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Abstract: This article introduces meta-modeling hierarchies additional to the conventional meta-
modeling hierarchy in a model-driven architecture. Additional hierarchies are introduced orthogonal to 
the conventional meta-modeling hierarchy for an appropriate correlation of information on combined 
hierarchies. In particular, orthogonal meta-modeling enables the grouping of models on the same 
conventional meta-modeling layer based on additional semantic dependencies. For the enhancement 
of conventional meta-modeling this paper discusses the creation of orthogonal meta-modeling 
hierarchies, the specification of semantic dependencies in meta-modeling hierarchies, semantic 
instances as well as the inheritance of semantic dependencies in meta-modeling hierarchies in 
general. Furthermore, the paper outlines the impact of orthogonal semantic meta-modeling on 
automated model transformation. 
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1. Introduction  

Model-driven software development allows developers to focus on the functionality of a software 
system without taking care about implementation details in the design phase. Furthermore, model-
driven software development enables code generation, i.e. models can be automatically transformed 
to implementation artefacts. The introduction of meta-modeling allows to structure multiple models on 
different layers and specify particular instance-of dependencies between models (Mukerji, J. & Miller, 
J. 2001). Functionality-oriented models of software systems can be enhanced by adding semantic 
information that is typically provided by ontologies. The combination of functionality-oriented models 
and ontologies enables a semantic-driven reasoning on models and improves the ability for 
automation while developing software systems. 

The approach at hand aims for an explicit specification of some semantic information, i.e. 
dependencies on meta-modeling layers in contrast to specify semantic information exclusively in 
ontologies. That means, the approach at hand emphasizes dependencies between functionality-
oriented models in contrast to the enhancement of models by ontologies. In detail, semantic 
dependencies between models on meta-modeling layers are introduced next to the conventional 
instance-of dependency in meta-modeling layers. Enriching meta-modeling layers by semantic 
information allows to improve the ability for automation, e.g. model transformation and code 
generation can be improved by additionally considering semantic information. Furthermore, 
capabilities for grouping models in layer-based architectures are improved and the expressiveness for 
modeling layer-based architectures is enhanced by adding semantic dependencies to the meta-
modeling concept.  

The approach at hand introduces semantic meta-modeling hierarchies orthogonal to the conventional 
meta-modeling hierarchy and to each other. The orthogonal relation of the hierarchies ensures an 
appropriate correlation of contained information. In particular, models on the same conventional 
modeling layer can be grouped corresponding to particular semantic information. A semantic meta-
modeling hierarchy is determined by a fixed instance-of dependency covering especially semantic 
information of related models. That means, semantic meta-modeling hierarchies are introduced similar 
to the conventional meta-modeling hierarchy that is determined by the conventional instance-of 
dependency. The conventional instance-of dependency represents the inheritance of syntax 
information on horizontal meta-modeling layers, i.e. allows the creation of syntactic instances on an 
underlying layer. In contrast, the approach at hand allows further instance-of dependencies 
representing the inheritance of semantic aspects, i.e. create semantic instances.  

The following section 2 introduces a semantic instance-of dependency enabling a semantic meta-
modeling orthogonal to the conventional meta-modeling. Afterwards, section 3 discusses orthogonal 
meta-modeling in general by studying different kinds of semantic instance-of dependencies for meta-
modeling hierarchies, further semantic dependencies in the hierarchy as well as the inheritance of 
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semantic dependencies. Section 4 outlines the ability to improve automated model transformation 
based on orthogonal meta-modeling. Finally, Section 5 presents a summary and related work. 

2. Semantic Meta-Modeling 

The introduction of semantic layers to the conventional meta-modeling hierarchy allows to specify 
semantic dependencies between models additionally to the conventional instance-of dependency. The 
approach at hand introduces semantic layers orthogonal to conventional meta-modeling layers. That 
means, models that are placed on the same conventional meta-modeling layer can be grouped based 
on their semantic dependencies. Figure 1 shows the enhancement of conventional meta-modeling by 
semantic dependencies in the field of service composition. In particular, Figure 1 shows two 
conventional, i.e. horizontal meta-modeling layers L0 and L1 that separate the object layer and the 
model layer. Introduced vertical semantic layers S0, S1, S2, and S3 on the horizontal layer L1 allow to 
further separation of models on layer L1. For example, the model on layer S0 represents a semantic 
meta-model for the models on S1. 

A semantic meta-model represents a knowledge base that can be specialized in semantic instances. 
In general, a semantic instance holds the same or less information as the related meta-model. For 
example, the semantic meta-model G on S0 in Figure 1 represents the knowledge base for the models 
on S1-S3. A model on S1 inherits semantic information from the meta-model G but specifies the 
inherited information by a specific executable programming language, e.g. BPEL (OASIS 2007). That 
means, the vertical meta-modeling layer S1 groups models representing views on the knowledge base 
on S0 each using its own modeling paradigm. In particular, the models of S1 are different 
implementations of the same phenomenon specified by the semantic meta-model on S0. The semantic 
instance on S1 can be semantic meta-models for models on layer S2. For example, a model on S2 can 
create a view on its semantic meta-model by excluding information in order to focus on a specific 
aspect. In the following the individual vertical meta-modeling layers are discussed in detail. 
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Figure 1: Orthogonal semantic meta-modeling 

S0: Semantic Knowledge Base 

The starting layer L0 of a vertical meta-modeling hierarchy collects models that represent most 
comprehensive semantic knowledge bases for models on other semantic layers. That means, a model 
on layer L0 specifies the most general information about a phenomenon that can be semantically 
specialized on other vertical layers. In general, all modeling languages can be used to specify  
a semantic knowledge base. However, this section briefly introduces a meta-model that is especially 
designed for the unification of specification languages for service compositions and therefore suitable 
to model semantic knowledge bases concerning service compositions. In particular, the unified model 
is intended to be the engine-internal representation of a service composition that is used for the 
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execution of the particular service composition. Therefore, an engine is not required to support 
multiple modeling languages and the support of multiple modeling languages in an execution 
environment does not require the use of multiple engines, respectively. The unified model is based on 
formal grammars, i.e. a service composition is intended to be executed based on a grammar-based 
specification (Görlach, K. et al. 2013). The same service composition modeled by using a highly 
developed specification language like BPEL (OASIS 2007), BPMN (OMG 2011), Scufl (Oinn, T. et al. 
2006), and ConDec (Pesic, M. 2008) is considered to be a view on the particular service composition 
grammar (cf. Figure 1). Therefore, a service (composition) grammar is considered to hold the most 
general information about the logic of a single service composition. A model of the same service 
composition based on high specification language represent a semantic instance of the service 
grammar as the semantic information of the service grammar is specialized corresponding to the 
particular specification language. If the expressiveness of the particular specification language is not 
sufficient some logic, i.e. semantic information is lost while specialization. For example, alternative 
execution paths cannot be specified in models exclusively using data flow-based modeling constructs. 
For enabling alternative paths in data flow-based models the meta-model needs to be extended by 
particular control flow-based modeling constructs (cf. Oinn, T. et al. (2006)). In general, most 
languages for service compositions provide mechanisms for extensibility that can be used to avoid the 
loss of information while specialization (cf. Kopp, O. et al. (2011)). However, grammar-based models 
of service compositions specify a general dependency between service invocations covering the 
execution order without specializing the semantics of this dependency. The general dependency in 
grammar-based models can be implemented, i.e. specialized for example by data flow and/or control 
flow in semantic instances. 

Figure 2 illustrates a grammar-based model of an imperative, i.e. control-flow.based service 
composition by means of a BPMN-based service composition. In general, service calls and other 
relevant information are represented by non-terminals and/or terminals in the grammar-based model. 
For example, the activation of a service call is represented by a non-terminal B whereas the finishing 

of a service call is represented by a terminal b. A production rule Bb represents the relationship 
between the activation and the finishing of the service call. If the production rule is applied at runtime 
the particular service call is executed between reading the left-hand-side of the production rule and 
writing the right-hand-side of the production rule. For enabling service orientation in formal grammars 
the non-terminals are extended by a type. The introduced non-terminal type is correlated with a web 
service operation. That means, two non-terminals B and D of the same type represent two different 
calls of the same web service operation. Conventional non-terminals without type represent helper 
symbols ensuring the right order of activities. For example, the helper non-terminal H in Figure 2 is 
used for the synchronization of parallel execution paths.  

Figure 3 illustrates a grammar-based model of a declarative service composition by means of  
a ConDec-based service composition. The constraints in the declarative service composition specify 
dependencies between service calls, i.e. activities. Typically, multiple activities are allowed to be 
executed at a specific point in time and a (human) user is expected to select a specific activity for 
execution. After the execution of the selected activity a new set of activities that are allowed to be 
executed next needs to be calculated based on all given constraints. The service composition in 
Figure 3 specifies three service calls A, B, and C as well as two constraints covering the service calls 
A and B. The constraint response(A,B) specifies that the call B must be executed in future when A is 
executed at least once. Additionally, the constraint precedence(A,B) specifies that the call A needs to 
be executed when B begins to execute. In between all other service calls C are allowed to be 
executed. At the very beginning of the service composition in Figure 3 the service call B is not allowed 
to be executed as the precedence constraint does not permit the execution of B when A was not 
executed before. Therefore, the start symbol S1 in the grammar-based model allows only the 

activation of the service calls A and C. Additionally, the symbol  is allowed to be activated indicating 
the finishing of the service composition. The index for the start symbol needs to be introduced for 
covering different sets of service calls that are allowed to be executed at the same point in time. The 
index for service calls A, B, and C is introduced in order to cover different effects of service call 
executions at different points in time. For example, the execution of the service call A at the very 
beginning of the service composition requires the execution of a following service call B. In order to 
ensure the following service call B the service composition switches to another index (cf. rule (4)) 
indicating the need for the execution of B by disallowing the finishing of the service composition. In the 
following, further calls A are allowed but have no impact on the index. In contrast, a following 
execution of the service call B satisfies the response constraint in the service composition and allows 
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to switch to another index (cf. rule (10)). For more information about the grammar-based meta-model 
for service compositions please see (Görlach, K. et al. 2013) and (Görlach. K. 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<nonTerminal>  <name> H </name>  </nonTerminal> 

 

<nonTerminal>  <name> A </name>   

   <type> Service A Operation A1 </type> 

   <input>   <reference>Y </reference>  </input>  

   <output>   <reference>Z </reference>  </output>  

</nonTerminal> 

<nonTerminalType   name=”Service A Operation A1”> 

   <wsa:EndpointReference>  <wsa:Address>   

           http://localhost:9763/services/ServiceA  

   <wsa:Address>  </wsa:EndpointReference>   

…<operation> A1 </operation>  

</nonTerminalType>      

 

<nonTerminal>  <name> C </name> 

   <type> XPathSolver </type> 

   <input>  <reference>Z </reference> 

                  <value> Z>0 </value>  </input> 

    <relations> 

       <relation>  <outputValue> True </outputValue> 

                 <nonTerminalREF> T </nonTerminalREF> 

       </relation> 

       <relation>   <outputValue> False </outputValue> 

                   <nonTerminalREF> F </nonTerminalREF> 

       </relation> 

    </relations> 

</nonTerminal> 

<nonTerminalType   name=”XPathSolver”> 

   <wsa:EndpointReference>  <wsa:Address> 

       http://localhost:8080/services/XPathSolver 

      </wsa:Address></wsa:EndpointReference> 

…<operation> evaluate </operation> 

</nonTerminalType> 

Figure 2: An imperative, i.e. control-flow-based service composition and its grammar-based 
representation 

Service A Service B Service E

(1)  S  ABH

(2)  A  a

(3)  B  b

(4) abH  abC

(5)  C  T

(6)  C  F

(7)  T  D

(8)  D  dE

(9)  E  e

(10) F  
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S1: Models with Different Underlying Paradigms 

The intention of the semantic layer S1 in Figure 1 is to group models with different underlying modeling 
paradigms. Assuming a grammar-based knowledge base on layer S0 covering a single service 
composition the layer S1 collects implementations of the particular service composition based on 
highly developed specification languages for service compositions with different underlying paradigms. 
For example, BPEL can be used to specify a control-flow-based model whereas ConDec can be used 
to specify a constraint-based model of the same service composition. Both models inherit semantic 
information from the same model as they specify the same service composition. 

The semantic instance-of dependency separates the vertical layers S0 and S1. In general, a model on 
layer S1 is called semantic instance of a semantic meta-model on layer S0. A semantic instance 
inherits information from its semantic meta-model. However, the semantic instance specializes the 
inherited information by possibly excluding parts of information. That means, the semantic meta-model 
holds general semantic information whereas the semantic instance is specialized by restricting the 
general information. The inheritance of semantic information from meta-model to the instance is 
different to the conventional inheritance where all information of the super model is inherited and 
further information is added for specialization. In contrast, the inheritance of semantic information may 
cover a sub-set of information, i.e. the semantic instance inherits the same or less semantic 
information from the semantic meta-model but is not allowed to add new semantic information in 
general. However, a semantic instance is allowed to hold additional syntactic information as the 
syntactic aspect is not covered by the semantic inheritance. The character of the semantic inheritance 
leads to the fact that different models on layer S1 can have different sets of possible runs although 
they are related to the same semantic meta-model on S0. Furthermore, the set of possible runs of the 
meta-model may vary from the particular sets of semantic instances. In summary, the semantic 
dependencies on L1 have impact on the dependencies on L0 (cf. Section 3). 

S2: Views in General 

Next to the semantic inheritance from layer S0 to layer S1 further layers for the specialization of 
semantic information can exist. The layer S2 in Figure 1 groups views on a single model on layer S1, 
i.e. the layer S2 collects semantic instances of service composition implementations. A view allows to 
focus on specific aspects of a service composition implementation while excluding irrelevant 
information. Views on service compositions are very popular. Basically, views are defined by 
operations whose application generates a view. The particular objective of a view determines required 
operations and their application order. For example, Liu and Shen (2003) define views based on 
abstraction operations that exclusively include the loss of semantic information. However, other 
approaches exist where semantic information is lost as well as added (cf. Schumm, D. et al. (2010)). 

Similar to different operations for creating views different semantic instance-of dependencies are 
thinkable representing the inheritance of different information. Using different semantic instance-of 
dependencies in the same vertical, i.e. semantic meta-modeling hierarchy enables an extensive 

(1-3)     S1  A1  |  C1  |   
 (4)      A1  a S2 
(5)     C1  c S1      
(6-8)     S2  A2  |  B2  |  C2 
(9)     A2  a S2 

(18)      C3  c S3 
(10)      B2  b S3 
(11)      C2  c S2 
(12-15) S3  A3  |  B3  |  C3  |   
(16)      A3  a S2 

(17)      B3  b S3 
(18)      C3  c S3 
 

Figure 3: A declarative, i.e. constraint-based service composition and its grammar-based 
representation 



KATHARINA GÖRLACH, FRANK LEYMANN 

 JOURNAL OF SYSTEMS INTEGRATION 2014/2 8 

enrichment of horizontal, i.e. conventional meta-modeling layers by semantic information. However, 
the approach at hand proposes to use a single semantic instance-of dependency in one semantic 
meta-modeling hierarchy. If multiple semantic inheritance dependencies need to be considered 
multiple semantic hierarchies should be introduced orthogonal to the conventional meta-modeling 
hierarchy and to each other. By adding an orthogonal meta-modeling hierarchy for each semantic 
instance-of dependency the capabilities to group models are improved significantly. 

S3: ... Final Layers 

Similar to conventional meta-modeling an infinite number of layers for semantic meta-models and 
semantic instances can be defined. However, there always exists a starting point. In semantic meta-
modeling with a semantic instance-of dependency covering abstraction the most general layer creates 
the starting layer S0. Although an infinite number of layers can exists in the corresponding hierarchy  
a final layer can be determined as abstraction eventually finishes with the “empty” model.  

In the field of service compositions scenarios of a service composition model are suitable to determine 
a final layer. Figure 4 illustrates the nature of interpreting scenarios as semantic views on a process 
model: The vertical semantic layer S2 is “fold” to the horizontal conventional layer L0. In particular, both 
layers represent the same kind of information and both layers represent a starting/final layer of their 
particular hierarchy. 
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Figure 4: Scenarios creating views on service compositions 

3. Semantic Dependencies on Vertical and Horizontal Layers  

The previous section introduced the semantic instance-of dependency with loss but without adding 
semantic information. The backward relation of semantic instance-of dependencies collects semantic 
information of semantic instances in a single semantic meta-model on a lower semantic layer. For 
instance, Figure 5 shows a semantic instance-of dependency between the semantic meta-model 
Madel.scufl on S1 and the semantic instances scenario A and scenario B on S2. The backward relation 
reflects the combination of both scenarios A and B in the model Madel.scufl. That means, the 
backward relation can be used for the generation of a semantic meta-model if the instance-of 
dependency is assumed to be complete. The model generation based on the backward relation of a 
complete instance-of dependency is for example used in Petri net synthesis where a Petri net model is 
generated based on a given set of all possible transition sequences (cf. Badouel, E., Darondeau, P 
(2011) or Reisig, W. (2010)). 

Next to the semantic instance-of dependency with loss but without adding information other 
dependencies can be used to create orthogonal meta-modeling layers. For example, a semantic 
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instance-of dependency with loss and adding semantic information can be used similar to view 
operations allowing to add information while abstraction (cf. Schumm, D. et al. (2010)). Figure 6 shows 
an orthogonal meta-modeling hierarchy created by a semantic instance-of dependency with loss and 
adding information. Obviously, the different instance-of dependency leads to another grouping. In 
particular, the vertical layer S2 in Figure 6 groups models that lose and add semantic information 
semantic information of models on layer S1. For example, the semantic instance Madel2.scufl on S2 
may inherit some information from its semantic meta-model and add some logic, e.g. for fault handling. 
As different instance-of dependencies lead to different groupings and therefore to different vertical 
hierarchies the approach at hand proposes to introduce different vertical meta-modeling hierarchies if 
different instance-of dependencies are considered. 

Grammar G

Model.bpel

Madel.scufl

Medel.condec

Szenario A

Szenario B

L1

S0 S1 S2

Backward relation
to the semantic
instance-of

Legend:

Semantic instance-of
with loss but without
adding semantic
information

C
o

n
ve

n
ti

o
n

al
la

ye
r

ax
is

L i

Semantic layer axis Sj  

Figure 5: Semantic instance-of dependeny with loss but without adding semantic information 
and its backward relation 

Furthermore, multiple inheritance allows to mix semantic information. For example, the model 
Mixed.bpel on vertical layer S2 in Figure 6 represents a mix of the logic of both semantic meta-models 
corresponding to the particular instance-of dependency. Considering multiple inheritance the instance-
of dependency with loss and adding information offers maximum flexibility, i.e. the semantic 
information of all meta-models can be combined in the semantic instance. That means, the semantic 
instances is allowed to specify information that is not included in one or more semantic meta-models. 
In contrast, the instance-of dependency with loss but without adding information restricts the mixed 
model to include only semantic information that is specified by all meta-models. 
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Figure 6: Semantic instance-of dependency with loss and adding semantic information 
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Semantic instance-of dependencies of vertical layers can be conventionally inherited to lower 
horizontal layers. For example, the semantic inheritance between Model.bpel and Mixed.bpel on L1 in 
Figure 6 are conventionally inherited by particular objects on L0. That means, semantic dependencies 
should be specified on the highest possible horizontal layer whereas dependencies on lower layers 
can be derived. However, the semantics of a semantic dependency determines the limitations to the 
layer specifying the particular semantic dependency that can be conventionally inherited on lower 
horizontal layers. Figure 7 illustrates limitations to the inheritance of semantic dependencies between 
different horizontal layers. In particular, the layer L2 cannot specify the same semantic instance-of 
dependency as specified on the layers L1. Instead, another semantic instance-of dependency is 
needed on layer L2 for instance representing specialization considering expressiveness. However, the 
nature of the additional semantic instance-of dependency on L2 would be different to the nature of the 
semantic instance-of dependencies on layer L1 and L0. Therefore, the conventional instance-of 
dependency could not be used for inheriting possible semantic inheritance dependencies from layer L2 
to L1 analogous to the conventional inheritance between layer L1 and L0. Furthermore, the additional 
instance-of dependency would requires to introduce an additional hierarchy orthogonal to all other 
hierarchies (cf. Figure 11). 

Instead of a semantic instance-of dependency a meta-model mapping is specified on layer L2 in  
Figure 7. The meta-model mapping represents a transformation relation that can be used for 
transformations of corresponding syntactic instances. That means, the transformation relation is a 
semantic dependency next to the semantic instance-of dependency that can be conventionally 
inherited to underlying horizontal layers. Figure 7 exemplarily illustrates the conventional inheritance of 
the transformation relation between grammars and BPEL from L2 to layer L1. However, the 
transformation relation can be further conventionally inherited from corresponding models on layer L1 
to particular models on layer L0. 
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Figure 7: Conventional, i.e. horizontal inheritance of semantic dependencies 

Further semantic dependencies next to the instance-of dependency allow to enrich the information 
specified on vertical meta-modeling layers. For example, Figure 7 already introduced the 
transformation relation that crosses the border of vertical layers but does not cross the border of 
horizontal layers. Furthermore, Figure 8 introduces a “contained in” relation representing a semantic 
dependency next to the semantic instance-of dependency. The semantic instance-of dependency 
creates the vertical hierarchy whereas the relation “contained in” does not cross the border of its 
particular vertical layer. However, semantic dependencies, i.e. relations that do not cross the border of 
vertical layers may be semantically inherited to an adjacent vertical layer if corresponding models are 
semantically inherited. That means, the inherited relations reflect the modified relations between 
modified models. In this case the same semantic inheritance for models and relations is used as the 
modifications in models and relations correlate. Additionally, semantic dependencies, i.e. relations that 
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do not cross the border of horizontal layers may be conventionally inherited to an underlying horizontal 
layer if corresponding models are conventionally inherited (cf. Transformation relation in Figure 7).  
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Figure 8: Semantic, i.e. vertical inheritance of semantic dependencies 

In summary, semantic dependencies, i.e. relations that do not cross the borders of vertical and 
horizontal layers can be inherited to vertical as well as horizontal layers if corresponding models are 
inherited. For example, Figure 9 shows the dependency “contained in” initially specified on L1+S1. This 
dependency is coventionally inherited on L0+S1 and afterwards semantically inherited on L0+S2. That 
means, semantic dependencies should be specified on the highest horizontal and lowest vertical layer 
for fully exploiting the inheritance of dependencies in corresponding meta-modeling hierarchies. 
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Figure 9: Conventional and semantic inheritance of semantic dependencies 
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4. Impact of Orthogonal Meta-Modeling on Model Transformation 

For model transformation information about the semantics of the source model as well as the syntax of 
the source and the target model is required in general. The MDA pattern (Mukerji, J. & Miller, J. 2001) 
specifies the need for inputting a platform model (PM) for the transformation from a platform-
independent model (PIM) to a platform-specific model (PSM). The PIM provides required information 
about the semantics and the syntax of the source model. Additionally, the PM provides required 
information about the syntax of the target model, i.e. the PM determines the meta-model mapping that 
is required for the particular transformation.  

Transformations from PIM (PSM) to PIM (PSM) allowing a model refinement or refactoring also use 
mappings similar to transformations from PIM to PSM. However, a transformation from PIM to PSM 
always requires mappings between two conventional meta-models whereas a transformation from PIM 
(PSM) to PIM (PSM) does not need a mapping between two conventional meta-models in case the 
same language is used for the input and output model. In summary, different kinds of mappings are 
used for transformations in the model-driven architecture: At first, a transformation from PIM to PSM 
uses a syntactic mapping that covers the dependency between a syntactic meta-model and its 
syntactic instance. Secondly, a transformation from PIM (PSM) to PIM (PSM) uses a semantic 
mapping that covers the dependency between a semantic meta-model and its semantic instance. In 
case the language also needs to be changed by the transformation from PIM (PSM) to PIM (PSM) 
both kinds of mappings, i.e. a semantic mapping as well as a syntactic mapping need to be used.  

Mens T. and van Gorp P. (2006) used the term endogenous for transformations that are based on  
a single syntactic meta-model and the term exogenous for transformations that are based on different 
syntactic meta-models, i.e. for transformations between different languages. The approach at hand 
relates exogenous transformations with syntactic mappings whereas endogenous do not require 
syntactic mappings necessarily. Furthermore, Mens T. and van Gorp P. (2006) used the term vertical 
for transformations where the input model is located on another abstraction level than the output 
model. In contrast, horizontal transformations cover models on the same abstraction level. However,  
a vertical transformation requires a semantic mapping and exactly covers the dependency between 
models on different vertical layers, i.e. semantic layers introduced by the approach at hand. In 
summary, vertical transformations require semantic mappings whereas horizontal transformations do 
not necessarily. Table 1 summarizes the required mappings for the orthogonal dimensions of 
transformations introduced by Mens T. and van Gorp P. (2006). The endogenous, horizontal 
transformation does not require a specific kind of mapping but is allowed to be based on syntactic or 
semantic information. 

Table 1: Orthogonal dimensions of model transformation with required mappings 

 Horizontal vertical 

endogenous syntactic OR semantic mapping semantic mapping 

exogenous  syntactic mapping semantic AND syntactic mapping 

 

Conventional meta-modelling allows the separation of syntactic meta-models and their syntactic 
instances. Therefore, conventional meta-modeling enables to cover syntactic mappings that are 
always defined between models on the same conventional, i.e. horizontal meta-modeling layer. A 
syntactic mapping can be used for transformations between syntactic instances. For example, Figure 
10 shows a syntactic mapping between the meta-models Service Grammars and BPEL on L2. Based 
on the syntactic mapping the exogenous, horizontal transformation between syntactic instances on L1, 
i.e. from Grammar G to Model1.bpel can be realized by using the conventional inheritance.  

Similarly, orthogonal meta-modeling allows the separation of semantic meta-models and their 
semantic instances enabling the specification of semantic mappings. In particular, semantic mappings 
can be determined based on semantic instance-of dependencies between different vertical layers. For 
example, Figure 10 shows a semantic instance-of dependency between the vertical layers S0 and S1. 
The backward relation of the semantic instance-of dependency specifies a semantic mapping. Based 
on the semantic mapping an endogenous, vertical transformation from the semantic meta-model 
Model1.bpel on S0 to a semantic instance Model2.bpel on S1 can be realized. Furthermore, a semantic 
mapping specified by the backward relation of a complete instance-of dependency can be used to 
realize a vertical transformation from a semantic instance to a semantic meta-model (cf. Figure 5). 
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Figure 10: Exogenous, horizontal model transformation from Grammar G to Model1.bpel and 
endogenous, vertical model transformation from Model1.bpel to Model2.bpel 

Figure 11 illustrates an exogenous, vertical transformation from a Grammar G on L1+S0 to a BPEL-
based model on L1+S1. The exogenous, vertical transformation requires information about the syntax 
of source and target model as well as information about the semantics of the source and target model. 
The syntax-related information is provided by the syntactic mapping between particular meta-models 
on the next higher horizontal layer. The semantics-related information is provided by the semantic 
mapping specified by the backward relation of the particular semantic instance-of dependency. In 
order to combine the syntax-related information and the semantics-related information for the 
exogenous, vertical model transformation an additional semantic instance-of dependency and 
therefore an additional orthogonal semantic hierarchy needs to be introduced. The additional hierarchy 
enables to (semantically) inherit the syntactic mapping, i.e. the meta-model mapping on L1 from the 
semantic layer T0 to the layer T1. As already discussed at hand of Figure 7 the conventional 
inheritance cannot be used for the combination as the exogenous, vertical model transformation is not 
a syntactic instance of the meta-model mapping. Furthermore, the semantic inheritance between 
models on the layers S0 and S1 cannot be used as it does not correlate with the syntactic mapping (cf. 
Figure 8). Instead, an additional semantic instance-of dependency needs to be introduced allowing the 
semantic inheritance of the meta-model mapping, i.e. allowing the inheritance of dependencies 
between syntactic meta-models. 

In summary, next to the separation of models orthogonal semantic meta-modeling allows to determine 
the nature of vertical model transformations: Vertical transformations maintaining a language (i.e. 
endogenous, vertical transformations) use a single semantic instance-of dependency in order to 
determine the transformation mapping covering semantics-related information but no syntax-related 
information. In contrast, vertical transformations between different languages (i.e. exogenous, vertical 
transformations) use two different semantic instance-of dependencies for inheriting from a semantic 
meta-model and from a syntactic mapping (conventional meta-model mapping) in order to determine 
the transformation mapping combining semantic and syntactic information. In particular, a single 
orthogonal meta-modeling hierarchy is sufficient for endogenous, vertical transformations whereas 
exogenous, vertical transformation require two orthogonal meta-modeling hierarchies.  

Orthogonal meta-modeling covering semantic instance-of dependencies refines the MDA pattern by  
a semantics model (SM) providing the particular semantics-related information for the transformation. 
Similar to the PM the SM represents input information for the model transformation. The PM 
represents syntax-related input for the transformation, i.e. determines the particular meta-model 
mapping realizing the syntactic mapping. The SM represents semantics-related input for the 
transformation, i.e. determines the particular semantic instance-of dependency determining the 
semantic mapping. That means, the SM specifies the modification operation (e.g. semantic instance-of 
dependency with loss but without adding semantic information) that is intended to be applied on the 
model content.  
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Figure 11: Exogenous, vertical model transformation from Grammar G to Model.bpel 

Figure 12 illustrates the refinement of the MDA pattern. A transformation implementing a language 
transformation without modifications to the model content requires the input of a PM as shown in 
Figure 12(a). A transformation implementing automated modifications of the model content without 
changing the language require the input of an SM as shown in Figure 12(b). Finally, a transformation 
implementing a language transformation in combination with automated modifications to the model 
content require the input of PM and SM as shown in Figure 12(c). As shown in Figure 12(c) the 
transformation from a PIM to a PSM may require modifications of the model content. For instance, 
attributes or operations that are required for a realization on the particular platform need to be added 
or some model content needs to be deleted if the particular platform does not support appropriate 
mechanisms. In that cases the SM provides information how to derive attribute values or operation 
implementations for the added model content or information about model content depending on model 
content that needs to be deleted. That means, the extension of the MDA pattern by a SM improves the 
ability to automate particular transformations. However, transformations from PIM to PSM requiring no 
modifications of model content use the SM determining the identity relation allowing the (semantic) 
inheritance of the unmodified model content in the PIM. 
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Figure 12: MDA pattern extended by a semantic model (SM) 
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5. Summary  

The approach at hand introduced orthogonal meta-modeling for enriching conventional meta-modeling 
with semantic dependencies. A specific semantic instance-of dependency (with loss but without 
adding semantic information) is used to introduce a vertical hierarchy additionally to the conventional 
horizontal meta-modeling hierarchy. A semantic instance-of dependency enables the grouping of 
models on the same conventional horizontal layer based on semantic information. That means, the 
orthogonal meta-modeling allows to structure models on conventional meta-modeling layers on 
additional semantic information. Next to the semantic instance-of dependency additional semantic 
dependencies can be specified in the meta-modeling hierarchy. These additional semantic 
dependencies can be inherited on adjacent meta-modeling layers if they do no cross the border of the 
particular hierarchy.  

The introduced semantic instance-of dependency enables the improvement of automated model 
transformations. In particular, the backward relation of a semantic instance-of dependency leads to  
a semantic mapping that is suitable to influence a model transformation. In general, a semantic meta-
model can be transformed to a semantic instance by using the semantic mapping specifying which 
model content from the semantic meta-model is inherited in the semantic instance. Furthermore, the 
backward relation of the semantic instance-of dependency can be used for the generation of  
a semantic meta-model if the instance-of dependency is assumed to be complete. That means, the 
model content of all semantic instances is combined in the content of the semantic meta-model. 
However, some model content may be lost in a transformation round trip. That means, the 
transformation from a semantic meta-model M to some semantic instances and a following 
transformation from the semantic instances back to a semantic meta-model M’ does not ensure the 
equality of the semantic meta-models M and M’. Instead some model content is lost if this model 
content is abstracted in all semantic instances.  

Additional semantic dependencies next to the semantic instance-of dependency help to improve the 
expressiveness in the design of meta-modeling-based software architectures. In particular, an 
advanced management of dependencies between models in a layer-based architecture is enabled. 
For example, Figure 6 and Figure 8 show different approaches for realizing the merging of models. 
The design in Figure 6 uses multiple inheritance and a semantic instance-of dependency allowing to 
add semantic information for merging models. In contrast, the design in Figure 8 uses a semantic 
instance-of dependency without allowing to add semantic information. In order to specify the 
dependency between a merged model in the particular individual models an additional semantic 
dependency is introduced. However, the design in Figure 6 allows to derive a merged model based on 
the particular semantic instance-of dependency, i.e. the merged model can be derived by an 
automated transformation. Therefore, the merged model is on another vertical layer than the individual 
models. In contrast, the design in Figure 8 “only” specifies the particular dependency but does not 
support the derivation of the merged model by an automated transformation. Therefore, the merged 
model is on the same vertical layer as the individual models.  

6. Related Work  

Semantic information is typically provided by ontologies. In the field of service-based computing 
ontologies are very prominent to enrich the information about a web service for enabling automated 
semantic-based service discovery. For example, OWL-S (Martin, D. 2004) and WSMO (Roman, D. et 
al. 2005) are well-established languages for the specification of ontologies for web services. Service-
oriented computing typically handles layer-based systems by considering modeling languages, 
models, and model instances. That means, meta-modeling is essential in service-oriented computing 
with focus on functionality-oriented models. In order to consider the combination of functionality-
oriented models with semantic-oriented models, i.e. ontologies the ontology language WSMO briefly 
discusses the relation of specified ontologies to functionality-related models covering the OMG’s four 
meta-modeling layers. 

Next to the automated semantic-based service discovery other alternatives for the application of 
semantic enrichment in service-based computing exist, e.g. automatic service composition and auto-
completion of composition models (Karastoyanova, D. et al. 2009). The approach by Pahl, C. (2007) 
presents an ontology-based transformation for service-based software systems. This approach does 
not use meta-modeling but semantic enrichment that is used to guide transformations similar to the 
approach at hand. However, the approach hand introduces orthogonal meta-modeling layers for 
semantic enrichment in order to allow an appropriate correlation of conventional and additional 
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semantic information. The correlation enables to reason on particular information and to create new 
information, e.g. by inheriting dependencies on adjacent meta-modeling layers. 

Meta-models and ontologies are closely related in general. For example, Guizzardi (2007) discusses 
in detail the correlation of meta-models and ontologies specifying additional domain logic. Davis et al. 
(2003) also discuss the relation of meta-models and ontologies but applies meta-modeling on 
ontologies for an appropriate comparison of ontologies. In contrast, the approach at hand combines 
meta-modeling and ontologies for semantic enrichment of meta-modeling hierarchies in order to allow 
the grouping of models on the same conventional horziontal meta-modeling layer and an automated 
model transformation. For achieving the same expressiveness as ontologies additional semantic 
dependencies next to the hierarchy-specific instance-of dependency need to be enabled in semantic 
meta-modeling. The approach at hand discusses semantic dependencies as well as their inheritance 
on horizontal and vertical meta-modeling layers in detail.  

The approach presented in (Bencomo, N. & Blair, G. 2005) already uses orthogonal semantic layers 
for a meta-model-based application. The approach uses orthogonal layers to separate the meta-
model-based application itself from the specification of the architecture, interfaces, and interceptions. 
However, orthogonal meta-modeling is not discussed in general and relations between models on 
different horizontal and vertical layers are not covered. Furthermore, Atkinson and Kühne (2003) apply 
orthogonal semantic meta-modeling layers in the field of linguistic. However, the approach is restricted 
to a single so called ontological instance-of dependency. Further instance-of dependencies and 
additional semantic dependencies are not considered. In contrast, the approach at hand aims for an 
introduction of orthogonal meta-modeling hierarchies in general allowing the correlation of 
dependencies on orthogonal layers. 
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