 AT information
© L1 Madel.scufl [
— T~
2 LN ool :
£ i~ szenarioB Backward relaytlon
] Model.bpel ! to the semantic
2 : instance-of
= ]
c ]
(0] '
= !
c
o
o

Semantic layer axis S;

Figure 5: Semantic instance-of dependeny with loss but without adding semantic information
and its backward relation

Furthermore, multiple inheritance allows to mix semantic information. For example, the model
Mixed.bpel on vertical layer Sz in Figure 6 represents a mix of the logic of both semantic meta-models
corresponding to the particular instance-of dependency. Considering multiple inheritance the instance-
of dependency with loss and adding information offers maximum flexibility, i.e. the semantic
information of all meta-models can be combined in the semantic instance. That means, the semantic
instances is allowed to specify information that is not included in one or more semantic meta-models.
In contrast, the instance-of dependency with loss but without adding information restricts the mixed
model to include only semantic information that is specified by all meta-models.

' Legend:

! Semantic instance-of
q———— —-—-- Madel2.scufl with loss and adding
Madel.scufl '\-\ i semantic information

~ Nl
L >
Model.bpe|  [&=-—j—-—-——; = |7 7= Mixed.bpel Conventional i

I-1 AN jg VAN instance-of

Model.bpel [€ —|_. _ _

‘== Mixed.bpel

Madel.scufl &~

Conventional layer axis L,

Semantic layer axis S,

Figure 6: Semantic instance-of dependency with loss and adding semantic information
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Semantic instance-of dependencies of vertical layers can be conventionally inherited to lower
horizontal layers. For example, the semantic inheritance between Model.bpel and Mixed.bpel on L1 in
Figure 6 are conventionally inherited by particular objects on Lo. That means, semantic dependencies
should be specified on the highest possible horizontal layer whereas dependencies on lower layers
can be derived. However, the semantics of a semantic dependency determines the limitations to the
layer specifying the particular semantic dependency that can be conventionally inherited on lower
horizontal layers. Figure 7 illustrates limitations to the inheritance of semantic dependencies between
different horizontal layers. In particular, the layer L2 cannot specify the same semantic instance-of
dependency as specified on the layers Li. Instead, another semantic instance-of dependency is
needed on layer L2 for instance representing specialization considering expressiveness. However, the
nature of the additional semantic instance-of dependency on L. would be different to the nature of the
semantic instance-of dependencies on layer L1 and Lo. Therefore, the conventional instance-of
dependency could not be used for inheriting possible semantic inheritance dependencies from layer L2
to L1 analogous to the conventional inheritance between layer L1 and Lo. Furthermore, the additional
instance-of dependency would requires to introduce an additional hierarchy orthogonal to all other
hierarchies (cf. Figure 11).

Instead of a semantic instance-of dependency a meta-model mapping is specified on layer Lz in
Figure 7. The meta-model mapping represents a transformation relation that can be used for
transformations of corresponding syntactic instances. That means, the transformation relation is a
semantic dependency next to the semantic instance-of dependency that can be conventionally
inherited to underlying horizontal layers. Figure 7 exemplarily illustrates the conventional inheritance of
the transformation relation between grammars and BPEL from L: to layer Li. However, the
transformation relation can be further conventionally inherited from corresponding models on layer L1
to particular models on layer Lo.

S : S
0 i 1 Legend:
L : SCUFL
2 ! : >
Service i BPEL /\ Transformation
Grammars VAN relation
1  mmeeeee-- >
i del boel Semantic instance-of
\|/ : ] Model.bpe with loss but without
|_1 &N /\ adding semantic
Grammar G [ -F---fom-mm oo Madel.scufl information

= ﬂl /\
x ; Conventional
o ' instance-of
% |_0 i Model.bpel
e oot
o xel(G) |€-r---mmmmmmmmmm oo Madel.scufl
‘qc‘J :
>
c
o
o

Semantic layer axis S;

Figure 7: Conventional, i.e. horizontal inheritance of semantic dependencies

Further semantic dependencies next to the instance-of dependency allow to enrich the information
specified on vertical meta-modeling layers. For example, Figure 7 already introduced the
transformation relation that crosses the border of vertical layers but does not cross the border of
horizontal layers. Furthermore, Figure 8 introduces a “contained in” relation representing a semantic
dependency next to the semantic instance-of dependency. The semantic instance-of dependency
creates the vertical hierarchy whereas the relation “contained in” does not cross the border of its
particular vertical layer. However, semantic dependencies, i.e. relations that do not cross the border of
vertical layers may be semantically inherited to an adjacent vertical layer if corresponding models are
semantically inherited. That means, the inherited relations reflect the modified relations between
modified models. In this case the same semantic inheritance for models and relations is used as the
modifications in models and relations correlate. Additionally, semantic dependencies, i.e. relations that
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do not cross the border of horizontal layers may be conventionally inherited to an underlying horizontal

layer if corresponding models are conventionally inherited (cf. Transformation relation in Figure 7).

Conventional layer axis L;

S
L, 3
Model.bpel |[#--------- Foommmmmommoo o Szenario A
] ! A
T — e — S
Madel.scufl |&----- i—------------~i ----- Szenario B
\ s IR P S
A pmmmmmeeeeee SN N
v 3 NV
Merged.bpel |[&€--+------------------—1 Szenario C

Semantic layer axis S,

Semantically
contained in

o
Semantic instance-of
with loss but without

adding semantic
information

Figure 8: Semantic, i.e. vertical inheritance of semantic dependencies

In summary, semantic dependencies, i.e. relations that do not cross the borders of vertical and
horizontal layers can be inherited to vertical as well as horizontal layers if corresponding models are
inherited. For example, Figure 9 shows the dependency “contained in” initially specified on L1+Si. This
dependency is coventionally inherited on Lo+S1 and afterwards semantically inherited on Lo+S2. That
means, semantic dependencies should be specified on the highest horizontal and lowest vertical layer
for fully exploiting the inheritance of dependencies in corresponding meta-modeling hierarchies.

Conventional layer axis L;

s, | S
Madel.scufl 1 2
AN
4 Model.bpel ;
L1 /\
Lo -+ Model.bpel <“'§ --------------- Szenario A
B R bommmmmmmmmm oo
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______________>
Semantically

contained in

Conventional
instance-of

Figure 9: Conventional and semantic inheritance of semantic dependencies
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4. Impact of Orthogonal Meta-Modeling on Model Transformation

For model transformation information about the semantics of the source model as well as the syntax of
the source and the target model is required in general. The MDA pattern (Mukerji, J. & Miller, J. 2001)
specifies the need for inputting a platform model (PM) for the transformation from a platform-
independent model (PIM) to a platform-specific model (PSM). The PIM provides required information
about the semantics and the syntax of the source model. Additionally, the PM provides required
information about the syntax of the target model, i.e. the PM determines the meta-model mapping that
is required for the particular transformation.

Transformations from PIM (PSM) to PIM (PSM) allowing a model refinement or refactoring also use
mappings similar to transformations from PIM to PSM. However, a transformation from PIM to PSM
always requires mappings between two conventional meta-models whereas a transformation from PIM
(PSM) to PIM (PSM) does not need a mapping between two conventional meta-models in case the
same language is used for the input and output model. In summary, different kinds of mappings are
used for transformations in the model-driven architecture: At first, a transformation from PIM to PSM
uses a syntactic mapping that covers the dependency between a syntactic meta-model and its
syntactic instance. Secondly, a transformation from PIM (PSM) to PIM (PSM) uses a semantic
mapping that covers the dependency between a semantic meta-model and its semantic instance. In
case the language also needs to be changed by the transformation from PIM (PSM) to PIM (PSM)
both kinds of mappings, i.e. a semantic mapping as well as a syntactic mapping need to be used.

Mens T. and van Gorp P. (2006) used the term endogenous for transformations that are based on
a single syntactic meta-model and the term exogenous for transformations that are based on different
syntactic meta-models, i.e. for transformations between different languages. The approach at hand
relates exogenous transformations with syntactic mappings whereas endogenous do not require
syntactic mappings necessarily. Furthermore, Mens T. and van Gorp P. (2006) used the term vertical
for transformations where the input model is located on another abstraction level than the output
model. In contrast, horizontal transformations cover models on the same abstraction level. However,
a vertical transformation requires a semantic mapping and exactly covers the dependency between
models on different vertical layers, i.e. semantic layers introduced by the approach at hand. In
summary, vertical transformations require semantic mappings whereas horizontal transformations do
not necessarily. Table 1 summarizes the required mappings for the orthogonal dimensions of
transformations introduced by Mens T. and van Gorp P. (2006). The endogenous, horizontal
transformation does not require a specific kind of mapping but is allowed to be based on syntactic or
semantic information.

Table 1: Orthogonal dimensions of model transformation with required mappings

Horizontal vertical
endogenous syntactic OR semantic mapping | semantic mapping
exogenous syntactic mapping semantic AND syntactic mapping

Conventional meta-modelling allows the separation of syntactic meta-models and their syntactic
instances. Therefore, conventional meta-modeling enables to cover syntactic mappings that are
always defined between models on the same conventional, i.e. horizontal meta-modeling layer. A
syntactic mapping can be used for transformations between syntactic instances. For example, Figure
10 shows a syntactic mapping between the meta-models Service Grammars and BPEL on L.. Based
on the syntactic mapping the exogenous, horizontal transformation between syntactic instances on L1,
i.e. from Grammar G to Modell.bpel can be realized by using the conventional inheritance.

Similarly, orthogonal meta-modeling allows the separation of semantic meta-models and their
semantic instances enabling the specification of semantic mappings. In particular, semantic mappings
can be determined based on semantic instance-of dependencies between different vertical layers. For
example, Figure 10 shows a semantic instance-of dependency between the vertical layers So and Sa.
The backward relation of the semantic instance-of dependency specifies a semantic mapping. Based
on the semantic mapping an endogenous, vertical transformation from the semantic meta-model
Modell.bpel on So to a semantic instance Model2.bpel on S1 can be realized. Furthermore, a semantic
mapping specified by the backward relation of a complete instance-of dependency can be used to
realize a vertical transformation from a semantic instance to a semantic meta-model (cf. Figure 5).
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Figure 10: Exogenous, horizontal model transformation from Grammar G to Modell.bpel and
endogenous, vertical model transformation from Modell.bpel to Model2.bpel

Figure 11 illustrates an exogenous, vertical transformation from a Grammar G on L1+So to a BPEL-
based model on L1+S1. The exogenous, vertical transformation requires information about the syntax
of source and target model as well as information about the semantics of the source and target model.
The syntax-related information is provided by the syntactic mapping between particular meta-models
on the next higher horizontal layer. The semantics-related information is provided by the semantic
mapping specified by the backward relation of the particular semantic instance-of dependency. In
order to combine the syntax-related information and the semantics-related information for the
exogenous, vertical model transformation an additional semantic instance-of dependency and
therefore an additional orthogonal semantic hierarchy needs to be introduced. The additional hierarchy
enables to (semantically) inherit the syntactic mapping, i.e. the meta-model mapping on L1 from the
semantic layer To to the layer Ti:. As already discussed at hand of Figure 7 the conventional
inheritance cannot be used for the combination as the exogenous, vertical model transformation is not
a syntactic instance of the meta-model mapping. Furthermore, the semantic inheritance between
models on the layers So and S1 cannot be used as it does not correlate with the syntactic mapping (cf.
Figure 8). Instead, an additional semantic instance-of dependency needs to be introduced allowing the
semantic inheritance of the meta-model mapping, i.e. allowing the inheritance of dependencies
between syntactic meta-models.

In summary, next to the separation of models orthogonal semantic meta-modeling allows to determine
the nature of vertical model transformations: Vertical transformations maintaining a language (i.e.
endogenous, vertical transformations) use a single semantic instance-of dependency in order to
determine the transformation mapping covering semantics-related information but no syntax-related
information. In contrast, vertical transformations between different languages (i.e. exogenous, vertical
transformations) use two different semantic instance-of dependencies for inheriting from a semantic
meta-model and from a syntactic mapping (conventional meta-model mapping) in order to determine
the transformation mapping combining semantic and syntactic information. In particular, a single
orthogonal meta-modeling hierarchy is sufficient for endogenous, vertical transformations whereas
exogenous, vertical transformation require two orthogonal meta-modeling hierarchies.

Orthogonal meta-modeling covering semantic instance-of dependencies refines the MDA pattern by
a semantics model (SM) providing the particular semantics-related information for the transformation.
Similar to the PM the SM represents input information for the model transformation. The PM
represents syntax-related input for the transformation, i.e. determines the particular meta-model
mapping realizing the syntactic mapping. The SM represents semantics-related input for the
transformation, i.e. determines the particular semantic instance-of dependency determining the
semantic mapping. That means, the SM specifies the modification operation (e.g. semantic instance-of
dependency with loss but without adding semantic information) that is intended to be applied on the
model content.
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Figure 11: Exogenous, vertical model transformation from Grammar G to Model.bpel

Figure 12 illustrates the refinement of the MDA pattern. A transformation implementing a language
transformation without modifications to the model content requires the input of a PM as shown in
Figure 12(a). A transformation implementing automated modifications of the model content without
changing the language require the input of an SM as shown in Figure 12(b). Finally, a transformation
implementing a language transformation in combination with automated modifications to the model
content require the input of PM and SM as shown in Figure 12(c). As shown in Figure 12(c) the
transformation from a PIM to a PSM may require modifications of the model content. For instance,
attributes or operations that are required for a realization on the particular platform need to be added
or some model content needs to be deleted if the particular platform does not support appropriate
mechanisms. In that cases the SM provides information how to derive attribute values or operation
implementations for the added model content or information about model content depending on model
content that needs to be deleted. That means, the extension of the MDA pattern by a SM improves the
ability to automate particular transformations. However, transformations from PIM to PSM requiring no
modifications of model content use the SM determining the identity relation allowing the (semantic)
inheritance of the unmodified model content in the PIM.

PIM (PSM) PIM (PSM) PIM
A y A PM
Transformation PM Transformation SM Transformation
SM
PIM (PSM) PIM (PSM) PSM
(a) (b) (c)
Exogeneous Endogenous Modifications to syntax
Transformations Transformations and semantics

Figure 12: MDA pattern extended by a semantic model (SM)
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5. Summary

The approach at hand introduced orthogonal meta-modeling for enriching conventional meta-modeling
with semantic dependencies. A specific semantic instance-of dependency (with loss but without
adding semantic information) is used to introduce a vertical hierarchy additionally to the conventional
horizontal meta-modeling hierarchy. A semantic instance-of dependency enables the grouping of
models on the same conventional horizontal layer based on semantic information. That means, the
orthogonal meta-modeling allows to structure models on conventional meta-modeling layers on
additional semantic information. Next to the semantic instance-of dependency additional semantic
dependencies can be specified in the meta-modeling hierarchy. These additional semantic
dependencies can be inherited on adjacent meta-modeling layers if they do no cross the border of the
particular hierarchy.

The introduced semantic instance-of dependency enables the improvement of automated model
transformations. In particular, the backward relation of a semantic instance-of dependency leads to
a semantic mapping that is suitable to influence a model transformation. In general, a semantic meta-
model can be transformed to a semantic instance by using the semantic mapping specifying which
model content from the semantic meta-model is inherited in the semantic instance. Furthermore, the
backward relation of the semantic instance-of dependency can be used for the generation of
a semantic meta-model if the instance-of dependency is assumed to be complete. That means, the
model content of all semantic instances is combined in the content of the semantic meta-model.
However, some model content may be lost in a transformation round trip. That means, the
transformation from a semantic meta-model M to some semantic instances and a following
transformation from the semantic instances back to a semantic meta-model M’ does not ensure the
equality of the semantic meta-models M and M’. Instead some model content is lost if this model
content is abstracted in all semantic instances.

Additional semantic dependencies next to the semantic instance-of dependency help to improve the
expressiveness in the design of meta-modeling-based software architectures. In particular, an
advanced management of dependencies between models in a layer-based architecture is enabled.
For example, Figure 6 and Figure 8 show different approaches for realizing the merging of models.
The design in Figure 6 uses multiple inheritance and a semantic instance-of dependency allowing to
add semantic information for merging models. In contrast, the design in Figure 8 uses a semantic
instance-of dependency without allowing to add semantic information. In order to specify the
dependency between a merged model in the particular individual models an additional semantic
dependency is introduced. However, the design in Figure 6 allows to derive a merged model based on
the particular semantic instance-of dependency, i.e. the merged model can be derived by an
automated transformation. Therefore, the merged model is on another vertical layer than the individual
models. In contrast, the design in Figure 8 “only” specifies the particular dependency but does not
support the derivation of the merged model by an automated transformation. Therefore, the merged
model is on the same vertical layer as the individual models.

6. Related Work

Semantic information is typically provided by ontologies. In the field of service-based computing
ontologies are very prominent to enrich the information about a web service for enabling automated
semantic-based service discovery. For example, OWL-S (Martin, D. 2004) and WSMO (Roman, D. et
al. 2005) are well-established languages for the specification of ontologies for web services. Service-
oriented computing typically handles layer-based systems by considering modeling languages,
models, and model instances. That means, meta-modeling is essential in service-oriented computing
with focus on functionality-oriented models. In order to consider the combination of functionality-
oriented models with semantic-oriented models, i.e. ontologies the ontology language WSMO briefly
discusses the relation of specified ontologies to functionality-related models covering the OMG’s four
meta-modeling layers.

Next to the automated semantic-based service discovery other alternatives for the application of
semantic enrichment in service-based computing exist, e.g. automatic service composition and auto-
completion of composition models (Karastoyanova, D. et al. 2009). The approach by Pahl, C. (2007)
presents an ontology-based transformation for service-based software systems. This approach does
not use meta-modeling but semantic enrichment that is used to guide transformations similar to the
approach at hand. However, the approach hand introduces orthogonal meta-modeling layers for
semantic enrichment in order to allow an appropriate correlation of conventional and additional
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semantic information. The correlation enables to reason on particular information and to create new
information, e.g. by inheriting dependencies on adjacent meta-modeling layers.

Meta-models and ontologies are closely related in general. For example, Guizzardi (2007) discusses
in detall the correlation of meta-models and ontologies specifying additional domain logic. Davis et al.
(2003) also discuss the relation of meta-models and ontologies but applies meta-modeling on
ontologies for an appropriate comparison of ontologies. In contrast, the approach at hand combines
meta-modeling and ontologies for semantic enrichment of meta-modeling hierarchies in order to allow
the grouping of models on the same conventional horziontal meta-modeling layer and an automated
model transformation. For achieving the same expressiveness as ontologies additional semantic
dependencies next to the hierarchy-specific instance-of dependency need to be enabled in semantic
meta-modeling. The approach at hand discusses semantic dependencies as well as their inheritance
on horizontal and vertical meta-modeling layers in detail.

The approach presented in (Bencomo, N. & Blair, G. 2005) already uses orthogonal semantic layers
for a meta-model-based application. The approach uses orthogonal layers to separate the meta-
model-based application itself from the specification of the architecture, interfaces, and interceptions.
However, orthogonal meta-modeling is not discussed in general and relations between models on
different horizontal and vertical layers are not covered. Furthermore, Atkinson and Kihne (2003) apply
orthogonal semantic meta-modeling layers in the field of linguistic. However, the approach is restricted
to a single so called ontological instance-of dependency. Further instance-of dependencies and
additional semantic dependencies are not considered. In contrast, the approach at hand aims for an
introduction of orthogonal meta-modeling hierarchies in general allowing the correlation of
dependencies on orthogonal layers.
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